Final draft ETS| ES 201 873-1 V3.4.1 (2008-07)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1. TTCN-3 Core Language

D

2 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Reference
RES/MTS-00108-1 T3 ed 341 core

Keywords
ASN.1, methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Contents

INntellectual PropeErty RIGNES.oiiiieeieeesese ettt b e et be s b b e e 11
0= 11 o ST 11
1 o0 0= PP P RSP 12
2 L= £ 101 SR RSSPR 12
21 NOFMEBLIVE FEFEIEINCES ...ttt ettt e et h e a et et ee ekt s bt bt e aeeae e e e e e besheeb e s Rt eaeene e s e abesbeebesneene e e enrees 12
2.2 INFOrMELIVE FEFEIEINCES..... . ittt ettt bbb h e h et e e e e b e bt sh e e e e e e besb e ebesaeene e e eneees 13
3 Definitions and @DBreVIaLiONS...........ooueieieirieise ettt 13
31 D= T T () 1P 13
3.2 F Y o] 1= V7= 0] 1P 16
4 1100 [Tox £ o o TSRS 17
4.1 The core language and pPresentation FOrMALSc.ciieieire i sae e s e enaeenaesreesreas 17
4.2 Unanimity of the SPECITICALIONveicieee e e te s n e sre e sreesreesaeeseenseens 18
4.3 (@00]g1 0] 01072100 3T PP U TP UPURORPRTPN 19
5 BasiC 1anQUagE ElEMENTSociee ettt s b e st ete s re e e e beeaa e e e reeaaenrenreas 19
51 [AENtITIErS AN KEYWOITSecueitieeiietese ettt bbbt b et b et b et bt e ens 20
52 SCOPE FUIES ...ttt b bt b e e et b e s e et b e e e e e e b e e R e st eb e 4 E e Rt e b e e E e Rt eb e b e Rt e b e e e e neebene e st eb e s b et nb e e eneee 20
521 SCOPE Of FOIME PAFBIMELEN'S ...ttt ettt ettt st b e et b e st eb e e bt eb et et e sbe e b e sbeneren 21
522 UNiQUENESS OF THBNTITIEIS ...ttt bbbt b e et sb e e 22
5.3 Ordering of [aNQUABGE ElEMIENLS...........ccieiieieece et e e saeesreesteesteenseenseenseenaesneesseessens 22
54 e 001 (= 4 (o] o OO P PR URTUSTOSRPP 23
54.1 FOrMEl PAIAIMIELELSeveeieeieee ettt ettt e et et e st e b e e teeaeesaeesaeesae e seenseenseeseenseesteeseeseenseeneesneennes 23
54.1.1 Formal parameters Of KinNG VAIUE.ceieeieeieese ettt esnaesraennees 23
54.1.2 Formal parameters of Kind teMPIELE.c.vccvvieieieeie e nnees 25
54.1.3 Formal parameters Of Kind tIMENcoiiiiiiiieeee et b e e eb e 26
5414 Formal parameters Of KinG POF..........ooveeiiiiieiieeeeseeet ettt s eb e s eb e snene 27
542 ACTUBl PBIBIMELEIS ...ttt ettt b bbb bt £ b b e bt b e bt b et e a e b e e e bt e b e et eb e n s 27
6 TYPES ANA VAIUES ...ttt h bbbt bt e e e s e e st e b e bt e e n e e e e s 30
6.1 BaSIC LYPES GNU VAIUES.........ooceeeieeiece ettt ettt st e st e st e e e e e estesseesaeesteesteeneeaneeeseeeseasseesseesseenseensenneennns 30
6.1.0 SiMPIe basiC tYPES AN VAIUES.........cceeiieeiecie ettt e e e st e s teesaeaae s e e sse e taesseesseenteensenneesnes 30
6.1.1 BasiC StriNg tYPES @NA VAIUES.......coieeiie ettt s et ente et e teen e s re e be e teenteenensneennes 31
6.1.1.1 Accessing individual String EleMENES........ccveieeiieece et e e e e e sreesreenseenneens 32
6.1.2 SUD-tYPING OF DBSIC LYPES.....ceeeeeee et re e s ae e ae e e e ereeeteeste e beeteeneesneesnes 33
6.1.2.1 LISES Of VAIUBS ...ttt e sttt ettt e st e e see et e e neenee e e nsesbeseestesneeneeneens 33
6.1.2.2 REBNGES.....ceee e e e e 33
6.1.2.2.1 INFINITE FANGES. ...ttt ettt et b bbbt b e bt b e b e e bt e b e st eb e s b e e ebesb e e ebenbeeebens 33
6.1.2.3 SUNG 1ENGEN FESIIICIIONS ...ttt b et b e 34
6.1.24 Pattern sub-typing of charaCter StiNG tYPESc.ciiieirireere e e 34
6.1.2.5 MiXing SUD-tYPIiNG MECHANISMSccuiiuiiiitiieeiete ettt et st b e et b e e e er e eb e e nnenea 34
6.1.25.1 Mixing patterns, lIStS aNd FANJES......c.ecvieeeceere e ee e see e steste e e e sae e te e e sreesra e te e beeteeaesneennes 34
6.1.25.2 Using length restriction with Other CONSLraiNS...........cccevieiiriere e s 35
6.2 SEUCLUFEd tYPES ANA VAIUES.......eeceieeeeecieesteee et ste e te ettt et e e et eestessaesaeesaeesseesseenseenteenteeneesneesseenrens 35
6.2.1 RECOIA tYPE @NU VBIUES........ceveeeieiee ettt ettt e e tessa e s ta e st esteeste et e sneesaeesseenseasteeseeseenseeneenneennes 37
6.2.1.1 Referencing fields Of @reCord tYPRuecuieieeiiee sttt sreesreenseenneens 37
6.2.1.2 Optional €lemMENtS N @TECOIU..........ciieieeeee et se et e ettt e e sreesteesteeeesaneenreensesneesseesnnns 38
6.2.1.3 Nested type definitions fOr fIeld LYPESc.eiiieeiie e 38
6.2.2 SELLYPE BNA VBIUES ...ttt b e et b e et b e e b e b e bt b st et et e s b e e eb e s b e e bt ebennenea 38
6.22.1 Referencing fields Of & S8t TYPE.....c.cii i b bbb 39
6.2.2.2 OptioNal ElEMENES TN A SEL ...t bbb bbbt nn e 39
6.2.2.3 Nested type definition fOr fIeld tYPES.cviireiie e 39
6.2.3 RecOords and SetS Of SINGIE LYPEScuiiiiece ettt st e re et este e be e teenteeneesneesnes 39
6.2.3.1 NeSted tyPe AEfiNITIONS........cce e e e sae e aeeaeeeneesneesnaesreesrees 41
6.2.4 Enumerated tYPe @nNU VBIUEScoiei ettt sttt et enae s e s sa e be e teentesneesnnesnes 41
6.2.5 L] oL S O PTURURURPRSI 42

ETSI

4 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.25.1 Referencing fields Of @ UNION TYPEocveeiiee et enraesraesnees 42
6.2.5.2 (@7 o 11 Yo 1T To LU 0o o T TSRS 42
6.2.5.3 Nested type definition for field tYPES.......cvii e 42
6.2.6 LI 5=)Y 8 USSR 43
6.2.7 N = Y PP UPRP 43
6.2.8 LI S0 =01 1Y =SSR 45
6.2.9 COMMUINI CALION POIT LYPES.....c.veieeeete ettt sttt sttt sttt sttt eb e s be b stk s b e bt s b e se e bt b seebeebesbe e ebesbe e ebesbennenea 45
6.2.10 COMPONENE TYPIES ...ttt et b e r et se R s b eh e s e e e e e se e Rt s bt eh e e e e s e resreeresneene e e ennes 46
6.2.10.1 Component tYPE AEfINITION..........cuiirieiieree bbb 46
6.2.10.2 ReUSE Of COMPONENE LYPIESveitiiitiiteiet ettt sttt ettt e e b b se bt b e e bt s b e e ebesne e ebesbeneeneas 47
6.2.11 COMPONENT FEFEIENCES ... eeveete ettt ettt ettt et eb e e et eb e s b e e bt sb et e b e s b e e e bt sb e e et e sb e e ebesbe e ebeseeneren 49
6.2.12 Addressing entitieS iNSIAE ThE SUTcceeiieece et esre et e et e et e enaeeraesreennees 51
6.3 QIR 0 L= oo 0T o 7= 1 o LSS 52
6.3.1 Type compatibility Of NON-SErUCIUrE tYPES.......c.eeieecie ettt et esraeseees 52
6.3.2 Type compatibility Of SErUCIUrEO TYPESocueeiie ettt e e naeenaesraesneas 53
6.3.2.1 Type compatibility of eNUMErated tYPES.......cveciieiieiececees et eee e enes 53
6.3.2.2 Type compatibility of record and reCord Of tYPESccvveciieceeie e 53
6.3.2.3 Type compatibility Of Set and SEt Of TYPES.......cviuiriiiiier e 55
6.3.24 Compatibility DEWEEN SUD-SIFUCLUIES.........ooeciiieieeeitee s 55
6.3.3 Type compatibility Of COMPONENT LYPES.......ciuiiieiririererie e bbb 56
6.34 Type compatibility of COMMUNICaLioN OPEraLiONScciuirieiriiieirieee s 56
6.3.5 I LT 0 1Y/ £ oo OO ST PRSUP PSSP 56
7 0= 0] USSR TSP PR PR PP 56
7.1 (01 = (0] £ T PSPPSR 57
711 F N a0 T oo o= = (] = USSR 58
7.1.2 LIRS0 0= = () P 59
713 REIBLIONG] OPEIEEOIS.ttt sttt bt et b e bbb et b s e et b e se e st b e eb et eb e s b et eb e b 59
714 (WoToTor= o 1< = o] £ TN O TSRS P TSRV PP 60
7.15 BiWISE OPEIGLOIS ...ttt bt b e bt bt e h e bt h e b e h e b et h e bt e Rt b et bbb e 61
7.16 ShITE OPEIBLOIS...... ettt ettt et b et ae bt e s e bt se st b e se e st bt sb e e eb e s b e e ebesbeneebeebennenea 62
7.1.7 L0z (ST 0] 01 = (0] £ O T PP 62
8 17700 U1 =TSRSS 63
8.1 DEfiNition Of BMOTUIEcovirieiirieeeere e r et n e r e nn e e 63
8.2 Koo LB 1T =X 0 TR Y] LS o = 64
821 Ko [N Lo 7= =0 1< = 64
822 GroUPS OF AEFINITIONScuiitiiet ittt b bbbt b e et b e s bt b e b et b s b e e ebesbe e ebesbennenen 65
823 IMPOFtiNg FrOM MOTUIESoiuiieeiite et ettt b et b e et b bbb 66
8231 General fOrmMat OF TMPOITc.oiuiiiirieie e b et bbbt bbb nn e 66
8232 IMPOrting SINGIE AEfiNITIONScoiiieiite bbbt b e 71
8233 [MPOFTING GrOUDS. ... ettt sttt sttt sttt et b e et ebese et bese e st b e s b eneebese e st eb e s e e st eb e s e e aeebesb e st eb e s e eneebenneneees 71
8234 Importing definitions of the SAME KINGccoiiriiiiie e 72
8.2.35 Importing al definitions Of @MOAUIE.coeeiieie e 73
8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules...........cccccevivervennns 74
8.3 V7Koo L8[TS oo 01T o 75
9 Port types, component types and test CONfiQUIaLioNScccueviiieriiieie e 76
9.1 COIMIMUNICALION POITS ...ttt sttt sttt sttt sttt sttt et bese e st e b e s e e bt sb e s e e bt e be s e e Rt ebese e Rt e b e s e e st ebene e st ebe st et ebenreneees 76
9.2 TESE SY M INEEITACE ...t bbbt b bbbt b e bt b e b e b e b nnene s 78
10 DeClaring CONSIANTScoiuiiieieieeee sttt ettt et e e te s e e tesaeeseesbesneeseesaeesesseeneensesseensesseenseseesneensensenn 80
10.1 EXEEINGl CONSIANTS......c.vieceiirieeiert ettt r e et e n et nr e n s 80
11 DeClariNg VaAADIES. ..ottt sttt sttt sesse bt et et neas 81
111 VAIUE VAITADIES.......oeeiiece et e et r e et r e nenn s 81
11.2 TEMPIAIE VAITADIES ...ttt bbbt b et b e et b e e s bt e et b sb e e eb e s b e neeb e e b e neene s 81
A B 1= ol -1 o I = £SO 82
13 DECIAITNG MESSATES ... eeueeueeueeueetirteateseessessesee e et eseesease st e s e s e se e s e s eaeeseehe e b e eh e e b e ne e s e s e e e seeseebenseabenrennenennan 83
14 Declaring ProCeAUIE SIGNAEUIES.eiverueieieeeseetietesseseessesteseesseeesesseesessessesseseessessessenseseesessessessessansenens 84
15 DECIANG EMPIELES.ottt b et b bbbt e s et e e e e st e s e ns e ne e e nneneneas 85

ETSI

5 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

15.1 Declaring MESSAgE tEMPIALESc.vi et et sae et e e e e teestesseesneesreesaeesseenseensenns 85
15.2 Declaring SIgNature tEMPIELEScveeeeeeeciee et te e se st et e e s aeeste e e e e estesnsesneesneesneesseanseensenns 86
15.3 Global and [0Cal TEMPIALESeeiieeeee ettt e e et e e e eesaeesreeste e seeaeenseenteeneesneesneesreas 88
154 T T SR I 00T 0 = 1S 89
155 MOOITIEA tEMPIALES.....c.eeeeeeee e st e et e e e saeesae e teenteesse e teensesneesneesneesseanseensenns 90
15.6 Referencing elements of templates or template fieldS..........ooovei i 92
156.1 Referencing individual StriNG ElEMENES.........coiiii e 92
15.6.2 Referencing record and set fIEldS. ..o e 92
15.6.3 Referencing record of and set of EleMENS.......cccoie e e 93
15.7 Template MatChing MECNBNISITISc..cuiiiieiie ettt bbb ettt s r et eb e e e b e s b e e ebesreneenens 94
1571 SPECITIC VAIUES ...ttt bbbt b e bt e bt b e se bt bt sb e e eb e s b e e ebesbennebesbennenea 95
15.7.2 Special symbolsthat can be used instead Of VAIUES...........ccovee i iieseeeee e 96
15.7.3 Special symbolsthat can be USed INSIAE VAIUES..........ocveiiie ettt 96
15.74 Specia symbols which describe attributes Of VAIUES..........coveiv i 97
15.8 TEMPIALE RESITICLIONS. ... coitieie ettt te e te e s e ste e teeateese e et e e te e teentesneesseesaeesseanseenseenseeneenneesreas 98
15.9 Y = (o a1 o= 1 o] SR 100
15.10 A= U o 0o 1= 1 o] SRS 100
16 FUNCtions, AltStEPS @A LESICASESoivieieieieie ettt ee st e et s neeeeseesneeeeseeenes 101
16.1 FFUNCLIONSttt et e e s s he e s te e ebeeateeaeeebeasbe e beenbesatesasesaeesaeesaeenteenteeatesnsesreesanes 101
16.1.1 [NVOKING FUNCLIONS ...ttt bbbt b et b et b e bbb 102
16.1.2 PredefiNed fFUNCHIONS ...ttt st st e et e st e seesbeeneene e e et ee 103
16.1.3 EXEEINEL TUNCLIONS. ... ettt bbb bt bt h et e e e b e sb e e b e bt ene e e enee e 105
16.1.4 Invoking functions from SPECITIC PIACEScuviierieeee e reereens 105
16.2 = 1= oL TSSO 106
16.2.1 V70 o = LS 0SSR 107
16.3 QL= A0 PP P TSP PTUUPORPURPRURN 108
A Y o o B 109
18 Overview of program statements and OPEIaLIONS...........couerrerrereeieeerererie st se e sre e e 109
RS TS Tol o 0o = IS = (= 1= £ S 112
19.1 F S T 1107 1P 112
19.2 TNE IT-EISE STALEIMENLeeeeeeeeee ettt et b e bbbt e et e b b e e e et e b e sbesbeene e e e e etes 112
19.3 The SElECt CaSE STALEIMENTee ettt sttt st e e e e e e se e besaesbe e e enteseeseesneeneeneeneeneas 113
194 QLI 0L = 07 | S 114
195 THE WHhIIE SEBLEMENL.......ceeieeeieee ettt see e te et s e e et e seeseesbeemeese e e e teseeseesaeeneeneeneenes 115
19.6 The DO-WhIl@ SEAEEIMENL ..ottt ettt et e e e e be e eb e et enteseeseesaesneeneeneeneas 115
19.7 LI I o= IS = =00 o S 115
19.8 TNE GOLO SEALEITIENL ...ttt ettt sttt ettt et b et b et e e e b sh ke he e b e e e e e e bese e ekt s aeeb e e e et e besbenbeeneennennennes 116
19.9 The StOP EXECULION SLALEIMIENL..........eeieeieeste et eeeeee st e ste e e eeeseeseeseeesteeeeeseeeseesseesseesseensesseesnaesnnesneesseensennsenns 117
19.10 THE RELUIN SEBEEMIBNT. ...ttt ettt ettt et b et b et e e b et eb e s aeeb e e e et e sbesbenbeene e e e neeates 118
19.11 QLIS a0 R = =1 1= | S 119
19.12 THE BrEak SLALEIMENTottt et b et b et b e et bt aeeb e e e et e b e sbesbeene e e e nnetes 120
19.13 THE CONLINUE SEAEEIMIENT ... ettt sttt ettt b et se bbb e s be e st e e e se e b e saeeb e e e e b e besbeebeeneennennennes 121
20 Statement and operations for aternative DENAVIOUS...........c.ccevvieeinieeere e 121
20.1 The SNaPSNOL MECNANTSIM.......oeeiiite bbb et b e e b e bt b e s b et be bt b e b 121
20.2 LT N S = 1= 0 1= o | S 122
20.3 The REPEAL SLALEIMENToiiiieecie et e e st e et e st e s e saeesse e teesteesseesaesseesseesseensesneesnnesneesseansennsenns 126
204 THE INEITEAVE SLALEIMENT ...t et b et b e e e b et eb et et e b b e sbeeaeeneeneetas 127
20.5 [T =0 o T g T SR 128
20.5.1 The default MECHANISIMot r bbb e bbb et nseneennas 129
20.5.2 I Sy e A= (0] o1 4 o] TS 129
20.5.3 The DEACTIVALE OPEIELIONecuieetiecteeie e e ee st e see e e ste et ese e s e s teesteeteestesseesseesseesteessesneesnnesaeesneanseensennsenns 130
21 Configuration OPEIaliONS........cccuicuerieeeiesteeeesteseeseesteeeestesseesseseeeseessesseessessesssessesseensesseensessesseessessenns 131
211 CONNECEION OPEIGLIONS ...ttt ettt bbbt s b e st b e e st s bt b e st b et et e bt b e st e b e b e st eb et et ebe b e e e 132
2111 The Connect and M@ OPEILHIONScouceiirieiitereeiei sttt bbb bbb et b et ae e ens 132
21.1.2 The Disconnect and UNMap OPEIaLiONScc.eeveeieiieeiieieeseesteesteeseessesseesseesseesseessesnsessssssessssessesssesssenns 133
21.2 Test COMPONENE OPEIBLIONS.cieeieeieeiereeeeeesteesteesteestesteseeseesseesseaseaseasseaseessaesseesseessesssssnssseesseensenssenns 134
21.2.1 I SO = Yo o< = 1) S 134
21.2.2 The Start test COMPONENE OPEIALIONcueieeiieiiesiece e see s ste e rte et e e s e e e e e ertessaesseesreesseesseenseesenns 135

ETSI

6 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

21.2.3 The Stop test PENAVIOUr OPErELIONceeiieciciece et e e e e e nteseesseesneesneenseensenns 136
21.2.4 The Kill test COMPONENE OPEIELION.........cceeieiieieeieeseerte e et e st esteeste e teeseessaesre e teesessaesseesseesseesseanseensenns 137
21.25 I Sy AV LAY 0] = = 1 o o S 138
21.2.6 The RUNNING OPEIAIONcccveiieiieceeeeeste et et e e e e st e sreesteesteeeesseeeseasse e seesseesseessesnaesneesneesneenseensennsenns 139
21.2.7 I (=] B0 g =T a o < = (o) o S 139
21.2.8 I SN SN L= o e o = (oo S 140
21.2.9 Summary of the use of any and all With COMPONENLSccooiiiiiiiiree e 141
22 COMMUNI CALION OPEFAETIONS. ... c.vititeteeesteseeseete et st sse st sse s se et eseese s st sbess e s e s e s e e eseeseeseebenneenene e nennennas 142
22.1 The coOMMUNICatioN MECNANISMScviieiie ettt st te st es e e e e steseeseesbesaeeseeseestesneeneeneenes 142
22.1.1 Principles of message-hased COMMUNICALION.ccviiiiieiie e eeeens 142
22.1.2 Principles of procedure-based COMMUNICELIONc.eeuiiieiie e e e s seesae e e e 143
22.1.3 Principles of unicast, multicast and broadcast COMMUNICALION.cceereeieiieriereere e eee e 143
22.1.4 General format of COMMUNICatioN OPEIALIONScceceeiierieeie e se e ee e e e e et eeraesreesnees 144
22.1.4.1 General format of the Sending OPEralioNSccceiieiiee e sre e e e naeeeeens 144
22.1.4.2 General format of the reCeiVing OPEraioNS..........ccveieiceeiiereese et se e e naeenreens 145
22.2 M essage-based COMMUNICALION.ii ittt b bbb bbb se bt aenn e ens 145
2221 THE SENA OPEIBLION ...ttt ettt ettt e b et b bbbt bbbt s e e s eb e b e e e se bt e e ebenr e e ens 146
2222 THE RECEIVE OPEIBLIONecvieieetest ettt bbb bt b bbb bt bt et bbbt b e e ens 147
22.2.3 THE THIQUEN OPEIELION ...ttt e b et b e bt et b b e bt e et bt st e e bt nn e ens 148
22.3 Procedure-based COMMIUNICBLION............cieiieeee ettt e e e besaesresse e e eneeseeseesneeseeneeneeses 150
2231 THE Call OPEFALTON ...ttt bt a bbbt a bbb e bt bt e et b et e e eb e e e e ens 150
22.3.2 I (SY T o= o o < = (o) o S 153
22.3.3 I ST RS o/ Y] 1= 1o o S 155
22.34 I SY T i = oY 0] = 1 e oS 156
22.35 I ST R e TS ST 0] 0 = 1 o o S 157
22.3.6 QI SY O (e a1 e 0 = 1 oo S 158
224 ThE CECK OPEIELION ...ttt b e bbbt be b e bt b e e et b e e et e b s b e e be b 160
225 Controlling COMMUNICALTION POFTS.......eveueruireeiertirieiertereei ettt bbb et sb e s e st be e sesbe b 161
2251 The Clear POIT OPEIEHIONcueitireeeeetere ettt e e bt s bt bbb e bt b e s st s b e e ese b et e e ebenb e e ens 161
2252 The Start POIT OPEIAHONcouieeviieiieter ettt b e sb e bbbt b e b s et bbbt b neens 162
2253 THe StOP POt OPEIBLIONueveeeiirtereet ettt ettt b et b et b e bbb bt b e bt b e s eb e s e s e b et e e ebenee e ens 162
2254 The Halt POIT OPEIALTON.c.eitieeeiit ettt b e bbbt b e bt b e eb et bese e ens 163
22.6 Use of any and all WIth POITS. ..ot bbb e se e s sb et ee e e 163
PG T 1001 0] o= (0] 1SR 164
231 THE LIMEN MECNANISIM ...ttt bbb et bbb e st et e b se e ke s aeeb e e e et e besbenbeeneeneeneenres 164
23.2 The Start tiMer OPEIALION.oriiiieree ettt ettt b e et b e et eb e b et b bt s b b 164
233 THE SLOP tIMES OPEIBLIONcueeieeete ittt ettt b e bt b e bt b e s b et e bt bt e st eb e b e st eb e b et ebenbe e 165
234 The REA0 tIMEr OPEIELIONceeuiite ettt sttt b e b e bt b et et b e b et e b s b e e b b 165
235 The RUNNING tHIMEN OPEIALION. ..ottt et b et b ettt b et b e e b b 166
23.6 ThE TIMEOUL OPEIGLIONcoviieiiiete ettt ettt b e et h e b e bt b e e e st eb e b et et b e e be b 166
23.7 Summary of use of any and all With TIMErS.........c.ciii e 167
P == Y= (o ol 0]/ (0] 1 S 167
24.1 The VerdiCt MECNENISIM........coiie e e bt s b e b bttt b e b sbesae e e e e e 168
24.2 LI (SRS = Y= (o [ot a0 o = 1 e o S 169
243 The GELVErTiCt OPEIELION........ccveeeteiteeete ettt ettt b e et b e e bt b e e e bt b e e e st eb e b e st et e s b et ebenbe s 169
P T (= 7= = 1 LT 170
P2 I Y/ o LN = oo 1 (o ST 170
26.1 THE EXECULE SEALEIMENL. ... ettt ettt et bbbt se e b s bt eb et et e besreebeene e e e e enes 171
26.2 BN (ST 11 0] N o7 S 172
27 SPECITYING GLIULES......c.vi ettt et e e e aesre e e e s beeaeestesreenneereens 174
27.1 The AttriDULE MECHANISIM ... sttt e e st e besaesbeeseenteseeseesaeeneeneeneenees 174
2711 SCOPE OF BLLITDULES ...ttt bbb et b et b e et b e bbb 174
2712 OVeErwriting rUleS fOr @LITDULES............ciiiieeiitee et s b e bbb 175
27121 Additional overwriting rules for variant attribULES.............cceciiieirircee e 176
27.1.3 Changing attributes of imported language ElemMENLS...........ccvccverie e 177
27.2 THE WL SEAEEIMIENL ...ttt b e bbbt h e e e et b sb et et e s b e sbenbeeae e e e e enes 177
27.3 [T o] K= VA= 1] 0TSSR 178
27.4 Lot o T =] oL =SS 178

ETSI

7 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

275 VaTANE BEITDULES ...ttt r e et r e et r e r e e r e nre e renreseenenreneenen 179
27.6 EXEENSION GEMDULES ...t 181
27.7 (@] o1 Yol gT= I 1 o 1= 181
Annex A (nor mative): BNF and StatiC SEMaNTiCS.......coeeeirerieresie s 183
N B IO N 1 TSP 183
All Conventions for the SYNtaX AESCHIPLIONeiie it e s e re e reenreeeeeneeenes 183
A.l2 Statement terMiNGLOr SYMDIOIS.........ciiuiiie ettt e et et e s e e s se e teesteeseesseesreesseesseesesneennns 183
A.13 0TS 1) T PSS 183
Al4 (00010101 011U 183
A.l5 LI B B £ 107 S 184
A.16 TTCN-3 SyntaX BNF PrOOUCLIONScc.oieuiiiiieeiiiie sttt sttt sb et 186
A.16.0 LI N T B 120 1SS 186
A.l6.1 Koo [N F X0 T TR] S o = PR 186
A.16.1.0 GENETAottt R R R R R e R R R R Rt r e n et 186
A.16.1.1 TyPedef AEfiNITIONS ..o e sre e s aeeaeenteenteeseesnaesraesneas 186
A.16.1.2 CoNStANt AEFINITIONScoveireeerere et b e se e nr e r e reseenenreneeneas 188
A.1.6.1.3 Template defiNITIONS.......cci e e s ae e e e teenaeentesnaesnaesneas 188
A.1.6.14 FUNCE ON AEFINITIONS ...t e e e et r et n e 189
A.16.15 SIGNAEUNE AEFINITIONS ...ttt ettt b e st b e et b e b e b b e ebe b nneneas 190
A.16.1.6 TESICASE AEfINITIONS.ecueeeeee ettt ettt et e st e stesbesneenee e eneeneen 190
A.16.1.7 ANLSEED AEFINITTIONS ...ttt bbb bbb 190
A.16.1.8 IMPOIT AEfINITIONS. ...ttt bbbt b et b et b bbb 190
A.1.6.19 GrOUP EFINITIONSeeiicteeceet ettt b bbb e b b st b e b se ke sb e e eb e s b e neebesbeneeneas 191
A.1.6.1.10 External function definitionS............cooooiiiie e e 191
A.1.6.1.11 External constant definitioNS............ccoereiieneeiere et 192
A.1.6.1.12 Module parameter AEfiNITIONScueiieiieie e e e et e e e e reesreenneeneeenes 192
A.16.2 L0 011 o) I o o RSP 192
A.16.2.0 GENETAottt R R R R R R R R R e R Rt r e n et r e 192
A.16.21 Variabl€ INSLANTIALTIONccveeeeireieeiri et n e 192
A.1.6.2.2 TIMEN TNSEANMLIAEION ...t r e n e n e r e n e r e ens 192
A.1.6.2.3 COMPONENT OPEIELIONSeeveiteeeteete ettt sttt sttt ettt et s st eb e e e st eb e se et eb e seene et e se e e et e sbeneebesbeneeneas 193
A.16.24 POIT OPEIBLIONS ...ttt ettt sttt et b e et b e et b e s b et bt s b et eb e s b st eb e s b et eb e st et eb e b 193
A.1.6.25 THMIEE OPEFALTONS ...ttt ettt b bbbt b ettt b et e e bt s b e e e bt eb e b e bt e bt s e s e bt st eneen b e e ens 195
A.1.6.3 I3/ oL PSPPSR 195
A.l64 W BIUB. ...ttt ettt ettt sttt R e et e ee e e Ee Rt Rt eaeeneen e e e e EeeReeRe e Rt eneententeeReeeeeaeeneeneeaeents 195
A.1.65 L = 01= S 4= o] o OSSPSR PRSP 196
A.1.6.6 WWITN SEBEEIMENT ...ttt et e e e e n e e r e nn e nenr e enes 197
A.1.6.7 BENAVIOUN SEBLEMENTS.......cvieeieieireceier et n e n e 197
A.1.6.8 BaSIC STALEIMENES.covieeeeetire e n e e 198
A.16.9 MiSCEllaNEOUS PrOTUCLIONSceieeeiieeieeee et e e et te e s e s e re e e e teestesseessaesseesseeneesnnesaeesaeenseesenns 200
Annex B (normative): Matching iNCOMING VAIUES.........ccoiuiieeeieirenese s 201
B.1 Template matChing MECNANISIMSciiiiieie e s e r e s reens 201
B.1.1 MELChING SPECITIC VAIUBS ...ttt b bt b bbbt nn e ens 201
B.1.11 OMITEING VAIUBS......ceeeeteteet ettt e et b e et b e e h b se bt e bt s e e bt s b e s b e e eb e e b e neeb e ebeneeseebeneeneas 201
B.1.2 Matching mechanismsiNStead Of VAIUESc.ooiriiiiiec s 201
B.1.2.1 RV L= T SR 201
B.1.2.2 ComPlEMENTE VBIUE TISE ...t bbb bbb et b n et 202
B.1.2.3 AANY VBIUB. ...ttt bttt h et b bt h e H e b bt £k Rt e e R R e R e bt e e st bbb n e nn 202
B.1.24 F N VA= LU =X o gl oo = S 202
B.1.25 RV = U =T TSR 203
B.1.2.6 SUPEISEL ...ttt sttt E bR e R R R R R e R R R AR R e Rt e R Rt R bR nnan 203
B.1.2.7 SUDSEL ...ttt R R R R R R R R R R R R e Rt R R n e nnas 203
B.1.3 Matching MechaniSMSINSIAE VAIUESocieiieiece ettt reesaeeaeeneeenaeeneesnaesneas 204
B.1.31 E N Y= = 007 0| OSSR 204
B.1.3.1.1 Using single CharaCter WilACAIS...........coueirerieiiieieeie ettt 204
B.1.3.2 Any number of elementS Or NO EEMENTc..oiiii e 204
B.1.32.1 Using multiple charaCter WildCardS............cooreiieriiiieree et 204
B.1.33 [00101 o] o S 205
B.1.4 MaLChiNg BLLITDULES OF VBIUESoeeuiitiieiiiteeet ettt 206

ETSI

8 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.14.1 LENGN FESIITICHIONS ...t e b bttt e bbbt et e e e seeeb e bt ebeene e e enbe e 206
B.1.4.2 THE ITPIESENE INAICAIONeteieeeteeeeie ettt ettt e e et bbbt e et et sbeeb e et e e e neenras 206
B.1.5 MELChING CRArACLEr PALLEINi ittt et b et b et e e et b e ebesmeese e e e b e 207
B.1.5.1 RS S 0] == o o RS 208
B.1.5.2 REFEIENCE EXPIESSIONeveeeieiteeste et e e eee et et e s te e e et eestesseesseesreeaseenseaneeeseeaseeseenseenteensesneesneesaeesseansennsenns 209
B.1.5.3 MaCh EXPIrESSION NEIMIESveieeeieee e e e e e s e s e sreesae e seeseeeaaeese e seenseentesssesneesnnesaeesseenseensenns 209
B.1.54 Match areferenCet ChAraCter SEL..........ooui ittt sa et saeene e e e ee 210
B.1.55 Type compatibility ruleS fOr PELLEINS.........coi i s see e 210
Annex C (normative): Pre-defined TTCN-3 fUNCLIONSccoiieiiiiceece e 211
C.0 Genera exception handling ProCEOUNESccoiriiirieriieri et 211
(O R 0105 o= g (o] o= = TP USROS PR VRTOPPRTPPN 211
C.2 Integer tO UNIVErSal CRArACLENccui ittt sttt re e e besaeeneereens 211
(ORI 11 =0 = g (o 1 €= (1 1 ST 211
C.4 INLEYEY 10 NEXSIIING. .. ettt e ettt b bbb b e e e ae e st e benb e anenr s e nn e 212
(ORI g1 =0 = g (o o= = 1 o TR ST 212
(O T 11 =0 = g (o ox = 1 0T ST 212
O A 10105 o= g (o1 0= AT TP PSR STSTURURVRTOPPRTPPIN 213
(O S B (07 W (o111 o = ST PP T TSR STUR U VRTOPPRTPRTN 213
(O T Ot 7= - o (= g (0 1 1 1= = SO 213
C.10 Character StriNg 10 OCLELSITINGccueeiviiiecie ettt st s e s te et s e e s be e e e s e sreenbesteesaeseessesreensesreens 213
C.11 Universal CharaCter 0 INTEOEN.........uiii ettt n e e ne e 213
(O Y1] Lo (o N T 1o = RS 214
C.13 BitStNG tO NEXSIIINGecueiiticieeitecieie ettt sttt st e te e te st e e e e s besseestesbeessesteensestesreeasensesreensenreens 214
C.14 BitStriNG 10 OCLEISIING ... c.eeueeueeuirtertestesteieie ettt e et b e bbb e s e s e e e e eaeesesreenenre s e nnennas 214
C.15 BitSING 10 CHarSIIING.c.eeueiuietirteitietesteteiee ettt eb bt bbb e e s eseebesb e an e e s e nne e 215
(O ST o (o T glo R (o 1 11= 0 (OSSR 215
C.17 HEXSIIING L0 DITSIIINGttt e e e s b e b nr e nenn e 215
C.18 HEXSIIING 10 OCTELSIIING ...ttt ettt sttt sb bt bt e e e e e e esesb e ene e nenne e 215
C.19 HEXSLIING tO CRAISIIINGveivieeeitecieite ettt sttt et e b s ae e e e s beeaeesbeereentesresteensessesreensenrens 216
(OO I ® (== (1o (0T 01 0=:0 = ST 216
C.21 OCtELSIING 10 DITSITNG. ... ettt b et e e bbb e nenn e 216
(ORZ7Z2 ® v (= = (110 R U0] 41=06 1 1 oo ST 217
C.23 OCtetstring t0 CharaCler SIINGocuvccieciecie ettt s e st st e et e s beereesaesresreesesreens 217
C.24 Octetstring to character String, VErSION [looiiiiiiiiiieeieeees e 217
C.25 CharStIiNG L0 INTEOET ...ttt e sttt h ekt b e b b et e e e e e st esenb e enenr e s e nnennas 218
C.26 Character StriNg 10 OCLELSITINGc.eeiviiiecie ettt sttt ste et s e e be e e besreebesreesaeseesaesreensearens 218
C.27 CharaCter StriNG L0 FIOBL...........ceuerieriiiteiterteie ettt e n e sr e nn e 218
C.28 Length Of SNGS 8N TISEScoviiiieiiteieeiee bbb nr e e 219
C.29 Number of elementsin aStrUCIUIEd VAIUE...........coviiiiiie et 220
C.30 The ISPreSENt FUNCHION.......ceiieirieeisie ettt sttt bt ebestenae e e 221
C.31 The lISChOSEN FUNCLION.......ceeiiiieiee ettt st et s re e te b e eneeseesneeneesteeneenaesreensensens 222

ETSI

9 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.32 ThEeREGEXP FUNCLIONc.eiciee ettt sttt e s te s beea e s teeae e besreeaaestesreensenreens 223
C.33 The SUBSLNG FUNCLION........ocieiececc e ettt e e re e e aesaeeneeneens 224
(O B g T= T (= o =" 11 o o) o S 225
C.35 Therandom number generator fUNCLION...........ccviieiereiere e e e sne e 225
(O oI = 0001 =0 R (0N T 1= = SR 226
C.37 ThelSVaUBTUNCIION.......i ettt e st te s re et e besseeseesreentesteeneenaesreensennens 226
C.38 The enCoding FUNCEION.oiiiiiiieie sttt b b s e s bt b e nr s e nne e 228
(ORCIo I I o T 0 (= w'o o [T 1o I {10 (1) o TOu ST 228
Annex D (nor mative): PreprOCESSING MACT 0S.......cvieiieeeieeeeeeeie sttt sre s 229
D.1 Preprocessing macro: MODULE ...ttt e 229
D.2 Preprocessing macro: _ FILE ..o 229
D.3 Preprocessing Macro: _ LINE .o 229
D.4 Preprocessing macro: SCOPE. ...ttt ettt st ae e e n e s re e e ens 229
Annex E (informative): Library of USEfUl TYPEScceiiiiiiieriesterieeee st 230
R I 10 =) ST 230
I U LU I OV B Y o= 230
E21 USEFUL SIMPIE DASIC LYPES ...ttt bbb bbb bbb b ens 230
E.210 Signed and unsigned SINGIE DY INTEJESooiiiiieiee e 230
E211 Signed and UNSIGNE SNOM INTEJEIS.......eiueiee ettt sttt ettt sttt eb e et b e sn et b e b 230
E.2.1.2 Signed and UNSIGNEd [ONQ INTEJEIScvieiieeeee e see st et sre st e e aeeae e e eseesseesseeneeeneesseesneas 231
E.2.1.3 Signed and unsigned 1oNgIONG INLEOEISc.ueieeiieieeie ettt et ae e e e e e sreete e esaeenaesraesneas 231
E214 TEEE 754 FlOBES. ...ttt eeeeieeee ettt ettt b bbbt e bbbt b et e b e e s e b e besbeeb e e e e e e e e nas 231
E.2.2 (0L U e =i ot e g o Y 0] SR 232
E.2.2.0 UTF-8 character String "ULfBSLING™ccveiiee et ae e s s neesneenreenneens 232
E221 BMP character String "DmMPStIiNg™cc.o ot e e ee s e e saeesneenreereens 232
E222 UTF-16 character String "UFLOSIIING"coeiueeriirieiriirieeresiees st 232
E223 |SO/IEC 8859-1 character String "i1SO885OSIITNG"eoveueruieeiertirieerie sttt 232
E.2.3 USEFUL SEIUCTUNE TYDES...... ettt bbbt bbb bbbt et b et senn e ens 233
E.2.30 Fixed-point deCimal [EEIalcoiiieirie bbb et 233
E24 USEFUL BEOMIC SLTNG TYES. ...ttt ettt b bbbt bbbt b e e et b e st e bt st ne b e ens 233
E24.1 SiNgle ISO/EC 646 CharaCler TYPE........iceieeeeeectiesie ettt et te e s sre e sreesseeteensesnaeenaesseesneas 233
E.24.2 SiNGIe UNIVErSal CRaraCler LY DB ...ttt st sae et e et e eneeenaesreesneas 233
E.24.3 L0 L= o Y] oSS 233
E.24.4 T T0 L= 0= G 1] o SRS 234
E.245 Lo = o B Y o= SRS 234
Annex F (informative): Operationson TTCN-3 active 0DJECLS.........cceveererireresereee e 235
e R I o 0 0 0] = KOS 235
F.1.1 TSt COMPONENE FEFEIEINCES. ... ettt bbbttt b e s bt b bt b e bt e b bt e b b 235
F.1.2 DyNamic DENAVIOUN OF PTCSoiuiiitiieiiiteseeeet ettt b ettt b e bt b e bt b et e sb e b e sbenneneas 236
F.1.3 Dynamic behaviour Of The MTC... ...ttt st st b e bbb seene s 239
e I 0= £ S 240
e T o K TSR 240
F.3.1 (0o 01110 (U Tir= Lol g @] o= =1 o] 1S 240
F.3.2 POrt ControlliNg OPEraLIONSc.eecieeieiie e cee st et et e st e s e e e e e ssaesaaesreeste e sestesseesseesseeseenseensesssessenssansnens 241
F.3.3 COMMUNI CALION OPEIALIONS.veeieeeterteeetertee ettt ettt b et b et e bt beae e b e b e e s bt b e e b e e b e e e st e b e b et ebenbe e e 242
Annex G (informative): Deprecated language fEALtUr €S..........oovivieie e 243
G.1 Group style definition of MOdUIE PAraMELEN'S.........c.cuieririerierieeeer e 243

ETSI

10 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

G.2 RECUIMSIVE IMPONTotiiteeiectecee sttt e te st e e st e e te e te s ae et e s be e e e sbesaeeasesbeesaebesaeesseabeenseseeensensesteeasensesrnensenreans 243
G.3 Usingall in port type defiNitiONS.........cccciciiiiiieiiie ettt ne s re e e tesneens 243
G.4 SIZeOf TOr 1ENGEN OF TISES....cuiieieiiie e n e 243
(T |V D= o o] 4 £ S PTRSRSN 243
Annex H (infor mative): Bibliography ... s 244
11 2RSSR 245

ETSI

11 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part 4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6 "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8. "ThelDL to TTCN-3 Mapping”;

Part9: "Using XML schemawith TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

ETSI

http://webapp.etsi.org/IPR/home.asp

12 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2[1]) and a graphical presentation format (ES 201 873-3 [2]). The specification of these formatsis outside
the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.

. Non-specific reference may be made only to a complete document or a part thereof and only in the following
Cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

For online referenced documents, information sufficient to identify and locate the source shall be provided. Preferably,
the primary source of the referenced document should be cited, in order to ensure traceability. Furthermore, the
reference should, as far as possible, remain valid for the expected life of the document. The reference shall include the
method of access to the referenced document and the full network address, with the same punctuation and use of upper
case and lower case |etters.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are indispensabl e for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[3] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

ETSI

http://docbox.etsi.org/Reference

13 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

[4] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[5] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[6] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[7] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[8] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[9] ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".

[10] I SO/IEC 9646-3 (1998): "Information technology - Open Systems I nterconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[11] ISO/IEC 646 (1991): "Information technology - SO 7-bit coded character set for information
interchange”.

[12] ISO/IEC 6429 (1992): "Information technology - Control functions for coded character sets'.

[13] I SO/IEC 9646-1: "Information technology - Open Systems | nterconnection -Conformance testing
methodology and framework; Part 1. General concepts’.

[14] |EEE 754: "|EEE Standard for Binary Floating-Point Arithmetic".

2.2 Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

[i.1] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[1.2] ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly
International Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for
information interchange”.

[1.3] I SO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1:
Latin alphabet No. 1", 1998.

[i.4] Object Management Group (OMG): "The Common Object Request Broker: Architecture and
Specification - IDL Syntax and Semantics'. Version 2.6, FORMAL/01-12-01, December 2001.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in | SO/IEC 9646-1 [13],
| SO/IEC 9646-3 [10] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

ETSI

14 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basic types are referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible types if conditionsin clause 6.3 are met.

completely initialized: values and templates of simple types are completely initialized if they are partialy initialized.
Values and templates of structured types and arrays are completely initialized if al their fields and elements are
completely initialized. In case of record of, set of, and array values and templates, this means at least the first n elements
shall beinitialized, where n is the minimal length imposed by the type length restriction or array definition (thusin case
of nequals 0, thevaue"{}" aso completely initializes arecord of, a set of or an array).

data types. common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them (see table 3 of the present document)

defined types (defined TTCN-3 types): set of al predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: form of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is a value received during run-time or depends on a received value by alogical
relation

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, altstep, etc.) but at the time of invoking it

NOTE: Actua vaues or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that its identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and atsteps defined within the same
module and the control part of that module

Implementation Confor mance Statement (1CS): See | SO/IEC-9646-1 [13].
Implementation eXtra Information for Testing (1XI1T): See ISO/IEC-9646-1[13].
Implementation Under Test (IUT): See ISO/IEC-9646-1 [13].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

inout parameterization: kind of parameterization where the value of the actual parameter is bound to the formal
parameter when the parameterized object isinvoked and the value of the formal parameter is passed back to the actual
parameter, when the invoked object completes

NOTE 1: Inout parameters can be used for functions, altsteps, and test cases only.

NOTE 2: All changes to the arguments within the invoked object have effect on the arguments as seen by the
invoking object.

ETSI

15 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)
known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or atemplate header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See ISO/IEC 9646-3 [10].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object isinvoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1. Out parameters can be used for functions, altsteps, and test cases only.
NOTE 2: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: All changes to the arguments within the invoked object have effect on the arguments as seen by the
invoking object.

Parallel Test Component (PTC): See |SO/IEC 9646-3 [10].

partially initialized: values are partialy initialized if a concrete value has been assigned to it or to at least one of its
fields or elements

NOTE 1: A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: Thus, constants and templates are always initialized at declaration. Variables (both value and template)
areinitialized if they, or at least one of their fields or elements has been used on the left hand side of an
assignment (including initial value assignment at declaration). Module parameters are initialized either at
declaration or by the test system before test execution.

port parameterization: ability to pass aport as an actual parameter into a parameterized object via a port parameter
NOTE: Thisactual port parameter is added to the specification of that object and may completeit.

right hand side (of assignment): expression, template reference or signature parameter identifier which standsright to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: basic type, structured type, special data type, specia configuration type or special default type to which the
user-defined TTCN-3 type can be traced back

static parameterization: form of parameterization, in which actual parameters are independent of run-time events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compile time, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions

System Under Test (SUT): See |SO/IEC-9646-1 [13].

ETSI

16 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)
template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1. Thisactual template parameter is added to the specification of that object and may completeit.
NOTE 2: Values passed to template formal parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or a function started on atest component when executing an execute or a
start component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test components have its own behaviour and hence severa test
behaviour may run concurrently in the test system (i.e. atest case can be seen as a collection of test
behaviours).

test case: See |SO/IEC-9646-1 [13].
test caseerror: See |SO/IEC-9646-1 [13].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with a
one or more TTCN-3 control parts

test system: See |SO/IEC-9646-1 [13].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass atimer as an actual parameter into a parameterized object via atimer
parameter

NOTE: Thisactual timer parameter is added to the specification of that object and may completeiit.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type (e.g. at assignments, as actual parameters at calling afunction, referencing atemplate, etc. or asareturn
value of afunction)

user-defined type: type that is defined by subtyping of abasic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vaues may be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavaue
parameter

NOTE: Thisactua value parameter is added to the specification of that object and may completeit.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface

ATS Abstract Test Suite

BMP Basic Multilingual Plane

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO First In First Out

ICS Implementation Conformance Statement

IRV International Reference Version

IuT Implementation Under Test

ETSI

17 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

IXIT Implementation eXtra Information for Testing
MTC Main Test Component
PTC Parallel Test Component
SUT System Under Test
TS Test System Interface
4 Introduction

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, AP
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:
. the ability to specify dynamic concurrent testing configurations,
. operations for procedure-based and message-based communication;
. the ability to specify encoding information and other attributes (including user extensibility);
e theability to specify data and signature templates with powerful matching mechanisms;
. value parameterization;
e theassignment and handling of test verdicts;
e test suite parameterization and test case selection mechanisms;
. combined use of TTCN-3 with other languages;
e well-defined syntax, interchange format and static semantics;
. different presentation formats (e.g. tabular and graphical presentation formats);
. a precise execution algorithm (operational semantics).

NOTE: The present document uses the following pattern of concept description: concepts, principles and
mechanisms are explained in (introductory) text a the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts (seefigure 1).

Thefirst part, defined in the present document, is the core language.

The second part, defined in ES 201 873-2 [1], is the tabular presentation format.

The third part, defined in ES 201 873-3 [2], is the graphical presentation format.

The fourth part, ES 201 873-4 [3], contains the operational semantics of the language.
The fifth part, ES 201 873-5 [4], definesthe TTCN-3 Runtime Interface (TRI).

The sixth part, ES 201 873-6 [5], defines the TTCN-3 Control Interfaces (TCI).

ETSI

18 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The seventh part, ES 201 873-7 [6], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ES 201 873-8 [7], specifiesthe use of IDL definitions with TTCN-3.
The ninth part, ES 201 873-9 [i.1] specifiesthe use of XML definitions with TTCN-3.
The tenth part, ES 201 873-10 [8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 tools,
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with other type-value notations in which case definitionsin other languages may be
used as an alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other
languages with TTCN-3. The support of other languagesis not limited to those specified in the 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document shall apply.

ASN.1 Types .| TTCN-3 P
& Values "1 core <
Language Tabular

IIDL Types o ——— <
AML Types > Graphical

format N

.................... TTCN-3 User

C/C++ Types o

Presentation | The shaded boxes are not
Other Types | format, < defined in this document
& Values d

Figure 1. User's view of the core language and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [3)]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

ETSI

4.3 Conformance

19

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

For an implementation claiming to conform to this version of the language, all features specified in the present

document shall be implemented consistently with the requirements given in the present document and in

ES201 873-4[3].

5

Basic language elements

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test

cases, etc.

The control part of amodule calls the test cases and controls their execution. The control part may also declare (local)
variables, etc. Program statements (such as i £-else and do-while) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,

enumerated types and arrays.

A specia kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not

message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechani sms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function/constant definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeable throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

ETSI

20 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

5.1 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

5.2 Scope rules

TTCN-3 provides seven basic units of scope:
a) module definitions part;
b) control part of amodule;

C) component types,

d) functions;
e atseps,
f) testcases;

g) statement blocks.
NOTE 1: Additional scoping rule for groups are given in clause 8.2.2.
NOTE 2: Additional scoping rule for counters of £or loops are given in clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-al one statement blocks, embedded
in another statement block or within compound statements, e.g. as body of awhile loop.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and atsteps defined within the module and the control part.
I dentifiersimported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in a test component type may be used only in functions, test cases and altsteps referencing that
component type or a consistent test component type (see clause 6.3.3) by aruns on-clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration made in atest caseis not visiblein afunction called by the test case or in an
altstep used by the test case).

Stand-al one statement blocks and statements within compound statements, likee.g. if-else, while, do-while, Or
alt statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. an i £ -else statement that is used withinawhile loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope unitsis shown infigure 2. Declarations of a scope unit at a higher hierarchical level are visible
inal units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI

21 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

module
definitions part
module component type function V\lllthout altstep without
control part runs on-Clause runs on-clause

statement block statement block statement block
embedded

function with altstep with
runs on-Clause runs on-Clause
statement block statement block
1
|
i

embedded
statement block

testcase with
runs on-clause and
Qptional system-clausg

embedded
statement block

embedded
statement block

statement block

embedded
statement block

embedded
statement block

Figure 2: Hierarchy of scope units

EXAMPLE:

module MyModule
{ .

const integer MyConst := 0; // MyConst is visible to MyBehaviourA and MyBehaviourB

function MyBehaviourA ()

{

const integer A := 1; // The constant A is only visible to MyBehaviourA

}

function MyBehaviourB ()

{

const integer B := 1; // The constant B is only visible to MyBehaviourB

5.2.1 Scope of formal parameters
The scope of formal parametersin a parameterized object (e.g. in afunction definition) shall be restricted to the

definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey
follow the scope rules for local definitions (see clause 5.2).

