Satellite Earth Stations and Systems (SES);
Harmonised Standard for Low data rate
Land Mobile satellite Earth Stations (LMES)
and Maritime Mobile satellite Earth Stations (MMES)
not intended for distress and safety communications
operating in the 1,5 GHz/1,6 GHz frequency bands
covering the essential requirements of
article 3.2 of the Directive 2014/53/EU
5 Testing for compliance with technical requirements... 18
 5.1 Environmental conditions for testing .. 18
 5.2 Radio test suites .. 18
 5.2.1 General .. 18
 5.2.2 Measurement of unwanted emissions .. 19
 5.2.2.1 General .. 19
 5.2.2.2 Test site .. 19
 5.2.2.3 Test method .. 19
 5.2.2.3.1 Installation ... 19
 5.2.2.3.2 Receive test equipment ... 20
 5.2.2.4 Procedure .. 21
 5.2.2.4.1 Test arrangements ... 21
 5.2.2.4.2 Up to 1 000 MHz ... 21
 5.2.2.4.3 Above 1 000 MHz ... 22
 5.2.3 MES Control and Monitoring Functions (CMF) .. 22
 5.2.3.1 General .. 22
 5.2.3.2 Test arrangement .. 23
 5.2.3.3 Processor monitoring .. 23
 5.2.3.3.1 Test method .. 23
 5.2.3.4 Transmit subsystem monitoring ... 24
 5.2.3.4.1 Test method .. 24
 5.2.3.5 Network control commands ... 25
 5.2.3.5.1 Test method .. 24
 5.2.3.6 Control Channel reception ... 25
 5.2.3.6.1 Test method .. 24
 5.2.3.7 Initial burst transmission ... 26
 5.2.3.7.1 Test method .. 24
 5.2.3.8 Control Channel reception ... 26
 5.2.3.8.1 Test method .. 24
 5.2.4 Receiver Adjacent Channel Selectivity .. 27
 5.2.4.1 General .. 27
 5.2.4.2 Test arrangement .. 27
 5.2.4.3 Test procedures .. 27
 5.2.5 Receiver Blocking Characteristics .. 27
 5.2.5.1 General .. 27
 5.2.5.2 Test arrangement .. 28
 5.2.5.3 Test procedures .. 28

Annex A (normative): Relationship between the present document and the essential
requirements of Directive 2014/53/EU .. 29

Annex B (informative): Bibliography ... 30

History .. 31
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Harmonised European Standard (EN) has been produced by ETSI Technical Committee Satellite Earth Stations and Systems (SES).

The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.5] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.8].

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.1 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive, and associated EFTA regulations.

<table>
<thead>
<tr>
<th>National transposition dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of adoption of this EN:</td>
</tr>
<tr>
<td>Date of latest announcement of this EN (doa):</td>
</tr>
<tr>
<td>Date of latest publication of new National Standard or endorsement of this EN (dop/e):</td>
</tr>
<tr>
<td>Date of withdrawal of any conflicting National Standard (dow):</td>
</tr>
</tbody>
</table>

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
Introduction

The present document is part of a set of standards developed by ETSI and is designed to fit a modular structure to cover all radio equipment under the Directive 2014/53/EU [i.8]. The modular structure is shown in ETSI EG 201 399 [i.4].

These requirements are in three major categories:

- **emission limits**: to protect other radio services from harmful interference generated by the Mobile Earth Station (MES) in normal use;
- **MES Control and Monitoring Functions (CMF)**: to protect other radio services from unwanted transmissions from the MES. The CMF in each MES is capable of answering to commands from the Network Control Facilities (NCF) for its MES;
- **Receiver performance specifications**: to enable reception of a wanted signal in the presence of other high power signals in the adjacent channel and/or adjacent band.

The requirements have been selected to ensure an adequate level of compatibility with other radio services. The levels, however, do not cover extreme cases which may occur in any location but with a low probability of occurrence.

The present document may not cover those cases where a potential source of interference which is producing individually repeated transient phenomena or a continuous phenomenon is present, e.g. a radar or broadcast site in the near vicinity. In such a case it may be necessary to use special protection applied to either the source of interference, or the interfered part or both.

The present document does not contain any requirement, recommendation or information about the installation of the MESs.

Following the WRC-03 decision [i.6] to allocate to MSS the bands 1 518 MHz to 1 525 MHz (space to Earth) and 1 668 MHz to 1 675 MHz (Earth to space) and the conclusions of WRC-07 [i.7], a new set of emission requirements for L-MESs that are capable of transmitting in the frequency band from 1 668,0 MHz to 1 675,0 MHz is specified.

The two parts of the L-band frequency allocations are treated as two sub-bands which may be used separately or in any combination. The standard L-band allocation is referenced in the present document as "sub-band 1" and the extended L-band is referenced as "sub-band 2".

Table 2c is applicable for L-MESs that are capable of transmitting in any combination of either or both of these sub-bands. Table 2c is recommended for all new L-MESs including L-MESs that can only operate in sub-band 1.

The applicant may choose between tables 2b and 2c for new L-MESs that are capable of transmitting in only the sub-band 1. The applicant has to declare which alternative is used.

The present document specifies a new set of receiver performance requirements for L-MESs under the new Radio Equipment Directive 2014/53/EU [i.8].

The present document was based on ETSI TBR 026 [i.2].

The present document is also based on ETSI ETS 300 740 [i.3] (see annex B) for Maritime Mobile Earth Stations (MMES) not intended for distress and safety communications.

The determination of the parameters of the user earth stations using a given geo-stationary satellite for the protection of the spectrum allocated to that satellite is considered to be under the responsibility of the satellite operator or the satellite network operators.

For MESs operating in satellite networks using satellites which also provide radio navigation service and/or other safety services should note that such satellite network operators or satellite operators may require testing in addition to the present document to prove correct interworking in order to avoid the MES causing harmful interference which endangers the functioning of these services. References to these requirements will be listed in annex A of the present document as they become known.
The present document is therefore intended to cover the provisions of Directive 2014/53/EU [i.8] (RE Directive) article 3.2 which states that "....radio equipment shall be so constructed that it both effectively uses and supports the efficient use of radio spectrum in order to avoid harmful interference".

Recital 10 of Directive 2014/53/EU [i.8] states that "in order to ensure that radio equipment uses the radio spectrum effectively and supports the efficient use of radio spectrum, radio equipment should be constructed so that: in the case of a transmitter, when the transmitter is properly installed, maintained and used for its intended purpose it generates radio waves emissions that do not create harmful interference, while unwanted radio waves emissions generated by the transmitter (e.g. in adjacent channels) with a potential negative impact on the goals of radio spectrum policy should be limited to such a level that, according to the state of the art, harmful interference is avoided; and, in the case of a receiver, it has a level of performance that allows it to operate as intended and protects it against the risk of harmful interference, in particular from shared or adjacent channels, and, in so doing, supports improvements in the efficient use of shared or adjacent channels".

