Final draft ETS| ES 201 873-1 V3.0.0 (2005-03)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1. TTCN-3 Core Language

D

2 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Reference
RES/MTS-00090-1 ttcn3 core

Keywords
ASN.1, methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Contents

INntellectual Property RIGNES. ..ot et ne e 12
0= 11 o 1SS 12
1 o0 0= PP P RSP 13
2 L= £ 101 TSRS 13
3 Definitions and @DDreVIatiONS...........coueieieiriises sttt 14
31 D= T T (0] 1SR 14
3.2 F Y o] 1= V7= 0] SR 16
4 100 [Tox A o] o SRS 16
4.0 LCT 1< - TSP PT SR PS 16
4.1 The core language and Presentation fOMMELS..........ccccviceieeie s sr e e e e sreesneas 17
4.2 Unanimity of the SPECITICALIONc.veeicieece e e st e st e sreesreesreesaeeseensenns 18
4.3 1000l g1 {0l 1172 1o ST ST PSR PR 18
5 BasiC 1anQUAgE ElEMENTSooiiiie ettt e st e e st e s ae e besaeetesbe et enesreenaenrenreas 18
5.0 LT 0T P TRSR 18
51 Ordering Of 1aNQUAGE ElEIMENES.ciuiiieiereeieer ettt bttt b e bbb et b e et nb e ne e 19
52 01 (= 4= o] PSS 20
520 Static and dynamiC ParamELEriZAIONc.coerveeriereieriere ettt b et b e b e e b e nnene 20
521 Parameter passing by reference and Dy VAIUE ..o e 20
5210 GENETA ...ttt E R R R e AR R R R Rt R Rt r s 20
5211 Parameters passed DY FEfErENCE..........oo et raesreesreesrees 21
5212 Parameters Passet DY VAIUE.iiee ettt et e st e e s e snaesnaenraesneas 21
5.2.2 Formal and aCtual ParamEter [ISISccuiiiieiesici et et e st et et e teeteenesneennes 21
523 Empty formal Parameter TSlcoioueiee e st ettt e e e nnes 21
524 NESLE PAIAIMELES [ISES. ... cueteiite ittt ettt bbbt b e bt b e bt et b e se et b b et b e s 22
525 Template-type fOrmal PAraMELES.........ooriiieee bbbt 22
5251 Parameterization with templates and matching attribULES...........ccoiiiiiiinirce e 22
5252 Language elements using template-type ParamMELErS........ccoereirerieine ettt seene 23
5.3 SCOPE FUIES ...ttt ettt et b bbbt b e s e et b e s e et e bt e R e st eb e s E e Rt e b e e e e Rt eb e b e Rt e b e e e e neebene e st eb e s e et nb e e ene e 23
5.3.0 (€71 SO 23
531 ScopE Of TOrMEl PAIAMELEN'Sei ettt et e e s reesbe e be e be e e e te e reeteeneesneesnes 24
5.3.2 UNIQUENESS OF IAENEITIEIS ...t et ne e re et e e s te e be e seeeeeneesnnennes 25
54 [AENLITIErS AN KEYWOITSceeeieeieee ettt et te st e s e s e e sre e teenteenteeseessaesseeseenseeneesnennnes 25
6 TYPES ANA VBIUES ...ttt ettt e st e st e et e st e s ae e besheenteeaeeaeestesaeebesreeneebesneensenneens 25
6.0 LT 0T OO SRSSRR 25
6.1 BaSIC tYPES AN VAIUES.........eeieeitieciietee ettt bttt b bbbt b e e s bbb et b b e e bt b ens 26
6.1.0 SIMPIE DESIC tYPES AN VAIUES........cuiieiiiteieeiete ettt ettt et b b bbb e b b nnenea 26
6.1.1 BasiC StriNg tYPES 8NU VAIUESccueiuiieiiiieece ettt st b e et sb e 27
6.1.2 Accessing individual SHNG ElEMENLS.........coiiiier bbb 28
6.2 ST 0T Y 1T a0 0 072 S o 1Y == SRS 28
6.2.0 (€1 07 - OSSP PP RT PSPPSR 28
6.2.1 LISES OF VAIUES ...ttt et ettt e et e nn et r e n et nr e n s 29
6.2.2 RBINGES ...ttt b bt bt — e b et Rt e nh bt e e gt e b et e e Rt e e nbbe e s aee e nareennreenars 29
6.2.2.0 GENETA ...ttt b bR R R R AR R R e R Rt R bR r s 29
6.2.2.1 F TR S e S 29
6.2.22 MiIXING [ISES @NO FANGES ...ttt ettt ettt e et b e b et b e b e e bt se e e et e sae e ebesbeneeren 29
6.2.3 SUNG 1ENGEN FESIITICIIONS. ...ttt bbbt b e bbb nnenea 30
6.24 Pattern sub-typing of CharaCter StriNg tYPES. ..ot e 30
6.2.5 MiXing SUD-TYPING MECNANISITIS.ueiveuiiterieirie ettt b et b et b e bbbt besn et nbenr e 30
6.251 MiXing Paterns, liStS N FANGES.c.coiiuriririeeete ettt b et b e eb e e e b sae e ebe b nnenea 30
6.2.5.2 Using length restriction with Other CONSLIaINES...........ccveiiiiiiiereeceese e 31
6.3 SEUCLUFEd tYPES ANA VAIUES.......eeceieeieecieete et st ste et ettt et e e et eestesseesaeesaeesseenseenseenseenseenaenneesseesrens 31
6.3.0 (€1 07 - OSSP TSP ST PRSP 31
6.3.1 RECOI tYPE @NU VBIUBS........ceeeeeieieie sttt ettt e e ssa e s te e te e teenteeeesneesaeesseenseente e seeseenseeneenneennes 33

ETSI

7.2
7.2.0
721
7.3
7.3.0
731
74
7.5
7.5.0
751
752
753
754
755
7.5.6
757
7.5.8
7.5.9
7.5.10

8

8.0
8.1
8.2
8.3

4 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

LCT 11 - PSPPI 33
Referencing fields Of @reCOrd tYPRcuveiieie ettt sa e esnaesreesnees 33
Optional €lemMENntS N @TECONU..........cieeieeieee e se ettt e s rae s b e s teesseeeesrneenreensessaesseesnnes 34
Nested type definitions fOr flEeld tYPESocvv e 34
SELLYPE BN VAIUES ...ttt sttt ettt et e e e s e e s e s aeesaeesteeaeeneesneeaneenseesseesennseensenneennes 34
LCT 11 - PSPPI 34
Referencing fields Of & S8t TYPE.....c.cii et b e eb e 35
OpPtioNal ElEMENES TN @ SEL ...t b et b et b e 35
Nested type definition fOr fIeld tYPES.c.oiireiie e 35
Records and SEtS Of SINGIELYPESoviiiiieee bbbt b e 35
LT 07 - P RRPSRSR 35
NeSted tyPe AEfiNITIONS........oce et ae e eeeaeeeneeenaesnaesreeseees 36
Enumerated tYPe @nU VBIUESoiee ettt et e nteentessaesta e beenteentesneesnnesnes 37

LU 4o TSP PT SRS 38
LCT 11 - PSPPI 38
Referencing fields Of @ UNION TYPEoveeivieiie e esnaesraenneas 38

(@7 o1 Yol gT= 1A= 10 011X o R 38
Nested type definition fOr fIeld tYPES.c.viireii bbb 38

TR BNY LY ...ttt bt b e bt b e bt bt e R bt e R e Rt S e R b e ke Rt R e e bt R et eb e b et ene b nnene s 38
N 1 = 1Y T TP U TP 39
RECUISIVE TY[IES ...ttt ettt bt b et h e e bt e e h b sk b £ e s e b e bt s e h e e bt s e s e bt e e e bt b e e s 40
TYPE COMPELIDITTTY ..ttt et b e b b b e bt b e sb et eb e s b e ebesreneene s 41
(€71 PSR 41
Type compatibility Of NON-SErUCIUrE tYPES.......c.eeieeiee ettt eeraesraeneees 41
Type compatibility Of SIrUCIUrEd TYPESecee e et eeraesraesnees 42
LCT 11 - TSP PO SRR 42

Type compatibility of eNUMErated tYPES......ccveciieieeieciecees e 42

Type compatibility of record and reCord Of tYPESccuveiiecirie e e 42

Type compatibility of Set and Set Of LYPES.....c.uv e 44
Compatibility DEWEEN SUD-SITUCTUIES.........coiieiiitiieierteee et e 44

Type compatibility Of COMPONENT LYPES.......ciuiriiiririeriere bbb 44
Type compatibility of COMMUNICaLioN OPEraLiONScciuirieiriiieirieiee s 45

LI LT 0 1Y/ £ oo OO TSP PSPPSR TR O 45
17700 111 =TSRSS 45
LCT 1< - TS PSPPSR 45
AN T T o o) 110 o L1 45
K0T LB F SN 7= =< = 46
LCT= 01 = TSP P TSP UT ST PTS PP 46
Default values for MOdUIE PAraMELEN'Scoeiiiiee ettt bbb 46
MOAUIE AEFINITIONS PAIT ..ottt ettt bbb et b bbb se bt e st b e e b e e s b e ne e 46
(€71 PR S 46
GroUPS OF AEFINITIONScueieiietiitei ettt b et b et b e et b e bt b e sb e e b e s b e e ebesb e e ebesbennenea 47
MOAUIE CONEFOI PAIT.....c.eeeeteeeieetere ettt ettt b bbb btk b e bt bt b bt e s bt e bt b s et b et e nb e e nns 48
IMPOrting fFrOM MOGUIES..........eeieicieceese ettt et e et e s ee s aeesae e beenteenseeneessaesseesteeseensenneennns 48
LCT= 01 = TSP PSP UTSPR PRSPPI 48
Structure of importable defiNItIONS.........ccvi e s 49
RUIES ON USING IMPOIT ...t ee sttt et e e e tesseessaesseesaeesaeeseeneeeseeeseansansteeseenseensesneesneesnes 50
VOI0 1t EeEE R R R R R R R R AR R e R Rt R b e r e n s 52
IMPOrting SINGIE AEfiNITIONS.cccuiiie et e st e e e teeneesneesnes 52
Importing al definitions Of @MOAUIE ..ot 52
IIMPOFTING GrOUPS .. vttt sttt sttt sttt b e b e b e he b e e bt b e se e bt e b e se e bt s b s e e bt e b e ne e bt e b e ns e st e b e neeneebesb et ebe s eneeee 53
Importing definitions of the SAME KING............coi i e 53
Handling name Clashes 0N IMIPOIT.........coiiiiiie e bbb et 54
Handling multiple referencesto the same definition ... 54
Import definitions from NON-TTCN-3 MOAUIESccccoiiiriiiie e 55
QLIC=S Ao 01 1T U1 (0] 1R 55
LCT 1< - PSPPSR PR 55
POrt COMMUNICALION MOUEL..........coiieiiirireie e n e nn e r s 56
RESEICLIONS ON CONNECLIONS.eeceieieeiee ettt ettt eae et e ee e e st e beseeebesaeeseeneeeeseeseeseesneeneeneeneees 56
ADSLrACE tESt SYSLEM INEEITACE. ...ttt b bbb e eas 58

ETSI

5 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

84 Defining cOMMUNICALiON POIT LYPEScuveiieiee e seesie et e st e e e e e s sreesteese et e sseesseeteesseesseeseensenneesnes 59
8.4.0 (C1= 0T o SO P ST 59
84.1 T I oo = 59
8.5 DEfiNING COMPONENE LYIES.veiueeteeseesieeitesceesee st e s e ete e e e ateesteete e e estesseesseesaeesseassesnseaseesseessensseessensesnsennensnns 60
8.5.0 (C1= 0T o SO P ST 60
85.1 Declaring local variables, constants and timersin @ ComMPONENL..........cccvevvereeeeeeieeseeseeseese e seeseesee e 60
852 Defining components With array's Of POITS.........coeiiiriciiee e 61
853 EXtension Of COMPONENT TYPES.c.ciuirieiiterieeete ettt st b et b et b et b e et sbe e 61
8.6 Addressing entitieS iNSIAE ThE SUT ..ottt st b e b ene s 63
8.7 COMPONENT FEFEIENCES. ...ttt ettt sttt bttt et b et b e bt b e e b e s e e bt e b e e e bt s b et e bt e b e e e st ebese e st ebe s b et ebe b e eee 63
8.8 Defining the test SYStEM INTEITACE ..ot 64
9 DECIANNG CONSLANLS ...ttt sttt sttt sttt e ettt b e se e bt st e s b e st e s e et e e e e eseebeseesbeneenseneens 65
10 DeClaring VaITADIES......ccviieieeece ettt st e st s ae e te s b e e aeesbeere e besneenaesreeneentenrean 65
10.0 LT 0T PSSR 65
10.1 RV L0 = T o= 66
10.2 TEMPIAIE VAITADIES ...ttt bbb bt b e et b e e s bt s b et b e s b e e eb e s b e neebeebeneene s 66
R B 1= os -1 o = £ SRS 66
11.0 LC T g1 -SSP 66
111 TS S S 0 = 1 (= £ USSR 67
12 DECIAING MESSAGEScccviiuieteiteete st eteste et eteeteeeestesaeestesteesesbeeseesbesaeesesteensesbeeseetesseessesseenseseesseensensens 67
13 Declaring ProCeAUIrE SIGNAEUIES.ccueveeeuerieeteetestesteseessesesses e esesseasesbessesbess e s et e s e e eseesesseanesresnensennas 67
13.0 LT 0T PSSR 67
13.1 Signatures for blocking and non-blocking COMMUNICALION............ccecieiieiieece e 68
13.2 Parameters Of ProCeAUIE SIgNAIUIES..........cccuieieeeesteeteeteeeseeseeseeseeesteeteeseessaesseesseesseeseesesseesseesseesseenseeseans 68
13.3 Value returning remOote PrOCEAUIEScocueiieieeieeseeesteeteessesseestee e estessaesseesseesseaseansesseesseeseessensseensennsesnsesnes 68
134 SPECITYING EXCEPLIONS......ccveeiieieeieeie e see st e st e e e st e s e e s e e te e beesteaseesseesseesseesseenseaneesseesseenseenseenseeseesneensnnsrens 68
14 DeClariNg IEMPIALES........c.oiieieciece ettt s et e e te e e e st e s e e resae e besbeensessesseetesneensesresneensenrenn 69
14.0 LT 0T PSR RSRR 69
141 Declaring MeSSAgE tEMPIELESeiueuiriiiet ittt b bbbt b b et b bt sbene et 70
14.1.0 (€71 O RR 70
1411 Templates for SENAING MESSAGES.c.vitirieirtiieirter ettt bbbt bbbt b st be e e 70
14.1.2 Templates fOr FECEIVING MESSAGEScieeieeieeieeieeeieesee st este e e estessaestaesteesteesteaneesseesseesseanseenseensessenssensses 70
14.2 Declaring SIgNature tEMPIELEScveeieeeecee et e e e e s te et e e saeeste e tees e estesnsesneesneesaeesseensaensenns 71
14.2.0 (=0T o TSP P SRS 71
14.2.1 Templates for iNVOKING PrOCEAUIEScciieieeieseeseeseesteesteeteesaesseessaesseesseesseeaesssesseesseessesnsesnsessenssensses 71
14.2.2 Templates for accepting Procedure iNVOCATONS.c.ccviieeieeeeie e se e ee e sreesae e e e s e sraesreesnees 72
14.3 Template MatChing MECHANISMScocieieece ettt e e st et e e e teseesaeesaeesaeenseenseenaeeneenseessens 72
14.3.0 (€71 PSR 72
1431 Referencing elements of templates or template fieldsooeiiirciiiic e 74
14311 Referencing individual String @lEmMENES.........coooiiiiiie e 74
14312 Referencing r ecor d and Set fialdS........ci i 74
14.3.1.3 Referencingr ecor d of andset Of €lemMentS........oov i 75
14.4 Parameterization Of tEMPIBEEScoueiiiieiri bbbt b et sb e e 77
14.4.0 (=0T o TSP 77
145 Yoo PR 77
14.6 MOOITIEA tEMPIALES.....c. et r e et e e e s aeesae e teesteesse e teensesneesneesaeesseanseensenns 77
14.6.0 (=0T o TSP 77
14.6.1 Parameterization of Modified tEMPIaLESccveiieice e e 78
14.6.2 IN-11NE MO fIEd tEMPIBLES.........ee et et e e e be e te e be e teeteenneennennes 79
14.7 Changing teMPIae FIEIAS.c.eiiiei bbb et b e et eb e e 79
14.8 IVIBECH OPEIALTON. ...ttt ettt b bbbt b st bbb bt b e bbb e b et b e e bt e b e e e st b et et eb e b 79
14.9 VAIUE OF OPEIALTONcveeeetet ettt e b ekt b e e h bt s e b e b st eb e s b e s e eb e eb e s b et eb e s b e e eb e e b e neebeebenneneas 79
T O o = (o] £ T PP TP USSP PRPRURPR 80
15.0 LC T g1 -SSP 80
15.1 F N g o0 0 = o =SS 8l
15.2 S o o o< > (] £ SRS 82
15.3 LR LE o 0] 7= e o< = (] TSR 82

ETSI

6 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

154 (o[Lo 0] o< = o] PSS 83
155 TS 0] 1< = 0] PSR 83
15.6 TR0 0= 0 = SRS 84
15.7 00z (=X 00l = o PP P PP PRSP 85
16 FUNCHONS AN BIESLEDSccveeieieeeie ettt sttt e sttt e st e st s e st e sae e tesbeeneesbesseetesneensesresaeensenrenn 86
16.1 FFUNCLIONSttt et e bttt e et e et e s aeesaeesheesaeeaseeaseeaeeebeeaba e baesbeestesnsesneesaeesanesaeanreentenns 86
16.1.0 GENEN@L.... .ottt ettt ettt e et et e et e e tesaeesheeeheebeeateeateeheeeheeaheebeebeeteaaeeeheebeebeeaeeeheeabeebeeateereanreaaes 86
16.1.1 Parameterization Of TUNCLIONSoouiiiiiece ettt et s st et be e b e nesaneeaes 87
16.1.2 INVOKING FUNCLIONS ...ttt bbbt bbbt s et b et b e bbb 87
16.1.3 PredefiNed FUNCLIONSoiieee bbbttt se e et b e e e b e b e b sbe e e enneneen 88
16.1.4 Restrictions for functions called from SpecifiC PlaCESccovcvevieii e 89
16.2 FAN = 1= o 1TSS 90
16.2.0 (=0T - TSP PTSPPSN 90
16.2.1 Parameterization Of @lESEEPS.oiieii ettt e et e tess e te e te e reeteeeeenneenes 90
16.2.2 Local definitioNS TN @lISIEPS........iiiicieceee ettt e s et e e b e e reeaeeeeeneeenes 91
16.2.2.0 L= 0T - TSP 91
16.2.2.1 Restrictions for the initialization of local definitions in atStEPS.........cceereiniineinen e 91
16.2.3 [NVOCELION OF BIESIEPS ettt bbbt b e bbbt b et b e st et b bbb 91
16.3 Functions and altsteps for different COmMPONENT tYPEScoirieirirererere e e 92
A = o =S 92
17.0 LC T g1 -SSP 92
171 ParameteriZation Of TESE CASES..........ee ettt sttt s e et bbbt se e e e b e besbeebe e e ennennens 93
18 Overview of program statements and OPEraiONS............eccveiieeieeireeiesesee e e e e e sreeee e eee e sreesresres 93
19 Expressionsand basiC program SEEIEMENTScc.cieeerreeieeeenie et sne e 95
19.0 GENEIAl ...ttt ettt et et e et e e e e teshaesheesheeahe e bt ebeeaeeaheaabeebeeabeeateeateaheeaaeeaheeaheebeenreenteeaeeereenteenreas 95
19.1 1= o] PSS 96
19.1.0 (=0T o PSPPSR 96
19.1.1 L T0Ta LI o =S Lo S 96
19.2 S T 10 1SS 96
19.3 QI (ST 0 R = =11 | USSR 96
194 THE LADE] STAIEIMENL ..ottt e b b ae b et e e e e bt et e e e b e sbenbesbeene e e e e es 98
195 THE GOO SEALEIMENT ..ottt e et e s e et e e te e ee st e sheesbeeabeeaseeasesbeesbeesbeensesasesaeesaeesseanseenteenseeneesseesrnas 99
19.6 ThE If-B1SE STALEMENT ...ttt st e e s b e et e e aeeete e be e beeabesaeesbeesaeesaeesseanteenbeensesseesteessnas 99
19.7 THE FOF SLBLEIMENLc.teeteeieeie ettt ettt e e et e st e st e e be e tesaeesaeesaeesbeenseeaseessesbaestaesbeenseensesnsesanesanesseanseensenns 100
19.8 ThE WhIlE STAEMENT ...ttt st e et e e rte s e e s aeesbe e beebeeateebaesbeesbeesbesnsesnsesanesaeesseanseentenns 100
19.9 The DO-WHIlE SLEEEMENTeovieiecee ettt st be et e e e e ebeeebe e be e beeabesasesneesaeesaeesseenseentenns 101
19.10 The StOP EXECULION SLALEIMIENL.eeieeeieeeseeeteeteeee s e s e se et eseeseesaeesreeseeeeeseeeseessaesseeseesesneesnnesseesseansennsenns 101
19.11 The SElECE CaSE SIALEIMENT ..ottt b sh ettt e b b e s e e eb e s ae b e e e et e besbeebeeaeeneeneennas 101
20 Behavioura program StatEMENES.......cccoieeii ittt be e re et sreere e e reens 102
20.0 LT o1 -SSRSO 102
20.1 AREINALIVE DENAVIOUN ...ttt ettt st e st e s be e beeeesaeesaeesaeesbeenbeeatesnsesaeesaeesanas 103
20.1.0 (=0T - SRS 103
20.1.1 Execution of alternative DENAVIOUFcc.ecuiiii e s ae e beeteens 104
20.1.2 Selecting/desel eCting an AltErNALIVE.coi i 105
20.1.3 EISE branCh iN @ltEINELIVES.........ooei ettt et et e saeeeeesaeesaeasaeenreenteens 105
20.1.4 Yoo TSRS 106
20.1.5 Re-evaluation Of @lt SLALEMENTS.........ooiiieie e bttt sn b s en e e s 106
20.1.6 Invocation Of altStEPS 8S AlTEINALIVESocveeiie et se e sreenreereens 106
20.2 The REPEAL SLALEIMENTcoiiiieecee ettt et e e e e st e e e s aeeste e teenteestesseessaesseesseensesneesnnesneesseansensenns 107
20.3 INEEITEAVEA DENAVIOU ...t bbb bbbttt b e bbbt e e enne e nes 107
204 THE RELUIN SEBEEMIENT.eee ettt ettt e b bbbt e s e e se e b e e sh e et et e sbesbenbeeneennennenas 108
21 DEfAUIT HANGING ...ttt sttt n et eb bt en e s nn e 109
21.0 GENEIAL ...ttt ettt et e e e et e e e sae e ehe e bt et e eaeeebe e te e beeteeaaesheeaheeabeeteereenteeateeheeaheesteeareereenreanns 109
21.1 The default MECNANISIM ..o e sttt e et e e be e be e beeatesasesneesaeesaeesreenbeenteens 109
21.2 DEFAUIT FEFEIENCES. ...ttt e e bbbt bttt e e e e b e sb e ehe et et et e ebeebeeaeen e e e e e nes 110
21.3 R ST o Az (= o] o< o] o S 110
21.3.0 (1= 0T - OSSPSR 110
21.3.1 Activation of parameterized @ltSIEPS.cviueiie et se e e e aeenaeereen 111

ETSI

7 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

21.4 I (SX0 = o LAYz (X 0] o = 1 e o 111
72 ©0 g1 1To 01 (o gl0] 0= = (0] 1TSS 112
220 LT o1 -SSRSO 112
221 THE Creale OPEIHONcveeete ettt ettt b et b e et b e s e et b b et b e s b e st b e s b et ebe b eebenbe s 112
22.2 The Connect and Map OPEIELIONS.......c..oiueireriee ettt sttt ettt et b e et et b et b e et st se e ebe b 113
22.2.0 (=0T - SRS 113
2221 Consistent cONNECLiONS aNA MAPPINGS -...vc.veuervereeuerte ettt sttt sbe et st se et et se et b e et sbesse e sbesneneees 114
223 The Disconnect and UNMEP OPEIaLIONS.civeirririeirierieeete sttt sttt st sre et bbb ebe et se e sbe e 115
224 The MTC, System and Self OPEraliONS........cccoiiiiiiee et 116
22.5 The Start test COMPONENE OPEIALION.........ccieiieeieeiesiesee st e seeree st e e e se e e eteeaesraestee e etessessessseessessseenseensenns 116
22.6 The Stop test DENaVI OUr OPEFELIONc.ecii e e e s e e sreeaesreesreesneenseenneens 117
22.7 The RUNNING OPEIGLION.........eiieiieieeieesieeiteete et e ste et e e e e sseeseesaeesseesseenseeseeesseaseesseesseessesnsesnsesnnesseesseansennsenns 118
22.8 I (=] B0 =Yoo= = 1) o 118
22.9 The Kill test COMPONENT OPEFBLIONcveeeeeiteeieeesie e st e ste e see e e e steete e e e e se e te e teeseesseesansnnesseesseenseensenns 119
22.10 RISl AN LAY = 0] o = = £ e o TP 120
2211 THE KOO OPEIGLION......ceeeeieieiiet ettt bbbt b e bbb et b bt e b s et b e b 120
22.12 USING COMPONENT BITAYS. ...c.eeueetereeueeteseeseete sttt ss e esessese b ssesesesse s esesaesses e e b e s ese e b e s e st b e s eseeb e s enesb e st eneesennensenis 121
22.13 Summary of the use of any and all With COMPONENLS.........ccuoiiiiiirier e 121
23 COMMUNICALiON OPEFELIONS......cuiiveeeeieeeeiestesteeee st eeestesseessesteeeeseeaseensesseesessesneessesseensessesseensesseensessenns 121
23.0 LT o1 -SSRSO 121
23.1 General format of COmMMUNICation OPEIALIONS..........cccveriieieeie e ese e see et e e e e e e e e teeeeeneeenes 122
23.1.0 (=0T - OSSPSR 122
23.1.1 General format of the SeNdiNg OPEralioNS..........cocuiicieiiere et e e sneas 122
23.1.2 General format of the reCeiVING OPEraLiONS..........ccvccuiieereeri e e et e et e e sraesneas 123
23.2 M essage-based COMMUNICALION.ii ittt b et b bbb bt b e se bbb e enis 124
23.20 (=0T - SRS RS 124
2321 THE SENA OPEIBLION ...ttt ettt ettt b et b bbb bt e eb s e e e e bt b e e e se b et e e ebenr e ens 124
23.21.0 (©= 0T - TSRS 124
23211 Sending unicast, Multicast Or BrOAOCESEcueriirieri it 125
2322 THE RECEIVE OPEIBLION ...ttt b bbbkt a bbbt e bt b e s e st bt e e bt sb e e ens 125
23.2.2.0 (€T 0T - OSSPSR 125
23.22.1 RECEIVE @NY IMESSAGE. ... eeveeuieeieieeseestee st esteeteesteasaessaesteeste e seateseesssesseasseanseanseassesseessensennsesnsesnesanes 126
23.2.2.2 e o A= o =T)V oo 126
23.2.3 I SR I e (< e o= = (o] o S 126
23.2.3.0 (€T 0T - ST SPRPN 126
23231 TrIQUEr ON BNY MESSATE ...evevereeeertereesesteseese et ss e bt ss e e eberb s es e sb e s es e e st sses e eb e e e eaeebereeneebesaes e e b e sseneebenaennens 127
23232 THIQUEN ON BNY POttt ettt ettt eb et b st e bbb e b s b e e e b e bt e e s e eb e s e s e bt b enenn e e e e ens 127
233 Procedure-based COMMUNICELION............coeiieieie sttt e e e e teseesresne e e eneeseeseesneeseeneeneenes 127
23.3.0 (=0T - SRS 127
2331 THE Call OPEFALTON ...ttt bt a bbbt a bbb e bt bt e et b et e e eb e e e e ens 128
23.31.0 LT 07 RS 128
23311 Handling responses and exceptionSto @aCallccvovveiiiie e s 129
23.3.1.2 Handling timeout exceptionNSto the Callcvciveiiiiececece e e e 130
23.3.1.3 Calling blocking procedures without return value, out parameters, inout parameters and

(o= o] 1SS 130
23314 Caling NON-bIOCKING PrOCEAUIEScveeieeeeeeeieete et e e et tesnaessaesaeesneesneenneenrenns 130
23.3.15 Unicast, multicast and broadcast calls of procedures............cocevvevviciceese e 131
2332 The GELCAIl OPEIELION. ... c.e ettt bbb b et b et e et b et besr e ens 132
23.3.2.0 LT 07 RS 132
23321 ACCEPLING ANY CaIL ...ttt r e 133
23322 GEECAIl O @MY PO ...ttt ettt e ettt s e et eb e b et eb e sbeseeb e sbeneebesb e e ebesbeneebenbeneeneas 133
2333 THE REPIY OPEIBIION. ...ttt b et bbbt et b bbb b e e st b e b e st b et e e ebenr e e ens 133
23.34 I SY T i = o YA 0] = 1 e oS 134
23.34.0 (€T 0T - OSSPSR 134
2334.1 (€T =)V 1= o OSSPSR 134
23.34.2 LT R o] LY 0 g I= 0|V oo PR 135
23.35 I ST R e TS ST 0] 0 = 1 o o S 135
23.3.6 QI SY O (e n e 0 = 1 o o S 136
23.3.6.0 LT 07 RS 136
23.36.1 The TIMEOUL EXCEPLIONeeviiieiitiriee ettt b et b e sb et b et eb e e e ens 136

ETSI

8 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.6.2 L0 | ox =0\ (0T o] o PR 137
23.3.6.3 L0 (ox 010 01028 o o o AP 137
234 LI (SNl Qo o 1= = 1) o S 137
23.4.0 (C1= 07 - TSP SU TSSO PP VTSPV PTRTRPORN 137
234.1 I SY O Q=)V 0] = 1 oo S 138
23.4.2 (@11 o Qo 101V o o AP 138
235 Controlling COMMUNICALTION POFTS.......eveuertieeiertirieiertereei sttt ettt bbb e s s e st st e e sesbe b 138
2350 (© 7= 07 - RS STTRRTN 138
2351 The Clear POIT OPEIEHIONcueitereeeeeteriee ettt b et e bbbt bbbt s b e e st s b e s ese bt e e ebeseennens 138
2352 The Start POt OPEIALHONcoueeeiirieiet ettt b e bbb st b e s b st b et e bt e ens 139
2353 THE StOP POIT OPEIBLIONcvevieeiiiteriet sttt ettt b et b et b et b bbb e bt b e e eb e s e se bt e e ebe b e e ens 139
2354 I (=] 1= LT o o 1= = 1) S 139
23.6 Use Of any and all With POIES........coiiiieciceeccs ettt te e sreeteeneeenteenaesnaesneas 140
P 1001 o]0 (0] 1SS 140
24.0 GENETA ...ttt bR E R R R R R R R R R Rt R et b et n R r s 140
241 The Start tiMer OPEIALION.oiiieiteree ettt b et st b e bbb et b e b et b e bt b e b 141
24.2 THe StOP tIMES OPEIBLIONcueeeieete ittt ettt b e bbbt b e b et e bt bt e st eb et e st ebe s b et eb e b 141
243 The REAO tIMEr OPEIEHIONceeueite ettt ettt ettt b e bbbt b e b e bt b e e et b e e et ebe s be e et b 141
244 The RUNNING tHMEN OPEIALION.ciieitiieieste ettt sttt b e bt e et b b 142
245 The TIMEOUL OPEIGLIONciviieiiiete ettt ettt b e et b e et b e e h e s b e e bt b e e et eb e b et e b s bt b b 142
24.6 Summary of use of any and all WIth TIMErS.........c.cii e 142
PZAS T == /= (o [oi f) o 1< = (o 1S 143
25.0 GENETA ...ttt bR bR R R R R R R R Rt R Rt R Rt n R e r et 143
251 TESE CASEVEITICE ...ttt st se et r e et R et r e r et R r e r e 143
25.2 Verdict values and OVErWITTING FUIES.co.oiiiii et bbb et 143
25.2.0 LT 1 SRS 143
25.2.1 [o Y o [SR 144
P (= 7= = 1 LT 144
P47 Y/ oo [N F=Y ot 11 (o] 7= ST 145
27.0 GENETA ...ttt bR E R R R R R R R R R Rt R et b et n R r s 145
27.1 EXECULION OF TESE CASESvevieeetiieeeet ettt n e s e r e nn e nn e n e nennenens 145
27.2 TEIMINALTION Of TESE CASES. ... vt eveeeeierie sttt ettt ettt e e se e te et te s st e st eneese e aeseeseeeneenteseeseesaeeneeneeneentes 145
27.3 ControlliNg EXECULION Of TESE CASES.ueueiuieeiirtiiei sttt et b bbb bbb e b b 146
274 S C 1 oo g o =S 0= S SO RRN 146
275 USE Of IMEFS TN CONEION ...ttt et et e et e aees e ne et et e seesaeeneeneeneeneenes 147
28 SPECITYING GITULES. ...ttt b b e e s bt n e nr e nen e 148
28.0 GENETA ...ttt bR bR R R R R R R R R Rt R et R Rt n R e r s 148
28.1 LTS o] K= A= 11] o1 -SSR 148
28.2 ENCOUING Of VEAIUES.......oeeee ettt e s et e b e et e e s e saaesaeesteesaeesaeenteenteenseensennaesnnas 148
28.2.0 (C1= 07 - TSP SU TSSO PP VTSPV PTRTRPORN 148
2821 [(o0 0 Lo L] oL 1= SR 148
28.2.2 VAITANE BHITDULES ...ttt ettt e e e s e e besaeebesaeene e e e neeseeseeeneeneenseneentas 149
28.2.3 SPECTBI SEINGS ...ttt ettt b et b e bt b e s et b e s b et bt s b et e bt e b et ke e e e st b e e et e b e et b e ne e 149
2824 INVEITA ENCOINGS. ...ttt ettt b et b et b et b et bt b et eb et et b b 150
28.3 LT ST 0 QT (] 11 == SRR 150
28.4 SCOPE Of @LLIOULES.... .t e e s e e sae e teenteenteeneenseesteesseenteeneeeneennns 151
285 Overwriting ruleS fOr @triDULESccee et e et re e eeeneeenes 151
285.1 Additional overwriting rules for variant attribULES.ccccoeiieiieiice e 152
28.6 Changing attributes of imported |anguage elEMENLS...........ccoeceieiie it 153
Annex A (nor mative): BNF and StatiC SEMaNTiCS.......coeveeeerirese st 154
N B I O A] TSP TR R 154
A.10 GENETA ...ttt R R R R R R R R R R Rt bR Rt n R ren s 154
A.ll Conventions for the SyNtaxX dESCIPLIONcei i 154
A.l2 Statement terminator SYMDOISc..ciiieiee bbbt b e 154
A.13 0 1= 1) =PRSS 154
Al4 (001010101 01U 154
A.l5 LI B B (007 S 155

ETSI

9 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.16 TTCN-3 syntax BNF ProQUCTIONScccui ittt ettt ae s ae e sneesneenreenneens 156
A.1.6.0 TTCON-3 MOUUIE......cueiteeetieteeeieete ettt ettt st et e st et e b e s e e e e bt s b es s ebe s s e e es e s s e s eneebenseneebestaneeseneeneenes 156
A.l6.1 Koo [N F X0 T TR (0] S o = PR 157
A.1.6.1.0 (€T o1 - PP SRTPRSPRPN 157
A.16.1.1 Typedef AEfiNITIONSo e ste e aeeaeenteenteeneesnaesnaesneas 157
A.16.1.2 CONSLANE AEFINITIONSc.veeiceieieeee ettt bbbt se e e bbb e saeese e e e e e 158
A.16.1.3 TEMPIAE AEfiNITIONS.... .ttt b e b e b b b e a e ens 159
A.l6.14 [0 TaTex o] g e = {1 o o] = 160
A.16.15 SIGNAEUNE AEFINITIONS ...ttt bbb et b e et b e b e b b se e b b nneneas 161
A.16.1.6 TESICASE AEfINITIONS.eoueeeee ettt sttt e et e st e st e besneenee e eneeseen 161
A.16.1.7 ASEED AEFINITTIONS ...t bbbt b bbb 161
A.1.6.1.8 g oTo] i 1= 1T oo USSR 162
A.1.6.1.9 L€ (00 o]0 L= T 1110 OSSP 163
A.1.6.1.10 External function definitioNS...........co i 163
A.16.1.11 External constant definitionS.............ooiiiiiiirieeeeee e 163
A.1.6.1.12 Module parameter AEfiNITIONScuiiieiieie e e e eete s e e te e eeenneeneeenes 163
A.16.2 L0 011 o) I o o USSR 163
A.16.20 (€= 3T TSRS 163
A.l6.2.1 NV ariahl € INSEANLTBLION ...ttt se et e seeae e e e s e seeseeereeneeneeneeneas 163
A.16.22 LIS TS =g L= o) o PP 164
A.1.6.2.3 COMPONENT OPEIGLIONSneveiteeeteste ettt sttt ettt sttt et b e st st b e e e st eb e se et eb e se e st et e se e e et e sbe e ebesbenneneas 164
A.16.24 POIT OPEIBLIONS ...ttt ettt ettt b e ettt b e et b e s et b e s bt eb e e b st eb e s b et eb e s b e e ebe b e 165
A.1.6.25 THMIEE OPEFATONS ...ttt ettt b bbbt b et b et e bt s b e bt sb e s e bt e bt s e s e e bt eneen e e e e ens 166
A.1.6.3 I3 L= SRR 166
A.164 VAU ...ttt ettt h et b et R bt A At Rt AR £ Rt R e Rt R e R oAt e R e R et e R e R et e Rt be st e e neneeneenen 167
A.16.5 PArBMELEITZALION ...ttt et bbbt e e s e b e et b et e e bR b aeene e nne e 168
A.1.6.6 WVITN SEBEEIMEIL ...ttt et e e bttt e e e e e se e b e s bt e h e e e e b e nbesbeeb e e e e e e neenras 168
A.16.7 BEhaVI OUI SIAEEIMENES. ... ettt sttt b a et e e se bbb e e st e e et e sb e e besbeene e e et nes 169
A.1.6.8 BaSIC SLAIEIMENTS. ...ttt bt bttt b e bt bt et e e bR b e e e e e e e eR e b aeene e et e 170
A.1.6.9 MiSCEllBNEOUS PIOUUCTIONSvevieieitieeiestee ettt bbbt bbbt s b et st ne e 171
Annex B (normative): Matching inCOMING VAIUES..........ccocveviiieeie e 172
B.1 Template matChing MECNANISIMScoiiiieie et re e e e sreens 172
B.1.0 LT 07 SRR 172
B.1.1 MELChING SPECITIC VAIUBS ...ttt bbbt b et nn e ens 172
B.1.11 OMITEING VAIUBS......c.eeeeteiteet ettt b e et b e e h b se bt e b s e e bt e b e s b et eb e s b e e ebenbeseeneebeneeneas 172
B.1.2 Matching mechaniSmSiNStead Of VAIUESccvoiiiiice et saees 172
B.1.2.0 (=0T o OSSPSR 172
B.1.2.1 RV TN L TR 173
B.1.2.2 ComplemMENLEA VAIUE [ISEc.vi ettt e e s e st e s te e teente et e enseeneeenaesnaesneas 173
B.1.2.3 AANY VBIUB. ... ettt ettt st b et b et et bt b e e e st b et e st b et e Rt R et e Rt b et e Rt b et enenneneenennn 173
B.1.24 F N VA= LU =X o gl oo o= S 173
B.1.25 W BIUB TG ..ottt ettt b et b et b et b e ae b E e e e b A E e s eh e A e e eb e e R e s e s e b et ene b et e e e bt ne e e ens 174
B.1.2.6 U101 50 TP PSSP PR PRURPRSRTN 174
B.1.2.7 SUDSEL ...ttt ettt e et et e e te e te s aeesaeeeheebeebeeateeheeehe e te e beebeeateeaeeeheeeheeabeenbeereeareeaeeareesaes 174
B.1.3 Matching MechaniSMS INSIAE VEIUEScouiiiiiieiieet e 175
B.1.3.0 LT 1 USRS 175
B.1.31 ANY ELIMIENE. ...ttt bbbttt b et e bt h e b s b e s e bRt e e b e R e e b bt n e bt e e n e ns 175
B.1.3.1.1 Using single charaCter WilACards............ooceiierieeiee et 175
B.1.3.2 Any number of elemMeNtS Or NO ElEMENTociiieceece e s s reeneeereens 175
B.1.3.2.1 Using multiple charaCter WildCardS.........cc.veueiierieiiee e sttt e et 175
B.1.3.3 LS 141017 o] o 1SS 176
B.1.4 Matching attribDULES Of VAIUEScocueeeicece et et te et e e nteentesnaenneas 176
B.1.4.0 LT 1 U PRRRRN 176
B.14.1 LeNGEN FESIIICIIONS ...ttt bbbttt s b et b bbb 177
B.1.4.2 ISR N = = LT g [To= (o ST 177
B.1.5 MaLChiNG CEIraCLEr PELLEIT......c.eivieeeet ettt b bbbt bbb b ens 178
B.1.5.0 LT 1 U PRRRRN 178
B.1.51 SEL EXPIESS O ...ttt ekttt ettt et b et b e se e st b e e e e ae b e e e e Rt e b e e e e Rt b e eE e Rt SR e R e Rt e h R Rt bR et b et b ne e 180
B.1.5.2 REFEIENCE EXPIESSIONevieeeeeiteeitee st e e eee et e e s e e e e tesstesseesaeesreesse e seaneeeseease e seenseensesnsesneesneesneesseanseensenns 180
B.1.5.3 MELCh EXPIrESSION N EIMIESeeieieiee e ee et e e s e s e s e e sae e ae e e e eaeesse e seesteentesssesneesnnesaeesseenseensenns 181

ETSI

10 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.54 MatCh areferenCed ChAraCter SEL........ ..ottt ettt sn e b st ne e e 181
B.1.55 Type compatiDility rUlES fOr PAILEINS.........ccvieieceesee ettt es et e e reeneenneenes 182
Annex C (nor mative): Pre-defined TTCN-3 fUNCLIONSccoiiiiiiiierieeee e 183
C.0 Generd exception handling PrOCEAUIESccueiiiieeie ettt s reeaesreereesrenesre e 183
(O 1100 = g (o ot = = o (= ST 183
(O O = o= i (ol 1= o = SR TR PTUTRORVROPPRTPRIN 183
C.3 INteger 10 UNIVEISAl ChaIBCTENoeiieeeieei ettt nr e e 183
C.4 UNIversal CharaCler 10 INEOEN........eieeiecieece et sttt te st et e s e s be e e e st e e e e stesseenbeseesnesreensenreens 183
(ORI =11] aTe R (o N 110 o = ST 183
C.6 HEXSIIING TO INMTEOES ... ettt ettt b bbb e b et e e e e e s e eb e enenr e nenn e 184
(ORI © (== (10 (0 N1 010=:0 = ST 184
(O T Ot = 5 (T a0 R (o1 110= o (RS 184
(O I 10105 o= g (o} o1 £ {1 o TP P U TP URVRTUPPRPPIN 184
C.10 INLEYEN 1O NEXSITING. ... e ettt ettt ettt b e bbb s e e e e e e e st e b e nb e enenre s e nnennas 185
(O R 11 (=0 7= g (o 0 Tex = 1 £ o ST 185
C.12 INLEYEN 1O CNAISITING. ... cueeueeiertiete ittt ettt st e et e et s bbbt e b e b e s e e e seesenbeenenr e nennennas 185
C.13 LeNgth OF SINQ TYPE ...ttt ettt b bbb e e n e et e b e nb e anenr e nenn e 185
C.14 Number of elementsin aStrUCIUrEd VAIUE...........oouiiiirieieeeeeeen et 186
C.15 The ISPreSeNnt FUNCHION.cciieirieeieste ettt st sttt b st e b st ne e e 186
C.16 The ISChOSEN FUNCLION.......ceeiiieiee ettt s ee e b s re e ee b e e e e seeeneeneeseeeneensesreensennens 187
C.17 TheREGEXP FUNCLIONuiiieie ettt s et s e st e s be et e sresaeesbesbeeaaestesreensenreens 187
C.18 BItStNG tO CharSIIING......cccuiiuieiiiiteeie s eee sttt e ettt e e e s e sre e besae e sesbeeaaesteeasestesaesreeaaestesreensenseens 187
C.19 HEXSIIING 10 CNAISIIINGeeueeieeiieteeiiete sttt e et b b b e e e e e s e b e nenr s e nne e 188
C.20 OCtetString t0 CNAraCEr SLIINGooveeeeeeeieeeietisie sttt ss bbb bt sn s e e b b e nenne e 188
C.21 Character StriNG 10 OCLELSIIINGccveiueeireieeecieceeie sttt st be e e s reeae e besre e beaeestesreennesrens 188
C.22 BItSING 10 NEXSIIING ... ettt b bbb n et b b b nr e nenn e 188
C.23 HEXSIITNG 10 OCTEESIIING ...ttt sttt sr bttt b e n e eb e b e en e b nenn e 189
(O 211 g aTe R (o N0 e = = 1] oo [T 189
C.25 HEXSIIING tO DITSIIING. .. ccviiuiiieieciese ettt st e et e s re et et e eaaesresneetesteeaaestesreessenrens 189
C.26 OCLELSIIING 10 NEXSIIINGcvevitertet ettt b b s e e e bbb e nenn e 190
(ORI ® v (== (1o R To] 011 £ (1 0 o TSR 190
(O T 10 0 = g (o [ST 190
(O B e o7 W (o R 1= o ST P P U TSR STUR PR VRUPPRTPRIN 190
C.30 Therandom nuMber generator FUNCION...........coiiiiirieriere e 190
C.31 The SUBSLNG FUNCLION.........ocieeceee ettt e et e s te e reeaeesresaeennesneens 191
C.32 Number of elementsin aStrUCIUIEA LYPE........ocueeiiiiicie ettt re e re s 191
C.33 CharaCter StriNG L0 FIOBL...........ceerieriiiteitereier et sr b et n e nr e nne e 192
C.34 The REDIACE FUNCLION........cceeii ettt st s e et et e e e e tesreeeesreeaaestesreensearens 192

ETSI

11 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

(ORCISIN® v (= = (gl le o 1= - w0 g (110 SR 193
C.36 Character StriNg 10 OCLELSIIINGcveceeiieieeeie ettt sttt e e st e e ae e besre e besaesaesaeenresreens 193
Annex D: RV 0o TSRS 194
Annex E (informative): Library of USEfUl TYPEScveiiiiiiieriesteieieee st 195
R I 10 =) P 195
I U = O I OV B Y o= 195
E21 USEFUL SIMPIE DASIC LYPES ...ttt bbb et b et b et eb bbb ens 195
E.210 Signed and unsigned SINGIE DY INTEJEISoiiiiiieiee et bbb 195
E211 Signed and UNSIGNE SNOM INEEJEIS.......eiteiee ettt sttt sttt bbbt b sn et be e 195
E.2.1.2 Signed and UNSIgNEd [ONQ INTEOEISccveeieeeeie et e et e e sre e s e te e ee e e e eseesseenseesneenaesseesneas 196
E.2.1.3 Signed and unsigned 10NgIONG INEEOEIScvvevieieeiere e see et e e s e e e ste et e e tesneeeraesraesneas 196
E214 TEEE 754 flOBES. ... ctitrerereeteteteetitie sttt bbbttt bbbttt b bbbttt bbbttt 196
E.2.2 (0L U e =i ot e s o Y 0] SR 197
E.2.2.0 UTHF-8 character String "ULfBSLING"ccveiiee et e e eae e s s ae e sneenreeneens 197
E221 BMP character string "DMPSIiNG"”ooueiiiereee bbb 197
E222 UTF-16 character String "UFLOSIING"coeiueeriirieiriirieeses et 197
E.223 I SO/IEC 8859 character string "iSO8859SIING'”c..eveueruirieiriirieire sttt 197
E.2.3 USEFUL SEIUCTUNE TYDES.....eeeeeeeteeeet ettt b e bbbt bbb bbbt e et bt b e nenn e ens 198
E.2.30 Fixed-point deCimal HEEIalcooiiieiiee bbb 198
E24 USEFUL BEOMIC SLTNG TYES. ...ttt ettt ettt h bbbt b e bt e et b e b e bt bt e e eb et e s nb e e ens 198
E24.1 SiNGIE |SOBA6 CharaCter LY ... ccveeie ettt et st esree s e e saeesseenteenseeneeenaesraesneas 198
E.24.2 SiNGIe UNIVErSal CRaraCler LY DB ..ottt st sre et e nteenaeenaesraesneas 198
E.24.3 T Te L= o Y] oSS 199
E.24.4 I T T0 L= 0= G 1Y o SRS 199
E.245 T Te = ot B Y o= S 199
Annex F (informative): Operationson TTCN-3 active ObJECES......cocvveeeereeiee e 200
N €= 1= - | ST 200
F.2 T ESt COMPONENES.ottt eeesie ettt r e s e b e r e s bt se e Rt s se e ne e sreer e sreene e nesre e e e ene e e e nrennes 200
F.2.1 TSt COMPONENE FEFEIEINCES. ... vttt b bbbt b e bbbt et ebe bbb et b b 200
F.2.2 DyNamic DENAVIOUN OF PTCS ..ottt sb et eb e s b e bbb e b e sb e ebesbenneneas 201
F.2.3 Dynamic behaviour Of tNE MTC.......cuieieece e s ste e ae e nte et e esaeereesraesaees 204
T 81111 £ ST 204
e o KT RUR 205
F4.1 CONfiQUIALION OPEIELIONS.cueevieeeeetirteeetertee ettt eb et b et b bbb e b b et s b e e et e b e s e st e b et et sbe b e e 205
F.4.2 POrt CONLIOHTING OPEIEIIONSc.eivieeieetert ettt sttt sttt et b e bt b et b e b e b b e e eb e s b e e b e sbe e ebesbeseebesbeneeneas 206
F.4.3 COMMUNICALION OPEIALIONS.veeiueeterteaeeterteseet sttt se ettt b et b b e bt beae b b e e b e b e e eb e s b e e e st s b e b et ebenbe e e 207
Annex G (informative): Deprecated language fEALU ES..........ooviveeieieece et 208
G.1 Group style definition of MOdUIE PAraMELENS..........eererirere et e e e 208
T2 o L= o0 LY =R o] oo AT 208
G.3 Usingal | inport type defiNitiONS..........cccuveriririnierieieeieeieese st see et 208
Annex H (infor mative): Bibliography ... s 209
HISIOTY ... 210

ETSI

12 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part8: "Using IDL with TTCN-3";

Part9: "Using XML with TTCN-3";

Part 10: "Using C/C++ with TTCN-3".

ETSI

http://webapp.etsi.org/IPR/home.asp

13 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2[1]) and a graphical presentation format (ES 201 873-3 [2]). The specification of these formatsis outside
the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

* References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

* For aspecific reference, subsequent revisions do not apply.
» For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI ES 201 873-2 (V3.0.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation FormaT (TFT)".

2] ETSI ES 201 873-3 (V3.0.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[3] ETSI ES 201 873-4 (V3.0.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics”.

[4] ETSI ES 201 873-5 (V3.0.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[5] ETSI ES 201 873-6 (VV3.0.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI) Edition 2".

[6] ETSI ES201 873-7 (V3.0.0): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[7] I SO/IEC 9646-1 (1994): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 1. General concepts'.

[8] I SO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[9] ISO/IEC 646 (1991): "Information technology - SO 7-bit coded character set for information
interchange”.

[10] I SO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".

ETSI

http://docbox.etsi.org/Reference

14 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

[11] ISO/IEC 6429 (1992): "Information technology - Control functions for coded character sets'.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 1SO/IEC 9646-1 [7], | SO/IEC 9646-3 [8]
and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

NOTE: The number, order and type of al actual parameters to be passed at a single invocation shall bein line
with the list of formal parameters as defined in the invoked entity.

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of ES 201 873-1

NOTE: Basic types are referenced by their names.
compatible type: TTCN-3 isnot strongly typed but the language does require type compatibility

NOTE: Variables, constants, templates etc. have compatible typesif conditionsin clause 6.7 are met.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO gqueue in the receiving direction. Ports can be
message-based, procedure-based or a mixture of the two.

data types: common name for simple basic types, basic string types, structured types, the special datatype anytype and
all user defined types based on them (see table 3 of ES 201 873-1)

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: kind of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is a value received during run-time or depends on areceived value by alogical
relation

exception: in cases of procedure-based communication, an exception (if defined) israised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actua values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that its identifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

I mplementation Confor mance Statement (ICS): See ISO/IEC-9646-1 [7].
Implementation eXtra Information for Testing (I X1T): See ISO/IEC-9646-1 [7].
Implementation Under Test (IUT): See ISO/IEC-9646-1 [7].

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

ETSI

15 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands |eft to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or atemplate header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that its identifier can be referenced only within the
function, test case or al t st ep whereit is defined

Main Test Component (M TC): See ISO/IEC 9646-3 [8].

passing parameter by value: way of passing parameters where the arguments are evaluated before a parameterizable
entity is entered

NOTE: Only the values of the arguments are passed and changes to the arguments within the called entity have
no effect on the actual arguments as seen by the caller.

passing parameter by reference: way of passing parameters where arguments are not evaluated before the function,
altstep etc. is entered and a reference to the parameter is passed by the calling procedure (function, altstep, etc.) to the
called procedure

NOTE: All changesto the arguments within the called procedure have effect on the actual arguments as seen by
the caller.

Parallel Test Component (PTC): See ISO/IEC 9646-3 [8].

right hand side (of assignment): expression, template reference or signature parameter identifier which standsright to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: basic type, structured type, special datatype, specia configuration type or special default type to which the
user-defined TTCN-3 type can be traced back

static parameterization: kind of parameterization, in which actual parameters are independent of run-time events,

i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

(e.g. known from the test suite specification, here counting imported definitions, or the test system is aware of its value
before execution time)

NOTE: All typesare known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See ISO/IEC-9646-1 [7].

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

test behaviour: (or behaviour) test case or a function started on atest component when executing an execut e or a
st art component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test components have its own behaviour and hence several test
behaviour may run concurrently in the test system (i.e. atest case can be seen as a collection of test
behaviours).

test case: See ISO/IEC-9646-1 [7].
test caseerror: See |SO/IEC-9646-1 [7].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with a
one or more TTCN-3 control parts

test system: See ISO/IEC-9646-1 [7].

