ETSI EN 301 234 v2.1.1 006-05)

European Standard (Telecommunications series)

Digital Audio Broadcasting (DAB);
Multimedia Object Transfer (MOT) protocol

EBU-UER

D

2 ETSI EN 301 234 V2.1.1 (2006-05)

Reference
REN/JTC-DAB-38A

Keywords

audio, broadcasting, DAB, digital, multimedia,
protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
© European Broadcasting Union 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI EN 301 234 V2.1.1 (2006-05)

Contents

Intellectual Property RIGNES.........oo et 6
0 Yo (o SRS 6
gLl [N o1 o] o [OOSR 7
1 o010 PR 8
2 L= £ 101 8
3 Definitions and @DDreVIELIONS...........oieieieieieeses ettt n e 9
31 D= T 0 T] (0] TP P PR PRTUPTPRUSUSII 9
3.2 ADDIEVIBLIONS ...ttt et e bt b e ae et e e e eE e b e e bt e he e b e et et e bt eh e e Rt e e e b e eb e bt eneene e e re e 11
4 General description Of the MOT PIrOtOCOLceoieiiiiere et seeens 12
4.1 Requirements of MUIIMEI& SEIVICEScciiiiiiirieert ettt 12
4.2 PrODIEMS IMOT SOIVES.....c.eiieiitiiteeeeeeee ettt sttt sttt e e e e ae s teebe st ebe e st eneeeesseeeseeebesaeeseeneenseneeseeesesneeneeneeneees 12
43 Receiver architecture reference MOAE ..o et 13
5 S LN ol = 0 =S o 1 o) o ST PPN 14
5.1 Segmentation Of MOT ENEITIESuiiee et st e e e e sreeste et e eseesreesseenseenseessesneesseensens 15
51.1 S0 1S= 0) g == o = 17
512 Segmentation Of the MOT DOAYcoeieiiiriiiie et b e e ebesneseenen 17
513 Segmentation Of the MOT QITECLOIYc.ceuiriiiierieeeie ettt bbb e ebesreseenea 17
514 Segmentation Of the MOT NEAOENcoiiiie bbb e b sresnenea 18
52 Transporting MOT Segments - NEIWOIK TEVEL ..o e 18
521 0 =, 12700 (TP RRR 18
522 D N I SR 18
53 TranSMiSSION IMECNANISIMISoueeiiieitiet ettt sttt ettt et bk s bt b e et e e e s e es e b e saeeheeae e e e b e sbeabesaeene e e ennees 20
531 Single object transmission (MOT header MOUE)ceecuieiiiierieriere e 20
5311 REPELition 0N ODJECL IEVEL........ceeeeeeee e et nreas 20
53.1.2 Repetition of M SC data groups/MOT SEOMENLScceeieeieeiesie e seesteesteesee e eseesrees e e e eeesseessaessens 21
5.3.1.3 Repeated transmission of header information (combined with repetition on object level) 21
5.3.2 Multiple object transmissions (MOT direCtory MOE)..........cccueveereerieierseeseese e e e 22
5321 Interleaving MOT entitieSin one MOT SIFEAIM.......ccoiiiiiieiereee e 23
6 MOT NEAAEr INFOMMIBLION.eitiieieie ettt este e s e seesreeneesseeseesbeeneeseeseeeneensenseas 24
6.1 (=T L ot] P RSR 24
6.2 (a2 0L g A= 01 o] o TP P TR USTOSPP 25
6.2.1 Future expansion of the parameter data field..........cooceveiee e s 26
6.2.2 Parameters of the header extension for MOT header mode and MOT directory mode...........cccceevevevennenee. 27
6.2.2.1 MOT BaSiC tranSpOrt PAraIMELErSccueieeieeieeieeeeestesteesteete e e eseessaesseesseesseensessessesneesseesseessenssenssns 27
6.221.1 (00101 0111\ E=T 1 TSP PRSP 27
6.2.2.1.2 T 0= 1Y/ 0= 27
6.2.2.1.3 000 g0 (=T a1 Y o TSSO P SV STR PP 28
6.2.3 Parameters of the header extension for MOT directory mode ONnlyccoeoeeereieneneiesenec e 28
6.23.1 MOT caChing SUPPOIT PAIAIMELES......c.ceueirireeierte sttt st sttt et see e b e e e b e e e ebesee e ebesae e ebesbeneenens 28
6.231.1 S T1 2= 1o TSSOSO 28
6.2.3.1.2 PermitOULAEIEAV ErSIONS.c.eeeeieiie ettt se e st sae st e e e e enteseesbesneene e e eneees 30
6.2.3.1.3 L0 Lo L0107 2 L0 o YAV A= £ T o] o 30
6.2.3.1.4 o 0] T TR 30
6.2.3.1.5 RELraNSMI SSIONDISLANCE.......cc.eeueeeite ittt sttt ettt b e b e bbbt se e e et e sbesbe b e saeene e e e e es 30
6.2.3.2 MOT conditional @CCESS PArAIMELEISccuveiuieeieeeeeteereeeeteseesee e e steseesaesreesseenseeeesseesseensaesseesseessns 31
6.2.3.2.1 1O 1Y | o) o TSRS 31
6.2.3.2.2 (07 (= o = To = 1.1 01 () o= ot R 31
6.2.3.3 MOT Profile identifiCatioNoieiririeiee et b e bbb e ene 31
6.2.33.1 PrOFITESUDSEL ...ttt et ae et et e beseesbesneene e e eneees 32
6.24 COAING OF PAIAIMELETS. ..ottt ettt et b e et eb e s b ettt s e et b e sb e e eb e sb e e ek e sbe e et e sbe e ebeseenenen 32
6.24.1 Coding Of tIME PAIBMELENSeveiiitiieeeet ettt bbb et b e b et b bt e b na e ens 32
6.3 List of all MOT parametersin the MOT header EXENSION. ..o s 32