Recital 11 of Directive 2014/53/EU [i.8] states that "although receivers do not themselves cause harmful interference, reception capabilities are an increasingly important factor in ensuring the efficient use of radio spectrum by way of an increased resilience of receivers against harmful interference and unwanted signals on the basis of the relevant essential requirements of Union harmonisation legislation".

As a consequence, the present document includes both transmitting and receiving parameters aiming to maximize the efficient use of radio spectrum.
1 Scope

The present document applies to the following Mobile Earth Stations (MESs) radio equipment:

- Land Mobile Earth Stations (LMESs) radio equipment; and
- Maritime Mobile Earth Stations (MMESs) radio equipment not providing those distress and safety functions required by the International Maritime Organization (IMO);

which have the following characteristics:

- these LMESs could be either vehicle mounted or portable equipment;
- these MMESs are installable equipment on ships;
- these MESs operate with user bit-rates of up to 9.6 kbits/s;
- these MMESs could consist of a number of modules including a keyboard interface to the user;
- these MESs are operating as part of a satellite network used for the distribution and/or exchange of information between users;
- this radio equipment is capable of operating in all or any part of the frequency bands given in table 1a.

Table 1a: Mobile Satellite Service frequency bands

<table>
<thead>
<tr>
<th>Sub-Band</th>
<th>Direction of transmission</th>
<th>MSS frequency bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transmit 1 (Earth to space)</td>
<td>1 626,5 MHz to 1 660,5 MHz</td>
</tr>
<tr>
<td></td>
<td>Receive 1 (space to Earth)</td>
<td>1 525,0 MHz to 1 559,0 MHz</td>
</tr>
<tr>
<td>2</td>
<td>Transmit 2 (Earth to space)</td>
<td>1 668,0 MHz to 1 675,0 MHz</td>
</tr>
<tr>
<td></td>
<td>Receive 2 (space to Earth)</td>
<td>1 518,0 MHz to 1 525,0 MHz</td>
</tr>
</tbody>
</table>

The present document is intended to cover the provisions of Directive 2014/53/EU [i.8] (RE Directive) article 3.2 which states that "...radio equipment shall be so constructed that it both effectively uses and supports the efficient use of radio spectrum in order to avoid harmful interference".

In addition to the present document, other ENs that specify technical requirements in respect of essential requirements under other parts of article 3 of the Directive 2014/53/EU [i.8] may apply to equipment within the scope of the present document.

NOTE 1: A list of such ENs is included on the web site http://www.newapproach.org. The present document applies to the MES operated within the boundary limits of the operational environmental profile declared by the applicant.

NOTE 2: These MES are controlled and monitored by a Network Control Facility (NCF). The NCF is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.

[5] ETSI EN 301 426 (V1.2.1) (10-2001): "Satellite Earth Stations and Systems (SES); Harmonized EN for Low data rate Land Mobile satellite Earth Stations (LMES) and Maritime Mobile satellite Earth Stations (MMES) not intended for distress and safety communications operating in the 1,5/1,6 GHz frequency bands covering essential requirements under article 3.2 of the R&TTE Directive".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] Void.

[i.2] ETSI TBR 026: "Satellite Earth Stations and Systems (SES); Low data rate Land Mobile satellite Earth Stations (LMES) operating in the 1,5/1,6 GHz frequency bands".

[i.3] ETSI ETS 300 740 (1997): "Satellite Earth Stations and Systems (SES); Maritime Mobile Earth Stations (MMES) operating in the 1,5/1,6 GHz bands providing Low Bit Rate Data Communications (LBRDC) in the Maritime Mobile Satellite Service (MMSS), not intended for distress and safety communications".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in Directive 2014/53/EU [i.8] and the following apply:

applicant: manufacturer or his authorized representative within the European Community or the person responsible for placing the apparatus on the market

carrier-off state: MES is in this state when either it is authorized by the Network Control Facility (NCF) to transmit but when it does not transmit any signal, or when it is not authorized by the NCF to transmit

carrier-on state: MES is in this state when it is authorized by the NCF to transmit and when it transmits a signal

Control Channel (CC): channel or channels by which MESs receive control information from the NCF of their network

environmental profile: range of environmental conditions under which equipment within the scope of the present document is required to comply with the provisions of the present document

Externally Mounted Equipment (EME): consists of those of the modules of the IE which are intended to be mounted externally to the vehicle or the ship as stated by the applicant

in-band signals: signals which are located in the operating band plus an offset of 10 MHz outside this operating band

Installable Equipment (IE): equipment which is intended to be fitted to a vehicle or a ship

NOTE: An IE may consist of one or several interconnected modules.

Internally Mounted Equipment (IME): modules of the IE which are not declared by the applicant as EME are defined as Internally Mounted Equipment (IME)

nominated bandwidth: bandwidth of the MES radio frequency transmission which is nominated by the applicant

NOTE: The nominated bandwidth is wide enough to encompass all spectral elements of the transmission which have a level greater than the specified unwanted emissions limits. The nominated bandwidth is wide enough to take account of the transmit carrier frequency stability. The nominated bandwidth is within the transmit frequency band within which the MES operates.

Portable Equipment (PE): portable equipment is generally intended to be self-contained, free standing and portable

NOTE: A PE would normally consist of a single module, but may consist of several interconnected modules.

unwanted emissions: unwanted emissions are those falling outside the nominated bandwidth

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>CC</td>
<td>Control Channel</td>
</tr>
<tr>
<td>CMF</td>
<td>Control and Monitoring Functions</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>EFTA</td>
<td>European Free Trade Association</td>
</tr>
<tr>
<td>EIRP</td>
<td>Equivalent Isotropically Radiated Power</td>
</tr>
<tr>
<td>EMC</td>
<td>ElectroMagnetic Compatibility</td>
</tr>
<tr>
<td>EME</td>
<td>Externally Mounted Equipment</td>
</tr>
<tr>
<td>ETS</td>
<td>European Telecommunication Standard</td>
</tr>
<tr>
<td>EUT</td>
<td>Equipment Under Test</td>
</tr>
<tr>
<td>IE</td>
<td>Installable Equipment</td>
</tr>
<tr>
<td>IME</td>
<td>Internally Mounted Equipment</td>
</tr>
</tbody>
</table>
4 Technical requirement specifications

4.1 Environmental profile

The technical requirements of the present document apply under the environmental profile for operation of the equipment, which shall be declared by the applicant. The equipment shall comply with all the technical requirements of the present document at all times when operating within the boundary limits of the declared operational environmental profile.

The environmental profile for operation of the equipment shall include the ranges of humidity, temperature, vibration and supply voltage.

