Final draft ETS| ES 201 873-1 V3.2.1 (2006-12)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1. TTCN-3 Core Language

D

2 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Reference
RES/MTS-00090-1[2] ttcn3 core

Keywords
ASN.1, methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Contents

INntellectual Property RIGNES. ..ot et ne e 10
0= 11 o 1SS 10
1 o0 0= PP P RSP 11
2 L= £ 101 TSRS 11
3 Definitions and @DDreVIatiONS...........coueieieiriises sttt 12
31 D= T T (0] 1SR 12
3.2 F Y o] 1= V7= 0] SR 15
4 100 [Tox A o] o SRS 15
4.1 The core language and presentation fOMMELS............ccvieie e se e e s e sreesneas 16
4.2 Unanimity of the SPECITICALIONcc.ieiicieece e et e st e sreesreesreesaeeseenreens 17
4.3 (00010700720 (o TR U U P P URTRRTRPT 17
5 BasiC 1anQUAagE ElEMENTSooiiie ettt e st e st e sae e besre et e sre e s eeesreenaenrenreas 17
51 [AENtITIErS AN KEYWOITS ...ttt bbb bbbt bbb et b et nb e ens 18
52 SCOPE FUIES ...ttt ettt et b bbbt b e s e et b e s e et e bt e R e st eb e s E e Rt e b e e e e Rt eb e b e Rt e b e e e e neebene e st eb e s e et nb e e ene e 18
521 SCOPE Of FOIMEl PAFBIMELEN'S ...ttt ettt b b et b e et b e et eb e e st eb e e et e sb e e b e sbeneren 20
522 UNiQUENESS OF THBNTITIEIS ...ttt b et 20
5.3 Ordering Of 1aNQUAGE ElEIMENES........ciueiieiirieieer ettt b et b e bbb et ettt nb e ne e 20
54 e 01 (= 4= o] PSS 21
54.1 FOrMEl PAIAIMIELELSevieieeieeie ettt et et e st e st e st e et e e tesaeesaeesaeesaeeseeneeenseeseenseastaeseeseenseeneenneennns 21
54.1.1 Formal parameters Of KinNG VAIUE.coieeieeiiece ettt esnaesraennees 21
54.1.2 Formal parameters of Kind teMPIELe.c.vccuvieieieeieee e snees 23
54.1.3 Formal parameters Of KinG tIMEYcceiieiee et et esnaesreennees 24
54.14 Formal parameters Of KiNd POoiueiieieeie ettt e et esaessaesnaesreennees 24
542 ACTUBl PBIBIMELEIS ... ettt bbbtk b b bt £ b b et b b e bt e b et e bt b e e e st e b e bt ebe b 25
6 TYPES ANA VAIUES ...ttt h bbb b et e e e e st b e b e e e n e e e 27
6.1 BaSIC tYPES AN VAIUES.........eeieeitieciietee ettt bttt b bbbt b e e s bbb et b b e e bt b ens 28
6.1.0 SIMPIE DESIC tYPES AN VAIUES........cueieiieierieiete ettt ettt b bbb e b snennenea 28
6.1.1 BasiC StriNg tYPES @NA VAIUES........coiueeiiece et te ettt s e st e st e te e te s e s te e be e teenteeneenneennes 29
6.1.1.1 Accessing individual StrinNg EleMENES........ccueiieiiiece et eree e e sreesreenseeneeens 30
6.1.2 SUD-tYPING OF DBSIC LYPES.....ceeeeece e te e s ae e ae e e eseeeseesbe e beeteeneesnnesnes 30
6.1.2.1 LISES OF VAIUBS ...ttt e e b et bt e e e et eb e bt ese e e et e besbeeb e s e ennenen 30
6.1.2.2 L= 101 PP OPRRPRE 31
6.1.2.2.1 INFINITE FANGES. ...ttt ettt b bbbt b s b e b e b e e eb e e b e seeb e se et ebesb e e ebenbe e erens 31
6.1.2.3 SUNG 1ENGEN FESIIICIIONS ...ttt bbb 31
6.1.24 Pattern sub-typing of charaCter StiNG tYPESc.ciiiiirireere e e 32
6.1.2.5 MiXing SUD-tYPIiNG MECHANISMScc.eiuiiiitirieieie ettt sb e et b e et se e en e ebe b nnenea 32
6.1.25.1 MiXing Patterns, liStS @NG FANGESc.civirieeririeeriere ettt sb et b e enes 32
6.1.25.2 Using length restriction with Other CONSITaINS............coireirireirieeeer s 32
6.2 SEHUCLUFEd tYPES ANA VAIUES.......eeceieeeeeciees ettt ste et ettt et e e e e e stessaesaeesseesteenseenseenseenseeneesneesseessens 33
6.2.1 RECOI tYPE @NU VBIUES........ceeeeeieiie ettt sttt e et e sra e st e st e e teesteeeesneesneesseenseante e seeseenseeneennnennes 34
6.2.1.1 Referencing fields Of @reCOrd tYPRcuueiieiee et esraesraesnees 35
6.2.1.2 Optional €lemMENntS N @TECONU..........cieeieeieee e se ettt e s rae s b e s teesseeeesrneenreensessaesseesnnes 35
6.2.1.3 Nested type definitions fOr flEeld tYPESocev e 35
6.2.2 SELLYPE BN VAIUBS ...ttt sttt ettt e et e e ea e e s e s saesaeesteeaeeneesneeeneenseesseenseeseensenneennns 36
6.221 Referencing fields Of & S8t TYPE.......cii i b bbb 36
6.2.2.2 OpPtioNal ElEMENES TN @ SEL ...t bbb bbbt nn e 36
6.2.2.3 Nested type definition fOr fIeld tYPES.c.viireiie b 36
6.2.3 Records and SEtS Of SINGIELYPESoviiiiiieee bbbt b e 36
6.23.1 NeSted tYPE AEFINITIONS........ciieeiitiieeete bbb et se et sn e b b nnenea 38
6.2.4 Enumerated tYPe @nU VBIUESoiee ittt e st ae et e nte s e sta e be e teentesneesnnesnes 38
6.2.5 L] oL S O PTURURURPRSI 39
6.25.1 Referencing fields Of @ UNION TYPEoveeieeiee et sna e sraennees 39
6.2.5.2 (@7 o1 TolgT= 1 YAR=1 10 011X) o S 40

ETSI

6.253
6.2.6
6.2.7
6.2.8
6.3
6.3.1
6.3.2
6.3.21
6.3.2.2
6.3.2.3
6.3.24
6.3.3
6.3.4
6.3.5

7
7.1

711
712
7.13
714
7.15
7.1.6
7.1.7

8

8.1
8.2
821
8.2.2
8.2.3
8231
8.232
8.233
8234
8.235
8.2.3.6
8.3

9

9.1
9.2
9.3
9.4
9.5
9.6

10
10.1

11
111
11.2

12
13
14

15

151
152
153
154

4 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Nested type definition for fIeld tYPES.......cv i 40

LI 5= 1Y 8 USSR 40

F N = V£ PP 40

S OIS LY 4 - 42

QIR L= oo 00T o 7= 1 o LRSS 42
Type compatibility Of NON-SEFUCLUrE tYPES.......c.eeieecie ettt e e snaesnees 42

Type compatibility Of SrUCTUIEA TYPESoviueieiierie bbb 43

Type compatibility Of eNUMEraLEd tYPES........coiriiirireire e 43

Type compatibility of record and record Of tYPESccuririeirireirie e 43

Type compatibility Of Set and SEt Of TYPES.......cviuiriiiiiere e 45
Compatibility DEWEEN SUD-SITUCTUIES.........cciieiirieieeirteet et 45

Type compatibility Of COMPONENE LYPES.......eeiieieiie et e et ee e s e s re et e e enaesraesraesnees 46

Type compatibility of commMUNICation OPEraLiONSc.ccueiierieiecie et e st e e e seees 46

QLN 0 L= 0 177 = Lo o TSR 46
(0TS T 0] TSRS 46
L0707 - 0] £ J RO PO PT PP PRUSOSOP 47
ATTENMELIC OPEIAEOISeieectiteeei ettt bbbt bbb e bt b et b e e st b e bt e b bt 48

SUFTNG OPEIGLOIS. ...tttk ettt ettt b bbbt b e sb e s e eb e b st eb e eb e s e e heeb e se e bt e bt se e bt sb e e ebesb e e ebesbe e ebenbenneren 49
REIBLIONG] OPEIEEOIS.ttt sttt b e et b e et b e et b e et bess et b e e et e b e s b et eb e b 49

(o ToTor= o 1< r= o] £ TN OSSO P TSRV U TR 50
BiTWISE OPEIGLIOIS ...ttt bttt b et b e e h e b e he b s e h e bt R bbb et b et b et 50

S TN 0] = 0] S 51
01 (0] 0 = o] £ T SRS 52

1Y 00 1 =SSP 53
DEfiNition Of @MOGUIEouiiiiieeee ettt et e e be s aeeae e e e e e seeseesaesneenee e eneees 53
MOAUIE AEFINITIONS PAITeeeeeetireeieet ettt b et b e bbb bt e st b et b et e e b e e e 53
MOTUIE PAIBIMELEL'S ...ttt ettt et bbbt bbbt b e b et bt e b et e bt e bbb e ns et e b e nb et et e e s e 54
GroUPS OF AEFINITIONScueitieeteite ettt b et b e e b e bt b e sb e e e b e s b e e ebesbe e ebesbenneneas 55
IMPOrtiNg FrOM MOTUIES ...ttt b et b e et bbb e 56
General fOrmMat OF TMPOITc.oiiiiiirieie et sb e b b nn e e 56
IMpPOrting SINGIE AEfINITIONSc..i i e te e s reeaesaeesneesreeseenneans 61

(T oo 1o I £ 0N oSS 62

Importing definitions of the SAME KINGccceii i 63

Importing al definitions Of @MOAUIE.............coeeiieieee e e e 63

Import definitions from other TTCN-3 editions and from non-TTCN-3 modules...........cccccevvvervennns 64

MOAUIE CONEFOI PAIT.....c.eeeeteeeieetere ettt ettt b bbb btk b e bt bt b bt e s bt e bt b s et b et e nb e e nns 65
Port types, component types and test CONfIQUIaLiONSeiireririererieneseeseeeeee e 66
COMIMUNICALION POIT EYPES ...cveeeeeete ittt sttt sttt et b e ettt b e s e e bt b e st e bt b e s e e ae e be e e bt e b e e ebe b e se e st ebe st et ebenneneeee 67
COMPONENT TYPIES. ...ttt ettt e e e et r bt a e e s e e b sh e E e e be e s e e s e s e R e sR e eE e e et e b e e e e s e e e sreerenneeee e ennes 71
REUSE Of COMPONENT LYIES. ... eeeeeeeieeie et stee s ee st ste e te e st e st e st e e teeatesseesaeesaeesaeenseanseessesseesseesseeseensennsesneesnes 72
=S Y (T 1= o SR 74
(0001010 1= 0 R €= 1= (=10 SRS 76
Addressing entitieS iNSIAE TE SUTcvieiicece ettt s sreesaeeaeenteeneeenaesraesrens 77
DECIAINNG CONSIANES ...ttt et s e et et e e e st e eaeesbesbeensesreeseesbesaeenseseesneensenrens 78
EXEEINEI CONSLANES. ... e eeeeeeieenieie sttt e et e sttt te st ese et e eesbeseeetesaeeaeeneenseseeseeebeaeeeaeemeenseneeaseseesneeneeneanseseens 79
DEClariNg VaITADIES.cceiei ettt ettt et e steeneestesneestesneeeeseeeneerenreas 79
VAIUB VAIBIIES. ... et b et e e e et b e s aeeae et et e b bt b eseene e e e b e 79

I 000 oY= o] =SSR 80

D= o= T oo (] 0= SR 81
DECIANNG MESSAGESeeueteeterteete sttt e ettt bbb b e e e e heeh e e bt e b e e bt e e e b et e e e e e st e st eb e ebenbean e e e s e e 81
Declaring ProCeaUrE SIGNALUIES........c..eieeeieeereseereesteeie e eseestesseeseesseeeesseesesseeseessesseessesseensessesseensensens 82
DECIariNg LEMPIELES.......c.oe ettt s e et e st e e et e ebe e besbeeasesbesae e besaeensesreeneesenreas 83
Declaring MESSAgE tEMPIALESc.vicie e e et e et e s et e e e e e estesseesneesreesreesneenseensenns 84
Declaring SIgNature tEMPIBEEScueuiiiiiee itttk bbbt b ettt b et b et sb e b 85
Global AN [OCEl LEMPIBLESccveiieiiteieeieeie ettt et b et b e bt b e et b e et eb e ne e 86
IN-1NE TEMPIBEES. ...ttt bt b e h bt eeh bt bbbt et b e st bt e et bt b e e eb e b e e ens 87

ETSI

5 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

155 MOOITIEA tEMPIALES....... e st e e e e e saeesae e teenteease e teensesneesneesseesseansaensenns 88
15.6 Referencing elements of templates or template fields..........cooverier e 89
15.6.1 Referencing individual String €lEMENLS..........ccveciiiiiiece et 89
15.6.2 Referencingr ecor d and Set fIeldS........ooieoi i e s 90
15.6.3 Referencingr ecor d of and set of EemMents........coooiiiiiiinc e 91
15.7 Template MatChing MECHANISMScocieiieece st e st et e e e tessaesaeesaeesaeeseenteenaeeneenseesrens 92
1571 SPECITIC VAIUES ...ttt bbbt b e bt e bt b et b e bt sb et b e s b e e eb e s b e neebenbennenen 93
15.7.2 Special symbolsthat can be used instead Of VAIUES...........ccociiiriiiiiicieereee e 94
15.7.3 Special symbolsthat can be used iNSIAE VAIUES ..o 94
15.7.4 Special symbols which describe attributes of VAlUES..........c..ccoiiiiiiiicec e 95
15.8 IVIBECH OPDEIALTON. ...ttt ettt b bbbt h bbb bbb bbb b ae b e e bt e b et e st e b e b et b e b 95
15.9 = U o) O o= 1o S 96
16 FUNCtions, AltSePS ANA LESICASESoiveeie ettt sttt te e st e e e st e sae e besbeesresaesreeanentenren 97
16.1 [010 Tex 0] PR P TP UPURPRPRRRIN 97
16.1.1 L 01VZ0] o L8 o 1o S 98
16.1.2 PredefiNed fUNCLIONS ...ttt ettt e st st e e me e ee st e besaeeseeneenseneens 99
16.1.3 S 0 o o RS 100
16.1.4 Invoking functions from SPECITIC PlACESceririeiiier e 101
16.2 AAIESEEIDIS. .ttt b bbb E e bR ek R ek R R R SRR R R R R e eE e Rt R e e ekt nh et ebe R e e bt nre e enea 102
16.2.1 INVOKING @ITSEEIIS. ...ttt ettt bbbt b et b s bbb bbb et b e bbb 103
16.3 LS = S = TP U UPP P PTPPP 104
2V o o B 105
18 Overview of program statements and OPEraliONS..........cccvrerererirererereseesee e seesee e 105
19 BaSiC Program STAIEMENTS.eiveirereeeeee ettt sttt e et s e bbb b e e s e s e e e e e e esenb e ne e e nn e e 108
191 F S [10 1< 01K TP OO O O SO PP STPRTOOPURPRPTUN 108
19.2 TNE IT-EISE SEALEIMENL ...ttt et bt bbbt s e e b e b b e et et e s besbenbeene e e e neetes 108
19.3 ThHe SElECE CASE SIAEIMENT ...ttt ettt b et e b e e bbbt et et e besbesbeeaeeneeneeeas 109
194 TNE FOF SEBEEIMIENT ...ttt b et h et b e se bbb e e e b e b e seeeb e s aeeb e e e e b e besrenbeeaeenee e entes 110
195 THEWHIIE SEBLEIMENE.......ceeieeeeeee ettt et bt h e e bbbt bt s st eb e e e e b e b e sbenbeeaeeneeneenes 111
19.6 The DO-WHIl@ STALEIMENLcoueieiieie e ettt ettt eb e et b e b sbesae e e e eeas 111
19.7 THE LADE] STAIEIMENL ..ottt bbbttt e bbb et et e b b e sbeeae e e e e e tas 111
19.8 LT €0 (oI = 1= 1.7 o S 112
19.9 The StOp EXECULION SEALEIMIENT........eivieeteieeiete ettt ettt b e b et eb e sb e bt b e a et b b 113
19.10 LT R S (U g IR =0 | S 114
1911 THE LOG SEBLEMENTttt ettt b e bt bbb st bt s b et e bt b et et b e b e st ebe s b et e be st 114
20 Statement and operations for aternative DENaVIOUIS..............cooiiiiiriieiee e 116
20.1 ISR =0 10 A =0 =T o 116
20.2 B I LC AN L = 1= 10| OSSPSR 117
20.3 The REPEAL SLALEIMENTeoiiiieecie ettt e et e st e s e e saeesre e teesseessessaessaesseesseensesneesnnesneesseensennsenns 120
204 The INtEITEAVE SLALEIMENTot bbb et e b e et e b e b bt sbeeaeeneeneeeas 121
20.5 DEFAUIT HANAITNG ...ttt b e bbbt b e bbbt b et nn e enis 122
20.5.1 The default MEChANISIMottt e ae et e et e nteseesaeeneeneeneeneas 123
205.11 DS e U = =0 o= 123
20.5.2 THE ACHVELE OPEIGLION.ccvetieeetiieeeet ettt b bbbt bbb bbbt s b e e e st bt st e e b nb e ens 123
20.5.3 The DEACIVALE OPEIBLIONcveieiieitereeeetere ettt ettt sttt et b et b e a e bt e bt b e e bt s b e s e st eb et e e e bt ne e e ens 124
21 CoNfigUration OPEIaLiONS.........ceeiirterierieieeeiesesesesteseesseseeseeee e se st s bessesbeseesseeesee e eseesessesseseessenseneas 125
21.1 (o la] 01> oo g @] o= = 1 o 1 126
21.1.1 The Connect and Map OPEIALIONScccveieeieeieeieseeseeseesteesteesee e e e e sseesteete e sesssesnsesneesaeesseesseenseensenns 126
21.1.2 The Disconnect and UNMap OPEIaLIONScceeiuerieiieieeieeseesteesteeseessesseesseesseesseesseensesnsssssssssessesssesnsenns 127
21.2 Test COMPONENT OPEFATIONS.......civereeieiteieeit ettt sttt sttt ettt b e et b se et b e s b et b e s b et ebe s s e st sbesb e e ebenbeneees 128
2121 THE CreEate OPEIAION.eueevereeeetert ettt ettt bbbt b et e bbbt b e e bt s b e b e bt b e e e se e bt e e ebenr e e ens 129
2122 The Start test COMPONENE OPEIBLIONeiveuirtieeiertei ettt bbbt s s e bt se e ebe b s sesreneens 130
21.2.3 The Stop test BENAVIOUN OPEIELIONc..ioiiireieeeereee ettt 131
2124 The Kill test COMPONENT OPEFELTION.c.iitieeiireie ettt b e bbb e ees 132
21.25 I Sl AN LAY 0] = = 1 o o S 132
21.2.6 I ST R0 0T T g o 0] 0T = 1 o o S 133
21.2.7 I (=] B0 g =T a o < = (o) o S 134
21.2.8 I SN SN L= o e o = (oo S 135

ETSI

6 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

21.29 Summary of the use of any and all With COMPONENLSc.cccviierierieeee e 136
72 ©0 141001V Torz (o g0 0 = (0] S 136
221 The comMUNICatioN MECNANISIMScviitiieeeiieeeiee sttt b e s b bt s e bbb b e sbeebe e seesbesaeenee e ennes 137
2211 Principles of message-based COMMUNICELION.cccoiieiiiieiee e e 137
2212 Principles of procedure-based COMMUNICALIONc.ciuiieiriiieerieeesie e 137
22.1.3 Principles of unicast, multicast and broadcast COMMUNICALION...........coeeieiieiieriie e 138
2214 General format of COMMUNICALiON OPEIBLIONSccveiveieiirteeeie sttt 138
22141 General format of the SeNding OPEIaLIONScoveeeverieirie ettt b e e besreseeneas 138
22.14.2 General format of the reCeIVING OPEIatiONS.........cccciiiriiireieereeet et seeneas 139
22.2 M essage-based COMMIUNICALION..........ccieiieieeieeseesee e see e e ste e ste e s et e e te e tesstessaesaeesseeseenseenseensenneessaesanns 140
22.2.1 I (SRS = 10 I] 1= 1o S 140
22.2.2 ThE RECEIVE OPEIGLIONceiuieieeieeie e etie st e st e ste e e st e s e sae e saeesteeaeeseeeseesseesseeteessesnsesneesneesreesseenseansennsenns 141
22.2.3 I SR I e (< e o 1= = (o] o S 143
223 Procedure-based COMMIUNICBLION.coeiieieiiie sttt eb e se b bbbt e b e sbesaeene e e e e e 144
22.3.1 QI =3O 0] o= = 1 oo S 144
2232 The GELCAIl OPEIELION. ... ceeueitireeiiet ettt bbb bbbt bbb et b et benr e ens 148
22.33 THE REPIY OPEIBIION.....c.eiiitiieiiit ettt bbbt et b b b st bbb s e st b e e e st b b e e bt nr e ens 150
2234 The GELreply OPEIALTONc.eivieetiit et b b bbbt b e bt b s s e bt e b b nnens 151
22.35 THE REISE OPEIGLIONc.eieeetieeeet ettt bbbt b e bbbt et b b e e bt b s e st bt e e eaenn s ens 152
22.3.6 THE CaLCN OPEIELION. ...ttt bbbt b et b et b b e bt b e et bt b e bt e e e ens 153
224 ThE CECK OPEIELION ...ttt ettt b et b e et b et b e s b e e bt b e e e aeebe b et e b e s bt e b b e 155
22.5 Controlling COMMUNICALION POIS......eeivieieiieieeseeseerte et et e st e e e e etessee e e sreesseatesseesreesseenseesseesseenseensesnesanes 156
2251 R SO T== T oo g] o 1= 1 o] o S 157
22.5.2 The SEAIt POt OPEFELIONccveeieeeeeee e st ees e te e se s e st esreesteeeeseesaeesaeeseenseesseeseesseessansneesseesneesseansensenns 157
22.5.3 NI (ST o o] oo g ae o = 1 o o OSSR 157
2254 I (=] o L oo 0] o< = 1 oo TS 158
22.6 Use of any and @l With POITS.........ooei ettt e e st b sae e enee e eneeee 159
23 TIMEN OPEIGLIONSeeveeeueeieieeteet ettt sttt e et s b bt b e e e e e e e e e ae e st e Rt eb e e Rt e b e eb et e s e e e e ebenbeenenre s e nnennas 159
231 LR (0 401= 7= T o SRS 159
23.2 The Start tiMer OPEIALION.oiiiiereee ettt ettt b e et b e et be b et e b e bt e b b 159
23.3 R (SRS (e o R (] a0 T= e o = = (o o 160
234 The REa0 tiMEr OPEIELIONoiieiie et esee ettt et e s e s e e e s e e steeee s e e eseasse e teesteentesnsesneesnnesaeesseensensenns 161
235 The RUNNING tIMEN OPEIBHION.civiiiieeie e cee et est ettt ee s e s e e e seeesteeaeeseeeseeeseesseenseenseensesneesnnesneesseenseensenns 161
23.6 The TIMEOUL OPEIBLIONveieieieeieeeseeesteeste e et e st et e e e e e sseeseesaeesaeesseenseeseeeseeaseesseenseenseensesneesnnesseesseansennsenns 161
23.7 Summary of use of any and all WIth IMEFS ..o e 162
24 TESEVEIAICE OPEIAIONSc.eitieeieeee ettt st e et e et s e eb bt st esb e b e ne e s e s e e nr e enenre s e nne e 162
24.1 The Verdict MECHENISIM........oo.iiee ettt s e e te e sbe et et e eeseesreeneeneeneeneas 163
24.2 The SEVErAICE OPEIELION ..ottt ettt b e et b et b e bt b e b e b b 163
243 The GELVErTiCt OPEIELION........ccvieeeireereete sttt sttt b e et b e se bt s bese e bt b et e st eb e b e st ebe s b e e sbe b e 164
P T A= = = o 0] PSSRV 164
P2 SR |V KT [H =X oo o PSSO 165
26.1 THE EXECULE SEALEIMENL..... ettt sttt ettt e et a e et e s e et e eese e besaesbeeneenteseeseesaeeneeneeneenees 165
26.2 THE CONEIOI PAMT ...ttt b et b e bbbt b e s e et bt s b et e b e b e b e neeb e e eneebe st et ebenbe s 167
27 SPECITYING GEITULES. ...ttt e et n e nr e nenn e 169
27.1 The AttriDULE MECHANISIMttt e b et e et et sb e bt et e b b e sbesaeenee e e nes 169
27.1.1 oo 0= = 11] o1 (- 169
27.1.2 Overwriting ruleS fOr @triDULES..........c.eccuiieeeee ettt e et e e reeneeneeenes 169
27.1.2.1 Additional overwriting rules for variant attribULES.............eccveiiieiieece e 170
27.1.3 Changing attributes of imported language ElemMENLS...........ccoccverie e 171
27.2 ISR AT LI = =0T o S 171
27.3 DiSPIAY GEEITDULES........cueieiectirt ettt bbbt bbb et b e b e st bt e e st bt st ne bt b e e enis 172
274 ENCOOING BILITDULES. ...ttt bbb bbb bbbt bbb st e ens 173
275 VAIHTANE BHITDULES ..ottt s e b ee s besbeeaeen e e e eneesaeeseeneenteseeseeseeeneeneeneeneas 174
27.6 LT S0 QT (] 11 == S SR 175
Annex A (nor mative): BNF and StatiC SEMaNTiCS.......coeeeieerirese e 176
N I I\ O] N | S 176

ETSI

7 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

All Conventions for the SYNtaX AESCHIPLIONciie et e s e re e reeteeeeeneeenes 176
A.l2 Statement termMiNGLOr SYMDIOIS.........ciiuiiie et e e e st e e rae st e sreesre e teesteessesseesseesseesseeseenenenns 176
A.13 Lo (S g 1N = £ PO P RS URTSTRPTPO 176
A.l4 (000101701 P PP PPPR 176
A.15 TTON-SEEIMINAIS ..ttt sttt st et e st et et s e et be st e st st e s e e neebesbeneebeseeneebesbe e ebenbenens 177
A.16 TTCN-3 syntax BNF ProQUCTIONScccuiiii ittt et ae e e sneesneenreenneens 178
A.16.0 LI N E B 120 1SS 178
A.1l6.1 MOAUIE AEFINITIONS PAIT......c.eeueitirieeietert ettt bbbttt bbbt b e 179
A.1.6.1.0 LT 0T R 179
A.16.11 TyPEAEf AEfiNITIONScouiieiietee et bbbt e bt b e n s 179
A.16.1.2 (00015101 e U= 101 (o 0 R 180
A.1.6.1.3 Template defiNITIONS.......cc.iie et sae e aeeteenteeseesnaesnaesneas 180
A.16.14 FUNCEION AEFINITIONS ... bbb bt b e b e e 182
A.1.6.1.5 SIGNALUrE AEFINITIONSeei et e st et e e e e teenaessaesneesnnesneenseensenns 182
A.16.1.6 TESICASE AEFINITIONS.coueeieeie ettt et b e bt b e ae e et et et e saeebe e e enneneea 183
A.1.6.1.7 F N NS 1 oI L= 1T 0] PSS 183
A.1.6.1.8 g oTo] i 1= 1T o PSS 183
A.1.6.19 GrOUP EFINITIONS ..ottt b et b e bbb st bt b e se et e sb e e eb e st e neebesbenneneas 184
A.1.6.1.10 External function definitioNS.............oo oo 184
A.16.1.11 External constant definitionS.cooiiiiiiiieeee et e 184
A.16.1.12 Module parameter defiNItIONSccoieiiiie bbb 184
A.16.2 (O00] 0110 [7= SO SO PSSP TSP TSRS 185
A.1.6.20 LT 0T S 185
A.l6.21 Variahl € INSEANTTBLIONc..eiveieeeieee ettt e et et bbbt e b et e b e nb e e e eneeneennas 185
A.16.2.2 THIMEY INSEANETBLION ...ttt b et s e b e bt b e s bt eb e e e b et e sbenbesaesbe e e enneneea 185
A.16.2.3 COMPONENE OPEIBLIONSccuveeeeieeieeeeeesteeste e e e e s e sae e e steesteesseassesseeeseesseeseenteentesssessensneesneesseenseensenns 185
A.16.24 Lo 0] 1= =10 186
A.1.6.25 I L 00= 0] 1= 10 PSR 187
A.1.6.3 I3 L= TSRO 187
A.l64 W BIUB. ...ttt ettt e e s e ettt et a et e e e e e Ee Rt Rt eaeeReen e e e e EeeReeRe e Rt eneenteteeReereeae et enteneents 188
A.165 01 (= 174 1 o] S 189
A.16.6 WVt SEBEEIMENL ...ttt ettt st ee et et e e e e e et e seeebesseemeeeenseseeseesaeeneenseneentes 189
A.16.7 1S 0 VoINS = =001 0] £ TS 190
A.16.8 B ol (1 | RS 190
A.16.9 MiSCEl1aNEOUS PrOTUCLIONSceiueeiieeiie et ee ettt e e e eeste e s e e e te e e teeseessaesseesseesseesaesnnesaeesaeenseensenns 192
Annex B (normative): Matching iNCOMING VAIUES..........coieieieieieesieeese s 193
B.1 Template matChing MECNANISIMScoiiiieeiee et s e e reeeeseeenes 193
B.1.1 MatChing SPECITIC VBIUES........c.ee ettt et et e st et e e e saaesaeesaeesneeteeneeenteensesnaesanns 193
B.1.1.1 (O T g0 R = =S 193
B.1.2 Matching mechanisSmSiNStead Of VAIUEScceoiiiiiie et sneas 193
B.1.2.1 RV TN L TR 193
B.1.2.2 ComPleMENTE VBIUE TISEecueieieieeeee ettt bbbt b e b et b e n et 194
B.1.2.3 AANY VBIUB. ...ttt h et b et b b b E e b bt £ bRt e R R bR bt e n e bbb n e nn 194
B.1.24 ANY VBIUE OF NONE. ...ttt ettt sttt sb et b e bt e e e bt s e e e e bt s e ea s eb e s e e s eb e b e b eb e e bt b eneeb e st e e eaeneennens 194
B.1.25 W BIUB FBIGE ..ottt ettt b et b bbbt h et b e E e e b e bt e s eb e R e s eb e e R e s e s bbb e ne b et e e e bt nb e e enis 194
B.1.2.6 S U101 50 TSSO PP PRTURPRSRTRN 195
B.1.2.7 SUDSEL ...ttt ettt ettt e et et e et e e eesaeesheeehe e beebeeateeheeeheete e te e beeateeaeeeheeeheeabeeteebeenreeaeeareesaeas 195
B.1.3 Matching MeChaniSMSINSIAE VAIUESocieiieece ettt et reeteeeeeneeenaesneesnaesneas 195
B.1.3.1 N V= 0= 0| SR 196
B.1.3.1.1 Using single charaCter WilACards............oocviierieeeee ettt 196
B.1.3.2 Any number of elemMeNtS Or NO ElEMENTociiieceece e s s reeneeereens 196
B.1.3.2.1 Using multiple charaCter WildCardS.........cc.veueiierieiiece et se ettt nee s 196
B.1.33 [00101 o] o S 196
B.1.4 MaLChiNg BLLITDULES OF VBIUEScveuiitiiciiitieet ettt bbbt nn s 197
B.14.1 LeNGEN FESIIICIIONS ...ttt bbbt b et b et b bbb 197
B.1.4.2 LSRN L= = LT g [To= (o ST 198
B.1.5 MaLChiNG CEIraCLEr PELLEIT......c.eivieeeet ettt b bbbt bbb b ens 198
B.1.51 SEL EXPIESS O ...ttt ekttt ettt et b et b e se e st b e e e e ae b e e e e Rt e b e e e e Rt b e eE e Rt SR e R e Rt e h R Rt bR et b et b ne e 200
B.1.5.2 REFEIENCE EXPIESSIONevieeeeeiteeitee st e e eee et e e s e e e e tesstesseesaeesreesse e seaneeeseease e seenseensesnsesneesneesneesseanseensenns 200
B.1.5.3 MELCh EXPIrESSION N EIMIESeeieieiee e ee et e e s e s e s e e sae e ae e e e eaeesse e seesteentesssesneesnnesaeesseenseensenns 201

ETSI

8 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

B.1.54 MatCh areferenCed ChAraCter SEL........ ..ottt ettt sn e b st ne e e 201
B.1.55 Type compatiDility rUlES fOr PAILEINS.........ccvieieceesee ettt es et e e reeneenneenes 202
Annex C (nor mative): Pre-defined TTCN-3 fUNCLIONSccoiiiiiiiierieeee e 203
C.0 Generd exception handling PrOCEAUIESccueiiiieeie ettt s reeaesreereesrenesre e 203
(O 1100 = g (o ot = = o (= ST 203
C.2 INteger 1O UNIVEISAl ChaIBCTENoeiieecieeiieeet st b e nr e nn e 203
(O B 10105 o= g (o} o1 £ {1 o ST P P U TP STU SO VRUPPRTPPN 203
(O 1410 o = g (0 11 (11 RS 203
ORI 14105 0 = g (o0 Tex = i 1 1] oo TR ST 204
C.6 INLEYEN 1O CNAISITING. ... ettt sttt eb bt bt et e e e e e st ebesb e enenr e nenne e 204
(O A 110 o = g (o [OSSR 204
(O T = To= | (o] 1= = ST 204
(O R @0 = o= L (ol 1= o = SRR P PSP VROPPRPTIN 204
C.10 CharaCter String 0 OCLELSIIINGccveveeereieieiietesie ettt sb e b b s b e s enenr e nenne e 205
C.11 Universal CharaCter 10 INEOEN........ciueieiieeiesteete sttt eee st ete e s e st e e s e e eesbe e s e steeasesbeeseesbessessesreensesreens 205
C.12 BiItSING 10 INMEEOEN ...ttt b et b et e b e e et s e st e bt sb e bt sbeaeeseebenb e enenr e s e nne e 205
C.13 BItSING 10 NEXSIIING ... etttk b bbb n e se bbb nr s nn e 205
C.14 BitStiNG tO OCLELSIIING ... ccviitieeeiteeiesieeee sttt st et e e s te e s e eaeesbesae e besae e sesreensesteeasstesaeessesreensenseens 205
C.15 BItStNG tO CharSIIiNG......cccuiiuieieiitieee sttt et st et ae s te e s tesre e besae e sesbeeaaesteeasestesaesreeaaentesreensensens 206
C.16 HEXSIIING L0 INMTEOES ...ttt b ettt s e bbb e b et e e e e e st enenb e enenr e s e nnennas 206
C.17 HEXSIING tO DITSIIING. .. ccviiiicieiteciese ettt ae st e st e s re e s e st e eaaestesneetesteeaeesaesreensesreens 206
(ORI o o6 T go R (ool = = 1] oo ST 206
C.19 HEXSIIING 10 CNAISIIINGeeueeieeiieteeiiete sttt e et b b b e e e e e s e b e nenr s e nne e 207
C.20 OCHELSIIING 1O INEEOENeeuertieteeterteet ettt ettt sttt se e et ae st e bt sb e b e b e s e e e e e s eseebesr e anenr e s e nnennas 207
(ORZ2 R ® o (== (1o R (0] 011 £ {1 0T TS 207
C.22 OCLELSIING 10 NEXSIIINGcveeiteet ettt b ettt e e s st en e nenn e 207
C.23 OCtetStriNg t0 CNAraCer SLIINGcoveteeeieieeeeeiesi ettt ss bbbt sn e e e s b e nenne e 208
C.24 Octetstring to character String, VEISION Tlc.ooiviiiiieiice st 208
(ORI Ot T 5 (T a0 (o1 410= o = (ST 208
C.26 CharaCter String 0 OCLELSIIINGccveveeeeeieieieetese ettt nb b b s bt ns e b e nenne e 208
C.27 Character StHNG IO FlOL.......cccviiiceeee ettt r e s be st et e e e e resaeereereens 209
C.28 Length Of SIING LY PO ...veeieiticee sttt ettt te e e st e s ae e be s beeaaesteeneesbesreeneentesreensenreens 209
C.29 Number of elementsin aStruCtUred VBIUB..........ccoiieiiiiee ettt 209
C.30 Number of elementsin aSITUCIUrE tYPE.......couiiiiiierieie et 210
C.31 The ISPreSENt FUNCHION. ..ottt sttt bt e b st n e e e 210
C.32 The ISCROSEN FUNCLION. ..ottt ettt sb ettt b b e bente e e e e 211
C.33 ThE REGEXP FUNCLION ...ttt ettt et e et s bbb nenn e 211
C.34 The SUBSLING FUNCLION........ocieeceec e sttt e et e s reereeaaesbesreesseeneens 211

ETSI

9 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

C.35 The REDIACE FUNCLION........cceeii ettt st st e st e e e e tesaeentesreeaaesresreenseereens 212
C.36 Therandom number generator FUNCLIONc.cciiieii e e e 212
Annex D (informative): Library of USEfUl TYPES ...c.oceeiiceece ettt 213
D 20 R I 10T) P 213
(DA U = | I O N B Y o= SR 213
D.21 (O U IS 0T o Lo 7= Lo 1Y o= S 213
D.2.1.0 Signed and unsigned SINGIE DYLE INEEJEISccuiiee ettt e e nneas 213
D.211 Signed and UNSIgNEd SNOM INEEJEIS........eeveeieiie e see st e se e eteetesae s e esteesteeaeeeesseesseesteenseensesseesseesneas 213
D.21.2 Signed and UNSIgNEd [ONQ INTEGEISccvieiieeeeie et se e e et ee e te e ae e e e sreesseeteenseeseesneessaesneas 214
D.2.13 Signed and unsigned 10NgIONG INEEJEISccvvevieieeeee et e see e se e te e e e s e sreesreestesseeenaesraesneas 214
D.214 TEEE 754 flOBES. ...c.ctitrerereeteteteeeieie sttt bbbttt bbbttt bbb bbbttt bbbttt 214
D.22 USEFUL CharaCter StHNG TYPES ..ottt bbb e bbb e sb et s e e ens 215
D.2.2.0 UTF-8 character String "UFBSIITNG"oeoieeriieerie e 215
D.221 BMP character string "DMPSIiNG"ooveiiieiee e 215
D.222 UTF-16 character String "UFLOSIIING"coorieeriieiriiieesies ettt 215
D.223 I SO/IEC 8859 character string "iS08859SIING"c.crviieueriirieiriirt ettt 215
D.23 USEFUL SEIUCTUPE TYDES....v ettt ettt bbb bbbt b b e et b et et eb b n b ens 216
D.2.3.0 Fixed-point deCIMal [HEEIalc.cooui et et e et e s e e aesneesneesaeenreenseens 216
D.24 (01 U = o0 Tl T o N o= S 216
D.24.1 SiNGIE SO 646 CharaCLer TYPcveeveeiieieeieseeseesee st e te et et e e e s e e et e e teetesseesseesreesseenseenseensessaessensnnas 216
D.24.2 SiNGIE UNIVErSal CNaraCler TY PO ..ottt e e e re e be et e e nteenteenaesraesneas 216
D.24.3 IS0 1= o 3] oSSR 217
D.244 SINGIE NEX LY .ttt et b et b e bbbt b e s E et bt h et bRt bRt b e a e b re e 217
D.245 SINGIE OCLEL LY ...ttt e bbb e bt s et b e s et b ne e bt b e e e et bt e et b e b e e b b 217
Annex E (informative): Operations on TTCN-3 active ObJECES......ccviveeieiiciee e 218
Bl TESt COMPONENES. ...ttt ettt sttt sttt e e b e et e sbesse e b e s aeeseeebe et e sbeeme e besre et e sbeeneeseesns 218
El1l TSt COMPONENTE FEFEIEINCES. ...ttt ettt b e bbb et e be bt e b bt e b b 218
E.12 DyNamic DENAVIOUN OF PTCS ..ottt sttt st b et b e st b e et b e b et et sbe e enesbenneneas 219
E.13 Dynamic behaviour Of The MTC... ..ottt et st b e et sb e eb b seene 221
e 1111 £ SR T 222
R o K TSRS 222
E3.1 CONfiQUIAiON OPEIELIONS.......c.citieeeerterteestertee ettt ae bbb se bbbt b e e e bt b e e e st b e b e bt e b e b e st eb e bt ebenbe e 222
E.3.2 POt CONLIOHTNG OPEIELIONSeiveeeieetereeieete ettt et b e e st b e e bt b e se st bese b e sbe e ebesbe e ebesbeneeneas 223
E.3.3 COMMUNI CALION OPEIELIONS.veeeeerterteieeiestee ettt b ettt s et e st b e bt b e s e st b e b e st e b e e ese e b e b et ebenbe e ees 224
Annex F (informative): Deprecated language fEAatUrES..........coevviiiece e 225
F.1 Group style definition of module ParameLersS..........coveiieeeeieeiese et ens 225
F.2 RECUISIVEIMPOIT ...ttt ettt a bbb b s e e e s et s bt b st e st e bt nb e b e e e e s 225
F.3 Usingal | inport type defiNitiONS..........cccoiiiirireiisiesieee st 225
Annex G (infor mative): Bibliography ...c.coeee s 226
(o 11 (TP 227

ETSI

10 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8. "ThelDL to TTCN-3 Mapping”;

Part9: "Using XML with TTCN-3";

Part 10: " TTCN-3 Documentation Comment Specification ".

ETSI

http://webapp.etsi.org/IPR/home.asp

11 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2[1]) and a graphical presentation format (ES 201 873-3 [2]). The specification of these formatsis outside
the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

* References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

* For aspecific reference, subsequent revisions do not apply.
» For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

[1] ETSI ES 201 873-2 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

[2] ETSI ES201 873-3 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[3] ETSI ES 201 873-4 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics”.

[4] ETSI ES 201 873-5 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[5] ETSI ES201 873-6 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[6] ETSI ES 201 873-7 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[7] ETSI ES 201 873-8 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[8] ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".

[9] I SO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection - Conformance

testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

ETSI

http://docbox.etsi.org/Reference

12 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

[10] ISO/IEC 646 (1991): "Information technology - SO 7-bit coded character set for information
interchange”.
[11] I SO/IEC 6429 (1992): "Information technology - Control functions for coded character sets'.
[12] I SO/IEC 9646-1: "Information technology - Open Systems I nterconnection -Conformance testing
methodology and framework; Part 1. General concepts’.
[13] |EEE 754: "|EEE standard for binary floating-point arithmetic”.
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ISO/IEC 9646-1 [12], I1SO/IEC 9646-3 [9]
and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

NOTE: The number, order and type of al actual parameters to be passed at a single invocation shall bein line
with the list of formal parameters as defined in the invoked entity.

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basic typesare referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO gqueue in the receiving direction. Ports can be
message-based, procedure-based or a mixture of the two.

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible types if conditionsin clause 6.3 are met.

data types. common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them (see table 3 of the present document)

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: form of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is a value received during run-time or depends on areceived value by alogical
relation

exception: in cases of procedure-based communication, an exception (if defined) israised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actua values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that its identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

I mplementation Confor mance Statement (1CS): See |SO/IEC-9646-1 [12].
I mplementation eXtra Information for Testing (I X1T): See ISO/IEC-9646-1 [12].

ETSI

13 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Implementation Under Test (IUT): See ISO/IEC-9646-1[12].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1. The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

inout parameterization: kind of parameterization where the value of the actual parameter is bound to the formal
parameter when the parameterized object isinvoked and the value of the formal parameter is passed back to the actual
parameter, when the invoked object completes

NOTE 1: Inout parameters can be used for functions, atsteps, and test cases only.

NOTE 2: All changes to the arguments within the invoked object have effect on the arguments as seen by the
invoking object.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and typesimported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands |eft to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or atemplate header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See ISO/IEC 9646-3 [9].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object isinvoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1: Out parameters can be used for functions, altsteps, and test cases only.
NOTE 2: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: All changes to the arguments within the invoked object have effect on the arguments as seen by the
invoking object.

Parallel Test Component (PTC): See ISO/IEC 9646-3 [9].
port parameterization: ability to pass aport as an actual parameter into a parameterized object via a port parameter
NOTE: Thisactua port parameter is added to the specification of that object and may completeit.

right hand side (of assignment): expression, template reference or signature parameter identifier which standsright to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: basic type, structured type, special data type, specia configuration type or special default type to which the
user-defined TTCN-3 type can be traced back

static parameterization: form of parameterization, in which actual parameters are independent of run-time events,
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

ETSI

14 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equival ence with no exceptions
System Under Test (SUT): See ISO/IEC-9646-1 [12].

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1. Thisactual template parameter is added to the specification of that object and may completeit.
NOTE 2: Values passed to template formal parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or afunction started on atest component when executing an execut e or a
st art component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test components have its own behaviour and hence severa test
behaviour may run concurrently in the test system (i.e. atest case can be seen as a collection of test
behaviours).

test case: See ISO/IEC-9646-1 [12].
test caseerror: See |SO/IEC-9646-1[12].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with a
one or more TTCN-3 control parts

test system: See |SO/IEC-9646-1 [12].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass atimer as an actual parameter into a parameterized object via a timer
parameter

NOTE: Thisactual timer parameter is added to the specification of that object and may complete it.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type (e.g. a assignments, as actual parameters at calling afunction, referencing atemplate, etc. or asareturn
value of afunction)

NOTE: Both the type and the current value of the value, expression or template shall be compatible with the other
type.

user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vauesmay be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavaue
parameter

NOTE: Thisactual value parameter is added to the specification of that object and may complete it.

ETSI

3.2

15

Abbreviations

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

For the purposes of the present document, the following abbreviations apply:

AP
ATS
BMP
BNF
CORBA
ETS
FIFO
ICS
IRV
uT
IXIT
MTC
PTC
SUT
TSI

Application Programming Interface

Abstract Test Suite

Basic Multilingual Plane

Backus-Nauer Form

Common Object Request Broker Architecture
Executable Test Suite

First In First Out

I mplementation Conformance Statement
International Reference Version

I mplementation Under Test

I mplementation eXtra Information for Testing
Main Test Component

Parallel Test Component

System Under Test

Test System Interface

4

Introduction

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, AP
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including

interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:

. the ability to specify dynamic concurrent testing configurations,

. operations for procedure-based and message-based communication;

. the ability to specify encoding information and other attributes (including user extensibility);

. the ahility to specify data and signature templates with powerful matching mechanisms;

. value parameterization;

. the assignment and handling of test verdicts;

. test suite parameterization and test case selection mechanisms,

. combined use of TTCN-3 with other languages;

. well-defined syntax, interchange format and static semantics,

. different presentation formats (e.g. tabular and graphical presentation formats);

. a precise execution algorithm (operational semantics).

NOTE:

Thisisarewrite of part 1 using the following pattern of concept description. Concepts, principles and
mechanisms are explained in (introductory) text a the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A hasthe priority.

ETSI

16 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts (seefigure 1).
Thefirst part, defined in the present document, is the core language.
The second part, defined in ES 201 873-2 [1], is the tabular presentation format.
The third part, defined in ES 201 873-3 [2], is the graphical presentation format.
The fourth part, ES 201 873-4 [3], contains the operational semantics of the language.
The fifth part, ES 201 873-5 [4], definesthe TTCN-3 Runtime Interface (TRI),
the sixth part, ES 201 873-6 [5], defines the TTCN-3 Control Interfaces (TCI),
the seventh part, ES 201 873-7 [6], specifiesthe use of ASN.1 definitions with TTCN-3,
the eight part, ES 201 873-8 [7], specifiesthe use of IDL definitions with TTCN-3,
the ninth part, ES 201 873-9 (see Bibliography) specifiesthe use of XML definitions with TTCN-3.
The tenth part, ES 201 873-10 (see Bibliography) specifies the use of C/C++ definitions with TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 tools,
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with other type-value notations in which case definitionsin other languages may be
used as an alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other
languages with TTCN-3. The support of other languagesis not limited to those specified in the 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document shall apply.

ASN.1 Types .| TTCN-3 P
& Values "1 core <
Language Tabular

IIDL Types o format <
AMLESIYpEs > Graphical P

format h

.................... TTCN-3 User
C/C++ Types o
: Presentation | The shaded boxes are not

Other Types | format, < defined in this document
& Values d

Figure 1. User's view of the core language and the various presentation formats

ETSI

17 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [3)]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201 873-4[3].

5 Basic language elements

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
Cases, etC.

The control part of amodule calls the test cases and controls their execution. The control part may also declare (local)
variables, etc. Program statements (such asi f -el se and do- whi | €) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

A specia kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

ETSI

18

Table 1: Overview of TTCN-3 language elements

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function/constant definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeable throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.
5.1 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase |etters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objectsimported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

5.2 Scope rules

TTCN-3 provides seven basic units of scope:

a) module definitions part;
b) control part of amodule;
C) component types,

d) functions;

e atseps,

f) testcases;

g) "blocks of statements and declarations" within compound statements.

NOTE 1: Additional scoping rule for groups are given in clause 8.2.2.
NOTE 2: Additional scoping rule for counters of f or loops are given in clause 19.4.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and "blocks of statements and declarations” within compound statements may additionally specify some form
of behaviour by using the TTCN-3 program statements and operations (see clause 1).

Definitions made in the modul e definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part.
| dentifiers imported from other modules are also globally visible throughout the importing module.

ETSI

19 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in atest component type may be used only in functions, test cases and altsteps referencing that
component type or a consistent test component type (see clause 6.3.3) by ar uns on-clause.

Test cases, atsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration madein atest caseis not visiblein afunction called by the test case or in an
altstep used by the test case).

Compound statements, e.g.i f - el se,whi | e, do-whi | e, oral t statementsinclude "blocks of statements and
declarations’. They may be used within the control part of amodule, test cases, altsteps, functions, or may be embedded
in other compound statements, e.g. ani f - el se statement that is used within awhi | e loop.

The "blocks of statements and declarations" of compound statements and embedded compound statements have a
hierarchical relation both to the scope unit including the given "block of statements and declarations' and to any
embedded "block of statements and declarations’. Declarations made within a"block of statements and declarations’
have local visibility.

The hierarchy of scope unitsis shown infigure 2. Declarations of a scope unit at a higher hierarchical level are visible

inal units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

module
definitions part
module conponent type function vxlnthout al t st ep without
control part runs on-clause runs on-clause

block of statements
functi on with
runs on-clause

(within acompound
statement)
block of statements
(within acompound

block of statements
(within acompound

block of statements
(within acompound
statement)

t est case with
runs on-clause and
Qptional syst emclausg

al t st ep with
runs on-clause

embedded
block of statements
(within acompound

embedded
block of statements
(within acompound

embedded
block of statements
(within acompound

block of statements
(within acompound
statement)

embedded
block of statements
(within acompound

embedded
block of statements
(within acompound

Figure 2: Hierarchy of scope units

EXAMPLE:
nodul e MyModul e
{ ;:onst integer MyConst := 0; // MyConst is visible to MyBehavi our A and MyBehavi ourB
functi on MyBehavi our A()
{ i:onst integer A:= 1, /1 The constant Ais only visible to MyBehavi our A
} :
functi on MyBehavi our B()
{ :const integer B := 1; /1 The constant Bis only visible to MyBehavi ourB
}
}

ETSI

20 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

5.2.1 Scope of formal parameters

The scope of formal parametersin a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. al identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy. Identifiers for fields of structured types, enumeration values and
groups do not have to be globally unique, however in the case of enumeration values the identifiers shall only be reused
for enumeration values within other enumerated types. The rules of identifier uniqueness shall also apply to identifiers
of formal parameters.

EXAMPLE:

nodul e MyModul e
{ i:onst integer A :=1;
functi on MyBehavi our A()
{ i:onst integer A:=1; // Is NOT allowed
i£(.)