ETSI

4 ETSI EN 301 234 V2.1.1 (2006-05)

7 MOT tranSPOIT MOOESc.eeiiiiiieie ettt e e e et e s e et e s besaesbeeaeesbesbeensesreessestesaeenseseesnaensensens 34
7.1 MOT NEBAEY MOE.......ceeeeitirecieetere ettt r e r e b e e st e e nn e r e r e nnennennnns 35
711 LS YA o] o = w7 o] = o AU = = P 35
712 Management Of TranSPOITIAS.cviieeieee bbb bbb et b e 36
7.13 Updating header information/triggering ObJECES.ccoriiiiriie et 36
7.2 MOT GIFECIONY MOGE. ...ttt ettt b et b et b et b bt e bbbt b e bt bt e e st b e e e bbb e e nb e e e e ns 37
721 11 0o 1 ' TSP RSR 37
722 Assembly of MOT bodies and MOT Ir€CLOMYccueeiuirieiriirieirer et 37
7.2.3 MOT QIFECLONY COUINGc.vereeteiteeete sttt sttt b bbbt bbbt b e bbb e se et b e se et et s 37
724 List of all MOT parametersin the MOT direCtory eXtENSIONccccuveceeeeeseeneeie e see e e sae e seee e 39
7241 SOrtedHEAEr TNFOIMELION.c.eirieeririee e n e nr s 39
7242 DefaultPermitOULAEIEAV EFSIONSc.corireeieirereeesrese ettt se s sr e n e eresrennenen 40
7.24.3 [T8 LT o] = 1o) o SR 40
7.25 Segment SiZe Of the MOT ITECLOIYeeieeie ettt e st et e e reeteeneeneeenes 40
7.2.6 Identification Of the MOT ITECIONYociiiiee ettt re e te e e enee e 41
727 Use Of the MOT dir€CLONY MOUE.cueuiiiirieieite ettt st b et b et sb e b 41
7271 SEGMENE FECEPTION OFTEY ...ttt b bbbt b e e e bbbt b b se b nn e e 41
7272 SEIVICE A0GUISITION ...ttt bbbt e bbbt b et b e e b e e bt b b e b nn e ens 41
7.2.7.3 VA= £ T 1ol g1 1 (o) RS 41
7274 AlIOCALTION O TIANSPOITIAS ...ttt b e bbbt et b e et b 42
7275 Prioritizing objects within the data CaroUSE!ooeiiiiiiiine e 42
7.2.7.6 Managing updates to the data CarOUSELcccuevveir e 42
7.2.7.7 MOT decoder behaviour in case no dataisreceived for along time.........cccceveeeveeve e, 42
7.2.8 MOT dir€CLONY COMPIESSIONviiuieiteeiee st esteete et et e steetee e esteestessaesseesseesseeseanseaseeaseanseenteesennseensesnsesneesans 43
8 MOT FUNCHONBIILYecuviieiceecte ettt e e st e st e st e et e sbeeaeesbesaeebesaesseenseseesneesenreas 44
8.1 MOT caching support (MOT direCtory MOdE ONIY)c.ceereeiririeieerieee et 44
811 OB ECE FEASSEMDIY ...ttt bbbt b e et b e e et bt se ettt s b e e eb e s b e e b e ebennenea 46
8.1.2 (@] T1= o A T [YRR 46
8121 MOT expire time NANAIING.c.coiiii bbb e b e sa e eb e b neene 48
8122 UNiqUE MOT BOOY VEISION ...ttt sttt et b bbb e besb e et e e b b nnene s 49
8.1.2.3 Temporarily using outdated MOT BOAIES.........ccocviiieicece e 50
8.1.3 (@ o= o 0= =0 = = | ST 51
8.2 Transfer of directory StructureS USING MOTcuiiiiieieiie ettt re e saeeae s e saeenaesnaesneas 52
Annex A (nor mative): Comparing ContentNaMES..........ccooiiiririeeee e 54
Annex B (informative): User application definitionsand MOT ..o 55
Annex C (informative): Model of an MOT decoder and itsinterfaces........ccoocevvvvveveveece e 57
C.l NEIWOTK TEUVEL ...ttt b bt e e e et et b e nb e b e nenr e s 59
C.2 MSC DAAGIrOUP IEVEL ...ttt s te e be s b e e e e besaeetesaeentesreeneenresren 60
C.3 Segmentation and ODJECE IEVELccoiuiiieee et 60
C31 General description Of the MOT dECOUEYc..ciiirieiie e 60
C3.2 THE rEBSSEMDIY UNIT. ..ottt ettt et b e et b e et eb e s b e e eb e sb e e eb e s b e neebeebenneneas 60
ci3z21 MOT QIFECIONY MOOE ...ttt sttt ettt b b e it b e bt b e b e e b e e bt b e se e st e bene et b e et eb e e 60
C322 @ I 1= L= 1o o L= OSSP RS 61
C.3.23 Segmentation Of MOT DOIES........c.coiiiiiireee bbbt b e b b se b sreseenea 61
C33 The 0bjECt MANAGEMENT UNITeoiieie e e e e e e ste et e e este et e et e etesseesanesreesaeenseenseenseeneenseesrnns 61
C331 @ I I = (o VA 070 =P 61
C332 MOT NEBAEN MOUE....... ettt ettt r e et renr et re e nr e n s 62
C34 Advanced MOT reassemBIY UNITScoouieiiiicies ettt e eete e s e sreesneeteenteeneeenaenseenrens 62
C34.1 Collecting MOT body segments whose Transportld is not described in the MOT directory 62
C341.1 Start-up of the MOT directory Mode AECOUEScceiieii e nnees 63
C34.1.2 UpPdateS t0 the MOT GIFECLOMYoeeuiitiietiiteieete sttt ettt et b e e eb e e e b b neenen 63
C34.13 Collecting MOT DOOY SEOMENTScveueiiiieiiitirieiert ettt b b e 64
C34.2 MOT caching support: relative expiretimes (MOT parameters Expiration and DefaultExpiration).......... 65
C343 Acquiring both compressed and uncompressed MOT dir€CLONESccoveirirerieeree e 65
C35 Advanced MOT ObjECE MANBGEMENTcoiriiieiriie ettt bbb e st b s sb et b eese s e eas 68
C351 Ol I TR = (o Y 270 = 68

ETSI

5 ETSI EN 301 234 V2.1.1 (2006-05)

C3511 Support of MOT parameters DefaultPermitOutdatedV ersions and PermitOutdatedVersions.............. 70
O U L= g o o TTo= (Lo gl =Y/~ USSR 71
Annex D (informative): MOT decodingin MOT directory mode (example)........cocevvreevnreecennnnns 72
Annex E (informative): Examplefor evaluation of relative expiretimes (MOT parameters
Expiration and DefaultEXPIration)c.coovevereieeienienene e 73
Annex F (informative): Managing changesto the MOT data carousalccoceeererenenenieneseennen. 75
N R €= g 1= o 1 o1 TSRO 75
2 X0 V7 g o= [0 o (07 o o WSRO 75
Annex G (informative): Implementation tipsfor " Transfer of directory structuresviaMOT"
(=0 Y= g Lo =) TSRS 77
Annex H (informative): Bibliographyc.cooiceceee e 78
[11 (TSR P PSPPSR 79

ETSI

6 ETSI EN 301 234 V2.1.1 (2006-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications series) has been produced by Joint Technical Committee (JTC)
Broadcast of the European Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique
(CENELEC) and the European Telecommunications Standards Institute (ETSI).

NOTE 1: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standardsin the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which isresponsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active membersin about
60 countries in the European broadcasting area; its headquartersisin Geneva.

European Broadcasting Union

CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41227172111

Fax: +4122717 2481

The Eureka Project 147 was established in 1987, with funding from the European Commission, to develop a system for
the broadcasting of audio and data to fixed, portable or mobile receivers. Their work resulted in the publication of
European Standard, EN 300 401 [1], for DAB (see note 2) which now has worldwide acceptance. The members of the
Eureka Project 147 are drawn from broadcasting organizations and tel ecommunication providers together with
companies from the professional and consumer electronics industry.