4.2 Conformance Requirements

4.2.1 Unwanted emissions outside the bands

4.2.1.1 Justification

Protection of terrestrial and satellite services from emissions caused by MESs outside the band 1 626,5 MHz to 1 660,5 MHz and outside the band 1 668 MHz to 1 675 MHz.

4.2.1.2 Specification

The unwanted emissions in the measurement bandwidth and in all directions from the Mobile Earth Station (MES) outside the band 1 626,5 MHz to 1 660,5 MHz and outside the band 1 668 MHz to 1 675 MHz, within which the MES is designed to operate, shall be below the following limits.

1) The unwanted emissions over the frequency range 30 MHz to 1 000 MHz shall not exceed the limits in table 1b for LMESs and table 1c for MMESs.

| Table 1b: Limits of LMESs unwanted emissions up to 1 000 MHz at a measuring distance of 10 m in a 120 kHz bandwidth |
|--|--|
| Frequency (MHz) | Quasi-peak limits (dB(µV/m)) |
| 30 to 230 | 30 |
| 230 to 1 000 | 37 |
Table 1c: Limits of MMESs unwanted emissions up to 1 000 MHz at a measuring distance of 10 m in a 120 kHz bandwidth

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Quasi-peak limits (dB(µV/m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 to 156</td>
<td>30</td>
</tr>
<tr>
<td>156 to 165</td>
<td>14 (see note)</td>
</tr>
<tr>
<td>165 to 230</td>
<td>30</td>
</tr>
<tr>
<td>230 to 1 000</td>
<td>37</td>
</tr>
</tbody>
</table>

NOTE: In the band 156 MHz to 165 MHz a 9 kHz bandwidth applies.

The lower limit shall apply at the transition frequencies.

2) The unwanted emissions Equivalent Isotropically Radiated Power (EIRP) above 1 000 MHz for MESs (LMESs and MMESs), in the measurement bandwidth and in all directions shall not exceed the limits of table 2b.

Table 2b: Limits of unwanted emissions above 1 000 MHz and outside the bands 1 626,5 MHz to 1 660,5 MHz applicable from 1 June 2002

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Carrier-on</th>
<th>Carrier-off</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EIRP limit (dBpW)</td>
<td>Measurement bandwidth (kHz)</td>
</tr>
<tr>
<td>1 000,0 to 1 525,0</td>
<td>49</td>
<td>100</td>
</tr>
<tr>
<td>1 525,0 to 1 559,0</td>
<td>49</td>
<td>100</td>
</tr>
<tr>
<td>1 559,0 to 1 580,42</td>
<td>50</td>
<td>1 000</td>
</tr>
<tr>
<td>1 580,42 to 1 605,0</td>
<td>50</td>
<td>1 000</td>
</tr>
<tr>
<td>1 605,0 to 1 610,0</td>
<td>(see note 4)</td>
<td>100</td>
</tr>
<tr>
<td>1 610,0 to 1 626,0</td>
<td>74</td>
<td>100</td>
</tr>
<tr>
<td>1 626,0 to 1 626,5</td>
<td>84</td>
<td>3</td>
</tr>
<tr>
<td>1 660,5 to 1 661,0</td>
<td>84</td>
<td>3</td>
</tr>
<tr>
<td>1 661,0 to 1 690,0</td>
<td>74</td>
<td>100</td>
</tr>
<tr>
<td>1 690,0 to 3 400,0</td>
<td>49</td>
<td>100</td>
</tr>
<tr>
<td>3 400,0 to 10 700,0</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>10 700,0 to 21 200,0</td>
<td>61</td>
<td>100</td>
</tr>
<tr>
<td>21 200,0 to 40 000,0</td>
<td>67</td>
<td>100</td>
</tr>
</tbody>
</table>

NOTE 1: The lower limits shall apply at the transition frequencies.
NOTE 2: In the band 3 253,0 MHz to 3 321,0 MHz the maximum EIRP in one, and only one, 100 kHz measurement bandwidth shall not exceed 82 dBpW. Elsewhere in this band the power limit in this table shall be applied.
NOTE 3: In each of the bands 4 879,5 MHz to 4 981,5 MHz, 6 506,0 MHz to 6 642,0 MHz and 8 132,5 MHz to 8 302,5 MHz the maximum EIRP in one, and only one, 100 kHz measurement bandwidth shall not exceed 72 dBpW. In the band 9 759,0 MHz to 9 963,0 MHz the maximum power in one, and only one, 100 kHz measurement bandwidth shall not exceed 61 dBpW. Elsewhere in these bands the power limit in this table shall be applied.
NOTE 4: Linearly interpolated from 40 dBpW in 100 kHz at 1 605,0 MHz to 74 dBpW in 100 kHz at 1 610,0 MHz.
NOTE 5: Linearly interpolated from 40 dBpW in 100 kHz at 1 605,0 MHz to 48 dBpW in 100 kHz at 1 610,0 MHz.
Table 2c: Limits of unwanted emissions above 1 000 MHz and outside the band 1 626,5 MHz to 1 660,5 MHz and the band 1 668 MHz to 1 675 MHz