{ .

const boolean A :=true; // |Is NOT allowed

}

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of A in nodul e header)
functi on MyBehavi our A()

{ :
const integer A := 1;

}

functi on MyBehavi our B()

{ é:onst integer A :=1;
.-
5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a block of statements and declarations, such
asafunction body or abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the
block only.

EXAMPLE:
/1 This is a legal mixing of TTCN-3 decl arations

vér MyVar Type MyVar 2 :
const integer MyConst:
if (x > 10)

{

3;
1

var integer MyVarl:= 1,

MyVar1: = MyVarl + 10;

ETSI

21 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Declarations in the modul e definitions part may be made in any order. However inside the module control part, test case
definitions, functions, and altsteps, all required declarations must be given beforehand. This meansin particular, local
variables, local timers, and local constants shall never be used before they are declared. The only exception to thisrule
are labels. Forward references to alabel may be used in got o statements before the label occurs (see clause 19.8.).

54 Parameterization

TTCN-3 supports value, template, timer and port parameterization. A summary of which language elements can be
parameterized and what can be passed to them as parametersis given in table 2.

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of run-time |all basic types, all user-defined types and addr ess
type.
type Value parameterization Static at compile-time |all basic types, all user-defined types and addr ess
(see note) type.
template Value and template Dynamic at run-time |all basic types, all user-defined types, addr ess type
parameterization and t enpl at e.
function Value, template, port and Dynamic at run-time |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
templateandtiner.
altstep Value, template, port and Dynamic at run-time |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
templateandtiner.
testcase Value, template, port and Dynamic at run-time |all basic types and of all user-defined types,
timer parameterization address type and t enpl at e.
signature Value and template Dynamic at run-time |all basic types, all user-defined types and addr ess
parameterization type and conponent type.

NOTE : Record of, set of, enumerated, port, component and sub-type definitions do not allow parameterization.

54.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, testcases and signatures may be defined incompletely,
i.e. some entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the
definition of the object. These objects are called parameterized objects. Formal entities replacing the unresolved entities
in the parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, testcases, signatures and type definitions are defined
in formal parameter lists. Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

Formal parametersshall bei n, i nout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isani n parameter. For all these three sorts of parameter passing, the actual parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object.

NOTE 1: Alhough out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

NOTE 2: Alhough thereisno restriction to set formal parametersinsidet ypes, t enpl at esand si gnat ur es,
thereisonly an indirect way of doing this by passing the formal parameter of, e.g. atemplate to an inout
formal parameter of a function.

541.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure
[(in] inout | out)] Type Val ueParldentifier

ETSI

22 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description

Vaue formal parameters can be used within the parameterized object the same way as values, for examplein
EXPressions.

Vaue formal parameters may bein, inout or out parameters. The default for value formal parametersisi n
parameterization which may optionally be denoted by the keyword i n. Using of inout or out kind of parameterization
shall be specified by the keywordsi nout or out respectively.

TTCN-3 supports val ue parameterization according to the following rules:

. the language element modul e allows static val ue parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. user-defined t ype definitions (in particular structured type definitionsr ecor d and set), and the special
configuration type addr ess support static value parameterization i.e. this parameterization shall be resolved
at compile-time;

. the language elementst enpl at e, si gnat ure,t est case, al t st ep andf uncti on support dynamic
value parameterization (i.e. this parameterization shall be resolved at run-time).

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type def aul t isthe type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const ,var, timer,control, record of,
set of, enunerated, port, conponent andsub-type definitions group and
i mport.

b) Formal value parametersof t ypes, of t enpl at es, of f unct i onsstarted as test component behaviour
(seeclause 21.2.2) and of al t st eps activated as defaults (see clause 20.5.2) shall alwaysbei n parameters.

c) Restrictions on module parameters are given in clause 8.2.

Examples
EXAMPLE 1. In, out and inout formal parameters.

function MyFunctionl(in bool ean M/ReferenceParaneter){ ...};
/'l MyReferenceParaneter is an in value paraneter. The paraneter can be read. It can al so be set
/1 within the function, however, the assignnent is local to the function only

function MyFunction2(inout bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout value paraneter. The paranmeter can be read and set
/1 within the function — the assignnent is not |ocal

function MyFunction3(out tenplate bool ean MyReferenceParaneter){ ...};

/'l MyReferenceParaneter is an out value paraneter. The paraneter can be set within the function,
/1 the assignnent is not local. It can also be read, but only after it has been set.

ETSI

23 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2: Reading and setting parameters.

type record MyMessage {
integer f1,
integer f2

}

tenpl ate MyMessage t_MyMessage (integer p_int) :={
fl:=f_mult2 (p_int),
/] paraneter p_int is passed on; as the paraneter of the called function f_nult2 is
// defined as an inout paraneter, it passes back the changed value for p_int,

f2 :=p_int

}

function f_nmult2 (inout integer p_integer) return integer {
p_integer := 2* p_integer;

/'l the value of the formal paranmeter is changed; this new value is passed back when
/1 f_mult2 conpletes
return p_integer-1

}

testcase tc_01 () runs on MIC PT {

. i?’l. send (t_MyMessage(5))
// the value sent is { f1:=9, f2 := 10}

5.4.1.2 Formal parameters of kind template

Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[(in] inout | out)] tenplate Type Val ueParldentifier

Semantic Description

Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword
t enpl at e shall be added before the type field of the corresponding formal parameter. This makes the parameter a

template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisi n
parameterization.

Restrictions
a Onlyfunction,testcase,altstepandtenpl at e definitions may have formal template parameters.

b) Formal template parameters of t enpl at es, of f unct i ons started as test component behaviour
(seeclause 21.2.2) and of al t st epsactivated as defaults (see clause 20.5.2) shall alwaysbei n parameters.

Examples
EXAMPLE 1. Template with template parameter.

/1 The tenplate
tenpl ate M/MessageType MyTenpl ate (tenpl ate i nteger MyFormal Param: =

{ fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol.recei ve(M/Tenpl ate(?));

ETSI

24 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

/1 O as follows
pcol.recei ve(M/Tenpl ate(onit)); // provided that fieldl is declared in MyMessageType as optional

EXAMPLE 2: Function with template parameter.

function MyBehavi our (tenpl ate MyMsgType MyFor mal Par anet er)
runs on MyConponent Type
{ .

pcol. recei ve(MyFor mal Par anet er);

}
54.1.3 Formal parameters of kind timer

Functions and altsteps can be parameterized with timers.

Syntactical Structure

[inout] timer TinerParldentifier

Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve there current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continuesto run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or atstep to which the timer is passed.

Formal timer parameters are identified by the keyword t i mer .

Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only f uncti on —with the exception of functions started as test component behaviour (see clause 21.2.2) -
and al t st ep definitions may have formal timer parameters.

Examples

/1 Function definition with a timer in the formal parameter |ist
function MyBehavi our (timer MyTimer)

My/Ti ner.start;

}

/1 could be used as follows
function MyBehaviour2 ()

{ :
timer t;
MyBehavi our (t);

5414 Formal parameters of kind port

Functions and altsteps can be parameterized with ports.

Syntactical Structure
[inout] PortTypeldentifier PortParldentifier

ETSI

25 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by ar uns on clause.

Ports passed in as parameters shall preserve there current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or atstep to which the port is passed to.

Formal port parameters are identified by the keyword por't .

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.
b) Only functi on —with the exception of functions started as test component behaviour (see clause 21.2.2) -
and al t st ep definitions may have formal port parameters.

Examples

/1 Atstep definition with a port in the formal parameter |ist
al tstep MyBehavi our (MyPortType M/Port)

t] M/Port.receive { setverdict(fail); stop; }

5.4.2 Actual parameters

Vaues, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters.

Syntactical Structure

Expression | /1 for val ue paraneter
Tenpl at el nst ance | /1 for tenpl ate paraneter
Ti mer Ref | /1 for timer paraneter
Por t /1 for port paraneter

Semantic Description

Actual parametersthat are passed by valueto i n formal value parameters shall be variables, literal values, module
parameters, (external) constants, variables, value returning (external) functions, formal value parameters (of in, inout or
out parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed toi nout or out formal value parameters shall be variables or formal value
parameters (of in, inout or out parameterization).

Actual parametersthat are passed toi n formal template parameters shall be literal values, module parameters,
(external) constants, variables, value or template returning (external) functions, formal value parameters (of in, inout or
out parameterization) of the current scope or expressions composed of the above, as well as templates, template
variables or formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed toi nout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parametersthat are to formal port parameters shall be component ports or formal port parameters of the current
scope.

ETSI

26 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions

a) Thenumber of elements and the order in which they appear in an actual parameter list shall be the same asthe
number of elements and their order in which they appear in the corresponding formal parameter list.
Furthermore, the type of each actual parameter shall be compatible with the type of each corresponding formal
parameter.

b) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the top-
level actual parameter list.

c) If theformal parameter list of TTCN-3 objectsf uncti on,t est case,signature, altstepor
ext ernal functi on isempty, thenthe empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

d) Restrictions on the use of signature parameters are given in clauses 15.2 and 22.3.

€) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

Examples
EXAMPLE 1: Forma and actual parameter lists have to match.

/1 A function definition with a formal paraneter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual parameter |ist
M/Function(123, true,'1100' B);

EXAMPLE 2: In parameters.

function MyFunction(in tenplate MyTenpl at eType MyVal ueParaneter){ ...};
/'l MyVal ueParaneter is in paraneter, the in keyword is optional

/1 A function call with an actual paraneter
MyFunct i on(Myd obal Tenpl ate) ;

EXAMPLE 3: Inout and out parameters.

function MyFunction(inout bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout paraneter, the inout keyword is
/1 mandat ory

/1 A function call with an actual paraneter
MyFunct i on(MyBool eanVari abl e) ;
/1 The actual paranmeter can be read and set within the function

function MyFunction(out tenplate bool ean M/ReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout paraneter, the inout keyword is
/1 mandatory

/1 A function call with an actual paraneter

MyFunct i on(MyBool eanVari abl e) ;
/!l The actual paraneter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists.

/1 A function definition with an enpty paraneter list shall be witten as
function MyFunction(){ ...}

/1 and shall be called as
MyFunction();
/Il Arecord definition with an enpty paraneter list shall be witten as

type record M/Record { ...}

/1 and shall be used as
tenpl ate M/Record Mytenplate :={ ...}

ETSI

27 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLES5: Nested parameter lists.

/1 G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl,
charstring field2,
bool ean field3
}

/1 A message tenplate nmight be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

fieldl := MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/1 A test case paraneterized with a tenplate nmight be
testcase TCOOl(tenpl ate MyMessageType RxMsg) runs on PTCl system TSl {

M/PCO. recei ve(RxMsQ) ;
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/] passed as an actual paraneter, the tenplate"s actual paraneters nust be provided
control

{ :
execute(TCOO01(MyTenplate(7)));

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
verdi ct t ype. Structured typessuch asr ecor d types, set typesand enuner at ed types can be constructed from
these basic types.

The special datatype anyt ype isdefined as the union of all known data types and the address type within a module.

Specia types associated with test configurations such asaddr ess, port and conponent may be used to define the
architecture of the test system (see clause 21).

The special typedef aul t may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

ETSI

28

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern

universal charstring

range, list, length, pattern

Structured types

record

list (see note)

record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data types anytype list (see note)
Special configuration types address
port
component
Special default types default

parent type.

NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first

6.1 Basic types and values

6.1.0 Simple basic types and values

TTCN-3 supports the following basic types:

a) i nteger: atypewith distinguished values which are the positive and negative whole numbers, including

Zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the value
is 0; the value zero shall be represented by a single zero.

b) fl oat: atypeto describe floating-point numbers.

In general, floating point numbers can be defined as:

<mantissa> x <base><exponent>

where <mantissa> isa positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16) and
<exponent> a positive or negative integer.

In TTCN-3, the floating-point number val ue notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

- the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x1072),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 10°6); or

- by two numbers separated by E where the first number specifies the mantissa and the second specifies
the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which represents

-123 x 10°5).

NOTE: Incontrast to the general definition of float values, the mantissa of in theT TCN-3 val ue notation, beside
integers, allows decimal numbers as well.

c) bool ean: atype consisting of two distinguished values.

Values of boolean type shall bedenoted by t r ue and f al se.

ETSI

29 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

d) verdicttype: atypefor usewith test verdicts consisting of 5 distinguished values. Values of
ver di ct t ype shal be denoted by pass,fail,i nconc,none anderror.

6.1.1 Basic string types and values
TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string typein TTCN-3 referstobi t stri ng, hexstri ng,octetstri ng,
charstring anduni versal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Vaues of type bi t st ri ng shall be denoted by an arbitrary number (possibly zero) of the bit digits: 01,
preceded by a single quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101'B.

b) hexstri ng: atypewhose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Vaues of type hexst ri ng shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: ' ABOID H
" ab01d' H
' AbO1D H

Cc) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Vaues of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters' ¢; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE3: 'FF96' O
'ff96' O
'Ff96' O

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
I SO/IEC 646 [10] complying with the International Reference Version (IRV) as specified in clause 8.2 of
ISO/IEC 646 [10].

NOTE 2: The IRV version of ISO/IEC 646 [10] is equivalent to the IRV version of the International Reference
Alphabet (former International Alphabet No.5 - |A5), described in ITU-T Recommendation T.50
(see bibliography).

Vauesof char st ri ng type shall be denoted by an arbitrary number (possibly zero) of characters from the
relevant character set, preceded and followed by double quote (") or calculated using the predefined
conversion function int2char with the positive integer value of their encoding as argument (see clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by apair of double quotes on the same line with no intervening space characters.

ETSI

30 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 4: ""abcd"" representsthe literal string " abcd".

€) The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from ISO/IEC 10646 [[8].

uni ver sal char stri ng values can aso be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote (), calculated using a predefined
conversion function (see clause C.2) with the positive integer value of their encoding as argument or by a
"quadruple".

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by apair of double quotes on the same line with no intervening space characters.

The"quadruple” is only capable to denote a single character and denotes the character by the decimal values
of its group, plane, row and cell according to ISO/IEC 10646 [[8], preceded by the keyword char included
into a pair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotes the Hungarian character
"{i"). In cases where it is necessary to denote the character double quote () in a string assigned according to
the first method (within double quotes), the character is represented by a pair of double quotes on the same
line with no intervening space characters. The two methods may be mixed within a single notation for a
string value by using the concatenation operator.

EXAMPLES: Theassignment : "the Braille character" & char (0, 0, 40, 48) & "lookslike this' represents the
literal string: the Braille character 3 looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, uni ver sal char st ri ng shal conform to the UCS-4 coded representation form specified in
clause 14.2 of ISO/IEC 10646 [[8].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The following
useful character string types utf8string, bmpstring, utf16string and iso8859string using these attributes are
defined in annex E.

6.1.1.1 Accessing individual string elements

Individual elementsin astring type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0).

EXAMPLE:

/1 Gven

MyBitString := '11110111' B;
/1 Then doi ng
M/BitString[4] :='1'B;

/'l Results in the bitstring '11111111'B

6.1.2 Sub-typing of basic types

User-defined types shall be denoted by the keyword t ype. With user-defined types it is possible to create sub-types
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of values

TTCN-3 permits the specification of alist of distinguished values of basic types, structured types and anytype as listed
intable 3. The valuesin the list shall be of the root type and shall be a true subset of the values defined by the root type.
The subtype defined by thislist restricts the allowed values of the subtype to those valuesin the list.

ETSI

31 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);

type float pi (3.1415926);

type charstring MyStringList ("abcd", "rgy", "xyz");

type universal charstring Special Letters (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0, 0, 1,
113));

6.1.2.2 Ranges

TTCN-3 permits the specification of range constraints for the typesi nt eger, charstring, uni versal
charstringandfl oat (or derivations of thesetypes). Fori nt eger andf | oat , the subtype defined by the
range restricts the allowed values of the subtype to the values in the range including the lower boundary and the upper
boundary. Inthecase of char st ri ng anduni versal charstring types, the range restricts the allowed values
for each separate character in the strings. The boundaries shall evaluate to valid character positions according to the
coded character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower
and the upper boundaries are not considered to be valid values of the specified range.

EXAMPLE 1

type integer Myl ntegerRange (0 .. 255);
type float piRange (3.14 .. 3142E-3);

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

Il Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. "z");

/1 Defines a string type of any length with each character within the range froma to z
/'l (character codes from97 to 122), I|ike "abxyz";

/'l strings containing any other character (including control characters), like

/1 "abc2" are disallowed.

type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

/1 Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

6.1.2.2.1 Infinite ranges

In order to specify an infinite integer or float range, the keyword i nf i ni t y may be used instead of avalueindicating
that there is no lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

EXAMPLE:
type integer MylntegerRange (-infinity .. -1); // Al negative integer nunbers

NOTE: The'value' for infinity isimplementation dependent. Use of this feature may lead to portability problems.

6.1.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In all cases, these boundaries shall evaluate to non-negative
i nt eger values(or derivedi nt eger values).

EXAMPLE:

type bitstring MyByte | ength(8); /'l Exactly length 8

type bitstring MyByte length(8 .. 8); /'l Exactly length 8

type bitstring M/N bbl eToByte I ength(4 .. 8); /1 Mnimumlength 4, naxi numlength 8

Table 4 specifies the units of length for different string types.

ETSI

32 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nf i ni ty may aso be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.4 Pattern sub-typing of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char st ri ng types. The type constraint shall usethe pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a true subset of the type being sub-typed.

NOTE: Pattern sub-typing can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
/1 all permitted values of MyString have prefix abc and postfix xyz

type universal charstring M/UString (pattern "*\r\n")
/1 all permitted values of MyUString are terminated by CR/LF

type charstring MyString2 (pattern "abc?\q{0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
/'l legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");
/] causes an error because the type MyString does not contain a value starting with the
/1l character d

6.1.2.5 Mixing sub-typing mechanisms

6.1.2.5.1 Mixing patterns, lists and ranges

Withini nt eger andf | oat (or derivations of these types) sub-type definitionsit is allowed to mix lists and ranges.
Overlapping of different constraintsis not an error.

EXAMPLE 1

type integer Myl ntegerRange (1, 2, 3, 10 .. 20, 99, 100);
Withinchar string and uni versal char stri ng sub-type definitionsit is not allowed to mix pattern, list or
range constraints.

EXAMPLE 2:

type charstring MyCharStrO ("gr", "xyz");
/'l contains character strings gr and xyz;

type charstring M/CharStrl ("a".."z");
/1 contains character strings of arbitrary |ength containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");
/Il contains character strings of length form3 to 9 characters containing characters a to z

6.1.2.5.2 Using length restriction with other constraints

Withinbi t stri ng, hexstring, octetstring sub-type definitions lists and length restriction may be mixed in
the same sub-type definition.

ETSI

33 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Withinchar string and uni versal charstri ng sub-type definitionsit isallowed to add alength restriction
to constraints containing list, range or pattern sub-typing in the same sub-type definition.

When mixed with other constraints the length restriction shall be the last element of the sub-type definition. The length
restriction takes effect jointly with other sub-typing mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern sub-typing and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
/Il contains the character strings gr and xyz;

type charstring M/CharStr6 ("a".."z") length (3..9);
/1 contains character strings of length from3 to 9 characters and containing characters
/1 atoz

type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);
/1 contains character strings of length form3 to 9 characters containing characters a to z

type charstring M/CharStr8 (pattern "[a-z]#(3,9)") length (1..8);
/1 contains character strings of length form3 to 8 characters containing characters a to z

type charstring M/CharStr9 (pattern "[a-z]#(1,8)") length (1..9);
/'l contains any character strings of length form1 to 8 characters containing characters
/1 atoz

type charstring MyCharStr10 ("gr", "xyz") length (4);
/1 contains no value (enpty type).

6.2 Structured types and values

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enurer at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1.

const MyRecordType MyRecor dVal ue: // assi gnnment notation

fieldl := "11001"B,
field2 := true,
field3 := "A string"
}
Il O
const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"} //value list notation

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned val ues must be specified. Fields not mentioned are implicitly left
unspecified. It is also possible to leave fields explicitly unspecified using the not used symbol "-". Using the value list
notation all fields in the structure shall be specified either with avalue, the not used symbol "-" or theoni t keyword.

EXAMPLE 2:
var MyRecordType MyVari abl e: = // assi gnnment notation
{
fieldl := "'11001"B,
I/l field2 inplicitly unspecified
field3 := "A string"
}
I O
var MyRecordType MyVari abl e: = /] assi gnnment notation
fieldl := "11001"B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
}

ETSI

34 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

IO
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It isnot allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { M/l ntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit oni t value
for the relevant field. Theomi t keyword shall not be used for mandatory fields. When re-assigning a previoudy
initialized value, using the not used symbol or skipping afield in assignment notation will cause the relevant fields to
remain unchanged.

EXAMPLE 4:
var MyRecordType MyVariable : =
{
fieldl :="111'B,
field2 := fal se,
field3 := -
}
MyVariable := { '10111'B, -, - }

/Il after this, MyVariable contai ns { '10111'B, false /* unchanged */, <undefined> }

M/Vari able : =
field2 := true

}

/Il after this, MyVariable contains { '10111' B, true, <undefined> }

MyVari abl e :

fieldl :
field2 :
field3 :

fal se,

}
/1 after this, MyVariable contains { '10111'B, fal se, <undefined> }

6.2.1 Record type and values

TTCN-3 supports ordered structured types known asr ecor d. The elements of ar ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of ar ecor d shall be compatible
with the types of ther ecor d fields. The element identifiers are local to ther ecor d and shall be unique within the
recor d (but do not have to be globally unique). A constant that is of r ecor d type shall contain no variables or
module parameters as field values, either directly or indirectly.

EXAMPLE 1

type record MyRecordType
{

i nt eger fieldl,
MyQt her Recor dType field2 optional,
charstring field3

}

type record MyQ her Recor dType
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields (i.e. as empty records).
EXAMPLE 2:
type record MyEnptyRecord { }

A record vaueisassigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

ETSI

35 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 3:
var integer MylntegerValue := 1,

const MyQ her RecordType MyQt her Recor dVal ue: =

fieldl := "11001"B,
field2 := true
}
var MyRecordType MyRecordVal ue : =
{
fieldl : = Myl ntegerVal ue,
field2 : = M/O her Recor dVal ue,
field3 := "A string"
}

The same val ue specified with avalue list.

EXAMPLE 4:

M/Recor dVval ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};

6.2.1.1 Referencing fields of a record type

Elements of ar ecor d shall be referenced by the dot notation TypeOr Val uel d. El enment | d, where
TypeOr Val uel d resolvesto the name of a structured type or variable. Elementld shall resolve to the name of afield
in astructured type.

EXAMPLE:
MyVarl : = MyRecordl. nyEl enent 1;

/1 If arecord is nested within another type then the reference nay | ook like this
MyVar2 : = MyRecordl. nyEl enent 1. nyEl enent 2;

6.2.1.2 Optional elements in a record
Optional elementsinar ecor d shall be specified using the opt i onal keyword.
EXAMPLE 1:

type record MyMessageType

Fi el dTypel fieldi,
Fi el dType2 field2 optional,

Fiel dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:
M/Recor dVal ue: = { Myl nt eger Val ue, omt , "A string"};
/'l Note that this is not the sane as witing,

/1 MyRecordVal ue: = { M/l ntegerValue, -, "A string"};
/1 which would mean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within ther ecor d definition. Both the definition of
new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of subtype
congtraints are possible.

ETSI

36 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:

/'l record type with nested structured type definitions
type record MyNest edRecordType

record

{
i nt eger nestedFi el d1,
fl oat nest edFi el d2
} outerFieldi,
enunerated {
nest edEnum,
nest edEnung
} outerField2,
record of bool ean outerField3

}

/1 record type with nested sub-type definitions
type record MyRecor dTypeW t hSubt ypedFi el ds
{

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of the set fieldsisnot significant.

EXAMPLE:
type set M/Set Type
{

i nt eger fieldl,
charstring field2
}

Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

6.2.2.1 Referencing fields of a set type
Elements of aset shall be referenced by the dot notation (see clause 6.2.1.1).
EXAMPLE:

MyVar3 : = MySet 1. nyEl enent 1;

/1 If a set is nested in another type then the reference nay look like this

MyVar4 : = MyRecordl. nyEl enent 1. nyEl enent 2;

/1 Note, that the set type, of which the field with the identifier 'nyElenent2' is referenced,
/l is enbedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered array respectively.

ETSI

37 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Thel engt h keyword followed by a value or arange within brackets and used betweenther ecord or set andthe
of keywords restricts the allowed lengths of the givenr ecor d of or set of type.

NOTE 1: A typerestriction related to the innermost type is placed after the name of the newly defined type. Note
that the innermost type can not be a set of or record of. Type restrictions related to record of or set of
types are placed between their r ecor d/set and of keywords.

EXAMPLE 1:

type record |l ength(10) of integer MyRecordOf Type; // is a record of exactly 10 integers

type record | ength(0..10) of integer M/RecordOf Type; // is a record of a maxi numof 10 integers
type record | ength(10..infinity) of integer M/RecordOf Type; // record of at l|east 10 integers
type set of boolean MySetOf Type; // is an unlinmited set of bool ean val ues

type record |l ength(0..10) of charstring StringArray |ength(12);
I/l is a record of a maximum of 10 strings each with exactly 12 characters

type record of record of charstring StringArray |ength(12);
// is a two-dinensional unlimted array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring StringArray |ength(12);
I/l is an unordered two-dinensional array of the size 5*6 of strings each
/1 with exactly 12 characters

The value notation for record of andset of shall beavauelist notation or an indexed notation for an individual
element (the same value notation as for arrays, see clause 6.2.7). There is one exception from this general rule: inthe
case of defining modified templates, when the assignment notation is also allowed to be used (see clause 15.5).

When the value list notation is used, the first value in the list is assigned to the first element, the second list valueis
assigned to the second element, etc. No empty assignment is alowed (e.g. two commas, the second immediately
following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly
skipped or omitted in the list.

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantical or run-time
error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remainsinvisible). Sending ar ecor d of vaue with undefined elements shall cause a dynamic testcase error.

EXAMPLE 2:

/1 Gven

type record of integer MyRecordd;

var integer MyVar;

var M/RecordO MyRecordVar := { 0, 1, 2, 3, 4},

MyVar := MyRecordVar[O]; // the first elenent of the "record of" value (integer 0)
/1 is assigned to MyVar

/1 Indexed values are pernitted on the |eft-hand side of assignnents as well:
M/RecordVar[1] := MyVar; // M/Var is assigned to the second el enent
/1 value of M/Recordvar is { 0, 0, 2, 3, 4}

/1 The assi gnment

M/Recordvar := { 0, 1, -, 2, omit };

/1 will change the value of MyRecordVar to{ O, 1, 2 <unchanged>, 2};

I/ Note, that the 3% el ement woul d be undefined if had had no previous assigned val ue.

/1 The assi gnment
M/RecordVar[6] := 6;

/1 will change the value of MyRecordVar to{ O, 1, 2 , 2, <undefined>, <undefined>, 6 };

/1 Note the 5" and 6'" el enents (with indexs 4 and 5) had no assigned value before this
/1 last assignnent and are therefore undefined.

ETSI

38 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

NOTE 2: Thismakesit possibleto copy r ecor d of valueselement by element in afor loop. For example, the
function below reversesthe elements of ar ecor d of value:

function reverse(in My/Record src) return MyRecord

{

var MyRecord dest;

var integer |;

for(l :=0; | < sizeof(src); I:
dest[sizeof (src) - 1 - I]

}

return dest;

}
Embedded r ecord of andset of typeswill result in adata structure similar to multidimensiona arrays

(seeclause 6.2.7).

I+ 1) {
src[l];

EXAMPLE 3:

/1 Gven
type record of integer MyBasicRecordO Type;
type record of MyBasi cRecordO Type MyRecordO Type;

/1 Then, the variable nyRecordOfArray will have similar attributes to a two-dinensional array:
var MyRecordOf Type nyRecordOf Array;

/1 and reference to a particular elenment would | ook like this

/1 (value of the second el ement of the third ' MyBasi cRecordOf Type' construct)

nyRecordOr Array [2][1] := 1,

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withther ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enunerated { red, green, blue } ColorlList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

6.2.4 Enumerated type and values

TTCN-3 supportsenuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerations. Each enumeration shall have an identifier. Operations on
enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering operators.
Enumeration identifiers shall be unique within the enumerated type (but do not have to be globally unique) and are
consequently visible within the context of the given type only. Enumeration identifiers shall only be reused within other
structured type definitions and shall not be used for identifiers of local or global visibility at the same or alower level of
the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1:

type enunerated MyFirstEnunlype {
Monday, Tuesday, Wednesday, Thursday, Friday

}
type integer Monday;
/1 This definitionis illegal, as the nane of the type has local or global visibility

type enunerated MySecondEnuniType {
Saturday, Sunday, Monday

/} This definition is legal as it reuses the Monday enuneration identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday enuneration identifier within
/1 a distinct structured type as identifier of a given field of this type

ETSI

39 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

type record MyNewRecor dType {
MyFi r st EnunType firstField,
i nt eger secondFi el d

b

var MyNewRecor dType newRecordVal ue := { Monday, 0 }
/Il MyFirstEnunType is inplicitly referenced via the firstField el enent of M/NewRecordType

const integer Mnday := 7
/1 This definitionis illegal as it reuses the Monday enuneration identifier for a
/] different TTCN-3 object within the same scope unit

Each enumeration may optionally have an assigned integer value, which is defined after the name of the enumeration in
parenthesis. Each assigned integer number shall be distinct within asingle enuner at ed type. For each enumeration
without an assigned integer value, the system successively associates an integer number in the textua order of the
enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied in any of
the enumerations with a manually assigned value. These values are only used by the system to allow the use of
relational operators.

NOTE 1: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside of the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

For any instantiation or value reference of an enunrer at ed type, the given type shall beimplicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated typeisimplicitly
referenced via the given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation etc.

EXAMPLE 2:

/1 Valid instantiations of M/FirstEnumlype and MySecondEnunType woul d be
var MyFirst EnunType Today := Tuesday;
var MySecondEnuniType Tonorrow : = Monday;

/1 But the following statenent is illegal because the two enuneration types are not conpatible
Today : = Tonorrow

6.2.5 Unions

TTCN-3 supportsthe uni on type. Theuni on typeisacollection of fields, each oneidentified by an identifier. Only
one of the specified fields will ever be present in an actual union value. Union types are useful to model a structure
which can take one of afinite number of known types.

EXAMPLE:
type uni on MyUni onType

i nt eger nunber,
charstring string

b

/1 A valid instantiation of MyUnionType would be
var MyUni onType age, oneYeard der;
var integer agel nMont hs;

age. nunber : = 34; /1 value notation by referencing the field. Note, that this
/1 notation nakes the given field to be the chosen one
oneYear d der := {nunber := age.nunber+1};

agel nMont hs : = age. nunber * 12;

The value list notation for setting values shall not be used for values of uni on types.

6.25.1 Referencing fields of a union type

Fields of auni on type shall be referenced by the dot notation (see clause 6.2.1.1).

ETSI

40 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:

MyVar5 : = MyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this

MyVar6 : = MyRecordl. nyEl enent 1. nyChoi ce2;

/1 Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
/1 is enbedded in a record type

6.2.5.2 Optionality and union

Optional fields are not allowed for the uni on type, which meansthat the opt i onal keyword shall not be used with
uni on types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union fields nested within the union definition, similar to the mechanism
for record types described in clause 6.2.1.3.

6.2.6 The anytype

The special type anyt ype isdefined as a shorthand for the union of all known data types and the address typein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of theanyt ype shall be uniquely identified by the corresponding type names.

NOTE 1: Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) can not be reached
via the anytype of the importing module.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype MyVar One, M Var Two;
var integer MyVar Three;

MyVar One. i nteger := 34;
M/Var Two : = {integer := MyVarOne.integer + 1};

MyVar Three : = MyVar One. i nteger * 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains' all typesimported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

In common with many programming languages, arrays are not considered to be typesin TTCN-3. Instead, they may be
specified at the point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array
dimensions shall be specified using constant expressions, which shall evaluate to a positivei nt eger values.

EXAMPLE 1.

var integer M/Arrayl[3]; /1 Instantiates an integer array of 3 elenents with the index 0 to 2
var integer M/Array2[2][3]; // Instantiates a two-dinensional integer array of 2 x 3 elenents
/1 with indexes from(0,0) to (1,2)

Array elements are accessed by means of the index notation ([]), which must specify a valid index within the array's
range. Individual elements of multi-dimensional arrays can access by repeated use of the index notation. Accessing
elements outside the array's range will cause a compile-time or test case error.

ETSI

41 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2:

M/Arrayl[1] := 5;
MWArray2[1]1[2] := 12;

MArrayl[4] = 12; /1 ERROR index nust be between 0 and 2
M/Array2[3][2] := 15; // ERROR first index nust be 0 or 1

Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values.

EXAMPLE 3:

var integer M/Array3[1 .. 5]; /1 Instantiates an integer array of 5 elenents
/] with the index 1 to 5

M/Array3[1] := 10; // Lowest index

M/Array3[5] := 50; // Highest index

var integer MJArray4[1 .. 5][2 .. 3]; // Instantiates a two-dinmensional integer array of
/1 5 x 2 elements with indexes from(1,2) to (5,3)

The values of array elements shall be compatible with the corresponding variable declaration. VVaues may be assigned
individually by avalue list notation or indexed notation or more than one or all at once by avalue list notation. When
the value list notation is used, the first value of thelist is assigned to the first element of the array (the element with
index 0), the second value to the second element, etc. Elements to be left out from the assignment shall be explicitly
skipped or omitted in the list. For assigning values to multi-dimensional arrays, each dimension that is assigned shall
resolve to a set of values enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost
dimension corresponds to the outermost structure of the value, and the rightmost dimension to the innermost structure.
The use of array dlices of multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the
number of dimensionsin the corresponding array definition, is allowed. Indexes of array slices shall correspond to the
dimensions of the array definition from left to right (i.e. the first index of the slice corresponds to the first dimension of
the definition). Slice indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
M/Arrayl[0] : = 10;
M/Arrayl[1] : = 20;
M/Arrayl[3]: = 30;

/1 or using an value |ist
M/Arrayl: = {10, 20, -, 30};

MWArrayd: = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
/1 The array value is conpletely defined

var integer MArray5[2][3][4] :=

{1, 2, 3, 4}, /I assigns a value to M/Array5 slice [0][O0]
{5, 6, 7, 8}, /] assigns a value to M/Array5 slice [0][1]
{9, 10, 11, 12} // assigns a value to M/Array5 slice [0][2]
}, I/ end assignnents to M/Array5 slice [O]
{

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} // assigns a value to M/Array5 slice [1]
H

M/Array4[2] := {20, 20};
/1 yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
MWArray5[1] :={ {0, 0, O, 0}, {0, O, O, 0}, {O, O, O, O}};
/1 yields {{{1, 2, 3, 4}, {5, 6, 7, 8, {9, 10, 11, 12}},
/1 {{o, o, o, 0o}, {0, 0, 0, 0}, {O, O, O, 0}}};

M/Array5[0][2] := {3, 3, 3, 3};
/1l yields {{{1, 2, 3, 4}, {5 6, 7, 8}, {3,
/1 {{o, o, o, 0}, {0, O, 0, 0}, {0,

o w
ow
o W
—— =
—
- -

var integer M/Arraylnvalid[2][2];

M/Arraylnvalid := { 1, 2, 3, 4}
// invalid as the dinension of the value notation does not corresponds to the dinensions
/1 of the definition

MArraylnvalid[2] := { 1, 2}
/1 invalid as the index of the slice should be 0 or 1

ETSI

42 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

NOTE: An aternative way to use multi-dimensional data structures is via employing the record, record of, set or

set of types.
EXAMPLE 5:
/1 Gven
type record MyRecordType
{
i nt eger fieldl,
MyQ her St ruct field2,
charstring field3
}

/1 An array of MyRecordType coul d be

var MyRecordType nyRecordArray[10];

/Il Areference to a particular elenent would | ook like this
nyRecordArray[1].fieldl := 1,

6.2.8 Recursive types

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

6.3 Type compatibility
Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., iscaled value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value"b" iscalled
type"A".

6.3.1 Type compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and bitsring, hexstring and octetstring types the value "b"
iscompatible to type"A" if type "B" resolvesto the same root type astype "A" (e.g. i nt eger) and it does not violate
subtyping (e.g. ranges, length restrictions) of type"A".

EXAMPLE:

/1 Gven
type integer Mylnteger(l .. 10);

var integer x;
var Mylnteger vy,

/1 Then
y :=5; /] is a valid assignnent

X 1= y;
/1 is a valid assignnent, because y has the sane root type as x and no subtyping is violated

20; // is a valid assignnent

y X;

/1 is NOT a valid assignnment, because the value of x is out of the range of Ml nteger
x :=5; // is a valid assignnent

y 1= X;

Il is a valid assignnment, because the value of x is now wi thin the range of Myl nteger
/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);
var MyChar myCharacter;

var charstring nyCharString;

var MySingl eChar nySingl eCharString := "B";

/] Then

nmyChar String := nySingl eChar String;

/lis a valid assignnent as charstring restricted to length 1 is conpatible with charstring.
nyCharacter := nySingleCharString;

/lis a valid assignnment as two single-character-length charstrings are conpati bl e.

ETSI

43 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

/1 G ven
myChar String := "abcd";

/] Then
nyCharacter := nyCharString[1];
/lis valid as the r.h.s. notation addresses a single elenent fromthe string

/1 G ven
var charstring nyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/] Then
nmyChar String := nmyCharacterArray[1];
/lis valid and assigns the value "B" to nyCharString;

For variables, constants, templates etc. of char st ri ng type, value 'b' is compatible with auni ver sal
char stri ng type'A' unlessit violates any type constraint specification (range, list or length) of type"A".

For variables, constants, templates etc. of uni ver sal char stri ng type, value'b' is compatible with a

char string type'A'if al characters used in value 'b'" have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type char st ri ng and it does not violate any type constraint
specification (range, list or length) of type"A".

6.3.2 Type compatibility of structured types

In the case of structured types (except the enuner at ed type) avalue "b" of type"B" is compatible with type "A", if
the effective value structures of type "B" and type "A" are compatible, in which case assignments, instantiations and
comparisons are allowed.

6.3.2.1 Type compatibility of enumerated types

Enumerated types are never compatible with other basic or structured types (i.e. for enumerated types strong typing is
required).

6.3.2.2 Type compatibility of record and record of types

For r ecor d types the effective value structures are compatible if the number, and optional aspect of the fieldsin the
textual order of definition areidentical, the types of each field are compatible and the value of each existing field of the
value"b" is compatible with the type of its corresponding field in type "A". The value of each field in the value "b" are
assigned to the corresponding field in the value of type "A".

EXAMPLE 1:

/1 Gven

type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional,
bool ean c

}

type record BType {
i nt eger a optional,
i nt eger b(0..10) optional ,
bool ean c

}

type record CType { /1 type with different field nanes
i nt eger d optional ,
i nt eger e optional,
bool ean f

}

type record DType { /1 type with field c optional
i nt eger a optional,
i nt eger b optional ,
bool ean c opti onal

}

ETSI

44 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

type record EType { /l type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d optional
}

var AType MyVarA := { -, 1, true};
var BType MyVarB := { onit, 2, true};
var CType MyVarC := { 3, onmit, true};
var DType MyVarD := { 4, 4, true};
var EType MyVarE := { 5, 5, true, onit};
/1 Then
MyVar A : = MyVar B; /1 is a valid assignnent,
/1 value of My\VarAis (a := <undefined> b:= 2, c:= true)
MyVar C : = MyVar B; /1 is a valid assignnment
/1 value of M\VarCis (d := <undefined> e:= 2, f:=true)
MyVar A : = MyVar D, /1 is NOT a valid assignment because the optionality of fields does not
/1 match
MyVar A : = MyVarE; /1 is NOT a valid assignnent because the nunber of fields does not natch
MVarC := { d:= 20 };// actual value of MVarCis { d:=20, e:=2,f:= true }
MyVarA : = MyVarC /1 is NOT a valid assignnent because field 'd" of MyVarC violates subtyping

/1 of field 'a of AType

For r ecor d of typesand arrays the effective value structures are compatible if their component types are compatible
and value"b" of type "B" does not violate any length subtyping of ther ecor d of type or dimension of the array of
type"A". Values of elements of the value "b" shall be assigned sequentially to the instance of type"A", including
undefined elements.

recor d of typesand single-dimension arrays are compatible with r ecor d typesif their effective value structures are
compatible and the number of elements of value "b" of ther ecor d of type"B" or the dimension of array "b" is
exactly the same as the number of elements of ther ecor d type"A". Optiondlity of ther ecor d type fields has no
importance when determining compatibility, i.e. it does not affect the counting of fields (which means that optional
fields shall always be included in the count). Assignment of the element values of ther ecor d of type or array to the
instance of ar ecor d type shall bein the textual order of the corresponding r ecor d type definition, including
undefined elements. If an element with an undefined value is assigned to an optional element of ther ecor d, thiswill
cause the optional element to be omitted. An attempt to assign an element with undefined value to a mandatory element
of ther ecor d shall cause an error.

NOTE: If ther ecor d of type has no length restriction or the length restriction exceeds the number of elements
of the compared r ecor d type and the index of any defined element of ther ecor d of valueislessor
equal than the number of elements of ther ecor d type minus one, than the compatibility requirement is
aways fulfilled.

Vauesof ar ecor d type can also be assigned to an instance of ar ecor d of type or asingle-dimension array if no
length restriction of ther ecor d of typeisviolated or the dimension of the array is more than or equal to the number
of elements of ther ecor d type. Optional elements missing inther ecor d value shall be assigned as elements with
undefined values.

EXAMPLE 2:

/1 Gven

type record HType {
i nteger a,
integer b optional,
integer c

}

type record of integer |Type

var HType MyVarH := { 1, onit, 2};
var | Type MyVarl,

var integer MyArrayVar[2];

/1 Then

M/ArrayVar := MyVarH,
/l is a valid assignnent as type of MyArrayVar and HType are conpati bl e

ETSI

45 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

MyVarl := MyVarH,

/1 is a valid assignnent as the types are conpatible and no subtyping is violated
MVarl :={ 3, 4};

MyVarH : = MyVarl ;

/1 is NOT a valid assignnent as the nandatory field 'c' of Htype receives no val ue

6.3.2.3 Type compatibility of set and set of types

set typesareonly type compatible with other set typesand set of types. For set typesand for set of typesthe
same compatibility rules shall apply astor ecor d andr ecor d of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, thetextual order of the fields in the type definition is decisive.

NOTE 2: Inset vauesthe order of fields may be arbitrary, however this does not effect type compatibility asfield
names unambiguoudly identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}

type set GIype {
integer d optional ,
integer e optional,
bool ean f

}

var FType MyVarF := { a:=1, c:=true };
var Glype MyVarG := { f:=true, d:=7};

/1 Then
MyVarF := MyVar G /l is a valid assignnent as types FType and GIype are conpati bl e

MyVar F : = MyVar A; /1 is NOT a valid assignment as MyVarA is a record type

6.3.2.4 Compatibility between sub-structures
Therules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:
/1 Gven
type record JType {
HType H,
integer b optional,

integer c

}
var JType MyVarJ

/1 1f considering the declarati ons above, then
MyVarJ. H : = MyVar H;
I/l is a valid assignnent as the type of field H of JType and HType are conpati bl e

MyVarl = MyVarJ. H
/1 is a valid assignnent as | Type and the type of field H of JType are conpatible

ETSI

46 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

6.3.3 Type compatibility of component types
Type compatibility of component types has to be considered in two different conditions:

1) Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

2) Runson compatibility: afunction or altsteps referring to component type "A™ in its runs on clause may be
called or started on a component instance of type 'B' if al the definitions of "A" have identical definitionsin
"B".

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a) For port instances both the type and the identifier shall be identical.

b) For timer instances identifiers shall be the identical and either both shall have identical initial durations or
both shall have no initial duration.

C) For variable instances and constant definitions the identifiers, the types and initialization values shall be the
identical (in case of variables this means that either missing in both definitions or be the same).

d) For local template definitions the identifiers, the types, the formal parameter lists and the assigned template
or template field values shall beidentical.

6.3.4 Type compatibility of communication operations

The communication operations (see clause 22) send, r ecei ve,trigger,call,getcal |l ,reply,getreply
andr ai se are exceptionsto the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations must also be explicitly defined in the associated port type
definition. Strong typing also applies to storing the received value, address or component reference during ar ecei ve
ortrigger operation.

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
root type, then either one of the predefined conversion functions defined in annex C or a user defined function shall be
used.

EXAMPLE:

/1 To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring : = int2hex(123, 4);

7 Expressions

TTCN-3 alows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure
Si ngl eExpression |
"{" { (FieldReference ":=" (Expression | "-") [","] } "}" | /'l conpound expression
“{" [{ (Expression | "-") [","]1 } 71 "}" /1 compound expression
Semantic Description

Expressions are built from other (simple) expressions. Functions used in expressions shall be value-returning functions.
Theresult of an expression shall be the value of a specific type and the operators used shall be compatible with the type
of the operands.

Compound expressions are used for expressions of array, record, record of and set of types.

ETSI

a7 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
(x +y - increment(z))*3 /'l single expression
{ aa=1, b:=true} /] conpound expression, field expression |ist
{ 1, true} /1 conpound expression, value |ist

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) string operators;

c) relationa operators;
d) logica operators,

€) hitwise operators;

f) shift operators;

g) rotate operators.

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal I=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xordb
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operators is shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

ETSI

48 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <L, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Lowest |Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of typei nt eger (including derivations of i nt eger) or f | oat
(including derivations of f | oat), except for rod and r emwhich shall be used withi nt eger (including derivations
of i nt eger) typesonly.

Withi nt eger types, the result type of arithmetic operationsisi nt eger . With float types, the result type of
arithmetic operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two:

a) integer vauesgivesthewholei nt eger part of the value resulting from dividing thefirsti nt eger by
the second (i.e. fractions are discarded);

b) fl oat vauesgivesthef| oat valueresulting from dividing thefirst f | oat by the second (i.e. fractions are
not discarded).

The operatorsr emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nod y compute therest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positivex andy, both x r emy and x nod y have the same result but for
negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >= 0
=0 when Xx <0 and xrem]|y|l =0
= |yl +xrem]y| when Xx <0 and xrem|y|l <O

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
X rem 3 0 -2 -1 0 1 2 0

ETSI

49 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

7.1.2 String operators

The predefined string operators perform concatenation of values of compatible string types. The operationisasimple
concatenation from left to right. No form of arithmetic addition isimplied. The result typeisthe root type of the
operands.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B

7.1.3 Relational operators

The predefined relational operators represent the relations of equality (==), less than (<), greater than (>), non-equality
to (! =), greater than or equal to (>=) and less than or equal to (<=). Operands of equality and non-equality may be of
arbitrary but compatible types with the exception of the enuner at ed type, in which case operands shall be instances
of the same type. All other relational operators shall have only operands of typei nt eger (including derivatives of

i nteger),fl oat (including derivations of f | oat) or instances of the same enuner at ed types. The result type of
these operationsisbool ean.

Twocharstringoruni versal charstring vauesareequal only, if they have equal lengths and the characters
at al positions are the same. For values of bi t st ri ng, hexstri ng or oct et st ri ng types, the same equality rule
applies with the exception, that fractions which shall equal at al positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Twor ecor d values, set values, r ecor d of valuesor set of valuesareequal if, and only if, their effective value
structures are compatible (see clause 6.3) and the values of all corresponding fields are equal. Record values may also
be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing
tworecord or set vaues.

NOTE: "All fields' meansthat optional fields not present in the actual value of ar ecor d type shall be taken as
an undefined value. Such field can equal only to a missing optional field (also considered to be an
undefined value) when compared with a value of ancther r ecor d type or to an element with undefined
value when compared with avalue of ar ecor d of type. This principle also applies when values of two
set typesoraset andaset of typeare compared.

Two values of uni on types are equal if, and only if, in both values the types of the chosen fields are compatible and
the actual values of the chosen fields are equal.

EXAMPLE:
/1 Gven
type set SetA {
i nt eger al optional,
i nt eger a2 optional,
i nt eger a3 optional

b
type set SetB {

i nt eger bl optional,
i nt eger b2 optional,
i nt eger b3 optional

b

type set SetC {
i nt eger cl optional,
i nt eger c2 optional,

s
type set of integer Set(;

type uni on Uni D {

i nt eger di,
i nt eger d2,
b
type uni on Uni E {

i nt eger el,
i nt eger ez,

ETSI

50 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

H
type uni on Uni F {
i nt eger f1,
i nt eger f2,
bool ean f3,
H
/1 And
const Set A conSet Al = {al :=0, a2 := omit, a3 := 2 };

/1 Notice that the order of defining values of the fields does not matter

const Set B conSet Bl = {bl:=0, b3:=2, b2 :=onmt };
const Set B conSet B2 = {b2:=0, b3:=2, bl :=onmt };
const Set C conSet C1 = {cl:=0, c2:=2};

const Set Of conSet O0f 1 = {0, omt, 2};

const Set Of conSet Of 2 = {0 2};

const Uni D conUni D1 = { dl:=0 };

const Uni E conUni E1 = { el:=0};

const Uni E conUni E2; = { e2:=0};

const Uni F conUni F1; = { f1:=0 };

/1 Then
conSet A1 == conSet B1;
/] returns true
conSet A1 == conSet B2;
/'l returns fal se, because neither al nor a2 are equal to their counterparts
/1 (the corresponding elenment is not omtted)
conSet A1 == conSet C1;
/1 returns fal se, because the effective value structures of SetA and SetC are not conpati bl e
conSet Al == conSet Of 1;
/'l returns true
conSet A1 == conSet Of 2;
/1 returns false, as the counterpart of the onmitted a2 is 2,
/1 but the counterpart of a3 is undefined
conSet C1 == conSet O 2;
/1 returns true
conUni D1 == conUni E1;
/1 returns true
conUni D1 == conUni E2;
/1 returns false, as the chosen field e2 is not the counterpart of the field d1 of UniDl
conUni D1 == conUni F1;
/1 returns false, as the effective value structures of UniDlL and Uni F are not conpatible

7.1.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor . Their
operands shall be of type bool ean. The result type of logical operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of value f al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthevaluet r ue if both itsoperands aret r ue; otherwise it returnsthe valuef al se.

Thelogica or returnsthevaluet r ue if at least one of its operandsist r ue; it returnsthe value f al se only if both
operands aref al se.

Thelogical xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
fal se orif both operandsaret r ue.

Short circuit evaluation for boolean expressions is used, i.e. the evaluation of operands of logical operatorsis stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto f al se, then the right
argument is not eval uated and the whole expression evaluatesto f al se. In the case of the or operator, if the left
argument evaluatesto t r ue, then the right argument is not evaluated and the whole expression evaluatestot r ue.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit" etc.

ETSI

51 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Their operands shall be of type bi t string, hexstringoroctetstring.Inthecaseof and4b, or 4b and
xor 4b the operands shall be of compatible types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a 1 bitis
settoOandaObitissetto 1. That is:

not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisal if both bits are set to 1, otherwise the value for the resulting bit is0. That is:

"1'B and4b '1'B gives
"1'B and4b '0'B gives
'0'B and4b '1'B gives
'0'B and4b '0'B gives

Qeer
W W ww

EXAMPLE 2:

'1001' B and4b '0101'B gives '0001'B
"B'Hand4b '5'H gives '1'H
"FB'O and4b '15'O gives '11'0O

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bitis 1. That is:

'"1'B or4b '1'B gives
'"1'B ordb '0' B gives
'0'"B or4db '1'B gives
'0'B or4b '0' B gives

QRRR
W wWww

EXAMPLE 3:

'1001' B or4b '0101'B gives '1101'B
"9'Hor4b '5'Hgives 'DH
"A9'O ordb 'F5'O gives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

xordb '1'B gives '0'B
xor4b '0'B gives '
xordb '1'B gives

'"1'B
'0'B
'0'B
"1'B xor4b '0'B gives

RREQ
W W W

EXAMPLE 4:

'1001' B xor4b '0101'B gives '1100'B
"9'H xordb '5'H gives 'CH

'39'0O xor4b '15' O gives '2C O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of type bitstring,hexstringoroctetstring. Their right-hand operand shall be of typei nt eger . The
result type of these operators shall be the same as that of the left operand.