NOTE 2: DAB isaregistered trademark owned by one of the Eureka Project 147 partners.

National transposition dates

Date of adoption of this EN: 19 May 2006
Date of latest announcement of this EN (doa): 31 August 2006
Date of latest publication of new National Standard

or endorsement of this EN (dop/e): 28 February 2007
Date of withdrawal of any conflicting National Standard (dow): 28 February 2007

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI EN 301 234 V2.1.1 (2006-05)

Introduction

The present document is a complete revision of V1.2.1. It does not change the former MOT specifications but triesto
give a much more extensive and understandable description of what MOT is, how it works and how an MOT decoder
can be implemented. The present document concentrates on describing the transport related issues; all user application
specific issues will now be handled by the user applications specifications.

MOT considersitself the multimedia transport protocol that provides the necessary tools to carry al kind of multimedia
data. It isthe user application to decide which of the tools provided by MOT it uses and the user applications might also
extend or restrict some functionality that is described in the present document.

Some general and transport related MOT parameters (M me Ty pe, CA related parameters, Conpr essi onType,
Pr of i | eSubset) were removed from the MOT broadcast web site specification [6] and added to the present
document.

User application specific parameters (Tr i gger Ti ne, Label) are no longer explained in the present document and
will be described in user application specifications (MOT broadcast website [6]; MOT Slide Show [5]).

A clear indication of the differences between MOT header mode and MOT directory mode is given.

Backwards compatible extensions reduce the footprint of the MOT decoder and permit much better user behaviour
during changes to a data carousel. MOT directory compression permits better use of the broadcast channel.

A detailed description of amodel of an MOT decoder and itsinterfacesis given in annex C. This should help
implementing afully standard compliant and efficient MOT decoder. Additional clauses describe features that an
advanced MOT decoder should use to further improve the performance of the MOT decoder and to enhance the user
experience.

The present document contains identifier fields that require values to be registered. Registered value lists associated
with data broadcasting specifications for DAB are maintained by the WorldDAB Information and Registration Centre
(WIRC). Since the lists and tables contained within the present document might be outdated, please refer to the most
recent versions of TS 101 756 [7]. The present document also describes the procedures for registering valuesin an
existing table as well as registering new tables.

ETSI

8 ETSI EN 301 234 V2.1.1 (2006-05)

1 Scope

The present document specifies a transmission protocol, which allows to broadcast various kinds of data using the
Digital Audio Broadcasting (DAB) system. It istailored to the needs of Multimedia services and the specific constraints
given by the broadcasting characteristics of the DAB system. After reception this data can be processed and presented
to the user.

The present document defines the transport specific encoding for data types not specified in EN 300 401 [1] according
to the transport mechanisms provided by DAB. It alows aflexible utilization of the data channels incorporated in the
DAB system, as well as methods to manage and maintain areliable transmission in a uni-directional broadcast
environment. Provisions are also made for the creation and presentation of advanced Multimedia services using formats
such as Hyper Text Markup Language (HTML) (see RFC 2854 [2]) or Multimedia and Hypermedia information coding
Experts Group (MHEG) (see ISO/IEC 13522 [3]).

The present document describes the core transport protocol. Subsequent parts or revisions of the present document will
describe backwards compatible extensions.

Aspects related to the further decoding and processing of the data objects carried are outside the scope of the present
document. Hardware implementation considerations are not covered.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI EN 300 401: "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fixed receivers'.

[2] IETF RFC 2854: "The 'text/html' Media Type".

[3] ISO/IEC 13522 (al parts): "Information technology - Coding of multimedia and hypermedia
information".

[4] IETF RFC 2045 to 2049: "Multipurpose Internet Mail Extensions (MIME)".

[5] ETSI TS 101 499: "Digital Audio Broadcasting (DAB); MOT Slide Show; User Application
Specification”.

[6] ETSI TS 101 498-1: "Digital Audio Broadcasting (DAB); Broadcast website; Part 1: User
application specification".

[7] ETSI TS 101 756: "Digital Audio Broadcasting (DAB); Registered Tables".

[8] ETSI TS 102 367: "Digital Audio Broadcasting (DAB); Conditional access'.

[9] ETSI TR 101 496-2: "Digital Audio Broadcasting (DAB); Guidelines and rules for implementation

and operation; Part 2: System features'.

[10] I SO/IEC 8859-1: "Information technology - 8-hit single-byte coded graphic character sets -
Part 1: Latin alphabet No. 1".

[171] I SO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".

ETSI

http://docbox.etsi.org/Reference

9 ETSI EN 301 234 V2.1.1 (2006-05)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

byte ordering: al numeric values using more than one byte have to be coded in Big Endian Format (most significant
byte first)

NOTE: Inall schematicsthe bits are ordered with the most significant bit of abyte ("b7") at the left end and least
significant bit ("b0") at the right end of the drawing.

Conditional Access (CA): mechanism by which user access to service components can be restricted
content provider: provides data for a user application instance

NOTE: Itishisresponsibility to provide the data according to the user application standard and to transmit it
according to the transport protocol used by the user application. The provided data is transmitted in a data
channel of aDAB data or programme service.

DAB receiver: Multimedia Object Transfer (MOT) specific definition of a DAB receiver includes decoding of the
DAB signal and resolving the multiplex structure of the main service channel

data carousdl: delivery system that allows the broadcast component of a user application to present a set of distinct
objectsto a user application decoder by cyclically repeating the contents of the data carousel

NOTE: For some user applications the data carousel may complete only afew or asingle cycle.

data channels: data channelsin DAB (packet mode, X-PAD) provide the functionality on the transport layer in order to
convey the objects

data decoder: data decoder processes the MOT data stream and applies both packet mode/X-PAD specific decoding
and then MOT decoding

directory core: directory core contains basic information describing the data carousel (e.g. number of objects, data
carousel period)

NOTE: Thedirectory core does not describe individual objects.

directory extension: directory extension contains additional information about the data carousel. The directory
extension does not describe individual objects

ensemble: transmitted signal, comprising a set of regularly and closely-spaced orthogonal carriers

NOTE: Theensembleisthe entity which is received and processed. In general, it contains programme and data
services.

Fast Information Channel (FIC): part of the transmission frame, comprising the Fast Information Blocks (FIB),
which contains the multiplex configuration information together with optional service information and data service
components

header core: header core contains information about the size and the content type of the object, so that the receiver can
determine whether it has system resources to decode and present the object or not

header extension: header extension includes additional information about the object

header infor mation: header information consists of the header core and the header extension and describes one MOT
body

NOTE: The header information can be sent in an MOT header (the MOT header describes one single MOT body)
or an MOT directory (the MOT directory describes all MOT bodies within the data carousel).