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Carrier-on</th>
<th>EIRP limit (dBpW)</th>
<th>Measurement bandwidth (kHz)</th>
<th>Carrier-off</th>
<th>EIRP limit (dBpW)</th>
<th>Measurement bandwidth (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000,0 to 1 518,0</td>
<td>49</td>
<td>100</td>
<td></td>
<td>48 (note 6)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 518,0 to 1 525,0</td>
<td>49</td>
<td>100</td>
<td></td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1 525,0 to 1 559,0</td>
<td>49</td>
<td>100</td>
<td></td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1 559,0 to 1 580,42</td>
<td>50</td>
<td>1 000</td>
<td></td>
<td>50</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>1 580,42 to 1 605,0</td>
<td>50</td>
<td>1 000</td>
<td></td>
<td>50</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>1 605,0 to 1 610,0</td>
<td>(see note 4)</td>
<td>100</td>
<td></td>
<td>(see note 5)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 610,0 to 1 626,0</td>
<td>74</td>
<td>100</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 626,0 to 1 626,5</td>
<td>84</td>
<td>3</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 660,5 to 1 661,0</td>
<td>84</td>
<td>3</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 661,0 to 1 667,5</td>
<td>74</td>
<td>100</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 667,5 to 1 668,0</td>
<td>84</td>
<td>3</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 675,0 to 1 675,5</td>
<td>84</td>
<td>3</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 675,5 to 1 690,0</td>
<td>74</td>
<td>100</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1 690,0 to 3 400,0</td>
<td>49</td>
<td>(see note 2)</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3 400,0 to 10 700,0</td>
<td>55</td>
<td>(see note 3)</td>
<td></td>
<td>48</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10 700,0 to 21 200,0</td>
<td>61</td>
<td>100</td>
<td></td>
<td>54</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>21 200,0 to 40 000,0</td>
<td>67</td>
<td>100</td>
<td></td>
<td>60</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10 700,0 to 21 200,0</td>
<td>60</td>
<td>1 000</td>
<td></td>
<td>43 (see note 6)</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>21 200,0 to 40 000,0</td>
<td>60</td>
<td>1 000</td>
<td></td>
<td>43 (see note 6)</td>
<td>1 000</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: The lower limits shall apply at the transition frequencies.
NOTE 2: In the bands 3 253,0 MHz to 3 321,0 MHz and 3 336,0 MHz to 3 350,0 MHz the maximum EIRP in one, and only one, 100 kHz measurement bandwidth shall not exceed 82 dBpW. Elsewhere in this band the power limit in this table shall be applied.
NOTE 3: In each of the bands 4 879,5 MHz to 4 981,5 MHz, 5 004 MHz to 5 025 MHz, 6 506,0 MHz to 6 642,0 MHz, 6 672,0 MHz to 6 700,0 MHz, 8 132,5 MHz to 8 302,5 MHz and 8 340,0 MHz to 8 375 MHz the maximum EIRP in one, and only one, 100 kHz measurement bandwidth shall not exceed 72 dBpW. In the bands 9 759,0 MHz to 9 963,0 MHz and 10 008,0 MHz to 10 050,0 MHz the maximum power in one, and only one, 100 kHz measurement bandwidth shall not exceed 61 dBpW. Elsewhere in these bands the power limit in this table shall be applied.
NOTE 4: Linearly interpolated from 40 dBpW in 100 kHz at 1 605,0 MHz to 74 dBpW in 100 kHz at 1 610,0 MHz.
NOTE 5: Linearly interpolated from 40 dBpW in 100 kHz at 1 605,0 MHz to 48 dBpW in 100 kHz at 1 610,0 MHz.
NOTE 6: Peak-hold measurement methods shall be used for carrier-off limits in the band 1 000,0 MHz to 1 518,0 MHz and in all the bands from 10 700,0 MHz to 40 000 MHz. Otherwise average measurement methods should be used.

4.2.1.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.2.

4.2.2 Maximum unwanted emission within the bands

4.2.2.1 Justification

The limits presented in this clause shall apply for all MESs that are capable of transmitting either in sub-band 1, or sub-band 2, or in both sub-bands as defined in table 1a for the purpose of protection of satellite and terrestrial services operating in the 1 626,5 MHz to 1 660,5 MHz and in the 1 668 MHz to 1 675 MHz frequency bands.

4.2.2.2 Specification

If an MES is capable of transmitting in both sub-band 1 and sub-band 2 as defined in table 1a, there are two different limits in this clause. The limits defined in table 3 shall only apply for the current transmit band as defined below.
Specification 1: carrier-on state

For MES transmitting in sub-band 1 (as defined in table 1a), the EIRP of the unwanted emission in any 3 kHz band within the 1 622,5 MHz to 1 660,5 MHz band, but outside the nominated bandwidth, shall not exceed the limits of table 3; and the emission limits within the 1 668 MHz to 1 675 MHz frequency band shall not exceeded 74 dBpW in any 100 kHz measurement bandwidth.

For MES transmitting in sub-band 2 (as defined in table 1a), the EIRP of the unwanted emission in any 3 kHz band within the 1 668 MHz to 1 675 MHz band, but outside the nominated bandwidth, shall not exceed the limits of table 3; and the emission limits within the 1 626,5 MHz to 1 660,5 MHz frequency band shall not exceeded 74 dBpW in any 100 kHz measurement bandwidth.

Table 3: Limits of unwanted emission within the operating band with carrier-on

<table>
<thead>
<tr>
<th>Offset from the edge of the band of the nominated bandwidth (kHz)</th>
<th>Maximum EIRP (dBpW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 100</td>
<td>117</td>
</tr>
<tr>
<td>100 to 200</td>
<td>104</td>
</tr>
<tr>
<td>200 to 700</td>
<td>84</td>
</tr>
<tr>
<td>greater than 700</td>
<td>74</td>
</tr>
</tbody>
</table>

Specification 2: carrier-off state

For MES which is capable of transmitting in either sub-band 2 only or in both sub-band 1 and sub-band 2 (as defined in table 1a), Specification 2a shall apply. This requirement shall also apply if an applicant declares to use table 2c for MES capable of transmitting in sub-band 1 only and should also apply if an applicant declares to use table 2b.

- Specification 2a: The EIRP spectral density of any emission within the 1 626,5 MHz to 1 660,5 MHz band and the 1 668,0 MHz to 1 675,0 MHz band shall not exceed 48 dBpW in any 100 kHz band.

However, if an applicant declares to use table 2b for LMES capable of transmitting in sub-band 1 only (as defined in table 1a), then Specification 2b shall apply:

- Specification 2b: The EIRP spectral density of any emission within the 1 626,5 MHz to 1 660,5 MHz band and the 1 668,0 MHz to 1 675,5 MHz band shall not exceed 57 dBpW in any 3 kHz band.

NOTE: Specification 2b is retained for compatibility with the previous version of the present document [5]. Specification 2a is recommended for all new MES.

4.2.2.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.2.

4.2.3 Control and Monitoring Functions (CMFs)

4.2.3.1 General

The following minimum set of CMFs shall be implemented in MESs in order to minimize the probability that they originate unwanted transmissions that may give rise to harmful interference to other systems.

Under any fault condition when the MES transmissions are being suppressed the limits for carrier-off state shall apply.

4.2.3.2 Processor monitoring

4.2.3.2.1 Justification

To ensure that the MES can suppress transmissions in the event of a processor sub-system failure.
4.2.3.2 Specification

The MES shall incorporate a processor monitoring function for each of its processors involved in the manipulation of traffic and in Control and Monitoring Functions (CMF).

The processor monitoring function shall detect any failure of the processor hardware and software.

No later than one second after any fault condition occurs, the MES shall enter the carrier-off state until the processor monitoring function has determined that all fault conditions have been cleared.

4.2.3.2.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.3.3.

4.2.3.3 Transmit subsystem monitoring

4.2.3.3.1 Justification

To ensure the correct operation of the transmit frequency generation sub-system and to inhibit transmissions should the sub-system fail.

4.2.3.3.2 Specification

The MES shall monitor the operation of its transmit frequency generation sub-system.

No later than 5 seconds after any fault condition of the transmit frequency generation sub-system occurs, the MES shall enter the carrier-off state until the transmit sub-system monitoring function has determined that all fault conditions have been cleared.

4.2.3.3.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.3.4.

4.2.3.4 Power-on/Reset

4.2.3.4.1 Justification

To demonstrate that the MES achieves a controlled non-transmitting state following the powering of the unit, or the occurrence of a reset made by a local operator when this function is implemented.

4.2.3.4.2 Specification

During and following "power on" or a manual reset when this function is implemented, the MES shall remain in the carrier-off state.