ETSI

16 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

type compatibility: language feature that allows to use values, expressions or templates of a given type as actua values
of another type (e.g. at assignments, as actual parameters at calling a function, referencing atemplate, etc. or asareturn
value of afunction)

NOTE: Both the type and the current value of the value, expression or template shall be compatible with the other
type.

value parameterization: ability to pass avalue or template as an actual parameter into a parameterized object
NOTE: Thisactual value parameter then completes the specification of that object.

user-defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).

value notation: notation by which an identifier is associated with a given value or range of a particular type

NOTE: Vauesmay be constants or variables.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface
ATS Abstract Test Suite
BMP Basic Multilingual Plane
BNF Backus-Nauer Form
CORBA Common Object Request Broker Architecture
ETS Executable Test Suite
FIFO First In First Out
ICS Implementation Conformance Statement
IRV International Reference Version
IuT Implementation Under Test
IXIT Implementation eXtra Information for Testing
MTC Main Test Component
PTC Parallel Test Component
SUT System Under Test
TSI Test System Interface
4 Introduction
4.0 General

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, AP
testing etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.
TTCN-3 includes the following essential characteristics:

. the ability to specify dynamic concurrent testing configurations,

. operations for procedure-based and message-based communication;

. the ahility to specify encoding information and other attributes (including user extensibility);

. the ability to specify data and signature templates with powerful matching mechanisms;

ETSI

17 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

. value parameterization;

. the assignment and handling of test verdicts;

. test suite parameterization and test case selection mechanisms,

. combined use of TTCN-3 with other languages;

. well-defined syntax, interchange format and static semantics;

. different presentation formats (e.g. tabular and graphical presentation formats);

. a precise execution algorithm (operational semantics).

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts. The first part, defined in the present document, is the core
language. The second part, defined in ES 201 873-2 [1], isthe tabular presentation format. The third part, defined in
ES 201 873-3[2], isthe graphical presentation format. The fourth part, ES 201 873-4 [3] contains the operational
semantics of the language. The fifth part, ES 201 873-5 [4], defines the TTCN-3 Runtime Interface (TRI), the sixth
part, ES 201 873-6 [5], defines the TTCN-3 Control Interfaces (TCI) and the seventh part [6], specifies the use of
ASN.1 definitions with TTCN-3.

The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 tools,
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with other type-value notations in which case definitionsin other languages may be
used as an aternative data type and value syntax. Other parts of this standard specify use of some other languages with
TTCN-3. The support of other languages is not limited to those specified in the 201 873 series of documents but to
support languages for which combined use with TTCN-3 is defined, rules given in the present document shall apply.

TTCN-3 < >
Core
Tabular
» Language format —
Other Types o Graphical
& Values ; v format ¢ »
.................... TTCN-3 User

Other Types R Presentation The shaded boxes are not
& Values , d format, D— defined in this document

Figure 1: User's view of the core language and the various presentation formats
The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [3)]). It

contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

ETSI

18 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 28) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201873 -4[3].

5 Basic language elements

5.0 General

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
Cases, etc.

The control part of amodule calls the test cases and controls their execution. The control part may also declare (local)
variables etc. Program statements (such asi f -el se and do- whi |) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

A special kind of data structure called atemplate provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not
message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour.
Test verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

ETSI

19

Table 1: Overview of TTCN-3 language elements

Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function/constant definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeable throughout this standard. The distinction between both notions is useful only for
implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

5.1

Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a block of statements and declarations, such
asafunction body or abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the

block only.
EXAMPLE:

/1 This is a legal mxing of TTCN-3 decl arations

vér MyVar Type MyVar 2 :
const integer MyConst:
if (x > 10)

3;
1

var integer MyVarl:= 1,

MyVar1: = MyVarl + 10;

Declarations in the module definitions part may be made in any order. However inside the module control part, test case
definitions, functions, and altsteps, all required declarations must be given beforehand. This meansin particular, local
variables, local timers, and local constants shall never be used before they are declared. The only exception to thisrule
are labels. Forward references to alabel may be used in got o statements before the label occurs (see clause 19.5).

ETSI

5.2

5.2.0

20 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Parameterization

Static and dynamic parameterization

TTCN-3 supports value parameterization according to the following limitations:

a)

b)

language elements which cannot be parameterized are: const ,var, ti ner,control, group and
i mport;

the language element modul e allows static val ue parameterization to support test suite parametersi.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable;

all user-defined t ype definitions (including the structured type definitions such asr ecor d, set , etc.), and
the special configuration type addr ess support static value parameterization i.e. this parameterization shall

be resolved at compile-time;

d) thelanguageelementst enpl at e, si gnature,testcase, altstepandfuncti on support
dynamic value parameterization (i.e. this parameterization shall be resolvable at run-time).

A summary of which language elements can be parameterized and what can be passed to them as parametersisgiven in

table 2.
Table 2: Overview of parameterizable TTCN-3 language elements
Keyword Value Parameterization Types of values allowed to appear in formal/actual
parameter lists

module Static at start of run-time Values of: all basic types, all user-defined types and addr ess
type.

type (note 1) Static at compile-time |Values of: all basic types, all user-defined types and addr ess
type.

template Dynamic at run-time |Values of: all basic types, all user-defined types, addr ess type
andt enpl at e.

function Dynamic at run-time |Values of: all basic types, all user-defined types, addr ess
type, conponent type, port type, def aul t, t enpl at e and
timer.

altstep Dynamic at run-time |Values of: all basic types, all user-defined types, addr ess
type, conponent type, port type, def aul t, t enpl at e and
timer.

testcase Dynamic at run-time |Values of: all basic types and of all user-defined types,
address type andtenpl at e.

signature Dynamic at run-time |Values of: all basic types, all user-defined types and addr ess
type and conponent type.

do not allow parameterization.

NOTE 1: record of, set of, enunerated, port, conponent andsub-type definitions

NOTE 2: Examples of syntax and specific use of parameterization with the different language elements
are given in the relevant clauses in the present document.

5.2.1 Parameter passing by reference and by value

5.2.1.0 General

By default, all actual parameters of basic types, basic string types, user-defined structured types, address type and

component type are passed by value. This may optionally be denoted by the keyword i n. To pass parameters of the

mentioned types by reference the keywords out or i nout shall be used.

Timers and ports are always passed by reference. Timer parameter are identified by the keyword t i ner . Port
parameters are identified by their port type. The keyword i nout may optionally be used to denote passing by

reference.

ETSI

21 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

5.21.1 Parameters passed by reference
Passing parameters by reference has the following limitations:

a) only theformal parameter liststo altsteps, functions, signatures and testcases may contain pass-by-reference
parameters;

NOTE: Thereare further restrictions on how to use pass-by-reference parameters in signatures (see clause 23) and
altsteps (see clauses 16.2.1 and 21.3.1).

b) theactual parameters shall only be value or template variables, ports or timers.

EXAMPLE:

function MyFunction(inout bool ean MyReferenceParaneter){ ...};

/'l MyReferenceParaneter is passed by reference. The actual paraneter can be read and set
/1 fromwi thin the function

function MyFunction(out tenplate bool ean M/ReferenceParaneter){ ...};

/'l MyReferenceParaneter is passed by reference. The actual paranmeter can only be set
/1 fromwi thin the function

5.2.1.2 Parameters passed by value

Actual parametersthat are passed by value may be variables as well as constants, templates, etc.

function M/Function(in tenplate MyTenpl ateType MyVal ueParaneter){ ...};
/'l MyVal ueParaneter is passed by value, the in keyword is optional

5.2.2 Formal and actual parameter lists

The number of elements and the order in which they appear in an actual parameter list shall be the same as the number
of elements and their order in which they appear in the corresponding formal parameter list. Furthermore, the type of
each actual parameter shall be compatible with the type of each corresponding formal parameter.

EXAMPLE:

/1 A function definition with a formal paraneter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual parameter |ist
M/Function(123, true,'1100' B);

5.2.3 Empty formal parameter list

If the formal parameter list of the TTCN-3 language elementsf unct i on, t est case, si gnature, altstepor
ext ernal functi on isempty, then the empty parentheses shall be included both in the declaration and in the
invocation of that element. In all other cases the empty parentheses shall be omitted.

EXAMPLE:

/1 A function definition with an enpty paraneter list shall be witten as
function MyFunction(){ ...}

/Il Arecord definition with an enpty paraneter list shall be witten as
type record M/Record { ...}

ETSI

22 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

5.2.4 Nested parameter lists

All parameterized entities specified as an actual parameter shall have their own parameters resolved in the top-level
actual parameter list.

EXAMPLE:

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3

}

/1 A message tenplate nmight be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) :=

fieldl : = MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/1 A test case paraneterized with a tenplate nmight be
testcase TCOOl(tenpl ate MyMessageType RxMsg) runs on PTCl system TS1 {

M/PCO. recei ve(RxMsQ) ;
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/'l used as an actual paraneter, the actual paraneters for tenplate nust be provided
control

{ :
execute(TCOO1(MyTenplate(7)));

5.2.5 Template-type formal parameters

5.25.1 Parameterization with templates and matching attributes

To enable templates or matching symbols to be passed as actual parameters the extra keyword t enpl at e shall be
added before the type field of the corresponding formal parameter. This makes the parameter atemplate-type and in
effect extends the allowed parameters for the associated type to include the appropriate set of matching attributes (see
annex B) as well asthe normal set of values. Template parameter fields shall not be called by reference.

EXAMPLE:

/1 The tenplate
tenpl ate M/MessageType MyTenpl ate (tenpl ate i nteger MyFormal Param: =

{ fieldl : = MyFor nal Param opti onal ,
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol.recei ve(M/Tenpl ate(?));

/Il O as foll ows

pcol. recei ve(M/Tenpl ate(onit));

ETSI

23 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

5.25.2 Language elements using template-type parameters
Only functi on,testcase, al t st ep andt enpl at e definitions can have template-type formal parameters.

EXAMPLE:

function MyBehavi our (tenpl ate MyMsgType MyFor mal Par anet er)
runs on MyConponent Type
{ .

pcol. recei ve(MyFor nal Par anet er) ;

5.3 Scope rules

5.3.0 General

TTCN-3 provides seven basic units of scope:
a) module definitions part;
b) control part of amodule;
C) component types;
d) functions;
e) dtsteps,
f) test cases;
g) "blocksof statements and declarations’ within compound statements.
NOTE 1: Additional scoping rule for groups are given in clause 7.3.1.
NOTE 2: Additional scoping rule for counters of f or loops are given in clause 19.7.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and "blocks of statements and declarations” within compound statements may additionally specify some form
of behaviour by using the TTCN-3 program statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part.
Identifiersimported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in a test component type may be used only in functions, test cases and altsteps referencing that
component type or a consistent test component type (see clause 16.3) by ar uns on-clause.

Test cases, atsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration madein atest caseis not visiblein afunction called by the test case or in an
altstep used by the test case).

Compound statements, e.g. i f - el se-, whi | e-, do- whi | e-, or al t -statementsinclude "blocks of statements and
declarations’. They may be used within the control part of amodule, test cases, atsteps, functions, or may be embedded
in other compound statements, e.g. ani f - el se-statement that is used within awhi | e-loop.

The "blocks of statements and declarations' of compound statements and embedded compound statements have a
hierarchical relation both to the scope unit including the given "block of statements and declarations' and to any
embedded "block of statements and declarations'. Declarations made within a"block of statements and declarations’
have local visihility.

ETSI

24 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The hierarchy of scope unitsis shown infigure 2. Declarations of a scope unit at a higher hierarchical level are visible
inal units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

module
definitions part
module component type funct i on without al t st ep without
control part runs on-clause runs on-clause

block of statements
functi on with
runs on-clause

(within a compound
block of statements

statement)
(within a compound
statement)

block of statements
(within a compound
statement)

block of statements
(within a compound
statement)

t est case with
runs on-clause and
Qptiona syst emclaug

al t st ep with
runs on-clause

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

block of statements
(within a compound
statement)

block of statements
(within a compound
statement)

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

embedded
block of statements
(within a compound

Figure 2: Hierarchy of scope units

EXAMPLE:
nodul e MyModul e

{ ;:onst integer M/Const := 0; // MyConst is visible to MyBehavi our A and MyBehavi ourB
functi on MyBehavi our A()
{ é:onst integer A:= 1, /1 The constant Ais only visible to MyBehavi ourA
}
function MyBehavi our B()
{ ;:onst integer B := 1, /1 The constant B is only visible to MyBehavi ourB
}

}

5.3.1 Scope of formal parameters
The scope of the formal parameters in a parameterized language element (e.g. in afunction call) shall be restricted to

the definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey
follow the normal scope rules (see clause 5.3.0).

ETSI

25 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

5.3.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiersi.e. al identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy. Identifiers for fields of structured types, enumeration values and
groups do not have to be globally unique, however in the case of enumeration values the identifiers shall only be reused
for enumeration values within other enumerated types. The rules of identifier uniqueness shall also apply to identifiers
of formal parameters.

EXAMPLE:

nodul e MyModul e
{ .

const integer A :=1;

functi on MyBehavi our A()

{ :
const integer A:=1; // Is NOT all owed

i£(.)
{ .

const boolean A := true; // Is NOT all owed

}

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of A in nodul e header)
functi on MyBehavi our A()

{

const integer A :=1;

}

functi on MyBehavi our B()

{

const integer A := 1;

5.4 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages.

6 Types and values

6.0 General

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
verdi ct t ype. Structured types such asr ecor d types, set typesand enuner at ed types can be constructed from
these basic types.

The special datatype anyt ype isdefined as the union of all known data types and the address type within a module.

Special types associated with test configurations such asaddr ess, port and conponent may be used to define the
architecture of the test system (see clause 22).

The special type def aul t may be used for the default handling (see clause 21).

The TTCN-3 types are summarized in table 3.

ETSI

6.1

6.1.0

26 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 3: Overview of TTCN-3 types

Class of type Keyword Sub-type
Simple basic types integer range, list
float range, list
boolean list
objid list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data types anytype list (see note)
Special configuration types address
port
component
Special default types default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

Basic types and values

Simple basic types and values

TTCN-3 supports the following basic types:

a)

b)

i nt eger : atype with distinguished values which are the positive and negative whole numbers, including
zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unlessthe valueis
0; the value zero shall be represented by a single zero.

f | oat : atype to describe floating-point numbers.
In general, floating point numbers can be defined as: <mantissa> x <base> <exponent>,

where <mantissa> isa positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16) and
<exponent> a positive or negative integer.

In TTCN-3, the floating-point number val ue notation is restricted to a base with the value of 10. Floating point
values can be expressed by using two forms of value notations:

- the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x1072),
2.783 (i.e. 2783 x 1073) or -123.456789 (which represents -123 456 789 x 1076); or

- by two numbers separated by E where the first number specifies the mantissa and the second specifies
the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which represents
-123 x 10).

NOTE: Incontrast to the general definition of float values, the mantissa of in theT TCN-3 val ue notation, beside

integers, allows decimal numbers as well.

ETSI

27 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

c) bool ean: atype consisting of two distinguished values.
Values of boolean type shall be denoted by t r ue and f al se.
d) Void.

g) verdicttype: atypefor usewith test verdicts consisting of 5 distinguished values. Values of
ver di ct t ype shal be denoted by pass,fail,i nconc,none anderror.

6.1.1 Basic string types and values
TTCN-3 supports the following basic string types:

NOTE 1: The general term string or string typein TTCN-3referstobi t stri ng, hexstri ng,octetstri ng,
charstring anduni versal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Values of typebi t st ri ng shall be denoted by an arbitrary number (possibly zero) of the bit digits: 0 1,
preceded by a single quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101'B.

b) hexstri ng: atypewhose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst r i ng shall be denoted by an arbitrary number (possibly zero) of the hexadecimal digits
(uppercase and lowercase |etters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: ' AB0O1D H
"ab01d"H
" Ab01D'H

Cc) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters' ¢; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE3: 'FF96' O
"ff96' O
'Ff96' O

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
I SO/IEC 646 [9] complying to the International Reference Version (IRV) as specified in clause 8.2 of
ISO/IEC 646 [9].

NOTE 2: The IRV version of ISO/IEC 646 [9] is equivalent to the IRV version of the International Reference
Alphabet (former International Alphabet No.5 - |A5), described in ITU-T Recommendation T.50
(see bibliography).

Values of char st ri ng type shall be denoted by an arbitrary number (possibly zero) of characters from the
relevant character set, preceded and followed by double quote (") or calculated using the predefined
conversion function int2char with the positive integer value of their encoding as argument (see clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

ETSI

28 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: ""abcd"" representsthe literal string " abcd".

€) The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from ISO/IEC 10646 [10].

uni ver sal char stri ng values can aso be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote ("), calculated using a predefined
conversion function (see clause C.3) with the positive integer value of their encoding as argument or by a
"quadruple’.

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The"quadruple” is only capable to denote a single character and denotes the character by the decimal values of
its group, plane, row and cell according to 1SO/IEC 10646 [10], preceded by the keyword char included into
apair of brackets and separated by commas (e.g. char (0, 0, 1, 113) denotes the Hungarian character "i"). In
cases where it is necessary to denote the character double quote (") in a string assigned according to the first
method (within double quotes), the character is represented by a pair of double quotes on the same line with no
intervening space characters. The two methods may be mixed within a single notation for a string value by
using the concatenation operator.

EXAMPLES5: Theassignment : "the Braille character" & char (0, 0, 40, 48) & "looks like this' representsthe
literal string: the Braille character £ lookslike this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, uni ver sal char st ri ng shal conform to the UCS-4 coded representation form specified in
clause 14.2 of 1SO/IEC 10646 [10].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 28.2.3). The following
useful character string types utf8string, bmpstring, utf16string and iso8859string using these attributes are
defined in annex E.

6.1.2 Accessing individual string elements

Individual elementsin astring type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0).

EXAMPLE:
/1 Gven
MyBitString := '11110111' B;
/1 Then doi ng
M/BitString[4] :='1'B;

/'l Results in the bitstring '11111111'B

6.2 Sub-typing of basic types

6.2.0 General

User-defined types shall be denoted by the keyword t ype. With user-defined types it is possible to create sub-types
(such as lists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

ETSI

29 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.2.1 Lists of values

TTCN-3 permits the specification of alist of distinguished values of basic types, structured types and anytype as listed
intable 3. The valuesin the list shall be of the root type and shall be atrue subset of the values defined by the root type.
The subtype defined by thislist restricts the allowed values of the subtype to those values in the list.

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);

type float pi (3.1415926);

type charstring MyStringList ("abcd", "rgy", "xyz");

type universal charstring Special Letters (char(0, 0, 1, 111), char(0, 0, 1, 112), char(0, 0, 1,
113));

6.2.2 Ranges

6.2.2.0 General

TTCN-3 permits the specification of range constraints for the typesi nt eger, charstring, uni versal
charstringandfl oat (or derivations of these types). Fori nt eger andf | oat , the subtype defined by the
range restricts the allowed values of the subtype to the values in the range including the lower boundary and the upper
boundary. Inthe case of char st ri ng anduni versal charstring types, therange restricts the allowed values
for each separate character in the strings. The boundaries shall evaluate to valid character positions according to the
coded character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower
and the upper boundaries are not considered to be valid val ues of the specified range.

EXAMPLE 1:

type integer Myl ntegerRange (0 .. 255);
type float piRange (3.14 .. 3142E-3);

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. "z");

/Il Defines a string type of any length with each character within the range froma to z
/1 (character codes from97 to 122), |ike "abxyz";

/1 strings containing any other character (including control characters), like

/1 "abc2" are disallowed.

type universal charstring MyUCharString2 (char(0, O, 1, 111) .. char(0, 0, 1, 113));

/1 Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

6.2.2.1 Infinite ranges

In order to specify an infinite integer or float range, the keyword i nf i ni t y may be used instead of avalueindicating
that there is no lower or upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

EXAMPLE:
type integer MylntegerRange (-infinity .. -1); // Al negative integer nunbers

NOTE: The'value for infinity isimplementation dependent. Use of this feature may lead to portability problems.

6.2.2.2 Mixing lists and ranges
Void.

NOTE: Thisclauseisreplaced by clause 6.2.5.

ETSI

30 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.2.3 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In all cases, these boundaries shall evaluate to non-negative
i nt eger values (or derivedi nt eger values).

EXAMPLE:

type bitstring M/Byte | ength(8); /1 Exactly length 8

type bitstring MyByte length(8 .. 8); /1 Exactly length 8

type bitstring MyN bbl eToByte I ength(4 .. 8); /1 Mnimmlength 4, nmaxi numlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nf i ni ty may also be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.2.4 Pattern sub-typing of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char st ri ng types. The type constraint shall usethe pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a true subset of the type being sub-typed.

NOTE: Pattern sub-typing can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
/1 all permitted values of MyString have prefix abc and postfix xyz

type universal charstring MUString (pattern "*\r\n")
/1 all permitted values of M/UString are terminated by CR/ LF

type charstring MyString2 (pattern "abc?\q{0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
/Il legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

/] causes an error because the type MyString does not contain a value starting with the
/1 character d

6.2.5 Mixing sub-typing mechanisms

6.25.1 Mixing patterns, lists and ranges

Withini nt eger andf | oat (or derivations of these types) sub-type definitionsit is allowed to mix lists and ranges.
Overlapping of different constraints is not an error.

EXAMPLE 1:
type integer MylntegerRange (1, 2, 3, 10 .. 20, 99, 100);

Withinchar string and uni versal char string sub-type definitionsit isnot allowed to mix pattern, list or
range constraints.

ETSI

31 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

type charstring MyCharStrO ('gr', 'xyz');
/1 contains character strings gr and xyz;

type charstring M/CharStrl (‘a'..'z");
/1 contains character strings of arbitrary length containing characters a to z.

type charstring MyCharStr2 (pattern '[a-z]#(3,9)');
/'l contains character strings of length form3 to 9 characters containing characters a to z

6.2.5.2 Using length restriction with other constraints

Withinbi t stri ng, hexstring, octetstring sub-type definitions lists and length restriction may be mixed in
the same sub-type definition.

Withinchar string and uni versal charstri ng sub-type definitionsit isallowed to add alength restriction
to constraints containing list, range or pattern sub-typing in the same sub-type definition.

When mixed with other constraints the length restriction shall be the last element of the sub-type definition. The length
restriction takes effect jointly with other sub-typing mechanisms (i.e. the val ue set of the type consists of the common
subset of the value setsidentified by the list, range or pattern sub-typing and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ('gr', 'xyz') length (1..9);
// contains the character strings gr and xyz;

type charstring M/CharStr6 ('a'..'z') length (3..9);
/1 contains character strings of length from3 to 9 characters and containing characters
/1 atoz

type charstring M/CharStr7 (pattern '[a-z]#(3,9)') length (1..9);
/1 contains character strings of length form3 to 9 characters containing characters a to z

type charstring MyCharStr8 (pattern '[a-z]#(3,9)') length (1..8);
/'l contains character strings of length form3 to 8 characters containing characters a to z

type charstring MyCharStr9 (pattern '[a-z]#(1,8)') length (1..9);
/1 contains any character strings of length form1 to 8 characters containing characters
/Il atoz

type charstring MyCharStr10 ('gr', 'xyz') length (4);
/1 contains no value (enpty type).

6.3 Structured types and values

6.3.0 General

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enurer at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1:

// assi gnnent notation

const MyRecor dType MyRecor dVal ue:

fieldl := '11001' B,
field2 := true,
field3 := "A string"
}
Il O
const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"} //value list notation

ETSI

32 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned values must be specified. Fields not mentioned are implicitly left
unspecified. It is also possible to leave fields explicitly unspecified using the not used symbol "-". Using the value list
notation all fields in the structure shall be specified either with avalue, the not used symbol "-" or the omi t keyword.

EXAMPLE 2:
var MyRecordType MyVari abl e: = // assi gnnent notation
{
fieldl := '11001' B,
/1 field2 inplicitly unspecified
field3 := "A string"
}
Il O
var MyRecordType MyVari abl e: = /] assi gnnent notation
fieldl := '11001'B,
field2 := -, /] field2 explicitly unspecified
field3 := "A string"
}
Il O
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It isnot allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { Myl ntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit om t value
for the relevant field. The omi t keyword shall not be used for mandatory fields. When re-assigning a previously
initialized val ue, using the not used symbol or skipping afield in assignment notation will cause the relevant fields to
remain unchanged.

EXAMPLE 4:
var MyRecordType MyVariable : =
{
fieldl :='111'B,
field2 := fal se,
field3 := -
}
MyVariable := { '10111'B, -, - }

/1 after this, My/Variable contai 'ns { '"10111'B, false /* unchanged */, <undefined> }

MyVari abl e :

field2 := true

}
/1 after this, MVariable contains { '10111'B, true, <undefined> }

M/Vari able : =

{
fieldl := -,
field2 := fal se,
field3 := -

}
/1 after this, M/Variable contains { '10111' B, fal se, <undefined> }

ETSI

33 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.3.1 Record type and values

6.3.1.0 General

TTCN-3 supports ordered structured types known asr ecor d. The elements of ar ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of ar ecor d shall be compatible
with the types of ther ecor d fields. The element identifiers are local to the r ecor d and shall be unique within the
recor d (but do not have to be globally unique). A constant that is of r ecor d type shall contain no variables or
module parameters as field values, either directly or indirectly.

EXAMPLE 1.

type record MyRecordType
{

i nt eger fieldl,
MyQt her Recor dType field2 optional,
charstring field3

}

type record MyQt her Recor dType
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields (i.e. as empty records).

EXAMPLE 2:

type record MyEnptyRecord { }

A record vaueisassigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MylntegerValue := 1;
const MyQt her Recor dType MyQt her Recor dVal ue: =

fieldl :
field2 :

'11001' B,
true

}

var MyRecordType MyRecordVal ue : =
{

fieldl : = Myl ntegerVal ue,
field2 : = MyQ her Recor dVal ue,
field3 := "A string"

}
The same val ue specified with avalue list.
EXAMPLE 4:

M/Recor dVal ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};

6.3.1.1 Referencing fields of a record type

Elements of ar ecor d shall be referenced by the dot notation TypeOr Val uel d. El enent | d, where
TypeOr Val uel d resolvesto the name of a structured type or variable. Elementld shall resolve to the name of afield
in astructured type.

EXAMPLE:

MyVarl : = MyRecordl. nyEl enent 1;
/1 If arecord is nested within another type then the reference nay | ook like this
MyVar2 : = MyRecordl. nyEl enent 1. nyEl enent 2;

ETSI

34 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.3.1.2 Optional elements in a record
Optional elementsinar ecor d shall be specified using the opt i onal keyword.
EXAMPLE 1:

type record MyMessageType

Fi el dTypel field1,
Fi el dType2 field2 optional,

Fi el dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:

M/Recor dVval ue: = { Myl nt eger Val ue, omt , "A string"};

/1l Note that this is not the same as witing,
/'l MyRecordVal ue: = { Myl ntegerValue, -, "A string"};
/1 which would nean the value of field2 is unchanged

6.3.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within ther ecor d definition. Both the definition of
new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of subtype
congtraints are possible.

EXAMPLE:

/'l record type with nested structured type definitions
type record MyNest edRecor dType

{

record

{

i nt eger nestedFi el d1,
f1 oat nest edFi el d2
} outerFieldl,
enuner at ed {
nest edEnunt,
nest edEnung
} outerFiel d2,
record of bool ean outerField3

}

/1 record type with nested sub-type definitions
type record MyRecordTypeW t hSubt ypedFi el ds

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.3.2 Set type and values

6.3.2.0 General

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of theset fieldsis not significant.

EXAMPLE:
type set MySet Type
{

i nt eger fieldl,
charstring field2
}

Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

ETSI

35 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)
The value list notation for setting values shall not be used for values of set types.

6.3.2.1 Referencing fields of a set type
Elements of aset shall be referenced by the dot notation (see clause 6.3.1.1).

EXAMPLE:
MyVar3 : = MySet 1. nyEl enent 1;
/1 If a set is nested in another type then the reference nay look like this
MyVar4 : = MyRecordl. nyEl enent 1. nyEl enent 2;

/'l Note, that the set type, of which the field with the identifier 'nyElenent2' is referenced,
/l is enbedded in a record type

6.3.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

6.3.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.3.1.3.

6.3.3 Records and sets of single types

6.3.3.0 General

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered array respectively.

Thel engt h keyword is used to restrict lengthsof r ecord of andset of .

EXAMPLE 1:

type record | ength(10) of integer M/RecordOf Type; // is a record of exactly 10 integers

type record |l ength(0..10) of integer M/RecordOf Type; // is a record of a maxi num of 10 integers
type record | ength(10..infinity) of integer M/RecordOf Type; // record of at |east 10 integers
type set of boolean MySetOf Type; // is an unlinited set of bool ean val ues

type record |l ength(0..10) of charstring StringArray |ength(12);
/1 is a record of a maximumof 10 strings each with exactly 12 characters

The value notation for record of andset of shall beavaluelist notation or an indexed notation for an individual
element (the same value notation as for arrays, see clause 6.5). There is one exception from this general rule: in the case
of defining modified templates, when the assignment notation is also allowed to be used (see clause 14.6.0).

When the value list notation is used, the first value in the list is assigned to the first element, the second list valueis
assigned to the second element etc. No empty assignment is allowed (e.g. two commas, the second immediately
following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly
skipped or omitted in the list.

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantical or run-time
error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remainsinvisible). Sendingar ecord of value with undefined elements shall cause a dynamic testcase error.

ETSI

36 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

/1 Gven

type record of integer MyRecorddf;

var integer MyVar;

var M/Recordd MyRecordvar :={ 0, 1, 2, 3, 4 };

MyVar := MyRecordVar[O]; // the first elenent of the "record of" value (integer 0)
/1 is assigned to MyVar

/1 Indexed values are pernitted on the |eft-hand side of assignnents as well:
MyRecordVar[1] := MyVar; // MyVar is assigned to the second el ement
/1 value of M/Recordvar is { 0, 0, 2, 3, 4}

/1 The assi gnment

MyRecordVar := { 0, 1, -, 2, omt };

/1 will change the value of MyRecordVar to{ O, 1, 2 <unchanged>, 2};

/1 Note, that the 3" el ement woul d be undefined if had had no previous assigned val ue.

/1 The assi gnment
MyRecordVar[6] := 6;

/1 will change the value of MyRecordVar to{ O, 1, 2 , 2, <undefined>, <undefined>, 6 };
/1 Note the 5" and 6'" el enents (with indexs 4 and 5) had no assigned value before this
/1 last assignnent and are therefore undefined.

NOTE: Thismakesit possibleto copy r ecord of valueselement by element in afor loop. For example, the
function below reversesthe elements of ar ecord of value:

function reverse(in M/Record src) return MyRecord

var MyRecord dest;

var integer |;

for(l :=0; I <sizeof(src); I:=1 + 1) {
dest[sizeof (src) - 1 - I] :=src[l];

return dest;

}

Embedded r ecord of andset of typeswill result in adata structure similar to multidimensiona arrays (see
clause 6.5).

EXAMPLE 3:

/1 Gven
type record of integer MyBasicRecordO Type;
type record of MyBasicRecordOf Type MyRecordOf Type;

/1 Then, the variable myRecordOfArray will have simlar attributes to a two-dinensional array:
var MyRecordOf Type nyRecordOf Array;

/1 and reference to a particular elenent would | ook like this

/1 (value of the second el ement of the third ' MyBasi cRecordOf Type' construct)

nyRecordOF Array [2][1] := 1,

6.3.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withther ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:
type record of enunerated { red, green, blue } ColorlList;

type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

ETSI

37 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.3.4 Enumerated type and values

TTCN-3 supportsenuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct val ues are called enumerations. Each enumeration shall have an identifier. Operations on
enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering operators.
Enumeration identifiers shall be unique within the enumerated type (but do not have to be globally unique) and are
consequently visible within the context of the given type only. Enumeration identifiers shall only be reused within other
structured type definitions and shall not be used for identifiers of local or global visibility at the same or alower level of
the same branch of the scope hierarchy (see scope hierarchy in clause 5.3.0).

EXAMPLE 1.

type enunerated MyFirst EnuniType {
Monday, Tuesday, Wednesday, Thursday, Friday

H
type integer Mnday;
/1 This definitionis illegal, as the nane of the type has local or global visibility

type enunerated MySecondEnunType {
Sat urday, Sunday, Mnday

/} This definition is legal as it reuses the Monday enuneration identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday enuneration identifier within
// a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
MyFi r st EnunType firstField,
i nt eger secondFi el d

b

var MyNewRecor dType newRecordVal ue := { Monday, 0 }
Il MyFirstEnunType is inplicitly referenced via the firstField el enent of My/NewRecordType

const integer Monday := 7
/1 This definitionis illegal as it reuses the Monday enuneration identifier for a
/] different TTCN-3 object within the same scope unit

Each enumeration may optionally have an assigned integer value, which is defined after the name of the enumeration in
parenthesis. Each assigned integer number shall be distinct within asingle enuner at ed type. For each enumeration
without an assigned integer value, the system successively associates an integer number in the textual order of the
enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied in any of
the enumerations with a manually assigned value. These values are only used by the system to allow the use of
relational operators.

NOTE 1: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside of the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

For any instantiation or value reference of an enuner at ed type, the given type shall beimplicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced via the given element (i.e. by theidentifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation etc.

EXAMPLE 2:

/1 Valid instantiations of M/FirstEnumlype and MySecondEnunType woul d be
var MyFirst EnunType Today := Tuesday;

var MySecondEnuniType Tonorrow : = Monday;

/1 But the following statenent is illegal because the two enuneration types are not conpatible
Today : = Tonorrow

ETSI

38 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.3.5 Unions

6.3.5.0 General

TTCN-3 supportsthe uni on type. Theuni on typeisacollection of fields, each oneidentified by an identifier. Only
one of the specified fields will ever be present in an actual union value. Union types are useful to model a structure
which can take one of afinite number of known types.

EXAMPLE:
type uni on MyUni onType
{

i nt eger nunber,
charstring string

}s

/1 Avalid instantiation of MyUnionType woul d be
var MyUni onType age, oneYeard der;
var integer agel nMont hs;

age. nunber : = 34; /1 value notation by referencing the field. Note, that this
/1 notation nakes the given field to be the chosen one
oneYear A der : = {nunber := age. nunber +1};

agel nMont hs : = age. nunber * 12;

The value list notation for setting values shall not be used for values of uni on types.

6.3.5.1 Referencing fields of a union type
Fields of auni on type shall be referenced by the dot notation (see clause 6.3.1.1).

EXAMPLE:

MyVar5 : = MyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this

MyVar6 : = MyRecordl. nyEl enent 1. nyChoi ce2;

/1 Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
/l is enbedded in a record type

6.3.5.2 Optionality and union

Optional fields are not allowed for the uni on type, which means that the opt i onal keyword shall not be used with
uni on types.

6.3.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union fields nested within the union definition, similar to the mechanism
for record types described in clause 6.3.1.3.

6.4 The anytype

The special type anyt ype isdefined as a shorthand for the union of all known data types and the address typein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anyt ype shall be uniquely identified by the corresponding type names.

NOTE 1: Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) can not be reached
via the anytype of the importing module.

ETSI

39 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype MyVar One, M Var Two;
var integer MyVar Three;

MyVar One. i nteger := 34;
M/VarTwo : = {integer := My/VarOne.integer + 1};

MyVar Three : = MyVar One. i nteger * 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains' all typesimported into the module where it is declared.

Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.5 Arrays

In common with many programming languages, arrays are not considered to be typesin TTCN-3. Instead, they may be
specified at the point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array
dimensions shall be specified using constant expressions, which shall evaluate to a positivei nt eger values.

EXAMPLE 1:
var integer M/Arrayl[3]; /'l Instantiates an integer array of 3 elenents with the index 0 to 2
var integer M/Array2[2][3]; // Instantiates a two-dinensional integer array of 2 x 3 elenents

Wit h
/1 indexes from(0,0) to (1,2)

Array elements are accessed by means of the index notation ([]), which must specify a valid index within the array's
range. Individual elements of multi-dimensional arrays can access by repeated use of the index notation. Accessing
elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

MArrayl[1] :=5;

MWArray2[1]1[2] := 12;

MWArrayl[4] := 12; /1 ERROR index nust be between 0 and 2
M/Array2[3][2] := 15; // ERROR first index nust be 0 or 1

Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values.

EXAMPLE 3:
var integer M/Array3[1 .. 5]; /1 Instantiates an integer array of 5 elenents
/] with the index 1 to 5
M/Array3[1] := 10; // Lowest index
M/Array3[5] := 50; // Highest index
var integer MJArray4[1 .. 5][2 .. 3]; // Instantiates a two-dinmensional integer array of

/1 5 x 2 elements with indexes from(1,2) to (5,3)

The values of array elements shall be compatible with the corresponding variable declaration. VVaues may be assigned
individually by avalue list notation or indexed notation or more than one or al at once by avalue list notation. When
the value list notation is used, thefirst value of thelist is assigned to the first element of the array (the element with
index 0), the second value to the second element etc. Elements to be left out from the assignment shall be explicitly
skipped or omitted in the list. For assigning values to multi-dimensional arrays, each dimension that is assigned shall
resolve to a set of values enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost
dimension corresponds to the outermost structure of the value, and the rightmost dimension to the innermost structure.
The use of array slices of multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the
number of dimensionsin the corresponding array definition, is allowed. Indexes of array dlices shall correspond to the
dimensions of the array definition from left to right (i.e. the first index of the slice corresponds to the first dimension of
the definition). Slice indexes shall conform to the related array definition dimensions.

ETSI

40 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 4:
M/Arrayl1[0]: = 10;
M/Arrayl[1] : = 20;
M/Arrayl[3]: = 30;

/1 or using an value |ist
M/Arrayl: = {10, 20, -, 30};

MWArrayd: = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
/1 The array value is conpletely defined

var integer MArray5[2][3][4] :=

{1, 2, 3, 4}, /] assigns a value to M/Array5 slice [0][0]
{5, 6, 7, 8}, /] assigns a value to M/Array5 slice [0][1]
{9, 10, 11, 12} // assigns a value to M/Array5 slice [0][2]
/1 end assignnents to M/Array5 slice [O]

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} /1 assigns a value to M/Array5 slice [1]
h

M/Array4[2] := {20, 20};
Il yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};

MArray5[1] :={ {0, 0, 0, 0}, {0, 0, 0, 0}, {0, O, 0, O}};
/1 yields {{{1, 2, 3, 4}, {5 6, 7, 8, {9, 10, 11, 12}},
/1 {{o, 0, 0, 0}, {0, 0, 0, O}, {0, O, O, 0}}};

M/Array5[0][2] := {3, 3, 3, 3};
Il yields {{{1, 2, 3, 4}, {5, 6, 7, 8, {3, 3, 3
/1 {{o, o, o, o}, {0, 0, 0, 0}, {O, O, O

var integer M/Arraylnvalid[2][2];

MArraylnvalid := { 1, 2, 3, 4}
/1 invalid as the dinension of the value notation does not corresponds to the dinensions
/1 of the definition

MArraylnvalid[2] :={ 1, 2}
// invalid as the index of the slice should be 0 or 1

NOTE: Andternative way to use multi-dimensional data structures is via employing the record, record of, set or

set of types.
EXAMPLE 5:

/1 Gven

type record MyRecordType

{
i nt eger fieldl,
MyQ her St ruct field2,
charstring field3

}

/1 An array of MyRecordType coul d be

var MyRecordType nyRecordArray[10];

/Il Areference to a particular elenment would | ook like this
nyRecordArray[1].fieldl := 1,

6.6 Recursive types

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

ETSI

41 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.7 Type compatibility

6.7.0 General

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value "b" is called
type"A".

6.7.1 Type compatibility of non-structured types

For variables, constants, templates etc. of simple basic types and bitsring, hexstring and octetstring types the value "b"
is compatible to type "A"if type "B" resolves to the same root type astype "A" (e.g. i nt eger) and it does not violate
subtyping (e.g. ranges, length restrictions) of type "A".

EXAMPLE:

/1 Gven
type integer Mylnteger(1l .. 10);

var integer x;
var Myl nteger vy,

/1 Then
y :=5; /] is a valid assignnent
X 1=y;

I/l is a valid assignnent, because y has the sane root type as x and no subtyping is violated

X :=20; // is a valid assignnent

y 1= X;

/1 is NOT a valid assignnment, because the value of x is out of the range of Ml nteger
x :=5; /] is a valid assignnent

y =X

/1 is a valid assignnment, because the value of x is now within the range of M nteger
/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);
var MyChar nyCharacter;

var charstring nyCharString;

var MySingl eChar nySingleCharString := "B";

/1 Then

nmyChar String := nySingl eChar String;

//is a valid assignnment as charstring restricted to length 1 is conpatible with charstring.
nyCharacter := nySingl eCharString;

/lis a valid assignnent as two single-character-length charstrings areconpatible.

/1 G ven
nyChar String : = "abcd";

/] Then
nmyCharacter := nyCharString[1];
/lis valid as the r.h.s. notation addresses a single elenent fromthe string

/1 G ven
var charstring nyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/] Then

nyChar String : = nyCharacterArray[1];
/lis valid and assigns the value "B" to nyCharString;

For variables, constants, templates etc. of char st ri ng type, value “b” is compatible with auni ver sal
charstring type“A” unlessit violates any type constraint specification (range, list or length) of type"A".

ETSI

42 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

For variables, constants, templates etc. of uni ver sal char stri ng type, value“b” is compatible with a
charstringtype“A” if al charactersused in value “b” have their corresponding characters (i.e., the same control or
graphical character using the same character code) in the type char st ri ng and it does not violate any type constraint
specification (range, list or length) of type "A".

6.7.2 Type compatibility of structured types

6.7.2.0 General

In the case of structured types (except the enumer at ed type) avalue "b" of type "B" is compatible with type "A", if
the effective value structures of type "B" and type "A" are compatible, in which case assignments, instantiations and
comparisons are allowed.

6.7.2.1 Type compatibility of enumerated types

Enumerated types are never compatible with other basic or structured types (i.e. for enumerated types strong typing is
required).

6.7.2.2 Type compatibility of record and record of types

For r ecor d types the effective value structures are compatible if the number, and optional aspect of the fieldsin the
textual order of definition areidentical, the types of each field are compatible and the value of each existing field of the
value"b" is compatible with the type of its corresponding field in type "A". The value of each field in the value "b" are
assigned to the corresponding field in the value of type "A".

EXAMPLE 1:
/1 Gven
type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional ,
bool ean c

}
type record BType {

i nt eger a optional,
i nt eger b(0..10) optional,
bool ean c
}
type record CType { /1 type with different field nanes
i nt eger d optional ,
i nt eger e optional,
bool ean f
}
type record DType { /1 type with field c optional
i nt eger a optional,
i nt eger b optional,
bool ean c opti onal
}
type record EType { /] type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d optional
}

var AType MyVarA :
var BType MyVarB :
var CType MyVarC :
var DType MyVarD :
var EType MyVarE :

o mwnn

ETSI

43 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

/1 Then
MyVar A : = MyVar B; /1 is a valid assignnent,
/1 value of MyVarAis (a := <undefined> b:= 2, c:=true)
MyVar C : = MyVar B; /1 is a valid assignnent
/1 value of M\VarCis (d := <undefined> e:= 2, f:=true)

MyVar A : = MyVar D, /1 is NOT a valid assignnent because the opti on’al i iy of fields does not
/1 match
MyVar A : = MyVarE; /1 is NOT a valid assignnent because the nunber of fields does not natch
MyVarC := { d:= 20 };// actual value of MVarCis { d:=20, e:=2,f:= true }
MyVarA : = MyVarC /1 is NOT a valid assignnent because field 'd" of My/VarC violates subtyping

/1 of field 'a" of AType

For r ecor d of typesand arrays the effective value structures are compatible if their component types are compatible
and value"b" of type "B" does not violate any length subtyping of ther ecor d of type or dimension of the array of
type"A". Values of elements of the value "b" shall be assigned sequentially to the instance of type "A", including
undefined elements.

recor d of typesand single-dimension arrays are compatible with r ecor d typesif their effective value structures are
compatible and the number of elements of value "b" of ther ecor d of type"B" or the dimension of array "b" is
exactly the same as the number of elements of ther ecor d type"A". Optionality of ther ecor d type fields has no
importance when determining compatibility, i.e. it does not affect the counting of fields (which means that optional
fields shall always be included in the count). Assignment of the element values of ther ecor d of type or array to the
instance of ar ecor d type shall bein the textual order of the corresponding r ecor d type definition, including
undefined elements. If an element with an undefined value is assigned to an optional element of ther ecor d, thiswill
cause the optional element to be omitted. An attempt to assign an element with undefined value to a mandatory element
of ther ecor d shall cause an error.

NOTE: Iftherecord of type hasno length restriction or the length restriction exceeds the number of elements
of the compared r ecor d type and the index of any defined element of ther ecor d of valueislessor
equal than the number of elements of ther ecor d type minus one, than the compatibility requirement is
aways fulfilled.

Vauesof ar ecor d type can also be assigned to an instance of ar ecor d of typeor asingle-dimension array if no
length restriction of ther ecor d of typeisviolated or the dimension of the array is more than or equal to the number
of elements of ther ecor d type. Optional elements missing in ther ecor d value shall be assigned as elements with
undefined values.

EXAMPLE 2:

/1 Gven

type record HType {
i nteger a,
integer b optional,
integer c

}

type record of integer |Type

var HType MyVarH := { 1, omit, 2};
var | Type MyVarl;

var integer M/ArrayVar[2];

/1 Then

M/ArrayVar := MyVarH;
/l is a valid assignnent as type of MyArrayVar and HType are conpati bl e

MyVarl := MyVarH;

/1 is a valid assignnent as the types are conpatible and no subtyping is violated
MyVarl = { 3, 4 };

MyVarH : = MyVarl;

/1 is NOT a valid assignnent as the nandatory field 'c' of Htype receives no val ue

ETSI

44 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

6.7.2.3 Type compatibility of set and set of types

set typesareonly type compatible with other set typesand set of types. For set typesand for set of typesthe
same compatibility rules shall apply astor ecor d andr ecor d of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: Inset vauesthe order of fields may be arbitrary, however this does not effect type compatibility asfield
names unambiguoudly identify, which fields of the related set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}
type set GIype {
integer d optional ,

integer e optional,
bool ean f

}

var FType MyVarF := { a:=1, c:=true };
var Glype MyVarG := { f:=true, d:=7};

/1 Then
MyVarF : = MyVar G /1 is a valid assignnent as types FType and Glype are conpatible

MyVar F : = MyVar A /1 is NOT a valid assignnent as MyVarA is a record type

6.7.2.4 Compatibility between sub-structures
Therules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:

/1 Gven

type record JType {
HType H,
integer b optional,
integer c

}

var JType MyVarJ

/1 1f considering the declarations above, then

MyVarJ. H : = MyVar H;
I/l is a valid assignnent as the type of field H of JType and HType are conpati bl e

MyVarl = MyVarJ. H
/1 is a valid assignnent as | Type and the type of field H of JType are conpatible

6.7.3 Type compatibility of component types
Type compatibility of component types has to be considered in two different conditions.

1) Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

ETSI

45 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

2) Runson compatibility: afunction or altsteps referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitionsin
e

Identity of definitionsin ‘A" with definitions of 'B' is determined based on the following rules:
. For port instances both the type and the identifier shall be identical.

. For timer instances identifiers shall be the identical and either both shall have identical initial durations or both
shall have noinitia duration.

. For variable instances and constant definitions the identifiers, the types and initialization values shall be the
identical (in case of variables this means that either missing in both definitions or be the same).

. For local template definitions the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.7.4 Type compatibility of communication operations

The communication operations (see clause 23) send, recei ve,trigger,call,getcall,reply,getreply
and r ai se are exceptions to the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations must also be explicitly defined in the associated port type
definition. Strong typing also applies to storing the received value, address or component reference during ar ecei ve
ortrigger operation.

6.7.5 Type conversion

If it is necessary to convert values of one type to values of another type, where the types are not derived from the same
root type, then either one of the predefined conversion functions defined in annex C or a user defined function shall be
used.

EXAMPLE:

/1 To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring : = int2hex(123, 4);

7 Modules

7.0 General

The principal building blocks of TTCN-3 are modules. For example, a module may define afully executable test suite
or just alibrary. A module consists of a (optional) definitions part, and a (optional) module control part.

NOTE: Thetermtest suiteis synonymous with a complete TTCN-3 module containing test cases and a control
part.

7.1 Naming of modules

Module names are of the form of a TTCN-3 identifier. In addition, a modul e specification can carry an optional attribute
identified by thel anguage keyword that identifies the edition of the TTCN-3 language, in which the moduleis
specified. Currently the following language strings are supported: "TTCN-3:2001" for a module specification
complying with TTCN-3 edition 1, "TTCN-3:2003" for edition 2, "TTCN-3:2005" for edition 3.

NOTE: The moduleidentifier istheinformal text name of the module.

EXAMPLE:

modul e S| PTest Suite | anguage "TTCN 3: 2003"
{ .}

ETSI

46 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

7.2 Module parameters

7.2.0 General

The module parameter list defines a set of values that are supplied by the test environment at run-time. During test
execution these values shall be treated as constants. Module parameters are declared by specifying the type and listing
their identifiers following the keyword nodul epar . Module parameters shall not be of port type, default type or
component type. A module parameter shall only be of type addressiif the address type is explicitly defined within the
associated module. Module parameters shall be declared within the module definition part only. More than one
occurrence of module parameters declaration is allowed but each parameter shall be declared only once (i.e. redefinition
of the module parameter is not allowed).

EXAMPLE:
modul e MyModul ewi t hPar anet er s
nmodul epar integer TS Par0, TS Parl;

nodul epar bool ean TS_Par 2;
nodul epar hexstring TS Par 3;

7.2.1 Default values for module parameters

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can be aliteral value only and can merely be assigned at the place of the declaration of
the parameter. If the test system does not provide an actual run-time value for the given parameter, the default value
shall be used during test execution, otherwise the actual value provided by the test system.

EXAMPLE:

nodul e MyModul eDef aul t Par anet er

nmodul epar integer TS ParO :
nmodul epar bool ean TS Par?2 :

0, TS Par1i;
true;

7.3 Module definitions part

7.3.0 General

The module definitions part specifies the top-level definitions of the module and may import identifiers from other
modules. Scope rules for declarations made in the module definitions part and imported declarations are given in
clause 5.3. Those language elements which may be defined in a TTCN-3 module are listed in table 1. The module
definitions may be imported by other modules.

EXAMPLE:

modul e MyModul e
{ /1 This nodul e contains definitions only

;:onst i nteger MyConstant := 1,
type record MyMessageType { ...}

functi on TestStep(){ ...}
} :

Declarations of dynamic language elements such as var orti mer shall only be made in the control part, test cases,
functions, altsteps or component types.

NOTE: TTCN-3 does not support the declaration of variablesin the module definitions part. This means that
global variables cannot be defined in TTCN-3. However, variables defined in atest component may be
used by all test cases, functions etc. running on that component and variables defined in the control part
provide the ability to keep their values independently of test case execution.

ETSI

47 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

7.3.1 Groups of definitions

In the module definitions part, definitions can be collected in named groups. A group of declarations can be specified
wherever asingle declaration is allowed. Groups may be nested i.e. groups may contain other groups. This allows the
test suite specifier to structure, among other things, collections of test data or functions describing test behaviour.

Grouping is done to aid readability and to add logical structure to the module if required. Groups and nested groups
have no scoping except in the context of group identifiers and attributes given to agroup by an associated wi t h
statement. This means:

. Group identifiers across the whole module need not necessarily be unique. However, all group identifiers of
subgroups of a single group shall be unique. If necessary, the dot notation shall be used to identify sub-groups
within the group hierarchy uniquely, e.g. for the import of a specific sub-group.

. Overriding rules for attributes are given in clause 28.4.

EXAMPLE:
nmodul e MyModul e {

)/ A collection of definitions

group MyG oup {
const integer MyConst:= 1;

type record MyMessageType { ...};

group MyGroupl { /1 Sub-group with definitions
type record Anot her MessageType { ...};
const bool ean MyBool ean : = fal se

}

/1 A group of altsteps
group MyStepLibrary {
group MyG oupl { /1 Sub-group with the same nanme as the sub-group with definitions
altstep MyStepll() { ...}
altstep MyStep12() { ...}

aitstep M/Stepln() { ...}
}
group MG oup2 {
altstep MyStep21() { ...}
altstep MyStep22() { ...}

éltstep MyStep2n() { ...}

}

/] An inport statenent that inports M/Groupl within M/StepLibrary
import from MyModul e {
group MyStepLibrary. MyG oupl

ETSI

7.4

48 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Module control part

The module control part may contain local definitions and describes the execution order (possibly repetitive) of the
actual test cases. A test case shall be defined in the module definitions part and called in the control part.

EXAMPLE:

nodul e MyTest Suite

{

7.5

7.5.0

/1 This nodul e contains definitions ...

;:onst i nteger MyConstant := 1,
type record MyMessageType { ...}
tenpl ate M/MessageType MyMessage := { ...}

function M/Functionl() { ...}
function MyFunction2() { ...}

iestcase MyTest casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

// ...and a control part so it is executable
control
{

var bool ean MyVariable; // local control variable

éxecute(M/Test Casel()); // sequential execution of test cases
execute(MyTest Case2());

Importing from modules

General

It is possible to re-use definitions specified in different modules using thei npor t statement. TTCN-3 has no explicit
export construct thus, by default, all module definitions in the module definitions part may be imported. Ani npor t
statement can be used anywhere in the module definitions part. It shall not be used in the control part.

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitions is explained in clause 28.6.

NOTE: If the module has global attributes they are associated to definitions without these attributes.

EXAMPLE:

modul e MyModul eA

{

/1 This nodul e contains definitions and inported definitions

const integer MyConstant := 1;
inmport from MyModuleB all; // Scope of the inported definitions is global to MyMdul eA
import from MyModul eC {

type M/Typel, M/Type2;

tenplate all

}
type record MyMessageType { ...}

functi on MyBehavi our C()

{
const integer MyConstant := 2;
/'l inport cannot be used here
}
.control
{ [/ inport cannot be used here
}

ETSI

49 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

7.5.1 Structure of importable definitions

TTCN-3 supports the import of the following definitions. module parameters, user defined types, signatures, constants,
external constants, data templates, signature templates, functions, external functions, altsteps and test cases. Each
definition has a name (defines the identifier of the definition, e.g. a function name), a specification (e.g. atype
specification or a signature of afunction) and in the case of functions, altsteps and test cases an associated behaviour
description.

EXAMPLE:
Name Specification Behaviour description
function MyFunction (inout MyTypel MyPar) return MyType2 {
runs on MyConpType const MyType3 MyConst := ..;
: [/ further behavi our
}
Specification Name Specification
Type record M/Recor dType {
fieldl MyType4,
field2 integer
}
Specification Name Specification
tenplate MType5 M/Tenpl ate := {
fieldl := 1,
field2 := MConst, // MConst is a nodul e constant
field3 := Mddul ePar // Mdul ePar is nodul e paraneter

}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means;

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |[fieldl, field2 MyType4, integer
template |MyTemplate MyTypeb, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Theloca definitions column refers to identifiers only that are newly defined in the importable definition.
Values assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: Thereferenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Therefore table 5 specifies the possible local and referenced definitions of importable
definitions.