ETSI

52 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentheshift unit appliedisl bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
C) oct et string thenthe shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the |eft-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:

'111001'B << 2 gives '100100'B
'12345'H << 2 gives '34500'H
'1122334455' O << (1+1) gives '3344550000' O

The shift right (>>) operator accepts two operands. It shifts the |eft-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the | eft-hand side of the | eft operand.

EXAMPLE 2:
'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H
'1122334455' O >> (1+1) gives '0000112233'0O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall be of typebi t stri ng, hexstring,octetstring,charstringor universal charstring. Ther
right-hand operand shall be of typei nt eger . Theresult type of these operators shall be the same as that of the left
operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedis 1 bit;

b) hexstri ng then therotate unit applied is 1 hexadecimal digit;

Cc) octetstring thentherotate unit applied is 1 octet;

d) charstringoruniversal charstri ng thentherotate unit applied is one character.

Therotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' O <@ (1+2) gives '4455112233'0
"abcdefg" <@3 gives "defgabc"

The rotate right (@) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its left-hand side.

ETSI

53 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

8 Modules

The principal building blocks of TTCN-3 are modules. For example, a module may define afully executable test suite
or just alibrary. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: Thetermtest suiteis synonymous with a complete TTCN-3 module containing test cases and a control
part.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

nodul e Modul el dentifier [LanguageSpec] "{"
[Modul eDefinitionsPart]
[Modul eControl Part]

"y

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is not possible to hide definitionsin a
TTCN-3 module, i.e. all definitions of a TTCN-3 module can be imported by other modules. TTCN-3 modules can be
compiled/interpreted separately. They are reusable and parameterizable.

Module names are of the form of a TTCN-3 identifier. In addition, a modul e specification can carry an optional attribute
identified by thel anguage keyword that identifies the edition of the TTCN-3 language, in which the moduleis
specified. Currently the following language strings are supported: "TTCN-3:2001" for a module specification

complying with TTCN-3 edition 1, "TTCN-3:2003" for edition 2, "TTCN-3:2005" for edition 3.

NOTE 2: The module identifier isthe informal text name of the module.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

modul e MyTest Suite | anguage "TTCN 3: 2003"
{ .1

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import identifiers from other
modules. Scope rules for declarations made in the module definitions part and imported declarations are given in

clause 5.3. Those language el ements which may be defined in a TTCN-3 module are listed in table 1. Every definition
can be associated with attributes using the with statement defined in clause 27. The module definitions may be imported
by other modules.

ETSI

54 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

{
(
TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
| npor t Def |
G oupDef |
Ext Functi onDef |
Ext Const Def

) [WthStatement]

[]
1+

Semantic Description

Definitions in the modul e definitions part may be made in any order.

Such definitions, i.e. top level definitions outside of other scope units, are globally visible. They. may be used
elsewhere in the module. Thisincludes identifiers imported from other modules.

NOTE: Declarations of dynamic language elements such as variables or timers shall only be made in the control
part, test cases, functions, altsteps or component types.
TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables
cannot be defined in TTCN-3. However, variables defined in atest component type may be used by all
test cases, functions etc. running on components of that component type and variables defined in the
control part provide the ability to keep their values independently of test case execution.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

nodul e MyModul e
{ /1 This nodul e contains definitions only

;:onst i nteger MyConstant := 1,
type record MyMessageType { ...}

functi on TestStep(){ ...}

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at run-time.

Syntactical Structure
Single type, single module parameter form:

nmodul epar Mdul ePar Type Mdul eParldentifier [":=" ConstantExpression] ";"
Single type, multiple module parameter form:
nmodul epar Modul ePar Type

{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul eParldentifier [":=" Constant Expression] ";"

ETSI

55 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Multi-type, multiple module parameter form:

nmodul epar " {"
{ Modul ePar Type

{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul eParldentifier [":=" ConstantExpression] [";"]
}
Modul ePar Type
{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul eParldentifier [":=" Constant Expression]

Semantic Description
Module parameters behave as global constants at run-time.

Module parameters allow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword modul epar .

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can be aliteral value only and can merely be assigned at the place of the declaration of
the parameter.

If the test system does not provide an actual run-time value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system.

Module parameters can be imported.

Restrictions
a) During test execution these values shall be treated as constants.

b) Module parameters shall not be of port type, default type or component type.

c¢) A module parameter shall only be of type address if the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) More than one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

Examples
modul e MyTest Sui t eW t hPar aneters

{
/1 single type, single nodul e paraneter
nmodul epar bool ean TS Par0Q : = true;

/1 single type, nultiple nodul e paraneters
nodul epar integer TS Parl, TS Par2 := 1,

/1 multiple types, nultiple nodul e paraneters
nodul epar {

hexstring TS Par3;

bitstring TS Par4 := '011'B, TS Par5

8.2.2 Groups of definitions
In the module definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to

add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for theimport of a specific sub-group.

ETSI

56 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

group Groupldentifier "{"
{ Modul eDefinition [";"] }
ny

Semantic Description

A group of definitions can be specified wherever a single definitions is allowed. Groups may be nested, i.e. groups may
contain other groups. This alows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to all elements of a group (see clause 27). Import statements may import groups so that all elements of
agroup are imported (see clause 8.2.3.3).

Restrictions

a) Group identifiers across the whole modul e need not necessarily be unique. However, top-level group
identifiersand all group identifiers of subgroups of a single group shall be unique.

Examples
nmodul e MyModul e {
)/ A col l ection of definitions
group MyG oup {
const integer MyConst:= 1;
type record MyMessageType { ...};
group MG oupl { /1 Sub-group with definitions

type record Anot her MessageType { ...};
const bool ean MyBool ean : = fal se

}

/1 A group of altsteps
group MyStepLibrary {
group MyG oupl { /1 Sub-group with the same nanme as the sub-group with definitions
altstep MyStepll() { ...}
altstep MyStep12() { ...}
aitstep MySteplin() { ...}
}
group MyGroup2 {
altstep MyStep21() { ...}
altstep MyStep22() { ...}

éltstep MyStep2n() { ...}

}

/1 An inport statenent that inports M/Groupl within M/StepLibrary
import from MyModul e {

group MyStepLibrary. MyG oupl
}

8.2.3 Importing from modules

It is possible to re-use definitions specified in different modules using thei npor t statement. TTCN-3 has no explicit
export construct thus, by default, all module definitions in the module definitions part may be imported.

8.2.3.1 General format of import

An import statement can be used anywhere in the module definitions part.

ETSI

57 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

import from Moduleld [recursive]

(all

I
¢ "

[except "{" ExceptSpec "}"])

| nport Spec "}")
)
["]

Semantic Description

TTCN-3 supports the import of the following definitions. module parameters, user defined types, signatures, constants,
external constants, data templates, signature templates, functions, external functions, altsteps and test cases. Each
definition has a name (defines the identifier of the definition, e.g. a function name), a specification (e.g. atype
specification or asignature of afunction) and in the case of functions, altsteps and test cases an associated behaviour
description.

EXAMPLE:

Name
MyFunct i on

Specification Behaviour description
(inout MyTypel MyPar) return MyType2 {

runs on MyConpType

function
const MyType3 MyConst := .;
: [/ further behavi our

Specification Name Specification

type record M/Recor dType {
fieldl MyType4,
field2 integer
}
Specification Name Specification
template MWType5 M/ Template = {
fieldl := 1,
field2 := MWConst, // MConst is a nodul e constant
field3 := Mddul ePar // Mdul ePar is nodul e paraneter

}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to be invisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means;

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |[fieldl, field2 MyType4, integer
tenplate |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Thelocal definitions column refers to identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: Thereferenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

ETSI

58

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition

Possible Local Definitions

Possible Referenced Definitions

Module parameter

Module parameter type

User-defined type (for all)

Parameter names

Parameter type

* enumerated type

Concrete values

» structured type

Field names, nested type
definitions

Field types

» _port type

Message types, signatures

+ component type

Constant names, variable names,
timer names and port names

Constant types, variable types, port types

Signature

Parameter names

Parameter types, return type, types of exceptions

Constant

Constant type

External constant

Constant type

Data Template

Parameter names

Template type, parameter types, constants, module
parameters, functions

Signature template

Signature definition, constants, module parameters
functions

Function

Parameter names

Parameter types, return type, component type
(runs on-clause)

External function

Parameter names

Parameter types, return type

Altstep Parameter names Parameter types, component type (r uns
on-clause)
Test case Parameter names Parameter types, component types (r uns on- and

syst em clause)

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

Theuseof i mport on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition isreferred to more than once. Such cases shall be resolved by the system and definitions shall

be imported only once.

NOTE 4: The mechanismsto resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved by prefixing the
imported definition (which causes the name clash) by the identifier of the module from which it isimported. The prefix
and the identifier shall be separated by a dot (.).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions

a) Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level definitionsin the module may be imported. Definitions which occur at alower scope (e.g. loca
constants defined in a function) shall not be imported.

c) Only direct importing from the source module of a definition (i.e. the module where the actual definition for
theidentifier referenced inthe i nmpor t statement resides) is allowed.

ETSI

59 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

d) A definitionisimported together with its name and all local definitions.

NOTE5: A loca definition, e.g. afield name of a user-defined record type, only has meaning in the context of the
definitionsin which it is defined, e.g. afield name of arecord type can only be used to access afield of
the record type and not outside this context.

€) A definitionisimported together with al information of referenced definitions that are necessary for the usage
of the referenced definition.

NOTE 6: Import statements are transitive, e.g. if amodule A imports a definition from module B that uses atype
reference defined in module C, the corresponding information necessary for the usage of that typeis
automatically imported into module A.

f) Identifiers of referenced definitions are not automatically imported.

NOTE 7: If the referenced definitions are wished to be used in the importing module, they shall be explicitly
imported from its source module.

g) Whenimporting afunction, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

h) Cyclic imports are forbidden.

i) Theuseof recursive import (using the keyword recur sive) is deprecated.

Examples
EXAMPLE 1. Selected import examples.

nodul e MyModul eA

{ :
/1 Scope of the inported definitions is global to MyMdul eA
inmport from MyModuleB all; // inport of all definitions from MyMdul eB
i mport from MyModul eC { /1 inport of selected definitions from M/Mdul eC
type My Typel, MyType2; [/ inport of types MyTypel and MyType2
tenplate all [/ inport of all tenplates
}
functi on MyBehavi our C()
/1 inmport cannot be used here
!
;:ontrol
/] inport cannot be used here
}
}

EXAMPLE 2: Useand visibility of imported definitions.
nodul e Modul eONE {
nodul epar integer MddParl := .

type record RecordType_T1 {
integer Fieldl T1,

}

type record RecordType_T2 {
RecordType_T1 Field1_T2,

}

const integer MyConst := .;

tenpl ate RecordType_T2 Tenplate T2 (RecordType_T1 TenpPar_T2):= { // parameterized tenplate
Fieldl T2 := .,

ETSI

60 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

} // end nodul e Modul eONE

modul e Modul eTWO {

i mport from Modul eONE {
tenpl ate Tenpl ate_T2
}

/1 Only the nanmes Tenplate_T2 and TenpPar_T2 will be visible in Mdul eTWD. Pl ease note, that
/1 the identifier TenpPar_T2 can only be used when nodifying Tenplate_T2. Al infornation

/'l necessary for the usage of Tenplate T2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T1, Fieldl_T2, etc., but their identifiers are
/1 not visible in Mdul eTW

/1 This neans, e.g. it is not possible to use the constant MyConst or to declare a

/1 variable of type RecordType T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types.

i mport from Modul eONE {
nmodul epar MbdPar 2
}
/1 The nodul e paraneter MdPar2 of Mdul eONE is inported from Mbdul eONE and

/1 can be used |ike an integer constant

} // end nodul e Modul eTWO

nmodul e Modul eTHREE {

import from Modul eONE all; // inports all definitions from Mdul eONE
type port MyPort Type {

i nout RecordType_T2 /1 Reference to a type defined in Mdul eONE
}
type conponent MyConpType {

var integer MyConponentVar := MbdPar 2;

/'l Reference to a nodul e paraneter of Mdul eONE

}
function MyFunction () return integer {

return MyConst /'l Reference to a nodul e constant of Mdul eONE
}

testcase MyTest Case (out RecordType_T2 MyPar) runs on MyConpType {

M/Port .send(Tenpl ate_T2); // Sending a tenplate defined in Mdul eONE

}
} // end Modul eTHREE
nmodul e Modul eFOUR {
i mport from Mydul eTHREE {

testcase MyTest Case
}

/'l Only the nane MyTestCase will be visible and usable in Mdul eFOUR
/1 Type infornmation for RecordType_T2 is inported via Mdul eTHREE from Modul eONE and

ETSI

61 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

/1 Type information for MyConpType is inported from Modul eTHREE. All definitions
/'l used in the behaviour part of MyTestCase renmin hidden for the user of Mdul eFOUR

} /1 end Modul eFOUR

EXAMPLE 3: Handling of name clashes.
nodul e MyModul eA {
type bitstring MyTypeA

i nport from SoneMdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
cbntrol {
var SomeMbdul eC. M/ TypeA MyVarl := "Test String"; // Prefix nust be used
var MyTypeA MyVar2 := '10110011' B; /1 This is the original MTypeA
vér M/ TypeB MyVar3 : = "Test String"; /1 Prefix need not be used ...
var SoneModul eC. MyTypeB MyVar3 := "Test String"; // ..but it can be if wi shed
}

NOTE 8: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is aready
defined locally, even with the same name, would lead to two different types being available in the
module.

8.2.3.2 Importing single definitions

Single definitions can be imported by referring to the definition kind and the definition name(s). The import of single
definitions can be used in combination with imports of groups (see clause 8.2.3.3) and with imports of definitions of the
same kind (see clause 8.2.3.4).

Syntactical Structure

inmport from Moduleld [recursive] "{"

{

(
(type { TypeDefldentifier [""1%r)l
(tenplate { Tenplateldentifier ["1}
(const { Constldentifier [""131)1
(testcase { Testcaseldentifier [" 11) |
(altstep { Altstepldentifier ["1 31) I
(function { Functionldentifier [""131) 1
(signature { Signatureldentifier [","] }) |
(modul epar { Modul eParldentifier ["," 1 })

)

[

Semantic Description
Seeclause 8.2.3.

Restrictions
a) Seeclause8.2.3.

ETSI

62 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Examples

i mport from MyModul eA {
type MyTypel /] inports one type definition from M/Mdul eA only

i mport from MyModul eB {

type My Type2, Mtype3, MType4; /1l inports three types,
tenpl ate MyTenpl at el; /] inports one tenplate, and
const MyConstl1, MyConst2 /] inports two constants
}
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2) and with imports of definitions of the same kind (see clause 8.2.3.4).

Itisallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported isidentical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the exception
list within apair of curly brackets following theexcept keyword. Theal | keyword is also allowed to be used in the
exception list; thiswill exclude al definitions of the same kind from the import statement.

Syntactical Structure

inmport from Mbduleld [recursive] "{"

(group { FullGoupldentifier [except "{" ExceptSpec "} 1 [“," 1 1})
R

}
A A B

Semantic Description

The effect of importing agroup isidentical toani nport statement that lists all importable definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions
a) Seeclause8.2.3.

Examples
import from MyModule { group MyGroup } // includes all definitions from MG oup

import from MyModul e {
group MG oup except {
type M Type3, MyType5; [/ excludes the two types fromthe inport statenent,
tenplate all /'l excludes all tenplates defined in M/G oup
/1 fromthe inport statenent
/1 but inports all other definitions of MG oup

}

import from MyModul e {

group MyG oup
except { type MyType3 };// inports all types of MG oup except MyType3
type MyType3 /1 inmports MyType3 explicitly

ETSI

63 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

8.2.3.4 Importing definitions of the same kind

Theal | keyword may be used to import all definitions of the same kind of amodule. Theal | keyword used with the
const ant keyword identifiesall constants as well as all external constants declared in the definitions part of the
module the import statement refersto. Similarly theal | keyword used with thef unct i on keyword identifies all
functions and all external functions defined in the module the import statement denotes.

If some declarations of akind are wished to be excluded from the given import statement, their identifiers shall be listed
following the except keyword.

Theimport of definitions of the same kind can be used in combination with imports of single definitions
(see clause 8.2.3.2) and with imports of groups (see clause 8.2.3.3).

Syntactical Structure

inmport from Moduleld [recursive] "{"

{

(
(type all [except { TypeDefldentifier [""1%Yy1) 1
(tenplate all [except { Tenplateldentifier """ 13r1) 1
(const all [except { Constldentifier [""" 13r1) 1
(testcase all [except { Testcaseldentifier [""13r1) 1
(altstep all [except { Altstepldentifier [1TY1)I
(function all [except { Functionldentifier ["," 1} 1) |
(signature all [except { Signatureldentifier ["," 1 }]) |
(nodul epar all [except { Mdul eParldentifier ["," 1 } 1)

)

["]

Semantic Description

The effect of importing definitions of the same kind isidentical to ani npor t statement that lists all importable
definitions of that kind except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions
a) Seeclause 8.2.3.

Examples
import from MyModul e {
type all; /1 inmports all types of MyMdul e
tenplate all Il inports all tenplates of MyMdul e
}

import from MyModul e {
type all except MyType3, MType5; /] inports all types except MyType3 and MyType5
tenplate all Il inports all tenplates defined in Mynodul e

}

8.2.3.5 Importing all definitions of a module
All definitions of a module definitions part may be imported using theal | keyword next to the module name.

If some declarations are wished not to be imported, their kinds and identifiers shall be listed in the exception list within
apair of curly brackets following the except keyword. Theal | keyword isaso allowed to be used in the exception
list; thiswill exclude all declarations of the same kind from the import statement.

ETSI

64 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

inmport from Moduleld [recursive]
all

{
except "{"
(group { Full Goupldentifier [", 1%}] al)|
(type { TypeDefldentifier [“," 13}] al)|
(tenplate { Tenplateldentifier [", 13}] al)|
(const { Constldentifier [", 13}] al)|
(testcase { Testcaseldentifier [“," 13} | al)|
(altstep { Altstepldentifier [“," 13}] al)]
(function { Functionldentifier [“," 13| al)|
(signature { Signatureldentifier [", 13}] al)|
(nmodul epar { Modul eParldentifier """ 1%y al)
ny
["1
}

Semantic Description

The effect of importing all definitions of a moduleisidentical to ani npor t statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions

a) If al definitions of amodule are imported by using the all keyword, no other form of import (import of single
definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) isallowed.

Examples
import from MyModul e al | ; /1 includes all definitions from M/Mdul e

inmport from MyMddul e all except {
type M Type3, MyType5; [/ excludes these two types fromthe inport statenent and
tenplate all /1 excludes all tenplates declared in M/Mdul e,
/1 fromthe inport statement
/1 but inports all other definitions of MyMdule

}

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when definitions are imported from modules from other TTCN-3 editions or from other sources than TTCN-3
modules, the language specification shall be used to denote the language (may be together with a version number) of the
source (e.g. module, package, library or even file) from which definitions are imported. It consists of thel anguage
keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The following TTCN-3 language identifiers are defined:

"TTCN-3:2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN-3:2003' - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN-3:2005' - to be used with modules complying with the present document.

Other language identifiers are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [6],
ES 201 873-8[7], ES 201 873-9 (see Bibliography) and ES 201 873-10 (see Bibliography).

When an incompatibility is discovered between the language identification (including implicit identification by omitting

the language specification) and the syntax of the module from which definitions are imported, tools shall provide
reasonable effort to resolve the conflict.

ETSI

65 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure
import from Modul eldentifier [|anguage FreeText] ...[";"]

Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have aTTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when atemplate is defined based
on a structured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when abase typeis a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of aversioned or foreign element means that part of the
information carried by that element, which is necessary to use it in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

. to import from a TTCN-3 module of another edition of from a non-TTCN-3 module the import statement shall
contain an appropriate language identifier string;

. only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the al directive, in which case al importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elementsto be imported. Naturaly, in the second case
only importable elements are allowed in the list.

Restrictions

a) Thelanguage specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

Examples
i mport from MyModdul e | anguage "TTCN 3: 2003" {
type MyType

NOTE: Theimport mechanismis designed to alow the re-use of definitions from other TTCN-3 editions or from
other language sources. The rules for importing definitions from specifications written in other languages,
e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.3 Module control part

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

The control part of amodule calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visihility, i.e. can be used within the control part only.

Thisisexplained in more detail in clause 26.

ETSI

66 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:

modul e MyTest Suite
{ /1 This nodul e contains definitions ...

.const i nteger MyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

function MyFunctionl() { ...}
function MyFunction2() { ...}

festcase M/Test casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

// ...and a control part so it is executable
control

var bool ean MyVariable; // local control variable

execute(MyTestCasel()); // sequential execution of test cases
execute(MyTest Case2());

9 Port types, component types and test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 3).

TTCN Test system
MTC | < > pTC,
> | PTC; |— T
+ Abstract Test System Interface v ¢
_J
Real Test System Interface

SUT

Figure 3: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of thecr eat e
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

ETSI

67 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Test component types and port types, denoted by the keywords conponent and por t , shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication port types

Ports facilitate communi cation between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based (or both at the same time). Message-based ports shall be identified by the keyword nessage and
procedure-based ports shall be identified by the keyword pr ocedur e within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywordsi n (for the in direction), out (for the out
direction) and i nout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where in identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view of
the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types and/or
procedure signatures together with the allowed communication direction.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of al its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this port.
Whenever a signature is defined in the in direction for a procedure-based port, the types of all itsinout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

It is possible to define a port as allowing both kinds of communication. Thisis denoted by the keyword mi xed. This
means that the lists for mixed ports will also be mixed and include both signatures and types. No separation is made in
the definition. A mixed port in TTCN-3 is defined as a shorthand notation for two ports, i.e. a message-based port and a
procedure-based port with the same name. At run-time the distinction between the two portsis made by the
communication operations. Operations used to control ports (see clause 22.5), i.e. st art, st op and cl ear shal
perform the operation on both queues (in arbitrary order) if called with an identifier of a mixed port.

Syntactical Structure

M essage-based port:
type port PortTypeldentifier nessage "{"
{ (in]| out | inout) (all | { MessageType ["," 1 }+) ";" }
Procedure-based port:
type port PortTypeldentifier procedure "{"
{ (in]| out | inout) (all | { Signature [","] }+) ";" }
Mixed port:

type port PortTypeldentifier mxed "{"
{ (in] out | inout) (all | { (MessageType | Signature) [","] }+ ";" }

ETSI

68 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description

Test components are connected viatheir ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 4).

NOTE 1: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. This should be
treated as atest case error (see clause 24.1).

»]]]]IL

Figure 4. The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 5). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed

(e.g. figure 5(g) or figure 5(h)).

ETSI

69 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

test system
J test component

test component test component

foE—an

test system interface

O—l] >

() (b)

test system
test component test component test component

* OE—n ° :
[—

test system interface A\ A\

S

() (d)

test component
test component :I A
A

(e) ®

test system

test component test component test component
test component :I B A B

A
II —] —
test component E' E
:I ¢ test system interface \,_\/

N/

9) (h)

Figure 5. Allowed connections

Restrictions
a) Thefollowing connections are not allowed (see figure 6):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figures 6 (a) and 6(€)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(see figure 6(c)).

- A port owned by acomponent A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figures 6(b) and 6(d) are not allowed.

- Connections within the test system interface are not allowed (see figure 6(f)).

ETSI

70

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see

figure 6(g)).

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at run-time and shall lead to atest case error when failing.

c) Theuse of the keyword all in the direction of a port type definition is deprecated.

test component

A

=

test system

test component

A

test system interface

o

(@)

—g

(b)

test component
test component :I B

gl

test system

test component

A
—]

N

test system interface

(c)

ON
od

(d)

test component

A

test system

~

test system interface

(e)

test system
v test component

A

test component
B

test system interface

9)

o4

Figure 6: NOT allowed connections

ETSI

O—O

(f)

71 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Examples
EXAMPLE 1. Message-based port.
/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be

/1 sent via and any integer value to be send and received over the port
type port MyMessagePort Type nessage
{

in MsgTypel, MsgType2;
out MsgTypes3;
i nout i nt eger

}
EXAMPLE 2: Procedure-based port.

/1 Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures
type port MyProcedurePort Type procedure

out Procl, Proc2, Proc3

}

NOTE 2: The term message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port issimply alist of type
names.

EXAMPLE 3: Mixed port.

/1 M xed port, defining a nessage-based and a procedure-based port with the sane name. The in,
/1 out and inout lists are also mixed: MsgTypel, MsgType2, MsgType3 and integer refer to the

/| message-based part of the mixed port and Procl, Proc2, Proc3, Proc4 and Proc5 refer to the
/1 procedure-based port.

type port MyM xedPort Type ni xed

in MsgTypel, MsgType2, Procl, Proc2;
out MsgType3, Proc3, Proc4;
i nout i nteger, Proc5;

9.2 Component types

The component type defines which ports are associated with a component (see figure 7). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

PCO2 PCO3
MyMTC MyPTC
/I of MyMTCType = [of MyPTCType |
PCO4
PCO1 PCO1

Figure 7: Typical components

It is also possible to declare constants, variables and timers local to a particular component type. These declarations are
visible to all testcases, functions and altsteps that run on an instance of the given component type. This shall be
explicitly stated using ther uns on keyword (see clause 16) in the testcase, function or altstep header. Component type
definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new
instance of a component type will thus have its own set of constants, variables and timers as specified in the component
type definition (including any initial values, if stated).

NOTE: When used astest system interfaces (see clause 9.4) components cannot make use of any constants,
variables and timers declared in the component type.

ETSI

72 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

It is possible to define port, timer and variable arrays in component type definitions.

Syntactical Structure

type conponent Conponent Typel dentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| ConstDef) }

vy
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables and timers during the creation of an instance of a component type. These instances can be used as the main
test component, as the test system interface or as a paralléel test component. Every instance of a component type hasits
own fresh copy of the port, constant, variable, and timer instances defined in the component type definition.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
EXAMPLE 1: Component type with port instances only.

type conponent M/PTCType

port MyMessagePort Type PCOL, PCO4,
port MProcedurePort Type PCO2;
port M/AI | MesssagesPort Type PCO3

}

EXAMPLE 2: Component type with variable, timer and port instance.
type conponent MyMICType
{

var integer MyLocal |l nteger;
timer MyLocal Ti ner;
port MyMessagePort Type PCOL

}
EXAMPLE 3: Component type with port instance arrays.

type conponent MyConpType
{

port MyMessagel nterfaceType PCJO 3]

port M/Procedurel nterfaceType PCOn 3][3]

/1 Defines a conmponent type which has an array of 3 nessage ports and a two-di nensi onal
/1 array of 9 procedure ports.

9.3 Reuse of component types

It is possible to define component types as the extension of other component types, using the ext ends keyword.

Syntactical Structure

type conponent Conponent Typel dentifier extends Conponent Typel dentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| ConstDef) }
"y

Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
ext ends keyword isreferred to as the parent type. The effect of this definition isthat the extended type will implicitly
also contain all definitions from the parent type. It is called the effective type definition.

ETSI

73 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

It is allowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may a so be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer
and port definitions contributed by the parent types (determined recursively if a parent type is also defined by means of
an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: Itisnot considered to be a different declarations and hence causes no error if the same definitionis
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their r uns on
clauses can be executed on ¢ (see clause 6.3.3).

Restrictions

a) When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type.

b) Itisallowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples
EXAMPLE 1. A component type extension and its effective type definition.

type conponent MyMICType

var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL
}

type conponent MyExt endedMICType ext ends MyMICType

var float MyLocal Fl oat;
timer MyQ her Local Ti ner;
port MyMessagePort Type PCQO2;

/I effectively, the above definition is equivalent to this one:
type conponent MyExt endedMICType

/* the definitions from MyMICType */
var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL

/* the additional definitions */
var float MyLocal Fl oat;
timer MyQx herLocal Ti ner;
port MyMessagePort Type PCQ2;
}

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions.

type conponent MICTypeA extends MICTypeB { /* ..*/ };
type conponent MICTypeB extends MICTypeC { /* ..*/ };
type conponent MICTypeC extends MICTypeA { /* ..*/ }
type conponent MICTypeD extends MICTypeD { /* ..*/ }

/1 ERROR - cyclic extension
/1 ERROR - cyclic extension

ETSI

74 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 3: Component type extensions with name clashes.
type conponent M/Ext endedMICType extends MyMICType

var integer MyLocal Integer; // ERROR - already defined in M/MICType (see above)
var float MyLocal Ti ner; /] ERROR - tinmer with that nane exists in MyMICType
port MyQt her MessagePort Type PCOL; // ERROR - port with that name exists in MyMICType

}

type conponent MyBaseConponent { tiner MyLocal Tiner };
type conponent Myl nterinConponent extends MyBaseConponent { tiner MyQtherTiner };
type conponent MyExt endedConponent extends Myl nteri mConponent

timer MyLocal Tinmer; // ERROR - already defined in Myl nterinConponent via extension
}

EXAMPLE 4: Component type extension from several parent types.

type conponent MyConpB { tiner T };

type conponent MyConpC { var integer T };

type conponent MyConpD ext ends MyConmpB, MyConpC {}
/1 ERROR - nane cl ash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer MyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float MyvVar2 := 1.0;

}

type conponent MyConpG extends MyCompB, MyConpE, MyConpF {
/1 No nane clash.
/1 Al three parent types of MyConpG have a timer T, either directly or via extension of
/1 MyConpB; as all these stem (directly or via extension) fromtinmer T declared in My/ConpB,
/1 which nmake this formof collision legal.
/* additional definitions here */

9.4 Test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in agenera way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition is identical to a component definition, i.e. itisalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unnmap operations (see clause 21.1).

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points).

Syntactical Structure
The same as a component type definition (see clauses 9.2 and 9.3).

ETSI

75 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceissyst em This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions
a) Thesameasfor component type definitions (see clauses 9.2 and 9.3).

Examples
EXAMPLE 1. Explicit definition of atest system interface.

type conponent MyMICType
{

var integer MyLocal | nteger;
timer MyLocal Ti ner;
port MyMessagePort Type PCOL

}

type conponent MyTest System nterface
{

port MyMessagePort Type PCOL, PCQO2;
port MyProcedurePort Type PCC3

}

/Il MyTestSystem nterface is the test systeminterface
testcase MyTestcasel () runs on M/MICType system MyTest Systeml nterface {
/'l establishing the port connections
map(ntc: PCOL, system PCO2);
/1 the testcase behavi our
..

}
EXAMPLE 2: Implicit definition of atest system interface.

/'l MyMICType is the test systeminterface
testcase MyTestcase2 () runs on MyMICType {
/'l map statenents are not needed
/1 the testcase behavi our
...

ETSI

76 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

9.5 Component references

Component references are unique references to the test components created during the execution of atest case.

Syntactical Structure

system | ntc | self | VariableRef | Functionlnstance

Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acr eat e operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
syst em(returns the component reference of the test system interface, which is automatically created when testcase
execution is started), nt ¢ (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel f (returns the component reference of the component in which sel f iscalled).

Component references are used in the configuration operations such asconnect , map and st art (see clause 21) to
set-up test configurationsand inthef r omt 0 and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 5).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

NOTE: A component reference includes component type information. This means, for example, that avariable
for handling component references must use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of thecr eat e operation.

Restrictions
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1. Component references with component type variables.
/1 A conponent type definition
type conponent MyConpType {

port PortTypeOne PCOL;

port PortTypeTwo PCO2
}

/1 Declaring one variable for the handling of references to conponents of type My/ConpType
// and creating a conponent of this type

var MyConpType MyConplnst := MyConpType. create;

EXAMPLE 2: Usage of component references in configuration operations.

/1 referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst : PCO2, system Ext PCOL) ;
MyConpl nst . start (MyBehavior(self)); // self is passed as a paraneter to MyBehavi or

EXAMPLE 3: Usage of component referencesin from- and to- clauses.
M/PCQOL. r ecei ve from MyConpl nst;

WPC@. recei ve(integer:?) -> sender MyConpl nst;

ETSI

77 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

WPCOL recei ve(My/Tenpl ate) from MyConpl nst;

WPC@. send(integer:5) to MyConpl nst;

EXAMPLE 4: Usage of component references in one-to-many connections.

/1 The followi ng exanpl e expl ains the case of a one-to-many connection at a Port PCOL

/'l where values of type ML can be received fromseveral conponents of the different types
/1 ConpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene may be used:

var M M/Message, MyResult;

var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 Mylnst3 := null;

al't {
[] PCOL.receive(M:?) fromMlnstl -> val ue MyMessage sender Mylnstl {}
[] PCOL.receive(M:?) fromMlInst2 -> val ue MyMessage sender Mylnst2 {}
[] PCOL.receive(M:?) fromMlInst3 -> val ue MyMessage sender Mylnst3 {}

}
WResuIt .= MyMessageHandl i ng(MyMessage) ; // some result is retrieved froma function
i f (MyInstl !'= null) {PCOL. send(M/Result) to Myl nst1};
if (MInst2 !'= null) {PCOL. send(M/Result) to Ml nst2};
I'= null') {PCOL. send(M/Result) to Myl nst3};

if (MInst3 !

EXAMPLES: Usage of self.

var MyConponent Type MyAddress;
M/Address := self; // Store the current conponent reference

EXAMPLE 6: Usage of component arrays.

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/] conponents using a | oop and by storing the created conponent reference in an array of
/1 component references.

testcase MyTest Case() runs on MM cType system MyTest System nterface
{

vér integer i;

var M/PTCTypel MPtc[11];

for (i:= 0, i<=10; i:=i+1)

{
MPtc[i] := MyPTCTypel. create;
connect (sel f: Pt cCoordi nati on, MyPtc[i]: M cCoordi nation);
M/Ptc[i].start(M/PtcBehaviour());

9.6 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually by use of the addr ess data type. Thisisthe
type to use with port operationsin order to address SUT entities.

Syntactical Structure

Tenpl at el nst ance

Semantic Description

The actual data representation of addr ess isresolved either by an explicit type definition within the test suite or
externally by the test system (i.e. theaddr ess typeis|left as an open type within the TTCN-3 specification). This
allows abstract test cases to be specified independently of any real address mechanism specific to the SUT.

ETSI

78 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
typeis not defined inside the module, explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the specia value nul | isavailable to indicate an undefined address, e.g. for theinitialization of variables
of the address type.

Restrictions
a) Templatelnstance shall be of address type and can be an address type value, an address type variable, etc.

b) The address datatype shall only be used inthet o, f r omand sender parts of receive and send operations of
ports mapped to the test system interface.

Examples
EXAMPLE:

/] Associates the type integer to the open type address
type integer address;

/1 new address variable initialized with null
var address MySUTentity := null;

/'l receiving an address value and assigning it to variable My/SUTentity
PCO recei ve(address: *) -> value MySUTentity;

/) usage of the received address for sending tenplate M/Result
PCO. send(MyResul t) to MySUTentity;

/] usage of the received address for receiving a confirnation tenplate
PCO. recei ve(MyConfirnation) from MySUTentity;

10 Declaring constants

TTCN-3 constants are static constants.

Syntactical Structure
const Type { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]

Semantic Description

A constant assigns a name to a fixed value. This value is known at compile time. The constant does not change its value
during test execution. The valueis defined only once, but can be referenced multiple timesin a TTCN-3 module.

Restrictions
a) Constants shall not be of port type.

NOTE: The only value that can be assigned to constants of default and component typesis the specia value
nul | .

b) The value of the ConstantExpression assigned to a constant shall be of the same type as the stated type for the
constants.

Examples

const integer MyConst1l :
const bool ean MyConst2 :

1;
true, MyConst3 : = fal se;

ETSI

79 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

10.1 External constants

The assignment of the value to the constant may be done within a TTCN-3 module or it may be done externally. The
latter case is an external constant declaration denoted by the keyword ext er nal .

Syntactical Structure
external const Type { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]

Semantic Description
The value of an external constant is provided at compile time from the environment.

The mapping of the type to the external representation of an external constant and the mechanism of how the value of
an externa constant is passed into a module are outside the scope of the present document.

Restrictions
a) Anexterna constant may have an arbitrary type except of port type, default type, or component type.

b) Thetype hasto be known inthe TTCN-3 modulei.e. shall be aroot type or a user-defined type defined in the
module, or imported from another module.

Examples
external const integer M/External Const; // external constant declaration

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variablesto store templates.

Variables can be of smple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

11.1 Value variables

A TTCN-3 value variable stores values. It is declared by thevar keyword followed by atype identifier and avariable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
r et ur n keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var Type Varldentifier [ArrayDef] ":=" Expression
{ [","] Varldentifier [ArrayDef] ":=" Expression} [";"]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto avalue variable. The value variable can be referenced
multiple timesin a TTCN-3 module.

ETSI

80 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions
a) Expression shall be of type Type.

b) Vauevariables shall store values only.

c¢) Valuevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized or not completely initialized value variables at other places than the left hand side of
assignments or as actual parameters passed to out formal parameters shall cause an error.

Examples

var integer MyVarO;
var integer MyVarl :
var bool ean MyVar2 :

1;
true, MyVar3 := fal se;

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by thevar t enpl at e keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In excess to value variables,
template variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
r et ur n keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign atemplate instance to atemplate
variable or atemplate variable field.

Syntactical Structure

var tenplate Type Varldentifier [ArrayDef] ":=" Tenpl at eBody
{[","] Varldentifier [ArrayDef] ":=" TenplateBody } [";"]

Semantic Description
A template variable associates a name with the location of atemplate or avalue (as every valueis a so atemplate).

A template variable may change its template during test execution severa times. A template or value can be assigned
severa timesto atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

Restrictions

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be atemplate variable too.

NOTE 1: Whileit is not allowed to directly apply TTCN-3 operations to template variables, it is alowed to use the
dot notation and the index notation to inspect and modify template variable fields. Rules to apply when
these notations attempt to reach fields beyond a matching mechanism are given in clause 15.6.

a) Useof uninitialized or not completely initialized template variables at other places than the | eft hand side of
assignments or as actual parameters passed to out formal parameters shall cause an error.

NOTE 2: Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

Examples

var tenplate integer MyVarTenpl := ?;
var tenplate MyRecord MyVarTenp2 := { fieldl :
MyVar Tenp3 := { fieldl :

true, field2 :=* },
?, field2 := MyVarTenpl };

ETSI

81 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negativef | oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of atimer
array shall be assigned using avalue array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall

explicitly be declared by using the not used symbol (*-").

Syntactical Structure
timer { Tineridentifier [ArrayDef] ":=" Timervalue ["," 1 } [;"]

Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the elapsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE: Visihility of timer names follow the scoping rules given in clause 5. For example, the name of atimer
defined locally in a function can be seen within that function only, though the timer is started on the
component instance; on returning from that function the specific timer cannot be stopped directly, but
onlyindirectly by anal | ti nmer. st op statement. Also, itstimeout cannot be checked directly, but
only indirectly by anany ti ner.ti meout statement.

Restrictions
a) Incaseof asingletimer, the default duration value should resolve to afloat value.

b) Incaseof atimer array, it should resolve to an array of float values of the same size as the size of the timer
array.

Examples
EXAMPLE 1. Singletimer.

timer MyTinerl := 5E-3;
/1 declaration of the tinmer MyTinerl with the default value of 5ns

timer MyTinmer2; // declaration of MyTiner2 without a default tiner value i.e. a value has
/1l to be assigned when the tinmer is started

EXAMPLE2: Timer array.

timer t_Mytinerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenents of the tiner array get a default duration.

timer t_Mytinmer2[5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second tinmer (t_Mytiner2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clause 9 and clause 21). These messages may be those explicitly concerned
with testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

ETSI

82 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6 and 7) can be sent or received. Received messages can also be declared as a combination of value
and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line templates
(see clause 15) or being constructed and passed via variables or template variables (see clause 11) and parameters or
template parameters (see clause 5.4).

Syntactical Structure
See syntactical structure of types (see clause 6).

Semantic Description
See semantic description of types (see clause 6).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
/1 a structured, ordered nessage with two fields
type record ARecord { integer i, float f }

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. the test system performsthe call) or invoked in the test system (i.e. the SUT performs the call).

Syntactical Structure

signature Signatureldentifier

"("{ [in] inout | out] Type ValueParldentifier [","] } ")"
[(return Type) | noblock]

[exception "(" ExceptionTypelList ")"]

Semantic Description
For al used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, aprocedure si gnat ur e shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the nobl ock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Within asi gnat ur e definition the parameter list may include parameter
identifiers, parameter types and their direction, i.e.i n, out, or i nout . Thedirectioni nout and out indicate that
these parameters are used to retrieve information from the remote procedure. Note that the direction of the parametersis
as seen by the called party rather than the calling party.

A remote procedure may return avalue after its termination. The type of the return value shall be specified by means of
ar et ur n clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

ETSI

83 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

The exceptions are defined in the form of an exception list included in the si gnat ur e definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions

a) Signature definitions for non-blocking communication shall use the nobl ock keyword, shall only havei n
parameters and shall have no return val ue but may raise exceptions.

Examples
si gnature MyRenoteProcOne (); /'l MyRenoteProcOne will be used for bl ocking
/1 procedure-based conmunication. It has neither
/] paraneters nor a return val ue.
si gnature MyRenoteProcTwo () nobl ock; /! MyRenoteProcTwo will be used for non bl ocking

/'l procedure-based conmunication. It has neither
/] paraneters nor a return val ue.

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/1 MyRenoteProcThree will be used for blocking procedure-based comuni cati on. The procedure
/1 has three paraneters: Parl an in paranmeter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

si gnature MyRenoteProcFour (in integer Parl) return integer;

/'l MyRenot eProcFour will be used for bl ocking procedure-based comunication. The procedure
/'l has the in paraneter Parl of type integer and returns a value of type integer after its
/] term nation

si gnature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/'l MyRenot eProcFive will be used for bl ocking procedure-based communi cation. It returns a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/] type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comrunication. In case of
/1 an unsuccessful termination, M/RenoteProcSix raises exceptions of type integer or float.

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they areaway to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

ETSI

84 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

15.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

Semantic Description

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

Atemplateusedinar ecei ve, t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in annex B, may be used in receive templates. No binding
of the incoming values to the template shall occur.

Restrictions

a) Atthetimeof asend operation, the used template shall be fully defined i.e. al fields shall resolve to actual
values and no matching mechanisms shall be used in the template fields, neither directly nor indirectly.

Examples
EXAMPLE 1. Template for sending messages.

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := omt,
field2 := "My string",
field3 := true

}

/1 and a correspondi ng send operation could be
MyPCO. send(MyTenpl at e) ;

EXAMPLE 2: Template for receiving messages.

/1 G ven the nessage definition
type record MyMessageType

{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a message tenplate mght be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a corresponding receive operation could be
M/PCO. r ecei ve(MyTenpl at e) ;

ETSI

85 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 3: Template for receiving messages.

/1 When used in a receiving operation this tenplate will natch any integer val ue
tenpl ate integer Mytenplate := ?;

/1 This tenplate will nmatch only the integer values 1, 2 or 3
tenpl ate integer Mytenplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

Semantic Description

A signature template defines the val ues and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for areturn have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

Atemplateusedinacal | orrepl y operation defines a complete set of field valuesfor all i n andi nout
parameters. At thetime of thecal | operation, al i n andi nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used inaget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions

a) Atthetimeofacal |l ,reply andrai se operation, the used template shall be fully defined, i.e. al
i n/i nout parametersinacal | , al out /i nout parametersinar epl y or r ai se operation shall resolve
to actual values and no matching mechanisms shall be used for these parameters, neither directly nor
indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Examples

EXAMPLE 1: Templates for invoking and accepting procedures.

/] signature definition for a renote procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/'l exanpl e tenpl ates associated to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =
{
Parl :
Par2 :

1,
2,
Par3 := 3

}

tenpl ate RenoteProc Tenpl ate2: =
{

Parl := 1,
Par2 := ?,
Par3 := 3

ETSI

86 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

}

tenpl ate RenoteProc Tenpl ate3: =
Parl := 1,
Par2 : = ?,
Par3 :=?

EXAMPLE 2: In-linetemplates for invoking procedures.
/1l Gven exanple 1 in this clause

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renpt eProc: Tenpl atel);

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at e2) ;

/1 Invalid invocation because the inout paraneter Par3 has a natching attribute not a val ue
M/PCO. cal | (Renot eProc: Tenpl at e3) ;

/1 Tenplates never return values. In the case of Par2 and Par3 the values returned by the
/1 call operation rmust be retrieved using an assignnment clause at the end of the call statenent

EXAMPLE 3: In-line templates for accepting procedure invocations.
/1l Gven exanple 1 in this clause

// Valid getcall, it will nmatch if Parl == 1 and Par3 == 3
MyPCO. get cal | (Renot eProc: Tenpl atel) ;

// Valid getcall, it will match if Parl == 1 and Par3 == 3
MyPCO. get cal | (Renot eProc: Tenpl at e2) ;

/1 Valid getcall, it will nmatch on Parl == 1 and Any val ue of Par3
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

15.3 Global and local templates

TTCN-3 alows defining global templates and local templates.

Syntactical Structure
tenpl ate Type Tenpl ateldentifier ["(" Tenpl ateFornal ParList ")"]

[nodifies TenplateRef] ":=" Tenpl at eBody
Semantic Description

Global templates can be defined in the module definitions part. Local templates can be defined in testcases, functions,
altsteps or statement blocks. Both global and local templates scoping rules specified in clause 5 apply.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. Therules for formal and actual parameter lists shall be followed as defined in clause 5.2.

At the time of their use (e.g. in communication operationssend, r ecei ve, cal | ,getcal | , etc.), itisalowed to
change template fields by in-line modified templates, to passin values via value parameters as well asto passin
templates via template parameters.. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions

a) Templates may be specified for any TTCN-3 type defined in table 3 except for port and def aul t typesand
for any procedure signature.

b) Thedot notation such as MyTemplateld.Fieldld shall not be used to set or retrieve values in templatesin
communication events. The"->" symbol shall be used for this purpose (see clause 23).

ETSI

87 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

c) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

d) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

/1 The tenplate
tenpl ate M/MessageType MyTenpl ate (i nteger MyFormal Param: =

fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. send(MyTenpl at e(123));

15.4 In-line Templates

Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure
[Type ":" 1 [nodifies Tenpl ateRef Wt hParList ":="] Tenpl at eBody

NOTE 1: Anin-linetemplateisan argument of a communication operation or an actual parameter of atestcase,
function or altstep call, i.e. it is aways placed within parenthesis and potentially separated with acomma.

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they can not be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port anddef aul t types.

b) Thetypefield may only be omitted when the type isimplicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: i nt eger , f | oat , bool ean,
bitstring, hexstring,octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
aways be omitted.

¢) In-linetemplates containing matching mechanisms (see clause 15.7) can only be defined in arguments of
receiving communication operations (i.e. r ecei ve, trigger, check, getcal |l ,getreply and
cat ch), inarguments of themat ch and sel ect case operations, in actual template parameters, at the
right hand side of assignments (when there is atemplate variable at the left hand side of the assignment) and in
return statements of template returning functions. In-line templates not contai ning matching mechanisms can
be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall bein the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through sub-typing) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

ETSI

88 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Examples
M/PCO. r ecei ve(charstring: "abcxyz");

15.5 Modified templates

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly. Aswell as creating explicitly named modified templates, TTCN-3 alows the
definition of in-line modified templates.

Syntactical Structure
Global or local modified template:

tenpl ate Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
nodi fi es Tenpl ateRef ":=" Tenpl at eBody

In-line modified template:

[Type ":"] nodifies Tenpl ateRef WthParList ":=" Tenpl at eBody

Semantic Description

Thenodi fi es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the origina template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within a template field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

When individual values of a modified template or a modified template field of record of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be atered.

Restrictions
a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate has aformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) aderived template can have additional (appended) parametersif wished,;
3) theformal parameter list shall follow the template name for every modified template.

c) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

Examples

EXAMPLE 1.

/1l Gven
type record MyRecordType

integer field,
charstring field2,

ETSI

89 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

bool ean fiel d3

}
tenpl ate MyRecordType MyTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

/1 then witing
tenpl ate M/RecordType MyTenpl ate2 nodifies MyTenpl atel : =

fieldl :
field2 :

omt, /1 fieldl is optional but present in MyTenpl atel
"A nodified string"

/1 field3 is unchanged

/1 is the sane as witing
tenpl ate MyRecordType MyTenpl ate2 : =

fieldl := omt,
field2 := "A nodified string",
field3 := true

}

EXAMPLE 2: Modified record of template.

tenpl ate MyRecordOf Type MyBaseTenplate :={ 0, 1, 2, 3, 4, 5 6, 7, 8 9 };

tenpl ate MyRecordOf Type MyModi f Tenpl ate nodi fies MyBaseTenplate := { [2] := 3, [3] :=2};
/1 MyModi f Tenpl ate shall match the sequence of values { 0, 1, 3, 2, 4, 5 6, 7, 8, 9}

EXAMPLE 3: Modified in-line template.

/1 Gven
tenpl ate MyMessageType Setup : =
{ fieldl := 75,
field2 := "abc",
field3 := true
}

/] Could be used to define an in-line nodified tenplate of Setup
pcol. send (nodifies Setup := {fieldl:= 76});

EXAMPLE 4: Modified parameterized template.

/1 Gven

tenpl ate MyRecordType MyTenpl atel(i nteger MyPar): =
fieldl : = MyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl at e2(i nteger MyPar) nodifies MyTenplatel : =

{ I/l fieldl is paraneterized in Tenplatel and renumins al so paraneterized in Tenpl at e2
field2 := "A nodified string",

}

15.6 Referencing elements of templates or template fields

This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

It isnot allowed to reference individua string elementsinside templates or template fields. Instead, the substr function
(see clause C.3) should be used.

EXAMPLE:

var tenplate charstring t_Charl := "MCHAR";
var tenplate charstring t_Char2;

t_Char2 := t_Charl[1];
/'l shall cause an error as referencing individual string elements is not allowed

ETSI

90 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

15.6.2 Referencingrecord and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a) Omit, AnyValueOrNone, value lists and complemented lists: referencing a subfield within a structured
field to which Omit, AnyValueOrNone, avalue list or acomplemented list is assigned, shall cause an
error.

EXAMPLE 1:

type record Rl {
integer f1 optional,
R2 f2 optional

type record R2 {
i nteger g1,
R2 g2 optional

var tenplate RL t _Rl := {
fi:=5,
f2 := omt
}
var tenplate R2 t_R2 := t_R1.f2.g2;
/] causes an error as onit is assigned to t_R1.f2
t Rl f2 :=*;
t R :=t RL.f2. 92;
/] causes an error as * is assigned to t_R1.f2

—

({fl:=omt, f2:={gl:=0, g2:=omt}},{f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=omit}}});

%%E R

t RL.f2;

t_R1.f2.g2;

t_R1.f2.g2.g2;

// all these assignments cause error as a value list is assigned to t_R1

- -
|

t RlL:=
conpl ement ({f1:=om t, f2:={gl:=0, g2:=omt}},{f1:=5 f2:={gl:=1, g2:={gl:=2, g2:=omt}}});

t RL.f2;

t_R1.f2.g2;

t_R1.f2.g2.g2;

// all these assignnents cause errors as a conplemented list is assigned to t_R1

%%E

b) AnyVaue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyVaueOrNone shall
be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field has to be expanded recursively up to the depth of the referenced subfield.
During this expansion an AnyValue shall be assigned to mandatory subfields and AnyVa ueOrNone shall be
assigned to optiona subfields. After this expansion the value or matching mechanism at the right hand side of
the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:
t_RL := {f1:=0, f2:=?}
t_ R :=t_R1.f2.g2;
/1 after the assignment t_R2 will be {gl:=?, g2:=*}
t_R1.f2.92.92 := ({gl:=1, g2: -omt} {gl: =2, g2: -orrit});

/Il first the field t_Rl.fZ has hypot heti cally be expanded to {gl:=?,92: ={gl:=?,92: =*}}
/1 thus after the assignnent t_Rl will be:
I {f1:=0, f2:={gl:=?,92:={gl:=?,092: =({gl: =1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent isappended).

