ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU
Contents

Intellectual Property Rights .. 6
Foreword .. 6
Modal verbs terminology .. 8

1 Scope .. 9

2 References .. 10
2.1 Normative references .. 10
2.2 Informative references .. 11

3 Definitions, symbols and abbreviations .. 12
3.1 Definitions .. 12
3.2 Symbols ... 15
3.3 Abbreviations ... 15

4 Test conditions .. 16
4.1 General ... 16
4.2 Arrangements for test signals ... 16
4.2.0 General .. 16
4.2.1 Arrangements for test signals at the input of transmitters .. 16
4.2.2 Arrangements for test signals at the RF output of transmitters .. 16
4.2.3 Arrangements for test signals at the RF input of receivers .. 17
4.2.4 Arrangements for test signals at the output of receivers .. 17
4.2.5 Arrangements for testing transmitter and receiver together (as a system) .. 17
4.3 RF exclusion band of radio equipment ... 18
4.3.1 General .. 18
4.3.2 Exclusion band for transmitters or the transmitter part of transceivers ... 18
4.3.2.1 General .. 18
4.3.2.2 Channelized Equipment ... 18
4.3.2.3 Non-Channelized Equipment ... 18
4.3.3 Exclusion band for receivers or the receiver part of transceivers .. 18
4.3.3.1 Applicability ... 18
4.3.3.2 Channelized Equipment ... 18
4.3.3.3 Non-Channelized Equipment ... 18
4.4 Narrow band responses of receivers or receivers which are part of transceivers .. 19
4.5 Normal test modulation ... 19

5 Performance assessment .. 20
5.1 General ... 20
5.2 Equipment which can provide a continuous communication link ... 20
5.3 Equipment which does not provide a continuous communication link .. 21
5.4 Ancillary equipment .. 21
5.5 Equipment classification ... 21

6 Performance criteria ... 22
6.0 Introduction .. 22
6.1 Performance criteria for continuous phenomena applied to transmitters and receivers 22
6.2 Performance criteria for transient phenomena applied to transmitters and receivers 22
6.3 Performance criteria for equipment which does not provide a continuous communication link 23
6.4 Performance criteria for ancillary equipment tested on a stand alone basis ... 23

7 Applicability overview tables .. 23
7.0 Introduction .. 23
7.1 EMC emission ... 24
7.2 Immunity .. 24

8 Methods of measurement and limits for EMC emissions .. 25
8.1 Test configuration .. 25
8.2 Enclosure port of ancillary equipment measured on a stand alone basis .. 25
8.2.1 General .. 25
8.2.2 Test method ... 26
8.2.3 Limits ... 26
8.3 DC power input/output ports .. 26
8.3.1 General ... 26
8.3.2 Test method ... 26
8.3.3 Limits ... 26
8.4 AC mains power input/output ports .. 27
8.4.1 General ... 27
8.4.2 Test method ... 27
8.4.3 Limits ... 27
8.4.3.1 General ... 27
8.4.3.2 AC Power port used for power supply only 28
8.4.3.3 AC power input port also used for PLC Communications ... 28
8.5 Harmonic current emissions (AC mains input port) 28
8.6 Voltage fluctuations and flicker (AC mains input port) 28
8.7 Wired network ports .. 28
8.7.1 General ... 28
8.7.2 Test method ... 28
8.7.3 Limits ... 28
9 Test methods and levels for immunity tests 29
9.1 Test configuration .. 29
9.2 Radio frequency electromagnetic field (80 MHz to 6 000 MHz) 29
9.2.1 General ... 29
9.2.2 Test method ... 29
9.2.3 Performance criteria .. 30
9.3 Electrostatic discharge ... 30
9.3.1 General ... 30
9.3.2 Test method ... 30
9.3.3 Performance criteria .. 30
9.4 Fast transients, common mode .. 31
9.4.1 General ... 31
9.4.2 Test method ... 31
9.4.3 Performance criteria .. 31
9.5 Radio frequency, common mode ... 31
9.5.1 General ... 31
9.5.2 Test method ... 32
9.5.3 Performance criteria .. 32
9.6 Transients and surges in the vehicular environment 32
9.6.1 General ... 32
9.6.2 Test method ... 33
9.6.3 Performance criteria .. 33
9.7 Voltage dips and interruptions .. 33
9.7.1 General ... 33
9.7.2 Test method ... 33
9.7.3 Performance criteria .. 33
9.8 Surges ... 34
9.8.1 General ... 34
9.8.2 Test method ... 34
9.8.2.0 General ... 34
9.8.2.1 Test method for wired network ports directly connected to outdoor cables 34
9.8.2.2 Test method for wired network ports connected to indoor cables ... 35
9.8.2.3 Test method for mains ports ... 35
9.8.3 Performance criteria .. 35

Annex B (normative): Application of harmonised EMC standards to multi-radio and multi-standard-radio equipment

B.1 Introduction ..39
B.2 Multi-radio equipment capable of independent transmission...39
B.3 Multi-radio equipment and multi-standard-radio equipment not capable of independent transmission..39
B.4 Multi-radio equipment comprising of numerous identical radio transmitters ...39

Annex C (informative): Bibliography ...40
Annex D (informative): Change history ..41
History ..42
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Harmonised European Standard (EN) has been produced by ETSI Technical Committee Electromagnetic compatibility and Radio spectrum Matters (ERM).

The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.16] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.1].

The present document has been prepared to provide one voluntary means of conforming to the essential requirements of Directive 2014/30/EU [i.2] of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast).

NOTE: The corresponding Commission's standardisation request to provide one voluntary means of conforming to the essential requirements Directive 2014/30/EU on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast) [i.2] is expected shortly.

Once the present document is cited in the Official Journal of the European Union under the Directives, compliance with the normative clauses of the present document given in tables A.1 and A.2 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of the corresponding Directives and associated EFTA regulations.

The present document is part 1 of a multi-part EMC standard for radio equipment which is structured in the following way:

- One EMC standard for all radio equipment made up of several parts.
- All common technical requirements for EMC emission and immunity have been placed in the common part, which is the present document.
- Separate parts have been developed to cover specific product related radio equipment test conditions, test arrangements, performance assessment, performance criteria, etc.
- A clause is included in each of the specific radio parts, entitled "special conditions", which is used as appropriate to cover any deviations or additions to the common requirements set out in the present document.

The present document is part 1 of a multi-part deliverable covering ElectroMagnetic Compatibility (EMC) standard for radio equipment and services, as identified below:

Part 1: "Common technical requirements;"
Part 2: "Specific conditions for radio paging equipment";
Part 3: "Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz";
Part 4: "Specific conditions for fixed radio links and ancillary equipment";
Part 5: "Specific conditions for Private land Mobile Radio (PMR) and ancillary equipment (speech and non-speech) and Terrestrial Trunked Radio (TETRA)";

Part 6: "Specific conditions for Digital Enhanced Cordless Telecommunications (DECT) equipment";

Part 9: "Specific conditions for wireless microphones, similar Radio Frequency (RF) audio link equipment, cordless audio and in-ear monitoring devices";

Part 11: "Specific conditions for terrestrial sound broadcasting service transmitters";

Part 12: "Specific conditions for Very Small Aperture Terminal, Satellite Interactive Earth Stations operated in the frequency ranges between 4 GHz and 30 GHz in the Fixed Satellite Service (FSS)";

Part 13: "Specific conditions for Citizens' Band (CB) radio and ancillary equipment (speech and non-speech)";

Part 14: "Specific conditions for analogue and digital terrestrial TV broadcasting service transmitters";

Part 15: "Specific conditions for commercially available amateur radio equipment";

Part 17: "Specific conditions for Broadband Data Transmission Systems";

Part 19: "Specific conditions for Receive Only Mobile Earth Stations (ROMES) operating in the 1.5 GHz band providing data communications";

Part 20: "Specific conditions for Mobile Earth Stations (MES) used in the Mobile Satellite Services (MSS)";

Part 22: "Specific conditions for ground based VHF aeronautical mobile and fixed radio equipment";

Part 27: "Specific conditions for Ultra Low Power Active Medical Implants (ULP-AMI) and related peripheral devices (ULP-AMI-P)";

Part 28: "Specific conditions for wireless digital video links";

Part 29: "Specific conditions for Medical Data Service Devices (MEDS) operating in the 401 MHz to 402 MHz and 405 MHz to 406 MHz bands";

Part 31: "Specific conditions for equipment in the 9 kHz to 315 kHz band for Ultra Low Power Active Medical Implants (ULP-AMI) and related peripheral devices (ULP-AMI-P)";

Part 33: "Specific conditions for Ultra Wide Band (UWB) devices";

Part 35: "Specific requirements for Low Power Active Medical Implants (LP-AMI) operating in the 2.483.5 MHz to 2.500 MHz bands";

Part 50: "Specific conditions for Cellular Communication Base Station (BS), repeater and ancillary equipment";

Part 51: "Specific conditions for Automotive, Ground based Vehicles and Surveillance Radar Devices using 24.05 GHz to 24.25 GHz, 24.05 GHz to 24.5 GHz, 76 GHz to 77 GHz and 77 GHz to 81 GHz";

Part 52: "Specific conditions for Cellular Communication Mobile and portable (UE) radio and ancillary equipment".