ETSI

50

Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 5: Possible local and referenced definitions of importable definitions

Importable Definition

Possible Local Definitions

Possible Referenced Definitions

Module parameter

Module parameter type

User-defined type (for all)

Parameter names

Parameter type

* _enumerated type Concrete values

» structured type Field names Field types

+ port type Message types, signatures

Constant names, variable names,
timer names and port names

e component type Constant types, variable types, port types

Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
External constant Constant type

Data Template Parameter names Template type, parameter types, constants, module

parameters, functions

Signature template Signature definition, constants, module parameters

functions

Function Parameter names Parameter types, return type, component type

(runs on-clause)

External function Parameter names Parameter types, return type

Altstep Parameter names Parameter types, component type (r uns
on-clause)
Test case Parameter names Parameter types, component types (r uns on- and

syst em clause)

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

7.5.2
On using import, the following rules shall be applied:

Rules on using import

a) Only top-level definitionsin the module may be imported. Definitions which occur at alower scope (e.g. local
constants defined in a function) shall not be imported.

b) Only direct importing from the source module of a definition (i.e. the module where the actual definition for
the identifier referenced inthei mport statement resides) is allowed.

c) A definition isimported together with its name and all local definitions.

NOTE 1: A loca definition, e.g. afield name of a user-defined record type, only has meaning in the context of the
definitionsin which it is defined, e.g. afield name of arecord type can only be used to access afield of
the record type and not outside this context.

d) A definition isimported together with all information of referenced definitions that are necessary for the usage
of the referenced definition.

NOTE 2: Import statements are transitive, e.g. if amodule A imports a definition from module B that uses atype
reference defined in module C, the corresponding information necessary for the usage of that typeis
automatically imported into module A.

€) ldentifiers of referenced definitions are not automatically imported.

NOTE 3: If the referenced definitions are wished to be used in the importing module, they shall be explicitly
imported from its source module.

f) Whenimporting afunction, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

g) Cyclicimports are forbidden.

ETSI

51 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:
nodul e Modul eONE {
nodul epar i nteger MddParl, MdPar2 := 7

type record RecordType_ T1 {
integer Fieldl_T1,
bool ean Field2_T1

}

type record RecordType T2 {
Recor dType_T1 Fieldl_T2, // Use of RecordType_T1
Recor dType_T1 Fi el d2_T2,

i nt eger Fi el d3_T2
}
const integer MyConst := 13;
tenpl ate RecordType_T2 Tenplate T2 (RecordType_T1 TenpPar_T2):= { // parameterized tenplate
Field1_T2 := TenpPar_T2, /'l Reference to tenpl ate paraneter
Field2_T2 := {M/Const, true}, /'l Reference to nodul e constant
Fiel d3_T2 := MdParl /'l Reference to a nodul e paraneter

}
} // end nodul e Modul eONE

modul e Modul eTWO {

i mport from Modul eONE {
tenpl ate Tenpl ate_T2

/1 Only the names Tenplate_T2 and TenpPar_T2 will be visible in Mdul eTWD. Pl ease note, that
/1 the identifier TenpPar_T2 can only be used in the context of Tenplate_T2, e.g. when

/1 providing an actual paraneter value. Al infornation

/'l necessary for the usage of Tenplate_T2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T2, RecordType_T1, Fieldl_T2, Field2_T2,

/1 Field3_T3, MyConst and MbdParl, but their identifiers are not visible in Mdul eTW.

/1 This neans, e.g. it is not possible to use the constant MyConst or to declare a

/1 variable of type RecordType_T1 or RecordType_T2 in Mdul eTWD without explicitly inporting
/'l these types

i mport from Modul eONE {
nmodul epar MbdPar 2
}
/1 The nodul e paraneter MdPar2 of Mdul eONE is inported from Mdul eONE and

/'l can be used |like an integer constant

} // end nodul e Modul eTWO

nodul e Mbdul eTHREE {

import from Modul eONE all; // inports all definitions from Mdul eONE

type port MyPortType {
i nout RecordType_T2

}

type conponent MyConpType {
var integer MyConponentVar := MdPar2; // Reference to a nodul e paraneter of Mdul eONE
port MyPort Type MyPort

}

function MyFunction () return integer {
return MyConst /1 Returns a nodul e constant defined in Mdul eONE

}

ETSI

52 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

testcase MyTest Case (out RecordType_T2 MyPar) runs on MyConpType {
var integer MyTCVar := MddPar2; // Reference to a nodul e paranmeter of Mdul eONE
MyPort.send(Tenpl ate_T2); // Sending a tenplate defined i n Mbdul eONE
My/Port.recei ve(RecordType_T2 : ?) -> value MyPar; /1 The received value is assigned
/1 to the out paraneter MyPar.

} I/ end testcase MyTest Case

} // end Modul eTHREE

nodul e Mbdul eFOUR {
i mport from Modul eTHREE {
testcase MyTest Case
}

/1l Only the nanes MyTest Case and MyPar will be visible and usable in Mdul eFOUR
/1 Type information for RecordType_T2 is inported via Mdul eTHREE from Modul eONE and
/1 type information for MyConpType is inported from Modul eTHREE. All definitions
/1 used in the behaviour part of MyTestCase renmin hidden for the user of Mdul eFOUR

} /1 end Modul eFOUR
7.5.3 Void

7.5.4 Importing single definitions
Single definitions may be imported.
EXAMPLE:

i mport from MyModul eA {
type MyTypel /] inports one type definition from M/Mdul eA

i mport from MyModul eB {

type M Type2, Mytype3, MType4; /] inports three types
tenpl ate MyTenpl at el; /] inports one tenplate
const MyConstl1l, MyConst2 /] inmports two constants

7.5.5 Importing all definitions of a module

All definitions of a module definitions part may be imported using theal | keyword next to the module name. If all
definitions of a module are imported by using the al | keyword, no other form of import (import of single definitions,
import of the same kind etc.) shall be used for the samei nport statement.

EXAMPLE 1.

import from MyModule all;

If some declarations are wished not to be imported, their kinds and identifiers shall be listed in the exception list within
apair of curly brackets following the except keyword.

EXAMPLE 2:

import from MyMddul e all except {

type M Type3, MType5
/'l excludes type declarations MyType3 and MyType5 fromthe inport statenent
/1 but inports all other declarations of My/Mdul e

}

Theal | keyword isalso alowed to be used in the exception list; thiswill exclude al declarations of the same kind
from the import statement.

ETSI

53 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 3:

inmport from MyMddul e all except {
type MyType3, MyType5; // excludes the two types fromthe inport statenent
tenplate all /1 excludes all tenplates declared in M/Modul e fromthe inport statenent

7.5.6 Importing groups
Groups of definitions may be imported.

EXAMPLE 1:

i mport from MyModul e {
group MyG oup

The effect of importing agroup isidentical to ani nport statement that lists all importable definitions (including
sub-groups) of this group.

TTCN-3 groups are only used for structuring purposes and are not scope units. Therefore, it is allowed to import
sub-groups (i.e. agroup which is defined within another group) directly, i.e. without the groups in which the sub-group
is embedded. If the name of a sub-group that should be imported isidentical to the name of another sub-group in the
same module (see clause 7.3.1), the dot notation shall be used to identify the sub-group to be imported uniquely.

If some definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the exception
list within a pair of curly brackets following theexcept keyword.

EXAMPLE 2:

i mport from MyModul e {
group MyGroup except {
type MyType3, MType5
/'l excludes type definitions M/Type3 and MyType5 fromthe inport statenent
/1 but inports all other definitions of M/G oup

}

Theal | keyword isalso allowed to be used in the exception list; thiswill exclude al definitions of the same kind from
the import statement.

EXAMPLE 3:

import from MyModul e {
group MyGroup except {
type M Type3, MyType5; [/ excludes the two types fromthe inport statenent and
tenplate all /1 excludes all tenplates defined in M\Goup fromthe inport statement

7.5.7 Importing definitions of the same kind

Theal | keyword may be used to import all definitions of the same kind of amodule. Theal | keyword used with the
const ant keyword identifiesall constants as well as all external constants declared in the definitions part of the
module the import statement refersto. Similarly theal | keyword used with thef unct i on keyword identifies all
functions and all external functions defined in the module the import statement denotes.

EXAMPLE 1:

import from MyModul e {
type all; [/ inports all types of MyMdul e
tenplate all Il inports all tenplates of MyMdul e

}

If some declarations of akind are wished to be excluded from the given import statement, their identifiers shall be listed
following the except keyword.

ETSI

54 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

import from MyModul e {
type all except MyType3, MType5; /1 inmports all types except MyType3 and MyType5
tenplate all /1 inports all tenplates defined in Mynodul e

7.5.8 Handling name clashes on import

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import e.g. import from different modules. Name clashes shall be resolved by prefixing the
imported definition (which causes the name clash) by the identifier of the module from which it isimported. The prefix
and the identifier shall be separated by adot (.).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

EXAMPLE:
nodul e MyModul eA {

type bitstring MTypeA,
i mport from SoneMdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
c;)ntrol {
vér SonmeModul eC. MyTypeA MyVarl := "Test String"; // Prefix must be used
var My TypeA MyVar2 := '10110011'B; // This is the original MTypeA
vér M/ TypeB MyVar3 := "Test String"; // Prefix need not be used ...

var SonmeModul eC. MyTypeB MyVar3 : = "Test String"; // ..but it can be if wi shed

NOTE: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

7.5.9 Handling multiple references to the same definition

Theuse of i nport on single definitions, groups of definitions, definitions of the same kind etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE: The mechanismsto resolve such ambiguities e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance. It isimportant to point out, that the except statement does not exclude the
definitions listed from being imported in general; all statements importing definitions of the same kind can be seenasa
shorthand notation for an equivalent list of identifiers of single definitions. Theexcept statement excludes definitions
fromthis singlelist only.

EXAMPLE:
i mport from MyModul e {
type all except MyTypeS3; I/ inports all types of MyModdul e except MyType3
type MyType3 /1 inmports MyType3 explicitly

ETSI

55 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

7.5.10 Import definitions from non-TTCN-3 modules

In cases when definitions are imported from other sources than TTCN-3 modules, the language specification shall be
used to denote the language (may be together with a version number) of the source (e.g. module, package, library or
even file) from which definitions are imported. It consists of the | anguage keyword and a subsequent textual
declaration of the denoted language. The use of the language specification is optional when importing from a TTCN-3
module of the same edition as the importing module. When incompatibility is discovered between the language
identification (including implicit identification by omitting the language specification) and the syntax of the module
from which definitions are imported, tools shall provide reasonable effort to resolve the conflict.

The following TTCN-3 language identifiers are defined:

"TTCN-3:2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN-3:2003' - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN-3:2005' - to be used with modules complying with the present document.

EXAMPLE:

i mport from MyMddul e | anguage "TTCN 3: 2003" {
type MyType

NOTE: Theimport mechanism is designed to allow the re-use of definitions from other TTCN-3 or other
language modules. The rules for importing definitions from specifications written in other languages,
e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8 Test configurations

8.0 General

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system.

TTCN Test system
MTC | < > pTC,
> | PTC; |— T
+ Abstract Test System Interface v ¢
_J
Real Test System Interface

SUT

Figure 3: Conceptual view of a typical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of thecr eat e
operation.

ETSI

56 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 8.1).

Test component types and port types, denoted by the keywords conponent and por t , shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 22.2).

8.1 Port communication model

Test components are connected viatheir ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port.

NOTE: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. This should be
treated as atest case error (see clause 25.2.1).

»]]]]IL

Figure 4: The TTCN-3 communication port model

8.2 Restrictions on connections

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 5). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 5(g) or figure 5(h)).

The following connections are not allowed:

. A port owned by a component A shall not be connected with two or more ports owned by the same component
(figures 6(a) and 6(€)).

. A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 6(c)).

. A port owned by a component A can only have a one-to-one connection with the test system interface. This
means, connections as shown in figures 6(b) and 6(d) are not allowed.

. Connections within the test system interface are not allowed (see figure 6(f)).
. A port that is connected shall not be mapped and a port that is mapped shall not be connected (see figure 6(g)).

Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be checked
at compile-time. The checks shall be made at run-time and shall lead to a test case error when failing.

ETSI

57 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

test system
J test component

test component test component

foE—an

test system interface

O—l] >

() (b)

test system
test component test component test component

* OE—n ° ’
[—

test system interface A\ A\

S

() (d)

test component
test component :I A
A

(e) ®

test system

test component test component test component
test component :I B A B

A
II —] —
test component E' E
:I ¢ test system interface \,_\/

N/

9) (h)

Figure 5. Allowed connections

ETSI

58 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

test system

test component

A

test component

A

=

test system interface H

—g

(@) (b)

test system

test component test component
test component :I B A

] | /E\
>

test system interface

N
(

(c) (d)

test component test system
A 1] —
E_ test system interface A A_\
g p—y

(e))

test system
y test component test component

A B

test system interface /\/
N/

9)

Figure 6: NOT allowed connections

8.3 Abstract test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known as a
System Under Test or SUT. In the minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in agenera way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition is identical to a component definitioni.e. it isalist of
all possible communication ports through which the test case is connected to the SUT.

ETSI

59 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The test system interface statically defines the number and type of the port connections to the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unnmap operations (see clauses 22.2 and 22.3).

8.4 Defining communication port types

8.4.0 General

Ports facilitate communi cation between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based (or both at the same time as described by clause 8.4.1). Message-based ports shall be identified by the
keyword nmessage and procedure-based ports shall be identified by the keyword pr ocedur e within the associated
port type definition.

Ports are bidirectional. The directions are specified by the keywordsi n (for the in direction), out (for the out
direction) and i nout (for both directions). Each port type definition shall have one or more lists indicating the allowed
collection of (message) types and/or procedures together with the allowed communication direction.

Whenever a signature (see also clause 13) is defined in the out direction of a procedure-based port, the types of al its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this port.
Whenever asignature is defined in the in direction for a procedure-based port, the types of all itsinout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

EXAMPLE:

/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/1 sent via and any integer value to be send and received over the port

type port MyMessagePort Type nessage

{

in MsgTypel, MsgType2;
out MsgType3;
i nout i nt eger

}

/1 Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure

{

out Procl, Proc2, Proc3

}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port is simply alist of type
names.

8.4.1 Mixed ports

It is possible to define a port as allowing both kinds of communication. Thisis denoted by the keyword mi xed. This
means that the lists for mixed ports will also be mixed and include both signatures and types. No separation is made in
the definition.

/1 M xed port, defining a nessage-based and a procedure-based port with the sane nane. The in,
/1 out and inout lists are also nmixed: MsgTypel, MsgType2, MsgType3 and integer refer to the
/'l message-based part of the mixed port and Procl, Proc2, Proc3, Proc4 and Proc5 refer to the
/] procedure-based port.

type port MyM xedPort Type m xed

{

in MsgTypel, MsgType2, Procl, Procz,
out MsgType3, Proc3, Proc4,
i nout i nteger, Proch5;

}

A mixed port in TTCN-3 is defined as a shorthand notation for two ports, i.e. a message-based port and a
procedure-based port with the same name. At run-time the distinction between the two ports is made by the
communication operations.

ETSI

60 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Operations used to control ports (see clause 23.5) i.e. st art, st op and cl ear shall perform the operation on both
queues (in arbitrary order) if called with an identifier of amixed port.

8.5 Defining component types

85.0 General

The conponent type defines which ports are associated with a component. These definitions shall be made in the
modul e definitions part. The port names in a component definition are local to that component i.e. another component
may have ports with the same names. Ports of the same component shall all have unique names. Definition of a
component alone does not mean that there is any connection between the components over these ports.

PCO2 PCO3
MyMTC MyPTC p—
Il of MyMTCType f— Il of MyPTCType
PCO4
PCO1 PCO1

Figure 7: Typical components

EXAMPLE:
type conponent MyMICType

port MyMessagePort Type PCOL

type conponent MyPTCType
{
port MyMessagePort Type PCOL, PCO4;

port MProcedurePort Type PCQO2;
port MyAl | MesssagesPort Type PCO3

8.5.1 Declaring local variables, constants and timers in a component
It is possible to declare constants, variables and timers local to a particular component.

EXAMPLE:
type conponent MyMICType
{

var integer MyLocal | nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL
}

These declarations are visible to all testcases, functions and altsteps that run on the component. This shall be explicitly
stated using ther uns on keyword (see clause 16).

Component variables and timers are associated with the component instance and follow the scope rules defined in
clause 5.3. Each new instance of a component will thus have its own set of variables and timers as specified in the
component definition (including any initial values, if stated).

NOTE: When used astest system interfaces (see clause 8.8) components cannot make use of any constants,
variables and timers declared in the component.

ETSI

61 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

8.5.2 Defining components with arrays of ports
It is possible to define arrays of portsin component type definitions (also see clause 22.9).

EXAMPLE:
type conmponent My3pcoConmpType
{

port MyMessagel nterfaceType PCJO 3]

port M/Procedurel nterfaceType PCOn 3][3]

/1 Defines a conponent type which has an array of 3 nessage ports and a two-di nensi onal
/1 array of 9 procedure ports.

8.5.3 Extension of component types
It is possible to define component types as the extension of other component types, using the ext ends keyword.

EXAMPLE 1:
type conponent M/Ext endedMICType extends MyMICType

var float MyLocal Fl oat;
timer MyQ her Local Ti ner;
port MyMessagePort Type PCQ2;

}

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
ext ends keyword isreferred to as the parent type.

The effect of this definition is that the extended type will implicitly also contain all definitions from the parent type. So,
the definition above is equivalent to writing (and hence called the effective type definition):

EXAMPLE 2:

Il effectively, the definition fromExanple 1 is equivalent to this one:
type conponent MyExt endedMICType
{

/* the definitions from MyMICType */
var integer MyLocal |l nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL

/* the additional definitions */
var float MyLocal Fl oat;

timer MyQ her Local Ti ner;

port MyMessagePort Type PCQO2;

}

It is allowed to extend component types that are defined by means of extension, aslong as no cyclic chain of definition
is created.

EXAMPLE 3:

type conponent MICTypeA extends MICTypeB { /* ...
type conponent MICTypeB extends MICTypeC { /* ..
type conponent MICTypeC extends MICTypeA { /* ..
type conponent MICTypeD extends MICTypeD { /* ...

/1 ERROR - cyclic extension
/1 ERROR - cyclic extension

* /[} :
* [} :
When defining component types by extension, there shall be no name clash between the definitions being taken from
the parent type and the definitions being added in the extended type, i.e. there shall not be a port, variable, constant,
timer, or template identifier that is declared both in the parent type (directly or by means of extension) and the extended
type.

ETSI

62 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 4:
type conponent M/Ext endedMICType extends MyMICType

var integer MyLocal Integer; // ERROR - already defined in M/MICType (see exanple 2)
var float MyLocal Ti ner; /] ERROR - tinmer with that nane exists in MyMICType
port MyQt her MessagePort Type PCOL; // ERROR - port with that name exists in MyMICType

}

type conponent MyBaseConponent { tiner MyLocal Tiner };
type conponent Myl nterinConponent extends MyBaseConponent { tiner MyQtherTiner };
type conponent MyExt endedConponent extends Myl nteri mConponent

timer MyLocal Tinmer; // ERROR - already defined in Myl nterinConponent via extension
}

It is allowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition:;

EXAMPLE 5:

type conponent MyConpA extends MyConpB, MyConpC, MyConpD {
/* additional definitions for MyConmpA */
}

Any of the parent types may also be defined by means of extension.

The effective component type definition of the extended type is obtained as the collection of al constant, variable,
timer, port and template definitions contributed by the parent types (determined recursively if a parent typeisaso
defined by means of an extension) and the definitions declared in the extended type directly. The effective component
type definition shall be name clash free. To fulfil this condition, within the set of parent types used in the definition of
the extended type, all definitions shall have unique names and these names shall differ from any of the names of the
definitions declared in the extended type directly.

NOTE 1: Itisnot considered to be a different declarations and hence causes no error if the same definitionis
contributed to the extended type by different parent types (via different extension paths).

EXAMPLE 6:

type conponent MyConpB { tiner T };

type conponent MyConpC { var integer T };

type conponent MyConpD extends MyCompB, MyConmpC {}
/1 ERROR - nane clash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer MyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float MyVar2 := 1.0;

}

type conponent MyConpG ext ends MyConpB, MyConpE, MyConpF {
/1 No name cl ash.
/1 Al three parent types of MyConpG have a tiner T, either directly or via extension of
/1l MyConpB; as all these stem(directly or via extension) fromtiner T declared in M/ConpB,
/1 which make this formof collision |egal.
/* additional definitions here */

}

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, is compatible with CT2, and test cases, functions and altsteps specifying CT2 intheirruns on
clauses can be executed on ¢ (see clause 6.7.3).

ETSI

63 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

8.6 Addressing entities inside the SUT

An SUT may consist of several entities which have to be addressed individually. The address data typeis a type for use
with port operations to address SUT entities. When used witht o, f r omand sender the address data type shall only
be used in receive and send operations of ports mapped to the test system interface. The actual data representation of
addr ess isresolved either by an explicit type definition within the test suite or externally by the test system (i.e. the
addr ess typeisleft as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
typeis not defined inside the module, explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the specia value nul | isavailable to indicate an undefined address, e.g. for theinitialization of variables
of the address type.

EXAMPLE:

/] Associates the type integer to the open type address
type integer address;

/1 new address variable initialized with null
var address MySUTentity := null;

/'l receiving an address value and assigning it to variable My/SUTentity
PCO recei ve(address: *) -> value MySUTentity;

/) usage of the received address for sending tenplate M/Result
PCO. send(MyResul t) to MySUTentity;

/'l usage of the received address for receiving a confirnation tenplate
PCO. recei ve(M/Confirnation) from MySUTentity;

8.7 Component references

Component references are unique references to the test components created during the execution of atest case. This
unigue component reference is generated by the test system at the time when a component is created, i.e. a component
reference istheresult of acr eat e operation (see clause 22.1). In addition, component references are returned by the
predefined operations sy st em(returns the component reference to identify the ports of the test system interface), nt ¢
(returns the component reference of the MTC) and sel f (returns the component reference of the component in which
sel f iscalled).

Component references are used in the configuration operationsconnect , nap and st ar t (see clause 22) to set-up
test configurationsand inthef r om t o0 and sender parts of communication operations of ports connected to test
components other than the test systemi nt er f ace for addressing purposes (see clause 23 and figure 5).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

NOTE: A component reference includes component type information. This means, for example, that avariable
for handling component references must use the corresponding component type namein its declaration.

ETSI

64 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:

/1 A conponent type definition

type conponent MyConpType {
port PortTypeOne PCOL;
port PortTypeTwo PCO2

}

/'l Declaring one variable for the handling of references to conponents of type My/ConpType
// and creating a conponent of this type
var MyConpType MyConplnst := MyConpType. create;

/'l Usage of conponent references in configuration operations

/1 always referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst: PCO2, system Ext PCOL) ;

MyConpl nst . start (MyBehavior(self)); // self is passed as a paraneter to MyBehavi or

/'l Usage of conponent references in from and to- clauses
M/PCOL. r ecei ve from MyConpl nst ;

M/PCOZ. recei ve(integer:?) -> sender MyConpl nst;

WPCOl. recei ve(M/Tenpl ate) from MyConpl nst;

MPOCR. send(integer:5) to MyConplnst;

/1 The followi ng exanpl e expl ains the case of a one-to-nmany connection at a Port PCOL

/1 where values of type ML can be received fromseveral conponents of the different types
/1 ConpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene nay be used:

vér ML MyMessage, MyResult;

var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 MyInst3 := null;

al't {
[] PCOL.receive(M:?) fromMlnstl -> val ue MyMessage sender Mylnstl {}
[] PCOL.receive(M:?) fromMlnst2 -> val ue MyMessage sender Mylnst2 {}
[] PCOL.receive(M:?) fromMlInst3 -> val ue MyMessage sender Mylnst3 {}

}
WResuIt .= MyMessageHandl i ng(MyMessage) ; /'l some result is retrieved froma function
if (MInstl != null) {PCOL. send(MResult) to Ml nst1}:
if (MInst2 !'= null) {PCOL. send(M/Result) to Ml nst2};
I'= null) {PCOL. send(M/Result) to Myl nst3};

if (MInst3 !

8.8 Defining the test system interface

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points).

NOTE: Variables, timers and constants declared in component types, which are used as test system interfaces will
have no effect.

type conponent Myl SDNTest System nterface

port MyBchannel | nterfaceType B1;
port MyBchannel | nterfaceType B2,
port MyDchannel | nterfaceType D1

}

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test systeminterfaceissyst em This shall be used to address
the ports of the test system.

ETSI

65 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:

map(MyMICConponent : Port 2, system PCOL);

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

9 Declaring constants

Constants can be declared and used in the module definitions part, component type definitions, the module control part,
test cases, functions and altsteps. Constant definitions are denoted by the keyword const . Constants shall not be of
port type. The value of the constant shall be assigned at the point of declaration.

NOTE: The only value that can be assigned to constants of default and component typesisthe special value
nul | .

EXAMPLE 1:

1:

const integer MyConst1l : ;
true, MyConst3 : = fal se;

const bool ean MyConst2 :

The assignment of the value to the constant may be done within the module or it may be done externally. The latter case
isan external constant declaration denoted by the keyword ext er nal .

EXAMPLE 2:
external const integer MyExternal Const; // external constant declaration

An external constant may have an arbitrary type except of port type, default type, or component type and the type hasto
be known in the modulei.e. shall be aroot type or a user-defined type defined in the module, or imported from another
module. The mapping of the type to the external representation of an external constant and the mechanism of how the
value of an external constant is passed into a module are outside the scope of the present document.

10 Declaring variables

10.0 General

Variables can be of smple basic types, basic string types, structured types, specia data types (including subtypes
derived from these types) as well as address, component or default types.

NOTE: Structured and component type variables can be declared based on user defined types only.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on the given component type. Variables shall not be declared or used in a module definitions part (i.e.
global variables are not supported in TTCN-3).

Use of uninitialized or not completely initialized variables at other places than the left hand side of assignments or as
actual parameters passed to out formal parameters shall cause an error.

ETSI

66 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

10.1 Value variables

A value variableis declared by thevar keyword followed by atype identifier and avariable identifier. Aninitial value
can be assigned at declaration. Value variables shall store values only and may be used at the right hand side as well as
at the left hand side of assignments, in expressions, following ther et ur n keyword in bodies of functions with areturn
clause in their headers and may be passed to both value and template-type formal parameters.

EXAMPLE:

var integer MyVarO;
var integer MyVarl :
var bool ean MyVar2 :

1;
true, MyVar3 : = fal se;

10.2 Template variables

Template variables are declared by thevar t enpl at e keyword followed by atype identifier and a variable identifier.
Aninitia content can be assigned at declaration. In excess to values, template variables may a so store matching
mechanisms (see clause 14.3). They may be used on the right hand side as well as on the left hand side of assignments,
following ther et ur n keyword in bodies of functions defining a template-type return value in their headers and may
be passed as actual parameters to template-type formal parameters. When used on the right hand side of assignments
they shall not be operands of TTCN-3 operators (see clause 15) and the variable on the |eft hand side shall be atemplate
variabletoo. It is also alowed to assign a template instance to atemplate variable or atemplate variable field.

NOTE: Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

EXAMPLE:

tenpl ate M/Record MyTenpl (tenpl ate bool ean par_bool) :=
{ fieldl := par_bool, field2 :=*

function Myfunc () return tenplate M/Record {
var tenplate integer MyVarTenpl := ?;
var tenplate MyRecord MyVarTenp2 := { fieldl :
MyVar Tenp3 := { fieldl :
MyVar Tenp2 : = MyTenpl (?);

. return MyVar Tenp2
}

Whileit is not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the dot notation
and the index notation to inspect and modify template variable fields. Rules to apply when these notations attempt to
reach fields beyond a matching mechanism are given in clause 14.3.1.

true, field2 :=* },
?, field2 := MyVarTenpl };

11 Declaring timers

11.0 General

Timers can be declared and used in the module control part, test cases, functions and altsteps. Additionally, timers can
be declared in component type definitions. These timers can be used in test cases, functions and altsteps which are
running on the given component type. A timer declaration may have an optional default duration value assigned to it.
The timer shall be started with this value if no other value is specified. This value shall be anon-negativef | oat vaue
(i.e. greater than or equal to 0.0) where the base unit is seconds.

EXAMPLE 1:
timer MyTinmerl := 5E-3; // declaration of the tinmer MyTinerl with the default value of 5ns

timer MyTinmer2; // declaration of MyTiner2 without a default tiner value i.e. a value has
/1 to be assigned when the tiner is started

ETSI

67 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of atimer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.5. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol ("-").

EXAMPLE 2:

timer t_Mytinerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenments of the tiner array get a default duration.

timer t_Mytiner2(5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second timer (t_Mytiner2[1]) is left without a default duration.

11.1 Timers as parameters

Timers can only be passed by reference to functions and altsteps. Timers passed into afunction or altstep are known
inside the behaviour definition of the function or altstep.

Timers passed in as parameters by reference can be used like any other timer, i.e. they need not to be declared. A started
timer can also be passed into a function or altstep. The timer continuesto run, i.e. it is not stopped implicitly. Thereby,
possible timeout events can be handled inside the function or atstep to which the timer is passed.

EXAMPLE:

/1 Function definition with a timer in the formal paranmeter |ist
function MyBehavi our (timer MyTimer)

{ :
M/Ti mer. start;

12 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive complex messages over the communication ports
defined by the test configuration. These messages may be those explicitly concerned with testing the SUT or with the
internal co-ordination and control messages specific to the relevant test configuration.

NOTE: InTTCN-2 these messages are the Abstract Service Primitives (ASPs), the Protocol Data Units (PDUS)
and co-ordination messages. The core language of TTCN-3 is generic in the sense that it does not make
any syntactic or semantic distinctions of thiskind.

13 Declaring procedure signatures

13.0 General

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. thetest system performsthe call) or invoked in the test system (i.e. the SUT performs the call). For all used
procedures, i.e. procedures used for the communication among test components, procedures called from the SUT and
procedures called from the test system, complete procedure si gnat ur e shall be defined in the TTCN-3 module.

ETSI

68 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

13.1 Signatures for blocking and non-blocking communication

TTCN-3 supports blocking and non-blocking procedure-based communication. Signature definitions for non-blocking
communication shall usethe nobl ock keyword, shal only havei n parameters (see clause 13.2) and shall have no
return value (see clause 13.3), but may raise exceptions (see clause 13.4). By default, signature definitions without the
nobl ock keyword are assumed to be used for blocking procedure-based communication.

EXAMPLE:

si gnature MyRenoteProcOne (); /'l MyRenoteProcOne will be used for bl ocking
/'] procedure-based conmunication. It has neither
/] paraneters nor a return val ue.

si gnature MyRenoteProcTwo () nobl ock; /1 MyRenoteProcTwo will be used for non bl ocking

/'l procedure-based conmunication. It has neither
/] paraneters nor a return val ue.

13.2 Parameters of procedure signatures

Signature definitions may have parameters. Within asi gnat ur e definition the parameter list may include parameter
identifiers, parameter types and their directioni.e.i n, out , ori nout . Thedirectioni nout and out indicate that
these parameters are used to retrieve information from the remote procedure. Note that the direction of the parametersis
as seen by the called party rather than the calling party.

EXAMPLE:
si gnature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);
/1 MyRenoteProcThree will be used for blocking procedure-based comuni cati on. The procedure

/1 has three paraneters: Parl an in paranmeter of type integer, Par2 an out paraneter of
/1 type float and Par3 an inout paraneter of type integer.

13.3 Value returning remote procedures

A remote procedure may return avalue after its termination. The type of the return val ue shall be specified by means of
ar et ur n clausein the corresponding signature definition.

EXAMPLE:
si gnature MyRenoteProcFour (in integer Parl) return integer;
/'l MyRenot eProcFour will be used for blocking procedure-based conmunication. The procedure

/1 has the in paraneter Parl of type integer and returns a value of type integer after its
/] term nation

13.4 Specifying exceptions

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

ETSI

69 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The exceptions are defined in the form of an exception list included inthe si gnat ur e definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

EXAMPLE:

si gnature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/'l MyRenot eProcFive will be used for bl ocking procedure-based communi cation. It returns a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/1 type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comrunication. In case of
/1 an unsuccessful term nation, MyRenoteProcSix raises exceptions of type integer or float.

14 Declaring templates

14.0 General

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally in a module definitions part, locally in atestcase, function,
altstep or statement block or in-line as arguments of a communication operation or actual parameter of atestcase,
function or altstep call.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A template declaration must specify a set of base values or matching symbols for each and every field defined in the
appropriate type or signature definition, i.e. it isfully specified. A modified template declaration (see clause 14.6)
specifies only the fields to be changed from the base template, i.e. it is a partial specification.. The NotUsedSymbol
shall only be used in signature templates for parameters which are not relevant and in modified template declarations
and modified in-line templates to indicate no change for the specified field or element.

There exist anumber of restrictions on the functions used in expressions when specifying templates or template fields;
these are specified in clause 16.1.4.

ETSI

70 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

14.1 Declaring message templates

14.1.0 General

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Templates may be specified for any TTCN-3 type defined in table 3 except for port and def aul t types.

EXAMPLE:

/] When used in a receiving operation this tenplate will natch any integer val ue
tenpl ate integer Mtenplate := ?;

/1 This tenplate will nmatch only the integer values 1, 2 or 3

tenpl ate integer Mytenplate := (1, 2, 3);

14.1.1 Templates for sending messages

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over atest port. At thetime of the send operation, the template shall be fully defined i.e. all fields shall resolve to
actual values and no matching mechanisms shall be used in the template fields, neither directly nor indirectly.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

EXAMPLE:

/1 G ven the nessage definition
type record MyMessageType

{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := omt,
field2 := "M string",
field3 := true

}

/1 and a correspondi ng send operation could be
M/PCO. send(MyTenpl at e) ;

14.1.2 Templates for receiving messages

Atemplateusedinar ecei ve, t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in annex B, may be used in receive templates. No binding
of the incoming val ues to the template shall occur.

EXAMPLE:

/1 Gven the nessage definition
type record MyMessageType

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a message tenplate might be
tenpl ate MyMessageType MyTenpl ate: =
{

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

ETSI

71 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

/1 and a corresponding receive operation could be
M/PCO. recei ve(M/Tenpl at e) ;

14.2 Declaring signature templates

14.2.0 General

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition. A signature template defines the values and
matching mechanisms of the procedure parameters only, but not the return value. The values or matching mechanisms
for areturn hasto be defined withinther epl y or get r epl y operation (see clauses 23.3.3 and 23.3.4 respectively).

EXAMPLE:

/] signature definition for a renote procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/] exanple tenpl ates associated to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

{
Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate2: =
{
Parl := 1,
Par2 : = ?,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
{
Parl := 1,
Par2 := ?,
Par3 := ?
}

14.2.1 Templates for invoking procedures

Atemplateusedinacal | orrepl y operation defines a complete set of field valuesfor all i n andi nout
parameters. At thetime of thecal | operation, al i n and i nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

EXAMPLE:
/1 Gven the exanples in clause 14.2.0

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at el) ;

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at e2) ;

/1 Invalid invocation because the inout paraneter Par3 has a natching attribute not a val ue
M/PCO. cal | (Renot eProc: Tenpl at e3) ;

/] Tenpl ates never return values. In the case of Par2 and Par3 the val ues returned by the
/1 call operation nmust be retrieved using an assignnment clause at the end of the call statenent

ETSI

72 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

14.2.2 Templates for accepting procedure invocations

A template used inaget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

EXAMPLE:
/1 Gven the exanples in clause 14.2.0

// Valid getcall, it will match if Parl == 1 and Par3 == 3
M/PCO. get cal | (Renot eProc: Tenpl atel);

// Valid getcall, it will match if Parl == 1 and Par3 == 3
M/PCO. get cal | (Renot eProc: Tenpl at e2) ;

/1 Valid getcall, it will nmatch on Parl == 1 and Any val ue of Par3
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

14.3 Template matching mechanisms

14.3.0 General

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Some of the mechanisms may be used in combination.

Matching mechanisms and wildcards may also be used in-linein received eventsonly (i.e.recei ve, trigger,
getcal |, getreply andcat ch operations). They may appear in explicit values.

EXAMPLE 1.

M/PCO. recei ve(charstring: "abcxyz");
M/PCO. recei ve (integer:conplenent(1l, 2, 3));

The type identifier may be omitted when the value unambiguously identifies the type.
EXAMPLE 2:

M/PCO. recei ve(" AAAA"O) ;
NOTE: Thefollowing types may be omitted: integer, float, boolean, bitstring, hexstring, octetstring.

However, the type of the in-line template shall bein the port list over which the template is received. In the case where
there is an ambiguity between the listed type and the type of the value provided (e.g. through sub-typing) then the type
name shall beincluded in the receive statement.

Matching mechanisms are arranged in four groups:

a) gpecific values:
- an expression that evaluates to a specific value;
- omit: valueis omitted;

b) special symbolsthat can be used instead of values:
- (...): alist of values;
- complement (...): complement of alist of values,
- ?: wildcard for any value;
- *: wildcard for any value or no value at al (i.e., an omitted value);

- (lowerBound . . upperBound)): arange of integer or float values between and including the lower- and
upper bounds;

ETSI

73 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

- superset: at least al of the elementslisted, i.e., possibly more;
- subset: at most the elementslisted, i.e., possibly less;
b) special symbolsthat can be used inside values:
- ?: wildcard for any single element in astring, array, record of orset of;

- *: wildcard for any number of consecutive elementsin astring, array, record of orset of,orno
element at al (i.e. an omitted element);

- per mutation: all of the elements listed but in an arbitrary order (note, that ? and * are also alowed as
elements of the permutation list);

c) special symbolswhich describe attributes of values:

- length: restrictions for string length for string types and the number of elementsforr ecord of , set
of and arrays,

- ifpresent: for matching of optional field values (if not omitted).

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
in table 6. The left-hand column of this table lists al the TTCN-3 types to which these matching mechanisms apply. A
full description of each matching mechanism can be found in annex B.

ETSI

74 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 6: TTCN-3 Matching Mechanisms

Used with values Value Instead of values Inside values Attributes
of
S (@] C V A A R S S A A P L |
p m 0 a n n a u u n n e e f
e i m | y y n p b y y r n P
c t p u \% \% g e S E E m g r
i \% | e a a e r e | I u t e
f a e L | | s t e e t h s
i | m | u u e m m a R e
c u e S e e t e e t e n
\Y, e n t ? (0] n n i s t
a t r t t o] t
| e N (? S n r
u d 0] (0] i
e L n r c
| e N t
S * o] i
t n 0]
e n
*)
boolean Yes | Yes | Yes | Yes | Yes | ves® Yes®
integer Yes | Yes | Yes | Yes | Yes | ves' | Yes Yes®
float Yes | Yes | Yes | Yes | Yes | Yes'| Yes Yes®
bitstring Yes | Yes | Yes | Yes | Yes | ves' Yes | Yes Yes | Yes®
octetstring Yes | Yes | Yes | Yes | Yes | ves' Yes | Yes Yes | Yes®
hexstring Yes | Yes | Yes | Yes | Yes | ves' Yes | Yes Yes | Yes®
character strings Yes | Yes | Yes | Yes | Yes | Yes® | Yes Yes | Yes Yes | Yes®
record Yes | Yes | Yes | Yes | Yes | Yes® Yes®
record of Yes | Yes | Yes | Yes | Yes | ves' Yes | Yes | Yes | Yes | Yes®
array Yes | Yes | Yes | Yes | Yes | ves® Yes | Yes Yes | Yes®
set Yes | Yes | Yes | Yes | Yes | ves® Yes®
set of Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes | Yes | Yes Yes | Yes®
enumerated Yes | Yes | Yes | Yes | Yes | ves' Yes®
union Yes | Yes | Yes | Yes | Yes | Yes® Yes®
anytype Yes | Yes | Yes | Yes | Yes | ves® Yes®
NOTE 1: When used, shall be applied to optional fields of record and set types only (without restriction on the type of
that field).

NOTE 2: When used, shall be applied to record and set fields only (without restriction on the type of that field).

14.3.1 Referencing elements of templates or template fields

14.3.1.1 Referencing individual string elements
Itis not allowed to reference individual string elements inside templates or template fields.

EXAMPLE:

var tenplate charstring t_Charl := "' MYCHAR ;
var tenplate charstring t_Char2;

t_Char2 := t_Charl[1];
/1 shall cause an error as referencing individual string elenents is not allowed,;

14.3.1.2 Referencing r ecor d and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

. Omit, AnyVaueOrNone, value lists and complemented lists: referencing a subfield within a structured field to
whichoni t, AnyVaueOrNone (*), an value list or acomplemented list is assigned, shall cause an error.

ETSI

75 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 1.

type record Rl {
integer f1 optional,

R2 f2 optional
}
type record R2 {
i nteger g1,
R2 g2 optional
}
var tenplate RL t _R1 : = {
fl:=05,
f2 := omt

}
var tenplate R2 t_R2 := t_R1.f2.g2;
/] causes an error as onmit is assigned to t_R1.f2
t RL. f2 :=*
t R :=t RL.f2. 92;
/] causes an error as * is assigned to t_R1.f2

—

({fl:=omt, f2:={gl:=0, g2:=omt}},{f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=omit}}});

R1.f2;
R1. f2.g2;
R1

t

33”8 =
Inmnn

.f2.92.g2;
hese assignments cause error as a value list is assigned to t_Rl1

t_R1:
conpl ement ({f1:=om t, f2:={gl:=0, g2:=omt}},{f1:=5, f2:={gl:=1, g2:={gl:=2, g2:=onmit}}})

t RL.f2;

t_R1.f2.g2;

= t_R1.f2.g2.g2;

/1 all these assignnents cause error as a conplenented list is assigned to t_R1

S8R

. AnyVaue: when referencing a subfield within a structured field to which AnyValue (?) is assigned, at the right
hand side of an assignment, AnyValue (?) shall be returned for mandatory subfields and AnyVaueOrNone
shall be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue (?) is assigned, at the left hand side
of an assignment, the structured field has to be expanded recursively up to the depth of the referenced subfield.
During this expansion an AnyValue (?) shall be assigned to mandatory subfields and AnyVaueOrNone shall
be assigned to optional subfields. After this expansion the value or matching mechanism at the right hand side
of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

_R1 := {f1.=0, f2:=?}
_R2 1=t _R1.f2.92;
/] after the assignment t_R2 will be {gl:=?, g2:=*}
t_R1.f2.92.92 := ({gl:=1, g2:=onit}, {gl:=2, g2:=onit});
/1 first the field t_R1.f2 has hypothetically be expanded to {gl:=?,92: ={gl:=?,92: =*}}
/1 thus after the assignnent t_Rl will be:
I {f1:=0, f2:={gl:=?,92:={gl:=?,092:=({gl: =1, g2:=omit},{gl:=2, g2:=omit})}}}

t
t

. Ifpresent attribute: referencing a subfield within a structured field to which thei f pr esent attributeis
attached, shall cause an error (irrespective the value or the matching mechanismto whichi f pr esent is
appended).

14.3.1.3 Referencing r ecor d of and set of elements

Both templates and template variables allow referencing elementsof ar ecor d of orset of template or field using
the index notation. However, a matching mechanism may be assigned to the template or field within which the element
isreferenced. This clause provides rules on handling such cases.

. Omit, AnyVaueOrNone, value lists, complemented lists, subset and superset: referencing an element within a
record of or set of field to whichomi t, AnyVaueOrNone (*) with or without alength attribute, avalue list, a
complemented list, a subset or a superset is assigned, shall cause an error.

ETSI

76 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 1.

type record of integer Rol;
type record of Rol RoRol;

var tenplate Rol t_Rol;
var tenplate RoRol t_RoRol;
var tenplate integer t_Int;

t_RoRol := ({},{0},{0,0},{0,0,0});
t_Rol :=t_RoRol[0];
/1 shall cause an error as value list is assigned to t_RoRol;

. AnyVaue: when referencing an element of ar ecord of orset of template or field to which AnyValue
(?) isassigned (without alength attribute), at the right hand side of an assignment, AnyValue (?) shall be
returned. If alength attribute is attached to the AnyValue (?), the index of the reference shall not violate the
length attribute.

When referencing an element withinar ecord of orset of templateor field to which AnyValue (?) is
assigned (without alength attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement(?) shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone(*) shall be added
at the end. When alength attribute is attached to AnyValue(?) the attribute shall be conveyed to the new
template or field transparently. The index shall not violate type restrictions in any of the above cases.

EXAMPLE 2:

type record of integer Rol;
type record of Rol RoRol;

var tenplate Rol t_Rol;
var tenplate RoRol t_RoRol;
var tenplate integer t_Int;

i_RoI ?;
t_Int :=t_Rol[5];
[/ after the assignnent t_Int will be AnyVal ue(?);

t_RoRol := 7?;
t_Rol :=t_RoRol[5];

/Il after the assignnent t_Rol will be AnyVal ue(?);
t_Int :=t_RoRol[5].[3];

/Il after the assignnent t_Int will be AnyVal ue(?);

? length (2..5);

t_Rol[3];
I/l after the assignnent t_Int will be AnyVal ue(?);

t_Int :=t_Rol[5];
/1 shall cause an error as the referenced index is outside the length attribute
I/ (note that index 5 would refer to the 6'" el ement);

t_RoRol[2] := {0, 0};

/1 after the assignnment t_RoRol will be {?,?,{0,0},*};
t_RoRol[4] := {1,1};

/Il after the assignnent t_RoRol will be {?,?,{0,0},? {1, 1}, *};

t_Rol[0] := -5

/] after the assignnent t_Rol will be {-5,*}length(2..5);
t_Rol :=? length (2..5);
t_Rol[1] :=1;

/1 after the assignnent t_Rol will be {?,1,*}length(2..5);
t_Rol[3] := 2
/] after the assignnent t_Rol will be {?,1,?,? *}length(2..5);
t_Rol[5] :=5
/] after the assignnment t_Rol will be {?,1,?,?,?,5 *}length(2..5); note that t_Rol
/1 becones an enpty set but that shall cause no error;

. Permutation: when referencing an element of ar ecor d of template or field, which islocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyVaueOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

ETSI

77 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 3:

t_Rol := {pernutation(O0,1,3,7?),2,7?}
t_Int :=1t_Rol[5];
/1 after the assignment t_Int will be AnyVal ue(?)

t_Rol := {pernutation(O0,1,3,7?),2,*}
t_Int :=t_Rol[5];
/1 after the assignment t_Int will be * (AnyVal ueOr None)
t_Int :=t_Rol[2];
/] causes error as the third elenent (with index 2) is inside pernutation

t_Rol := {pernutation(0,1,3,*),2,7?}

t_Int :=t_Rol[5];
/] causes error as the pernutation contains AnyVal ueOrNone(*) that is able to
/1 cover any record of indexes

. Ifpresent attribute: referencing an element withinar ecor d of orset of fieldtowhichthei f present
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
i f present isappended).

14.4 Parameterization of templates

14.4.0 General

Templates for both sending and receiving operations can be parameterized. The actual parameters of atemplate can
include values and templates, functions and special matching symbols. The rules for formal and actual parameter lists
shall be followed as defined in clause 5.2.

EXAMPLE:

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (i nteger MyFormal Param: =

fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. send(My Tenpl at e(123));

145 Void

14.6 Modified templates

14.6.0 General

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly.

The nodi f i es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within atemplate field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not allowed.

ETSI

78 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 1:

/1 Gven
type record MyRecordType
{

integer field,
charstring field2,
bool ean fiel d3

tenpl ate M/RecordType MyTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

}
/1 then witing

tenpl ate MyRecordType MyTenpl ate2 nodifies MyTenpl atel : =

fieldl :
field2 :

omt, /1 fieldl is optional but present in MyTenplatel
"A nodified string"

/1 field3 is unchanged

/1 is the sane as witing
tenpl ate MyRecordType MyTenpl ate2 : =

fieldl := omt,
field2 := "A nodified string",
field3 := true

}

When individual values of a modified template or a modified template field of record of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.’

EXAMPLE 2:

tenpl ate MyRecordOf Type MyBaseTenplate :={ 0, 1, 2, 3, 4, 5, 6,
tenpl ate MyRecor dOf Type MyModi f Tenpl ate nodi fi es MyBaseTenpl ate :
/1 MyModi f Tenpl ate shall nmatch the sequence of values { 0, 1, 3,

8, 9 1};
{12 :=3, [3 (=21}
4, 5, 6, 7, 8, 9}

NN

14.6.1 Parameterization of modified templates

If a base template has aformal parameter list, the following rules apply to al modified templates derived from that base
template, whether or not they are derived in one or several modification steps:

a) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

b) aderived template can have additional (appended) parameters if wished;

c) theformal parameter list shall follow the template name for every modified template.

EXAMPLE:

/1 Gven

tenpl ate MyRecordType MyTenpl at el(i nteger MyPar):=
fieldl := MyPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate M/RecordType MyTenpl ate2(i nteger MyPar) nodifies MyTenpl atel : =

{ /1 fieldl is paranmeterized in Tenplatel and renai ns al so paranmeterized in Tenpl ate2
field2 := "A nodified string",

}

ETSI

79 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

14.6.2 In-line modified templates

Aswell as creating explicitly named modified templates, TTCN-3 allows the definition of in-line modified templates.

EXAMPLE:
/1l Gven
tenpl ate MyMessageType Setup : =
{ fieldl := 75,
field2 := "abc",
field3 := true

}

/] Could be used to define an in-line nodified tenplate of Setup
pcol. send (nodifies Setup := {fieldl:= 76});

14.7 Changing template fields

In communication operations (e.g. send, r ecei ve, cal | ,get cal | etc.) itisallowed to change template fields via
parameterization or by in-line derived templates only. The effects of these changes on the value of the template field do
not persist in the template subsequent to the corresponding communication event.

The dot notation MyTemplateld.Fieldld shall not be used to set or retrieve valuesin templates in communication events.
The"->" symbol shall be used for this purpose (see clause 23).

14.8 Match Operation

The mat ch operation allows the value of a variable or parameter to be compared with atemplate. The operation returns
aboolean value. If the types of the template and variable are not compatible (see clause 6.7) the operation returns fal se.
If the types are compatible the return value of the operation indicates whether the value of the variable conformsto the
specified template.

EXAMPLE:
tenpl ate integer LessThanlO := (-infinity..9);

testcase TCOOL()
runs on MyMICType

{
var integer RxVal ue;
PCOL. recei ve(integer:?) -> val ue RxVal ue;

if(match(RxVal ue, LessThanl10)) { ...}
/1 true if the actual value of Rxvalue is less than 10 and fal se otherw se

}
14.9 Value of Operation

Theval ueof operation alows the value specified within atemplate to be assigned to a variable. The variable and
template shall be type compatible (see clause 6.7) and each field of the template shall resolve to asingle value.

EXAMPLE:
type record Exanpl eType

integer fieldl,
bool ean fiel d2

}
tenpl at e Exanpl eType SetupTenpl ate : =

fieldl :
field2 :

1,
true

}

var Exanpl eType RxVal ue : = val ueof (Set upTenpl ate);

ETSI

80 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

15 Operators

15.0 General

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) string operators;

c) relational operators;
d) logical operators;

€) bitwise operators;

f) shift operators,

g) rotate operators.

These operators are listed in table 7.

Table 7: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal I=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xor4b
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operators is shown in table 8. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

ETSI

81 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 8: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <L, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Lowest |Binary or

15.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of typei nt eger (including derivations of i nt eger) or f | oat
(including derivations of f | oat), except for rod and r emwhich shall be used withi nt eger (including derivations
of i nt eger) typesonly.

Withi nt eger types, the result type of arithmetic operationsisi nt eger . With float types, the result type of
arithmetic operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two:

a) integer vauesgivesthewholei nt eger part of the value resulting from dividing thefirst i nt eger by
the second (i.e. fractions are discarded);

b) fl oat vauesgivesthef| oat value resulting from dividing thefirst f | oat by the second (i.e. fractions are
not discarded).

The operatorsr emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nod y compute therest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positivex andy, bothx rem y andx nod y havethe sameresult but
for negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >= 0
=0 when Xx <0 and xrem|y|l =0
= |yl +xrem]y| when Xx <0 and xrem|y|l <0

Table 9 illustrates the difference between the mod and rem operator:

Table 9: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
X rem 3 0 -2 -1 0 1 2 0

ETSI

82 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

15.2 String operators

The predefined string operators perform concatenation of values of compatible string types. The operation isasimple
concatenation from left to right. No form of arithmetic addition isimplied. The result typeisthe root type of the
operands.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111' B

15.3 Relational operators

The predefined relational operators represent the relations of equality (==), less than (<), greater than (>), non-equality
to (! =), greater than or equal to (>=) and less than or equal to (<=). Operands of equality and non-equality may be of
arbitrary but compatible types with the exception of the enuner at ed type, in which case operands shall be instances
of the same type. All other relational operators shall have only operands of typei nt eger (including derivatives of

i nteger),fl oat (including derivations of f | oat) or instances of the same enuner at ed types. The result type of
these operationsisbool ean.

Twocharstringoruni versal charstring vauesareequal only, if they have equal lengths and the characters
at all positions are the same. For valuesof bi t st ri ng, hexstri ng oroct et stri ng types, the same equality rule
applies with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Twor ecor d values, set values, r ecor d of valuesor set of valuesareequal if, and only if, their effective value
structures are compatible (see clause 6.7) and the values of al corresponding fields are equal. Record values may also
be compared to record of values and set values to set of values. In these cases the same rule applies as for comparing
tworecord or set vaues.

NOTE: "All fields' meansthat optional fields not present in the actual value of ar ecor d type shall be taken as
an undefined value. Such field can equal only to a missing optional field (also considered to be an
undefined value) when compared with a value of another r ecor d type or to an element with undefined
value when compared with avalue of ar ecor d of type. This principle also applies when values of two
set typesoraset andaset of typeare compared.

Two values of uni on types are equal if, and only if, in both values the types of the chosen fields are compatible and
the actual values of the chosen fields are equal.

EXAMPLE:
/1 Gven
type set SetA {
i nt eger al optional,
i nt eger a2 optional,
i nt eger a3 optional

s
type set SetB {

i nt eger bl optional,
i nt eger b2 optional,
i nt eger b3 optional

h

type set SetC {
i nt eger cl optional,
i nt eger c2 optional,

b
type set of integer SetO;

type uni on Uni D {

i nt eger di1,
i nt eger dz,
}s

type uni on Uni E {
i nt eger el,

ETSI

83 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

i nt eger e2,
H
type uni on Uni F {
i nt eger fi1,
i nt eger f2,
bool ean f3,
s
/1 And
const Set A conSet Al = {al :=0, a2 := omit, a3 := 2 };

/1 Notice that the order of defining values of the fields does not matter

const Set B conSet Bl = {bl:=0, b3:=2, b2 :=onmt };
const Set B conSet B2 = { b2:=0, b3 :=2, bl :=omt };
const Set C conSet C1 = {cl:=0, c2:=2};

const Set Of conSet O0f 1 = {0, omt, 2};

const Set Of conSet Of 2 = {0 2};

const Uni D conUni D1 = { di:=0 };

const Uni E conUni E1 = { el:=0};

const Uni E conUni E2; = { e2:=0};

const Uni F conUni F1; = { f1:=0 };

/1 Then
conSet A1 == conSet B1;
/] returns true
conSet A1 == conSet B2;
Il returns fal se, because neither al nor a2 are equal to their counterparts
/1 (the corresponding elenent is not ontted)
conSet A1 == conSet C1;
/1 returns fal se, because the effective value structures of SetA and SetC are not conpati bl e
conSet A1 == conSet Of 1;
/1 returns true
conSet Al == conSet O 2;
/1 returns false, as the counterpart of the onmitted a2 is 2,
/1 but the counterpart of a3 is undefined
conSet C1 == conSet O 2;
/1 returns true
conUni D1 == conUni E1;
/'l returns true
conUni D1 == conUni E2;
/1 returns false, as the chosen field e2 is not the counterpart of the field d1 of UniDl
conUni D1 == conUni F1;
/1 returns false, as the effective value structures of UniDlL and Uni F are not conpatible

15.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor .
Their operands shall be of type bool ean. The result type of logical operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthe valuet r ue if both itsoperands aret r ue; otherwise it returnsthe value f al se.