ETSI

22 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. all identifiers in the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy. Identifiers for fields of structured types, enumeration values and
groups do not have to be globally unique, however in the case of enumeration values the identifiers shall only be reused
for enumeration values within other enumerated types. The rules of identifier uniqueness shall also apply to identifiers
of formal parameters.

EXAMPLE:

module MyModule
{ .

const integer A := 1;

function MyBehaviourA ()

{

const integer A := 1; // Is NOT allowed

i£(.)

{

const boolean A := true; // Is NOT allowed

}

// The following IS allowed as the constants are not declared in the same scope hierarchy
// (assuming there is no declaration of A in module header)
function MyBehaviourA ()

{

const integer A := 1;

}

function MyBehaviourB ()

{

const integer A := 1;

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of an i f-else statement, al declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:

// This is a legal mixing of TTCN-3 declarations

var MyVarType MyVar2
const integer MyConst:
if (MyVar2+MyConst > 10)

{

3;
1;

var integer MyVarl:= 1;

MyVarl:= MyVarl + 10;

Declarations in the modul e definitions part may be made in any order. However inside the module control part, test case
definitions, functions, atsteps, and statement blocks, all required declarations must be given beforehand. This meansin
particular, local variables, local timers, and local constants shall never be used before they are declared. The only
exception to thisrule are labels. Forward references to alabel may be used in goto statements before the label occurs
(see clause 19.8).

ETSI

5.4

23

Parameterization

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

TTCN-3 supports value, template, timer and port parameterization. A summary of which language elements can be
parameterized and what can be passed to them as parametersis given in table 2.

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of run-time |all basic types, all user-defined types and address
type.
type Value parameterization Static at compile-time |all basic types, all user-defined types and address
(see note) type.
template Value and template Dynamic at run-time |all basic types, all user-defined types, address type
parameterization and template.
function Value, template, port and Dynamic at run-time |all basic types, all user-defined types, address
timer parameterization type, component type, port type, default,
template and timer.
altstep Value, template, port and Dynamic at run-time |all basic types, all user-defined types, address
timer parameterization type, component type, port type, default,
template and timer.
testcase Value, template, port and Dynamic at run-time |all basic types and of all user-defined types,
timer parameterization address type and template.
signature Value and template Dynamic at run-time |all basic types, all user-defined types and address
parameterization type and component type.
NOTE : Record of, set of, enumerated, port, component and sub-type definitions do not allow parameterization.

5.4.1

Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, testcases and signatures may be defined incompletely,
i.e. some entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the
definition of the object. These objects are called parameterized objects. Formal entities replacing the unresolved entities
in the parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, testcases, signatures and type definitions are defined
in formal parameter lists. Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

Formal parameters shall be in, inout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isan in parameter. For all these three sorts of parameter passing, the actual parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object.

NOTE 1: Although out parameters can be read within the parameterized object, they do not inherit the val ue of
their actual parameter; i.e. they should be set before they are read.

NOTE 2: Although thereis no restriction to set formal parametersinside types, templatesand signatures,
thereisonly an indirect way of doing this by passing the formal parameter of, e.g. atemplate to an inout
formal parameter of a function.

5.4.1.1

Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value

parameters.

Syntactical Structure

[(in | inout | out)] Type ValueParIdentifier

ETSI

24 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

Vaue formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Vaue formal parameters may bein, inout or out parameters. The default for value formal parametersis in
parameterization which may optionally be denoted by the keyword in. Using of inout or out kind of parameterization
shall be specified by the keywords inout or out respectively.

TTCN-3 supports val ue parameterization according to the following rules:

e thelanguage element module allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. user-defined type definitions (in particular structured type definitions record and set), and the special
configuration type address support static value parameterization i.e. this parameterization shall be resolved
at compile-time;

e thelanguage elements template, signature, testcase, altstep and function support dynamic
value parameterization (i.e. this parameterization shall be resolved at run-time).

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type default isthe type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const, var, timer, control, record of,
set of, enumerated, port, component andsub-type definitions group and
import.

b) Formal value parameters of types, of templates, of functionsstarted astest component behaviour
(seeclause 21.2.2) and of altstepsactivated as defaults (see clause 20.5.2) shall always be in parameters.

¢) Restrictions on module parameters are given in clause 8.2.

Examples

EXAMPLE 1: In, out and inout formal parameters.

function MyFunctionl (in boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an in value parameter. The parameter can be read. It can also be set
// within the function, however, the assignment is local to the function only

function MyFunction2 (inout boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout value parameter. The parameter can be read and set
// within the function - the assignment is not local

function MyFunction3 (out template boolean MyReferenceParameter){ .. };

// MyReferenceParameter is an out value parameter. The parameter can be set within the function,
// the assignment is not local. It can also be read, but only after it has been set.

ETSI

25 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 2: Reading and setting parameters.

type record MyMessage ({
integer f1,
integer f2

}

function f MyMessage (integer p_int) return MyMessage {
var integer f1, f2;
f1 := £ mult2 (p_int);
// parameter p_int is passed on; as the parameter of the called function f mult2 is
// defined as an inout parameter, it passes back the changed value for p_int,
f2 := p int;
return {f1, f2};

}

function f mult2 (inout integer p integer) return integer ({
p_integer := 2 * p integer;
// the value of the formal parameter is changed; this new value is passed back when
// f_mult2 completes
return p integer-1

}

testcase tc_01 () runs on MTC_PT

Pl.send (f MyMessage(5))
// the value sent is { f1 := 9 , f2 := 10 }

5.4.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in | inout | out] template [restriction] Type ValueParIdentifier
Semantic Description
Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword
template shal be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well asthe normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisin
parameterization.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictions are explained in
clause 15.8.

Restrictions
a) Only function, testcase, altstep and template definitions may have formal template parameters.

b) Formal template parameters of templates, of functions started astest component behaviour
(seeclause 21.2.2) and of altsteps activated as defaults (see clause 20.5.2) shall always be in parameters.

ETSI

26 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

EXAMPLE 1: Template with template parameter.

// The template
template MyMessageType MyTemplate (template integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows

pcol.receive (MyTemplate(?)) ;

// Or as follows

pcol.receive (MyTemplate (omit)); // provided that fieldl is declared in MyMessageType as optional

EXAMPLE 2: Function with template parameter.

function MyBehaviour (template MyMsgType MyFormalParameter)
runs on MyComponentType

{ .

péol.receive(MyFormalParameter);
}
EXAMPLE 3: Template with restricted parameter.

// The template
template MyMessageType MyTemplatel (template (omit) integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows

pcol.send (MyTemplatel (omit)) ;

// but not as follows

pcol.receive (MyTemplatel (?)); // AnyValue is not within the restriction

// the same template can be written shorter as
template MyMessageType MyTemplate2 (omit integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true
1
5.4.1.3 Formal parameters of kind timer

Functions and altsteps can be parameterized with timers.

Syntactical Structure

[inout] timer TimerParIdentifier
Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve there current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continuesto run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or atstep to which the timer is passed.

Formal timer parameters are identified by the keyword timer.
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.2.2) -
and altstep definitions may have formal timer parameters.

ETSI

27 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

// Function definition with a timer in the formal parameter list
function MyBehaviour (timer MyTimer)

{ .

MyTimer.start;

}

// could be used as follows
function MyBehaviour2 ()

{ :
timer t;
MyBehaviour (t) ;

5414 Formal parameters of kind port
Functions and altsteps can be parameterized with ports.

Syntactical Structure

[inout] PortTypeldentifier PortParIdentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by a runs on clause.

Ports passed in as parameters shall preserve there current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or atstep to which the port is passed to.

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.2.2) -
and altstep definitions may have formal port parameters.

Examples

// Altstep definition with a port in the formal parameter list
altstep MyBehaviour (MyPortType MyPort)

{

[] MyPort.receive { setverdict(fail); stop; }

5.4.2 Actual parameters
Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters.

Syntactical Structure

Expression | // for value parameter
TemplateInstance | // for template parameter
TimerRef | // for timer parameter
Port // for port parameter

ETSI

28 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

Actual parametersthat are passed by value to in formal value parameters shall be variables, literal values, module
parameters, (external) constants, variables, value returning (external) functions, formal value parameters (of in, inout or
out parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed to inout or out formal value parameters shall be variables or forma value
parameters (of in, inout or out parameterization).

Actual parametersthat are passed to in formal template parameters shall be literal values, module parameters,
(external) constants, variables, value or template returning (external) functions, formal value parameters (of in, inout or
out parameterization) of the current scope or expressions composed of the above, as well as templates, template
variables or formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed to inout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parametersthat are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

Restrictions

a) Thenumber of elements and the order in which they appear in an actual parameter list shall be the same asthe
number of elements and their order in which they appear in the corresponding formal parameter list.
Furthermore, the type of each actual parameter shall be compatible with the type of each corresponding formal
parameter. If aformal template parameter is restricted, then only specific values or omit can be passed.

b) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the top-
level actual parameter list.

c) If theformal parameter list of TTCN-3 objects function, testcase, signature, altstepor
external function isempty, then the empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

d) Restrictions on the use of signature parameters are given in clauses 15.2 and 22.3.
€) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.
Examples

EXAMPLE 1: Forma and actual parameter lists have to match.

// A function definition with a formal parameter list
function MyFunction (integer FormalParl, boolean FormalPar2, bitstring FormalPar3) { .. }

// A function call with an actual parameter list
MyFunction (123, true, '1100'B);

EXAMPLE 2: In parameters.

function MyFunction (in template MyTemplateType MyValueParameter){ .. };
// MyValueParameter is in parameter, the in keyword is optional

// A function call with an actual parameter
MyFunction (MyGlobalTemplate) ;

ETSI

29 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 3: Inout and out parameters.

function MyFunction (inout boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout parameter, the inout keyword is
// mandatory

// A function call with an actual parameter
MyFunction (MyBooleanVariable) ;
// The actual parameter can be read and set within the function

function MyFunction (out template boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout parameter, the inout keyword is
// mandatory

// A function call with an actual parameter

MyFunction (MyBooleanVariable) ;
// The actual parameter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists.

// A function definition with an empty parameter list shall be written as
function MyFunction(){ .. }

// and shall be called as
MyFunction () ;
// A record definition with an empty parameter list shall be written as

type record MyRecord { .. }

// and shall be used as
template MyRecord Mytemplate := { .. }

EXAMPLES: Nested parameter lists.

// Given the message definition
type record MyMessageType

{

integer fieldl,
charstring field2,
boolean field3

}

// A message template might be
template MyMessageType MyTemplate (integer MyValue) :=

fieldl := MyValue,
field2 pattern "abc*xyz",
field3 true

}

// A test case parameterized with a template might be
testcase TCO0l (template MyMessageType RxMsg) runs on PTCl system TS1 {

MyPCO.receive (RxMsg) ;

}

// When the test case is called in the control part and the parameterized template is
// passed as an actual parameter, the template's actual parameters must be provided
control

{

execute (TC001 (MyTemplate(7)));

ETSI

30 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as
verdicttype. Structured types such as record types, set types and enumerated types can be constructed from
these basic types.

The special datatype anytype isdefined as the union of all known data types and the address type within a module.

Special types associated with test configurations such as address, port and component may be used to define the
architecture of the test system (see clause 21).

The special type default may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data types anytype list (see note)
Special configuration types address
port
component
Special default types default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.
6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) integer: atype with distinguished values which are the positive and negative whole numbers, including
Zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unlessthe
valueis 0; the value zero shall be represented by a single zero.

b) £float: atypeto describe floating-point numbers.
In general, floating point numbers can be defined as:<mantissa> x <base> <exponent>

where <mantissa> isa positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

ETSI

31 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

In TTCN-3, the floating-point number val ue notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

= thedecimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x1072),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 1076); or

" by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 1079).

NOTE: Incontrast to the general definition of float values, the mantissa of in theT TCN-3 val ue notation, beside
integers, allows decimal numbers as well.

C) boolean: atypeconsisting of two distinguished values.
Vaues of boolean type shall be denoted by true and false.
d) verdicttype: atypefor usewith test verdicts consisting of 5 distinguished values. Values of
verdicttype shal bedenoted by pass, fail, inconc, none and error.
6.1.1 Basic string types and values
TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string typein TTCN-3referstobitstring, hexstring, octetstring,
charstring anduniversal charstring.

a) Dbitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Vaues of typebitstring shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

EXAMPLE 1. 'o01101'B.

b) hexstring: atypewhose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Vaues of type hexstring shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: 'aBoiD'H
'ab01d'H
'Ab0O1D'H

C) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of type octetstring shal be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters ' o; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 3: 'rFr96'0

'££96'0
'FE£96'0

ETSI

32 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
I SO/IEC 646 [11] complying with the International Reference Version (IRV) as specified in clause 8.2 of
ISO/IEC 646 [11].

NOTE 2: The IRV version of ISO/IEC 646 [11] is equivalent to the IRV version of the International Reference
Alphabet (former International Alphabet No.5 - |A5), described in ITU-T Recommendation T.50 [i.2].

Vaues of charstring type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (") or calculated using
the predefined conversion function int2char with the positive integer value of their encoding as argument
(seeclause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote () the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceeded by an extra quote character and the
whole character string is delimited by quote characters, e.g.

var charstring vl_char:= """ab""cd""";

€) The character string type preceded by the keyword universal denotestypes whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [9].

universal charstring valuescan also be denoted by an arbitrary number (possibly zero) of
characters from the relevant character set, preceded and followed by double quote ("), calculated using a
predefined conversion function (see clause C.2) with the positive integer value of their encoding as
argument or by a"quadruple".

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote () the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple” is only capable to denote a single character and denotes the character by the decimal
values of its group, plane, row and cell according to 1SO/IEC 10646 [9], preceded by the keyword char
included into a pair of brackets and separated by commas (e.g. char (0, O, 1, 113) denotes the
Hungarian character "i"). In cases where it is hecessary to denote the character double quote (") ina
string assigned according to the first method (within double quotes), the character is represented by a pair
of double quotes on the same line with no intervening space characters. The two methods may be mixed
within a single notation for a string value by using the concatenation operator.

EXAMPLES5: Theassignment : "the Braille character" & char (0, 0, 40, 48) & "lookslikethis' represents the
literal string: the Braille character s looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, universal charstring shall conform to the UCS-4 coded representation form
specified in clause 14.2 of ISO/IEC 10646 [9].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The
following useful character string types utf8string, bmpstring, utf16string and iso8859string using these
attributes are defined in annex E.

6.1.1.1 Accessing individual string elements

Individual elementsin astring type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0).

ETSI

33 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE:

// Given

MyBitString := '11110111'B;
// Then doing
MyBitString[4] := '1'B;

// Results in the bitstring '11111111'B

6.1.2 Sub-typing of basic types

User-defined types shall be denoted by the keyword type. With user-defined typesit is possible to create sub-types
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.
6.1.2.1 Lists of values

TTCN-3 permits the specification of alist of distinguished values of basic types, structured types and anytype as listed
intable 3. The valuesin the list shall be of the root type and shall be atrue subset of the values defined by the root type.
The subtype defined by thislist restricts the allowed values of the subtype to those valuesin the list.

EXAMPLE:

type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);
type float pi (3.1415926);

type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Specialletters (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0o, 0, 1,
113));

6.1.2.2 Ranges

TTCN-3 permits the specification of range constraints for thetypes integer, charstring, universal
charstring and £loat (or derivations of these types). For integer and £loat, the subtype defined by the
range restricts the allowed values of the subtype to the values in the range including the lower boundary and the upper
boundary. Inthe case of charstring anduniversal charstring types, the range restrictsthe allowed values
for each separate character in the strings. The boundaries shall evaluate to valid character positions according to the
coded character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower
and the upper boundaries are not considered to be valid values of the specified range.

EXAMPLE 1:

type integer MyIntegerRange (0 .. 255);

type float piRange (3.14 .. 3142E-3);
EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

// Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. "z");

// Defines a string type of any length with each character within the range from a to z
// (character codes from 97 to 122), like "abxyz";

// strings containing any other character (including control characters), like
// "abc2" are disallowed.
type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

// Defines a string type of any length with each character within the range specified using
// the quadruple notation

6.1.2.2.1 Infinite ranges

In order to specify an infinite integer or float range, the keyword infinity may be used instead of avalueindicating
that there is no lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

EXAMPLE:

type integer MyIntegerRange (-infinity .. -1); // All negative integer numbers

NOTE: The'value' for infinity isimplementation dependent. Use of this feature may lead to portability problems.

ETSI

34 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.1.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In all cases, these boundaries shall evaluate to non-negative
integer values(or derived integer vaues).

EXAMPLE:
type bitstring MyByte length(8); // Exactly length 8
type bitstring MyByte length(8 .. 8); // Exactly length 8
type bitstring MyNibbleToByte length(4 .. 8); // Minimum length 4, maximum length 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword infinity may aso be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.4 Pattern sub-typing of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of charstring and
universal charstring types. Thetype constraint shall usethe pattern keyword followed by a character
pattern. All values denoted by the pattern shall be a true subset of the type being sub-typed.

NOTE: Pattern sub-typing can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
// all permitted values of MyString have prefix abc and postfix xyz

type universal charstring MyUString (pattern "*\r\n")
// all permitted values of MyUString are terminated by CR/LF

type charstring MyString2 (pattern "abc?\g{0,0,1,113}");
// causes an error because the character denoted by the quadruple {0,0,1,113} is not a
// legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

// causes an error because the type MyString does not contain a value starting with the
// character d

6.1.2.5 Mixing sub-typing mechanisms

6.1.2.5.1 Mixing patterns, lists and ranges

Within integer and £1oat (or derivations of these types) sub-type definitionsit is allowed to mix lists and ranges.
Overlapping of different constraintsis not an error.

EXAMPLE 1.

type integer MyIntegerRange (1, 2, 3, 10 .. 20, 99, 100);

Within charstring and universal charstring sub-type definitionsitisnot allowed to mix pattern, list or
range constraints.

ETSI

35 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 2:

type charstring MyCharStr0 ("gr", "xyz");
// contains character strings gr and xyz;

type charstring MyCharStrl ("a".."z");
// contains character strings of arbitrary length containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");

// contains character strings of length form 3 to 9 characters containing characters a to z

6.1.2.5.2 Using length restriction with other constraints

Withinbitstring, hexstring, octetstring sub-type definitionslists and length restriction may be mixed in
the same sub-type definition.

Within charstring and universal charstring sub-type definitionsitisallowed to add alength restriction
to constraints containing list, range or pattern sub-typing in the same sub-type definition.

When mixed with other constraints the length restriction shall be the last element of the sub-type definition. The length
restriction takes effect jointly with other sub-typing mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern sub-typing and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
// contains the character strings gr and xyz;

type charstring MyCharStré ("a".."z") length (3..9);
// contains character strings of length from 3 to 9 characters and containing characters
// a to z

type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);

// contains character strings of length form 3 to 9 characters containing characters a to z

type charstring MyCharStr8 (pattern "[a-z]#(3,9)") length (1..8);
// contains character strings of length form 3 to 8 characters containing characters a to z

type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
// contains any character strings of length form 1 to 8 characters containing characters
// a to z

type charstring MyCharStrl0 ("gr", "xyz") length (4);

// contains no value (empty type).

6.2 Structured types and values

The type keyword is also used to specify structured types such as record types, record of types, set types, set
of types, enumerated typesand union types. Where applicable TTCN-3 type definitions may be recursive. The
user, however, shall ensure that al type recursion is resolvable and that no infinite recursion occurs.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1:
const MyRecordType MyRecordValue:= //assignment notation
fieldl := '11001'B,
field2 := true,
field3 := "A string"
1
// or
const MyRecordType MyRecordValue:= {‘llOOl‘B, true, "A string"} //value list notation

ETSI

36 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned values must be specified. Fields not mentioned are implicitly left
unspecified. It is also possible to leave fields explicitly unspecified using the not used symbol "-". Using the value list
notation all fields in the structure shall be specified either with a value, the not used symbol "-" or the omi t keyword.

EXAMPLE 2:
var MyRecordType MyVariable:= //assignment notation
{
fieldl := '11001'B,
// field2 implicitly unspecified
field3 := "A string"
}
// or
var MyRecordType MyVariable:= //assignment notation
{
fieldl := '11001'B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
}
// or
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It is not allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

// This is disallowed
const MyRecordType MyRecordValue:= {MyIntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit omit value
for the relevant field. The omi t keyword shall not be used for mandatory fields. When re-assigning a previoudy
initialized val ue, using the not used symbol or skipping afield in assignment notation will cause the relevant fields to
remain unchanged.

EXAMPLE 4:

var MyRecordType MyVariable :=

{

fieldl := '111'B,
field2 := false,
field3d := -
1
MyVariable := { '10111'B, -, - };
// after this, MyVariable contains { '10111'B, false /* unchanged */, <undefined> }
MyVariable :=
{
field2 := true

// after this, MyVariable contains { '10111'B, true, <undefined> }

MyVariable :=
{
fieldl :
field2
field3

false,

// after this, MyVariable contains { '10111'B, false, <undefineds }

ETSI

37 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.2.1 Record type and values

TTCN-3 supports ordered structured types known as record. The elements of arecord type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of arecord shall be compatible
with the types of the record fields. The element identifiers are local to the record and shall be unique within the
record (but do not have to be globally unique). A constant that is of record type shall contain no variables or
module parameters as field values, either directly or indirectly.

EXAMPLE 1:

type record MyRecordType

{

integer fieldl,
MyOtherRecordType field2 optional,
charstring field3

}

type record MyOtherRecordType

{
bitstring fieldl,
boolean field2
1
Records may be defined with no fields (i.e. as empty records).
EXAMPLE 2:

type record MyEmptyRecord { }

A record valueisassigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MyIntegerValue := 1;
const MyOtherRecordType MyOtherRecordValue:=

fieldl :
field2

'11001'B,
true

}

var MyRecordType MyRecordValue :=

{

fieldl := MyIntegerValue,
field2 := MyOtherRecordvalue,
field3 := "A string"

1
The same value specified with avalue list.
EXAMPLE 4:

MyRecordvValue:= {MyIntegerValue, {'11001'B, true}, "A string"};

6.2.1.1 Referencing fields of a record type

Elements of arecord shall be referenced by the dot notation TypeOrvalueId. ElementId, where

TypeOrValueId resolvesto the name of astructured type or variable. Elementld shall resolve to the name of afield
in astructured type.

EXAMPLE:
MyVarl := MyRecordl.myElementl;

// If a record is nested within another type then the reference may look like this
MyVar2 := MyRecordl.myElementl.myElement2;

ETSI

38 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.2.1.2 Optional elements in a record
Optional elementsin arecord shall be specified using the optional keyword.

EXAMPLE 1:

type record MyMessageType

{
FieldTypel field1l,
FieldType2 field2 optional,

FieldTypeN fieldN

1
Optional fields shall be omitted using the omit symbol.

EXAMPLE 2:
MyRecordvValue:= {MyIntegerValue, omit , "A string"};

// Note that this is not the same as writing,
// MyRecordvValue:= {MyIntegerValue, -, "A string"};
// which would mean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the record definition. Both the definition of
new structured types (record, set, enumerated, set of and record o£f) and the specification of subtype
congtraints are possible.

EXAMPLE:

// record type with nested structured type definitions
type record MyNestedRecordType

{

record

{

integer nestedFieldl,
float nestedField2
} outerFieldil,
enumerated {
nestedEnuml,
nestedEnum2
} outerField2,
record of boolean outerField3

}

// record type with nested sub-type definitions
type record MyRecordTypeWithSubtypedFields

{

integer fieldl (1 .. 100
(

)
charstring field2 length 2 .. 255)

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set. Set types and values are similar to records except that the
ordering of the set fieldsis not significant.

EXAMPLE:
type set MySetType

{

integer fieldl,
charstring field2

1
Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

ETSI

39 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.2.2.1 Referencing fields of a set type
Elements of a set shall be referenced by the dot notation (see clause 6.2.1.1).

EXAMPLE:

MyVar3 := MySetl.myElementl;

// If a set is nested in another type then the reference may look like this

MyVar4 := MyRecordl.myElementl.myElement2;

// Note, that the set type, of which the field with the identifier 'myElement2' is referenced,
// is embedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsin aset shall be specified using the optional keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword o £. These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered array respectively.

The Length keyword followed by a value or arange within brackets and used between the record or set andthe
of keywords restricts the allowed lengths of the given record of or set of type.

NOTE 1: A typerestriction related to the innermost type is placed after the name of the newly defined type. Note
that the innermost type can not be a set of or record of. Type restrictions related to record of or set of
types are placed between their record/set and of keywords.

EXAMPLE 1.
type record length(10) of integer MyRecordOfTypelO; // is a record of exactly 10 integers

type record length(0..10) of integer MyRecordOfTypeO 10;
// is a record of a maximum of 10 integers

type record length(10..infinity) of integer MyRecordOfTypelOup;
// record of at least 10 integers

type set of boolean MySetOfType; // is an unlimited set of boolean values

type record length(0..10) of charstring StringArray length(12);
// is a record of a maximum of 10 strings each with exactly 12 characters

type record of record of charstring StringArray length(12);
// is a two-dimensional unlimited array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring StringArray length(12);
// is an unordered two-dimensional array of the size 5%6 of strings each
// with exactly 12 characters

Thevalue notationfor record of and set of can be both the value list notation and the assignment notation
(usable to address multiple elements) or an indexed notation (usable to address an individual element), which isthe
same value notation as for arrays (see clause 6.2.7). There is one exception from this general rule: in the case of
defining modified templates, the assignment notation is also alowed to be used (see clause 15.5).

When the value list notation is used, the first value in the list is assigned to the first element, the second list value is
assigned to the second element, etc. No empty assignment is allowed (e.g. two commas, the second immediately
following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly
skipped or omitted in the list.

ETSI

40 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantical or run-time
error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remainsinvisible). Sending arecord of value with undefined elements shall cause a dynamic testcase error.

EXAMPLE 2:

// Given

type record of integer MyRecordOf;
var integer MyVar;

// Using the value list notation

var MyRecordOf MyRecordOfvar := { 0, 1, 2, 3, 4 };
// The same record of, defined with the assignment notation
var MyRecordOf MyRecordOfVarAssignment := {

[0] := O,

[1] := 1,

[2] := 2,

[3] := 3,

[4] := 4

bi

//Using an indexed notation
MyVar := MyRecordOfVar[0]; // the first element of the "record of" value (integer 0)
// is assigned to MyVar

// Indexed values are permitted on the left-hand side of assignments as well:
MyRecordOfVar [1] := MyVar; // MyVar is assigned to the second element
// value of MyRecordOfVar is { 0, 0, 2, 3, 4 }

// The assignment

MyRecordOfvar := { 0, 1, -, 2 };

// will change the value of MyRecordOfVar to{ 0, 1, 2 <unchangeds>, 2};

// Note, that the 3™ element would be undefined if had had no previous assigned value.

// The assignment

MyRecordOfVvar[6] := 6;

// will change the value of MyRecordOfVar to{ 0, 1, 2 , 2, <undefineds, <undefined>, 6 };
// Note the 5™ and 6™ elements (with indexes 4 and 5) had no assigned value before this

// last assignment and are therefore undefined.

MyRecordOfvar[4] := 4; MyRecordOfvar([5] := 5;
// will complete MyRecordOfVar to the fully defined value { 0, 1, 2 , 2, 4 , 5, 6 };

NOTE 2: Theindex notation makesit possible e.g. to copy record of values element by element in afor loop.
For example, the function below reverses the elements of arecord of vaue:

function reverse (in MyRecordOf src) return MyRecordOf

{

var MyRecordOf dest;

var integer i, srcLength := lengthof (src);
for(i := 0; i < srcLength; i:= i + 1) {
dest [srcLength - 1 - i] := srcli];

return dest;

}

Embedded record of and set of typeswill result in adata structure similar to multidimensiona arrays
(seeclause 6.2.7).

EXAMPLE 3:

// Given
type record of integer MyBasicRecordOfType;
type record of MyBasicRecordOfType My2DRecordOfType;

// Then, the variable myRecordOfArray will have similar attributes to a two-dimensional array:
var My2DRecordOfType myRecordOfArray;

// and reference to a particular element would look like this

// (value of the second element of the third 'MyBasicRecordOfType' construct)

myRecordOfArray [2] [1] := 1;

ETSI

41 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withthe record of or set of definition. Both the
definition of new structured types (record, set, enumerated, set of and record o£) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enumerated { red, green, blue } ColorList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParameters;

6.2.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerations. Each enumeration shall have an identifier. Operations on
enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering operators.
Enumeration identifiers shall be unique within the enumerated type (but do not have to be globally unique) and are
consequently visible within the context of the given type only. Enumeration identifiers shall only be reused within other
structured type definitions and shall not be used for identifiers of local or global visibility at the same or alower level of
the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1:

type enumerated MyFirstEnumType {
Monday, Tuesday, Wednesday, Thursday, Friday
i

type integer Monday;
// This definition is illegal, as the name of the type has local or global visibility

type enumerated MySecondEnumType {
Saturday, Sunday, Monday

// This definition is legal as it reuses the Monday enumeration identifier within
// a different enumerated type

type record MyRecordType {
integer Monday
bi

// This definition is legal as it reuses the Monday enumeration identifier within
// a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
MyFirstEnumType firstField,
integer secondField

}i

var MyNewRecordType newRecordvValue := { Monday, 0 }
// MyFirstEnumType is implicitly referenced via the firstField element of MyNewRecordType

const integer Monday := 7
// This definition is illegal as it reuses the Monday enumeration identifier for a
// different TTCN-3 object within the same scope unit

Each enumeration may optionally have a user-assigned integer value, which is defined after the name of the
enumeration in parenthesis. Each user-assigned integer number shall be distinct within asingle enumerated type. For
each enumeration without an assigned integer value, the system successively associates an integer number in the textual
order of the enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number
occupied in any of the enumerations with a manually assigned value. These values are only used by the system to alow
the use of relational operators. The user shall not directly use associated integer values but can access them by using the
enum2 int predefined function (see clauses 16.1.2 and C.36).

NOTE 1: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside of the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

ETSI

42 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

For any instantiation or value reference of an enumerated type, the given type shall beimplicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced via the given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation etc.

EXAMPLE 2:

// Valid instantiations of MyFirstEnumType and MySecondEnumType would be
var MyFirstEnumType Today := Tuesday;
var MySecondEnumType Tomorrow := Monday;

// But the following statement is illegal because the two enumeration types are not compatible
Today := Tomorrow;

6.2.5 Unions

TTCN-3 supportstheunion type. Theunion typeisacollection of fields, each one identified by an identifier. Only
one of the specified fields will ever be present in an actual union value. Union types are useful to model a structure
which can take one of afinite number of known types.

EXAMPLE:

type union MyUnionType
integer number,
charstring string

}i

// A valid instantiation of MyUnionType would be
var MyUnionType age, oneYearOlder;
var integer ageInMonths;

age.number := 34; // value notation by referencing the field. Note, that this
// notation makes the given field to be the chosen one

oneYearOlder := {number := age.number+l};

ageInMonths := age.number * 12;

The value list notation for setting values shall not be used for values of union types.

6.2.5.1 Referencing fields of a union type
Fields of aunion type shall be referenced by the dot notation (see clause 6.2.1.1).

EXAMPLE:

MyVar5 := MyUnionl.myChoicel;

// If a union type is nested in another type then the reference may look like this
MyVaré := MyRecordl.myElementl.myChoice2;

// Note, that the union type, of which the field with the identifier 'myChoice2' is referenced,
// is embedded in a record type

6.2.5.2 Option and union

Optional fields are not allowed for the union type, which means that the optional keyword shall not be used with
union types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union fields nested within the union definition, similar to the mechanism
for record types described in clause 6.2.1.3.

ETSI

43 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.2.6 The anytype

The special type anytype isdefined as a shorthand for the union of al known data types and the address typein a
TTCN-3 module. The definition of the term known typesis givenin clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anytype shall be uniquely identified by the corresponding type names.

NOTE 1: Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from athird module) can not be reached
via the anytype of the importing module.

EXAMPLE:

// A valid usage of anytype would be
var anytype MyVarOne, MyVarTwo;
var integer MyVarThree;

MyVarOne.integer := 34;
MyVarTwo := {integer := MyVarOne.integer + 1};
MyVarThree := MyVarOne.integer * 12;

The anytype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anytype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anytype "contains' all typesimported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

In common with many programming languages, arrays are not considered to be typesin TTCN-3. Instead, they may be
specified at the point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array
dimensions shall be specified using constant expressions, which shall evaluate to a positive integer values.

EXAMPLE 1:
var integer MyArrayl[3]; // Instantiates an integer array of 3 elements with the index 0 to 2
var integer MyArray2[2] [3]; // Instantiates a two-dimensional integer array of 2 x 3 elements

// with indexes from (0,0) to (1,2)

Array elements are accessed by means of the index notation (1), which must specify avalid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation.
Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

MyArrayl[1] := 5;

MyArray2[1] [2] := 12;

MyArrayl [4] := 12; // ERROR: index must be between 0 and 2
MyArray2 [3] [2] := 15; // ERROR: first index must be 0 or 1

Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values.

EXAMPLE 3:

var integer MyArray3 [l .. 5]; // Instantiates an integer array of 5 elements
// with the index 1 to &5

10; // Lowest index

50; // Highest index

MyArray3 [1]
MyArray3 [5]

var integer MyArray4[1 .. 5][2 .. 3]; // Instantiates a two-dimensional integer array of
// 5 x 2 elements with indexes from (1,2) to (5,3)

ETSI

44 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The values of array elements shall be compatible with the corresponding variable declaration. Values may be assigned
individually by avalue list notation or indexed notation or more than one or all at once by avalue list notation. When
the value list notation is used, the first value of thelist is assigned to the first element of the array (the element with
index 0), the second value to the second element, etc. Elements to be left out from the assignment shall be explicitly
skipped or omitted in the list. For assigning val ues to multi-dimensional arrays, each dimension that is assigned shall
resolve to a set of values enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost
dimension corresponds to the outermost structure of the value, and the rightmost dimension to the innermost structure.
The use of array dlices of multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the
number of dimensionsin the corresponding array definition, is allowed. Indexes of array slices shall correspond to the
dimensions of the array definition from left to right (i.e. the first index of the slice corresponds to the first dimension of
the definition). Slice indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
MyArrayl[0] := 10;
MyArrayl[1l]:= 20;
MyArrayl[3]:= 30;

// or using an value list
MyArrayl:= {10, 20, -, 30};

MyArray4d:= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
// The array value is completely defined

var integer MyArray5[2] [3] [4] :=
{
{
2, 3, 4}, // assigns a value to MyArray5 slice [
6, 7, 8}, // assigns a value to MyArray5 slice [

, 10, 11, 12} // assigns a value to MyArray5 slice [
/ end assignments to MyArray5 slice [0]

1[0]
1[1]
0] [2]

0
0

{
{
{

~ v u

)
{

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} // assigns a value to MyArray5 slice [1]

}i

MyArray4 [2] := {20, 20};
// yields {{1, 2}, {3, &}, {20, 20}, {7, 8}, {9, 10}};
MyArray5[1] := { {o, o, o, o}, {o, o, o, 0}, {0, 0, O, 0}};
// vields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
// {{o, o, o, 0o}, {0, o, 0, 0}, {0, 0, O, O}}};
MyArrays[0] [2] := {3, 3, 3, 3};
// vields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 3, 3, 3}},
// {{o, o, o, o}, {0, o, 0, 0}, {0, 0, 0, 0}}};

var integer MyArrayInvalid[2] [2];

MyArrayInvalid := { 1, 2, 3, 4 }
// invalid as the dimension of the value notation does not corresponds to the dimensions
// of the definition

MyArrayInvalid([2] := { 1, 2 }
// invalid as the index of the slice should be 0 or 1

NOTE: An aternative way to use multi-dimensional data structures is via employing the record, record of, set or
set of types.

EXAMPLE &:

// Given
type record MyRecordType

{

integer fieldl,
MyOtherStruct field2,
charstring field3

1

// An array of MyRecordType could be

var MyRecordType myRecordArray[10];

// A reference to a particular element would look like this
myRecordArray[1l] .fieldl := 1;

ETSI

45 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.2.8 The default type

TTCN-3 alowsthe activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by atest component when an
altstep is activated as a default, i.e. adefault reference isthe result of an activate operation (see clause 20.5.2).

Default references have the special and predefined type default. Variables of type default can be used to handle
activated defaultsin test components. The special valuenull isavailable to indicate an undefined default reference,
e.g. for theinitialization of variablesto handle default references.

Default references are used in deactivate operations (see clause 20.5.3) in order to identify the default to be
deactivated.

The actual data representation of the default type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

6.2.9 Communication port types
Ports facilitate communi cation between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be
identified by the keyword procedure within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out
direction) and inout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where in identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of al its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this
port. Whenever asignatureis defined in the in direction for a procedure-based port, the types of al its inout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Syntactical Structure

M essage-based port:
type port PortTypeIdentifier message "{"
{ (in | out | inout) { MessageType ["," 1 }+ ";" }
n}n
Procedure-based port:
type port PortTypeIdentifier procedure "{"
{ (in | out | inout) { Signature [","] }+ ";" }
n}n
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

ETSI

46 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

EXAMPLE 1. Message-based port.

// Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
// sent via and any integer value to be send and received over the port
type port MyMessagePortType message

{

in MsgTypel, MsgType2;
out MsgType3;
inout integer

1
EXAMPLE 2: Procedure-based port.

// Procedure-based port which allows the remote call of the procedures Procl, Proc2 and Proc3.
// Note that Procl, Proc2 and Proc3 are defined as signatures
type port MyProcedurePortType procedure

{
}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port issimply alist of type
names.

out Procl, Proc2, Proc3

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

PCO2 PCO3
MyMTC MyPTC p—
/I of MyMTCType Il of MyPTCTYpe |
PCO4
PCO1 PCO1

Figure 3: Typical components

It is also possible to declare constants, variables and timers local to a particular component type. These declarations are
visible to all testcases, functions and altsteps that run on an instance of the given component type. This shall be
explicitly stated using the runs on keyword (see clause 16) in the testcase, function or atstep header. Component type
definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new
instance of a component type will thus have its own set of constants, variables and timers as specified in the component
type definition (including any initial values, if stated).

Syntactical Structure

type component ComponentTypeldentifier "{"
{ (PortInstance
| VarInstance
| TimerInstance
| ConstDef) }

n } n
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables and timers during the creation of an instance of a component type. These instances can be used as the main
test component, as the test system interface or as a parallel test component. Every instance of a component type has its
own fresh copy of the port, constant, variable, and timer instances defined in the component type definition.

ETSI

a7 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.
Examples

EXAMPLE 1. Component type with port instances only.

type component MyPTCType

{

port MyMessagePortType PCO1, PCO4;
port MyProcedurePortType PCO2;
port MyAllMesssagesPortType PCO3

1
EXAMPLE 2: Component type with variable, timer and port instance.
type component MyMTCType

var integer MyLocallInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1l

1
EXAMPLE 3: Component type with port instance arrays.

type component MyCompType

{

port MyMessageInterfaceType PCO[3]

port MyProcedureInterfaceType PCOm[3] [3]

// Defines a component type which has an array of 3 message ports and a two-dimensional
// array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the extends keyword.

Syntactical Structure

type component ComponentTypeldentifier extends ComponentTypeIdentifier "{"
{ (PortInstance
| VarInstance
| TimerInstance
| ConstDef) }

n } n
Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
extends keyword isreferred to as the parent type. The effect of this definition is that the extended type will implicitly
also contain all definitions from the parent type. It is called the effective type definition.

It is allowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may also be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer
and port definitions contributed by the parent types (determined recursively if a parent type is also defined by means of
an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: Itisnot considered to be a different declarations and hence causes no error if the same definitionis
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on
clauses can be executed on ¢ (see clause 6.3.3).

ETSI

48 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type.

b) Itisallowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1. A component type extension and its effective type definition.
type component MyMTCType

var integer MyLocallnteger;
timer MyLocalTimer;
port MyMessagePortType PCOl

type component MyExtendedMTCType extends MyMTCType

var float MyLocalFloat;
timer MyOtherLocalTimer;
port MyMessagePortType PCO2;

// effectively, the above definition is equivalent to this one:
type component MyExtendedMTCType
{

/* the definitions from MyMTCType */

var integer MyLocallnteger;

timer MyLocalTimer;

port MyMessagePortType PCOl

/* the additional definitions */
var float MyLocalFloat;

timer MyOtherLocalTimer;

port MyMessagePortType PCO2;

1
EXAMPLE 2: A component type extension chain and forbidden cyclic extensions.

type component MTCTypeA extends MTCTypeB { /* .. */ };
type component MTCTypeB extends MTCTypeC { /* .. */ };
{ /= ; // ERROR - cyclic extension
{ /= ; // ERROR - cyclic extension

type component MTCTypeC extends MTCTypeA . */
type component MTCTypeD extends MTCTypeD . x/

B e i

EXAMPLE 3: Component type extensions with name clashes.
type component MyExtendedMTCType extends MyMTCType

var integer MyLocallInteger; // ERROR - already defined in MyMTCType (see above)
var float MyLocalTimer; // ERROR - timer with that name exists in MyMTCType
port MyOtherMessagePortType PCOl; // ERROR - port with that name exists in MyMTCType

}

type component MyBaseComponent { timer MyLocalTimer };
type component MyInterimComponent extends MyBaseComponent { timer MyOtherTimer };
type component MyExtendedComponent extends MyInterimComponent

{

timer MyLocalTimer; // ERROR - already defined in MyInterimComponent via extension

}

ETSI

49 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 4: Component type extension from several parent types.

type component MyCompB { timer T };

type component MyCompC { var integer T };

type component MyCompD extends MyCompB, MyCompC {}
// ERROR - name clash between MyCompB and MyCompC

// MyCompB is defined above
type component MyCompE extends MyCompB {
var integer MyVarl := 10;

}

type component MyCompF extends MyCompB {
var float MyVar2 := 1.0;

}

type component MyCompG extends MyCompB, MyCompE, MyCompF {
// No name clash.
// All three parent types of MyCompG have a timer T, either directly or via extension of
// MyCompB; as all these stem (directly or via extension) from timer T declared in MyCompB,
// which make this form of collision legal.
/* additional definitions here */

6.2.11 Component references
Component references are unique references to the test components created during the execution of atest case.

Syntactical Structure

system | mtc | self | VariableRef | FunctionInstance
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acreate operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
system (returns the component reference of the test system interface, which is automatically created when testcase
execution is started), mtc (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel £ (returns the component reference of the component in which sel £ iscalled).

Component references are used in the configuration operations such as connect, map and start (see clause 21) to
set-up test configurations and in the £rom, to and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the specia valuenull is available to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references must use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the create operation.

Restrictions
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

ETSI

50 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

EXAMPLE 1: Component references with component type variables.
// A component type definition
type component MyCompType {

port PortTypeOne PCO1;
port PortTypeTwo PCO2

// Declaring one variable for the handling of references to components of type MyCompType
// and creating a component of this type
var MyCompType MyCompInst := MyCompType.create;

EXAMPLE 2: Usage of component references in configuration operations.
// referring to the component created above
connect (self:MyPCOl1, MyCompInst:PCO1) ;

map (MyCompInst:PCO2, system:ExtPCOl) ;
MyCompInst.start (MyBehavior (self)); // self is passed as a parameter to MyBehavior

EXAMPLE 3: Usage of component references in from- and to- clauses.
MyPCOl.receive from MyCompInst;

M;PCOZ.receive(integer:?) -> sender MyCompInst;
M;Pcol.receive(MyTemplate) from MyCompInst;

MyPCO2.send (integer:5) to MyCompInst;

EXAMPLE 4: Usage of component references in one-to-many connections.

// The following example explains the case of a one-to-many connection at a Port PCO1l

// where values of type M1l can be received from several components of the different types
// CompTypel, CompType2 and CompType3 and where the sender has to be retrieved.

// In this case the following scheme may be used:

var M1 MyMessage, MyResult;

var MyCompTypel MyInstl := null;

var MyCompType2 MyInst2 := null;

var MyCompType3 MyInst3 := null;

alt {
[] PCOl.receive(M1:?) from MyInstl -> value MyMessage sender MyInstl {}
[] PCOl.receive(M1:?) from MyInst2 -> value MyMessage sender MyInst2 {}
[] PCOl.receive(M1:?) from MyInst3 -> value MyMessage sender MyInst3 {}

}

MyResult := MyMessageHandling(MyMessage) ; // some result is retrieved from a function

if (MyInstl != null) {PCOl.send(MyResult) to MyInstl};

if (MyInst2 != null) {PCOl.send(MyResult) to MyInst2};

if (MyInst3 != null) {PCOl.send(MyResult) to MyInst3};

EXAMPLES: Usage of self.

var MyComponentType MyAddress;
MyAddress := self; // Store the current component reference

ETSI

51 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 6: Usage of component arrays.
// This example shows how to model the effect of creating, connecting and running arrays of
// components using a loop and by storing the created component reference in an array of

// component references.

testcase MyTestCase() runs on MyMtcType system MyTestSystemInterface

{

var integer i;
var MyPTCTypel MyPtc[11];
for (i:= 0; i<=10; 1i:=1i+1)
{
MyPtc[i] := MyPTCTypel.create;

connect (self:PtcCoordination, MyPtc[i] :MtcCoordination) ;
MyPtc [1i] .start (MyPtcBehaviour()) ;

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually by use of the addr ess data type. Thisisthe
type to use with port operationsin order to address SUT entities.

Syntactical Structure

TemplateInstance
Semantic Description

The actual data representation of address isresolved either by an explicit type definition within the test suite or
externally by the test system (i.e. the address typeisleft as an open type within the TTCN-3 specification). This
allows abstract test cases to be specified independently of any real address mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
typeis not defined inside the module, explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the specia valuenull is available to indicate an undefined address, e.g. for theinitialization of variables
of the address type.

Restrictions
a) Templatelnstance shall be of address type and can be an address type value, an address type variable, etc.

b) The address data type shall only be used in the to, £rom and sender parts of receive and send operations of
ports mapped to the test system interface.

Examples
EXAMPLE:

// Associates the type integer to the open type address
type integer address;

// new address variable initialized with null
var address MySUTentity := null;

// receiving an address value and assigning it to variable MySUTentity
PCO.receive (address:*) -> value MySUTentity;

// usage of the received address for sending template MyResult
PCO.send (MyResult) to MySUTentity;

// usage of the received address for receiving a confirmation template
PCO.receive (MyConfirmation) from MySUTentity;

ETSI

52 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.3 Type compatibility
Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value "b" is called
type IIAII i

6.3.1 Type compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and bitsring, hexstring and octetstring types the value "b"
iscompatible to type"A" if type "B" resolvesto the sameroot type astype "A" (e.g. integer) and it does not violate
subtyping (e.g. ranges, length restrictions) of type"A".

EXAMPLE:

// Given
type integer MyInteger(l .. 10);

var integer x;
var MyInteger y;

// Then

y := 5; // is a valid assignment

X =Y

// is a valid assignment, because y has the same root type as x and no subtyping is violated
X := 20; // is a valid assignment

y o= X;

// is NOT a valid assignment, because the value of x is out of the range of MyInteger

X :=5; // is a valid assignment
y o= X;
// is a valid assignment, because the value of x is now within the range of MyInteger

//Given

type charstring MyChar length (1) ;

type charstring MySingleChar length (1) ;
var MyChar myCharacter;

var charstring myCharString;

var MySingleChar mySingleCharString := "B";

//Then

myCharString := mySingleCharString;

//is a valid assignment as charstring restricted to length 1 is compatible with charstring.
myCharacter := mySingleCharString;

//is a valid assignment as two single-character-length charstrings are compatible.

//Given

myCharString := "abcd";

//Then

myCharacter := myCharStringl[1l];

//is valid as the r.h.s. notation addresses a single element from the string

//Given

var charstring myCharacterArray [5] := {"A", wg", n"C", "D", "E"}
//Then

myCharString := myCharacterArray[1l];

//is valid and assigns the value "B" to myCharString;

For variables, constants, templates etc. of charstring type, value'b' is compatible with auniversal
charstring type'A' unlessit violates any type constraint specification (range, list or length) of type"A".

ETSI

53 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

For variables, constants, templates etc. of universal charstring type, value'b'iscompatible with a
charstring type'A'if al characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type charstring and it does not violate any type constraint
specification (range, list or length) of type "A".

6.3.2 Type compatibility of structured types

In the case of structured types (except the enumerated type) avaue "b" of type"B" is compatible with type "A", if
the effective value structures of type "B" and type "A" are compatible, in which case assignments, instantiations and
comparisons are allowed.

6.3.2.1 Type compatibility of enumerated types

Enumerated types are never compatible with other basic or structured types (i.e. for enumerated types strong typing is
required).

6.3.2.2 Type compatibility of record and record of types

For record types the effective value structures are compatible if the number, and optional aspect of the fieldsin the
textual order of definition areidentical, the types of each field are compatible and the value of each existing field of the
value"b" is compatible with the type of its corresponding field in type "A". The value of each field in the value "b" are
assigned to the corresponding field in the value of type "A".

EXAMPLE 1:
// Given
type record AType
integer a(0..10) optional,
integer b(0..10) optional,
boolean c

}

type record BType

integer a optional,
integer b(0..10) optional,
boolean c
1
type record CType (// type with different field names
integer d optional,
integer e optional,
boolean f
1
type record DType // type with field c optional
integer a optional,
integer b optiomnal,
boolean c optional
1
type record EType // type with an extra field d
integer a optional,
integer b optional,
boolean c,
float d optional

var AType MyVarA := { - l, true};

var BType MyVarB := { om 2, true};
var CType MyVarC := { 3, om1t true};
var DType MyVarD := { 4, 4, true};

var EType MyVarE := { 5, 5, true, omit};

ETSI

54 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

// Then
MyVarA := MyVarB; // is a valid assignment,
// new value of MyVarA is (a :=omitted, b:= 2, c:= true)
MyVarC := MyVarB; // is a valid assignment
// new value of MyVarC is (d :=omitted, e:= 2, f:= true)
MyVarA := MyVarD; // is NOT a valid assignment because the optionality of fields does not
// match
MyVarA := MyVarE; // is NOT a valid assignment because the number of fields does not match
MyVarC := { d:= 20 };// actual value of MyVarC is { d:=20, e:=2,f:= true }
MyVarA := MyVarC // is NOT a valid assignment because field 'd' of MyVarC violates subtyping

// of field 'a' of AType

For record of types and arrays the effective value structures are compatible if their component types are compatible
and value"b" of type "B" does not violate any length subtyping of the record of type or dimension of the array of
type"A". Values of elements of the value "b" shall be assigned sequentially to the instance of type"A", including
undefined elements.

record of types and single-dimension arrays are compatible with record typesif their effective value structures are
compatible and the number of elements of value "b" of the record of type"B" or the dimension of array "b" is
exactly the same as the number of elements of the record type"A". Optionality of the record type fields has no
importance when determining compatibility, i.e. it does not affect the counting of fields (which means that optional
fields shall always be included in the count). Assignment of the element values of the record of type or array to the
instance of arecord type shall bein the textual order of the corresponding record type definition, including
undefined elements. If an element with an undefined value is assigned to an optional element of the record, thiswill
cause the optional element to be omitted. An attempt to assign an element with undefined value to a mandatory element
of the record shall cause an error.

NOTE: If therecord of type has no length restriction or the length restriction exceeds the number of elements
of the compared record type and the index of any defined element of the record of valueislessor
equal than the number of elements of the record type minus one, than the compatibility requirement is
aways fulfilled.

Vaues of arecord type can also be assigned to an instance of arecord of type or asingle-dimension array if no
length restriction of the record of typeisviolated or the dimension of the array is more than or equal to the number
of elements of the record type. Optional elements missing in the record value shall be assigned as elements with
undefined values.