NOTE: Parts 7, 8, 10, 16, 18, 23, 24, 25, 26 and 32 of this multi-part deliverable have been removed from this listing as they do not cover the new Directives in force, Directive 2014/53/EU [i.1] and Directive 2014/30/EU [i.2].
National transposition dates

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of adoption of this EN:</td>
<td>23 January 2017</td>
</tr>
<tr>
<td>Date of latest announcement of this EN (doa):</td>
<td>30 April 2017</td>
</tr>
<tr>
<td>Date of latest publication of new National Standard or endorsement of this EN (dop/e):</td>
<td>31 October 2017</td>
</tr>
<tr>
<td>Date of withdrawal of any conflicting National Standard (dow):</td>
<td>31 October 2018</td>
</tr>
</tbody>
</table>

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
1 Scope

The present document covers the essential requirements of article 3.1(b) of Directive 2014/53/EU [i.1] and article 6 of Directive 2014/30/EU [i.2] for radio equipment and associated ancillary equipment, excluding broadcast receivers, in respect of ElectroMagnetic Compatibility (EMC).

Where the present document is being used to evaluate the EMC performance of "combined radio and non-radio equipment", ETSI EG 203 367 [i.3] provides guidance upon the application of the various harmonised standards, including the present document, that could potentially apply to such equipment.

Product dependent arrangements necessary to perform the EMC tests on dedicated types of radio communications equipment, and the assessment of test results, are detailed in the appropriate relevant radio technology parts of ETSI EN 301 489 series [i.13].

The present document, together with the relevant radio technology part, where required, specifies the applicable EMC tests, the methods of measurement, the limits and the performance criteria for radio equipment and associated ancillary equipment. In case of differences (for instance concerning special conditions, definitions, abbreviations) between part 1 of ETSI EN 301 489 series [i.13] and the relevant radio technology part of ETSI EN 301 489 series [i.13], the relevant radio technology part takes precedence.

Technical specifications related to the antenna port of radio equipment and radiated emissions from the enclosure port of radio equipment and combinations of radio and associated ancillary equipment are not included in the present document. Such technical specifications are normally found in the relevant product standards for the effective use of the radio spectrum.

The environment classification used in the present document refers to the environment classification used in:

- CENELEC EN 61000-6-3 [i.4] and CENELEC EN 61000-6-1 [i.5] for the residential, commercial and light industrial environment; or
- CENELEC EN 61000-6-2 [i.15] and CENELEC EN 61000-6-4 [i.14] for the industrial environment; or
- ETSI TR 101 651 [i.6] for the telecommunication centre environment; or

The EMC requirements have been selected to ensure an adequate level of compatibility for equipment intended to be used in the environments mentioned above. The levels, however, do not cover extreme cases which may occur in any location but with low probability of occurrence.

The present document may not cover those cases where a potential source of interference which is producing individually repeated transient phenomena or a continuous phenomenon is permanently present, e.g. a radar or broadcast site in the near vicinity. In such a case it may be necessary to use special protection applied to either the source of interference or the interfered part or both.

Where none of the existing specific relevant radio technology radio parts covers the required conditions for a particular radio equipment/service e.g. in case of the initial introduction of a new radio service or a special application, the present document can be used for the purposes of testing to the EMC requirements set out in the present document.

In all cases where a radio product falls within the scope of a specific relevant radio technology radio part of the standard, the relevant radio technology part takes precedence.

Compliance of radio equipment to the requirements of the present document does not signify compliance to any requirements related to spectrum management or to the use of the equipment (licensing requirements).

Compliance to the requirements of the present document does not signify compliance to any safety requirements. However, it is the responsibility of the assessor of the equipment to record in the test report any observations regarding the test sample becoming dangerous or unsafe as a result of the application of the tests called for in the present document.

NOTE 1: The present document does not yet fully address the industrial environment and industrial equipment, including ISM equipment. These will be addressed in a future edition.
NOTE 2: The immunity requirements in the present document may not reflect the severity of electromagnetic phenomena present in the industrial locations, in such cases different requirements may be more appropriate, see for example CENELEC EN 61000-6-2 [i.15].

2 References

2.1 Normative references

References are specific, identified by date of publication and/or edition number or version number. Only the cited version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

NOTE: The dated reference of CENELEC EN 61000-4-5 has not been updated to the latest version because of the significant technical changes in comparison with the referenced revision.

NOTE: The dated reference of CENELEC EN 61000-4-6 has not been updated to the latest version because of the significant technical changes in comparison with the referenced revision.

[9] CENELEC EN 61000-3-3 (2013): "Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.3] ETSI EG 203 367: "Guide to the application of harmonised standards covering articles 3.1b and 3.2 of the Directive 2014/53/EU (RED) to multi-radio and combined radio and non-radio equipment".

[i.5] CENELEC EN 61000-6-1 (2007): "Electromagnetic compatibility (EMC) - Part 6-1: Generic standards - Immunity for residential, commercial and light-industrial environments".

[i.6] ETSI TR 101 651 (V2.1.1): "Classification of the electromagnetic environment conditions for equipment in telecommunication networks".

[i.8] ITU Radio Regulations (Article 1, Section VI) definition 1.153.

[i.9] ETSI TR 103 088: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Using the ETSI EN 301 489 series of EMC standards".
3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

ancillary equipment: electrical or electronic equipment, that is intended to be used with a receiver or transmitter

NOTE: It is considered as an ancillary equipment if:

- the equipment is intended for use with a receiver or transmitter to provide additional operational and/or control features to the radio equipment, (e.g. to extend control to another position or location); and

- the equipment cannot be used on a stand alone basis to provide user functions independently of a receiver or transmitter; and

- the receiver or transmitter, to which it is connected, is capable of providing some intended operation such as transmitting and/or receiving without the ancillary equipment (i.e. it is not a sub-unit of the main equipment essential to the main equipment basic functions).

antenna port: port, for connection of an antenna used for intentional transmission and/or reception of radiated RF energy

associated equipment: equipment needed to exercise and/or monitor the operation of the EUT

base station equipment: radio and/or ancillary equipment intended for operation at a fixed location and powered directly or indirectly (e.g. via an AC/DC converter or power supply) by the AC mains network, or an extended local DC mains network

combined equipment: equipment consisting of two or more products where at least one of which is radio communication or radio determination equipment (i.e. radio equipment as defined in the RED [i.1])

conditional connection: connection of equipment which requires the user's supply at the interface point to have an impedance lower than the reference impedance Z_{ref} in order that the equipment emissions comply with the limits in CENELEC EN 61000-3-11 [12]

NOTE: Meeting the voltage change limits is not the only condition for connection; emission limits for other phenomena such as harmonics, may also have to be satisfied.
continuous phenomena (continuous disturbance): electromagnetic disturbance, the effects of which on a particular device or equipment cannot be resolved into a succession of distinct effects

NOTE: See IEC 60050-161 [i.7].

Electrical/Electronic Sub-Assembly (ESA): electrical and/or electronic device or set(s) of devices intended to be part of a vehicle, together with any associated electrical connections and wiring, which performs one or more specialized functions

enclosure port: physical boundary of the equipment through which electromagnetic fields may radiate or impinge

NOTE: In the case of integral antenna equipment, this port is inseparable from the antenna port.

exclusion band: frequency range(s) not subject to test or assessment

integral antenna: antenna designed for permanent connection to the equipment and considered part of the enclosure port

NOTE: An integral antenna may be fitted internally or externally.

manufacturer: manufacturer of the equipment, or his authorized representative, or an equipment manufacturer to the European market

mobile equipment: receiver, transmitter or transmitter/receiver (transceiver) intended for installation and use in a vehicle, and powered by the main battery of the vehicle

multi-radio equipment: radio equipment containing two or more radio transmitters and/or receivers using different technologies that may operate simultaneously

multi-standard-radio: radio equipment with ability of its receiver and transmitter to process two or more carriers in common active RF components simultaneously in a declared RF bandwidth, where at least one carrier is of a different radio access technology than the other carrier(s)

![Figure 1: Multi-radio equipment](image)
occupied bandwidth: width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage β/2 of the total mean power of a given emission; unless otherwise specified in a Recommendation ITU-R for the appropriate class of emission, the value of β/2 should be taken as 0.5 % [i.8]

operating frequency range: range(s) of radio frequencies covered by the Equipment Under Test (EUT) without any change of units

port: particular interface, of the specified equipment, with the electromagnetic environment

NOTE 1: For example, any connection point on an equipment intended for connection of cables to or from that equipment is considered as a port (see figure 3).

NOTE 2: An interface, which uses optical fibre, is not a port for the purposes of testing because it does not interact with the electromagnetic environment within the frequency range, which is applicable for the present document. An optical fibre interface may still be used in the assessment of performance.