Thelogica or returnsthevaluet r ue if at least one of its operandsist r ue; it returnsthe value f al se only if both
operands aref al se.

Thelogical xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
f al se orif both operandsaret r ue.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operatorsis stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto f al se, then the right
argument is not eval uated and the whole expression evaluatesto f al se. In the case of the or operator, if the left
argument evaluatesto t r ue, then the right argument is not evaluated and the whole expression evaluatestot r ue.

15.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

ETSI

84 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

NOTE: Toberead as"not for bit", "and for bit" etc.

Their operands shall be of type bi t stri ng, hexstringoroctetstring.Inthecaseof and4b, or4b and
xor 4b the operands shall be of compatible types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bit is
settoOand aObitissetto 1. Thatis:

not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b 'O01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisal if both bits are set to 1, otherwise the value for the resulting bit isO. That is:

'1'B and4b '1' B gi ves
"1'B and4b '0' B gives
'0'B and4b '1' B gives
'0'B and4b '0' B gi ves

eear
W wWww

EXAMPLE 2:

'1001' B and4b ' 0101' B gi ves '0001'B
"B'Hand4b '5'H gives '1'H
"FB' O and4b '15'O gives '11'0O

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'"1'Bordb "1'Bgives '1'B
'"1'Bor4b '0'B gives '1'B
'0'Bor4b "1'Bgives '1'B
'0'Bordb '0'Bgives '0'B
EXAMPLE 3:

'1001' B or4b '0101' B gives '1101'B
"9'Hor4b '5Hgives 'DH
"A9'O or4b 'F5'O gives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis0if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bitis 1. That is:

xordb '1'B gives
xor4db '0'B gives
xordb '1'B gives

'1'B
'0'B
0B
'1'B xor4b '0' B gives

mRaQ
W wWww

EXAMPLE 4:
'1001' B xor4b '0101' B gives '1100'B

"9"H xor4b '5'H gives 'CH
'39'O xor4b '15' O gives '2C O

15.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of type bitstring,hexstringoroctetstring. Ther right-hand operand shall be of typei nt eger . The
result type of these operators shall be the same as that of the left operand.

ETSI

85 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentheshift unit appliedis 1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
C) oct et string thenthe shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:

'111001'B << 2 gives '100100'B
'12345'H << 2 gives '34500'H
'1122334455' O << (1+1) gives '3344550000' O

The shift right (>>) operator accepts two operands. It shifts the |eft-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the | eft-hand side of the | eft operand.

EXAMPLE 2:
'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H
'1122334455' O >> (1+1) gives '0000112233' O

15.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall beof type bi tstring,hexstring,octetstring,charstringor universal charstring. Ther
right-hand operand shall be of typei nt eger . Theresult type of these operators shall be the same as that of the left
operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedis 1 bit;

b) hexstri ng then therotate unit applied is 1 hexadecimal digit;

Cc) octetstring thentherotate unit applied is 1 octet;

d) charstringoruniversal charstri ng thentherotate unit applied is one character;

The rotate left (<@ operator accepts two operands. It rotates the |eft-hand operand by the number of shift units to the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' 0 <@ (1+2) gives '4455112233'0
"abcdef g" <@3 gives "def gabc"

The rotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, or characters) are
re-inserted into the left-hand operand from its left-hand side.

ETSI

86 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' 0 @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

16 Functions and altsteps

In TTCN-3, functions and altsteps are used to specify and structure test behaviour, define default behaviour and to
structure computation in a module etc. as described in the following clauses.

16.1 Functions

16.1.0 General

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition. Functions
may return avalue or atemplate. Value return is denoted by ther et ur n keyword followed by atype identifier.
Template return isdenoted by ther et ur n t enpl at e keywords followed by atype identifier.

The keyword r et ur n, when used in the body of the function with a value return defined in its header, shall always be
followed by an expression representing the return value. The type of the return value shall be compatible with the return
type. The keyword r et ur n, when used in the body of the function with atemplate return defined in its header, shall
always be followed by an expression or a template instance representing the return template. The type of the return
template shall be compatible with the return template type.

The return statement in the body of the function causes the function to terminate and to return the return value to the
location of the call of the function.

EXAMPLE 1:

/1 Definition of MyFunction which has no paraneters
function MyFunction() return integer

{

return 7; /1 returns the integer value 7 when the function terninates

}

/1 Definition of functions which nmay return natching synbols or tenplates
function MyFunction2() return tenpl ate integer

{
return ?; /'l returns the natching nechani sm AnyVal ue

}

function MyFunction3() return tenplate octetstring
{
return "FF??FF" O [/l returns an octetstring with AnyEl ement inside it

}

A function may be defined within a module or be declared as being defined externally (i.e. ext er nal). For an external
function only the function interface has to be provided in the TTCN-3 module. The realization of the external function
is outside the scope of the present document. External functions are not allowed to contain port operations. External
functions are not allowed to return templ ates.

external function MyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer val ue

external function InitTestDevices(); /1 An external function which only has an
/1 effect outside the TTCN-3 nodul e

In amodule, the behaviour of a function can be defined by using the program statements and operations described in
clause 18. If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using ther uns on keywords in the function header. The one exception to this rule
isif all the necessary component-wide information is passed in the function as parameters.

ETSI

87 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

function MyFunction3() runs on MyPTCType {
/1 MyFunction3 doesn't return a val ue, but

var integer MyVar := 5; /1 does neke use of the port operation
PCOL. send(MyVar) ; /1 send and therefore requires a runs on
I/l clause to resolve the port identifiers
} /1 by referencing a conponent type

A function without r uns on clause shall never invoke a function or altstep or activate an altstep as default with a
runs on clauselocally.

Functions started by using the st ar t test component operation shall awayshavear uns on clause (see clause 22.5)
and are considered to be invoked in the component to be started, i.e. not locally. However, thest ar t test component
operation may be invoked in functions without ar uns on clause.

NOTE: Therestrictions concerning ther uns on clause are only related to functions and altsteps and not to test
Cases.

Functions used in the control part of a TTCN-3 module shall have nor uns on clause. Nevertheless, they are allowed
to execute test cases.

16.1.1 Parameterization of functions
Functions may be parameterized. The rules for formal parameter lists shall be followed as defined in clause 5.2.

EXAMPLE:

function MyFunction2(inout integer MyParl) {
/1 MyFunction2 doesn't return a val ue
MyParl := 10 * MyParl; // but changes the value of MyParl which
} /1 is passed in by reference

16.1.2 Invoking functions

A function isinvoked by referring to its name and providing the actual list of parameters. Functions that do not return
values shall be invoked directly. Functions that return values may be invoked directly or inside expressions. The rules
for actual parameter lists shall be followed as defined in clause 5.2.

EXAMPLE:
MyVar := MyFunction4(); // The value returned by MyFunction4 is assigned to MyVar.

/'l The types of the returned value and MyVar have to be conpati bl e
MyFuncti on2(MyVar 2) ; /1 MyFunction2 doesn't return a value and is called with the

/'l actual paraneter MyVar2, which nay be passed in by reference

MyVar 3 : = MyFuncti on6(4)+ MyFunction7(M/Var3); [/ Functions used in expressions

Special restrictions apply to functions bound to test components using the st ar t test component operation. These
restrictions are described in clause 22.5.

ETSI

88 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

16.1.3 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use.

Table 10: List of TTCN-3 predefined functions

Category Function Keyword

Conversion functions Convert integer value to charstring value i nt 2char
Convert integer value to universal charstring value i nt 2uni char
Convert integer value to bitstring value i nt 2bi t
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value i nt 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value fl oat 2i nt
Convert charstring value to integer value char 2i nt
Convert charstring value to octetstring value char 2oct
Convert universal charstring value to integer value uni char 2i nt
Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bit 2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct 2hex
Convert octetstring value to charstring value oct 2str
Convert octetstring value to charstring value oct 2char
Convert charstring value to integer value str2int
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2fl oat

Length/size functions Return the length of a value of any string type I'engt hof
Return the number of elements in a record, record of, si zeof
template, set, set of or array
Return the number of elements in a structured type si zeof type

Presencel/choice functions Determine if an optional field in a record, record of, template, |i spresent
set or set of is present
Determine which choice has been made in a union type i schosen

String handling functions Returns part of the input string matching the specified pattern | €gexp
description
Returns the specified portion of the input string substr
Replaces a substring of a string with or inserts the input string | epl ace
into a string

Other functions Generate a random float number rnd

When a predefined function is invoked:

1) the number of the actual parameters shall be the same as the number of the formal parameters; and

2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all variables appearing in the actual parameter list shall be bound.

The full description of predefined functionsis given in annex C.

ETSI

89 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

16.1.4 Restrictions for functions called from specific places

Value returning functions can be called during communication operations (in templates, template fields or in-line
templates) or during snapshot evaluation (in Boolean guards of alt statements or altsteps (see clause 20.1.1) and in
initialization of altstep local definitions (see clause 16.2.2)). To avoid side effects that cause changing the state of the
component or the actual snapshot and to prevent different results of subsequent eval uations on an unchanged snapshot,
the following operations shall not be used in functions called in the cases specified above:

All component operations, i.e.creat e, start (component), st op (component), kill,
runni ng (component), al i ve, done andki | | ed (seenotes 1, 3, 4 and 6).

All port operations, i.e. st art (port), st op (port), hal t,cl ear,send, receive,trigger,call,
getcall ,reply,getreply,raise,catch,check, connect, map (seenotes 1, 2, 3and 6).

Theact i on operation (see notes 2 and 6).

All timer operations, i.e. st art (timer), st op (timer), runni ng (timer),r ead,ti neout (seenotes4
and 6).

Calling external functions (see notes 4 and 6).
Calling ther nd predefined function (see notes 4 and 6).

Changing of component variables, i.e. using component variables on the right-hand side of assignments, and in
the instantiation of out andi nout parameters (see notes 4 and 6).

Callingtheset ver di ct operation (see notes 4 and 6).
Activation and deactivation of defaults, i.e. theact i vat e and deact i vat e statements (see notes 5 and 6).

Calling functionswith out or i nout parameters (see notes 7 and 8).

NOTE 1: The execution of the operationsst art, st op, done, ki |l | ed, hal t,cl ear,recei ve,trigger,

getcal | ,getrepl y, catch andcheck can cause changes to the current snapshot.

NOTE 2: The operationssend, cal | ,reply,rai se,andact i on shall be avoided for readability purposes,

i.e. al communication shall be made explicit and not as a side-effect of another communication operation
or the evaluation of a snapshot.

NOTE 3: The operations map, unmap, connect , di sconnect, cr eat e shal be avoided for readability

purposes, i.e. al configuration operations shall be made explicit, and not as a side-effect of a
communication operation or the evaluation of a snapshot.

NOTE 4: Calling of external functions, r nd, r unni ng, al i ve, r ead, set ver di ct , and writing to component

variables shall be avoided because it may lead to different results of subsequent evaluations of the same
snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE5: Theoperationsact i vat e and deact i vat e shall be avoided because they modify the set of defaults

that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or i nout parameterization shall apply recursively,

i.e. it isdisallowed to use them directly, or via an arbitrary long chain of function invocations.

NOTE 7: Therestriction of calling functions with out or i nout parameters does not apply recursively, i.e. calling

functions that themselves call functionswith out or i nout parametersislegal.

NOTE 8: Usingout ori nout parameters shall be avoided because it may also lead to different results of

subsequent evaluations of the same snapshot.

ETSI

90 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

16.2 Altsteps

16.2.0 General

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of anal t statement. Altsteps are
scope units similar to functions. The altstep body defines an optional set of local definitions and a set of alternatives, the
so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are identical to the syntax
rules of the alternatives of al t statements.

The behaviour of an altstep can be defined by using the program statements and operations summarized in clause 18. If
an altstep includes port operations or uses component variables, constants or timers the associated component type shall
be referenced using the r uns on keywords in the altstep header. The one exception to thisruleisif all ports, variables,
constants and timers used within the altstep are passed in as parameters.

EXAMPLE:

/1 Gven

type conponent MyConponent Type {
var integer MylntVar := 0;

timer MyTiner;
port MyPort TypeOne PCOL, PCQOZ2;
port MyPort TypeTwo PCCB;

}
/1 Atstep definition using PCOl, PCO2, MylntVar and MyTiner of MyConponent Type
altstep AltSet _A(in integer MyParl) runs on MyConponent Type {
[] PCOL.receive(MTenpl ate(MyPar1l, MylntVar) {
setverdict (i nconc);

}
[T PCR2.receive {
r epeat

}
[MyTinmer.timeout {
setverdict(fail);
st op
}

}

Altsteps may invoke functions and altsteps or activate altsteps as defaults. An altstep without ar uns on clause shall
never invoke afunction or atstep or activate an altstep as default with ar uns on clause locally.

16.2.1 Parameterization of altsteps

Altsteps may be parameterized. An altstep that is activated as a default shall only havei n parameters, port parameters,
and timer parameters. An altstep that isonly invoked as an alternativeinanal t statement or as stand-al one statement
ina TTCN-3 behaviour description may havei n, out andi nout parameters. Therulesfor formal parameter lists
shall be followed as defined in clause 5.2.

ETSI

91 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

16.2.2 Local definitions in altsteps

16.2.2.0 General

Altsteps may define local definitions of constants, variables and timers. The local definitions shall be defined before the
set of aternatives.

EXAMPLE:

altstep AnotherAltStep(in integer MyParl) runs on MyConponent Type {
var integer MyLocal Var := MyFunction(); /1 local variable
const float MyFloat := 3.41; /1 local constant

[] PCOL.recei ve(M/Tenpl at e(MyPar 1, MyLocal Var) {
setverdi ct (i nconc);

}
[1] PC®.receive {
r epeat
}

16.2.2.1 Restrictions for the initialization of local definitions in altsteps

Theinitialization of local definitions by calling value returning functions may have side effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, and to prevent different results
of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall apply to the initialization
of local definitions.

16.2.3 Invocation of altsteps

The invocation of an altstep isalwaysrelated to an al t statement. The invocation may be done either implicitly by the
default mechanism (see clause 21) or explicitly by adirect call withinan al t statement (see clause 20.1.6). The
invocation of an altstep causes no new snapshot and the eval uation of the top alternatives of an altstep is done by using
the actual snapshot of theal t statement from which the altstep was called.

NOTE: A new snapshot within an altstep will of course be taken, if within a selected top aternative anew al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of anact i vat e statement before the place of the invocation is reached.

EXAMPLE 1:

var defaul t MyDef Var Two : = activate(M/SecondAltStep()); // Activation of an altstep as default

An explicit call of an altstep withinanal t statement looks like afunction call as an alternative.

EXAMPLE 2:

ait {
[] PC3.receive {

}
[1 AnotherAltStep(); /1 explicit call of altstep AnotherAltStep as an alternative
/1 of an alt statenent
[T MyTiner.tineout {}

ETSI

92 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

When an altstep is called explicitly withinan al t statement, the next alternative to be checked is the first alternative of
theal t st ep. The alternatives of theal t st ep are checked and executed the same way as alternatives of anal t
statement (see clause 20.1) with the exception that no new snapshot is taken when entering theal t st ep. An
unsuccessful termination of the atstep (i.e. all top alternatives of theal t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of theal t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with ast op statement, or a new snapshot and re-evaluation of theal t statement,

i.e. the altstep endswith r epeat (see clause 20.2) or acontinuation immediately after theal t statement, i.e. the
selected top aternative of the altstep ends without explicitr epeat or st op.

Anal t st ep can aso be called as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
theal t st ep can beinterpreted as shorthand for anal t statement with only one alternative describing the explicit call
of theal t st ep.

EXAMPLE 3:

/1 The statenent
Another Al tStep(); // AnotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[T AnotherAltStep();
}

16.3 Functions and altsteps for different component types

See clause 6.7.3.

17 Test cases

17.0 General

Test cases are aspecial kind of function. In the module control part theexecut e statement is used to start test cases
(see clause 27.1). Theresult of an executed test case is always avalue of typever di ct t ype. Every test case shall
contain one and only one MTC the type of which isreferenced in the header of the test case definition. The behaviour
defined in the test case body is the behaviour of the MTC.

When atest caseisinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without the explicit cr eat e and st art operations.

To provide the information to allow these implicit operations to occur, atest case header has two parts:

a) interface part (mandatory): denoted by the keyword r uns on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

ETSI

93 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:

testcase MyTest CaseOne()

runs on MyM cTypel /1 defines the type of the MIC

system MyTest Syst enilype /1 makes the port nanmes of the TSI visible to the MIC

/1 The behavi our defined here executes on the mc when the test case invoked

}

/1 or, a test case where only the MIC is instantiated
testcase MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the nic when the test case invoked

17.1 Parameterization of test cases

Test cases may be parameterized. The rules for formal parameter lists shall be followed as defined in clause 5.2.

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, |oop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults etc., and operations such assend, r ecei ve,
creat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and blocks of statements and declarations).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

s2 |:> Si; s2; S3;

S3

Figure 8: lllustration of sequential behaviour

Theindividual statements in the sequence shall be separated by the delimiter ";".
EXAMPLE:

MyPort. send(Mynessage); MyTiner.start; |og("Done!");

The specification of an empty block of statements and declarations, i.e. { } , may be found in compound statements,
e.g. abranchinanal t statement, and implies that no actions are taken.

ETSI

94 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 11: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean gu-
ards, or from
initialization of
altstep local
definitions
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes
(see note 3)
Logging log Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
If-else if (..){.}else{.} Yes Yes Yes
For loop for (...){...} Yes Yes Yes
While loop while (...){...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Stop execution stop Yes Yes
Select case select case (...) { case Yes Yes Yes
(...){.}caseelse{..}}
Behavioural program statements
Alternative behaviour alt{...} Yes Yes
(see note 1)
Re-evaluation of alternative behaviour |repeat Yes Yes
(see note 1)
Interleaved behaviour interleave {...} Yes Yes
(see note 1)
Returning control return Yes Yes
(see note 4)
Statements for default handling
Activate a default activate Yes Yes
(see note 1)
Deactivate a default deactivate Yes Yes
(see note 1)
Configuration operations
Create parallel test component create Yes
Connect component port to connect Yes
componentport
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface [unmap Yes
Get MTC component reference value mtc Yes Yes
Get test system interface component system Yes Yes
reference value
Get own component reference value self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Remove a test component from the kill Yes
system
Check termination of a PTC behaviour |running Yes
Check if a PTC exists in the test system |alive Yes
Wait for termination of a PTC behaviour |done Yes
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote reply Yes
entity
Raise exception (to an accepted call) raise Yes
Receive message receive Yes

ETSI

95 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)
Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean gu-
ards, or from
initialization of
altstep local
definitions
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call _ |getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received |check Yes
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow receiving |stop Yes
operations to match at a port
Disable sending and disallow receiving |halt Yes
operations to match new
messages/calls
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action [Yes | Yes |
Execution of test cases
Execute test case execute Yes Yes
(see note 2)
NOTE 1: Can be used to control timer operations only.
NOTE 2: Can only be used in functions and altsteps that are used in module control.
NOTE 3: Changing of component variables is disallowed.
NOTE 4: Can be used in functions and altsteps but not in test cases.

19 Expressions and basic program statements

19.0

Expressions and basic program statements can be used in the control part of amodule and in TTCN-3 functions, altsteps
and test cases.

General

ETSI

96 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 12a: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
Logging log
Label and Goto label / goto
If-else if (.){...}else{...}
For loop for (..){...}
While loop while (..) { ... }
Do while loop do{ ... } while (...)
Stop execution stop
Select case select case (...){case (...){...}
caseelse{...} }

19.1 Expressions

19.1.0 General

TTCN-3 alows the specification of expressions using the operators defined in clause 15. Expressions are built from
other (simple) expressions. Expressions may use value returning functions only. The result of an expression shall be the
value of a specific type and the operators used shall be compatible with the type of the operands.

EXAMPLE:

(x +y - increment(z))*3;

19.1.1 Boolean expressions

A bool ean expression shall only contain bool ean values and/or bool ean operators and/or relational operators
and shall evaluateto abool ean value of eithert r ue or f al se.

EXAMPLE:

((A and B) or (not C) or (j<10));

19.2 Assignments

Vaues may be assigned to variables. Thisisindicated by the symbol ":=". During execution of an assignment the right-
hand side of the assignment shall evaluate to a value being compatible to the type of the left-hand side. The effect of an
assignment is to bind the variable to the value of the expression. The expression shall contain no unbound variables. All
assignments occur in the order in which they appear, that is left to right processing.

EXAMPLE:

M/Variable := (x + y - increnent(z))*3;

19.3 The Log statement

Thel og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 12b or expressions composed of such log items.

ETSI

97 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

It is strongly recommended that the execution of the log statement has no effect on the test behaviour. In particular,
functions used in alog statement should neither explicitly nor implicitly change component variable values, port or
timer status, and should not change the value of any of itsinout or out parameters.

EXAMPLE:

var integer nyVar:= 1;
log("Line 248 in PTC_ A ", nyVar, " (actual
// The string "Line 248 in PTC_A: 1 (actual
/1 of the test system

val ue of myvar)");
value of nyVar)" is witten to sone |og device

NOTE 1: Functions used in log statements should not use directly or indirectly statements other than if...else, for,
while, do...while, label, goto, return, mtc, system, self, running (PTC or timer), read and getverdict.

NOTE 2: It isoutside the scope of the present document to define complex logging and trace capabilities which

may be tool dependent.

Table 12b: TTCN-3 language elements that can be logged

Used in a log statement

What is logged

Comment

module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value
external constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNITIALIZED"

See notes 3 and 4.

sel f,mc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
or "UNITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true or f al se. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or f al se. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or 'UNITIALIZED'

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

predefined functions

return value

See annex C.

function instance

return value

Only functions with return clause are
allowed.

external function instance

return value

Only external functions with return clause
are allowed.

ETSI

98 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Used in a log statement What is logged Comment

formal parameter identifier See comment column |Logging of actual parameters shall follow

rules specified for the language elements

they are substituting. In case of value

parameters the actual parameter value,

in case of template-type parameters the

actual template or field values and

matching symbols, in case of component

type parameters the actual component

reference etc. shall be logged. For timer

parameters also the use of the read

operation and for component type and

timer parameters the use of the running

operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNITIALIZED" shall be logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

19.4 The Label statement

Thel abel statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module. A | abel statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first statement of an
alternative or top alternativeinan al t statement, i nt er | eave statement or al t st ep. Labels used following the
| abel keyword shall be unique among all 1abels defined in the same test case, function, altstep or control part.

EXAMPLE:
| abel MyLabel; /1 Defines the | abel MyLabel
/1 The labels L1, L2 and L3 are defined in the followi ng TTCN-3 code fragment

| abel L1, /1 Definition of label L1
al t{
[1] PCOL.recei ve(M/Sigl)
{ | abel L2; /1 Definition of |abel L2
PCOL. send(MySi g2) ;
PCOL. r ecei ve(MySi g3)

}
[T PCR.receive(MSig4)
{ PCO2. send(M/Si g5) ;
PCX2. send(MySi g6) ;
| abel L3; /1 Definition of |abel L3
PCO2. recei ve(M/Si g7) ;

ETSI

99 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

19.5 The Goto statement

The got o statement can be used in functions, test cases, atsteps and the control part of a TTCN-3 module. Thegot o
statement performsajumpto al abel .

The got o statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhi | e loop) and to jump over severa levels out of
nested compound statements (e.g. nested alternatives). However, the use of the got o statement shall be restricted by
the following rules:

a) Itisnot alowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itisnot alowed to jump into a sequence of statements defined in a compound statement (i.e. al t statement,
whi | e loop, for loop, i f -el se statement, do- whi | e loop andthei nt er | eave statement).

c) Itisnot allowed to usethe got o statement withinani nt er | eave statement.

EXAMPLE:

/1 The following TTCN-3 code fragnent includes

Iébel L1; [/l ...the definition of |abel L1,
MyVar = 2 * MyVar;
if (MyVar < 2000) { goto L1; } [/l ...a junp backward to L1,

MyVar2 : = Myfunction(MVar);
if (MVar2 > MyVar) { goto L2; } /1 ..a junp forward to L2,
PCOL. send(MyVar) ;
PCOL. recei ve -> val ue MyVar 2;
| abel L2; /1 ...the definition of |abel L2,
PCX2. send(i nteger: 21);
alt {
[T PCOL.receive { }
[] PCR2.receive(integer: 67) {
| abel L3; /1 ...the definition of |abel L3,
PCX2. send(MyVar) ;
alt {
[T PCOL.receive { }
[1] PC®2.receive(integer: 90) {
PCX2. send(i nteger: 33);
PCO2. recei ve(integer: 13);
goto L4; [/l ...a junp forward out of two nested alt statenents,

}
[] PCR.receive(MError) {
goto L3; /1 ..a junmp backward out of the current alt statenent,

[1 any port.receive {
goto L2; /1 ...a junp backward out of two nested alt statenents,
}

}

[1 any port.receive {
goto L2; /1 ...and a long junp backward out of an alt statenent.
}

}
| abel L4;

19.6 The If-else statement

Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow due
tobool ean expressions. Schematically, the conditional looks as follows:

if (expressionj)

st at ement bl ocky
el se

st at ement bl ocks

ETSI

100 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Where st at errent bl ock, refersto ablock of statements.

EXAMPLE:
if (date == "1.1.2005") { return (fail); }

if (MyVar < 10) {
MyVar = MyVar * 10;
log ("MyVar < 10");
}

el se {
MyVar := MyVar/5;
}

A more complex scheme could be;

if (expressionj)
st at ement bl ocky
el se if (expressiony)
st at enent bl ocks

el se if (expressiong)
st at ement bl ocky,
el se
st at ement bl ockp+q

In such cases, readability heavily depends on the formatting but formatting shall have no syntactic or semantic meaning.

19.7 The For statement

Thef or statement defines a counter loop. The value of the index variable isincreased, decreased or manipulated in
such amanner that after a certain number of execution loops atermination criteriais reached.

Thef or statement contains two assignments and abool ean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

EXAMPLE 1.
for (j:=1; j<=10; j:=j+1) { ...}

The termination criterion of the loop shall be expressed by the bool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatesto t r ue, the execution continues with the block of statementsin the for
statement, if it evaluatesto f al se, the execution continues with the statement which immediately followsthe f or

loop.

Theindex variable of af or loop can be declared before being used in the for statement or can be declared and
initialized inthe f or statement header. If the index variable is declared and initialized in thef or statement header, the
scope of the index variableis limited to the loop body, i.e. it isonly visible inside the loop body.

EXAMPLE 2:

var integer j; /] Declaration of integer variable j

for (j:=1; j<=10; j:=j+1) { ..} /] Usage of variable j as index variable of the for Ioop
for (var float i:=1.0; i<7.9; i:=1i*1.35) { ..} // Index variable i is declared and initialized

/1 in the for |oop header. Variable i only is
/1 visible in the | oop body.

19.8 The While statement

A whi | e loop is executed as long as the loop condition holds. The loop condition shall be checked at the beginning of
each new loop iteration. If the loop condition does not hold, then the loop is exited and execution shall continue with the
statement, which immediately follows the whi | e loop.

ETSI

101 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:

while (j<10){ ..}

19.9 The Do-while statement

Thedo- whi | e loopisidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at least once before the loop
condition is evaluated for the first time.

EXAMPLE:
do { ..} while (j<10);

19.10 The Stop execution statement

The st op statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the execution of the
module control part. When used in atest case, altstep or function that are executed on atest component, it terminates
the relevant test component.

EXAMPLE:

nodul e MyModul e {
: /] Modul e definitions
testcase MyTest Case() runs on MyYMICType system M/Syst enilype{
var MyPTCType ptc: = My/PTCType. create; /1 PTC creation

ptc.start (M/Function()); /] start PTC execution
: /1l test case behaviour continued
st op /] stops the MIC, all PTCs and the whol e test case

}
functi on MyFunction() runs on M/PTCType {

st op /'l stops the PTC only, the test case continues

control {
/] test execution
st op /] stops the test canpaign
} /1 end control
} /1 end nodul e

NOTE: Thesemanticsof ast op statement that terminates a test component isidentical to the stop component
operation sel f. st op (see clause 22.6).

19.11 The Select Case statement

Thesel ect case statementisan dternativetousingi f .. el sei f .. el se statements when comparing avalue to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branches is executed. Schematically thesel ect case statement looks as follows:

sel ect (expression)

case (tenplatelnstancej,, tenplatelnstanceyp,)
st at enent bl ocky
case (tenplatelnstancep, tenplatelnstanceyy,)

st at enent bl ocks
case el se
st at enent bl ocks
}

Where templ atel nstance refers to a defined or in-line template and st at enent bl ock, refersto ablock of statements.

ETSI

102 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

NOTE: The above schematic look is equivalent to the following schematic look using the if-else statements:
if (match(expression, tenplatelnstanceq, or match(expression, tenplatelnstanceyy

or .)
st at ement bl ock4

else if (match(expression, tenplatelnstance,, or natch(expression, tenplatelnstancesyy,

or ..
st at ement bl ocky

el se
st atement bl ockg

In the header part of thesel ect case statement an expression shall be given. Each branch starts with thecase
keyword followed by alist of templatel nstance (alist branch, which may also contain a single element) or theel se
keyword (an else branch) and a block of statements.

All templatel nstancein all list branches shall be of atype compatible with the type of the expression in the header. A
list branch is selected and the block of statements of the selected branch is executed only, if any of the templatel nstance
meatches the value of the expression in the header of the statement. On executing the block of statements of the selected
branch (i.e. not jumping out by a go to statement), execution continues with the statement following the select case
statement.

The block of statements of an else branch is aways executed if no other branch textually preceding the el se branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expressionin
the header and the statement contains no else branch, execution continues without executing any of thesel ect case
branches.

EXAMPLE:
sel ect (MyModul ePar) // where MyModul ePar is of charstring type
case ("firstValue")
{Iog ("The first branch is selected");
case} (MyChar Var, MChar Const)
:I og ("The second branch is selected");

case el se

log ("The val ue of the nodul e paraneter MyMddul ePar is selected");

{
}

20 Behavioural program statements

20.0 General

Behavioural program statements may be used in test cases, functions and altsteps, except for:
a) ther et ur n statement which shall only be used in functions; and

b) theal t statement, thei nt er | eave statement and ther epeat statement which may also be used in
module control.

Behavioural program statements specify the dynamic behaviour of the test components over the communication ports.
Test behaviour can be expressed sequentially, as a set of aternatives or combinations of both. An interleaving operator
allows the specification of interleaved sequences or alternatives.

ETSI

20.1

103 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 13: Overview of TTCN-3 behavioural program statements

Behavioural program statements

Statement Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat

Interleaved behaviour

interleave { ... }

Returning control

return

Alternative behaviour

20.1.0 General

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9.

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
receive,trigger,getcall,getreply,catch,check,tinmeout, doneandkilled.Theal t statement

S1

S1;
alt {
[1 s2{
alt {
[] $4{ s7}
[1 S5 ¢
S8;
alt {
[1 s {1}
[1 s10 {}
}
}
}
}
[] S3{ s6}

Figure 9: lllustration of alternative behaviour

denotes a set of possible events that are to be matched against a particular snapshot (see clause 20.1.1).

EXAMPLE:

/1 Use of nested alternative statenents

ait{

[1 Ll.receive(DL_REL_CO *) {
setverdi ct (pass);
TAC. st op;
TNOAC. start;

alt {

[T Ll.receive(t_DL_EST IN) {

TNQOAC. st op;
setverdi ct (pass);

}
[T TNOAC.tineout ({

L1. send(t _DEL_EST_RQ;
TAC. start;
alt {

[] Ll.receive(DL_EST_CO *) {

TAC. st op;
set verdi ct (pass)

[]}TAC.tirTeout {

setverdi ct (i nconc);

[1 Ll.receive {

}

setverdi ct (i nconc)

ETSI

104 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

[1 Ll.receive {
setverdi ct (i nconc)

}
}

}
[1 TAC tineout {
setverdi ct (i nconc)

[1 Ll.receive {
setverdi ct (i nconc)
}

20.1.1 Execution of alternative behaviour

When entering an al t statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard aternative branches, al relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which is referenced in at least one alternative inthe al t
statement, or in atop alternative of an altstep that isinvoked as an alternativeintheal t statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard [3]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of theal t statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard [3].

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

The alternative branchesintheal t statement and the top aternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 21.

Theindividual aternative branches are either branches that may be guarded by a Boolean expression or el se-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see clause 20.1.3).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), aki | | ed operation (killed-branch), t i meout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e.r ecei ve, tri gger,getcal |l ,getrepy, catch oracheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto t r ue. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block followingtheki | | ed
operation. Theki | | ed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified t i meout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block followingthet i meout operation.

ETSI

105 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operationis
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. Inthe case of thet ri gger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given alternative is not executed.

NOTE 3: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

If none of the alternative branchesintheal t statement and top alternativesin the invoked altsteps and active defaults
can be selected and executed, theal t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.0. because the MTC is stopped) or with adynamic error.

The test case shall stop and indicate adynamic error if atest component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 4: The repetitive procedure of taking a complete snapshot and re-evaluate all alternativesisonly a
conceptual means for describing the semantics of theal t statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

20.1.2 Selecting/deselecting an alternative

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the T '
brackets of the alternative.

The evaluation of a Boolean expression guarding an aternative may have side-effects. To avoid side effects that cause
an inconsistency between the actual snapshot and the state of the component, the same restrictions as the restrictions for
theinitialization of local definitions within altsteps shall apply (clause 16.2.2.1).

The open and close square brackets [' '] ' shall be present at the start of each alternative, even if they are empty. This
not only aids readability but also is necessary to syntactically distinguish one aternative from another.

EXAMPLE:

/1 Use of alternative w th Bool ean expressions (or guard)

ait {
[x>1] L2.receive { /1 Bool ean guard/ expression
setverdi ct (pass);

[x<=1] L2.receive { /1 Bool ean guard/ expression
setverdi ct (i nconc);

}

20.1.3 Else branch in alternatives

Any branchinanal t statement can be defined as an else branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The else branch shall not contain any of the actions allowed in
branches guarded by a boolean expression (i.e. anal t st ep call oradone, aki | | ed,ati meout or areceiving
operation). The statement block of the else branch is aways executed if no other aternative textually preceding the else
branch has proceeded.

ETSI

106 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:

// Use of alternative with Bool ean expressions (or guard) and el se branch

al t {
[x>1] L2.receive {
setverdi ct (pass);

[x<=1] L2.receive {
setverdi ct (i nconc);

}
[el se] { /1 el se branch
MyEr ror Handl i ng() ;
setverdict(fail);
st op;

}

It should be noted that the default mechanism (see clause 21) is always invoked at the end of al alternatives. If anel se
branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 1: Itisalso possibleto useel se inatsteps.
NOTE 2: Itisallowedtousear epeat statement withinan el se branch.

NOTE 3: It isallowed to define more that one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

20.1.4 Void

20.1.5 Re-evaluation of alt statements

There-evaluation of anal t statement can be specified by using ar epeat statement (see clause 20.2).

EXAMPLE:
alt {
[] PC3.receive {
count := count + 1;
repeat /1 usage of repeat

}

[1] Ti.tineout { }

[1 any port.receive {
setverdict(fail);
st op;

}

20.1.6 Invocation of altsteps as alternatives
TTCN-3 alowsthe invocation of atsteps as alternativesinal t statements (see clause 16.2.3).

EXAMPLE:

alt {
[T PC3B.receive { }
[1 AnotherAltStep(); // explicit call of altstep AnotherAltStep as alternative
/1 of an alt statenent

[T MyTiner.tineout { }

ETSI

107 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

20.2 The Repeat statement

Ther epeat statement, when used in the block of statements and declarations of alternativesof al t statements, causes
the re-evaluation of theal t statement, i.e. a new snapshot is taken and the alternatives of theal t statement are
evaluated in the order of their specification. When used in blocks of statements and declarations of the response and
exception handling parts of blocking procedure calls, the repeat statement causes the re-eval uation of the response and
exception handling part of the call (see clause 23.3.1.5).

EXAMPLE 1:
/] Usage of repeat in an alt statenent
alt {
[T PC3B.receive {
count := count + 1,
r epeat /'l usage of repeat

}

[T Ti.tineout { }

[1 any port.receive {
setverdict(fail);
st op;

}
}

If ar epeat statement isused in atop aternative in an atstep definition, it causes a new snapshot and the
re-evaluation of theal t statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 21) or explicitly intheal t statement (see clause 20.1.6).

EXAMPLE 2:

/] Usage of repeat in an altstep
altstep AnotherAltStep() runs on MyConponent Type {
[1] PCOL. receive{
setverdict (i nconc);
r epeat /'l usage of repeat

}
[T PCR2.receive {}

20.3 Interleaved behaviour

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of the statementsdone,
killed,tinmeout,receive,trigger,getcall,catchandcheck.

Control transfer statementsf or , whi | e, do- whi | e, got 0, acti vat e, deacti vat e, st op,repeat,return,
direct call of altsteps as alternatives and (direct and indirect) calls of user-defined functions, which include
communication operations, shall not beused ini nt er | eave statements. In addition, it is not allowed to guard
branchesof ani nt er | eave statement with Boolean expressions (i.e. the []’ shall always be empty). It isalso not
allowed to specify el se branchesin interleaved behaviour.

Interleaved behaviour can always be replaced by an equivalent set of nested alternatives. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [3]).

The rule for the evaluation of an interleaving statement is the following:

a) whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached or the interleaved sequence ends;

NOTE: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e.r ecei ve,
check,trigger,getcall,getreply,catch,done, killedandti meout.Non-reception
statements denote all other non-control-transfer statements which can be used withinthei nt er | eave
Statement.

b) the evaluation then continues by taking the next snapshot.

ETSI

108 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [3]).

EXAMPLE:
/1 The followi ng TTCN-3 code fragnent

interleave {
[1 PCOL. receive(M/Sigl)
{ PCOL. send(MySi g2) ;
PCOL. r ecei ve(MySi g3) ;
}

[T PCR.receive(MSig4)
{ PCX2. send(MySi g5) ;
PCX2. send(MySi gb) ;
PC2. recei ve(M/Si g7) ;

/1l is a shorthand for

alt {
[T PCOL. recei ve(M/Sigl)
{ PCOL. send(M/Si g2) ;
alt {
[1 PCOL.recei ve(M/Si g3)
{ PC2. recei ve(M/Si g4) ;
PCO2. send(M/Si g5) ;
PCO2. send(M/Si g6) ;
PCO2. r ecei ve(MySi g7)

}
[T PCR.receive(MSig4)
{ PCO2. send(M/Si g5) ;
PCX2. send(MySi g6) ;
alt {
[PCOL.receive(MySig3) {
PCO2. recei ve(M/Si g7); }
[1] PC®R.receive(MSig7) {
PCOL. recei ve(M/Si g3); }
}

}

}
[T PCR.receive(MSig4)
{ PC2. send(MySi g5) ;
PCX2. send(MySi g6) ;
alt {
[1 PCOL. recei ve(M/Si g1)
{ PCOL. send(M/Si g2) ;
alt {
[1 PCOL. recei ve(M/Si g3)
{ PCO2. recei ve(M/Si g7) ;

}
[T PCOR.receive(MSig7)
{ PCOL. recei ve(M/Si g3) ;

}
}

}
[T PCOR.receive(MSig7)
{ PCOL. recei ve(M/Si gl) ;
PCOL. send(M/Si g2) ;
PCOL. recei ve(M/Si g3) ;

20.4 The Return statement

Ther et ur n statement terminates execution of afunction or altstep and returns control to the point from which the
function or altstep was called. When used in functions, ar et ur n statement may be optionally associated with areturn
value.

ETSI

109 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

NOTE: Ther et ur n statement, when used in altsteps has the same effect as if the end of the block of statements
and declarations of the chosen aternative has been reached, e.g. when the altstep iscalled froman al t
statement, the execution continues with the first statement following theal t statement.

EXAMPLE:
function MyFunction() return bool ean {
if (date == "1.1.2005") {

return false; // execution stops on the 1.1.2000 and returns the bool ean fal se
}

return true; /1l true is returned

}

function MyBehaviour() return verdicttype {

if (MFunction()) {

setverdict(pass); // use of MyFunction in an if statenent

el se {
setverdi ct (i nconc);
}

return getverdict; // explicit return of the verdict

21 Default Handling

21.0 General

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activationi.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operationsact i vat e (see

clause 21.3) and deact i vat e (see clause 21.4) operate on the list of defaults. Anact i vat e putsanew default as
thefirst element into the list and adeact i vat e removes a default from thelist. A default in the default list can be
identified by means of default reference that is generated as aresult of the corresponding act i vat e operation.

Table 14: Overview of TTCN-3 statement for default handling

Statements for default handling
Statement Associated keyword or symbol
Activate a default activate
Deactivate a default deactivate

21.1 The default mechanism

The default mechanism is evoked at the end of each al t statement, if due to the actual snapshot none of the specified
alternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the al t st ep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list. If the last default
in the list has terminated unsuccessfully, the default mechanism will return to the placeintheal t statement in which it
has been invoked, i.e. at the end of theal t statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also beindicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

ETSI

110 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

In the case of a successful termination, the default may either stop the test component by means of ast op statement, or
the main control flow of the test component will continue immediately after theal t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluatethe al t statement. The latter has
to be specified by means of ar epeat statement (see clause 20.2). If the selected top alternative of the default ends
without ar epeat statement the control flow of the test component will continue immediately after theal t statement.

NOTE: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of aprocessthat isimplicitly called at the end of each al t statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
caled in the reverse order of their activation when the default mechanism has been invoked.

21.2 Default references

Default references are unique references to activated defaults. Such a unique default reference is generated by atest
component when an altstep is activated as a default, i.e. a default referenceisthe result of anact i vat e operation
(see clause 21.3).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaultsin test components. The special valuenul | isavailable to indicate an undefined default reference,
e.g. for theinitialization of variablesto handle default references.

Default referencesare used in deact i vat e operations (see clause 21.4) in order to identify the default to be
deactivated.

The actual data representation of thedef aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

EXAMPLE:

/1 Declaration of a variable for the handling of defaults
// and initialization with the null val ue
var default MyDefaultVar := null;

/) Usage of MyDefaultVar for storing an activated default
MyDef aul tVar := activate(MDefAltStep()); // MyDefAltStep is activated as default

/) Usage of MyDefaultVar for the deactivation of default M/DefAltStep
deactivat e(MyDef aul t Var) ;

21.3 The activate operation

21.3.0 General

Theact i vat e operation is used to activate altsteps as defaults. Anact i vat e operation will put the referenced
altstep as the first element into the list of defaults and return a default reference. The default referenceis a unique
identifier for the default and may be used in adeact i vat e operation for the deactivation of the default.

The effect of anact i vat e operation islocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

EXAMPLE 1:
/) Decl aration of a variable for the handling of defaults
var default MyDefaultVar := null;

/) Decl aration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo : = activate(M/SecondAltStep());

/) Activation of altstep MJAItStep as a defaul t
MyDefaul tVar := activate(M/AItStep()); // MAItStep is activated as default

ETSI

111 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Theact i vat e operation can be called without saving the returned default reference. Thisformis useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

EXAMPLE 2:

/1 Activation of an altstep as a default, without assignnent of default reference
activat e(MyCommonDef aul t());

21.3.1 Activation of parameterized altsteps

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding act i vat e statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. a the time of itsinvocation by the default mechanism). All timer instancesin the
actual parameter list shall be declared as component type local timers (see clause 8.5.1).

EXAMPLE:
altstep MYAltStep2 (integer par _val uel, MyType par_val ue2,
MyPor t Type par _port, timer par_timer)
{
}
function MyFunc () runs on MyConpType
{ :
var default MyDefaultVar := null;
MyDef aul t Var : = activate(MAltStep2(5, nyVar, nyConpPort, nyConpTiner);
/1 MyAltStep2 is activated as default with the actual paraneters 5 and

/1 the value of nyVar. A change of nyVar before a call of M/AItStep2 by
/'l the default nechanismwi |l not change the actual paraneters of the call.

21.4 The deactivate operation

Thedeact i vat e operation is used to deactivate defaults, i.e. previoudly activated atsteps. A deact i vat e
operation will remove the referenced default from the list of defaults.

The effect of adeact i vat e operationislocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

A deact i vat e operation without parameter deactivates all defaults of atest component.

Callingadeact i vat e operation with the specia value nul | has no effect. Calling adeact i vat e operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

EXAMPLE:

vér default MyDefaultVar := null;

var default MyDefVarTwo : = activate(M/SecondAltStep());
var default MyDefVarThree := activate(M/ThirdAl tStep());
WDefauItVar := activate(MA tStep());

deact i vat e(MyDefaul tVar); // deactivates M/AltStep

déactivate; /'l deactivates all other defaults, i.e. in this case M/SecondAlt Step
/1 and MyThirdAlt Step

ETSI

112

Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

22

22.0 General

Configuration operations

Configuration operations are used to set up and control test components. These operations shall only be used in TTCN-3
test cases, functions and altsteps (i.e. not in the module control part).

Table 15: Overview of TTCN-3 configuration operations

Operation

Explanation

Syntax Examples

Connection Operations

connect

Connects the port of one test
component to the port of another test

connect (ptcl: pl, ptc2:p2);

component

disconnect Disconnects two or more connected di sconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to [Map(ptcl: g, systemsutPortl);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap(ptcl: g, systemsutPortl);

Test Component Operations

create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:

var PTCType c := PTCType. create;
Alive test components:

var PTCType c :

PTCType. create alive;

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour());

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

if (c.alive)

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running)

done

Checks whether the function running on
a test component has terminated

c. done;

killed

Checks whether a test component has
ceased to exist

ckilled { .}

Reference Operations

mtc

Gets the reference to the MTC

connect(ntc:p, ptc:p);

system Gets the reference to the test system |[map(c:p, systemsutPort);
interface
self Gets the reference to the test sel f.stop;

component that executes this operation

22.1

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by cr eat e operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetypei n or i nout it shal bein alistening state ready to receive traffic over the connection.

The Create operation

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

ETSI

113 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional al i ve keyword. An alive-type PTC must be destroyed explicitly using the ki | |
operation (see clause 22.9), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates.
Termination of atest case, i.e. the MTC, terminates all PTCsthat till exist, if any.

Since all test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

Thecr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 8.7) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The name shall be a charstring value
and when assigned it shall appear as the argument of the cr eat e function. The test system shall associate the names
'MTC'tothe MTC and 'SY STEM' to the test system interface automatically at creation. Associated component names
are not required to be unique.

NOTE: The component instance name is used for logging purposes (see clause 19.3) only and shall not be used to
refer to the component instance (the component reference shall be used for this purpose) and has no effect
on matching.

EXAMPLE:

/1l This exanpl e decl ares variabl es of type MyConponent Type, which is used to store the

/1 references of newy created conponent instances of type MyConponent Type which is the

/1 result of the create operations. An associated nane is allocated to sone of the created
/'l conponent instances.

var MyConponent Type MyNewConponent ;

var MyConponent Type MyNewest Conponent ;

var MyConponent Type MyAl i veConponent ;

var MyConponent Type MyAnot her Al i veConponent ;

MyNewConponent : = MyConponent Type. cr eat e;

M/Newest Conponent : = MyConponent Type. cr eat e(" Newest");

M/Al i veConponent : = MyConponent Type. create alive;

MyAnot her Al i veConponent : = MyConponent Type. creat e(" Anot her Alive") alive;

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in amessage.

22.2 The Connect and Map operations

22.2.0 General

The ports of atest component can be connected to other components or to the ports of the test system interface. In the
case of connections between two test components, the connect operation shall be used. When connecting a test
component to atest system interface the map operation shall be used. The connect operation directly connects one
port to another with thei n side connected to the out side and vice versa. The map operation on the other hand can be
seen purely as a name trand ation defining how communications streams should be referenced.

ETSI

114 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Test system Connected Ports

| N

>
out I'N
aut I'N
Mapped Ports 4
Abstract Test System Interface auTt ¢ | I'N
O

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation t ¢ identifiesthe MTC, the operation syst em identifies the test system interface and the operation
sel f identifiesthe test component in which sel f has been called (see clause 22.4). All these operations can be used
for identifying and connecting ports.

Boththeconnect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both the map and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

EXAMPLE:

/1 It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

vér My Conponent Type M/NewPTC;

WI\lemPTC : = MyConponent Type. creat e;

connect (MyNewPTC: Port1, ntc:Port3);
map(MyNewPTC: Port 2, system PCOL);

/1 I'n this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable M/NewPTC. Afterwards in the connect operation, Portl of this new conmponent

/1 is connected with Port3 of the MIC. By means of the map operation, Port2 of the new conponent
/1 is then connected to port PCOL of the test systeminterface

22.2.1 Consistent connections and mappings
For both the connect and nap operations, only consistent connections are allowed.
Assuming the following:

a) ports PORT1 and PORT2 are the ports to be connected;

b) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1,;

c) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;

d) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and

ETSI

115 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

e) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
Theconnect operationisallowed if and only if:
. outlist-PORT1 O inlist-PORT2 and outlist-PORT2 [inlist-PORT 1.
The map operation (assuming PORT2 is the test system interface port) is allowed if and only if:
. outlist-PORT1 [0 outlist-PORT2 and inlist-PORT2 [0 inlist-PORT 1.
In all other cases, the operations shall not be allowed.

Since TTCN-3 alows dynamic configurations and addresses, not all of these consistency checks can be made statically
at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and shall lead to atest
case error when failing.

22.3 The Disconnect and Unmap operations

Thedi sconnect and unnap operations are the opposite operations of connect and map. They perform the
disconnection (of previously connected) ports of test components and the unmapping of (previously mapped) ports of
test components and ports in the test system interface.

Both, thedi sconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unnmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

EXAMPLE 1:

cbnnect (MyNewConponent: Port1, ntc:Port3);
map(MyNewConponent : Port 2, system PCOL);

di sconnect (MyNewConponent : Port1, ntc: Port3); /1 di sconnect previously made connection
unmap(MyNewConponent : Port 2, system PCOL); /1 unmap previously nade napping

Toeasedi sconnect and unmap operations related to all connections and mappings of a component or aport, itis
allowed to usedi sconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theal | port keyword can be used to denote al ports of a
component.

EXAMPLE 2:
di sconnect (MyNewConponent : Port 1) ; /1 disconnects all connections of Portl, which
// is owned by conponent MyNewConponent.

unmap(MyNewConponent: al | port); /1 unmaps all ports of conponent MyNewConponent

The usage of adi sconnect or unnmap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port . It disconnects or unmaps all ports of the component that calls the operation.

EXAMPLE 3:

di sconnect ; /1 is a shorthand formfor ..

di sconnect (self:all port); /1 which disconnects all ports of the conponent
/1 that called the operation

uﬁrrap; /1 is a shorthand formfor ..

unmap(sel f:all port); /1 which unmaps all ports of the conponent

/1 that called the operation

ETSI

116 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Theal | conponent keyword shall only be used in combination withtheal | port keyword,i.e. al |
conponent :al | port, and shall only be used by the MTC. Furthermore, theal | conponent: all port
argument shall be used as the one and only argument of adi sconnect or unmap operation and it allows to release
all connections and mappings of the test configuration.

EXAMPLE 4:

di sconnect (all conponent:all port); /'l the MIC disconnects all ports of all
/] conponents in the test configuration.

uhmap(all conmponent:all port); /1 the MIC unnmaps all ports of all

/1 conponents in the test configuration.

22.4 The MTC, System and Self operations

The component reference (see clause 8.7) has three operations: nt ¢ and sy st emwhich return the reference of the
main test component and the test system interface respectively. The operation sel f can be used to return the reference
of the component in which it is called.

EXAMPLE:

var MyConponent Type MyAddress;
M/Address := self; // Store the current conponent reference

The only operations allowed on component references are assignment, equality and non-equality.

22.5 The Start test component operation

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
has to be started. Thisis done by using the st art operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between cr eat e and st ar t isto alow connection operations to
be done before actually running the test component.

Thest art operation shal bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

An alive-type PTC may perform several behaviour functionsin sequential order. Starting a second behaviour function
on anon-alive PTC or starting afunction on a PTC that is still running resultsin atest case error. If afunction is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
as they were left after termination of the previous function. In particular, if atimer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event.

EXAMPLE:

function MyFirstBehaviour() runs on MyConponent Type { ...}
function MySecondBehavi our() runs on MyConponent Type { ...}

vér MyConponent Type MyNewPTC;
var MyConponent Type M/Al i vePTC;

M/NewPTC : = MyConponent Type. cr eat €; /1 Creation of a new non-alive test conponent.
M/Al'i vePTC : = MyConponent Type.create alive; // Creation of a new alive-type test conponent
WI\IemPTC. start (MyFi rst Behavi our()); /] Start of the non-alive conponent.

M/NewPTC. done; /1 Wait for termnation

M/NewPTC. st art (MySecondBehavi our ()); /] Test case error

WAI i vePTC. st art (MyFi r st Behavi our ()); /1 Start of the alive-type conponent

M/Al i vePTC. done; /1 Wait for termnation

M/Al i vePTC. st art (MySecondBehavi our ()); // Start of the next function on the same conponent

ETSI

117 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The following restrictions apply to afunction invoked inast ar t test component operation:
. If this function has parameters they shall only bei n parameters, i.e. parameters by value.

. Thisfunction shall have ar uns on definition referencing a component type that is compatible with the newly
created component (see clause 6.7.3).

. Ports and timers shall not be passed into this function.

NOTE: Asinandi nout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

22.6 The Stop test behaviour operation

By using the st op test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using asimple st op
execution statement (clause 19.10) or by addressing itself in the st op operation, e.g. by using the sel f operation.

EXAMPLE 1:

NOTE 1: Whilethecreat e,start,runni ng, done andki | | ed operations can be used for PTC(s) only, the
st op operation can also be applied to the MTC.

var MyConponent Type MyConp : = MyConponent Type. cr eat €; /1 A new test conponent is created

My Conp. st art (ConpBehavi our ()); /1 The new conponent is started
if (date == "1.1.2005") {
My Conp. st op; /1 The conponent "MConp" is stopped
if (a<b) {
sélf.stop; /1 The test conponent that is currently executing stops its own behavi our
}
' st op /1 The test conponent stops its own behavi our

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit r et ur n statement. Thistermination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 25).