ETSI

10 ETSI EN 301 234 V2.1.1 (2006-05)

MOT body: carries any kind of data of finite length. The MOT body is described by the MOT header information

MOT data service: data service comprises information that isintended to be presented to a user, i.e. text, pictures,
video or audio sequences

NOTE: A user application decoder is required to gain access to the data. This might be a viewer which decodes
text and pictures and displays them on a screen. In terms of MOT a data services consists of one or an
ordered collection of several objects. It isnot in the scope of MOT to deal with the content of the object,
but to carry information to support both presentation and handling of these objects.

MOT directory: within a data carousel the MOT directory contains a complete description of the content of the data
carousel

NOTE: Itincludesthe MOT header information of al objects within the data carousel.
MOT entity: single MOT body, asingle MOT directory or asingle MOT header
MOT header: thisMOT entity contains the header information that describes one single MOT body

MOT object: used to transfer datain DAB. The object consists of header information and an MOT body carrying the
payload

MOT parameter: MOT parameter provides information about an MOT object or about the data carousel as a whole

NOTE: MOT parameters describing one single MOT object are carried in the header information of the MOT
object. MOT parameters describing a data carousel are only available in MOT directory mode and they
are carried in the MOT directory extension. MOT parameters can be transport specific (MOT transport
parameters) or user application specific (MOT user application specific parameters). The present
document defines transport specific MOT parameters. The user application specific MOT parameters are
defined in user application standards.

MOT segment: all MOT entities are split into MOT segments for transmission

NOTE: TheMOT segments are then mapped to M SC data groups and inserted into a DAB packet mode
subchannel or into the X-PAD channel of an audio service component.

MOT stream: MOT stream comprises all data for one user application instance

NOTE: One stream of MOT objectsistransferred in an individual service component (packet mode) or as part of
the X-PAD of an audio service component. Several MOT entities might be conveyed in parallel by
interleaving. Note that within one packet mode subchannel or one X-PAD channel there might be
multiple MOT streams carried in parallel.

Main Service Channel (M SC): channel which occupies the major part of the transmission frame and which carries al
the digital audio service components, together with possible supporting and additional data service components

M SC data group: package of datafor carrying one segment of an MOT object

NOTE: The MSC data group can be carried in a packet mode subchannel or in the Extended Programme
Associated Data (X-PAD) part of an audio subchannel.

packet mode: mode of data transmission in which data are carried in addressable blocks called packets

NOTE: Packets are used to convey M SC data groups within a sub-channel. The packet mode carriestheload in
packets of a certain size, separating different streams of packets by specific addresses. Error detection and
repetition are already covered by packet mode and thus alow areliable and flexible data transmission.

Programme Associated Data (PAD): information thet isrelated to the audio datain terms of content and
synchronization

NOTE: ThePAD fieldislocated at the end of the DAB audio frame.

service: user-selectable output which can be either a programme service or a data service

ETSI

11 ETSI EN 301 234 V2.1.1 (2006-05)

service component: part of a service which carries either audio (including PAD) or data

NOTE: The service components of a given service are linked together by the Multiplex Configuration
Information (MCI). Each service component is carried either in a sub-channel or in the Fast Information
Data Channel (FIDC).

servicelabel: aphanumeric characters associated with a particular service and intended for display in areceiver

Transportld: this 16-bit field shall uniquely identify one data object (body and header information) from a stream of
such objects

NOTE: It shal be used to indicate the object to which the information carried in the segment belongs or relates. It
isvalid only during transport of the object.

user application: data application defined in a separate standard and fed with data via DAB

NOTE: A user application using MOT can be carried in a packet mode subchannel or in X-PAD. The stream of
MOT objects belonging to a user application instance is called an "MOT stream”, see above.

X-PAD (eXtended Programme Associated Data): extended part of the PAD carried towards the end of the DAB
audio frame, immediately before the scale factor Cyclic Redundancy Check (CRC)

NOTE: Itisused to transport information together with an audio stream which isrelated or synchronized to the

X-PAD. No provisions for error detection are included in X-PAD so that additional protocols are required
for some user applications.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CA Conditional Access

CRC Cyclic Redundancy Check

DAB Digital Audio Broadcasting

ECM Entitlement Checking Message (Conditional Access related)
EMM Entitlement Management Message (Conditional Access related)
FFT Fast Fourier Transform

FIB Fast Information Block

FIC Fast Information Channel

FIDC Fast Information Data Channel

HF High Frequency

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

JPEG Joint Photographic Experts Group

MCI Multiplex Configuration Information

MHEG Multimedia and Hypermedia information coding Experts Group
MIME Multipurpose Internet Mail Extensions

MJD Modified Julian Date

MOT Multimedia Object Transfer

MSC Main Service Channel

PAD Programme Associated Data

PLI Parameter Length Indicator

Rfa Reserved for future addition

NOTE: SeeTR 101 496-2[9] (Guidelines DAB).
Rfu Reserved for future use

NOTE: SeeTR 101 496-2[9].

uTC Universal Time Co-ordinated
WIRC WorldDAB Information and Registration Centre
X-PAD eXtended Programme Associated Data

ETSI

12 ETSI EN 301 234 V2.1.1 (2006-05)

4 General description of the MOT protocol

4.1 Requirements of Multimedia services

Multimediain general can be referred to as information and its presentation in various formats (visible, audible, etc.)
and forms (text, pictures, video, etc.). The material is often structured and packaged into a number of containers or files
which shall be either completely available before the presentation or are delivered on request of the user.

Multimedia services require to control the presentation (e.g. the arrangement of visible information on a screen) and
therefore direct access to both hardware and software resources of the receiver/terminal is essential. The appropriate
time shall also be considered for the presentation. Thusit is required to synchronize the various elements (e.g. video
together with the sound), i.e. some kind of a runtime environment is necessary.

4.2 Problems MOT solves

MOT isatransport protocol for the transmission of Multimedia content in broadcast channels to various receiver types
with Multimedia capabilities.

Various possibilities for transmitting information are incorporated into a common transport mechanism for different
DAB data channels, so that the access to Multimedia content is unified within the DAB system.

MOT ensures interoperability between:
. different data services and user application types,
. different receiver device types and targets,
. equipment from different manufacturers.

Each data service has an associated user application specification, and that specification includes the transport
mechanisms for the data content. If the user application uses files of information then these are best transported using
the MOT protocol layered onto the DAB transport mechanisms for packet mode and X-PAD.

The MOT protocol allows objects of afinite length from an information source, i.e. the content/service provider to be
conveyed to adestination, i.e. the terminal, as shown in figure 1, where in terms of MOT:

The Content/Service provider is capable of processing various types of Multimedia content (e.g. picture and text files)
in an appropriate way, so that this datais compliant with the MOT specification and can
be fed into a DAB Ensemble multiplexer;

The Termina isfed from an MOT decoder capable of processing the multimedia content of a DAB
Ensemble in an appropriate way, so that it is:
- decoded and presented to the user; or
- forwarded to afollowing entity, which then processes the content.

The definition of interfaces between the different entities is not within the scope of the MOT specification.