NOTE 3: In the case of integral antenna equipment the antenna port is the same as the enclosure port.

portable equipment: radio and/or ancillary equipment intended for portable (e.g. handheld) operation, powered by its own integral battery

radio equipment: "An electrical or electronic product, which intentionally emits and/or receives radio waves for the purpose of radio communication and/or radiodetermination, or an electrical or electronic product which must be completed with an accessory, such as antenna, so as to intentionally emit and/or receive radio waves for the purpose of radio communication and/or radiodetermination", definition from Directive 2014/53/EU [i.1].

NOTE: It can be operated with ancillary equipment but if so, is not dependent on it for basic functionality.

removable antenna: antenna which may be removed for the test according to the manufacturer's statement

signal port: port intended for the interconnection of components of an EUT, or between an EUT and AE and used in accordance with relevant functional specifications (for example for the maximum length of cable connected to it)

NOTE: This includes wired network ports and antenna ports.
transient phenomena (transient disturbance): pertaining to or designating a phenomena or a quantity which varies between two consecutive steady states during a time interval short compared with the time-scale of interest

NOTE: See IEC 60050-161 [i.7].

wired network port: point of connection for voice, data and signalling transfers intended to interconnect widely dispersed systems by direct connection to a single-user or multi-user communication network (for example CATV, PSTN, ISDN, xDSL, LAN and similar networks)

NOTE: These ports may support screened or unscreened cables and may also carry AC or DC power where this is an integral part of the telecommunication specification.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

- Band\(_{rx}\)(lower): Lower edge, in terms of frequency, of the tuning range or allocated band of the receiver under assessment
- Band\(_{rx}\)(upper): Upper edge, in terms of frequency, of the tuning range or allocated band of the receiver under assessment
- BW\(_{RX}\): Bandwidth of Receiver (or receiver part of transceiver)
- ChW\(_{RX}\): Channel Width of Receiver (or receiver part of transceiver)
- EXband(lower): Exclusion band lower frequency edge
- EXband(upper): Exclusion band upper frequency edge

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

- AC: Alternating Current
- AE: Associated Equipment
- AMN: Artificial Mains Network
- AN: Artificial Network
- BS: Base Station
- CB: Citizens Band
- CDMA: Code Division Multiple Access
- CDN: Coupling/Decoupling Network
- CISPR: International Special Committee on Radio Interference (from the French: Comité International Spécial des Perturbations Radioélectriques)
- DC: Direct Current
- DCS: Digital Cellular System
- EFTA: European Free Trade Association
- EG: ETSI Guide
- EM: ElectroMagnetic
- EMC: ElectroMagnetic Compatibility
- EPS: External Power Supply
- ESA: Electrical/Electronic Sub-Assembly
- EU: European Union
- EUT: Equipment Under Test
- FSS: Fixed Satellite Service
- GSM: Global System for Mobile communications
- IF: Intermediate Frequency
- ISDN: Integrated Services Digital Networks
- ISM: Industrial, Scientific and Medical
- ISO: International Standards Organisation
- ITU-R: International Telecommunication Union - Radio
- MEDS: Medical Data Service Devices
- MES: Mobile Earth Station
- MSS: Mobile Satellite Services
- OOB: Out Of Band
4 Test conditions

4.1 General

The equipment shall be tested under normal test conditions according to the relevant product and basic standards or to the information accompanying the equipment, which are within the manufacturers declared range of humidity, temperature and supply voltage. The test conditions shall be recorded in the test report.

The test configuration and mode of operation shall represent the intended use and shall be recorded in the test report.

For emission and immunity tests, specific product related information on the test modulation, test conditions and tests arrangements, etc., are found in the relevant part of ETSI EN 301 489 series [i.13].

4.2 Arrangements for test signals

4.2.0 General

Adequate measures shall be taken to avoid the effect of immunity test signals on both the measuring equipment and the signal sources for the wanted signals located outside the test environment.

4.2.1 Arrangements for test signals at the input of transmitters

The signal source providing the transmitter under test with the modulation signal for the normal test modulation shall be located outside the test environment, unless the transmitter is modulated by its own internal source, see the relevant part of ETSI EN 301 489 series [i.13].

The transmitter shall be modulated with normal test modulation, by an internal or external signal source capable of delivering the normal test modulation as specified in the relevant part of ETSI EN 301 489 series [i.13].

4.2.2 Arrangements for test signals at the RF output of transmitters

The measuring equipment for the wanted RF output signal from the transmitter under test shall be located outside the test environment.

For transmitters with an integral antenna, the wanted RF output signal to establish a communication link shall be delivered from the EUT to an antenna located within the test environment. This antenna shall be connected to the external measuring equipment by a coaxial cable.

For transmitters with an antenna connector, the wanted RF output signal to establish a communication link shall be delivered from the antenna connector to the external measuring equipment by a shielded transmission line, such as a coaxial cable. Adequate measures shall be taken to minimize the effect of unwanted common mode currents on the external conductor of the transmission line at the point of entry to the transmitter.
Unless otherwise specified in the relevant part of ETSI EN 301 489 series [i.13] for the particular type of radio equipment, the level of the wanted RF output signal in transmit mode of operation shall be set to the maximum rated RF power for the EUT, modulated with the normal test modulation.

4.2.3 Arrangements for test signals at the RF input of receivers

The signal source providing the receiver under test with the wanted RF input signal shall be located outside the test environment.

The signal source shall be modulated with normal test modulation as specified in the relevant part of ETSI EN 301 489 series [i.13] for the particular type of radio equipment.

For receivers with an integral antenna, the wanted RF input signal to establish a communication link shall be presented to the EUT from an antenna located within the test environment. This antenna shall be connected to the external RF signal source by a coaxial cable.

For receivers with an antenna connector, the wanted RF input signal to establish a communication link shall be presented to the antenna connector of the EUT by a shielded transmission line, such as a coaxial cable. The transmission line shall be connected to the external RF signal source. Adequate measures shall be taken to minimize the effect of unwanted common mode currents on the external conductor of the shielded transmission line at the point of entry to the receiver.

Unless otherwise specified in the part of ETSI EN 301 489 series [i.13] relevant for the particular radio technology, the level of the wanted RF input signal shall be set to be approximately 40 dB above the minimum level necessary to achieve a receiver performance which meets the relevant specified performance criteria, measured while the power amplifiers generating the EM disturbance are switched on, but without excitation. This increased level of the wanted RF input signal is expected to represent a normal operation signal level and should be sufficient to avoid the broadband noise from the power amplifiers generating the EM disturbance from influencing the measurement.

4.2.4 Arrangements for test signals at the output of receivers

The measuring equipment for the output signal from the receiver under test shall be located outside the test environment.

For receivers with an analogue speech output the audio output from the acoustic transducer should be coupled via an electrically non-conductive acoustic tube to an external audio distortion meter or other appropriate measuring equipment outside of the test environment. Where it is not practical to use an electrically non-conductive acoustic tube, then other means of connecting the receiver output signal to the external audio distortion meter or other measuring equipment shall be provided and recorded in the test report.

For receivers with a non-speech output the output signal shall be coupled via an electrically non-conductive means to the external measuring equipment outside the test environment (e.g. a camera to read a display). If the receiver has an output connector or port providing the wanted output signal, then this port shall be used via a cable, consistent with the standard cable used in normal operation, connected to the external measuring equipment outside the test environment. The measuring equipment may be supplied by the manufacturer.

Precautions shall be taken to ensure that any effect on the test due to the coupling means is minimized.

4.2.5 Arrangements for testing transmitter and receiver together (as a system)

Transmitters and receivers may be tested for immunity as a system when combined as a transceiver. In this case the transceiver or transmitter and receiver shall be located inside the test environment and shall be exposed simultaneously to the immunity test signals.

For transceivers or transmitters and receivers operating at the same frequency, the wanted output signal of the transmitter may be used via a suitable attenuator and applied to the input of the receiver as the wanted input signal.

For transceivers or transmitters and receivers operating at different frequencies in duplex mode the arrangements are defined in the product part of ETSI EN 301 489 series [i.13] relevant for the particular type of radio equipment.
4.3 RF exclusion band of radio equipment

4.3.1 General

The exclusion bands shall be derived using the methodologies detailed in clauses 4.3.2 and 4.3.3 of the present document. These are equipment dependent and defined in the relevant part of ETSI EN 301 489 series [1.13], except where the present document is used on a standalone basis.

Whenever an exclusion band is applied, the specific frequency range(s) excluded from assessment shall be detailed in the technical documentation.

4.3.2 Exclusion band for transmitters or the transmitter part of transceivers

4.3.2.1 General

Exclusion bands shall not be applied when measuring transmitters in standby mode.

4.3.2.2 Channelized Equipment

For channelized equipment the exclusion band shall extend 250 % of the channel width either side of the transmitter centre frequency.

NOTE: Exclusion band of 250 % is based on the ITU Radio Regulations [i.8], as the boundary between OOB and Spurious Domain.

4.3.2.3 Non-Channelized Equipment

For non-channelized equipment the exclusion band shall extend 250 % of the occupied bandwidth either side of the transmitter centre frequency.