4.2.3.4.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.3.5.

4.2.3.5 Control Channel reception

4.2.3.5.1 Justification

To ensure that the MES cannot transmit unless it correctly receives the Control Channel messages from the Network Control Facility (NCF).

4.2.3.5.2 Specification

a) Without correct reception of the Control Channel (CC) messages from the NCF, the MES shall remain in the carrier-off state.

b) The MES shall enter the carrier-off state immediately after a period not exceeding 30 seconds without correct reception of the CC messages from the NCF. For half-duplex transmission systems in operation before 1 January 1994 this period of time shall be 15 minutes.

4.2.3.5.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.3.6.

4.2.3.6 Network control commands

4.2.3.6.1 Justification

These requirements ensure that the MES is capable of:

a) retaining a unique identification in the network and transmitting it upon reception of an appropriate request;

b) receiving commands from the NCF through its Control Channel(s) and executing those commands.

4.2.3.6.2 Specification

The MES shall hold, in non-volatile memory, its unique identification code in the network.

The MES shall be capable of receiving through its Control Channel(s) dedicated commands (addressed to the MES) from the NCF, and which contain:

- transmission enables commands;
- transmission disables commands;
- identification request.

Once a transmission enable command is received the MES is authorized to transmit.

After power-on or reset the MES shall remain in the carrier-off state until it receives a transmission enable command. For systems where no transmission enable command is expected after power-on or reset the MES may only transmit initial bursts (see clause 4.2.3.6).

Once a transmission disable command is received, within 1 second the MES shall enter and shall remain in the carrier-off state until the transmission disable command is superseded by a subsequent transmission enable command.

The MES shall be capable of transmitting its identification code upon reception of an identification request.

4.2.3.6.3 Conformance test

Conformance tests shall be carried out in accordance with clause 5.2.3.7.

4.2.3.7 Initial burst transmission

4.2.3.7.1 Justification

To limit disturbance to other services.
4.2.3.7.2 Specification

For systems where no transmission enable command is expected after power-on or reset the MES may transmit initial bursts:

a) the transmission of the initial burst shall not exceed 1 % of the time;

b) each burst shall not last more than one second.

4.2.3.7.3 Conformance tests

Conformance tests shall be carried out in accordance with clause 5.2.3.8.

4.2.4 Receiver Adjacent Channel Selectivity

4.2.4.1 Justification

To enable reception of a wanted signal in the presence of other signals in the adjacent channel.

Adjacent channel selectivity is a measure of a receiver's ability to receive a signal at its assigned channel frequency in the presence of a signal in the adjacent channel at a given frequency offset from the centre frequency of the assigned channel.

4.2.4.2 Specification

The frequency offset and relative power level of the adjacent signal compared to the wanted signal shall take the values given in table 4. The adjacent signal shall occupy the same bandwidth as the wanted signal where BW is the wanted signal occupied bandwidth. There shall be no more than 0.5 dB degradation in the receiver signal to noise ratio under these conditions.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Centre frequency offset from wanted signal</th>
<th>Power level relative to wanted signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent signal</td>
<td>BW</td>
<td>12 dB</td>
</tr>
</tbody>
</table>

4.2.4.3 Conformance test

Conformance tests described in clause 5.2.4 shall be carried out.

4.2.5 Receiver Blocking Characteristics

4.2.5.1 Justification

To prevent high power signals outside the receive frequency band from blocking the reception of signals inside the receive frequency band.

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer at frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. Receiver blocking is specified for in-band signals. In-band signals are signals in the 1 508 MHz to 1 569 MHz band.

4.2.5.2 Specification

The receiver performance degradation, in terms of signal to noise ratio, shall not exceed 1 dB when the unwanted signal as specified in table 5 is present.
Table 5: Test parameters for in-band blocking characteristics

<table>
<thead>
<tr>
<th>Interfering Signal</th>
<th>In-band Frequency Range (MHz)</th>
<th>Frequency offset from wanted carrier (MHz)</th>
<th>Level (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>1 508 to 1 569</td>
<td>5</td>
<td>-40 (note)</td>
</tr>
</tbody>
</table>

NOTE: The -40 dBm level is set based on the performance of the design of MSS terminals. For ease of laboratory testing, the interfering signal is specified as a CW signal. Receiver blocking performance specification against a broadband signal blocking interferer, such as LTE, is under study.

4.2.5.3 Conformance test

Conformance tests described in clause 5.2.5 shall be carried out.

5 Testing for compliance with technical requirements

5.1 Environmental conditions for testing

Tests defined in the present document shall be carried out at representative points within the boundary limits of the declared environmental profile.

5.2 Radio test suites

5.2.1 General

The values of measurement uncertainty associated with each measurement parameter apply to all of the test cases described in the present document. The measurement uncertainties shall not exceed the values shown in table 6.

Table 6: Measurement uncertainty

<table>
<thead>
<tr>
<th>Measurement parameter</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio frequency</td>
<td>±10 kHz</td>
</tr>
<tr>
<td>RF power</td>
<td>±0.75 dB</td>
</tr>
<tr>
<td>Conducted spurious</td>
<td>±4 dB</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>±2 dB</td>
</tr>
<tr>
<td>Radiated spurious</td>
<td>±6 dB</td>
</tr>
</tbody>
</table>

To enable the performance tests to be carried out the use of Special Test Equipment (STE), made available by the applicant may be necessary. Since this test equipment will be specific to the particular system, it is not possible to provide detailed specifications in the present document. However, the following baseline is provided:

- if the MES requires to receive a modulated carrier from the satellite in order to transmit, then special test arrangements are required to simulate the satellite signal, thus enabling the MES to transmit allowing measurement of transmission parameters;
- any characteristic of these special test arrangements which may have direct or indirect effects on the parameters to be measured shall be clearly stated by the applicant.

All tests in the carrier-on state shall be undertaken with the transmitter operating at the maximum power setting and with the maximum transmit burst rate where applicable.

All technical characteristics and operational conditions declared by the applicant shall be entered in the test report.
5.2.2 Measurement of unwanted emissions

5.2.2.1 General

For purpose of the test, the Equipment Under Test (EUT) comprises:

a) for Installable Equipment (IE):
 - the Externally Mounted Equipment (EME);
 - the Internally Mounted Equipment (IME);
 - interconnecting cables between IME and EME units as supplied by the applicant;
 - the necessary power supply cables and any other cable ensuring a proper functioning of the terminal;

b) for Portable Equipment (PE):
 - for a single module PE, the module itself with any deployable parts in their normal operating configuration;
 - for a multiple module PE, all such modules with all necessary interconnecting cables of lengths as normally supplied by the applicant; again any deployable parts should be in their normal operating configuration.

For measurements up to 1 000 MHz the distance between the EUT and the measuring antenna shall be 10 m. For measurements above 1 000 MHz the distance between the EUT and the measuring antenna shall be such that the radiating near-field of each antenna shall not overlap with that of the other.