ETSI

91 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

15.6.3 Referencingrecord of and set of elements

Both templates and template variables allow referencing elementsof ar ecor d of orset of template or field using
the index notation. However, a matching mechanism may be assigned to the template or field within which the element
isreferenced. This clause provides rules on handling such cases.

a) Omit, AnyVaueOrNone, value lists, complemented lists, subset and superset: referencing an element within a
record of or set of field to which Omit, AnyVaueOrNone with or without alength attribute, avaluelist, a
complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1:

type record of integer Rol;

type record of Rol RoRol;

var tenplate Rol t_Rol;

var tenplate RoRol t_RoRol;
var tenplate integer t_Int;

t_RoRol := ({},{0},{0,0},{0,0,0});
t_Rol :=t_RoRol[0];
/1 shall cause an error as value list is assigned to t_RoRol;
b) AnyVaue: when referencing an element of ar ecord of orset of templateor field to which AnyVaueis

assigned (without alength attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue, the index of the reference shall not violate the length attribute.
When referencing an element withinar ecor d of orset of template or field to which AnyValueis
assigned (without alength attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When alength attribute is attached to AnyVa ue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictions in any of the above cases.

EXAMPLE 2:

type record of integer Rol;

type record of Rol

RoRol ;

var tenplate Rol t_Rol;
var tenplate RoRol t_RoRol;
var tenplate integer t_Int;

t Rol := 2
t_Int :=1t _Rol[5];

t_RoRol
t_Rol

t_Int

/Il after the assignnent t_Int will be AnyVal ue(?);

=2

:= t_RoRol [5];

/1 after the assignnent t_Rol will
= t_RoRol [5].[3];

/1 after the assignnent t_Int will

be AnyVal ue(?);

be AnyVal ue(?);

t_Rol :=? length (2..5);
t_Int :=t_Rol[3];

/Il after the assignnent t_Int will be AnyVal ue(?);
t_Int :=t_Rol[5];

/1 shall cause an error as the referenced index is outside the length attribute

/1 (note that index 5 would refer to the 6'" el enent);
t_RoRol[2] := {0, 0};

[/ after the assignnent t_RoRol will be {?,?, {0,0},*};
t_RoRol[4] := {1, 1};

/Il after the assignnent t_RoRol will be {?,?,{0,0},? {1, 1}, *};
t_Rol[0] := -5

/] after the assignnent t_Rol will be {-5,*}length(2..5);

t_Rol :=? length (2..5);
t_Rol[1] :=1;

/1 after the assignnent t_Rol will be {?,1,*}length(2..5);
t_RolI[3] :=?

Il after the assignnent t_Rol will be {?,1,?,? *}length(2..5);

t_Rol[5] :=5

ETSI

92 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Il after the assignnent t_Rol will be {?,1,?,?,?,5 *}length(2..5); note that t_Rol
/'l becones an enpty set but that shall cause no error;

c) Permutation: when referencing an element of ar ecor d of template or field, which islocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyVaueOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 3:

t_Rol := {pernutation(O0,1,3,7?),2,7?}
t_Int :=t_Rol[5];

/1 after the assignment t_Int will be AnyVal ue(?)
t_Rol := {pernutation(O0,1,3,7?),2,*}

t_Int :=t_Rol[5];

/Il after the assignment t_Int will be * (AnyVal ueOr None)

t_Int :=t_Rol[2];

/] causes error as the third elenent (with index 2) is inside pernutation

t_Rol := {pernutation(0,1,3,*),2,7?}
t_Int :=t_Rol[5];

d)

15.7

/] causes error as the pernutation contains AnyVal ueOrNone(*) that is able to
/1 cover any record of indexes

Ifpresent attribute: referencing an element withinar ecord of orset of fiedtowhichthei f present
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
i fpresent isappended).

Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:

specific values,
special symbolsthat can be used instead of values;
special symbols that can be used inside values;

special symbols which describe attributes of values;

Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 9. The left-hand column of thistable lists al the TTCN-3 types to which these matching mechanisms apply.
A full description of each matching mechanism can be found in annex B.

ETSI

93 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 9: TTCN-3 Matching Mechanisms

Used with values Value Instead of values Inside values Attributes
of

S O C V A A R S S P A A P L |
p m 0] a n n a u u a n n e e f
e i m I y y n p b t y y r n P
c t p u \% \% g e t t E E m g r
i \Y, I e a a e r y e I I u t e
f a e L I | S p r e e t h S
i I m I u u e e n m m a R e
c u e S e e t e e t e n
\% e n t | O n n i S t

a t r t t o] t

I e N (? S n r

u d 0] 0] i

e L n r c

| e N t

S * o] i

t n o

e n

*)
boolean Yes | Yes | Yes | Yes | Yes |ves® Yes®
integer Yes | Yes | Yes | Yes | Yes [Yes!| Yes Yes®
float Yes | Yes | Yes | Yes | Yes [Yes!| Yes Yes®
bitstring Yes | Yes | Yes | Yes | Yes | Yest Yes | Yes Yes | Yes®
octetstring Yes | Yes | Yes | Yes | Yes | Yest Yes | Yes Yes | Yes®
hexstring Yes | Yes | Yes | Yes | Yes | ves! Yes | Yes Yes | Yes®
character strings Yes | Yes | Yes | Yes | Yes | Yes®| Yes Yes | Yes | Yes Yes | Yes®
record Yes | Yes | Yes | Yes | Yes |Yes® Yes®
record of Yes | Yes | Yes | Yes | Yes | ves® Yes | Yes | Yes | Yes | Yes®
array Yes | Yes | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes®
set Yes | Yes | Yes | Yes | Yes |Yes® Yes®
set of Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes®
enumerated Yes | Yes | Yes | Yes | Yes | ves® Yes®
union Yes | Yes | Yes | Yes | Yes |Yes® Yes®
anytype Yes | Yes | Yes | Yes | Yes |Yes® Yes®
NOTE 1: When used, shall be applied to optional fields of record and set types only (without restriction on the type of
that field).

NOTE 2: When used, shall be applied to record and set fields only (without restriction on the type of that field).

15.7.1 Specific values
Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions

which do not contain any matching mechanisms.

Syntactical Structure
Si ngl eExpression |
om t
Semantic Description
The matching mechanisms for specific values are:
. an expression that evaluates to a specific value;

. omit: valueis omitted.

For further details please refer to annex B.

ETSI

94 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions
a) Seetherestrictionsgiven intable 9 andin annex B.

Examples

M/PCO. recei ve(charstring: "abcxyz");
M/PCO. recei ve(' AAAA O) ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

"(" { ConstantExpression [","] } ")" |
conpl emrent " (" { ConstantExpression [","] } ")" |

2|

"

"(" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")" |
superset "(" { ConstantExpression [","] } ")"

subset "(" { ConstantExpression [","] } ")" |
pattern Cstring

Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:

. (...): alist of values;

. complement (...): complement of alist of values;

. ?: wildcard for any value;

. *: wildcard for any value or no value at al (i.e. an omitted value);

. (lowerBound . . upperBound)): arange of integer or float values between and including the lower- and upper
bounds;

. superset: at least al of the elementslisted, i.e. possibly more;
. subset: at most the elementslisted, i.e. possibly less;
. pattern: acharstring or universal charstring that matches this format.

For further details please refer to annex B.

Restrictions
a) Seetherestrictionsgiven intable 9 and in annex B.

Examples
M/PCO. recei ve (integer:conplenent(l, 2, 3));

15.7.3 Special symbols that can be used inside values

These matching mechanisms allow to characterize value sets by varying values inside.

Syntactical Structure

RS
b

_permutation "(" { (TenplateBody | "?" | "*")[","] } ")"..

ETSI

95 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description
The matching mechanisms for special symbols that can be used inside values are:

. ?: wildcard for any single element in astring, array, record of orset of;

. *: wildcard for any number of consecutive elementsin astring, array, record of orset of,orno
element at al (i.e. an omitted element);

. permutation: al of the elements listed but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list).

For further details please refer to annex B.

Restrictions
a) Seetherestrictions given intable 9 and in annex B.

Examples
tenplate bitstring b :='10???"B; /1 where each "?" nay either be 0 or 1
type record of integer R ;
tenplate Rl ri := {1, ?, 3} /1 where ? nay be any integer val ue

15.7.4 Special symbols which describe attributes of values

These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
i fpresent

Semantic Description
The matching mechanisms which describe attributes of values are:

. length: restrictions for string length of string types and the number of elementsfor r ecord of ,set of
and arrays,

. ifpresent: for matching of optional field values (if not omitted).

For further details please refer to annex B.

Restrictions
a) Seetherestrictions given intable 9 and in annex B.

Examples

type record R {
record of integer ri optional

tenplate Rr:=

{
ri :=* length (1 .. 6) ifpresent // any value containing 1, 2, 3, 4,
/Il 5 or 6 provided it is present

15.8 Match Operation

The mat ch operation allows to compare a value with atemplate.

ETSI

96 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

match " (" Expression "," Tenpl atel nstance ")"

Semantic Description

The mat ch operation returns a boolean value. If the types of the template and the value are not compatible
(see clause 6.3) the operation returns false. If the types are compatible the return value of the operation indicates
whether the value matches the specified template.

Restrictions
a) Thetype of the value returned by the Expression must be the same as the Templatel nstance type.

b) Each fidd of the template shall resolve to a specific value.

Examples
tenpl ate integer LessThanlO := (-infinity..9);
M/Port .receive(integer:?) -> value RxVal ue;

if(match(RxVal ue, LessThanl10)) { ...}
/1 true if the actual value of Rxvalue is less than 10 and fal se ot herwi se

15.9 Valueof Operation

Theval ueof operation alows to return the val ue specified within atemplate. The returned value can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

val ueof " (" Tenpl at el nstance")"

Semantic Description
Theval ueof operation returns the value of atemplate instance.

Restrictions
a) Eachfield of the template shall resolve to a specific value.

Examples
type record Exanpl eType

integer fieldl,
bool ean fiel d2

}
tenpl at e Exanpl eType SetupTenpl ate : =

fieldl :
field2 :

1,
true

}

;/ar Exanpl eType RxVal ue : = val ueof (Set upTenpl ate);

ETSI

97 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

16 Functions, altsteps and testcases

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module etc. as described in the following clauses.

16.1 Functions

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

Syntactical Structure

function Functionldentifier

"(" [{ (Formal Val uePar | Formal Ti merPar | Fornal Tenpl atePar | Formal PortPar) [","] }] ")"
[runs on Conponent Type]

[return [tenplate] Type]

St at enent Bl ock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return avalue or atemplate. Value return is denoted by ther et ur n keyword followed by atype
identifier. Template return is denoted by ther et ur n t enpl at e keywords followed by atypeidentifier. The
keyword r et ur n, when used in the body of the function with a value return defined in its header, shall always be
followed by an expression representing the return value. The type of the return value shall be compatible with the return
type. The keyword r et ur n, when used in the body of the function with atemplate return defined in its header, shall
always be followed by an expression or a template instance representing the return template. The type of the return
template shall be compatible with the return template type. The return statement in the body of the function causes the
function to terminate and to return the return value to the location of the call of the function.

The behaviour of a function can be defined by using statements and operations described in clauses 18 to 25 and

clause 26. If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using ther uns on keywords in the function header. The one exception to thisrule
isif all the necessary component-wide information is passed in the function as parameters.

Functions may be parameterized.

Restrictions

a) A functionwithout r uns on clause shall never invoke a function or altstep or activate an altstep as default
withar uns on clauselocally.

b) Functions started by usingthe st art test component operation shall always havear uns on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
thest art test component operation may be invoked in functions without ar uns on clause.

NOTE 1: Therestrictions concerning ther uns on clause are only related to functions and altsteps and not to test
Cases.

¢) Functionsused in the control part of a TTCN-3 module shall have nor uns on clause.
NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.

d) Therulesfor forma parameter lists shal be followed as defined in clause 5.4.

ETSI

98 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Examples

EXAMPLE 1: Function with return.

/1 Definition of MyFunction which has no paraneters
function MyFunction() return integer

{

return 7, /] returns the integer value 7 when the function term nates

}
EXAMPLE 2: Function with template return.

/1 Definition of functions which nay return natching synbols or tenplates
function MyFunction2() return tenpl ate integer

¢

. return ?; /1 returns the matching mechani sm AnyVal ue

iunction M/Function3() return tenplate octetstring

!

i return ' FF??FF O Il returns an octetstring with AnyValue inside it

EXAMPLE 3: Function with runs on clause.

function MyFunction3() runs on M/PTCType {
lo /1 MyFunction3 doesn't return a val ue, but

var integer MyVar := 5; /1 does nmake use of the port operation
PCOL. send(MyVar) ; /1 send and therefore requires a runs on
/Il clause to resolve the port identifiers
} /'l by referencing a conponent type

EXAMPLE 4: Parameterized function.

function MyFunction2(inout integer MyParl) {
/'l MyFunction2 doesn't return a val ue

MyParl := 10 * MyParl; // but changes the value of MyParl which
} /1 is passed in by reference

16.1.1 Invoking functions

A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure
FunctionRef "(" [{ (TimerRef | Tenplatelnstance | Port | ConponentRef) [","] }] ")"

Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked functionis
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with areturn value), the test components continues its behaviour right after
the function invocation.

Restrictions
a) Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.

c) Specia restrictions apply to functions bound to test components using the st art test component operation.
These restrictions are described in clause 21.2.2.

ETSI

99

Restrictions on invoking functions from specific places are described in clause 16.1.4.

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

When invoking a function, the compatibility to the test component type of the invoking test component as

The val ue returned by MyFunctiond is assigned to MyVar.
The types of the returned value and MyVar have to be conpatible

d)
described in clause 6.3.3 need to be fulfilled.
€)
Examples
My/Var = MyFunction4d(); //
/1
MyFuncti on2(MyVar 2) ; /1 MyFunction2 doesn't
/1 actual paraneter

MyVar3 := MyFunction6(4) +

MyFuncti on7(MyVar 3) ;

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are

summarized in table 10.

Table 10: List of TTCN-3 predefined functions

/1 Functions used in expressions

return a value and is called with the
MyVar 2, which nay be passed in by reference

Category Function Keyword

Conversion functions Convert integer value to charstring value i nt 2char
Convert integer value to universal charstring value i nt 2uni char
Convert integer value to bitstring value int2bit
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value fl oat 2i nt
Convert charstring value to integer value char 2i nt
Convert charstring value to octetstring value char 2oct
Convert universal charstring value to integer value uni char 2i nt
Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct 2hex
Convert octetstring value to charstring value oct 2str
Convert octetstring value to charstring value, version I oct 2char
Convert charstring value to integer value str2int
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2fl oat

Length/size functions Return the length of a value of any string type I engt hof
Return the number of elements in a record, record of, si zeof
template, set, set of or array
Return the number of elements in a structured type si zeof type

Presence/choice functions Determine if an optional field in a record, record of, template, |i spresent
set or set of is present
Determine which choice has been made in a union type i schosen

String handling functions Returns part of the input string matching the specified pattern |r €gexp
description
Returns the specified portion of the input string substr
Replaces a substring of a string with or inserts the input string |r epl ace
into a string

Other functions Generate a random float number rnd

ETSI

Syntactical Structure

nt 2char " ("
nt 2uni char
nt2bit "("
nt 2hex " ("
nt 2oct " ("
nt2str "("

Si ngl eExpr essi on

.

Si
Si
S
S

nt 2fl oat " ("

float2int "("

char2int " ("
char2oct " ("
uni char 2i nt

bit2int "("
bi t 2hex "
bi t2oct "
bit2str "
hex2int "
hex2bit "
hex2oct
hex2str "
oct 2i nt
oct2bit "
oct 2hex "
oct 2str
oct 2char " ("
str2int "("

str2oct " ("

e e e e e e N Y T T e

.

Si

" Si
" Si
" Si
" Si
" Si
" Si
" Si
' Si
" Si
' Si
' Si

Si
S

str2float " ("

| engt hof " ("
si zeof "("
si zeof t ype

o

i spresent "("

i schosen " ("
regexp "("
substr " ("
repl ace " ("

"y

Si ngl eExpression ")"

ngl eExpression ", "
ngl eExpression ", "
ngl eExpression ", "

ngl eExpr essi on

ngl eExpressi on

ngl eExpression "
ngl eExpr essi on "

ngl eExpr essi on

ngl eExpression "

ngl eExpressi on

ngl eExpr ession "
ngl eExpr ession "
ngl eExpression "
ngl eExpression "

ngl eExpr essi on

ngl eExpr essi on "
Si ngl eExpr essi on

ngl eExpressi on
ngl eExpr essi on

Expression ")"

Expression ")"

Si

rnd "(" [SingleExpression]

Semantic Description
The description of predefined functionsis givenin annex C.

Restrictions

a) When apredefined function is invoked:

"y
"y

on ")"

I e e e e e e e

"y

Si ngl eExpression ", "
Si ngl eExpression ", "
ngl eExpression ", "

"y
Si ngl eExpression ")"
Si ngl eExpression ")"

Si ngl eExpr essi on

Si ngl eExpr essi on

Si ngl eExpress

.y

K
"y
"y
Si ngl eExpression ")"
Si ngl eExpr essi on
Expression ")" |

Expression ")"

Si ngl eExpression "
Si ngl eExpression ")"
Si ngl eExpression "

100

Si ngl eExpression ", "
Si ngl eExpression ", "
Si ngl eExpression ","

~—— —

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Si ngl eExpression ")" |
Si ngl eExpression ")" |
Si ngl eExpression ","

Si ngl eExpression ")" |

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all variables appearing in the actual parameter list shall be bound.

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring h:=
var octetstring o

16.1.3 External functions

bit2hex ('111010111'B);
= substr ('01AB23CD O 1, 2)

A function may be defined within a module or be declared as being defined externaly (i.e. ext er nal).

Syntactical Structure

est er nal

[return Type]

functi on ExtFunctionldentifier

“(" [{ (Formal Val uePar | Formal Ti mer Par

ETSI

For nal Tenpl at ePar

Formal PortPar) [","] } 1 ")"

101 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Restrictions
a) External functions are not allowed to contain port, timer or default handling operations.

b) External functions are not allowed to return templates.

c) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

external function MyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer val ue

external function InitTestDevices(); /1 An external function which only has an
/] effect outside the TTCN-3 nodul e

16.1.4 Invoking functions from specific places

Value returning functions can be called during communication operations (in templates, template fields or in-line
templates) or during snapshot evaluation (in Boolean guards of alt statements or altsteps (see clause 20.2) and in
initialization of altstep local definitions (see clause 16.2). To avoid side effects that cause changing the state of the
component or the actual snapshot and to prevent different results of subsequent eval uations on an unchanged snapshot,
the following operations shall not be used in functions called in the cases specified above:

a) All component operations, i.e.cr eat e, start (component), st op (component), kill,
runni ng (component),al i ve, done andki | | ed (seenotes 1, 3, 4 and 6).

b) All port operations, i.e. st art (port), st op (port), hal t,cl ear,send,receive,trigger,call,
getcall ,reply,getreply,raise,catch,check, connect, map (seenotes 1, 2, 3and 6).

c) Theacti on operation (see notes 2 and 6).

d) All timer operations, i.e. st art (timer), st op (timer),runni ng (timer),read,ti meout (seenotes4
and 6).

e) Cdling external functions (see notes 4 and 6).
f) Callingther nd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the right-hand side of assignments, and in
the instantiation of out andi nout parameters (see notes 4 and 6).

h)y Calingtheset verdi ct operation (see notes 4 and 6).
i) Activation and deactivation of defaults, i.e. theact i vat e and deact i vat e statements (see notes 5 and 6).
j) Calling functionswith out ori nout parameters (see notes 7 and 8).

NOTE 1: The execution of the operationsst art , st op, done, ki | | ed, hal t,cl ear,recei ve,tri gger,
getcal | ,getrepl y,cat ch andcheck can cause changes to the current snapshot.

NOTE 2: Theoperationssend, cal | ,reply,rai se,andact i on shall be avoided for readability purposes,
i.e. al communication shall be made explicit and not as a side-effect of another communication operation
or the evaluation of a snapshot.

NOTE 3: The operations map, unmap, connect , di sconnect, cr eat e shal be avoided for readability
purposes, i.e. al configuration operations shall be made explicit, and not as a side-effect of a
communication operation or the eval uation of a snapshot.

ETSI

102 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

NOTE 4: Calling of external functions, r nd, r unni ng, al i ve, r ead, set ver di ct , and writing to component
variables shall be avoided because it may lead to different results of subsequent evaluations of the same
snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE5: Theoperationsact i vat e anddeact i vat e shall be avoided because they modify the set of defaults
that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or i nout parameterization shall apply recursively,
i.e. it isdisalowed to use them directly, or via an arbitrary long chain of function invocations.

NOTE 7: Therestriction of calling functionswith out or i nout parameters does not apply recursively, i.e. calling
functions that themselves call functionswith out or i nout parametersislegal.

NOTE 8: Usingout ori nout parameters shall be avoided because it may also lead to different results of
subseguent eval uations of the same snapshot.

16.2 Altsteps

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of anal t statement.

Syntactical Structure

altstep Altstepldentifier
"(" [{ (Formal Val uePar | Fornmal Ti merPar | Fornal Tenpl atePar | Formal PortPar) [","] }] ")"
[runs on Conponent Type]

{ (Varlnstance | Tinerlnstance | ConstDef | TenplateDef) [";"] }
Al t Guar dLi st

vy
Semantic Description

Altsteps are scope units similar to functions. The atstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top aternatives are
identical to the syntax rules of the alternatives of al t statements.

The behaviour of an atstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Restrictions
a) Thelocal definitions of an altstep shall be defined before the set of alternatives.

b) Theinitiaization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to theinitialization of local definitions.

c) If analtstep includes port operations or uses component variables, constants or timers the associated component
type shall be referenced using ther uns on keywordsin the altstep header. The one exception to thisruleisif
all ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Analtstep without ar uns on clause shall never invoke afunction or atstep or activate an altstep as default
withar uns on clauselocally.

ETSI

103 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

€) Analtstep that isactivated as adefault shall only havei n value or template parameters, port parameters, and
timer parameters. An altstep that is only invoked as an alternativeinanal t statement or as stand-alone
statement in a TTCN-3 behaviour description may havei n, out andi nout parameters. Therulesfor formal
parameter lists shall be followed as defined in clause 5.4.

Examples
EXAMPLE 1: Parameterized atstep with runs on clause.

/1 Gven

type conponent MyConponent Type {
var integer MyIntVar := O;
timer MyTiner;
port MyPort TypeOne PCOL, PCQOZ2;
port MyPort TypeTwo PCCB;

}

/1 Atstep definition using PCOl, PCO2, MylntVar and MyTiner of MyConponent Type
altstep AltSet _A(in integer MyParl) runs on MyConponent Type {
[] PCOL.receive(MyTenpl ate(MyParl, MylntVar) {
setverdi ct (i nconc);

}
[T PCR2.receive {
r epeat

}
[1 MTiner.tinmeout {
setverdict(fail);
stop
}

}
EXAMPLE 2: Altstep with local definitions.

altstep AnotherAltStep(in integer MyParl) runs on MyConponent Type {
var integer MyLocal Var := MyFunction(); /1 local variable
const float MyFloat := 3.41; /1 local constant
[T PCOL. receive(MTenpl ate(MyPar1, MyLocal Var) {
setverdi ct (inconc);

}
[1] PCX.receive {
r epeat
}

16.2.1 Invoking altsteps

Theinvocation of an dtstep isawaysrelated toanal t statement. The invocation may be done either implicitly by the
default mechanism (see clause 21) or explicitly by adirect call withinan al t statement (see clause 20.2).

Syntactical Structure
Al tstepRef "(" [{ (TimerRef | Tenplatelnstance | Port | ConponentRef) [","] }] ")"

Semantic Description

Theinvocation of an atstep causes no new snapshot and the evaluation of the top alternatives of an atstep is done by
using the actual snapshot of theal t statement from which the altstep was called.

NOTE: A new snapshot within an altstep will of course be taken, if within a selected top alternative anew al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of anact i vat e statement before the place of the invocation is reached.

ETSI

104 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Anexplicit call of an altstep withinan al t statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly withinan al t statement, the next alternative to be checked is the first alternative of
theal t st ep. Theaternatives of theal t st ep are checked and executed the same way as alternatives of anal t
statement (see clause 20.1) with the exception that no new snapshot is taken when entering theal t st ep. An
unsuccessful termination of the altstep (i.e. all top aternatives of theal t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of theal t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with ast op statement, or a new snapshot and re-evaluation of theal t statement,

i.e. the altstep endswith r epeat (see clause 20.2) or a continuation immediately after theal t statement, i.e. the
selected top aternative of the altstep ends without explicitr epeat or st op.

Anal t st ep can also be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
theal t st ep can beinterpreted as shorthand for anal t statement with only one alternative describing the explicit call
of theal t st ep.

Restrictions

a Wheninvoking an altstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.

Examples

EXAMPLE 1. Implicit invocation of an atstep via a default activation.

vér default MyDefVarTwo : = activate(M/SecondAltStep()); // Activation of an altstep as default

EXAMPLE 2: Explicit invocation of an atstep within an alt statement.

aI:t {
[] PC3.receive {

}
[1 AnotherAltStep(); Il explicit call of altstep AnotherAltStep as an alternative
/1 of an alt statenent
[T MyTiner.tineout {}

EXAMPLE 3: Explicit, standalone invocation of an altstep.

/1 The statenent
Another Al tStep(); // AnotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[1 AnotherAltStep();
}

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typically startsin a stable testing state and ends in a stabl e testing state. It may involve one or more consecutive or
concurrent connections to the SUT. The test case should be complete in the sense that it is sufficient to enable atest
verdict to be assigned unambiguoudy to each potentially observable test outcome (i.e. sequence of test events). The test
case should be independent in the sense that it should be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are aspecial kind of function. Test cases define the behaviours, which have to be executed to

check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

ETSI

105 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

testcase Testcaseldentifier

"(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
runs on Conponent Type

[system Conponent Type]

St at enent Bl ock

Semantic Description

A test caseis considered to be a self-contained and compl ete specification that checks atest purpose. The result of atest
case execution is atest verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of amodule
(see clause 26).

Restrictions
a) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples
testcase MyTest CaseOne()
runs on MyM cTypel /1 defines the type of the MIC
system MyTest Syst enilype /1 mekes the port nanmes of the TSI visible to the MIC

/1 The behavi our defined here executes on the mc when the test case invoked

}

/1 or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the nic when the test case invoked

17 Void

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such assend, r ecei ve,
create, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and blocks of statements and declarations).

Statements shall be executed in the order of their appearance, i.e. sequentially, asillustrated in figure 8.

ETSI

106 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)
S1

s2 ::> si; s2; S3;

S3

Figure 8: lllustration of sequential behaviour

Theindividual statements in the sequence shall be separated by the delimiter *;".

EXAMPLE:

MyPort . send(Mynessage) ;

M/Ti mer.start;

| og(" Done!");

The specification of an empty block of statements and declarations, i.e. {} , may be found in compound statements,
e.g. abranchinanal t statement, and implies that no actions are taken.

Table 11 gives an overview of the TTCN 3 expressions, statements and operations and restrictions on their usage.

Table 11: Overview of TTCN-3 expressions, statements and operations

port

Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes
(see note 3)
If-else if (..){.}else{.} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(...){..}caseelse{..}}
For loop for (..){..} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes Yes
(see note 4)
Logging log Yes Yes Yes
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 1)
Re-evaluation of alternative behaviour |repeat Yes Yes
(see note 1)
Interleaved behaviour interleave {...} Yes Yes
(see note 1)
Activate a default activate Yes Yes
(see note 1)
Deactivate a default deactivate Yes Yes
(see note 1)
Configuration operations
Create parallel test component create Yes
Connect component port to component |connect Yes

ETSI

107 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface [unmap Yes
Get MTC component reference value mtc Yes Yes
Get test system interface component system Yes Yes
reference value
Get own component reference value self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Remove a test component from the kill Yes
system
Check termination of a PTC behaviour |running Yes
Check if a PTC exists in the test system |alive Yes
Wait for termination of a PTC behaviour |done Yes
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote reply Yes
entity
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call |getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received |check Yes
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow receiving (stop Yes
operations to match at a port
Disable sending and disallow receiving |halt Yes
operations to match new
messages/calls
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action | Yes | Yes |
Execution of test cases
Execute test case execute Yes Yes
(see note 2)
NOTE 1: Can be used to control timer operations only.
NOTE 2: Can only be used in functions and altsteps that are used in module control.
NOTE 3: Changing of component variables is disallowed.
NOTE 4: Can be used in functions and altsteps but not in test cases.

ETSI

108 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

19 Basic program statements

The basic program statements presented in table 12 can be used in the control part of amodule and in TTCN-3
functions, atsteps and test cases.

Table 12: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){..}else{...}
Select case select case (...){ case (...){...} case
else{...}}
For loop for (..){...}
While loop while (...) {...}
Do while loop do{...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Logging log

19.1

Values may be assigned to variables. Thisisindicated by the symbol ":=".

Assignments

Syntactical Structure

Vari abl eRef ":=" (Expression | Tenpl ateBody)

Semantic Description

During execution of an assignment the right-hand side of the assignment shall evaluate to avalue or template. The
effect of an assignment is to bind the variable to the value of the expression or to atemplate. The expression shall
contain no unbound variables. All assignments occur in the order in which they appear, that is left to right processing.

Restrictions
a) Theright-hand side of an assignment shall evaluate to avalue or template, which is type compatible with the
variable at the left-hand side of the assignment.

b) When theright-hand side of the assignment evaluates to atemplate (global or local template, in-line template
or template variable), the variable at the |eft hand side shall be atemplate variable.

Examples
MyVariable := (x +y - increnment(z))*3;
19.2 The If-else statement

Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure

if "(" Bool eanExpression ")" StatenentBl ock
{ else if "(" Bool eanExpression ")" StatenentBl ock }
[el se StatenentBl ock]

NOTE: else if "("BooleanExpression")" SatementBlock [else SatementBlock] is a shorthand notation for

el se "{"if "("BooleanExpression")" StatementBlock [else SatementBlock] "}".

ETSI

109 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions — the condition. A statement
block — and only one — will be executed, if its condition eva uates to true. The optional else specifies a statement block
that will be executed if al the "if" and "else if" conditions before are false.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
if (date == "1.1.2005") { return (fail); }

if (MVar < 10) { M/Var := MyVar * 10; log ("MyVar < 10"); }
else { Myvar := MyVar/5; }

19.3 The Select Case statement

Thesel ect case statement is an aternative syntactic form of thei f - el se statement.

Syntactical Structure

select "(" SingleExpression ")" "{"
{ case "(" { SingleExpression [","] } ")" StatenentBl ock }
[case el se StatementBl ock]

"
Semantic Description

Thesel ect case statementisan dternativetousingi f .. el sei f .. el se statements when comparing avalue to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branches is executed.

In the header part of thesel ect case statement an expression shall be given. Each branch starts with thecase
keyword followed by alist of templatel nstance (alist branch, which may also contain a single element) or theel se
keyword (an else branch) and a block of statements.

All templatel nstancein all list branches shall be of atype compatible with the type of the expression in the header.
A list branch is selected and the block of statements of the selected branch is executed only, if any of the

templatel nstance matches the value of the expression in the header of the statement. On executing the block of
statements of the selected branch (i.e. not jumping out by a go to statement), execution continues with the statement
following the select case statement.

The block of statements of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expressionin
the header and the statement contains no else branch, execution continues without executing any of thesel ect case
branches.

Restrictions
a) Thesel ect SngleExpression and the case SingleExpression”s shall be type compatible.

Examples
sel ect (MyModul ePar) // where MyModul ePar is of charstring type

case ("firstValue")
log ("The first branch is selected");

case (MyCharVar, MChar Const)
{

ETSI

110 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

log ("The second branch is selected");
case el se
log ("The value of the nodul e paraneter MyModul ePar is sel ected");
}

/'l the above select statement is equivalent to the following if statement
if (match(M/Mdul ePar, "firstValue")

log ("The first branch is selected");
}
else if (match(M/Mdul ePar, MyCharVar) or nmatch(M/Mdul ePar, MyChar Const))
log ("The second branch is selected");

}

el se

—~

log ("The val ue of the nodul e paraneter MyMddul ePar is selected");

}

19.4 The For statement

Thef or statement defines a counter loop.

Syntactical Structure

for "(" (Varlnstance | Assignnment) ";" Bool eanExpression ";" Assignnment ")"
St at errent Bl ock

Semantic Description

Thef or statement contains two assignments and abool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable isincreased, decreased or manipulated in such a manner that after a certain number of
execution loops atermination criteriais reached.

The termination criterion of the loop shall be expressed by abool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatestot r ue, the execution continues with the block of statementsin the for
statement, if it evaluatesto f al se, the execution continues with the statement which immediately followsthe f or
loop.

Theindex variable of af or loop can be declared before being used in the for statement or can be declared and
initialized inthef or statement header. If theindex variable is declared and initialized in thef or statement header, the
scope of the index variable islimited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
var integer j; /] Declaration of integer variable j
for (j:=1; j<=10; j:=j+1) { ..} /] Usage of variable j as index variable of the for Ioop
for (var float i:=1.0; i<7.9; i:=1i*1.35) { ..} // Index variable i is declared and initialized

/1 in the for |oop header. Variable i only is
/1 visible in the | oop body.

ETSI

111 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

19.5 The While statement

A whi | e statement defines aloop that is executed as long as the loop condition holds.

Syntactical Structure

while "(" Bool eanExpression ")" StatenentBl ock

Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the whi | e loop.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
while (j<10){ ...}

19.6 The Do-while statement

A do- whi | e statement defines aloop that is executed up until the loop condition does not hold.

Syntactical Structure

do StatementBl ock while "(" Bool eanExpression ")"

Semantic Description

Thedo- whi | e loopisidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at |east once before the loop
condition is evaluated for the first time.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
do { ..} while (j<10);

19.7 The Label statement

Thel abel statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module.

Syntactical Structure
| abel Label I dentifier

Semantic Description

A | abel marksastatement. Thelabel isused by the got o statement (see clause 19.8) to transfer control to alabelled
Statement.

ETSI

112 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions

a) Al abel statement can be used freely like other TTCN-3 behavioura program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top aternativeinanal t statement, i nt er | eave statement or al t st ep.

b) Labelsused followingthel abel keyword shall be unique among all 1abels defined in the same test case,
function, altstep or control part.

Examples
| abel MyLabel; /1 Defines the | abel MyLabel

/1 The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment

| abel L1, /1 Definition of label L1
al t{
[PCOL.recei ve(M/Sigl)
{ | abel L2; /1 Definition of |abel L2
PCOL. send(MySi g2) ;
PCOL. r ecei ve(MySi g3)

}
[T PCR.receive(MSig4)
{ PCO2. send(M/Si g5) ;
PCO2. send(MySi g6) ;
| abel L3; /1 Definition of |abel L3
PC2. recei ve(M/Si g7) ;

19.8 The Goto statement

A got o statement performsajumpto al abel .

Syntactical Structure

goto Label I dentifier

Semantic Description

The got o statement can be used in functions, test cases, atsteps and the control part of a TTCN-3 module to transfer
control to alabelled statement.

The got o statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhi | e loop) and to jump over severa levels out of
nested compound statements (e.g. nested alternatives).

Restrictions

a) It isnot alowed to jump out of or into functions, test cases, atsteps and the control part of a TTCN-3
module.

b) It isnot alowed to jump into a sequence of statements defined in a compound statement (i.e. al t
statement, whi | e loop, for loop, i f -el se statement, do- whi | e loop andthei nt er | eave
statement).

) It is not allowed to use the got o statement withinani nt er | eave statement.

Examples

/1 The followi ng TTCN-3 code fragnent includes

iabel L1; /1 ...the definition of |abel L1,

MyVar = 2 * MyVar;

if (MyVar < 2000) { goto L1; } /1 ...a junp backward to L1,

MyVar2 : = Myfunction(M/Var);
if (MVar2 > MyVar) { goto L2; } /1 ...a junp forward to L2,

ETSI

113 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

PCOL. send(MyVar) ;
PCOL. recei ve -> val ue MyVar 2;
| abel L2; /1 ...the definition of |abel L2,
PCX2. send(i nteger: 21);
alt {
[] PCOL.receive { }
[] PC®2.receive(integer: 67) {
| abel L3; [/l ...the definition of |abel L3,
PCO2. send(MyVar) ;
alt {
[] PCOL.receive { }
[1] PCR2.receive(integer: 90) {
PCO2. send(i nteger: 33);
PCQ2. recei ve(integer: 13);
goto L4; [/l ...a junp forward out of two nested alt statenents,

}
[T PCR2.receive(MError) {
goto L3; /1 ...a junp backward out of the current alt statenent,

[1 any port.receive {
goto L2; [/l ...a junp backward out of two nested alt statenents,
}

}

[1 any port.receive {
goto L2; // ...and a long junp backward out of an alt statenent.
}

}
| abel L4;

19.9 The Stop execution statement

The st op statement terminates execution of test components, atest case or atest control.

Syntactical Structure

stop

Semantic Description

The st op statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the execution of the
module control part. When used in atest case, atstep or function that are executed on atest component, it terminates
the relevant test component.

NOTE: Thesemanticsof ast op statement that terminates a test component is identical to the stop component
operationsel f. st op (see clause 21.2.3).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

modul e MyModul e {
. /] Module definitions
testcase MyTest Case() runs on M/MICType system MySystenlype{
var MyPTCType ptc: = MyPTCType. create€; /1 PTC creation

ptc.start(M/Function()); /] start PTC execution
: /'l test case behaviour continued
st op /] stops the MIC, all PTCs and the whole test case

}
function MyFunction() runs on MyPTCType {
sfop /'l stops the PTC only, the test case continues

control {
/] test execution
st op /] stops the test canpaign
} // end control
} /1 end nodul e

ETSI

114 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

19.10 The Return statement

Ther et ur n statement terminates execution of functions or atsteps.

Syntactical Structure

return [Expression]

Semantic Description

Ther et ur n statement terminates execution of afunction or atstep and returns control to the point from which the
function or altstep was called. When used in functions, ar et ur n statement may be optionally associated with areturn
value.

NOTE: Ther et ur n statement, when used in altsteps has the same effect asif the end of the block of statements
and declarations of the chosen aternative has been reached, e.g. when the altstep iscalled fromanal t
statement, the execution continues with the first statement following theal t statement.

Restrictions
a) Thereturn statement should not be used in the statement block of atestcase.

Examples
function MyFunction() return bool ean {
if (date == "1.1.2005") {
return false; // execution stops on the 1.1.2000 and returns the bool ean fal se
}

return true; /1 true is returned

}

function MyBehaviour() return verdicttype {

if (MFunction()) {

setverdict(pass); // use of MyFunction in an if statenent

el se {
setverdi ct (i nconc);
}

return getverdict; // explicit return of the verdict

19.11 The Log statement

Thel og statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 13.

Table 13: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value
external constant identifier actual value
template instance actual template or field
values and matching
symbols
data type variable identifier actual value See notes 3 and 4.
or "UNITIALIZED"

ETSI

115 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Used in a log statement What is logged Comment

sel f,mc, systemor actual value and if On logging actual values see notes 2 to

component type variable assigned the component |4. Actual component states shall be

identifier instance name logged according to note 5.

or "UNITIALIZED"

running operation return value true orf al se. In case of component or

(component or timer) timer arrays, array element specification
shall be included.

alive operation return value true or f al se. In case of arrays, array

(component) element specifications shall be included.

port instance actual state Port states shall be logged according to
note 6.

default type variable identifier actual state Default states shall be logged according

or 'UNITIALIZED' to note 7. See also notes 2 to 4.

timer name actual state Timer states shall be logged according to
note 8.

read operation return value See clause 24.3.

predefined functions return value See annex C.

function instance return value Only functions with return clause are
allowed.

external function instance return value Only external functions with return clause
are allowed.

formal parameter identifier See comment column |Logging of actual parameters shall follow
rules specified for the language elements
they are substituting. In case of value
parameters the actual parameter value,
in case of template-type parameters the
actual template or field values and
matching symbols, in case of component
type parameters the actual component
reference etc. shall be logged. For timer
parameters also the use of the read
operation and for component type and
timer parameters the use of the running
operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNITIALIZED" shall be logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex E).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex E).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex E).

Syntactical Structure
log "(" { (FreeText | Tenplatelnstance) [","] } ")"

Semantic Description

Thel og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 13 or expressions composed of such log items.

It is strongly recommended that the execution of the log statement has no effect on the test behaviour. In particular,
functions used in alog statement should neither explicitly nor implicitly change component variable values, port or
timer status, and should not change the value of any of itsinout or out parameters.

NOTE: It isoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

ETSI

116 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions

a) Functionsused in log statements should not use directly or indirectly statements other than if...else, for,
while, do...while, label, goto, return, mtc, system, self, running (PTC or timer), read and getverdict.

Examples
var integer nyVar:= 1,
log("Line 248 in PTC_A: ", nyVar, " (actual value of nyVar)");

/Il The string "Line 248 in PTC_ A 1 (actual value of nyVar)" is witten to sone |og device
/1 of the test system

20 Statement and operations for alternative behaviours
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both.

An interleaving operator allows the specification of interleaved sequences or alternatives. Table 14 summarizes the
statements and operations for alternative behaviours.

Table 14: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

20.1 The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9.

S1;
S1 alt {
[1 82 {
alt {
[] s4{ s7}
[1 S5 ¢
S8;
alt {
[1 s9 {}
[1 sio0 {}
}
}
}
[1 S3{ S6}

Figure 9: lllustration of alternative behaviour

Thisisdone withtheal t statement.

When entering an al t statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one alternative inthe al t
statement, or in atop alternative of an altstep that isinvoked as an alternativeintheal t statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard [3]).

ETSI

117 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of theal t statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard [3].

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

20.2 The Alt statement

The alt statements expresses sets of possible aternatives that form atree of possible execution paths.

Syntactical Structure

alt "{"
{

"[" [Bool eanExpression] "]"
((TimeoutStatenent |
Recei veSt at enent |
Trigger Statenent |
Get Cal | St at ement |
Cat chSt at ement |
ChecksSt at ement |
Get Repl ySt at ement |
DoneSt at enent |
KilledStatement) StatenentBl ock)

(Altsteplnstance [StatenmentBlock])

% "[" else "]" StatenentBl ock]
nyn

Semantic Description

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
recei ve,trigger,getcall,getreply,catch,check,tineout,doneandkilled.Thealt statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alternative behaviour:
When entering an al t statement, a snapshot is taken.

The alternative branchesintheal t statement and the top aternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 20.5.

Theindividual aternative branches are either branches that may be guarded by a Boolean expression or el se-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), aki | | ed operation (killed-branch), t i neout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e.r ecei ve, tri gger,getcal |l ,getrepy, catch oracheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto t r ue. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

ETSI

118 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block following theki | | ed
operation. Theki | | ed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified t i meout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following thet i meout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operationis
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of thet ri gger operation the top message of the queue is aso removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

If none of the alternative branchesintheal t statement and top alternativesin the invoked altsteps and active defaults
can be selected and executed, theal t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.g. because the MTC is stopped) or with adynamic error.

The test case shall stop and indicate adynamic error if atest component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 2: The repetitive procedure of taking a complete snapshot and re-evaluate all alternativesisonly a
conceptual means for describing the semantics of theal t statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...]") brackets of the alternative.

Else branch in alternatives:

Any branchinanal t statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of al alternatives. If an
el se branchis defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 3: Itisalso possibleto use el se inatsteps.
NOTE 4: Itisalowedtousear epeat statement withinan el se branch.

NOTE 5: It isallowed to define more that one else branch in an alt statement or in an altstep, however aways only
the first else branch is executed.

Re-evaluation of alt statements:
There-evaluation of anal t statement can be specified by using ar epeat statement (see clause 20.).
Invocation of altsteps as alter natives

TTCN-3 alowsthe invocation of altsteps as alternativesinal t statements (see clause 16.2.1).

ETSI

119 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Restrictions

a) Theopen and close square brackets ("[...]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an aternative may have side-effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions
astherestrictions for theinitialization of local definitions within altsteps shall apply (clause 16.2).

¢) Theelsebranch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.,e.anal t st ep call oradone, aki | | ed, ati meout or areceiving operation).

d) Analt statement used within the module control part shall only containthet i meout statements.

Examples
EXAMPLE 1. Nested aternatives.

alt {
[MyPort.receive (M/Message) ({

setverdi ct (pass);

M/Ti mer. start;

alt {

[1 MyPort.receive (MySecondMessage) ({

M/ Ti ner . st op;
setverdict (pass);

}
[T MyTiner.tineout {
M/Port.send (M/Repeat);
MyTi mer. start;
alt {
[T MyPort.receive (MySecondMessage) ({
M/ Ti ner . st op;
setverdi ct (pass)

[T MyTiner.tinmeout { setverdict (inconc) }
[T MyPort.receive { setverdict (fail) }

}

}
[T MyPort.receive { setverdict (fail) }

}
[T MTinmer.timeout { setverdict (inconc) }
[T MyPort.receive { setverdict (fail) }

}
EXAMPLE 2: Alt statement with guards.
alt {
[x>1] L2.receive { /1 Bool ean guard/ expression
setverdi ct (pass);
[x<=1] L2.receive { /1 Bool ean guard/ expression
setverdi ct (i nconc);
}
}

EXAMPLE 3: Alt statement with €lse branch.

/1 Use of alternative with Bool ean expressions (or guard) and el se branch

alt {
[el se] { /1 el se branch
MyError Handl i ng() ;
setverdict(fail);
st op;
}
}

ETSI

120 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 4: Re-evaluation with repeat.

alt {
[T PC3.receive {
count := count + 1,
r epeat /'l usage of repeat

}

[T Ti.tineout { }

[1 any port.receive {
setverdict(fail);
st op;

}
}

EXAMPLES: Alt statement with explicitly invoked altstep.

alt {
[] PCX®.receive { }
[1 AnotherAltStep(); // explicit call of altstep AnotherAltStep as alternative
/1 of an alt statenent
[T MyTiner.tineout { }

20.3 The Repeat statement

Ther epeat statement isused for are-evaluation of anal t statement.

Syntactical Structure

r epeat

Semantic Description

Ther epeat statement, when used in the block of statements and declarations of alternatives of al t statements, causes
the re-evaluation of theal t statement, i.e. a new snapshot is taken and the alternatives of theal t statement are
evaluated in the order of their specification.

When used in blocks of statements and declarations of the response and exception handling parts of blocking procedure
calls, the repeat statement causes the re-evaluation of the response and exception handling part of the call
(seeclause 22.3.1).

If ar epeat statement isused in atop aternative in an atstep definition, it causes a new snapshot and the
re-evaluation of theal t statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly intheal t statement (see clause 20.2).

Restrictions
a) Therepeat statement should only be used withinal t statements, cal | statements or altsteps.

Examples
EXAMPLE 1. Usage of repeat in an at statement.
alt {
[] PC3.receive {
count := count + 1,
repeat /1 usage of repeat

}
[1] Ti.tineout { }
[1 any port.receive {
setverdict(fail);
st op;

}

ETSI

121 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2: Usage of repeat in an atstep.

altstep AnotherAltStep() runs on MyConponent Type {
[1] PCOL. receive{
setverdi ct (i nconc);
r epeat /'l usage of repeat

}
[T PCR2.receive {}

20.4 The Interleave statement

Thei nt er| eave statement allows to specify the interleaved occurrence and handling of receiving events including
done,kil |l ed,ti meout,receive,trigger,getcall,getreply,catchandcheck.

Syntactical Structure

interl eave "{"

{ "[1" (TineoutStatenent |
Recei veSt at enent |
Trigger Statement |
Get Cal | St at ement |
Cat chSt at ement |
CheckSt at ement |
Get Repl ySt at ement |
DoneSt at enent |
Kill edStatenment) StatementBl ock

"y

Semantic Description
Thei nt er | eave statement allows to specify the interleaved occurrence and handling of the statementsdone,
killed,tinmeout,receive,trigger,getcall,getreply,catchandcheck.

Interleaved behaviour can always be replaced by an equivalent set of nested alternatives. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [3]).

The rules for the evaluation of an interleaving statement are the following:

a) whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached or the interleaved sequence ends;

NOTE: Reception statements are TTCN-3 statements which may occur in sets of aternatives, i.e.r ecei ve,
check,trigger,getcall,getreply,catch,done, killedandti meout.Non-reception
statements denote all other non-control-transfer statements which can be used withinthei nt er | eave
Statement.

b) the evaluation then continues by taking the next snapshot.

The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [3]).

Restrictions

a) Control transfer statementsf or , whi | e, do-whi | e, got 0,acti vat e, deacti vat e, st op, r epeat,
r et ur n, direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which
include communication operations, shall not beused ini nt er | eave statements.

b) Inaddition, itisnot allowed to guard branches of ani nt er | eave statement with Boolean expressions
(i.e. the []' shall dways be empty). It is also not allowed to specify el se branchesin interleaved behaviour.

ETSI

122 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Examples

/1 The following TTCN-3 code fragment
interleave {
[1] PCOL.recei ve(M/Sigl)
{ PCOL. send(MySi g2) ;
PCOL. recei ve(M/Si g3) ;

}
[T PCR.receive(MSig4)
{ PCX2. send(MySi g5) ;
PCX2. send(MySi g6) ;
PC2. recei ve(M/Si g7) ;

}

/1l is a shorthand for
alt {
[1 PCOL.recei ve(M/Si gl)
{ PCOL. send(MySi g2) ;
alt {
[1 PCOL. recei ve(M/Si g3)
{ PC2. recei ve(M/Si g4) ;
PCX2. send(MySi g5) ;
PCO2. send(M/Si g6) ;
PCO2. recei ve(MySi g7)

}
[T PCOR.receive(MSig4)
{ PCO2. send(M/Si g5) ;
PCO2. send(M/Si g6) ;
alt {
[1] PCOL. receive(MSig3) {
PC2. recei ve(M/Si g7); }
[T PCR.receive(MSig7) {
PCOL. recei ve(MSi g3); }
}

}

}
[T PCO2.receive(MSig4)
{ PCX2. send(MySi g5) ;
PCO2. send(M/Si g6) ;
alt {
[1 PCOL.recei ve(M/Si gl)
{ PCOL. send(MySi g2) ;
alt {
[T PCOL.recei ve(M/Si g3)
{ PC2. recei ve(M/Si g7) ;

}
[T PCX.receive(MWSig7)
{ PCOL. recei ve(MySi g3) ;

}
}

}
[T PC.receive(MSig7)
{ PCOL. recei ve(M/Si gl);
PCOL. send(M/Si g2) ;
PCOL. recei ve(M/Si g3) ;

20.5 Default Handling

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activationi.e. the
last activated default isthe first element in thelist of active defaults. The TTCN-3 operationsact i vat e

(seeclause 20.5.2) and deact i vat e (see clause 20.5) operate on the list of defaults. Anact i vat e putsanew
default asthe first element into thelist and adeact i vat e removes adefault fromthe list. A default in the default list
can be identified by means of default reference that is generated as a result of the corresponding act i vat e operation.