If the stopped test component isthe MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 27.2).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with a
the test component shall be rel eased.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the st ar t operation). The component shall be left in a consistent
state after stopping its behaviour.

NOTE 2: For example, if the behaviour of an alive-type component is stopped during assigning a new value to an
already bound variable, the variable shall remain bound after the component is stopped (with the old or
the new value). Similarly, if the component is stopped during re-starting an already running timer, the
timer shall be left in the running state after termination of the behaviour.

The rules for the termination of test cases and the calculation of the final test verdict are described in clause 25.

Theal | keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.

ETSI

118 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

NOTE 3: A PTC can stop the test case execution by stopping the MTC.
EXAMPLE 2:

ail conponent . st op /1 The MIC stops all PTCs of the test case but not itself.

NOTE 4: The concrete mechanism for stopping PTCs is outside the scope of the standard.

22.7 The Running operation

Ther unni ng operation allows behaviour executing on atest component to ascertain whether behaviour running on a
different test component has completed. Ther unni ng operation can be used for PTCs only. The running operation
returnst r ue for PTCsthat have been started but not yet terminated or stopped. It returnsf al se otherwise. The
runni ng operation is considered to beabool ean expression and, thus, returnsabool ean value to indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the
runni ng operation can be used freely inbool ean expressions.

Whentheal | keyword isused with ther unni ng operation, it will returnt r ue if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwiseit returnsf al se.

When the any keyword is used with ther unni ng operation, it will returnt r ue if at least one PTC is executing its
behaviour. Otherwiseit returnsf al se.

EXAMPLE:
i f (PTCL. running) /1 usage of running in an if statement

/1 Do sonet hi ng!
}

while (all conponent.running != true) { // usage of running in a |oop condition
MySpeci al Functi on()

22.8 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed. The done operation can be used for PTCs only.

The done operation shall be used in the same manner as areceiving operation or at i meout operation. This meansit
shall not beused in abool ean expression, but it can be used to determine an adternativeinanal t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive
waiting for the termination of test components.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

Whentheal | keyword isused with the done operation, it matchesif no one PTC is executing its behaviour. It also
matches if no PTC has been created.

When the any keyword is used with the done operation, it matchesif at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component aive in the test system. In both
cases the done operation matches.

ETSI

22.9

Theki | | operation applied on atest component stops the execution of the currently running behaviour - if any - of that
component and frees all resources associated to it (including all port connections of the killed component) and removes
the component from the test system. Theki | | operation can be applied on the current test component itself by a
simpleki | | statement or by addressing itself usingthe sel f operation in conjunction with the kill operation. The

ki || operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If theki | | operation isapplied onthe MTC, e.g. nt c. ki | | , it terminates
the test case.

119

EXAMPLE:
/1 Use of done in alternatives
alt {
[T MPTC done {
set verdi ct (pass)

}
[1 any port.receive {
r epeat
}
}
var MyConp ¢ := MyConp.create alive;

c.start (M/PTCBehavi our());

c. done;

Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

/1 matches as soon as the functi on MyPTCBehavi our (or function/altstep called by it) stops

c. done;

/1 matches the end of MyPTCBehavi our (or function/altstep called by it) too

if(c.running) {c.done}

/1 done here natches the end of the next behaviour only

/1 the follow ng done as stand-al one statenent:

al | conponent. done;

/1 has the follow ng neaning:

ait {
[1 all conponent.done {}
}
/1 and thus, blocks the execution until all

EXAMPLE 1.

var PTCType MyAliveConp : = PTCType.create alive;
M/Al i veConp. st art (MyFi r st Behavi our());

M/Al i veConp. done;

M/Al i veConp. st art (MySecondBehavi or());

M/Al i veConp. done;

M/Al'i veConp. ki I I ;

EXAMPLE 2:

all component.kill; /'l The MIC stops all
/1 and frees their resources.

ETSI

paral | el

test conponents have ternm nated

The Kill test component operation

Create an alive-type test conponent
The new conponent is started

Wait for termination

Start the component a 2™ tine

Wait for termination

Free its resources

Theal | keyword can be used by the MTC only in order to stop and kill all running PTCs but the MTC itself.

(alive-type and normal) PTCs of the test case first

120 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

22.10 The Alive operation

Theal i ve operation is aBoolean operation that checks whether atest component has been created and is ready to
execute or is executing already a behaviour function. Applied on a normal test component, theal i ve operation returns
true if the component is inactive or running afunction and false otherwise. Applied on an alive-type test component, the
operation returns true if the component isinactive, running or stopped. It returns false if the component has been killed.

Theal i ve operation can be used similar to ther unni ng operation on PTCSs only (see clause 22.7). In particular, in
combination withtheal | keyword it returnstrueif al (alive-type or normal) PTCs are alive.

Theal i ve operation used in combination with the any keyword returnstrueif at least one PTC is alive.

EXAMPLE:
P.TC1. done; /1 Waits for termnation of the conponent
if (PTCL.alive) { /1 If the conponent is still alive ...
PTC1. st art (Anot her Function()); /] ...execute another function on it.
}

22.11 The Killed operation

Theki | | ed operation allows to ascertain whether a different test component is aive or has been removed from the
test system.

Theki | | ed operation shall be used in the same manner as receiving operations. This means it shall not be used in
bool ean expressions, but it can be used to determine an alternativeinan al t statement or as a stand-alone statement
in abehaviour description. In the latter case adone operation is considered to be a shorthand for anal t statement
with only one alternative, i.e. it has blocking semantics, and therefore provides the ability of passive waiting for the
termination of test components.

NOTE: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or hasbeen ki | | ed explicitly, i.e. the operation is equivalent to the done
operation (see clause 22.8). When checking alive-type test components, however, theki | | ed operation
matches only if the component has been killed using theki | | operation. Otherwise theki | | ed
operation is unsuccessful.

Theki | | ed operation can be used for PTCsonly.

Whentheal | keyword isused with the ki | | ed operation, it matches if all PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

When the any keyword isused with theki | | ed operation, it matchesif at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

EXAMPLE:
var MyPTCType ptc := M/PTCType.create alive; /] create an alive-type test conponent
timer T(10.0); /] create a tinmer
T.start; /] start the tinmer
ptc.start (MTest Behavior()); Il start executing a function on the PTC
alt {
[1 ptc.killed { /1 if the PTC was killed during execution ...
T. st op; /] ...stop the timer and ...
setverdi ct (i nconc); /1 ..set the verdict to 'inconclusive'
}
[1 ptc.done { /1 if the PTC terminated regularly ...
T. st op; /1 ...stop the timer and ...
ptc. start (Anot her Function()); [l ...start another function on the PTC
}
[T T.tineout { /1 if the tinmeout occurs before the PTC stopped
ptc.kill; /1 ...kill the PTC and ...
setverdict(fail); /1 ..set the verdict to 'fail’
}
}

ETSI

121 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

22.12 Using component arrays

Thecr eat e,connect,start,stopandki | | operationsdo not work directly on arrays of components. Instead a
specific element of the array shall be provided as the parameter to these operations. For components, the effect of an
array is achieved by using an array of component references and assigning the relevant array element to the result of the
cr eat e operation.

EXAMPLE:

/1 This exanple shows how to nodel the effect of creating, connecting and running arrays of
/] conponents using a | oop and by storing the created conponent reference in an array of

/1 conponent references.

testcase MyTest Case() runs on MM cType system MyTest System nterface
{

vér integer i;
var MyPTCTypel MPtc[11];

for (i:= 0; i<=10; i:=i+1)
{
MyPtc[i] := M/PTCTypel. create;

connect (sel f: Pt cCoordi nati on, MyPtc[i]: M cCoordination);
MyPtc[i].start(MPtcBehaviour());

22.13 Summary of the use of any and all with components

The keywordsany and al | may be used with configuration operations as indicated in table 16.

Table 16: Any and All with components

Operation Allowed Example Comment
any (see note) | al | (see note)
create
start
runni ng Yes but from |Yes but from any conmponent. running; |Is there any PTC performing test
MTC only MTC only behaviour?
al | component. running; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any conponent.alive; Is there any alive PTC?
MTC only MTC only all conponent.alive; |Areall PTCs alive?
done Yes but from Yes but from any conponent. done; Is there any PTC that completed
MTC only MTC only execution?
al | conponent . done; Did all PTCs complete their execution?
killed Yes but from |Yes but from any conponent.killed; |Isthere any PTC that ceased to exist?
MTC only MTC only al | conponent. killed; |Didall PTCs cease to exist?
stop Yes but from al'l conponent. st op; Stop the behaviour on all PTCs.
MTC only
kil Yes but from all component. kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and al | referto PTCs only, i.e. the MTC is not considered.

23 Communication operations

23.0

TTCN-3 supports message-based and procedure-based communication. Furthermore, TTCN-3 allows to examine the
top element of incoming port queues and to control the access to ports by means of controlling operations.

General

ETSI

122 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table 17: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls

23.1 General format of communication operations

23.1.0 General

Operations such assend and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (cal | operation), or repliesto an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations;

b) acomponent receives a message (r ecei ve operation), awaitsamessage (t r i gger operation),accepts a
procedure call (get cal | operation), receives areply for apreviously called procedure (get r epl y
operation) or catches an exception (cat ch operation). These actions are collectively referred to asreceiving
operations.

23.1.1 General format of the sending operations

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

. gives an (optional) address part that uniquely identifies one or more communication partnersto which a
message, call, reply or exception shall be send.

ETSI

123 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The port name, operation name and value shall be present in al sending operations. The address part (denoted by thet o
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;
. broadcast communication is used and all entities connected to the specified port have to be addressed.

NOTE: The terms unicast, multicast and broadcast communication are used related to port communication. This
means, it isonly possible to address one, several or al test components that are connected to the specified
port. Unicast, multicast and broadcast can aso be used for mapped ports. In this case, one, severa or al
entities within the SUT can be reached via the specified mapped port.

EXAMPLE 1:
(Optional) response
Send part and exception
Port and operation Value part (Optional) address part handling part
M/P1. send (MyVariabl e + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operationis optional and is required for cases where the called procedure returns a
value or hasout ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyP1. cal | (MyProc: { MyVar 1})

[T M/P1l.getreply(MProc: {MVar2}) {}
[T MyPl.catch(M/Proc, ExceptionOne) {}

}

23.1.2 General format of the receiving operations
A receiving operation consists of areceive part and an (optional) assignment part.
Thereceive part:
a) specifiesthe port at which the operation shall take place;
b) defines a matching part which specifies the acceptable input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the

communication partner (denoted by the f r omkeyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit is used for storing thei n andi nout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

ETSI

124 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisisuseful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
M/P1. getreply (AProc: {?} value 5) -> param (V1) sender APeer
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2. recei ve (MyTenpl ate(5, 7)) from APeer -> |val ue MyVar

23.2 Message-based communication

23.2.0 General

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER isblocked onther ecei ve operation until it
processes the received message.

In additionto ther ecei ve operation, TTCN-3 providesat r i gger operation that filters messages with certain
matching criteriafrom a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send recei ve or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send and receive

23.2.1 The Send operation

23.2.1.0 General

The send operation is used to place a message on an outgoing message port. The message may be specified by
referencing a defined template or can be defined as an in-line template. When defining the message in-line, the optional
type part shall be used if there is ambiguity of the type of the message being sent.

The send operation shall only be used on message-based (or mixed) ports and the type of the template to be sent shall
beinthelist of outgoing types of the port type definition.

EXAMPLE:

MyPort . send(M/Tenpl at e(5, MyVar)); /1] Sends the tenplate MyTenpl ate with the actual
/] paraneters 5 and MyVar via MyPort.

MyPort . send(5); /1 Sends the integer value 5 (which is an in-line tenplate)

ETSI

125 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.2.11 Sending unicast, multicast or broadcast

TTCN-3 supports unicast, multicast and broadcast communication. The used communication mechanism can be
determined by the optional t o clause in the send operation. A t o clause can be omitted in case of a one-to-one
connection where unicast communication is used and the message receiver is uniquely determined by the test system
structure. A t o clause shall be present in case of one-to-many connections.

Unicast communication is specified, if thet o clause addresses one communication partner only. Multicast
communication isused, if thet o clause includes alist of communication partners. Broadcast is defined by using thet o
clausewithal | conponent keyword.

EXAMPLE:

M/Port.send(charstring: "My string") to MyPartner;
/1 Sends the string "My string" to a conponent with a
/1 conponent reference stored in variable MyPartner

MyPCO. send(MyVari abl e + YourVariable - 2) to MyPartner;
/'l Sends the result of the arithnetic expression to MyPartner.

M/PCX2. send(MyTenpl ate) to (M/PeerOne, MyPeer Two);
/1 Specifies a multicast communication, where the val ue of
/1 MyTenplate is sent to the two conponent references stored
/1 in the variables M/PeerOne and MyPeer Two.

M/PCQ3. send(MyTenpl ate) to all conponent;
/1 Broadcast communication: the value of Mtenplate is send to
/1 all conponents which can be addressed via this port. If
/'l MWPCO3 is a napped port, the conponents nay reside inside
/1 the SUT.

23.2.2 The Receive operation

23.2.2.0 General

Ther ecei ve operation is used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template. When defining the message in-line,
the optional type part shall be present whenever the type of the message being received is ambiguous. Ther ecei ve
operation shall only be used on message-based (or mixed) ports and the type of the value to be received shall be
included in the list of incoming types of the port type definition.

Ther ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies all the matching criteria associated with the r ecei ve operation. No binding of the incoming values
to the terms of the expression or to the template shall occur.

If the match is not successful, the top message shall not be removed from the port queuei.e. if ther ecei ve operation
isused as an dternative of an al t statement and it is not successful, the execution of the test case shall continue with
the next alternative of theal t statement.

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of ther ecei ve operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato ther ecei ve operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 1: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

In the case of one-to-many connectionsther ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword.

ETSI

126 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 1.

M/Port.recei ve(MyTenpl ate(5, MyVar)); /] Matches a message that fulfils the conditions
/1 defined by tenplate MyTenpl ate at port MyPort.

M/Port . recei ve(A<B); /1 Matches a Bool ean val ue that depends on the outconme of A<B

MyPort.receive(integer: MVar); [/ Matches an integer value with the value of M/Var
// at port MyPort

MyPort . recei ve(MyVar); /1 Is an alternative to the previous exanple

M/Port.receive(charstring:"Hello")from M/Peer; // Mtches charstring "Hello" from MyPeer

If the match is successful, the value removed from the port queue can be stored in a variable can be retrieved and stored
inavariable. Thisis denoted by the symbol '->' and the keyword val ue.

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender .

NOTE 2: When the message is received on a connected port, only the component reference is stored in the
following the sender keyword, but the test system shall internally store the component name too, if any
(to be used in logging).

EXAMPLE 2:
MyPort.recei ve(M/Type: ?) -> value MyVar; /1 The val ue of the received nessage is
/] assigned to MyVar.
M/Port.receive(A<B) -> sender MyPeer; /1 The address of the sender is assigned to MyPeer

M/Port.receive(M/Tenpl ate: {5, MyVarOne}) -> value MyVar Two sender MyPeer;
/'l The received nessage value is stored in M/VarTwo and the sender address is stored in MyPeer.

23.2.2.1 Receive any message

A recei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

A message received by ReceiveAnyMessage shall not be assigned to a variable.

EXAMPLE:

M/Port . receive; /'l Renoves the top value from MyPort.

M/Port.receive from MyPeer; /1 Renoves the top nessage from M/Port if its sender is
My Peer

MyPort.receive -> sender MySender Var; /'l Renoves the top nessage from MyPort and assigns

/1 the sender address to MySender Var

23.2.2.2 Receive on any port
Tor ecei ve amessage on any port, usetheany port keywords.

EXAMPLE:

any port.recei ve(MyMessage) ;
23.2.3 The Trigger operation

23.2.3.0 General

Thet ri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, thet ri gger operation behavesin the same manner asar ecei ve operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action. The

tri gger operation shall only be used on message-based (or mixed) ports and the type of the value to be received shall
be included in the list of incoming types of the port type definition.

ETSI

127 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

NOTE: Thenoteto clause22.2.2.0isasovalidfor thet ri gger operation.

Thet ri gger operation can be used as a stand-al one statement in a behaviour description. In this latter case the

tri gger operation isconsidered to be shorthand for anal t statement with only one alternative, i.e. it has blocking
semantics, and therefore provides the ability of waiting for the next message matching the specified template or value
on that queue.

EXAMPLE 1:

MyPort.trigger(MType: ?);
/1 Specifies that the operation will trigger on the reception of the first nmessage observed of
/1 the type MyType with an arbitrary value at port MyPort.

Thet ri gger operation requires the port name, matching criteria for type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

EXAMPLE 2:

MyPort.trigger(MType:?) from MyPartnner;

/1 Triggers on the reception of the first nmessage of type MyType at port MyPort

/'l received from MyPartner.

MyPort.trigger(MType:?) from MPartner -> val ue M/RecMessage;

/1 This exanple is alnost identical to the previous exanple. In addition, the nessage which
/] triggers i.e. all matching criteria are net, is stored in the variable M/RecMessage.
MyPort.trigger(MType:?) -> sender MyPartner;

/1 This exanple is alnost identical to the first exanple. In addition, the reference of the
/'l sender conponent will be retrieved and stored in variable M/Partner.
MyPort.trigger(integer:?) -> value M/Var sender MyPartner;

/1 Trigger on the reception of an arbitrary integer value which afterwards is stored in
/1 variable MyVar. The reference of the sender conponent will be stored in variable M/Partner.

23.2.3.1 Trigger on any message

Atri gger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message. A message received by TriggerOnAnyMessage shall not be assigned to a
variable.

EXAMPLE:
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySender Var;

23.2.3.2 Trigger on any port
Totrigger onamessage at any port, usetheany port keywords.
EXAMPLE:

any port.trigger

23.3 Procedure-based communication

23.3.0 General

The principle of procedure-based communication isto call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

ETSI

128 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using thecal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using ar epl y operation to answer the call or by raising (r ai se operation)
an exception. The CALLER handles the reply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

cal getcal l
: >
CALLER | ! | | CALLEE
:4 :
getreply or reply or
cat ch exception rai se exception

Figure 12: Illustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using thecal | operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE accepts the call by means of aget cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using acat ch operationinanal t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

cal l get cal |
g
CALLER i | CALLEE
< ;
cat ch exception rai se exception

Figure 13: lllustration of non-blocking procedure-based communication

23.3.1 The Call operation

23.3.1.0 General

Thecal | operationis used to specify that atest component calls a procedure in the SUT or in another test component.
Thecal | operation shall only be used on procedure-based (or mixed) ports. The type definition of the port at which
the call operation takes place shall include the procedure nameinitsout ori nout listi.e. it must be alowed to cal
this procedure at this port.

Theinformation to be transmitted in the send part of the cal | operation is a signature that may either be defined in the
form of asignature template or be defined in-line. All i n andi nout parameters of the signature shall have a specific
valuei.e. the use of matching mechanisms such as AnyValue is not allowed.

The signature arguments of the cal | operation are not used to retrieve variable names for out and i nout parameters.
The actual assignment of the procedure return value and out and i nout parameter values to variables shall explicitly
be made in the response and exception handling part of thecal | operation by means of get r epl y and cat ch
operations. This allows the use of signature templatesin cal | operations in the same manner as templates can be used
for types.

ETSI

129 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 1.

/1l Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc
MyPort.call (MProc:{ -, M/Var2}) { [/ in-line signature tenplate for the call of My/Proc

[T MyPort.getreply(MProc:{?, ?}) { }

/1 ...and another call of M/Proc
MyPort . call (M/ProcTenpl ate) { /1 using signhature tenplate for the call of M/Proc

[T MyPort.getreply(MProc:{?, ?}) { }

In cases of one-to-many connections the communication partner shall be specified uniquely. This shall be denoted using
the keyword t 0.

EXAMPLE 2:

MyPort.cal |l (M/ProcTenpl ate) to MyPeer { /1 calling M/Proc at MyPeer
[T MyPort.getreply(MProc:{?, ?}) { }
}

23.3.1.1 Handling responses and exceptions to a Call

In case of non-blocking procedure-based communication (see clause 23.3.1.4) the handling of exceptionsto cal |
operationsisdone by using cat ch (see clause 23.3.6) operations as alternativesinal t statements.

If thenowai t optionis used (see clause 23.3.1.2), the handling of responses or exceptionsto cal | operationsis done
by using get r epl y (see clause 23.3.4) and cat ch (see clause 23.3.6) operations as alternativesinal t statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdone in the
response and exception handling part of thecal | operation by means of get r epl y (see clause 23.3.4) and cat ch
(see clause 23.3.6) operations.

The response and exception handling part of acal | operation looks similar to the body of anal t statement. It defines
aset of aternatives, describing the possible responses and exceptions to the call. The selection of the alternatives shall
only be based onget r epl y and cat ch operations for the called procedure. Unqualified get r epl y and cat ch
operations shall only treat replies from and exceptions raised by the called procedure. The use of el se branches and
the invocation of altstepsis not allowed.

If necessary, it is possible to enable/disable an aternative by means of abool ean expression placed betweenthe [|'
brackets of the alternative.

The response and exception handling part of acall operation is executed likean al t statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call (see clause 23.3.1.2).

The evaluation of the Boolean expressions guarding the alternatives in the response and exception handling part may
have side effects. In order to avoid unexpected side effects, the samerules as for the Boolean guardsinal t statements
shall be applied (see clause 20.1.1).

EXAMPLE:
/1 Gven

signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResult Type
exception (ExceptionTypeOne, ExceptionTypeTwo);

/1 Call of MyProc3

MyPort.call (MProc3:{ -, true }) to M/Partner {
[T MyPort.getreply(MProc3:{?, ?}) -> value M/Result param (M/Par 1Var, MyPar2Var) { }
[T MyPort.catch(MProc3, M/ExceptionOne) {

setverdict(fail);
st op;

ETSI

130 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

}
[T MyPort.catch(M/Proc3, ExceptionTypeTwo : ?) {
setverdi ct (i nconc);

}
[MyCondi tion] MyPort.catch(M/Proc3, M/ExceptionThree) { }

23.3.1.2 Handling timeout exceptions to the Call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is present inthecal | operation, not i meout exception shall be generated.

EXAMPLE 1:
MyPort.cal |l (MProc: {5 M/Var}, 20E-3) {
[T MyPort.getreply(MProc:{?, ?}) { }
[1 MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;

}
}

Using the keyword nowai t instead of atimeout exception valueinacal | operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or a timeout exception.

EXAMPLE 2:
MyPort.cal |l (MProc: {5 MVar}, nowait); /1 The calling test conponent will continue

/] its execution without waiting for the
/1 termination of MyProc

If thenowai t keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by usingaget r epl y or acat ch operation in asubsequent al t statement.

23.3.1.3 Calling blocking procedures without return value, out parameters, inout
parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure cases shall also have aresponse and exception handling part to handle the blocking in a
uniform manner.

EXAMPLE:

/1 Gven ..
signature MyBl ockingProc (in integer MyParl, in bool ean MyPar?2);

/) a call of MBI ocki ngProc

MyPort.cal | (MyBl ockingProc:{ 7, false }) {
[T MyPort.getreply(MyBlockingProc:{ -, - }) {}
}

23.3.14 Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property isindicated
in the corresponding signature definition by means of anobl ock keyword.

The call operation for a non-blocking procedure shall have no response and exception handling part, shall raise no
timeout exception and shall not use the nowai t keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operationsin subsequent al t ori nt er | eave statements.

ETSI

131 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.15 Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 also supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 23.2.1.1, i.e. the argument of the t o clause of acal | operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callstheal | conponent keyword. In case of one-to-one
connections, thet o clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal | operation has been explained in
clauses 23.3.1.1t0 23.3.1.4. A multicast or broadcast cal | operation may cause several responses and exceptions from
different communication partners.

In case of amulticast or broadcast cal | operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent cat ch, al t ori nt er| eave statements.

In case of amulticast or broadcast cal | operation of a blocking procedure, two options exist. Either,only one response
or exception is handled in the response and exception handling part of thecal | operation. Then, further responses and
exceptions can be handled in subsequent al t ori nt er | eave statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the block of statements and declarations of the response and
exception handling part of the call operation: the execution of arepeat statement causes the re-evaluation of the call
body.

NOTE: Inthe second case, the user needs to handle the number of repetitions.

EXAMPLE 1:

var bool ean first:= true;
MyPort.call (MProc: {5 M/Var}, 20E-3) to (M/PeerOne, M/PeerTwo) ({ /1 Multicast call of MyProc
/1 Handl es the response from MyPeer One
[first] MyPort.getreply(MProc:{?, ?}) from MyPeerOne {
if (first) { first := false; repeat; }

}
/1 Handl es the response from MyPeer Two
[first] MyPort.getreply(MProc:{?, ?}) from MyPeer Two {

if (first) { first := false; repeat; }
} . . .
[1 MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}
}
alt {
[T MyPort.getreply(MProc:{?, ?}) { /1 Handles all other responses to the broadcast call
r epeat

}
}

In case of amulticast or broadcast cal | operation of ablocking procedure, where the nowai t keyword is used, all
responses and exceptions have to be handled in subsequent al t ori nt er | eave statements.

EXAMPLE 2:
MyPort.cal |l (MProc: {5 M/Var}) to (M/Peerl, MyPeer2) nowait; // Milticast call of MyProc
interleave {

[T MyPort.getreply(MyProc:{?, ?}) from WPeerl { } /1 Handl es the response of MyPeerl
[T MyPort.getreply(MyProc:{?, ?}) from WPeer2 { } /1 Handl es the response of MyPeer2

}

ETSI

132 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.2 The Getcall operation

23.3.2.0 General

Theget cal | operationis used to specify that atest component accepts a call from the SUT, or another test
component. Theget cal | operation shall only be used on procedure-based (or mixed) ports and the signature of the
procedure call to be accepted shall be included in the list of alowed incoming procedures of the port type definition.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated totheget cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteria for the signature may either be specified in-line or be
derived from a signature template.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

EXAMPLE 1:
MyPort. getcal | (M/Proc: MyProcTenpl ate(5, MVar)); /1 accepts a call of MyProc at MyPort

MyPort.getcal | (M/Proc: {5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

The signature argument of the get cal | operation shall not be used to passin variable names for i n and i nout
parameters. The assignment of i n andi nout parameter values to variables shall be made in the assignment part of the
get cal | operation. This allows the use of signature templatesin get cal | operationsin the same manner as
templates are used for types.

The (optional) assignment part of theget cal | operation comprisesthe assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The value assignment part shall not be used
with the getcall operation. The keyword par amis used to retrieve the parameter val ues of acall.

The keyword sender isused whenit isrequired to retrieve the address of the sender (e.g. for addressingar epl y or
exception to the calling party in a one-to-many configuration).

EXAMPLE 2:

M/Port.getcal | (MProc:{?, ?}) from M/Partner -> param (M/Par1Var, MPar2Var);
/1 The in or inout paraneter values of M/Proc are assigned to MyPar1lVar and MyPar2Var.

MyPort.getcal | (MProc: {5, MVar}) -> sender MySender Var;
Il Accepts a call of MyProc at MyPort with the in or inout paraneters 5 and MyVar.
/'l The address of the calling party is retrieved and stored in MySender Var.

/1 The followi ng getcall exanples show the possibilities to use matching attributes
/1 and omit optional parts, which nay be of no inportance for the test specification.

MyPort.getcal | (MProc: {5 MVar}) -> paran{M/Varl, MVar2) sender MySender Var;
M/Port.getcal | (MProc: {5, ?}) -> paran{M/Varl, MVar2);

M/Port.getcal | (MProc:{?, MVar}) -> paran{ - , MVar2);
/1 The value of the first inout paraneter is not inportant or not used

/1 The follow ng exanpl es shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be called:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
MyPort.getcal | (MProc2:{?, ?, 3, - , ?}) -> param (My/VarA, MVarB, - , -, M/\VarE);

/'l The paraneters A B, anf E are assigned to the variables MyVarA, MVarB, and

/1l MyVarE. The out paraneter D needs not to be considered.

MyPort.getcal | (MProc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, MyVarE: = E);

I/l Aternative notation for the value assignnent of in and inout paraneter to variables. Note,
/1 the nanmes in the assignnent list refer to the nanes used in the signature of M/Proc2

MyPort.getcal | (MProc2: {1, 2, 3, -, *}) -> param (MyVarE: = E);
/1 Only the inout parameter value is needed for the further test case execution

ETSI

133 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.2.1 Accepting any call

A get cal | operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled. Parameters of calls accepted by AcceptAnyCall
shall not be assigned to avariable.

EXAMPLE:
MyPort . getcall; /'l Renoves the top call from MyPort.
M/Port.getcall from MPartner; // Renoves a call from MyPartner from port M/Port
MyPort.getcall -> sender MySender Var; /'l Renoves a call from M/Port and retrieves

/1 the address of the calling entity

23.3.2.2 Getcall on any port
Toget cal | onany port isdenoted by the any keyword.
EXAMPLE:

any port.getcall (M/Proc)

23.3.3 The Reply operation

Ther epl y operation is used to reply to a previously accepted call according to the procedure signature. A r epl y
operation shall only be used at a procedure-based (or mixed) port. The type definition of the port shall include the name
of the procedure to which ther epl y operation belongs.

NOTE: Therelation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it is alowed to specify ar epl y operation without an associated get cal | operation.

The value part of ther epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line. All out andi nout parameters of the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

Responses to one or more cal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 23.2.1.1. This means, the argument of thet o
clause of ar epl y operationisfor unicast responses the address of one receiving entity, for multicast responses alist of
addresses of a set of receivers and for broadcast responsestheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

If avalueisto be returned to the calling party, this shall be explicitly stated using theval ue keyword.
EXAMPLE:
MyPort.reply(MProc2:{ - ,5}); /! Replies to an accepted call of MProc2.
MyPort.reply(MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of M/Proc2 from MyPeer
M/Port.reply(MProc2:{ - ,5}) to (M/Peerl, MyPeer2); // Milticast reply to M/Peerl and MyPeer2

MyPort.reply(MyProc2:{ - ,5}) to all conponent; // Broadcast reply to all entities connected
/1 to MyPort

MyPort.reply(M/Proc3: {5 M/Var} val ue 20); /! Replies to an accepted call of MProc3.

ETSI

134 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.4 The Getreply operation

23.3.4.0 General

Theget r epl y operation is used to handle replies from a previously called procedure. A get r epl y operation shall
only be used at a procedure-based (or mixed) port. The type definition of the port shall include the name of the
procedure to which the get r epl y operation belongs.

Theget r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteriaassociated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using theval ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

EXAMPLE 1:

MyPort. getreply(MProc: {5, ?} value 20); /1 Accepts a reply of MyProc with two out or
/'l inout paraneters and a return value of 20

MyPort.getreply(MyProc2:{ - , 5}) from MPeer; // Accepts a reply of MyProc2 from MyPeer

The signature argument of the get r epl y operation shall not be used to passin variable namesfor out andi nout
parameters. The assignment of out and i nout parameter values to variables shall be made in the assignment part of
theget r epl y operation. This allows the use of signature templatesin get r epl y operations in the same manner as
templates are used for types.

The (optional) assignment part of the get r epl y operation comprises the assignment of out and i nout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword val ue isused to retrieve
return values and the keyword par amis used to retrieve the parameter values of areply. The keyword sender isused
when it isrequired to retrieve the address of the sender.

EXAMPLE 2:

M/Port. getreply(MProcl: {?, ?} value ?) -> value M/RetVal ue paran({M/Par 1, MyPar 2);

/'l The returned value is assigned to variable M/RetVal ue and the val ue

/1 of the two out or inout paraneters are assigned to the variables MyParl and MyPar 2.

M/Port. getrepl y(MProcl: {?, ?} value ?) -> value M/RetValue paran{ - , MyPar2) sender MySender;
/1 The value of the first paraneter is not considered for the further test execution and

/'l the address of the sender conponent is retrieved and stored in the variable M/Sender.

/1 The followi ng exanpl es descri be some possibilities to assign out and inout paraneter val ues
/1 to variables. The followi ng signature is assuned for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
M/Port. getrepl y(ATenpl ate) -> paran{ - , - , - , MVarQutl, MVarlnoutl);
M/Port . getrepl y(ATenpl ate) -> paran({M/VarCut 1: =D, MyVar CQut 2: =E) ;

MyPort.getreply(MProc2:{ - , - , - , 3, ?}) -> paran{M/Varl nout 1: =E);

23.34.1 Get any reply

A get r epl y operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled. Parameters or return val ues of
responses accepted by GetAnyReply shall not be assigned to avariable. If GetAnyReply is used in the response and
exception handling part of acal | operation, it shall only treat replies from the procedure invoked by the cal |
operation.

ETSI

135 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE:
M/Port. getreply; /'l Renoves the top reply from MyPort.
M/Port.getreply from MyPeer; /1 Renoves the top reply received from M/Peer from MyPort.

MyPort.getreply -> sender MySenderVar; // Renoves the top reply from M/Port and retrieves the
/] address of the sender entity

23.3.4.2 Get a reply on any port
To get areply on any port, usetheany port keywords.
EXAMPLE:

any port.getreply(Mproc)

23.3.5 The Raise operation

Ther ai se operation is used to raise an exception. An exception shall only be raised at a procedure-based (or mixed)
port. An exception is areaction to an accepted procedure call the result of which leads to an exceptional event. The type
of the exception shall be specified in the signature of the called procedure. The type definition of the port shall include
initslist of accepted procedure calls the name of the procedure to which the exception belongs.

NOTE: Therelation between an accepted call and ar ai se operation cannot always be checked statically. For
testing it is allowed to specify ar ai se operation without an associated get cal | operation.

The value part of ther ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optiona type field in the value
specification to ther ai se operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

Exceptionsto one or morecal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 23.2.1.1. This means, the argument of thet o
clause of ar ai se operation isfor unicast exceptions the address of one receiving entity, for multicast exceptions alist
of addresses of a set of receivers and for broadcast exceptionstheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

EXAMPLE:

MyPort.raise(M/Signature, MyVariable + YourVariable - 2);
/'l Raises an exception with a value which is the result of the arithnetic expression
/1 at MyPort

MyPort.rai se(MProc, integer:5}); /'l Raises an exception with the integer value 5 for MyProc

MyPort.raise(MySignature, "My string") to MyPartner;
/] Raises an exception with the value "My string" at MyPort for MySignature and
I/l send it to MyPartner

M/Port.raise(MSignature, "My string") to (M/PartnerOne, MyPartnerTwo);
/] Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
/1l MyPartnerTwo (i.e. multicast communication)

M/Port.raise(MSignature, "My string") to all conponent;

/] Raises an exception with the value "My string" at MyPort for MySignature and sends it
/1 to all entites connected to MyPort (i.e. broadcast communi cation)

ETSI

136 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.6 The Catch operation

23.3.6.0 General

The cat ch operation is used to catch exceptions raised by a test component or the SUT as areaction to a procedure
call. Thecat ch operation shall only be used at procedure-based (or mixed) ports. The type of the caught exception
shall be specified in the signature of the procedure that raised the exception. Exceptions are specified as types and thus,
can be treated like messages, e.g. templates can be used to distinguish between different values of the same exception

type.

The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the cat ch operation. No binding of the incoming values to
the terms of the expression or to the template shall occur. The assignment of the exception values to variables shall be
made in the assignment part of the cat ch operation.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword.

EXAMPLE 1:
MyPort. catch(M/Proc, integer: MyVar); /1 Catches an integer exception of value
/1 MyVar raised by MyProc at port M/Port.
MyPort. catch(M/Proc, MVar); /1 I's an alternative to the previous exanple.
MyPort . cat ch(M/Proc, A<B); /] Catches a bool ean exception

MyPort.catch(M/Proc, MyType: {5, MVar}); // In-line tenplate definition of an exception val ue.

MyPort . catch(M/Proc, charstring:"Hello")from M/Peer; /Il Catches "Hello" exception from MyPeer

The (optional) assignment part of the cat ch operation comprises the assignment of the exception value and the
retrieval of the address of the calling component. The keyword val ue isused to retrieve the value of an exception and
the keyword sender isused when it is required to retrieve the address of the sender.

EXAMPLE 2:

M/Port . catch(M/Proc, MyType:?) from MyPartner -> value MyVar;
/] Catches an exception from M/Partner and assigns its value to MyVar.

M/Port . catch(M/Proc, MyTenpl ate(5)) -> value MyVar Two sender MyPeer;
/] Catches an exception, assigns its value to MyVarTwo and retrieves the
/1 address of the sender.

The cat ch operation may be part of the response and exception handling part of acal | operation or be used to
determine an alternativeinan al t statement. If the cat ch operation is used in the accepting part of acal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because thisinformation follows fromthecal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) thisinformation shall be repeated.

23.3.6.1 The Timeout exception

Thereisone special t i meout exception that can be caught by the cat ch operation. Thet i meout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 23.3.1.2).

EXAMPLE:

MyPort.call (MProc: {5, M/Var}, 20E-3) {
[T MyPort.getreply(MProc:{?, ?}) { }

[MyPort.catch(tineout) { /] timeout exception after 20ns
setverdict(fail);
st op;
}

}

Catchingt i meout exceptions shall be restricted to the exception handling part of acall. No further matching criteria
(including af r ompart) and no assignment part is allowed for acat ch operation that handlesat i meout exception.

ETSI

137 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.3.6.2 Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword. Exception values accepted by CatchAnyException shall not be assigned to avariable. If
CatchAnyException is used in the response and exception handling part of acal | operation, it shall only treat
exceptions raised by the procedure invoked by thecal | operation. CatchAnyException will also catch thet i neout
exception.

EXAMPLE:
MyPort . cat ch;
M/Port.catch from MyPart ner;

MyPort.catch -> sender MySender Var;

23.3.6.3 Catch on any port
To cat ch an exception on any port use the any keyword.

EXAMPLE:

any port.catch;

23.4 The Check operation

23.4.0 General

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Therecelving operationsr ecei ve, get cal | , get r epl y and cat ch together with their matching and assignment
parts, are used by the check operation to define the condition that has to be checked and to extract the value or values
of its parameters, if required.

It isthe top element of an incoming port queue that shall be checked (it is not possible to ook into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the next statement or aternative to the check
operation is evaluated. The check operation is successful if the receiving operation is successful.

Using the check operation in awrong manner, e.g. check for an exception at a message-based port shall cause atest
case error.

NOTE: In most cases the correct usage of the check operation can be checked staticaly, i.e. before/during
compilation.

EXAMPLE:
M/Port 1. check(receive(5)); [/ Checks for an integer nessage of value 5.

MyPort 2. check(getcal I (M/Proc: {5, MyVar}) from MyPartner);
/I Checks for a call of MyProc at port MyPort2 from MyPartner

MyPort 2. check(getrepl y(MProc: {5, MyVar} value 20));

/] Checks for a reply fromprocedure M/Proc at MyPort2 where the returned value is 20 and
/'l the values of the two out or inout paraneters are 5 and the value of MVar.

MyPort 2. check(cat ch(M/Proc, MyTenpl ate(5, MVar)));

MyPort 2. check(getrepl y(MProcl: {?, MyVar} value *) -> value MyReturnVal ue paranm{MParl,-));

MyPort. check(getcal | (MProc: {5, MyVvar}) from M/Partner -> param (M/Par1Var, MPar2Var));

ETSI

138 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

MyPort. check(getcal | (MProc: {5, MyVar}) -> sender MySender Var);

23.4.1 The Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
gueue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part with asender clause. In case
of mixed ports, the check any operation checks both, the message-based and the procedure-based input queues of the
mixed port. If the check any operation matches on both input queues of the mixed port, information related to the
procedure-based queue shall be given priority, i.e. returned as result of the check any operation. For example, if the
message-based and the procedure-based input queues of a mixed port are not empty and sender information should be
retrieved by acheck any operation, the sender of the call, reply or exception in the procedure-based input queue shall
be returned.

NOTE: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with ar ecei ve any operation, e.g.
MyPort . check(receive) -> sender Mysender.

EXAMPLE:
MyPort . check;
MyPort . check(from MyPart ner);

MyPort . check(-> sender MySender Var);

23.4.2 Check on any port

Tocheck onany port, usetheany port keywords. In case of acheck on any port operation without argument,
input queues of mixed ports shall be checked as specified in clause 23.4.1.

EXAMPLE:

any port.check;

23.5 Controlling communication ports

23.5.0 General
TTCN-3 operations for controlling message-based, procedure-based and mixed ports are:
. cl ear : remove the contents of the incoming port queue;

. st ar t : remove the contents of the incoming port queue and enable sending and receiving operations at the
port;

. st op: disable sending and disallow receiving operations to match at the port;

. hal t : disable sending operations at the port immediately and disallow receiving operations to match new
messages/call s/replies/exceptions that enter the port queue after the halt operation was performed. Entries
aready in the queue can still be processed.

23.5.1 The Clear port operation

Thecl ear operation removes the contents of the incoming queue of the specified port. If the port queue is aready
empty then this operation shall have no action.

EXAMPLE:

MyPort . cl ear; /1 clears port MyPort

ETSI

139 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

23.5.2 The Start port operation

If aport is defined as allowing receiving operationssuch asr ecei ve, get cal | etc., thest art operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | , r ai se etc., are also allowed to be performed at that port.

EXAMPLE:

MyPort.start; /] starts MyPort

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

23.5.3 The Stop port operation

If aport is defined as allowing receiving operations such asr ecei ve and get cal | , the st op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then st op port disallows the
operationssuch assend, cal | , r ai se etc., to be performed.

EXAMPLE 1.

MyPort . st op; /'l stops MyPort

NOTE: To ceaselistening at the port means that all receiving operations defined before the stop operation shall be
completely performed before the working of the port is suspended.

EXAMPLE 2:

M/Port.receive (MTenpl atel) -> val ue RecPDY,
/1 the received value is decoded, matched agai nst
/1 MyTenpl atel and the matching value is stored
/1 in the variable RecPDU
MyPort . st op; /1 No receiving operation defined follow ng the stop
/] operation is executed (unless the port is restarted
/1 by a subsequent start operation)
M/Port.receive (M/Tenpl ate2); /1 This operation does not match and will block (assum ng
/1 that no default is activated)

23.5.4 The halt port operation

If aport allows receiving operationssuch asr ecei ve, tri gger andget cal | ,thehal t operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
hal t operation at that port. Messages and procedure call elements that were aready in the queue before the hal t
operation can still be processed with receiving operations. If the port allows sending operations then hal t port
immediately disallows sending operations such assend, cal | , r ai se etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: Theport hal t operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After all entriesin the
gueue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport st op operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A port st art operation on ahalted port clears all entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It also removes the marker.

NOTE 4: A port cl ear operation on ahalted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It also virtually puts the marker at the top of the
queue.

EXAMPLE:

M/Port . hal t; /1 No sending allowed on Myport fromthis nonent on;
/'l processing of nessages in the queue still possible.

ETSI

140 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

M/Port.receive (MTenpl atel); /1 If a message was already in the queue before the halt
/'l operation and it natches MyTenplatel, it is processed;
/1 otherw se the receive operation bl ocks.

23.6 Use of any and all with ports

The keywordsany and al I may be used with configuration and communication operations as indicated in table 18.

Table 18: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
start, stop, clear, halt yes all port.start

24 Timer operations

24.0 General

TTCN-3 supports a number of timer operations. These operations may be used in test cases, functions, altsteps and
module control.

It is assumed that each TTCN-3 scope unit in which timers are declared, maintains its own running-timerslist and
timeout-list, i.e. alist of all timersthat is actually running and alist of all timersthat have timed out. The timeout-lists
are part of the snapshots that are taken when atest caseis executed. A timeout-list is updated if atimer in the scope unit
is started, is stopped, timesout or at i meout operation is executed.

NOTE 1: Therunning-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: It isassumed that for each test component a special running-timers list and timeout-list exist that handle
timer start/stop and timeout events of timers declared in the corresponding component type definition.

When atimer expires (conceptually immediately before a snapshot processing of a set of aternative events), atimeout
event is placed in the timeout list of the scope unit in which the timer has been declared. The timer becomes
immediately inactive. Only one entry for any particular timer may appear in the timeout list of the scope unit in which
the timer has been declared at any one time.

All running timers shall automatically be cancelled when the component is explicitly or implicitly stopped.

Table 19: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

ETSI

141 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

24.1 The Start timer operation

Thest art timer operation is used to indicate that atimer should start running. Timer values shall be non-negative
f 1 oat numbers(i.e. greater or equal 0.0). When atimer is started, its name is added to the list of running timers (for
the given scope unit).

EXAMPLE:

M/Tinerl.start; /'l MyTinmerl is started with the default duration
M/Tiner2.start(20E-3); // MTiner2 is started with a duration of 20 ns

/'l Elenments of tinmer arrays nay also be started in a |oop, for exanple
timer t_Mytiner [5];
var float v_tinerValues [5];

for (var integer i := 0; i<=4; i:=i+1)
{ v_timerValues [i] := 1.0}
for (var integer i := 0; i<=4; i:=i+1)

{t_Mytiner [i].start (v_tinmerValues [i])}

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later st art operations for this timer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting atimer with a negative
timer value, e.g. the timer valueis the result of an expression, or without a specified timer value shall cause aruntime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

Thest art operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for this timer shall be removed from the timeout-list.

24.2 The Stop timer operation

The st op operation is used to stop a running timer and to remove it from the list of running timers. A stopped timer
becomes inactive and its elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is avalid operation, although it does not have any effect. Stopping an expired timer causes
the entry for thistimer in the timeout-list to be removed. Theal | keyword may be used to stop al timers that are
visible in the scope unit in which the st op operation has been called.

EXAMPLE:
M/ Ti ner 1. st op; /1 stops MyTinerl
all timer.stop; /1 stops all running tiners

24.3 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started. The returned
value shall be of typef | oat .

EXAMPLE:

var float Myvar;
MyVar := MyTinerl.read; // assign to MyVar the tine that has el apsed since MyTinerl was started

Applying the r ead operation on an inactive timer i.e. on atimer not listed on the running-timer list, will return the float
value zero (0.0).

ETSI

142 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

24.4 The Running timer operation

Ther unni ng timer operation is used to check whether atimer is listed on the running-timer list of the given scope
unit or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns the value
true if thetimer islisted onthelist, f al se otherwise.

EXAMPLE:

if (MTinerl.running) { ...}

24.5 The Timeout operation

Thet i meout operation alows to check expiration of atimer, or of all timers, in a scope unit of atest component or
module control in which the timeout operation has been called.

When at i neout operation is processed, if atimer name is indicated, the timeout-lists searched according to the
TTCN-3 scoperules. If thereis atimeout event matching the timer name, that event is removed from the timeout-list,
and thet i meout operation succeeds. Thet i meout shall not be usedinabool ean expression, but it can be used to
determine an alternativeinan al t statement or as stand-alone statement in a behaviour description. In the latter case a
ti meout operation isconsidered to be shorthand for anal t statement with only one alternative, i.e. it has blocking
semantics, and therefore provides the ability of passive waiting for the timeout of timer(s).

EXAMPLE 1:

M/ Ti ner 1. ti neout ; /'l checks for the tineout of the previously started tiner MTinerl

Theany keyword used with thet i meout operation (rather than an explicitly named timer) succeedsif the timeout-list
is not empty.

EXAMPLE 2:

any timer.timeout; // checks for the tinmeout of any previously started tiner

24.6 Summary of use of any and all with timers

The keywordsany and al | may be used with timer operations as indicated in table 20.

Table 20: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

ETSI

143 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

25 Test verdict operations

25.0 General

Verdict operations allow to set and retrieve verdicts using the set ver di ct and get ver di ct operations
respectively. These operations shall only be used in test cases, altsteps and functions.

Table 21: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individua verdict in each test
component (i.e. inthe MTC and in each and every PTC).

25.1 Test case verdict

Additionally, thereisaglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution. This verdict is not accessible to the

get verdi ct andset verdi ct operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to a variable) then it
islost.

Verdict returned y :
by.the t> case
when it terminates
MIC PTCL [, PTG [y

Figure 14: lllustration of the relationship between verdicts

NOTE: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

25.2 Verdict values and overwriting rules

25.2.0 General

The verdict can have five different values: pass, fai | ,i nconc, none ander r or, i.e. the distinguished values of
thever di ctt ype (seeclause 6.1).

NOTE: i nconc meansaninconclusive verdict.
Theset verdi ct operation shall only be used with the valuespass, f ai | ,i nconc and none.

EXAMPLE 1:

setverdi ct (pass);
setverdi ct (i nconc);

The value of the local verdict may be retrieved using the get ver di ct operation.

ETSI

144 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

M/Result := getverdict; // Were M/Result is a variable of type verdicttype
When atest component isinstantiated, itslocal verdict object is created and set to the valuenone.

When changing the value of the local verdict (i.e. usingthe set ver di ct operation) the effect of this change shall
follow the overwriting rules listed in table 22. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting ruleslisted in table 22.

Table 22: Overwriting rules for the verdict

Current value of New verdict assignment value

Verdict pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass
inconc inconc inconc fail inconc
fail fail fail fail fail

EXAMPLE 3:

setverdi ct (pass); /'l the local verdict is set to pass
setverdict(fail); /1 until this line is executed, which will result in the value

/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail

25.2.1 Error verdict

Theer ror verdict isspecial inthat it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by theset ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. Thismeansthat an er r or verdict can only be aresult of an
execut e test case operation.

26 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

EXAMPLE:

var charstring nyString:=" now."
action("Send MyTenpl ate on | ower PCO' & nyString); // Informal description of the
/] external action

There is no specification of what is doneto or by the SUT to trigger this action, only an informal description of the
required action itself.

External actions can be used in test cases, functions, atsteps and module control.

ETSI

145 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

27 Module control part

27.0 General

Test cases are defined in the module definitions part while the module control part manages their execution. All
variables (if any) defined in the control part of amodule shall be passed into the test case by parameterization if they are
to be used in the behaviour definition of that test case, i.e. TTCN-3 does not support global variables of any kind.

At the start of each test case, the test configuration shall be reset. This means that all components and ports conducted
by cr eat e, connect , etc. operationsin a previous test case were destroyed when that test case was stopped (hence
are not 'visible' to the new test case).

27.1 Execution of test cases

A test caseiscaled using an execut e statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, i nconc,fail orerror shal bereturned and may be assigned to a variable for further
processing.

Optionally, the execut e statement allows supervision of atest case by means of atimer duration (see clause 27.5).

EXAMPLE:
execut e(MyTest Casel()); /] executes MyTestCasel, without storing the
/'l returned test verdict and w thout tine
/] supervision
My/Ver di ct := execute(MTest Case2()); /] executes MyTestCase2 and stores the resulting

/1 verdict in variable My/Verdict

MyVerdi ct : = execut e(MyTest Case3(), 5E-3); /] executes MyTest Case3 and stores the resulting
/1 verdict in variable M/Verdict. If the test case
/] does not terminate within 5nms, MyVerdict will
/1 get the value '"error'

27.2 Termination of test cases

A test case terminates with the termination of the MTC. On termination of the MTC (explicitly or implicitly), all
running parallel test components shall be removed by the test system.

NOTE 1: The concrete mechanism for stopping all PTCsistool specific and therefore outside the scope of the
present document.

Thefinal verdict of atest case is calculated based on the final local verdicts of the different test components according
to the rules defined in clause 25. The actual local verdict of atest component becomesitsfinal local verdict when the
test component terminates itself or is stopped by itself, another test component or by the test system.

NOTE 2: To avoid race conditions for the calculation of test verdicts due to the delayed stopping of PTCs, the MTC
should ensure that all PTCs have stopped (by means of thedone or ki | | ed statement) before it stops
itsalf.

ETSI

146 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

27.3 Controlling execution of test cases

Program statements, limited to those defined in tables 11 and 12 may be used in the control part of a module to specify
such things as the order in which the test cases are to be executed or the number of times a test case should run.

EXAMPLE:
nodul e MyTestSuite () {
cbntrol {
/) Do this test 10 tines
count : =0;
whil e (count < 10)

{ execute (MSi npl eTest Casel());
count := count+1;
}

}

If no programming statements are used then, by default, the test cases are executed in the sequential order in which they
appear in the module control.

NOTE: Thisdoes not preclude the possibility that certain tools may wish to override this default ordering to allow
auser or tool to select adifferent execution order.

The selection and deselection of test cases can also be used to control the execution of test cases (see clause 27.4).

27.4 Selection of Test cases

There are different waysin TTCN-3 to select and deselect test cases. For example, boolean expressions may be used to
select and deselect which test cases are to be executed. Thisincludes, of course, the use of functions that return a
bool ean value.

EXAMPLE 1.
nodul e MyTestSuite () {
cbntrol {

if (MySel ectionExpressionl()) {
execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}
if (MySel ecti onExpression2())
execut e(M/Si npl eTest Case4(
execut e(MySi npl eTest Case5(
(

{

)

)
execut e(MySi npl eTest Case6()

)
);
)

}

Another way to execute test cases as agroup is to collect them in a function and execute that function from the module
control.

ETSI

147 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

functi on MyTest CaseG oupl()

{ execut e(MySi npl eTest Casel());
execut e(MySi npl eTest Case2());
execut e(MySi npl eTest Case3());

}

functi on MyTest CaseG oup2()

{ execut e(MySi npl eTest Case4());
execut e(MySi npl eTest Case5());
execut e(MySi npl eTest Case6());

} .

cbntrol
{ if (MySel ectionExpressionl()) { M/Test CaseG oupl(); }
if (MySel ectionExpression2()) { MyTest CaseG oup2(); }

}

Asatest casereturns asingle value of typever di ct t ype, it isalso possible to control the order of test case
execution depending on the outcome of atest case. The use of the TTCN-3 verdicttype is another way to select test
Cases.

EXAMPLE 3:

if (execute (M/Si npl eTestCase()) == pass)
{ execute (M/GoOnTest Case()) }

el se
{ execute (MErrorRecoveryTestCase()) };

27.5 Use of timers in control

Timer may be used to supervise the execution of atest case. This may be done using an explicit timeout in the
execut e statement. If the test case does not end within this duration, the result of the test case execution shall be an
error verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timer
and need not be declared or started.

EXAMPLE 1:
M/ReturnVal := execute (MTestCase(), 7E-3);

/1 Where the return verdict will be error if M/TestCase does not conpl ete execution
/1 within 7ms

Timer operations may also be used explicitly to control test case execution.

EXAMPLE 2:

/] Exanple of the use of the running tiner operation
while (T1l.running or x<10) // Wiere Tl is a previously started timer
{ execut e(MyTest Case()) ;
X = X+1;
}

/'l Exanple of the use of the start and tineout operations
timer T1 := 1.0;

execut e(MyTest Casel());

Tl.start;

T1.timeout; // Pause before executing the next test case
execut e(MyTest Case2());

ETSI

148 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

28 Specifying attributes

28.0 General

Attributes can be associated with TTCN-3 language elements by means of thewi t h statement. The syntax for the
argument of thewi t h statement (i.e. the actual attributes) is defined as a free text string.

There are four kinds of attributes:
a) di spl ay: allowsthe specification of display attributes related to specific presentation formats;
b) encode: alowsreferencesto specific encoding rules;
c) vari ant: allowsreferencesto specific encoding variants;

d) extensi on: alowsthe specification of user-defined attributes.