NOTE: Exclusion band of 250 % is based on the ITU Radio Regulations [i.8], as the boundary between OOB and Spurious Domain.

4.3.3 Exclusion band for receivers or the receiver part of transceivers

4.3.3.1 Applicability

Exclusion bands are not applied when testing emissions of receivers or receiver part of transceivers.

4.3.3.2 Channelized Equipment

For channelized equipment the exclusion band shall be calculated by using the following formulae:

For the lower edge for the exclusion band:

\[EX_{\text{band(lower)}} = Band_{\text{RX(lower)}} - nChW_{RX} \]

and for the upper edge of the exclusion band:

\[EX_{\text{band(upper)}} = Band_{\text{RX(upper)}} + nChW_{RX} \]

Where \(n \) = number of channel widths required for exclusion band.

For equipment that support multiple channel widths the Channel Width used should be the widest support by the EUT.

Where the present document is being used in a stand-alone basis (i.e. with no reference to other relevant radio technology parts of ETSI EN 301 489 series [1.13]), the value of \(n \) shall be 1.
4.3.3.3 Non-Channelized Equipment

For non-channelized equipment the exclusion band shall be calculated by using the following formula:

For the lower edge for the exclusion band:

$$EX\text{band}(\text{lower}) = Band_{RX}(\text{lower}) - nBW_{RX}$$

and for the upper edge of the exclusion band:

$$EX\text{band}(\text{upper}) = Band_{RX}(\text{upper}) + nBW_{RX}$$

Where \(n \) = multiple of whole bandwidths required to define exclusion band.

Bandwidth of Receiver is the occupied bandwidth of the corresponding transmitter signal.

Where the present document is being used in a stand-alone basis (i.e. with no reference to other relevant radio technology parts of ETSI EN 301 489 series [i.13]), the value of \(n \) shall be 1.

4.4 Narrow band responses of receivers or receivers which are part of transceivers

Responses on receivers or the receiver part of transceivers occurring during the immunity tests at discrete frequencies which are narrow band responses (spurious responses), are identified by the following method.

If during the test the immunity RF test signal (see clauses 9.2 and 9.5) causes non-compliance of the receiver with the specified performance criteria (see clause 6), it is necessary to evaluate whether this non-compliance is due to a narrow band response or a wideband phenomenon. Therefore, the frequency of the test signal is increased by an amount equal to twice the nominal 6 dB bandwidth of the IF filter immediately preceding the demodulator of the receiver, or if appropriate, the bandwidth over which the equipment is intended to operate, as declared by the manufacturer. The test is repeated with the frequency of the test signal decreased by the same amount.

If the receiver is then in either or both frequency offset cases in compliance with the specified performance criteria, the response is considered as a narrow band response.

If the receiver still does not comply with the specified performance criteria, this may be due to the fact that the offset has made the frequency of the unwanted signal correspond to the frequency of another narrow band response. Under these circumstances the procedure is repeated with an increase and decrease of the frequency of the test signal adjusted two and a half times the bandwidth referred to above.

If the receiver still does not comply with the specified performance criteria in either or both frequency offset cases, the phenomena is considered wide band and therefore an EMC problem and the equipment fails the test.

For immunity tests, narrow band responses shall be disregarded.

Particular performance criteria typical for the relevant type of EUT and information about any product type dependent nominal frequency offset to be used for the identification of narrowband responses can be found in the part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment.

Where no narrow band responses of receivers are permitted, this shall be stated within the part of ETSI EN 301 489 series [i.13] dealing with particular type of radio equipment.

4.5 Normal test modulation

For the purpose of EMC tests, the transmitter under test shall be modulated according to the normal test modulation specified in the relevant part of ETSI EN 301 489 series [i.13].

For the purpose of EMC tests, the receiver under test shall be provided with a wanted RF input signal modulated according to the normal test modulation specified in the relevant part of ETSI EN 301 489 series [i.13].
5 Performance assessment

5.1 General

The manufacturer shall at the time of submission of the equipment for test, supply the following information to be recorded in the test report:

- the functions of the radio equipment to be assessed during and after the EMC exposure;
- the intended functions of the radio equipment which shall be in accordance with the documentation accompanying the equipment;
- the user control functions and stored data that are required for normal operation and the method to be used to assess whether these have been lost after the EMC exposure;
- the type of modulation, the characteristics of the transmission used for testing (random bit stream, message format, etc.) and the necessary test equipment delivered to enable the assessment of the EUT;
- the ancillary equipment to be combined with the radio equipment for testing (where applicable);
- an exhaustive list of ports, with the maximum cable lengths allowed, classified as either power or telecommunication/signal/control. Power ports shall further be classified as AC or DC power;
- the bandwidth of the IF filter immediately preceding the demodulator or equivalent system bandwidth;
- the method to be used to verify that a communication link is established and maintained (if appropriate);
- the operating frequency bands over which the equipment is intended to operate;
- any equipment thermal limitation which prevent continuous testing of the EUT;
- the environment(s) in which the equipment is intended to be used;
- the occupied bandwidth of the corresponding transmitter signal for non-channelized equipment.

If additional product related information is required, these can be found in the relevant part of ETSI EN 301 489 series [1.13].

If the present document is used on a stand alone basis to demonstrate presumption of conformity to European Directive 2014/53/EU [1.1] as a specific radio part of the standard could not be identified for a particular type of radio equipment, then the manufacturer shall at the time of submission of the equipment for test, supply the following information to be recorded in the test report:

- test conditions, clause 4;
- the value of n used in clause 4.3 used to determine the exclusion bands;
- performance assessment, clause 5;
- performance criteria, clause 6.

5.2 Equipment which can provide a continuous communication link

For radio equipment or for radio equipment tested in combination with ancillary equipment, the normal test modulation, test arrangements, etc., shall apply.
5.3 Equipment which does not provide a continuous communication link

For radio equipment which does not provide a continuous communication link and/or ancillary equipment intended to be tested on a stand-alone basis, the manufacturer shall specify the permissible minimum level of performance or degradation of performance during and/or after the EMC exposure.

The manufacturer shall furthermore define the test method(s) for the assessment of the actual level of performance or degradation of performance during and/or after the EMC exposure. Under these circumstances the manufacturer shall additionally provide the following information also for inclusion in the test report:

- the functions of the relevant type of the EUT during and after EMC stress;
- the intended functions of the relevant type of the EUT which shall be in accordance with the documentation accompanying the equipment;
- suitable pass/fail criteria for the relevant type of the EUT;
- the method of monitoring the actual level of performance and/or the actual degradation of performance of the EUT;
- the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond.

The assessment of the actual performance or its degradation which is carried out during and/or after the EMC exposure, shall be simple, but at the same time give adequate proof that the primary functions of the equipment are operational.

5.4 Ancillary equipment

At the manufacturer's discretion ancillary equipment may be tested and assessed:

- applying the provisions of the present document:
 - separately to the ancillary equipment; or
 - to the combination of ancillary and radio equipment;
- applying another appropriate EMC standard.

In each case, compliance enables the ancillary equipment to be used with different receivers, transmitters or transceivers.

5.5 Equipment classification

For the purpose of the EMC performance assessment in the present document, the radio equipment and/or associated ancillary equipment under test shall be classified into one of the following three classes:

- equipment for fixed use (e.g. base station equipment); or
- equipment for vehicular use (e.g. mobile equipment); or
- equipment for portable use (e.g. portable equipment);

taking into account the definitions in clause 3.1.

This classification determines the extent of applicable EMC tests. However, the following instructions shall also apply to multiple use radio and/or ancillary equipment:

- radio and/or ancillary equipment for portable use or combinations thereof declared as capable of being powered for intended use by the main battery of a vehicle shall additionally be considered as equipment for vehicular use;
radio and/or ancillary equipment for portable or vehicular use or combinations thereof declared as capable of being powered for intended use by an AC mains or DC network shall additionally be considered as equipment for fixed use.

Subsequently, for multiple use radio and/or ancillary equipment more than one set of equipment test requirements listed in tables 1 and 2 has to be taken into account.

6 Performance criteria

6.0 Introduction

The performance criteria are used to take a decision on whether a radio equipment passes or fails immunity tests.

For the purpose of the present document four categories of performance criteria apply:

- Performance criteria for continuous phenomena applied to transmitters and receivers
- Performance criteria for transient phenomena applied to transmitters and receivers
- Performance criteria for equipment which does not provide a continuous communication link
- Performance criteria for ancillary equipment tested on a stand alone basis

Normally, the performance criteria depend on the type of radio equipment. Thus, the present document only contains general performance criteria commonly used for the assessment of radio equipment. More specific and product-related performance criteria for a dedicated type of radio equipment may be found in the part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment.

6.1 Performance criteria for continuous phenomena applied to transmitters and receivers

If no further details are given in the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment, the following general performance criteria for continuous phenomena shall apply.