EXAMPLE 2:

// Given

type record HType
integer a,
integer b optional,
integer c

}

type record of integer IType

var HType MyVarH := { 1, omit, 2};
var IType MyVarI;
var integer MyArrayVar [2];

// Then

MyArrayVar := MyVarH;
// is a valid assignment as type of MyArrayVar and HType are compatible

MyVarI := MyVarH;
// is a valid assignment as the types are compatible and no subtyping is violated

MyVarI := { 3, 4 };
MyVarH := MyVarI;
// is NOT a valid assignment as the mandatory field 'c' of Htype receives no value

ETSI

55 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.3.2.3 Type compatibility of set and set of types

set typesare only type compatible with other set typesand set of types. For set typesand for set of typesthe

same compatibility rules shall apply asto record and record of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type

compatibility for set types, the textual order of the fieldsin the type definition is decisive.

NOTE 2: In set vauesthe order of fields may be arbitrary, however this does not effect type compatibility asfield

names unambiguoudly identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

// Given

type set FType {
integer a optional,
integer b optional,
boolean c

}

type set GType ({
integer d optional,
integer e optional,
boolean f

}

var FType MyVarF := { a:=1, c:=true };
var GType MyVarG := { f:=true, d:=7};
// Then
MyVarF := MyVarG; // is a valid assignment as types FType and GType are compatible
MyVarF := MyVarA; // is NOT a valid assignment as MyVarA is a record type
6.3.2.4 Compatibility between sub-structures

Therules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.

EXAMPLE:
// Given
type record JType
HType H,

integer b optional,
integer c

}

var JType MyVarJ

// If considering the declarations above, then

MyVarJ.H := MyVarH;

// is a valid assignment as the type of field H of JType and HType are compatible

MyVarI := MyVarJ.H;
// is a valid assignment as IType and the type of field H of JType are compatible

ETSI

56 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

6.3.3 Type compatibility of component types
Type compatibility of component types has to be considered in two different conditions:

1) Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

2) Runson compatibility: afunction or altsteps referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if al the definitions of "A" have identical definitionsin
"R"

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a) For port instances both the type and the identifier shall be identical.

b) For timer instances identifiers shal be the identical and either both shall have identical initial durations or both
shall have no initial duration.

¢) For variableinstances and constant definitions the identifiers, the types and initialization values shall be the
identical (in case of variables this means that either missing in both definitions or be the same).

d) For loca template definitions the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication operations

The communication operations (see clause 22) send, receive, trigger, call, getcall, reply, getreply
and raise are exceptions to the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations must also be explicitly defined in the associated port type
definition. Strong typing also applies to storing the received value, address or component reference during areceive
or trigger operation.

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
root type, then either one of the predefined conversion functions defined in annex C or a user defined function shall be
used.

EXAMPLE:

// To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring := int2hex (123, 4);

7 Expressions

TTCN-3 alows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure

SingleExpression |
w{m { (FieldReference ":=" (Expression | "-") [","] } "}" | // compound expression
w{v [{ (Expression | "-") ([","] }] n"}v // compound expression

Semantic Description

Expressions are built from other (simple) expressions. Functions used in expressions shall be value-returning functions.
Theresult of an expression shall be the value of a specific type and the operators used shall be compatible with the type
of the operands.

Compound expressions are used for expressions of array, record, record of and set of types.

ETSI

57 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions
a) Valuesused in expressions shall be at least partially initialized.

This means also that all fields and elements of structured types referenced in an expression shall contain completely
initialized val ues, while other fields and elements, not used in the expression, may be uninitialized or contain omi t.

Examples
(x + y - increment (z)) *3 // single expression
a:= 1, b:= true } // compound expression, field expression list
{ 1, true } // compound expression, value list

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relationa operators;
d) logica operators,
€) hitwise operators;
f) shift operators;
g) rotate operators.
Restrictions
a) Valuesused in operators shall be completely initialized.

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal I=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xordb

ETSI

58 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Category Operator Symbol or Keyword
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operatorsis shown in table 6. Within any row in this table, the listed operators have equal
precedence. |If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xordb
Binary ordb
Binary <, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Lowest Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of type integer (including derivations of integer) or £loat
(including derivations of £1oat), except for mod and rem which shall be used with integer (including derivations
of integer) typesonly.

With integer types, the result type of arithmetic operationsis integer. With float types, the result type of
arithmetic operationsis float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

Theresult of performing the division operation (/) on two:

a) integer vauesgivesthewhole integer part of the value resulting from dividing the first integer by
the second (i.e. fractions are discarded);

b) float vauesgivesthe £loat value resulting from dividing the first £1oat by the second (i.e. fractions are
not discarded).

The operators rem and mod compute on operands of type integer and have aresult of type integer. The
operationsx rem y andx mod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operands y. For positive x and y, both x rem v and x mod y have the same result but for
negative arguments they differ.

Formally, mod and rem are defined as follows:

xremy =X -y * (x/y)

xmod y = x rem |y| when X >= 0
=0 when x <0 and x rem |y| = 0
= |y| + x rem |y]| when x <0 and x rem |y| < 0

ETSI

59 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of compatible string types, record of, set of,
or array. The operation is a simple concatenation from left to right. No form of arithmetic addition isimplied. The
result type isthe root type of the operands.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B

7.1.3 Relational operators

The predefined relational operators represent the relations of equality (==), lessthan (<), greater than (>), non-equality
to (! =), greater than or equal to (>=) and less than or equal to (<=). Operands of equality and non-equality may be of
arbitrary but compatible types with the exception of the enumerated type, in which case operands shall be instances
of the same type. All other relational operators shall have only operands of type integer (including derivatives of
integer), f£loat (including derivations of £loat) or instances of the same enumerated types. The result type of
these operationsisboolean.

Two charstring Or universal charstring valuesare equal only, if they have equal lengths and the characters
at all positions are the same. For values of bitstring, hexstring Or octetstring types, the same equality rule
applies with the exception, that fractions which shall equal at al positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Two record values, set values, record of valuesor set of valuesare equal if, and only if, their effective value
structures are compatible (see clause 6.3) and the values of all corresponding fields are equal. Record values may also
be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing
two record or set values.

"All fields' means that optional fields not present in the actual value of arecord type shall be taken as an undefined
value. Such field can equal only to amissing optional field (also considered to be an undefined value) when compared
with avalue of another record type or to an element with undefined value when compared with avalue of arecord
of type. This principle also applies when values of two set typesor aset and aset of type are compared.

Two values of union typesare equal if, and only if, in both values the types of the chosen fields are compatible and
the actual values of the chosen fields are equal.

EXAMPLE:

// Given

type set SetA {
integer al optional,
integer a2 optional,
integer a3 optional
Vi

type set SetB {
integer bl optional,
integer b2 optional,
integer b3 optional
Vi

type set SetC {
integer cl optional,
integer c2 optional,

}i

ETSI

a3 :=

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

2};
of the fields does not matter

:= omit };
:= omit };

al nor a2 are equal to their counterparts

60
type set of integer SetOf;
type union UniD {
integer di1,
integer dz,
i
type union UniE {
integer el,
integer e2,
Vi
type union UniF {
integer f1,
integer £f2,
boolean £3,
Vi
// And
const SetA conSetAl := { al := 0, a2 := omit,
// Notice that the order of defining values
const SetB conSetB1 := { bl := 0, b3 := 2, b2
const SetB conSetB2 = { b2 := 0, b3 := 2, bl
const SetC conSetC1l = {cl :=0, c2 :=2 };
const SetOf conSetOf1 := {0, omit, 2 };
const SetOf conSetOf2 := {0, 2 };
const UniD conUniD1 := { di:= 0 };
const UniE conUniEl := { el:=0 };
const UniE conUniE2; := { e2:=0 };
const UniF conUniF1; := { f1:= 0 };
// Then
conSetAl == conSetBl;
// returns true
conSetAl == conSetB2;
// returns false, because neither
// (the corresponding element is not omitted)
conSetAl == conSetCl;
// returns false,
conSetAl == conSetOfl;
// returns true
conSetAl == conSetOf2;

// returns false,

// but the counterpart of a3 is undefined

conSetCl == conSetOf2;
// returns true
conUniDl == conUniE1l;
// returns true
conUniDl == conUniE2;
// returns false,
conUniDl == conUniF1;

// returns false,

7.1.4 Logical operators

because the effective value structures of SetA and SetC are not compatible

as the counterpart of the omitted a2 is 2,

as the chosen field e2 is not the counterpart of the field dl of UniD1l

as the effective value structures of UniDl1l and UniF are not compatible

The predefined boolean operators perform the operations of negation, logical and, logical or and logical xox. Their
operands shall be of typeboolean. The result type of logical operationsisboolean.

Thelogical not isthe unary operator that returns the value true if its operand was of value £alse and returnsthe

value false if the operand was of value true.

Thelogical and returnsthe value true if both its operands are true; otherwiseit returnsthe value false.

Thelogical or returnsthe value true if at least one of its operandsis true; it returnsthe value f£alse only if both

operands are false.

Thelogica xor returnsthe value true if one of itsoperandsis true; it returnsthe value false if both operands are

false orif both operands are true.

ETSI

61 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Short circuit evaluation for boolean expressions is used, i.e. the evaluation of operands of logical operators is stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto false, then the right
argument is not eval uated and the whole expression evaluatesto £alse. In the case of the or operator, if the left
argument evaluates to true, then the right argument is not evaluated and the whole expression evaluatesto true.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor.
These operators are known asnot4b, and4b, or4b and xor4b respectively.

NOTE: Toberead as"not for bit", "and for bit" etc.

Their operands shall be of type bitstring, hexstring or octetstring. Inthe case of and4b, or4b and
xor4b the operands shall be of compatible types.The result type of the hitwise operators shall be the root type of the
operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bitis
settoOand aObitissetto 1. That is:

not4b 'l1'B gives '0'B
not4b '0'B gives '1'B

EXAMPLE 1

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'ESA'H
not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisal if both bits are set to 1, otherwise the value for the resulting bit isO. That is:

'1'B and4b '1'B gives '1l'B
'1'B and4b '0'B gives '0'B
'0'B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B

EXAMPLE 2:

'1001'B and4b '0101'B gives '0001'B
'B'H and4b '5'H gives '1l'H
'FB'O and4b '15'0 gives '11'0O

The bitwise or4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'1'B or4b '1'B gives '1'B
'1'B ordb '0'B gives '1l'B
'0'B ord4b 'l'B gives 'l1l'B
'0'B or4b '0'B gives '0'B

EXAMPLE 3:

'1001'B or4b '0101'B gives '1101'B
'9'H or4b '5'H gives 'D'H
'A9'0 or4b 'F5'0O gives 'FD'O

The bitwise xor4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bitis 1. That is:

'1'B xor4b '1'B gives '0'B
'0'B xor4b '0'B gives '0'B
'0'B xor4b 'l'B gives 'l1'B
'1'B xor4b '0'B gives '1l'B

EXAMPLE 4:
'1001'B xor4b '0101'B gives '1100'B

'9'H xor4b '5'H gives 'C'H
'39'0 xor4b '15'0 gives '2C'O

ETSI

62 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of type bitstring, hexstring Or octetstring. Their right-hand operand shall be of type integer. The
result type of these operators shall be the same as that of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thenthe shift unit appliedisl bit;
b) hexstring then the shift unit applied is 1 hexadecimal digit;
C) octetstring then the shift unit appliedis1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1
'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H
'1122334455'0 << (1+1) gives '3344550000'0O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the | eft-hand side of the |eft operand.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B
'12345'H >> 2 gives '00123'H
'1122334455'0 >> (1+1) gives '0000112233'0

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand
shall beof typebitstring, hexstring, octetstring, charstring, universal charstring,
record of, set of, Or array. Their right-hand operand shall be of type integer. The result type of these
operators shall be the same as that of the left operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedis1 bit;

b) hexstring then therotate unit applied is 1 hexadecimal digit;

C) octetstring thentherotate unit appliedisl octet;

d) charstringoruniversal charstring then therotate unit appliedisone character.
€) record of, set of, Or array thentherotate unit applied is one element.

The rotate left (<@) operator accepts two operands. It rotates the | eft-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

ETSI

63 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 1

'101001'B <@ 2 gives '100110'B

'12345'H <@ 2 gives '34512'H

'1122334455'0 <@ (1+2) gives '4455112233'0
"abcdefg" <@ 3 gives "defgabc"

Therotateright (@>) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or el ements)
arere-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @> 2 gives '011000'B

'12345'H @> 2 gives '45123'H

'1122334455'0 @> (1+2) gives '3344551122'0
"abcdefg" @> 3 gives "efgabcd"

8 Modules

The principal building blocks of TTCN-3 are modules. For example, a module may define afully executable test suite
or just alibrary. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: Thetermtest suiteis synonymous with a complete TTCN-3 module containing test cases and a control
part.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

module ModuleIdentifier [LanguageSpec] "{"
[ModuleDefinitionsPart]
[ModuleControlPart]

n } n
Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is not possible to hide definitionsin a
TTCN-3 module, i.e. al definitions of a TTCN-3 module can be imported by other modules. TTCN-3 modules can be
compiled/interpreted separately. They are reusable and parameterizable.

Module names are of the form of a TTCN-3 identifier. In addition, a modul e specification can carry an optional attribute
identified by the language keyword that identifies the edition of the TTCN-3 language, in which the moduleis
specified. The language strings are defined in clause 8.2.3.6.

NOTE 2: The moduleidentifier isthe informal text name of the module.
Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

module MyTestSuite language "TTCN-3:2003"

{)

ETSI

64 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import identifiers from other
modules. Scope rules for declarations made in the module definitions part and imported declarations are given in

clause 5.3. Those language elements which may be defined in a TTCN-3 module are listed in table 1. Every definition
can be associated with attributes using the with statement defined in clause 27. The module definitions may be imported
by other modules.

Syntactical Structure

{

TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
GroupDef |
ExtFunctionDef |
ExtConstDef

) [withStatement]

[n,.n]

b

Semantic Description
Definitions in the module definitions part may be made in any order.

Such definitions, i.e. top level definitions outside of other scope units, are globally visible. They. may be used
elsewhere in the module. Thisincludes identifiers imported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in atest component type may be used by all test cases, functions etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
module MyModule
{ // This module contains definitions only
const integer MyConstant := 1;

type record MyMessageType { .. }

function TestStep(){ .. }

8.2.1 Module parameters
Module parameters define a set of values that are supplied by the test environment at run-time.
Syntactical Structure

Single type, single module parameter form:

modulepar ModuleParType ModuleParIdentifier [":=" ConstantExpression] ";"

ETSI

65 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Single type, multiple module parameter form:
modulepar ModuleParType

{ ModuleParIdentifier [":=" ConstantExpression] "," }
ModuleParIdentifier [":=" ConstantExpression] ";"

Semantic Description
Module parameters behave as global constants at run-time.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword modulepar.

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can be aliteral value only and can merely be assigned at the place of the declaration of
the parameter.

If the test system does not provide an actual run-time value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system.

Module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an
optional attribute withthevalue"implicit omit" (seeclause 27.7) shall be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions
a) During test execution these values shall be treated as constants.
b) Module parameters shall not be of port type, default type or component type.

c¢) A module parameter shall only be of type address if the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) More than one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

Examples
module MyTestSuiteWithParameters

{

// single type, single module parameter
modulepar boolean TS Par0O := true;

// single type, multiple module parameters
modulepar integer TS Parl, TS Par2 := 1;

8.2.2 Groups of definitions

In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the moduleif required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for theimport of a specific sub-group.

Syntactical Structure

group Groupldentifier "{"
{ ModuleDefinition [";" 1 }
n}n

ETSI

66 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

A group of definitions can be specified wherever a single definitions is allowed. Groups may be nested, i.e. groups may
contain other groups. This alows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to all elements of a group (see clause 27). Import statements may import groups so that all elements of
agroup are imported (see clause 8.2.3.3).

Restrictions

a) Group identifiers across the whole modul e need not necessarily be unique. However, top-level group
identifiersand all group identifiers of subgroups of a single group shall be unique.

Examples
module MyModule
// A collection of definitions
group MyGroup {

const integer MyConst:= 1;

type record MyMessageType { .. };

group MyGroupl // Sub-group with definitions
type record AnotherMessageType { .. };
const boolean MyBoolean := false

}

// A group of altsteps
group MyStepLibrary {
group MyGroupl // Sub-group with the same name as the sub-group with definitions
altstep MyStepll() { .. }
altstep MyStepl2() { .. }
altstep MyStepln() { .. }
}
group MyGroup2 {
altstep MyStep21() { .. }
altstep MyStep22() { .. }

altstep MyStep2n() { .. }

}

// An import statement that imports MyGroupl within MyStepLibrary
import from MyModule ({

group MyStepLibrary.MyGroupl
}

8.2.3 Importing from modules

It is possible to re-use definitions specified in different modules using the import statement. TTCN-3 has no explicit
export construct thus, by default, all module definitions in the module definitions part may be imported.

8.2.3.1 General format of import
An import statement can be used anywhere in the module definitions part.

Syntactical Structure

import from ModuleId
(
(all [except "{" ExceptSpec "}" 1)
|

("{" ImportSpec "}")

[nen]

ETSI

67 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
external constants, data templates, signature templates, functions, external functions, altsteps and test cases. Each
definition has a name (defines the identifier of the definition, e.g. a function name), a specification (e.g. atype
specification or a signature of afunction) and in the case of functions, altsteps and test cases an associated behaviour
description.

EXAMPLE:
Name Specification Behaviour description
function MyFunction |(inout MyTypel MyPar) return MyType2 {
runs on MyCompType const MyType3 MyConst := ..;
: // further behaviour
}
Specification Name Specification
type record MyRecordType {
fieldl MyType4,
field2 integer
}
Specification Name Specification
template |MyType5 MyTemplate =
fieldl := 1,
field2 := MyConst, // MyConst is a module constant
field3 := ModulePar // ModulePar is module parameter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
congtants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |[fieldl, field2 MyType4, integer
template |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Thelocal definitions column refers to identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

ETSI

68

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition

Possible Local Definitions

Possible Referenced Definitions

Module parameter

Module parameter type

User-defined type (for all)

Parameter names

Parameter type

e enumerated type

Concrete values

e structured type

Field names, nested type
definitions

Field types

e port type

Message types, signatures

e component type

Constant names, variable names,
timer names and port names

Constant types, variable types, port types

Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
External constant Constant type

Data Template

Parameter names

Template type, parameter types, constants, module
parameters, functions

Signature template

Signature definition, constants, module parameters
functions

Function

Parameter names

Parameter types, return type, component type
(runs on-clause)

External function

Parameter names

Parameter types, return type

Altstep Parameter names Parameter types, component type (runs
on-clause)
Test case Parameter names Parameter types, component types (runs on- and

system- clause)

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

If an imported definition has attributes (defined by means of awi th statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

The use of import on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition isreferred to more than once. Such cases shall be resolved by the system and definitions shall

be imported only once.

NOTE 4: The mechanismsto resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All import statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved by prefixing the
imported definition (which causes the name clash) by the identifier of the module from which it isimported. The prefix
and the identifier shall be separated by a dot (.).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions

a) Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level definitionsin the module may be imported. Definitions which occur a alower scope (e.g. loca
constants defined in a function) shall not be imported.

c) Only direct importing from the source module of a definition (i.e. the module where the actual definition for
theidentifier referenced in the import statement resides) is allowed.

ETSI

69 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

d) A definitionisimported together with its name and all local definitions.

NOTE5: A loca definition, e.g. afield name of a user-defined record type, only has meaning in the context of the
definitionsin which it is defined, e.g. afield name of arecord type can only be used to access afield of
the record type and not outside this context.

€) A definitionisimported together with all information of referenced definitions that are necessary for the usage
of the referenced definition.

NOTE 6: Import statements are transitive, e.g. if amodule A imports a definition from module B that uses atype
reference defined in module C, the corresponding information necessary for the usage of that typeis
automatically imported into module A.

Identifiers of referenced definitions are not automatically imported.

f) If thereferenced definitions are wished to be used in the importing module, they shall be explicitly imported
from its source module.

g) Whenimporting afunction, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

h) Cyclic imports are forbidden.
Examples

EXAMPLE 1. Selected import examples.

module MyModuleA
{
// Scope of the imported definitions is global to MyModuleA

import from MyModuleB all; // import of all definitions from MyModuleB

import from MyModuleC ({ // import of selected definitions from MyModuleC
type MyTypel, MyType2; // import of types MyTypel and MyType2
template all // import of all templates

1
function MyBehaviourC ()

{

// import cannot be used here
}
éontrol
{ // import cannot be used here
}
EXAMPLE 2: Useand visibility of imported definitions.
module ModuleONE {
modulepar integer ModParl := ..;

type record RecordType T1 {
integer Fieldl T1,

}

type record RecordType T2
RecordType_ T1 Fieldl T2,

}

const integer MyConst := ..;

template RecordType T2 Template T2 (RecordType T1 TempPar T2):= { // parameterized template
Fieldl T2 := ..

}

} // end module ModuleONE

ETSI

70 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

module ModuleTWO {
import from ModuleONE {

template Template_ T2

// Only the names Template T2 and TempPar T2 will be visible in ModuleTWO. Please note, that
// the identifier TempPar T2 can only be used when modifying Template T2. All information

// necessary for the usage of Template T2, e.g. for type checking purposes, are imported

// for the referenced definitions RecordType T1l, Fieldl T2, etc., but their identifiers are

// not visible in ModuleTWO.

// This means, e.g. it is not possible to use the constant MyConst or to declare a

// variable of type RecordType Tl or RecordType T2 in ModuleTWO without explicitly importing
// these types.

import from ModuleONE {
modulepar ModPar2
1
// The module parameter ModPar2 of ModuleONE is imported from ModuleONE and

// can be used like an integer constant

} // end module ModuleTWO

module ModuleTHREE {
import from ModuleONE all; // imports all definitions from ModuleONE
type port MyPortType {

inout RecordType T2 // Reference to a type defined in ModuleONE
1

type component MyCompType {
var integer MyComponentVar := ModPar2;
// Reference to a module parameter of ModuleONE

}

function MyFunction () return integer ({
return MyConst // Reference to a module constant of ModuleONE
1

testcase MyTestCase (out RecordType T2 MyPar) runs on MyCompType {

MyPort.send (Template T2); // Sending a template defined in ModuleONE

}

} // end ModuleTHREE

module ModuleFOUR {
import from ModuleTHREE (

testcase MyTestCase

// Only the name MyTestCase will be visible and usable in ModuleFOUR.

// Type information for RecordType T2 is imported via ModuleTHREE from ModuleONE and
// Type information for MyCompType is imported from ModuleTHREE. All definitions

// used in the behaviour part of MyTestCase remain hidden for the user of ModuleFOUR.

} // end ModuleFOUR

EXAMPLE 3: Handling of name clashes.
module MyModuleA {

t;pe bitstring MyTypel;

import from SomeModuleC

type MyTypeA, // Where MyTypeA is of type character string
MyTypeB // Where MyTypeB is of type character string

ETSI

71 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

control ({

var SomeModuleC.MyTypeA MyVarl := "Test String"; // Prefix must be used
var MyTypeA MyVar2 := '10110011'B; // This is the original MyTypeA
var MyTypeB MyVar3 := "Test String"; // Prefix need not be used ..

var SomeModuleC.MyTypeB MyVar3 := "Test String"; // .. but it can be if wished

NOTE 8: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is aready
defined locally, even with the same name, would lead to two different types being available in the
module.

8.2.3.2 Importing single definitions

Single definitions can be imported by referring to the definition kind and the definition name(s). The import of single
definitions can be used in combination with imports of groups (see clause 8.2.3.3) and with imports of definitions of the
same kind (see clause 8.2.3.4).

Syntactical Structure

import from ModuleId "{"

{
(

(type { TypeDefIdentifier L1}
(template { TemplateIdentifier [N D I
(const { constIdentifier L1}
(testcase { TestcaseIdentifier [I D
(altstep { AltstepIdentifier [I D
(function { FunctionIdentifier [N D I
(signature { SignatureIdentifier L1} |
(modulepar { ModuleParIdentifier L1}
)
[n H n]
1
n } nopo PRl]
Semantic Description
See clause 8.2.3.
Restrictions
a) Seeclause8.2.3.
Examples
import from MyModuleA ({
type MyTypel // imports one type definition from MyModuleA only
1
import from MyModuleB ({
type MyType2, Mytype3, MyType4; // imports three types,
template MyTemplatel; // imports one template, and
const MyConstl, MyConst2 // imports two constants
1
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2) and with imports of definitions of the same kind (see clause 8.2.3.4).

Itis allowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

ETSI

72 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

If some definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the exception
list within a pair of curly brackets following the except keyword. The all keyword is also allowed to be used in the
exception list; thiswill exclude all definitions of the same kind from the import statement.

Syntactical Structure

import from ModuleId "{"

{

(group { FullGroupIdentifier [except "{" ExceptSpec "}" 1 ["," 1 })
[||,.||]

1
n } n [nen]
Semantic Description

The effect of importing agroup isidentical to an import statement that lists all importable definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions
a) Seeclause8.2.3.

Examples
import from MyModule { group MyGroup } // includes all definitions from MyGroup

import from MyModule ({
group MyGroup except
type MyType3, MyType5; // excludes the two types from the import statement,
template all // excludes all templates defined in MyGroup
// from the import statement
// but imports all other definitions of MyGroup

}

import from MyModule ({
group MyGroup
except { type MyType3 };// imports all types of MyGroup except MyType3
type MyType3 // imports MyType3 explicitly

8.2.3.4 Importing definitions of the same kind

The all keyword may be used to import all definitions of the same kind of a module. The a11 keyword used with the
constant keyword identifies all constants as well as all external constants declared in the definitions part of the
module the import statement refersto. Similarly the a1l keyword used with the function keyword identifies all
functions and all external functions defined in the module the import statement denotes.

If some declarations of akind are wished to be excluded from the given import statement, their identifiers shall be listed
following the except keyword.

Theimport of definitions of the same kind can be used in combination with imports of single definitions
(see clause 8.2.3.2) and with imports of groups (see clause 8.2.3.3).

Syntactical Structure

import from ModuleId "{"

{
(

(type all [except { TypeDefIdentifier L1311 |
(template all [except { TemplateIdentifier L1311 |
(const all [except { ConstIdentifier L1311 |
(testcase all [except { TestcaseIdentifier L1311 |
(altstep all [except { AltstepIdentifier L1311 |
(function all [except { FunctionIdentifier L1311 |
(signature all [except { Signatureldentifier ["," 1 } 1) |
(modulepar all [except { ModulepParIdentifier ["," 1 } 1)

ETSI

[nen]

}
" } noon Pl]
Semantic Description

73 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The effect of importing definitions of the same kind isidentical to an import statement that lists all importable
definitions of that kind except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions
a) Seeclause8.2.3.

Examples

import from MyModule {
type all;
template all

// imports all
// imports all

}

import from MyModule {
type all except MyType3,
template all

//
!/

MyType5;

8.2.3.5

types of MyModule
templates of MyModule

imports all types except MyType3 and MyType5
imports all templates defined in Mymodule

Importing all definitions of a module

All definitions of a module definitions part may be imported using the a11 keyword next to the module name.

If some declarations are wished not to be imported, their kinds and identifiers shall be listed in the exception list within
apair of curly brackets following the except keyword. The all keyword isaso allowed to be used in the exception
list; thiswill exclude all declarations of the same kind from the import statement.

Syntactical Structure

import from ModuleId
all
[

except "{"
(group { FullGroupIdentifier [N all)
(type { TypeDefIdentifier v, 1} all)
(template { TemplateIdentifier v, 1} all) |
(const { constIidentifier [m,m 1} all)
(testcase { TestcaseIdentifier [m,m 1} all) |
(altstep { AltstepIdentifier v, 1} all) |
(function { FunctionIdentifier v, 1} all) |
(signature { SignaturelIdentifier v, 1} all) |
(modulepar { ModuleParIdentifier [N all)

[||,.||]

Semantic Description

The effect of importing all definitions of amoduleisidentical to an import statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions

a)

If al definitions of a module are imported by using the al keyword, no other form of import (import of single

definitions, import of the same kind, etc.) shall be used for the same import statement.

b)
group, type, etc.) isallowed.

In the set of except statements for an all import, only one except statement per kind of definition (i.e. for a

ETSI

74 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples
import from MyModule all; // includes all definitions from MyModule

import from MyModule all except
type MyType3, MyType5; // excludes these two types from the import statement and
template all // excludes all templates declared in MyModule,
// from the import statement
// but imports all other definitions of MyModule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when definitions are imported from modules from other TTCN-3 editions or from other sources than TTCN-3
modules, the language specification shall be used to denote the language (may be together with a version number) of the
source (e.g. module, package, library or even file) from which definitions are imported. It consists of the Language
keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The following TTCN-3 language identifiers are defined:

"TTCN-3:2001" - to be used with modules complying with version 1.1.2 of the present document (see annex G).
"TTCN-3:2003" - to be used with modules complying with version 2.2.1 of the present document (see annex G).
"TTCN-3:2005" - to be used with modules complying with version 3.2.1 of the present document (see annex G).
"TTCN-3:2008" - to be used with modules complying with version 3.3.2 of the present document (see annex G).
"TTCN-3:2008 Amendment 1" - to be used with modules complying with the present document.

Other language identifiers are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [6],
ES 201 873-8 [7] and draft ES 201 873-9 [i.1].

When an incompatibility is discovered between the language identification (including implicit identification by omitting
the language specification) and the syntax of the module from which definitions are imported, tools shall provide
reasonable effort to resolve the conflict.

Syntactical Structure

import from ModuleIdentifier [language FreeText] .. [";"]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have aTTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when atemplate is defined based
on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when abase typeis a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of aversioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

e toimport fromaTTCN-3 module of another edition of from a non-TTCN-3 module the import statement shall
contain an appropriate language identifier string;

e only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

ETSI

75 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Importing can be done automatically using the al directive, in which case all importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

Restrictions

a) Thelanguage specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

Examples

import from MyModule language "TTCN-3:2003" {
type MyType
1

NOTE: Theimport mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other language sources. The rules for importing definitions from specifications written in other languages,
e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.3 Module control part

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

The control part of a module calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

Thisisexplained in more detail in clause 26.

EXAMPLE:
module MyTestSuite
{ // This module contains definitions ..
const integer MyConstant := 1;
type record MyMessageType { .. }
template MyMessageType MyMessage := { .. }
function MyFunctionil() { ..}

function MyFunction2() { .. }

testcase MyTestcasel() runs on MyMTCType { .. }
testcase MyTestcase2() runs on MyMTCType { .. }

// .. and a control part so it is executable
control

{

var boolean MyVariable; // local control variable

execute(MyTestCasel()); // sequential execution of test cases
execute (MyTestCase2()) ;

ETSI

76 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

9 Port types, component types and test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

TTCN Test system
MTC | < > PTC,
L | ptCc, |—— T
+ Abstract Test System Interface v¢
_/ _J
Real Test System Interface

SUT

Figure 4: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of the create
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords component and port, shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
create and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of themap operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected viatheir ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. This should be
treated as atest case error (see clause 24.1).

4—
>]]]]]ID_

Figure 5: The TTCN-3 communication port model

ETSI

77 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6(g) or figure 6(h)).

Restrictions
a) Thefollowing connections are not allowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figures 7 (a) and 7(g)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7(c)).

- A port owned by acomponent A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figures 7(b) and 7(d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7(f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7(g)).

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at run-time and shall lead to atest case error when failing.

leStbyStel test component

test component test component

A [E ﬂ B

test system interface

-0

@ (b)

test system
test component test component test component
A [E ﬂ B
test system interface
(c) (d)
test component
test component A
§ >
(e))
test system tost] [test N
test component est componen est componen
test component D B A B
A

| — | —
test component E ;
D c test system interface W

p——

(@) (h)

Figure 6: Allowed connections

ETSI

78 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

test system

test component
test component

A

test system interface

@ (b)

test system

test component test component
test component :| B A

Il] /E&\
>

test system interface

N
(

(c) (d)

test component test system
A -
[é test system interface /_I\ A

(e) ®

test system
Y test component test component

A B

test system interface f\/
—/

(@)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in agenera way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to a component definition, i.e. it isalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI

79 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.11 and 6.2.11.2).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceis system. This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions
a) Thesame asfor component type definitions (see clauses 6.2.11 and 6.2.11.2).
Examples

EXAMPLE 1. Explicit definition of atest system interface.
type component MyMTCType

var integer MyLocallnteger;
timer MyLocalTimer;
port MyMessagePortType PCOl

}

type component MyTestSystemInterface

port MyMessagePortType PCO1, PCO2;
port MyProcedurePortType PCO3

}

// MyTestSystemInterface is the test system interface
testcase MyTestcasel () runs on MyMTCType system MyTestSystemInterface {
// establishing the port connections
map (mtc:PCO1l, system:PCO2) ;
// the testcase behaviour
/]
1

EXAMPLE 2: Implicit definition of atest system interface.

// MyMTCType is the test system interface
testcase MyTestcase2 () runs on MyMTCType {
// map statements are not needed
// the testcase behaviour

/]

ETSI

80 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

10 Declaring constants

TTCN-3 constants are static constants.

Syntactical Structure

const Type { ConstIdentifier [ArrayDef] ":=" ConstantExpression ["," 1 } [";"]
Semantic Description

A constant assigns a name to a fixed value. This value is known at compile time. The constant does not change its value
during test execution. The value is defined only once, but can be referenced multiple timesin a TTCN-3 module.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an optional attribute with thevalue "implicit
omit" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(seeclause 27.1.1).

Restrictions
a) Constants shall not be of port type.

NOTE: The only value that can be assigned to constants of default and component typesis the special value
null.

b) The value of the ConstantExpression assigned to a constant shall be of the same type as the stated type for the
constants.

Examples

const integer MyConstl :
const boolean MyConst2

1;
true, MyConst3 := false;

10.1 External constants

The assignment of the value to the constant may be done within a TTCN-3 module or it may be done externally. The
latter case is an external constant declaration denoted by the keyword external.

Syntactical Structure

external const Type { ConstIdentifier ["," 1 } [";"]
Semantic Description
The value of an external constant is provided at compile time from the environment.

The mapping of the type to the external representation of an external constant and the mechanism of how the value of
an externa constant is passed into a module are outside the scope of the present document.

Restrictions
a) Anexterna constant may have an arbitrary type except of port type, default type, or component type.

b) Thetype hasto be known in the TTCN-3 module, i.e. shall be aroot type or a user-defined type defined in the
module, or imported from another module.

Examples

external const integer MyExternalConst; // external constant declaration

ETSI

81 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of smple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

11.1 Value variables

A TTCN-3 value variable stores values. It is declared by the var keyword followed by atype identifier and avariable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
return keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var Type VarIdentifier [ArrayDef] ":=" Expression
{ [",] VarIdentifier [ArrayDef] ":=" Expression } [";"]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto avalue variable. The value variable can be referenced
multiple timesin a TTCN-3 module.

Restrictions
a) Expression shall be of type Type.
b) Vauevariables shall store values only.

c) Vauevariables shal not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized or not completely initialized value variables at other places than the | eft hand side of
assignments or as actual parameters passed to out formal parameters shall cause an error.

Examples

var integer MyVarO;
var integer MyVarl :
var boolean MyVar2 :

1;
true, MyVar3 := false;

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by the var template keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In excess to value variables,
template variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
return keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign atemplate instance to atemplate
variable or atemplate variable field.

ETSI

82 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Syntactical Structure

var template [restriction] Type VarIdentifier [ArrayDef] ":=" TemplateBody
{ ["," 1 varIdentifier [ArrayDef] ":=" TemplateBody } [";"]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every valueis a so atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
severa timesto atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

Restrictions

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be atemplate variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE: Whileitisnot allowed to directly apply TTCN-3 operations to template variables, it is alowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized or not completely initialized template variables at other places than the left hand side of
assignments or as actual parameters passed to out formal parameters shall cause an error.

If the template variable is restricted, then the template used to initialize it shall contain only the matching mechanisms
as described in clause 15.8.

e) Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

Examples
var template integer MyVarTempl := ?;
var template MyRecord MyVarTemp2 := { fieldl := true, field2 := * },
MyVarTemp3 := { fieldl := ?, field2 := MyVarTempl };

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be a non-negative £1oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of atimer
array shall be assigned using avalue array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol ("-").

Syntactical Structure

timer { TimerIdentifier [ArrayDef] ":=" TimerValue ["," 1 } [";"]

ETSI

83 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the elapsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE: Timersdeclared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit isleft.

Restrictions
a) Incaseof asingletimer, the default duration value should resolve to afloat value.

b) Incaseof atimer array, it should resolve to an array of float values of the same size as the size of the timer
array.

Examples

EXAMPLE 1. Singletimer.

timer MyTimerl := 5E-3;
// declaration of the timer MyTimerl with the default value of 5ms

timer MyTimer2; // declaration of MyTimer2 without a default timer value i.e. a value has
// to be assigned when the timer is started

EXAMPLE 2: Timer array.

timer t Mytimerl[5] := { 1.0, 2.0, 3.0, 4.0, 5.0 }
// all elements of the timer array get a default duration.

timer t Mytimer2[5] := { 1.0, -, 3.0, 4.0, 5.0 }
// the second timer (t_ Mytimer2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6 and 7) can be sent or received. Received messages can also be declared as a combination of value
and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line templates
(see clause 15) or being constructed and passed via variables or template variables (see clause 11) and parameters or
template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

// a structured, ordered message with two fields
type record ARecord { integer i, float f }

ETSI

84 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performsthe call) or invoked in the test system (i.e. the SUT performsthe call).

Syntactical Structure

signature SignatureIdentifier

"(" { [in | inout | out] Type ValueParIdentifier [","] } ")"
[(return Type) | noblock]
[exception " (" ExceptionTypeList ")"]

Semantic Description

For al used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, aprocedure signature shal be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the noblock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Within a signature definition the parameter list may include parameter
identifiers, parameter types and their direction, i.e. in, out, or inout. The direction inout and out indicate that
these parameters are used to retrieve information from the remote procedure. Note that the direction of the parametersis
as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
areturn clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation istool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions

a) Signature definitions for non-blocking communication shall use the noblock keyword, shall only have in
parameters and shall have no return value but may rai se exceptions.

Examples
signature MyRemoteProcOne () ; // MyRemoteProcOne will be used for blocking
// procedure-based communication. It has neither
// parameters nor a return value.
signature MyRemoteProcTwo () noblock; // MyRemoteProcTwo will be used for non blocking

// procedure-based communication. It has neither
// parameters nor a return value.

signature MyRemoteProcThree (in integer Parl, out float Par2, inout integer Par3) ;

// MyRemoteProcThree will be used for blocking procedure-based communication. The procedure
// has three parameters: Parl an in parameter of type integer, Par2 an out parameter of

// type float and Par3 an inout parameter of type integer.

signature MyRemoteProcFour (in integer Parl) return integer;

// MyRemoteProcFour will be used for blocking procedure-based communication. The procedure
// has the in parameter Parl of type integer and returns a value of type integer after its
// termination

ETSI

85 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

signature MyRemoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2) ;
// MyRemoteProcFive will be used for blocking procedure-based communication. It returns a
// float value in the inout parameter Parl and an integer value, or may raise exceptions of
// type ExceptionTypel or ExceptionType2

signature MyRemoteProcSix (in integer Parl) noblock

exception (integer, float);
// MyRemoteProcSix will be used for non-blocking procedure-based communication. In case of
// an unsuccessful termination, MyRemoteProcSix raises exceptions of type integer or float.

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they areaway to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

15.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in a send operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

Atemplate used inareceive, trigger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions

a) Atthetime of a send operation, the used template shall be completely initialized and all fields shall resolve to
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

ETSI

86 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

At thetime of areceiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an optional attribute with the
vaue "implicit omit™" (seeclause 27.7) shal be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1. Template for sending messages.

// Given the message definition
type record MyMessageType

{

integer fieldl optional,
charstring field2,
boolean field3

}

// a message template could be
template MyMessageType MyTemplate:=

{

fieldl := omit,
field2 := "My string",
field3 := true

}

// and a corresponding send operation could be
MyPCO.send (MyTemplate) ;

EXAMPLE 2: Template for receiving messages.

// Given the message definition
type record MyMessageType

{

integer fieldl optional,
charstring field2,
boolean field3

}

// a message template might be
template MyMessageType MyTemplate:=

{

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

// and a corresponding receive operation could be
MyPCO.receive (MyTemplate) ;

EXAMPLE 3: Template for receiving messages.

// When used in a receiving operation this template will match any integer value
template integer Mytemplate := ?;

// This template will match only the integer values 1, 2 or 3
template integer Mytemplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure

See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

ETSI

87 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A template used inacall or reply operation defines a complete set of field valuesfor all in and inout
parameters. At the time of the call operation, all in and inout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersis simply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in agetcall operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions

a) Atthetimeof acall, reply and raise operation, the used template shall be completely initialized and all
in/inout parametersinacall, al out/inout parametersin areply or raise operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof agetcall, getreply and catch operation, the matching template shall be completely initialized.

c) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an optional attribute with thevalue "implicit
omit" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping)
mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Templates for invoking and accepting procedures.

// signature definition for a remote procedure
signature RemoteProc (in integer Parl, out integer Par2, inout integer Par3) return integer;

// example templates associated to defined procedure signature
template RemoteProc Templatel:=
Parl :
Par2
Par3

1,
2,
3

}

template RemoteProc Template2:

{

Parl :
Par2
Par3

’
2
L]

3

}

template RemoteProc Template3:=
{
Parl :
Par2
Par3

1,
2
[
?

1
EXAMPLE 2: In-linetemplates for invoking procedures.
// Given example 1 in this clause

// Valid invocation since all in and inout parameters have a distinct value
MyPCO.call (RemoteProc:Templatel) ;

// Valid invocation since all in and inout parameters have a distinct value

ETSI

88 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

MyPCO.call (RemoteProc:Template2) ;

// Invalid invocation because the inout parameter Par3 has a matching attribute not a value
MyPCO.call (RemoteProc:Template3l) ;

// Templates never return values. In the case of Par2 and Par3 the values returned by the
// call operation must be retrieved using an assignment clause at the end of the call statement

EXAMPLE 3: In-line templates for accepting procedure invocations.
// Given example 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 ==
MyPCO.getcall (RemoteProc:Templatel) ;

// Valid getcall, it will match if Parl == 1 and Par3 == 3
MyPCO.getcall (RemoteProc:Template2) ;

// Valid getcall, it will match on Parl == 1 and Any value of Par3
MyPCO.getcall (RemoteProc:Template3l) ;

15.3 Global and local templates
TTCN-3 alows defining global templates and local templates.

Syntactical Structure

template [restriction] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
[modifies TemplateRef] ":=" TemplateBody

NOTE: The optional restriction part is covered by clause 15.8.
Semantic Description

Global templates can be defined in the module definitions part. Local templates can be defined in module control,
testcases, functions, altsteps or statement blocks. Both global and local templates scoping rules specified in clause 5

apply.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. Therules for formal and actual parameter lists shall be followed as defined in clause 5.2.

At the time of their use (e.g. in communication operations send, receive, call, getcall, €tc.), itisalowed to
change template fields by in-line modified templates, to passin values via value parameters as well asto passin
templates via template parameters.. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions

a) Templates may be specified for any TTCN-3 type defined in table 3 except for port and default typesand
for any procedure signature.

b) The dot notation such as MyTemplateld.Fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

c) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

d) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

ETSI

89 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

// The template
template MyMessageType MyTemplate (integer MyFormalParam) :=

{

fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows
pcol.send (MyTemplate (123)) ;

15.4 In-line Templates
Templates can be specified directly at the place they are used. Such templates are called in-line templates.
Syntactical Structure

[Type ":"] [modifies TemplateRefWithParList ":="] TemplateBody

NOTE 1: Anin-linetemplateis an argument of a communication operation or an actual parameter of atestcase,
function or altstep call, i.e. it is aways placed within parenthesis and potentially separated with acomma.

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they can not be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, areturn from a function, a communication
operation), where they are defined.

Restrictions

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port and default types.

b) Thetypefield may only be omitted when the type isimplicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: integer, float, boolean,
bitstring, hexstring, octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are aways unambiguous and can hence
always be omitted.

c) In-linetemplates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. receive, trigger, check,
getcall, getreply and catch), in arguments of thematch and select case operations, in actual
template parameters, at the right hand side of assignments (when there is atemplate variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
containing matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall bein the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through sub-typing) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

MyPCO.receive (charstring: "abcxyz") ;

ETSI

90 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

15.5 Modified templates

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly. Aswell as creating explicitly named modified templates, TTCN-3 alows the
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

template [restriction] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
modifies TemplateRef ":=" TemplateBody

NOTE: The optiona restriction part is covered by clause 15.8.
In-line modified template:

[Type ":"] modifies TemplateRefWithParList ":=" TemplateBody
Semantic Description

Themodifies keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the origina template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within atemplate field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

When individual values of a modified template or a modified template field of record of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
Restrictions

a) A modified template shal not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate hasaformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) aderived template can have additional (appended) parametersif wished,;
3) theformal parameter list shall follow the template name for every modified template.

¢) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.

ETSI

91 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

EXAMPLE 1.

// Given

type record MyRecordType

{
integer fieldl optional
charstring field2,
boolean field3

1

template MyRecordType MyTemplatel :=

{

fieldl := 123,
field2 := "A string",
field3 := true

// then writing
template MyRecordType MyTemplate2 modifies MyTemplatel :=

fieldl omit, // fieldl is optional but present in MyTemplatel
field2 := "A modified string"

// £ield3 is unchanged

// is the same as writing
template MyRecordType MyTemplate2 :=

fieldl := omit,
field2 := "A modified string",
field3 := true

}
EXAMPLE 2: Modified record of template.
template MyRecordOfType MyBaseTemplate := { 0, 1, 2, 3, 4, 5, 6, 7, 9
template MyRecordOfType MyModifTemplate modifies MyBaseTemplate := { [2]
2, 5

// MyModifTemplate shall match the sequence of values { 0, 1, 3,

EXAMPLE 3: Modified in-line template.

// Given
template MyMessageType Setup :=
{ fieldl := 75,

field2 := "abc",

field3 := true

}

// Could be used to define an in-line modified template of Setup
pcol.send (modifies Setup := {fieldl:= 76});

EXAMPLE 4: Modified parameterized template.

// Given
template MyRecordType MyTemplatel (integer MyPar) :=

fieldl := MyPar,
field2 := "A string",
field3 := true

}

// then a modification could be
template MyRecordType MyTemplate2 (integer MyPar) modifies MyTemplatel :=

{ // fieldl is parameterized in Templatel and remains also parameterized in Template2
field2 := "A modified string",

}

ETSI

92 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

15.6 Referencing elements of templates or template fields

This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

It isnot alowed to reference individua string elementsinside templates or template fields. Instead, the substr function
(see clause C) should be used.

EXAMPLE:

var template charstring t Charl := "MYCHAR";
var template charstring t_ Char2;

t_Char2 := t_Charl([1];
// shall cause an error as referencing individual string elements is not allowed

15.6.2 Referencing record and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, value lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyVaueOrNone, avaluelist or acomplemented list is assigned, at the right hand side of an
assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively
up to and including the depth of the referenced subfield. During this expansion an AnyValue shall be
assigned to mandatory subfields and AnyVaueOrNone shall be assigned to optional subfields. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.

When referencing a subfield within a structured field to which value lists or complemented value lists are
assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1.

type record R1
integer fl1 optional,
R2 f2 optional

}

type record R2 {
integer gil,

R2 g2 optional
}
var template R1 t R1 := {
f1 := 5,
f2 := omit
}
var template R2 t R2 := t R1.f2.92;
// causes an error as omit is assigned to t R1.f2
t R1. f2 := *;
t_R2 := t_R1.f2.g92;
// causes an error as * is assigned to t_R1.f2
t Rl := ({fl:=omit, £2:={gl:=0, g2:=omit}},{f1l:=5, f2:={gl:=1, g2:={gl:=2, g2:=omit}}});
t R2 := t _R1.£2;
t R2 := t_R1.f2.92;
t R2 := t_R1.f2.92.92;

// all these assignments cause error as a value list is assigned to t_ R1

t Rl :=
complement ({fl:=omit, f2:={gl:=0, g2:=omit}},{f1:=5, £2:={gl:=1, g2:={gl:=2, g2:=omit}}});

ETSI

93 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

t_R2 := t_R1.f2;
t_R2 := t_R1.£2.92;
t R2 := t R1.£2.92.92;

// all these assignments cause errors as a complemented list is assigned to t_R1

b) AnyVaue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyVaueOrNone shall
be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field isimplicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyVaueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:
t Rl := {f1:=0, £2:=?}
t R2 := t R1.f2.92;
// after the assignment t R2 will be {gl:=?, g2:=*}
t R1.f2.g92.92 := ({gl:=1, g2:=omit}, {gl:=2, g2:=omit});

// first the field t R1.f2 has hypothetically be expanded to {gl:=?,g2:={gl:=?,g2:=*}}
// thus after the assignment t R1 will be:
// {f1:=0, f2:={gl:=?,92:={gl:=?,92:=({gl:=1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to which i fpresent isappended).

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elements of arecord of or set of template or field using
the index notation. However, a matching mechanism may be assigned to the template or field within which the element
isreferenced. This clause provides rules on handling such cases.

a) Omit, AnyVaueOrNone, value lists, complemented lists, subset and superset: referencing an element within a
record of or set of field to which Omit, AnyVaueOrNone with or without alength attribute, avaluelist, a
complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1:

type record of integer RoOI;
type record of RoI RoOROI;

var template RoI t_RoI;
var template RoRoI t_RoRoOI;
var template integer t_ Int;

t RoRoI := ({},{o},{o0,0},{0,0,0});
t_RoI := t_RoRoI[0];
// shall cause an error as value list is assigned to t_RoRoI;

b) AnyVaue: when referencing an element of arecord of or set of template or field to which AnyVaueis
assigned (without alength attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyVaue, the index of the reference shall not violate the length attribute.
When referencing an element within arecord of or set of template or field to which AnyValueis
assigned (without alength attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When alength attribute is attached to AnyVal ue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictions in any of the above cases.

EXAMPLE 2:

type record of integer RoOI;
type record of RoI RoOROI;

var template RoI t_RoI;
var template RoORoI t_RoOROI;

ETSI

94 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

var template integer t_ Int;

2

t_RoI ?;
t_Int := t_RoI[5];
// after the assignment t_Int will be AnyValue (?);

t_RoRoOI := ?;
t RoI := t_RoRoI[5];

// after the assignment t RoI will be AnyValue (?) ;
t_Int := t_RoRoI[5].[3];

// after the assignment t_Int will be AnyValue (?);

t_RoI := ? length (2..5);
t_Int := t_RoI[3];

// after the assignment t_Int will be AnyValue(?);
t Int := t_RoI[5];

// shall cause an error as the referenced index is outside the length attribute
// (note that index 5 would refer to the 6™ element) ;

t RoRoI[2] := {0,0};

// after the assignment t RoRoI will be {?,?,{0,0},*};
t_RoRoI[4] := {1,1};

// after the assignment t RoRoI will be {?,?,{0,0},?,{1,1},*};
t_RoI[0] := -5;

// after the assignment t RoI will be {-5,*}length(2..5);
t_RoI := ? length (2..5);
t_RoI[1] := 1;

// after the assignment t RoI will be {?,1,*}length(2..5);
t RoI[3] := 2

// after the assignment t RoI will be {?,1,?,?,*}length(2..5);
t RoI[5] := 5

// after the assignment t RoI will be {?,1,?,?,?,5,*}length(2..5); note that t Rol
// becomes an empty set but that shall cause no error;

c) Permutation: when referencing an element of arecord of template or field, which islocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyVaueOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 3:
t Rol := {permutation(0,1,3,?),2,?}
t_Int := t_RoI[5];

// after the assignment t_Int will be AnyValue (?)

t Rol := {permutation(0,1,3,?),2,*}
t_Int := t _RoI[5];

// after the assignment t Int will be * (AnyValueOrNone)
t_Int := t_RoI[2];

// causes error as the third element (with index 2) is inside permutation

t RoI := {permutation(0,1,3,%*),2,?}

t Int := t_RoI[5];
// causes error as the permutation contains AnyValueOrNone (*) that is able to
// cover any record of indexes

d) [Ifpresent attribute: referencing an element withinarecord of or set of fieldto whichthe i fpresent
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
ifpresent isappended).