ETSI

123 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

20.5.1 The default mechanism

The default mechanism is evoked at the end of each al t statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaullts, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the al t st ep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the placeintheal t statement in which it
has been invoked, i.e. at the end of theal t statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also beindicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of ast op statement, or
the main control flow of the test component will continue immediately after theal t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluatethe al t statement. The latter has
to be specified by means of ar epeat statement (see clause 20). If the selected top alternative of the default ends
without ar epeat statement the control flow of the test component will continue immediately after theal t statement.

NOTE: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a processthat isimplicitly called at the end of each al t statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
caled in the reverse order of their activation when the default mechanism has been invoked.

205.1.1 Default references

Default references are unique references to activated defaults. Such a unique default reference is generated by atest
component when an altstep is activated as a default, i.e. a default reference isthe result of anact i vat e operation
(seeclause 20.5.2).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaults in test components. The special valuenul | isavailable to indicate an undefined default reference,
e.g. for theinitialization of variablesto handle default references.

Default referencesare usedin deact i vat e operations (see clause 20.5) in order to identify the default to be
deactivated.

The actual data representation of thedef aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

20.5.2 The Activate operation

Theact i vat e operation is used to activate altsteps as defaults.

Syntactical Structure

activate " ("
Al tstepRef "(" [{ (TinmerRef | Tenplatelnstance | Port | ConponentRef) [","] }] ")"
"y

Semantic Description

Anact i vat e operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used inadeact i vat e operation for
the deactivation of the default.

The effect of anact i vat e operation islocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

ETSI

124 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Theact i vat e operation can be called without saving the returned default reference. Thisformis useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding act i vat e statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of its invocation by the default mechanism).

Restrictions

a) All timer instances in the actual parameter list shall be declared as component type local timers
(seeclause 9.2).

b) Analtstep that is activated as a default shall only havei n parameters, port parameters, or timer parameters.

Examples

EXAMPLE 1: Activation where the default reference is kept.

Il Declaration of a variable for the handling of defaults
var default MyDefaultVar := null;

/) Decl aration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo : = activate(M/SecondAl tStep());

/) Activation of altstep MJAItStep as a defaul t
MyDefaul tVar := activate(M/AItStep()); // MAtStep is activated as default

/) Usage of MyDefaultVar for the deactivation of default M/DefAltStep
deactivat e(MyDef aul t Var) ;

EXAMPLE 2: Simpleactivation.

/1 Activation of an altstep as a default, without assignnent of default reference
activat e(MyCommonDef aul t ());

EXAMPLE 3: Activation of a parameterized altstep.

altstep MYAItStep2 (integer par _val uel, MyType par_val ue2,
MyPor t Type par _port, timer par_timer)
{

}
function MyFunc () runs on MyConpType
{:
var default MyDefaultVar := null;
MyDef aul t Var : = activate(MAltStep2(5, nyVar, nyConpPort, nyConpTiner);
/'l MAltStep2 is activated as default with the actual paraneters 5 and

/1 the value of nyVar. A change of nyVar before a call of M/AItStep2 by
/'l the default nmechanismwi |l not change the actual paraneters of the call.

20.5.3 The Deactivate operation

Thedeact i vat e operation is used to deactivate defaults, i.e. previoudy activated altsteps.

Syntactical Structure

deactivate ["(" VariableRef | Functionlnstance ")"]

Semantic Description
A deact i vat e operation will remove the referenced default from the list of defaults.

The effect of adeact i vat e operationislocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

ETSI

125

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

A deact i vat e operation without parameter deactivates all defaults of atest component.

Callingadeact i vat e operation with the specia value nul | has no effect. Calling adeact i vat e operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of default type.

Examples

var default MyDef aul t Var
var default MyDefVar Two :
var default MyDefVar Three :

WDef aul t Var

nul | ;
activate(M/SecondAl tStep());
activate(MyThirdAl tStep());

activate(MA tStep());

deact i vat e(MyDefaultVar); // deactivates M/AltStep

déactivate; /'l deactivates all other defaults, i.e. in this case M/SecondAlt Step
/1 and MyThirdAlt Step

21

Configuration Operations

Configuration operations are used to set up and control test components. They are summarized in table 15. These
operations shall only be used in TTCN-3 test cases, functions and altsteps (i.e. not in the module control part).

Table 15: Overview of TTCN-3 configuration operations

Operation

Explanation

Syntax Examples

Connection Operations

connect

Connects the port of one test
component to the port of another test

connect (ptcl: pl, ptc2:p2);

component

disconnect Disconnects two or more connected di sconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to [Map(ptcl: g, systemsutPortl);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap(ptcl:q, systemsutPortl);

Test Component Operations

create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:

var PTCType c¢ := PTCType. create;
Alive test components:
var PTCType c := PTCType.create alive;

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehavi our());

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

if (c.alive)

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running)

done

Checks whether the function running on
a test component has terminated

c. done;

ETSI

126 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Operation Explanation Syntax Examples

killed Checks whether a test component has |c-killed { ..}
ceased to exist

Reference Operations

mtc Gets the reference to the MTC connect(nmtc:p, ptc:p);

system Gets the reference to the test system [mBp(c:p, systemsutPort);
interface

self Gets the reference to the test sel f. stop;

component that executes this operation

21.1 Connection Operations

The ports of atest component can be connected to other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface the map operation shall be used. The connect operation
directly connects one port to another with thei n side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name trandlation defining how communications streams should be referenced.

Test system Connected Ports

I N

>
out I'N
out I'N
Mapped Ports 4
Abstract Test System Interface aut ¢ | I'N
OO

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

21.1.1 The Connect and Map operations

Theconnect operation and the map operation are used to setup connections to the SUT or between test components.

Syntactical Structure

connect "(" ConponentRef ":" Port "," ConponentRef ":" Port ")"
map " (" ConponentRef ":" Port "," ConponentRef ":" Port ")"

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mt ¢ identifiesthe MTC, the operation sy st emidentifies the test system interface and the operation
sel f identifiesthe test component in which sel f has been called (see clause 22.4). All these operations can be used
for identifying and connecting ports.

Boththeconnect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

ETSI

127 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

Restrictions
a) For boththeconnect and map operations, only consistent connections are allowed.

Assuming the following:
a) ports PORT1 and PORT2 are the ports to be connected;
b) inlist-PORT1 defines the messages or procedures of the in-direction of PORT 1,
c) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
d) inlist-PORT?2 defines the messages or procedures of the in-direction of PORTZ2; and
e) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) Theconnect operationisallowed if and only if:
outlist-PORT1 O inlist-PORT2 and outlist-PORT2 O inlist-PORT 1.
c) Thenap operation (assuming PORT2 isthe test system interface port) is allowed if and only if:
outlist-PORT1 O outlist-PORT2 and inlist-PORT2 O inlist-PORT1.
d) Inall other cases, the operations shall not be allowed.

€) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and
shall lead to atest case error when failing.

f) Inaddition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

Examples

/1 1t is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

vér MyConponent Type M/NewPTC;
M/NewPTC : = MyConponent Type. creat e;

cbnnect (MyNewPTC: Port1, ntc:Port3);
map(MyNewPTC: Port 2, system PCOL);

/1 I'n this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable M/NewPTC. Afterwards in the connect operation, Portl of this new conmponent

/1 is connected with Port3 of the MIC. By nmeans of the map operation, Port2 of the new conponent
/1 is then connected to port PCOL of the test systeminterface

21.1.2 The Disconnect and Unmap operations

Thedi sconnect and unnmap operations are the opposite operations of connect and map.

Syntactical Structure

di sconnect [("(" ConponentRef ":" Port "," ConponentRef ":" Port ")") |
("(" PortRef ")") |
("(" ConponentRef ":" all port ")") |
("(" all conponent ":" all port ")")]

Semantic Description

Thedi sconnect and unnap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

ETSI

128 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Both, thedi sconnect and unnmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unnmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

Toeasedi sconnect and unmap operations related to all connections and mappings of a component or aport, itis
allowed to usedi sconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theal | port keyword can be used to denote all ports of a
component.

The usage of adi sconnect or unnmap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port . It disconnects or unmaps all ports of the component that calls the operation.

Theal | conponent keyword shall only be used in combination withtheal | port keyword, i.e. al |
conponent :al | port, and shall only be used by the MTC. Furthermore, theal | conponent: all port
argument shall be used as the one and only argument of adi sconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
EXAMPLE 1. Disconnect/unmap for specific connections.

connect (MyNewConponent : Port1, mtc:Port3);
map(MyNewConponent : Port 2, system PCOL) ;

di sconnect (MyNewConponent : Port1, ntc:Port3); /1 disconnect previously nade connection
unmap(MyNewConponent : Port 2, system PCOL); /1 unmap previously nade napping

EXAMPLE 2: Disconnect/unmap for a component.

di sconnect (MyNewConponent : Port 1) ; /1 disconnects all connections of Portl, which
/1 is owned by conponent MyNewConponent .
unmap(MyNewConponent : al | port); /1 unmaps all ports of conponent MyNewConponent

EXAMPLE 3: Disconnect/unmap for "self".

di sconnect; /1 is a shorthand formfor ...

di sconnect(self:all port); /1 which disconnects all ports of the conponent
/1 that called the operation

uﬁrrap; /1 is a shorthand formfor ..

unmap(sel f:all port); /1 which unmaps all ports of the conponent
/1 that called the operation

EXAMPLE 4: Disconnect/unmap for "all component".

di sconnect (all component:all port); /'l the MIC disconnects all ports of all
/] conponents in the test configuration.

uhmap(all conmponent:all port); /1 the MIC unnmaps all ports of all
/'l conponents in the test configuration.

21.2 Test Component Operations

Test component operations are used to create, start, stop and kill test components. They can aso be used to check if test
components are alive, running, done or killed.

ETSI

129 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

21.2.1 The Create operation

Thecr eat e operation is used to create test components.

Syntactical Structure
Conmponent Type "." create ["(" Expression ")"] [alive]

Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by cr eat e operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetypei n or i nout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional al i ve keyword. An alive-type PTC must be destroyed explicitly using the ki | |
operation (see clause 21.2.4), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates.
Termination of atest casg, i.e. the MTC, terminates all PTCsthat till exidt, if any.

Since al test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

Thecr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 9.5) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

NOTE: The component instance name is used for logging purposes (see clause 19.11) only and shall not be used
to refer to the component instance (the component reference shall be used for this purpose) and has no
effect on matching.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in amessage.

Restrictions

a) Thename given by Expression shall be a charstring value and when assigned it shall appear as the argument of
thecr eat e function.

Examples

/1 This exanple declares variables of type MyConponent Type, which is used to store the

Il references of newy created conponent instances of type MyConponent Type which is the

/1 result of the create operations. An associated nane is allocated to sone of the created
/1 component instances.

var MyConponent Type MyNewConponent ;

var MyConponent Type MyNewest Conponent ;

var MyConponent Type MyAl i veConponent ;

var MyConponent Type MyAnot her Al i veConponent ;

MyNewConponent : = MyConponent Type. create;

M/Newest Conponent : = MyConponent Type. creat e(" Newest");

M/Al i veConponent : = MyConponent Type. create alive;

MyAnot her Al i veConponent : = MyConponent Type. cr eat e(" Anot her Alive") alive;

ETSI

130 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

21.2.2 The Start test component operation

The start operation is used to associate atest behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure

(VariableRef | Functionlnstance) "." start "(" Functionlnstance ")"

Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. Thisis done by using the st ar t operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between cr eat e and st ar t isto alow connection operations to
be done before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

An dive-type PTC may perform several behaviour functions in sequential order. Starting a second behaviour function
on anon-alive PTC or starting afunction on a PTC that is till running resultsin atest case error. If afunction is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
as they were |eft after termination of the previous function. In particular, if atimer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

b) Thefollowing restrictions apply to afunctioninvoked inast ar t test component operation:
e If thisfunction has parameters they shall only bei n parameters, i.e. parameters by value.

« Thisfunction shall have ar uns on definition referencing a component type that is compatible with the
newly created component (see clause 6.3.3).

e Portsand timers shall not be passed into this function.

NOTE: Asinandi nout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

function MyFirstBehaviour() runs on MyConponent Type { ...}
functi on MySecondBehavi our() runs on MyConponent Type { ...}

Var My Conponent Type MyNewPTC,
var MyConponent Type M/Ali vePTC,

M/NewPTC : = MyConponent Type. cr eat e; /] Creation of a new non-alive test conponent.

M/Al'i vePTC : = MyConponent Type.create alive; // Creation of a new alive-type test conponent
M/NewPTC. start (MyFi rst Behavi our()); /l Start of the non-alive conponent.

M/NewPTC. done; /1 Wit for termination

MyNewPTC. st art (MySecondBehavi our ()); /1 Test case error

M/AI i vePTC. start (M/Fi r st Behavi our ()); I/l Start of the alive-type conponent

M/Al i vePTC. done; /1 Wit for termination

M/Al i vePTC. st art (MySecondBehavi our ()); // Start of the next function on the sane conponent

ETSI

131 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

21.2.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure

stop |
((VariableRef | Functionlnstance | ntc | self) "." stop) |
(all component "." stop)

Semantic Description

By using the st op test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using asimple st op
execution statement (see clause 19.9) or by addressing itself in the st op operation, e.g. by usingthesel f operation.

NOTE 1: Whilethecreat e,start,runni ng, done andki | | ed operations can be used for PTC(s) only, the
st op operation can also be applied to the MTC.

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit r et ur n statement. Thistermination is also caled implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 25).

If the stopped test component isthe MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the st ar t operation). The component shall be left in a consistent
state after stopping its behaviour.

NOTE 2: For example, if the behaviour of an alive-type component is stopped during assigning a new value to an
aready bound variable, the variable shall remain bound after the component is stopped (with the old or
the new value). Similarly, if the component is stopped during re-starting an already running timer, the
timer shall be left in the running state after termination of the behaviour.

Therules for the termination of test cases and the calculation of the final test verdict are described in clause 25.
Theal | keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.
NOTE 3: A PTC can stop the test case execution by stopping the MTC.

NOTE 4: The concrete mechanism for stopping PTCs is outside the scope of the standard.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples
EXAMPLE 1. Stopping another test component and a test component by itself.

var MyConponent Type MyConp : = MyConponent Type. creat e; /1 A new test conponent is created

MyConp. st art (ConpBehavi our ()); /1 The new conponent is started
if (date == "1.1.2005") {
My Conp. st op; /1 The conponent "MConp" is stopped

ETSI

132 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

if (a<b) {

sel f.stop; /1 The test conponent that is currently executing stops its own behavi our
}
st op /1 The test conponent stops its own behavi our

EXAMPLE 2: Stopping all PTCsby the MTC.

al | component . st op /1l The MIC stops all PTCs of the test case but not itself.

21.2.4 The Kill test component operation

Theki | | test component operation is used to destroy atest component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing a test component destroys the
test component.

Syntactical Structure

kill |
((VariableRef | Functionlnstance | ntc | self) "." kill) |
(all component "." kill)

Semantic Description

Theki | | operation applied on atest component stops the execution of the currently running behaviour - if any - of that
component and frees all resources associated to it (including all port connections of the killed component) and removes
the component from the test system. Theki | | operation can be applied on the current test component itself by a
simpleki | | statement or by addressing itself using the sel f operation in conjunction with the kill operation. The

ki | | operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If theki | | operation isapplied onthe MTC, eg. nt c. ki | | , it terminates
the test case.

Theal | keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples
EXAMPLE 1. Killing another test component and a test component by itself.
var PTCType MyAliveConp : = PTCType.create alive; /]l Create an alive-type test conponent
M/Al i veConp. st art (MyFi r st Behavi our()); /1 The new conponent is started
M/Al i veConp. done; /1 Wait for termnation
M/Al i veConp. st art (MySecondBehavi or ()); /1 Start the conponent a 2™ tinme
M/Al i veConp. done; /1 Wit for termination
M/Al'i veConp. ki I I /] Free its resources

EXAMPLE 2. Killing al PTCsby the MTC.

all component.kill; /1 The MIC stops all (alive-type and normal) PTCs of the test case first
/1 and frees their resources.

21.2.5 The Alive operation

Theal i ve operation is aBoolean operation that checks whether atest component has been created and is ready to
execute or is executing already a behaviour function.

Syntactical Structure
(Variabl eRef |

ETSI

133 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Functionl nstance) |

any conponent |

all component) "." alive
Semantic Description

Applied on anormal test component, theal i ve operation returns true if the component isinactive or running a
function and false otherwise. Applied on an alive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

Theal i ve operation can be used similar to ther unni ng operation on PTCSsonly (see clause 21.2.6). In particular,
in combination with theal | keyword it returnstrueif al (alive-type or normal) PTCs are alive.

Theal i ve operation used in combination with the any keyword returnstrueif at least one PTC is adlive.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples
PTCL. done; /1 Waits for termnation of the conponent
if (PTCL.alive) { /1 |If the conponent is still alive ...
PTC1. st art (Anot her Function()); /] ...execute another function on it.

}

21.2.6 The Running operation

Ther unni ng operation is a Boolean operation that checks whether atest component is executing aready a behaviour
function.

Syntactical Structure

(Variabl eRef |
Functionl nstance) |
any conponent |
all component) "." running

Semantic Description

Ther unni ng operation alows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. Ther unni ng operation can be used for PTCs only. The running operation
returnst r ue for PTCsthat have been started but not yet terminated or stopped. It returnsf al se otherwise. The
runni ng operation is considered to beabool ean expression and, thus, returnsabool ean value to indicate
whether the specified test component (or al test components) has terminated. In contrast to the done operation, the
runni ng operation can be used freely inbool ean expressions.

Whentheal | keyword isused with ther unni ng operation, it will returnt r ue if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwise it returnsf al se.

When the any keyword is used with ther unni ng operation, it will returnt r ue if at least one PTC is executing its
behaviour. Otherwiseit returnsf al se.

Restrictions

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

if (PTCL. running) /'l usage of running in an if statenent

/1 do sonet hi ng!

}

while (all conponent.running != true) { // usage of running in a | oop condition

ETSI

134 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

MySpeci al Functi on()

21.2.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed.

Syntactical Structure

(Variabl eRef |
Functionl nstance) |
any conponent |
all component) "." done

Semantic Description

The done operation shall be used in the same manner as areceiving operation or at i meout operation. This meansit
shall not beused in abool ean expression, but it can be used to determine an dternativeinanal t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

Whentheal | keyword is used with the done operation, it matchesif no one PTC is executing its behaviour. It also
matchesif no PTC has been created.

When the any keyword is used with the done operation, it matchesif at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

Restrictions
a) Thedone operation can be used for PTCs only.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

/1 Use of done in alternatives
alt {
[T MPTC. done {
setverdi ct (pass)
}

[1 any port.receive {
r epeat
}

}

var MyConp ¢ := MyConp.create alive;
c.start (M/PTCBehavi our());

;:. done;

/1 matches as soon as the functi on MyPTCBehavi our (or function/altstep called by it) stops
c. done;

/1 matches the end of MyPTCBehavi our (or function/altstep called by it) too
if(c.running) {c.done}

/1 done here nmatches the end of the next behaviour only

/1 the follow ng done as stand-al one statenent:
al | conponent. done;

ETSI

135 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

/1 has the follow ng neaning:
alt {
[T all conponent.done {}

/1 and thus, blocks the execution until all parallel test conponents have terninated

21.2.8 The Killed operation

Theki | | ed operation allows to ascertain whether a different test component is aive or has been removed from the
test system.

Syntactical Structure

(Vari abl eRef |
Functionl nstance) |
any conponent |
all component) "." killed

Semantic Description

Theki | | ed operation shall be used in the same manner as receiving operations. This meansit shall not be used in
bool ean expressions, but it can be used to determine an alternativeinanal t statement or as a stand-alone statement
in abehaviour description. In the latter case aki | | ed operation is considered to be a shorthand for anal t statement
with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the
termination of test components.

NOTE: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or hasbeenki | | ed explicitly, i.e. the operation is equivalent to thedone
operation (see clause 21.2.7). When checking alive-type test components, however, theki | | ed
operation matches only if the component has been killed using theki | | operation. Otherwise the
ki | | ed operation is unsuccessful.

Whentheal | keyword isused withtheki | | ed operation, it matchesif al PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

When the any keyword is used with the ki | | ed operation, it matches if at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

Restrictions
a) Theki |l | ed operation can be used for PTCsonly.

Examples
var M/PTCType ptc := MyPTCType.create alive; /] create an alive-type test conponent
timer T(10.0); /] create a tinmer
T.start; /1 start the tinmer
ptc.start (MTest Behavior()); /] start executing a function on the PTC
alt {
[T ptc.killed { /1 if the PTC was killed during execution ...
T. stop; /1 ...stop the timer and ...
setverdi ct (i nconc); /1 ...set the verdict to 'inconclusive'
}
[T ptc.done { /1 if the PTC term nated regularly ...
T. stop; /1 ..stop the timer and ...
ptc. start (Anot her Function()); I/l ...start another function on the PTC
}
[1 T.tineout { /1 if the tineout occurs before the PTC stopped
ptc.kill; /1 ..kill the PTC and ...
setverdict(fail); /1 ..set the verdict to 'fail’
}
}

ETSI

136

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

21.2.9 Summary of the use of any and all with components

The keywordsany and al I may be used with configuration operations as indicated in table 16.

Table 16: Any and All with components

Operation Allowed Example Comment
any (see note) | al | (see note)
create
start
runni ng Yes but from |Yes but from any conmponent. running; |Is there any PTC performing test
MTC only MTC only behaviour?
al | conponent. runni ng; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any conponent. alive; Is there any alive PTC?
MTC only MTC only all conponent.alive; |Areall PTCs alive?
done Yes but from Yes but from any conponent. done; Is there any PTC that completed
MTC only MTC only execution?
al | conponent . done; Did all PTCs complete their execution?
killed Yes but from |Yes but from any conponent.killed; |Isthere any PTC that ceased to exist?
MTC only MTC only all conponent.killed;, |Didall PTCs cease to exist?
stop Yes but from al'l conponent. st op; Stop the behaviour on all PTCs.
MTC only
kil Yes but from all component. kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and al | referto PTCs only, i.e. the MTC is not considered.

22

Communication operations

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 17.

Table 17: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received |check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls

ETSI

137 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

22.1 The communication mechanisms

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication
(see clause 22.1.3), as well as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER isblocked onther ecei ve operation until it
processes the received message.

In additionto ther ecei ve operation, TTCN-3 providesat ri gger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send recei ve or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send and receive

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using thecal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using ar epl y operation to answer the call or by raising (r ai se operation)
an exception. The CALLER handles the reply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

call getcal l
! >
CALLER | ! | | CALLEE
:4 :
getreply or reply or
cat ch exception rai se exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using thecal | operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE acceptsthe call by means of aget cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using acat ch operationinanal t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

ETSI

138 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

cal | get cal |
g
CALLER i | CALLEE
< ;
cat ch exception rai se exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

. Unicast communication means one sender to one receiver.

. Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can aso be used for mapped ports. In this case, one, severa or al entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

Operations such assend and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (cal | operation), or repliesto an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations,

b) acomponent receives a message (r ecei ve operation), awaitsamessage (t r i gger operation),accepts a
procedure call (get cal | operation), receives areply for aprevioudy called procedure (get r epl y
operation) or catches an exception (cat ch operation). These actions are collectively referred to asreceiving
operations.

22141 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

. gives an (optional) address part that uniquely identifies one or more communication partnersto which a
message, call, reply or exception shall be send.

ETSI

139 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

The port name, operation name and value shall be present in al sending operations. The address part (denoted by thet o
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and all entities connected to the specified port have to be addressed.

EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part
M/P1. send (MyVariable + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operationis optional and is required for cases where the called procedure returns a
value or hasout ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyP1. cal | (MyProc: { MyVar 1})
[T MyPl.getreply(MProc: {MVar2}) {}
[T MyP1l.catch(MProc, ExceptionOne) {}
}
22.1.4.2 General format of the receiving operations

A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) defines a matching part which specifies the acceptabl e input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needs to be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit is used for storingthei n andi nout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisisuseful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

ETSI

140 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
M/P1. getreply (AProc: {?} val ue 5) -> param (V1) sender APeer
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2. recei ve (MyTenpl ate(5, 7)) from APeer -> |val ue MyVar

22.2 Message-based communication

The operations for message-based communication via asynchronous ports are summarized in table 18.

Table 18: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send "(" Tenpl atel nstance ")"
[to (AddressRef | AddressReflist | all conponent)]
Semantic Description
The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.
Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional t o clause in the send operation. A
t o clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if thet o clause addresses one communication partner only. Multicast
communication isused, if thet o clause includes a list of communication partners. Broadcast is defined by using thet o
clausewithal | conponent keyword.

Restrictions

a) The Templatel nstance (and all parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValueis not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

ETSI

141 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

c) Thesend operation shall only be used on message-based (or mixed) ports and the type of the template to be
sent shall bein thelist of outgoing types of the port type definition.

d) At o clauseshal be present in case of one-to-many connections.

€) AddressRef should not contain matching mechanisms and must be of address or component type.

Examples
EXAMPLE 1. Simple send (receiver is determined from the test configuration).

MyPort. send(My Tenpl at e(5, MyVar)); /1 Sends the tenplate MyTenplate with the actual
/] paraneters 5 and MyVar via MyPort.

MyPort . send(5); /1 Sends the integer value 5 (which is an in-line tenplate)

EXAMPLE 2: Sending with explicit to clause.

MyPort.send(charstring: "M/ string") to MyPartner;
/1 Sends the string "My string" to a conponent with a
/1 conponent reference stored in variable MyPartner

M/PCO. send(MyVari abl e + YourVariable - 2) to M/Partner;
/1 Sends the result of the arithnetic expression to MyPartner.

M/PC2. send(MyTenpl ate) to (M/Peer One, M/Peer Two) ;
/1 Specifies a nulticast communication, where the val ue of
/!l MyTenplate is sent to the two conponent references stored
/1 in the variables My/PeerOne and MyPeer Two.

M/PCO3. send(MyTenpl ate) to all conponent;
/1 Broadcast conmmunication: the value of Mytenplate is send to
/1 all conponents which can be addressed via this port. If
/1 MYPCO3 is a mapped port, the conponents may reside inside
/1 the SUT.

22.2.2 The Receive operation

Ther ecei ve operation is used to receive a message from an incoming message port queue.

Syntactical Structure

(Port | any port) "." receive
["(" Tenplatelnstance ")"]
[from AddressRef]
["->" [value Variabl eRef]
[sender VariableRef]]

Semantic Description
Ther ecei ve operation isused to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

Ther ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies al the matching criteria associated with ther ecei ve operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if ther ecei ve operation
isused as an alternative of anal t statement and it is not successful, the execution of the test case shall continue with

the next alternative of theal t statement.
Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of ther ecei ve operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato ther ecei ve operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 1: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

ETSI

142 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Receiving from a specific sender

In the case of one-to-many connectionsther ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword.

Storing the received message

If the match is successful, the value removed from the port queue can be stored in a variable can be retrieved and stored
inavariable. Thisis denoted by the symbol '->' and the keyword val ue.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender .

NOTE 2: When the message is received on a connected port, only the component reference is stored in the
following the sender keyword, but the test system shall internally store the component name too, if any
(to be used in logging).

Receive any message

A recei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port
Tor ecei ve amessage on any port, usetheany port keywords.
Stand-alone receive

Ther ecei ve operation can be used as a stand-al one statement in a behaviour description. In this latter case the
recei ve operation is considered to be shorthand for anal t statement with only one alternative, i.e. it has blocking
semantics, and therefore provides the ability of waiting for the next message matching the specified template or value
on that queue.

Restrictions

a) When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Ther ecei ve operation shal only be used on message-based (or mixed) ports and the type of the value to be
received shall be included in the list of incoming types of the port type definition.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur.

d) A message received by receive any message shall not be assigned to avariable, i.e. the value clause shall not be
present.

Examples
EXAMPLE 1. Basic receive.

MyPort.recei ve(M/Tenpl ate(5, MyVar)); /1 Matches a nessage that fulfils the conditions
/1 defined by tenplate MyTenpl ate at port MyPort.

MyPort . recei ve(A<B); /1 Matches a Bool ean val ue that depends on the outcone of A<B

MyPort.receive(integer: MVar); [// Mitches an integer value with the value of MyVar
// at port MyPort

M/Port.receive(M/Var); /1 I's an alternative to the previous exanple

EXAMPLE 2: Receiving from a sender, storing the message or the sender.

M/Port.receive(charstring:"Hello")from MyPeer; // Mtches charstring "Hello" from MyPeer

ETSI

143 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)
M/Port.receive(M/Type: ?) -> value MyVar; /1 The val ue of the received nessage is

/] assigned to MyVar.
MyPort.recei ve(A<B) -> sender MyPeer; /1 The address of the sender is assigned to MyPeer

M/Port.receive(M/Tenpl ate: {5, MyVarOne}) -> value MyVar Two sender MyPeer;
/'l The received nessage value is stored in M/VarTwo and the sender address is stored in MyPeer.

EXAMPLE 3: Receive any message.

M/Port . receive; /1 Renoves the top value from MyPort.

M/Port.receive from MyPeer; /'l Renoves the top nessage from M/Port if its sender is
My Peer

MyPort.receive -> sender MySender Var; /'l Renoves the top nessage from MyPort and assigns

/1 the sender address to MySender Var

EXAMPLE 4. Receive on any port.

any port.recei ve(M/Message);

22.2.3 The Trigger operation

Thet ri gger operationis used to await a specific message on an incoming port queue.

Syntactical Structure

(Port | any port) "." trigger
["(" Tenplatelnstance ")"]

[from AddressRef]

["->" value Variabl eRef]

[sender Variabl eRef]

Semantic Description

Thet ri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, thet ri gger operation behavesin the same manner asar ecei ve operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

Thet ri gger operation requires the port name, matching criteria for type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to thet r i gger operation.
Trigger on any message

Atrigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
Totrigger onamessage a any port, usetheany port keywords.
Stand-alone trigger

Thet ri gger operation can be used as a stand-alone statement in a behaviour description. In thislatter case the

tri gger operation is considered to be shorthand for anal t statement with two alternatives (one alternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see

ES 201 873-4 [3)]), i.e. it has blocking semantics, and therefore provides the ability of waiting for the next message
matching the specified template or value on that queue.

Restrictions

a) Thetrigger operation shall only be used on message-based (or mixed) ports and the type of the value to be
received shall be included in thelist of incoming types of the port type definition.

ETSI

144 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

b) A message received by Trigger OnAnyMessage shall not be assigned to avariable.

Examples

EXAMPLE 1. Basictrigger.
MyPort.trigger(MType: ?);

/'l Specifies that the operation will trigger on the reception of the first message observed of
/1 the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender.

MyPort.trigger(MType:?) from MyPartnner;

/1 Triggers on the reception of the first message of type MyType at port MyPort

/1 received from MyPartnner.

MyPort.trigger(MType:?) from M/Partner -> val ue M/RecMessage;

/1 This exanple is alnost identical to the previous exanple. In addition, the nessage which
/1 triggers i.e. all matching criteria are net, is stored in the variable M/RecMessage.
MyPort.trigger(MType:?) -> sender MyPartner;

/1 This exanple is alnost identical to the first exanple. In addition, the reference of the
/1 sender conponent will be retrieved and stored in variable M/Partner.
MyPort.trigger(integer:?) -> value My/Var sender MyPartner;

/1 Trigger on the reception of an arbitrary integer value which afterwards is stored in
Il variable MyVar. The reference of the sender conponent will be stored in variable M/Partner.

EXAMPLE 3: Trigger on any message.
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySender Var;

EXAMPLE 4: Trigger on any port.

any port.trigger

22.3 Procedure-based communication

The operations for procedure-based communication via synchronous ports are summarized in table 19.

Table 19: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation
Thecal | operation specifies the call of aremote operation on another test component or within the SUT.
Syntactical Structure

Port "." call "(" Tenplatelnstance ["," CallTinervalue] ")"

[to (AddressRef | AddressReflist | all conmponent)]

Semantic Description
Thecal | operationis used to specify that atest component calls a procedure in the SUT or in another test component.

ETSI

145 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Theinformation to be transmitted in the send part of thecal | operation is a signature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto cal | operationsis done by
using cat ch (see clause 22.3.6) operations as alternativesin al t statements.

If thenowai t optionis used, the handling of responses or exceptionsto cal | operationsisdone by usingget r epl y
(see clause 22.3.4) and cat ch (see clause 22.3.6) operations as alternativesinal t statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdone in the
response and exception handling part of thecal | operation by means of get r epl y (see clause 22.3.4) and cat ch
(see clause 22.3.6) operations.

The response and exception handling part of acal | operation looks similar to the body of anal t statement. It defines
a set of aternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of abool ean expression placed betweenthe [|'
brackets of the alternative.

The response and exception handling part of a call operation is executed likean al t statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptionsto a call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part ispresent inthecal | operation, not i meout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valueinacal | operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

If thenowai t keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by usingaget r epl y or acat ch operation in asubsequent al t statement.

Calling blocking procedures without return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have aresponse and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anobl ock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operationsin subsequent al t ori nt er | eave statements.

Unicast, multicast and broadcast calls of procedures

Likefor the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of thet o clause of acal | operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callstheal | conponent keyword. In case of one-to-one
connections, thet o clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal | operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast cal | operation may cause several
responses and exceptions from different communication partners.

ETSI

146 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

In case of amulticast or broadcast cal | operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent cat ch, al t ori nt er| eave statements.

In case of amulticast or broadcast cal | operation of ablocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of thecal | operation. Then, further responses and
exceptions can be handled in subsequent al t ori nt er | eave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the block of statements and declarations of the response and
exception handling part of the call operation: the execution of arepeat statement causes the re-evaluation of the call
body.

NOTE: Inthe second case, the user needs to handle the number of repetitions.

Restrictions

a) Thecal | operation shall only be used on procedure-based (or mixed) ports. The type definition of the port at
which the call operation takes place shall include the procedure nameinitsout ori nout listi.e. it must be
allowed to call this procedure at this port.

b) Alli nandi nout parameters of the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

c) Only out parameters may be omitted or specified with a matching attribute.

d) Thesignature argumentsof thecal | operation are not used to retrieve variable names for out andi nout
parameters. The actual assignment of the procedure return value and out andi nout parameter valuesto
variables shall explicitly be made in the response and exception handling part of thecal | operation by means
of get r epl y and cat ch operations. This allows the use of signature templatesincal | operationsin the
same manner as templates can be used for types.

€) At o clauseshal be present in case of one-to-many connections.
f) AddressRef should not contain matching mechanisms and must be of address or component type.
g) CallTimerValue must be of type float.

h) The selection of the alternativesto acal shall only be based onget r epl y and cat ch operations for the
called procedure. Unqualified get r epl y and cat ch operations shall only treat replies from and exceptions
raised by the called procedure. The use of el se branches and the invocation of altstepsis not allowed.

i) Theevauation of the Boolean expressions guarding the alternatives in the response and exception handling part
may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards in
al t statements shall be applied (see clause 20.2).

i) Thecall operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k) Incaseof amulticast or broadcast cal | operation of ablocking procedure, where the nowai t keyword is
used, all responses and exceptions have to be handled in subsequent al t ori nt er | eave statements.

) Thecal | operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

Examples

ETSI

147 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 1. Blocking cal with getreply.

/1l Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc

MyPort.call (MProc:{ -, MyVar2}) { /1 in-line signature tenplate for the call of M/Proc
[T MyPort.getreply(MProc:{?, ?}) { }

/1 ...and another call of M/Proc
MyPort . call (M/ProcTenpl ate) { /1 using signhature tenplate for the call of M/Proc
[T MyPort.getreply(MProc:{?, ?}) { }

MyPort.call (MyProcTenpl ate) to MyPeer { /1 calling M/Proc at MyPeer
[T MyPort.getreply(MProc:{?, ?}) { }
}

EXAMPLE 2: Blocking call with getreply and catch.
/1 Gven

signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo);

/1 Call of MyProc3
MyPort.call (MProc3:{ -, true }) to M/Partner {
[1 MyPort.getreply(MProc3:{?, ?}) -> value MyResult param (MyPar1Var, MyPar2Var) { }
[T MyPort.catch(M/Proc3, MExceptionOne) {
setverdict(fail);

st op;

}
[T MyPort.catch(M/Proc3, ExceptionTypeTwo : ?) {
setverdi ct (i nconc);

}
[MyCondi tion] MyPort.catch(M/Proc3, MExceptionThree) { }

EXAMPLE 3: Blocking call with timeout exception.
MyPort.call (MyProc: {5, MyVar}, 20E-3) {

[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}

}
EXAMPLE 4: Nowait call.

MyPort.call (MProc: {5, MyVar}, nowait); /1 The calling test conponent wll continue
/] its execution without waiting for the
/1 term nation of MyProc

EXAMPLES5: Blocking call without return value, out parameters, inout parameters and exceptions.

/1 Gven ..
si gnature MyBl ockingProc (in integer MyParl, in bool ean MyPar?2);

/) a call of MBI ocki ngProc
MyPort.cal | (MyBl ockingProc:{ 7, false }) {

[1 MPort.getreply(MyBlockingProc:{ -, - }) {}

EXAMPLE 6: Broadcast call.

var boolean first:= true;
MyPort.call (MyProc: {5 MyVar}, 20E-3) to all conponent { // Broadcast call of M/Proc
/1 Handl es the response from MyPeer One
[first] MyPort.getreply(MProc:{?, ?}) from MyPeerOne {
if (first) { first := false; repeat; }

ETSI

148 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

/1 Handl es the response from MyPeer Two
[first] MyPort.getreply(MyProc:{?, ?}) from MyPeer Two {

if (first) { first := false; repeat; }
[1] MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}
}
alt {
[T MyPort.getreply(MProc:{?, ?}) { /1 Handles all other responses to the broadcast call
r epeat

}
}

EXAMPLE7: Multicast call.
MyPort.call (MProc: {5 MyVar}) to (M/Peerl, MyPeer2) nowait; // Milticast call of M/Proc

interl eave {
[T MyPort.getreply(MyProc:{?, ?}) from MPeerl { } /1 Handl es the response of MyPeerl
[T MyPort.getreply(MyProc:{?, ?}) from MyPeer2 { } /1 Handl es the response of MyPeer2

}

22.3.2 The Getcall operation

Theget cal | operation is used to accept calls.

Syntactical Structure

(Port | any port) "." getcall
["(" Tenplatelnstance ")"]
[from AddressRef]
["->" [param"(" { (VariableRef ":=" Paraneterldentifier) "," } |
{ (VariableRef | NotUsedSynbol) "," }
)]

[sender VariableRef]]

Semantic Description

Theget cal | operationis used to specify that atest component accepts a call from the SUT, or another test
component.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated totheget cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

Theassignment of i n and i nout parameter values to variables shall be made in the assignment part of theget cal |
operation. This allows the use of signature templatesin get cal | operationsin the same manner as templates are used
for types.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The (optional) assignment part of theget cal | operation comprises the assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The keyword par amis used to retrieve the
parameter values of acall.

The keyword sender isused when it isrequired to retrieve the address of the sender (e.g. for addressing ar epl y or
exception to the calling party in a one-to-many configuration).

Accepting any call

A get cal | operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled.

ETSI

149 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Getcall on any port

Toget cal | onany port isdenoted by the any keyword.

Restrictions

a) Thegetcal | operation shall only be used on procedure-based (or mixed) ports and the signature of the
procedure call to be accepted shall be included in thelist of allowed incoming procedures of the port type
definition.

b) Thesignature argument of theget cal | operation shall not be used to passin variable namesfor i n and
i nout parameters.

c) The Parameterldentifiers must be from the corresponding signature definition.
d) Thevaue assignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to avariable, i.e. the param clause
shall not be present.

Examples
EXAMPLE 1. Basic getcall.

MyPort . getcal | (M/Proc: MyProcTenpl ate(5, MyVar)); /1 accepts a call of MyProc at MyPort

M/Port.getcal | (MProc: {5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2: Getcall with matching and assignments of parameter valuesto variables.

M/Port.getcal | (MProc:{?, ?}) from M/Partner -> param (M/Par1Var, MPar2Var);
/1 The in or inout paraneter values of MyProc are assigned to MyPar1lVar and MyPar2Var.

M/Port getcal | (MyProc: {5, MyVar}) -> sender M/Sender Var;
Accepts a call of M/Proc at MPort with the in or inout paraneters 5 and MyVar.
// The address of the calling party is retrieved and stored in MySender Var.

/1l The followi ng getcall exanples show the possibilities to use matching attributes
// and omit optional parts, which nay be of no inportance for the test specification.

MyPort.getcal | (MProc: {5 MVar}) -> paran{M/Varl, MVar2) sender MySender Var;
M/Port.getcal | (MProc: {5, ?}) -> paran{M/Varl, MVar2);

M/Port.getcal | (MProc: {?, MVar}) -> paran{ - , MVar2);
/1 The value of the first inout paraneter is not inportant or not used

/1 The follow ng exanpl es shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be called:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
MyPort.getcal | (MProc2:{?, ?, 3, - , ?}) -> param (My/VarA, MVarB, - , -, M/\VarE);

/] The paraneters A B, and E are assigned to the variables MyVarA MVarB, and

/1 MyVarE. The out paraneter D needs not to be considered.

MyPort.getcal | (MProc2:{?, ?, 3, -, ?}) -> param (My/VarA:= A, MyVarB:= B, MyVarE: = E);

/1 Aternative notation for the value assignnent of in and inout paraneter to variables. Note,
/1 the nanmes in the assignnent list refer to the nanes used in the signature of M/Proc2

MyPort.getcal | (MProc2: {1, 2, 3, -, *}) -> param (M/VarE: = E);
/1 Only the inout parameter value is needed for the further test case execution

EXAMPLE 3: Accepting any call.
M/Port . getcall; /1 Renoves the top call from MyPort.
MyPort.getcall from M/Partner; // Renoves a call from MyPartner from port M/Port

MyPort.getcall -> sender MySender Var; /!l Rermoves a call from MyPort and retrieves
/1 the address of the calling entity

EXAMPLE 4: Getcall on any port.

ETSI

150 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

any port.getcall (M/Proc)

22.3.3 The Reply operation
Ther epl y operation isused to reply to acall.

Syntactical Structure

Port "." reply "(" Tenpl atel nstance [val ue Expression] ")"
[to (AddressRef | AddressReflist | all conponent)]

Semantic Description
Ther epl y operation is used to reply to a previously accepted call according to the procedure signature.

NOTE: Therelation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it is alowed to specify ar epl y operation without an associated get cal | operation.

The value part of ther epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responsesto one or more cal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar epl y operation isfor unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responsestheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with theval ue keyword.

Restrictions

a) Areply operation shall only be used at a procedure-based (or mixed) port. The type definition of the port
shall include the name of the procedure to which ther epl y operation belongs.

b) Allout andi nout parameters of the signature shall have a specific valuei.e. the use of matching
mechanisms such as AnyValue is hot allowed.

c¢) At o clauseshal be present in case of one-to-many connections.
d) AddressRef should not contain matching mechanisms and must be of address or component type.

e) If avalueisto bereturned to the calling party, this shall be explicitly stated using theval ue keyword.

Examples
M/Port.reply(MProc2:{ - ,5}); /! Replies to an accepted call of MProc2.

MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer
M/Port.reply(MProc2:{ - ,5}) to (M/Peerl, MyPeer2); // Milticast reply to M/Peerl and MyPeer2

MyPort.reply(MyProc2:{ - ,5}) to all conponent; // Broadcast reply to all entities connected
/1 to MyPort

MyPort.reply(MProc3: {5 M/Var} val ue 20); /! Replies to an accepted call of MProc3.

22.3.4 The Getreply operation

Theget r epl y operation is used to handle replies from a previously called procedure.

Syntactical Structure
(Port | any port) "." getreply

ETSI

151 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

["(" Tenplatelnstance [val ue Tenplatelnstance]")"]
[from AddressRef]

["->" [value Variabl eRef]
[param" (" { (VariableRef ":=" Parameterldentifier) "," } |
{ (VariableRef | NotUsedSymbol) "," }

)]
[sender VariableRef]]

Semantic Description
Theget r epl y operation is used to handle replies from a previously called procedure.

Theget r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using theval ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The assignment of out andi nout parameter valuesto variables shall be made in the assignment part of the
get r epl y operation. This allows the use of signature templatesin get r epl y operations in the same manner as
templates are used for types.

The (optional) assignment part of the get r epl y operation comprises the assignment of out and i nout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword val ue is used to retrieve
return values and the keyword par amis used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

Get any reply

A get r epl y operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of acal | operation, it shall only treat replies from
the procedure invoked by the cal | operation.

Get areply on any port
To get areply on any port, usetheany port keywords.

Restrictions

a) Agetreply operation shal only be used at a procedure-based (or mixed) port. The type definition of the
port shall include the name of the procedure to which the get r epl y operation belongs.

b) Thesignature argument of the get r epl y operation shall not be used to passin variable names for out and
i nout parameters.

c) Parameters or return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

Examples
EXAMPLE 1. Basic getreply.

M/Port. getreply(MyProc: {5, ?} value 20); /1 Accepts a reply of M/Proc with two out or
/'l inout paraneters and a return value of 20

M/Port.getrepl y(MProc2:{ - , 5}) from M/Peer; // Accepts a reply of MyProc2 from MyPeer
EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables.
M/Port. getreply(MyProcl: {?, ?} value ?) -> value M/RetVal ue paran{M/Par 1, MyPar 2);

/] The returned value is assigned to variable M/RetVal ue and the val ue
/1 of the two out or inout paraneters are assigned to the variables MyParl and MyPar 2.

ETSI

152 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

M/Port. getrepl y(MProcl: {?, ?} value ?) -> value M/RetValue paran{ - , M/Par2) sender MySender;
/1 The value of the first paraneter is not considered for the further test execution and
/1 the address of the sender conponent is retrieved and stored in the variable M/Sender.

/1 The follow ng exanpl es descri be some possibilities to assign out and inout paraneter val ues
/1 to variables. The followi ng signature is assuned for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
M/Port. getrepl y(ATenpl ate) -> paran{ - , - , - , M/VarQutl, MVarlnoutl);
MyPort. getrepl y(ATenpl ate) -> paran(M/VarQut 1: =D, MyVar Qut 2: =E) ;
MyPort.getreply(MProc2:{ - , - , - , 3, ?}) -> paran(MVarl nout 1: =E);
EXAMPLE 3: Get any reply.
MyPort. getreply; /1 Renoves the top reply from MyPort.
MyPort.getreply from MyPeer; /! Rermoves the top reply received from MyPeer from MyPort.

M/Port.getreply -> sender MySenderVar; // Renoves the top reply from M/Port and retrieves the
/] address of the sender entity

EXAMPLE 4: Get areply on any port.

any port.getreply(Mproc)

22.3.5 The Raise operation

Exceptions are raised with ther ai se operation.

Syntactical Structure

Port "." raise "(" Signature "," Tenpl atel nstance ")"
[to (AddressRef | AddressReflist | all conponent)]
Semantic Description
Ther ai se operation is used to raise an exception.

NOTE: Therelation between an accepted call and ar ai se operation cannot always be checked statically. For
testing it isallowed to specify ar ai se operation without an associated get cal | operation.

The value part of ther ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to ther ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

Exceptionsto one or morecal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar ai se operation isfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionstheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

a) Anexception shal only be raised at a procedure-based (or mixed) port. An exception isareaction to an
accepted procedure call the result of which leadsto an exceptional event.

b) Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall includein itslist of accepted procedure calls the name of the procedure to which the exception
belongs.

c) At o clauseshal be present in case of one-to-many connections.

ETSI

153 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

d) AddressRef should not contain matching mechanisms and must be of address or component type.

Examples

MyPort.raise(MSignature, MyVariable + YourVariable - 2);
/'l Raises an exception with a value which is the result of the arithnetic expression
/1 at MyPort

MyPort.raise(MProc, integer:5}); /] Raises an exception with the integer value 5 for MyProc

MyPort.raise(MySignature, "My string") to MyPartner;
/] Raises an exception with the value "My string" at MyPort for MySignature and
/1 send it to MyPartner

M/Port.raise(MSignature, "My string") to (M/PartnerOne, M/PartnerTwo);
/] Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
/1 MyPartnerTwo (i.e. multicast communication)

MyPort.raise(MSignature, "My string") to all conponent;
/] Raises an exception with the value "My string" at MyPort for MySignature and sends it
/1 to all entites connected to MyPort (i.e. broadcast communication)

22.3.6 The Catch operation

The cat ch operation is used to catch exceptions.

Syntactical Structure

(Port | any port) "." catch
[(" (Signature "," Tenplatelnstance) | TimeoutKeyword ")"]
[from AddressRef]
["->" [value Variabl eRef]
[sender VariableRef]]

Semantic Description

The cat ch operation is used to catch exceptions raised by atest component or the SUT as areaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type.

The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the cat ch operation.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

The (optional) assignment part of the cat ch operation comprises the assignment of the exception value and the
retrieval of the address of the calling component. The keyword val ue isused to retrieve the value of an exception and
the keyword sender isused when it is required to retrieve the address of the sender.

The cat ch operation may be part of the response and exception handling part of acal | operation or be used to
determine an alternativeinan al t statement. If the cat ch operation is used in the accepting part of acal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the cal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) thisinformation shall be repeated.

The Timeout exception

Thereisone special t i meout exception that can be caught by the cat ch operation. Thet i meout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(seeclause 22.3.1).

Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword. CatchAnyException will also catch thet i meout exception.

Catch on any port

ETSI

154 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

To cat ch an exception on any port use the any keyword.

Restrictions

a) Thecat ch operation shall only be used at procedure-based (or mixed) ports. The type of the caught exception
shall be specified in the signature of the procedure that raised the exception.

b) No binding of theincoming values to the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the cat ch operation.

c) Cachingti meout exceptionsshall be restricted to the exception handling part of acall. No further matching
criteria (including af r ompart) and no assignment part is allowed for acat ch operation that handles a
ti meout exception.

d) Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

€) If CatchAnyException isused in the response and exception handling part of acal | operation, it shall only
treat exceptions raised by the procedure invoked by thecal | operation.

Examples

EXAMPLE 1: Basic catch.

MyPort . catch(M/Proc, integer: MVar); /] Catches an integer exception of value

/1 MyVar raised by MyProc at port MyPort.
MyPort . catch(M/Proc, MyVar); /1 1s an alternative to the previous exanple.
MyPort . catch(M/Proc, A<B); /] Catches a bool ean exception

MyPort.catch(M/Proc, MyType: {5, MVar}); // In-line tenplate definition of an exception val ue.

MyPort. catch(M/Proc, charstring:"Hello")from MyPeer; /'l Catches "Hello" exception from MyPeer

EXAMPLE 2: Catch with storing value and/or sender in variables.

MyPort . catch(M/Proc, MyType:?) from MyPartner -> value MyVar;
/] Catches an exception from M/Partner and assigns its value to MyVar.

M/Port . catch(M/Proc, MyTenpl ate(5)) -> value MyVar Two sender MyPeer;

/'l Catches an exception, assigns its value to MyVarTwo and retrieves the
/1 address of the sender.

EXAMPLE 3: The Timeout exception.

MyPort.cal |l (MProc: {5 M/Var}, 20E-3) {
[T MyPort.getreply(MProc:{?, ?}) { }

[T MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}

}
EXAMPLE 4: Catch any exception.
MyPort . cat ch;
M/Port.catch from MyPart ner;
MyPort.catch -> sender MySender Var;
EXAMPLES5: Catchon any port.

any port.catch;

ETSI

155 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

22.4 The Check operation

The check operation allows to read the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure
(Port | any port) "." check

[
(PortReceive(p | PortGetCall Op | PortGetReplyQp | PortCatchCp) |
([fromAddressRef] ["->" value VariableRef][sender VariableRef])

")l
Semantic Description
The check operation is ageneric operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto

handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be
caught and replies from previous calls at procedure-based ports.

Thereceiving operationsr ecei ve, get cal | , get r epl y and cat ch together with their matching and assignment
parts, are used by the check operation to define the condition that has to be checked and to extract the value or values
of its parameters, if required.