During and after the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

6.2 Performance criteria for transient phenomena applied to transmitters and receivers

If no further details are given in the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment, the following general performance criteria for transient phenomena shall apply.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
• For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

For all other ports the following applies:

• After the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

• During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

• If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

6.3 Performance criteria for equipment which does not provide a continuous communication link

For radio equipment which does not provide a continuous communication link, the performance criteria described in clauses 6.1 and 6.2 are not appropriate, in these cases the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the product description and documentation. The related specifications set out in clause 5.3 have also to be taken into account.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in clauses 6.1 and 6.2.

6.4 Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in clauses 6.1 and 6.2 are not appropriate, in these cases the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the product description and documentation. The related specifications set out in clause 5.3 have also to be taken into account.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in clauses 6.1 and 6.2.

7 Applicability overview tables

7.0 Introduction

The applicability overview (tables 1 and 2) give a comprehensive overview about all EMC tests specified in the present document for radio and/or associated ancillary equipment.

The applicability of EMC tests specified in the present document depends on the actual type of radio and/or associated ancillary equipment under test. All tests are port-related EMC tests. For a certain type of EUT not having a particular type of port or for operational/technical reasons, the related EMC tests may not apply. In these cases, clause 7 of the part of ETSI EN 301 489 series [1.13] dealing with the particular type of radio equipment provides specifications or restrictions to the applicability of EMC tests for the actual type of EUT. In the case that the present document is used in a stand-alone basis it is required that both the decision and the justification not to apply any particular test to any particular port be recorded in the test report.
7.1 EMC emission

Table 1: EMC emission measurements for radio and associated ancillary equipment specified in the present document, overview

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Application</th>
<th>Equipment test requirement</th>
<th>Reference clause in the present document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated emission</td>
<td>enclosure of ancillary equipment</td>
<td>applicable for stand alone testing</td>
<td>8.2</td>
</tr>
<tr>
<td>Conducted emission</td>
<td>DC power input/output port</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Conducted emission</td>
<td>AC mains input/output port</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Harmonic current emissions</td>
<td>AC mains input port</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Voltage fluctuations and flicker</td>
<td>AC mains input port</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Conducted emission</td>
<td>wired network port</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
</tbody>
</table>

7.2 Immunity

Table 2: Immunity tests for radio and associated ancillary equipment specified in the present document, overview

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Application</th>
<th>Equipment test requirement</th>
<th>Reference clause in the present document</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF electromagnetic field</td>
<td>enclosure port</td>
<td>applicable</td>
<td>applicable</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>enclosure</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>Fast transients common mode</td>
<td>signal, wired network and control ports, DC and AC power ports</td>
<td>applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>RF common mode 0.15 MHz to 80 MHz</td>
<td>signal, wired network and control ports, DC and AC power ports</td>
<td>applicable</td>
<td>applicable</td>
</tr>
<tr>
<td>Transients and surges</td>
<td>DC power input ports</td>
<td>not applicable</td>
<td>applicable</td>
</tr>
</tbody>
</table>
8 Methods of measurement and limits for EMC emissions

8.1 Test configuration

This clause defines the requirements for test configurations:

- measurements shall be made in the operational mode producing the largest emission in the frequency band being investigated consistent with normal applications;
- the equipment shall be configured in a manner which is representative for normal/typical operation, where practical;
- where radio equipment is provided with an integral antenna, it shall be tested with the antenna fitted in a manner typical of normal intended use, unless declared as a removable antenna;
- if the equipment is part of a system, or can be connected to ancillary equipment, then it shall be acceptable to test the equipment while connected to the minimum representative configuration of ancillary equipment necessary to exercise the ports;
- if the equipment has a large number of ports, then a sufficient number shall be selected to simulate actual operational conditions and to ensure that all the different types of ports are covered;
- ports, which in normal operation are connected, shall be connected to an ancillary equipment or to a representative piece of cable terminated to simulate the impedance of the ancillary equipment. RF input/output ports shall be correctly terminated;
- the configuration and mode of operation during the measurements shall be precisely noted in the test report.

8.2 Enclosure port of ancillary equipment measured on a stand-alone basis

8.2.1 General

This test is only applicable to ancillary equipment not incorporated in the radio equipment and intended to be measured on a stand-alone basis, as declared by the manufacturer. This test shall be performed on a representative configuration of the ancillary equipment.

This test is not applicable for ancillary equipment incorporated in the radio equipment, or for ancillary equipment intended to be measured in combination with the radio equipment. In these cases the requirements of the relevant product standard for the effective use of the radio spectrum shall apply.
8.2.2 Test method

The test method shall be in accordance with CENELEC EN 55032 [1].

8.2.3 Limits

The ancillary equipment shall meet the class B limits given in CENELEC EN 55032 [1]. Alternatively, for ancillary equipment intended to be used exclusively in an industrial environment or telecommunication centres, the class A limits given in CENELEC EN 55032 [1] may be used.

8.3 DC power input/output ports

8.3.1 General

This test is applicable for radio equipment and ancillary equipment for fixed use that may have DC cables longer than 3 m (see clause 5.1 - manufacturer’s declaration) and for vehicular use irrespective of cable length.

If the DC power cable of the radio and/or the ancillary equipment is less than or equal to 3 m in length, and intended for direct connection to a dedicated AC/DC power supply, then the measurement shall be performed on the AC power input port of that power supply as specified in clause 8.4. If the DC power cable is longer than 3 m, then the measurement shall additionally be performed on the DC power port of the radio and/or ancillary equipment.

If the DC power cable between the mobile radio and/or ancillary equipment and the dedicated DC/DC power converter is less than or equal to 3 m in length, then the measurement can be limited to the DC power input port of that power converter only. If this DC power cable is longer than 3 m, then the measurement shall additionally be performed on the DC power port of the mobile radio and/or ancillary equipment.

This test shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

This test assesses the level of internally generated electrical noise present on the DC power input/output ports.

8.3.2 Test method

For mobile radio and ancillary equipment intended to be connected to the vehicle's onboard DC mains, an Artificial Network (AN) as specified in CISPR 25 [10] shall be used and be connected to a DC power source.

For all other equipment the test method for AC mains power port specified in CENELEC EN 55032 [1] shall be used.

The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies (see clause 4.3) for measurements in the transmit mode of operation.

For emission measurements on DC output ports the relevant port shall be connected via an AMN/AN to a load drawing the rated current of the source.

8.3.3 Limits

The equipment shall meet the limits below including the average limit and the quasi-peak limit when using, respectively, an average detector receiver and a quasi-peak detector receiver and measured in accordance with the method described in clause 8.3.2. If the average limit is met when using a quasi-peak detector, the equipment shall be deemed to meet both limits and measurement with the average detector is unnecessary.

The equipment shall meet the limits shown in table 5.
Table 5: Limits for conducted emissions

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Limit (quasi-peak) (dBµV)</th>
<th>Limit (average) (dBµV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,15 MHz to 0,5 MHz</td>
<td>66 to 56</td>
<td>56 to 46</td>
</tr>
<tr>
<td>> 0,5 MHz to 5 MHz</td>
<td>56</td>
<td>46</td>
</tr>
<tr>
<td>> 5 MHz to 30 MHz</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

Alternatively, for equipment intended to be used in an industrial environment or a telecommunication centres, the limits given in table 6 may be used.

Table 6: Limits for conducted emissions of equipment intended to be used in telecommunication centres and industrial environment

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Limit (quasi-peak) (dBµV)</th>
<th>Limit (average) (dBµV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,15 MHz to 0,5 MHz</td>
<td>79</td>
<td>66</td>
</tr>
<tr>
<td>> 0,5 MHz to 30 MHz</td>
<td>73</td>
<td>60</td>
</tr>
</tbody>
</table>

8.4 AC mains power input/output ports

8.4.1 General

This test is applicable for radio equipment and/or ancillary equipment for fixed use powered by the AC mains.

This test shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

This test assesses the level of internally generated electrical noise present on the AC power input/output ports.

8.4.2 Test method

The test method shall be in accordance with CENELEC EN 55032 [1] and the Artificial Mains Networks (AMNs) shall be connected to the AC mains power source.

The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies (see clause 4.3) for measurements in the transmit mode of operation.

For emission measurements on AC output ports of the EUT the relevant port shall be connected via an AMN to a load drawing the rated current of the source. In case where the AC output port is directly connected (or via a circuit breaker) to the AC power input port of the EUT the AC power output port need not to be tested.

8.4.3 Limits

8.4.3.1 General

The equipment shall meet the limits below including the average limit and the quasi-peak limit when using, respectively, an average detector receiver and a quasi-peak detector receiver and measured in accordance with the method described in clause 8.4.2. If the average limit is met when using a quasi-peak detector, the equipment shall be deemed to meet both limits and measurement with the average detector is unnecessary.
8.4.3.2 AC Power port used for power supply only

The equipment shall meet the class B limits given in CENELEC EN 55032 [1].
Alternatively, for equipment intended to be used in an industrial environment or a telecommunication centre, the class A limits given in CENELEC EN 55032 [1] may be used.