15.7 Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:
. specific values,
. special symbolsthat can be used instead of values;

. special symbolsthat can be used inside values;

ETSI

95 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

. special symbols which describe attributes of values;
Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 9. The left-hand column of thistable lists all the TTCN-3 types to which these matching mechanisms apply.
A full description of each matching mechanism can be found in annex B.

Table 9: TTCN-3 Matching Mechanisms

Used with values Value Instead of values Inside values Attributes
of
S (@] C V A A R S S P A A P L |
p m o] a n n a u u a n n e e f
e i m I y y n p b t y y r n P
c t p u \% \% g e S t E E m g r
i \% I e a a e r e e I I u t e
f a e L I | S t r e e t h S
i | m | u u e n m m a R e
c u e S e e t e e t e n
\Y e n t | O n n i s t
a t r t t 0 t
I e N (? s n r
u d o] (0] i
e L n r c
| e N t
S *) o] i
t n o
e n
*)
boolean Yes | Yes | Yes | Yes | Yes | ves® Yes®
integer Yes | Yes | Yes | Yes | Yes |ves®| Yes Yes®
float Yes | Yes | Yes | Yes | Yes [Yes!| Yes Yes®
bitstring Yes | Yes | Yes | Yes | Yes | Yest Yes | Yes Yes | Yes®
octetstring Yes | Yes | Yes | Yes | Yes | Yest Yes | Yes Yes | Yes®
hexstring Yes | Yes | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes®
character strings Yes | Yes | Yes | Yes | Yes | Yes'| Yes Yes | Yes | Yes Yes | Yes®
record Yes | Yes | Yes | Yes | Yes | Yes® Yes®
record of Yes | Yes | Yes | Yes | Yes | ves® Yes | Yes | Yes | Yes | Yes®
array Yes | Yes | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes®
set Yes | Yes | Yes | Yes | Yes | ves® Yes®
set of Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes®
enumerated Yes | Yes | Yes | Yes | Yes |Yes® Yes®
union Yes | Yes | Yes | Yes | Yes | ves® Yes®
anytype Yes | Yes | Yes | Yes | Yes | ves® Yes®
NOTE 1: When used, shall be applied to optional fields of record and set types only (without restriction on the type of
that field).
NOTE 2: When us)ed, shall be applied to record and set fields only (without restriction on the type of that field).

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

SingleExpression |
omit

Semantic Description
The matching mechanisms for specific values are:

. an expression that evaluates to a specific value;

ETSI

96 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

e omit: valueis omitted.
For further details please refer to annex B.
Restrictions
a) Seetherestrictionsgiven intable 9 andin annex B.

Examples

MyPCO.receive (charstring: "abcxyz") ;
MyPCO.receive ('AAAA'O) ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

n(v { TemplateInstance [","] } ")" |

complement " (" { TemplateInstance [","] } ™")" |

non

mikn ||

" (" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")"
superset " (" { ConstantExpression [","] } ")" |

subset " (" { ConstantExpression [","] } ")" |

pattern Cstring
Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:
e (...):alist of valuesor templates;
. complement (...): complement of alist of values or templates;
. ?: wildcard for any value;
e *:wildcard for any value or no value at al (i.e. an omitted value);

. (lowerBound . . upperBound)): arange of integer or float values between and including the lower- and upper
bounds;

. superset: at least al of the eementslisted, i.e. possibly more;

. subset: at most the elementslisted, i.e. possibly less;

. pattern; acharstring or universal charstring that matches this format.
For further details please refer to annex B.
Restrictions

a) Seetherestrictionsgiven intable 9 and in annex B.

Examples

MyPCO.receive (integer:complement (1, 2, 3));

15.7.3 Special symbols that can be used inside values
These matching mechanisms allow to characterize value sets by varying valuesinside.

Syntactical Structure

|

nxn |

.permutation " (" { (TemplateBody | "?" ma) [n]} omyn

ETSI

97 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description
The matching mechanisms for special symbols that can be used inside values are:
. ?: wildcard for any single element in astring, array, record of or set of;

e *:wildcard for any number of consecutive elementsin astring, array, record of or set of, 0rno
element at al (i.e. an omitted element);

. permutation: al of the elements listed but in an arbitrary order (note, that ? and * are also alowed as
elements of the permutation list).

For further details please refer to annex B.
Restrictions

a) Seetherestrictions given intable 9 and in annex B.

Examples
template bitstring b := '10???'B; // where each "?" may either be 0 or 1
type record of integer RI;
template RI ri := {1, ?, 3} // where ? may be any integer value

15.7.4 Special symbols which describe attributes of values
These matching mechanisms define properties of values.

Syntactical Structure

length " (" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent]
ifpresent

Semantic Description

The matching mechanisms which describe attributes of values are:

. length: restrictions for string length of string types and the number of elementsfor record of, set of
and arrays,

. ifpresent: for matching of optional field values (if not omitted).
For further details please refer to annex B.
Restrictions

a) Seetherestrictionsgiven intable 9 and in annex B.

Examples

type record R ({
record of integer ri optional
}

template R r:=

{
ri := * length (1 .. 6) ifpresent // any value containing 1, 2, 3, 4,
// 5 or 6 provided it is present

ETSI

98 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

15.8 Template Restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with atemplate. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

template " (" omit | present | value ")" Type

Semantic Description
The restrictions mean in case of:

. (omit) thetemplate shall resolve to avalue matching mechanism (i.e. the fields of it shall resolveto a
specific value or omit, and the whole template may also resolve to omit). Such a template can be used to define
afield of arecord and set template and the latter one could still be used in a send statement.

. (value) thetemplate shall resolve to a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of arecord or
set template and the latter one could still be used in a send statement.

. (present) thetemplate as a whole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechmisms or matching attributes). Such atemplate can be used to define a
mandatory field of arecord or set template.

NOTE: Templaterestrictions allow TTCN-3 toolsto check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
code is regjected or whether the checks are performed at execution time and dynamic errors areraised, is
outside the scope of the present document.

Restrictions

a) Matching mechanisms can be used within restricted templates according to table 10.

Table 10: Using matching mechanisms with restricted templates

Used with
template Value Instead of values Inside values Attributes
restriction
S O C \Y, A A R S S P A A P L I
p m 0 a n n a u u a n n e e f
e i m I y y n p b t y y r n P
c t p u \% \% g e S t E E m g r
i \Y, I e a a e r e e I I u t e
f a e L I | S t r e e t h S
i I m I u u e n m m a R e
c u e S e e t e e t e n
\Y e n t | O n n i s t
a t r t t 0 t
I e N (? S n r
u d o] o i
e L n r c
I e N t
s (@] 0 i
t n o
e n
_ *)
omit Yes | Yes
value Yes | Note
present Yes | Note Yes | Yes |[Note| Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Note
NOTE: Itis allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.

ETSI

99 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or
assigned to template variables according to table 11.

Table 11: Restrictions of formal and actual template parameters

Actual value template template template template
parameter/right (omit) (value) (present)
hand side of an
expression
Formal
parameter/-
left hand
side of an
expression
template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression
and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.

c) A restricted, modified template has to have the same or more restrictive restriction as the base template. A
restricted parameter of a modified template has to have the same or a more restrictive restriction as the
corresponding parameter of the base template. The allowed restrictions are listed in table 12.

Table 12: Restricting modified templates

Restriction in base template Allowed restrictions in modified template
template template, template(present), template(omit), template(value)
template(present) template(present), template(value)

template(omit) template(omit), template(value)

template(value) template(value)

Examples

// definitions of restricted templates
type record ExampleType

integer a,

boolean b optional

}

template (omit) ExampleType exampleOmit := omit;

template (omit) ExampleType exampleOmitValue:= { 1, true };

template (omit) ExampleType exampleOmitAny := ?; // incorrect

template (value) ExampleType exampleValueomit := omit; // incorrect

template (value) ExampleType exampleValue := { 1, true };

template (value) ExampleType exampleValueOptional := { 1, omit };
// omit assigned to a field is correct

template (present) ExampleType examplePresent := {1, ?};

template (present) ExampleType examplePresentIfpresent := { 1, true } ifpresent;
// incorrect

template (present) ExampleType examplePresentAny := ?;

// restricted template usage

var template ExampleType (omit) v_omit;

var template ExampleType (present) v_present;
var template ExampleType (value) v_value;

ETSI

100 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

v_omit := exampleOmit;

v_omit := exampleValueOptional;

v_omit := examplePresentAny; // incorrect, not a specific value
v_present := exampleOmit; // incorrect, must not be omit
v_present := examplePresent;

v_value := exampleOmit; // incorrect, must not be omit
v_value := examplePresentAny; // incorrect, must be a single value

// template modification
template (present) ExampleType exampleBase(template (omit) boolean p) := { ?, p };

//correct, template and its parameter are more restrictive

template (value) ExampleType exampleModified(template (value) boolean p)
modifies exampleBase := { a := 1 };

//incorrect, modified template is less restrictive

template ExampleType exampleModified(template (value) boolean p)
modifies exampleBase := { a := 1 };

//incorrect, parameter of modified template is less restrictive

template (present) ExampleType exampleModified(template (present) boolean p)
modifies exampleBase := { a := 1 };

15.9 Match Operation

Thematch operation allows to compare a value (specified in form of an expression) with atemplate.

Syntactical Structure
match " (" Expression "," TemplateInstance ")"
Semantic Description

Thematch operation returns a boolean value. If the types of the template and the value (specified in form of an
expression) are not compatible (see clause 6.3) the operation returns £alse. If the types are compatible, the return
value of thema tch operation indicates whether the value matches the specified template.

Restrictions

a) Theexpression-parameter of thematch operation shall not evaluate to atemplate, i.e. thematch operation
cannot be used to compare two templates.

Examples
template integer LessThanl0 := (-infinity..9);
MyPort .receive (integer:?) -> value RxValue;

if (match(RxValue, LessThanl0)) { .. }
// true if the actual value of Rxvalue is less than 10 and false otherwise

15.10 Valueof Operation

Thevalueof operation alows to return the val ue specified within atemplate. The returned value can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

valueof " (" TemplateInstance")"
Semantic Description
The valueo£ operation returns the value of atemplate instance.
Restrictions

a) Thetemplate shall be completely initialized and resolve to a specific value.

ETSI

101 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

type record ExampleType

{

integer fieldl,
boolean field2

}

template ExampleType SetupTemplate :=

fieldl := 1,
field2 := true
}
var ExampleType RxValue := valueof (SetupTemplate) ;

16 Functions, altsteps and testcases

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module etc. as described in the following clauses.

16.1 Functions

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

Syntactical Structure

function FunctionIdentifier

"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] } 1 ")"
[runs on ComponentType]

[return [template] Type]

StatementBlock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return avalue or atemplate. Value return is denoted by the return keyword followed by atype
identifier. Template return is denoted by the return template keywordsfollowed by atype identifier. Template
return can be restricted to the matching mechanisms specific value and omit, see clause 5.4.1.2. The keyword return,
when used in the body of the function with a value return defined in its header, shall always be followed by an
expression representing the return value. The type of the return val ue shall be compatible with the return type. The
keyword return, when used in the body of the function with atemplate return defined in its header, shall always be
followed by an expression or atemplate instance representing the return template. The type of the return template shall
be compatible with the return template type. If thereturn template isrestricted, then the return template shall either be a
specific value or omit. The return statement in the body of the function causes the function to terminate and to return the
return val ue to the location of the call of the function.

The behaviour of a function can be defined by using statements and operations described in clauses 18 to 25 and

clause 26. If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the runs on keywords in the function header. The one exception to thisrule
isif all the necessary component-wide information is passed in the function as parameters.

Functions may be parameterized.
Restrictions

a) A function without runs on clause shall never invoke a function or altstep or activate an altstep as default
with aruns on clauselocally.

ETSI

102 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

b) Functions started by using the start test component operation shall always have a runs on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
the start test component operation may be invoked in functions without a runs on clause.

NOTE 1: The restrictions concerning the runs on clause are only related to functions and altsteps and not to test
Cases.

¢) Functionsused in the control part of a TTCN-3 module shall have o runs on clause.
NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.
d) Therulesfor forma parameter lists shal be followed as defined in clause 5.4.

Examples

EXAMPLE 1: Function with return.

// Definition of MyFunction which has no parameters
function MyFunction() return integer

{

return 7; // returns the integer value 7 when the function terminates

1
EXAMPLE 2: Function with template return.

// Definition of functions which may return matching symbols or templates

function MyFunction2 () return template integer
return ?; // returns the matching mechanism AnyValue
function MyFunction3 () return template octetstring
return 'FF??FF'O; // returns an octetstring with AnyValue inside it

}
EXAMPLE 3: Function with runs on clause.

function MyFunction3() runs on MyPTCType {

lo // MyFunction3 doesn't return a value, but
var integer MyVar := 5; // does make use of the port operation
PCO1l.send (MyVar) ; // send and therefore requires a runs on
// clause to resolve the port identifiers
} // by referencing a component type

EXAMPLE 4: Parameterized function.
function MyFunction2 (inout integer MyParl) {
// MyFunction2 doesn't return a value

MyParl := 10 * MyParl; // but changes the value of MyParl which
} // is passed in by reference

16.1.1 Invoking functions
A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure
FunctionRef " (" [{ (TimerRef | TemplateInstance | Port | ComponentRef) [","] } 1 ™)"
Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked functionis
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with areturn value), the test components continues its behaviour right after
the function invocation.

ETSI

103 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.

c) Specia restrictions apply to functions bound to test components using the start test component operation.
These restrictions are described in clause 21.2.2.

d) Wheninvoking afunction, the compatibility to the test component type of the invoking test component as
described in clause 6.3.3 need to be fulfilled.

€) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples
MyVar := MyFunction4(); // The value returned by MyFunction4 is assigned to MyVar.
// The types of the returned value and MyVar have to be compatible
MyFunction2 (MyVar2) ; // MyFunction2 doesn't return a value and is called with the
// actual parameter MyVar2, which may be passed in by reference
MyVar3 := MyFunctioné (4) + MyFunction7 (MyVar3); // Functions used in expressions

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are
summarized in table 13.

Table 13: List of TTCN-3 predefined functions

Category Function Keyword

Conversion functions Convert integer value to charstring value int2char
Convert integer value to universal charstring value int2unichar
Convert integer value to bitstring value int2bit
Convert integer value to hexstring value int2hex
Convert integer value to octetstring value int2oct
Convert integer value to charstring value int2str
Convert integer value to float value int2float
Convert float value to integer value float2int
Convert charstring value to integer value char2int
Convert charstring value to octetstring value char2oct
Convert universal charstring value to integer value unichar2int
Convert bitstring value to integer value bit2int
Convert bitstring value to hexstring value bit2hex
Convert bitstring value to octetstring value bit2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2int
Convert hexstring value to bitstring value hex2bit
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct2int
Convert octetstring value to bitstring value oct2bit
Convert octetstring value to hexstring value oct2hex
Convert octetstring value to charstring value oct2str
Convert octetstring value to charstring value, version I oct2char
Convert charstring value to integer value str2int
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2float
Convert enumeration to integer value enum2int

Length/size functions Return the length of a value or template of any string type, lengthof
record of, set of or array
Return the number of elements in a value or a template of a sizeof
record or set.

ETSI

104 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Category Function Keyword
Presence checking functions |Determine if an optional field in a record or set value or ispresent
template is present
Determine which choice has been selected in a union value or |ischosen
template
Determine if a template evaluates to a concrete value isvalue
String/List handling functions |Returns part of the input string matching the specified pattern |regexp
group within a character pattern
Returns the specified portion of the input string/list value or substr
template
Replaces a substring of a string with or inserts the input string |replace
into a string, and similarly for lists

Codec functions Encode a value into a bitstring encvalue
Decode a bitstring into a value decvalue
Other functions Generate a random float number rnd

Syntactical Structure

int2char " (" SingleExpression ")" |

int2unichar " (" SingleExpression ")" |

int2bit " (" SingleExpression "," SingleExpression ")" |
int2hex " (" SingleExpression "," SingleExpression ")" |
int2oct " (" SingleExpression "," SingleExpression ")" |
int2str " (" SingleExpression ")" |

int2float " (" SingleExpression ")" |

float2int " (" SingleExpression ")" |

char2int " (" SingleExpression ")" |

char2oct " (" SingleExpression ")" |

unichar2int " (" SingleExpression ")" |

bit2int " (" SingleExpression ")"

bit2hex " (" SingleExpression ")"

bit2oct " (" SingleExpression ")"

bit2str " (" SingleExpression ")"

hex2int " (" SingleExpression ")"

hex2bit " (" SingleExpression ")"

hex2oct " (" SingleExpression ")"

hex2str " (" SingleExpression ")"

oct2int " (" SingleExpression ")"

oct2bit " (" SingleExpression ")"

oct2hex " (" SingleExpression ")"

oct2str " (" SingleExpression ")"

oct2char " (" SingleExpression ")" |

str2int " (" SingleExpression ")" |

str2oct " (" SingleExpression ")" |

str2float " (" SingleExpression ")" |

enum2int " (" SingleExpression ")" |

lengthof " (" TemplateInstance ")" |

sizeof " (" TemplateInstance ")" |

ispresent " (" TemplateInstance ")" |

ischosen " (" TemplateInstance ")" |

isvalue " (" TemplateInstance ")" |

regexp " (" TemplateInstance"," TemplatelInstance"," SingleExpression ")" |
substr " (" TemplateInstance "," SingleExpression "," SingleExpression ")" |
replace " (" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encvalue " (" TemplateInstance ")" |

decvalue " (" SingleExpression "," SingleExpression ")"
rnd " (" [SingleExpression] ")"

Semantic Description
The description of predefined functionsis given in annex C.
Restrictions
a) When apredefined function is invoked:
1) the number of the actual parameters shall be the same as the number of the formal parameters; and
2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all actual parameters shall be initialized with the exception of the actual parameter passed to the
isvalue predefined function, which may be uninitialized.

ETSI

105 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring h:= bit2hex ('111010111'B);
var octetstring o:= substr ('01AB23CD'O, 1, 2);

16.1.3 External functions
A function may be defined within a module or be declared as being defined externally (i.e. external).

Syntactical Structure

external function ExtFunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] } 1 ")"
[return Type]

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The redlization of the
external function is outside the scope of the present document.

Restrictions
a) External functions are not allowed to contain port, timer or default handling operations.
b) External functions are not alowed to return templates.

¢) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples
external function MyFunction4 () return integer; // External function without parameters
// which returns an integer value
external function InitTestDevices() ; // An external function which only has an

// effect outside the TTCN-3 module

16.1.4 Invoking functions from specific places

Value returning functions can be called during communication operations (in templates, template fields or in-line
templates) or during snapshot evaluation (in Boolean guards of alt statements or altsteps (see clause 20.2) and in
initialization of altstep local definitions (see clause 16.2). To avoid side effects that cause changing the state of the
component or the actual snapshot and to prevent different results of subsequent eval uations on an unchanged snapshot,
the following operations shall not be used in functions called in the cases specified above:

a) All component operations, i.e. create, start (component), stop (component), kill,
running (component), alive, done andkilled (seenotesl, 3,4 and 6).

b) All port operations, i.e. start (port), stop (port), halt, clear, send, receive, trigger, call,
getcall, reply, getreply, raise, catch, check, connect, map (seenotesl, 2, 3 and 6).

c) Theaction operation (seenotes?2 and 6).

d) All timer operations, i.e. start (timer), stop (timer), running (timer), read, timeout (see notes4
and 6).

e) Cdling external functions (see notes 4 and 6).
f) Calling the rnd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the right-hand side of assignments, and in
the instantiation of out and inout parameters (see notes 4 and 6).

h) Callingthe setverdict operation (see notes 4 and 6).

i) Activation and deactivation of defaults, i.e. theactivate and deactivate statements (see notes5 and 6).

ETSI

106 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

j) Calling functions with out or inout parameters (see notes 7 and 8).

NOTE 1: The execution of the operations start, stop, done, killed, halt, clear, receive, trigger,
getcall, getreply, catch and check can cause changes to the current snapshot.

NOTE 2: The use of operations send, call, reply, raise, and action isillegd, i.e. all communication are
to be made explicit and not as a side-effect of another communication operation or the evaluation of a
snapshot.

NOTE 3: The use of operationsmap, unmap, connect, disconnect, create isillegd, i.e. al configuration
operations are to be made explicit, and not as a side-effect of a communication operation or the evaluation
of a snapshot.

NOTE 4: Calling of external functions, rnd, running, alive, read, setverdict, and writing to component
variablesisillegal because it may lead to different results of subsequent evaluations of the same snapshot,
thus, e.g. rendering deadlock detection impossible.

NOTE5: The use of operationsactivate and deactivate isillega because they modify the set of defaults
that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or inout parameterization apply recursively, i.e. it
is disallowed to use them directly, or viaan arbitrary long chain of function invocations.

NOTE 7: Therestriction of calling functions with out or inout parameters does not apply recursively, i.e. calling
functions that themselves call functions with out or inout parametersislegal.

NOTE 8: Using out or inout parametersisillegal because it may lead to different results of subsequent
evaluations of the same snapshot.

16.2 Altsteps

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of an alt statement.

Syntactical Structure

altstep AltstepIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] } 1 ")"
[runs on ComponentType]

||{||
{ (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
AltGuardList

n } n
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of alt statements.

The behaviour of an atstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaullts.

Altsteps may be parameterized as defined in clause 5.4.
Restrictions
a) Thelocal definitions of an altstep shall be defined before the set of alternatives.

b) Theinitiaization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to theinitialization of local definitions.

ETSI

107 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

c) |f analtstep includes port operations or uses component variables, constants or timers the associated component
type shall be referenced using the runs on keywordsin the altstep header. The one exception to thisruleisif
all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Analtstep without aruns on clause shall never invoke afunction or atstep or activate an altstep as default
witharuns on clauselocally.

€) Analtstep that is activated as a default shall only have in value or template parameters, port parameters, and
timer parameters. An atstep that is only invoked as an alternative in an alt statement or as stand-alone
statement in a TTCN-3 behaviour description may have in, out and inout parameters. The rules for formal
parameter lists shall be followed as defined in clause 5.4.

Examples

EXAMPLE 1. Parameterized altstep with runs on clause.

// Given
type component MyComponentType {
var integer MyIntVar := 0;

timer MyTimer;
port MyPortTypeOne PCOl, PCO2;
port MyPortTypeTwo PCO3;

}

// Altstep definition using PCOl, PCO2, MyIntVar and MyTimer of MyComponentType
altstep AltSet A(in integer MyParl) runs on MyComponentType {
[] PCOl.receive (MyTemplate (MyParl, MyIntVar) {
setverdict (inconc) ;

}

[1 PCO2.receive
repeat
1

[] MyTimer.timeout ({

setverdict (fail) ;
stop
1

1
EXAMPLE 2: Altstep with local definitions.

altstep AnotherAltStep(in integer MyParl) runs on MyComponentType {
var integer MyLocalVar := MyFunction() ; // local variable
const float MyFloat := 3.41; // local constant
[] PCOl.receive (MyTemplate (MyParl, MyLocalVar) ({
setverdict (inconc) ;

}

[] PCO2.receive
repeat
}

16.2.1 Invoking altsteps

Theinvocation of an atstep is dwaysrelated to an alt statement. The invocation may be done either implicitly by the
default mechanism (see clause 21) or explicitly by adirect call within an alt statement (see clause 20.2).

Syntactical Structure

AltstepRef "(" [{ (TimerRef | TemplateInstance | Port | ComponentRef) [","] } 1 ™)"
Semantic Description

Theinvocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by
using the actual snapshot of the alt statement from which the altstep was called.

NOTE: A new snapshot within an atstep will of course be taken, if within a selected top alternativeanew alt
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of an activate statement before the place of the invocation is reached.

ETSI

108 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of
the altstep. The dternatives of the altstep are checked and executed the same way as alternativesof analt
statement (see clause 20.1) with the exception that no new snapshot is taken when entering the altstep. An
unsuccessful termination of the altstep (i.e. all top alternatives of the altstep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of the alt statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement,

i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the
selected top aternative of the altstep ends without explicit repeat or stop.

Analtstep can aso be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
the altstep can beinterpreted as shorthand for an alt statement with only one aternative describing the explicit call
of thealtstep.

Restrictions

a Wheninvoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.
Examples

EXAMPLE 1: Implicit invocation of an atstep via a default activation.

var default MyDefVarTwo := activate (MySecondAltStep()); // Activation of an altstep as default

EXAMPLE 2: Explicit invocation of an atstep within an alt statement.

alt {
[1 PCO3.receive {

1
[l AnotherAltStep() ; // explicit call of altstep AnotherAltStep as an alternative
// of an alt statement
[] MyTimer.timeout {}

1
EXAMPLE 3: Explicit, standalone invocation of an altstep.

// The statement
AnotherAltStep(); // AnotherAltStep is assumed to be a correctly defined altstep

//is a shorthand for

alt {
[1 AnotherAltStep() ;
1

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typically startsin a stable testing state and ends in a stabl e testing state. It may involve one or more consecutive or
concurrent connections to the SUT. The test case should be complete in the sense that it is sufficient to enable atest
verdict to be assigned unambiguoudly to each potentially observable test outcome (i.e. sequence of test events). The test
case should be independent in the sense that it should be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are a specia kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

ETSI

109 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Syntactical Structure

testcase TestcaseIdentifier

v(m [{ (FormalValuePar | FormalTemplatePar) [","] } 1 ")"
runs on ComponentType

[system ComponentType 1]

StatementBlock

Semantic Description

A test caseis considered to be a self-contained and compl ete specification that checks a test purpose. The result of atest
case execution isatest verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword runs on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy stem which references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions
a) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples
testcase MyTestCaseOne ()
runs on MyMtcTypel // defines the type of the MTC
system MyTestSystemType // makes the port names of the TSI visible to the MTC

// The behaviour defined here executes on the mtc when the test case invoked

}

// or, a test case where only the MTC is instantiated
testcase MyTestCaseTwo () runs on MyMtcType2

{
}

// The behaviour defined here executes on the mtc when the test case invoked

17 Void

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, |oop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such as send, receive,
create, €etC.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and blocks of statements and declarations).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

ETSI

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

S3;

110
S1
S2 [::::::> Sl; S2;
S3

Figure 8: Illustration of sequential behaviour

Theindividual statements in the sequence shall be separated by the delimiter *;".

EXAMPLE:

MyPort .send (Mymessage) ; MyTimer.start;

log("Done!") ;

The specification of an empty block of statements and declarations, i.e. { }, may be found in compound statements,
e.g. abranchinan alt statement, and implies that no actions are taken.

Table 14 gives an overview of the TTCN 3 expressions, statements and operations and restrictions on their usage.

Table 14: Overview of TTCN-3 expressions, statements and operations

port

Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes
(see note 3)
If-else if (..){.}else{.} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(...){.}caseelse{..}}
For loop for (..){..} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes Yes
(see note 4)
Leaving a loop, alt, or interleave break Yes Yes Yes
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 1)
Re-evaluation of alternative behaviour |repeat Yes Yes
(see note 1)
Interleaved behaviour interleave {...} Yes Yes
(see note 1)
Activate a default activate Yes Yes
(see note 1)
Deactivate a default deactivate Yes Yes
(see note 1)
Configuration operations
Create parallel test component create Yes
Connect component port to component [connect Yes

ETSI

111 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface [unmap Yes
Get MTC component reference value mtc Yes Yes
Get test system interface component system Yes Yes
reference value
Get own component reference value self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Remove a test component from the kill Yes
system
Check termination of a PTC behaviour |running Yes
Check if a PTC exists in the test system |alive Yes
Wait for termination of a PTC behaviour |done Yes
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote reply Yes
entity
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call |getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received |check Yes
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow receiving (stop Yes
operations to match at a port
Disable sending and disallow receiving |halt Yes
operations to match new
messages/calls
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action | Yes | Yes |
Execution of test cases
Execute test case execute Yes Yes
(see note 2)
NOTE 1: Can be used to control timer operations only.
NOTE 2: Can only be used in functions and altsteps that are used in module control.
NOTE 3: Changing of component variables is disallowed.
NOTE 4: Can be used in functions and altsteps but not in test cases.

ETSI

112 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

19 Basic program statements

The basic program statements presented in table 15 can be used in the control part of a module and in TTCN-3
functions, atsteps and test cases.

Table 15: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){..}else{...}
Select case select case (...) { case (...){...} case
else{...}}
For loop for (..){...}
While loop while (...) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt or break
interleave
Next iteration of a loop continue
Logging log

19.1 Assignments
Vaues may be assigned to variables. Thisisindicated by the symbol ":=".

Syntactical Structure

VariableRef ":=" (Expression | TemplateBody)
Semantic Description

During execution of an assignment the right-hand side of the assignment shall evaluate to avalue or template. The
effect of an assignment isto bind the variable to the value of the expression or to atemplate. The expression shall
contain no unbound variables. All assignments occur in the order in which they appear, that is|eft to right processing.

Restrictions

a) Theright-hand side of an assignment shall evaluate to avalue or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When theright-hand side of the assignment evaluates to atemplate (global or local template, in-line template
or template variable), the variable at the |eft hand side shall be atemplate variable.

Examples

MyVariable := (x + y - increment (z))*3;

19.2 The If-else statement

The if -else statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure
if " (" BooleanExpression ")" StatementBlock

{ else if " (" BooleanExpression ")" StatementBlock }
[else StatementBlock]

NOTE: else if "(" BooleanExpression")" SatementBlock [else SatementBlock] is a shorthand notation for
else "{"if "(" BooleanExpression")" StatementBlock [else SatementBlock] "} ".

ETSI

113 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional el se specifies a statement block
that will be executed if al the "if" and "else if" conditions before are false.

Restrictions

No specific restrictions in addition to the general static rulesof TTCN-3 giveninclause5 Basic language elements.

Examples
if (date == "1.1.2005") { return (fail); }
if (MyVar < 10) { MyVar := MyVar * 10; log ("MyVar < 10"); }
else { MyVar := MyVar/5; }

19.3 The Select Case statement

The select case Statement isan aternative syntactic form of the 1 £ - else statement.

Syntactical Structure

select " (" SingleExpression ")" "{m"
{ case " (" { SingleExpression [","] } ")" StatementBlock }
[case else StatementBlock]

n } n
Semantic Description

The select case statementisandternativetousingif .. else if .. else statements when comparing avalue to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branches is executed.

In the header part of the select case statement an expression shall be given. Each branch starts with the case
keyword followed by alist of templatel nstance (alist branch, which may also contain a single element) or theelse
keyword (an else branch) and a block of statements.

All templatel nstancein all list branches shall be of atype compatible with the type of the expression in the header.
A list branch is selected and the block of statements of the selected branch is executed only, if any of the

templatel nstance matches the value of the expression in the header of the statement. On executing the block of
statements of the selected branch (i.e. not jumping out by a go to statement), execution continues with the statement
following the select case statement.

The block of statements of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expressionin
the header and the statement contains no else branch, execution continues without executing any of the select case
branches.

Restrictions

a) Theselect SngleExpression and the case SingleExpression-s shall be type compatible.

ETSI

114 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

select (MyModulePar) // where MyModulePar is of charstring type

{

case ("firstValue")

{

log ("The first branch is selected");
case (MyCharVar, MyCharConst)

log ("The second branch is selected");

}

case else

log ("The value of the module parameter MyModulePar is selected");

}
}

// the above select statement is equivalent to the following if statement
if (match(MyModulePar, "firstValue")

log ("The first branch is selected");
else if (match(MyModulePar, MyCharVar) or match (MyModulePar, MyCharConst))

log ("The second branch is selected");

}
{

log ("The value of the module parameter MyModulePar is selected");

}

else

19.4 The For statement

The for statement defines a counter loop.

Syntactical Structure

for "(" (VarInstance | Assignment) ";" BooleanExpression ";" Assignment ")"
StatementBlock

Semantic Description

The for statement contains two assignments and aboolean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The boolean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable isincreased, decreased or manipulated in such a manner that after a certain number of
execution loops atermination criteriais reached.

The termination criterion of the loop shall be expressed by aboolean expression. It is checked at the beginning of
each new loop iteration. If it evaluates to true, the execution continues with the block of statementsin the for
statement, if it evaluatesto £alse, the execution continues with the statement which immediately follows the for
loop. If abreak statement is executed that is not within the body of an enclosed loop, alt or interleave
statement, then the loop is terminated, too.

Theindex variable of a for loop can be declared before being used in the for statement or can be declared and
initidlized in the for statement header. If the index variable is declared and initialized in the for statement header, the
scope of the index variableis limited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

ETSI

115 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples
var integer j; // Declaration of integer variable j
for (j:=1; j<=10; Jj:= j+1) { .. } // Usage of variable j as index variable of the for loop
for (var float 1:=1.0; 1<7.9; i:= i*1.35) { .. } // Index variable i is declared and initialized

// in the for loop header. Variable i only is
// visible in the loop body.

19.5 The While statement

A while statement defines aloop that is executed as long as the loop condition holds.

Syntactical Structure

while " (" BooleanExpression ")" StatementBlock
Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately followsthewhile loop. If a
break statement is executed that is not within the body of an enclosed loop, alt or interleave statement, then the
loop is terminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

while (j<10){ .. }

19.6 The Do-while statement

A do-while statement defines aloop that is executed up until the loop condition does not hold.

Syntactical Structure

do StatementBlock while " (" BooleanExpression ")"

Semantic Description

Thedo-while loopisidentica to awhile loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado-while loop the behaviour is executed at |east once before the loop
condition is evaluated for the first time. If abreak statement is executed that is not within the body of an enclosed
loop, alt or interleave statement, then the loop is terminated, too.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

do { .. } while (j<10);

19.7 The Label statement

The 1abel statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module.

Syntactical Structure

label LabelIdentifier

ETSI

116 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

A label marks astatement. The label isused by the goto statement (see clause 19.8) to transfer control to alabelled
statement.

Restrictions

a) A label statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top alternativein an alt statement, interleave Statement or altstep.

b) Labelsused following the 1abel keyword shall be unique among all 1abels defined in the same test case,
function, altstep or control part.

Examples
label MyLabel; // Defines the label MyLabel

// The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment

label L1; // Definition of label L1
alt{
[] PCOl.receive(MySigl)

{ label 12; // Definition of label L2

PCO1.send (MySig2) ;
PCOl.receive (MySig3)

1
[l PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;
PCO2.send (MySigé) ;
label L3; // Definition of label L3
PCO2.receive (MySig7) ;

19.8 The Goto statement

A goto statement performsajumptoalabel.

Syntactical Structure

goto LabelIdentifier
Semantic Description

The goto statement can be used in functions, test cases, atsteps and the control part of a TTCN-3 module to transfer
control to alabelled statement.

The goto statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of asingle compound statement (e.g. awhile loop) and to jump over severa levels out of
nested compound statements (e.g. nested alternatives).

Restrictions
a) Itisnot alowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itisnot allowed to jump into a sequence of statements defined in a compound statement (i.e. alt statement,
while loop, for loop, 1if-else statement, do- while loop and the interleave statement).

c) Itisnot allowed to use the goto statement within an interleave statement.

ETSI

117 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

// The following TTCN-3 code fragment includes

label L1; // .. the definition of label L1,
MyVar := 2 * MyVar;

if (MyVar < 2000) { goto L1; } // .. a jump backward to L1,
MyVar2 := Myfunction (MyVar) ;

if (MyVar2 > MyVar) { goto L2; } // .. a jump forward to L2,

PCO1l.send (MyVar) ;
PCOl.receive;
label L2; // .. the definition of label L2,
PCO2.send(integer: 21);
alt {
[] PCOl.receive { }
[] PCO2.receive (integer: 67)
label L3; // .. the definition of label L3,
PCO2.send (MyVar) ;
alt {
[] PCOl.receive { }
[] PCO2.receive (integer: 90)
PCO2.send(integer: 33);
PCO2.receive (integer: 13);
goto L4; // .. a jump forward out of two nested alt statements,

}

[] PCO2.receive (MyError) {
goto L3; // .. a jump backward out of the current alt statement,
1

[] any port.receive ({
goto L2; // .. a jump backward out of two nested alt statements,
1

}
}
[1 any port.receive ({
goto L2; // .. and a long jump backward out of an alt statement.
}

label 14;

19.9 The Stop execution statement

The stop statement terminates execution of test components, atest case or atest control.

Syntactical Structure

stop
Semantic Description

The stop statement terminates execution in different ways depending on the context in which it isused. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the execution of the
module control part. When used in atest case, atstep or function that are executed on atest component, it terminates
the relevant test component.

NOTE: The semanticsof astop statement that terminates atest component isidentical to the stop component
operation self . stop (seeclause 21.2.3).

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

ETSI

118 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

module MyModule {
// Module definitions
testcase MyTestCase () runs on MyMTCType system MySystemType{
var MyPTCType ptc:= MyPTCType.create; // PTC creation
ptc.start (MyFunction()) ; // start PTC execution
: // test case behaviour continued
stop // stops the MTC, all PTCs and the whole test case

1
function MyFunction() runs on MyPTCType {
stop // stops the PTC only, the test case continues

}

control
: // test execution
stop // stops the test campaign
} // end control
} // end module

19.10 The Return statement

The return statement terminates execution of functions or atsteps.

Syntactical Structure

return [Expression]
Semantic Description

The return statement terminates execution of a function or altstep and returns control to the point from which the
function or altstep was called. When used in functions, are turn statement may be optionally associated with areturn
value.

TTCN-3 alows optional statement blocks that may follow altstep calls within alt statements. If thereis a statement
block, the return statement returns control to the beginning of this statement block and the statement block is
executed beforethe alt statement isleft. If thereis no statement block, test execution continues with the first statement
following the alt statement.

Restrictions
a) Thereturn statement should not be used in the statement block of atestcase.

Examples
function MyFunction() return boolean {
if (date == "1.1.2005") {

return false; // execution stops on the 1.1.2000 and returns the boolean false
1

return true; // true is returned

}

function MyBehaviour() return verdicttype

if (MyFunction()) {
setverdict (pass); // use of MyFunction in an if statement
1

else {

setverdict (inconc) ;

return getverdict; // explicit return of the verdict

ETSI

119 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

19.11 The Log statement

The 1og statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 16.

Table 16: TTCN-3 language elements that can be logged

Used in alog statement What is logged Comment
module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value
external constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

self, mtc, systemoOr
component type variable
identifier

actual value and if
assigned the component
instance name
or "UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true or false. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or false. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

match operation

return value

getverdict operation

return value

none, pass, inconc, or fail

predefined functions

return value

See annex C.

function instance

return value

Only functions with return clause are
allowed.

external function instance

return value

Only external functions with return clause
are allowed.

formal parameter identifier

See comment column

Logging of actual parameters shall follow
rules specified for the language elements
they are substituting. In case of value
parameters the actual parameter value,
in case of template-type parameters the
actual template or field values and
matching symbols, in case of component
type parameters the actual component
reference etc. shall be logged. For timer
parameters also the use of the read
operation and for component type and
timer parameters the use of the running
operation are allowed.

NOTE 1:

statement.
NOTE 2:
NOTE 3:

The type of the logged value is tool dependent.
In case of array identifiers without array element specification, actual values and for

Actual value/actual template is the value/template at the moment of the execution of the log

component references names of all array elements shall be logged.

NOTE 4:
NOTE 5:

NOTE 6:
NOTE 7:
NOTE 8:

annex F).

The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).
Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

Port states that can be logged are: Started and Stopped (for further details see annex F).
Default states that can be logged are: Activated and Deactivated.

Timer states that can be logged are: Inactive, Running and Expired (for further details see

ETSI

120 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Syntactical Structure

log " (" { (FreeText | TemplateInstance) [","] } ")"
Semantic Description

The 1og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 16 or expressions composed of such log items.

Itis strongly recommended that the execution of the log statement has no effect on the test behaviour. In particular,
functions used in alog statement should neither explicitly nor implicitly change component variable values, port or
timer status, and should not change the value of any of itsinout or out parameters.

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions

a) Functionsused in log statements should not use directly or indirectly statements other than if...else, for,
while, do...while, label, goto, return, mtc, system, self, running (PTC or timer), read and getverdict.

Examples

var integer myVar:= 1;

log("Line 248 in PTC A: ", myVar, " (actual value of myVar)");

// The string "Line 248 in PTC A: 1 (actual value of myVar)" is written to some log device
// of the test system

19.12 The Break statement

A break statement causes the exit from aloop and froman alt or interleave Statement.

Syntactical Structure

break
Semantic Description

On executing abreak statement the innermost, currently executed loop, alt statement or interleave Statement is
left. Execution continues with the statement following the construct which isleft. Using break outside the body of a
loop (for,while, do-while) or an dternative of analt or interleave statement shall cause adynamic error.

NOTE: Notethat break isalowed in statement blocksof alt and interleave statementsonly but not in
altsteps.

Restrictions
No specific restrictions in addition to the general static rulesof TTCN-3 givenin clause5 Basic language elements.

Examples

break; // the do-while loop is left
for (var integer j:=1; j<=10; j:= j+1) {

if (cond2) {
break; // the for-loop is left but the do-while loop is continued
1

}

while (j<10);

ETSI

121 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

19.13 The Continue statement

A continue statement causes the start of the next iteration of aloop.
Syntactical Structure

continue
Semantic Description

On executing acontinue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using continue outside the body of aloop (for, while, do-while) shall
cause adynamic error

Restrictions
No specific restrictions in addition to the general static rulesof TTCN-3 giveninclause5 Basic language elements.

Examples
do {

if (cond) {
continue; // execution continues with the next iteration of the do-while-loop

for (var integer j:=1; j<=10; j:= j+1) {

if (cond2) {
continue; // continues with the next iteration of the for-loop
1

while (j<10);

20 Statement and operations for alternative behaviours
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both.

An interleaving operator allows the specification of interleaved sequences or aternatives. Table 17 summarizes the
statements and operations for alternative behaviours.

Table 17: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

20.1 The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9.

ETSI

122 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

S1;
S1 alt {
[1 s2 {
alt {
[1 s4a { s7}
[1 s5 {
S8;
alt {
1 so {}
[1 s10 {}
}
}
1
[1 s3 { s6}

Figure 9: lllustration of alternative behaviour

Thisisdone with the alt statement.

When entering an alt statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which is referenced in at least one alternativeinthealt
statement, or in atop alternative of an altstep that isinvoked as an alternative in the alt statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ES 201 873-4 [3]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of the alt statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ES 201 873-4 [3]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditionsis outside the scope of the present document.

20.2 The Alt statement

The alt statements expresses sets of possible aternatives that form atree of possible execution paths.

Syntactical Structure

alt " { "

{

"[v [BooleanExpression] "]"
((TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement) StatementBlock)

(AltstepInstance [StatementBlock])

["[" else "]" StatementBlock]

n } n
Semantic Description

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
receive, trigger, getcall, getreply, catch, check, timeout,done andkilled. Thealt Statement
denotes a set of possible events that are to be matched against a particular snapshot.

ETSI

123 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Execution of alternative behaviour:
When entering an alt statement, a snapshot is taken.

The alternative branchesin the alt statement and the top aternatives of invoked atsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 20.5.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [else].

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), akilled operation (killed-branch), t imeout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e. receive, trigger, getcall, getrepy, catch or acheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluates to true. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep.
Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block followingthekilled
operation. Thekilled operationitself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following the timeout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operationis
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of the trigger operation the top message of the queueis also removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

If none of the alternative branchesin the alt statement and top alternativesin the invoked altsteps and active defaults
can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.0. because the MTC is stopped) or with adynamic error.

The test case shall stop and indicate adynamic error if atest component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

ETSI

124 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

NOTE 2: The repetitive procedure of taking a complete snapshot and re-evaluate all alternativesisonly a
conceptual means for describing the semantics of the alt statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an aternative by means of a Boolean expression placed between the
("[...]") brackets of the alternative.

Else branch in alternatives:

Any branchin an alt statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of all alternatives. If an
else branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 3: Itisalso possibleto use else in atsteps.
NOTE 4: Itisalowedto use arepeat statement within an else branch.

NOTE 5: It isallowed to define more that one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:
There-evaluation of an alt statement can be specified by using arepeat statement (see clause 20.3).
Invocation of altsteps as alter natives:

TTCN-3 alowsthe invocation of altsteps as alternativesin alt statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the atstep call shall aso be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the alt statement when one of the branches of thealt or
invoked defaultsis selected and completely executed, or a branch of an altstep used in an atsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the alt statement if abreak statement isreached in the
statement block of the selected branch of thealt.

NOTE 6: That break can be used in statement blocks of the a1t statement only (including the optional statement
block of atsteps branches) but not in invoked altsteps and defaullts.

The alt statement can also be left by using agoto statement in the selected branch of the alt (i.e. no branches of
altsteps and defaults can be considered in this case), and execution continues with the statement following the label,
goto ispointing to.

Restrictions

a) Theopen and close square brackets ("[...]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an aternative may have side-effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions
astherestrictions for theinitialization of local definitions within altsteps shall apply (clause 16.2).

¢) Theelsebranch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.,e.analtstep call or adone, akilled, a timeout Or areceiving operation).

d) Analt statement used within the module control part shall only contain the t imeout statements.

ETSI

125 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

EXAMPLE 1: Nested alternatives.

alt {
[] MyPort.receive (MyMessage) {

setverdict (pass);

MyTimer.start;

alt {

[] MyPort.receive (MySecondMessage) {

MyTimer.stop;
setverdict (pass);

[] MyTimer.timeout {
MyPort.send (MyRepeat) ;
MyTimer.start;
alt {
[] MyPort.receive (MySecondMessage) {
MyTimer.stop;
setverdict (pass)
}
[] MyTimer.timeout { setverdict (inconc) }
[] MyPort.receive { setverdict (fail) }

}
[] MyPort.receive { setverdict (fail) }
}
}
[] MyTimer.timeout { setverdict (inconc) }
[] MyPort.receive { setverdict (fail) }

1
EXAMPLE 2: Alt statement with guards.

alt {
[x>1] L2.receive // Boolean guard/expression
setverdict (pass) ;
[x<=1] L2.receive { // Boolean guard/expression

setverdict (inconc) ;

}

EXAMPLE 3: Alt statement with else branch.

// Use of alternative with Boolean expressions (or guard) and else branch

alt {
[else] { // else branch
MyErrorHandling () ;
setverdict (fail) ;
stop;

1
EXAMPLE 4: Re-evaluation with repeat.

alt {
[] PCO3.receive {
count := count + 1;
repeat // usage of repeat

[] Tl.timeout { }

[] any port.receive ({
setverdict (fail) ;
stop;

ETSI

126 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLES: Alt statement with explicitly invoked altstep.
alt {
[] PCO3.receive { }
[1 AnotherAltStep() { // Explicit call of altstep AnotherAltStep as alternative.

setverdict (inconc) // Statement block executed if an alternative within
// altstep AnotherAltStep has been selected and executed.
1

[] MyTimer.timeout { }

}

20.3 The Repeat statement

The repeat Statement is used for are-evaluation of an alt Statement.

Syntactical Structure
repeat
Semantic Description

The repeat statement, when used in the block of statements and declarations of alternatives of alt statements, causes
the re-evaluation of the alt statement, i.e. a new snapshot is taken and the alternatives of the alt statement are
evaluated in the order of their specification.

When used in blocks of statements and declarations of the response and exception handling parts of blocking procedure
calls, the repeat statement causes the re-evaluation of the response and exception handling part of the call
(seeclause 22.3.1).

If arepeat statement isused in atop alternative in an altstep definition, it causes a new snapshot and the
re-evaluation of the alt statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly inthe alt statement (see clause 20.2).

Restrictions
a) Therepeat statement should only be used within alt statements, call statements or altsteps.
Examples

EXAMPLE 1. Usage of repeat in an alt statement.

alt {
[] PCO3.receive
count := count + 1;
repeat // usage of repeat

[] Tl.timeout { }

[] any port.receive ({
setverdict (fail) ;
stop;

1
1

EXAMPLE 2: Usage of repeat in an atstep.

altstep AnotherAltStep() runs on MyComponentType {
[] PCOl.receive({
setverdict (inconc) ;
repeat // usage of repeat

}

[1 PCO2.receive {}

ETSI

127 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

20.4 The Interleave statement

The interleave statement allows to specify the interleaved occurrence and handling of receiving events including
done, killed, timeout, receive, trigger, getcall, getreply, catch and check.

Syntactical Structure

interleave "{"

{ "[1" (TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement) StatementBlock

1
n } n
Semantic Description

The interleave statement allows to specify the interleaved occurrence and handling of the statements done,
killed, timeout, receive, trigger, getcall, getreply, catch and check.

Interleaved behaviour can always be replaced by an equivalent set of nested alt statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [3]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached, abreak statement is reached, or the interleaved sequence ends.

NOTE 1: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e. receive,
check, trigger, getcall, getreply, catch, done, killed and timeout. Non-reception
statements denote all other non-control-transfer statements which can be used withinthe interleave
statement.

b) If none of the alternatives of the interleave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those atsteps that have been activated before entering the interleave Statement.

NOTE 2: The complete semantics of the default mechanism within an interleave statement is given by
replacing the interleave statement by an equivalent set of nested alt statements. The default
mechanism applies for each of these alt statements.

¢) Theevaluation then continues by taking the next snapshot if no break statement was encountered.
d) Theevauation of the interleave statement isterminated if abreak statement is executed.
The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [3]).

Restrictions

a) Control transfer statements for, while, do-while, goto, activate, deactivate, stop, repeat,
return, direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which
include communication operations, shall not be used in interleave Statements.

b) Inaddition, it is not allowed to guard branches of an interleave statement with Boolean expressions
(i.e. the []' shall dways be empty). It is also not allowed to specify else branchesin interleaved behaviour.

ETSI

128 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Examples

// The following TTCN-3 code fragment
interleave
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
PCOl.receive (MySig3) ;
}

[] PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
PCO2.receive (MySig7) ;

}

// is a shorthand for
alt {
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
alt {
[l PCOl.receive (MySig3)
PCO2.receive (MySig4) ;
PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
PCO2.receive (MySig7)
1
[] PCO2.receive (MySig4)
{ PCO2.sgend (MySig5) ;
PCO2.sgend (MySig6) ;
alt {
[] PCOl.receive (MySig3) {
PCO2.receive (MySig7); }
[] PCO2.receive (MySig7) {
PCOl1.receive (MySig3); }
1

}
}
[] PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;
PCO2.sgend (MySig6) ;
alt {
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
alt {
[] PCOl.receive (MySig3)
{ PCO2.receive (MySig7) ;

}
[l PCO2.receive (MySig7)
{ PCOl.receive (MySig3) ;

}
}
}
[] PCO2.receive (MySig7)
{ PCOl.receive (MySigl) ;
PCO1.send (MySig2) ;
PCOl.receive (MySig3) ;

20.5 Default Handling

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activation i.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operationsactivate

(seeclause 20.5.2) and deactivate (see clause 20.5.3) operate on the list of defaults. An activate putsanew
default asthe first element into the list and a deactivate removes adefault fromthelist. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding activate operation.

ETSI

129 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

20.5.1 The default mechanism

The default mechanism is evoked at the end of each alt statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaullts, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the altstep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1: Aninterleave statement issemantically equivalent to a nested set of alt statements and the default
mechanism also applies to each of these alt statements. This means, the default mechanism also applies
to interleave statements.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
inthe list has terminated unsuccessfully, the default mechanism will return to the place in the a1t statement in which it
has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also beindicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(seeclause 20.1).

In the case of a successful termination, the default may either stop the test component by means of a stop Statement, or
the main control flow of the test component will continue immediately after the alt statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has
to be specified by means of arepeat statement (see clause 20.3). If the selected top alternative of the default ends
without arepeat statement the control flow of the test component will continue immediately after the alt statement.