The highest frequency to which tests shall be performed shall be the 10th harmonic of the highest conversion frequency or ten times the highest transmit frequency, whichever is the greater. The upper and lower extremes of the tuning range shall be stated by the applicant.

5.2.2.2 Test site

The test shall be performed either in an open area test site, a semi-anechoic chamber or an anechoic chamber. Ambient noise levels shall be at least 6 dB below the applicable unwanted emissions limit.

An open area test site shall be flat, free of overhead wires and nearby reflecting structures, sufficiently large to permit aerial placement at the specified measuring distance and provide adequate separation between aerial, test unit and reflecting structures.

A metal ground plane shall be inserted on the natural ground plane and it shall extend at least 1 m beyond the perimeter of the EUT at one end and at least 1 m beyond the measurement antenna at the other end.

5.2.2.3 Test method

5.2.2.3.1 Installation

For IE, the EUT shall be installed with a separation of about 0,5 m between the IME and the EME, the maximum length connection cable specified by the applicant shall be installed. The height of the cable shall be between 0,5 m and 1 m. The cable shall be maintained in that position by non-metallic means. The EME shall be set, in its normal operating configuration on a non-metallic table at a height between 0,5 m and 1 m. The IME shall be set on a non-metallic table at a height of 0,8 m for tests up to 1 000 MHz and between 0,5 m and 1 m for tests above 1 000 MHz. Any associated equipment, e.g. portable computer or data terminal if required for operation of the MES, shall be placed next to, and at the same height as, the IME.

For PE, the equipment shall be arranged in its normal operating configuration as recommended by the applicant on a non-metallic table at a height between 0,5 m and 1 m.

The EUT shall be terminated with matched impedances at the ports if recommended by the applicant in the user documentation and if there is no associated equipment connected to such ports.
For frequencies up to 80 MHz the measuring antenna shall be a balanced dipole which has a length equal to the 80 MHz resonant length and shall be matched to the feeder by a suitable transforming device. Measurements with broad band antennas are also possible provided that the test site has been calibrated according to the requirements of CISPR 16-1 [2].

For frequencies between 80 MHz and 1 000 MHz the measuring antenna shall be a balanced dipole which shall be resonant in length. Measurements with broad band antennas are also possible provided that the test site has been calibrated according to the requirements of CISPR 16-1 [2].

For frequencies above 1 000 MHz the antenna shall be a horn radiator of known gain/frequency characteristics. When used for reception the antenna and any associated amplification system shall have an amplitude/frequency response within ±2 dB of the combined calibration curves across the measurement frequency range considered for the antenna. The antenna is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization and at the specified height.

For tests up to 1 000 MHz the receive test equipment shall be a measuring receiver. For tests above 1 000 MHz the receive test equipment shall be a spectrum analyser.

5.2.2.3.2 Receive test equipment

5.2.2.3.2.1 Measuring receiver for measurements up to 1 000 MHz

Measuring receivers shall conform to the following characteristics:

- the response to a constant amplitude sine wave signal shall remain within ±1 dB across the frequency range of interest;
- for LMES: quasi-peak detection shall be used in a -6 dB bandwidth of 120 kHz;
- for MMES: quasi-peak detection shall be used in a -6 dB bandwidth of:
 - -9 kHz in the frequency range 156 MHz to 165 MHz; and
 - -120 kHz in the frequency ranges 30 MHz to 156 MHz and 165 MHz to 1 GHz;
- the receiver shall be operated at more than 1 dB below the compression point during tests/measurements.

5.2.2.3.2.2 Spectrum analyser for measurements above 1 000 MHz

The spectrum analyser resolution bandwidth shall be set to the specified measuring bandwidth or as close as possible. If the resolution bandwidth is different from the specified measuring bandwidth, bandwidth correction shall be performed for noise-like wideband signals. The measuring system shall be capable of detecting signals at least 6 dB below the applicable unwanted emissions limit.
5.2.2.4 Procedure

5.2.2.4.1 Test arrangements

Figure 2: Test arrangement - Unwanted emissions measurement, first axis

Figure 3: Test arrangement - Unwanted emissions measurement, second axis

Figure 4: Test arrangement - Unwanted emissions measurement, third axis

5.2.2.4.2 Up to 1 000 MHz

a) The test arrangement shall be as shown in figure 2 with the measuring receiver installed. EUTs with adjustable antennas shall have the antenna boresight axis in the plane of rotation. The measuring antenna boresight axis shall coincide with the plane of rotation of the boresight of the EUT.
b) The EUT shall be in the carrier-on state with the carrier at the lowest possible centre frequency.

c) The EUT shall be rotated through 360 degrees whilst unwanted emissions are measured in frequency and amplitude, over the frequency range 30 MHz to 1 000 MHz. The frequency and amplitude of each signal shall be noted.

d) The measurements shall be repeated with the measuring antenna in the opposite polarization and the signal levels similarly noted.

e) The tests in c) and d) above shall be repeated with the EUT carrier at the highest possible centre frequency.

f) The tests in c) and d) above shall be repeated with the carrier-off.

g) The tests in b) to f) above shall be repeated with the EUT turned so that its axis of rotation is orthogonal to that of the first case, as shown in figure 3. The EUT antenna boresight axis shall remain in the plane of rotation.

h) The tests in b) to f) above shall be repeated with the EUT turned so that its axis of rotation is mutually orthogonal to those of the first two cases, as shown in figure 4. The EUT antenna boresight axis shall be perpendicular to the plane of rotation.

5.2.2.4.3 Above 1 000 MHz

a) The test arrangement shall be as shown in figure 2 with the spectrum analyser installed. EUTs with adjustable antennas shall have the antenna boresight axis in the plane of rotation. The measuring antenna boresight axis shall coincide with the plane of rotation of the boresight of the EUT.

b) The EUT shall be in the carrier-on state with the carrier at the lowest possible centre frequency.

c) The EUT shall be rotated through 360 degrees whilst unwanted emissions are measured in frequency and amplitude, over the frequency range 1 000 MHz to 40 GHz. The frequency and amplitude of each signal shall be noted.

d) The measurements shall be repeated with the measuring antenna in the opposite polarization and the signal levels similarly noted.

e) The tests in c) and d) above shall be repeated with the EUT carrier at the highest possible centre frequency.

f) The tests in c) and d) above shall be repeated with the carrier-off.