8.4.3.3 AC power input port also used for PLC Communications

Where the A.C power port of the equipment is also used for PLC communication up to 30 MHz then the EUT shall comply with the requirements of CENELEC EN 50561-1 [14] instead of those in clause 8.4.3.2 of the present document.

Where the A.C power port of the equipment is also used for PLC communication above 30 MHz then the EUT shall comply with the requirements of CENELEC EN 50561-3 [13] instead of those in clause 8.4.3.2 of the present document.

8.5 Harmonic current emissions (AC mains input port)

The appropriate requirements of CENELEC EN 61000-3-2/A1 [15] for harmonic current emission apply for equipment covered by the scope of the present document with an input current up to and including 16A per phase. For equipment with an input current of greater than 16A per phase CENELEC EN 61000-3-12 [11] applies.

8.6 Voltage fluctuations and flicker (AC mains input port)

The appropriate requirements of CENELEC EN 61000-3-3 [9] for voltage fluctuations and flicker apply for equipment covered by the scope of the present document with an input current up to and including 16A per phase, if no conditional connection is needed. Where a conditional connection is required then the requirements of CENELEC EN 61000-3-11 [12] shall apply.

For equipment with an input current of greater than 16A up to and including 75A per phase CENELEC EN 61000-3-11 [12] applies.

8.7 Wired network ports

8.7.1 General

This test is applicable for radio equipment and/or ancillary equipment for fixed use which have wired network ports.

This test shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

This test assesses the level of unwanted emissions present at the wired network ports.

8.7.2 Test method

The test method shall be in accordance with CENELEC EN 55032 [1].

The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies (see clause 4.3) for measurements in the transmit mode of operation.

8.7.3 Limits

The wired network ports shall meet the class B limits given in CENELEC EN 55032 [1].

Alternatively, for equipment intended to be used exclusively in an industrial environment or a telecommunication centre, the class A limits given in CENELEC EN 55032 [1] may be used.
9 Test methods and levels for immunity tests

9.1 Test configuration

This clause defines the requirements for test configurations:

- the tests shall be made in the mode(s) of operation specified in clause 4 in the relevant part of the ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment;
- the tests shall be carried out at a point within the specified normal operating environmental range and at the rated supply voltage for the equipment;
- if the equipment is part of a system, or can be connected to ancillary equipment, then it shall be acceptable to test the equipment connected to the minimum representative configuration of ancillary equipment necessary to exercise the ports;
- where radio equipment is provided with an integral antenna, it shall be tested with the antenna fitted in a manner typical of normal intended use, unless declared as a removable antenna;
- for the immunity tests of ancillary equipment, without a separate pass/fail criteria, the receiver or transmitter coupled to the ancillary equipment, shall be used to judge whether the ancillary equipment passes or fails;
- if the equipment has a large number of ports, then a sufficient number shall be selected to simulate actual operational conditions and to ensure that all the different types of termination are covered;
- ports, which in normal operation are connected, shall be connected to an ancillary equipment or to a representative piece of cable terminated to simulate the impedance of the ancillary equipment. RF input/output ports shall be correctly terminated;
- ports which are not connected to cables during normal intended operation, e.g. service connectors, programming connectors, temporary connectors etc. shall not be connected to any cables for the purpose of EMC testing. Where cables have to be connected to these ports, or interconnecting cables have to be extended in length in order to exercise the Equipment Under Test (EUT), precautions shall be taken to ensure that the evaluation of the EUT is not affected by the addition or extension of these cables;
- the configuration and mode of operation during the tests shall be precisely noted in the test report.

9.2 Radio frequency electromagnetic field (80 MHz to 6 000 MHz)

9.2.1 General

This test is applicable for radio equipment and associated ancillary equipment.

This test shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

This test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic field disturbance.

9.2.2 Test method

The test method shall be in accordance with CENELEC EN 61000-4-3 [3].

The following requirements and evaluation of test results shall apply:

- the test level shall be 3 V/m (measured unmodulated). The test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz. If the wanted signal is modulated at 1 000 Hz, then an audio signal of 400 Hz shall be used;
• the test shall be performed over the frequency range 80 MHz to 6 000 MHz with the exception of the exclusion
 band for transmitters, receivers and duplex transceivers (see clause 4), as appropriate;
• for receivers and transmitters the stepped frequency increments shall be 1 % frequency increment of the
 momentary used frequency, unless specified otherwise in the relevant part of ETSI EN 301 489 series [i.13];
• the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to
 be exercised and to be able to respond.

NOTE: Dwell time is product dependent.
• further product related spot frequency tests may be specified in the relevant part of ETSI
 EN 301 489 series [i.13];
• responses on receivers occurring at discrete frequencies, which are narrow band responses, shall be
 disregarded from the test (see clause 4);
• the frequencies selected and used during the test shall be recorded in the test report.

9.2.3 Performance criteria

For transmitters the performance criteria for continuous phenomena for transmitters shall apply.

For receivers the performance criteria for continuous phenomena for receivers shall apply.

For ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the
ancillary equipment is tested in connection with a receiver or transmitter in which case the corresponding performance
criteria above shall apply.

9.3 Electrostatic discharge

9.3.1 General

This test is applicable for radio equipment and associated ancillary equipment.
This test shall be performed on a representative configuration of the radio equipment, the associated ancillary
equipment, or a representative configuration of the combination of radio and ancillary equipment.
This test assesses the ability of the EUT to operate as intended in the event of an electrostatic discharge.

9.3.2 Test method

The test method shall be in accordance with CENELEC EN 61000-4-2 [2].
For radio equipment and ancillary equipment the following requirements and evaluation of test results shall apply.
The test severity level for contact discharge shall be ±4 kV and for air discharge ±8 kV. All other details, including
intermediate test levels, are contained within CENELEC EN 61000-4-2 [2].
Electrostatic discharges shall be applied to all exposed surfaces of the EUT except where the user documentation
specifically indicates a requirement for appropriate protective measures (see CENELEC EN 61000-4-2 [2]).

9.3.3 Performance criteria

For transmitters the performance criteria for transient phenomena for transmitter shall apply.
For receivers the performance criteria for transient phenomena for receivers shall apply.
For ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the
ancillary equipment is tested in connection with a receiver or transmitter in which case the corresponding performance
criteria above shall apply.
9.4 Fast transients, common mode

9.4.1 General

This test shall be performed on the AC mains power port (if any) of radio equipment and associated ancillary equipment.

This test shall be additionally performed on signal ports, wired network ports, control ports, and DC power ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

Where this test is not carried out on any port because the manufacturer declares that it is not intended to be used with cables longer than 3 m, a list of ports, which were not tested for this reason, shall be included in the test report.

This test shall be performed on a representative configuration of the radio equipment or a representative configuration of the combination of radio and ancillary equipment.

This test assesses the ability of the EUT to operate as intended in the event of fast transients present on one of the input/output ports.

9.4.2 Test method

The test method shall be in accordance with CENELEC EN 61000-4-4 [4].

The following requirements and evaluation of test results shall apply:

- the test level for signal ports, wired network ports (excluding xDSL), and control ports shall be 0,5 kV open circuit voltage at a repetition rate of 5 kHz as given in CENELEC EN 61000-4-4 [4];
- the test level for xDSL wired network ports shall be 0,5 kV open circuit voltage at a repetition rate of 100 kHz as given in CENELEC EN 61000-4-4 [4];
- the test level for DC power input ports shall be 0,5 kV open circuit voltage at a repetition rate of 5 kHz as given CENELEC EN 61000-4-4 [4];
- the test level for AC mains power input ports shall be 1 kV open circuit voltage at a repetition rate of 5 kHz as given CENELEC EN 61000-4-4 [4].

9.4.3 Performance criteria

For transmitters the performance criteria for transient phenomena for transmitter shall apply.

For receivers the performance criteria for transient phenomena for receivers shall apply.

For ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the ancillary equipment is tested in connection with a receiver or transmitter in which case the corresponding performance criteria shall apply.

9.5 Radio frequency, common mode

9.5.1 General

This test shall be performed on the AC mains power port (if any) of radio equipment and associated ancillary equipment.

This test shall be additionally performed on signal ports, wired network ports, control ports, and DC power ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

Where this test is not carried out on any port because the manufacturer declares that it is not intended to be used with cables longer than 3 m, a list of ports, which were not tested for this reason, shall be included in the test report.
This test shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

This test assesses the ability of the EUT to operate as intended in the presence of a radio frequency disturbance on the input/output ports.

9.5.2 Test method

The test method shall be in accordance with CENELEC EN 61000-4-6 [6].