28.1 Display attributes

All TTCN-3 language elements can have di spl ay attributes to specify how particular language elements should be
displayed in, for example, atabular format.

Specia attribute strings related to the display attributes for the tabular (conformance) presentation format can be found
in ES 201 873-2[1].

Specia attribute strings related to the display attributes for the graphical presentation format can be found in
ES 201 873-3[2].

Other di spl ay attributes may be defined by the user.

NOTE: Because user-defined attributes are not standardized, the interpretation of these attributes may differ
between tools or even may not be supported.

28.2 Encoding of values

28.2.0 General

Encoding rules define how a particular value, template etc. shall be encoded and transmitted over a communication
port and how received signals shall be decoded. TTCN-3 does not have a default encoding mechanism. This means
that encoding rules or encoding directives are defined in some external manner to TTCN-3.

In TTCN-3, general or particular encoding rules can be specified by using encode and var i ant attributes.

28.2.1 Encode attributes

The encode attribute allows the association of some referenced encoding rule or encoding directive to be madeto a
TTCN-3 definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions, etc.) is outside the scope of the present
document. If no specific rules are referenced then encoding shall be a matter for individual implementation.

In most cases encoding attributes will be used in a hierarchical manner. The top-level isthe entire module, the next
level isagroup and the lowest isan individua type or definition:

a) nodul e: encoding appliesto all types defined in the module, including TTCN-3 types (built-in types);
b) group: encoding appliesto agroup of user-defined type definitions;

c) type or definition: encoding appliesto asingle user-defined type or definition;

ETSI

149 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

d) field:encodingappliestoafieldinarecord orset typeort enpl at e.

EXAMPLE:

nodul e MyTTCNnodul e

{ :

i mport from MySecondModul e {
type MyRecord

}
with { encode "M/Rule 1" } // Instances of MyRecord will be encoded according to M/Rule 1

iype charstring MyType; // Normally encoded according to the 'd obal encoding rule

Qroup MyRecor ds
{ :
type record MyPDUL
{

i nt eger fieldl, /] fieldl will be encoded according to 'Rule 3
bool ean field2, /1 field2 will be encoded according to 'Rule 3'
M/t ype field3 // field3 will be encoded according to 'Rule 2

with { encode (fieldl, field2) "Rule 3" }
13
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

28.2.2 Variant attributes

To specify arefinement of the currently specified encoding scheme instead of its replacement, thevar i ant attribute
shall be used. The variant attributes are different from other attributes, because they are closely related to encode
attributes. Therefore, for variant attributes, additional overwriting rules apply (see clause 28.5.1).

EXAMPLE:

modul e MyTTCNnmodul el
{ :
type charstring M/Type; // Nornally encoded according to the 'd obal encoding rule'

Qroup MyRecor ds

{ :
type record MyPDUL
{
i nt eger fieldl, /1 fieldl will be encoded according to 'Rule 2'
/1 using encoding variant 'length form3'
M/t ype field3 // field3 will be encoded according to 'Rule 2'

/1 using any possible | ength encoding format

}

with { variant (fieldl) "length form3" }
13
with { encode "Rule 2" }

with { encode "d obal encoding rule" }

28.2.3 Special strings
The following strings are the predefined (standardized) var i ant attributes for simple basic types (see clause E.2.1):

a "8 bit"and"unsigned 8 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 8-bits
(single byte) within the system.

by "16 bit"and"unsigned 16 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 16-bits
(two bytes) within the system.

ETSI

150 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

c) "32 bit"and"unsigned 32 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 32-bits
(four bytes) within the system.

d "64 bit"and"unsigned 64 bit" mean, when applied to integer and enumerated types, that the integer
value or the integer numbers associated with enumerations shall be handled as it was represented on 64-bits
(eight bytes) within the system.

€ "IEEE754 float","| EEE754 doubl e", "I EEE754 extended fl oat" and
"| EEE754 extended doubl e" mean, when applied to afloat type, that the value shall be encoded and
decoded according to the standard | EEE 754 (see annex F).

The following strings are the predefined (standardized) var i ant attributesfor char stri ng and uni ver sal
charstring (seeclauseE.2.2):

a) "UTF- 8" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in
annex R of ISO/IEC 10646 [10].

b) "UCS- 2" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
ISO/IEC 10646 [10]).

c) "UTF- 16" means, when applied to the universal charstring type, that each character of the value shall be
individually encoded and decoded according to the UCS Transformation Format 16 (UTF-16) as defined in
annex Q of ISO/IEC 10646 [10].

d) "8 bit" means, when applied to charstring and universal charstring types, that each character of the value
shall beindividually encoded and decoded according to the coded representation as specified in | SO/IEC 8859
(an 8-hit coding).

The following strings are the predefined (standardized) var i ant attributes for structured types (see clause E.2.3):

a "IDL:fixed FORVAL/01-12-01 v.2.6" means, when applied to arecord type, that the value shall be
handled as an IDL fixed point decimal value (see annex F).

These variant attributes can be used in combination with the more general encode attributes specified at a higher level.
For exampleauni ver sal charstri ng specified withthevari ant attribute "UTF-8" within a module which
itself hasa global encoding attribute "BER:1997" (see clause 12.2 of ES 201 873-7 [6]) will cause each character of the
values within the string to first be encoded following the UTF-8 rules and then this UTF-8 value will be encoded
following the more global BER rules.

28.2.4 Invalid encodings

If it is desired to specify invalid encoding rules then these shall be specified in areferenceable source external to the
module in the same way that valid encoding rules are referenced.

28.3 Extension attributes

All TTCN-3 language elements can have ext ensi on attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these attributes between tools
supplied by different vendors may differ or even not be supported.

ETSI

151 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

28.4 Scope of attributes

A wi t h statement may associate attributes to a single language element. It is also possible to associate attributesto a
number of language elements by e.g. listing fields of a structured type in an attribute statement associated with asingle
type definition or associating awi t h statement to the surrounding scope unit or gr oup of language elements.

EXAMPLE:

/1 MyPDUL will be displayed as PDU
type record WPDUL { ...} with { display "PDU'}

/1 MyPDU2 will be displayed as PDU with the application specific extension attribute M/Rule
type record WPDW2 { ...}
W th

di splay "PDU';

extensi on "M/Rul e"

}

/1 The followi ng group definition ...
group MyPDUs {

type record WPDU3 { ...}

type record WPDW { ...}

}
with {display "PDU"'} /1 Al types of group M/PDUs wi |l be displayed as PDU

/1l is identical to

group MyPDUs {
type record WPDU3 { ...} with { display "PDU'}
type record WPDW { ...} with { display "PDU'}

28.5 Overwriting rules for attributes

An attribute definition in alower scope unit will override a general attribute definition in a higher scope. Additional
overwriting rules for variant attributes are defined in clause 28.5.1.

EXAMPLE 1:

type record MyRecordA
{

} with { encode "Rul eA" }

/1 In the following, M/RecordA is encoded according to Rul eA and not according to Rul eB
type record MyRecordB
{

field MRecordA
} with { encode "Rul eB" }

A wi t h statement that is placed inside the scope of another wi t h statement shall override the outermost wi t h. This
shall also apply to the use of thewi t h statement with groups. Care should be taken when the overwriting schemeis
used in combination with references to single definitions. The general rule isthat attributes shall be assigned and
overwritten according to the order of their occurrence.

/| Exanple of the use of the overwiting schene of the with statenent
group MyPDUs
{

type record MyPDUL { ...}

type record WPDU2 { ...}

group MySpeci al PDUs

{
type record WPDU3 { ...}

type record WPDUW { ...}

}
wi th {extension "MSpecial Rul e"} /'l MyPDU3 and MyPDUW wi |l have the application
/1 specific extension attribute MySpecial Rul e

ETSI

152 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

with
di splay "PDU'; /1 Al types of group MyPDUs wi |l be displayed as PDU and
extension "MyRule"; // (if not overwitten) have the extension attribute M/Rule
}
I/l is identical to ...
group MyPDUs
{
type record MPDUL { ...} with {display "PDU'; extension "M/Rule" }
type record MVPDU2 { ...} with {display "PDU'; extension "MRule" }
group MySpeci al PDUs {
type record MWPDU3 { ...} with {display "PDU'; extension "M/Special Rule" }
type record MPDW { ...} with {display "PDU'; extension "MSpecial Rul e" }
}
}

An attribute definition in alower scope can be overwritten in a higher scope by usingtheover ri de directive.

EXAMPLE 2:

type record MyRecordA
{

} with { encode "Rul eA" }

/1 In the follow ng, M/RecordA is encoded according to Rul eB
type record MyRecordB

{

fieldA MyRecordA
} with { encode override "RuleB" }

Theoverri de directiveforcesall contained types at all lower scopes to be forced to the specified attribute.

28.5.1 Additional overwriting rules for variant attributes

Avari ant attribute is always related to an encode attribute. Whereas a variant of an encoding may change, an
encoding shall not change without overwriting all current variant attributes. Therefore, for variant attributes the
following overwriting rules apply:

. avari ant attribute overwritesan current var i ant attribute according to the rules defined in clause 28.5;

. anencodi ng attribute, which overwrites a current encodi ng attribute according to the rules defined in
clause 28.5, also overwrites a corresponding current var i ant attribute, i.e. nonew var i ant attributeis
provided, but the current var i ant attribute becomes inactive;

. anencodi ng attribute, which changes a current encodi ng attribute of an imported language element
according to the rules defined in clause 28.6, also changes a corresponding current var i ant attribute, i.e. no
new vari ant attributeis provided, but the current var i ant attribute becomes inactive.

EXAMPLE:
nodul e MyVar i ant Encodi nghbdul e {
éype charstring MyChar String; /1 Normally encoded according to "Encoding 1"
;;roup MyVari ant sOne {

iype record MyPDUone
{

i nt eger fieldl, // fieldl will be encoded according to "Encoding 2" only.
/1 "Encoding 2" overwites "Encoding 1" and variant 'Variant 1'
M/t ype field3 // field3 will be encoded according to "Encoding 1" with

/1 variant "Variant 1".

}
with { encoding (fieldl) "Encoding 2" }

with { variant "Variant 1" }

group MyVari ant sTwo

ETSI

153 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

{ :
type record MyPDUtwo
{
i nt eger fieldl, // fieldl will be encoded according to "Encoding 3"
/] using encoding variant 'Variant 3'
M/t ype field3 // field3 will be encoded according to "Encoding 3"

/1 using encoding variant "Variant 2"

}
with { variant (fieldl) "Variant 3" }
with { encode "Encoding 3"; variant 'Variant 2'}

with { encode "Encoding 1" }

28.6 Changing attributes of imported language elements

In general, alanguage element is imported together with its attributes. In some cases these attributes may have to be
changed when importing the language element e.g. atype may be displayed in one module as ASP, then it isimported
by another module where it should be displayed as PDU. For such casesit is alowed to change attributes on the

i mport statement.

EXAMPLE:

i mport from MyModul e {

) type My/Type

with { display "ASP" } /'l MyType will be displayed as ASP

import from MyModul e {
group MyG oup

}

with {
di splay "PDU'; /1 By default all types will be displayed as PDU
extension "M/Rul e"

ETSI

154 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex A (normative):
BNF and static semantics

A.1 TTCN-3 BNF

A.1.0 General

This annex defines the syntax of TTCN-3 using extended BNF (henceforth just called BNF).

A.1.1 Conventions for the syntax description

Table A.1 defines the metanotation used to specify the extended BNF grammar for TTCN-3.

Table A.1l: The syntactic metanotation

n= is defined to be

abc xyz abc followed by xyz

[alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

Abc the non-terminal symbol abc
"abc" a terminal symbol abc

A.1.2 Statement terminator symbols

In general all TTCN-3 language constructs (i.e. definitions, declarations, statements and operations) are terminated with
asemi-colon (;). The semi-colon is optional if the language construct ends with aright-hand curly brace (}) or the
following symbol is aright-hand curly brace (}), i.e. the language construct is the last statement in a block of
statements, operations and declarations.

A.1.3 Identifiers

TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric
digits (0-9). Use of the underscore (_) symbol isalso alowed. An identifier shall begin with aletter (i.e. not a number
and not an underscore).

A.1.4 Comments

Comments written in free text may appear anywhere in a TTCN-3 specification.
Block comments shall be opened by the symbol pair /* and closed by the symbol pair */.
EXAMPLE 1:

/* This is a block coment
spread over two lines */

Block comments shall not be nested.

/* This is not /* a legal */ comment */

Line comments shall be opened by the symbol pair // and closed by a <newline>.

ETSI

155 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

EXAMPLE 2:

/1 This is a line conment
/] spread over two |ines

Line comments may follow TTCN-3 program statements but they shall not be embedded in a statement.
EXAMPLE 3:

/1 The following is not I|egal
const // This is MyConst integer MyConst := 1;

/1 The followi ng is |egal
const integer MConst :=1; // This is M/Const

A.1.5 TTCN-3 terminals

TTCN-3 terminal symbols and reserved words are listed in tables A.2 and A.3.

Table A.2: List of TTCN-3 special terminal symbols

Begin/end block symbols { 1}
Begin/end list symbols ()
Alternative symbols [1]
To symbol (in a range) .
Line comments and Block comments > 1
Line/statement terminator symbol

Arithmetic operator symbols + /-

String concatenation operator symbol &

Equivalence operator symbols I= == >= <=
String enclosure symbols " '
Wildcard/matching symbols ? *
Assignment symbol =
Communication operation assignment ->

Bitstring, hexstring and Octetstring values B HO

Float exponent E

The predefined function identifiers defined in table 10 and described in annex C shall also be treated as reserved words.

ETSI

156 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table A.3: List of TTCN-3 terminals which are reserved words

action fail nobl ock sel ect
activate fal se none sel f
addr ess fl oat not send
alive for not 4b sender
al | from nowai t set
al t function nul | setverdi ct
al tstep si gnature
and getverdi ct octetstring start
and4b get cal | of stop
any getreply om t subset
anyt ype goto on super set
group opti onal system
bitstring or
bool ean hexstring or4b tenpl ate
out t est case
case if override ti meout
call i fpresent timer
catch i nport par am to
char in pass trigger
charstring i nconc pattern true
check infinity port type
cl ear i nout procedure
conpl enment i nt eger uni on
comnmponent i nterl eave rai se uni ver sa
connect read unnmap
const kill receive
control killed record val ue
create val ueof
| abel rem var
deactivate | anguage r epeat vari ant
defaul t | ength reply verdi cttype
di sconnect | og return
di spl ay runni ng whil e
do map runs with
done mat ch
nessage xor
el se m xed xor 4b
encode nod
enuner at ed nodi fi es
error nodul e
except nodul epar
exception ntc
execut e
ext ends
ext ensi on
externa

The TTCN-3 terminaslisted in table A.3 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be

written in all lowercase letters.

A.1.6 TTCN-3 syntax BNF productions

A.1.6.0 TTCN-3 module

1. TTCN3Mbdul e ::= TTCN3Mbdul eKeyword TTCN3Mbdul el d

{
[Modul eDefinitionsPart]
[Modul eControl Part]

}
[WthStatenent] [Seni Col on]

2. TTCN3Mbdul eKeyword :: = "nodul e"
3. TTCN3Modul el d :: = Modul el d
4. Modul eld ::= d obal Modul el d [LanguageSpec]

/* STATI C SEMANTI CS - LanguageSpec may only be onmitted if the referenced nodul e contains TTCN 3
notation */

ETSI

157 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

5. d obal Mbdul el d ::= Mdul el dentifier

6. Mdul eldentifier ::= ldentifier

7. LanguageSpec ::= LanguageKeyword FreeText
8. LanguageKeyword ::= "l anguage"

A.1.6.1 Module definitions part

A.1.6.1.0 General

9. Modul eDefinitionsPart ::= Mdul eDefinitionsList
10. Modul eDefinitionsList ::= {Mdul eDefinition [Seni Colon]}+
11. Modul eDefinition ::= (TypeDef |

Const Def |

Tenpl at eDef |

Mbdul ePar Def |

Functi onDef |

Si gnat ur eDef |

Test caseDef |

Al t st epDef |

| mpor t Def |

G oupDef |
Ext Functi onDef |

Ext Const Def) [WthStatenent]

A.1.6.1.1 Typedef definitions

12. TypeDef ::= TypeDef Keyword TypeDef Body
13. TypeDef Body ::= StructuredTypeDef | SubTypeDef
14. TypeDef Keyword ::= "type"
15. StructuredTypeDef ::= RecordDef |
Uni onDef |
Set Def |
Recor dOf Def |
Set Of Def |
EnunDef |
Por t Def |
Conponent Def
16. RecordDef ::= RecordKeyword Struct Def Body
17. RecordKeyword ::= "record"
18. StructDefBody ::= (StructTypeldentifier [StructDefFornmal ParList] | AddressKeyword)
"{" [StructFieldDef {"," StructFieldDef}] "}"
19. StructTypeldentifier ::= Identifier
20. StructDef Formal ParList ::="(" StructDef Formal Par {"," StructDefFornmal Par} ")"
21. StructDef Formal Par ::= Fornal Val uePar
/* STATI C SEMANTI CS - Formal Val uePar shall resolve to an in paranmeter */
22. StructFieldDef ::= (Type | NestedTypeDef) StructFieldldentifier [ArrayDef] [SubTypeSpec]
[Opti onal Keywor d]
23. NestedTypeDef ::= NestedRecordDef |
Nest edUni onDef |
Nest edSet Def |

Nest edRecor dOf Def |

Nest edSet Of Def |

Nest edEnunDef
24. NestedRecordDef ::= RecordKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"
25. NestedUni onDef ::= Uni onKeyword "{" Uni onFi el dDef {"," UnionFieldDef} "}"
26. NestedSetDef ::= SetKeyword "{" [StructFieldDef {"," StructFieldDef}] "}"
27. NestedRecordO Def ::= RecordKeyword [StringlLength] O Keyword (Type | NestedTypeDef)
28. NestedSet Of Def ::= SetKeyword [StringLength] O Keyword (Type | NestedTypeDef)
29. NestedEnunDef ::= EnunKeyword "{" EnunerationList "}"
30. StructFieldldentifier ::= ldentifier
31. Optional Keyword ::= "optional"
32. Uni onDef ::= Uni onKeyword Uni onDef Body
33. Uni onKeyword ::= "union"
34. UnionDefBody ::= (StructTypeldentifier [StructDefFornal ParList] | AddressKeyword)

"{" UnionFieldDef {"," UnionFieldDef} "}"
35. UnionFieldDef ::= (Type | NestedTypeDef) StructFieldldentifier [ArrayDef] [SubTypeSpec]
36. SetDef ::= SetKeyword Struct Def Body
37. SetKeyword ::= "set"
38. RecordO Def ::= RecordKeyword [StringlLength] O Keyword Struct O Def Body
39. O Keyword ::= "of"
40. Struct O Def Body ::= (Type | NestedTypeDef) (StructTypeldentifier | AddressKeyword) [SubTypeSpec]
41. Set O Def ::= SetKeyword [StringlLength] O Keyword Struct O Def Body
42. EnunDef ::= EnunKeyword (Enunilypeldentifier | AddressKeyword)
"{" EnunerationList "}"

43. EnunKeyword ::= "enumerated"

ETSI

158 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

44. Enunilypeldentifier ::= ldentifier

45. EnunerationList ::= Enuneration {"," Enuneration}

46. Enuneration ::= Enunerationldentifier ["("[Mnus] Number ")"]

47. Enunerationldentifier ::= ldentifier

48. SubTypeDef ::= Type (SubTypeldentifier | AddressKeyword) [ArrayDef] [SubTypeSpec]

49. SubTypeldentifier ::= ldentifier

50. SubTypeSpec ::= Al owedVal ues [StringlLength] | StringlLength

/* STATI C SEMANTI CS - Al |l owedVal ues shall be of the same type as the field being subtyped */
51. AllowedValues ::= "(" (ValueO Range {"," ValueOrRange}) | CharStringhvatch ")"

52. Val ueOrRange ::= RangeDef | Constant Expression

/* STATI C SEMANTI CS - RangeDef production shall only be used with integer, charstring, universal
charstring or float based types */

/* STATI C SEMANTI CS - When subtyping charstring or universal charstring range and val ues shall not
be mixed in the same SubTypeSpec */

53. RangeDef ::= LowerBound ".." UpperBound

54. StringLength ::= LengthKeyword " (" SingleConstExpression [".." UpperBound] ")"

/* STATI C SEMANTICS - StringlLength shall only be used with String types or to linmt set of and
record of. SingleConstExpression and UpperBound shall evaluate to non-negative integer values (in
case of UpperBound including infinity) */

55. LengthKeyword ::= "l ength"
56. PortType ::= [d obal Modul eld Dot] PortTypel dentifier
57. PortDef ::= PortKeyword Port Def Body
58. PortDefBody ::= PortTypeldentifier PortDefAttribs
59. PortKeyword ::= "port"
60. PortTypeldentifier ::= Identifier
61. PortDef Attribs ::= MessageAttribs | ProcedureAttribs | M xedAttribs
62. MessageAttribs ::= MessageKeyword
"{" {MessageList [Sem Colon]}+ "}"
63. MessageList ::= Direction Al O TypelLi st
64. Direction ::= | nParKeyword | QutParKeyword | |nQutParKeyword
65. MessageKeyword ::= "nessage"
66. Al O TypeList ::= Al Keyword | Typeli st
/* NOTE: The use of AllKeyword in port definitions is deprecated */
67. Al Keyword ::= "all"
68. TypelList ::= Type {"," Type}
69. ProcedureAttribs ::= ProcedureKeyword
"{" {ProcedureList [Sem Colon]}+ "}"

70. ProcedureKeyword ::= "procedure"
71. ProcedureList ::= Direction All O Signatureli st
72. AllOSignatureList ::= Al Keyword | Signatureli st
73. SignatureList ::= Signature {"," Signature}
74. M xedAttribs ::= M xedKeyword

"{" {M xedLi st [Sem Colon]}+ "}"
75. M xedKeyword ::= "m xed"
76. M xedList ::= Direction ProcO Typeli st
77. ProcOrTypeList ::= All Keyword | (ProcOrType {"," ProcO Type})
78. ProcOrType ::= Signature | Type
79. Conponent Def ::= Conponent Keyword Conponent Typel dentifier

[Ext endsKeyword Conponent Type {"," Conponent Type}]
"{" [Conponent Def Li st] "}"

80. Conponent Keyword ::= "conponent"

81. ExtendsKeyword ::= "extends"

82. Component Type ::= [d obal Modul el d Dot] Conponent Typel dentifier

83. Conponent Typeldentifier ::= ldentifier

84. Conponent Def Li st ::= {Conponent El enent Def [Semi Col on]}

85. Conponent El enent Def ::= Portlnstance | Varlnstance | Tinerlnstance | Const Def
86. Portlnstance ::= PortKeyword PortType PortEl enent {"," PortEl enent}

87. PortElement ::= Portldentifier [ArrayDef]

88. Portldentifier ::= ldentifier

A.1.6.1.2 Constant definitions

89. ConstDef ::= ConstKeyword Type ConstLi st

/* STATI C SEMANTI CS - Type shall follow the rules given in clause 9 of ES 201 873-1.*/
90. ConstlList ::= SingleConstDef {"," SingleConstDef}

91. SingleConstDef ::= Constldentifier [ArrayDef] AssignnmentChar Constant Expression

/* STATI C SEMANTI CS - The Val ue of the Constant Expression shall be of the sane type as the stated
type for the constants */

92. ConstKeyword ::= "const"

93. Constldentifier ::= Identifier

ETSI

159 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.1.3 Template definitions

94. Tenpl ateDef ::= Tenpl at eKeyword BaseTenpl ate [DerivedDef] AssignnmentChar Tenpl at eBody

95. BaseTenplate ::= (Type | Signature) Tenplateldentifier ["(" TenplateFormal ParList ")"]

96. Tenpl at eKeyword ::= "tenpl ate"

97. Tenplateldentifier ::= Identifier

98. DerivedDef ::= MdifiesKeyword Tenpl at eRef

99. ModifiesKeyword ::= "nodifies"

100. Tenpl at eFor mal Par Li st ::= Tenpl at eFor nal Par {"," Tenpl at eFor nal Par}

101. Tenpl at eFor mal Par ::= Fornal Val uePar | For nal Tenpl at ePar

/* STATI C SEMANTI CS - Formal Val uePar shall resolve to an in paranmeter */

102. Tenpl ateBody ::= (Sinpl eSpec | FieldSpecList | ArrayValueOrAttrib) | [ExtraMatchingAttributes]

/* STATIC SEMANTICS - Wthin Tepl ateBody the ArrayValueOrAttrib can be used for array, record,
record of and set of types. */

103. Sinpl eSpec ::= SingleValueOAttrib

104. FieldSpecList ::= "{"[FieldSpec {"," FieldSpec}] "}"

105. FieldSpec ::= Fiel dReference Assi gnnent Char Tenpl at eBody
106. FieldReference ::= StructFieldRef | ArrayOBitRef | ParRef

/* STATIC SEMANTICS - Wthin Fiel dReference ArrayOrBitRef can be used for record of and set of
tenpl ates/tenplate fields in nodified tenplates only*/

107. StructFieldRef ::= StructFieldldentifier| PredefinedType | TypeReference

/* STATI C SEMANTI CS - PredefinedType and TypeReference shall be used for anytype val ue notation
only. PredefinedType shall not be AnyTypeKeyword. */

108. ParRef ::= SignatureParldentifier
/* STATI C SEMANTI CS - SignatureParldentifier shall be a fornal paraneter ldentifier fromthe
associ ated signature definition */
109. SignatureParldentifier ::= ValueParldentifier
110. ArrayOrBitRef ::= "[" FieldOBitNunber "]"
/* STATI C SEMANTI CS - ArrayRef shall be optionally used for array types and ASN. 1 SET OF and
SEQUENCE OF and TTCN-3 record of and set of. The sane notation can be used for a Bit reference
inside an ASN.1 or TTCN-3 bitstring type */
111. Fi el dO Bi t Nunber ::= Singl eExpression
/* STATI C SEMANTICS - Singl eExpression will resolve to a value of integer type */
112. Singl eValueOrAttrib ::= Matchi ngSynbol |

Si ngl eExpressi on |

Tenpl at eRef Wt hPar Li st
/* STATI C SEMANTI C - Variabl el dentifier (accessed via singleExpression) nay only be used in in-line
tenpl ate definitions to reference variables in the current scope */

113. ArrayValueOrAttrib ::= "{" ArrayEl enent SpecList "}"
114. ArrayEl enent SpecLi st ::= ArrayEl enent Spec {"," ArrayEl enent Spec}
115. ArrayEl enent Spec ::= Not UsedSynbol | Pernutati onMatch | Tenpl at eBody
116. Not UsedSynbol ::= Dash
117. Matchi ngSynbol ::= Conpl ement |
AnyVal ue |
AnyOOmit |
Val ueOrAttribList |
Range |

BitStringhWatch |

HexStringhatch |
Cctet StringMatch |

Char StringMat ch |
Subset Mat ch |

Super set Mat ch

118. ExtraMatchingAttributes ::= LengthMatch | |fPresentMatch | LengthMatch |fPresent Match
119. BitStringMatch ::= """ {BinO-Match} "'" "B"

120. BinOrMatch ::= Bin | AnyValue | AnyOQOnit

121. HexStringhvatch ::= """ {HexOrMatch} "'" "H'

122. HexOrMatch ::= Hex | AnyValue | AnyOrQOmt

123. CctetStringvatch ::= """ {CctO vatch} "'* "O

124. CQctOrvatch ::= Cct | AnyValue | AnyOrQrit

125. CharStringMatch ::= PatternKeyword Cstring

126. PatternKeyword ::= "pattern"

127. Conpl ement ::= Conpl ement Keyword Val ueli st

128. Conpl enent Keyword ::= "conpl ement"

129. Val uelist ::= "(" Constant Expression {"," Constant Expression} ")"
130. Subset Match ::= Subset Keyword Val ueli st

/* STATI C SEMANTI C - Subset matching shall only be used with the set of type */
131. Subset Keyword ::= "subset"

132. Superset Match ::= Superset Keyword Val ueli st

/* STATI C SEMANTI C - Superset matching shall only be used with the set of type */
133. Superset Keyword ::= "superset"

134. PernutationMatch ::= PernutationKeyword PernutationLi st
135. PernutationKeyword ::= "pernutation"
136. PernutationList ::= "(" TenplateBody { "," Tenpl ateBody } ")"

/* STATI C SEMANTI CS: Restrictions on the content of Tenpl ateBody are given in clause B.1.3.3 */
137. Anyvalue ::= "?"
138. AnyOorQmt ::= "*"

ETSI

160 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

139. ValueOrAttribList ::="(" Tenpl ateBody {"," Tenpl ateBody}+ ")"
140. LengthMatch ::= StringlLength

141. |fPresentMatch ::= |fPresent Keyword

142. |fPresentKeyword ::= "ifpresent"

143. Range ::= "(" LowerBound ".." UpperBound ")"

144. Lower Bound ::= Singl eConst Expression | Mnus InfinityKeyword
145. UpperBound ::= Singl eConst Expression | InfinityKeyword

/* STATI C SEMANTI CS - Lower Bound and UpperBound shall evaluate to types integer, charstring,

uni versal charstring or float. In case LowerBound or UpperBound eval uates to types charstring or
uni versal charstring, only SingleConstExpression may be present and the string |length shall be 1*/
146. InfinityKeyword ::= "infinity"

147. Tenpl atelnstance ::= | nLineTenpl ate

148. Tenpl ateRef WthParList ::= [d obal Modul eld Dot] Tenpl ateldentifier [TenplateActual ParList] |
Tenpl at ePar | denti fier
149. Tenpl ateRef ::= [d obal Modul eld Dot] Tenpl ateldentifier | Tenpl ateParldentifier
150. InLineTenplate ::= [(Type | Signature) Colon] [DerivedRef WthParList Assignnent Char]
Tenpl at eBody
/* STATIC SEMANTICS - The type field may only be omitted when the type is inplicitly unanbi gous */
151. DerivedRef WthParList ::= MdifiesKeyword Tenpl at eRef Wt hPar Li st
152. Tenpl ateActual ParList ::= "(" Tenpl ateActual Par {"," Tenpl at eActual Par} ")"
153. Tenpl at eAct ual Par ::= Tenpl at el nst ance

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore SingleExpressions */

154. Tenpl ateCps ::= MatchOp | Val ueof Op

155. MatchOp ::= MatchKeyword " (" Expression "," Tenpl at el nstance")"

/* STATI C SEMANTICS - The type of the value returned by the expression nust be the sane as the
tenplate type and each field of the tenplate shall resolve to a single value */

156. Mat chKeyword ::= "match"

157. Val ueof Op ::= Val ueof Keyword " (" Tenpl at el nst ance")"

158. Val ueof Keyword ::= "val ueof"

A.16.1.4 Function definitions

159. FunctionDef ::= FunctionKeyword Functionldentifier
"("[FunctionFormal ParList] ")" [RunsOnSpec] [ReturnType]
St at enent Bl ock

160. FunctionKeyword ::= "function"

161. Functionldentifier ::= ldentifier

162. FunctionFor mal ParLi st ::= FunctionFormal Par {"," Functi onFornal Par}
163. FunctionFor mal Par ::= Fornal Val uePar |

For nal Ti ner Par |

For nal Tenpl at ePar |

For nal Por t Par
164. ReturnType ::= ReturnKeyword [Tenpl at eKeyword] Type
/* STATI C SEMANTICS - The use of the tenplate keyword shall conformto restrictions in clause 16.1.0
of ES 201 873-1*/

165. ReturnKeyword ::= "return"

166. RunsOnSpec ::= RunsKeyword OnKeyword Conponent Type

167. RunsKeyword ::= "runs"

168. OnKeyword ::= "on"

169. MICKeyword ::= "mtc"

170. StatenmentBlock ::= "{" [FunctionStatenent O DefList] "}"

171. FunctionStatenment O DefList ::= {FunctionStatenent O Def [Seni Colon]}+

172. FunctionStatenment O Def ::= FunctionLocal Def |
FunctionLocal I nst |
Funct i onSt at enent

173. FunctionLocal Inst ::= Varlnstance | Tinerlnstance

174. FunctionLocal Def ::= ConstDef | Tenpl at eDef

175. FunctionStatenent ::= ConfigurationStatenents |

Ti ner St atenents |

Conmmruni cati onSt at enent's |
Basi cSt atenents |

Behavi our St at enent s |
Verdict Statenments |

SUTSt at enent s

176. Functionlnstance ::= FunctionRef "(" [FunctionActual ParList] ")"

177. FunctionRef ::= [d obal Moduleld Dot] (Functionldentifier | ExtFunctionldentifier) |
PreDef Functi onl denti fi er

178. PreDef Functionldentifier ::= ldentifier

/* STATIC SEMANTICS - The Identifier will be one of the pre-defined TTCN-3 Function Identifiers from
Annex C of ES 201 873-1*/

179. FunctionActual ParLi st ::= FunctionActual Par {"," Functi onActual Par}
180. FunctionActual Par ::= Ti nmerRef |

Tenpl at el nst ance |

Port |

Conponent Ref

ETSI

161 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expr essi on production */

A.1.6.1.5 Signature definitions

181. SignatureDef ::= SignatureKeyword Signatureldentifier
"("[SignatureFormal ParList] ")" [ReturnType | NoBl ockKeyword]

[Excepti onSpec

182. SignatureKeyword ::= "signature"

183. Signatureldentifier ::= Identifier

184. SignatureFornal ParLi st ::= SignatureFornal Par {"," SignatureFornal Par}
185. SignatureFormal Par ::= For nal Val uePar

186. ExceptionSpec ::= ExceptionKeyword " (" ExceptionTypeList ")"

187. ExceptionKeyword ::= "exception"

188. ExceptionTypeList ::= Type {"," Type}

189. NoBl ockKeyword ::= "nobl ock"

190. Signature ::= [d obal Modul el d Dot] Signatureldentifier

A.1.6.1.6 Testcase definitions

191. TestcaseDef ::= TestcaseKeyword Testcaseldentifier
"("[Test caseFornmal ParList] ")" ConfigSpec
St at ement Bl ock

192. TestcaseKeyword ::= "testcase"

193. Testcaseldentifier ::= ldentifier

194. TestcaseFor mal ParLi st ::= TestcaseFornal Par {"," TestcaseFornal Par}
195. Test caseFormal Par ::= Fornal Val uePar |

For mal Tenpl at ePar
RunsOnSpec [Syst enfSpec]
Syst enKeywor d Conponent Type

196. ConfigSpec ::
197. Systenftpec ::

198. SystenkKeyword ::= "systent

199. Testcaselnstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActual ParlList] ")"
[*," Tinervalue] ")"

200. ExecuteKeyword ::= "execute"

201. TestcaseRef ::= [d obal Mbdul eld Dot] Testcaseldentifier

202. TestcaseActual ParlList ::= TestcaseActual Par {"," TestcaseActual Par}

203. TestcaseActual Par ::= Tenpl at el nstance

/* STATI C SEMANTI CS - When the corresponding fornal paraneter is not of tenplate type the
Tenpl at el nstance production shall resolve to one or nore Singl eExpressions i.e. equivalent to the
Expr essi on production */

A.1.6.1.7 Altstep definitions

204. AltstepDef ::= AltstepKeyword Altstepldentifier

"("[Al tstepFornul ParList] ")" [RunsOnSpec
"{" Al tstepLocal DefList AtGuardList "}"

205. AltstepKeyword ::= "altstep"
206. Altstepldentifier ::= ldentifier
207. Al tstepFormal ParList ::= FunctionFornal ParlLi st

/* STATIC SEMANTICS - altsteps that are activated as defaults shall only have in paraneters, port
paraneters, or tiner paraneters */

/* STATIC SEMANTICS -altsteps that are only invoked as an alternative in an alt statenent or as
stand-al one statenment in a TTCN-3 behavi our description may have in, out and inout paraneters. */

208. AltstepLocal DefList ::= {A tstepLocal Def [Seni Col on]}

209. AltstepLocal Def ::= Varlnstance | Tinerlnstance | ConstDef | Tenpl at eDef

| * STATI C SEMANTI CS - Al tsteplLocal Def shall conformto restrictions in clause 16.2.2.1 of

ES 201 873-1*/

210. Altsteplnstance ::= Al tstepRef "(" [FunctionActual ParList] ")"

/* STATIC SEMANTICS - all tiner instances in FunctionActual ParList shall be declared as conponent
local timers (see also production Conponent El ement Def) */

211. AltstepRef ::= [d obal Moduleld Dot] Altstepldentifier

ETSI

162 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.1.8 Import definitions

212. InportDef ::= | nportKeyword |nportFronSpec (A | WthExcepts | ("{" |nportSpec "}"))
213. I nportKeyword ::= "inport"

214, Al WthExcepts ::= Al Keyword [Except sDef]

215. ExceptsDef ::= Except Keyword "{" Except Spec "}"

216. ExceptKeyword ::= "except"

217. Except Spec ::= {ExceptEl enent [Sem Col on]}

/* STATI C SEMANTI CS: Any of the production conponents (Except G oupSpec, Except TypeDef Spec etc.) nay
be present only once in the ExceptSpec production */
218. Except El enent ::= Except G oupSpec |

Except TypeDef Spec |

Except Tenpl at eSpec |

Except Const Spec |

Except Test caseSpec |

Except Al t st epSpec |

Except Funct i onSpec |

Except Si gnat ur eSpec |

Except Modul ePar Spec

219. Except G oupSpec ::= G oupKeyword (Except GroupReflList | AllKeyword)

220. Except TypeDef Spec ::= TypeDef Keyword (TypeRefList | All Keyword)

221. Except Tenpl at eSpec ::= Tenpl at eKeyword (Tenpl at eRefLi st | All Keyword)
222. Except Const Spec ::= Const Keyword (Const RefList | AllKeyword)

223. Except TestcaseSpec ::= TestcaseKeyword (TestcaseRefList | AllKeyword)
224. ExceptAltstepSpec ::= A tstepKeyword (Al tstepRefList | Al Keyword)

225. Except FunctionSpec ::= Functi onKeyword (FunctionReflList | AllKeyword)
226. Except SignatureSpec ::= SignatureKeyword (SignatureRefList | AllKeyword)
227. Except Modul ePar Spec :: = Mdul ePar Keyword (Mdul ePar Ref Li st | Al |l Keyword)
228. InmportSpec ::= {lnportEl enent [Sem Col on]}

229. InportEl enment ::= |nportG oupSpec |

| npor t TypeDef Spec |

| npor t Tenpl at eSpec |
| npor t Const Spec |

| npor t Test caseSpec |
| nport Al t st epSpec |

| npor t Functi onSpec |
| npor t Si gnat ur eSpec |
| npor t Modul ePar Spec

230. | nportFrontpec ::= FronKeyword Mddul el d [Recursi veKeywor d]

/* NOTE: The use of RecursiveKeyword is deprecated*/

231. RecursiveKeyword ::= "recursive"

232. I nport G oupSpec ::= GoupKeyword (G oupRefListWthExcept | Al G oupsWthExcept)
233. GoupRefList ::= Full Goupldentifier {"," Full Goupldentifier}

234. GoupRefListWthExcept ::= Full GoupldentifierWthExcept {"," Full GoupldentifierWthExcept}
235. Al G oupsWthExcept ::= Al Keyword [Except Keyword G oupRefLi st]

236. Full Groupldentifier ::= Goupldentifier {Dot Goupldentifier}

237. Full GroupldentifierWthExcept ::= Full Groupldentifier [ExceptsDef]

238. Except GroupRefList ::= ExceptFull Goupldentifier {"," ExceptFull Goupldentifier}
239. ExceptFull Goupldentifier ::= Full Goupldentifier

240. | nport TypeDef Spec ::= TypeDef Keyword (TypeRefList | Al TypesWthExcept)

241. TypeRefList ::= TypeDefldentifier {"," TypeDefldentifier}

242. Al TypesWthExcept ::= Al Keyword [Except Keyword TypeRefLi st]

243. TypeDefldentifier ::= StructTypeldentifier |

EnuniTypel denti fier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel denti fi er
244. | nportTenpl ateSpec ::= Tenpl at eKeyword (Tenpl ateRefList | All Tenpl sWthExcept)
245. Tenpl ateRefList ::= Tenplateldentifier {"," Tenplateldentifier}
246. Al Tenpl sWthExcept ::= Al Keyword [Except Keyword Tenpl at eRef Li st]
247. | nport Const Spec ::= ConstKeyword (ConstRefList | Al ConstsWthExcept)
248. ConstReflList ::= Constldentifier {"," Constldentifier}
249. Al ConstsWthExcept ::= Al Keyword [Except Keyword Const Ref Li st]
250. InportAltstepSpec ::= A tstepKeyword (Al tstepRefList | AlA tstepsWthExcept)
251. AltstepReflList ::= Altstepldentifier {"," Atstepldentifier}
252. Al AltstepsWthExcept ::= Al Keyword [Except Keyword Al t st epRefList]
253. I nportTestcaseSpec ::= TestcaseKeyword (TestcaseRefList | All TestcasesWthExcept)
254. TestcaseReflList ::= Testcaseldentifier {"," Testcaseldentifier}
255. Al TestcasesWthExcept ::= Al Keyword [Except Keyword Test caseRef Li st]
256. | nmportFunctionSpec ::= FunctionKeyword (FunctionRefList | AllFunctionsWthExcept)
257. FunctionReflList ::= Functionldentifier {"," Functionldentifier}
258. Al FunctionsWthExcept ::= Al Keyword [Except Keyword Functi onRef Li st]
259. | nportSignatureSpec ::= SignatureKeyword (SignatureRefList | Al SignaturesWthExcept)
260. SignatureReflList ::= Signatureldentifier {"," Signatureldentifier}
261. Al SignaturesWthExcept ::= Al Keyword [Except Keyword Si gnat ur eRef Li st]
262. | nport Modul ePar Spec :: = Mdul ePar Keyword (Mdul eParRefList | Al Mdul ePar Wt hExcept)
263. Modul ePar Ref Li st ::= Mdul eParldentifier {"," Mdul eParldentifier}
264. Al | Modul ePar Wt hExcept ::= Al Keyword [Except Keyword Modul ePar Ref Li st]

ETSI

163 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.1.9 Group definitions

265. GroupDef ::= G oupKeyword G oupldentifier
"{" [Modul eDefinitionsPart] "}"

266. G oupKeyword ::= "group"

267. Goupldentifier ::= ldentifier

A.1.6.1.10 External function definitions

268. ExtFunctionDef ::= ExtKeyword FunctionKeyword ExtFunctionldentifier
"("[FunctionFormal ParList] ")" [ReturnType]

269. ExtKeyword ::= "external"

270. ExtFunctionldentifier ::= Identifier

A.1.6.1.11 External constant definitions

271. Ext ConstDef ::= ExtKeyword ConstKeyword Type Ext Constldentifier
/* STATI C SEMANTI CS - Type shall follow the rules given in clause 9 of ES 201 873-1.*/
272. ExtConstldentifier ::= ldentifier

A.1.6.1.12 Module parameter definitions

273. Modul ePar Def ::= Mdul ePar Keyword (Modul ePar | ("{" MiltitypedWbdul eParList "}"))
274. Modul ePar Keyword :: = "nodul epar™

275. MultitypedModul eParList ::={ Mdul ePar Sem Col on }+

276. Modul ePar ::= Mdul ePar Type Mdul ePar Li st

/* STATI C SEMANTI CS - The Val ue of the Constant Expression shall be of the same type as the stated
type for the Parameter */

277. Modul ePar Type ::= Type

/* STATI C SEMANTICS - Type shall not be of conponent, default or anytype. Type shall only resolve to
address type if a definition for the address type is defined within the nodule */

278. Modul ePar Li st ::= Mdul eParldentifier [AssignmentChar Constant Expression]
{","Modul eParldentifier [AssignnentChar Constant Expression]}
279. Modul eParldentifier ::= ldentifier

A.1.6.2 Control part

A.1.6.2.0 General

280. Modul eControl Part ::= Control Keyword
"{" Modul eControl Body "}"
[WthStatenent] [Seni Col on]
281. Control Keyword ::= "control"
282. Modul eControl Body ::= [Control Statenment O Def Li st]
283. Control Statement O Def Li st ::= {Control Statenment O Def [Sem Col on]}+
284. Control Statement Or Def ::= FunctionLocal Def |
FunctionLocal I nst |
Contr ol St at ement
285. Control Statenment ::= TinerStatenents |
Basi cSt atenents |
Behavi our St at enent s |
SUTSt at ement s |

St opKeywor d
/* STATI C SEMANTICS - Restrictions on use of statements in the control part are given in table 11 */

A.1.6.2.1 Variable instantiation

286. Varlnstance ::= VarKeyword ((Type VarList) | (Tenpl ateKeyword Type TenpVarlList))

287. VarlList ::= SingleVarlnstance {"," SingleVarlnstance}

288. SingleVarlnstance ::= Varldentifier [ArrayDef] [AssignmentChar Varlnitial Val ue]

289. Varlnitial Value ::= Expression

290. VarKeyword ::= "var"

291. Varldentifier ::= ldentifier

292. TenmpVarlList ::= SingleTenpVarlnstance {"," SingleTenpVarl nstance}

293. Singl eTenpVarlnstance ::= Varldentifier [ArrayDef] [AssignmentChar TenpVarlnitial Val ue]
294. TenpVarlnitial Val ue ::= Tenpl at eBody

295. VariableRef ::= (Varldentifier | ValueParldentifier) [ExtendedFi el dRef erence]

ETSI

164 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.2.2 Timer instantiation

296. Tinmerlnstance ::= TinerKeyword TinerlList

297. TimerList ::= SingleTinerlnstance{"," SingleTinerlnstance}

298. SingleTimerinstance ::= Tinerldentifier [ArrayDef] [AssignnmentChar TinerVal ue]
299. TimerKeyword ::= "timer"

300. Tinmerldentifier ::= ldentifier

301. TinerValue ::= Expression

/* STATI C SEMANTI CS - When Expression resolves to Singl eExpression it nust resolve to a val ue of
type float. Expression shall only resolves to ConpoundExpression in the initialization in default
timer value assignnent for timer arrays */

302. TimerRef ::= (Tinerldentifier | TinerParldentifier) {ArrayOBitRef}

A.1.6.2.3 Component operations

303. ConfigurationStatenments ::= Connect Statenent |
MapSt at enent |
Di sconnect St at enent |
UnmapsSt at enent |
DonesSt at enent |
Ki || edSt at enent |
Start TCSt at ement |
St opTCSt at enent |
Ki I | TCSt at enent

304. ConfigurationQps ::= Create | SelfOp | SystemOp | MICOp | Running®p | Alive(p
305. CreateQp ::= Component Type Dot CreateKeyword ["(" SingleExpession ")"] [AliveKeyword
/* STATI C SEMANTICS - Restrictions on Singl eExpession see in clause 22.1 */

306. SystenDp ::= SystenKeyword

307. SelfQp ::= "self"

308. Mrcop ::= MrCkeyword

309. DoneStatenent ::= Conponentld Dot DoneKeyword

310. KilledStatenent ::= Conponentld Dot KilledKeyword

311. Conponentld ::= Conponent O Def aul t Ref erence | (AnyKeyword | All Keyword) Conponent Keyword
312. DoneKeyword ::= "done"

313. Kill edKeyword ::= "killed"

314. RunningQp ::= Conponent|d Dot Runni ngKeywor d

315. Runni ngKeyword ::= "runni ng"

316. AliveQp ::= Conponentld Dot AliveKeyword

317. CreateKeyword ::= "create"

318. AliveKeyword ::= "alive"

319. Connect Statenment ::= Connect Keyword Singl eConnecti onSpec

320. Connect Keyword ::= "connect"

321. Singl eConnectionSpec ::="(" PortRef "," PortRef ")"

322. PortRef ::= ConponentRef Colon Port

323. Conponent Ref ::= Conponent O Def aul t Ref erence | SystemOp | SelfQp | MICOp

324. DisconnectStatenment ::= Disconnect Keyword [Si ngl eO Mil ti Connecti onSpec]

325. SingleOMiltiConnectionSpec ::= Singl eConnectionSpec |

Al | Connecti onsSpec |
Al | Port sSpec |
Al | ConpsAl | Port sSpec]

326. Al |l ConnectionsSpec ::= "(" PortRef ")"

327. Al PortsSpec ::= "(" ConponentRef ":" Al Keyword PortKeyword ")"

328. Al | ConpsAl | PortsSpec ::= "(" Al Keyword Conponent Keyword ":" All Keyword PortKeyword ")"
329. DisconnectKeyword ::= "disconnect"

330. MapStatenent ::= MapKeyword Singl eConnecti onSpec

331. MapKeyword ::= "map"

332. UnmapStatenent ::= UnmapKeyword [Si ngl eO Multi Connecti onSpec]

333. UnmapKeyword ::= "unmap"

334. StartTCStatenment ::= Conponent Or Def aul t Ref erence Dot StartKeyword "(" Functionlnstance ")"

/* STATI C SEMANTI CS the Function instance may only have in paraneters */
/* STATI C SEMANTI CS the Function instance shall not have tinmer paraneters */
335. StartKeyword ::= "start"

336. StopTCStatenent ::= StopKeyword | (ConponentReferenceOrLiteral Dot StopKeyword) |
(Al Keyword Conponent Keyword Dot St opKeywor d)

337. Conponent Ref erenceOrLiteral ::= Conponent O Defaul t Reference | MICOp | Sel fOp

338. KillTCStatenent ::= KillKeyword | (ConponentldentifierOrLiteral Dot Kill Keyword) |
(Al Keywor d Conponent Keyword Dot Ki | | Keywor d)

339. Conponent O Def aul t Ref erence :: = Vari abl eRef | Functi onl nstance

/* STATI C SEMANTICS - The variable associated with VariableRef or the return type associated with
Functi onl nstance nmust be of conmponent type when used in configuration statements and shall be of
default type when used in the deactivate statement. */

340. KillKeyword ::= "kill"

ETSI

165 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.2.4 Port operations

341. Port ::= (Portldentifier | PortParldentifier) {ArrayOBitRef}
342. Communi cationStatenents ::= SendStatenent |
Cal | St atenent |
Repl ySt at enent |
Rai seSt at enent |
Recei veSt at enent |
Trigger Statenent |
Cet Cal | St at ement |
Cet Repl ySt at enent |
Cat chSt at enent |
CheckSt at enent |
Cl ear St atenent |
Start Statenent |
St opSt at enent
343. SendSt at enent = Port Dot PortSendQp
344. PortSendQp ::= SendOpKeyword "(" SendParaneter ")" [Tod ause]

345. SendOpKeyword ::= "send"
346. SendPar anet er Tenpl at el nst ance
347. Tod ause ::= ToKeyword AddressRef |
Addr essRef Li st |
Al | Keywor d Conponent Keywor d
/* STATI C SEMANTI CS - AddressRef shoul d not contain matching nmechanisns */

348. AddressReflList ::= "(" AddressRef {"," AddressRef} ")"
349. ToKeyword ::= "to"
350. AddressRef ::= Tenpl atel nstance

/* STATI C SEMANTI CS - Tenpl atel nstance nust be of address or conponent type */
351. Call Statenent Port Dot PortCall Qo [PortCall Body]

352. PortCallQp ::= Call OpKeyword "(" Call Parameters ")" [Tod ause]

353. Cal | OpKeyword ::= "cal I "

354. Cal |l Parameters ::= Tenplatelnstance ["," Call Ti merVal ue]

/* STATI C SEMANTICS only out paraneters may be omtted or specified with a matching attribute */
355. Call TinmerValue ::= TinerValue | Nowait Keyword

/* STATI C SEMANTI CS Val ue nust be of type float */

356. Nowait Keyword ::= "nowait"

357. PortCallBody ::= "{" CallBodyStatenentList "}"

358. Cal | BodyStatenentList ::= {Call BodyStatenment [Sem Col on]}+

359. Cal |l BodyStatenent ::= Call BodyGuard StatenentBl ock

360. Cal | BodyQuard ::= AltCQuardChar Call BodyQps

361. Cal | BodyOps ::= GetReplyStatenent | CatchStatenent

362. ReplyStatenent ::= Port Dot PortReplyQp

363. PortReplyQ ::= ReplyKeyword "(" Tenpl atel nstance [Repl yValue]")" [Tod ause]
364. Repl yKeyword ::= "reply"

365. ReplyVal ue ::= Val ueKeyword Expression

366. RaiseStatenent ::= Port Dot PortRai seQp

367. PortRaiseQ ::= RaiseKeyword "(" Signature "," Tenplatelnstance ")" [Tod ause]
368. Rai seKeyword ::= "raise"

369. ReceiveStatement ::= PortO Any Dot Port Recei veQp

370. PortOrAny ::= Port | AnyKeyword Port Keyword

371. PortReceive® ::= Recei veOpKeyword ["(" ReceiveParaneter ")"] [FronC ause] [PortRedirect]

/* STATI C SEMANTI CS: the PortRedirect option nay only be present if the ReceiveParaneter option is
al so present */

372. ReceiveOpKeyword ::= "receive"

373. ReceiveParaneter ::= Tenpl atel nstance

374. FronCO ause ::= FronKeyword AddressRef

375. FronKeyword ::= "front

376. PortRedirect ::= PortRedirectSynbol (ValueSpec [SenderSpec] | Sender Spec)
377. PortRedirectSynbol ::="->"

378. Val ueSpec ::= Val ueKeyword Vari abl eRef

379. Val ueKeyword ::= "val ue"

380. Sender Spec ::= Sender Keyword Vari abl eRef

/* STATI C SEMANTI C Vari abl e ref nust be of address or conponent type */

381. SenderKeyword ::= "sender"

382. TriggerStatenent ::= PortOrAny Dot PortTrigger Qp

383. PortTriggerQp ::= Trigger Keyword ["(" ReceiveParaneter ")"] [FronC ause] [PortRedirect]

/* STATI C SEMANTICS: the PortRedirect option nmay only be present if the ReceiveParaneter option is
al so present */

384. Trigger OpKeyword ::= "trigger"
385. CetCall Statement ::= PortOrAny Dot PortGetCall Op
386. PortGetCall Op ::= GetCall OpKeyword ["(" ReceiveParaneter ")"] [FronC ause]

[Port Redi rect Wt hPar ani
/* STATI C SEMANTI CS: the PortRedirect WthParam option may only be present if the ReceiveParaneter
option is also present */

387. GetCall OpKeyword ::= "getcal "
388. PortRedirect WthParam ::= PortRedirect Synbol RedirectWthParanfSpec
389. Redirect Wt hParantspec ::= ParanfSpec [Sender Spec] |

Sender Spec

ETSI

390.
391.
392.
393.
394.
/* ST
395.
396.
397.
398.
399.

/* ST.
optio
400.
401.