It isthe top element of an incoming port queue that shall be checked (it is not possible to ook into the queug). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the next statement or alternative to the check
operation is evaluated. The check operation is successful if the receiving operation is successful.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
gueue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part with asender clause. In case
of mixed ports, the check any operation checks both, the message-based and the procedure-based input queues of the
mixed port. If the check any operation matches on both input queues of the mixed port, information related to the
procedure-based queue shall be given priority, i.e. returned as result of the check any operation. For example, if the
message-based and the procedure-based input queues of a mixed port are not empty and sender information should be
retrieved by acheck any operation, the sender of the call, reply or exception in the procedure-based input queue shall
be returned.

NOTE 1: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with ar ecei ve any operation, e.g.
MyPort . check(receive) -> sender Mysender.

Check on any port
Tocheck onany port, usetheany port keywords. In case of acheck on any port operation without argument,

input queues of mixed ports shall be checked as specified above for checking any operation.

Restrictions

a) Usingthecheck operation in awrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

NOTE 2: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

Examples

EXAMPLE 1: Basic check.

M/Port 1. check(receive(5)); [/ Checks for an integer nessage of value 5.

ETSI

156 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

MyPort 2. check(getcal I (MProc: {5, MyVar}) from M/Partner);
/I Checks for a call of MyProc at port MyPort2 from MyPartnner

MyPort 2. check(getrepl y(MyProc: {5, MyVar} value 20));
/] Checks for a reply fromprocedure M/Proc at MyPort2 where the returned value is 20 and
/1 the values of the two out or inout paraneters are 5 and the value of MVar.
MyPort 2. check(cat ch(M/Proc, MyTenpl ate(5, MyVar)));
MyPort 2. check(getrepl y(MProcl: {?, MyVar} value *) -> value MyReturnVal ue paran{MParl,-));
MyPort . check(getcal | (MyProc: {5, MyVar}) from MyPartner -> param (M/Par1Var, M/Par2Var));
MyPort. check(getcal | (MProc: {5, MyVar}) -> sender MySender Var);
EXAMPLE 2: Check any operation.
My/Port . check;
MyPort . check(from MyPart ner);
MyPort. check(-> sender MySender Var);
EXAMPLE 3: Check on any port.

any port.check;

22.5 Controlling communication ports

TTCN-3 operations for controlling message-based, procedure-based and mixed ports are presented in table 20.

Table 20: Overview of TTCN-3 port operations

Timer operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt

22.5.1 The Clear port operation

Thecl ear port operation emptiesincoming port queues.

Syntactical Structure

(Port | (all port)) "." clear

Semantic Description

Thecl ear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the cl ear operation.

If aport queueis already empty then this operation shall have no action on that port.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
MyPort . cl ear; /1 clears port MyPort

ETSI

157 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

22.5.2 The Start port operation

Thest art operation enables sending and receiving operations on the port(s).

Syntactical Structure
(Port | (all port)) "." start

Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve, get cal | etc., thest art operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | , r ai se etc., are aso alowed to be performed at that port.

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
M/Port.start; /] starts MyPort

22.5.3 The Stop port operation

The st op operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure
(Port | (all port)) "." stop

Semantic Description

If aport is defined as allowing receiving operations such asr ecei ve and get cal | , the st op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then st op port disallows the
operationssuch assend, cal | ,r ai se etc., to be performed.

NOTE: To ceaselistening at the port means that all receiving operations defined before the stop operation shall be
completely performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

M/Port.receive (MTenpl atel) -> val ue RecPDY,
/'l the received value is decoded, matched agai nst
/1 MyTenpl atel and the matching value is stored
/1 in the variable RecPDU
MyPort . st op; /1 No receiving operation defined follow ng the stop
/] operation is executed (unless the port is restarted
/1 by a subsequent start operation)
MyPort.receive (MyTenpl ate2); /1 This operation does not match and will bl ock (assum ng
/1 that no default is activated)

22.5.4 The Halt port operation

Thehal t operationis comparableto the st op operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

ETSI

158 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

(Port | (all port)) "." halt

Semantic Description

If aport allows receiving operationssuch asr ecei ve, t ri gger andget cal | ,thehal t operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
hal t operation at that port. Messages and procedure call eements that were already in the queue before the hal t
operation can still be processed with receiving operations. If the port allows sending operations then hal t port
immediately disallows sending operations such assend, cal | , r ai se etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: Theport hal t operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After al entriesin the
gueue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport st op operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A portst art operation on ahalted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It aso removes the marker.

NOTE 4: A port cl ear operation on a halted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It also virtually puts the marker at the top of the
queue.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
MyPort. hal t; /1 No sending allowed on Myport fromthis nonent on;
/] processing of nmessages in the queue still possible.
MyPort.receive (MyTenpl atel); /1 1f a nessage was already in the queue before the halt

/'l operation and it natches MyTenplatel, it is processed;
/1 otherw se the receive operation bl ocks.

22.6 Use of any and all with ports

The keywordsany and al I may be used with configuration and communication operations as indicated in table 21.

Table 21: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
start, stop, clear, halt yes all port.start

23 Timer operations

TTCN-3 supports a number of timer operations as given in table 22. These operations may be used in test cases,
functions, atsteps and module control.

ETSI

159 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 22: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It is assumed that each TTCN-3 scope unit in which timers are declared, maintains its own running-timerslist and
timeout-list, i.e. alist of all timersthat is actually running and alist of all timers that have timed out. The timeout-lists
are part of the snapshots that are taken when atest caseis executed. A timeout-list is updated if atimer in the scope unit
is started, is stopped, timesout or at i meout operation is executed.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: It isassumed that for each test component a specia running-timers list and timeout-list exist that handle
timer start/stop and timeout events of timers declared in the corresponding component type definition.

When atimer expires (conceptually immediately before a snapshot processing of a set of alternative events), atimeout
event is placed in the timeout list of the scope unit in which the timer has been declared. The timer becomes
immediately inactive. Only one entry for any particular timer may appear in the timeout list of the scope unit in which
the timer has been declared at any one time.

All running timers shall automatically be cancelled when the component is explicitly or implicitly stopped.

23.2 The Start timer operation

Thest art timer operation is used to indicate that atimer should start running.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
"." start ["(" TimerValue ")"]

Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later st art operations for this timer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting atimer with a negative
timer value, e.g. the timer valueis the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

Thest art operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for this timer shall be removed from the timeout-list.

Restrictions
a) Timer value shall be anon-negativef | oat number (i.e. greater or equal 0.0).

ETSI

160 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Examples

M/Tinerl.start; /'l MyTinmerl is started with the default duration
M/Tiner2.start(20E-3); // MTiner2 is started with a duration of 20 ns

// Elenments of tinmer arrays nay also be started in a |oop, for exanple
timer t_Mytiner [5]
var float v_tinerValues [5];

for (var integer i := 0; i<=4; i:=i+1)
{ v_timerValues [i] := 1.0}
for (var integer i := 0; i<=4; i:=i+1)

{t_Mytiner [i].start (v_tinmerValues [i])}

23.3 The Stop timer operation

The st op operation is used to stop arunning timer.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
all timer)
' stop

Semantic Description

A st op operation removes a running timer from the list of running timers. A stopped timer becomesinactive and its
elapsed timeis set to the float value zero (0.0).

Stopping an inactive timer isavalid operation, although it does not have any effect. Stopping an expired timer causes
the entry for thistimer in the timeout-list to be removed. Theal | keyword may be used to stop al timers that are
visiblein the scope unit in which the st op operation has been called.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
M/ Ti mer 1. st op; /1 stops MyTinerl
all timer.stop; /1 stops all running tiners

23.4 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" })
" read

Semantic Description

Ther ead operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of typef | oat .

Applying ther ead operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

ETSI

161 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

var float Myvar;
MyVar := MyTinerl.read; // assign to MyVar the tine that has el apsed since MyTinerl was started

23.5 The Running timer operation

Ther unni ng timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
all timer)
" runni ng

Semantic Description

Ther unni ng timer operation is used to check whether atimer is listed on the running-timer list of the given scope
unit or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns the value
t rue if thetimer islisted on thelist, f al se otherwise.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
if (MTinerl.running) { ...}

23.6 The Timeout operation

Thet i neout operation allows to check the expiration of timers.

Syntactical Structure

(((Timerldentifier | TimerParldentifier) { "[" SingleExpression "]" }) |
any tinmer)
" runni ng

Semantic Description

Thet i meout operation alows to check the expiration of a specific timer, or of an arbitrary timer, in the scope unit of
atest component or module control in which the timeout operation has been called.

When at i neout operationis processed, if atimer name isindicated, the timeout-list is searched according to the
TTCN-3 scoperules. If there is atimeout event matching the timer name, that event is removed from the timeout-list,
and thet i meout operation succeeds.

Thet i meout can beused to determine an alternativeinanal t statement or as stand-alone statement in a behaviour
description. In the latter caseat i meout operation is considered to be shorthand for anal t statement with only one
alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the timeout of
timer(s).

Theany keyword used with thet i meout operation (rather than an explicitly named timer) succeeds if the timeout-list
is not empty.

Restrictions
a) Theti nmeout shall not beusedinabool ean expression.

Examples

EXAMPLE 1. Timeout of aspecific timer.

MyTi mer 1. ti meout ; /'l checks for the tineout of the previously started tinmer MTinerl

ETSI

162 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2: Timeout of an arbitrary timer.

any timer.tinmeout; // checks for the timeout of any previously started tiner

23.7 Summary of use of any and all with timers

The keywordsany and al | may be used with timer operations as indicated in table 23.

Table 23: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

24 Test verdict operations

Verdict operations given in table 24 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 24: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

24.1 The Verdict mechanism

Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. in the MTC and in each and every PTC).

Additionally, thereis aglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
totheget ver di ct andset ver di ct operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
islost.

Verdict returned y :
by_the t%_t case
when it terminates
MIC PTCL [y PTG [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

ETSI

163 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)
The verdict can have five different values: pass, fai | ,i nconc, none and er r or, i.e. the distinguished val ues of
thever di ctt ype (seeclause6.1).
NOTE 2: i nconc means aninconclusive verdict.
When atest component is instantiated, itslocal verdict object is created and set to the valuenone.

When changing the value of the local verdict (i.e. usingthe set ver di ct operation) the effect of this change shall
follow the overwriting rules listed in table 25. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting rules listed in table 25.

Table 25: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail fail fail fail

Theer ror verdict isspecial inthat it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by theset ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. Thismeansthat an er r or verdict can only be aresult of an
execut e test case operation.

24.2 The Setverdict operation

Thelocal verdict is set withtheset ver di ct operation.

Syntactical Structure

setverdict "(" SingleExpression ")"

Semantic Description

The value of the local verdict is changed with the set ver di ct operation. The effect of this change shall follow the
overwriting rules listed in table 25.

Restrictions

a) Thesetverdi ct operation shall only be used with the valuespass, f ai | , i nconc and none. It shall not
be used to assign the value error, thisis set by the test system only to indicate run-time errors.

b) SngleExpression shall resolve to avalue of type verdict.

Examples
setverdi ct (pass); /'l the local verdict is set to pass
éetverdict(fail); /1 until this line is executed, which will result in the val ue

/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail

24.3 The Getverdict operation

The value of the local verdict may be retrieved using the get ver di ct operation.

Syntactical Structure

getverdi ct

Semantic Description

ETSI

164 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Theget verdi ct operation returns the actual value of the local verdict.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
M/Result := getverdict; // Wiere M/Result is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown a priori (€.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure
action "(" { (FreeText | Expression) ["&] } ")"

Semantic Description
External actions can be used in test cases, functions, atsteps and module control.

Thereis no specification of what is doneto or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions
a) Expression shall have the base type charstring or universal charstring.

Examples

var charstring nyString:=" now."
action("Send MyTenpl ate on |l ower PCO' & nyString); // Informal description of the
/1 external action

26 Module control

Test cases are defined in the modul e definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 26.

ETSI

165 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table 26: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{.}
Select case select case (...){case (...){...}
caseelse {...}}
For loop for (..){...}
While loop while (..) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Logging log
Alternative behaviour (see note) alt{...}
Re-evaluation of alternative behaviour |repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE: Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execut e statement in the module control.

Syntactical Structure

execute "(" TestcaseRef "(" [{ Tenplatelnstance [","] }] ")"
[*," Tinervalue] ")"

Semantic Description

In the module control part the execut e statement is used to start test cases (see clause 27.1). The result of an executed
test caseisaways avaue of typever di ct t ype. Every test case shall contain one and only one MTC the type of
which isreferenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When atest caseisinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit cr eat e and st ar t operations.

Test case start

A test caseiscalled using an execut e statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, i nconc,fail orerror shal bereturned and may be assigned to a variable for further
processing.

Optionally, the execut e statement allows supervision of atest case by means of atimer duration.
Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any
kind.

ETSI

166 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by cr eat e, connect , etc. operationsin a previous test case were destroyed when that test case was stopped (hence
are not "visible" to the new test case).

Test casetermination

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

Thefinal verdict of atest caseis calculated based on the final local verdicts of the different test components according
to the rules defined in clause 25. The actual local verdict of atest component becomesits final local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensure that all PTCs have stopped (by means of thedone or ki | | ed statement) before it stops
itself.

Test case timer

Timer may be used to supervise the execution of atest case. This may be done using an explicit timeout in the
execut e statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

Restrictions
a) TimerValue shall be of base type float.

b) When the corresponding formal parameter is not of template type Templatel nstance shall resolve to an
Expression.

c) The execute statement shall not be called from within an existing executing testcase or function chain called
from atest case, i.e. test cases can only be executed from the control part or from functions directly called
from the control part.

Examples
EXAMPLE 1. Test case execution without keeping the test case verdict.
execut e(MyTest Casel()); /] executes MyTestCasel, without storing the

Il returned test verdict and w thout tine
/] supervision

EXAMPLE 2: Test case execution with keeping the test case verdict.

MyVerdict : = execut e(MyTest Case2()); /] executes MyTestCase2 and stores the resulting
/1 verdict in variable My/Verdict

EXAMPLE 3: Test casetimer.

MyVer di ct : = execute(M/Test Case3(), 5E-3); /] executes MyTestCase3 and stores the resulting
/1 verdict in variable M/Verdict. If the test case
/] does not terminate within 5ns, MyVerdict will
/1 get the value '"error’'

M/ReturnVal := execute (MyTestCase(), 7E-3);

/1 \Where the return verdict will be error if MyTestCase does not conpl ete execution
/1 within 7ns

ETSI

167 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

26.2 The Control part

The control part defines, in which order, sequence, 1oop, under which preconditions, and with which parameters test
cases are to be executed.

Syntactical Structure

control "{"
{ (ConstDef |
Tenpl at eDef |

Var | nstance |

Ti ner | nstance |

Ti ner St atenents |
Basi cStatenents |
Behavi our St at enent s |
SUTSt at emrent s |
stop) [":"] }

[}WthStaterTent 10"

Semantic Description
Sequence of test cases

Program statements specify such things like the order in which test cases are to be executed or the number of times a
test case should run.

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select a different execution order.

Timer operations may also be used explicitly to control test case execution.
Selection/deselection of test cases
The selection and desel ection of test cases can also be used to control the execution of test cases.

There are different waysin TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. Thisincludes, of course, the use of functions that return a
bool ean value.

Another way to execute test cases as agroup is to collect them in a function and execute that function from the module
control.

Asatest casereturns asingle value of typever di ct t ype, it isalso possible to control the order of test case
execution depending on the outcome of atest case. The use of the TTCN-3 verdicttype is another way to select test
Cases.

Restrictions

a) Configuration statements such as connect and map (with the exception of stop execution, which is allowed),
communication statements such as send and receive and verdict statements such as setverdict shall not be used
in the control part.

b) Statementsfor aternative behaviours shall only be used to control timer behaviours.

c) Therestrictions on the use of statementsin the control part are given in table 11.

Examples

ETSI

168 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 1. Test case execution in aloop.
modul e MyTestSuite () {
control {

/1 Do this test 10 tines

count : =0;

whil e (count < 10)

{ execute (M/Si npl eTest Casel());
count := count+1;

}

}
EXAMPLE 2: Test case execution controlled by atimer and a counter.

/'l Exanple of the use of the running tiner operation
while (T1l.running or x<10) // Wiere Tl is a previously started timer
{ execut e(MyTest Case());
X 1= X+1;
}

/'l Exanple of the use of the start and tineout operations
timer T1 := 1.0;

execut e(MyTest Casel());

Tl.start;

T1.timeout; // Pause before executing the next test case
execut e(MyTest Case2());

EXAMPLE 3: Selection/deselection of test cases with Boolean expressions.
modul e MyTestSuite () {
cbnt rol {

if (MySel ectionExpressionl()) {
execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(M/Si npl eTest Case3()

)

)

)

}

if (MySel ectionExpression2())
execut e(MySi npl eTest Case4
execut e(M/Si npl eTest Case5
execut e(M/Si npl eTest Case6

)
K
)

—~—~—

}
EXAMPLE 4: Selection/desel ection of test cases with functions.

function MyTest CaseG oupl()

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

functi on MyTest CaseG oup2()

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6()) ;

}

cbnt rol

{ if (MySel ecti onExpressionl()) { MyTest CaseG oupl(); }
if (MySel ectionExpression2()) { M/Test CaseG oup2(); }

ETSI

169 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE5: Selection/deselection of test cases based on test case verdicts.

if (execute (M/SinpleTestCase()) == pass)
{ execute (MyGoOnTest Case()) }

el se
{ execute (MErrorRecoveryTestCase()) };

27 Specifying attributes

TTCN-3 uses attributes to give specia characterization/meaning to language elements such as specific presentation
format, specific encoding and encoding variants, and user-defined properties.

27.1 The Attribute mechanism

Attributes can be associated with TTCN-3 language €lements by means of the with statement.

27.1.1 Scope of attributes

A wi t h statement may associate attributes to a single language element. It is also possible to associate attributes to a
number of language elements by, e.g. listing fields of a structured type in an attribute statement associated with asingle
type definition or associating awi t h statement to the surrounding scope unit or gr oup of language elements.

EXAMPLE:

/1 MyPDUL will be displayed as PDU
type record MPDUL { ...} with { display "PDU"'}

// MyPDU2 will be displayed as PDU with the application specific extension attribute M/Rule
type record WPDU2 { ...}
Wit h
di splay "PDU';
extension "M/Rul e"
}
/1 The follow ng group definition ...
group MyPDUs {
type record WPDU3 { ...}
type record WPDW { ...}
}
with {display "PDU'} /1 Al types of group MyPDUs wi |l be displayed as PDU
/] is identical to
group MyPDUs {

type record WPDU3 { ...} with { display "PDU'}
type record WPDW { ...} with { display "PDU"'}

27.1.2 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in the present clause.

EXAMPLE 1:

type record MyRecor dA
{

} with { encode "Rul eA" }

/1 In the follow ng, M/RecordA is encoded according to Rul eA and not according to RuleB
type record MyRecordB

{

fiel d MyRecor dA
} with { encode "Rul eB" }

ETSI

170 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

A wi t h statement that is placed inside the scope of another wi t h statement shall override the outermost wi t h. This
shall also apply to the use of thewi t h statement with groups. Care should be taken when the overwriting schemeis
used in combination with references to single definitions. The generd rule isthat attributes shall be assigned and
overwritten according to the order of their occurrence.

/'l Exanple of the use of the overwiting scheme of the with statenent
group MyPDUs
{

type record WPDUL { ...}
type record WPDW2 { ...}

group MySpeci al PDUs
{

type record WPDU3 { ...}
type record WPDW { ...}

}
wi th {extension "MSpecial Rul e"} /1l MyPDU3 and MyPDUW4 wi |l have the application
/'l specific extension attribute M/Special Rul e

}
Wi th
{
di splay "PDU'; /1l Al types of group MyPDUs wi |l be displayed as PDU and
extension "MyRule"; // (if not overwitten) have the extension attribute M/Rule
}

/1 is identical to ...
group MyPDUs
{

}

type record MYPDUL { ...} with {display "PDU'; extension "MRule" }
type record MVPDU2 { ...} with {display "PDU'; extension "M/Rule" }
group MySpeci al PDUs {

type record MyPDU3 {

type record MyPDU4 {

...} with {display "PDU"'; extension "M/Special Rul e" }
...} with {display "PDU"'; extension "M/Special Rul e" }

An attribute definition in alower scope can be overwritten in ahigher scope by using theover ri de directive.

EXAMPLE 2:

type record MyRecor dA
{

} witﬁ{ encode "Rul eA" }

/1 In the follow ng, M/RecordA is encoded according to Rul eB
type record MyRecordB
{

fieldA MRecordA

} with { encode override "Rul eB" }

Theoverri de directiveforcesall contained types at all lower scopes to be forced to the specified attribute.

27.1.2.1 Additional overwriting rules for variant attributes

Avari ant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes. Therefore, for variant attributes the
following overwriting rules apply:

avari ant attribute overwritesan current var i ant attribute according to the rules defined in clause 27.1.2;

anencodi ng attribute, which overwrites a current encodi ng attribute according to the rules defined in
clause 27.1.2, also overwrites a corresponding current var i ant attribute, i.e. nonew vari ant attributeis
provided, but the current var i ant attribute becomes inactive;

anencodi ng attribute, which changes a current encodi ng attribute of an imported language element
according to the rules defined in clause 27.1.3, also changes a corresponding current var i ant attribute, i.e.
no new var i ant attributeis provided, but the current var i ant attribute becomes inactive.

ETSI

171 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:
nmodul e MyVar i ant Encodi nghbdul e {
éype charstring MyChar String; /1 Normally encoded according to "Encoding 1"
;;roup MyVari ant sOne {

iype record MyPDUone
{

i nt eger fieldl, // fieldl will be encoded according to "Encoding 2" only.
/1 "Encoding 2" overwites "Encoding 1" and variant "Variant 1"
M/t ype field3 // field3 will be encoded according to "Encoding 1" with

/1 variant "Variant 1".

}
with { encoding (fieldl) "Encoding 2" }

with { variant "Variant 1" }
group MyVari ant sTwo

iype record MyPDUt wo
{

i nt eger fieldl, // fieldl will be encoded according to "Encoding 3"
/1 using encoding variant "Variant 3"
M/t ype field3 // field3 will be encoded according to "Encoding 3"

/1 using encoding variant "Variant 2"

}
with { variant (fieldl) "Variant 3" }
with { encode "Encoding 3"; variant "Variant 2"}

with { encode "Encoding 1" }

27.1.3 Changing attributes of imported language elements

In general, alanguage element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element, e.g. atype may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is alowed to change attributes on the

i mport statement.

EXAMPLE:

i mport from MyModul e {

) type MyType

with { display "ASP" } /1 MyType will be displayed as ASP

import from MyModul e {
group MyG oup

}

with {
di splay "PDU'; /1 By default all types will be displayed as PDU
extensi on "M/Rul e"

27.2 The With statement

The with statement is used to associate attributes to TTCN-3 language elements (and sets thereof).

Syntactical Structure
with "{"
{ (encode | variant | display | extension)
[override]
["(" DefinitionRef | FieldReference | AllRef ")"]
FreeText [";"] }
"y

ETSI

172 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Semantic Description
There are four kinds of attributes that can be associated to language elements:

a) displ ay: alowsthe specification of display attributes related to specific presentation formats;
b) encode: alowsreferencesto specific encoding rules;

c) vari ant: alowsreferencesto specific encoding variants;

d) extension: alowsthe specification of user-defined attributes.

The syntax for the argument of thewi t h statement (i.e. the actual attributes) is defined as a free text string.

Restrictions

a) DefinitionRef and FieldReference must refer to adefinition or field respectively which is within the module,
group or definition to which the with statement is associated.

Examples

type record MyService {
integer i,
float f

}
with { display "ServiceCall" } /!l MyRecord will be displayed as a ServiceCall

27.3 Display attributes

Display attributes allow the specification of display attributes related to specific presentation formats.

Syntactical Structure
di spl ay

Semantic Description

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements should be
displayed in, for example, atabular format.

Specia attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2[1].

Specia attribute strings related to the display attributes for the graphical presentation format can be found in
ES 201 873-3[2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples

type record MyService {
integer i,
float f

}
with { display "ServiceCall" } /!l MyRecord will be displayed as a ServiceCall

ETSI

173 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

27.4 Encoding attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Encoding
attributes allow references to specific encoding rules.

Syntactical Structure

encode

Semantic Description

Encoding rules define how a particular value, template, etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

The encode attribute allows the association of some referenced encoding rule or encoding directive to be made to a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level is the entire module, the next
level isagroup and the lowest isan individua type or definition:

a) nodul e: encoding appliesto all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding appliesto agroup of user-defined type definitions;
c) type or definition: encoding appliesto asingle user-defined type or definition;

d) fi el d:encoding appliestoafieldinarecord orset typeortenpl at e.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
nodul e MyFi r st nodul e
{ :
i mport from MySecondModul e {
type MyRecord

}
with { encode "MyRule 1" } // Instances of MyRecord will be encoded according to M/Rule 1

iype charstring MyType; // Normally encoded according to the 'G obal encoding rule

Qroup M/Recor ds
{ :
type record MyPDUL

{
i nt eger fieldl, /] fieldl will be encoded according to "Rule 3"
bool ean field2, /1 field2 will be encoded according to "Rule 3"
M/t ype field3 /1 field3 will be encoded according to "Rule 2"

with { encode (fieldl, field2) "Rule 3" }
3
with { encode "Rule 2" }
with { encode "d obal encoding rule" }

27.5 Variant attributes

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes. Variant
attributes allow references to specific encoding variants.

ETSI

174 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Syntactical Structure

vari ant

Semantic Description

To specify arefinement of the currently specified encoding scheme instead of its replacement, thevar i ant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 27.1.2.1).

Special variant strings:
The following strings are the predefined (standardized) var i ant attributes for simple basic types (see clause D.2.1):

a "8 bit"and"unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 8-bits
(single byte) within the system.

by "16 bit"and"unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 16-bits
(two bytes) within the system.

c) "32 bit"and"unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 32-bits
(four bytes) within the system.

d "64 bit"and"unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 64-bits
(eight bytes) within the system.

€) | EEE754 float","| EEE754 doubl e", "|EEE754 extended float" and
"| EEE754 extended doubl e" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard | EEE 754 [13] (see annex D).

The following strings are the predefined (standardized) var i ant attributesfor char st ri ng and uni ver sal
charstring (seeclauseD.2.2):

a) "UTF- 8" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [8].

b) "UCS- 2" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [8]).

c) "UTF- 16" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in
annex Q of ISO/IEC 10646 [8].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall beindividually encoded and decoded according to the coded representation as specified in | SO/IEC 8859
(an 8-bit coding).

The following strings are the predefined (standardized) var i ant attributes for structured types (see clause D.2.3):

a "IDL:fixed FORVAL/01-12-01 v.2.6" means, when applied to arecord type, that the value shall be
handled asan IDL fixed point decimal value (see annex D).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauni ver sal char stri ng specified withthevari ant attribute "UTF-8" within a module which
itself has a global encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [6]) will cause each character of the
values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

Invalid encodings

ETSI

175 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

If it is desired to specify invalid encoding rules then these shall be specified in areferenceable source external to the
module in the same way that valid encoding rules are referenced.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 givenin clause 5.

Examples
EXAMPLE:

modul e MyTTCNnmodul el
iype charstring MyType; // Normally encoded according to the "d obal encoding rule"
Qroup MyRecor ds
{ .

iype record MyPDUL

{
i nt eger fieldl, /1 fieldl will be encoded according to "Rule 2"
/'l using encoding variant "length form 3"
M/t ype field3 // field3 will be encoded according to "Rule 2"

/1 using any possible | ength encodi ng format

}

with { variant (fieldl) "length form3" }
3
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

27.6 Extension attributes
Extension attributes can be used for proprietary extensionsto TTCN-3.
Syntactical Structure

ext ensi on

Semantic Description
All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
testcase MyTestcase() runs on MICType {

with { extension "Test Purpose: This test case is used to check .." }

ETSI

176 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1: The syntactic metanotation

n= is defined to be

abc xyz abc followed by xyz

[alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(-.) textual grouping

Abc the non-terminal symbol abc
"abc" a terminal symbol abc

A.1l.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
a semi-colon (;). The semi-colon is optional if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e. the language construct is the last statement in a block of
statements, operations and declarations.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase |etters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol isalso alowed. Anidentifier shall begin with aletter (i.e. not a number
and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification.
Block comments shall be opened by the symbol pair /* and closed by the symbol pair */.
EXAMPLE 1:

/* This is a block conment
spread over two lines */

Block comments shall not be nested.

/* This is not /* a legal */ comment */

Line comments shall be opened by the symbol pair // and closed by a <newline>.

ETSI

177 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2:

/1 This is a line conment
/] spread over two |ines

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement.
EXAMPLE 3:

/1 The following is not I|egal
const // This is MyConst integer MyConst := 1;

/1 The followi ng is |egal
const integer MConst :=1; // This is M/Const

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { 1}
Begin/end list symbols ()
Alternative symbols [1]
To symbol (in a range) .
Line comments and Block comments > 1
Line/statement terminator symbol

Arithmetic operator symbols + /-

String concatenation operator symbol &

Equivalence operator symbols I= == >= <=
String enclosure symbols " '
Wildcard/matching symbols ? *
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B HO

Float exponent E

The predefined function identifiers defined in table 10 and described in annex C shall also be treated as reserved words.

ETSI

178 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Table A.3: List of TTCN-3 terminals which are reserved words

action
activate
addr ess
alive
al |

alt

al tstep
and
and4b
any
anyt ype

bitstring
bool ean

case
cal

catch

char
charstring
check

cl ear

conpl enment
conmponent
connect
const
control
create

deactivate
def aul t

di sconnect
di spl ay

do

done

el se
encode
enuner at ed
error
except
exception
execut e
ext ends
ext ensi on
ext erna

fail

fal se

fl oat
for
from
function

getverdi ct
get cal
getreply
goto
group

hexstring

if

i fpresent
i nport

in

i nconc
infinity
i nout

i nt eger

i nterl eave

kill
killed

| abel

| anguage
| ength

| og

map

mat ch
nessage
m xed
nod
nodi fi es
nodul e
nodul epar
nc

nobl ock
none
not

not 4b
nowai t
nul

octetstring
of

om t

on

opti ona

or

or4b

out
override

param
pass
pattern
port
procedure

rai se
read
receive
record

rem
r epeat
reply
return
runni ng
runs

sel ect
sel f

send
sender
set
setverdi ct
signature
start

st op
subset
super set
system

tenpl ate
t est case
ti meout
timer

to
trigger
true

type

uni on
uni ver sal
unnmap

val ue

val ueof

var

vari ant
verdi cttype

whil e
Wi th

xor
xor 4b

The TTCN-3 terminaslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be

written in all lowercase letters.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module

1. TTCN3Mbdul e ::= TTCN3Mbdul eKeyword TTCN3Mbdul el d

{
[Modul eDefi nitionsPart]
[Modul eControl Part]

}

[WthStatenent] [Seni Col on]
TTCN3Modul eKeyword :: = "nodul e"
TTCN3Modul el d :: = Modul el d
Modul el d ::= d obal Modul el d [LanguageSpec]
d obal Modul el d ::= Mdul el dentifier
Modul el dentifier ::= ldentifier

ook wh

ETSI

179 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

7. LanguageSpec ::= LanguageKeyword FreeText
8. LanguageKeyword ::= "l anguage"

A.1.6.1 Module definitions part

A.1.6.1.0 General

9. Modul eDefinitionsPart ::= Mdul eDefinitionsList
10. Modul eDefinitionsList ::= {Mdul eDefinition [Seni Colon]}+
11. Modul eDefinition ::= (TypeDef |

Const Def |

Tenpl at eDef |

Modul ePar Def |

Functi onDef |

Si gnat ur eDef |

Test caseDef |

Al tstepDef |

| npor t Def |

G oupDef |

Ext Functi onDef |

Ext Const Def) [WthStatenent]

A.16.1.1 Typedef definitions

12. TypeDef ::= TypeDef Keyword TypeDef Body
13. TypeDefBody ::= StructuredTypeDef | SubTypeDef
14. TypeDef Keyword ::= "type"
15. StructuredTypeDef ::= RecordDef |

Uni onDef |

Set Def |

Recor dOf Def |

Set O Def |

EnunDef |

Por t Def |

Conponent Def
16. RecordDef ::= RecordKeyword Struct Def Body
17. RecordKeyword ::= "record"

18. StructDefBody ::= (StructTypeldentifier [StructDefFornal ParList] | AddressKeyword)

"{" [StructFieldDef {"," StructFieldDef}] "}"

19. StructTypeldentifier ::= ldentifier

20. StructDef Formal ParList ::="(" StructDef Formal Par {"," StructDefFormal Par} ")"

21. StructDef Formal Par ::= For mal Val uePar

22. StructFieldDef ::= (Type | NestedTypeDef) StructFieldldentifier [ArrayDef] [SubTypeSpec]
[Opti onal Keywor d]

23. NestedTypeDef ::= NestedRecordDef |
Nest edUni onDef |
Nest edSet Def |

Nest edRecor dOf Def |
Nest edSet Of Def |
Nest edEnunDef

24. NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"

25. NestedUni onDef ::= UnionKeyword "{" UnionFieldDef {"," UnionFieldDef} "}"

26. NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"

27. NestedRecordOr Def ::= RecordKeyword [StringLength] O Keyword (Type | NestedTypeDef)
28. NestedSet Of Def ::= SetKeyword [StringlLength] O Keyword (Type | NestedTypeDef)

29. NestedEnunDef ::= EnunKeyword "{" EnunerationList "}"

30. StructFieldldentifier ::= ldentifier

31. Optional Keyword ::= "optional"

32. Uni onDef ::= Uni onKeyword Uni onDef Body

33. Uni onKeyword ::= "union"

34. UnionDefBody ::= (StructTypeldentifier [StructDefFornal ParList] | AddressKeyword)

“T" Uni onFi el dDef {"," Uni onFieldDef} "}"

35. UnionFieldDef ::= (Type | NestedTypeDef) StructFieldldentifier [ArrayDef] [SubTypeSpec]
36. SetDef ::= SetKeyword Struct Def Body
37. SetKeyword ::= "set"
38. RecordOrDef ::= RecordKeyword [StringLength] O Keyword Struct O Def Body
39. O Keyword ::= "of"
40. StructOf DefBody ::= (Type | NestedTypeDef) (StructTypeldentifier | AddressKeyword) [SubTypeSpec]
41. Set O Def ::= SetKeyword [StringlLength] O Keyword Struct O Def Body
42. EnunDef ::= EnunKeyword (Enunilypeldentifier | AddressKeyword)
"{" EnunerationList "}"
43. EnunKeyword ::= "enunerated"
44. Enunilypeldentifier ::= ldentifier
45. EnunerationList ::= Enuneration {"," Enuneration}
46. Enuneration ::= Enunerationldentifier ["("[Mnus] Number ")"]

ETSI

180 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

47. Enunerationldentifier ::= ldentifier

48. SubTypeDef ::= Type (SubTypeldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]

49. SubTypeldentifier ::= ldentifier

50. SubTypeSpec ::= Al owedVal ues [StringlLength] | StringlLength

/* STATI C SEMANTI CS - AI | owedVal ues shall be of the sane type as the field being subtyped */
51. AllowedValues ::= "(" (ValueOrRange {"," ValueOrRange}) | CharStringvatch ")"

52. Val ueOrRange ::= RangeDef | Constant Expression

/* STATI C SEMANTI CS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */

/* STATI C SEMANTI CS - When subtyping charstring or universal charstring range and val ues shall not
be mixed in the same SubTypeSpec */

53. RangeDef ::= LowerBound ".." UpperBound

54. StringlLength ::= LengthKeyword " (" SingleConstExpression [".." UpperBound] ")"

/* STATI C SEMANTICS - StringLength shall only be used with String types or to limt set of and
record of. SingleConstExpression and UpperBound shal |l evaluate to non-negative integer values (in
case of UpperBound including infinity) */

55. LengthKeyword ::= "l ength"
56. PortType ::= [d obal Modul el d Dot] PortTypeldentifier
57. PortDef ::= PortKeyword Port Def Body
58. PortDefBody ::= PortTypeldentifier PortDefAttribs
59. PortKeyword ::= "port"
60. PortTypeldentifier ::= ldentifier
61. PortDef Attribs ::= MessageAttribs | ProcedureAttribs | M xedAttribs
62. MessageAttribs ::= MessageKeyword
"{" {Messagelist [Sem Colon]}+ "}"
63. MessagelList ::= Direction Al O Typeli st
64. Direction ::= |nParKeyword | QutPar Keyword | | nQutPar Keywor d
65. MessageKeyword ::= "message"
66. Al OrTypeList ::= Al Keyword | Typeli st
/* NOTE: The use of AllKeyword in port definitions is deprecated */
67. Al Keyword ::= "all"
68. TypelList ::= Type {"," Type}
69. ProcedureAttribs ::= ProcedureKeyword
"{" {ProcedureList [Sem Colon]}+ "}"

70. ProcedureKeyword ::= "procedure"
71. ProcedureList ::= Direction All O Signatureli st
72. Al OSignatureList ::= Al Keyword | Signatureli st
73. SignatureList ::= Signature {"," Signature}
74. M xedAttribs ::= M xedKeyword

"{" {M xedLi st [Sem Colon]}+ "}"
75. M xedKeyword ::= "m xed"
76. M xedList ::= Direction ProcO Typeli st
77. ProcOrTypeList ::= All Keyword | (ProcO Type {"," ProcO Type})
78. ProcOrType ::= Signature | Type
79. Conponent Def ::= Conponent Keyword Conponent Typel dentifier

[Ext endsKeywor d Conponent Type {"," Conponent Type}]
"{" [Conponent Def List] "}"

80. Conponent Keyword ::= "conponent"

81. ExtendsKeyword ::= "extends"

82. Component Type ::= [d obal Mbdul eld Dot] Conponent Typel dentifier

83. Conmponent Typeldentifier ::= ldentifier

84. Conponent Def Li st ::= {Conponent El enent Def [Seni Col on]}

85. Conponent El enentDef ::= Portlnstance | Varlnstance | Tinerlnstance | Const Def
86. Portlnstance ::= PortKeyword PortType PortEl emrent {"," PortEl ement}

87. PortElement ::= Portldentifier [ArrayDef]

88. Portldentifier ::= ldentifier

A.16.1.2 Constant definitions

89. ConstDef ::= ConstKeyword Type ConstLi st

90. ConstList ::= SingleConstDef {"," SingleConstDef}

91. SingleConstDef ::= Constldentifier [ArrayDef] AssignnmentChar Constant Expression
92. ConstKeyword ::= "const"

93. Constldentifier ::= ldentifier

A.1.6.1.3 Template definitions

94. Tenpl ateDef ::= Tenpl at eKeyword BaseTenpl ate [DerivedDef] Assignnment Char Tenpl at eBody
95. BaseTenplate ::= (Type | Signature) Tenplateldentifier ["(" TenplateFormal ParList ")"]
96. Tenpl at eKeyword ::= "tenpl ate"

97. Tenplateldentifier ::= Identifier

98. DerivedDef ::= Modi fi esKeyword Tenpl at eRef

99. ModifiesKeyword ::= "nodifies"

100. Tenpl at eFor mal Par Li st ::= Tenpl at eFormal Par {"," Tenpl at eFor nal Par}

101. Tenpl at eFormal Par ::= Fornal Val uePar | Fornal Tenpl at ePar

/* STATI C SEMANTI CS - Fornal Val uePar shall resolve to an in paraneter */

ETSI

181 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

102. Tenpl ateBody ::= (Sinpl eSpec | FieldSpecList | ArrayValueOrAttrib) | [ExtraMatchingAttributes]
/* STATIC SEMANTICS - Wthin Tepl ateBody the ArrayVal ueOrAttrib can be used for array, record,
record of and set of types. */

103. Sinpl eSpec ::= SingleValueOAttrib

104. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}"

105. FieldSpec ::= Fiel dReference Assi gnnent Char Tenpl at eBody
106. FieldReference ::= StructFieldRef | ArrayOBitRef | ParRef

/* STATIC SEMANTICS - Wthin Fiel dReference ArrayOrBitRef can be used for record of and set of
tenpl ates/tenplate fields in nodified tenplates only*/
107. StructFieldRef ::= StructFieldldentifier| PredefinedType | TypeReference
/* STATI C SEMANTI CS - PredefinedType and TypeReference shall be used for anytype val ue notation
only. PredefinedType shall not be AnyTypeKeyword. */
108. ParRef ::= SignatureParldentifier
/* STATI C SEMANTI CS - SignatureParldentifier shall be a fornal paraneter identifier fromthe
associ ated signature definition */
109. SignatureParldentifier ::= ValueParldentifier
110. ArrayOrBitRef ::= "[" FieldOBitNunber "]"
/* STATI C SEMANTICS - ArrayRef shall be optionally used for array types and TTCN-3 record of and set
of . The sanme notation can be used for a Bit reference inside an TTCN-3 charstring, universal
charstring, bitstring, octetstring and hexstring type */
111. Fiel dO Bi t Nunber ::= Singl eExpression
/* STATI C SEMANTICS - Singl eExpression will resolve to a value of integer type */
112. Singl eValueOrAttrib ::= Matchi ngSynbol |
Si ngl eExpressi on |
Tenpl at eRef Wt hPar Li st
/* STATI C SEMANTI C - Variabl el dentifier (accessed via singleExpression) nay only be used in in-line
tenpl ate definitions to reference variables in the current scope */

113. ArrayValueOrAttrib ::= "{" ArrayEl enent SpecList "}"
114. ArrayEl ement SpeclLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}
115. ArrayEl ement Spec ::= Not UsedSynbol | PernutationMatch | Tenpl at eBody
116. Not UsedSynbol ::= Dash
117. Matchi ngSynbol ::= Conpl enent |
AnyVal ue |
AnyOrOmit |
Val ueOr AttribList |
Range |

BitStringMatch |

HexSt ri ngMat ch |
Cctet StringMatch |

Char StringMatch |
Subset Mat ch |

Super set Mat ch

118. ExtraMatchingAttributes ::= LengthMatch | |fPresentMatch | LengthMatch |fPresent Match
119. BitStringWatch ::= """ {BinOrMatch} "'" "B"

120. BinOrMatch ::= Bin | AnyValue | AnyOQOnmit

121. HexStringhvatch ::= """ {HexOrmatch} """ "H'

122. HexOrMatch ::= Hex | AnyValue | AnyOrQOmt

123. CctetStringhatch ::= """ {CctO Match} "'* "O

124. CQctOrvatch ::= Cct | AnyValue | AnyOrQrit

125. CharStringMvatch ::= PatternKeyword Cstring

126. PatternKeyword ::= "pattern"

127. Conpl enent ::= Conpl enent Keyword Val ueli st

128. Conpl enent Keyword :: = "conpl enent "

129. Valuelist ::= "(" Constant Expression {"," Constant Expression} ")"
130. SubsetMatch ::= Subset Keyword Val ueli st

131. Subset Keyword ::= "subset"

132. Superset Match ::= Superset Keyword Val ueli st

133. Superset Keyword ::= "superset"

134. PernutationMatch ::= PernutationKeyword PernutationLi st

135. PernutationKeyword ::= "pernutation"

136. PernutationList ::= "(" TenplateBody { "," Tenpl ateBody } ")"

/* STATI C SEMANTI CS: Restrictions on the content of Tenpl ateBody are given in clause B.1.3.3 */
137. Anyvalue ::= "?"

138. AnyOrQmt ::= "*"

139. ValueOrAttribList ::="(" TenplateBody {"," Tenpl ateBody}+ ")"
140. LengthMatch ::= StringlLength

141. |fPresentMatch ::= |fPresent Keyword

142. |fPresentKeyword ::= "ifpresent"

143. Range ::= "(" LowerBound ".." UpperBound ")"

144. Lower Bound ::= Singl eConst Expression | Mnus InfinityKeyword

145. UpperBound ::= Singl eConst Expression | InfinityKeyword

/* STATI C SEMANTI CS - Lower Bound and UpperBound shal |l evaluate to types integer, charstring,

uni versal charstring or float. In case LowerBound or UpperBound eval uates to types charstring or

uni versal charstring, only SingleConstExpression nay be present and the string length shall be 1*/

146. InfinityKeyword ::= "infinity"

147. Tenpl atel nstance ::= [nLineTenpl ate

148. Tenpl ateRef Wt hParLi st ::= [d obal Modul eld Dot] Tenpl ateldentifier [Tenpl ateActual ParList] |
Tenpl at ePar | denti fier

ETSI

182 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

149. Tenpl ateRef ::= [d obal Modul eld Dot] Tenpl ateldentifier | Tenpl ateParldentifier

150. InLineTenplate ::= [(Type | Signature) Colon] [DerivedRef WthParList Assignnent Char]
Tenpl at eBody

151. DerivedRef WthParList ::= MdifiesKeyword Tenpl at eRef Wt hPar Li st

152. Tenpl ateActual ParList ::= "(" Tenpl ateActual Par {"," Tenpl at eActual Par} ")"

153. Tenpl at eActual Par ::= Tenpl at el nst ance

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore SingleExpressions */

154. Tenpl ateOps ::= MatchOp | Val ueof Op

155. MatchOp ::= MatchKeyword " (" Expression "," Tenpl at el nst ance")"
156. Mat chKeyword ::= "natch"

157. Val ueof Op ::= Val ueof Keyword "(" Tenpl at el nst ance")"

158. Val ueof Keyword ::= "val ueof"

A.16.1.4 Function definitions

159. FunctionDef ::= FunctionKeyword Functionldentifier
"("[FunctionFornal ParList] ")" [RunsOnSpec] [ReturnType]
St at enent Bl ock

160. FunctionKeyword ::= "function"

161. Functionldentifier ::= ldentifier

162. FunctionFor mal ParLi st ::= FunctionFormal Par {"," Functi onFornal Par}
163. FunctionFormal Par ::= Fornal Val uePar |

For nal Ti ner Par |
For nal Tenpl at ePar |
For nal Port Par

164. ReturnType ::= ReturnKeyword [Tenpl at eKeyword] Type

165. ReturnKeyword ::= "return"

166. RunsOnSpec ::= RunsKeyword OnKeyword Conponent Type

167. RunsKeyword ::= "runs"

168. OnKeyword ::= "on"

169. MICKeyword ::= "mtc"

170. StatenentBlock ::= "{" [FunctionStatenentOrDefList] "}"

171. FunctionStatenment O DefList ::= {FunctionStatenent O Def [Seni Colon]}+
172. FunctionStatenent O Def ::= FunctionLocal Def |

FunctionLocal I nst |
Functi onSt at enent

173. FunctionLocal Inst ::= Varlnstance | Tinerlnstance
174. FunctionLocal Def ::= ConstDef | Tenpl at eDef
175. FunctionStatenment ::= ConfigurationStatenents |

Timer Statenents |

Conmuni cati onStatenents |
Basi cSt atenents |

Behavi our St at enent s |
Verdict Statenents |

SUTSt at enent s

176. Functionlnstance ::= FunctionRef "(" [FunctionActual ParlList] ")"

177. FunctionRef ::= [d obal Modul eld Dot] (Functionldentifier | ExtFunctionldentifier) |
Pr eDef Functi onl denti fi er

178. PreDef Functionldentifier ::= ldentifier

/* STATI C SEMANTI CS - The ldentifier shall be one of the pre-defined TTCN-3 Function Identifiers
from Annex C of ES 201 873-1 */

179. FunctionActual ParList ::= FunctionActual Par {"," FunctionActual Par}
180. FunctionActual Par ::= TinerRef |

Tenpl at el nst ance |

Port |

Conponent Ref
/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expr essi on production */

A.1.6.1.5 Signature definitions

181. SignatureDef ::= SignatureKeyword Signatureldentifier
"("[SignatureFormal ParList] ")" [ReturnType | NoBl ockKeyword]
[Except i onSpec]

182. SignatureKeyword ::= "signature"

183. Signatureldentifier ::= ldentifier

184. SignatureFornal ParList ::= SignatureFornal Par {"," SignatureFornal Par}
185. SignatureFormal Par ::= For nal Val uePar

186. ExceptionSpec ::= ExceptionKeyword "(" ExceptionTypeList ")"

187. ExceptionKeyword ::= "exception"

188. ExceptionTypeList ::= Type {"," Type}

189. NoBl ockKeyword :: = "nobl ock"

190. Signature ::= [d obal Modul el d Dot] Signatureldentifier

ETSI

183 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

A.1.6.1.6 Testcase definitions

191. TestcaseDef ::= TestcaseKeyword Testcaseldentifier
"("[Test caseFormal ParList] ")" ConfigSpec
St at ement Bl ock

192. TestcaseKeyword ::= "testcase"

193. Testcaseldentifier ::= ldentifier

194. TestcaseFor mal ParLi st ::= TestcaseFornal Par {"," TestcaseFornal Par}
195. TestcaseFormal Par ::= Fornal Val uePar |

For nal Tenpl at ePar
RunsOnSpec [Syst enBpec]
Syst enKeywor d Conponent Type

196. ConfigSpec ::
197. Systenftpec ::

198. SystenkKeyword ::= "systent

199. Testcasel nstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActual ParList] ")"
[*," Tinervalue] ")"

200. ExecuteKeyword ::= "execute"

201. TestcaseRef ::= [d obal Mbdul eld Dot] Testcaseldentifier

202. TestcaseActual ParlList ::= TestcaseActual Par {"," TestcaseActual Par}

203. TestcaseActual Par ::= Tenpl at el nstance

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expr essi on production */

A.1.6.1.7 Altstep definitions

204. AltstepDef ::= AltstepKeyword Altstepldentifier

"("[Al tstepFornal ParList] ")" [RunsOnSpec
"{" AltstepLocal DefList AtGuardList "}"

205. AltstepKeyword ::= "altstep"

206. Altstepldentifier ::= ldentifier

207. Al tstepFormal ParList ::= FunctionFornal ParlLi st

208. AltstepLocal DefList ::= {A tstepLocal Def [Sem Col on]}

209. AltstepLocal Def ::= Varlnstance | Tinerlnstance | ConstDef | Tenpl at eDef
210. Altsteplnstance ::= A tstepRef "(" [FunctionActual ParList] ")"

211. AltstepRef ::= [d obal Moduleld Dot] Altstepldentifier

A.1.6.1.8 Import definitions

212. InportDef ::= | nportKeyword | nportFronSpec (A |WthExcepts | ("{" |nportSpec "}"))
213. I nportKeyword ::= "inport"

214. Al WthExcepts ::= Al Keyword [Except sDef]

215. ExceptsDef ::= ExceptKeyword "{" ExceptSpec "}"

216. Except Keyword ::= "except"

217. Except Spec ::= {Except El erent [Sem Col on]}

218. ExceptEl ement ::= Except G oupSpec |

Except TypeDef Spec |
Except Tenpl at eSpec |
Except Const Spec |
Except Test caseSpec |
Except Al t st epSpec |
Except Functi onSpec |
Except Si gnat ur eSpec |
Except Modul ePar Spec

219. Except G oupSpec ::= G oupKeyword (Except GroupRefList | AllKeyword)

220. Except TypeDef Spec ::= TypeDef Keyword (TypeRefList | Al Keyword)

221. Except Tenpl at eSpec ::= Tenpl at eKeyword (Tenpl ateRefLi st | All Keyword)
222. Except Const Spec ::= ConstKeyword (ConstReflList | AllKeyword)

223. Except TestcaseSpec ::= TestcaseKeyword (TestcaseRefList | All Keyword)
224. ExceptAltstepSpec ::= A tstepKeyword (Al tstepRefList | Al Keyword)

225. Except FunctionSpec ::= Functi onKeyword (FunctionReflList | AllKeyword)
226. Except SignatureSpec ::= SignatureKeyword (SignatureRefList | AllKeyword)
227. Except Modul ePar Spec :: = Mdul ePar Keyword (Mdul ePar Ref Li st | Al |l Keyword)
228. InmportSpec ::= {lnportEl enent [Sem Col on]}

229. InportEl enent ::= |nportG oupSpec |

| npor t TypeDef Spec |

| npor t Tenpl at eSpec |
| npor t Const Spec |

| nport Test caseSpec |
| nport Al t st epSpec |

| npor t Funct i onSpec |
| npor t Si gnat ur eSpec |
| npor t Modul ePar Spec

230. | nportFrontpec ::= FronKeyword Mdul el d [Recursi veKeywor d]
231. RecursiveKeyword ::= "recursive"
232. I nport G oupSpec ::= GoupKeyword (G oupRefListWthExcept | Al G oupsWthExcept)

ETSI

233.
234.
235.
236.
237.
238.
2309.
240.
241.
242.
243.