5.2.2.4.3 Above 1 000 MHz

a) The test arrangement shall be as shown in figure 2 with the spectrum analyser installed. EUTs with adjustable antennas shall have the antenna boresight axis in the plane of rotation. The measuring antenna boresight axis shall coincide with the plane of rotation of the boresight of the EUT.

b) The EUT shall be in the carrier-on state with the carrier at the lowest possible centre frequency.

c) The EUT shall be rotated through 360 degrees whilst unwanted emissions are measured in frequency and amplitude, over the frequency range 1 000 MHz to 40 GHz. The frequency and amplitude of each signal shall be noted.

d) The measurements shall be repeated with the measuring antenna in the opposite polarization and the signal levels similarly noted.

e) The tests in c) and d) above shall be repeated with the EUT carrier at the highest possible centre frequency.

f) The tests in c) and d) above shall be repeated with the carrier-off.

g) The tests in b) to f) above shall be repeated with the EUT turned so that its axis of rotation is orthogonal to that of the first case, as shown in figure 3. The EUT antenna boresight axis shall remain in the plane of rotation.

h) The tests in b) to f) above shall be repeated with the EUT turned so that its axis of rotation is mutually orthogonal to those of the first two cases, as shown in figure 4. The EUT antenna boresight axis shall be perpendicular to the plane of rotation.

5.2.3 MES Control and Monitoring Functions (CMF)

5.2.3.1 General

If the EUT is an MES that has been modified by the applicant for these tests then full documentation of such modification(s) shall be provided to prove that the modification(s) will simulate the required test condition.

For the purpose of this test the EUT is the MES either with, or without its antenna connected.

The measurement of the EIRP spectral density shall be limited within either the nominated bandwidth or to a 10 MHz bandwidth centred on the carrier frequency whichever is the greater.
5.2.3.2 Test arrangement

![Diagram of test arrangement for control and monitoring tests for radiated measurements]

Figure 5: General test arrangement for control and monitoring tests for radiated measurements

![Diagram of test arrangement for control and monitoring tests for conducted measurements]

Figure 6: General test arrangement for control and monitoring tests for conducted measurements

The test arrangement shall be as shown in figures 5 or 6. The EUT shall be authorized to transmit and shall be in the carrier-on state at the commencement of each test, unless otherwise stated. The oscilloscope shall monitor by measuring the time difference between the command, or failure, and the occurrence of the expected event (e.g. the transmission suppression). The spectrum analyser and the power meter shall monitor the EUT output level.

5.2.3.3 Processor monitoring

5.2.3.3.1 Test method

a) Each of the processors within the EUT shall, in turn, be caused to fail.

b) Within 1 second of such failure the EUT shall cease to transmit as measured by the oscilloscope.

c) The power meter and spectrum analyser shall be observed to ascertain that the transmissions have been suppressed.

d) The failed processor shall be restored to normal working condition and the EUT shall restore automatically to normal working before the next processor shall be induced to fail.
5.2.3.4 Transmit subsystem monitoring

5.2.3.4.1 Test method

a) The frequency lock subsystem within the EUT shall be caused to fail.
b) Within 6 seconds of such failure the EUT shall cease to transmit as measured by the oscilloscope.
c) The power meter and spectrum analyser shall be observed to ascertain that the transmissions have been suppressed.
d) The failed elements shall be restored to normal working state and the EUT shall be restored to normal working.
e) The frequency generation subsystem within the EUT shall be caused to fail.
f) Within 6 seconds of such failure the EUT shall cease to transmit as measured by the oscilloscope.
g) The power meter and spectrum analyser shall be observed to ascertain that the transmissions have been suppressed.
h) The failed elements shall be restored to normal working state and the EUT shall be restored to normal working.

5.2.3.5 Power-on/Reset

5.2.3.5.1 Test method

a) the EUT shall be switched off and the STE shall not transmit the CC;
b) the EUT shall be switched on;
c) the EUT shall not transmit during and after switching-on, and shall enter the carrier-off state.

The events from a) to c) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal. If a manual reset function is implemented the following test shall be performed:

d) the EUT shall be switched on and the STE shall transmit the CC;
e) a call shall be initiated from the EUT and the EUT shall enter the carrier-on state;
f) the reset function shall be initiated;
g) the EUT shall enter the carrier-off state.

The event from e) to g) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.

5.2.3.6 Control Channel reception

5.2.3.6.1 Test method

The following tests shall be performed:

- case a) where the CC has never been received by the EUT;
- case b) where the CC is lost by the EUT during a transmission period of a call;
- case c) where the CC is lost by the EUT during a period without transmission;
- case d) where the CC is being lost by the EUT and a call is initiated within the Time-Out period T1.

The Time-Out period T1 used in the tests shall be 30 seconds. For half-duplex transmission systems in operation before 1 January 1994 this Time Out T1 shall be 15 minutes.
a) Case where the CC has never been received by the EUT:
 a1) the EUT shall be switched off and the STE shall not transmit the CC;
 a2) the EUT shall be switched on;
 a3) a call shall be initiated from the EUT;
 a4) the EUT shall remain in the carrier-off state.

The events from a2) to a4) shall be displayed and verified with the oscilloscope and by measurement of the transmit signal.

b) Case where the CC is lost by the EUT during a transmission period of a call:
 b1) the EUT shall be switched-on and the STE shall transmit the CC;
 b2) a call shall be initiated from the EUT;
 b3) the STE shall stop transmitting the CC;
 b4) within T1 from b3), the EUT shall enter the carrier-off state.

The events from b2) to b4) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.

c) Case where the CC is lost by the EUT during a period without transmission:
 c1) the EUT shall be switched on and the STE shall transmit the CC;
 c2) the STE shall stop transmitting the CC;
 c3) more than T1 later, a call shall be initiated from the EUT;
 c4) the EUT shall remain in the carrier-off state.

The events from c2) to c4) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.

d) Case where the CC is being lost by the EUT and a call is initiated within the T1 period:
 d1) the EUT shall be switched on and the STE shall transmit the CC;
 d2) the STE shall stop transmitting the CC;
 d3) within the period T1 from d2), a call shall be initiated from the EUT;
 d4) the EUT may transmit but within the T1 period the EUT shall enter the carrier-off state.

The events from d2) to d4) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.

5.2.3.7 Network control commands

5.2.3.7.1 Test method

The following tests shall be performed in sequence:

- transmission enables command;
- transmission disables command;
- identification request.
a) Transmission enables command:
 a1) the EUT shall be switched-on and the STE shall transmit the CC;
 a2) the EUT shall enter the carrier-off state;
 a3) a call shall be initiated from the EUT, the EUT shall remain in the carrier-off state;
 a4) the STE shall transmit an enable command to the EUT;
 a5) a call shall be initiated from the EUT;
 a6) the EUT shall enter the carrier-on state and shall transmit.

The events from a2) to a6) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.

b) Transmission disables command:
 b1) continue from a6). In the case of half-duplex systems the call shall be terminated;
 b2) the STE shall transmit a disable command to the EUT;
 b3) the EUT shall enter the carrier-off state within 1 second;
 b4) a call shall be initiated from the EUT;
 b5) the EUT shall remain in the carrier-off state;
 b6) the STE shall transmit an enable command;
 b7) a call shall be initiated from the EUT;
 b8) the EUT shall enter the carrier-on state and shall transmit;
 b9) the call shall be terminated at the EUT.