PAD Audio
Content/ encoder > encoder > DAB :
Service MOT ensemble DAB ensemble MOT data Terminal
provider ™ encoder multiplexer P demultiplexer decoder
Packet mode Packet |
encoder multiplexer

Figure 1. Overview of MOT encoding and decoding
MOT interconnects the closed and well-defined world of DAB to the open world of Multimedia services with its large

variety of systems and data formats. It comprises functionality to carry information to the terminal, and ultimately to the
user.

ETSI

13 ETSI EN 301 234 V2.1.1 (2006-05)

In addition to the Multimedia transport the MOT protocol also supports handling of the Multimedia objects (e.g. object
identification or object management on receiver side) and provides additional information that can support a user
application.

MOT does not cover issues specific to runtime environments to control Multimedia services, i.e. the interpretation and
execution of object code, pseudo code or script languages. This shall be included in the particular user application.

The structure of the Multimedia content is user application specific and not subject to standardization within the present
document.

4.3 Receiver architecture reference model

An example decoding process for MOT objectsis shown in figure 2 (data flow top-down).

EN 300 401
HF Part
3
FFT, Demukx, 8
Channel Decoder g
O]
£
o
PAD stripping S
)
XPAD subfield Packet o
PAD Decoder Packet Mode Decoder
Data Group Data Group
MOT
Object data Additional information
Audio Application
c
\ S
g
Q
(D]
o
5 5 Multimedia o

Speaker terminal
Figure 2: Example scheme for the data decoding part of a DAB receiver

Parts within the grey background (HF part, FFT/demux/channel decoder, PAD stripping, PAD decoder, packet mode
decoder and audio decoder) are defined in EN 300 401 [1]).

Interfaceto the MOT decoder: Communication between PAD/packet mode decoder and MOT decoder uses complete
M SC data groups (see EN 300 401 [1]). The session header of a data group cannot be omitted, although it is optional in
the DAB specification, since it carries the Transportld, which is necessary to reassemble the MOT objects.

Additional infor mation: Additional information is carried in the MOT header information. It is decoded by the MOT
decoder and forwarded to the user application decoder.

Object data: Object datais carried in the MOT body.

ETSI

14 ETSI EN 301 234 V2.1.1 (2006-05)

5 Structural description

This clause describes the different operations needed in order to transmit a file/object or a set of files/objects using the
MOQOT protocol.

MOT provides two modes of operation - MOT directory mode and MOT header mode. The MOT mode determines how
management datais carried.

. The MOT directory mode permits the content provider to manage a set of files/objects on receiver side
(file/object addition, deletion and modification). In MOT directory mode all management data from all
broadcast files/objectsis combined in one single MOT entity, the "MOT directory”. The MOT directory is sent
"in parallel” to the files/objects it describes.

. MOT header mode can be used for user applications that use one single file/object at atime. In MOT header
mode the management data of the one and only MOT object is contained in the MOT entity "MOT header".
The MOT header is sent in advance of the file/object it describes.

The user application specification defines the MOT transport mode that shall be used to convey the user application
data.

Thefirst step in the transmission processisto identify the file and to create the header information. The header
information contains both pure file identification and additional information. The file isreferred to asthe MOT body.
At this stage the header information and body correspond to an MOT object.

The header information is separated from the body during transportation in order to:

. have the possibility to repeat the header information several times before and during the transmission of the
body (which is useful when transmitting long objects);

. send the header information in advance in order to give the receiver the opportunity to "be prepared in
advance” to the data that is going to be received;

. send the header information unscrambled when the body is scrambled.

The data flow at the transmitter sideis shown in figure 3. The different data files that should be transferred viaDAB are
first processed in the MOT encoder, producing MOT objects. Then the PAD or packet mode specific coding is applied.
For all the subsequent stages see EN 300 401 [1]. A packet mode sub-channel may contain a number of service
components (some of them MOT based), separated by the packet address. An X-PAD channel may carry a number of
user applications (some of them MOT based) in parallel, separated by the X-PAD application type values. Finally the
sub-channels (stream mode audio, stream mode data, packet mode) are multiplexed into the DAB ensemble.

i DAB
audio > audio encoder|
data ™ oT PAD
" PAD encoder
encoder | | ™ DAB-
data multiplexer
pacléet
data " MOT packet , backet rggtae
encoder mode - multi- ——p
data > encoder ! plexer

Figure 3: Data transfer in DAB using MOT - data flow

Figure 3 can be converted into a layered scheme indicating the steps, which have to be performed (see figure 4).

ETSI

15 ETSI EN 301 234 V2.1.1 (2006-05)

Tx (content provider side) Rx (receiver side)

additional object data additional object data

informationii (files) informationTT (files)
MOT layer

MOT encoding MOT decoding

A

segments / data groups

packet mode / PAD transport layer packet mode / PAD
encoding decoding

packets / X-PAD data subfields

DAB multiplexing network layer DAB demultiplexing

! !

Figure 4: Data transfer in DAB using MOT - protocol layers

The coding procedure starts at the object level, which stands for the files (including some management information) to
be transferred and processed further.

MOT encoding generates the complete MOT objects including the additional header information and transforms these
entities (MOT body, MOT directory or MOT header) into segments of an appropriate size for the lower protocol layers.

Packet mode/PAD encoding transforms these segments into M SC data groups and further into packets, which fit into
the container provided by DAB (X-PAD data subfields, packet mode packets).

DAB encoding and multiplexing handles the output of the PAD/packet mode encoder and supplies either a complete
packet mode sub-channel or fills the X-PAD fields of the audio stream.

5.1 Segmentation of MOT entities

The lowest common structure for the two different DAB transport mechanisms for which MOT is defined (Packet Mode
and X-PAD) isMSC data groups. This data group structure is also mapped to X-PAD transport for compatibility
reasons. It is therefore the goal of the segmentation on MOT level to map the MOT entities into MSC data groups.

The header information and body are transported in different MOT entities and therefore the segmentation will apply
independently on header information and body. MOT entities will be split up in segments with equal size. Only the last
segment may have asmaller size (to carry the remaining bytes of the MOT entity). Every MOT entity (e.g. every MOT
body) can use a different segmentation size.

ETSI

16 ETSI EN 301 234 V2.1.1 (2006-05)

MOT entity
segment 1 segment 2 segment n
< i > <>
Segment Segment Remaining
size X size X bytes of
segment
size< X

Figure 5: Segmentation of MOT entities

To elaborate a proper segmentation strategy the following considerations should be taken into account:
. minimize the overhead;
. improve the robustness of the transmission;
. facilitate the segment management on MOT decoder side.

The Segmentation header (see clause 5.1.1) is attached to all segments and then every segment of the above-mentioned
MOQOT entities (MOT body, MOT directory, MOT header) is mapped to an M SC data group with the appropriate data
group type (see clauses 5.1.2 to 5.1.4) for later transport in one or more packets or X-PAD data subfields.