NOTE 2: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of aprocessthat isimplicitly called at the end of each alt statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
caled in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation
Theactivate operation isused to activate altsteps as defaults.

Syntactical Structure

activate " ("
AltstepRef " (" [{ (TimerRef | TemplateInstance | Port | ComponentRef) [","] } 1 ™)"

n) n
Semantic Description

An activate operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used in adeactivate operation for
the deactivation of the default.

The effect of an activate operationislocal to thetest component in which it is called. This means, atest component
cannot activate a default in another test component.

The activate operation can be called without saving the returned default reference. Thisform is useful in test cases
which do not require explicit deactivation of the activated defaullt, i.e. deactivation of adefault is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding activate statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of itsinvocation by the default mechanism).

Restrictions

a) All timer instances in the actual parameter list shall be declared as component type local timers
(see clause 6.2.10.1).

ETSI

130 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

b) Analtstep that is activated as a default shall only have in parameters, port parameters, or timer parameters.

Examples

EXAMPLE 1: Activation where the default reference is kept.

// Declaration of a variable for the handling of defaults
var default MyDefaultVar := null;

// Declaration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo := activate (MySecondAltStep()) ;

// Activation of altstep MyAltStep as a default
MyDefaultVar := activate(MyAltStep()); // MyAltStep is activated as default

// Usage of MyDefaultVar for the deactivation of default MyDefAltStep
deactivate (MyDefaultVar) ;

EXAMPLE 2: Simpleactivation.

// Activation of an altstep as a default, without assignment of default reference
activate (MyCommonDefault ()) ;

EXAMPLE 3: Activation of a parameterized altstep.

altstep MyAltStep2 (integer par_valuel, MyType par_value2,
MyPortType par port, timer par timer)

{

}

function MyFunc () runs on MyCompType

{ :

var default MyDefaultVar := null;

MyDefaultVar := activate (MyAltStep2 (5, myVar, myCompPort, myCompTimer) ;

// MyAltStep2 is activated as default with the actual parameters 5 and
// the value of myVar. A change of myVar before a call of MyAltStep2 by
// the default mechanism will not change the actual parameters of the call.

20.5.3 The Deactivate operation
The deactivate operation isused to deactivate defaults, i.e. previoudly activated altsteps.

Syntactical Structure
deactivate ["(" VariableRef | FunctionInstance ")"]
Semantic Description

A deactivate operation will remove the referenced default from the list of defaults.

The effect of adeactivate operationislocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

A deactivate operation without parameter deactivates all defaults of atest component.

Calling adeactivate operation with the special valuenull has no effect. Caling adeactivate operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of default type.

ETSI

Examples

var default MyDefaultVar :
:= activate (MySecondAltStep())

var default MyDefVarTwo
var default MyDefVarThree

131

null;

activate (MyThirdAltStep ()

MyDefaultVar := activate (MyAltStep());

)i

deactivate (MyDefaultVar); // deactivates MyAltStep

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

deactivate; // deactivates all other defaults, i.e. in this case MySecondAltStep
// and MyThirdAltStep

21

Configuration Operations

Configuration operations are used to set up and control test components. They are summarized in table 18. These
operations shall only be used in TTCN-3 test cases, functions and altsteps (i.e. not in the module control part).

Table 18: Overview of TTCN-3 configuration operations

Operation

Explanation

Syntax Examples

Connection Operations

connect

Connects the port of one test
component to the port of another test

connect (ptcl:pl, ptc2:p2);

component

disconnect Disconnects two or more connected disconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to |map (ptcl:q, system:sutPortl);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap (ptcl:q, system:sutPortl);

Test Component Operations

create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:

var PTCType c PTCType.create;
Alive test components:

var PTCType c

PTCType.create alive;

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour()) ;

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

if (c.alive)

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running)

done

Checks whether the function running on
a test component has terminated

c.done;

killed

Checks whether a test component has
ceased to exist

c.killed { ..

}

Reference Operations

mtc Gets the reference to the MTC connect (mtec:p, ptc:p);

system Gets the reference to the test system |map (c:p, system:sutPort);
interface

self Gets the reference to the test self.stop;

component that executes this operation

ETSI

132 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

21.1 Connection Operations

The ports of atest component can be connected to other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface themap operation shall be used. The connect operation
directly connects one port to another with the in side connected to the out side and vice versa. Themap operation on
the other hand can be seen purely as a name trandation defining how communications streams should be referenced.

Test system Connected Ports

[[T
MTC < PTC

>
ouT IN
ouT IN
Mapped Ports 4
Abstract Test System Interface ouT ¢ | IN

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

21.1.1 The Connect and Map operations
The connect operation and themap operation are used to setup connections to the SUT or between test components.

Syntactical Structure

connect " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"
map " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"

Semantic Description

With both the connect operation and themap operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mtc identifies the MTC, the operation sy stem identifies the test system interface and the operation
self identifies the test component in which sel £ has been called (see clause 22.4). All these operations can be used
for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both themap and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

Restrictions
a) For both the connect and map operations, only consistent connections are allowed.
Assuming the following:
a) ports PORT1 and PORT2 are the ports to be connected;
b) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1,;
c) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;

ETSI

133 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

d) inlist-PORT?2 defines the messages or procedures of the in-direction of PORTZ2; and
e) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) The connect operationisallowed if and only if:
outlist-PORT1 c inlist-PORT2 and outlist-PORT2 c inlist-PORT1.
c) Themap operation (assuming PORT2 isthe test system interface port) is allowed if and only if:
outlist-PORT1 c outlist-PORT2 and inlist-PORT2 c inlist-PORT1.
d) Inall other cases, the operations shall not be allowed.

€) Since TTCN-3 alows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and
shall lead to atest case error when failing.

f) Inaddition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

Examples

// It is assumed that the ports Portl, Port2, Port3 and PCOl are properly defined and declared
// in the corresponding port type and component type definitions

var MyComponentType MyNewPTC;
MyNewPTC := MyComponentType.create;

connect (MyNewPTC:Portl, mtc:Port3);
map (MyNewPTC:Port2, system:PCO1l) ;

// In this example a new component of type MyComponentType is created and its reference stored
// in variable MyNewPTC. Afterwards in the connect operation, Portl of this new component

// is connected with Port3 of the MTC. By means of the map operation, Port2 of the new component
// 1is then connected to port PCOl of the test system interface

21.1.2 The Disconnect and Unmap operations
The disconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

disconnect [(" (" ComponentRef ":" Port "," ComponentRef ":" Port ")")
(" (" PortRef ")") |
(" (" ComponentRef ":" all port ")") |
("(" all component ":" all port ")")]

Semantic Description

The disconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the disconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

To ease disconnect and unmap operations related to all connections and mappings of a component or aport, itis
allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theall port keyword can be used to denote all ports of a
component.

The usage of adisconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.

ETSI

134 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Theall component keyword shall only be used in combination withtheall port keyword,i.e. all
component:all port, and shal only be used by the MTC. Furthermore, theall component:all port
argument shall be used as the one and only argument of adisconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.
Examples

EXAMPLE 1. Disconnect/unmap for specific connections.

connect (MyNewComponent : Portl, mtc:Port3);
map (MyNewComponent : Port2, system:PCO1) ;

disconnect (MyNewComponent : Portl, mtec:Port3l); // disconnect previously made connection
unmap (MyNewComponent : Port2, system:PCO1) ; // unmap previously made mapping

EXAMPLE 2: Disconnect/unmap for a component.

disconnect (MyNewComponent : Portl) ; // disconnects all connections of Portl, which
// is owned by component MyNewComponent .
unmap (MyNewComponent :all port) ; // unmaps all ports of component MyNewComponent

EXAMPLE 3: Disconnect/unmap for "self".

disconnect; // is a shorthand form for ..

disconnect (self:all port); // which disconnects all ports of the component
// that called the operation

unmap ; // is a shorthand form for ..

unmap (self:all port) ; // which unmaps all ports of the component
// that called the operation

EXAMPLE 4: Disconnect/unmap for "all component”.

disconnect (all component:all port) ; // the MTC disconnects all ports of all
// components in the test configuration.

unmap (all component:all port) ; // the MTC unmaps all ports of all
// components in the test configuration.

21.2 Test Component Operations

Test component operations are used to create, start, stop and kill test components. They can aso be used to check if test
components are alive, running, done or killed.

21.2.1 The Create operation

The create operation is used to create test components.

Syntactical Structure
ComponentType "." create [" (" Expression ")" 1 [alive]
Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by create operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetype in or inout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

ETSI

135 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional alive keyword. An alive-type PTC must be destroyed explicitly usingthe kill
operation (see clause 21.2.4), whereas anon-alive PTC is destroyed implicitly after its behaviour function terminates.
Termination of atest case, i.e. the MTC, terminates all PTCsthat till exist, if any.

Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

The create operation shal return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visihility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or as afield in amessage.

Restrictions

a) Thename given by Expression shall be a charstring value and when assigned it shall appear as the argument of
the create function.

Examples

// This example declares variables of type MyComponentType, which is used to store the

// references of newly created component instances of type MyComponentType which is the

// result of the create operations. An associated name is allocated to some of the created
// component instances.

var MyComponentType MyNewComponent;

var MyComponentType MyNewestComponent ;

var MyComponentType MyAliveComponent;

var MyComponentType MyAnotherAliveComponent ;

MyNewComponent := MyComponentType.create;
MyNewestComponent := MyComponentType.create ("Newest") ;

MyAliveComponent := MyComponentType.create alive;
MyAnotherAliveComponent := MyComponentType.create ("Another Alive") alive;

21.2.2 The Start test component operation

The start operation is used to associate atest behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure
(VariableRef | FunctionInstance) "." start " (" FunctionInstance ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. Thisis done by using the start operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between create and start isto alow connection operations to
be done before actually running the test component.

The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

ETSI

136 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

An alive-type PTC may perform several behaviour functionsin sequential order. Starting a second behaviour function
on anon-alive PTC or starting afunction on a PTC that is till running resultsin atest case error. If afunction is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
as they were |eft after termination of the previous function. In particular, if atimer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

b) Thefollowing restrictions apply to afunction invoked in a start test component operation:

e Thisfunction shal have aruns on definition referencing a component type that is compatible with the
newly created component (see clause 6.3.3).

e Portsand timers shall not be passed into this function.

NOTE 1: Possible return values of afunction invoked in a start test component operation, i.e. templates denoted
by return keyword or inout and out parameters, have no effect when the started test component
terminates.

NOTE 2: Asin and inout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples
function MyFirstBehaviour () runs on MyComponentType { .. }

function MySecondBehaviour () runs on MyComponentType { .. }

var MyComponentType MyNewPTC;
var MyComponentType MyAlivePTC;

MyNewPTC := MyComponentType.create; // Creation of a new non-alive test component.
MyAlivePTC := MyComponentType.create alive; // Creation of a new alive-type test component
MyNewPTC.start (MyFirstBehaviour()) ; // Start of the non-alive component.

MyNewPTC.done; // Wait for termination

MyNewPTC.start (MySecondBehaviour ()) ; // Test case error

MyAlivePTC.start (MyFirstBehaviour ()) ; // Start of the alive-type component
MyAlivePTC.done; // Wait for termination

MyAlivePTC.start (MySecondBehaviour()) ; // Start of the next function on the same component

21.2.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure

stop |
((VariableRef | FunctionInstance | mte | self) "." stop) |
(all component "." stop)

Semantic Description

By using the stop test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using asimple stop
execution statement (see clause 19.9) or by addressing itself in the stop operation, e.g. by using the sel £ operation.

NOTE 1: Whilethe create, start, running, done and killed operations can be used for PTC(s) only, the
stop operation can also be applied to the MTC.

ETSI

137 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit return statement. Thistermination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component isthe MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the start operation). The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

The all keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the standard.
Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1. Stopping another test component and a test component by itself.

var MyComponentType MyComp := MyComponentType.create; // A new test component is created
MyComp . start (CompBehaviour ()) ; // The new component is started
if (date == "1.1.2005") {

MyComp . stop; // The component "MyComp" is stopped

if (a < b) {

self.stop; // The test component that is currently executing stops its own behaviour
}
stop // The test component stops its own behaviour

EXAMPLE 2: Stopping all PTCsby the MTC.

all component.stop // The MTC stops all PTCs of the test case but not itself.

21.2.4 The Kill test component operation

Thekill test component operation is used to destroy atest component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

Syntactical Structure
kill |

((VariableRef | FunctionInstance | mte | self) "." kill) |
(all component "." kill)

ETSI

138 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

The kill operation applied on atest component stops the execution of the currently running behaviour - if any - of that
component and frees all resources associated to it (including all port connections of the killed component) and removes
the component from the test system. The kil1 operation can be applied on the current test component itself by a
simplekill statement or by addressing itself using the sel £ operation in conjunction with the kill operation. The
kill operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If the kill operationisapplied onthe MTC, e.g. mte.kill, it terminates
the test case.

The all keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.
Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1. Killing another test component and a test component by itself.

var PTCType MyAliveComp := PTCType.create alive; // Create an alive-type test component
MyAliveComp.start (MyFirstBehaviour()) ; // The new component is started
MyAliveComp.done; // Wait for termination
MyAliveComp.start (MySecondBehavior()) ; // Start the component a 2™ time
MyAliveComp.done; // Wait for termination
MyAliveComp.kill; // Free its resources

EXAMPLE 2. Killing al PTCsby the MTC.

all component.kill; // The MTC stops all (alive-type and normal) PTCs of the test case first
// and frees their resources.

21.2.5 The Alive operation

The alive operation isaBoolean operation that checks whether atest component has been created and is ready to
execute or is executing already a behaviour function.

Syntactical Structure
(VariableRef |
FunctionInstance) |

any component |
all component) "." alive

Semantic Description

Applied on anormal test component, the alive operation returns true if the component isinactive or running a
function and false otherwise. Applied on an alive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

The alive operation can be used similar to the running operation on PTCSsonly (see clause 21.2.6). In particular,
in combination with the a1l keyword it returns true if al (alive-type or normal) PTCs are alive.

The alive operation used in combination with the any keyword returnstrueif at least one PTC is alive.
Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples
PTC1.done; // Waits for termination of the component
if (PTCl.alive) { // If the component is still alive ..
PTC1l.start (AnotherFunction()) ; // .. execute another function on it.

}

ETSI

139 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

21.2.6 The Running operation

The running operation is a Boolean operation that checks whether a test component is executing already a behaviour
function.

Syntactical Structure

(VariableRef |
FunctionInstance) |
any component |
all component) "." running

Semantic Description

The running operation alows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. The running operation can be used for PTCs only. The running operation
returns true for PTCsthat have been started but not yet terminated or stopped. It returns false otherwise. The
running operation is considered to be aboolean expression and, thus, returnsaboolean value to indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the
running operation can be used freely inboolean expressions.

When the a11 keyword is used with the running operation, it will return true if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returns false.

When the any keyword is used with the running operation, it will return true if a least one PTC is executing its
behaviour. Otherwiseit returns false.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.
Examples

if (PTCl.running) // usage of running in an if statement

// do something!

}

while (all component.running != true) { // usage of running in a loop condition
MySpecialFunction ()

21.2.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed.

Syntactical Structure

(VariableRef |
FunctionInstance) |
any component |
all component) "." done

Semantic Description

The done operation shall be used in the same manner as areceiving operation or a timeout operation. This meansit
shall not be used in aboolean expression, but it can be used to determine an aternative in an alt statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
an alt statement with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

ETSI

140 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

When the a11 keyword is used with the done operation, it matchesif no one PTC is executing its behaviour. It also
matches if no PTC has been created.

When the any keyword is used with the done operation, it matchesif at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

Restrictions
a) Thedone operation can be used for PTCs only.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

// Use of done in alternatives
alt {
[] MyPTC.done {
setverdict (pass)
1

[] any port.receive {
repeat
1

}

var MyComp c := MyComp.create alive;
c.start (MyPTCBehaviour()) ;

c.done;

// matches as soon as the function MyPTCBehaviour (or function/altstep called by it) stops
c.done;

// matches the end of MyPTCBehaviour (or function/altstep called by it) too
if (c.running) {c.done}

// done here matches the end of the next behaviour only

// the following done as stand-alone statement:
all component.done;

// has the following meaning:
alt {

[1] all component.done {}

// and thus, blocks the execution until all parallel test components have terminated

21.2.8 The Killed operation

The killed operation allowsto ascertain whether a different test component is aive or has been removed from the
test system.

Syntactical Structure

(VariableRef |
FunctionInstance)
any component |
all component) "." killed

Semantic Description

Thekilled operation shal be used in the same manner as receiving operations. This meansit shall not be used in
boolean expressions, but it can be used to determine an alternative in an alt statement or as a stand-al one statement
in abehaviour description. In the latter case akilled operation is considered to be a shorthand for an alt statement
with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the
termination of test components.

ETSI

141 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

NOTE: When checking normal test components a killed operation matchesif it stopped (implicitly or explicitly)
the execution of its behaviour or hasbeen killed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.2.7). When checking alive-type test components, however, thekilled
operation matches only if the component has been killed using the ki11 operation. Otherwise the

killed operation isunsuccessful.

When the a1l keyword is used with the killed operation, it matchesif al PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

When the any keyword is used with the ki1lled operation, it matchesif at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

Restrictions
a Thekilled operation can be used for PTCsonly.
Examples
var MyPTCType ptc := MyPTCType.create alive; // create an alive-type test component
timer T(10.0); // create a timer
T.start; // start the timer
ptc.start (MyTestBehavior()) ; // start executing a function on the PTC
alt {
[1 ptc.killed { // if the PTC was killed during execution ..
T.stop; // .. stop the timer and ..
setverdict (inconc) ; // .. set the verdict to 'inconclusive'
1
[] ptc.done { // if the PTC terminated regularly ..
T.stop; // .. stop the timer and ..
ptc.start (AnotherFunction()) ; // .. start another function on the PTC
1
[] T.timeout ({ // if the timeout occurs before the PTC stopped
ptc.kill; // .. kill the PTC and ..
setverdict (fail) ; // .. set the verdict to 'fail'

}
}

21.2.9 Summary of the use of any and all with components

The keywords any and a1l may be used with configuration operations as indicated in table 19.

Table 19: Any and All with components

Operation Allowed Example Comment
any (see note) | all (see note)
create
start
running Yes but from |Yes but from any component.running; |Is there any PTC performing test
MTC only MTC only behaviour?
all component.running; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any component.alive; Is there any alive PTC?
MTC only MTC only all component.alive; |Are all PTCs alive?
done Yes but from Yes but from any component.done; Is there any PTC that completed
MTC only MTC only execution?
all component.done; Did all PTCs complete their execution?
killed Yes but from |Yes but from any component.killed; |(|Isthere any PTC that ceased to exist?
MTC only MTC only all component.killed; |Did all PTCs cease to exist?
stop Yes but from all component.stop; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component.kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and all referto PTCs only, i.e. the MTC is not considered.

ETSI

142 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22 Communication operations

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 20.

Table 20: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls

22.1 The communication mechanisms

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication
(see clause 22.1.3), as well as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER is blocked onthe receive operation until it
processes the received message.

In addition to the receive operation, TTCN-3 provides a trigger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive Or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send and receive

ETSI

143 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using the cal1l operation. The CALLEE accepts the call by means of a
getcall operation and reacts by either using areply operation to answer the call or by raising (raise operation)
an exception. The CALLER handles the reply or exception by using getreply or catch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

call getcall
: >
CALLER | | | | CALLEE
:4 |
getreply oOr reply or
catch exception raise exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the cal1 operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE accepts the call by means of agetcall operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using a catch operationin an alt statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

call getcall
>
CALLER { | CALLEE
< H
catch exception raise exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

. Unicast communication means one sender to one receiver.

o Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, severa or al entities within the SUT can be reached via
the specified mapped port.

ETSI

144 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.1.4 General format of communication operations

Operations such as send and call are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls a procedure (call operation), or repliesto an
accepted call (reply operation) or raises an exception (raise operation). These actions are collectively
referred to as sending operations,

b) acomponent receives a message (receive operation), awaits a message (trigger operation),accepts a
procedure call (getcall operation), receives areply for apreviously called procedure (getreply
operation) or catches an exception (catch operation). These actions are collectively referred to asreceiving
operations.

22141 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based call operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

e givesan (optional) address part that uniquely identifies one or more communication partners to which a
message, call, reply or exception shall be send.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by the to
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and all entities connected to the specified port have to be addressed.

EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part
MyP1l.send (MyVariable + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the call operation isoptional and is required for cases where the called procedure returns a
value or has out or inout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of getreply and catch operationsto
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyPl.call (MyProc: {MyVarl}) {

[1 MyPl.getreply (MyProc:{MyVar2}) {}
[] MyPl.catch(MyProc, ExceptionOne) {}

ETSI

145 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.1.4.2 General format of the receiving operations
A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) defines a matching part which specifies the acceptabl e input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the £rom keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needs to be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit is used for storing the in and inout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or
call toavariable. Thisisuseful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
MyP1l.getreply (AProc:{?} value 5) -> param (V1) sender APeer
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2.receive (MyTemplate (5,7)) from APeer -> |value MyVar

22.2 Message-based communication

The operations for message-based communication via asynchronous ports are summarized in table 21.

Table 21: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

ETSI

146 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send " (" TemplateInstance ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation. A
to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the to clause addresses one communication partner only. Multicast
communication is used, if the to clause includes alist of communication partners. Broadcast is defined by using the to
clausewithall component keyword.

Restrictions

a) TheTemplatelnstance (and all parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValueis not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

c) The send operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) A to clause shal be present in case of one-to-many connections.
€) AddressRef should not contain matching mechanisms and must be of address or component type.
Examples

EXAMPLE 1. Simple send (receiver is determined from the test configuration).

MyPort .send (MyTemplate (5,MyVar)) ; // Sends the template MyTemplate with the actual
// parameters 5 and MyVar via MyPort.

MyPort.send (5) ; // Sends the integer value 5 (which is an in-line template)

EXAMPLE 2: Sending with explicit to clause.

MyPort .send (charstring: "My string") to MyPartner;
// Sends the string "My string" to a component with a
// component reference stored in variable MyPartner

MyPCO.send (MyVariable + YourVariable - 2) to MyPartner;
// Sends the result of the arithmetic expression to MyPartner.

MyPCO2.send (MyTemplate) to (MyPeerOne, MyPeerTwo) ;
// Specifies a multicast communication, where the value of
// MyTemplate is sent to the two component references stored
// in the variables MyPeerOne and MyPeerTwo.

MyPCO3.send (MyTemplate) to all component;
// Broadcast communication: the value of Mytemplate is send to
// all components which can be addressed via this port. If
// MyPCO3 is a mapped port, the components may reside inside
// the SUT.

ETSI

147 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.2.2 The Receive operation
Thereceive operationis used to receive a message from an incoming message port queue.

Syntactical Structure

Port | any port) "." receive
"(" TemplateInstance ")"]
from AddressRef]
"->" [value VariableRef]

[sender VariableRef]]

(
[
[
[

Semantic Description

Thereceive operationisused to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

The receive operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the receive operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if the receive operation
isused as an dternative of an alt statement and it is not successful, the execution of the test case shall continue with
the next alternative of the alt statement.

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato the receive operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

Receiving from a specific sender

In the case of one-to-many connections the receive operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the £rom keyword.

Storing the received message

If the match is successful, the value removed from the port queue can be stored in a variable can be retrieved and stored
inavariable. Thisis denoted by the symbol '->' and the keyword value.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender.

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A receive operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port
To receive amessage on any port, usethe any port keywords.
Stand-alone receive

The receive operation can be used as a stand-al one statement in a behaviour description. In this latter case the
receive operation is considered to be shorthand for an alt statement with only one alternative, i.e. it has blocking
semantics, and therefore provides the ability of waiting for the next message matching the specified template or value
on that queue.

ETSI

148 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Thereceive operation shal only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

¢) No binding of theincoming values to the terms of the expression or to the template shall occur.

d) A message received by receive any message shall not be assigned to avariable, i.e. the value clause shall not
be present.

Examples

EXAMPLE 1: Basicreceive.

MyPort .receive (MyTemplate (5, MyVar)) ; // Matches a message that fulfils the conditions
// defined by template MyTemplate at port MyPort.

MyPort .receive (A<B) ; // Matches a Boolean value that depends on the outcome of A<B

MyPort .receive (integer:MyVar); // Matches an integer value with the value of MyVar
// at port MyPort

MyPort .receive (MyVar) ; // Is an alternative to the previous example

EXAMPLE 2: Receiving from a sender, storing the message or the sender.
MyPort .receive (charstring:"Hello") from MyPeer; // Matches charstring "Hello" from MyPeer

MyPort .receive (MyType:?) -> value MyVar; // The value of the received message is
// assigned to MyVar.

MyPort .receive (A<B) -> sender MyPeer; // The address of the sender is assigned to MyPeer

MyPort.receive(MyTemplate:{5, MyVarOne}) -> value MyVarTwo sender MyPeer;
// The received message value is stored in MyVarTwo and the sender address is stored in MyPeer.

EXAMPLE 3: Receive any message.

MyPort .receive; // Removes the top value from MyPort.

MyPort.receive from MyPeer; // Removes the top message from MyPort if its sender is
MyPeer

MyPort.receive -> sender MySenderVar; // Removes the top message from MyPort and assigns

// the sender address to MySenderVar
EXAMPLE 4. Receive on any port.

any port.receive (MyMessage) ;

22.2.3 The Trigger operation
The trigger operation is used to await a specific message on an incoming port queue.

Syntactical Structure

Port | any port) "." trigger
"(" TemplateInstance ")"]
from AddressRef]

"->" value VariableRef]
sender VariableRef]

Semantic Description
The trigger operation removes the top message from the associated incoming port queue. If that top message meets

the matching criteria, the trigger operation behavesin the same manner asareceive operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

ETSI

149 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The trigger operation requires the port name, matching criteria for type and value, an optional £rom restriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply aso to the trigger operation.
Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
To trigger On amessage at any port, usethe any port keywords.
Stand-alone trigger

The trigger operation can be used as a stand-al one statement in a behaviour description. In this latter case the
trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see

ES 201 873-4 [3]), i.e. it has blocking semantics, and therefore provides the ability of waiting for the next message
meatching the specified template or value on that queue.

Restrictions

a) The trigger operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.
Examples

EXAMPLE 1: Basictrigger.

MyPort.trigger (MyType:?) ;
// Specifies that the operation will trigger on the reception of the first message observed of
// the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender.
MyPort.trigger (MyType:?) from MyPartner;
// Triggers on the reception of the first message of type MyType at port MyPort
// received from MyPartner.
MyPort.trigger (MyType:?) from MyPartner -> value MyRecMessage;
// This example is almost identical to the previous example. In addition, the message which
// triggers i.e. all matching criteria are met, is stored in the variable MyRecMessage.
MyPort .trigger (MyType:?) -> sender MyPartner;
// This example is almost identical to the first example. In addition, the reference of the
// sender component will be retrieved and stored in variable MyPartner.
MyPort.trigger (integer:?) -> value MyVar sender MyPartner;

// Trigger on the reception of an arbitrary integer value which afterwards is stored in
// variable MyVar. The reference of the sender component will be stored in variable MyPartner.

EXAMPLE 3: Trigger on any message.
MyPort.trigger;

MyPort.trigger from MyPartner;
MyPort.trigger -> sender MySenderVar;

EXAMPLE 4: Trigger on any port.

any port.trigger

ETSI

150 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.3 Procedure-based communication

The operations for procedure-based communication via synchronous ports are summarized in table 22.

Table 22: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation

The call operation specifies the call of aremote operation on another test component or within the SUT.

Syntactical Structure

Port "." call "(" TemplateInstance ["," CallTimervValue] ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description
The call operationis used to specify that atest component calls a procedure in the SUT or in another test component.

Theinformation to be transmitted in the send part of the call operation is a signature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto call operationsis done by
using catch (see clause 22.3.6) operations as alternativesin alt statements.

If thenowait optionis used, the handling of responses or exceptionsto call operationsisdone by using getreply
(see clause 22.3.4) and catch (see clause 22.3.6) operations as alternativesin alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdonein the
response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch
(see clause 22.3.6) operations.

The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines
aset of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an aternative by means of aboolean expression placed betweenthe ['
brackets of the alternative.

The response and exception handling part of a call operation is executed like an alt statement without any active
default. This means a corresponding snapshot includes all information necessary to eval uate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptionsto a call

The call operation may optionally include atimeout. Thisis defined as an explicit value or constant of £loat type
and defines the length of time after the call operation has started that a t imeout exception shall be generated by the
test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valuein acall operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or atimeout exception.

ETSI

151 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

If thenowait keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by using agetreply or acatch operation in a subsequent alt statement.

Calling blocking procedures without return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have aresponse and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anoblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch
operationsin subsequent alt or interleave Statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of acall operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callstheall component keyword. In case of one-to-one
connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal1 operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast call operation may cause several
responses and exceptions from different communication partners.

In case of amulticast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent catch, alt or interleave Statements.

In case of amulticast or broadcast call operation of ablocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the call operation. Then, further responses and
exceptions can be handled in subsequent alt or interleave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the block of statements and declarations of the response and
exception handling part of the call operation: the execution of arepeat statement causes the re-evaluation of the call
body.

NOTE: Inthe second case, the user needs to handle the number of repetitions.
Restrictions

a) Thecall operation shal only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure nameinits out or inout listi.e. it must be allowed to
call this procedure at this port.

b) All in and inout parameters of the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

c) Only out parameters may be omitted or specified with a matching attribute.

d) Thesignature arguments of the call operation are not used to retrieve variable names for out and inout
parameters. The actual assignment of the procedure return value and out and inout parameter valuesto
variables shall explicitly be made in the response and exception handling part of the call operation by means
of getreply and catch operations. This allows the use of signature templatesin call operationsin the
same manner as templates can be used for types.

€) A to clause shal be present in case of one-to-many connections.
f) AddressRef should not contain matching mechanisms and must be of address or component type.

g) CallTimerValue must be of type float.

ETSI

152 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

h) The selection of the alternativesto acall shall only be based on getreply and catch operationsfor the
called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions
raised by the called procedure. The use of else branches and the invocation of atstepsis not allowed.

i) Theevaluation of the Boolean expressions guarding the alternativesin the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
in alt statements shall be applied (see clause 20.2).

i) Thecall operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

K) Incaseof amulticast or broadcast call operation of ablocking procedure, where the nowait keywordis
used, al responses and exceptions have to be handled in subsequent alt or interleave statements.

) Thecall operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowait keyword.

Examples

EXAMPLE 1. Blocking call with getreply.

// Given ..
signature MyProc (out integer MyParl, inout boolean MyPar2) ;

// a call of MyProc
MyPort.call (MyProc:{ -, MyVar2}) { // in-line signature template for the call of MyProc
[] MyPort.getreply (MyProc:{?, ?}) { }

// .. and another call of MyProc
MyPort.call (MyProcTemplate) { // using signature template for the call of MyProc
[1 MyPort.getreply (MyProc:{?, 2}) { }

MyPort.call (MyProcTemplate) to MyPeer (// calling MyProc at MyPeer
[] MyPort.getreply (MyProc:{?, 2}) { }

EXAMPLE 2: Blocking call with getreply and catch.

// Given
signature MyProc3 (out integer MyParl, inout boolean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo) ;

// Call of MyProc3
MyPort.call (MyProc3:{ -, true }) to MyPartner ({
[1 MyPort.getreply (MyProc3:{?, ?}) -> value MyResult param (MyParlVar,MyPar2Var) { }
[] MyPort.catch(MyProc3, MyExceptionOne) {
setverdict (fail) ;

stop;

1
[] MyPort.catch(MyProc3, ExceptionTypeTwo : ?) {
setverdict (inconc) ;
1

[MyCondition] MyPort.catch (MyProc3, MyExceptionThree) { }

1
EXAMPLE 3: Blocking call with timeout exception.
MyPort.call (MyProc: {5,MyVar}, 20E-3) ({

[1 MyPort.getreply (MyProc:{?, 2}) { }

[] MyPort.catch(timeout) // timeout exception after 20ms
setverdict (fail) ;
stop;

}

ETSI

153 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 4: Nowait call.

MyPort.call (MyProc: {5, MyVar}, nowait); // The calling test component will continue
// its execution without waiting for the
// termination of MyProc

EXAMPLES5: Blocking call without return value, out parameters, inout parameters and exceptions.

// Given ..
signature MyBlockingProc (in integer MyParl, in boolean MyPar2) ;

// a call of MyBlockingProc
MyPort.call (MyBlockingProc:{ 7, false }) {
[1 MyPort.getreply(MyBlockingProc:{ -, - }) { }

EXAMPLE 6: Broadcast call.

var boolean first:= true;
MyPort.call (MyProc: {5,MyVar}, 20E-3) to all component { // Broadcast call of MyProc
// Handles the response from MyPeerOne
[first] MyPort.getreply (MyProc:{?, ?}) from MyPeerOne ({
if (first) { first := false; repeat; }

}

// Handles the response from MyPeerTwo
[first] MyPort.getreply (MyProc:{?, ?}) from MyPeerTwo {

if (first) { first := false; repeat; }
[] MyPort.catch(timeout) // timeout exception after 20ms
setverdict (fail) ;
stop;
1
1
alt {
[] MyPort.getreply (MyProc:{?, 2}) { // Handles all other responses to the broadcast call
repeat

}
}

EXAMPLE7: Multicast cal.

MyPort.call(MyProc:{S,MyVar}, nowait) to (MyPeerl, MyPeer2) ; // Multicast call of MyProc
interleave
[] MyPort.getreply (MyProc:{?, ?}) from MyPeerl { } // Handles the response of MyPeerl
[] MyPort.getreply (MyProc:{?, ?}) from MyPeer2 { } // Handles the response of MyPeer2

22.3.2 The Getcall operation
Thegetcall operation is used to accept calls.

Syntactical Structure

(Port | any port) "." getcall

["(" TemplateInstance ")"]

[from AddressRef]

["->" [param " (" { (VariableRef ":=" ParameterIdentifier) "," } |
{ (variableRef | NotUsedSymbol) "," }

||) n]
[sender VariableRef]]

Semantic Description

Thegetcall operationis used to specify that atest component accepts a call from the SUT, or another test
component.

ETSI

154 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

The assignment of in and inout parameter valuesto variables shall be made in the assignment part of thegetcall
operation. This allows the use of signature templatesin getcall operationsin the same manner as templates are used
for types.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter
values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the
parameter values of a call.

The keyword sender is used when it isrequired to retrieve the address of the sender (e.g. for addressing areply or
exception to the calling party in a one-to-many configuration).

Accepting any call

A getcall operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled.

Getcall on any port
Togetcall on any port isdenoted by the any keyword.
Restrictions

a) Thegetcall operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) The signature argument of the getcall operation shall not be used to passin variable names for in and
inout parameters.

c) The Parameterldentifiers must be from the corresponding signature definition.
d) Thevaue assignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to avariable, i.e. the param clause
shall not be present.

Examples

EXAMPLE 1: Basic getcall.

MyPort .getcall (MyProc: MyProcTemplate (5, MyVar)) ; // accepts a call of MyProc at MyPort

MyPort.getcall (MyProc: {5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2: Getcall with matching and assignments of parameter valuesto variables.

MyPort.getcall (MyProc:{?, ?}) from MyPartner -> param (MyParlVar, MyPar2Var) ;
// The in or inout parameter values of MyProc are assigned to MyParlVar and MyPar2Var.

MyPort.getcall (MyProc: {5, MyVar}) -> sender MySenderVar;
// Accepts a call of MyProc at MyPort with the in or inout parameters 5 and MyVar.

// The address of the calling party is retrieved and stored in MySenderVar.

// The following getcall examples show the possibilities to use matching attributes
// and omit optional parts, which may be of no importance for the test specification.

MyPort.getcall (MyProc: {5, MyVar}) -> param(MyVarl, MyVar2) sender MySenderVar;
MyPort.getcall (MyProc:{5, ?}) -> param(MyVarl, MyVar2);

MyPort.getcall (MyProc:{?, MyVar}) -> param(- , MyVar2);
// The value of the first inout parameter is not important or not used

ETSI

155 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)
// The following examples shall explain the possibilities to assign in and inout parameter
// values to variables. The following signature is assumed for the procedure to be called:
signature MyProc2 (in integer A, integer B, integer C, out integer D, inout integer E);
MyPort.getcall (MyProc2:{?, ?, 3, - , ?}) -> param (MyVarA, MyVarB, - , -, MyVarEk);
// The parameters A, B, and E are assigned to the variables MyVarA, MyVarB, and
// MyVarE. The out parameter D needs not to be considered.
MyPort.getcall (MyProc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, MyVarE:= E);
// Alternative notation for the value assignment of in and inout parameter to variables. Note,

// the names in the assignment list refer to the names used in the signature of MyProc2

MyPort.getcall (MyProc2:{1, 2, 3, -, *}) -> param (MyVarE:= E);
// Only the inout parameter value is needed for the further test case execution

EXAMPLE 3: Accepting any call.
MyPort .getcall; // Removes the top call from MyPort.
MyPort.getcall from MyPartner; // Removes a call from MyPartner from port MyPort

MyPort.getcall -> sender MySenderVar; // Removes a call from MyPort and retrieves
// the address of the calling entity

EXAMPLE 4: Getcall on any port.

any port.getcall (MyProc:?)

22.3.3 The Reply operation
The reply operation isused to reply to acal.

Syntactical Structure

Port "." reply " (" TemplateInstance [value Expression] ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description
The reply operation is used to reply to a previously accepted call according to the procedure signature.

NOTE: Therelation between an accepted call and a reply operation cannot always be checked statically. For
testing it is allowed to specify a reply operation without an associated getcall operation.

The value part of the reply operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of areply operation isfor unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responsesthe all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with the value keyword.
Restrictions

a) A reply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which the reply operation belongs.

b) All out and inout parameters of the signature shall have a specific valuei.e. the use of matching
mechanisms such as AnyValue is not allowed.

¢) A to clause shal be present in case of one-to-many connections.

d) AddressRef should not contain matching mechanisms and must be of address or component type.

ETSI

156 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

e) If avalueisto bereturned to the calling party, this shall be explicitly stated using the value keyword.

Examples
MyPort .reply (MyProc2:{ - ,5}); // Replies to an accepted call of MyProc2.
MyPort.reply (MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer
MyPort .reply (MyProc2:{ - ,5}) to (MyPeerl, MyPeer2); // Multicast reply to MyPeerl and MyPeer2
MyPort.reply (MyProc2:{ - ,5}) to all component; // Broadcast reply to all entities connected
// to MyPort
MyPort .reply (MyProc3: {5,MyVar} value 20); // Replies to an accepted call of MyProc3.

22.3.4 The Getreply operation
Thegetreply operation is used to handle replies from a previously called procedure.

Syntactical Structure

Port | any port) "." getreply
"(" TemplateInstance [value TemplateInstance]")"]

(
[
[from AddressRef]
[

"->" [value VariableRef]
[param " (" { (VariableRef ":=" ParameterIdentifier) "," } |
{ (variableRef | NotUsedSymbol) "," }

||)||]

[sender VariableRef] 1]
Semantic Description
Thegetreply operation is used to handle replies from a previously called procedure.

The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using the value keyword.

A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The assignment of out and inout parameter values to variables shall be made in the assignment part of the
getreply operation. This allowsthe use of signature templatesin getreply operationsin the same manner as
templates are used for types.

The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword value isused to retrieve
return values and the keyword param is used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

Get any reply

A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of acall operation, it shall only treat replies from
the procedure invoked by the call operation.

Get areply on any port

To get areply on any port, usethe any port keywords.

ETSI

157 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) A getreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the getreply operation belongs.

b) Thesignature argument of the getreply operation shall not be used to passin variable names for out and
inout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

Examples

EXAMPLE 1. Basic getreply.

MyPort.getreply (MyProc: {5, ?} value 20); // Accepts a reply of MyProc with two out or
// inout parameters and a return value of 20

MyPort.getreply (MyProc2:{ - , 5}) from MyPeer; // Accepts a reply of MyProc2 from MyPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables.

MyPort.getreply (MyProcl:{?, ?} wvalue ?) -> value MyRetValue param(MyParl,MyPar2) ;

// The returned value is assigned to variable MyRetValue and the value

// of the two out or inout parameters are assigned to the variables MyParl and MyPar2.
MyPort.getreply (MyProcl:{?, ?} wvalue ?) -> value MyRetValue param(- , MyPar2) sender MySender;
// The value of the first parameter is not considered for the further test execution and

// the address of the sender component is retrieved and stored in the variable MySender.

// The following examples describe some possibilities to assign out and inout parameter values
// to variables. The following signature is assumed for the procedure which has been called

signature MyProc2 (in integer A, integer B, integer C, out integer D, inout integer E);
MyPort .getreply (ATemplate) -> param(- , - , - , MyVarOutl, MyVarInoutl) ;

MyPort .getreply (ATemplate) -> param(MyVarOutl:=D, MyVarOut2:=E) ;

MyPort.getreply (MyProc2:{ - , - , - , 3, ?}) -> param(MyVarInoutl:=E);

EXAMPLE 3: Get any reply.

MyPort .getreply; // Removes the top reply from MyPort.

MyPort.getreply from MyPeer; // Removes the top reply received from MyPeer from MyPort.

MyPort .getreply -> sender MySenderVar; // Removes the top reply from MyPort and retrieves the
// address of the sender entity

EXAMPLE 4: Get areply on any port.

any port.getreply (Myproc:?)

22.3.5 The Raise operation
Exceptions are raised with the raise operation.

Syntactical Structure

Port "." raise " (" Signature "," TemplateInstance ")"
[to (AddressRef | AddressRefList | all component)]

Semantic Description
Theraise operation is used to raise an exception.

NOTE: Therelation between an accepted call and araise operation cannot always be checked statically. For
testing it isallowed to specify araise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

ETSI

158 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of araise operationisfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionsthe all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

a) Anexception shal only beraised at a procedure-based port. An exception is areaction to an accepted
procedure call the result of which leads to an exceptiona event.

b) Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall includeinitslist of accepted procedure calls the name of the procedure to which the exception
belongs.

c) A to clause shal be present in case of one-to-many connections.
d) AddressRef should not contain matching mechanisms and must be of address or component type.

Examples
MyPort .raise (MySignature, MyVariable + YourVariable - 2);
// Raises an exception with a value which is the result of the arithmetic expression
// at MyPort
MyPort.raise (MyProc, integer:5}); // Raises an exception with the integer value 5 for MyProc
MyPort.raise (MySignature, "My string") to MyPartner;
// Raises an exception with the value "My string" at MyPort for MySignature and
// send it to MyPartner
MyPort.raise (MySignature, "My string") to (MyPartnerOne, MyPartnerTwo) ;
// Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
// MyPartnerTwo (i.e. multicast communication)
MyPort.raise (MySignature, "My string") to all component;

// Raises an exception with the value "My string" at MyPort for MySignature and sends it
// to all entites connected to MyPort (i.e. broadcast communication)

22.3.6 The Catch operation

The catch operation is used to catch exceptions.

Syntactical Structure

(Port | any port) "." catch

["(" (Signature "," TemplateInstance) | TimeoutKeyword ")"]
[from AddressRef]

["->" [value VariableRef]

[sender VariableRef] 1]
Semantic Description

The catch operation is used to catch exceptions raised by atest component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type.

The catch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the catch operation.

A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

ETSI

159 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The (optional) assignment part of the catch operation comprises the assignment of the exception value and the
retrieval of the address of the calling component. The keyword value isused to retrieve the value of an exception and
the keyword sender isused when it is required to retrieve the address of the sender.

The catch operation may be part of the response and exception handling part of acall operation or be used to
determine an alternative in an alt statement. If the catch operation is used in the accepting part of acall operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the call operation. However, for readability reasons (e.g. in case of complex
call statements) thisinformation shall be repeated.

The Timeout exception

Thereis one special timeout exception that can be caught by the catch operation. The timeout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(seeclause 22.3.1).

Catch any exception

A catch operation with no argument list allows any valid exception to be caught. The most general case is without
using the £rom keyword. CatchAnyException will also catch the timeout exception.

Catch on any port
To catch an exception on any port use the any keyword.
Restrictions

a) Thecatch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) No binding of the incoming values to the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the catch operation.

c¢) Catching timeout exceptions shall be restricted to the exception handling part of acall. No further matching
criteria (including a £rom part) and no assignment part is allowed for a catch operation that handles a
timeout exception.

d) Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

€) |If CatchAnyException isused in the response and exception handling part of acall operation, it shall only
treat exceptions raised by the procedure invoked by the call operation.

Examples

EXAMPLE 1: Basic catch.

MyPort.catch (MyProc, integer: MyVar) ; // Catches an integer exception of value
// MyVar raised by MyProc at port MyPort.

MyPort .catch (MyProc, MyVar) ; // Is an alternative to the previous example.
MyPort.catch (MyProc, A<B); // Catches a boolean exception
MyPort.catch (MyProc, MyType: {5, MyVar}); // In-line template definition of an exception value.

MyPort.catch (MyProc, charstring:"Hello")from MyPeer; // Catches "Hello" exception from MyPeer

EXAMPLE 2: Catch with storing value and/or sender in variables.

MyPort.catch (MyProc, MyType:?) from MyPartner -> value MyVar;
// Catches an exception from MyPartner and assigns its value to MyVar.

MyPort.catch (MyProc, MyTemplate(5)) -> value MyVarTwo sender MyPeer;

// Catches an exception, assigns its value to MyVarTwo and retrieves the
// address of the sender.

ETSI

160 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 3: The Timeout exception.

MyPort.call (MyProc: {5,MyVar}, 20E-3)
[] MyPort.getreply (MyProc:{?, ?}) { }
[] MyPort.catch(timeout) { // timeout exception after 20ms
setverdict (fail) ;
stop;

}
}

EXAMPLE 4: Catch any exception.

MyPort.catch;
MyPort.catch from MyPartner;

MyPort.catch -> sender MySenderVar;

EXAMPLES: Catch on any port.

any port.catch;

22.4 The Check operation

The check operation allows to read the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

(Port | any port) "." check
[n (n

(PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp) |

([from AddressRef] ["->" value VariableRef][sender VariableRef]
n) n]

Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Therecelving operationsreceive, getcall, getreply and catch together with their matching and assignment
parts, are used by the check operation to define the condition that has to be checked and to extract the value or values
of its parameters, if required.

It isthe top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteriaare not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the next statement or alternative to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. If check isused asa
standal one statement, it has blocking semantics, i.e. it is considered to be a shorthand for an alt statement with the
check operation as only aternative.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
gueue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using a £rom clause and to retrieve the sender by using a shorthand assignment part with a sender clause.

NOTE 1: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with areceive any operation, e.g.
MyPort .check (receive) -> sender Mysender.

Check on any port

To check onany port, usethe any port keywords.

ETSI

161 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) Using the check operation in awrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

NOTE 2: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

Examples

EXAMPLE 1: Basic check.

MyPortl.check (receive(5)); // Checks for an integer message of value 5.

MyPort2.check (getcall (MyProc: {5, MyVar}) from MyPartner) ;
// Checks for a call of MyProc at port MyPort2 from MyPartner

MyPort2.check (getreply (MyProc: {5, MyVar} value 20)) ;

// Checks for a reply from procedure MyProc at MyPort2 where the returned value is 20 and
// the values of the two out or inout parameters are 5 and the value of MyVar.
MyPort2.check (catch (MyProc, MyTemplate (5, MyVar)));

MyPort2.check (getreply (MyProcl: {?, MyVar} value *) -> value MyReturnValue param(MyParl,-));

MyPort .check (getcall (MyProc: {5, MyVar}) from MyPartner -> param (MyParlVar, MyPar2Var)) ;

MyPort .check (getcall (MyProc: {5, MyVar}) -> sender MySenderVar) ;

EXAMPLE 2: Check any operation.

MyPort .check;
MyPort .check (from MyPartner) ;

MyPort .check (-> sender MySenderVar) ;

EXAMPLE 3: Check on any port.

any port.check;

22.5 Controlling communication ports

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 23.

Table 23: Overview of TTCN-3 port operations

Timer operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt

22.5.1 The Clear port operation
The clear port operation emptiesincoming port queues.

Syntactical Structure

(Port | (all port)) "." clear
Semantic Description

The clear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the clear operation.

If aport queueis already empty then this operation shall have no action on that port.

ETSI

162 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

MyPort.clear; // clears port MyPort

22.5.2 The Start port operation
The start operation enables sending and receiving operations on the port(s).
Syntactical Structure
(Port | (all port)) "." start
Semantic Description

If aport is defined as allowing receiving operations such asreceive, getcall etc, the start operation clears the
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, call, raise €tc., are aso alowed to be performed at that port.

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

MyPort.start; // starts MyPort

22.5.3 The Stop port operation
The stop operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

(Port | (all port)) "." stop
Semantic Description

If aport is defined as allowing receiving operations such as receive and getcall, the stop operation causes
listening at the named port to cease. If the port is defined to allow sending operations then stop port disallows the
operations such as send, call, raise €tc., to be performed.

To cease listening at the port means that all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

MyPort .receive (MyTemplatel) -> value RecPDU;
// the received value is decoded, matched against
// MyTemplatel and the matching value is stored
// in the variable RecPDU
MyPort.stop; // No receiving operation defined following the stop
// operation is executed (unless the port is restarted
// by a subsequent start operation)
MyPort.receive (MyTemplate2); // This operation does not match and will block (assuming
// that no default is activated)

ETSI

163 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

22.5.4 The Halt port operation

Thehalt operation is comparable to the stop operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

(Port | (all port)) "." halt
Semantic Description

If aport allows receiving operations such asreceive, trigger and getcall, the halt operation disalows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
halt operation at that port. Messages and procedure call elements that were already in the queue beforethehalt
operation can still be processed with receiving operations. If the port allows sending operations then halt port
immediately disallows sending operations such as send, call, raise etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: The port halt operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After al entriesin the
gueue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport stop operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A port start operation on ahalted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port halt operation. It also removes the marker.

NOTE 4: A port clear operation on a halted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port halt operation. It also virtually puts the marker at the top of the
queue.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
MyPort.halt; // No sending allowed on Myport from this moment on;
// processing of messages in the queue still possible.
MyPort.receive (MyTemplatel) ; // If a message was already in the queue before the halt

// operation and it matches MyTemplatel, it is processed;
// otherwise the receive operation blocks.

22.6 Use of any and all with ports

The keywords any and a11 may be used with configuration and communication operations as indicated in table 24.

Table 24: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
disconnect / unmap yes unmap (self : all port)
start, stop, clear, halt yes all port.start

NOTE: Portsare owned by test components and instantiated when a component is created. The keywords any
port andall port addressall ports owned by atest component and not only the ports known in the
scope of the function or altstep that is executed on the component.

ETSI

164 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

23 Timer operations

TTCN-3 supports a number of timer operations as given in table 25. These operations may be used in test cases,
functions, atsteps and module control.

Table 25: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It is assumed that each test component and the module control maintain their own running-timers list and timeout-list,
i.e. alist of al timersthat are actually running and alist of all timers that have timed out. The timeout-lists are part of
the snapshots that are taken when atest case is executed. The running-timers list and timeout-list of a component or
module control are updated if atimer of the component or module control is started, is stopped, times out or the
component or module control executes a t imeout operation.

NOTE 1: Therunning-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timerslist and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individualy, i.e. timersthat are declared in the scope unit, passed in as parameters to the scope unit or
known viaaruns-on clause. In some special cases (e.g. for re-establishing atest component during atest
run), it can be necessary to stop timerslocal to other scope units or to check if timerslocal to other scope
units are running or have already timed out. This can be done by using the keywordsall and any in
combination with the timer operations stop, timeout and running. Allowed combinations are
defined in clause 23.7.

When atimer expires, the timer becomesimmediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when atest component is explicitly or implicitly stopped.

23.2 The Start timer operation

The start timer operation is used to indicate that atimer should start running.

Syntactical Structure

((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" })
"." start [" (" TimerValue ")"]

Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default
duration.