244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.

184 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

G oupRefList ::= Full Goupldentifier {"," Full Goupldentifier}

G oupRef Li st Wt hExcept ::= Full G oupldentifierWthExcept {"," Full GroupldentifierWthExcept}
Al G oupsWthExcept ::= Al Keyword [Except Keyword G oupRefLi st]

Ful | G oupldentifier ::= Goupldentifier {Dot Goupldentifier}

Ful | G oupl dentifierWthExcept ::= Full Goupldentifier [ExceptsDef]

Except G oupRef Li st ::= ExceptFul | G oupldentifier {"," ExceptFull Goupldentifier}
Except Ful | G oupl dentifier ::= Full Goupldentifier

I npor t TypeDef Spec ::= TypeDef Keyword (TypeRefList | Al TypesWthExcept)

TypeRef List ::= TypeDefldentifier {"," TypeDefldentifier}

Al TypesW t hExcept ::= Al Keyword [Except Keyword TypeRefLi st]

TypeDefldentifier ::= StructTypeldentifier |

EnuntTypel denti fier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel dentifier
| nport Tenpl at eSpec :: = Tenpl at eKeyword (Tenpl ateRefList | Al Tenpl sWthExcept)
Tenpl ateRef List ::= Tenplateldentifier {"," Tenplateldentifier}
Al Tenpl sWthExcept ::= Al Keyword [Except Keyword Tenpl at eRef Li st]
| npor t Const Spec ::= Const Keyword (Const RefList | AllConstsWthExcept)
Const Ref List ::= Constldentifier {"," Constldentifier}
Al Const sWthExcept ::= Al Keyword [Except Keyword Const Ref Li st]
I nport Al t stepSpec ::= AltstepKeyword (Al tstepRefList | Al A tstepsWthExcept)
Al tstepRefList ::= Altstepldentifier {"," Atstepldentifier}
Al AltstepsWthExcept ::= Al Keyword [Except Keyword AltstepReflList]
I nport Test caseSpec ::= TestcaseKeyword (TestcaseRefList | Al TestcasesWthExcept)
TestcaseRefList ::= Testcaseldentifier {"," Testcaseldentifier}
Al | Test casesW t hExcept ::= Al |l Keyword [Except Keyword Test caseRef Li st]
I nport Functi onSpec ::= FunctionKeyword (FunctionRefList | Al FunctionsWthExcept)
FunctionRefList ::= Functionldentifier {"," Functionldentifier}
Al'l FunctionsWthExcept ::= Al Keyword [Except Keyword Functi onRefLi st]
| nport Si gnat ureSpec ::= SignatureKeyword (SignatureRefList | AllSignaturesWthExcept)
SignatureRefList ::= Signatureldentifier {"," Signatureldentifier}
Al'l Si gnaturesWthExcept ::= Al Keyword [Except Keyword Signat ur eRef Li st]
| npor t Mbdul ePar Spec :: = Modul ePar Keyword (Modul ePar Ref Li st | Al |l Mbdul ePar Wt hExcept)
Modul ePar Ref Li st ::= Modul eParldentifier {"," Mdul eParldentifier}
Al | Modul ePar Wt hExcept ::= Al |l Keyword [Except Keyword Modul ePar Ref Li st]

A.1.6.1.9 Group definitions

265.

266.
267.

G oupDef ::= G oupKeyword G oupldentifier
"{" [Modul eDefinitionsPart] "}"

G oupKeyword ::= "group"

Goupldentifier ::= Ildentifier

A.1.6.1.10 External function definitions

268.

269.
270.

Ext Functi onDef ::= Ext Keyword Functi onKeyword Ext Functionldentifier
"("[FunctionFornal ParList] ")" [ReturnType

Ext Keyword ::= "external "

Ext Functionldentifier ::= ldentifier

A.1.6.1.11 External constant definitions

271.
272.
273.

Ext Const Def ::= Ext Keyword Const Keyword Type Ext ConstldentifierlList
Ext ConstldentifierList ::= ExtConstldentifier { "," ExtConstldentifier }
Ext Constldentifier ::= ldentifier

A.1.6.1.12 Module parameter definitions

274.
275.
276.
277.
278.
279.

280.

Modul ePar Def ::= Modul ePar Keyword (Modul ePar | ("{" MiltitypedWbdul eParList "}"))
Modul ePar Keyword :: = "nodul epar"

Mul titypedModul eParList ::= { Mdul ePar [Seni Col on] }

Modul ePar ::= Mdul ePar Type Mdul ePar Li st

Modul ePar Type ::= Type

Modul ePar Li st ::= Mdul eParldentifier [AssignnentChar Constant Expression]

{","Modul ePar | dentifier [AssignnmentChar Constant Expression]}
Modul ePar | denti fi er = ldentifier

ETSI

185 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

A.1.6.2 Control part

A.1.6.2.0 General

281.

282.
283.
284.
285.

286.

Modul eControl Part ::= Control Keyword
"{" Modul eControl Body "}"
[WthStatenent] [Seni Col on]
Control Keyword ::= "control"
Modul eControl Body ::= [Control St atenent O Def Li st]
Control Statement O Def List ::= {Control Statenent O Def [Seni Colon]}+
Control Statenment O Def ::= FunctionLocal Def |
FunctionLocal I nst |
Cont r ol St at enent
Control Statement ::= TinerStatenents |
Basi cSt atenents |
Behavi our St at enent s |
SUTSt at ement s |
St opKeywor d

A.1.6.2.1 Variable instantiation

287.
288.
289.
290.
291.
292.
293.
294.
295.
296.

Var | nstance ::= VarKeyword ((Type VarlList) | (Tenpl ateKeyword Type TenpVarList))
VarList ::= SingleVarlnstance {"," SingleVarlnstance}

Singl eVarlnstance ::= Varldentifier [ArrayDef] [AssignnentChar Varlnitial Val ue]
Varlnitial Val ue ::= Expression

Var Keyword ::= "var"

Varldentifier ::= ldentifier

TenpVar Li st ::= SingleTenpVarlnstance {"," SingleTenpVarl nstance}

Si ngl eTenpVar | nstance ::= Varldentifier [ArrayDef] [AssignnentChar TenpVarlnitial Val ue]
TenpVar | ni tial Val ue :: = Tenpl at eBody

Variabl eRef ::= (Varldentifier | ValueParldentifier) [ExtendedFiel dReference]

A.1.6.2.2 Timer instantiation

297.
298.
299.
300.
301.
302.
303.

Ti merl nstance ::= Timer Keyword TimerLi st

TimerList ::= SingleTinmerlnstance{"," SingleTinerlnstance}
SingleTinmerinstance ::= Tinerldentifier [ArrayDef] [AssignmentChar Ti nerVal ue]
Ti mer Keyword ::= "tiner"

Timerldentifier ::= ldentifier

Ti mer Val ue ::= Expression

TimerRef ::= (Tinerldentifier | TinmerParldentifier) {ArrayOBitRef}

A.1.6.2.3 Component operations

304.

305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.

ConfigurationStatenments ::= Connect Statenent |
MapSt at enent |
Di sconnect St at enent |
UnmapsSt at enent |
DoneSt at enent |
Ki || edSt at enent |
Start TCSt at ement |
St opTCSt at enent |
Ki I | TCSt at enent

ConfigurationQps ::= CreateQp | SelfOp | SystemOp | MICOp | RunningOp | AliveOp
CreateQp ::= Conponent Type Dot CreateKeyword ["(" SingleExpression ")"] [AliveKeyword]
SystenOp ::= SystenKeyword

SelfCOp ::= "self"

MICOp :: = MICKeyword

DoneSt at enent ::= Conponentld Dot DoneKeyword

KilledStatement ::= Conponentld Dot KilledKeyword

Component | d :: = Conponent O Def aul t Ref erence | (AnyKeyword | Al | Keyword) Conponent Keywor d
DoneKeyword ::= "done"

Ki |l edkeyword ::= "killed"

Runni ngQp ::= Conponentld Dot Runni ngKeyword

Runni ngkeyword ::= "runni ng"

AliveQp ::= Conponentld Dot AliveKeyword

Creat eKeyword ::= "create"

Ali veKeyword ::= "alive"

Connect St at ement :: = Connect Keyword Si ngl eConnecti onSpec

Connect Keyword ::= "connect"

Si ngl eConnectionSpec ::= "(" PortRef "," PortRef ")"

Port Ref ::= Conponent Ref Col on Port

Conponent Ref ::= Conponent O Def aul t Reference | SystemOp | SelfOp | MICOp

ETSI

325.
326.

327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.

338.
339.

340.
341.

186 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Di sconnect St at enent ::= Di sconnect Keyword [Si ngl eOr Mul ti Connect i onSpec]
Si ngl eO Mul ti ConnectionSpec ::= Singl eConnecti onSpec |

Al | Connecti onsSpec |

Al | Port sSpec |

Al | ConpsAl | Port sSpec

Al | ConnectionsSpec ::= "(" PortRef ")"
Al PortsSpec ::= "(" ConponentRef ":" Al Keyword PortKeyword ")"
Al'| ConpsAl | PortsSpec ::= "(" Al Keyword Conponent Keyword ":" Al |l Keyword PortKeyword ")"
Di sconnect Keyword ::= "di sconnect"
MapSt at enent :: = MapKeyword Singl eConnecti onSpec
MapKeyword ::= "nap"
UnmapSt at enent :: = UnmapKeyword [Si ngl eOr Mul ti Connecti onSpec]
UnmapKeyword ::= "unnmap"
Start TCSt at ement ::= Conponent O Def aul t Ref erence Dot StartKeyword " (" Functionlnstance ")"
StartKeyword ::= "start"
St opTCSt at ement :: = St opKeyword | (Conponent Ref erenceOrLiteral Dot StopKeyword) |
(Al Keywor d Conponent Keyword Dot St opKeywor d)
Component Ref erenceOrLiteral ::= Conponent O Defaul t Reference | MICOp | Sel fOp
Kill TCStatement ::= KillKeyword | (ConponentReferenceO Literal Dot KillKeyword) |
(Al Keywor d Conponent Keyword Dot Ki | | Keywor d)
Conmponent Or Def aul t Ref erence :: = Variabl eRef | Functionl nstance
Kill Keyword ::= "kill"

A.1.6.2.4 Port operations

342.
343.

344.
345.
346.
347.
348.

349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.

Port ::= (Portldentifier | PortParldentifier) {ArrayOrBitRef}
Conmmruni cationStatenments ::= SendSt at ement |
Cal | Statenent |
Repl ySt at enent |
Rai seSt at enent |
Recei veSt at enent |
Trigger St at ement |
Get Cal | Statenent |
Get Repl ySt at enent |
Cat chSt at enent |
CheckSt at enent |
Cl ear Statenent |
Start Statenent |
St opSt at enent
Port Dot Port SendQp

SendSt at enent

Port Send®p ::= SendOpKeyword " (" SendParaneter ")" [Tod ause]
SendOpKeyword ::= "send"

SendPar aneter ::= Tenpl at el nstance

ToCl ause ::= ToKeyword (AddressRef |

Addr essRef Li st |
Al | Keywor d Conponent Keyword)

AddressRefList ::="(" AddressRef {"," AddressRef} ")"

ToKeyword ::= "to"

Addr essRef ::= Tenpl at el nst ance

Cal |l Statement ::= Port Dot PortCallOp [PortCall Body]

PortCall Op ::= Call OpKeyword " (" Call Paraneters ")" [Tod ause]

Cal | OpKeyword ::= "cal I "

Cal | Paraneters ::= Tenpl atelnstance ["," Call Ti mer Val ue]

Cal | TimerVal ue ::= TinerValue | Nowai t Keywor d

Nowai t Keyword ::= "nowait"

Port Cal | Body ::= "{" CallBodyStatenentList "}"

Cal | BodySt at ement Li st :: = {Cal | BodySt at ement [Semi Col on] } +

Cal | BodySt atement ::= Cal | BodyGuard Stat enment Bl ock

Cal | BodyGuard ::= Al t GuardChar Cal | BodyQOps

Cal | BodyOps ::= CGetReplyStatenent | CatchStatenent

ReplyStatement ::= Port Dot PortReplyQp

Port Repl yOp :: = Repl yKeyword "(" Tenpl atel nstance [ReplyValue]")" [Tod ause]
Repl yKeyword ::= "reply"

Repl yVal ue ::= Val ueKeyword Expression

Rai seStatement ::= Port Dot PortRai seQp

Port Rai seQp ::= Rai seKeyword "(" Signature "," Tenpl atelnstance ")" [Tod ause
Rai seKeyword ::= "raise"

Recei veStatenment ::= PortOrAny Dot Port Recei veQp

Port OrAny ::= Port | AnyKeyword Port Keyword

Port Recei veQp :: = Recei veOpKeyword ["(" ReceiveParaneter ")"] [FronC ause] [PortRedirect]
Recei veOpKeyword ::= "receive"

Recei veParaneter ::= Tenpl at el nst ance

FronC ause ::= FronKeyword AddressRef

FronKeyword ::= "front

Port Redirect ::= PortRedirectSynbol (ValueSpec [Sender Spec] | Sender Spec)
Por t Redi rect Synbol ::= "->"

Val ueSpec ::= Val ueKeyword Vari abl eRef

ETSI

380.
381.
382.
383.
384.
385.
386.
387.

388.
389.
390.

391.
392.
393.
394.
395.
396.
397.
398.
399.
400.

401.
402.

403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.

187 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Val ueKeyword ::= "val ue"
Sender Spec :: = Sender Keyword Vari abl eRef
Sender Keyword ::= "sender"
TriggerStatement ::= PortO Any Dot PortTrigger Qp
PortTriggerOQp ::= Trigger OpKeyword ["(" ReceiveParaneter ")"] [FronCl ause] [PortRedirect]
Trigger OpKeyword ::= "trigger"
GetCal | Statenment ::= PortOrAny Dot PortGetCall Qo
PortGetCall Op ::= CetCall OpKeyword ["(" ReceiveParaneter ")"] [FronC ause]
[Port Redi rect Wt hPar ani
Get Cal | OpKeyword ::= "getcal "
Port Redi rect Wt hParam : : = Port Redirect Synbol Redirect W thParanfSpec
Redi rect Wt hPar anSpec :: = Parantpec [Sender Spec] |
Sender Spec
Par anSpec ::= ParanKeyword ParamAssi gnnent Li st
Par anKeyword ::= "parant
Par amAssi gnnent Li st ::= "(" (AssignnentList | VariableList) ")"
Assi gnnment Li st ::= Variabl eAssi gnnent {"," Vari abl eAssi gnnent}
Vari abl eAssi gnment ::= Vari abl eRef Assi gnnent Char Paraneterldentifier
Paraneterldentifier ::= ValueParldentifier
Variabl eList ::= VariableEntry {"," Variabl eEntry}
Variabl eEntry ::= Variabl eRef | Not UsedSynbol
Get Repl yStatement ::= PortOrAny Dot Port CGet Repl yOp
Port Get Repl yOp :: = Get Repl yOpKeyword ["(" Recei veParaneter [Val uevatchSpec] ")"]
[FronC ause] [PortRedirect Wt hVal ueAndPar ani
Port Redi rect Wt hVal ueAndParam : : = Port Redi r ect Synbol Redirect Wt hVal ueAndPar anfSpec
Redi r ect Wt hVal ueAndPar anSpec :: = Val ueSpec [Par anfSpec] [Sender Spec] |
Redi r ect W t hPar anfSpec

Get Repl yOpKeyword :: = "getreply"
Val ueMat chSpec : Val ueKeywor d Tenpl at el nst ance
CheckSt at enment Port Or Any Dot Port CheckOp

ARty

Port CheckOQp ::= CheckOpKeyword ["(" CheckParaneter ")"]

CheckOpKeywor d : "check"

CheckPar anet er CheckPort OpsPresent | FronCl ausePresent | RedirectPresent

FronC ausePresent ::= FronC ause [PortRedirect Synbol Sender Spec]

Redi rect Present ::= PortRedirect Synbol Sender Spec

CheckPort OpsPresent ::= PortReceiveQy | PortGetCall Op | PortGetReplyQp | PortCatchOp
CatchStatement ::= PortOrAny Dot PortCatchQp

Port CatchQp ::= CatchOpKeyword ["("CatchOpParaneter ")"] [FronC ause] [PortRedirect]
Cat chOpKeyword ::= "catch"

Cat chQpParaneter ::= Signature "," Tenplatelnstance | Ti meout Keyword

CearStatement ::= Port O All Dot Portd ear

Port ' All ::= Port | AllKeyword PortKeyword

PortCl earOp ::= O ear OpKeyword

Cl ear OpKeyword ::= "clear"
St art St at ement Port OrAll Dot PortStartQp

PortStartOp ::= StartKeyword

StopStatement ::= PortOrAll Dot PortStopQp
Port StopQp ::= StopKeyword

St opKeyword ::= "stop"

AnyKeyword ::= "any"

A.1.6.2.5 Timer operations

426. TimerStatenents ::= StartTinerStatenent | StopTinerStatenent | Ti neout Statenent
427. TimerOps ::= ReadTi merQ | Runni ngTi ner O

428. StartTimerStatement ::= TinerRef Dot StartKeyword ["(" TimerValue ")"]
429. StopTinerStatement ::= TinerRef O All Dot StopKeyword

430. TimerRefOAll ::= TinerRef | Al Keyword Ti mer Keywor d

431. ReadTinerQp ::= TinerRef Dot ReadKeyword

432. ReadKeyword ::= "read"

433. RunningTimerQp ::= TinmerRef O Any Dot Runni ngkeyword

434. TinmeoutStatement ::= TinerRefOrAny Dot Ti meout Keyword

435. TimerRef O Any ::= TinerRef | AnyKeyword Ti mer Keywor d

436. Ti meout Keyword ::= "timeout"

A.1.6.3 Type

437. Type ::= PredefinedType | ReferencedType

438. PredefinedType ::= BitStringKeyword |

Bool eanKeyword |
Char St ri ngkeyword |

Uni versal CharString |
| nt eger Keyword |
Cctet StringKeyword |
HexStri ngKeyword |
Ver di ct TypeKeyword |

ETSI

439. BitStringKeyword :

440. Bool eanKeyword ::
441. |ntegerKeyword ::
442. Cctet StringKeywor

443. HexStringKeyword :

444. Verdi ct TypeKeywor
445. Fl oat Keyword :: =
446. AddressKeyword :
447. Def aul t Keyword :
448. AnyTypeKeyword :

450. Universal CharStri

451. Universal Keyword :

452. ReferencedType ::
453. TypeReference :

454. TypeAct ual Par Li st

455. TypeActual Par ::=

456. ArrayDef ::= {"["
457. ArrayBounds :

188

Fl oat Keyword |

Addr essKeyword |
Def aul t Keyword |

AnyTypeKeywor d
= "bitstring"

= "bool ean”

= "integer"

d::= "octetstring"
;= "hexstring"

d ::= "verdicttype"
"float"

;= "address"

"defaul t"

.= "anytype"
449. Char StringKeyword :

;= "charstring"

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

ng ::= Universal Keyword Char Stri ngKeyword

:= "universal"

= [G obal Modul el d Dot] TypeRef erence [ExtendedFi el dRef er ence]

;= Struct Typel dentifier[TypeActual ParList] |

Enuniypel denti fier |
SubTypel dentifier |
Conponent Typel denti fi er
co="(" TypeActual Par {","
Const ant Expr essi on
ArrayBounds [".."

/* STATI C SEMANTI CS -

A.1.6.4 Value

458. Value ::= Predefi

TypeActual Par} ")"

Arr ayBounds]
: = Singl eConst Expr essi on

ArrayBounds will resolve to a non negative value of integer type */

nedVal ue | ReferencedVal ue

459. PredefinedVval ue :

460. BitStringVal ue :
461. Bool eanVal ue ::=
462. IntegerValue ::=
463. Cctet StringVal ue
464. HexStringVal ue :
465. Verdi ct TypeVal ue
466. Enunerat edVal ue :
467. Char StringVal ue :
468. Quadruple :

: = Char Keyword " ("

:= BitStringVal ue |
Bool eanVal ue |
Char Stri ngVal ue |
| nt eger Val ue |
Cctet StringVal ue |
HexStri ngVal ue |
Ver di ct TypeVal ue |
Enuner at edVal ue |
Fl oat Val ue |
Addr essVal ue |
Oni t Val ue

:= Bstring

"true" | "fal se"
Nunber
1= Ostring

:= Hstring

;.= "pass" | "fail" | "inconc"
:= Enunerationldentifier

:= Cstring | Quadruple
Goup ","

469. CharKeyword ::="
470. Group ::= Nunber
471. Pl ane ::= Nunber
472. Row ::= Nunber
473. Cell ::= Nunber
474. Fl oatValue ::= Fl

char"

oat Dot Not ati on | Fl oat ENot ati on

Pl ane ", "

475. Fl oat Dot Not ation : Dot
:= Nunber [Dot Decinal Nunber] Exponential [M nus] Nunber

476. Fl oat ENotation :
477. Exponential ::="
478. ReferencedVal ue
479. Val ueRef erence :

480. Nunber ::= (NonZeroNum {Nun}) | "O"

481. NonZeroNum::= "1" | "2" | "3" | "4" | "5" | "6"
482. Deci mal Nunber ::= {Nun}+

483. Num::= "0" | NonZer oNum

484. Bstring ::= """ {Bin} "'" "B"

485. Bin ::="0" | "1"

486. Hstring ::= """ {Hex} "'" "H'

487. Hex ::= Num| "A" | "B" | "C" | "D | "E'" | "F'|
488. Gstring ::= """ {Cct} "'" "O

489. Cct ::= Hex Hex

490. Cstring ::= """ {Char} """

:= Nunber Dot Deci mal Nunber

"none" | "error"

tCcell)"t

E

;= Val ueRef erence [Ext endedFi el dRef er ence]

:= [d obal Modul el d Dot] (Constldentifier | ExtConstldentifier |

Modul ePar I dentifier) |
Val uePar | dentifier |
Var | denti fier

ETSI

IR

"pro| et | td | e | “f"

189 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

491. Char ::=/* REFERENCE - A character defined by the relevant CharacterString type. For
charstring a character fromthe character set defined in | SO I EC 646. For universal charstring a
character fromany character set defined in | SO 1EC 10646 */

492. ldentifier ::= A pha{A phaNum | Underscore}

493. Al pha ::= UpperA pha | LowerAl pha

494. A phaNum::= Al pha | Num

495. UpperAlpha ::="A" | "B" | "C" | "D" | "E" | "F" | "G | "H | "1™ | "3 | "K' | "L" | "M |
CNCL MO TP Q] RS T U Y WX |ty |t

496. LowerAlpha ::="a" | "b" | "c¢" | "d" | "e" | "“f" | "g" | "h" | “i" | "j"] "k" | “"I" | "nmf |
S B I e T B I T I B I S I U e S

497. ExtendedAl phaNum ::= /* REFERENCE - A graphical character fromthe BASIC LATIN or fromthe

LATI N-1 SUPPLEMENT character sets defined in I SO I EC 10646 (characters fromchar (0,0,0,32) to char
(0,0,0,126), fromchar (0,0,0,161) to char (0,0,0,172) and fromchar (0,0,0,174) to char (0,O0,0, 255)
*

/

498. FreeText ::= """ {ExtendedAl phaNun} """
499. AddressValue ::= "null"

500. QOmitValue ::= OntKeyword

501. OmtKeyword ::= "omt"

A.1.6.5 Parameterization

502. |nParKeyword ::= "in"

503. QutParKeyword ::= "out"

504. | nQutParKeyword ::= "inout"

505. Formal Val uePar ::= [(lnParKeyword | |nQutParKeyword | QutParKeyword)] Type Val ueParldentifier

506. Val ueParldentifier ::= ldentifier

507. Formal PortPar ::= [|nQutPar Keyword] PortTypeldentifier PortParldentifier

508. PortParldentifier ::= ldentifier

509. Formal TimerPar ::= [|nQutPar Keyword] Ti mer Keyword TinmerParldentifier

510. TimerParldentifier ::= ldentifier

511. Formal Tenpl atePar ::= [(| nPar Keyword | QutPar Keyword | | nQutPar Keyword)]
Tenpl at eKeyword Type Tenpl at ePar | dentifier

512. Tenpl ateParldentifier ::= ldentifier

A.1.6.6 With statement

513. WthStatement ::= WthKeyword WthAttribLi st

514. WthKeyword ::= "with"

515. WthAttribList ::="{" MiltiWthAttrib "}"

516. MultiWthAttrib ::= {SingleWthAttrib [Sem Col on]}

517. SingleWthAttrib ::= Attri bKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
518. AttribKeyword ::= EncodeKeyword |

Var i ant Keyword |
Di spl ayKeyword |
Ext ensi onKeywor d

519. EncodeKeyword ::= "encode"

520. VariantKeyword ::= "variant"

521. DisplayKeyword ::= "display"

522. ExtensionKeyword ::= "extension"

523. OverrideKeyword ::= "override"
524. AttribQualifier ::="(" DefOFieldRefList ")"
525. Def O'FieldRefList ::= Def O FieldRef {"," Def OFiel dRef}

526. Def O Fi el dRef
527. DefinitionRef

DefinitionRef | FieldReference | Al Ref

Struct Typel dentifier |

EnuniTypel denti fier |

Port Typel dentifier |

Conponent Typel dentifier |

SubTypel dentifier |

Constldentifier |

Tenpl atel dentifier |

Al tstepldentifier |

Testcasel dentifier |

Functionldentifier |

Si gnatureldentifier |

Varldentifier |

Tinerldentifier |

Portldentifier |

Modul ePar I denti fier |

Ful | G oupl denti fier

= (G oupKeyword Al |l Keyword [Except Keyword "{" G oupRefList "}"]) |
(TypeDef Keyword Al |l Keyword [Except Keyword "{" TypeReflList "}"]) |
(Tenpl at eKeyword Al | Keyword [Except Keyword "{" Tenpl ateRefList "}"]) |
(
(
(

528. Al | Ref

Const Keyword Al | Keyword [Except Keyword "{" ConstReflist "}"]) |
Al t st epKeyword Al | Keyword [Except Keyword "{" AltstepRefList "}"]) |
Test caseKeyword Al | Keyword [Except Keyword "{" TestcaseRefList "}"]) |

ETSI

190 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

(FunctionKeyword Al | Keyword [Except Keyword "{" FunctionRefList "}"]) |

(SignatureKeyword All Keyword [Except Keyword "{" SignatureRefList "}"]) |

(Modul ePar Keyword Al | Keyword [Except Keyword "{" Modul eParRefList "}"])
529. AttribSpec ::= FreeText

A.1.6.7 Behaviour statements

530. Behavi our Statenents ::= Testcasel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
I nterl eavedConstruct |
Label St at enent |
Got oSt at enent |
Repeat St at enent |
Deacti vat eSt at enent |
Al t st epl nst ance |

Acti vat eQp
531. VerdictStatenents ::= Setlocal Verdi ct
532. VerdictQps ::= CetlLocal Verdi ct
533. SetlLocal Verdict ::= SetVerdi ct Keyword "(" SingleExpression ")"
534. SetVerdictKeyword ::= "setverdict"
535. GetlLocal Verdict ::= "getverdict"

536. SUTStatenents ::= ActionKeyword "(" [ActionText] {StringQOp ActionText} ")"

537. ActionKeyword ::= "action"

538. ActionText ::= FreeText | Expression

539. ReturnStatenent ::= ReturnKeyword [Expression]

540. AltConstruct ::= Al tKeyword "{" AltGuardList "}"

541. Al tKeyword ::= "alt"

542. AltGuardList ::= {GuardStatenment | El seStatenent [Sem Col on]}

543. GuardStatenent ::= AltQuardChar (Al tsteplnstance [StatenentBl ock] | GuardOp Statenent Bl ock)
544. El seStatenment ::= "["El seKeyword "]" StatenentBl ock

545. AltGuardChar ::= "[" [Bool eanExpression] "]"

546. GuardQp ::= Tinmeout St atenment |

Recei veSt at enent |
Trigger Statenent |
Cet Cal | St at enent |
Cat chSt at enent |
CheckSt at enent |
Get Repl ySt at enent |
DoneSt at enent |

Ki | | edSt at enent

547. Interl eavedConstruct ::= Interl eavedKeyword "{" Interl eavedGuardList "}"
548. Interl eavedKeyword ::= "interl eave"

549. InterleavedGardList ::= {Interl eavedGar dEl enment [Sem Col on] }+

550. Interl eavedGuardEl ement ::= Interl eavedGuard |nterl eavedAction

551. InterleavedGuard ::= "[" "]" QuardQp

552. InterleavedAction ::= StatenentBl ock

553. Label Statenent ::= Label Keyword Label | dentifier

554. Label Keyword ::= "l abel"

555. Labelldentifier ::= ldentifier

556. CGotoStatenent ::= CotoKeyword Label I dentifier

557. CotoKeyword ::= "goto"

558. Repeat Statenent ::= "repeat"

559. ActivateQ ::= ActivateKeyword "(" Al tsteplnstance ")"

560. ActivateKeyword ::= "activate"

561. DeactivateStatenment ::= DeactivateKeyword ["(" Conponent O Def aul t Ref erence ")"]
562. DeactivateKeyword ::= "deactivate"

A.1.6.8 Basic statements

563. BasicStatenments ::= Assignnment | LogStatenent | LoopConstruct | Conditional Construct |
Sel ect CaseConst r uct

564. Expression ::= Singl eExpression | ConpoundExpression

565. ConpoundExpression ::= Fi el dExpressionList | ArrayExpression

/* STATI C SEMANTI CS - Wt hin ConmpoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */

566. Fi el dExpressionList ::= "{" Fiel dExpressi onSpec {"," Fi el dExpressi onSpec} "}"

567. Fi el dExpressionSpec ::= Fi el dRef erence Assi gnnment Char Not UsedOr Expr essi on

568. ArrayExpression ::= "{" [ArrayEl enent ExpressionList] "}"

569. ArrayEl ement ExpressionList ::= NotUsedO Expression {"," NotUsedO Expression}
570. Not UsedOr Expression ::= Expression | NotUsedSynbol

571. Constant Expression ::= Singl eConst Expressi on | ConpoundConst Expressi on

572. Singl eConst Expression ::= Singl eExpression

ETSI

191 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

/* STATI C SEMANTI CS - Singl eConst Expression shall not contain Variables or Mdul e paraneters and
shall resolve to a constant Value at conpile time */

573. Bool eanExpression ::= Singl eExpression
/* STATI C SEMANTI CS - Bool eanExpressi on shall resolve to a Value of type Bool ean */
574. ConpoundConst Expression ::= Fi el dConst Expressi onLi st | ArrayConst Expression

/* STATI C SEMANTICS - W thin ConpoundConst Expressi on the ArrayConst Expression can be used for
arrays, record, record of and set of types. */

575. Fi el dConst ExpressionList ::= "{" Fi el dConst ExpressionSpec {"," Fi el dConst Expressi onSpec} "}"
576. Fi el dConst Expressi onSpec ::= Fi el dRef erence Assi gnnment Char Const ant Expr essi on

577. ArrayConstExpression ::= "{" [ArrayEl enent Const ExpressionList] "}"

578. ArrayEl ement Const Expressi onLi st ::= Constant Expression {"," Constant Expression}

579. Assignment ::= Variabl eRef AssignnentChar (Expression | Tenpl at eBody)

/* STATI C SEMANTI CS - The Expression on the right hand side of Assignment shall evaluate to an
explicit value of a type conpatible with the type of the left hand side for value variables and
shall evaluate to an explicit value, tenplate (literal or a tenplate instance) or a matching
mechani sm conpatible with the type of the left hand side for tenplate variables. */
580. Singl eExpression ::= XorExpression { "or" XorExpression }
/* STATIC SEMANTICS - If nore than one Xor Expression exists, then the Xor Expressions shall eval uate
to specific values of conpatible types */
581. Xor Expression ::= AndExpression { "xor" AndExpression }
/* STATIC SEMANTICS - |If nore than one AndExpression exists, then the AndExpressions shall eval uate
to specific values of conpatible types */
582. AndExpression ::= Not Expression { "and" Not Expression }
/* STATIC SEMANTICS - |If nore than one Not Expression exists, then the Not Expressions shall eval uate
to specific values of conpatible types */
583. NotExpression ::=["not"] Equal Expression
/* STATI C SEMANTI CS - Operands of the not operator shall be of type bool ean or derivatives of type
Bool ean. */
584. Equal Expression ::= Rel Expression { Equal Op Rel Expression }
/* STATIC SEMANTICS - |If nore than one Rel Expression exists, then the Rel Expressions shall eval uate
to specific values of conpatible types */
585. Rel Expression ::= ShiftExpression [Rel O ShiftExpression]
/* STATIC SEMANTICS - |If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enunerated or float Value or derivatives of these types */
586. ShiftExpression ::= BitO Expression { ShiftOp BitO Expression }
/* STATI C SEMANTICS - Each Result shall resolve to a specific Value. If nore than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift op is "<<" or ">>"
then the | eft-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift opis "<@ or "@" then the |left-hand operand shall be of
type bitstring, hexstring, charstring or universal charstring or derivatives of these types */
587. Bit O Expression ::= BitXorExpression { "or4b" BitXorExpression }
/* STATIC SEMANTICS - |If nore than one Bit Xor Expression exists, then the BitXor Expressions shall
eval uate to specific values of conpatible types */
588. Bit Xor Expression ::= Bit AndExpression { "xor4b" BitAndExpression }
/* STATIC SEMANTICS - |If nore than one BitAndExpression exists, then the Bit AndExpressions shall
evaluate to specific values of conpatible types */
589. Bit AndExpression ::= BitNot Expression { "and4b" BitNot Expression }
/* STATIC SEMANTICS - If nore than one BitNot Expression exists, then the BitNot Expressions shall
evaluate to specific values of conpatible types */
590. BitNotExpression ::=["not4b"] AddExpression
/* STATIC SEMANTICS - |If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */
591. AddExpression ::= Mil Expression { AddOp Mil Expression }
/* STATI C SEMANTI CS - Each Ml Expression shall resolve to a specific Value. |f nore than one
Mul Expressi on exists and the AddOp resolves to StringOp then the Mil Expressions shall resolve to
same type which shall be of bitstring, hexstring, octetstring, charstring or universal charstring or
derivatives of these types. |f nore than one Mil Expression exists and the AddOp does not resolve to
StringOp then the Mil Expression shall both resolve to type integer or float or derivatives of these
types. */
592. Mul Expression ::= UnaryExpression { MiltiplyQp UnaryExpression }
/* STATI C SEMANTI CS - Each UnaryExpression shall resolve to a specific Value. If nore than one
Unar yExpr essi on exists then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */
593. UnaryExpression ::=[UnaryQp] Primary
/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/
594. Primary ::= pCall | Value | "(" SingleExpression ")"
595. ExtendedFi el dReference ::= {(Dot (StructFieldldentifier | TypeDefldentifier))
| ArrayOrBitRef }+

/* STATI C SEMANTI C - The TypeDefldentifier shall be used only if the type of the Varlnstance or
Ref erencedVal ue in wich the ExtendedFi el dReference is used is anytype.*/
596. pCall ::= ConfigurationQOps |

Ver di ct Qps |

Ti mer Qps |

Test casel nst ance |

Functi onl nst ance |

Tenpl at eOps |
Acti vat eQp

ETSI

192 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

597. AddQp ::= "+" | "-" | StringQp

/* STATI C SEMANTICS - QOperands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */

598. MultiplyQp ::="*" | "/" | "mod" | "renf

/* STATI C SEMANTI CS - Operands of the "*", "/", remor nod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange). */

599. UnaryQp ::= "+" | "-

/* STATI C SEMANTI CS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange). */

600. RelOp ::="<" | ">" | ">=" | "<="

/* STATI C SEMANTICS - the precedence of the operators is defined in Table 6 */

601. Equal Qp ::= "==" | "I="

602. StringQp ::="&"

/* STATI C SEMANTI CS - Operands of the string operator shall be bitstring, hexstring, octetstring or
character string */

603. ShiftQp ::= "<<" | ">>" | "<@ | "@"

604. LogStatement ::= LogKeyword "(" Logltem{ "," Logltem} ")"
605. LogKeyword ::= "l o0g"

606. Logltem::= FreeText | Tenpl atel nstance

607. LoopConstruct ::= ForStatenent |

Wi | eSt at enent |
DoWhi | eSt at enent

608. ForStatenent ::= ForKeyword "(" Initial Sem Colon Final Senmi Colon Step ")"
St at enent Bl ock
609. ForKeyword ::= "for"
610. Initial ::= Varlnstance | Assignnent
611. Final ::= Bool eanExpression
612. Step ::= Assignnent
613. Wil eStatenent ::= Wil eKeyword "(" Bool eanExpression ")"
St at enent Bl ock
614. Wil eKeyword ::= "while"
615. DoWhil eStatenment ::= DoKeyword StatenentBl ock
Whi | eKeyword " (" Bool eanExpression ")"
616. DoKeyword ::= "do"
617. Conditional Construct ::= |fKeyword "(" Bool eanExpression ")"
St at emrent Bl ock
{El sel fd ause}[El sed ause]
618. |fKeyword ::= "if"
619. ElselfCd ause ::= El seKeyword |fKeyword "(" Bool eanExpression ")" StatenentBl ock
620. El seKeyword ::= "el se"
621. El sed ause ::= El seKeyword Stat enent Bl ock
622. Sel ect CaseConstruct ::= Sel ect Keyword "(" SingleExpression ")" Sel ect CaseBody
623. Sel ect Keyword ::= "select"
624. Sel ectCaseBody ::= "{" { SelectCase }+ "}"
625. Sel ectCase ::= CaseKeyword ("(" Tenplatelnstance {"," Tenplatelnstance } ")" | El seKeyword)
St at enent Bl ock
626. CaseKeyword ::= "case"

A.1.6.9 Miscellaneous productions

627. Dot ::=".

628. Dash ::="-"

629. M nus ::= Dash
630. Sem Colon ::=";"
631. Colon ::=":"

632. Underscore ::="_"
633. AssignnmentChar ::= ":="

ETSI

193 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex B (normative):
Matching incoming values

B.1 Template matching mechanisms

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, atemplate field matches the
corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template eval uates.

EXAMPLE:

/1 Gven the nessage type definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3 optional,

integer[4] field4

/1 A nessage tenplate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 3+2, /'l specific value of integer type
field2 := "My string", [/ specific value of charstring type
field3 := true, /'l specific value of boolean type
fieldd :={1,2,3} /'l specific value of integer array

B.1.1.1 Omitting values

The keyword oni t denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional.

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =

field3::orrit, /1 omt this field

B.1.2 Matching mechanisms instead of values

The following matching mechanisms may be used in place of explicit values.

B.1.2.1 Value list

Vaue lists specify lists of acceptable incoming values. It can be used on values of al types. A template field that uses a
value list matches the corresponding incoming field if, and only if, the incoming field value matches any one of the
valuesin the valuelist. Each valuein the value list shall be of the type declared for the template field in which this
mechanism is used.

ETSI

194 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:
tenpl ate Mymessage MyTenpl ate: =

fieldl :
field2 :

(2,4,6), /1 list of integer val ues
("Stringl", "String2"), /1 list of charstring val ues

}

B.1.2.2 Complemented value list

The keyword conpl enent denotesalist of values that will not be accepted asincoming values (i.e. it isthe
complement of avaluelist). It can be used on all values of all types.

Each value in thelist shall be of the type declared for the template field in which the complement is used. A template
field that uses complement matches the corresponding incoming field if and only if the incoming field does not match
any of the valueslisted in the value list. The value list may be a single value, of course.

EXAMPLE:
tenpl ate Mymessage MyTenpl ate: =
{
conpl emrent (1,3,5), // list of unacceptable integer val ues

fi el d3 not(true) /1 will match false

}

B.1.2.3 Any value

The matching symbol "?* (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, theincoming field evaluates to a single element of the specified type.

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =

fieldl : = 2, /1 will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 := 2, /1 will match true or false

fieldd := 72 /1 will match any sequence of integers

}

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional .

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if the incoming field is absent.

EXAMPLE:
tenpl ate Mymessage MyTenpl ate: =

1.‘ield3 =, /1 will match true or false or omtted field

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values. When used for values of i nt eger or f | oat types (and integer
or float sub-types). A boundary value shall be either:

a) infinity or -infinity;

ETSI

195 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

b) anexpression that eval uates to a specific integer or float value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, the incoming field value is equal to one of the valuesin the range.

When used in templates or template fieldsof char st ri ng oruni versal charstring types, the boundaries
shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid
values of the specified range.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =
{

fieldl := (1 .. 6), // range of integer type

}
/1 other entries for fieldl mght be (-infinity to 8) or (12 to infinity)

B.1.2.6 SuperSet

SuperSet is an operation for matching that shall be used only on values of set of types. SuperSet is denoted by the
keyword super set . A field that uses SuperSet matches the corresponding incoming field if, and only if, the incoming
field contains at least al of the elements defined within the SuperSet, and may contain more. The argument of SuperSet
shall be of the type declared for the field in which the SuperSet mechanism is used.

EXAMPLE:

type set of integer MySet Of Type;
tenpl ate MySet O Type MyTenpl atel : = superset (1, 2, 3);

/1 any sequence of integers matches which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and positions

B.1.2.7 SubSet

SubSet is an operation for matching that can be used only on values of set of types. SubSet is denoted by the
keyword subset .

A field that uses SubSet matches the corresponding incoming field if, and only if, the incoming field contains only
elements defined within the SubSet, and may contain less. The argument of SubSet shall be of the type declared for the
field in which the SubSet mechanismis used.

EXAMPLE:

tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, 3);
/'l any sequence of integers natches which contains zero or one occurrences of the nunbers
/1 1, 2 and 3 in any order and positions

B.1.3 Matching mechanisms inside values

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.

ETSI

196 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

B.1.3.1 Any element

The matching symbol "?* (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), ar ecord of ,aset of oranarray. It shall be used only within values of string types, r ecor d of types,
set of typesand arrays.

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =

1.‘iel d2 := "abcxyz",
field3 :='10???' B, /'l where each "?" may either be 0 or 1
fieldd := {1, ?, 3} // where ? nay be any integer val ue

}

NOTE: The"?'infi el d4 can beinterpreted as AnyValue as an integer value, or AnyElement insidear ecor d
of ,set of orarray. Since both interpretations lead to the same match no problem arises.
B.1.3.1.1 Using single character wildcards

If it isrequired to expressthe "?" wildcard in character strings it shall be done using character patterns
(see clause B.1.5). For example: "abcdxyz", "abcexyz" "abexxyz" etc. will all match pat t er n "abc?xyz". However,
"abcxyz", "abedefxyz", etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), ar ecor d of ,aset of oranarray. The"*" symbol matches the
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =

fi el d2 : = "abcxyz",
field3 :='10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)
fieldd :={*, 2, 3} /1 where "*"may be any nunber of integer values or onmitted

}

var charstring MyStrings[4];
M/PCO. recei ve(M/Strings: {"abyz", *, "abc" });

If a"*" appears at the highest level inside astring, ar ecor d of , set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
elementinsideastring, r ecord of ,set of or array.
B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns
(see clause B.1.5). For example: "abexyz", "abedefxyz" "abcabexyz” etc. will all match pat t er n "abc*xyz".

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on valuesof r ecor d of types. Permutationis
denoted by the keyword per mut at i on. Expressions and AnyElement and AnyElementsOrNone are allowed as
permutation elements. Each element listed in the permutation shall be of the type replicated by ther ecor d of type.

Permutation in place of a single element means that any series of elements is acceptable provided it contains the same
elements as the value list in the permutation, though possibly in a different order. If both permutation and
AnyElementsOrNone are used inside avalue, they shall be evaluated jointly.

ETSI

197 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

AnyElementsOrNone used inside permutation replaces none or any number of elements within the segment of the record
of value matched by permutation. AnyElementsOrNone used inside a permutation shall be evaluated last (when all other
elements of the permutation list have matched an element in the evaluated list already).

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOr None replaces consecutive elements only.
For example, {per nut ati on(1,2,*)} isequivdent to ({*,1,*,2,*} {*,2,*,1,*}), while
{per mut at i on(1,2),*} isequivalent to ({1,2} {2,1},*).

NOTE 2: When AnyElementsOrNoneis used in conjunction with permutation a length attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1). On the contrary, no length attribute shall be added to AnyElementsOrNone used inside a
permutation (but can be applied to the whole permutation instead).

EXAMPLE:

type record of integer MySequenceO Type;

tenpl ate MySequenceXf Type MyTenpl atel := { pernutation (1, 2, 3), 5};
/1 matches any of the follow ng sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
/1 2,3,1,5 3,1,2,55 or 3,2,1,5

tenpl ate MySequenceXf Type MyTenpl ate2 := { pernutation (1, 2, ?), 5 };
/1 matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at l|east once in
/1 other positions

tenpl ate MySequenceXf Type MyTenpl ate3 := { pernutation (1, 2, 3), * };
/1 matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceOf Type MyTenplated4 := { *, permutation (1, 2, 3)};
/'l matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceOf Type MyTenplate5 := { *, pernmutation (1, 2, 3),* };
/'l matches any sequence of integers containing any of the followi ng substrings at any position:
/1 1,2,3 1,3,2; 2,1,3; 2,3,1; 3,1,2 0or 3,2,1

tenpl ate MySequenceOf Type MyTenpl ate6 := { pernutation (1, 2, *), 5 };
/1 matches any sequence of integers that ends with 5 and containing 1 and 2 at least once in
/1 other positions

tenpl ate MySequenceOf Type MyTenpl ate7 := { pernutation (1, 2, 3), * length (0..5)};
/1 matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;
/l 3,1,2 0or 3,2,1

tenpl ate MySequenceOf Type MyTenpl ate9 := { pernutation (1, 2, *) length (3..5), 5 };

/1 matches any sequence of four to six integers that ends with 5 and contains 1 and 2 at | east
/1 once in other position

B.1.4 Matching attributes of values

The following attributes may be associated with matching mechanisms.

B.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values and the number of elementsinaset of,
record of orarray structure. It shall be used only as an attribute of the following mechanisms: AnyValue,
AnyValueOrNone, AnyElement and AnyElementsOrNone (but not inside permutation), permutation, superset and subset.
It can also be used in conjunction with the complement matching mechanism and with thei f pr esent attribute. The
syntax for | engt h can befound in clauses 6.2.3 and 6.3.3.

NOTE: When both the complement and the length restriction matching mechanisms are used for atemplate or
template field, restrictions implied by them shall apply to the template or template field independently.

ETSI

198 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of , record of typesand arraysthe unit of length is the replicated type. The boundaries
shall be denoted by expressions which resolve to specific non-negativei nt eger values. Alternatively, the keyword
i nfinity canbeused asavalue for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses length as an attribute of a symbol matches the corresponding incoming field if, and only
if, the incoming field matches both the symbol and its associated attribute. The length attribute matches if the length of
the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the
case of asingle length value the length attribute matches only if the length of the received field is exactly the specified
value.

It is allowed to use alength restriction in conjunction with the special value omi t , however in this case the length
attribute has no effect (i.e. withomi t it isredundant). With AnyValueOrNoneandi f pr esent it places arestriction
on the incoming value, if any.

EXAMPLE:

tenpl ate Mynessage MyTenpl ate: =

fieldl := conplenment ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,
/1 5 or 6 elenents is accepted provided it is not {4,5} or {1,4,8,9}
= "ab*ab" length(13) // max length of the AnyEl ementsOrNone string is 9 characters

field2 :

B.1.4.2 The IfPresent indicator

Thei f present indicates that a match may be made if an optiona field is present (i.e. not omitted). This attribute
may be used with all the matching mechanisms, provided the typeis declared as optional.

A template field that usesi f pr esent matches the corresponding incoming field if, and only if, the incoming field
matches according to the associated matching mechanism, or if the incoming field is absent.

EXAMPLE:
tenpl ate Mynmessage: MyTenpl at e: =

fiel d2 := "abcd" ifpresent, // matches "abcd" if not omtted

}

NOTE: AnyValueOrNone has exactly the same meaningas? i f present .

B.1.5 Matching character pattern

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match char st ri ng and uni ver sal charstri ng vaues. Inaddition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:
tenpl ate charstring My/Tenpl ate: = pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If it isrequired to interpret any metacharacter literally it should be preceded with the metacharacter "\".

ETSI

199 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE 2:

tenpl ate charstring M/Tenpl ate: = pattern "ab?\ ?xyz*";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters " ?xyz", followed by any number of any characters.

The list of meta characters for TTCN-3 patterns is shown in table B.1. Metacharacters shall not contain whitespaces
except a whilespace preceded by a newline character before or inside a set expression.

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter Description
? Match any character (see notes 1 and 2)
* Match any character zero or more times; shall match the longest possible number
of characters (see example 1 above) (see notes 1 and 2)
\ Cause the following metacharacter to be interpreted as a literal (see note 3).

When preceding a character without defined metacharacter meaning "\" and the
character together match the character following the "\" (see note 4)

[] Match any character within the specified set, see clause B.1.5.1 for more details

- Has a metacharacter meaning inside a pair of square brackets ("[" and "1") only,
except the first and last positions within the bracket. Allows to specify a range of
characters; see clause B.1.5.1 for more details

N Has a metacharacter meaning as the first character following the opening square
bracket inside a pair of square brackets ("[' and "]") only and cause to match any
character complementing the set of characters following this metacharacter;

see clause B.1.5.1 for more details

\q{group,plane,row,cell} Match the Universal character specified by the quadruple
{reference} Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details
\ N{reference} Match any character within the set of characters, where the set is defined by the
referenced definition; see clause B.1.5.4 for more details
\d Match any numerical digit (equivalent to [0-9])
\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])
\t Match the CO control character HT(9) (see ISO/IEC 6429 [11])
\n Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13)
(see ISO/IEC 6429 [11]) (jointly called newline characters)
\r Match the CO control character CR (see ISO/IEC 6429 [11])
\s Match any one of the following CO control characters: HT(9), LF(10), VT(11),

FF(12), CR(13), SP(32) (see ISO/IEC 6429 [11], ISO/IEC 646 [10]) (jointly called
white-space characters)

\'b Match a word boundary (any graphical character except SP or DEL is preceded
or followed by any of the whitespace or newline characters)

\" Match the double guote character

Match the double quote character

| Used to denote two alternative expressions

() Used to group an expression
#(n, m) Match the preceding expression at least n times but no more than m times
(postfix). See clause B.1.5.3 for more details
#n Match the previous expression exactly n times (where n is a single digit) (postfix);
the same as #(n)
+ Match the preceding expression one or several times (postfix); the same as #(1,)

NOTE 1:

NOTE 2:

NOTE 3:

NOTE 4:

Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN
these characters are traditionally used for matching in the sense as specified in this table.

Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d" will match the string "\d"; opening or closing square brackets can
be matched by "\[" and "\]" respectively, etc.

Such use of the metacharacter "\" is deprecated as further metacharacters can be defined later.

ETSI

200 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

B.1.5.1 Set expression

A list of characters enclosed by a pair of "[" and "]" matches any single character in that list. The set expression is
delimited by the"[" "]" symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen "-" as separator. The range consist of the character immediately before the separator, the character immediately
after it and al characters with a character code between the codes of the two bordering characters. A hyphen character
"-" inside the list but without preceding or following character loses its special meaning.