Every MOT decoder shall ignore MSC data groups with data group types not supported by thisMOT decoder. This
behaviour isrequired to permit future extensions (that might use additional data group types) of the MOT protocol.

A data group shall contain a data group header, a Session header, a data group datafield and an optional data group
CRC. The structure of adata group is shown in EN 300 401 [1].

The user accessfield in the Session header (see EN 300 401 [1]) is not optional if MOT segments are carried in MSC
data groups. It cannot be omitted, since thisfield contains the Transportld, necessary for MOT object transfer. The use
of the MSC data group CRC is strongly recommended.

The link between header information in an MOT header (data group type 3) or MOT directory (data group type 6 or 7)
and its MOT body (data groupstype 4 or 5) is established by the Transportld.

In MOT header mode the Transportld of the MOT body is the same as the Transportld of its MOT header.

In MOT directory mode the Transportld of the MOT body is attached to the header information for this MOT object
inside the MOT directory. If scrambled MOT objects are used, the CA messages related to this object also have the
same Transportld.

Aslong as the Transportld of an MOT entity is not changed, the segmentation size of thisMOT entity shall remain the
same.

Figure 6 shows all necessary stepsto split MOT entities and map them to MSC data groups, see clause 5.3.3in
EN 300 401 [1].

ETSI

17 ETSI EN 301 234 V2.1.1 (2006-05)

MOT header / MOT directory / MOT body

segment 1 segment 2 segment n

Segmentatior] Segment
eader

Data group] Session Data group MSC data
header header data field group CRC

Data Group Type 3,4,5,6 0r7

Figure 6: Segmentation of MOT header, MOT directory or MOT body

51.1 Segmentation header

The Segmentation header (seefigure 7) shall be attached to each segment of an MOT entity and contains information
about the size of the segment and the remaining repetitions of the entity.

3 bits 13 bits

RepetitionCount SegmentSize

bis bis bio bg
Figure 7: Segmentation header

RepetitionCount: This 3-bit field indicates, as an unsigned binary number, the remaining transmission repetitions for
the current entity - repetition on object level (if in MOT header mode, see figure 12) or repetition on entity level (if in
MOT directory mode, see figure 18). Exceptionally, the code "111" shall be used to signal that the repetition continues
for an undefined period (> 6 times).

SegmentSize: This 13-bit field, coded as an unsigned binary number, indicates the size of the segment datafield in
bytes. The maximum length which can be signalled is 8 189 bytes according to the limited total length of the MSC data
group data field (8 191 bytes), so that both, the Segment and the Segmentation header fit into one M SC data group.

Note that some MOT decoders may ignore both parameters of the Segmentation header.

5.1.2 Segmentation of the MOT body

If conditional accesson MOT level is applied, then scrambled MOT body segments shall be transported in MSC data
group type 5. In al other cases (no scrambling on MOT level or unscrambled MOT body segments) the segments of the
MOT body shall be transported in MSC data group type 4.

Segmentation is applied considering the size of the MOT body and the segmentation strategy.

5.1.3 Segmentation of the MOT directory

The segments of an uncompressed MOT directory shall be transported in M SC Data Group type 6. The segments of a
compressed MOT directory shall be transported in MSC Data Group type 7.

Segmentation is applied considering the size of the MOT directory and the segmentation strategy.

ETSI

18 ETSI EN 301 234 V2.1.1 (2006-05)

The MOT directory is not scrambled if conditional accesson MOT level is applied.

The link between a directory entry inside an MOT directory (data group type 6 or 7) and the MOT body is established
by the Transportld. The Transportld attached to the header information and its MOT body is the same. If scrambled
MOT objects are used, the CA messages related to this object aso have the same Transportld.

5.1.4 Segmentation of the MOT header

The segments of the MOT header shall be transported in MSC Data group type 3.

In order to enable easier access to the header information and to reduce the memory demand in the reassembly unit of
the MOT decoder, it is recommended to send the MOT header in one M SC data group (which is equivalent to no
segmentation).

Conditional accesson MOT level is not possible for MOT header mode; therefore the MOT header is never scrambled
on MOT level.

5.2 Transporting MOT segments - network level
The coding of the data on network level is described in detail in EN 300 401 [1], therefore clauses 5.2.1 and 5.2.2 only

explain the actual mapping of the MSC data groups obtained on the transport layer into the packet mode packets or
X-PAD data subfields.

521 Packet mode

The MSC data groups containing MOT data are transmitted in one or more packets sharing the same packet address
(see EN 300 401 [1]).

MSC Data Group

A

\ 4

Data Group Data Field

Data Group | Session | Segmentation

Header | Header Header Segment CRC
Packet) Packet Packet . Packet
header Packet data field CRC header Packet data field CRC

Figure 8: Relationship between a MSC data group and a sequence of packets
The command flag on packet level is used to identify conditional access data. The command flag is 0 for MSC data
group types 3, 4, 6 and 7 (MOT header, unscrambled MOT body, uncompressed MOT directory and compressed MOT

directory). The command flag is 1 for conditional access data carried with MSC data group type 1 and 5 (ECM/EMM
data and scrambled MOT body for conditional access on MOT level).

5.2.2 X-PAD

The MSC data groups containing MOT data are transmitted in one or more X-PAD data subfields (see EN 300 401 [1])
using MSC data group structure.

ETSI

19 ETSI EN 301 234 V2.1.1 (2006-05)

MSC Data Grou
< P >
Data Group Data Field
< P >
Data Group Data Group | Session | Segmentation
Length Indicator Header Header Header Segment CRC
X-PAD Data |X-PAD Data | X-PAD Data| | X-PAD Data X-PAD Data
Subfield Subfield Subfield Subfield Subfield
Application Application Application Application Application
Type 1 Type 1 Type 12 or 14 Type 13 or 15 Type 13 or 15

Figure 9a: Example for transportation of MSC data groups in X-PAD data subfields
in case of short X-PAD

MSC Data Group

¢ P
Data G Data Field
< ata Group Data Fiel >
Data Group Data Group | Session | Segmentation
Length Indicator Header Header Header Segment CRC
X-PAD Data X-PAD Data| | X-PAD Data X-PAD Data
Subfield Subfield Subfield Subfield
Application Application Application Application
Type 1 Type 12 or 14 Type 13 or 15 Type 13 or 15

Figure 9b: Example for transportation of MSC data groups in X-PAD data subfields
in case of variable size X-PAD

A complete specification of the transport signalling in X-PAD isgivenin EN 300 401 [1].

MOQOT transport in X-PAD uses at least two X-PAD application types (in addition to the M SC data group length
indicator with X-PAD application type 1).

If conditional access on MOT level is applied then a second pair of X-PAD application typesis used. Similar to the
command flag in packet mode the use of two pairs of X-PAD application typesis used to identify conditional access
data. Thefirst pair of X-PAD application typesis used for MSC data group types 3, 4, 6 and 7 (MOT header,
unscrambled MOT body, uncompressed MOT directory and compressed MOT directory). The second pair of X-PAD
application typesis used for conditional access data carried with MSC data group type 1 and 5 (ECM/EMM data and
scrambled MOT body).