ETSI

165 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting atimer with a negative
timer value, e.g. the timer valueis the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for thistimer shall be removed from the timeout-list.

Restrictions

a) Timer value shall be anon-negative £1loat number (i.e. greater or equal 0.0).

Examples
MyTimerl.start; // MyTimerl is started with the default duration
MyTimer2.start (20E-3); // MyTimer2 is started with a duration of 20 ms

// Elements of timer arrays may also be started in a loop, for example
timer t Mytimer [5];
var float v_timerValues [5];

for (var integer i := 0; i<=4; i:=i+1)
{ v_timervalues [i] := 1.0 }
for (var integer 1 := 0; i<=4; i:=i+1)

{t Mytimer [i].start (v_timerValues [i])}

23.3 The Stop timer operation

The stop operation is used to stop arunning timer.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" }) |
all timer)
", " stop

Semantic Description

A stop operation removes arunning timer from the list of running timers. A stopped timer becomesinactive and its
elapsed timeis set to the float value zero (0.0).

Stopping an inactive timer isavalid operation, although it does not have any effect. Stopping an expired timer causes
the entry for thistimer in the timeout-list to be removed.

The all keyword may be used to stop all timers that have been started on a component or module control.
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
MyTimerl.stop; // stops MyTimerl
all timer.stop; // stops all running timers

23.4 The Read timer operation

The read operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((TimerIdentifier | TimerParIdentifier) { "I[" SingleExpression "1" })
"." read

Semantic Description

ETSI

166 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)
The read operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of type float.

Applying the read operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

var float Myvar;
MyVar := MyTimerl.read; // assign to MyVar the time that has elapsed since MyTimerl was started

23.5 The Running timer operation

The running timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" }) |
any timer)
"." running

Semantic Description

The running timer operation is used to check whether a specific timer visible in the given scope unit is listed on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
thevalue true if thetimer islisted on thelist, false otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

EXAMPLE 1. Checking if a specific timer is running.

if (MyTimerl.running) { .. }

EXAMPLE 2: Checking if an arbitrary timer is running.

if (any timer.running) { .. }

23.6 The Timeout operation

The timeout operation allows to check the expiration of timers.

Syntactical Structure
(((TimerIdentifier | TimerParIdentifier) { "[" SingleExpression "1" }) |

any timer)
"." timeout

ETSI

167 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description

The timeout operation alows to check the expiration of a specific timer in the scope unit of atest component or
module control in which the timeout operation has been called or of any timer that has been started on atest component
or module control before entering the scope in which the timeout operation has been called.

When a timeout operation is processed, if atimer nameisindicated, the timeout-list is searched according to the
TTCN-3 scoperules. If there is atimeout event matching the timer name, that event is removed from the timeout-list,
and the timeout operation succeeds.

The timeout can be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour
description. In the latter case a timeout operation is considered to be shorthand for an alt statement with only one
alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the timeout of
timer(s).

The any keyword used with the t imeout operation succeeds if the timeout-list is not empty.
Restrictions

a) The timeout shall not beused in aboolean expression.
Examples

EXAMPLE 1: Timeout of a specific timer.

MyTimerl. timeout; // checks for the timeout of the previously started timer MyTimerl

EXAMPLE 2: Timeout of an arbitrary timer.

any timer.timeout; // checks for the timeout of any previously started timer

23.7 Summary of use of any and all with timers

The keywords any and a1l may be used with timer operations as indicated in table 26.

Table 26: Any and All with Timers

Operation Allowed Example
any all
start
stop ves all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

24 Test verdict operations

Verdict operations given in table 27 allow to set and retrieve verdicts. These operations shall only be used in test cases,
atsteps and functions.

Table 27: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

ETSI

168 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

24.1 The Verdict mechanism

Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. inthe MTC and in each and every PTC).

Additionally, thereisaglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
tothegetverdict and setverdict operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
islost.

Verdict returned . :
by'thetes't case
when it terminates
MTC - prC1 [PTCh [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass, fail, inconc, none and error, i.e. the distinguished val ues of
theverdicttype (seeclause6.1).

NOTE 2: inconec means an inconclusive verdict.
When atest component isinstantiated, its local verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the setverdict operation) the effect of this change shall
follow the overwriting rules listed in table 28. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting ruleslisted in table 28.

Table 28: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail fail fail fail

The error verdict is special inthat it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by the setverdict operation and will not be returned by the getverdict operation. No
other verdict value can override an error verdict. This meansthat an error verdict can only be aresult of an

execute test case operation.

Together with the local test verdict, each test component shall also maintain an implicit charstring variable to store
information about the reasons for assigning the verdict. Theimplicit charstring variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit charstring variable. The implicit
charstring variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

ETSI

169 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

24.2 The Setverdict operation

Thelocal verdict is set with the setverdict operation.
Syntactical Structure

setverdict " (" SingleExpression { "," (FreeText | TemplateInstance) } ")"
Semantic Description

The value of the local verdict is changed with the setverdict operation. The effect of this change shall follow the
overwriting rules listed in table 28.

The optional parameters allow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit charstring variable. On termination of the test
component, the actual local verdict is logged together with the implicit charstring variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

Asthe result of the setverdict operation, theimplicit charstring variable is overwritten whenever the local verdict
of atest component is overwritten. A setverdict operation with averdict only that overwrites the current local
verdict, will also clear the implicit charstring variable. This means previoudly stored information gets lost.

Restrictions

a) Thesetverdict operation shall only be used with the valuespass, fail, inconc and none. It shall not
be used to assign the value err or, thisis set by the test system only to indicate run-time errors.

b) SngleExpression shall resolve to avalue of type verdict.

c) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of the 1og
statement. Table 16 lists all language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1:
setverdict (pass) ; // the local verdict is set to pass
setverdict (fail) ; // until this line is executed, which will result in the value
// of the local verdict being overwritten to fail
// When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer myVar:= 1;

MyPort .receive (integer:MyVar); // Matches an integer value with the value of MyVar
// at port MyPort
setverdict (pass, "Value received: ", myVar); // Provided the actual test component verdict is

// none: local verdict is set to pass, the implicit
// charstring variable is set to "Value received: 5"

stop; // The test component terminates. The local test verdict and
// implicit charstring variable are logged

24.3 The Getverdict operation

The value of the local verdict may be retrieved using the getverdict operation.

Syntactical Structure

getverdict
Semantic Description

Thegetverdict operation returns the actual value of the local verdict.

ETSI

170 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

MyResult := getverdict; // Where MyResult is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure

action " (" { (FreeText | Expression) ["&"] } ")
Semantic Description
External actions can be used in test cases, functions, atsteps and module control.

Thereis no specification of what is doneto or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions

a) Expression shall have the base type charstring or universal charstring.

Examples
var charstring myString:= " now."
action("Send MyTemplate on lower PCO" & myString); // Informal description of the

// external action

26 Module control

Test cases are defined in the modul e definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 29.

Table 29: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol

Assignments =

If-else if (..){.}else{..}

Select case select case (...) { case (...){...}
caseelse{...}}

For loop for (..){...}

While loop while (...) {...}

Do while loop do {...} while (...)

Label and Goto label / goto

Stop execution stop

Leaving a loop, alt or interleave break

Next iteration of a loop continue

Logging log

ETSI

171 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Statement Associated keyword or symbol
Alternative behaviour (see note) alt {...}
Re-evaluation of alternative behaviour |[repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execute statement in the module control.

Syntactical Structure

execute " (" TestcaseRef "(" [{ TemplateInstance [","]1 } 1 ")"
["," TimerValue] ")"

Semantic Description

In the module control part the execute statement is used to start test cases (see clause 27.1). The result of an executed
test caseisalways avalue of type verdicttype. Every test case shall contain one and only one MTC the type of
which isreferenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When atest caseisinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit create and start operations.

Test case start

A test caseiscaled using an execute statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, inconc, fail or error shal be returned and may be assigned to a variable for further
processing.

Optionally, the execute statement allows supervision of atest case by means of atimer duration.
Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by create, connect, €etc. operationsin a previous test case were destroyed when that test case was stopped (hence
are not "visible" to the new test case).

Test case ter mination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

ETSI

172 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Thefinal verdict of atest case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 25. The actual local verdict of atest component becomesits final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensure that all PTCs have stopped (by means of the done or killed statement) beforeit stops
itself.

Test casetimer

Timer may be used to supervise the execution of atest case. This may be done using an explicit timeout in the
execute statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Restrictions
a) TimerValue shall be of base type float.

b) When the corresponding formal parameter is not of template type Templatel nstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing testcase or function chain called
from atest case, i.e. test cases can only be executed from the control part or from functions directly called
from the control part.

Examples

EXAMPLE 1: Test case execution without keeping the test case verdict.

execute (MyTestCasel()) ; // executes MyTestCasel, without storing the
// returned test verdict and without time
// supervision

EXAMPLE 2: Test case execution with keeping the test case verdict.

MyVerdict := execute (MyTestCase2()); // executes MyTestCase2 and stores the resulting
// verdict in variable MyVerdict

EXAMPLE 3: Test casetimer.

MyVerdict := execute (MyTestCase3(),5E-3); // executes MyTestCase3 and stores the resulting
// verdict in variable MyVerdict. If the test case
// does not terminate within 5ms, MyVerdict will
// get the value 'error'

MyReturnvVal := execute (MyTestCase(), 7E-3);
// Where the return verdict will be error if MyTestCase does not complete execution
// within 7ms

26.2 The Control part

The control part defines, in which order, sequence, loop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"

{ (constpDef |
TemplateDef |
VarInstance |
TimerInstance |
TimerStatements |
BasicStatements |
BehaviourStatements |
SUTStatements |
StOP) [n;n] }

n}n

[withStatement] [";"]

ETSI

173 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Semantic Description
Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select adifferent execution order.

Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and desel ection of test cases can al so be used to control the execution of test cases.

There are different waysin TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and desel ect which test cases are to be executed. This includes, of course, the use of functions that return a
boolean value.

Another way to execute test cases as agroup is to collect them in a function and execute that function from the module
control.

Asatest casereturns asingle value of typeverdicttype, it isalso possible to control the order of test case
execution depending on the outcome of atest case. The use of the TTCN-3 verdicttype is another way to select test
Cases.

Restrictions

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be used
in the control part.

b) Statementsfor alternative behaviours shall only be used to control timer behaviours.
c) Therestrictions on the use of statementsin the control part are givenin table 14.
Examples
EXAMPLE 1. Test case execution in aloop.
module MyTestSuite () {
c;ntrol {

/} Do this test 10 times

count:=0;

while (count < 10)

{ execute (MySimpleTestCasel());
count := count+l;
}

}
EXAMPLE 2: Test case execution controlled by atimer and a counter.

// Example of the use of the running timer operation

while (Tl.running or x<10) // Where Tl is a previously started timer
{ execute (MyTestCase()) ;

X = X+1;
}
// Example of the use of the start and timeout operations

timer Tl := 1.0;

execute (MyTestCasel()) ;
Tl.start;

ETSI

174 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

T1l.timeout; // Pause before executing the next test case
execute (MyTestCase2()) ;

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions.
module MyTestSuite () {
control {

if (MySelectionExpressionl())
execute (MySimpleTestCasel()) ;
execute (MySimpleTestCase2 ()) ;
execute (MySimpleTestCase3 ()) ;

1

if (MySelectionExpression2()) ({
execute (MySimpleTestCase4d ()) ;
execute (MySimpleTestCase5()) ;
execute (MySimpleTestCase6 ()) ;

}
EXAMPLE 4: Selection/desel ection of test cases with functions.

function MyTestCaseGroupl ()

{ execute (MySimpleTestCasel()) ;
execute (MySimpleTestCase2()) ;
execute (MySimpleTestCase3 ()) ;

}

function MyTestCaseGroup2 ()

{ execute (MySimpleTestCased4 ()) ;
execute (MySimpleTestCase5()) ;
execute (MySimpleTestCase6 ()) ;

}

control

{ if (MySelectionExpressionl()) { MyTestCaseGroupl(); }

if (MySelectionExpression2()) { MyTestCaseGroup2(); }

1
EXAMPLE5: Selection/deselection of test cases based on test case verdicts.

if (execute (MySimpleTestCase()) == pass)
{ execute (MyGoOnTestCase()) }

else
{ execute (MyErrorRecoveryTestCase()) };

27 Specifying attributes

TTCN-3 uses attributes to give special characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism

Attributes can be associated with TTCN-3 language elements by means of the with statement.

27.1.1 Scope of attributes

A with statement may associate attributes to a single language element. It is also possible to associate attributesto a
number of language elements by, e.g. listing fields of a structured type in an attribute statement associated with asingle
type definition or associating awi th statement to the surrounding scope unit or group of language elements.

ETSI

175 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE:

// MyPDUl will be displayed as PDU
type record MyPDUl { .. } with { display "PDU"}

// MyPDU2 will be displayed as PDU with the application specific extension attribute MyRule
type record MyPDU2 { .. }
with
{
display "PDU";
extension "MyRule"

}

// The following group definition ..
group MyPDUs ({

type record MyPDU3 { .. }

type record MyPDU4 { .. }

}

with {display "PDU"} // All types of group MyPDUs will be displayed as PDU

// is identical to

group MyPDUs
type record MyPDU3 { .. } with { display "PDU"}
type record MyPDU4 { .. } with { display "PDU"}

27.1.2 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in the present clause.

EXAMPLE 1.

type record MyRecordA

{
} with { encode "RuleA" }

// In the following, MyRecordA is encoded according to RuleA and not according to RuleB
type record MyRecordB

{

field MyRecordA
} with { encode "RuleB" }

A with statement that is placed inside the scope of another with statement shall override the outermost with. This
shall also apply to the use of the wi th statement with groups. Care should be taken when the overwriting schemeis
used in combination with references to single definitions. The general rule isthat attributes shall be assigned and
overwritten according to the order of their occurrence.

// Example of the use of the overwriting scheme of the with statement
group MyPDUs
{

type record MyPDUl { .. }

type record MyPDU2 { .. }

group MySpecialPDUs

{
type record MyPDU3 { .. }
type record MyPDU4 { .. }

}

with {extension "MySpecialRule"} // MyPDU3 and MyPDU4 will have the application
// specific extension attribute MySpecialRule

}

with

{
display "PDU"; // All types of group MyPDUs will be displayed as PDU and
extension "MyRule"; // (if not overwritten) have the extension attribute MyRule

}

// is identical to ..
group MyPDUs

type record MyPDUL { .. } with {display "PDU"; extension "MyRule" }
type record MyPDU2 { .. } with {display "PDU"; extension "MyRule" }

ETSI

176 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

group MySpecialPDUs {
type record MyPDU3 { .. } with {display "PDU"; extension "MySpecialRule" }
type record MyPDU4 { .. } with {display "PDU"; extension "MySpecialRule" }

An attribute definition in alower scope can be overwritten in a higher scope by using the override directive.

EXAMPLE 2:

type record MyRecordA

} with { encode "RuleA" }

// In the following, MyRecordA is encoded according to RuleB
type record MyRecordB

fieldA MyRecordA

} with { encode override "RuleB" }

Theoverride directive forces all contained types at all lower scopes to be forced to the specified attribute.

27.1.2.1 Additional overwriting rules for variant attributes

A variant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes. Therefore, for variant attributes the
following overwriting rules apply:

avariant attribute overwrites an current variant attribute according to the rules defined in clause 27.1.2;

an encoding attribute, which overwrites a current encoding attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current variant attribute, i.e. no new variant attributeis
provided, but the current variant attribute becomesinactive;

an encoding attribute, which changes a current encoding attribute of an imported language element
according to the rules defined in clause 27.1.3, also changes a corresponding current variant attribute, i.e.
no new variant attributeis provided, but the current variant attribute becomes inactive.

EXAMPLE:

module MyVariantEncodingModule {

type charstring MyCharString; // Normally encoded according to "Encoding 1"
group MyVariantsOne {

type record MyPDUone

{

integer fieldl, // fieldl will be encoded according to "Encoding 2" only.
// "Encoding 2" overwrites "Encoding 1" and variant "Variant 1"
Mytype field3d // field3 will be encoded according to "Encoding 1" with

// variant "Variant 1".

}

with { encoding (fieldl) "Encoding 2" }

}

with { variant "Variant 1" }

ETSI

177 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

group MyVariantsTwo
{ :
type record MyPDUtwo

{

integer fieldl, // fieldl will be encoded according to "Encoding 3"
// using encoding variant "Variant 3"
Mytype field3d // field3 will be encoded according to "Encoding 3"

// using encoding variant "Variant 2"

}

with { variant (fieldl) "Variant 3" }

}

with { encode "Encoding 3"; variant "Variant 2"}

}

with { encode "Encoding 1" }

27.1.3 Changing attributes of imported language elements

In general, alanguage element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. a type may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is alowed to change attributes on the
import statement.

EXAMPLE:

import from MyModule {
type MyType

with { display "ASP" } // MyType will be displayed as ASP

import from MyModule ({
group MyGroup

with {
display "PDU"; // By default all types will be displayed as PDU
extension "MyRule"

27.2 The With statement

The with statement is used to associate attributesto TTCN-3 language elements (and sets thereof).

Syntactical Structure

with " { "
{ (encode | variant | display | extension | optional)
[override]
["(" DefinitionRef | FieldReference | AllRef ")"]
FreeText [";"] }

n } n
Semantic Description

There are five kinds of attributes that can be associated to language elements:
a) display: alowsthe specification of display attributes related to specific presentation formats;
b) encode: alowsreferencesto specific encoding rules;
c) variant: alowsreferencesto specific encoding variants;
d) extension: alowsthe specification of user-defined attributes;
€) optional: dlowstheimplicit setting of optional fieldsin records and sets to omit.

The syntax for the argument of the wi th statement (i.e. the actua attributes) is defined as a free text string.

ETSI

178 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) DéefinitionRef and Fiel dReference must refer to adefinition or field respectively which is within the module,
group or definition to which the with statement is associated.

Examples

type record MyService ({
integer i,
float £

}

with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

27.3 Display attributes
Display attributes allow the specification of display attributes related to specific presentation formats.
Syntactical Structure
display
Semantic Description

All TTCN-3 language elements can have display attributes to specify how particular language elements should be
displayed in, for example, atabular format.

Specia attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2[1].

Specia attribute strings related to the display attributes for the graphical presentation format can be found in
ES 201 873-3[2].

Other display attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

type record MyService ({
integer i,
float £

with { display "ServiceCall" } // MyRecord will be displayed as a ServiceCall

27.4 Encoding attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure
encode
Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be madeto a
TTCN-3 definition.

ETSI

179 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level isthe entire module, the next
level isagroup and the lowest isan individua type or definition:

a) module: encoding appliesto all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding appliesto agroup of user-defined type definitions;
C) type or definition: encoding appliesto asingle user-defined type or definition;
d) field:encodingappliestoafieldinarecordor set typeor template.
Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

module MyFirstmodule

{

import from MySecondModule {
type MyRecord
1

with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to MyRule 1

type charstring MyType; // Normally encoded according to the 'Global encoding rule

group MyRecords
{ :
type record MyPDU1l

{

integer fieldl, // fieldl will be encoded according to "Rule 3"
boolean field2, // field2 will be encoded according to "Rule 3"
Mytype field3 // field3 will be encoded according to "Rule 2"

with { encode (fieldl, field2) "Rule 3" }

}

with { encode "Rule 2" }

}

with { encode "Global encoding rule" }

27.5 Variant attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and variant attributes. Variant
attributes allow references to specific encoding variants.

Syntactical Structure

variant
Semantic Description

To specify arefinement of the currently specified encoding scheme instead of its replacement, the variant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

Special variant strings:
The following strings are the predefined (standardized) variant attributes for simple basic types (see clause D.2.1):

a "8 bit"and"unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 8-bits
(single byte) within the system.

ETSI

180 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

b) "16 bit"and"unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 16-bits
(two bytes) within the system.

C) "32 bit"and"unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 32-bits
(four bytes) within the system.

d "64 bit"and"unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 64-bits
(eight bytes) within the system.

€) "IEEE754 float","IEEE754 double", "IEEE754 extended float" and
"IEEE754 extended double" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard | EEE 754 [14] (see annex E).

The following strings are the predefined (standardized) variant attributesfor charstring and universal
charstring (seeclauseD.2.2):

a) "UTF-8" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [9].

b) "ucs-2" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [9]).

c) "UTF-16" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in
annex Q of ISO/IEC 10646 [9].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall beindividually encoded and decoded according to the coded representation as specified in
I SO/IEC 8859-1 [i.3] (an 8-bit coding).

The following strings are the predefined (standardized) variant attributes for structured types (see clause D.2.3):

a "IDL:fixed FORMAL/01-12-01 v.2.6" means, when applied to arecord type, that the value shall be
handled as an IDL fixed point decimal value (see annex E).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauniversal charstring specified withthevariant attribute "UTF-8" within a module which
itself has aglobal encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [6]) will cause each character of the
values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

If it isdesired to specify invalid encoding rules then these shall be specified in a referenceable source external to the
module in the same way that valid encoding rules are referenced.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.
Examples

EXAMPLE:

module MyTTCNmodulel
{ ;ype charstring MyType; // Normally encoded according to the "Global encoding rule"
éroup MyRecords

{ .

type record MyPDU1l

ETSI

181 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

integer fieldl, // fieldl will be encoded according to "Rule 2"
// using encoding variant "length form 3"
Mytype field3 // field3 will be encoded according to "Rule 2"

// using any possible length encoding format

}

with { variant (fieldl) "length form 3" }

}

with { encode "Rule 2" }

with { encode "Global encoding rule" }

27.6 Extension attributes

Extension attributes can be used for proprietary extensionsto TTCN-3.

Syntactical Structure

extension
Semantic Description
All TTCN-3 language elements can have extension attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

testcase MyTestcase() runs on MTCType {

}

with { extension "Test Purpose: This test case is used to check .." }

27.7 Optional attributes

The optional attribute can be used to indicate that optional fields of constants, module parameters or templates of
record and set types are implicitly set to omit.

Syntactical Structure
optional
Semantic Description

TTCN-3 constants, module parameters, and templates can have an optional attribute. Also, TTCN-3 language
elements that contain such definitions, i.e. module, group, function, altstep, test case, control, and component type
definitions can have an optional attribute. When an optional attribute is associated to a function, atstep, test
case, control or component type definitions, it shall have effect on all the constants, modul e parameters, and templates
declared within these definitions and not on the enframing definition itself.

Special optional strings:
The following strings are the predefined (standardized) optional attributes.

a "implicit omit" meansthat al optiona fields, which have not been defined in the definition the attribute
is associated with, are set to omit. This applies recursively to the optional fields of the entity and to subfields
of the mandatory fields.

b) "explicit omit" meansthat all optional fields, which have not been defined in the definition the attribute
is associated with, are left undefined. This applies recursively to the optional fields of the entity and to
subfields of the mandatory fields.

ETSI

182 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Restrictions

a) Datatype, port type, procedure signature and variable definitions and import statements shall not have an
optional attribute associated to them directly. When an optional attributeis associated to module,
group, function, altstep, test case, control or component type containing such definitions, it shall not have any
effect on the included data type, port type, procedure signature, variable or import statement.

Examples

type record MyRecordl ({
integer a,
boolean b optional

1

type record MyRecord2 ({
MyRecordl m

1

// reference templates with explicitly set fields

template MyRecordl MyTemplatel := { a := ?, b := omit }
template MyRecord2 MyTemplate2 := { m := { a := ?, b := omit }}

// reference templates

template MyRecordl MyTemplatela := { a := ? } // b is undefined

template MyRecordl MyTemplatelb := { a := ? } with {optional "explicit omit"} // b is undefined
template MyRecord2 MyTemplate2a := {} // m and its subfields are undefined

template MyRecord2 MyTemplate2b := { m := { a := ?}}; // m.b is undefined

// templates with attribute

template MyRecordl MyTemplatell := { a := ? } with {optional "implicit omit"}

// same as MyTemplatel, b is set to omit

template MyRecord2 MyTemplate2l := { m := { a := ?}} with {optional "implicit omit"}}
// same as MyTemplate2, by recursive application of the attribute
template MyRecord2 MyTemplate22 := { m := MyTemplatela}} with {optional "implicit omit"}}

// same as MyTemplate2, by recursive application of the attribute

template MyRecord2 MyTemplate23 := {} with {optional "implicit omit"}
// same as MyTemplate2a, m remains undefined
template MyRecord2 MyTemplate24 := { m := MyTemplatelb} with {optional "implicit omit"}
// same as MyTemplate2b, the attribute on the lower scope is not overwritten
template MyRecord2 MyTemplate25 := { m := MyTemplatelb} with {optional override "implicit omit"}}

// same as MyTemplate2, the attribute on the lower scope is overwritten

ETSI

183 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1: The syntactic metanotation

n= is defined to be

abc xyz abc followed by xyz

[alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(-.) textual grouping

Abc the non-terminal symbol abc
"abc" a terminal symbol abc

A.1l.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
a semi-colon (;). The semi-colon is optional if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e. the language construct is the last statement in a block of
statements, operations and declarations.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase |etters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol isaso allowed. An identifier shall begin with aletter (i.e. not a number
and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification.
Block comments shall be opened by the symbol pair /* and closed by the symbol pair */.
EXAMPLE 1

/* This is a block comment
spread over two lines */

Block comments shall not be nested.
/* This is not /* a legal */ comment */

Line comments shall be opened by the symbol pair // and closed by a <newline>.

ETSI

184 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 2:

// This is a line comment
// spread over two lines

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement.
EXAMPLE 3:

// The following is not legal
const // This is MyConst integer MyConst := 1;

// The following is legal
const integer MyConst := 1; // This is MyConst

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { 1}
Begin/end list symbols ()
Alternative symbols [1]
To symbol (in a range) .
Line comments and Block comments > Il
Line/statement terminator symbol

Arithmetic operator symbols + | -
Concatenation operator symbol &

Equivalence operator symbols I= == >= <=
String enclosure symbols " '
Wildcard/matching symbols ?*
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B HO

Float exponent E

The predefined function identifiers defined in table 13 and described in annex C shall aso be treated as reserved words.

ETSI

185 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
address
alive
all

alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case

call

catch

char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
default
disconnect
display

do

done

else
encode
enumerated
error
except
exception
execute
extends
extension
external

fail
false
float
for

from
function

getverdict
getcall
getreply
goto

group

halt
hexstring

if
ifpresent
import

in

inconc
infinity
inout
integer
interleave

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtec

noblock
none
not
not4b
nowait
null

octetstring
of

omit

on

optional

or

or4b

out
override

param
pass
pattern
port
procedure

raise
read
receive
record

rem
repeat
reply
return
running
runs

select
self

send
sender
set
setverdict
signature
start
stop
subset
superset
system

template
testcase
timeout
timer

to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

Xor
xor4b

The TTCN-3 terminaslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in all lowercase letters.

ETSI

186 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module

1. TTCN3Module ::= TTCN3ModuleKeyword TTCN3ModuleId
n{n
[ModuleDefinitionsPart]
[ModuleControlPart]

n}n

[WithStatement] [SemiColon]

2. TTCN3ModuleKeyword ::= "module"

3. TTCN3ModuleId ::= ModuleId

4. ModuleId ::= GlobalModuleId [LanguageSpec]
5. GlobalModuleId ::= ModuleIdentifier

6. ModuleIdentifier ::= Identifier

7. LanguageSpec ::= LanguageKeyword FreeText
8. LanguageKeyword ::= "language"

A.1.6.1 Module definitions part

A.1.6.1.0 General

9. ModuleDefinitionsPart ::= ModuleDefinitionsList
10. ModuleDefinitionsList ::= {ModuleDefinition [SemiColon] }+
11. ModuleDefinition ::= (TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
GroupDef |
ExtFunctionDef |
ExtConstDef) [WithStatement]

A.16.1.1 Typedef definitions

12. TypeDef ::= TypeDefKeyword TypeDefBody
13. TypeDefBody ::= StructuredTypeDef | SubTypeDef
14. TypeDefKeyword ::= "type"
15. StructuredTypeDef ::= RecordDef |
UnionDef |
SetDef |
RecordOfDef |
SetOfDef |
EnumDef |
PortDef |
ComponentDef
16. RecordDef ::= RecordKeyword StructDefBody
17. RecordKeyword ::= "record"
18. StructDefBody ::= (StructTypeIdentifier [StructDefFormalParList] | AddressKeyword)
nw{m [StructFieldDef {"," StructFieldDef}] "}"
19. StructTypeldentifier ::= Identifier
20. StructDefFormalParList ::= " (" StructDefFormalPar {"," StructDefFormalPar} ")"
21. StructDefFormalPar ::= FormalValuePar
22. StructFieldDef ::= (Type | NestedTypeDef) StructFieldIdentifier [ArrayDef] [SubTypeSpec]
[OptionalKeyword]
23. NestedTypeDef ::= NestedRecordDef |
NestedUnionDef |
NestedSetDef |
NestedRecordOfDef |
NestedSetOfDef |
NestedEnumDef
24. NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}] "}
25. NestedUnionDef ::= UnionKeyword "{" UnionFieldDef {"," UnionFieldDef} "}"
26. NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"
27. NestedRecordOfDef ::= RecordKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
28. NestedSetOfDef ::= SetKeyword [StringLength] OfKeyword (Type | NestedTypeDef)
29. NestedEnumDef ::= EnumKeyword "{" EnumerationList "}"
30. StructFieldIdentifier ::= Identifier

ETSI

31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.

43.
44 .
45.
46.
47.
48.
49.
50.

/*

51.
52.

/*

187 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

OptionalKeyword ::= "optional"
UnionDef ::= UnionKeyword UnionDefBody
UnionKeyword ::= "union"
UnionDefBody ::= (StructTypeldentifier [StructDefFormalParList] | AddressKeyword)
"{" UnionFieldDef {"," UnionFieldDef} "}"

UnionFieldDef ::= (Type | NestedTypeDef) StructFieldIdentifier [ArrayDef] [SubTypeSpec]
SetDef ::= SetKeyword StructDefBody
SetKeyword ::= "set"
RecordOfDef ::= RecordKeyword [StringLength] OfKeyword StructOfDefBody
OfKeyword ::= "of"
StructOfDefBody ::= (Type | NestedTypeDef) (StructTypeldentifier | AddressKeyword) [SubTypeSpec]
SetOfDef ::= SetKeyword [StringLength] OfKeyword StructOfDefBody
EnumDef ::= EnumKeyword (EnumTypeldentifier | AddressKeyword)

"{" EnumerationList "}"
EnumKeyword ::= "enumerated"
EnumTypelIdentifier ::= Identifier
EnumerationList ::= Enumeration {"," Enumeration}
Enumeration ::= EnumerationIdentifier [" (" [Minus] Number ")"]
EnumerationIdentifier ::= Identifier
SubTypeDef ::= Type (SubTypeldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]
SubTypelIdentifier ::= Identifier
SubTypeSpec ::= AllowedValues [StringLength] | StringLength
STATIC SEMANTICS - AllowedValues shall be of the same type as the field being subtyped */
AllowedvValues ::= " (" (ValueOrRange {"," ValueOrRange}) | CharStringMatch ")"
ValueOrRange ::= RangeDef | ConstantExpression
STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal

charstring or float based types */

/*
be

53.
54.

/*

STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not
mixed in the same SubTypeSpec */

RangeDef ::= LowerBound ".." UpperBound

StringLength ::= LengthKeyword " (" SingleConstExpression [".." UpperBound] ")"

STATIC SEMANTICS - StringLength shall only be used with String types or to limit set of and

record of. SingleConstExpression and UpperBound shall evaluate to non-negative integer values (in
case of UpperBound including infinity) */

55.
56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.

/*

67.
68.
69.

70.
71.
72.
73.
74 .

75.
76.
77.
78.
79.

80.
81.
82.
83.
84.
85.
86.
87.
88.

LengthKeyword ::= "length"
PortType ::= [GlobalModuleId Dot] PortTypeldentifier
PortDef ::= PortKeyword PortDefBody
PortDefBody ::= PortTypeldentifier PortDefAttribs
PortKeyword ::= "port"
PortTypeldentifier ::= Identifier
PortDefAttribs ::= MessageAttribs | ProcedureAttribs | MixedAttribs
MessageAttribs ::= MessageKeyword
n{m {MessageList [SemiColon]}+ "}"
MessageList ::= Direction AllOrTypelList
Direction ::= InParKeyword | OutParKeyword | InOutParKeyword
MessageKeyword ::= "message"
AllOrTypeList ::= AllKeyword | Typelist
NOTE: The use of AllKeyword in port definitions is deprecated */
AllKeyword ::= "all"
TypeList ::= Type {"," Type}
ProcedureAttribs ::= ProcedureKeyword
n{m {ProcedureList [SemiColon]}+ "}"
ProcedureKeyword ::= "procedure"
ProcedureList ::= Direction AllOrSignatureList
AllOrSignatureList ::= AllKeyword | Signaturelist
SignatureList ::= Signature {"," Signature}
MixedAttribs ::= MixedKeyword
n{n {MixedList [SemiColon]}+ "}"
MixedKeyword ::= "mixed"
MixedList ::= Direction ProcOrTypelList
ProcOrTypeList ::= AllKeyword | (ProcOrType {"," ProcOrType})
ProcOrType ::= Signature | Type
ComponentDef ::= ComponentKeyword ComponentTypeldentifier
[ExtendsKeyword ComponentType {"," ComponentType}]
n{" [ComponentDefList] "}"
ComponentKeyword ::= "component"
ExtendsKeyword ::= "extends"
ComponentType ::= [GlobalModuleId Dot] ComponentTypeldentifier
ComponentTypeldentifier ::= Identifier
ComponentDefList ::= {ComponentElementDef [SemiColon] }
ComponentElementDef ::= PortInstance | VarInstance | TimerInstance | ConstDef
PortInstance ::= PortKeyword PortType PortElement {"," PortElement}
PortElement ::= PortIdentifier [ArrayDef]
PortIdentifier ::= Identifier

ETSI

188 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

A.1.6.1.2 Constant definitions

89. ConstDef ::= ConstKeyword Type ConstList

90. ConstList ::= SingleConstDef {"," SingleConstDef}

91. SingleConstDef = ConstIdentifier [ArrayDef] AssignmentChar ConstantExpression
92. ConstKeyword ::= "const"

93. ConstIdentifier ::= Identifier

A.1.6.1.3 Template definitions

94 . TemplateDef ::= TemplateKeyword [TemplateRestriction] BaseTemplate [DerivedDef]
AssignmentChar TemplateBody

95. BaseTemplate ::= (Type | Signature) TemplateIdentifier [" (" TemplateFormalParList ")"]

96. TemplateKeyword ::= "template"

97. TemplateIdentifier ::= Identifier

98. DerivedDef ::= ModifiesKeyword TemplateRef

99. ModifiesKeyword ::= "modifies"

100. TemplateFormalParList ::= TemplateFormalPar {"," TemplateFormalPar}

101. TemplateFormalPar ::= FormalValuePar | FormalTemplatePar

/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */

102. TemplateBody ::= (SimpleSpec | FieldSpecList | ArrayValueOrAttrib) [ExtraMatchingAttributes]

/* STATIC SEMANTICS - Within TeplateBody the ArrayValueOrAttrib can be used for array, record,
record of and set of types. */

103. SimpleSpec ::= SingleValueOrAttrib

104. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}

105. FieldSpec ::= FieldReference AssignmentChar TemplateBody

106. FieldReference ::= StructFieldRef | ArrayOrBitRef | ParRef

107. StructFieldRef ::= StructFieldIdentifier| PredefinedType | TypeReference

/* STATIC SEMANTICS - PredefinedType and TypeReference shall be used for anytype value notation
only. PredefinedType shall not be AnyTypeKeyword.*/

108. ParRef ::= SignatureParIdentifier

/* STATIC SEMANTICS - SignatureParIdentifier shall be a formal parameter identifier from the
associated signature definition */

109. SignatureParIdentifier ::= ValueParIdentifier

110. ArrayOrBitRef ::= "[" FieldOrBitNumber "]"

/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of. The same notation can be used for a Bit reference inside an TTCN-3 charstring, universal
charstring, bitstring, octetstring and hexstring type */

111. FieldOrBitNumber ::= SingleExpression
/* STATIC SEMANTICS - SingleExpression will resolve to a value of integer type */
112. SingleValueOrAttrib ::= MatchingSymbol |

SingleExpression |

TemplateRefWithParList
/* STATIC SEMANTIC - VariableIdentifier (accessed via singleExpression) may only be used in in-line
template definitions to reference variables in the current scope */

113. ArrayValueOrAttrib ::= "{" ArrayElementSpecList "}"
114. ArrayElementSpecList ::= ArrayElementSpec {"," ArrayElementSpec}
115. ArrayElementSpec ::= NotUsedSymbol | PermutationMatch | TemplateBody
116. NotUsedSymbol ::= Dash
117. MatchingSymbol ::= Complement |
AnyValue |
AnyOrOmit |
ValueOrAttribList |
Range |
BitStringMatch |
HexStringMatch |
OctetStringMatch |
CharStringMatch |
SubsetMatch |
SupersetMatch
118. ExtraMatchingAttributes ::= LengthMatch | IfPresentMatch | LengthMatch IfPresentMatch
119. BitStringMatch ::= "'" {BinOrMatch} "'" "B"
120. BinOrMatch ::= Bin | AnyValue | AnyOrOmit
121. HexStringMatch ::= "'" {HexOrMatch} "'" "H"
122. HexOrMatch ::= Hex | AnyValue | AnyOrOmit
123. OctetStringMatch ::= "'" {OctOrMatch} "'" noQn
124. OctOrMatch ::= Oct | AnyValue | AnyOrOmit
125. CharStringMatch ::= PatternKeyword Cstring
126. PatternKeyword ::= "pattern"
127. Complement ::= ComplementKeyword ValueOrAttribList
128. ComplementKeyword ::= "complement"
129. ValueList ::= " (" ConstantExpression {"," ConstantExpression} ")"
130. SubsetMatch ::= SubsetKeyword ValuelList
131. SubsetKeyword = "subset"
132. SupersetMatch ::= SupersetKeyword ValueList
133. SupersetKeyword ::= "superset"
134. PermutationMatch ::= PermutationKeyword PermutationList

ETSI

189 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

135. PermutationKeyword ::= "permutation"

136. PermutationList ::= " (" TemplateBody { "," TemplateBody } ")"

/* STATIC SEMANTICS: Restrictions on the content of TemplateBody are given in clause B.1.3.3 */
137. AnyValue ::= "?"

138. AnyOrOmit ::= "*"

139. ValueOrAttribList ::= " (" TemplateBody {"," TemplateBody}+ ")"
140. LengthMatch ::= StringLength

141. IfPresentMatch ::= IfPresentKeyword

142. IfPresentKeyword ::= IfKeyword PresentKeyword

143. PresentKeyword ::= "present"

144. Range ::= " (" LowerBound ".." UpperBound ")"

145. LowerBound ::= SingleConstExpression | Minus InfinityKeyword
146. UpperBound ::= SingleConstExpression | InfinityKeyword

/* STATIC SEMANTICS - LowerBound and UpperBound shall evaluate to types integer, charstring,
universal charstring or float. In case LowerBound or UpperBound evaluates to types charstring or
universal charstring, only SingleConstExpression may be present and the string length shall be 1%/

147. InfinityKeyword ::= "infinity"

148. TemplateInstance ::= InLineTemplate

149. TemplateRefWithParList ::= [GlobalModuleld Dot] TemplateIdentifier [TemplateActualParList] |

TemplateParIdentifier

150. TemplateRef ::= [GlobalModuleId Dot] Templateldentifier | TemplateParIdentifier

151. InLineTemplate ::= [(Type | Signature) Colon] [DerivedRefWithParList AssignmentChar]
TemplateBody

152. DerivedRefWithParList ::= ModifiesKeyword TemplateRefWithParList

153. TemplateActualParList ::= " (" TemplateActualPar {"," TemplateActualPar} ")"

154. TemplateActualPar ::= TemplateInstance
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions */

155. TemplateOps ::= MatchOp | ValueofOp

156. MatchOp ::= MatchKeyword " (" Expression "," TemplateInstance")"
157. MatchKeyword ::= "match"

158. ValueofOp ::= ValueofKeyword " (" TemplatelInstance")"

159. ValueofKeyword ::= "valueof"

A.16.1.4 Function definitions

160. FunctionDef ::= FunctionKeyword FunctionIdentifier
" (" [FunctionFormalParList] ")" [RunsOnSpec] [ReturnTypel
StatementBlock
161. FunctionKeyword ::= "function"
162. FunctionIdentifier ::= Identifier
163. FunctionFormalParList ::= FunctionFormalPar {"," FunctionFormalPar}
164. FunctionFormalPar ::= FormalValuePar |
FormalTimerPar |
FormalTemplatePar |
FormalPortPar
165. ReturnType ::= ReturnKeyword [TemplateKeyword | RestrictedTemplate] Type
166. ReturnKeyword ::= "return"
167. RunsOnSpec ::= RunsKeyword OnKeyword ComponentType
168. RunsKeyword ::= "runs"
169. OnKeyword ::= "on"
170. MTCKeyword ::= "mtc"
171. StatementBlock ::= "{" [FunctionStatementOrDefList] "}"
172. FunctionStatementOrDefList ::= {FunctionStatementOrDef [SemiColon] }+
173. FunctionStatementOrDef ::= FunctionLocalDef |
FunctionLocallInst |
FunctionStatement
174. FunctionLocallnst ::= VarInstance | TimerInstance
175. FunctionLocalDef ::= ConstDef | TemplateDef
176. FunctionStatement ::= ConfigurationStatements |
TimerStatements |
CommunicationStatements |
BasicStatements |
BehaviourStatements |
VerdictStatements |
SUTStatements
177. FunctionInstance ::= FunctionRef " (" [FunctionActualParList] ")"
178. FunctionRef ::= [GlobalModuleId Dot] (FunctionIdentifier | ExtFunctionIdentifier) |
PreDefFunctionIdentifier
179. PreDefFunctionIdentifier ::= Identifier

/* STATIC SEMANTICS - The Identifier shall be one of the pre-defined TTCN-3 Function Identifiers
from Annex C of ES 201 873-1 */

180. FunctionActualParList ::= FunctionActualPar {"," FunctionActualPar}
181. FunctionActualPar ::= TimerRef |

TemplateInstance |

port |

ComponentRef

ETSI

190 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */

A.1.6.1.5 Signature definitions

182. SignatureDef ::= SignatureKeyword Signatureldentifier
" (" [SignatureFormalParList] ")" [ReturnType | NoBlockKeyword]
[ExceptionSpec]

183. SignatureKeyword ::= "signature"

184 . Signatureldentifier ::= Identifier

185. SignatureFormalParList ::= SignatureFormalPar {"," SignatureFormalPar}

186. SignatureFormalPar ::= FormalValuePar

187. ExceptionSpec ::= ExceptionKeyword " (" ExceptionTypeList ")"

188. ExceptionKeyword ::= "exception"

189. ExceptionTypeList ::= Type {"," Type}

190. NoBlockKeyword ::= "noblock"

191. Signature ::= [GlobalModuleId Dot] SignatureIdentifier

A.1.6.1.6 Testcase definitions

192. TestcaseDef ::= TestcaseKeyword Testcaseldentifier
" (" [TestcaseFormalParList] ")" ConfigSpec
StatementBlock
193. TestcaseKeyword ::= "testcase"
194 . TestcaseIdentifier ::= Identifier
195. TestcaseFormalParList ::= TestcaseFormalPar {"," TestcaseFormalPar}
196. TestcaseFormalPar ::= FormalValuePar |
FormalTemplatePar
197. ConfigSpec ::= RunsOnSpec [SystemSpec]
198. SystemSpec = SystemKeyword ComponentType
199. SystemKeyword ::= "system"
200. TestcaselInstance ::= ExecuteKeyword " (" TestcaseRef " (" [TestcaseActualParList] ")"
["," TimerValue] ")"
201. ExecuteKeyword ::= "execute"
202. TestcaseRef ::= [GlobalModuleId Dot] Testcaseldentifier
203. TestcaseActualParList ::= TestcaseActualPar {"," TestcaseActualPar}
204. TestcaseActualPar ::= Templatelnstance

/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the
TemplateInstance production shall resolve to one or more SingleExpressions i.e. equivalent to the
Expression production */

A.1.6.1.7 Altstep definitions

205. AltstepDef ::= AltstepKeyword Altstepldentifier
"("[AltstepFormalParList] ")" [RunsOnSpec]
n{" AltstepLocalDefList AltGuardList "}"

206. AltstepKeyword ::= "altstep"

207. Altstepldentifier ::= Identifier

208. AltstepFormalParList ::= FunctionFormalParList

209. AltstepLocalDefList ::= {AltstepLocalDef [SemiColon]}

210. AltstepLocalDef ::= VarInstance | TimerInstance | ConstDef | TemplateDef

211. AltstepInstance ::= AltstepRef " (" [FunctionActualParList] ")"

212. AltstepRef ::= [GlobalModuleId Dot] AltstepIdentifier

A.1.6.1.8 Import definitions

213. ImportDef ::= ImportKeyword ImportFromSpec (AllWithExcepts | ("{" ImportSpec "}"))

214. ImportKeyword ::= "import"

215. AllWithExcepts ::= AllKeyword [ExceptsDef]

216. ExceptsDef ::= ExceptKeyword "{" ExceptSpec "}"

217. ExceptKeyword ::= "except"

218. ExceptSpec ::= {ExceptElement [SemiColon] }

219. ExceptElement ::= ExceptGroupSpec |
ExceptTypeDefSpec |
ExceptTemplateSpec |
ExceptConstSpec |
ExceptTestcaseSpec |
ExceptAltstepSpec |

ExceptFunctionSpec |
ExceptSignatureSpec |

ExceptModuleParSpec
220. ExceptGroupSpec ::= GroupKeyword (ExceptGroupRefList | AllKeyword)
221. ExceptTypeDefSpec ::= TypeDefKeyword (TypeRefList | AllKeyword)

ETSI

191 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

222. ExceptTemplateSpec ::= TemplateKeyword (TemplateRefList | AllKeyword)
223. ExceptConstSpec ::= ConstKeyword (ConstRefList | AllKeyword)
224. ExceptTestcaseSpec ::= TestcaseKeyword (TestcaseRefList | AllKeyword)
225. ExceptAltstepSpec ::= AltstepKeyword (AltstepRefList | AllKeyword)
226. ExceptFunctionSpec ::= FunctionKeyword (FunctionRefList | AllKeyword)
227. ExceptSignatureSpec ::= SignatureKeyword (SignatureReflList | AllKeyword)
228. ExceptModuleParSpec ::= ModuleParKeyword (ModuleParRefList | AllKeyword)
229. ImportSpec ::= {ImportElement [SemiColon] }
230. ImportElement ::= ImportGroupSpec |

ImportTypeDefSpec |

ImportTemplateSpec |

ImportConstSpec |

ImportTestcaseSpec |

ImportAltstepSpec |

ImportFunctionSpec |
ImportSignatureSpec |

ImportModuleParSpec

231. ImportFromSpec ::= FromKeyword ModuleId [RecursiveKeyword]
232. RecursiveKeyword ::= "recursive"
233. ImportGroupSpec ::= GroupKeyword (GroupRefListWithExcept | AllGroupsWithExcept)
234. GroupReflList ::= FullGroupIdentifier {"," FullGroupIdentifier}
235. GroupRefListWithExcept ::= FullGroupIdentifierWithExcept {"," FullGroupldentifierWithExcept}
236. AllGroupsWithExcept ::= AllKeyword [ExceptKeyword GroupReflList]
237. FullGroupIdentifier ::= GroupIdentifier {Dot Groupldentifier}
238. FullGroupIdentifierWithExcept ::= FullGroupIdentifier [ExceptsDef]
239. ExceptGroupReflList ::= ExceptFullGroupldentifier {"," ExceptFullGroupldentifier}
240. ExceptFullGrouplIdentifier ::= FullGroupIdentifier
241. ImportTypeDefSpec ::= TypeDefKeyword (TypeRefList | AllTypesWithExcept)
242. TypeRefList ::= TypeDefldentifier {"," TypeDefldentifier}
243. AllTypesWithExcept ::= AllKeyword [ExceptKeyword TypeRefList]
244. TypeDefldentifier ::= StructTypeldentifier |

EnumTypeldentifier |

PortTypeIdentifier |

ComponentTypeIdentifier |

SubTypeldentifier
245. ImportTemplateSpec ::= TemplateKeyword (TemplateRefList | AllTemplsWithExcept)
246. TemplateRefList ::= TemplateIdentifier {"," TemplateIdentifier}
247. AllTemplsWithExcept ::= AllKeyword [ExceptKeyword TemplateRefList]
248. ImportConstSpec ::= ConstKeyword (ConstRefList | AllConstsWithExcept)
249. ConstRefList ::= ConstIdentifier {"," ConstIdentifier}
250. AllConstsWithExcept ::= AllKeyword [ExceptKeyword ConstRefList]
251. ImportAltstepSpec ::= AltstepKeyword (AltstepRefList | AllAltstepsWithExcept)
252. AltstepRefList ::= Altstepldentifier {"," AltstepIdentifier}
253. AllAltstepsWithExcept ::= AllKeyword [ExceptKeyword AltstepReflList]
254. ImportTestcaseSpec ::= TestcaseKeyword (TestcaseRefList | AllTestcasesWithExcept)
255. TestcaseRefList ::= TestcaseIdentifier {"," TestcaseIdentifier}
256. AllTestcasesWithExcept ::= AllKeyword [ExceptKeyword TestcaseReflList]
257. ImportFunctionSpec ::= FunctionKeyword (FunctionRefList | AllFunctionsWithExcept)
258. FunctionRefList ::= FunctionIdentifier {"," FunctionIdentifier}
259. AllFunctionsWithExcept ::= AllKeyword [ExceptKeyword FunctionRefList]
260. ImportSignatureSpec ::= SignatureKeyword (SignatureRefList | AllSignaturesWithExcept)
261. SignatureRefList ::= Signatureldentifier {"," Signatureldentifier}
262 . AllSignaturesWithExcept ::= AllKeyword [ExceptKeyword SignatureRefList]
263. ImportModuleParSpec ::= ModuleParKeyword (ModuleParRefList | AllModuleParWithExcept)
264. ModuleParRefList ::= ModuleParIdentifier {"," ModuleParIdentifier}
265. AllModuleParWithExcept ::= AllKeyword [ExceptKeyword ModuleParRefList]

A.1.6.1.9 Group definitions

266. GroupDef ::= GroupKeyword GrouplIdentifier
"{" [ModuleDefinitionsPart] "}"

267. GroupKeyword ::= "group"

268. Groupldentifier ::= Identifier

A.1.6.1.10 External function definitions

269. ExtFunctionDef ::= ExtKeyword FunctionKeyword ExtFunctionIdentifier
" (" [FunctionFormalParList] ")" [ReturnType]

270. ExtKeyword ::= "external"

271. ExtFunctionIdentifier ::= Identifier

ETSI

192 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

A.1.6.1.11 External constant definitions

272.
273.
274.

ExtConstDef ::= ExtKeyword ConstKeyword Type ExtConstIdentifierList
ExtConstIdentifierList ::= ExtConstIdentifier { "," ExtConstIdentifier }
ExtConstIdentifier ::= Identifier

A.1.6.1.12 Module parameter definitions

275.
276.
277.
278.
279.
280.

281.

ModuleParDef ::= ModuleParKeyword (ModulePar | ("{" MultitypedModuleParList "}"))

ModuleParKeyword ::= "modulepar"

MultitypedModuleParList ::= { ModulePar [SemiColon] }

ModulePar ::= ModuleParType ModuleParList

ModuleParType ::= Type

ModuleParList ::= ModuleParIdentifier [AssignmentChar ConstantExpression]
{","ModuleParIdentifier [AssignmentChar ConstantExpression]}

ModuleParIdentifier ::= Identifier

A.1.6.2 Control part

A.1.6.2.0 General

282.

283.
284 .
285.
286.

287.