The following requirements and evaluation of test results shall apply:

- the test level shall be severity level 2 as given in CENELEC EN 61000-4-6 [6] corresponding to 3 V rms unmodulated. The test signal shall then be amplitude modulated to a depth of 80% by a sinusoidal audio signal of 1 000 Hz. If the wanted signal is modulated at 1 000 Hz, then the test signal of 400 Hz shall be used;

- the test shall be performed over the frequency range 150 kHz to 80 MHz with the exception of an exclusion band for transmitters, and for receivers and duplex transceivers, (see clause 4);

- for receivers and transmitters the stepped frequency increments shall be 1 % frequency increment of the momentary frequency in the frequency range 150 kHz to 80 MHz, unless specified otherwise in the part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment;

- the injection method to be used shall be selected according to the basic standard CENELEC EN 61000-4-6 [6];

- responses on receivers or receiver parts of transceivers occurring at discrete frequencies which are narrow band responses (spurious responses), are disregarded from the test, (see clause 4);

- the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond;

- the frequencies of the immunity test signal selected and used during the test shall be recorded in the test report.

9.5.3 Performance criteria

For transmitters the performance criteria for continuous phenomena for transmitter shall apply.

For receivers the performance criteria for continuous phenomena for receivers shall apply.

For ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the ancillary equipment is tested in connection with receivers or transmitters in which case the corresponding performance criteria above shall apply.

9.6 Transients and surges in the vehicular environment

9.6.1 General

These tests are applicable to radio and ancillary equipment intended for vehicular use.

These tests shall be performed on nominal 12V and 24V DC supply voltage input ports of mobile radio and ancillary equipment, which are also intended for mobile use in vehicles.

These tests shall be performed on a representative configuration of the mobile radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

These tests assess the ability of the EUT to operate as intended in the event of transients and surges present on their DC power input ports in a vehicular environment.
9.6.2 Test method

The test method shall be in accordance with ISO 7637-2 [8] for 12V DC and 24V DC powered equipment.

The test method shall be in accordance with ISO 7637-2 [8], applying pulses 1, 2a, 2b, 3a, 3b, and 4, using immunity test level III. For the purpose of EMC testing it is sufficient to apply pulses 1, 2a, 2b and 4, 10 times each, and apply the test pulses 3a and 3b for 20 minutes each.

9.6.3 Performance criteria

For transmitters, pulse 3a and 3b the performance criteria for continuous phenomena for transmitters shall apply.

For pulse 1, 2a, 2b, and 4 the performance criteria for transient phenomena for transmitter shall apply, with the exception that a communication link need not to be maintained during the EMC exposure and may have to be re-established.

For receivers, pulse 3a and 3b the performance criteria for continuous phenomena for receivers shall apply.

For pulse 1, 2a, 2b, and 4 the performance criteria for transient phenomena for receivers shall apply, with the exception that a communication link need not to be maintained during the EMC exposure and may have to be re-established.

For ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the ancillary equipment is tested in connection with the radio equipment in which case the corresponding performance criteria above shall apply.

9.7 Voltage dips and interruptions

9.7.1 General

This test shall be performed on the AC mains power port (if any) of radio equipment and associated ancillary equipment.

These tests shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

These tests assess the ability of the EUT to operate as intended in the event of voltage dips and interruptions present on the AC mains power input ports.

9.7.2 Test method

The following requirements and evaluation of test results shall apply.

The test method shall be in accordance with CENELEC EN 61000-4-11 [7] or for equipment requiring a mains current of greater than 16 A CENELEC EN 61000-4-34 [16] shall be used.

The test levels shall be:

- voltage dip: 0 % residual voltage for 0.5 cycle;
- voltage dip: 0 % residual voltage for 1 cycle;
- voltage dip: 70 % residual voltage for 25 cycles (at 50 Hz);
- voltage interruption: 0 % residual voltage for 250 cycles (at 50 Hz).

9.7.3 Performance criteria

For a voltage dip the following performance criteria apply:

- for transmitters the performance criteria for transient phenomena for transmitter shall apply (see clause 6 of the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment);
• for receivers the performance criteria for transient phenomena for receiver shall apply (see clause 6 of the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment);

• for ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the ancillary equipment is tested in connection with a receiver or transmitter in which case the corresponding performance criteria above shall apply.

For a voltage interruption the following performance criteria apply:

• in the case where the equipment is fitted with or connected to a battery back-up, the performance criteria for transient phenomena for transmitters or for receivers shall apply (see clause 6 of the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment);

• in the case where the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up) volatile user data may have been lost and if applicable the communication link need not to be maintained and lost functions should be recoverable by user or operator;

• no unintentional responses shall occur at the end of the test;

• in the event of loss of function(s) or in the event of loss of user stored data, this fact shall be recorded in the test report;

• for ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the ancillary equipment is tested in connection with a receiver or transmitter in which case the corresponding performance criteria above shall apply.

9.8 Surges

9.8.1 General

This test shall be performed on the AC mains power input port (if any) of radio equipment and associated ancillary equipment.

This test shall be additionally performed on wired network ports (see clause 3.1), if any.

These tests shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment.

These tests assess the ability of the EUT to operate as intended in the event of surges present on the AC mains power input ports and wired network ports.

9.8.2 Test method

9.8.2.0 General

The test method shall be in accordance with CENELEC EN 61000-4-5 [5].

The requirements and evaluation of test results given in clause 9.8.2.1 (wired network ports, outdoor cables), clause 9.8.2.2 (wired network ports, indoor cables) and clause 9.8.2.3 (mains ports) shall apply, but no test shall be required where normal functioning cannot be achieved, because of the impact of the CDN on the EUT.

9.8.2.1 Test method for wired network ports directly connected to outdoor cables

The test level for symmetrically operated, wired network ports, intended to be directly connected to wired network ports via outdoor cables, shall be 1 kV (applied lines to ground) as given in CENELEC EN 61000-4-5 [5]. The test generator shall provide the 10/700 μs pulse as defined in CENELEC EN 61000-4-5 [5].

The test level for non-symmetrically operated wired network ports, intended to be directly connected to wired network ports via outdoor cables, shall be 1 kV (applied line to ground, or shield to ground) and 0,5 kV (applied line to line) as given in CENELEC EN 61000-4-5 [5]. The test generator shall provide the 1,2/50 μs pulse as defined in CENELEC EN 61000-4-5 [5].
The total output impedance of the surge generator shall be in accordance with the basic standard CENELEC EN 61000-4-5 [5].

9.8.2.2 Test method for wired network ports connected to indoor cables

The test level for wired network ports, intended to be connected to indoor cables (longer than 30 m) shall be 0.5 kV (applied line to ground, or shield to ground). In this case the total output impedance of the surge generator shall be in accordance with the basic standard CENELEC EN 61000-4-5 [5].

The test generator shall provide the 1.2/50 μs pulse as defined in CENELEC EN 61000-4-5 [5].

9.8.2.3 Test method for mains ports

The test level for ac mains power input ports shall be 2 kV line to ground, and 1 kV line to line, with the output impedance of the surge generator as given in CENELEC EN 61000-4-5 [5].

In telecom centres 1 kV line to ground and 0.5 kV line to line shall be used.

The test generator shall provide the 1.2/50 μs pulse as defined in CENELEC EN 61000-4-5 [5].

9.8.3 Performance criteria

For transmitters the performance criteria for transient phenomena for transmitters shall apply (see clause 6 of the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment).

For receivers the performance criteria for transient phenomena for receivers shall apply (see clause 6 of the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment).

For ancillary equipment the pass/failure criteria supplied by the manufacturer (see clause 6.4) shall apply, unless the ancillary equipment is tested in connection with a receiver or transmitter in which case the corresponding performance criteria above shall apply.

A.1 Relationship between the present document and the essential requirements of Directive 2014/53/EU

The present document has been prepared under the Commission’s standardisation request C(2015) 5376 final [i.16] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.1].

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.1 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive and associated EFTA regulations.

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Requirement Conditionality</th>
<th>Reference: Clause No</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enclosure of ancillary equipment measured on a stand alone basis</td>
<td>8.2</td>
<td>C</td>
<td>only applicable to ancillary equipment not incorporated in the radio equipment and intended to be measured on a stand-alone basis</td>
</tr>
<tr>
<td>2</td>
<td>DC power input/output ports</td>
<td>8.3</td>
<td>C</td>
<td>Only where equipment has DC power input and/or output ports with a cable length greater than 3 m or from a vehicle power supply</td>
</tr>
<tr>
<td>3</td>
<td>AC mains power input/output ports</td>
<td>8.4</td>
<td>C</td>
<td>Only where equipment has AC mains power input and/or output ports</td>
</tr>
<tr>
<td>4</td>
<td>Harmonic current emission (AC mains input port)</td>
<td>8.5</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports</td>
</tr>
<tr>
<td>5</td>
<td>Voltage fluctuations and flicker (AC mains input ports)</td>
<td>8.6</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports</td>
</tr>
<tr>
<td>6</td>
<td>Wired network ports</td>
<td>8.7</td>
<td>C</td>
<td>Only where equipment has wired network ports</td>
</tr>
<tr>
<td>7</td>
<td>Radio frequency electromagnetic field (80 MHz to 6 000 MHz)</td>
<td>9.2</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Electrostatic discharge</td>
<td>9.3</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fast transients common mode</td>
<td>9.4</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports or DC power ports or wired network ports with cables longer than 3 m</td>
</tr>
<tr>
<td>10</td>
<td>Radio frequency common mode</td>
<td>9.5</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports or DC power ports or wired network ports with cables longer than 3 m</td>
</tr>
<tr>
<td>11</td>
<td>Transients and surges in the vehicular environment</td>
<td>9.6</td>
<td>C</td>
<td>Only where equipment is connected to vehicle power supply</td>
</tr>
<tr>
<td>12</td>
<td>Voltage dips and interruptions</td>
<td>9.7</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports</td>
</tr>
<tr>
<td>13</td>
<td>Surges, line to line and line to ground</td>
<td>9.8</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports and/or wired network ports</td>
</tr>
</tbody>
</table>
Key to columns:

Requirement:

<table>
<thead>
<tr>
<th>No</th>
<th>A unique identifier for one row of the table which may be used to identify a requirement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A textual reference to the requirement.</td>
</tr>
<tr>
<td>Clause Number</td>
<td>Identification of clause(s) defining the requirement in the present document unless another document is referenced explicitly.</td>
</tr>
</tbody>
</table>

Requirement Conditionality:

<table>
<thead>
<tr>
<th>U/C</th>
<th>Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the manufacturer's claimed functionality of the equipment (C).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Explains the conditions when the requirement is or is not applicable for a requirement which is classified "conditional".</td>
</tr>
</tbody>
</table>

Presumption of conformity stays valid only as long as a reference to the present document is maintained in the list published in the Official Journal of the European Union. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.

Other Union legislation may be applicable to the product(s) falling within the scope of the present document.

A.2 Relationship between the present document and the essential requirements of Directive 2014/30/EU

The present document has been prepared to provide one voluntary means of conforming to the essential requirements of Directive 2014/30/EU [i.2] of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast).

NOTE: The corresponding Commission's standardisation request to provide one voluntary means of conforming to the essential requirements Directive 2014/30/EU on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast) [i.2] is expected shortly.

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.2 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive, and associated EFTA regulations.
Table A.2: Relationship between the present document and the essential requirements of Directive 2014/30/EU

<table>
<thead>
<tr>
<th>No</th>
<th>Requirement</th>
<th>Reference: Clause No</th>
<th>Requirement Conditionality</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enclosure of ancillary equipment measured on a stand alone basis</td>
<td>8.2</td>
<td>U/C</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>DC power input/output ports</td>
<td>8.3</td>
<td>C</td>
<td>Only where equipment has DC power input and/or output ports with a cable length greater than 3 m or from a vehicle power supply</td>
</tr>
<tr>
<td>3</td>
<td>AC mains power input/output ports</td>
<td>8.4</td>
<td>C</td>
<td>Only where equipment has AC mains power input and/or output ports</td>
</tr>
<tr>
<td>4</td>
<td>Harmonic current emission (AC mains input port)</td>
<td>8.5</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports</td>
</tr>
<tr>
<td>5</td>
<td>Voltage fluctuations and flicker (AC mains input ports)</td>
<td>8.6</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports</td>
</tr>
<tr>
<td>6</td>
<td>Wired network ports</td>
<td>8.7</td>
<td>C</td>
<td>Only where equipment has wired network ports</td>
</tr>
<tr>
<td>7</td>
<td>Radio frequency electromagnetic field (80 MHz to 6 000 MHz)</td>
<td>9.2</td>
<td>U/C</td>
<td>U</td>
</tr>
<tr>
<td>8</td>
<td>Electrostatic discharge</td>
<td>9.3</td>
<td>U/C</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>Fast transients common mode</td>
<td>9.4</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports or DC power ports or wired network ports with cables longer than 3 m</td>
</tr>
<tr>
<td>10</td>
<td>Radio frequency common mode</td>
<td>9.5</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports or DC power ports or wired network ports with cables longer than 3 m</td>
</tr>
<tr>
<td>11</td>
<td>Transients and surges in the vehicular environment</td>
<td>9.6</td>
<td>C</td>
<td>Only where equipment is connected to vehicle power supply</td>
</tr>
<tr>
<td>12</td>
<td>Voltage dips and interruptions</td>
<td>9.7</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports</td>
</tr>
<tr>
<td>13</td>
<td>Surges, line to line and line to ground</td>
<td>9.8</td>
<td>C</td>
<td>Only where equipment has AC mains power input ports and/or wired network ports</td>
</tr>
</tbody>
</table>

Key to columns:
- **Requirement:**
 - **No** A unique identifier for one row of the table which may be used to identify a requirement.
 - **Description** A textual reference to the requirement.
 - **Clause Number** Identification of clause(s) defining the requirement in the present document unless another document is referenced explicitly.

- **Requirement Conditionality:**
 - **U/C** Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the manufacturer’s claimed functionality of the equipment (C).
 - **Condition** Explains the conditions when the requirement is or is not applicable for a requirement which is classified “conditional”.

Presumption of conformity stays valid only as long as a reference to the present document is maintained in the list published in the Official Journal of the European Union. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.

Other Union legislation may be applicable to the product(s) falling within the scope of the present document.
Annex B (normative):
Application of harmonised EMC standards to multi-radio and multi-standard-radio equipment

B.1 Introduction

This clause details the additional considerations when dealing with multi-radio and multi-standard-radio equipment.

For Multi-radio and multi-standard-radio equipment, the applicable EMC phenomena and limits are those set out in the ETSI EN 301 489 series [i.13].

The test conditions, performance assessment and performance criteria as stated in the present document are used together with the specific relevant radio technology parts of the ETSI EN 301 489 series [i.13].

B.2 Multi-radio equipment capable of independent transmission

If the individual radio products and their corresponding radio links operate independently in normal usage (as declared by the manufacturer), then separate testing may be used. In this case the individual radio products shall be assessed to the appropriate harmonised EMC product standards.

B.3 Multi-radio equipment and multi-standard-radio equipment not capable of independent transmission

However, where operation of the individual radio products and their corresponding radio links is simultaneous in normal usage (as declared by the manufacturer), then separate testing shall not be used. In this case testing shall be performed on the complete combined equipment. An overall performance criteria is required for the combined equipment. This may be developed by examining the individual performance criteria of the various radio products involved. The performance criteria used shall be declared by the manufacturer and recorded in the test report.

Where multiple operational frequencies are used, exclusion bands shall be defined for each of the radio products and all of these shall be used during testing.

B.4 Multi-radio equipment comprising of numerous identical radio transmitters

Typically this situation exists where a baseband amplifier is used to feed multiple radio front ends that may be located in a different location to the baseband amplifier. In this situation the individual parts may be tested separately to the appropriate harmonised EMC standard applicable to that product part.
Annex C (informative):
Bibliography

ETSI EG 203 336: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Guide for the selection of technical parameters for the production of Harmonised Standards covering article 3.1(b) and article 3.2 of Directive 2014/53/EU".

Annex D (informative):
Change history

<table>
<thead>
<tr>
<th>Version</th>
<th>Information about changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Compared with earlier versions that were cited under previous EU Directives, the following changes have been introduced:</td>
</tr>
<tr>
<td></td>
<td>• Radiated immunity testing to a continuous sweep between 80 MHz and 6,000 MHz at 3V/m, as opposed to the previous frequency range of 80 MHz to 1,000 MHz and 1,400 MHz to 2,700 MHz in earlier editions of the ETSI EN 301 489 series [1.13].</td>
</tr>
<tr>
<td></td>
<td>• New derivations of exclusion bands more closely linked to the operational characteristics of the radio link(s) in the EUT. In many cases this has resulted in new exclusion bands in the individual parts of the ETSI EN 301 489 series [1.13].</td>
</tr>
<tr>
<td></td>
<td>• Surge test method aligned with CENELEC EN 61000-4-5 [5].</td>
</tr>
<tr>
<td></td>
<td>• Also with this version the previous annex B that dealt with aftermarket fitment of radio equipment into vehicles has been removed following the demise of the EU motor vehicle EMC Directive.</td>
</tr>
<tr>
<td></td>
<td>• Those parts of annex C that covered combined equipment have been removed.</td>
</tr>
</tbody>
</table>

The above changes impact all other parts of the ETSI EN 301 489 series [1.13].

More information regarding the changes between the different versions of the ETSI EN 301 489 series [1.13] may be found in ETSI TR 103 088 [1.9].
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.2.1 August 2000</td>
</tr>
<tr>
<td>V1.3.1 September 2001</td>
</tr>
<tr>
<td>V1.4.1 August 2002</td>
</tr>
<tr>
<td>V1.5.1 November 2004</td>
</tr>
<tr>
<td>V1.6.1 September 2005</td>
</tr>
<tr>
<td>V1.8.1 April 2008</td>
</tr>
<tr>
<td>V1.9.2 September 2011</td>
</tr>
<tr>
<td>V2.1.0 April 2016</td>
</tr>
<tr>
<td>V2.1.1 November 2016</td>
</tr>
<tr>
<td>V2.1.1 February 2017</td>
</tr>
</tbody>
</table>