In the former MOT specification the MOT protocol was limited to one single MOT based user application in X-PAD.
MOT in X-PAD was restricted to X-PAD application types 12/13 and 14/15 (conditional access data). According to the
current MOT specification, multiple MOT based user applications can be carried in X-PAD (using additional X-PAD
application type values).

MOT decoders limited to the former MOT specification can only decode user applicationsin X-PAD that use X-PAD
application types 12/13 or 14/15. For backwards compatibility it is recommended to use X-PAD application types 12/13
(and 14/15 if conditional access on MOT level is applied) for the primary MOT user application carried in X-PAD.

ETSI

20 ETSI EN 301 234 V2.1.1 (2006-05)

53 Transmission Mechanisms

When transmitting datain aradio broadcast system, the content provider aways has to take in consideration that the
terminal may miss data due to:

. The receiver being switched off, out of signal or tuned to another service or ensemble.
. Bad reception due to the conditions of the radio channel (bit errors).

Without an interaction channel the receiver does not have the possibility to actively demand repetition of lost data.
Therefore MOT uses some mechanisms, which permit data to be repeated and so allow the receiver several
opportunities to receive objects and to improve the reception probability:

. Repetition on data group (MOT segment) level.
. Repetition on MOT object/entity level.

Repetition means that a data group or MOT object/entity is broadcast again, with exactly the same content. The term
Retransmission means that an MOT object (identified by its Cont ent Nan®) is broadcast again, but possibly with an
updated content.

Reception errors may cause the receiver to fail in decoding the data, therefore it is strongly recommended to use one or
more of the mechanisms explained below to improve the reception probability, athough the use of these mechanisms
decreases the useful bit rate.

The following clauses detail the main differences and characteristics of the single object transmission (MOT header
mode) and multiple object transmission (MOT directory mode) mechanisms. For further details regarding MOT header
mode and MOT directory mode see clause 7.

5.3.1 Single object transmission (MOT header mode)

The single transmission scheme (see figure 10) is useful when only one object isvalid at atime, for examplein adide
show.

Object A

Figure 10: Single object transmission

5.3.1.1 Repetition on object level

An object can be transmitted several times so that the receiver can replace MOT segments of an object, lost due to
reception errors, with the repetition of the same MOT segments if they are received without reception errors. Repetition
on MOT object level issignalled in the MOT segmentation header (see clause 5.1.1). Figure 11 shows the repetition
method based on transmitting the entire object a number of times.

Repetition Last repetition
v oAy
A A A A

Figure 11: Single object transmission with repetitions

ETSI

21 ETSI EN 301 234 V2.1.1 (2006-05)

Figure 12 explains how the segments of the object (consisting of MOT header ("H") and MOT body ("Body")) are
repeated.

MOT object H Body

segments HS1 BS1 BS2

repetition on HS1 | BS1 BS2 HS1 | BS1 BS2
object level

Figure 12: Repetition on object level (example)

5.3.1.2 Repetition of MSC data groups/MOT segments

Segments of an object can be transmitted several times so that the receiver can replace those segments, lost due to
reception errors, with the repetition of the same object segments received without errors. Repetition on M SC data group
level issignalled in the M SC data group header (see EN 300 401 [1]). Figure 13 shows the repetition method based on
transmitting every segment of an object (consisting of MOT header ("H") and MOT body ("Body") segments) a number
of times.

MOT object H Body

segments HS1 BS1 BS2

repetition on HS1 | HS1 | BS1 BS1 BS2 BS2
data groups
level

Figure 13: Repetition of MSC data groups/MOT segments (example)

5.3.1.3 Repeated transmission of header information (combined with repetition on
object level)

During the transmission of body segments (M SC data groups type 4 or 5) of large objectsit can be useful to transmit the
complete header or part of the header information carried in MSC data groups type 3 (see figure 14) multiple times.
This allows the data decoder to detect the object even if it has not received the start of the object transmission. Provided
that the object is repeated the data decoder can then complete the missing segments during the next repetition of the
object.

ETSI

22 ETSI EN 301 234 V2.1.1 (2006-05)

File
Header Header Body Body Body
core extension Segment 1 | Segment 2 Segment n
Data Group Data Group Data Group Data Group Data Group Data Group Data Group
Data Group Data Group Data Group Data Group Data Group Data Group Data Group
Type 3 Type 3 Type 4 or 5 Type 4 or5 Type 3 Type 4 or 5 Typedor5

additional insertion of Data Group with Type 3

Figure 14: Repeated transmission of header information

5.3.2 Multiple object transmissions (MOT directory mode)

Multiple object transmission (data carousel functionality) is intended for user applications that need to have several
objects available on the terminal at the same time. An example for such a user application is a broadcast web site.

Each MOT body is transmitted several timesin a cyclic manner with a cycle time between each transmission
(seefigure 15). The cycle time between subsequent transmissions of an MOT body may vary.

A A A

cycletime

Figure 15: Multiple object transmission

Within a cycle (see figure 16), repetition on MSC data group (MOT segment) level (seefigure 17) or on MOT entity
level (seefigure 18) can be used to ensure the reception. Repetition on MSC data group level issignalled in the MSC
data group header (see EN 300 401 [1]); repetition on MOT entity level issignalled in the MOT segmentation header
(seeclause 5.1.1). In anew cycle the object is retransmitted. The content of the object can be the same or can be

updated.

Repetition Retransmission
l !

AlA|] . |JAJA] ... [A]A

cycletime

Figure 16: Multiple object transmission with repetitions

ETSI

23 ETSI EN 301 234 V2.1.1 (2006-05)

Figures 17 and 18 explain how MOT entities (MOT directory or MOT bodies) can be repeated.

MOT entity Entity

segments ES1 ES2

repetition on ES1 ES1 ES1 ES2 ES2 ES2
data group
level

Figure 17: Entity repetition on MSC data group level (example)

MOT entity Entity

segments ES1 ES2

repetition on ES1 ES2 ES1 ES2 ES1 ES2
entity level

Figure 18: MOT entity repetition on entity level (example)

The different objectsin the cyclic MOT stream are identified by their Cont ent Nanes. If in aretransmission the
header information, the body content or the SegmentSze of an object have been changed, the Transportld shall be
changed. If nothing is changed, the Transportld should remain the same.

It is recommended to transmit the most important MOT bodies (e.g. the HTML pages on the top of the hierarchy or the
most likely visited pages of a broadcast web site) more frequently than the others to improve the access to the service.
To broadcast some objects more frequently than others interleaving of MOT entitiesis used (see clause 5.3.2.1).

5.3.21 Interleaving MOT entities in one MOT stream
Interleaving permits the transfer of data groups of different MOT bodies and/or the MOT directory in parallel.