ModuleControlPart ::= ControlKeyword
n{" ModuleControlBody "}"
[WithStatement] [SemiColon]
ControlKeyword ::= "control"
ModuleControlBody ::= [ControlStatementOrDefList]
ControlStatementOrDefList ::= {ControlStatementOrDef [SemiColon] }+
ControlStatementOrDef ::= FunctionLocalDef |
FunctionLocallnst |
ControlStatement
ControlStatement ::= TimerStatements |
BasicStatements |
BehaviourStatements |
SUTStatements |
StopKeyword

A.1.6.2.1 Variable instantiation

288.

289.
290.
291.
292.
293.
294.
295.
296.
297.

VarInstance ::= VarKeyword ((Type VarList)

| ((TemplateKeyword | RestrictedTemplate) Type TempVarList))
VarList ::= SingleVarInstance {"," SingleVarInstance}
SingleVarInstance ::= VarIdentifier [ArrayDef] [AssignmentChar VarInitialValue]
VarInitialValue ::= Expression
VarKeyword ::= "var"
VarIdentifier ::= Identifier
TempVarList ::= SingleTempVarInstance {"," SingleTempVarInstance}
SingleTempVarInstance ::= VarlIdentifier [ArrayDef] [AssignmentChar TempVarInitialValuel]
TempVarInitialValue ::= TemplateBody
VariableRef ::= (VarIdentifier | ValueParIdentifier) [ExtendedFieldReference]

A.1.6.2.2 Timer instantiation

298.
299.
300.
301.
302.
303.
304.

TimerInstance ::= TimerKeyword TimerList

TimerList ::= SingleTimerInstance{"," SingleTimerInstance}
SingleTimerInstance ::= TimerIdentifier [ArrayDef] [AssignmentChar TimerValue]
TimerKeyword ::= "timer"

TimerIdentifier ::= Identifier

TimerValue ::= Expression

TimerRef ::= (TimerIdentifier | TimerParIdentifier) {ArrayOrBitRef}

ETSI

193 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

A.1.6.2.3 Component operations

305.

306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.

328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.

339.
340.

341.
342.

343.
344.

345.
346.
347.
348.
349.

ConfigurationStatements ::= ConnectStatement |
MapStatement |
DisconnectStatement |
UnmapStatement |
DoneStatement |
KilledStatement |
StartTCStatement |
StopTCStatement |
KillTCStatement
ConfigurationOps ::= CreateOp | SelfOp | SystemOp | MTCOp | RunningOp | AliveOp
CreateOp ::= ComponentType Dot CreateKeyword [" (" SingleExpression ")"] [AliveKeyword]
SystemOp ::= SystemKeyword
SelfOp ::= "self"
MTCOp ::= MTCKeyword
DoneStatement ::= ComponentId Dot DoneKeyword
KilledStatement ::= ComponentId Dot KilledKeyword
ComponentId ::= ComponentOrDefaultReference | (AnyKeyword | AllKeyword) ComponentKeyword
DoneKeyword ::= "done"
KilledKeyword ::= "killed"
RunningOp ::= ComponentId Dot RunningKeyword
RunningKeyword ::= "running"
AliveOp ::= ComponentId Dot AliveKeyword
CreateKeyword ::= "create"

AliveKeyword ::= "alive"
ConnectStatement ::= ConnectKeyword SingleConnectionSpec
ConnectKeyword ::= "connect"
SingleConnectionSpec ::= " (" PortRef "," PortRef ")"
PortRef ::= ComponentRef Colon Port
ComponentRef ::= ComponentOrDefaultReference | SystemOp | SelfOp | MTCOp
DisconnectStatement ::= DisconnectKeyword [SingleOrMultiConnectionSpec]
SingleOrMultiConnectionSpec ::= SingleConnectionSpec |
AllConnectionsSpec |
AllPortsSpec |
AllCompsAllPortsSpec
AllConnectionsSpec ::= " (" PortRef ")"
AllpPortsSpec ::= " (" ComponentRef ":" AllKeyword PortKeyword ")"
AllCompsAllPortsSpec ::= " (" AllKeyword ComponentKeyword ":" AllKeyword PortKeyword ")"
DisconnectKeyword ::= "disconnect"
MapStatement ::= MapKeyword SingleConnectionSpec
MapKeyword ::= "map"
UnmapStatement ::= UnmapKeyword [SingleOrMultiConnectionSpec]
UnmapKeyword ::= "unmap"
StartTCStatement ::= ComponentOrDefaultReference Dot StartKeyword " (" FunctionInstance ")"
StartKeyword ::= "start"
StopTCStatement ::= StopKeyword | (ComponentReferenceOrLiteral Dot StopKeyword) |
(AllKeyword ComponentKeyword Dot StopKeyword)
ComponentReferenceOrLiteral ::= ComponentOrDefaultReference | MTCOp | SelfOp
KillTCStatement ::= KillKeyword | (ComponentReferenceOrLiteral Dot KillKeyword) |
(AllKeyword ComponentKeyword Dot KillKeyword)
ComponentOrDefaultReference ::= VariableRef | FunctionInstance
KillKeyword ::= "kill"
A.1.6.2.4 Port operations
Port ::= (PortIdentifier | PortParIdentifier) {ArrayOrBitRef}
CommunicationStatements ::= SendStatement |
CallStatement |
ReplyStatement |
RaiseStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
GetReplyStatement |
CatchStatement |
CheckStatement |
ClearStatement |
StartStatement |
StopStatement |
HaltStatement
SendStatement ::= Port Dot PortSendOp
PortSendOp ::= SendOpKeyword " (" SendParameter ")" [ToClausel]
SendOpKeyword ::= "send"
SendParameter ::= Templatelnstance
ToClause ::= ToKeyword (AddressRef |

ETSI

350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.

377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.

389.
390.
391.

392.
393.
394.
395.
396.
397.
398.
399.
400.
401.

402.
403.

404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.

194 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

AddressReflist |

AllKeyword ComponentKeyword)
AddressRefList ::= " (" AddressRef {"," AddressRef} ")"
ToKeyword ::= "to"
AddressRef ::= TemplateInstance
CallStatement ::= Port Dot PortCallOp [PortCallBodyl
PortCallOp ::= CallOpKeyword " (" CallParameters ")" [ToClausel
CallOpKeyword ::= "call"
CallParameters ::= TemplateInstance ["," CallTimerValue]
CallTimerValue ::= TimerValue | NowaitKeyword
NowaitKeyword ::= "nowait"
PortCallBody ::= "{" CallBodyStatementList "}"
CallBodyStatementList ::= {CallBodyStatement [SemiColon] }+
CallBodyStatement ::= CallBodyGuard StatementBlock
CallBodyGuard ::= AltGuardChar CallBodyOps
CallBodyOps ::= GetReplyStatement | CatchStatement
ReplyStatement ::= Port Dot PortReplyOp
PortReplyOp ::= ReplyKeyword " (" TemplateInstance [ReplyValuel")" [ToClausel]
ReplyKeyword ::= "reply"
ReplyValue ::= ValueKeyword Expression
RaiseStatement ::= Port Dot PortRaiseOp
PortRaiseOp ::= RaiseKeyword " (" Signature "," TemplatelInstance ")" [ToClause]
RaiseKeyword ::= "raise"
ReceiveStatement ::= PortOrAny Dot PortReceiveOp
PortOrAny ::= Port | AnyKeyword PortKeyword
PortReceiveOp ::= ReceiveOpKeyword [" (" ReceiveParameter ")"] [FromClause] [PortRedirect]
ReceiveOpKeyword ::= "receive"
ReceiveParameter ::= TemplatelInstance
FromClause ::= FromKeyword (AddressRef |

AddressRefList |
AnyKeyword ComponentKeyword)
FromKeyword ::= "from"
PortRedirect ::= PortRedirectSymbol (ValueSpec [SenderSpec] | SenderSpec)
PortRedirectSymbol ::= "->"
ValueSpec ::= ValueKeyword VariableRef
ValueKeyword ::= "value"
SenderSpec ::= SenderKeyword VariableRef
SenderKeyword ::= "sender"
TriggerStatement ::= PortOrAny Dot PortTriggerOp
PortTriggerOp ::= TriggerOpKeyword [" (" ReceiveParameter ")"] [FromClause] [PortRedirect]
TriggerOpKeyword ::= "trigger"
GetCallStatement ::= PortOrAny Dot PortGetCallOp
PortGetCallOp ::= GetCallOpKeyword [" (" ReceiveParameter ")"] [FromClausel]
[PortRedirectWithParam]
GetCallOpKeyword ::= "getcall"
PortRedirectWithParam ::= PortRedirectSymbol RedirectWithParamSpec
RedirectWithParamSpec ::= ParamSpec [SenderSpec] |
SenderSpec
ParamSpec ::= ParamKeyword ParamAssignmentList
ParamKeyword ::= "param"
ParamAssignmentList ::= " (" (AssignmentList | VariableList) ")"
AssignmentList ::= VariableAssignment {"," VariableAssignment}
VariableAssignment ::= VariableRef AssignmentChar ParameterIdentifier
ParameterIdentifier ::= ValueParIdentifier
VariableList ::= VariableEntry {"," VariableEntry}
VariableEntry ::= VariableRef | NotUsedSymbol
GetReplyStatement ::= PortOrAny Dot PortGetReplyOp
PortGetReplyOp ::= GetReplyOpKeyword [" (" ReceiveParameter [ValueMatchSpec] ")"]
[FromClause] [PortRedirectWithvValueAndParam]
PortRedirectWithValueAndParam ::= PortRedirectSymbol RedirectWithValueAndParamSpec
RedirectWithValueAndParamSpec ::= ValueSpec [ParamSpec] [SenderSpec] |
RedirectWithParamSpec

GetReplyOpKeyword ::= "getreply"

ValueMatchSpec ::= ValueKeyword TemplatelInstance

CheckStatement ::= PortOrAny Dot PortCheckOp

PortCheckOp ::= CheckOpKeyword [" (" CheckParameter ")"]

CheckOpKeyword ::= "check"

CheckParameter CheckPortOpsPresent | FromClausePresent | RedirectPresent
FromClausePresent ::= FromClause [PortRedirectSymbol SenderSpec]

RedirectPresent ::= PortRedirectSymbol SenderSpec

CheckPortOpsPresent ::= PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp
CatchStatement ::= PortOrAny Dot PortCatchOp

PortCatchOp ::= CatchOpKeyword [" ("CatchOpParameter ")"] [FromClause] [PortRedirect]
CatchOpKeyword ::= "catch"

CatchOpParameter ::= Signature "," Templatelnstance | TimeoutKeyword

ClearStatement ::= PortOrAll Dot PortClearOp

PortOrAll ::= Port | AllKeyword PortKeyword

PortClearOp ::= ClearOpKeyword

ETSI

195 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

420. ClearOpKeyword = "clear"
421. StartStatement ::= PortOrAll Dot PortStartOp
422 . PortStartOp = StartKeyword
423. StopStatement = PortOrAll Dot PortStopOp
424 . PortStopOp ::= StopKeyword
425. StopKeyword = "stop"
426. HaltStatement ::= PortOrAll Dot PortHaltOp
427. PortHaltOp = HaltKeyword
428. HaltKeyword "halt™"
429. AnyKeyword ::= "any"
A.1.6.2.5 Timer operations
430. TimerStatements ::= StartTimerStatement | StopTimerStatement | TimeoutStatement
431. TimerOps = ReadTimerOp | RunningTimerOp
432. StartTimerStatement ::= TimerRef Dot StartKeyword [" (" TimerValue ")"]
433. StopTimerStatement ::= TimerRefOrAll Dot StopKeyword
434. TimerRefOrAll = TimerRef | AllKeyword TimerKeyword
435. ReadTimerOp = TimerRef Dot ReadKeyword
436. ReadKeyword = "read"
437. RunningTimerOp ::= TimerRefOrAny Dot RunningKeyword
438. TimeoutStatement = TimerRefOrAny Dot TimeoutKeyword
439. TimerRefOrAny = TimerRef | AnyKeyword TimerKeyword
440. TimeoutKeyword ::= "timeout"
A.1.6.3 Type
441. Type = PredefinedType | ReferencedType
442. PredefinedType ::= BitStringKeyword |

BooleanKeyword |

CharStringKeyword |

UniversalCharString |

IntegerKeyword |

OctetStringKeyword |

HexStringKeyword |

VerdictTypeKeyword |

FloatKeyword |

AddressKeyword |

DefaultKeyword |

AnyTypeKeyword
443 . BitStringKeyword ::= "bitstring"
444 . BooleanKeyword = "boolean"
445. IntegerKeyword ::= "integer"
446. OctetStringKeyword ::= "octetstring"
447. HexStringKeyword ::= "hexstring"
448. VerdictTypeKeyword ::= "verdicttype"
449. FloatKeyword = "float"
450. AddressKeyword ::= "address"
451. DefaultKeyword = "default"
452. AnyTypeKeyword ::= "anytype"
453 . CharStringKeyword ::= "charstring"
454. UniversalCharString = UniversalKeyword CharStringKeyword
455. UniversalKeyword ::= "universal"
456. ReferencedType = [GlobalModuleId Dot] TypeReference [ExtendedFieldReference]
457. TypeReference ::= StructTypeldentifier [TypeActualParList] |

EnumTypeldentifier |

SubTypeldentifier |

ComponentTypeldentifier
458. TypeActualParList ::= " (" TypeActualPar {"," TypeActualPar} ")"
459. TypeActualPar ::= ConstantExpression
460. ArrayDef ::= {"[" ArrayBounds [".." ArrayBounds] "]"}+
461. ArrayBounds ::= SingleConstExpression

/* STATIC SEMANTICS - A

A.1.6.4 Value

462.

Value Predefin

rrayBounds will resolve to a non negative value of integer type */

edvalue | Referencedvalue

463 . Predefinedvalue

BitStringValue |
BooleanValue |
CharStringValue |
IntegerValue |
OctetStringValue |
HexStringValue |
VerdictTypeValue |

ETSI

464 .
465.
466.
467.
468.
469.
470.
471.
472.
473.
474 .
475.
476 .
477 .
478.
479.
480.
481.
482.
483.

484 .
485.
486 .
487.
488.
489.
490.
491.
492.
493.
494 .
495,

196 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EnumeratedValue |
FloatValue |
AddressValue |
Omitvalue
BitStringValue ::= Bstring
BooleanValue = "true" | "false"
IntegerValue ::= Number
OctetStringValue ::= Ostring
HexStringValue ::= Hstring
VerdictTypeValue ::= "pass" | "fail" | "inconc" "none" | "error"
EnumeratedValue ::= EnumerationIdentifier
CharStringValue ::= Cstring | Quadruple
Quadruple ::= CharKeyword " (" Group "," Plane "," Row "," Cell ")"
CharKeyword ::= "char"
Group ::= Number
Plane ::= Number
Row ::= Number
Cell ::= Number
FloatValue ::= FloatDotNotation | FloatENotation
FloatDotNotation ::= Number Dot DecimalNumber
FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number
Exponential ::= "E"
ReferencedvValue ::= ValueReference [ExtendedFieldReference]
ValueReference ::= [GlobalModuleId Dot] (ConstIdentifier | ExtConstIdentifier |
ModuleParIdentifier) |
ValueParIdentifier |
VarIdentifier
Number ::= (NonZeroNum {Num}) | "O"
NonZeroNum ::= "1" | nomn | n3yn | ngn | ngn | ngn | LAl | ngn | ngn
DecimalNumber ::= {Num}+
Num ::= "0" | NonZeroNum
Bstring ca= mim {Bﬂ} wrno ongn
Bin ::= "Q" | nymn
Hstring co= mim {Hg} wrnoowgn
Hex ::= Nﬂ | npn | ngn | el | npn | nEn | "F"| ngn | npn | nan | ngn | ngn | nfEn
Ostring ca= mim {OC_t} mrnonQn
Oct ::= Hex Hex
CString co= nnm {Char} nnn
Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For

charstring a character from the character set defined in ISO/IEC 646. For universal charstring a
character from any character set defined in ISO/IEC 10646 */

496 .
497.
498.
499.

nNn

500.

npn

501.

Identifier ::= Alpha{AlphaNum | Underscore}

Alpha ::= UpperAlpha | LowerAlpha

AlphaNum ::= Alpha | Num

UpperAlpha o= MAM | ngn | el | npn | nEn | nEn | el | LS gl | nyn | ngn | ngn | ngm | nyn |
| non | npn | non | nRn | ngn | nn | nygn | nyn | Lnall | nxn | nyn | LAl

LowerAlpha ::= "a" | npn | nan | ngn | ngn | nEn | ngn | nhn | nimn | njn | nicn | nln | npn |
| ngn | ! | ng" | nypn | ngn | nen | ngn | nysn | vl | nen | Ny | non

ExtendedAlphaNum ::= /* REFERENCE - A graphical character from the BASIC LATIN or from the

LATIN-1 SUPPLEMENT character sets defined in ISO/IEC 10646 (characters from char (0,0,0,32) to char
(0,0,0,126), from char (0,0,0,161) to char (0,0,0,172) and from char (0,0,0,174) to char (0,0,0,255)

*/

502.
503.
504.
505.

FreeText ::= """ {ExtendedAlphaNum} """
AddressValue ::= "null"

Omitvalue ::= OmitKeyword

OmitKeyword ::= "omit"

A.1.6.5 Parameterization

506.
507.
508.
509.
510.
511.
512.
513.
514.
515.

516.
517.
518.

InParKeyword ::= "in"
OutParKeyword ::= "out"
InOutParKeyword ::= "inout"
FormalValuePar ::= [(InParKeyword | InOutParKeyword | OutParKeyword)] Type ValueParIdentifier
ValueParIdentifier ::= Identifier
FormalPortPar ::= [InOutParKeyword] PortTypeldentifier PortParIdentifier
PortParIdentifier ::= Identifier
FormalTimerPar ::= [InOutParKeyword] TimerKeyword TimerParIdentifier
TimerParIdentifier ::= Identifier
FormalTemplatePar ::= [(InParKeyword | OutParKeyword | InOutParKeyword)]

(TemplateKeyword | RestrictedTemplate) Type TemplateParIdentifier
TemplateParIdentifier ::= Identifier
RestrictedTemplate ::= OmitKeyword | (TemplateKeyword TemplateRestriction)
TemplateRestriction ::= " (" OmitKeyword | ValueKeyword | PresentKeyword ")"

ETSI

197 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

A.1.6.6 With statement

519. WithStatement ::= WithKeyword WithAttribList
520. WithKeyword ::= "with"
521. WithAttribList ::= "{" MultiWithAttrib "}
522. MultiWithAttrib ::= {SingleWithAttrib [SemiColon] }
523. SingleWithAttrib ::= AttribKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
524. AttribKeyword ::= EncodeKeyword |
VariantKeyword |
DisplayKeyword |
ExtensionKeyword |
OptionalKeyword
525. EncodeKeyword ::= "encode"
526. VariantKeyword ::= "variant"
527. DisplayKeyword ::= "display"
528. ExtensionKeyword ::= "extension"
529. OverrideKeyword ::= "override"
530. AttribQualifier ::= " (" DefOrFieldRefList ")"
531. DefOrFieldRefList ::= DefOrFieldRef {"," DefOrFieldRef}
532. DefOrFieldRef ::= DefinitionRef | FieldReference | AllRef
533. DefinitionRef ::= StructTypeIdentifier |
EnumTypeldentifier |
PortTypeldentifier |
ComponentTypeldentifier |
SubTypelIdentifier |
ConstIdentifier |
TemplateIdentifier |
Altstepldentifier |

TestcaseIdentifier |

FunctionIdentifier |

SignatureIdentifier |

VarIdentifier |

TimerIdentifier |

PortIdentifier |

ModuleParIdentifier |

FullGroupldentifier
(GroupKeyword AllKeyword [ExceptKeyword "{" GroupRefList "}"]) |
(TypeDefKeyword AllKeyword [ExceptKeyword "{" TypeRefList "}"]) |
(TemplateKeyword AllKeyword [ExceptKeyword "{" TemplateRefList "}"]) |
(ConstKeyword AllKeyword [ExceptKeyword "{" ConstRefList "}"]) |
(AltstepKeyword AllKeyword [ExceptKeyword "{" AltstepRefList "}"])
(
(
(
(

534. AllRef ::=

]
TestcaseKeyword AllKeyword [ExceptKeyword "{" TestcaseRefList "}"]
FunctionKeyword AllKeyword [ExceptKeyword "{" FunctionRefList "}"]
SignatureKeyword AllKeyword [ExceptKeyword "{" SignatureReflList "}
ModuleParKeyword AllKeyword [ExceptKeyword "{" ModuleParRefList "}"
535. AttribSpec ::= FreeText

|
|
') |
1

A.1.6.7 Behaviour statements

536. BehaviourStatements ::= TestcaseInstance |
FunctionInstance |
ReturnStatement |
AltConstruct |
InterleavedConstruct |
LabelStatement |
GotoStatement |
RepeatStatement |
DeactivateStatement |
AltstepInstance |
ActivateOp
BreakStatement |
ContinueStatement
537. VerdictStatements ::= SetLocalVerdict
538. VerdictOps ::= GetLocalVerdict
539. SetLocalVerdict ::= SetVerdictKeyword " (" SingleExpression { "," Logltem } ")"
540. SetVerdictKeyword ::= "setverdict™
541. GetLocalVerdict ::= "getverdict™"
542. SUTStatements ::= ActionKeyword " (" [ActionText] {StringOp ActionText} ")"
543. ActionKeyword ::= "action"
544. ActionText ::= FreeText | Expression
545. ReturnStatement ::= ReturnKeyword [Expression]
546. AltConstruct ::= AltKeyword "{" AltGuardList "}"
547. AltKeyword ::= "alt"
548. AltGuardList ::= {GuardStatement | ElseStatement [SemiColon]}
549. GuardStatement ::= AltGuardChar (AltsteplInstance [StatementBlock] | GuardOp StatementBlock)
550. ElseStatement ::= "["ElseKeyword "]" StatementBlock

ETSI

198 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

551. AltGuardChar ::= "[" [BooleanExpression] "]"
552. GuardOp ::= TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement
553. InterleavedConstruct ::= InterleavedKeyword "{" InterleavedGuardList "}"
554 . InterleavedKeyword ::= "interleave"
555. InterleavedGuardList ::= {InterleavedGuardElement [SemiColon] }+
556. InterleavedGuardElement ::= InterleavedGuard InterleavedAction
557. InterleavedGuard ::= "[" "]" GuardOp
558. InterleavedAction ::= StatementBlock
559. LabelStatement ::= LabelKeyword LabelIdentifier
560. LabelKeyword ::= "label"
561. LabelIdentifier ::= Identifier
562. GotoStatement ::= GotoKeyword LabelIdentifier
563. GotoKeyword ::= "goto"
564 . RepeatStatement ::= "repeat"
565. ActivateOp ::= ActivateKeyword " (" AltstepInstance ")"
566. ActivateKeyword ::= "activate"
567. DeactivateStatement ::= DeactivateKeyword [" (" ComponentOrDefaultReference ")"]
568. DeactivateKeyword ::= "deactivate"
569. BreakStatement ::= "break"
570. ContinueStatement ::= "continue"

A.1.6.8 Basic statements

571. BasicStatements ::= Assignment | LogStatement | LoopConstruct | ConditionalConstruct
SelectCaseConstruct

572. Expression ::= SingleExpression | CompoundExpression

573. CompoundExpression ::= FieldExpressionList | ArrayExpression

/* STATIC SEMANTICS - Within CompoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */

574. FieldExpressionList ::= "{" FieldExpressionSpec {"," FieldExpressionSpec} "}"
575. FieldExpressionSpec = FieldReference AssignmentChar NotUsedOrExpression
576 . ArrayExpression ::= "{" [ArrayElementExpressionList] "}"

577. ArrayElementExpressionList ::= NotUsedOrExpression {"," NotUsedOrExpression}
578. NotUsedOrExpression ::= Expression | NotUsedSymbol

579. ConstantExpression ::= SingleConstExpression | CompoundConstExpression

580. SingleConstExpression ::= SingleExpression

/* STATIC SEMANTICS - SingleConstExpression shall not contain Variables or Module parameters and
shall resolve to a constant Value at compile time */

581. BooleanExpression ::= SingleExpression
/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */
582. CompoundConstExpression ::= FieldConstExpressionlList | ArrayConstExpression

/* STATIC SEMANTICS - Within CompoundConstExpression the ArrayConstExpression can be used for
arrays, record, record of and set of types. */

583. FieldConstExpressionList ::= "{" FieldConstExpressionSpec {"," FieldConstExpressionSpec} "}"
584. FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression

585. ArrayConstExpression ::= "{" [ArrayElementConstExpressionList] "}"

586. ArrayElementConstExpressionList ::= ConstantExpression {"," ConstantExpression}

587. Assignment ::= VariableRef AssignmentChar (Expression | TemplateBody)

/* STATIC SEMANTICS - The Expression on the right hand side of Assignment shall evaluate to an
explicit value of a type compatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, template (literal or a template instance) or a matching
mechanism compatible with the type of the left hand side for template variables. */

588. SingleExpression ::= XorExpression { "or" XorExpression }

/* STATIC SEMANTICS - If more than one XorExpression exists, then the XorExpressions shall evaluate
to specific values of compatible types */

589. XorExpression ::= AndExpression { "xor" AndExpression }

/* STATIC SEMANTICS - If more than one AndExpression exists, then the AndExpressions shall evaluate
to specific values of compatible types */

590. AndExpression ::= NotExpression { "and" NotExpression }

/* STATIC SEMANTICS - If more than one NotExpression exists, then the NotExpressions shall evaluate
to specific values of compatible types */

591. NotExpression ::= ["not"] EqualExpression

/* STATIC SEMANTICS - Operands of the not operator shall be of type boolean or derivatives of type
Boolean. */

592. EqualExpression ::= RelExpression { EqualOp RelExpression }

/* STATIC SEMANTICS - If more than one RelExpression exists, then the RelExpressions shall evaluate
to specific values of compatible types */

593. RelExpression ::= ShiftExpression [RelOp ShiftExpression]

ETSI

199 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

/* STATIC SEMANTICS - If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enumerated or float Value or derivatives of these types */
594. ShiftExpression ::= BitOrExpression { ShiftOp BitOrExpression }
/* STATIC SEMANTICS - Each Result shall resolve to a specific Value. If more than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift op is "<<" or ">>"
then the left-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift op is "<@" or "@>" then the left-hand operand shall be of
type bitstring, hexstring, octetstring, charstring, universal charstring, record of, set of, or
array, or derivatives of these types */
595. BitOrExpression ::= BitXorExpression { "or4b" BitXorExpression }
/* STATIC SEMANTICS - If more than one BitXorExpression exists, then the BitXorExpressions shall
evaluate to specific values of compatible types */
596. BitXorExpression ::= BitAndExpression { "xor4b" BitAndExpression }
/* STATIC SEMANTICS - If more than one BitAndExpression exists, then the BitAndExpressions shall
evaluate to specific values of compatible types */
597. BitAndExpression ::= BitNotExpression { "and4b" BitNotExpression }
/* STATIC SEMANTICS - If more than one BitNotExpression exists, then the BitNotExpressions shall
evaluate to specific values of compatible types */
598. BitNotExpression ::= ["not4b"] AddExpression
/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */
599. AddExpression ::= MulExpression { AddOp MulExpression }
/* STATIC SEMANTICS - Each MulExpression shall resolve to a specific Value. If more than one
MulExpression exists and the AddOp resolves to StringOp then the MulExpressions shall be valid
operands for StringOp. If more than one MulExpression exists and the AddOp does not resolve to
StringOp then the MulExpression shall both resolve to type integer or float or derivatives of these
types.*/
600. MulExpression ::= UnaryExpression { MultiplyOp UnaryExpression }
/* STATIC SEMANTICS - Each UnaryExpression shall resolve to a specific Value. If more than one
UnaryExpression exists then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */
601. UnaryExpression ::= [UnaryOp] Primary
/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/
602. Primary ::= OpCall | Value | " (" SingleExpression ")"
603. ExtendedFieldReference ::= { (Dot (StructFieldIdentifier | TypeDefldentifier))

| ArrayOrBitRef }+
/* STATIC SEMANTIC - The TypeDefIdentifier shall be used only if the type of the VarInstance or
ReferencedValue in wich the ExtendedFieldReference is used is anytype.*/

604. OpCall ::= ConfigurationOps |
VerdictOps |
TimerOps |
Testcaselnstance |
FunctionInstance |
TemplateOps |
ActivateOp
605. AddOp ::= "+" | "-" | StringOp
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
606. MultiplyOp ::= "*" | /" | "mod" | "rem"
/* STATIC SEMANTICS - Operands of the "*", "/" rem or mod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange) */
607. UnaryOp ::= "+" | m-n
/* STATIC SEMANTICS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
608. Relop sz Nem | non | L] | Ne=n

/* STATIC SEMANTICS - the precedence of the operators is defined in Table 6 */

609. EqualOp ::= "==" | "i="

610. StringOp ::= "&"

/* STATIC SEMANTICS - Operands of the list operator shall be bitstring, hexstring, octetstring,
(universal) character string, record of, set of, or array types, or derivates of these types */
611. ShiftOp ::= "<<" | ">>" | "<@" | "@>"

612. LogStatement ::= LogKeyword " (" LogItem { "," LogItem } ")"
613. LogKeyword ::= "log"
614. LoglItem ::= FreeText | TemplateInstance
615. LoopConstruct ::= ForStatement |
WhileStatement |
DoWhileStatement
616. ForStatement ::= ForKeyword " (" Initial SemiColon Final SemiColon Step ")"
StatementBlock
617. ForKeyword ::= "for"
618. Initial ::= VarInstance | Assignment
619. Final ::= BooleanExpression
620. Step ::= Assignment
621. WhileStatement ::= WhileKeyword " (" BooleanExpression ")"
StatementBlock
622. WhileKeyword ::= "while"
623. DoWhileStatement ::= DoKeyword StatementBlock

ETSI

200 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

WhileKeyword " (" BooleanExpression ")"

624 . DoKeyword ::= "do"
625. ConditionalConstruct ::= IfKeyword " (" BooleanExpression ")"

StatementBlock

{ElseIfClause} [ElseClause]
626. IfKeyword ::= "if"
627. ElseIfClause ::= ElseKeyword IfKeyword " (" BooleanExpression ")" StatementBlock
628. ElseKeyword ::= "else"
629. ElseClause ::= ElseKeyword StatementBlock
630. SelectCaseConstruct ::= SelectKeyword " (" SingleExpression ")" SelectCaseBody
631. SelectKeyword ::= "select"
632. SelectCaseBody ::= "{" { SelectCase }+ "}"
633. SelectCase ::= CaseKeyword (" (" Templatelnstance {"," TemplateInstance } ")" | ElseKeyword)

StatementBlock

634 . CaseKeyword ::= "case"

A.1.6.9 Miscellaneous productions

635. Dot ::= "."

636. Dash ::= "-"

637. Minus ::= Dash
638. SemiColon ::= ";"
639. Colon ::= ":"

640. Underscore ::= "_"
641. AssignmentChar ::= ":="

ETSI

201 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex B (normative):
Matching incoming values

B.1 Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, atemplate field matches the
corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template eval uates.

EXAMPLE:

// Given the message type definition
type record MyMessageType

{

integer fieldl,
charstring field2,
boolean field3 optional,

integer[4] field4

}

// A message template using specific values could be
template MyMessageType MyTemplate:=

{

fieldl := 3+2, // specific value of integer type
field2 := "My string", // specific value of charstring type
field3 := true, // specific value of boolean type
fieldsa := {1,2,3} // specific value of integer array

}

B.1.1.1 Omitting values

The keyword omi t denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional.

EXAMPLE:

template Mymessage MyTemplate:=

{

field3 := omit, // omit this field

B.1.2 Matching mechanisms instead of values

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Value list

Vaue lists specify lists of acceptable incoming values. It can be used on values of all types. A value list may also
contain templates. A template field that uses a value list matches the corresponding incoming field if, and only if, the
incoming field value matches any one of the values or templatesin the value list. Each value or template in the value list
shall be of the type declared for the template field in which this mechanism is used.

ETSI

202 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE:

template Mymessage MyTemplate:=

{
fieldl :
field2 :

(2,4,6), // list of integer values
("Stringl", "String2"), // list of charstring values

B.1.2.2 Complemented value list

The keyword complement denotesalist of valuesthat will not be accepted asincoming values (i.e. it isthe
complement of avaluelist). It can be used on al values of all types. A complemented value list may also contain
templates.

Each value or template in the list shall be of the type declared for the template field in which the complement is used. A
template field that uses complement matches the corresponding incoming field if and only if the incoming field does not
match any of the values or templates listed in the value list. The value list may be a single value, of course.

EXAMPLE:
template Mymessage MyTemplate:=
{

complement (1,3,5), // list of unacceptable integer values

field3 not (true) // will match false

B.1.2.3 Any value

The matching symbol "?* (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, theincoming field evaluates to a single element of the specified type.

EXAMPLE:

template Mymessage MyTemplate:=

{

fieldl := ?, // will match any integer

field2 := ?, // will match any non-empty charstring value
field3 := ?, // will match true or false

field4 := 7 // will match any sequence of integers

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if the incoming field is absent.

EXAMPLE:

template Mymessage MyTemplate:=
{ .

field3 := *, // will match true or false or omitted field

ETSI

203 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values. When used for values of integer or £loat types (and integer
or float sub-types). A boundary value shall be either:

a) infinity or -infinity;
b) anexpression that evaluates to a specific integer or float value.

The lower boundary shall be put on the |eft side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, the incoming field value is equal to one of the valuesin the range.

When used in templates or template fields of charstring or universal charstring types, the boundaries
shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid
values of the specified range.

EXAMPLE:

template Mymessage MyTemplate:=

{

fieldl := (1 .. 6), // range of integer type

}

// other entries for fieldl might be (-infinity to 8) or (12 to infinity)

B.1.2.6 SuperSet

SuperSet is an operation for matching that shall be used only on values of set of types. SuperSet is denoted by the
keyword superset. A field that uses SuperSet matches the corresponding incoming field if, and only if, the incoming
field contains at least al of the elements defined within the SuperSet, and may contain more. The argument of SuperSet
shall be of the type declared for the field in which the SuperSet mechanism is used. This argument must not contain
templates.

EXAMPLE:

type set of integer MySetOfType;
template MySetOfType MyTemplatel := superset (1, 2, 3);

// any sequence of integers matches which contains at least one occurrences of the numbers
/ 1, 2 and 3 in any order and positions

B.1.2.7 SubSet

SubSet is an operation for matching that can be used only on values of set of types. SubSet is denoted by the
keyword subset.

A field that uses SubSet matches the corresponding incoming field if, and only if, the incoming field contains only
elements defined within the SubSet, and may contain less. The argument of SubSet shall be of the type declared for the
field in which the SubSet mechanism is used. This argument must not contain templates.

EXAMPLE:

template MySetOfType MyTemplatel:= subset (1, 2, 3);
// any sequence of integers matches which contains zero or one occurrences of the numbers
// 1, 2 and 3 in any order and positions

ETSI

204 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.1.3 Matching mechanisms inside values

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.

B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), arecord of,aset of or anarray. It shall be used only within values of string types, record of types,
set of typesand arrays.

EXAMPLE:

template Mymessage MyTemplate:=
{ .

field2 :

= "abcxyz",
field3 := '10???'B, // where each "?" may either be 0 or 1
field4 := {1, ?, 3} // where ? may be any integer value

}

NOTE: The"?'infield4 canbeinterpreted as AnyValue as an integer value, or AnyElement inside arecord
of, set of or array. Since both interpretations lead to the same match no problem arises.

B.1.3.1.1 Using single character wildcards

If it isrequired to expressthe "?' wildcard in character stringsit shall be done using character patterns
(see clause B.1.5). For example: "abcdxyz", "abcexyz" "abexxyz" etc. will all match pattern "abc?xyz". However,
"abcxyz", "abedefxyz”, etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any humber of consecutive
elements of a string (except character strings), arecord of,aset of or anarray. The"*" symbol matchesthe
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

EXAMPLE:

template Mymessage MyTemplate:=
{ .

field2 :

= "abcxyz",
field3 := '10%11'B, // where "*" may be any sequence of bits (possibly empty)
field4 := {*, 2, 3} // where "*"may be any number of integer values or omitted

}

var charstring MyStrings[4];
MyPCO.receive (MyStrings: {"abyz", *, "abc" });

If a"*" appears at the highest level inside astring, arecord of, set of or array, it shall beinterpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOr None that replaces an
dement insde astring, record of, set of or array.

B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns
(see clause B.1.5). For example: "abexyz", "abedefxyz" "abcabexyz" etc. will all match pattern "abc*xyz".

ETSI

205 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on values of record of types. Permutationis
denoted by the keyword permutation. Expressions and AnyElement and AnyElementsOrNone are allowed as
permutation elements. Each element listed in the permutation shall be of the type replicated by the record of type.

Permutation in place of a single element means that any series of elements is acceptable provided it contains the same
elements as the value list in the permutation, though possibly in a different order. If both permutation and
AnyElementsOrNone are used inside avalue, they shall be evaluated jointly.

AnyElementsOrNone used inside permutation replaces none or any number of elements within the segment of the record
of value matched by permutation. AnyElementsOrNone used inside a permutation shall be evaluated last (when all other
elements of the permutation list have matched an element in the evaluated list already).

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOr None replaces consecutive elements only.
For example, {permutation(1,2,*)} isequivaent to ({*,1,*,2,*} {*,2,*,1,*}), while
{permutation(1,2),*} isequivalent to ({1,2},{2,1} *).

NOTE 2: When AnyElementsOrNone is used in conjunction with permutation a length attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1). On the contrary, no length attribute is to be added to AnyElementsOrNone used inside a
permutation (but can be applied to the whole permutation instead).

EXAMPLE:
type record of integer MySequenceOfType;
template MySequenceOfType MyTemplatel := { permutation (1, 2, 3), 5 };
// matches any of the following sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
// 2,3,1,5; 3,1,2,5; or 3,2,1,5
template MySequenceOfType MyTemplate2 := { permutation (1, 2, ?), 5 };

// matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at least once in
// other positions

template MySequenceOfType MyTemplate3 := { permutation (1, 2, 3), * };

// matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1
template MySequenceOfType MyTemplate4 := { *, permutation (1, 2, 3)};

// matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

template MySequenceOfType MyTemplate5 := { *, permutation (1, 2, 3),* };
// matches any sequence of integers containing any of the following substrings at any position:
// 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

template MySequenceOfType MyTemplate6 := { permutation (1, 2, *), 5 };
// matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
// other positions

template MySequenceOfType MyTemplate7 := { permutation (1, 2, 3), * length (0..5)};
// matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3;
// 3,1,2 or 3,2,1

2,3,1;

template MySequenceOfType MyTemplate9 := { permutation (1, 2, *) length (3..5), 5 };
// matches any sequence of four to six integers that ends with 5 and contains 1 and 2 at least
// once in other position

ETSI

206 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.1.4 Matching attributes of values

The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values matching the template and the number of
elementsinaset of, record of or array structure. It shall be used only as an attribute of the following
mechanisms: AnyValue, AnyValueOrNone, AnyElement and AnyElementsOrNone (but not inside permutation),
permutation, superset and subset. It can also be used in conjunction with the complement matching mechanism and with
the i fpresent attribute. The syntax for Length can be found in clauses 6.2.3 and 6.3.3.

When both the complement and the length restriction matching mechanisms are used for atemplate or template field,
restrictionsimplied by them shall apply to the template or template field independently.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of, record of typesand arrays the unit of length is the replicated type. The boundaries
shall be denoted by expressions which resolve to specific non-negative integer values. Alternatively, the keyword
infinity can beused asavalue for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses length as an attribute of a symbol matches the corresponding incoming field if, and only
if, the incoming field matches both the symbol and its associated attribute. The length attribute matchesif the length of
the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the
case of asingle length value the length attribute matches only if the length of the received field is exactly the specified
value.

It is allowed to use alength restriction in conjunction with the special value omi t, however in this case the length
attribute has no effect (i.e. with omit it is redundant). With AnyValueOrNone and i fpresent it places arestriction
on the incoming value, if any.

EXAMPLE:

template Mymessage MyTemplate:=

{

fieldl := complement ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,
// 5 or 6 elements is accepted provided it is not {4,5} or {1,4,8,9}

field2 := "ab*ab" length(13) // max length of the AnyElementsOrNone string is 9 characters

B.1.4.2 The IfPresent indicator

The i fpresent indicates that a match may be made if an optional field is present (i.e. not omitted). This attribute
may be used with all the matching mechanisms, provided the typeis declared as optional.

A template field that uses i fpresent matches the corresponding incoming field if, and only if, the incoming field
matches according to the associated matching mechanism, or if the incoming field is absent.

EXAMPLE:

template Mymessage:MyTemplate:=
{ .

field2 := "abcd" ifpresent, // matches "abcd" if not omitted

}

NOTE: AnyValueOrNone has exactly the same meaning as? ifpresent.

ETSI

207 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.1.5 Matching character pattern

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match charstring and universal charstring vaues. Inaddition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:
template charstring MyTemplate:= pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it isrequired to interpret any metacharacter literally it should be preceded with the metacharacter "\".
EXAMPLE 2:

template charstring MyTemplate:= pattern "ab?\?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters " ?xyz", followed by any number of any characters.

The list of meta characters for TTCN-3 patterns is shown in table B.1. Metacharacters shall not contain whitespaces
except a whilespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number
of characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3).

When preceding a character without defined metacharacter meaning "\" and the
character together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details

- Has a metacharacter meaning inside a pair of square brackets ("[" and "1") only,
except the first and last positions within the bracket. Allows to specify a range of
characters; see clause B.1.5.1 for more details

N Has a metacharacter meaning as the first character following the opening square
bracket inside a pair of square brackets ("[' and "]") only and cause to match any
character complementing the set of characters following this metacharacter;

see clause B.1.5.1 for more details

\q{group,plane,row,cell} Match the Universal character specified by the quadruple
{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
\N{reference} Match any character within the set of characters, where the set is defined by the
referenced definition; see clause B.1.5.4 for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT(9) (see ISO/IEC 6429 [12])
\n Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13)
(see ISO/IEC 6429 [12]) (jointly called newline characters)
\r Match the CO control character CR (see ISO/IEC 6429 [12])
\s Match any one of the following CO control characters: HT(9), LF(10), VT(11),

FF(12), CR(13), SP(32) (see ISO/IEC 6429 [12], ISO/IEC 646 [11]) (jointly called
white-space characters)

\b Match a word boundary (any graphical character except SP or DEL is preceded
or followed by any of the whitespace or newline characters)

\" Match the double quote character

Match the double guote character

| Used to denote two alternative expressions
() Used to group an expression

ETSI

208 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Metacharacter Description
#(n, m) Match the preceding expression at least n times but no more than m times
(postfix). See clause B.1.5.3 for more details
#n Match the previous expression exactly n times (where n is a single digit) (postfix);
the same as #(n)
+ Match the preceding expression one or several times (postfix); the same as #(1,)

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN
these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

NOTE 4: Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

B.1.5.1 Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expression is
delimited by the"[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and al characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character loses its special meaning.

The set expression can aso be negated by placing the caret """ character as the first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore ahyphen "-" immediately following a negating
caret "' shall be processed as aliteral character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:
. "1" not at the first position and not immediately following a"" at the first position;
. "-" not at thefirst or last positionsin thelist;
. "N at the first position in the list except when immediately followed by a closing square bracket;
o U\, A, M, M\, M\nt, M\st and M\b";
e "\g{group,planerow,cell}";
e "\N{reference} .

NOTE 1: Embedded lists are not allowed (for examplein pattern "[ab[r-z]]" the second "[" denotes aliteral "[", the
first"]" closesthelist and the second "]" causes an error as no related opening bracket in the pattern).

NOTE 2: Toincludealiteral caret character "~", place it anywhere except in the first position or precede it with a
backslash. To include aliteral hyphen"-", placeit first or last in the list, or precede it with a backslash.
Toinclude alitera closing square bracket "1", placeit first or precede it with a backdash. If the first
character inthe list isthe caret "*", then the characters " -" and "1" also match themselves when they
immediately follow that caret.

EXAMPLE:
template charstring RegExpl:= pattern "[a-z]"; // this will match any character from a to z
template charstring RegExp2:= pattern "[“a-z]"; // this will match any character except a to z

template charstring RegExp3:= pattern " [AC-E] [0-9] [0-9] [0-9]YKE";

ETSI

209 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

// RegExp3 will match a string which starts with the letter A or a letter between
// C and E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values it is also possible within the pattern to use references to existing templates, constants,
variables, formal parameters, or module parameters. The referenceis enclosed withinthe "{" "}" characters and
reference shall resolve to one of the character string types. Contents of the referenced templates, constants or variables
shall be handled as aregular expression. Each expression shall be dereferenced only once.

EXAMPLE 1:
const charstring MyString:= "ab?";

template charstring MyTemplate:= pattern "{MyString}";

This template would match any character string that consists of the characters "ab", followed by any character. In effect
any character string following the pattern keyword either explicitly or by reference will be interpreted following the
rules defined in this clause.

template universal charstring MyTemplatel:= pattern "{MyString}de\g{1, 1, 13, 7}";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "de", followed by the character in 1SO10646-1 with group=1, plane=1, row=13 and cell=7.

If areference expression refersto atemplate, constant or variable which contains one or more reference expressions,
then the references in the referred template, constant or variable shall recursively be dereferenced before inserting their
contents into the referring pattern.

EXAMPLE 2:
const charstring MyConst2 := "ab";
template charstring RegExpl := pattern "{MyConst2}";
// matches the string "ab"
template charstring RegExp2 := pattern "{RegExpl}{RegExpl}";
// matches the string "abab"
template charstring RegExp3 := pattern "c{RegExp2}d";

// matches the string "cababd"
template charstring RegExp4 := pattern "{Reg";
template charstring RegExp5 := pattern "Expl}";
template charstring RegExp6 := pattern "{RegExp4}{RegExp5}";
// matches the string "{RegExpl}" only (i.e. shall not be handled as a reference expression
// to the template RegExpl)

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n" or "+".. The form "#(n, m)" specifies that the preceding expression must
be matched at least n times but not more than m times. The metacharacter postfix "#(n,)" specifies that the preceding
expression must be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not
more than m times. Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression must be matched
exactly n times (they are equivalent to "#(n, n)"). In the form "#n" n shall be asingle digit. The metacharacter postfix
"+" denotes that the preceding expression must be matched at least 1 time (equivalent to "#(1,)").

EXAMPLE:
template charstring RegExp4:= pattern "[a-z]#(9, 11)"; // match at least 9 but no more than 11
// characters from a to z
template charstring RegExpba:= pattern "[a-z]#(9)"; // match exactly 9
// characters from a to z
template charstring RegExp5b:= pattern "[a-z]#9"; // match exactly 9
// characters from a to z
template charstring RegExp6:= pattern "[a-z]#(9,)"; // match at least 9
// characters from a to z
template charstring RegExp7:= pattern "[a-z]l#(, 11)"; // match no more than 11
// characters from a to z
template charstring RegExp8:= pattern "[a-z]+"; // match at least 1

// characters from a to z,

ETSI

210 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

B.1.5.4 Match a referenced character set

A notation of the form »\n{reference} », where reference is denoting a one-character-length template, constant, variable
or module parameter, matches the character in the referenced value or template.

Referencing atemplate, constant, variable or module parameter that is not of length 1 shall cause an error.

A notation of the form »\n{typereference}, where "typereference" isareferenceto acharstring or universal
charstring type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of charactersis not atrue subset of values allowed by the type definition of
the template or template field for which the character pattern is used, are not be treated as an error (but
€.g. matching never can occur if the two sets do not overlap).

NOTE 2: \N{charstring} isequivaent to ? when the latter is applied to a template or template field of
charstring typeand \N{universal charstring} isequivalentto ?when thelatter isapplied to
atemplate or template field of universal charstring type (but causesan error if applied to a
template or template field of charstring type).

EXAMPLE:
type charstring MyCharRange ("a".."z");
type charstring MyCharList ("a", "z");
const MyCharRange myCharR := "r";
template charstring myTempPattl := pattern "\N { myCharR }";

// myTempPattl shall match the string "r" only

template charstring myTempPatt2 := pattern "\N { MyCharRange }";
// myTempPatt2 shall match any string containing a single character from a to z

template MyCharRange myTempPatt3 := pattern "\N { MyCharList }";
// myTempPatt3 and shall match strings "a" and "r" only

template MyCharList myTempPatt4 := pattern "\N { MyCharRange }";
// myTempPatt4 shall match strings "a" and "r" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: areferenced type, template, constant, variable or module parameter of the type
charstring aways can be used in the pattern specification of atemplate or template field of universal
charstring type; areferenced type, template or value of thetypeuniversal charstring canbeusedinthe
pattern specification of atemplate or template field of charstring typeif al characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding charactersin the
charstring type (see definition of corresponding charactersin clause 6.3.1).

ETSI

211 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex C (normative):
Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures

When the general restrictions specified in clause 16.1.2 are not met, this shall cause a compile time or runtime error.
Error situations for which no explicit exception-handling rule is defined in the relevant clauses of this annex shall cause
a TTCN-3 compile-time or run-time error. Which error situation causes compile-time and which one run-time error isa
tool implementation option.

C.1 Integer to character

int2char (integer invalue) return charstring

Thisfunction converts an integer value in the range of 0 to 127 (8-bit encoding) into a single-character-length
charstring value. Theinteger value describes the 8-bit encoding of the character.

Error causes are:

o invalue islessthan O or greater than 127.

C.2 Integer to universal character

int2unichar (integer invalue) return universal charstring

This function converts an integer value in the range of 0 to 2 147 483 647 (32-bit encoding) into a
single-character-lengthuniversal charstring vaue Theinteger value describes the 32-bit encoding of the
character.

Error causes are:

o invalue islessthan O or greater than 2147483647.

C.3 Integer to bitstring

int2bit (in integer invalue, in integer length) return bitstring

Thisfunction convertsasingle integer valuetoasinglebitstring value. Theresulting string is 1length bits
long.

For the purposes of this conversion, abitstring shall beinterpreted as a positive base 2 integer vaue. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified in the Length parameter, then the
bitstring shall be padded on the left with zeros.

Error causes are:
. invalue islessthan zero.

e theconversion yields areturn value with more bits than specified by 1ength.

ETSI

212 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.4 Integer to hexstring

int2hex (in integer invalue, in integer length) return hexstring

Thisfunction convertsasingle integer valueto asingle hexstring value. Theresulting string is length
hexadecimal digitslong.

For the purposes of this conversion, ahexstring shall be interpreted as a positive base 16 integer vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the 1ength parameter, then the hexstring shall be padded on the left with zeros.

Error causes are:
. invalue islessthan zero.

e theconversion yields areturn value with more hexadecimal characters than specified by 1ength.

C.5 Integer to octetstring

int2oct (in integer invalue, in integer length) return octetstring

Thisfunction convertsasingle integer vaueto asingleoctetstring value. Theresulting string is length
octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit is least significant, the |eftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified in the 1ength parameter, then the hexstring shall be padded on the left with
ZEros.

Error causes are:
. invalue islessthan zero.

e theconversion yields areturn value with more octets than specified by 1ength.

C.6 Integer to charstring

int2str (integer invalue) return charstring
This function converts the integer value into its string equivalent (the base of the return string is always decimal).

The general error causesin clause 16.1.2 apply.

EXAMPLE:
int2str (66) // will return the charstring value "66"
int2str (-66) // will return the charstring value "-66"
int2str (0) // will return the charstring value "0"

ETSI

213 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.7 Integer to float

int2float (integer invalue) return float
Thisfunction convertsan integer valueinto a float value.
The general error causesin clause 16.1.2 apply.

EXAMPLE:

int2float (4) = 4.0

C.8 Float to integer

float2int (float invalue) return integer

Thisfunction convertsa f1oat value into an integer value by removing the fractional part of the argument and
returning the resulting integer.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

float2int (3.12345E2) = float2int (312.345) = 312

C.9 Character to integer

char2int (charstring invalue) return integer

This function converts a single-character-length charstring valueinto an integer value in the range of 0to 127. The
integer val ue describes the 8-bit encoding of the character.