The set expression can also be negated by placing the caret """ character asthe first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen "-" immediately following a negating
caret "' shall be processed as aliteral character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "]" immediately following
an opening square bracket "[" or a caret following the opening square bracket "[" and immediately followed by a
closing square bracket "]" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:
. "1" not at the first position and not immediately following a"" at the first position;
. "-" not at thefirst or last positionsin thelist;
. "N at the first position in the list except when immediately followed by a closing square bracket;
o VM, N, W, A, M\nt, st and M\b';
* "\a{group,planerow,cell}";
o "\N{reference}".

NOTE 1: Embedded lists are not allowed (for examplein pattern "[ab[r-z]]" the second "[" denotes aliteral "[", the
first"]" closes the list and the second "]" causes an error as no related opening bracket in the pattern).

NOTE 2: Toinclude aliteral caret character "~", place it anywhere except in the first position or precede it with a
backslash. To include aliteral hyphen"- ", placeit first or last in the list, or precede it with a backslash.
Toinclude aliteral closing square bracket "1 ", placeit first or precede it with a backdash. If the first
character inthe list isthe caret "~", then the characters"- " and "] " also match themselves when they
immediately follow that caret.

EXAMPLE:
tenpl ate charstring RegExpl:= pattern "[a-z]"; [/ this will natch any character froma to z
tenpl ate charstring RegExp2:= pattern "[”a-z]"; // this will match any character except a to z

tenpl ate charstring RegExp3: = pattern "[AC E][0-9][0-9][0-9] YKE";

/1 RegExp3 will match a string which starts with the letter A or a letter between
/1 Cand E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values it is also possible within the pattern to use references to existing templates, constants,
variables or module parameters. The reference is enclosed withinthe "{" "}" characters and reference shall resolve to
one of the character string types. Contents of the referenced templates, constants or variables shall be handled as a
regular expression. Each expression shall be dereferenced only once.

EXAMPLE 1:
const charstring MyString: = "ab?";

tenpl ate charstring MyTenpl ate: = pattern "{M/String}";

ETSI

201 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

This template would match any character string that consists of the characters "ab", followed by any character. In effect
any character string following the pat t er n keyword either explicitly or by reference will be interpreted following the
rules defined in this clause.

tenpl ate universal charstring MyTenpl atel: = pattern "{MString}de\q{1, 1, 13, 7}";

This template would match any character string which consists of the characters "ab", followed by any character,
followed by the characters "de", followed by the character in 1SO10646-1 with group=1, plane=1, row=13 and cell=7.

If areference expression refers to atemplate, constant or variable which contains one or more reference expressions,
then the references in the referred template, constant or variable shall recursively be dereferenced before inserting their
contents into the referring pattern.

EXAMPLE 2:

const charstring MyConst2 : = pattern "ab";

tenpl ate charstring RegExpl := pattern "{M/Const2}";
/1l matches the string "ab"

tenpl ate charstring RegExp2 : = pattern "{RegExpl}{RegExpl}";
/1 matches the string "abab"

tenpl ate charstring RegExp3 := pattern "c{RegExp2}d";
/1 matches the string "cababd"

tenpl ate charstring RegExp4 := pattern "{Reg";

tenpl ate charstring RegExp5 := pattern "Expl}";

tenpl ate charstring RegExp6 := pattern "{RegExp4}{RegExp5}";
/1 matches the string "{RegExpl}" only (i.e. shall not be handl ed as a reference expression
/1 to the tenpl ate RegExpl)

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n" or "+".. The form "#(n, m)" specifies that the preceding expression must
be matched at least n times but not more than m times. The metacharacter postfix "#(n,)" specifies that the preceding
expression must be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not
more than m times. Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression must be matched
exactly n times (they are equivalent to "#(n, n)"). In the form "#n" n shall be asingle digit. The metacharacter postfix
"+" denotes that the preceding expression must be matched at least 1 time (equivalent to "#(1,)").

EXAMPLE:

tenpl ate charstring RegExp4:= pattern "[a-z]#(9, 11)"; [// match at least 9 but no nore than 11
/1 characters froma to z

tenpl ate charstring RegExp5a: = pattern "[a-z]#(9)"; /1 match exactly 9

/1l characters froma to z
tenpl ate charstring RegExp5b: = pattern "[a-z]#9"; /1 match exactly 9

/1l characters froma to z
tenpl ate charstring RegExp6: = pattern "[a-z]#(9,)"; /1 match at least 9

/1l characters froma to z
tenpl ate charstring RegExp7:= pattern "[a-z]#(, 11)"; /1 match no nore than 11

/1l characters froma to z
tenpl ate charstring RegExp8: = pattern "[a-z]+"; /1 match at least 1

/1 characters froma to z,

B.1.5.4 Match a referenced character set

A notation of the form "\ N{ reference} ", where reference is denoting a one-character-length template, constant, variable
or module parameter, matches the character in the referenced value or template.

Referencing atemplate, constant, variable or module parameter that is not of length 1 shall cause an error.

A notation of the form "\ N{ typereference} ", where "typereference” isareferencetoachar st ri ng or uni ver sal
char st ri ng type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of charactersis not atrue subset of values allowed by the type definition of
the template or template field for which the character pattern is used, shall not be treated as an error (but
€.g. matching never can occur if the two sets do not overlap).

ETSI

202 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

NOTE 2: \N{char stri ng} isequivaent to ? when the |atter is applied to a template or template field of
charstringtypeand\N{uni ver sal charstri ng} isequivaent to ?when the latter isapplied to
atemplate or template field of uni ver sal char st ri ng type (but causes an error if applied to a
template or template field of char st ri ng type).

EXAMPLE:

type charstring MyChar Range ("a".."z");
type charstring MyCharlList ("a", "z");
const MyChar Range nyCharR := "r";

tenpl ate charstring nyTenpPattl := pattern "\N { nyCharR }";
/1 nyTenpPattl shall natch the string "r" only

tenpl ate charstring nyTenpPatt2 := pattern "\N { MyChar Range }";
/'l nyTenpPatt2 shall nmatch any string containing a single character froma to z

tenpl ate MyChar Range nyTenpPatt3 := pattern "\N { MyCharList }";
/1 nyTenpPatt3 and shall natch strings "a" and "r" only

tenpl ate MyCharlList nyTenpPatt4 := pattern "\N { MyChar Range }";
/1 nyTenpPatt4 shall nmatch strings "a" and "r" only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: areferenced type, template, constant, variable or module parameter of the type

char st ri ng aways can be used in the pattern specification of atemplate or template field of uni ver sal

char st ri ng type; areferenced type, template or value of thetypeuni ver sal char stri ng canbeusedinthe
pattern specification of atemplate or template field of char st ri ng typeif al characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding charactersin the

char st ri ng type (see definition of corresponding charactersin clause 6.3.1).

ETSI

203 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex C (normative):
Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures

Error situations (e.g. input parameter is out of the allowed range, input parameter is of awrong type, input value
contains improper character etc.) for which no explicit exception-handling rule is defined in the relevant clauses of this
annex shall cause a TTCN-3 compile-time or run-time error. Which error situation causes compile-time and which one
run-time error is atool implementation option.

C.1 Integer to character

i nt2char (i nteger value) return charstring

Thisfunction convertsani nt eger value in the range of 0 to 127 (8-bit encoding) into a single-character-length
char st ri ng value. The integer value describes the 8-bit encoding of the character.

C.2 Integer to universal character

i nt 2uni char (i nteger value) return universal charstring

Thisfunction convertsani nt eger valueinthe range of 0to 2 147 483 647 (32-bit encoding) into a
single-character-length uni ver sal char st ri ng value. The integer value describes the 32-bit encoding of the
character.

C.3 Integer to bitstring

int2bit(in integer value, in integer length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t st ri ng value. The resulting string is| engt h bits
long.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positive base 2i nt eger vaue. The
rightmost hit isleast significant, the leftmost bit is the most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer hits than specified in the | engt h parameter, then the
bi t st ri ng shall be padded on the left with zeros.

C.4 Integer to hexstring

int2hex(in integer value, in integer length) return hexstring

Thisfunction convertsasinglei nt eger valueto asinglehexst ri ng value. Theresulting string is| engt h
hexadecimal digitslong.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in the| engt h parameter, then the hexst r i ng shall be padded on the left with zeros.

ETSI

204 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

C.5 Integer to octetstring

int2oct(in integer value, in integer length) return octetstring

Thisfunction convertsasinglei nt eger valuetoasingleoct et st ri ng value. Theresulting string isl engt h
octets long.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit isleast significant, the leftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified inthel engt h parameter, then the hexst r i ng shall be padded on the left with
ZEros.

C.6 Integer to charstring

int2str(integer value) return charstring

This function converts the integer value into its string equivalent (the base of the return string is always decimal).

EXAMPLE:

int2str(66) /1 will return the charstring val ue "66"
int2str(-66) /1 will return the charstring value "-66"
int2str(0) /1 will return the charstring value "0"

C.7 Integer to float
int2float (integer value) return float
Thisfunction convertsani nt eger valueinto af | oat value.

EXAMPLE:

int2float(4) = 4.0

C.8 Float to integer

float2int (float value) return integer

Thisfunction convertsaf | oat valueintoani nt eger value by removing the fractional part of the argument and
returning the resulting i nt eger .

EXAMPLE:

f1oat 2i nt (3. 12345E2) = fl oat 2i nt (312. 345) = 312

C.9 Character to integer

char2int(charstring value) return integer

This function converts a single-character-length char st r i ng value into an integer value in the range of 0to 127. The
integer val ue describes the 8-bit encoding of the character.

ETSI

205 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

C.10 Character string to octetstring

char2oct (charstring invalue) return octetstring

Thisfunction convertsachar stri ngi nval ue toanoct et st ri ng. Each octet of theoct et st ri ng will
contain the | SO/IEC 646 [10] codes (according to the IRV) of the appropriate characters of i nval ue.

EXAMPLE:

char2oct ("Tinky-Wnky") = '54696E6B792D57696E6B79' O

C.11 Universal character to integer

uni char 2i nt (uni versal charstring value) return integer

This function converts a single-character-length uni ver sal char st ri ng valueinto an integer value in the range of
0to 2147 483 647. The integer value describes the 32-bit encoding of the character.

C.12 Bitstring to integer
bit2int(bitstring value) return integer
Thisfunction convertsasinglebi t st ri ng valueto asinglei nt eger value.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positive base 2i nt eger vaue. The
rightmost bit is least significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

C.13 Bitstring to hexstring

bi t2hex (bitstring value) return hexstring

Thisfunction convertsasinglebi t st ri ng valueto asingle hexst ri ng. Theresulting hexst r i ng represents the
samevalueasthebi t st ri ng.

For the purpose of this conversion, abitstring shall be converted into a hexstring, where the bitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit as follows:

'0000B - '0'H, '0001B - 'I'H, '0010'B - "2'H, '0011B - '3'H, '0100B - '4'H, '0101B - '5'H,

'0110B - '6'H, '0111B - '7'H, '1000B - '8'H, '1001B - '9'H, '1010B - 'A'H, '1011B - 'B'H,

'1100B - 'CH, '1101B - 'D'H, '1110B - 'E'H, and '1111'B - 'FH.

When the leftmost group of bits does contain less than 4 bits, this group isfilled with '0'B from the left until it contains

exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

EXAMPLE:

bi t 2hex ('111010111'B)= '1D7'H

C.14 Bitstring to octetstring

bit2oct (bitstring value) return octetstring

Thisfunction convertsasinglebi t st ri ng valueto asingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthebi t st ri ng.

ETSI

206 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

For the conversion the following holds: bit2oct(value)=hex2oct(bit2hex(value)).

EXAMPLE:

bi t2oct ('111010111'B)= '01D7' O

C.15 Bitstring to charstring

bit2str (bitstring value) return charstring

Thisfunction convertsasinglebi t st ri ng vauetoasinglechar st ri ng. Theresultingchar stri ng hasthe
samelength asthe bi t st ri ng and contains only the characters'0" and '1".

For the purpose of thisconversion, abi t st ri ng should be converted into achar st ri ng. Each bit of the
bi t stri ng isconverted into acharacter '0' or '1' depending on the value 0 or 1 of the bit. The consecutive order of
charactersin theresulting char st ri ng isthe same asthe order of bitsinthebi t stri ng.

EXAMPLE:

bit2str ('1110101'B) will return "1110101"

C.16 Hexstring to integer

hex2i nt (hexstring value) return integer
Thisfunction convertsasingle hexst ri ng valueto asinglei nt eger value.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values 0 to 15 respectively.

C.17 Hexstring to bitstring

hex2bit (hexstring value) return bitstring

Thisfunction convertsasingle hexst ri ng valueto asinglebi t st ri ng. Theresulting bi t st ri ng represents the
same value asthehexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into abi t st ri ng, where the hex digits of the
hexst ri ng are converted in groups of hits as follows:

'OH - '0000B, '1'H - '0001'B, '2H - '0010'B, '3'H - '0011'B, '4H - '0100B, '5'H - '0101'B,
'6'H - '0110B, '7H - '0111'B, '8H - '1000'B, '9H - '1001'B, 'A'H - '1010B, 'B'H - '1011'B,
'CH - '1100B, 'D'H - '1101'B, 'EH - '1110B, and'FH - '1111'B.

The consecutive order of the groups of 4 bitsin the resulting bi t st ri ng isthe same as the order of hex digitsin the
hexstri ng.

EXAMPLE:

hex2bit ('1D7' H = '000111010111'B

C.18 Hexstring to octetstring

hex2oct (hexstring value) return octetstring

Thisfunction convertsasingle hexst ri ng valuetoasingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthe hexst ri ng.

ETSI

207 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

For the purpose of this conversion, ahexst ri ng shall be converted into aoct et st ri ng, wherethe

oct et st ri ng contains the same sequence of hex digitsasthe hexst r i ng when the length of thehexst ri ng
modulo 2 is 0. Otherwise, the resulting oct et st ri ng contains 0 as leftmost hex digit followed by the same sequence
of hex digitsasinthehexst ri ng.

EXAMPLE:

hex2oct ('1D7' H = '01D7' O

C.19 Hexstring to charstring

hex2str (hexstring value) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, ahexst r i ng should be converted into achar st r i ng. Each hex digit of the
hexst ri ng isconverted into acharacter '0' to '9' and 'A' to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin the resulting char st ri ng isthe same as the order of digitsin the

hexstri ng.

EXAMPLE:

hex2str ('AB801'H) will return "AB801"

C.20 Octetstring to integer

oct2int(octetstring value) return integer
Thisfunction convertsasingleoct et st ri ng valueto asinglei nt eger value.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as apositive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the |eftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively.

C.21 Octetstring to bitstring

oct2bit (octetstring value) return bitstring

Thisfunction convertsasingleoct et st ri ng valueto asinglebi t st ri ng. Theresulting bi t st ri ng represents
thesamevalueastheoct et st ri ng.

For the conversion the following holds: oct2bit(val ue)=hex2bit(oct2hex(val ue)).

EXAMPLE:

oct2bit ('01D7' O ='0000000111010111' B

C.22 Octetstring to hexstring

oct 2hex (octetstring value) return hexstring

Thisfunction convertsasingleoct et st ri ng valueto asingle hexst ri ng. Theresulting hexst r i ng represents
the samevalueastheoct et stri ng.

For the purpose of this conversion, aoct et st ri ng shall be converted into ahexst r i ng containing the same
sequence of hex digitsastheoct et stri ng.

ETSI

208 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:

oct 2hex ('1D74' O = '1D74'H

C.23 Octetstring to character string

oct2str (octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toanchar st ri ng representing the string equivalent of the
input value. Theresulting char st ri ng shall have the same length asthe incoming oct et st ri ng.

For the purpose of this conversion each hex digit of i nval ue isconverted into acharacter '0', '1', '2', '3, '4','5', '6', '7,
'8,'9", ‘A", 'B','C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of charactersin the resulting
charstring isthesameasthe order of hex digitsintheoct et stri ng.

EXAMPLE:

oct2str ('4469707379' QO = "4469707379"

C.24 Octetstring to character string, version Il

oct2char (octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toachar st ri ng. Theinput parameter i nval ue shal not
contain octet values higher than 7F. Theresulting char st r i ng shall have the same length as the input

oct et st ri ng. The octets are interpreted as | SO/IEC 646 [10] codes (according to the IRV) and the resulting
characters are appended to the returned value.

EXAMPLE:
oct 2char ('4469707379' O = "Di psy"

NOTE: The character string returned may contain non-graphical characters, which can not be presented between
the double quotes.

C.25 Charstring to integer

str2int(charstring value) return integer
Thisfunction convertsachar st ri ng representing ani nt eger valuetothe equivaenti nt eger .
EXAMPLE:
str2int("66") /1 will return the integer value 66
str2int("-66") // will return the integer value -66
str2int("abc") // wll generate conpiler or testcase error

str2int("0") /1 will return the integer value O

C.26 Character string to octetstring

str2oct (charstring invalue) return octetstring
This function converts a string of thetype charstri ngtoanoctetstring. Thestringi nval ue shall contain
even number characters and each shall be one of the'0', '1', '2, '3, '4', '5', '6', '7', '8, '9", 'a, 'b', 'c, 'd', '€ 'f','A", 'B', 'C,
'D', 'E' or 'F graphical charactersonly. The resulting oct et st ri ng will have the same length as the incoming
charstring.

ETSI

209 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

EXAMPLE:

str2oct ("54696E6B792D57696E6B79") = ' 54696E6B792D57696E6B79' O

C.27 Character string to float

str2float (charstring value) return float

This function converts a char string comprising a floating-point number into afloat value. The format of the number in
the charstring shall follow rulesin clause 6.1.0 with the following exceptions:

leading zeros are allowed,
leading '+' sign before positive valuesis allowed,
'-0.0"is allowed.

EXAMPLE:

str2float("12345.6") // is the same as str2float("123. 456E+02")

C.28 Length of string type

| engt hof (any_string_type value) return integer

This function returns the length of avaluethat isof typebi t st ri ng, hexstri ng, oct et stri ng, or any character
string. The units of length for each string type are defined in table 4 in the main body of the present document.

The length of an universal charstring shall be calculated by counting each combining character and hangul syllable
character (including fillers) on its own (see ISO/IEC 10646 [[8], clauses 23 and 24).

EXAMPLE:

| engt hof (' 010'B) // returns 3
lengthof ("F3'H) // returns 2
lengthof ("F2' O // returns 1

I engt hof (universal charstring : "Length_of_Exanple") // returns 17

C.29 Number of elements in a structured value

si zeof (any_type val ue) return integer

This function returns the actual number of elements of a module parameter, constant, variable or t enpl at e of a
record,recordof ,set,set of typeor array (seenote). Inthecaseof record of andset of values,
templates or arrays, the actual value to be returned is the sequential number of the last defined element (index of that
element plus 1).

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/val ues are taken into account at determining the return value.

EXAMPLE:

/1 Gven
type record MyPDU
{ bool ean fieldl optional,
integer field2
s

tenplate MyPDU MTenpl ate
{ fieldl omt,
field2 5

ETSI

210 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

H
var integer nuntl enents;
/1 then
nuntl enents : = sizeof (MyTenplate); // returns 1
/1 Gven
type record | ength(0..10) of integer MyList;

var MyList MyRecordVar;
M/RecordVar := { 0, 1, omit, 2, omt };

/1 then
nunkl ements : = sizeof (MyRecordVar);
/1 returns 4 without respect to the fact, that the elenent MyRecordVar[2] is undefined

C.30 Number of elements in a structured type

si zeof type(any_type value) return integer

This function returns the declared number of elements of a module parameter, constant, variable or t enpl at e of a
recordof or set of typeor array (seenote). Thisfunction shall be applied to values of types with length
restriction. The actual number to be returned is the sequential number of the last element without respect to whether its
valueis defined or not (i.e. the upper length index of the type definition on which the parameter of the function is based
on plus 1).

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

EXAMPLE:

/1 Gven

type record of integer MyPDUL,;

type set length(1l..8) of integer My/PDU2;
type record | ength(10) of integer M/PDUS;

var MyPDUL MyRecor dOf Var 1;
var MyPDU2 MyRecor dOf Var 2;
var MyPDU3 MyRecor dOf Var 3;

var integer nuntl enents;

/1 then

nunkl ement s
nunEl enent s :
nuntl enent s :

si zeof type(MyRecordOVar1); // returns error as M/PDUl i s not constrained
si zeof type(MyRecordOfVar2); // returns 8
si zeof type(MyRecordOfVar3); // returns 10

C.31 The IsPresent function

i spresent (any_type val ue) return bool ean

Thisfunction is alowed for record and set types only and returnsthe valuet r ue if and only if the value of the
referenced field is present in the actual instance of the referenced data object. The argument toi spr esent shall bea
reference to afield of arecord or set type.

/1 Gven
type record MyRecord
{ bool ean fieldl optional,
integer field2

}
/1 and given that M/PDU is a tenplate of M/Record type
/1 and received_PDU is al so of MyRecord type
/1 then
MyPort.recei ve(M/PDU) -> val ue recei ved_PDU
i spresent (recei ved_PDU. fi el d1)
Il returns true if fieldl in the actual instance of MyPDU is present

ETSI

211 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

C.32 The IsChosen function

i schosen(any_type val ue) return bool ean

Thisfunction returnsthe valuet r ue if and only if the data object reference specifies the variant of the uni on type that
is actually selected for a given data object.

EXAMPLE:

/1 Gven
type uni on MyUni on
{ PDU_t ypel p1,
PDU_t ype2 p2,
PDU_t ype p3
}

/1 and given that MWPDU is a tenplate of MyUnion type

/1 and received_PDU is al so of MyUnion type

/1 then

MyPort . receive(M/PDU) -> val ue recei ved_PDU

i schosen(recei ved_PDU. p2)

/1 returns true if the actual instance of MyPDU carries a PDU of the type PDU type2

C.33 The Regexp function

regexp (any_character_string_type instr, any_character_string_type expression, integer groupno)
return any_character_string_type

This function returns the substring of the input character stringi nst r , which is the content of n-th group matching to
theexpr essi on. Ininput stringi nst r may be of any character string type. The type of the character string returned
isthe root type of i nst r . The expression is a character pattern as described in clause B.1.5. The number of the group
to be returned is specified by gr oupno, which shall be a positive integer. Group numbers are assigned by the order of
occurrences of the opening bracket of a group and counted starting from 0 by step 1. If no substring fulfilling all
conditions (i.e. pattern and group number) is found within the input string, an empty string is returned.

EXAMPLE:

/1 Gven

var charstring nypattern2 :="

var charstring nyinput :=" date: 2001-10-20 ; msgno: 17; exp "

var charstring nypattern :="[/t]#(,)date:[\d\-]#(,);[/t]#(,)nmsgno: (\d#(1,3)); (exp)#(0,1)"

/1 Then the expression
var charstring nystring := regexp(nyinput, nypattern,1)
//will return the value "17".

C.34 The Substring function

substr (any_string_type value, in integer index, in integer returncount) return
i nput_string_type

This function returns a substring from avalue that is of typebi t st ri ng, hexstri ng, oct et stri ng, or any
character string. The type of the substring is the root type of the input value. The starting point of substring to returnis
defined by the second in parameter (index). Indexing starts from zero. The third input parameter defines the length of
the substring to be returned. The units of length are as defined in table 4.

EXAMPLE:
substr ('00100110'B, 3, 4) /1 returns '0011'B
substr (' ABCDEF' H, 2, 3) /l returns 'CDE H
substr ('01AB23CD O 1, 2) /'l returns ' AB23' O

substr ("My nanme is JJ", 11, 2) // returns "JJ"

ETSI

212 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

C.35 The Replace function

replace (in any_string_type str, in integer ind, in integer len, in any_string_type repl)
return any_string_type

This function replaces the substring of value st r atindex i nd of length | en with the string valuer epl and returns
the resulting string. st r shall not be modified. If | en isO thestringr epl isinserted. If i nd isO, r epl isinserted at
thebeginning of str. Ifi ndisl engt hof (str),repl isinsertedattheendof str.str andr epl shal beof the
same string type and shall have asbasetypebi t st ri ng, hexstri ng, oct et stri ng, or any character string. The
returned string is of the ssme typeasst r andr epl . Note that indexing in strings starts from zero.

The following error cases will lead to an error at compile or runtime:
. str orrepl arenot of string type;
. str andr epl areof different type;
. i nd islessthan O or greater than| engt hof (str);
. | en islessthan O or greater than| engt hof (str);

. i nd+l en isgreater than| engt hof (str).

EXAMPLE:
replace ('00000110'B, 1, 3, '111'B) // returns '01110110'B
replace (' ABCDEF' H, 0, 2, '123'H) [/ returns '123CDEF H

replace ('01AB23CD O 2, 1, 'FF96' O /1 returns '01ABFF96CD O
replace ("My narme is JJ", 11, 1, "xx") [/ returns "My nane is xxJ"

replace ("My nane is JJ", 11, 0, "xx") [/ returns "My nane is xxJJ"

replace ("M name is JJ", 2, 2, "x") /'l returns "Myxame is JJ",

replace ("My nane is JJ", 12, 2, "xx") [/ produces test case error
replace ("My nanme is JJ", 13, 2, "xx") [/ produces test case error
replace ("My nane is JJ", 13, 0, "xx") [/ returns "My nane is JJIxx"

C.36 The random number generator function

rnd ([float seed]) return float

Ther nd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized by means of an optional seed value. Afterwards, if no new seed is provided, the last generated
number will be used as seed for the next random number. Without a previous initialization a value calculated from the
system time will be used as seed value whenr nd isused the first time.

NOTE: Eachtimethernd functionisinitialized with the same seed value, it shall repeat the same sequence of
random numbers.

To produce a random integers in a given range, the following formula can be used:

f | oat 2i nt (i nt 2f | oat (upper bound - | ower bound +1)*rnd()) + | owerbound
/1 Here, upperbound and | ower bound denote highest and | owest nunber in range.

ETSI

213 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex D (informative):
Library of Useful Types

D.1 Limitations

Names of types added to this library should be unique within the whole language and within the library (i.e. should not
be one of the names defined in annex C. Names defined in thislibrary should not be used by TTCN-3 users as
identifiers of other definitions than given in this annex.

NOTE: Thereforetype definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

D.2 Useful TTCN-3 types

D.2.1 Useful simple basic types

D.2.1.0 Signed and unsigned single byte integers

These types supports integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned
type. The value notation for these types are the same as the value notation for the integer type. Values of these types
shall be encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byt e (-128 .. 127) with { variant "8 bit" };

type integer unsi gnedbyt e (0 .. 255) with { variant "unsigned 8 bit" };

D.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types are the same as the value notation for the integer type. Vaues of these
types shall be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsi gnedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

214 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

D.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to
4 294 967 295 for the unsigned type. The value notation for these types are the same as the value notation for the
integer type. Vaues of these types shall be encoded and decoded as they were represented on four bytes within the
system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ong (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsi gnedl| ong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

D.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from O to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these types are the same
as the value notation for the integer type. Values of these types shall be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ongl ong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsi gnedl| ongl ong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

D.2.1.4 IEEE 754 floats

These types support the ANSI/IEEE Standard 754 [13] for binary floating-point arithmetic. The type |IEEE 754 [13]
float supports floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign hit. The type
|EEE 754 [13] double supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and asign
bit. The type IEEE 754 [13] ext f | oat supports floating-point numbers with base 10, minimal exponent of size 11,
minimal mantissa of size 32 and asign bit. The type |IEEE 754 [13] ext doubl e supports floating-point numbers with
base 10, minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Vaues of these types shall be encoded and decoded according to the IEEE 754 [13] definitions. The value notation for
these types are the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type fl oat | EEE754f | oat with { variant "I EEE754 float" };

type fl oat | EEE754doubl e with { variant "|EEE754 double" };

type fl oat | EEE754ext f | oat with { variant "|EEE754 extended float" };
type fl oat | EEE754ext doubl e with { variant "|EEE754 extended double" };

ETSI

215 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

D.2.2 Useful character string types

D.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 typeuni ver sal char st ri ng (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of this type shall entirely
(e.g. each character of the value individually) be encoded and decoded according to the UCS Transformation Format 8
(UTF-8) as defined in annex R of ISO/IEC 10646 [[8]. The value notation for thistype is the same as the val ue notation
for theuni ver sal charstri ng type.

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

D.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [[8]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of thistype shall entirely (e.g. each character of the value
individually) be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [[8]). The value notation for this type is the same as the value notation for the uni ver sal
charstring type.

NOTE: Thetype "bmpstring" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring bnpstring (char (0,0,0,0) .. char (0,0, 255,255))
with { variant "UCS-2" };

D.2.2.2 UTF-16 character string "utf16string"

Thistype supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
I|SO/IEC 10646 [[8]). Its distinguished values are zero, one, or more characters from this set. Values of this type shall
entirely (e.g. each character of the value individually) be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of 1SO/IEC 10646 [[8]. The value notation for this type is the same asthe
value notation for theuni ver sal charstri ng type.

NOTE: Thetype"utfl6string" supports a subset of the TTCN-3 type uni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring utfl6string (char (0,0,0,0) .. char (O, 16, 255, 255))
with { variant "UTF-16" };

D.2.2.3 ISO/IEC 8859 character string "iso8859string"

Thistype supports all charactersin all alphabets defined in the multiparty standard 1 SO/IEC 8859 (see annex G). Its
distinguished values are zero, one, or more characters from the | SO/IEC 8859 character set. Values of this type shall
entirely (e.g. each character of the value individually) be encoded and decoded according to the coded representation as
specified in ISO/IEC 8859 (an 8-hit coding). The value notation for this type is the same as the value notation for the
uni versal charstring type

NOTE 1: Thetype"is08859string" supports a subset of the TTCN-3 typeuni ver sal charstri ng.

NOTE 2: In each ISO/IEC 8859 a phabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the ISO/IEC 646 [10] character set. Hence all extralanguage specific characters are
defined for the upper part of the character table only (positions 10/00 to 15/15). Asthe "iso8859string"
typeis defined as a subset of the TTCN-3 type universal charstring, any coded character representation of
any 1SO/IEC 8859 alphabets can be mapped into an equivalent character (a character with the same coded
representation when encoded on 8 bits) from the Basic Latin or Latin-1 Supplement character tables of
ISO/IEC 10646 [[8].

ETSI

216 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

The type definition for thistypeis:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

D.2.3 Useful structured types

D.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6

(see annex G). It is specified by an integer part, adecimal point and a fraction part. The integer and fraction parts both
consist of a sequence of decimal (base 10) digits. The number of digitsis stored in "digits' and the size of the fraction
partisgivenin "scale". The digitsitself are stored in "value ". Vaue notation for this type is the same as the value
notation for the record type. Values of this type shall be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for thistypeis:

type record IDLfixed {
unsi gnedshort digits,
short scal e,
charstring value_

}
with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

D.2.4 Useful atomic string types

D.2.4.1 Single ISO 646 character type

A type whose distinguished values are single characters of the version of ISO/IEC 646 [10] complying to the
International Reference Version (IRV) as specified in clause 8.2 of ISO/IEC 646 [10] (see aso note 1 to clause 6.1.1).

The type definition for thistypeis:
type charstring char length (1);

NOTE 1: The name of this useful type isthe same asthe TTCN-3 keyword used to denote uni ver sal
char st ri ng valuesin the quadruple form. In general it is disallowed to use TTCN-3 keywords as
identifiers. The "char" useful typeisasolitary exception and allowed only for backward compatibility
with previous versions of the TTCN-3 standard.

NOTE 2: The specia string "8 bit" defined in clause 27.5 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.
D.2.4.2 Single universal character type
A type whose distinguished values are single characters from |SO/IEC 10646 [[8].
The type definition for thistypeis:

type universal charstring uchar length (1);

NOTE: Specia strings defined in clause 27.5 except "8 bit" may be used with this type to specify agiven
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

ETSI

217

D.2.4.3 Single bit type
A type whose distinguished values are single binary digits.

The type definition for thistypeis:

type bitstring bit length (1);

D.2.4.4 Single hex type
A type whose distinguished values are single hexadecimal digits.

The type definition for thistypeis:

type hexstring hex length (1);

D.2.4.5 Single octet type

A type whose distinguished values are pairs of hexadecimal digits.

The type definition for thistypeis:

type octetstring octet length (1);

ETSI

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

218 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex E (informative):
Operations on TTCN-3 active objects

This annex describes in a short form the semantics of operations on active objectsin TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

. the states being named and identified as nodes;
. theinitial state being identified by an incoming arrow;
. transitions between states connecting two states (not necessarily different states) and identified as arrows;

. transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example atest case error), both are separated by '/":

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as aresulting condition means testcase error (written in bold);

- null as a resulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of atransition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [3]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [3] the latter takes precedence.

E.1 Test components

E.1.1 Test component references

Variables of test component types, thesel f and nt ¢ operations are used to reference test components. Thest art ,
st op, done and r unni ng operations are not directly applied on test components but on component references. The
test system shall decide if the operation requested shall effect the component object itself or other action is appropriate
(e.0. an error occurs when the reference of a stopped PTC is used in a component start operation). Thecr eat e
operation used to create PTCs returns a unique reference to the created PTC, which istypically bound to a test
component variable. The behaviour related to test component variables themselvesis shown in figure E.1.

ETSI

219 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

) donelerror killed/error
variable running/error alivelerror
declaration stop/error kill/error
start/error
Uninitialized N Error
(see note)

| — “assignment of the return value of cr eat e"/"references created test component”

"assignment of the return value of cr eat e"/"references created
test component” (and "looses the previous reference™)

Initialized

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

case terminates and the overall test case result will be error.

Figure E.1: Handling of test component references

E.1.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or dive-type. Non-alive type PTCs can be in Inactive, Running and Killed states. Their

dynamic behaviour is shown in figure E.2.

ETSI

220 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

create/creation of anon-aive PTC

done/no match killed/no match

|nactive running/false aliveltrue

/—| start/"component executes function”

done/no match killed/no match
running/true alive/true

/—| "run-time error"/error

Error

(see note 3)

stop/" component terminates” (se note 2a)
Kill/"component terminates” (see note 2b)

stop/" component terminates” (see note 1a)
kill/"component terminates” (seenote 1b) start/error
"return from function"/"component terminates’

"completion of function"/"component terminates’

start/error

stop/null (seenote2a) Kill/null (see note 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in error
cases).

NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases)only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure E.2: Dynamic behaviour of non-alive type PTCs

ETSI

221 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shown in
figure E.3.

create/creation of anon-aive PTC

done/no match killed/no match
running/false aliveltrue

Inactive

/—| start/"component executes function”

done/no match killed/no match
running/true alive/true

/—| "run-time error"/error

Error

(see note 3)

stop/" component terminates” (se note 2a)
Kill/"component terminates” (see note 2b)

stop/" component terminates” (see note 1a)
kill/"component terminates” (seenote 1b) start/error
"return from function"/"component terminates’

"completion of function"/"component terminates’

start/error

stop/null (seenote2a) Kill/null (see note 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component.
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in error
cases).

NOTE 2: (a) Stop can be from another test component only.
(b) Kill can be from another test component or from the test system (in error cases) only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure E.3: Dynamic behaviour of alive-type PTCs

E.1.3 Dynamic behaviour of the MTC

The MTC can bein Running or Killed state. The dynamic behaviour of the MTC is shown in figure E.4.

execute/"createsthe MTC" and "starts the testcase™

(see note 3)

stop/"'component terminates” (seenote 1a)
kill/"component terminates” (see note 1b)
"completing of the test case"/"component terminates’

done/no match killed/no match
running/true aliveltrue

start/error

stopfrom another component/er ror
kill from another component/error
"run-time error"/error

Killed

(see note 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component.
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in error
cases).

NOTE 2: All remaining PTCs shall be killed as well and the testcase terminates.

NOTE 3: Whenever the MTC enters its error state, the error verdict is assigned to its local verdict, the test case
terminates and the overall test case result will be error.

Figure E.4: Dynamic behaviour of the MTC

ETSI

222 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

E.2 Timers

Timers can bein Inactive, Running or Expired state. The dynamic behaviour of atimer is shown in figure E.5.

Test component timers: "component created"”;
Other local timers: "testcase, function, altstep,
statement block entered or default activated" stop/null
running/false
read/0.0

timeout/no match

stop/stop timer

timeout/match
stop/null

start/"timer starts with
non-negative duration”

start/"timer starts with non-negative duration"

N
start/"timer restarts with non-negative duration

running/true
read/elapsed time
timeout/no match

Running

(see note 1)

(timer expiry)/null

running/false
read/0.0

(see note 3)

(see note 2)

start with negative duration/error

NOTE 1: For any scope unit, all timers in that scope being in Running state constitute the running-timer list.
NOTE 2: For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

NOTE 3: Whenever a timer enters its error state, the test component it belongs to enters also its error state, assigns

a local error verdict, the test case terminates and the overall test case result will be error.

Figure E.5: Dynamic behaviour of timers

E.3 Ports

Ports can bein Started or Stopped state. Astheir behaviour israther complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop, and clear) and of communication operations (i.e. send, receive, call, getcall,
raise, catch, reply, getreply, and check). Astrigger is a shorthand for an alt together with receiveit is not considered

here.

E.3.1 Configuration Operations

The port configuration operations (i.e. connect, disconnect, map, and unmap) are indifferent to the state of the port.
They show the behaviour shown in figure E.6.

ETSI

223 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

connect/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")

then "store link to other port"

(if ("link not yet established")

then "establish thislink" else null)

unmap/if ("link established") then "remove thislink" else null

create/"creates

test component™
(see note 1)

Error connect/if ("illegal connection") then error

(seenote 2) map/if ("illegal connection™) then "store link to other port" error
connect/if ("legal connection™)

then (if ("link not yet established")
then "establish thislink" else null)
disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

unmap/if ("link established") then "remove thislink" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure E.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remainsin the Started or Stopped state.

E.3.2 Port Controlling Operations

Theresults of port controlling operations are shown in figure E.7.

create/"creates

test component"
(see note)

clear/"clears queue"
start/"clears queue”

halt/"puts halt marker
at the end of the queue"

ﬂ stop/null

start/"clears queue" and A start/"clears queue”

"removes halt maker"
halt/"puts halt
marker at the

top of the queue"

clear/"clears queue"
stop/null

clear/"clears queue" and
"puts halt marker at the
top of the queue”
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure E.7: Dynamic behaviour of ports: port controlling operations

ETSI

224 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

E.3.3 Communication Operations

The results of the communication operations send, receive, cal, getcall, raise, catch, reply, getreply, check are shownin

figure E.8.

receive/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
getcall/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue"
elseno match
getreply/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
catch/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue”
elseno match
check/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match
else no match

NOTE 1:

send/if ("unique receiver") then "transmit" (see note 2)
receiveif ("top queue element matches")
then match and "remove from queue”
elseno match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue"
else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue"
else no match
raise/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue’
elseno match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component”
(see note 1)

send/if ("ambiguous" or "no receiver") error (see note 2)
call/if ("ambiguous” or "no receiver") error (seenote2)

reply/if ("ambiguous' or "no receiver") error (seenote 2)
raise/if ("ambiguous' or "no receiver") error (seenote 2)

Error

(see note 3)

send/error
call/error

replylerror
raiselerror

receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure E.8: Dynamic behaviour of ports: communication operations

ETSI

225 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex F (informative):
Deprecated language features

F.1 Group style definition of module parameters

The previous version of the standard required to use a group-like syntax shown in the example below to declare module
parameters. The module parameter syntax has been unified with constant and variable declaration syntax in this version
but group-like syntax is not fully removed to leave atime period for tool providers and users to change from the old
syntax to the new one. The group-like syntax of module parameter declarationsis planned to be fully removed in the
next published edition of the standard.

EXAMPLE (superfluous syntax):
nodul e MyModul eW t hPar anet er s

modul epar { integer TS Par0, TS Parl := 0;
bool ean TS Par2 := true

"}
nodul epar { hexstring TS Par3 };

F.2 Recursive import

The previous version of the standard allowed to import named definitionsimplicitly, viaimporting other definitions of
the same module using them in arecursive mode. This feature is deprecated in this edition of the standard and is
planned to be fully removed in the next published edition.

F.3 Using al | in port type definitions

The previous version of the standard allowed to usethe al | keyword in port type definitions instead of an explicit list
of types and signatures allowed via the given port. This feature is deprecated in this edition of the standard and is
planned to be fully removed in the next published edition.

ETSI

226 Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

Annex G (informative):
Bibliography

ETSI ES201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language”.

ETS ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation
version 3; Part 9: Using XML with TTCN-3".

ETSI ES201 873-10 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 10: Documentation Comment Specification”.

ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange'.

I SO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1: Latin
alphabet No. 1".

Object Management Group (OMG): "The Common Object Request Broker: Architecture and Specification -
IDL Syntax and Semantics'. Version 2.6, FORMAL/01-12-01, December 2001.

ETSI

227

Final draft ETSI ES 201 873-1 V3.2.1 (2006-12)

History
Document history
V111 March 2001 Publication
V112 June 2001 Publication
V221 February 2003 Publication
V311 June 2005 Publication
V321 December 2006 | Membership Approval Procedure MV 20070216: 2006-12-19 to 2007-02-16

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.1 Identifiers and keywords
	5.2 Scope rules
	5.2.1 Scope of formal parameters
	5.2.2 Uniqueness of identifiers

	5.3 Ordering of language elements
	5.4 Parameterization
	5.4.1 Formal parameters
	5.4.1.1 Formal parameters of kind value
	5.4.1.2 Formal parameters of kind template
	5.4.1.3 Formal parameters of kind timer
	5.4.1.4 Formal parameters of kind port

	5.4.2 Actual parameters

	6 Types and values
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.1.1 Accessing individual string elements

	6.1.2 Sub-typing of basic types
	6.1.2.1 Lists of values
	6.1.2.2 Ranges
	6.1.2.2.1 Infinite ranges

	6.1.2.3 String length restrictions
	6.1.2.4 Pattern sub-typing of character string types
	6.1.2.5 Mixing sub-typing mechanisms
	6.1.2.5.1 Mixing patterns, lists and ranges
	6.1.2.5.2 Using length restriction with other constraints

	6.2 Structured types and values
	6.2.1 Record type and values
	6.2.1.1 Referencing fields of a record type
	6.2.1.2 Optional elements in a record
	6.2.1.3 Nested type definitions for field types

	6.2.2 Set type and values
	6.2.2.1 Referencing fields of a set type
	6.2.2.2 Optional elements in a set
	6.2.2.3 Nested type definition for field types

	6.2.3 Records and sets of single types
	6.2.3.1 Nested type definitions

	6.2.4 Enumerated type and values
	6.2.5 Unions
	6.2.5.1 Referencing fields of a union type
	6.2.5.2 Optionality and union
	6.2.5.3 Nested type definition for field types

	6.2.6 The anytype
	6.2.7 Arrays
	6.2.8 Recursive types

	6.3 Type compatibility
	6.3.1 Type compatibility of non-structured types
	6.3.2 Type compatibility of structured types
	6.3.2.1 Type compatibility of enumerated types
	6.3.2.2 Type compatibility of record and record of types
	6.3.2.3 Type compatibility of set and set of types
	6.3.2.4 Compatibility between sub-structures

	6.3.3 Type compatibility of component types
	6.3.4 Type compatibility of communication operations
	6.3.5 Type conversion

	7 Expressions
	7.1 Operators
	7.1.1 Arithmetic operators
	7.1.2 String operators
	7.1.3 Relational operators
	7.1.4 Logical operators
	7.1.5 Bitwise operators
	7.1.6 Shift operators
	7.1.7 Rotate operators

	8 Modules
	8.1 Definition of a module
	8.2 Module definitions part
	8.2.1 Module parameters
	8.2.2 Groups of definitions
	8.2.3 Importing from modules
	8.2.3.1 General format of import
	8.2.3.2 Importing single definitions
	8.2.3.3 Importing groups
	8.2.3.4 Importing definitions of the same kind
	8.2.3.5 Importing all definitions of a module
	8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

	8.3 Module control part

	9 Port types, component types and test configurations
	9.1 Communication port types
	9.2 Component types
	9.3 Reuse of component types
	9.4 Test system interface
	9.5 Component references
	9.6 Addressing entities inside the SUT

	10 Declaring constants
	10.1 External constants

	11 Declaring variables
	11.1 Value variables
	11.2 Template variables

	12 Declaring timers
	13 Declaring messages
	14 Declaring procedure signatures
	15 Declaring templates
	15.1 Declaring message templates
	15.2 Declaring signature templates
	15.3 Global and local templates
	15.4 In-line Templates
	15.5 Modified templates
	15.6 Referencing elements of templates or template fields
	15.6.1 Referencing individual string elements
	15.6.2 Referencing record and set fields
	15.6.3 Referencing record of and set of elements

	15.7 Template matching mechanisms
	15.7.1 Specific values
	15.7.2 Special symbols that can be used instead of values
	15.7.3 Special symbols that can be used inside values
	15.7.4 Special symbols which describe attributes of values

	15.8 Match Operation
	15.9 Valueof Operation

	16 Functions, altsteps and testcases
	16.1 Functions
	16.1.1 Invoking functions
	16.1.2 Predefined functions
	16.1.3 External functions
	16.1.4 Invoking functions from specific places

	16.2 Altsteps
	16.2.1 Invoking altsteps

	16.3 Test cases

	17 Void
	18 Overview of program statements and operations
	19 Basic program statements
	19.1 Assignments
	19.2 The If-else statement
	19.3 The Select Case statement
	19.4 The For statement
	19.5 The While statement
	19.6 The Do-while statement
	19.7 The Label statement
	19.8 The Goto statement
	19.9 The Stop execution statement
	19.10 The Return statement
	19.11 The Log statement

	20 Statement and operations for alternative behaviours
	20.1 The snapshot mechanism
	20.2 The Alt statement
	20.3 The Repeat statement
	20.4 The Interleave statement
	20.5 Default Handling
	20.5.1 The default mechanism
	20.5.1.1 Default references

	20.5.2 The Activate operation
	20.5.3 The Deactivate operation

	21 Configuration Operations
	21.1 Connection Operations
	21.1.1 The Connect and Map operations
	21.1.2 The Disconnect and Unmap operations

	21.2 Test Component Operations
	21.2.1 The Create operation
	21.2.2 The Start test component operation
	21.2.3 The Stop test behaviour operation
	21.2.4 The Kill test component operation
	21.2.5 The Alive operation
	21.2.6 The Running operation
	21.2.7 The Done operation
	21.2.8 The Killed operation
	21.2.9 Summary of the use of any and all with components

	22 Communication operations
	22.1 The communication mechanisms
	22.1.1 Principles of message-based communication
	22.1.2 Principles of procedure-based communication
	22.1.3 Principles of unicast, multicast and broadcast communication
	22.1.4 General format of communication operations
	22.1.4.1 General format of the sending operations
	22.1.4.2 General format of the receiving operations

	22.2 Message-based communication
	22.2.1 The Send operation
	22.2.2 The Receive operation
	22.2.3 The Trigger operation

	22.3 Procedure-based communication
	22.3.1 The Call operation
	22.3.2 The Getcall operation
	22.3.3 The Reply operation
	22.3.4 The Getreply operation
	22.3.5 The Raise operation
	22.3.6 The Catch operation

	22.4 The Check operation
	22.5 Controlling communication ports
	22.5.1 The Clear port operation
	22.5.2 The Start port operation
	22.5.3 The Stop port operation
	22.5.4 The Halt port operation

	22.6 Use of any and all with ports

	23 Timer operations
	23.1 The timer mechanism
	23.2 The Start timer operation
	23.3 The Stop timer operation
	23.4 The Read timer operation
	23.5 The Running timer operation
	23.6 The Timeout operation
	23.7 Summary of use of any and all with timers

	24 Test verdict operations
	24.1 The Verdict mechanism
	24.2 The Setverdict operation
	24.3 The Getverdict operation

	25 External actions
	26 Module control
	26.1 The Execute statement
	26.2 The Control part

	27 Specifying attributes
	27.1 The Attribute mechanism
	27.1.1 Scope of attributes
	27.1.2 Overwriting rules for attributes
	27.1.2.1 Additional overwriting rules for variant attributes

	27.1.3 Changing attributes of imported language elements

	27.2 The With statement
	27.3 Display attributes
	27.4 Encoding attributes
	27.5 Variant attributes
	27.6 Extension attributes

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions

	A.1.6.2 Control part
	A.1.6.2.0 General
	A.1.6.2.1 Variable instantiation
	A.1.6.2.2 Timer instantiation
	A.1.6.2.3 Component operations
	A.1.6.2.4 Port operations
	A.1.6.2.5 Timer operations

	A.1.6.3 Type
	A.1.6.4 Value
	A.1.6.5 Parameterization
	A.1.6.6 With statement
	A.1.6.7 Behaviour statements
	A.1.6.8 Basic statements
	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching incoming values
	B.1 Template matching mechanisms
	B.1.1 Matching specific values
	B.1.1.1 Omitting values

	B.1.2 Matching mechanisms instead of values
	B.1.2.1 Value list
	B.1.2.2 Complemented value list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet

	B.1.3 Matching mechanisms inside values
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns

	Annex C (normative): Pre-defined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Integer to character
	C.2 Integer to universal character
	C.3 Integer to bitstring
	C.4 Integer to hexstring
	C.5 Integer to octetstring
	C.6 Integer to charstring
	C.7 Integer to float
	C.8 Float to integer
	C.9 Character to integer
	C.10 Character string to octetstring
	C.11 Universal character to integer
	C.12 Bitstring to integer
	C.13 Bitstring to hexstring
	C.14 Bitstring to octetstring
	C.15 Bitstring to charstring
	C.16 Hexstring to integer
	C.17 Hexstring to bitstring
	C.18 Hexstring to octetstring
	C.19 Hexstring to charstring
	C.20 Octetstring to integer
	C.21 Octetstring to bitstring
	C.22 Octetstring to hexstring
	C.23 Octetstring to character string
	C.24 Octetstring to character string, version II
	C.25 Charstring to integer
	C.26 Character string to octetstring
	C.27 Character string to float
	C.28 Length of string type
	C.29 Number of elements in a structured value
	C.30 Number of elements in a structured type
	C.31 The IsPresent function
	C.32 The IsChosen function
	C.33 The Regexp function
	C.34 The Substring function
	C.35 The Replace function
	C.36 The random number generator function

	Annex D (informative): Library of Useful Types
	D.1 Limitations
	D.2 Useful TTCN-3 types
	D.2.1 Useful simple basic types
	D.2.1.0 Signed and unsigned single byte integers
	D.2.1.1 Signed and unsigned short integers
	D.2.1.2 Signed and unsigned long integers
	D.2.1.3 Signed and unsigned longlong integers
	D.2.1.4 IEEE 754 floats

	D.2.2 Useful character string types
	D.2.2.0 UTF-8 character string "utf8string"
	D.2.2.1 BMP character string "bmpstring"
	D.2.2.2 UTF-16 character string "utf16string"
	D.2.2.3 ISO/IEC 8859 character string "iso8859string"

	D.2.3 Useful structured types
	D.2.3.0 Fixed-point decimal literal

	D.2.4 Useful atomic string types
	D.2.4.1 Single ISO 646 character type
	D.2.4.2 Single universal character type
	D.2.4.3 Single bit type
	D.2.4.4 Single hex type
	D.2.4.5 Single octet type

	Annex E (informative): Operations on TTCN-3 active objects
	E.1 Test components
	E.1.1 Test component references
	E.1.2 Dynamic behaviour of PTCs
	E.1.3 Dynamic behaviour of the MTC

	E.2 Timers
	E.3 Ports
	E.3.1 Configuration Operations
	E.3.2 Port Controlling Operations
	E.3.3 Communication Operations

	Annex F (informative): Deprecated language features
	F.1 Group style definition of module parameters
	F.2 Recursive import
	F.3 Using all in port type definitions

	Annex G (informative): Bibliography
	History