402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
/* ST.
al so
413.
414,
415.
416.
417.
418.
419.
420.
421.
422.
423.
424,

166 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Par anSpec ::= ParankKeyword ParamAssi gnnent Li st

Par ankKeyword ::= "parant

Par amAssi gnnent List ::= "(" (AssignnentlList | VariablelList) ")"

Assi gnnment Li st ::= Variabl eAssi gnnment {"," Vari abl eAssi gnnent}

Vari abl eAssi gnment :: = Vari abl eRef Assi gnnment Char Paraneterldentifier

ATI C SEMANTI CS: the paraneterldentifiers nust be fromthe corresponding signature definition */
Parameter|dentifier ::= ValueParldentifier

Variabl eList ::= VariableEntry {"," Variabl eEntry}

Variabl eEntry ::= Variabl eRef | Not UsedSynbol

Get Repl yStatement ::= PortOrAny Dot Port CGet Repl yOp

Port Get Repl yOp :: = Cet Repl yOpKeyword ["(" Recei veParaneter [Val ueMatchSpec] ")"]

[FronC ause] [PortRedirect Wt hVal ueAndPar ani
ATl C SEMANTI CS: the PortRedirect WthParam option may only be present if the ReceiveParaneter
nis also present */
Por t Redi rect Wt hVal ueAndPar am : :
Redi r ect Wt hVal ueAndPar anSpec : :

Por t Redi r ect Synbol Redirect Wt hVal ueAndPar anfSpec
Val ueSpec [Par anSpec] [Sender Spec] |
Redi r ect Wt hPar anSpec

Get Repl yOpKeyword ::= "getreply"
Val ueMat chSpec : Val ueKeywor d Tenpl at el nst ance
CheckSt at enment Port Or Any Dot Port CheckOp

HEHIe Rt

Port CheckQp :: = eckOpKeyword ["(" CheckParaneter ")"]

CheckOpKeywor d : "check"

CheckPar anet er CheckPort OpsPresent | FronCl ausePresent | RedirectPresent

Frond ausePresent ::= FronCl ause [Port Redirect Synbol Sender Spec]

Redi rect Present ::= PortRedirectSynbol Sender Spec

CheckPort OpsPresent ::= PortReceiveQy | PortGetCall Op | PortGetReplyQp | PortCatchOp
CatchStatement ::= PortOrAny Dot PortCatchQp

Port CatchQp ::= CatchOpKeyword [" (" CatchQpParaneter ")"] [FronC ause] [PortRedirect]
ATI C SEMANTI CS: the PortRedirect option nay only be present if the CatchOpParaneter option is
present */

Cat chOpKeyword ::= "catch"

Cat chQpParaneter ::= Signature "," Tenplatelnstance | Ti meout Keyword

CearStatement ::= Port O All Dot Portd ear

PortOrAll ::= Port | AllKeyword Port Keyword

PortCl earOp ::= O ear OpKeyword

Cl ear OpKeyword ::= "clear"

StartStatenent ::= PortOrAll Dot PortStartQp

PortStartOp ::= Start Keyword

StopStatement ::= PortOrAll Dot PortStopQp

Port StopQp ::= StopKeyword

St opKeyword ::= "stop"

AnyKeyword ::= "any"

A.1.6.2.5 Timer operations

425. TimerStatenents ::= StartTinerStatenent | StopTinerStatenent | Ti neout Statenent
426. TimerOps ::= ReadTi merQ | Runni ngTi ner O
427. StartTimerStatement ::= TinerRef Dot StartKeyword ["(" TinerValue ")"]
428. StopTinerStatenent ::= TinmerRef OrAll Dot St opKeyword
429. TimerRef O Al ::= TinerRef | Al Keyword Ti mer Keywor d
430. ReadTinmerQp ::= TinerRef Dot ReadKeyword
431. ReadKeyword ::= "read"
432. RunningTinmerQp ::= TinerRef O Any Dot Runni ngKeyword
433. TineoutStatement ::= TinerRefOrAny Dot Ti meout Keyword
434, TimerRef O Any ::= TinerRef | AnyKeyword Ti ner Keyword
435. Ti meout Keyword ::= "timeout"
A.1.6.3 Type
436. Type ::= PredefinedType | ReferencedType
437. PredefinedType ::= BitStringKeyword |

Bool eanKeyword |

Char St ri ngkeyword |

Uni versal CharString |

| nt eger Keyword |

Cctet StringKeyword |

HexStri ngKeyword |

Ver di ct TypeKeyword |

Fl oat Keyword |

Addr essKeyword |

Def aul t Keyword |

AnyTypeKeywor d
438. BitStringKeyword ::= "bitstring"
439. Bool eanKeyword ::= "bool ean"
440. IntegerKeyword ::= "integer"
441. CctetStringKeyword ::= "octetstring”

ETSI

442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.

Ver di ct TypeKeywo
Fl oat Keyword :: =

Def aul t Keyword :

Char St ri ngKeywor
Uni ver sal Char Str

Ref er encedType :
TypeRef erence :

453. TypeActual ParLi s
454. TypeActual Par :
455. ArrayDef ::= {"][
456. ArrayBounds ::
/* STATI C SEMANTI CS -

A.1.6.4 Value

457. Val ue ::

Pr edef

HexStri ngKeyword :

Addr essKeyword ::

AnyTypeKeyword : :

Uni ver sal Keyword ::

167

;= "hexstring"
rd ::= "verdicttype"
"float"
"addr ess"
"defaul t"
"anytype"
d ::= "charstring"
ing ::= Universal Keyword Char Stri ngKeyword
"uni versal"
:= [Gd obal Modul eld Dot] TypeReference [Ext endedFi el dRef er ence]

;= Struct Typel dentifi er[TypeActual ParList] |

EnuntTypel denti fier |
SubTypel dentifier |
Conponent Typel denti fi er

t 1= "(" TypeActual Par {",

;.= Const ant Expr essi on

TypeActual Par} ")"
" ArrayBounds [".." ArrayBounds] "]

"+
Si ngl eConst Expr essi on
ArrayBounds will resolve to a non negative val ue of

i nedVal ue | ReferencedVal ue

458. PredefinedVval ue :

:= BitStringVal ue |
Bool eanVal ue |
Char St ri ngVal ue |
| nt eger Val ue |
Cctet StringVal ue |
HexStri ngVal ue |
Ver di ct TypeVal ue |
Enuner at edVal ue |
Fl oat Val ue |
Addr essVal ue |

Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

i nteger type */

Oni t Val ue
459. BitStringValue ::= Bstring
460. Bool eanValue ::= "true" | "fal se"
461. |ntegerVal ue ::= Nunber
462. CctetStringValue ::= Gstring
463. HexStringValue ::= Hstring
464. Verdict TypeValue ::= "pass" | "fail" | "inconc" | "none" | "error"
465. EnuneratedVal ue ::= Enunerationldentifier
466. CharStringValue ::= Cstring | Quadruple
467. Quadruple ::= CharKeyword "(" Goup "," Plane "," Row "," Cell ")"
468. CharKeyword ::= "char"
469. Group ::= Nunber
470. Plane ::= Nunber
471. Row ::= Nunber
472. Cell ::= Nunber
473. Fl oatVal ue ::= Fl oat Dot Not ati on | Fl oat ENot ati on
474. Fl oat Dot Notation ::= Nunber Dot Deci mal Nurber
475. FloatENotation ::= Number [Dot Decimal Nunber] Exponential [M nus] Nunber
476. Exponential ::="E'
477. ReferencedVal ue ::= Val ueRef erence [Ext endedFi el dRef er ence]
478. Val ueReference ::= [d obal Modul eld Dot] (Constldentifier | ExtConstldentifier |
Modul ePar I dentifier) |
Val uePar | dentifier |
Var | denti fier
479. Nunmber ::= (NonZeroNum {Nun}) | "O"
480. NonZeroNum::= "1" | "2" | "3" | "4" | "5" | "é" | "7" | "8" | "9"
481. Deci mal Nunber ::= {Nun}+
482. Num::= "0" | NonZer oNum
483. Bstring ::= """ {Bin} "'" "B"
484, Bin ::="0" "1
485. Hstring ::= """ {Hex} "'" "H'
486. Hex ::= Num| "A" | "B" | "C" | "D | "E" | "F'| "a" | "b" | "c" | "d" | "e" | "f"
487. Cstring ::= """ {CQct} """ "O
488. Cct = Hex Hex
489. Cstring ::= """ {Char} """
490. Char ::=/* REFERENCE - A character defined by the relevant CharacterString type. For

charstring a character fromthe character set defined in | SOIEC 646. For universal
character fromany character set defined in | SO |EC 10646 */

491. ldentifier ::= A pha{A phaNum | Underscore}

492. Al pha ::= UpperAl pha | LowerAl pha

493. Al phaNum::= Al pha | Num
494. UpperAl pha ::="A" | "B" |
"N O P Q| RS

charstring a

ETSI

168 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

495. LowerAlpha ::= "a" | "b" | "c¢" | "d" | "e" | "“f" | "g" | "h" | “i" | “"j"] "k" | "I" | "o |
B O I e L B O B I A I S B G IS
496. ExtendedAl phaNum ::= /* REFERENCE - A graphical character fromthe BASIC LATIN or fromthe

LATI N-1 SUPPLEMENT character sets defined in I SO | EC 10646 (characters fromchar (0,0,0,32) to char
(0,0,0,126), fromchar (0,0,0,161) to char (0,0,0,172) and fromchar (0,0,0,174) to char (0,O0,0, 255)
*

/

497. FreeText ::= """ {ExtendedAl phaNun} """
498. AddressValue ::= "null"

499. OmtValue ::= OntKeyword

500. Om tKeyword ::= "omt"

A.1.6.5 Parameterization

501. |nParKeyword ::= "in"

502. QutParKeyword ::= "out"

503. | nQutParKeyword ::= "inout"

504. Formal Val uePar ::= [(lnParKeyword | |nQutParKeyword | QutParKeyword)] Type Val ueParldentifier

505. Val ueParldentifier ::= ldentifier

506. Formal PortPar ::= [|nQutPar Keyword] PortTypeldentifier PortParldentifier

507. PortParldentifier ::= ldentifier

508. Formal TimerPar ::= [|nQutPar Keyword] Ti mer Keyword TinmerParldentifier

509. TimerParldentifier ::= ldentifier

510. Formal Tenpl atePar ::= [(| nPar Keyword | QutPar Keyword | | nQutParKeyword)]
Tenpl at eKeyword Type Tenpl at ePar | dentifier

511. Tenpl ateParldentifier ::= ldentifier

A.1.6.6 With statement

512. WthStatement ::= WthKeyword WthAttribLi st

513. WthKeyword ::= "with"

514. WthAttribList ::="{" MiltiWthAttrib "}"

515. MultiWthAttrib ::= {SingleWthAttrib [Sem Col on]}

516. SingleWthAttrib ::= Attri bKeyword [OverrideKeyword] [AttribQualifier] AttribSpec
517. AttribKeyword ::= EncodeKeyword |

Var i ant Keyword |

Di spl ayKeyword |
Ext ensi onKeywor d

518. EncodeKeyword ::= "encode"

519. VariantKeyword ::= "variant"

520. DisplayKeyword ::= "display"

521. ExtensionKeyword ::= "extension"

522. OverrideKeyword ::= "override"

523. AttribQualifier ::="(" DefOFieldRefList ")"

524, DefOrFieldRefList ::= DefOrFieldRef {"," Def OFieldRef}
525. DefOrFieldRef ::= DefinitionRef | FieldReference | AllRef

/* STATI C SEMANTI CS: the Def OrFiel dRef nust refer to a definition or field which is within the
nmodul e, group or definition to which the with statenent is associated */
526. DefinitionRef ::= StructTypeldentifier |
EnuniTypel denti fier |
Port Typel dentifier |
Conponent Typel dentifier |
SubTypel dentifier |
Constldentifier |
Tenpl atel dentifier |
Al tstepldentifier |
Testcasel dentifier |
Functionldentifier |
Signatureldentifier |
Varldentifier |
Tinerldentifier |
Portldentifier |
Modul ePar I denti fier |
Ful | G oupl denti fier
= (G oupKeyword Al |l Keyword [Except Keyword "{" G oupRefList "}"]) |
(TypeDef Keyword Al | Keyword [Except Keyword "{" TypeRefList "}"]) |
(Tenpl at eKeyword Al | Keyword [Except Keyword "{" TenplateRefList "}"]) |
(Const Keyword Al |l Keyword [Except Keyword "{" ConstRefList "}"]) |
(AltstepKeyword Al |l Keyword [Except Keyword "{" AltstepRefList "}"])
(I
(
(
(

527. Al Ref

Test caseKeyword Al | Keyword [Except Keyword "{" TestcaseReflList "

3]
Functi onKeyword Al | Keyword [Except Keyword "{" FunctionRefList "}"]
Si gnat ur eKeyword Al | Keyword [Except Keyword "{" SignatureReflList "}
Modul ePar Keyword Al | Keyword [Except Keyword "{" Modul ePar Ref Li st "}
528. AttribSpec ::= FreeText

ETSI

169 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.7 Behaviour statements

529. Behavi our Statenents ::= Testcasel nstance |

Functi onl nstance |

Ret ur nSt at enent |

Al t Construct |

I nterl eavedConstruct |

Label St at enent |

Cot oSt at ement |

Repeat St at enent |

Deacti vat eSt at enent |

Al t st epl nst ance |

Acti vateQp
/* STATI C SEMANTI CS: Testcasel nstance shall not be called fromwi thin an existing executing testcase
or function chain called froma testcase i.e. testcases can only be instantiated fromthe control
part or fromfunctions directly called fromthe control part */
/* STATI C SEMANTI CS - ActivateQp shall not be called fromwthin the nodul e control part */
530. VerdictStatenents ::= Setlocal Verdi ct
531. VerdictOps ::= GCetlocal Verdi ct
532. SetlLocal Verdict ::= SetVerdictKeyword "(" SingleExpression ")"
/* STATI C SEMANTI CS - Si ngl eExpression nmust resolve to a value of type verdict */
/* STATI C SEMANTICS - the SetlLocal Verdict shall not be used to assign the Value error */
533. SetVerdictKeyword ::= "setverdict"

534. GetlLocal Verdict ::= "getverdict"

535. SUTStatenents ::= ActionKeyword "(" [ActionText] {StringQp ActionText} ")"

536. ActionKeyword ::= "action"

537. ActionText ::= FreeText | Expression

/ *STATI C SEMANTI CS - Expression shall have the base type charstring or universal charstring */
538. ReturnStatenent ::= ReturnKeyword [Expression]

539. AltConstruct ::= A tKeyword "{" AtQuardList "}"

540. AltKeyword ::= "alt"

541. AltQuardList ::= {CQuardStatenent | El seStatenent [Sem Col on]}

542. GuardStatenent ::= AltGuardChar (Al tsteplnstance [StatenentBl ock] | GuardQp Statenent Bl ock)
543. ElseStatenment ::= "["El seKeyword "]" StatenentBl ock

544. AltQuardChar ::= "[" [Bool eanExpression] "]"

/ *STATI C SEMANTI CS - Bool eanExpression shall conformto restrictions in clause 20.1.2 of
ES 201 873-1*/
545. GuardQp ::= Tinmeout St atenent |

Recei veSt at enent |

Trigger St atenent |

Cet Cal | St at ement |

Cat chSt at ement |

CheckSt at enent |

Cet Repl ySt at ement |

DoneSt at enent |

Ki | | edSt at enent
/* STATI C SEMANTICS - QuardOp used within the nodule control part shall only contain the
timeout St atenent */

546. Interl eavedConstruct ::= Interl eavedKeyword "{" Interl eavedGuardList "}"
547. Interl eavedKeyword ::= "interleave"

548. Interl eavedGuardList ::= {Interl eavedGuar dEl enment [Sem Col on] }+

549. Interl eavedGuardEl ement ::= Interl eavedCGuard Interl eavedActi on

550. InterleavedGuard ::= "[" "]" QuardQp

551. Interl eavedAction ::= StatenentBl ock

/* STATI C SEMANTI CS - the StatenentBl ock may not contain | oop statenments, goto, activate,
deactivate, stop, return or calls to functions */

552. Label Statenent ::= Label Keyword Label | dentifier

553. Label Keyword ::= "l abel"

554. Labelldentifier ::= ldentifier

555. CGotoStatenent ::= CotoKeyword Label I dentifier

556. Cot oKeyword ::= "goto"

557. Repeat Statenent ::= "repeat"

558. ActivateQ ::= ActivateKeyword "(" Al tsteplnstance ")"

559. ActivateKeyword ::= "activate"

560. DeactivateStatenment ::= DeactivateKeyword ["(" Conponent O Def aul t Ref erence ")"]
561. DeactivateKeyword ::= "deactivate"

ETSI

170 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

A.1.6.8 Basic statements

562. BasicStatenments ::= Assignnment | LogStatenent | LoopConstruct | Conditional Construct |
Sel ect CaseConst r uct
563. Expression ::= Singl eExpression | ConpoundExpression

/* STATI C SEMANTI CS - Expression shall not contain Configuration, activate operation or verdict
operations within the nodule control part */

564. ConpoundExpression ::= Fi el dExpressionList | ArrayExpression

/* STATI C SEMANTI CS - Wt hin ConmpoundExpression the ArrayExpression can be used for Arrays, record,
record of and set of types. */

565. Fi el dExpressionLi st "{" Fiel dExpressionSpec {"," Fi el dExpressionSpec} "}"

566. Fi el dExpressionSpec ::= Fi el dRef erence Assi gnnment Char Not UsedOr Expr essi on

567. ArrayExpression ::= "{" [ArrayEl ement ExpressionList] "}"

568. ArrayEl ement ExpressionList ::= Not UsedO Expression {"," NotUsedO Expression}
569. Not UsedOr Expression ::= Expression | NotUsedSynbol

570. Constant Expression ::= Singl eConst Expression | ConpoundConst Expressi on

571. Singl eConst Expression ::= Singl eExpression

/* STATI C SEMANTI CS - Singl eConst Expression shall not contain Variables or Mdul e paraneters and
shall resolve to a constant Value at conpile time */

572. Bool eanExpression ::= Singl eExpression
/* STATI C SEMANTI CS - Bool eanExpressi on shall resolve to a Value of type Bool ean */
573. ConpoundConst Expression :: = Fi el dConst Expressi onLi st | ArrayConst Expressi on

/* STATI C SEMANTICS - W thin ConpoundConst Expressi on the ArrayConst Expression can be used for
Arrays, record, record of and set of types. */

574. Fiel dConst ExpressionList ::= "{" Fiel dConst ExpressionSpec {"," Fi el dConst Expressi onSpec} "}"
575. Fi el dConst Expressi onSpec ::= Fi el dRef erence Assi gnment Char Const ant Expr essi on

576. ArrayConstExpression ::= "{" [ArrayEl enent Const ExpressionList] "}"

577. ArrayEl ement Const Expressi onLi st ::= Constant Expression {"," Constant Expression}

578. Assignment ::= Variabl eRef AssignnentChar (Expression | Tenpl at eBody)

/* STATI C SEMANTI CS - The Expression on the right hand side of Assignment shall evaluate to an
explicit Value of a type conpatible with the type of theleft hand side for value variables and shall
evaluate to an explicit Value, tenplate (literal or a tenplate instance) or a matching mechani sm
conpatible with the type of the left hand side for tenplate variables. */

579. Singl eExpression ::= XorExpression { "or" Xor Expression }

/* STATIC SEMANTICS - |If nore than one Xor Expression exists, then the Xor Expressions shall eval uate
to specific values of conpatible types */

580. Xor Expression ::= AndExpression { "xor" AndExpression }

/* STATIC SEMANTICS - |If nore than one AndExpression exists, then the AndExpressions shall eval uate
to specific values of conpatible types */

581. AndExpression ::= Not Expression { "and" Not Expression }

/* STATIC SEMANTICS - |If nore than one Not Expression exists, then the Not Expressions shall eval uate
to specific values of conpatible types */

582. NotExpression ::=["not"] Equal Expression

/* STATI C SEMANTI CS - Operands of the not operator shall be of type boolean (TTCN or ASN. 1) or
derivatives of type Bool ean. */

583. Equal Expression ::= Rel Expression { Equal Op Rel Expression }

/* STATIC SEMANTICS - If nore than one Rel Expression exists, then the Rel Expressions shall eval uate
to specific values of conpatible types */

584. Rel Expression ::= ShiftExpression [Rel O ShiftExpression]

/* STATIC SEMANTICS - |If both ShiftExpressions exist, then each ShiftExpression shall evaluate to a
specific integer, Enunerated or float Value (these values can either be TTCN or ASN.1 val ues) or
derivatives of these types */

585. ShiftExpression ::= BitO Expression { ShiftO BitO Expression }

/* STATI C SEMANTI CS - Each Result shall resolve to a specific Value. |If nore than one Result exists
the right-hand operand shall be of type integer or derivatives and if the shift opis '<<' or '>>
then the | eft-hand operand shall resolve to either bitstring, hexstring or octetstring type or
derivatives of these types. If the shift opis '<@ or '@' then the |left-hand operand shall be of
type bitstring, hexstring, charstring or universal charstring or derivatives of these types */

586. Bit O Expression ::= BitXorExpression { "or4b" BitXorExpression }

/* STATIC SEMANTICS - If nore than one Bit Xor Expression exists, then the BitXor Expressions shall
eval uate to specific values of conpatible types */

587. Bit Xor Expression ::= BitAndExpression { "xor4b" BitAndExpression }

/* STATIC SEMANTICS - |If nore than one BitAndExpression exists, then the Bit AndExpressions shall
eval uate to specific values of conpatible types */

588. Bit AndExpression ::= BitNot Expression { "and4b" BitNot Expression }

/* STATIC SEMANTICS - |If nore than one BitNot Expression exists, then the BitNot Expressions shall
evaluate to specific values of conpatible types */

589. BitNotExpression ::=["not4b"] AddExpression

/* STATIC SEMANTICS - If the not4b operator exists, the operand shall be of type bitstring,
octetstring or hexstring or derivatives of these types. */

590. AddExpression ::= Ml Expression { AddOp Mil Expression }

/* STATI C SEMANTI CS - Each Ml Expression shall resolve to a specific Value. |f nore than one

Mul Expression exists and the AddOp resolves to StringOp then the Ml Expressions shall resolve to
sanme type which shall be of bitstring, hexstring, octetstring, charstring or universal charstring or
derivatives of these types. If nore than one Mil Expression exists and the AddOp does not resolve to
StringOp then the Mil Expression shall both resolve to type integer or float or derivatives of these
types. */

591. Ml Expression ::= UnaryExpression { MiltiplyQ UnaryExpression }

ETSI

171 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

/* STATI C SEMANTI CS - Each UnaryExpression shall resolve to a specific Value. If nore than one
Unar yExpressi on exi sts then the UnaryExpressions shall resolve to type integer or float or
derivatives of these types. */
592. UnaryExpression ::=[UnaryQp] Primary
/* STATIC SEMANTICS - Primary shall resolve to a specific Value of type integer or float or
derivatives of these types.*/
593. Primary ::= OpCall | Value | "(" SingleExpression ")"
594. ExtendedFi el dReference ::= {(Dot (StructFieldldentifier | TypeDefldentifier))
| ArrayOrBitRef }+

/* STATI C SEMANTI C - The TypeDefldentifier shall be used only if the type of the Varlnstance or
Ref erencedVal ue in wich the ExtendedFi el dReference is used is anytype.*/
595. pCall ::= ConfigurationOps |

Verdi ct Ops |

Ti mer Qps |

Test casel nst ance |

Functi onl nstance |

Tenpl at eOps |
Acti vat eQp
596. AddQp ::= "+" | "-" | StringQp
/* STATI C SEMANTI CS - Operands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange) */
597. MultiplyQo ::="*" | "/" | "pod" | "renf

/* STATI C SEMANTICS - Qperands of the "*", "/", remor nod operators shall be of type integer or
float or derivations of integer or float (i.e. subrange). */

598. UnaryQp ::= "+" | "-

/* STATI C SEMANTICS - QOperands of the "+" or "-" operators shall be of type integer or float or
derivations of integer or float (i.e. subrange). */

599. RelQp ::="<" | ">" | ">=" | "<="

/* STATI C SEMANTI CS - the precedence of the operators is defined in Table 7 */

600. Equal Qp ::= "==" | "I="

601. StringQp ::="&"

/* STATI C SEMANTI CS - Operands of the string operator shall be bitstring, hexstring, octetstring or
character string */

602. ShiftQp ::="<<" | ">>" | "<@ | "@"
603. LogStatement ::= LogKeyword "(" Logltem{ "," Logltem} ")"
604. LogKeyword ::= "lo0g"
605. Logltem::= FreeText | Tenpl atel nstance
606. LoopConstruct ::= ForStatenent |

Wi | eSt at enent |

DoWhi | eSt at enent
607. ForStatement ::= ForKeyword "(" Initial Sem Colon Final Sem Colon Step ")"

St at ement Bl ock
608. ForKeyword ::= "for"
609. Initial ::= Varlnstance | Assignnent
610. Final ::= Bool eanExpression
611. Step ::= Assignnent
612. Wil eStatenment ::= Wil eKeyword "(" Bool eanExpression ")"
St at emrent Bl ock
613. Wil eKeyword ::= "while"
614. DoWhil eStatenent ::= DoKeyword Statenent Bl ock
Wi | eKeyword " (" Bool eanExpression ")"
615. DoKeyword ::= "do"
616. Conditional Construct ::= |fKeyword "(" Bool eanExpression ")"
St at ement Bl ock
{El sel fd ause}[El sed ause]
617. |fKeyword ::= "if"
618. El selfCd ause ::= El seKeyword |fKeyword "(" Bool eanExpression ")" StatenentBl ock
619. El seKeyword ::= "el se"
620. El sed ause ::= El seKeyword Stat enent Bl ock
621. Sel ect CaseConstruct ::= Sel ect Keyword "(" Singl eExpression ")" Sel ect CaseBody
622. Sel ect Keyword ::= "select"
623. Sel ect CaseBody ::= "{" { SelectCase }+ "}"
624. Sel ectCase ::= CaseKeyword (“(” Tenplatelnstance {"," Tenplatelnstance } “)” | El seKeyword)
St at ement Bl ock

625. CaseKeyword ::= "case"

A.1.6.9 Miscellaneous productions

626. Dot ::="."

627. Dash ::="-"

628. M nus ::= Dash
629. Sem Colon ::=";"
630. Colon ::=":"

631. Underscore ::="
632. AssignmentChar ::=":

ETSI

172 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex B (normative):
Matching incoming values

B.1 Template matching mechanisms

B.1.0 General

This annex specifies the matching mechanisms that may be used in TTCN-3 templates (and only in templates).

B.1.1 Matching specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms or wildcards. Unless otherwise specified, atemplate field matches the
corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to
which the expression in the template eval uates.

EXAMPLE:

/1 Gven the nessage type definition
type record MyMessageType
{

i nt eger fieldl,
charstring field2,
bool ean field3 optional,

integer[4] field4

/'l A nessage tenplate using specific values could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := 3+2, /'l specific value of integer type
field2 := "My string", [/ specific value of charstring type
field3 := true, /'l specific value of bool ean type
fieldd : = {1,2,3} /'l specific value of integer array

}

B.1.1.1 Omitting values

The keyword oni t denotes that an optional template field shall be absent. It can be used on values of all types,
provided that the template field is optional.

EXAMPLE:

tenpl ate Mynessage MyTenpl ate: =
{ :

field3::orrit, /1 omt this field

B.1.2 Matching mechanisms instead of values

B.1.2.0 General

The following matching mechanisms may be used in place of explicit values.

ETSI

173 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.2.1 Value list

Value lists specify lists of acceptable incoming values. It can be used on values of al types. A template field that usesa
value list matches the corresponding incoming field if, and only if, the incoming field value matches any one of the
valuesin the valuelist. Each valuein the value list shall be of the type declared for the template field in which this
mechanism is used.

EXAMPLE:
tenpl ate Mymessage MyTenpl ate: =
fieldl := (2,4,6), /1 list of integer val ues
= ("Stringl", "String2"), /1 list of charstring val ues

field2 :
}

B.1.2.2 Complemented value list

The keyword conpl enent denotesalist of values that will not be accepted as incoming values (i.e. it isthe
complement of avaluelist). It can be used on all values of all types.

Each value in thelist shall be of the type declared for the template field in which the complement is used. A template
field that uses complement matches the corresponding incoming field if and only if the incoming field does not match
any of the valueslisted in the value list. The value list may be asingle value, of course.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =
{
conpl erent (1,3,5), // list of unacceptable integer values

fieIdS not (true) /1 will nmatch false

B.1.2.3 Any value

The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on
values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if,
and only if, theincoming field evaluates to a single element of the specified type.

EXAMPLE:

tenpl ate Mynmessage MyTenpl ate: =

fieldl : = 2, /1 will match any integer

field2 := 2, /1 will match any non-enpty charstring val ue
field3 := 2, /1 will match true or false

fieldd :=7? /1 will match any sequence of integers

}

B.1.2.4 Any value or none

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of
that value, is acceptable. It can be used on values of all types, provided that the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming
field evaluates to any element of the specified type, or if the incoming field is absent.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =

fieIdS HETA /1 will match true or false or onmtted field

ETSI

174 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.2.5 Value range

Ranges indicate a bounded range of acceptable values. When used for values of i nt eger or f | oat types (and integer
or float sub-types). A boundary value shall be either:

a) infinity or -infinity;
b) anexpression that evaluates to a specific integer or float value.

The lower boundary shall be put on the |eft side of the range, the upper boundary at the right side. The lower boundary
shall be less than the upper boundary. A template field that uses a range matches the corresponding incoming field if,
and only if, the incoming field value is equal to one of the valuesin the range.

When used in templates or template fields of char st ri ng oruni versal charstring types, theboundaries
shall evaluate to valid character positions according to the coded character set table(s) of the type (e.g. the given
position shall not be empty). Empty positions between the lower and the upper boundaries are not considered to be valid

values of the specified range.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =

fieldl := (1 .. 6), // range of integer type

}
/1 other entries for fieldl might be (-infinity to 8) or (12 to infinity)

B.1.2.6 SuperSet

SuperSet is an operation for matching that shall be used only on values of set of types. SuperSet is denoted by the
keyword super set . A field that uses SuperSet matches the corresponding incoming field if, and only if, the incoming
field contains at least al of the elements defined within the SuperSet, and may contain more. The argument of SuperSet
shall be of the type declared for the field in which the SuperSet mechanism is used.

EXAMPLE:
type set of integer MySet Of Type;
tenpl ate MySet O0f Type MyTenpl atel : = superset (1, 2, 3);

/1 any sequence of integers natches which contains at |east one occurrences of the nunbers
/1 1, 2 and 3 in any order and positions

B.1.2.7 SubSet

SubSet is an operation for matching that can be used only on values of set of types. SubSet is denoted by the
keyword subset .

A field that uses SubSet matches the corresponding incoming field if, and only if, the incoming field contains only
elements defined within the SubSet, and may contain less. The argument of SubSet shall be of the type declared for the
field in which the SubSet mechanism is used.

EXAMPLE:
tenpl ate MySet Of Type MyTenpl atel: = subset (1, 2, 3);

/'l any sequence of integers nmatches which contains zero or one occurrences of the nunbers
/1 1, 2 and 3 in any order and positions

ETSI

175 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.3 Matching mechanisms inside values

B.1.3.0 General

The following matching mechanisms may be used inside explicit values of strings, records, records of, sets, sets of and
arrays.
B.1.3.1 Any element

The matching symbol "?" (AnyElement) is used to indicate that it replaces single elements of a string (except character
strings), ar ecord of ,aset of oranarray. It shall be used only within values of string types, r ecor d of types,
set of typesand arrays.

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =

fiel d2 := "abcxyz",
field3 :='10???'B, /1 where each "?" nay either be 0 or 1
fieldd := {1, ?, 3} // where ? nay be any integer val ue

}

NOTE: The"?'infi el d4 can beinterpreted as AnyValue as an integer value, or AnyElement insidear ecor d
of ,set of orarray. Since both interpretations lead to the same match no problem arises.
B.1.3.1.1 Using single character wildcards

If it isrequired to expressthe "?" wildcard in character strings it shall be done using character patterns (see
clause B.1.5). For example: "abcdxyz", "abcexyz" "abexxyz" etc. will al match pat t er n "abc?xyz". However,
"abcxyz", "abedefxyz", etc. will not.

B.1.3.2 Any number of elements or no element

The matching symbol "*" (AnyElementsOrNone) is used to indicate that it replaces none or any number of consecutive
elements of a string (except character strings), ar ecor d of ,aset of oranarray. The"*" symbol matches the
longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

EXAMPLE:

tenpl ate Mymessage MyTenpl ate: =

fi el d2 : = "abcxyz",
field3 :='10*11' B, /1 where "*" may be any sequence of bits (possibly enpty)
fieldd := {*, 2, 3} /1 where "*"may be any nunber of integer values or onitted

}

var charstring MyStrings[4];
M/PCO. recei ve(M/Strings: {"abyz", *, "abc" });

If a"*" appears at the highest level inside astring, ar ecor d of ,set of or array, it shall be interpreted as
AnyElementsOrNone.

NOTE: Thisrule prevents the otherwise possible interpretation of "*" as AnyValueOrNone that replaces an
elementinsideastring, r ecord of , set of or array.

B.1.3.2.1 Using multiple character wildcards

If it isrequired to expressed the "*" wildcard in character stringsit shall be done using character patterns (see
clause B.1.5). For example: "abexyz", "abedefxyz" "abcabexyz" etc. will al match pat t er n "abc*xyz".

ETSI

176 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.3.3 Permutation

Permutation is an operation for matching that shall be used only on valuesof r ecor d of types. Permutationis
denoted by the keyword per mut at i on. Expressions and AnyElement and AnyElementsOrNone are allowed as
permutation elements. Each element listed in the permutation shall be of the type replicated by ther ecor d of type.

Permutation in place of a single element means that any series of elementsis acceptable provided it contains the same
elements as the value list in the permutation, though possibly in a different order. If both permutation and
AnyElementsOrNone are used inside avalue, they shall be evaluated jointly.

AnyElementsOrNone used inside permutation replaces none or any number of elements within the segment of the record
of value matched by permutation. AnyElementsOrNone used inside a permutation shall be evaluated last (when all other
elements of the permutation list have matched an element in the evaluated list already).

NOTE 1: AnyElementsOrNone used inside permutation has a different effect as AnyElementsOrNone used in
conjunction with permutation as in the latter AnyElementsOr None replaces consecutive elements only.
For example, {per nut ati on(1,2,*)} isequivaent to ({*,1,*,2,*} {*,2,*,1,*}), while
{per nut ati on(1,2),*} isequivalent to ({1,2} {2,1} ,*).

NOTE 2: When AnyElementsOrNone s used in conjunction with permutation a length attribute may be applied to
AnyElementsOrNone to restrict the number of elements matched by AnyElementsOrNone (see also
clause B.1.4.1). On the contrary, no length attribute shall be added to AnyElementsOrNone used inside a
permutation (but can be applied to the whole permutation instead).

EXAMPLE:
type record of integer MySequenceOf Type;

tenpl ate MySequenceOf Type MyTenpl atel := { pernutation (1, 2, 3), 5 };
/1 matches any of the follow ng sequences of 4 integers: 1,2,3,5; 1,3,2,5; 2,1,3,5;
/l 2,3,1,5, 3,1,2,5 or 3,2,1,5

tenpl ate MySequenceOf Type MyTenpl ate2 := { pernutation (1, 2, ?), 5 };
/1 matches any sequence of 4 integers that ends with 5 and contains 1 and 2 at | east once in
/1 other positions

tenpl ate MySequenceOf Type MyTenpl ate3 := { pernutation (1, 2, 3), * };
/1 matches any sequence of integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type MyTenplate4 := { *, pernutation (1, 2, 3)};
/'l matches any sequence of integers ending with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type MyTenplate5 := { *, pernutation (1, 2, 3),* };

/'l matches any sequence of integers containing any of the follow ng substrings at any position:
/7 1,2,3 1,3,2; 2,1,3; 2,3,1; 3,1,2 or 3,2,1

tenpl ate MySequenceXf Type MyTenpl ate6 := { pernutation (1, 2, *), 5 };

/1 matches any sequence of integers that ends with 5 and containing 1 and 2 at l|east once in
/1 other positions

tenpl ate MySequenceXf Type MyTenpl ate7 := { pernutation (1, 2, 3), * length (0..5)};

/1 matches any sequence of three to eight integers starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1;

/1 3,1,2 0r 3,2,1

tenpl ate MySequenceOf Type MyTenpl ate9 := { pernutation (1, 2, *) length (3..5), 5 };

/1 matches any sequence of four to six integers that ends with 5 and contains 1 and 2 at |east
/1 once in other position

B.1.4 Matching attributes of values

B.1.4.0 General

The following attributes may be associated with matching mechanisms.

ETSI

177 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.4.1 Length restrictions

The length restriction attribute is used to restrict the length of string values and the number of elementsinaset of
record of orarray structure. It shall be used only as an attribute of the following mechanisms: AnyValue,
AnyValueOrNone, AnyElement and AnyElementsOrNone (but not inside permutation), permutation, superset and subset.
It can also be used in conjunction with the complement matching mechanism and with thei f pr esent attribute. The
syntax for | engt h can be found in clauses 6.2.3 and 6.3.3.

NOTE: When both the complement and the length restriction matching mechanisms are used for a template or
template field, restrictions implied by them shall apply to the template or template field independently.

The units of length are to be interpreted according to table 4 in the main body of the present document in the case of
string values. For set of , record of typesand arraysthe unit of length is the replicated type. The boundaries
shall be denoted by expressions which resolve to specific non-negativei nt eger values. Alternatively, the keyword
i nfinity canbeused asavalue for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any) of the corresponding
type. A template field that uses length as an attribute of a symbol matches the corresponding incoming field if, and only
if, the incoming field matches both the symbol and its associated attribute. The length attribute matches if the length of
the incoming field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the
case of asingle length value the length attribute matches only if the length of the received field is exactly the specified
value.

It is allowed to use alength restriction in conjunction with the special value omi t , however in this case the length
attribute has no effect (i.e. withomi t it isredundant). With AnyValueOrNoneandi f pr esent it places arestriction
on theincoming value, if any.

EXAMPLE:
tenpl ate Mynessage MyTenpl ate: =
fieldl := conplement ({4,5},{1,4,8,9}) length (1 .. 6), // any value containing 1, 2, 3, 4,

/15 or el ements is accepted provided it is not {4,5} or {1,4,8,9}
field2 := "ab*ab" length(13) // nmax |l ength of the AnyEl enentsOrNone string is 9 characters

1o |

B.1.4.2 The IfPresent indicator

Thei f present indicates that a match may be made if an optional field is present (i.e. not omitted). This attribute
may be used with all the matching mechanisms, provided the type is declared as optional.

A template field that usesi f pr esent matches the corresponding incoming field if, and only if, the incoming field
matches according to the associated matching mechanism, or if the incoming field is absent.

EXAMPLE:
tenpl ate Mynmessage: MyTenpl at e: =

fiel d2 := "abcd" ifpresent, // matches "abcd" if not omtted

}

NOTE: AnyValueOrNone has exactly the samemeaningas? i f present .

ETSI

178 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.5 Matching character pattern

B.1.5.0 General

Character patterns can be used in templates to define the format of arequired character string to be received. Character
patterns can be used to match char st ri ng and uni ver sal char stri ng vaues. Inaddition to literal characters,
character patterns allow the use of meta-characters (e.g. ? and * within a character pattern means matching any
character and any number of any character respectively).

EXAMPLE 1:
tenpl ate charstring M/Tenpl ate: = pattern "ab??xyz*0";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters (including any number of "0"-s) before the
closing character "0".

If itisrequired to interpret any metacharacter literally it should be preceded with the metacharacter '\'.
EXAMPLE 2:
tenpl ate charstring MyTenpl ate: = pattern "ab?\ ?xyz*";

This template would match any character string which consists of the characters 'ab', followed by any character,
followed by the characters “?xyz', followed by any number of any characters.

Thelist of meta characters for TTCN-3 patternsis shown in table B.1. Metacharacters shall not contain whitespaces
except a whilespace preceded by a newline character before or inside a set expression.

ETSI

179 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Table B.1: List of TTCN-3 pattern metacharacters

Metacharacter

Description

?

Match any character (see notes 1 and 2)

*

Match any character zero or more times; shall match the longest possible number
of characters (see example 1 above) (see notes 1 and 2)

Cause the following metacharacter to be interpreted as a literal (see note 3).
When preceding a character without defined metacharacter meaning '\' and the
character together match the character following the '\' (see note 4)

Match any character within the specified set, see clause B.1.5.1 for more details

Has a metacharacter meaning inside a pair of square brackets ("[" and "") only,
except the first and last positions within the bracket. Allows to specify a range of
characters; see clause B.1.5.1 for more details

Has a metacharacter meaning as the first character following the opening square
bracket inside a pair of square brackets ("[' and "]") only and cause to match any
character complementing the set of characters following this metacharacter;
see clause B.1.5.1 for more details

\q{group,plane,row,cell}

Match the Universal character specified by the quadruple

{reference}

Insert the referenced user defined string and interpret it as a regular expression.
See clause B.1.5.2 for more details

\ N{reference}

Match any character within the set of characters, where the set is defined by the
referenced definition; see clause B.1.5.4 for more details

\d

Match any numerical digit (equivalent to [0-9])

\w

Match any alphanumeric character (equivalent to [0-9a-zA-Z])

\t

Match the CO control character HT(9) (see ISO/IEC 6429 [11])

\n

Match any of the following CO control characters: LF(10), VT(11), FF(12), CR(13)
(see ISO/IEC 6429 [11]) (jointly called newline characters)

\r

Match the CO control character CR (see ISO/IEC 6429 [11])

\s

Match any one of the following CO control characters: HT(9), LF(10), VT(11),
FF(12), CR(13), SP(32) (see ISO/IEC 6429 [11], ISO/IEC 646 [9]) (jointly called
white-space characters)

\'b

Match a word boundary (any graphical character except SP or DEL is preceded
or followed by any of the whitespace or newline characters)

\n

Match the double guote character

Match the double guote character

Used to denote two alternative expressions

@)

Used to group an expression

#(n, m)

Match the preceding expression at least n times but no more than m times
(postfix). See clause B.1.5.3 for more details

#n

Match the previous expression exactly n times (where n is a single digit) (postfix);
the same as #(n)

+

Match the preceding expression one or several times (postfix); the same as #(1,)

NOTE 1: Metacharacters ? and * are able to match any characters of the character set of the root type of the
template or template field in which they are used (i.e. not considering type constraints applied). However,
it shall not be forgotten, that receiving operations require type checking of the received message before
attempting to match it. Therefore received values not complying with the subtype specification of the
template or template field are never provided for matching.

NOTE 2: In some other languages/notations ? and * has different meaning as metacharacters. However in TTCN
these characters are traditionally used for matching in the sense as specified in this table.

NOTE 3: Consequently the backslash character can be matched by a pair of backslash characters without space
between them (\\), e.g. the pattern "\\d' will match the string "\d'; opening or closing square brackets can
be matched by '\[' and "\]' respectively, etc.

NOTE 4: Such use of the metacharacter '\' is deprecated as further metacharacters can be defined later.

ETSI

180 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

B.1.5.1 Set expression

A list of characters enclosed by a pair of [' and ' matches any single character in that list. The set expressionis
delimited by the ' " symbols. In addition to character literals, it is possible to specify character ranges using the
hyphen '-' as separator. The range consist of the character immediately before the separator, the character immediately
after it and al characters with a character code between the codes of the two bordering characters. A hyphen character '-
"inside the list but without preceding or following character loses its special meaning.

The set expression can also be negated by placing the caret "M character as the first character after the opening square
bracket. Negation takes precedence over character ranges. Therefore a hyphen '-' immediately following a negating
caret "' shall be processed as aliteral character.

An empty list and an empty negated list are not allowed. Therefore a closing square bracket "' immediately following an
opening square bracket '[* or a caret following the opening square bracket '[' and immediately followed by a closing
square bracket ‘)" shall be processed as literal characters.

All metacharacters, except those listed below, lose their special meaning inside the list:
. ' not at the first position and not immediately following a*' at the first position;
. "-'not at the first or last positionsin thelist;
. ‘Nat the first position in the list except when immediately followed by a closing square bracket;
« \,\d, \t, \w, \r, \n, \sand \b;
. \o{ group,plane,row,cell} ;
e\ N{reference}.

NOTE 1: Embedded lists are not allowed (for example in pattern’[ab[r-z]]' the second ' denotes aliteral ', the first
" closes the list and the second ' causes an error as no related opening bracket in the pattern).

NOTE 2: Toinclude aliteral caret character "~", place it anywhere except in the first position or precede it with a
backslash. To include aliteral hyphen"- ", placeit first or last in the list, or precede it with a backslash.
Toinclude aliteral closing square bracket "1 ", placeit first or precede it with a backslash. If the first
character inthe list isthe caret "~", then the characters”- " and "] " also match themselves when they
immediately follow that caret.

EXAMPLE:
tenpl ate charstring RegExpl:= pattern '[a-z]'; [// this will nmatch any character froma to z
tenpl ate charstring RegExp2:= pattern '[?a-z]'; // this will match any character except a to z

tenpl ate charstring RegExp3:= pattern '[AC-E][0-9][0-9][0-9] YKE ;

/1 RegExp3 will match a string which starts with the letter A or a letter between
/1l Cand E (but not e.g. B) then has three digits and the letters YKE

B.1.5.2 Reference expression

In addition to direct string values it is also possible within the pattern to use references to existing templates, constants,
variables or module parameters. The reference is enclosed withinthe "{" "}" characters and reference shall resolve to
one of the character string types. Contents of the referenced templates, constants or variables shall be handled as a
regular expression. Each expression shall be dereferenced only once.

EXAMPLE:
const charstring MyString: = "ab?";

tenpl ate charstring MyTenpl ate: = pattern '{MString}';

ETSI

181 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

This template would match any character string that consists of the characters 'ab’, followed by any character. In effect
any character string following the pat t er n keyword either explicitly or by reference will be interpreted following the
rules defined in this clause.

tenpl ate universal charstring MyTenpl atel: = pattern '{MString}de\q{1, 1, 13, 7}';

This template would match any character string which consists of the characters 'ab', followed by any character,
followed by the characters 'de’, followed by the character in 1SO10646-1 with group=1, plane=1, row=13 and cell=7.

If areference expression refers to atemplate, constant or variable which contains one or more reference expressions,
then the references in the referred template, constant or variable shall recursively be dereferenced before inserting their
contents into the referring pattern.

EXAMPLE:

const charstring MyConst2 : = pattern "ab";

tenpl ate charstring RegExpl := pattern "{M/Const2}";
/1 matches the string "ab"

tenpl ate charstring RegExp2 : = pattern "{RegExpl}{RegExpl}";
/1 matches the string "abab"

tenpl ate charstring RegExp3 := pattern "c{RegExp2}d";
/1 matches the string "cababd"

tenpl ate charstring RegExp4 : = pattern "{Reg";

tenpl ate charstring RegExp5 := pattern "Expl}";

tenpl ate charstring RegExp6 := pattern "{RegExp4}{RegExp5}";
/1 matches the string "{RegExpl}" only (i.e. shall not be handl ed as a reference expression
/1 to the tenpl ate RegExpl)

B.1.5.3 Match expression n times

To specify that the preceding expression should be matched a number of times one of the following syntaxes shall be
used: '#(n, m)", '#(n,), '#(, m)", '‘#(n)", '#n' or '+'.. The form '#(n, m)' specifies that the preceding expression must be
matched at least n times but not more than m times. The metacharacter postfix '#(n,)' specifies that the preceding
expression must be matched at least n times while '#(, m)' indicates that the preceding expression shall be matched not
more than m times. Metacharacters (postfixes) '#(n)' and #n' specify that the preceding expression must be matched
exactly n times (they are equivalent to '#(n, n)'). In the form '#n' n shall be asingle digit. The metacharacter postfix '+'
denotes that the preceding expression must be matched at least 1 time (equivalent to '#(1,)").

EXAMPLE:

tenpl ate charstring RegExp4:= pattern '[a-z]#(9, 11)'; [/ match at least 9 but no nore than 11
/1 characters froma to z

tenpl ate charstring RegExp5a: = pattern '[a-z]#(9)'; /1 match exactly 9

/1l characters froma to z
tenpl ate charstring RegExp5b: = pattern '[a-z]#9'"; /1 match exactly 9

/1l characters froma to z
tenpl ate charstring RegExp6: = pattern '[a-z]#(9,)'; /1 match at least 9

/1l characters froma to z
tenpl ate charstring RegExp7:= pattern '[a-z]#(, 11)'; /1 match no nore than 11

/1l characters froma to z
tenpl ate charstring RegExp8: = pattern '[a-z]+'; /1 match at least 1

/1 characters froma to z,

B.1.5.4 Match a referenced character set

A notation of the form "\ N{ reference} ", where reference i s denoting a one-character-length template,
constant, variable or module parameter, matches the character in the referenced value or template.

Referencing atemplate, constant, variable or module parameter that is not of length 1 shall cause an error.

A notation of the form "\ N{ typereference} ", wher e "typereference” isareferencetoachar st ri ng or uni ver sal
char st ri ng type, matches any character of the character set denoted by the referenced type.

NOTE 1: Cases when the referenced set of charactersis not atrue subset of values allowed by the type definition of
the template or template field for which the character pattern is used, shall not be treated as an error (but
e.g. matching never can occur if the two sets do not overlap).

ETSI

182 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

NOTE 2: \N{char stri ng} isequivaent to ? when the |atter is applied to a template or template field of
charstringtypeand\N{uni ver sal charstri ng} isequivaent to ?when the latter isapplied to
atemplate or template field of uni ver sal char st ri ng type (but causes an error if applied to a
template or template field of char st ri ng type).

EXAMPLE:

type charstring M/CharRange ('a'..'z");
type charstring M/CharList (‘a, 'z');
const MyCharRange nyCharR := 'r"';

tenpl ate charstring nyTenpPattl := pattern '\N { nyCharR }';
/1 nyTenpPattl shall nmatch the string 'r' only

tenpl ate charstring nyTenpPatt2 := pattern '\N { MyChar Range }';
/'l nyTenpPatt2 shall match any string containing a single character froma to z

tenpl ate MyChar Range nyTenpPatt3 := pattern "\N { MyCharList }';
/1 nyTenpPatt3 and shall natch strings 'a" and 'r' only

tenpl ate MyCharlList nyTenpPatt4 := pattern '\ N { MyChar Range }';
/Il nyTenpPatt4 shall nmatch strings 'a" and 'r' only

B.1.5.5 Type compatibility rules for patterns

For the purpose of referenced patterns (see clause B.1.5.2) and references character sets (see clause B.1.5.3) specific
type compatibility rules apply: areferenced type, template, constant, variable or module parameter of the type

char st ri ng aways can be used in the pattern specification of atemplate or template field of uni ver sal

char st ri ng type; areferenced type, template or value of thetypeuni ver sal char stri ng canbeusedinthe
pattern specification of atemplate or template field of char st ri ng typeif al characters used in the referenced
template or value and the character set allowed by the referenced type has their corresponding characters in the

char st ri ng type (see definition of corresponding charactersin clause 6.7.1).

ETSI

183 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex C (normative):
Pre-defined TTCN-3 functions

This annex defines the TTCN-3 predefined functions.

C.0 General exception handling procedures

Error situations (e.g. input parameter is out of the allowed range, input parameter is of awrong type, input value
contains improper character etc.) for which no explicit exception-handling rule is defined in the relevant clauses of this
Annex shall cause a TTCN-3 compile-time or run-time error. Which error situation causes compile-time and which one
run-time error is atool implementation option.

C.1 Integer to character

i nt2char (i nteger value) return charstring

Thisfunction convertsani nt eger value in the range of 0 to 127 (8-bit encoding) into a single-character-length
char st ri ng value. Theinteger value describes the 8-bit encoding of the character.

C.2 Character to integer

char2int(charstring value) return integer

This function converts a single-character-length char st r i ng value into an integer value in the range of 0to 127. The
integer val ue describes the 8-bit encoding of the character.

C.3 Integer to universal character

i nt 2uni char (i nteger value) return universal charstring

Thisfunction convertsani nt eger valueinthe range of 0 to 2 147 483 647 (32-hit encoding) into a
single-character-length uni ver sal charstri ng value. Theinteger value describes the 32-bit encoding of the
character.

C.4 Universal character to integer

uni char 2i nt (uni versal charstring value) return integer

This function converts a single-character-length uni ver sal char st ri ng valueinto an integer value in the range
of 0to 2 147 483 647. The integer value describes the 32-hit encoding of the character.

C.5 Bitstring to integer
bit2int(bitstring value) return integer
Thisfunction convertsasinglebi t st ri ng valueto asinglei nt eger value.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positive base 2i nt eger vaue. The
rightmost bit is least significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively.

ETSI

184 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.6 Hexstring to integer
hex2i nt (hexstring value) return integer
Thisfunction convertsasingle hexst ri ng valueto asinglei nt eger value.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits O to F represent the decimal values O to 15 respectively.

C.7 Octetstring to integer

oct2int (octetstring value) return integer
Thisfunction convertsasingleoct et st ri ng valueto asinglei nt eger value.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the |eftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively.

C.8 Charstring to integer

str2int(charstring value) return integer
Thisfunction convertsachar st ri ng representing ani nt eger valueto the equivalenti nt eger .
EXAMPLE:
str2int("66") /1 will return the integer value 66
str2int("-66") // will return the integer value -66
str2int("abc") // wll generate conpiler or testcase error

str2int("0") /1 will return the integer value O

C.9 Integer to bitstring

int2bit(in integer value, in integer length) return bitstring

Thisfunction convertsasingle i nt eger valuetoasinglebi t stri ng value. The resulting string is| engt h bits
long.

For the purposes of this conversion, abi t st ri ng shall be interpreted as a positive base 2i nt eger vaue. The
rightmost bit is least significant, the leftmost bit isthe most significant. The bits 0 and 1 represent the decimal values 0
and 1 respectively. If the conversion yields a value with fewer bits than specified inthe | engt h parameter, then the
bi t st ri ng shall be padded on the left with zeros.

ETSI

185 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.10 Integer to hexstring

int2hex(in integer value, in integer length) return hexstring

Thisfunction convertsasinglei nt eger valueto asinglehexst ri ng value. Theresulting string is| engt h
hexadecimal digitslong.

For the purposes of this conversion, ahexst ri ng shall be interpreted as a positive base 16 i nt eger vaue. The
rightmost hexadecimal digit is least significant, the leftmost hexadecimal digit is the most significant. The hexadecimal
digits 0 to F represent the decimal values O to 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than specified in thel engt h parameter, then the hexst ri ng shall be padded on the left with zeros.

C.11 Integer to octetstring

int2oct(in integer value, in integer length) return octetstring

Thisfunction convertsasinglei nt eger valuetoasingleoct et st ri ng value. Theresulting string isl engt h
octets long.

For the purposes of this conversion, an oct et st ri ng shall be interpreted as a positive base 16 i nt eger value. The
rightmost hexadecimal digit is least significant, the |eftmost hexadecimal digit is the most significant. The number of
hexadecimal digits provided shall be multiples of 2 since one octet is composed of two hexadecimal digits. The
hexadecimal digits O to F represent the decimal values 0 to 15 respectively. If the conversion yields a value with fewer
hexadecimal digits than specified inthel engt h parameter, then the hexst r i ng shall be padded on the left with
Zeros.