Error causes are:

e length of invalue doesnot equal 1.

C.10 Character string to octetstring

char2oct (charstring invalue) return octetstring

Thisfunction convertsacharstring invalue to an octetstring. Each octet of the octetstring will
contain the I SO/IEC 646 [11] codes (according to the IRV) of the appropriate characters of invalue.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

char2oct ("Tinky-Winky") = '54696E6B792D57696E6B79'0

C.11 Universal character to integer

unichar2int (universal charstring invalue) return integer

This function converts asingle-character-length universal charstring vaueinto aninteger value in the range of
0to 2 147 483 647. The integer value describes the 32-bit encoding of the character.

Error causes are:

ETSI

214 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

. length of invalue doesnot equal 1.

C.12 Bitstring to integer
bit2int (bitstring invalue) return integer
Thisfunction convertsasinglebitstring valueto asingle integer value.

For the purposes of this conversion, abitstring shall be interpreted as a positive base 2 integer vaue. The
rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

NOTE: Onreal test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.13 Bitstring to hexstring

bit2hex (bitstring invalue) return hexstring

Thisfunction convertsasinglebitstring valueto asingle hexstring. Theresulting hexstring represents the
samevalue asthebitstring.

For the purpose of this conversion, abitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit as follows:

'0000B — '0'H, '0001'B — '1'H, '0010B — '2'H, '0011B — '3'H, '0100B — '4'H, '0101'B — '5'H,
'0110B — '6'H, '0111'B — '7'H, '1000B — '8H, '1001B — '9'H, '1010B — 'A'H, '1011'B — 'B'H,
'1100B — 'CH, '1101'B — 'D'H, '1110B — 'E'H, and '1111'B — 'F'H.

When the leftmost group of bits does contain less than 4 bits, this group isfilled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2hex ('111010111'B)= '1lD7'H

C.14 Bitstring to octetstring

bit2oct (bitstring invalue) return octetstring

Thisfunction convertsasinglebitstring valueto asingle octetstring. Theresulting octetstring
represents the samevalue asthebitstring.

For the conversion the following holds: bit2oct(val ue)=hex2oct(bit2hex(val ue)).
The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2oct ('111010111'B)= '01D7'0

ETSI

215 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.15 Bitstring to charstring

bit2str (bitstring invalue) return charstring

Thisfunction convertsasinglebitstring vauetoasinglecharstring. Theresulting charstring hasthe
samelength asthebitstring and contains only the characters'0' and '1'.

For the purpose of this conversion, abitstring should be converted into acharstring. Each bit of the
bitstring isconverted into acharacter '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of
charactersin theresulting charstring isthe same asthe order of bitsinthebitstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

bit2str ('1110101'B) will return "1110101"

C.16 Hexstring to integer
hex2int (hexstring invalue) return integer
Thisfunction convertsasingle hexstring valueto asingle integer value.

For the purposes of this conversion, ahexstring shall be interpreted as a positive base 16 integer vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively.

NOTE: Onreal test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.17 Hexstring to bitstring

hex2bit (hexstring invalue) return bitstring

Thisfunction convertsasingle hexstring valueto asinglebitstring. Theresulting bitstring representsthe
same value asthe hexstring.

For the purpose of this conversion, ahexstring shal be converted into abitstring, where the hex digits of the
hexstring are converted in groups of bits as follows:

'0H — '0000B, '1'H — '0001'B, '2H — '0010'B, '3'H — '0011'B, '4H — '0100B, '5'H — '0101B,
'6'H — '0110B, '7'H — '0111'B, '8H — '1000B, '9H — '1001'B, 'A'H — '1010B, 'B'H — '1011'B,
'CH — '1100B, 'D'H — '1101'B, 'E'H — '1110'B, and 'FH — '1111'B.

The consecutive order of the groups of 4 bitsin theresulting bitstring isthe same asthe order of hex digitsin the
hexstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2bit ('1D7'H)= '000111010111'B

C.18 Hexstring to octetstring

hex2oct (hexstring invalue) return octetstring

Thisfunction convertsasingle hexstring valueto asingle octetstring. Theresulting octetstring
represents the same value asthe hexstring.

ETSI

216 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

For the purpose of this conversion, ahexstring shal be converted into aoctetstring, wherethe
octetstring contains the same sequence of hex digits asthe hexstring when the length of the hexstring
modulo 2 is 0. Otherwise, the resulting octetstring contains 0 as leftmost hex digit followed by the same sequence
of hex digitsasinthe hexstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2oct ('1D7'H)= '01D7'0O

C.19 Hexstring to charstring

hex2str (hexstring invalue) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters'0' to '9'and 'A' to 'F'.

For the purpose of this conversion, ahexstring should be converted into acharstring. Each hex digit of the
hexstring isconverted into a character '0'to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin the resulting charstring isthe same as the order of digitsin the
hexstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

hex2str ('AB801'H) will return "AB8O1"

C.20 Octetstring to integer

oct2int (octetstring invalue) return integer
Thisfunction convertsasingle octetstring valueto asingle integer vaue.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16 integer value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively.

NOTE: Onreal test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

C.21 Octetstring to bitstring

oct2bit (octetstring invalue) return bitstring

Thisfunction convertsasingle octetstring valueto asinglebitstring. Theresulting bitstring represents
the samevalue astheoctetstring.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).
The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2bit ('01D7'0)='0000000111010111'B

ETSI

217 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.22 Octetstring to hexstring

oct2hex (octetstring invalue) return hexstring

Thisfunction convertsasingle octetstring valueto asingle hexstring. Theresulting hexstring represents
the samevalue astheoctetstring.

For the purpose of this conversion, aoctetstring shall be converted into ahexstring containing the same
sequence of hex digitsasthe octetstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2hex ('1D74'0O)= '1lD74'H

C.23 Octetstring to character string

oct2str (octetstring invalue) return charstring

Thisfunction convertsan octetstring invalue to an charstring representing the string equivalent of the
input value. Theresulting charstring shall have the same length asthe incoming octetstring.

For the purpose of this conversion each hex digit of invalue isconverted into acharacter '0', '1', '2', '3, '4','5', '6', '7,
'8,'9", ‘A", 'B','C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of charactersin the resulting
charstring isthe sameasthe order of hex digitsinthe octetstring.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2str ('4469707379'0) = "4469707379"

C.24 Octetstring to character string, version Il

oct2char (octetstring invalue) return charstring

Thisfunction convertsan octetstring invalue to acharstring. Theinput parameter invalue shall not
contain octet values higher than 7F. Theresulting charstring shall have the same length as the input
octetstring. Theoctets are interpreted as | SO/IEC 646 [11] codes (according to the IRV) and the resulting
characters are appended to the returned value.

The general error causesin clause 16.1.2 apply.

EXAMPLE:

oct2char ('4469707379'0) = "Dipsy"

NOTE: The character string returned may contain non-graphical characters, which can not be presented between
the double quotes.

ETSI

218 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.25 Charstring to integer

str2int (charstring invalue) return integer
Thisfunction convertsacharstring representing an integer valueto the equivaent integer.
Error causes are:
o invalue contains characters other than "0", "1, "2","3","4","5","6","7","8","9" and "-".
. invalue containsthe character "-" at another position than the leftmost one.

NOTE: Onreal test systems the integer interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE:
str2int ("66") // will return the integer value 66
str2int ("-66") // will return the integer value -66
str2int ("6-6") // will cause an error
str2int ("abc") // will cause an error
str2int ("0O") // will return the integer value 0

C.26 Character string to octetstring

str2oct (charstring invalue) return octetstring
This function converts a string of thetype charstringto anoctetstring. Thestring invalue shall contain
a/m number Chara:ters and ea:h g,]a“ be One Of the IIOII' Illll, ||2||’ ||3||’ ||4||, ||5||, "6"' Il7ll, "8", Il9ll' Ila:I, Ilbll' IICII, lldll' Ilell
“f*, AN B, "CH, DY, "E" or "F' graphical characters only. The resulting octetstring will have the same length
astheincoming charstring.

Error causes are:
. invalue contains characters other than specified above.
. invalue contains odd number of characters.

EXAMPLE:

str2oct ("54696E6B792D57696E6B79") = '54696E6B792D57696E6B79'0

C.27 Character string to float

str2float (charstring invalue) return float

This function converts a char string comprising a number into afloat value. The format of the number in the
char string shall follow rulesin clause 6.1.0, items @) or b) with the following exceptions:

. leading zeros are allowed;

. leading "+" sign before positive valuesis allowed,;

e "-0.0"isalowed;

. no numbers after the dot in the decimal notation are allowed.

Error causes are:

ETSI

219 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

. the format of invalue is different than defined above.

NOTE: Onreal test systems the float interpretation of invalue may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

EXAMPLE:
str2float ("12345.6") // 1is the same as str2float ("123.456E+02")
str2float ("1.6") // returns a float value equal to 1.6

str2float ("+001") // returns a float value equal to 1.0

(
(
str2float ("+001.") // returns a float value equal to 1.0
(
str2float ("-0.0") // returns a float value equal to 0.0

C.28 Length of strings and lists

lengthof (template any string or list type inpar) return integer

This function returns the length of avaue or template that is of typebitstring, hexstring, octetstring,
charstring, universal charstring, record of, set of, or aray (seethe note below). The units of
length for each string type are defined in table 4 in the main body of the present document. For record of, set of,
and array the value to be returned is the sequential number of the last initialized el ement (index of that element plus 1).

Thelength of afixed length record of, set of, or array value will always be the fixed length according to the type
definition.

The length of an universal char string shall be calculated by counting each combining character and hangul syllable
character (including fillers) on its own (see ISO/IEC 10646 [9], clauses 23 and 24).

When the function 1engthof isapplied to string-type templates, inpar shall only contain the following matching
mechanisms: specific value, value list, complemented value list, pattern, "?" (AnyValue instead of value), "*"
(AnyValueOrNone instead of value), "?' (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the
length restriction matching attribute. In case of string-type templates inpar shall match values of the same length only.

When the function 1engthof£ isapplied to templates of record of or set of types, inpar shall only contain the
following matching mechanisms: specific value, value list, complemented value list, "?" (AnyValue instead of value),
"*" (AnyValueOrNone instead of value), SuperSet, SubSet, "?' (AnyElement inside value) and "*"
(AnyElementsOrNone inside value), permutattion and the length restriction matching attribute. The parameter inpar
shall only match values, for which the Lengtho £ function would give the same result.

NOTE 1: In case of record ofs and set ofs and arrays only elements of the TTCN-3 object, which is the parameter of
the function are calculated; i.e. no elements of nested types are taken into account at determining the
return value.

Error causes are:

. inpar isastring-type template and it can match string values with different length or the length restriction
matching attribute contradicts the number of string elements in the template body.

. inpar isa record of or set of type template and it can match values of different lengths or the length
restriction matching attribute contradicts the number of elementsin the template body.

NOTE 2: Onreal test systems the length calculation of inpar may lead to an overflow problem that causes
compile time or run-time error. However, thisis out of the scope of the present document.

The general error causesin clause 16.1.2 apply.

EXAMPLE 1. Using lengthof for values.

lengthof ('010'B) // returns 3
lengthof ('F3'H) // returns 2
lengthof ('F2'0) // returns 1
lengthof (universal charstring : "Length of Example") // returns 17

ETSI

220 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

// Given
type record length(0..10) of integer MyList;
var MyList MyListvar := { 0, 1, -, 2, - };

lengthof (MyListVar) ;
// returns 4 without respect to the fact, that the element MyListVar[2] is not initialized

EXAMPLE 2: Using lengthof for string-type templates.

lengthof (charstring : "HELLO") // returns 5
lengthof (octetstring : (’12’'0, '34'0)) // returns 1
lengthof ('1??1'B) // returns 4

lengthof (universal charstring : ? length(8)) // returns 8
lengthof (' 1*F'H) // shall cause an error
lengthof (' 1*F'H length (8)) // returns 8

lengthof (bitstring : ? length(2..infinity)) // shall cause an error

lengthof (' 00*FF’'0O length(1..2)) // returns 2

lengthof ('1*49'H length(1l..2)) // shall cause an error

lengthof ('1’B length(3)) // shall cause an error

lengthof ('1*1’B length(10..20)) // shall cause an error
EXAMPLE 3;

type record of integer RoOI;

template RoI tr roIl { 1, permutation(2, 3), 2 }
template RoI tr roI2 1, *, (2, 3) }

template RoI tr rol3 *, 10 } length(5)
template RoI tr rol4 2, 3, * } length(1..2)
template RoI tr roI5 : 2, 3, * } length(1..3)

lengthof (tr rolIl) // returns 4
lengthof (tr roI2) // shall cause an error
lengthof (tr rolI3) // returns 5
lengthof (tr roI4) // shall cause an error

lengthof (tr roI5) // returns 3

C.29 Number of elements in a structured value

sizeof (template any record set type inpar) return integer

This function returns the actual number of elements of avalue or template of arecord or set type (see note). In the
caseof record of and set of vaues, templates or arrays, the actual value to be returned is the sequential number
of the last defined element (index of that element plus 1).

The function sizeof isapplicable to templates of record and set types. The function is applicable only if the sizeof
function gives the same result on all values that match the template.

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/val ues are taken into account at determining the return value.

Error causes are:

e when inpar isatemplate and it can match values of different sizes.

ETSI

221

EXAMPLE:

// Given
type record MyPDU
{ ©boolean fieldl
integer field2
}i

template MyPDU MyTemplate
{ fieldl := omit,
field2 := 5

bi

sizeof (MyTemplate) ;

optional,

// returns 1

type set S {
integer f1,
bitstring f2 optional,
charstring f3 optional

}

template
template
template
template

1 (0..99),
3 := *, f1 :=
f1 := 1, f2 :=

tr_Ss1 :=
tr_S2 :=
tr S3 :=
tr S4 :=

f2 :=
1, f2

omit, f3

O

S
S
S
S

//
!/
/!
//

returns 2
shall cause an error
returns 2
shall cause an error

sizeof
sizeof
sizeof
sizeof

tr_si
tr_S2
tr_S3
tr_s4

)
)
)
)

omit,

£3

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

:= 7 }
:= '00'B ifpresent }
:= "AB

cr }, { £1 := 2, £3 := omit, f2 := '1'B })

C.30 The IsPresent function

ispresent (template any record or set type field inpar)

return boolean

Thisfunction is alowed for record and set types only and returns the value true if and only if the value of the
referenced field is present in the actual instance of the referenced data object. The argument to ispresent shal bea

reference to afield of arecord or set type.

Thefunction ispresent isapplicable to optional fields of arecord or set templates. It returns true if inpar
matches only value fields that are present. The returned value is £alse if the inpar matches only value fields that are

omitted.

Error causes are:

. inpar isreferring to afield that is not accessible, e.g. embedded in atemplate or in afield using omit, "?"
(AnyValue) or "*" (AnyValueOrNone). Note, that this rule apply for any levels of embedding.

e when inpar isatemplate and it can match both present and omitted value fields.

EXAMPLE:

// Given
type record MyRecord

record ({
boolean innerFieldl optional,
integer innerField2 optional
} fieldl optional,
integer field2
}

var MyRecord vl MyRecord := { field1l :=

ispresent (vl _MyRecord.fieldl) // returns true
vl MyRecord.fieldl := omit
ispresent (vl _MyRecord.fieldl) // returns false

ispresent (vl _MyRecord.fieldl.innerFieldl)

{}, field2 :=

ETSI

5}

// shall cause an error because fieldl is omitted

var template MyRecord vlt_ MyRecord :

ispresent (vlt_MyRecord.fieldl)

ispresent (vlt_MyRecord.fieldl.innerFieldl)

note

// (pls.

{ fieldl := 2,

222

= ?, field2

// returns true

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

5}

// shall cause an error because fieldl is AnyValue
, that at expansion of fieldl the optional field innerFieldl obtains "*"
// that can match both a present and an omitted field

type record R { integer f1 optional, integer f2 optional }

template R tl
template R t2
template R t3
ispresent (tl.
ispresent (tl.
ispresent (t2
ispresent (t2

ispresent (t3

ispresent (t3

L£1)

L£2)

L£1)

L£2)

{f1
{ f1
{f1

=1, f2
omit,
f2

(2
f2

:=? }

returns true

= *
. ’

!/
!/
!/
!/
!/
!/

returns true

returns false

returns true

4) }
(5, 7

shall cause anerror

shall cause anerror

) ifpresent }

C.

31 The IsChosen function

ischosen (template any union type inpar)

re

turn boolean

Thisfunction returns the value true if and only if the data object reference specifies the variant of the union type that
is actually selected for a given data object.

The function i schosen is applicable to templates of union types containing a specific value or avalue list. It returns
true if al the values matched by inpar have the given field selected. Theresult is f£alse if thereisanother field of
the union type on which i schosen would return true.

Error causes are:

EXAMPLE 1.
type union
template U t
template U t |
template U t_
template U t_
template U t

inpar isreferring to afield that is not accessible, e.g. embedded in atemplate or in afield using omit, "?'
(AnyValue) or "*" (AnyValueOrNone). Note, that this rule apply for any levels of embedding.

when inpar isatemplate and it can match values containing different selected fields

ischosen(t_Ul

ischosen (t_Ul.

ischosen (t_U2
ischosen (t_U2
ischosen (t_U3
ischosen (t_U3
ischosen (t_U4

ischosen (t_U4

ischosen (t_US5.

ischosen (t_US5.

L£1)

£2)

L£1)

.£2)

L£1)

.£2)

L£1)

.£2)

£1)

£2)

{
= ?
(
(

{f1
£2

1}

?}

{ f1
{ £2

2},

// returns true
// returns false
!/
!/
!/
!/
!/
!/
!/

/!

returns false

returns true

shall cause an
shall cause an
shall cause an
shall cause an

returns false

returns true

{£2
1122’0 },

A
{ £2

error

error

error

error

U { integer fl, octetstring f2 }

}

B'O
= '*34'0 length(2)

ETSI

}

223 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 2:

// Given
type union MyUnion
{ PDU typel pl,
PDU_type2 p2,
PDU_type p3

}

// and given that MyPDU is a template of MyUnion type

// and received PDU is also of MyUnion type

// then

MyPort .receive (MyPDU) -> value received PDU

ischosen (received PDU.p2)

// returns true if the actual instance of MyPDU carries a PDU of the type PDU_type2

C.32 The Regexp function

regexp (
in template any character string type inpar,
in template any character string type expression,
integer groupno

) return any character string type

This function returns the substring of the input character string inpar, which is the content of n-th group matching to
the expression. Theparameters inpar and expression shal beavaue or atemplate of charstring or
universal charstring types. Incase inpar isatemplate, it shall contain the specific value matching
mechanism only. The type of expression shal beuniversal charstring only whenthetype of inpar is
universal charstring. When expression isatemplateit shall contain the specific value or pattern matching
mechanisms only. The parameter groupno shall be a non-negative integer. The type of the character string returned is
the root type of inpar.

First inpar (orin case inpar isatemplate, its value equivalent) shall be matched against expression. If
expression isnot atemplate containing a pattern matching mechanism, it shall be processed by this predefined
function asif it was a character pattern as described in clause B.1.5. If this matching is unsuccessful, an empty string
shall be returned. If this matching is successful, the substring of inpar shall be returned, which matched the
groupno-S group of expression during the matching. Group numbers are assigned by the order of occurrences of
the opening bracket of a group and counted starting from O by step 1.

Error causes are:
e when inpar isatemplate, it contains other matching mechanism than specific value or character pattern;

e whenexpression isatemplate, it contains other matching mechanism than specific value or character
pattern;

e inpar isof charstring type and expression isof universal charstring type;
e groupno iSanegative integer;
e thereisno groupno -sgroup in expression.

EXAMPLE:

// Given
var charstring myInput := " simple text for a regexp example ";
var charstring myString;

myString := regexp (myInput,charstring:"?+ (text)?+",0) //will return "text"

myString := regexp (myInput,charstring:"?+(text)?+",1) //causes an error as there is
//no group with index 1

myString := regexp (myInput,charstring:" (?+) (text) (?+)",0) //will return " simple "

myString := regexp (myInput,charstring:" (?+) (text) (?+)",2) //will return

//" for a regexp example "

ETSI

224 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

myString := regexp (myInput,charstring:" ((?+) (text) (?+))",0) //will return the whole inpar,
//i.e. " simple text for a regexp example "
myString := regexp (myInput,charstring:" (([]+) (text) (?+))",0) //will return an empty string
//as expression does not matches inpar
myString := regexp (myInput,universal charstring:"?+ (text)?+",0) //will cause an error as

// inpar is of type charstring, while
// expression is of type universal charstring

myInput := " date: 2001-10-20 ; msgno: 17; exp "

var template charstring myPattern := pattern"([/tJ#(,)date:[\d\-1#(,);[t]#(,)msgno: (\d#(1,3)); (exp)#(0,1))"
//please note, that only the very first opening bracket and the bracket before "\d" denotes

// groups; "#(,)", "#(1,3)" and "#(0,1)" denotes matching the preceding expression several time

myString := regexp (myInput, myPattern,l) //will return the value "17".

//An example of a wrapper function to count groups from 1 and return the complete p inpar
//if p_groupno equals 0
function regexpoO (
in template charstring p_inpar,
in template charstring p expression,
in integer p groupno)
return charstring {
var template charstring extended expr := pattern " ({p expression})";
return regexp(p inpar, extended expr, p_groupno)

C.33 The Substring function

substr (template any string or_ sequence _type inpar, in integer index, in integer count)
return input string or sequence_ type

This function returns a substring or subsequence from avalue that is of abinary string type (bitstring,
hexstring, octetstring), acharacter string type (charstring, universal charstring), a sequence type (record
of, set of) or array. Thetype of the substring or subsequence is the root type of the input value. The starting
point of substring or subsequence to return is defined by the second in parameter (index). Indexing starts from zero.
The third input parameter (count) defines the length of the substring or subsequence to be returned. The units of
length for string types are as defined in table 4 of the present document.

When used on templates of character string types, only the inside matching mechanisms AnyElement and
AnyElementsOrNone are allowed in inpar and the function shall return the character representation of the matching
mechanisms, i.e. "?" for AnyElement and "*" for AnyElementsOrNone. When inpar is atemplate of binary string or
seguence type or is an array, only the specificvalue and AnyElement matching mechanisms are allowed and the
substring or subsequence to be returned shall not contain AnyElement.

Error causes are:
. index islessthan zero;
o count islessthan zero;
. index+count isgreater than lengthof(inpar);

. inpar isatemplate of a character string type and contains a matching mechanism other than AnyElement or
AnyElementsOrNone;

. inpar isatemplate of abinary string or sequence type or array and it contains other matching mechanism as
specific value and AnyElement;

. inpar isatemplate of abinary string or sequence type or array and the substring or subsequence to be
returned contains the AnyElement matching mechanism.

EXAMPLE:
substr ('00100110'B, 3, 4) // returns '0011'B
substr ('ABCDEF'H, 2, 3) // returns 'CDE'H

ETSI

225 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

substr ('01AB23CD'0O, 1, 2) // returns 'AB23'0
substr ("My name is JJ", 11, 2) // returns "JJ"

substr ({ 4, 5, 6 }, 1, 2) // returns {5, 6}

C.34 The Replace function

replace (in any string or sequence _type inpar, in integer index, in integer len,
in any string or sequence _type repl)
return any string or_sequence type

This function replaces the substring or subsequence of value inparat index index of length 1en with the string or
sequence value repl and returns the resulting string or sequence. inparshall not be modified. If 1en is 0 the string
or sequence repl isinserted. If index is0, repl isinserted at the beginning of inpar. If index is

lengthof (inpar), repl isinserted at the end of inpar. inparand repl, and the returned string or sequence
shall be of the same root type. The function replace can be appliedto bitstring, hexstring, octetstring, or
any character string, record of, set of, or array. Note that indexing in strings starts from zero.

Error causes are:
. inparor repl arenot of string, record of, set of, or array type;
. inparand repl are of different root type;
° index islessthan 0 or greater than lengthof (inpar);
. len islessthan 0 or greater than lengthof (inpar);

. index+len isgreater than lengthof (inpar).

EXAMPLE:

replace ('00000110'B, 1, 3, '111'B) // returns '01110110'B
replace ('ABCDEF'H, 0, 2, '1l23'H) // returns '123CDEF'H
replace ('01AB23CD'O, 2, 1, 'FF96'0) // returns '01ABFF96CD'O
replace ("My name is JJ", 11, 1, "xx") // returns "My name is xxJ"
replace ("My name is JJ", 11, 0, "xx") // returns "My name is xxJJ"
replace ("My name is JJ", 2, 2, "x") // returns "Myxame is JJ",
replace ("My name is JJ", 12, 2, "xx") // produces test case error
replace ("My name is JJ", 13, 2, "xx") // produces test case error
replace ("My name is JJ", 13, 0, "xx") // returns "My name is JJxx"

C.35 The random number generator function

rnd ([float seed]) return float

Thernd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized by means of an optional seed value. Afterwards, if no new seed is provided, the last generated
number will be used as seed for the next random number. Without a previous initialization a value ca culated from the
system time will be used as seed value when rnd isused the first time.

Eachtimethe rnd functionisinitialized with the same seed value, it shall repeat the same sequence of random
numbers.

ETSI

226 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

To produce a random integers in a given range, the following formula can be used:

float2int (int2float (upperbound - lowerbound +1)*rnd()) + lowerbound
// Here, upperbound and lowerbound denote highest and lowest number in range.

The general error causesin clause 16.1.2 apply.

C.36 Enumerated to integer

enum2int (Enumerated type inpar) return integer

This function accepts an enumeration value and returnsthe integer value associated to the enumeration (see also
clause 6.2.4).

The general error causesin clause 16.1.2 apply.

EXAMPLE:

type enumerated MyFirstEnumType {
Monday, Tuesday, Wednesday, Thursday, Friday
Vi

type enumerated MySecondEnumType {
Saturday (-3), Sunday (0), Monday
}i

//within a dynamic language element:
var MyFirstEnumType vl FirstEnum := Monday;
var MySecondEnumType vl SecondEnum := Monday;

enum2int (vl _FirstEnum) // returns 0
enum2int (vl _SecondEnum) // returns 1

vl _FirstEnum := Wednesday;
vl_SecondEnum := Saturday;
enum2int (vl FirstEnum) // returns 2
enum2int (vl_SecondEnum) // returns -3

vl FirstEnum := Friday;

vl SecondEnum := Sunday;

enum2int (vl_FirstEnum) // returns 4
enum2int (vl_SecondEnum) // returns 0

C.37 The IsValue function

isvalue (in template any type inpar) return boolean;

The function shall accept templates of any known type. The function shall return true, if inpar iscompletely
initialized and resolves to a specific value. If inpar isof astructured type or array, omit isconsidered to be a
concrete value for optional fields, i.e. the function shall also return true if optional fields of inpar are set to omit. The
function shall return £alse otherwise.

If theisvalue function is used with a non-selected choice of a union type value or template, this shall cause an error.
The null value assigned to default and component references shall be considered as concrete values.
Error causes are:

. inpar isreferring to afield that is not accessible, e.g. embedded in atemplate or in atemplate field using
omit or "*" (AnyValueOrNone). Note that this rule applies for any levels of embedding.

ETSI

227 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

EXAMPLE 1. Simpletypes.
template charstring ts char0 := "ABCD"; //template containing a specific value matching
template charstring tr charl := "AB?D"; //template containing a specific value matching

//note, that "?" is not a matching symbol in this case
template charstring tr char2 := pattern "ABCD"; //a pattern matching a single value only
template charstring tr char3 := pattern "AB?D"; //pattern matching
template charstring tr char4 := ("ABCD"); // template containing a specific value (expression)
template charstring tr char5 := ("ABCD","EFGH"); //a value list matching a single value only
isvalue (ts_char0); // shall return true
isvalue (tr charl); // shall return true
isvalue (tr char2); // shall return false
isvalue (tr char3); // shall return false
isvalue (tr _char4); // shall return true similarly to e.g. isvalue((2)) shall return true
isvalue (tr char5); // shall return false

EXAMPLE 2: Special types.

var default vl _default := null;
isvalue (vl _default); // shall return true

EXAMPLE 3: Record/set types.

type record MyRec ({
integer f1 optional,
integer f2 optional

}

var MyRec vl_MyRec;
var template MyRec vlt_ MyRec;

isvalue (vl_MyRec); // shall return false
isvalue (vlt MyRec); // shall return false

vl MyRec := { £f1 := 5, f2 := omit }
vlt MyRec := { f1 := ?, f2 := 5 }
isvalue (vl MyRec); // shall return true

(
isvalue (vl MyRec.f2); // shall return false;
isvalue (vlt MyRec); // shall return false
isvalue (vlt_MyRec.fl); // shall return false
isvalue (vlt_MyRec.f2); // shall return true

vlt MyRec.f2 := omit;

isvalue (vlt_MyRec.f2); // shall return false

EXAMPLE 4: Union types.

type union MyUnion ({
integer chl,
integer ch2

}

template MyUnion ts MyUnion := { chl := 5 }
template MyUnion tr MyUnion := { chl := ? }

var MyUnion vl_ MyUnion;

isvalue (ts MyUnion); // shall return true
isvalue (tr MyUnion); // shall return false
isvalue (tr MyUnion.chl); // shall return false;

// note, this is different from ischosen(tr MyUnion.chl)

as isvalue checks the content of the

// choice chl, while ischosen is checking if chl has been selected or not

isvalue (tr MyUnion.ch2); // shall cause an error;

ETSI

228 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

C.38 The encoding function

encvalue (in template any type inpar) return bitstring

Theencvalue function encodes avalue or template into a bitstring. When the actual parameter that is passed to
inpar isatemplate, it shall resolve to a specific value (the same restrictions apply as for the argument of the send
statement). The returned bitstring represents the encoded value of inpar, however, the TTCN-3 test system need not
to make any check on its correctness.

The restrictionsin clause 16.1.2 apply.
Error causes are:

. Encoding fails due to a runtime system problem (i.e. no encoding function exists for the actual type of
inpar).

C.39 The decoding function

decvalue (inout bitstring encoded value, out any type decoded value) return integer

The decvalue function decodes a bitstring into avalue. The test system shall suppose that the bitstring
encoded_value represents an encoded instance of the actual type of decoded value.

If the decoding was successful, then the used bits are removed from the parameter encoded_value, therestis
returned (in the parameter encoded_value), and the decoded value is returned in the parameter decoded_value.
If the decoding was unsuccessful, the actual parameters for encoded_value and decoded_value arenot
changed. The function shall return an integer value to indicate success or failure of the decoding below:

e Thereturnvalue 0 indicates that decoding was successful.
e Thereturnvaue 1 indicates an unspecified cause of decoding failure.

e Thereturn value 2 indicates that decoding could not be completed as encoded_value did not contain
enough hits.

The restrictionsin clause 16.1.2 apply. If any of these restrictionsis applicable, the return value shall be 1.

ETSI

229 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex D (normative):
Preprocessing macros

This annex defines a set of preprocessing macros. A preprocessing macro is a macro that is replaced by a preprocessor
or acompiler with acharstring value before compilation. Inthe TTCN-3 code, it can be used likeacharstring
value.

D.1 Preprocessing macro: _ MODULE

The MODULE _ preprocessing macro denotes the module name in which the macro is used. A preprocessor or
compiler will replace all occurrencesof — MODULE___ with the actual module namein form of a charstring value.

D.2 Preprocessing macro: _ FILE

The FILE _ preprocessing macro denotes the file name in which the macro isused. A preprocessor or compiler will
replace all occurrencesof FILE _ with the actual file namein form of acharstring value.

D.3 Preprocessing macro: _ LINE

The LINE preprocessing macro denotes the line number of the file in which the macro isused. A preprocessor or
compiler will replace each occurrenceof LINE with the actual line number in form of acharstring vaue.

D.4 Preprocessing macro: _ SCOPE___

The SCOPE__ preprocessing macro denotes the name of the lowest named basic scope unit in which the macro is
used. According to clause 5.2, basic scope units of TTCN-3 are modul e definitions part, module control part,
component types, functions, altsteps, test cases and statement blocks. Statement blocks have no name and therefore, a
___SCOPE___ preprocessing macro used in a statement block refersto the next higher named basic scope unit.

A preprocessor or compiler will replace all occurrencesof SCOPE_ with acharstring value which includes:
(@) the module name, if the lowest named scope unit is the module definitions part;
(b) "control", if thelowest named scope unit isthe module control part;
(c) acomponent type name, if the lowest named scope unit is a component type definition;
(d) atest case name, if the lowest named scope unit is atest case definition;
(e) an adtstep name, if the lowest named scope is an atstep definition, or;
(f) afunction name, if the lowest named scope is a function definition.

NOTE: The SCOPE__ preprocessing macro cannot be used to retrieve the names of other kinds of definitions,
like for example names of groups of definitions, template names or data type names.

ETSI

230 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to this library should be unique within the whole language and within the library (i.e. should not
be one of the names defined in annex C). Names defined in thislibrary should not be used by TTCN-3 users as
identifiers of other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types supports integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned
type. The value notation for these types are the same as the value notation for the integer type. Values of these types
shall be encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byte (-128 .. 127) with { variant "8 bit" };

type integer unsignedbyte (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types are the same as the value notation for the integer type. Vaues of these
types shall be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsignedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

231 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to
4 294 967 295 for the unsigned type. The value notation for these types are the same as the value notation for the
integer type. Vaues of these types shall be encoded and decoded as they were represented on four bytes within the
system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer long (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsignedlong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from O to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these types are the same
as the value notation for the integer type. Values of these types shall be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer longlong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsignedlonglong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 I|EEE 754 floats

These types support the ANSI/IEEE 754 [14] for binary floating-point arithmetic. The type IEEE 754 [14] float
supports floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The type

|EEE 754 [14] double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and asign
bit. The type |IEEE 754 [14] ext f 1loat supports floating-point numbers with base 10, minimal exponent of size 11,
minimal mantissa of size 32 and asign bit. The type |IEEE 754 [14] extdouble supports floating-point numbers with
base 10, minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Vaues of these types shall be encoded and decoded according to the IEEE 754 [14] definitions. The value notation for
these types are the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type float IEEE754float with { variant "IEEE754 float" };
type float IEEE754double with { variant "IEEE754 double" };
type float IEEE754extfloat with { variant "IEEE754 extended float" };
type float IEEE754extdouble with { variant "IEEE754 extended double" };

ETSI

232 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

Thistype supports the whole character set of the TTCN-3 typeuniversal charstring (seeparagraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of this type shall entirely
(e.g. each character of the value individually) be encoded and decoded according to the UCS Transformation Format 8
(UTF-8) as defined in annex R of 1SO/IEC 10646 [9]. The value notation for this type is the same as the val ue notation

for theuniversal charstring type

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

Thistype supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [9]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of this type shall entirely (e.g. each character of the value
individually) be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [9]). The value notation for this type is the same as the value notation for the universal
charstring type.

NOTE: Thetype "bmpstring" supports a subset of the TTCN-3 typeuniversal charstring.

The type definition for thistypeis:

type universal charstring bmpstring (char (0,0,0,0) .. char (0,0,255,255))
with { variant "UCS-2" };

E.2.2.2 UTF-16 character string "utf16string"

Thistype supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [9]). Its distinguished values are zero, one, or more characters from this set. Values of this type shall
entirely (e.g. each character of the value individually) be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of 1SO/IEC 10646 [9]. The value notation for thistype is the same as the
value notation for theuniversal charstring type

NOTE: Thetype"utfl6string" supports a subset of the TTCN-3 typeuniversal charstring.

The type definition for thistypeis:

type universal charstring utfléstring (char (0,0,0,0) .. char (0,16,255,255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 8859-1 character string "iso8859string"

Thistype supports all charactersin all alphabets defined in the multiparty standard | SO/IEC 8859-1 [i.3] (see annex G).
Its distinguished values are zero, one, or more characters from the 1SO/IEC 8859-1 [i.3] character set. Vaues of this
type shall entirely (e.g. each character of the value individually) be encoded and decoded according to the coded
representation as specified in ISO/IEC 8859-1 [i.3] (an 8-bit coding). The value notation for this type is the same as the
value notation for theuniversal charstring type.

NOTE 1: Thetype"is08859string" supports a subset of the TTCN-3 typeuniversal charstring.

NOTE 2: Ineach ISO/IEC 88591- [i.3] alphabet the lower part of the character set table (positions 02/00 to 07/14)
is compatible with the ISO/IEC 646 [11] character set. Hence all extralanguage specific characters are
defined for the upper part of the character table only (positions 10/00 to 15/15). Asthe "iso8859string"
typeis defined as a subset of the TTCN-3 type universal charstring, any coded character representation of
any 1SO/IEC 8859-1 [i.3] aphabets can be mapped into an equivalent character (a character with the
same coded representation when encoded on 8 bits) from the Basic Latin or Latin-1 Supplement character
tables of 1SO/IEC 10646 [9].

ETSI

233 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

The type definition for thistypeis:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

Thistype supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 [i.4]. It
is specified by an integer part, adecimal point and afraction part. The integer and fraction parts both consist of a
sequence of decimal (base 10) digits. The number of digitsis stored in "digits" and the size of the fraction part is given
in"scale". The digitsitself are stored in "value ". Value notation for thistype is the same as the value notation for the
record type. Values of this type shall be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for thistypeis:

type record IDLfixed ({
unsignedshort digits,
short scale,
charstring value_

with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single ISO/IEC 646 character type

A type whose distinguished values are single characters of the version of ISO/IEC 646 [11] complying to the
International Reference Version (IRV) as specified in clause 8.2 of 1SO/IEC 646 [11] (see aso note 1 to clause 6.1.1).

The type definition for thistypeis:

type charstring charé646 length (1) ;
NOTE: The specia string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for itsvalues. Also, other properties of the base type can be changed by using attribute mechanisms.
E.2.4.2 Single universal character type
A type whose distinguished values are single characters from | SO/IEC 10646 [9].

The type definition for thistypeis:

type universal charstring uchar length (1);

NOTE: Specia strings defined in clause 27.5 except "8 hit" may be used with this type to specify agiven
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

E.2.4.3 Single bit type
A type whose distinguished values are single binary digits.

The type definition for thistypeis:

type bitstring bit length (1) ;

ETSI

234

E.2.4.4 Single hex type
A type whose distinguished values are single hexadecimal digits.

The type definition for thistypeis:

type hexstring hex length (1);

E.2.4.5 Single octet type

A type whose distinguished values are pairs of hexadecimal digits.

The type definition for thistypeis:

type octetstring octet length (1);

ETSI

Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

235 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex F (informative):
Operations on TTCN-3 active objects

This annex describes in a short form the semantics of operations on active objectsin TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

e thestates being named and identified as nodes;

theinitial state being identified by an incoming arrow;
e transitions between states connecting two states (not necessarily different states) and identified as arrows;

e transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example atest case error), both are separated by '/

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as aresulting condition means testcase error (written in bold);

- null as a resulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of atransition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [3]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [3] the latter takes precedence.

F.1 Test components

F.1.1 Test component references

Variables of test component types, the sel £ and mtc operations are used to reference test components. The start,
stop, done and running operations are not directly applied on test components but on component references. The
test system shall decide if the operation requested shall effect the component object itself or other action is appropriate
(e.g. an error occurs when the reference of a stopped PTC is used in a component start operation). The create
operation used to create PTCs returns a unique reference to the created PTC, which istypically bound to a test
component variable. The behaviour related to test component variables themselvesis shown in figure F.1.

ETSI

236 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

) doneferror killed/error
variable running/error alivelerror
declaration stop/error kill/error
start/error
Uninitialized N Error
(see note)

| — “assignment of the return value of create"/"references created test component”

"assignment of the return value of create"/"references created
test component” (and "looses the previous reference™)

Initialized

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.1.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or dive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their

dynamic behaviour is shown in figure F.2.

ETSI

237 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

create/creation of anon-aive PTC

done/no match killed/no match
running/false aliveltrue

stop/"component terminates” (se note 2a)
Kill/"component terminates” (see note 2b)

start/"component executes function"

done/no match killed/no match
running/true alive/true

/—| "run-time error"/error

Error

(see note 3)

stop/" component terminates” (see note 1a)
kill/"component terminates” (seenote 1b) start/error
"return from function"/"component terminates’

"completion of function"/"component terminates’

start/error

stop/null (seenote2a) Kill/null (see note 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a Kill, self kill, a kill from another test component or a kill from the test system (in

error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

238 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shown in
figure F.3.

create alive/creation of an alive PTC

done/no match killed/no match
runningfalse aliveftrue

stop/"'component Stops” (see note 2a)

start/"component executes function”

ﬁ done/no match killed/no match

Kill/"component terminates" (see note 2b) }\
runningtrue aliveltrue

Kill/"component terminates" (see note 1b) run-time error"/error

|

stop/"component stops" (see note 1a)
"return from function"/"component terminates’
"completion of function"/"component terminates’

Error
start/"component (seenote 3)
executes function”

stop/null (seenote 2a
done/match

killed/no matc
runningfalse
aliveftrue

stop/null (see note 2a)
Kill/null (see note 20)

done/match StOppEd

killed/match <

ru_nning/false \1 _ _

aliveffalse Kill/"component terminates” (see note 2b) start/error

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, selfkill, a kill from another test component or a kill from the test system (in
error cases).
NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.
NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

ETSI

239 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

F.1.3 Dynamic behaviour of the MTC
The MTC can bein Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

execute/"createsthe MTC" and "starts the testcase”

(see note 3)

stop/"component terminates” (seenote 1a)
Kill/"component terminates" (see note 1b)
"completing of the test case"/"component terminates”

done/no match killed/no match
running/true aliveltrue

start/error

stopfrom another component/er ror
kill from another component/error
"run-time error"/error

Killed

(see note 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a kill, selfkill, a kill from another test component or a kill from the test system (in

error cases).
NOTE 2: All remaining PTCs shall be killed as well and the testcase terminates.
NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict, the test case
terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

ETSI

240 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

F.2 Timers

Timers can bein Inactive, Running or Expired state. The dynamic behaviour of atimer is shown in figure F.5.

Test component timers: "component created"”;
Other local timers: "testcase, function, altstep,
statement block entered or default activated" stop/null
running/false
read/0.0

timeout/no match

stop/stop timer

timeout/match
stop/null

start/"timer starts with
non-negative duration”

start/"timer starts with non-negative duration"

N
start/"timer restarts with non-negative duration

running/true
read/elapsed time
timeout/no match

Running

(seenote 1)

(timer expiry)/null

running/false
read/0.0

(see note 3)

(see note 2)

start with negative duration/error

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.
NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state, assigns

a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

F.3 Ports

Ports can bein Started or Stopped state. Astheir behaviour israther complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop, and clear) and of communication operations (i.e. send, receive, cal, getcall,
raise, catch, reply, getreply, and check). Astrigger is a shorthand for an alt together with receiveit is not considered

here.

F.3.1 Configuration Operations

The port configuration operations (i.e. connect, disconnect, map, and unmap) are indifferent to the state of the port.
They show the behaviour shown in figure F.6.

ETSI

241 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

connect/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")

then "store link to other port"

(if ("link not yet established")

then "establish thislink" else null)

unmap/if ("link established") then "remove thislink" else null

create/"creates

test component™
(see note 1)

Error connect/if ("illegal connection") then error

(seenote 2) map/if ("illegal connection") then "store link to other port" error
connect/if ("legal connection™)

then (if ("link not yet established")
then "establish thislink" else null)
disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

unmap/if ("link established") then "remove thislink" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remainsin the Started or Stopped state.

F.3.2 Port Controlling Operations

Theresults of port controlling operations are shown in figure F.7.

create/"creates

test component"
(see note)

clear/"clears queue"
start/"clears queue”

halt/"puts halt marker
at the end of the queue”

ﬂ stop/null

start/"clears queue" and A start/"clears queue"

"removes halt maker"
halt/"puts halt
marker at the

top of the queue"

clear/"clears queue"
stop/null

clear/"clears queue" and
"puts halt marker at the
top of the queue”
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

242 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

F.3.3 Communication Operations

The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shownin

figure F.8.

receive/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
getcall/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue"
elseno match
getreply/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
catch/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue”
elseno match
check/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match
else no match

NOTE 1:

send/if ("unique receiver") then "transmit" (see note 2)
receiveif ("top queue element matches")
then match and "remove from queue"
elseno match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue"
else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue"
else no match
raisef/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue’
elseno match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component”
(see note 1)

send/if ("ambiguous" or "no receiver") error (seenote 2)
call/if ("ambiguous" or "no receiver") error (seenote2)

reply/if ("ambiguous' or "no receiver") error (seenote 2)
raise/if ("ambiguous' or "no receiver") error (seenote 2)

Error

(see note 3)

send/error
call/error

replylerror
raiselerror

receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

243 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters

Previous versions of the standard (up to and including V2.2.1) required to use a group-like syntax shown in the example
below to declare module parameters. The module parameter syntax has been unified with constant and variable
declaration syntax in this version but group-like syntax is not fully removed to leave atime period for tool providers
and users to change from the old syntax to the new one. The group-like syntax of module parameter declarations may be
fully removed in a future edition of the standard.

EXAMPLE (superfluous syntax):

module MyModuleWithParameters

{

modulepar { integer TS Par0, TS Parl := 0;
boolean TS Par2 := true
n}.

modulepar { hexstring TS Par3 };

}

G.2 Recursive import

Previous versions of the standard (up to and including VV2.2.1) allowed to import named definitions implicitly, via
importing other definitions of the same module using them in arecursive mode. This feature is deprecated and may be
fully removed in a future edition of the standard.

G.3 Using all in port type definitions

Previous versions of the standard (up to and including VV2.2.1) allowed to usethe a1l keyword in port type definitions
instead of an explicit list of types and signatures allowed via the given port. Thisfeature is deprecated and may be fully
removed in a future edition of the standard.

G.4 sizeof for length of lists

Previous versions of the standard (up to and including V3.2.1) alowed to use the builtin function sizeo £ to compute
thelength of record of, set of, and array. Thishasbeenreplaced by lengthof. Theuse of sizeof for list
like typesis deprecated and is planned to be fully removed in the next published edition.

G.5 Mixed ports

Previous versions of the standard (up to and including VV3.2.1) allowed to use mixed ports. This feature is deprecated
and may be fully removed in a future edition of the standard.

ETSI

244 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

Annex H (informative):
Bibliography

ETSI ES201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language", June 2001.

ETS ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", June 2006.

ETS ES 201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”, February 2007.

ETSI ES 201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language", April 2008.

ETSI

245 Final draft ETSI ES 201 873-1 V3.4.1 (2008-07)

History
Document history

V111 March 2001 Publication

V112 June 2001 Publication

V221 February 2003 Publication

V311 June 2005 Publication

V321l February 2007 Publication

V3.3.2 April 2008 Publication

V34.1 July 2008 Membership Approval Procedure MV 20080829: 2008-07-01 to 2008-08-29

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.1 Formal parameters
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	6 Types and values
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.1 Accessing individual string elements

	6.1.2 Sub-typing of basic types
	6.1.2.1 Lists of values
	6.1.2.2 Ranges
	6.1.2.2.1 Infinite ranges

	6.1.2.3 String length restrictions
	6.1.2.4 Pattern sub-typing of character string types
	6.1.2.5 Mixing sub-typing mechanisms
	6.1.2.5.1 Mixing patterns, lists and ranges
	6.1.2.5.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.1 Record type and values
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.1 Nested type definitions

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Option and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 The default type
	6.2.9 Communication port types
	6.2.10 Component types
	6.2.10.1 Component type definition
	6.2.10.2 Reuse of component types

	6.2.11 Component references
	6.2.12 Addressing entities inside the SUT

	6.3 Type compatibility
	6.3.1 Type compatibility of non-structured types
	6.3.2 Type compatibility of structured types
	6.3.2.1 Type compatibility of enumerated types
	6.3.2.2 Type compatibility of record and record of types
	6.3.2.3 Type compatibility of set and set of types
	6.3.2.4 Compatibility between sub-structures

	6.3.3 Type compatibility of component types
	6.3.4 Type compatibility of communication operations
	6.3.5 Type conversion

	7 Expressions
	7.1 Operators
	7.1.1 Arithmetic operators
	7.1.2 List operator
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	8 Modules
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

	8.3 Module control part

	9 Port types, component types and test configurations
	9.1 Communication ports
	9.2 Test system interface

	10 Declaring constants
	10.1 External constants

	11 Declaring variables
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements

	15.7 Template matching mechanisms
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Template Restrictions
	15.9 Match Operation
	15.10 Valueof Operation

	16 Functions, altsteps and testcases
	16.1 Functions
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select Case statement
	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement
	19.12 The Break statement
	19.13 The Continue statement

	20 Statement and operations for alternative behaviours
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.1 The default mechanism
	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.1 Connection Operations
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test Component Operations
	21.2.1 The Create operation
	21.2.2 The Start test component operation
	21.2.3 The Stop test behaviour operation
	21.2.4 The Kill test component operation
	21.2.5 The Alive operation
	21.2.6 The Running operation
	21.2.7 The Done operation
	21.2.8 The Killed operation
	21.2.9 Summary of the use of any and all with components

	22 Communication operations
	22.1 The communication mechanisms
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.1 The Attribute mechanism
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.1 Additional overwriting rules for variant attributes

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes
	27.7 Optional attributes

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions

	A.1.6.2 Control part
	A.1.6.2.0 General
	A.1.6.2.1 Variable instantiation
	A.1.6.2.2 Timer instantiation
	A.1.6.2.3 Component operations
	A.1.6.2.4 Port operations
	A.1.6.2.5 Timer operations

	A.1.6.3 Type
	A.1.6.4 Value
	A.1.6.5 Parameterization
	A.1.6.6 With statement
	A.1.6.7 Behaviour statements
	A.1.6.8 Basic statements
	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching incoming values
	B.1 Template matching mechanisms
	B.1.1 Matching specific values
	B.1.1.1 Omitting values

	B.1.2 Matching mechanisms instead of values
	B.1.2.1 Value list
	B.1.2.2 Complemented value list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet

	B.1.3 Matching mechanisms inside values
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns

	Annex C (normative): Pre-defined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Integer to character
	C.2 Integer to universal character
	C.3 Integer to bitstring
	C.4 Integer to hexstring
	C.5 Integer to octetstring
	C.6 Integer to charstring
	C.7 Integer to float
	C.8 Float to integer
	C.9 Character to integer
	C.10 Character string to octetstring
	C.11 Universal character to integer
	C.12 Bitstring to integer
	C.13 Bitstring to hexstring
	C.14 Bitstring to octetstring
	C.15 Bitstring to charstring
	C.16 Hexstring to integer
	C.17 Hexstring to bitstring
	C.18 Hexstring to octetstring
	C.19 Hexstring to charstring
	C.20 Octetstring to integer
	C.21 Octetstring to bitstring
	C.22 Octetstring to hexstring
	C.23 Octetstring to character string
	C.24 Octetstring to character string, version II
	C.25 Charstring to integer
	C.26 Character string to octetstring
	C.27 Character string to float
	C.28 Length of strings and lists
	C.29 Number of elements in a structured value
	C.30 The IsPresent function
	C.31 The IsChosen function
	C.32 The Regexp function
	C.33 The Substring function
	C.34 The Replace function
	C.35 The random number generator function
	C.36 Enumerated to integer
	C.37 The IsValue function
	C.38 The encoding function
	C.39 The decoding function

	Annex D (normative): Preprocessing macros
	D.1 Preprocessing macro: __MODULE__
	D.2 Preprocessing macro: __FILE__
	D.3 Preprocessing macro: __LINE__
	D.4 Preprocessing macro: __SCOPE__

	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 8859-1 character string "iso8859string"

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single ISO/IEC 646 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.1 Test components
	F.1.1 Test component references
	F.1.2 Dynamic behaviour of PTCs
	F.1.3 Dynamic behaviour of the MTC

	F.2 Timers
	F.3 Ports
	F.3.1 Configuration Operations
	F.3.2 Port Controlling Operations
	F.3.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions
	G.4 sizeof for length of lists
	G.5 Mixed ports

	Annex H (informative): Bibliography
	History