The events from b2) to b9) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.

c) Identification request:
 c1) continue from b9);
 c2) the STE shall transmit an identification request;
 c3) the EUT shall enter the carrier-on state and shall transmit its identification code.

The STE shall display the identification code sent by the EUT.

5.2.3.8 Initial burst transmission

5.2.3.8.1 Test method
 a) the EUT shall be switched-off and the STE shall transmit the CC;
 b) the EUT shall be switched-on;
 c) the EUT shall not transmit, except the initial bursts, if any;
 d) each initial burst shall not last more than 1 second, and the transmission of the initial bursts shall not exceed 1 % of the time.

The events from b) to d) shall be displayed and verified with the oscilloscope and by measurement of the transmitted signal.
5.2.4 Receiver Adjacent Channel Selectivity

5.2.4.1 General

If the EUT is a MES that has been modified by the applicant for these tests then full documentation of such modification(s) shall be provided to prove that the modification(s) will simulate the required test condition.

For the purpose of this test, the EUT is the MES without its antenna connected.

5.2.4.2 Test arrangement

The equipment should be set-up as shown in figure 7.

![Figure 7: Measuring system set-up for Adjacent Channel Selectivity and Blocking Characteristics](image)

5.2.4.3 Test procedures

The procedure basics are illustrated below:

1) The wanted signal power is adjusted such that the SNR (at the receiver input) is set to the reference level plus 1 dB. The reference level is the minimum SNR required to achieve the target performance level for a given bearer type.

2) Measure the SNR of the receiver, where SNR of the receiver means the SNR determined by the receiver demodulator.

3) Set the parameters of the interference signal generator as shown in table 4 in clause 4.2.4.2.

4) Add the interference signal and measure the SNR of the receiver.

5) The SNR achieved in step 4 shall not exceed 0.5 dB degradation compared to the SNR measured in step 2.

5.2.5 Receiver Blocking Characteristics

5.2.5.1 General

If the EUT is a MES that has been modified by the applicant for these tests then full documentation of such modification(s) shall be provided to prove that the modification(s) will simulate the required test condition.

For the purpose of this test, the EUT is the MES without its antenna connected.
5.2.5.2 Test arrangement

The equipment should be set-up as shown in figure 7.

5.2.5.3 Test procedures

1) The wanted signal power is adjusted such that the SNR (at the receiver input) is set to the reference level plus 2 dB. The reference level is the minimum SNR required to achieve the target performance level for a given bearer type.

2) Measure the SNR of the receiver, where SNR of the receiver means the SNR determined by the receiver demodulator.

3) Generate CW with the parameters as shown in table 5 in clause 4.2.5.2.

4) Apply the interference CW and measure the receiver SNR.

5) The SNR achieved in step 4 shall not exceed 1 dB degradation compared to the SNR measured in step 2.
Annex A (normative):
Relationship between the present document and the essential requirements of Directive 2014/53/EU

The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.5] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.8].

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.1 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive, and associated EFTA regulations.

Table A.1: Relationship between the present document and the essential requirements of Directive 2014/53/EU

<table>
<thead>
<tr>
<th>No</th>
<th>Requirement</th>
<th>Reference: Clause No</th>
<th>U/C</th>
<th>Requirement Conditionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unwanted emissions outside the 1 626.5 MHz to 1 660.5 MHz bands</td>
<td>4.2.1</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maximum unwanted emission within the 1 626.5 MHz to 1 660.5 MHz bands</td>
<td>4.2.2</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Processor monitoring</td>
<td>4.2.3.2</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Transmit subsystem monitoring</td>
<td>4.2.3.3</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Power-on/Reset</td>
<td>4.2.3.4</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Control Channel reception</td>
<td>4.2.3.5</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Network Control commands</td>
<td>4.2.3.6</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Initial burst transmission</td>
<td>4.2.3.7</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Receiver Adjacent Channel Selectivity</td>
<td>4.2.4</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Receiver Blocking Characteristics</td>
<td>4.2.5</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

Key to columns:

Requirement:

- **No**: A unique identifier for one row of the table which may be used to identify a requirement.
- **Description**: A textual reference to the requirement.
- **Clause Number**: Identification of clause(s) defining the requirement in the present document unless another document is referenced explicitly.

Requirement Conditionality:

- **U/C**: Indicates whether the requirement shall be unconditionally applicable (U) or is conditional upon the manufacturer's claimed functionality of the equipment (C).
- **Condition**: Explains the conditions when the requirement shall or shall not be applicable for a requirement which is classified "conditional".

Presumption of conformity stays valid only as long as a reference to the present document is maintained in the list published in the Official Journal of the European Union. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.

Other Union legislation may be applicable to the product(s) falling within the scope of the present document.
Annex B (informative):

Bibliography

- CENELEC EN 55022 (1994): "Limits and methods of measurement of radio disturbance characteristics of information technology equipment".

- ETSI ETS 300 459: "Satellite Earth Stations and Systems (SES); Network Control Facilities (NCF) for Maritime Mobile Earth Stations (MMES) operating in the 1,5/1,6 GHz and 11/12/14 GHz bands providing Low Bit Rate Data Communications (LBRDC)".

- ETSI ETS 300 282: "Satellite Earth Stations and Systems (SES); Network Control Facilities (NCF) for Land Mobile Earth Stations (LMES) operating in the 1,5/1,6 GHz bands and 11/12/14 GHz bands providing Low Bit Rate Data Communications (LBRDC)".

- ETSI EN 300 831: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic Compatibility (EMC) for Mobile Earth Stations (MES) used within Satellite Personal Communications Networks (S-PCN) operating in the 1,5/1,6/2,4 GHz and 2 GHz frequency bands".

- ETSI ETS 300 254: "Satellite Earth Stations and Systems (SES); Land Mobile Earth Stations (LMES) operating in the 1,5/1,6 GHz bands providing Low Bit Rate Data Communications (LBRDC)".
History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.1.1</td>
<td>May 2000</td>
<td>Publication</td>
<td></td>
</tr>
<tr>
<td>V1.2.1</td>
<td>October 2001</td>
<td>Publication</td>
<td></td>
</tr>
<tr>
<td>V2.1.0</td>
<td>February 2016</td>
<td>EN Approval Procedure</td>
<td>AP 20160515: 2016-02-15 to 2016-05-16</td>
</tr>
<tr>
<td>V2.1.1</td>
<td>July 2016</td>
<td>Vote</td>
<td>V 20160911: 2016-07-13 to 2016-09-12</td>
</tr>
<tr>
<td>V2.1.2</td>
<td>November 2016</td>
<td>Publication</td>
<td></td>
</tr>
</tbody>
</table>