C.12 Integer to charstring

int2str(integer value) return charstring

This function converts the integer value into its string equivalent (the base of the return string is always decimal).

EXAMPLE:

int2str(66) /1 will return the charstring val ue "66"
int2str(-66) /1 will return the charstring value "-66"
int2str(0) /1 will return the charstring value "0"

C.13 Length of string type

| engt hof (any_string_type value) return integer

This function returns the length of avalue that is of typebi t st ri ng, hexstri ng, oct et stri ng, or any character
string. The units of length for each string type are defined in table 4 in the main body of the present document.

The length of an universal charstring shall be calculated by counting each combining character and hangul syllable
character (including fillers) on its own (see ISO/IEC 10646 [10], clauses 23 and 24).

EXAMPLE:

| engt hof (' 010'B) // returns 3
lengthof ("F3'H) // returns 2
lengthof ("F2' O // returns 1

| engt hof (universal charstring : "Length_of _Exanple") // returns 17

ETSI

186 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.14 Number of elements in a structured value

si zeof (any_type val ue) return integer

This function returns the actual number of elements of a module parameter, constant, variable or t enpl at e of a
record,recordof,set,set of typeor array (seenote). Inthecaseof record of andset of values,
templates or arrays, the actual value to be returned is the sequential number of the last defined element (index of that
element plus 1).

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

EXAMPLE:

/1 Gven
type record MyPDU
{ bool ean fieldl optional,
integer field2
}

tenplate MyPDU MTenpl ate
{ fieldl onmt,

field2 5

s

var integer nuntl enents;

/1 then

nuntl enents : = sizeof (MyTenplate); // returns 1
/1 Gven

type record length(0..10) of integer MyList;

var MyList MyRecordVar;
M/Recordvar := { 0, 1, omt, 2, omt };

/1 then
nuntl enents : = sizeof (M/RecordVar);
/1 returns 4 without respect to the fact, that the elenent MyRecordVar[2] is undefined

C.15 The IsPresent function

i spresent (any_type val ue) return bool ean

Thisfunction is alowed for record and set types only and returnsthe valuet r ue if and only if the value of the
referenced field is present in the actual instance of the referenced data object. The argument toi spr esent shall bea
reference to afield of arecord or set type.

/1 Gven
type record MyRecord
{ bool ean fieldl optional,
integer field2

}
// and given that M/PDU is a tenplate of M/Record type
/1 and received_PDU is also of My/Record type
/1 then
MyPort.receive(M/PDU) -> val ue recei ved_PDU
i spresent (recei ved_PDU. fi el d1)
/] returns true if fieldl in the actual instance of MyPDU is present

ETSI

187 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.16 The IsChosen function

i schosen(any_type val ue) return bool ean

Thisfunction returnsthe valuet r ue if and only if the data object reference specifies the variant of the uni on type that
is actually selected for a given data object.

EXAMPLE:

/1 Gven
type uni on MyUni on
{ PDU_t ypel p1,
PDU_t ype2 p2,
PDU_t ype p3
}

/1 and given that MWPDU is a tenplate of MyUnion type

/1 and received_PDU is al so of MyUnion type

/1 then

MyPort . receive(M/PDU) -> val ue recei ved_PDU

i schosen(recei ved_PDU. p2)

/1 returns true if the actual instance of MyPDU carries a PDU of the type PDU type2

C.17 The Regexp function

regexp (any_character_string_type instr, charstring expression, integer groupno) return
character_string_type

This function returns the substring of the input character stringi nst r , which is the content of n-th group matching to
theexpr essi on. Ininput stringi nst r may be of any character string type. The type of the character string returned
isthe root type of i nst r . The expression is a character pattern as described in clause B.1.5. The number of the group
to be returned is specified by gr oupno, which shall be a positive integer. Group numbers are assigned by the order of
occurrences of the opening bracket of a group and counted starting from 0 by step 1. If no substring fulfilling all
conditions (i.e. pattern and group number) is found within the input string, an empty string is returned.

EXAMPLE:

/1 Gven

var charstring nypattern2 :="

var charstring nyinput :=" date: 2001-10-20 ; nmsgno: 17; exp '

var charstring nypattern :="'[/t]#(,)date:[\d\-1#(,);[/t]#(,)nsgno: (\d#(1,3)); [exp]#(0,1)"

/1 Then the expression
var charstring nystring := regexp(nyinput, nypattern,1)
//will return the value '17'.

C.18 Bitstring to charstring

bit2str (bitstring value) return charstring

Thisfunction convertsasinglebi t st ri ng vauetoasinglechar st ri ng. Theresultingchar stri ng hasthe
same length asthe bi t st ri ng and contains only the characters'0' and '1'.

For the purpose of this conversion, abi t st ri ng should be converted into achar st ri ng. Each bit of the
bi t stri ng isconverted into acharacter '0' or '1' depending on the value O or 1 of the bit. The consecutive order of
charactersin theresulting char st ri ng isthe same asthe order of bitsinthebi t stri ng.

EXAMPLE:

bit2str ('1110101'B) will return "1110101"

ETSI

188 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.19 Hexstring to charstring

hex2str (hexstring value) return charstring

This function converts a single hexstring value to a single charstring. The resulting charstring has the same length as the
hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, ahexst r i ng should be converted into achar st r i ng. Each hex digit of the
hexst ri ng isconverted into acharacter '0' to '9' and ‘A’ to 'F' depending on the value 0 to 9 or A to F of the hex digit.
The consecutive order of charactersin the resulting char st ri ng isthe same as the order of digitsin the

hexstri ng.

EXAMPLE:

hex2str ('AB801'H) will return "AB801"

C.20 Octetstring to character string

oct2str (octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toanchar st ri ng representing the string equivaent of the
input value. Theresulting char st ri ng shall have the same length asthe incoming oct et stri ng.

For the purpose of this conversion each hex digit of i nval ue isconverted into acharacter '0', '1', '2', '3, '4','5', '6', "7,
'8,'9, ‘A", 'B', 'C', 'D', 'E' or 'F' echoing the value of the hex digit. The consecutive order of charactersin the resulting
char string isthe sameasthe order of hex digitsintheoct et st ri ng.

EXAMPLE:

oct2str ('4469707379' Q) = "4469707379"

C.21 Character string to octetstring

str2oct (charstring invalue) return octetstring

This function converts astring of thetype charstringtoanoctetstring. Thestringi nval ue shal contain
even number characters and each shall be one of the'0', '1', '2, '3, '4','5', '6','7', '8, '9", ‘&, 'b', 'c, 'd', '€ 'f','A", 'B', 'C,
‘D', 'E' or 'F' graphical charactersonly. Theresulting oct et st ri ng will have the same length as the incoming
charstring.

EXAMPLE:

str2oct ("54696E6B792D57696E6B79") = ' 54696E6B792D57696E6B79' O

C.22 Bitstring to hexstring

bi t 2hex (bitstring value) return hexstring

Thisfunction convertsasinglebi t st ri ng valueto asingle hexst ri ng. Theresulting hexst ri ng represents the
samevalue asthebi t stri ng.

For the purpose of this conversion, abitstring shall be converted into a hexstring, where the hitstring is divided into
groups of four bits beginning with the rightmost bit. Each group of four bitsis converted into a hex digit asfollows:
'0000B - 'O'H, '0001'B - '1'H, '0010B - '2'H, '0011B - '3'H, '0100B - '4'H, '0101'B - '5'H,

'0110B - '6'H, '0111'B - '7'H, '1000B - '8'H, '1001B - '9'H, '1010B - 'A'H, '1011B - 'B'H,

'1100B - 'CH, '1101'B - 'D'H, '1110B - 'E'H, and '1111'B - 'FH.

ETSI

189 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from the left until it contains
exactly 4 bits and is converted afterwards. The consecutive order of hex digits in the resulting hexstring is the same as
the order of groups of 4 bitsin the bitstring.

EXAMPLE:

bi t 2hex ('111010111'B)= '1D7'H

C.23 Hexstring to octetstring

hex2oct (hexstring value) return octetstring

This function convertsasingle hexst ri ng valueto asingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthe hexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into aoct et st ri ng, where the

oct et st ri ng contains the same sequence of hex digitsasthehexst r i ng when the length of thehexstri ng
modulo 2 is 0. Otherwise, the resulting oct et st ri ng contains 0 as leftmost hex digit followed by the same sequence
of hex digitsasinthehexstri ng.

EXAMPLE:

hex2oct ('1D7' H = '01D7' O

C.24 Bitstring to octetstring

bit2oct (bitstring value) return octetstring

Thisfunction convertsasinglebi t st ri ng valuetoasingleoct et st ri ng. Theresultingoct et stri ng
represents the same value asthebi t st ri ng.

For the conversion the following holds: bit2oct(value)=hex2oct(bit2hex(value)).

EXAMPLE:

bit2oct ('111010111'B)= '01D7' O

C.25 Hexstring to bitstring

hex2bit (hexstring value) return bitstring

Thisfunction convertsasingle hexst ri ng valueto asinglebi t st ri ng. Theresulting bi t st ri ng represents the
same value asthehexst ri ng.

For the purpose of this conversion, ahexst ri ng shall be converted into abi t st ri ng, where the hex digits of the
hexst ri ng are converted in groups of hits as follows:

'OH - '0000B, '1'H - '0001'B, '2H - '0010'B, '3'H - '0011'B, '4H - '0100B, '5'H - '0101'B,
'6'H - '0110B, '7H - '0111'B, '8H - '1000'B, '9H - '1001B, 'A'H - '1010B, 'B'H - '1011'B,
'CH - '1100B, 'D'H - '1101'B, 'EH - "1110B, and'FH - '1111'B.

The consecutive order of the groups of 4 bitsin the resulting bi t st ri ng isthe same as the order of hex digitsin the
hexstri ng.

EXAMPLE:

hex2bit ('1D7' H= '000111010111'B

ETSI

190 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.26 Octetstring to hexstring

oct 2hex (octetstring value) return hexstring

Thisfunction convertsasingleoct et st ri ng valueto asingle hexst ri ng. Theresulting hexst r i ng represents
thesamevalueastheoct et st ri ng.

For the purpose of this conversion, aoct et st ri ng shall be converted into ahexst r i ng containing the same
sequence of hex digitsastheoct et stri ng.

EXAMPLE:

oct 2hex ('1D74' O = '1D74'H

C.27 Octetstring to bitstring

oct2bit (octetstring value) return bitstring

Thisfunction convertsasingleoct et st ri ng valueto asinglebi t st ri ng. Theresulting bi t st ri ng represents
the samevalue astheoct et stri ng.

For the conversion the following holds: oct2bit(value)=hex2bit(oct2hex(value)).

EXAMPLE:

oct2bit ('01D7' O ='0000000111010111"'B

C.28 Integer to float
int2float (integer value) return float
Thisfunction convertsani nt eger valueinto af | oat value.

EXAMPLE:

int2float(4) = 4.0

C.29 Float to integer

float2int (float value) return integer

Thisfunction convertsaf | oat valueintoani nt eger value by removing the fractional part of the argument and
returning the resulting i nt eger .

EXAMPLE:

f1oat 2i nt (3. 12345E2) = fl oat 2i nt (312. 345) = 312

C.30 The random number generator function

rnd ([float seed]) return float

Ther nd function returns a (pseudo) random number less than 1 but greater or equal to 0. The random number
generator isinitialized by means of an optional seed value. Afterwards, if no new seed is provided, the last generated
number will be used as seed for the next random number. Without a previous initialization a value calculated from the
system time will be used as seed value whenr nd isused the first time.

ETSI

191 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)
NOTE: Eachtimethernd functionisinitialized with the same seed value, it shall repeat the same sequence of
random numbers.

To produce a random integers in a given range, the following formula can be used:

f | oat 2i nt (i nt 2f | oat (upper bound - | owerbound +1)*rnd()) + | owerbound
/'l Here, upperbound and | owerbound denote hi ghest and | owest nunber in range.

C.31 The Substring function

substr (any_string_type value, in integer index, in integer returncount) return
i nput _string_type

This function returns a substring from avalue that is of typebi t st ri ng, hexstri ng, oct et stri ng, or any
character string. The type of the substring is the root type of the input value. The starting point of substring to returnis
defined by the second in parameter (index). Indexing starts from zero. The third input parameter defines the length of
the substring to be returned. The units of length are as defined in table 4.

EXAMPLE:
substr ('00100110'B, 3, 4) /l returns '0011'B
substr (' ABCDEF' H, 2, 3) /'l returns ' CDE H
substr ('01AB23CD O 1, 2) /] returns 'AB23'O

substr ("My nane is JJ", 11, 2) // returns "JJ"

C.32 Number of elements in a structured type

si zeof type(any_type val ue) return integer

This function returns the declared number of elements of a module parameter, constant, variable or t enpl at e of a
recordof or set of typeor array (seenote). Thisfunction shall be applied to values of types with length
restriction. The actual number to be returned is the sequential number of the last element without respect to whether its
value is defined or not (i.e. the upper length index of the type definition on which the parameter of the function is based
onplus1).

NOTE: Only elements of the TTCN-3 object, which is the parameter of the function are calculated; i.e. no
elements of nested types/values are taken into account at determining the return value.

EXAMPLE:

/1 Gven

type record of integer MyPDUL,;

type set length(1l..8) of integer My/PDU2;
type record | ength(10) of integer M/PDUS;

var MyPDUL MyRecor dOf Var 1;
var MyPDU2 MyRecor dOf Var 2;
var MyPDU3 MyRecor dOf Var 3;

var integer nuntl enents;

/'l then

nuntl enent s :
nunkl enent s
nunkl ement s :

si zeof type(MyRecordOVar1); // returns error as MyPDUl is not constrained
si zeof type(MyRecordOfVar2); // returns 8
si zeof type(MyRecordOfVar3); // returns 10

ETSI

192 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.33 Character string to float

str2float (charstring value) return float

This function converts a char string comprising a floating-point number into afloat value. The format of the number in
the charstring shall follow rulesin clause 6.1.0 with the following exceptions:

leading zeros are allowed,
leading '+' sign before positive valuesis allowed,
'-0.0"is allowed.

EXAMPLE:

str2float('12345.6') // is the same as str2float (' 123. 456E+02')

C.34 The Replace function

replace (in any_string_type str, in integer ind, in integer len, in any_string_type repl)
return any_string_type

This function replaces the substring of valuest r atindex i nd of length | en with the string valuer epl and returns
the resulting string. st r shall not be modified. If | en is0 thestringr epl isinserted. If i nd is0, r epl isinserted at
the beginning of st r . If i nd isl engt hof (str),repl isinserted at theend of st r.str andr epl shall be of the
same string type and shall have asbasetype bi t st ri ng, hexst ri ng, oct et stri ng, or any character string. The
returned string is of the sametypeasst r andr epl . Note that indexing in strings starts from zero.

The following error cases will lead to an error at compile or runtime:
. str orrepl arenot of string type;
. str andr epl areof different type;
. i nd islessthan O or greater than| engt hof (str);
. | en islessthan O or greater than| engt hof (str);
. i nd+l en isgreater than| engt hof (str).

EXAMPLE:
replace ('00000110'B, 1, 3, '111'B) /] returns '01110110'B
replace (' ABCDEF' H, 0, 2, '123'H) /1l returns '123CDEF H
replace ('01AB23CD O 2, 1, 'FF96' O /1 returns '01ABFF96CD O
replace ("My nane is JJ", 11, 1, "xx") [/ returns "My nane is xxJ"

replace ("My nane is JJ*, 11, 0, "xx") [/ returns "My nane is xxJJ"

replace ("My nanme is JJ", 2, 2, "x") /1 returns "Myxane is JJ",

replace ("My nanme is JJ", 12, 2, "xx") [/ produces test case error
replace ("My nane is JJ", 13, 2, "xx") [/ produces test case error
replace ("My name is JJ", 13, 0, "xx") [/ returns "My nane is JJIxx"

ETSI

193 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

C.35 Octetstring to character string

oct 2char (octetstring invalue) return charstring

Thisfunction convertsanoct et st ri ng i nval ue toachar st ri ng. Theinput parameter i nval ue shall not
contain octet values higher than 7F. The resulting char st r i ng shall have the same length as the input

oct et stri ng. Theoctets are interpreted as | SO/IEC 646 [9] codes (according to the IRV) and the resulting
characters are appended to the returned value.

EXAMPLE:
oct 2char ('4469707379' O = "Di psy"

NOTE: The character string returned may contain non-graphical characters, which can not be presented between
the double quotes.

C.36 Character string to octetstring

char2oct (charstring invalue) return octetstring

Thisfunction convertsachar stri ngi nval ue toanoct et st ri ng. Each octet of theoct et st ri ng will
contain the I SO/IEC 646 [9] codes (according to the IRV) of the appropriate characters of i nval ue.

EXAMPLE:

char2oct ("Tinky-Wnky") = '54696E6B792D57696E6B79' O

ETSI

194 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex D:
Void

NOTE: The content of this annex has been moved to ES 201 873-7 [6].

ETSI

195 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex E (informative):
Library of Useful Types

E.1 Limitations

Names of types added to this library should be unique within the whole language and within the library (i.e. should not
be one of the names defined in annex C. Names defined in thislibrary should not be used by TTCN-3 users as
identifiers of other definitions than given in this annex.

NOTE: Therefore type definitions given in this annex may be repeated in TTCN-3 modules but no type distinct
from the one specified in this annex can be defined with one of the identifiers used in this annex.

E.2 Useful TTCN-3 types

E.2.1 Useful simple basic types

E.2.1.0 Signed and unsigned single byte integers

These types supports integer values of the range from -128 to 127 for the signed and from 0 to 255 for the unsigned
type. The value notation for these types are the same as the value notation for the integer type. Values of these types
shall be encoded and decoded as they were represented on a single byte within the system independently from the actual
representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer byt e (-128 .. 127) with { variant "8 bit" };

type integer unsi gnedbyt e (0 .. 255) with { variant "unsigned 8 bit" };

E.2.1.1 Signed and unsigned short integers

These types support integer values of the range from -32 768 to 32 767 for the signed and from 0 to 65 535 for the
unsigned type. The value notation for these types are the same as the val ue notation for the integer type. Vaues of these
types shall be encoded and decoded as they were represented on two bytes within the system independently from the
actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:
type integer short (-32768 .. 32767) with { variant "16 bit" };

type integer unsi gnedshort (0 .. 65535) with { variant "unsigned 16 bit" };

ETSI

196 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

E.2.1.2 Signed and unsigned long integers

These types support integer values of the range from -2 147 483 648 to 2 147 483 647 for the signed and from 0 to
4 294 967 295 for the unsigned type. The value notation for these types are the same as the value notation for the
integer type. Vaues of these types shall be encoded and decoded as they were represented on four bytes within the
system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the present document.

Type definitions for these types are:

type integer | ong (-2147483648 .. 2147483647)
with { variant "32 bit" };

type integer unsi gnedl| ong (0 .. 4294967295)
with { variant "unsigned 32 bit" };

E.2.1.3 Signed and unsigned longlong integers

These types support integer values of the range from -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807 for the
signed and from O to 18 446 744 073 709 551 615 for the unsigned type. The value notation for these types are the same
as the value notation for the integer type. Values of these types shall be encoded and decoded as they were represented
on eight bytes within the system independently from the actual representation form used.

NOTE: Encoding of values of these types may be the same or may differ from each other and from the encoding
of the integer type (the root type of these useful types) depending on the actual encoding rules used.
Details of encoding rules are out of the scope of the presentt document.

Type definitions for these types are:

type integer | ongl ong (-9223372036854775808 .. 9223372036854775807)
with { variant "64 bit" };

type integer unsi gnedl| ongl ong (0 .. 18446744073709551615)
with { variant "unsigned 64 bit" };

E.2.1.4 I|EEE 754 floats

These types support the ANSI/IEEE Standard 754 (see bibliography) for binary floating-point arithmetic. The type

| EEE 754 float supports floating-point numbers with base 10, exponent of size 8, mantissa of size 23 and a sign bit. The
type | EEE 754 doubl e supports floating-point numbers with base 10, exponent of size 11, mantissa of size 52 and asign
bit. The type IEEE 754 ext f | oat supports floating-point numbers with base 10, minimal exponent of size 11,
minimal mantissa of size 32 and asign bit. The type IEEE 754 ext doubl e supports floating-point numbers with

base 10, minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Vaues of these types shall be encoded and decoded according to the IEEE 754 definitions. The value notation for these
types are the same as the value notation for the float type (base 10).

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

Type definitions for these types are:

type fl oat | EEE754f | oat with { variant "I EEE754 float" };

type fl oat | EEE754doubl e with { variant "|EEE754 double" };

type fl oat | EEE754ext f | oat with { variant "|EEE754 extended float" };
type fl oat | EEE754ext doubl e with { variant "|EEE754 extended double" };

ETSI

197 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

E.2.2 Useful character string types

E.2.2.0 UTF-8 character string "utf8string"

This type supports the whole character set of the TTCN-3 typeuni ver sal char st ri ng (see paragraph d) of
clause 6.1.1). Its distinguished values are zero, one, or more characters from this set. Values of thistype shall entirely
(e.0. each character of the value individually) be encoded and decoded according to the UCS Transformation Format 8
(UTF-8) as defined in annex R of 1SO/IEC 10646 [10]. The value notation for this type is the same as the value notation
for theuni ver sal charstri ng type.

The type definition for thistypeis:

type universal charstring utf8string with { variant "UTF-8" };

E.2.2.1 BMP character string "bmpstring"

This type supports the Basic Multilingual Plane (BMP) character set of |SO/IEC 10646 [10]. The BMP represents all
characters of plane 00 of group 00 of the Universal Multiple-octet coded Character Set. Its distinguished values are
zero, one, or more characters from the BMP. Values of thistype shall entirely (e.g. each character of the value
individually) be encoded and decoded according to the UCS-2 coded representation form (see clause 14.1 of
|SO/IEC 10646 [10]). The value notation for this type is the same as the value notation for the uni ver sal
charstring type.

NOTE: thetype"bmpstring" supports a subset of the TTCN-3 typeuni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring bnpstring (char (0,0,0,0) .. char (0,0, 255,255))
with { variant "UCS-2" };

E.2.2.2 UTF-16 character string "utf16string"

Thistype supports all characters of planes 00 to 16 of group 00 of the Universal Multiple-octet coded Character Set (see
ISO/IEC 10646 [10]). Its distinguished values are zero, one, or more characters from this set. Vaues of this type shall
entirely (e.g. each character of the value individually) be encoded and decoded according to the UCS Transformation
Format 16 (UTF-16) as defined in annex Q of ISO/IEC 10646 [10]. The value notation for thistype is the same as the
value notation for theuni ver sal charstri ng type.

NOTE: thetype"utf16string" supports a subset of the TTCN-3 typeuni ver sal charstri ng.

The type definition for thistypeis:

type universal charstring utfl6string (char (0,0,0,0) .. char (O, 16, 255, 255))
with { variant "UTF-16" };

E.2.2.3 ISO/IEC 8859 character string "iso8859string"

Thistype supports al charactersin all aphabets defined in the multiparty standard | SO/IEC 8859 (see annex F). Its
distinguished values are zero, one, or more characters from the | SO/IEC 8859 character set. Values of this type shall
entirely (e.g. each character of the value individually) be encoded and decoded according to the coded representation as
specified in ISO/IEC 8859 (an 8-hit coding). The value notation for this type is the same as the value notation for the
uni versal charstring type.

NOTE 1: Thetype"iso8859string" supports a subset of the TTCN-3 typeuni ver sal charstri ng.

NOTE 2: Ineach ISO/IEC 8859 a phabet the lower part of the character set table (positions 02/00 to 07/14) is
compatible with the ISO/IEC 646 [9] character set. Hence all extralanguage specific characters are
defined for the upper part of the character table only (positions 10/00 to 15/15). Asthe "iso8859string"
type is defined as a subset of the TTCN-3 type universal charstring, any coded character representation of
any 1SO/IEC 8859 alphabets can be mapped into an equivalent character (a character with the same coded
representation when encoded on 8 bits) from the Basic Latin or Latin-1 Supplement character tables of
ISO/IEC 10646 [10].

ETSI

198 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

The type definition for thistypeis:

type universal charstring iso8859string (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

E.2.3 Useful structured types

E.2.3.0 Fixed-point decimal literal

This type supports the use of fixed-point decimal literal as defined in the IDL Syntax and Semantics version 2.6 (see
annex F). It is specified by an integer part, a decimal point and a fraction part. The integer and fraction parts both
consist of a sequence of decimal (base 10) digits. The number of digitsis stored in "digits' and the size of the fraction
partisgivenin "scale". The digitsitself are stored in "value ". Value notation for thistype is the same as the value
notation for the record type. Values of this type shall be encoded and decoded as IDL fixed point decimal values.

NOTE: Precise encoding of values of thistype depends on the actual encoding rules used. Details of encoding
rules are out of the scope of the present document.

The type definition for thistypeis:
type record IDLfixed {
unsi gnedshort digits,
short scal e,
charstring value_

}
with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

E.2.4 Useful atomic string types

E.2.4.1 Single ISO646 character type

A type whose distinguished values are single characters of the version of ISO/IEC 646 [9] complying to the
International Reference Version (IRV) as specified in clause 8.2 of ISO/IEC 646 [9] (see aso note 1 to clause 6.1.1).

The type definition for thistypeis:
type charstring char length (1);

NOTE 1: The name of this useful type isthe same asthe TTCN-3 keyword used to denote uni ver sal
char st ri ng valuesin the quadraple form. In general it is disallowed to use TTCN-3 keywords as
identifiers. The "char" useful typeisasolitary exception and allowed only for backward compatibility
with previous versions of the TTCN-3 standard.

NOTE 2: The specia string "8 bit" defined in clause 28.2.3 may be used with this type to specify a given encoding
for its values. Also, other properties of the base type can be changed by using attribute mechanisms.
E.2.4.2 Single universal character type
A type whose distinguished values are single characters from 1SO/IEC 10646 [10].

The type definition for thistypeis:

type universal charstring uchar length (1);

NOTE: Specia strings defined in clause 28.2.3 except "8 bit" may be used with this type to specify agiven
encoding for its values. Also, other properties of the base type can be changed by using attribute
mechanisms.

ETSI

199

E.2.4.3 Single bit type
A type whose distinguished values are single binary digits.

The type definition for thistypeis:

type bitstring bit length (1);

E.2.4.4 Single hex type
A type whose distinguished values are single hexadecimal digits.

The type definition for thistypeis:

type hexstring hex length (1);

E.2.4.5 Single octet type

A type whose distinguished values are pairs of hexadecimal digits.

The type definition for thistypeis:

type octetstring octet length (1);

ETSI

Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

200 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex F (informative):
Operations on TTCN-3 active objects

F.1 General

This annex describes in a short form the semantics of operations on active objectsin TTCN-3 being test components,
timers and ports. This dynamic behaviour is written in the form of state machines with:

. the states being named and identified as nodes;
. theinitial state being identified by an incoming arrow;
. transitions between states connecting two states (not necessarily different states) and identified as arrows;

. transitions being marked with the enabling condition for that transition (i.e. operation or statement calls) and
the resulting condition (for example atest case error), both are separated by '/

- operation and statement calls are the TTCN-3 operations and statements applicable to the object (written
in bold);

- error as aresulting condition means testcase error (written in bold);

- null as a resulting condition means that except of a possible state change no other results apply (written
in bold);

- match/no match refers to the matching result of atransition (written in bold);

- concrete values are boolean or float results (written in bold italics);

- all other resulting conditions are textually described (written in standard font);
. notes are used to explain further details of the state machine.

For further details, please refer to the operational semantics of TTCN-3 [3]. In case of any contradiction between this
annex and the operational semantics of TTCN-3 [3] the latter takes precedence.

F.2 Test components

F.2.1 Test component references

Variables of test component types, the sel f and nt ¢ operations are used to reference test components. Thest art ,
st op, done and r unni ng operations are not directly applied on test components but on component references. The
test system shall decide if the operation requested shall effect the component object itself or other action is appropriate
(e.g. an error occurs when the reference of a stopped PTC is used in a component start operation). Thecr eat e
operation used to create PTCs returns a unique reference to the created PTC, which istypically bound to a test
component variable. The behaviour related to test component variables themselvesis shown in figure F.1.

ETSI

201 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

) donelerror killed/error
variable running/error alivelerror
declaration stop/error kill/error
start/error
Uninitialized N Error
(see note)

| — “assignment of the return value of cr eat e"/"references created test component”

"assignment of the return value of cr eat e"/"references created
test component” (and "looses the previous reference™)

Initialized

NOTE: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

case terminates and the overall test case result will be error.

Figure F.1: Handling of test component references

F.2.2 Dynamic behaviour of PTCs

PTCs can be of non-alive type or aive-type. Non-alive type PTCs can bein Inactive, Running and Killed states. Their

dynamic behaviour is shown in figure F.2.

ETSI

202 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

create/creation of anon-aive PTC

done/no match killed/no match

|nactive running/false aliveltrue

/—| start/"component executes function”

done/no match killed/no match
running/true alive/true

/—| "run-time error"/error

Error

(see note 3)

stop/" component terminates” (se note 2a)
Kill/"component terminates” (see note 2b)

stop/" component terminates” (see note 1a)
kill/"component terminates” (seenote 1b) start/error
"return from function"/"component terminates’

"completion of function"/"component terminates’

start/error

stop/null (seenote2a) Kill/null (see note 2b)
done/match killed/match
running/false alive/false

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component;
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in error
cases).

NOTE 2: (a) Stop can be from another test component only;
(b) Kill can be from another test component or from the test system (in error cases)only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.2: Dynamic behaviour of non-alive type PTCs

ETSI

203 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)
Alive-type PTCs can be in Inactive, Running, Stopped and Killed states. Their dynamic behaviour is shownin
figure F.3.

create alive/creation of an alive PTC
. done/no match killed/no match
] runningfalse aliveltrue
Inactive e

/ﬂ start/"component executes function”

done/no match killed/no match
runningtrue aliveltrue

stop/"'component Stops” (see note 2a)

Kill/"component terminates" (see note 2b) }\ !

Running . "run-time error"/error

Kill/"component terminates" (see note 1b)

|

stop/"component stops" (see note 1a)

"return from function"/"component terminates’
"completion of function"/"component terminates’

sart/errol Error

start/"component (seenote 3)
executes function"

stop/null (seenote 2a
done/match
killed/no matc

‘_ runningfalse

aliveftrue

stop/null (see note 2a)
Kill/null (see note 20)

done/match StOppEd

killed/match <

ru_nning/false \ _ _

aliveffalse Kill/"component terminates” (see note 2b) start/error

NOTE 1: (a) Stop can be either a stop, self.stop or a stop from another test component;
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in error

cases).
NOTE 2: (a) Stop can be from another test component only;
(b) Kill can be from another test component or from the test system (in error cases) only.

NOTE 3: Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error.

Figure F.3: Dynamic behaviour of alive-type PTCs

ETSI

204 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

F.2.3 Dynamic behaviour of the MTC
The MTC can bein Running or Killed state. The dynamic behaviour of the MTC is shown in figure F.4.

execute/"createsthe MTC" and "starts the testcase”

(see note 3)

stop/"component terminates” (seenote 1a)
Kill/"component terminates" (see note 1b)
"completing of the test case"/"component terminates"

done/no match killed/no match
running/true aliveltrue

start/error

stopfrom another component/er ror
kill from another component/error
"run-time error"/error

Killed

(see note 2)

NOTE 1: (a) Stop can be either a stop, self.stop, a stop from another test component;
(b) Kill can be either a kill, self.kill, a kill from another test component or a kill from the test system (in error

cases).

NOTE 2: All remaining PTCs shall be killed as well and the testcase terminates.

NOTE 3: Whenever the MTS enters its error state, the error verdict is assigned to its local verdict, the test case
terminates and the overall test case result will be error.

Figure F.4: Dynamic behaviour of the MTC

F.3 Timers

Timers can bein Inactive, Running or Expired state. The dynamic behaviour of atimer is shown in figure F.5.

ETSI

Test component timers: "component created"”;
Other local timers: "testcase, function, altstep,
statement block entered or default activated"

205 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

stop/null

stop/null

timeout/match %(

start/"timer starts with
non-negative duration”

running/false
read/0.0
timeout/no match

stop/stop timer) . . .
p/siop start/"timer starts with non-negative duration™

N
start/"timer restarts with non-negative duration"

running/true
read/elapsed time
timeout/no match

Running

(see note 1)

(timer expiry)/null

running/false

NOTE 1:
NOTE 2:
NOTE 3:

read/0.0

(see note 3)

(see note 2)

start with negative duration/error

For any scope unit, all timers in that scope being in Running state constitute the running-timer list.

For any scope unit, all timers in that scope being in Expired state constitute the timeout-list.

Whenever a timer enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.5: Dynamic behaviour of timers

F.4

Ports

Ports can bein Started or Stopped state. Astheir behaviour is rather complex, the state machine has been split into a
state machine giving the dynamic behaviour of configuration operations (i.e. connect, disconnect, map and unmap), of
port controlling operations (i.e. start, stop, and clear) and of communication operations (i.e. send, receive, call, getcall,
raise, catch, reply, getreply, and check). Astrigger is a shorthand for an alt together with receiveit is not considered

here.

F.4.1

Configuration Operations

The port configuration operations (i.e. connect, disconnect, map, and unmap) are indifferent to the state of the port.
They show the behaviour shown in figure F.6.

ETSI

206 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

connect/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection")

then "store link to other port"

(if ("link not yet established")

then "establish thislink" else null)

unmap/if ("link established") then "remove thislink" else null

create/"creates

test component™
(see note 1)

Error connect/if ("illegal connection") then error

(seenote 2) map/if ("illegal connection™) then "store link to other port" error
connect/if ("legal connection™)

then (if ("link not yet established")
then "establish thislink" else null)
disconnect/if ("link established") then "remove thislink" else null
map/if ("legal connection™)
then (if ("link not yet established")
then "establish this link" else null)

unmap/if ("link established") then "remove thislink" else null

NOTE 1: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

NOTE 2: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

Figure F.6: Dynamic behaviour of ports: port configuration operations

The transitions do not change the main state of the port, i.e. the port remainsin the Started or Stopped state.

F.4.2 Port Controlling Operations

The results of port controlling operations are shown in figure F.7.

clear/"clears queue"
start/"clears queue’

create/" creates

test component”
(see note)

halt/"puts halt marker
at the end of the queue” stop/null
start/"clears queue" and A start/"clears queue’
"removes halt maker"

halt/"puts halt
marker at the

top of the queue"

clear/"clears queue’
stop/null

clear/"clears queue" and
"puts halt marker at the
top of the queue"”
halt/null

stop/"removes halt maker"

NOTE: When creating a PTC the ports of that PTC are created and started; when creating the MTC the ports of
the MTC and the ports of the TSI are created and started.

Figure F.7: Dynamic behaviour of ports: port controlling operations

ETSI

207 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

F.4.3 Communication Operations

The results of the communication operations send, receive, call, getcall, raise, catch, reply, getreply, check are shownin

figure F.8.

receive/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
getcall/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue"
elseno match
getreply/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue’
elseno match
catch/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match & "remove from queue”
elseno match
check/if ("top queue element is halt marker")
then no match
elseif ("top queue element matches")
then match
else no match

NOTE 1:

send/if ("unique receiver") then "transmit" (see note 2)
receiveif ("top queue element matches")
then match and "remove from queue”
elseno match
call/if ("unique receiver") then "transmit" (see note 2)
getcall/if ("top queue element matches")
then match and "remove from queue"
else no match
reply/if ("unique receiver") then "transmit" (see note 2)
getreply/if ("top queue element matches")
then match and "remove from queue"
else no match
raise/if ("unique receiver") then "transmit" (see note 2)
catch/if ("top queue element matches")
then match and "remove from queue’
elseno match
check/if ("top queue element matches")
then match
else no match

create/"creates
test component”
(see note 1)

send/if ("ambiguous" or "no receiver") error (see note 2)
call/if ("ambiguous” or "no receiver") error (seenote2)

reply/if ("ambiguous' or "no receiver") error (seenote 2)
raise/if ("ambiguous' or "no receiver") error (seenote 2)

Error

(see note 3)

send/error
call/error

replylerror
raiselerror

receive/no match
getcall/no match
getreply/no
match

catch/no match

When creating a PTC the ports of that PTC are created and started; when creating a MTC the ports of the

MTC and the ports of the TSI are created and started.

NOTE 2: A unique receiver exists if there is only one link for this port or if the to address expression references a
test component whose port is linked to this port (a terminated test component is not a legal receiver).

NOTE 3: Whenever a port enters its error state, the test component it belongs to enters also its error state, assigns
a local error verdict, the test case terminates and the overall test case result will be error.

NOTE 4: As trigger is a shorthand for an alt together with receive it is not considered here.

Figure F.8: Dynamic behaviour of ports: communication operations

ETSI

208 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex G (informative):
Deprecated language features

G.1 Group style definition of module parameters

The previous version of the standard required to use a group-like syntax shown in the example below to declare module
parameters. The module parameter syntax has been unified with constant and variable declaration syntax in this version
but group-like syntax is not fully removed to leave atime period for tool providers and users to change from the old
syntax to the new one. The group-like syntax of module parameter declarations is planned to be fully removed in the
next published edition of the standard.

EXAMPLE (superfluous syntax):

nodul e MyModul eW t hPar anet er s

modul epar { integer TS Par0, TS Parl := 0;
bool ean TS Par2 := true

}s
nodul epar { hexstring TS Par3 };

G.2 Recursive import

The previous version of the standard allowed to import named definitions implicitly, viaimporting other definitions of
the same module using them in a recursive mode. This feature is deprecated in this edition of the standard and is
planned to be fully removed in the next published edition.

G.3 Using al | in port type definitions

The previous version of the standard allowed to usethe al | keyword in port type definitions instead of an explicit list
of types and signatures allowed via the given port. This feature is deprecated in this edition of the standard and is
planned to be fully removed in the next published edition.

ETSI

209 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

Annex H (informative):
Bibliography

ETSI ES 201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and Tabular Combined
Notation version 3; Part 1: TTCN-3 Core Language”.

ETSI ES201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange'.

I SO/IEC 8859-1: "Information technology - 8-hit single-byte coded graphic character sets - Part 1: Latin
alphabet No. 1".

Object Management Group (OMG): "The Common Object Request Broker: Architecture and Specification -
IDL Syntax and Semantics'. Version 2.6, FORMAL/01-12-01, December 2001.

|EEE 754 (1985): "Binary Floating-Point Arithmetic".

ETSI

210 Final draft ETSI ES 201 873-1 V3.0.0 (2005-03)

History
Document history
V111 March 2001 Publication
V112 June 2001 Publication
V221 February 2003 Publication
Vv3.0.0 March 2005 Membership Approval Procedure MV 20050527: 2005-03-29 to 2005-05-27

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.0 General
	4.1 The core language and presentation formats
	4.2 Unanimity of the specification
	4.3 Conformance

	5 Basic language elements
	5.0 General
	5.1 Ordering of language elements
	5.2 Parameterization
	5.2.0 Static and dynamic parameterization
	5.2.1 Parameter passing by reference and by value
	5.2.1.0 General
	5.2.1.1 Parameters passed by reference
	5.2.1.2 Parameters passed by value

	5.2.2 Formal and actual parameter lists
	5.2.3 Empty formal parameter list
	5.2.4 Nested parameter lists
	5.2.5 Template-type formal parameters
	5.2.5.1 Parameterization with templates and matching attributes
	5.2.5.2 Language elements using template-type parameters

	5.3 Scope rules
	5.3.0 General
	5.3.1 Scope of formal parameters
	5.3.2 Uniqueness of identifiers

	5.4 Identifiers and keywords

	6 Types and values
	6.0 General
	6.1 Basic types and values
	6.1.0 Simple basic types and values
	6.1.1 Basic string types and values
	6.1.2 Accessing individual string elements

	6.2 Sub-typing of basic types
	6.2.0 General
	6.2.1 Lists of values
	6.2.2 Ranges
	6.2.2.0 General
	6.2.2.1 Infinite ranges
	6.2.2.2 Mixing lists and ranges

	6.2.3 String length restrictions
	6.2.4 Pattern sub-typing of character string types
	6.2.5 Mixing sub-typing mechanisms
	6.2.5.1 Mixing patterns, lists and ranges
	6.2.5.2 Using length restriction with other constraints

	6.3 Structured types and values
	6.3.0 General
	6.3.1 Record type and values
	6.3.1.0 General
	6.3.1.1 Referencing fields of a record type
	6.3.1.2 Optional elements in a record
	6.3.1.3 Nested type definitions for field types

	6.3.2 Set type and values
	6.3.2.0 General
	6.3.2.1 Referencing fields of a set type
	6.3.2.2 Optional elements in a set
	6.3.2.3 Nested type definition for field types

	6.3.3 Records and sets of single types
	6.3.3.0 General
	6.3.3.1 Nested type definitions

	6.3.4 Enumerated type and values
	6.3.5 Unions
	6.3.5.0 General
	6.3.5.1 Referencing fields of a union type
	6.3.5.2 Optionality and union
	6.3.5.3 Nested type definition for field types

	6.4 The anytype
	6.5 Arrays
	6.6 Recursive types
	6.7 Type compatibility
	6.7.0 General
	6.7.1 Type compatibility of non-structured types
	6.7.2 Type compatibility of structured types
	6.7.2.0 General
	6.7.2.1 Type compatibility of enumerated types
	6.7.2.2 Type compatibility of record and record of types
	6.7.2.3 Type compatibility of set and set of types
	6.7.2.4 Compatibility between sub-structures

	6.7.3 Type compatibility of component types
	6.7.4 Type compatibility of communication operations
	6.7.5 Type conversion

	7 Modules
	7.0 General
	7.1 Naming of modules
	7.2 Module parameters
	7.2.0 General
	7.2.1 Default values for module parameters

	7.3 Module definitions part
	7.3.0 General
	7.3.1 Groups of definitions

	7.4 Module control part
	7.5 Importing from modules
	7.5.0 General
	7.5.1 Structure of importable definitions
	7.5.2 Rules on using import
	7.5.3 Void
	7.5.4 Importing single definitions
	7.5.5 Importing all definitions of a module
	7.5.6 Importing groups
	7.5.7 Importing definitions of the same kind
	7.5.8 Handling name clashes on import
	7.5.9 Handling multiple references to the same definition
	7.5.10 Import definitions from non-TTCN-3 modules

	8 Test configurations
	8.0 General
	8.1 Port communication model
	8.2 Restrictions on connections
	8.3 Abstract test system interface
	8.4 Defining communication port types
	8.4.0 General
	8.4.1 Mixed ports

	8.5 Defining component types
	8.5.0 General
	8.5.1 Declaring local variables, constants and timers in a component
	8.5.2 Defining components with arrays of ports
	8.5.3 Extension of component types

	8.6 Addressing entities inside the SUT
	8.7 Component references
	8.8 Defining the test system interface

	9 Declaring constants
	10 Declaring variables
	10.0 General
	10.1 Value variables
	10.2 Template variables

	11 Declaring timers
	11.0 General
	11.1 Timers as parameters

	12 Declaring messages
	13 Declaring procedure signatures
	13.0 General
	13.1 Signatures for blocking and non-blocking communication
	13.2 Parameters of procedure signatures
	13.3 Value returning remote procedures
	13.4 Specifying exceptions

	14 Declaring templates
	14.0 General
	14.1 Declaring message templates
	14.1.0 General
	14.1.1 Templates for sending messages
	14.1.2 Templates for receiving messages

	14.2 Declaring signature templates
	14.2.0 General
	14.2.1 Templates for invoking procedures
	14.2.2 Templates for accepting procedure invocations

	14.3 Template matching mechanisms
	14.3.0 General
	14.3.1 Referencing elements of templates or template fields
	14.3.1.1 Referencing individual string elements
	14.3.1.2 Referencing record and set fields
	14.3.1.3 Referencing record of and set of elements

	14.4 Parameterization of templates
	14.4.0 General

	14.5 Void
	14.6 Modified templates
	14.6.0 General
	14.6.1 Parameterization of modified templates
	14.6.2 In-line modified templates

	14.7 Changing template fields
	14.8 Match Operation
	14.9 Value of Operation

	15 Operators
	15.0 General
	15.1 Arithmetic operators
	15.2 String operators
	15.3 Relational operators
	15.4 Logical operators
	15.5 Bitwise operators
	15.6 Shift operators
	15.7 Rotate operators

	16 Functions and altsteps
	16.1 Functions
	16.1.0 General
	16.1.1 Parameterization of functions
	16.1.2 Invoking functions
	16.1.3 Predefined functions
	16.1.4 Restrictions for functions called from specific places

	16.2 Altsteps
	16.2.0 General
	16.2.1 Parameterization of altsteps
	16.2.2 Local definitions in altsteps
	16.2.2.0 General
	16.2.2.1 Restrictions for the initialization of local definitions in altsteps

	16.2.3 Invocation of altsteps

	16.3 Functions and altsteps for different component types

	17 Test cases
	17.0 General
	17.1 Parameterization of test cases

	18 Overview of program statements and operations
	19 Expressions and basic program statements
	19.0 General
	19.1 Expressions
	19.1.0 General
	19.1.1 Boolean expressions

	19.2 Assignments
	19.3 The Log statement
	19.4 The Label statement
	19.5 The Goto statement
	19.6 The If-else statement
	19.7 The For statement
	19.8 The While statement
	19.9 The Do-while statement
	19.10 The Stop execution statement
	19.11 The Select Case statement

	20 Behavioural program statements
	20.0 General
	20.1 Alternative behaviour
	20.1.0 General
	20.1.1 Execution of alternative behaviour
	20.1.2 Selecting/deselecting an alternative
	20.1.3 Else branch in alternatives
	20.1.4 Void
	20.1.5 Re-evaluation of alt statements
	20.1.6 Invocation of altsteps as alternatives

	20.2 The Repeat statement
	20.3 Interleaved behaviour
	20.4 The Return statement

	21 Default Handling
	21.0 General
	21.1 The default mechanism
	21.2 Default references
	21.3 The activate operation
	21.3.0 General
	21.3.1 Activation of parameterized altsteps

	21.4 The deactivate operation

	22 Configuration operations
	22.0 General
	22.1 The Create operation
	22.2 The Connect and Map operations
	22.2.0 General
	22.2.1 Consistent connections and mappings

	22.3 The Disconnect and Unmap operations
	22.4 The MTC, System and Self operations
	22.5 The Start test component operation
	22.6 The Stop test behaviour operation
	22.7 The Running operation
	22.8 The Done operation
	22.9 The Kill test component operation
	22.10 The Alive operation
	22.11 The Killed operation
	22.12 Using component arrays
	22.13 Summary of the use of any and all with components

	23 Communication operations
	23.0 General
	23.1 General format of communication operations
	23.1.0 General
	23.1.1 General format of the sending operations
	23.1.2 General format of the receiving operations

	23.2 Message-based communication
	23.2.0 General
	23.2.1 The Send operation
	23.2.1.0 General
	23.2.1.1 Sending unicast, multicast or broadcast

	23.2.2 The Receive operation
	23.2.2.0 General
	23.2.2.1 Receive any message
	23.2.2.2 Receive on any port

	23.2.3 The Trigger operation
	23.2.3.0 General
	23.2.3.1 Trigger on any message
	23.2.3.2 Trigger on any port

	23.3 Procedure-based communication
	23.3.0 General
	23.3.1 The Call operation
	23.3.1.0 General
	23.3.1.1 Handling responses and exceptions to a Call
	23.3.1.2 Handling timeout exceptions to the Call
	23.3.1.3 Calling blocking procedures without return value, out parameters, inout parameters and exceptions
	23.3.1.4 Calling non-blocking procedures
	23.3.1.5 Unicast, multicast and broadcast calls of procedures

	23.3.2 The Getcall operation
	23.3.2.0 General
	23.3.2.1 Accepting any call
	23.3.2.2 Getcall on any port

	23.3.3 The Reply operation
	23.3.4 The Getreply operation
	23.3.4.0 General
	23.3.4.1 Get any reply
	23.3.4.2 Get a reply on any port

	23.3.5 The Raise operation
	23.3.6 The Catch operation
	23.3.6.0 General
	23.3.6.1 The Timeout exception
	23.3.6.2 Catch any exception
	23.3.6.3 Catch on any port

	23.4 The Check operation
	23.4.0 General
	23.4.1 The Check any operation
	23.4.2 Check on any port

	23.5 Controlling communication ports
	23.5.0 General
	23.5.1 The Clear port operation
	23.5.2 The Start port operation
	23.5.3 The Stop port operation
	23.5.4 The halt port operation

	23.6 Use of any and all with ports

	24 Timer operations
	24.0 General
	24.1 The Start timer operation
	24.2 The Stop timer operation
	24.3 The Read timer operation
	24.4 The Running timer operation
	24.5 The Timeout operation
	24.6 Summary of use of any and all with timers

	25 Test verdict operations
	25.0 General
	25.1 Test case verdict
	25.2 Verdict values and overwriting rules
	25.2.0 General
	25.2.1 Error verdict

	26 External actions
	27 Module control part
	27.0 General
	27.1 Execution of test cases
	27.2 Termination of test cases
	27.3 Controlling execution of test cases
	27.4 Selection of Test cases
	27.5 Use of timers in control

	28 Specifying attributes
	28.0 General
	28.1 Display attributes
	28.2 Encoding of values
	28.2.0 General
	28.2.1 Encode attributes
	28.2.2 Variant attributes
	28.2.3 Special strings
	28.2.4 Invalid encodings

	28.3 Extension attributes
	28.4 Scope of attributes
	28.5 Overwriting rules for attributes
	28.5.1 Additional overwriting rules for variant attributes

	28.6 Changing attributes of imported language elements

	Annex A (normative): BNF and static semantics
	A.1 TTCN-3 BNF
	A.1.0 General
	A.1.1 Conventions for the syntax description
	A.1.2 Statement terminator symbols
	A.1.3 Identifiers
	A.1.4 Comments
	A.1.5 TTCN-3 terminals
	A.1.6 TTCN-3 syntax BNF productions
	A.1.6.0 TTCN-3 module
	A.1.6.1 Module definitions part
	A.1.6.1.0 General
	A.1.6.1.1 Typedef definitions
	A.1.6.1.2 Constant definitions
	A.1.6.1.3 Template definitions
	A.1.6.1.4 Function definitions
	A.1.6.1.5 Signature definitions
	A.1.6.1.6 Testcase definitions
	A.1.6.1.7 Altstep definitions
	A.1.6.1.8 Import definitions
	A.1.6.1.9 Group definitions
	A.1.6.1.10 External function definitions
	A.1.6.1.11 External constant definitions
	A.1.6.1.12 Module parameter definitions

	A.1.6.2 Control part
	A.1.6.2.0 General
	A.1.6.2.1 Variable instantiation
	A.1.6.2.2 Timer instantiation
	A.1.6.2.3 Component operations
	A.1.6.2.4 Port operations
	A.1.6.2.5 Timer operations

	A.1.6.3 Type
	A.1.6.4 Value
	A.1.6.5 Parameterization
	A.1.6.6 With statement
	A.1.6.7 Behaviour statements
	A.1.6.8 Basic statements
	A.1.6.9 Miscellaneous productions

	Annex B (normative): Matching incoming values
	B.1 Template matching mechanisms
	B.1.0 General
	B.1.1 Matching specific values
	B.1.1.1 Omitting values

	B.1.2 Matching mechanisms instead of values
	B.1.2.0 General
	B.1.2.1 Value list
	B.1.2.2 Complemented value list
	B.1.2.3 Any value
	B.1.2.4 Any value or none
	B.1.2.5 Value range
	B.1.2.6 SuperSet
	B.1.2.7 SubSet

	B.1.3 Matching mechanisms inside values
	B.1.3.0 General
	B.1.3.1 Any element
	B.1.3.1.1 Using single character wildcards

	B.1.3.2 Any number of elements or no element
	B.1.3.2.1 Using multiple character wildcards

	B.1.3.3 Permutation

	B.1.4 Matching attributes of values
	B.1.4.0 General
	B.1.4.1 Length restrictions
	B.1.4.2 The IfPresent indicator

	B.1.5 Matching character pattern
	B.1.5.0 General
	B.1.5.1 Set expression
	B.1.5.2 Reference expression
	B.1.5.3 Match expression n times
	B.1.5.4 Match a referenced character set
	B.1.5.5 Type compatibility rules for patterns

	Annex C (normative): Pre-defined TTCN-3 functions
	C.0 General exception handling procedures
	C.1 Integer to character
	C.2 Character to integer
	C.3 Integer to universal character
	C.4 Universal character to integer
	C.5 Bitstring to integer
	C.6 Hexstring to integer
	C.7 Octetstring to integer
	C.8 Charstring to integer
	C.9 Integer to bitstring
	C.10 Integer to hexstring
	C.11 Integer to octetstring
	C.12 Integer to charstring
	C.13 Length of string type
	C.14 Number of elements in a structured value
	C.15 The IsPresent function
	C.16 The IsChosen function
	C.17 The Regexp function
	C.18 Bitstring to charstring
	C.19 Hexstring to charstring
	C.20 Octetstring to character string
	C.21 Character string to octetstring
	C.22 Bitstring to hexstring
	C.23 Hexstring to octetstring
	C.24 Bitstring to octetstring
	C.25 Hexstring to bitstring
	C.26 Octetstring to hexstring
	C.27 Octetstring to bitstring
	C.28 Integer to float
	C.29 Float to integer
	C.30 The random number generator function
	C.31 The Substring function
	C.32 Number of elements in a structured type
	C.33 Character string to float
	C.34 The Replace function
	C.35 Octetstring to character string
	C.36 Character string to octetstring

	Annex D: Void
	Annex E (informative): Library of Useful Types
	E.1 Limitations
	E.2 Useful TTCN-3 types
	E.2.1 Useful simple basic types
	E.2.1.0 Signed and unsigned single byte integers
	E.2.1.1 Signed and unsigned short integers
	E.2.1.2 Signed and unsigned long integers
	E.2.1.3 Signed and unsigned longlong integers
	E.2.1.4 IEEE 754 floats

	E.2.2 Useful character string types
	E.2.2.0 UTF-8 character string "utf8string"
	E.2.2.1 BMP character string "bmpstring"
	E.2.2.2 UTF-16 character string "utf16string"
	E.2.2.3 ISO/IEC 8859 character string "iso8859string"

	E.2.3 Useful structured types
	E.2.3.0 Fixed-point decimal literal

	E.2.4 Useful atomic string types
	E.2.4.1 Single ISO646 character type
	E.2.4.2 Single universal character type
	E.2.4.3 Single bit type
	E.2.4.4 Single hex type
	E.2.4.5 Single octet type

	Annex F (informative): Operations on TTCN-3 active objects
	F.1 General
	F.2 Test components
	F.2.1 Test component references
	F.2.2 Dynamic behaviour of PTCs
	F.2.3 Dynamic behaviour of the MTC

	F.3 Timers
	F.4 Ports
	F.4.1 Configuration Operations
	F.4.2 Port Controlling Operations
	F.4.3 Communication Operations

	Annex G (informative): Deprecated language features
	G.1 Group style definition of module parameters
	G.2 Recursive import
	G.3 Using all in port type definitions

	Annex H (informative): Bibliography
	History