With the MOT protocol it is possible to transmit several MOT entities (i.e. MOT directory and MOT bodies) in parallel
in one single data channel (i.e. in one MOT stream). The different MOT entities are separated by their data group type
and their Transportld (see EN 300 401 [1]). It is very common to interleave multiple MOT bodies and in addition
interleave them with the MOT directory.

Interleaving can for instance be used to insert high priority objects (e.g. the MOT directory or an entry page of a
broadcast web site) into the MOT stream during the transmission of big objects with along transmission time.

ETSI

24 ETSI EN 301 234 V2.1.1 (2006-05)
MOT entity Z
| - MOT entity Y
| MOT entity X
A v < A
Data Group Data Group Data Group Data Group Data Group Data Group

Transport Id x

Transport Id y

Transport Id x

Transport Id z

Transport Id x

Transport Id y

Figure 19: Interleaving of MOT entities on MSC data group level

6 MOT header information

The MOT header information consists of two parts. the header core and the header extension. The header core is a set of
four parameter fields that shall be specified, while the header extension is a variable length field that may contain an
arbitrary number of "parameters' to be associated with each object.

This clause applies to both the MOT header mode and the MOT directory mode. It defines the general structure and
format of MOT parameters that describe an MOT object.

6.1 Header core

The header core contains information about the size and the content type of the object, so that the receiver can
determine whether it has system resources to decode and present the object or not.

The header corefieldsare Body Si ze, Header Si ze, Cont ent Type and Cont ent SubType. Thefirst two fields
indicate the length, in bytes, of the body and header information respectively. The Cont ent Type and

Cont ent SubType pair of fieldsis used to indicate the object type (i.e. the content type of the body), where that type
identifier is taken from an enumerated list.

The header core shall be coded as shown in figure 20.

6 bits
ContentType
bg

9 bits
ContentSubType
bg bg

13 bits
HeaderSize

28 bits
BodySize

bsg bog byy bis by

Figure 20: Structure of the header core

BodySize: This 28-hit field, coded as an unsigned binary number, indicates the total size of the body in bytes.

If the body size signalled by this parameter does not correspond to the size of the reassembled MOT body, then the
MOQOT body shall be discarded.

Header Size: This 13-bit field, coded as an unsigned binary number, indicates the total size of the header information in
bytes including the header core size of 7 bytes.

ContentType: This 6-bit field indicates the main category of the body's content. The interpretation of thisfield shall be
defined in TS 101 756 [7], table 17.

ContentSubType: This 9-bit field indicates the exact type of the body's content depending on the value of the field
ContentType. The interpretation of thisfield shall be defined in TS 101 756 [7], table 17.

In many user applications, the list of Cont ent Type and Cont ent SubType may be sufficient to define all the
possible types of objects that may be used by the user application. However, since the enumerated list is necessarily
constrained to the set of types that have been registered, a user application may choose to use an alternative mechanism
to determine the object type, if needed, such as using the MOT parameter M neType (see clause 6.2.2.1.2).

ETSI

25 ETSI EN 301 234 V2.1.1 (2006-05)

Even if a user application does not use Cont ent Type and Cont ent SubTy pe to indicate the type of an object
(e.g. because the user application usesthe MOT parameter M ne Ty pe; see below), the fields Cont ent Type and
Cont ent SubType shall correctly indicate the body's content type. If a corresponding value of the fields

Cont ent Type and Cont ent SubType isnot available in the enumerated list defined within TS 101 756 [7],
table 17, then both fields shall be set to 0 to indicate "general data/object transfer”.

For the Cont ent Type "application” the body's content type identified by Cont ent Type/Cont ent SubType
depends on the user application. It is possible that two user applications use the same value for Cont ent SubType but
assign atotally different meaning to it. If the Cont ent Type "application” is signalled, then the decoding of

Cont ent Type/Cont ent SubType aways has to take into account which user application provides the data.

6.2 Header extension

The header extension provides information that supports the handling and transport of the objects (e.g. object
identification or object management) and provides additional information for the user application decoder.

The header extension parameters describe severa attributes of the object. Some of these parameters may occur more
than once as described separately for the different parameters.

The user application defines which MOT parameters are used when transporting this user application's data. The user
application may also restrict the permitted values for MOT parameters (e.g. the parameter Conpr essi onType might
permit multiple compressed data formats, but the user application might choose to permit just one single way to
compress data).

Note that in MOT directory mode the MOT directory contains all header information of all MOT objects within the data
carousel. The size of the MOT directory has a strong impact on its cycle time and the content provider should try to
keep the MOT directory as small as possible. Therefore the content provider should try to keep the header information
of hisMOT objects as small as possible (i.e. by using short Cont ent Nanes).

The general structure of the header extension is shown in figures 21 and 22.

Parameter O | Parameter 1 Parameter n

Figure 21: General structure of the header extension

Each parameter in the header extension consists of alength indicator, a parameter identifier and a datafield. The
parameter identifier determines how the data field is to be interpreted.

Every parameter of the MOT header extension shall be coded as shown in figure 22.

2 bits 6 bits
PLI=OO:| PLI | Paramld |

2 bits 6 bits 8 bits
PLI = 01: | PLI | Paramld | DataField |

2 bits 6 bits 32 bits
PLI = 10: | PLI | Paramld | DataField |

2 bits 6 bits 1 bit 7 or 15 hits n x 8 bits
PLI = 11: | PLI | Paramld | Ext |DataFieIdLength Indicator "n" | DataField

Figure 22: Structure of the header extension parameter

ETSI

26 ETSI EN 301 234 V2.1.1 (2006-05)

PLI (Parameter Length Indicator): This 2-bit field describes the total length of the associated parameter.
The following definitions apply:

- 0 O total parameter length = 1 byte, no DataField available;
- 0 1 tota parameter length = 2 bytes, length of DataField is 1 byte;
- 1 0 tota parameter length = 5 bytes; length of DataField is 4 bytes;

- 1 1 total parameter length depends on the DataFieldL ength indicator (the maximum parameter lengthis
32 770 bytes).

Paramld (Parameter Identifier): This6-hit field identifies the parameter. The coding is defined in table 2 at the end
of clause 6.

Ext (ExtensionFlag): This 1-bit field specifies the length of the DataFieldLength Indicator and is coded as follows:
- 0: the total parameter length is derived from the next 7 bits;
- 1: the total parameter length is derived from the next 15 bits.

The ExtensionFlag is only present if the PLI field is set to "11".

DataFieldLength Indicator: Thisfield specifies as an unsigned binary number the length of the parameter's DataField
in bytes. The length of thisfield is either 7 bits or 15 bits, depending on the setting of the ExtensionFl ag.

The DataFieldLength Indicator is only present if the PLI field isset to "11".

DataField: Thisfield contains the parameter data and is only present if the contents of the PLI field is either 01, 10
or 11.

The PLI field can be used to efficiently code some commonly used DataField lengths (0 bytes, 1 byte or 4 bytes). A
DataField length of O bytes can be encoded with the PLI field set to "00" or with the PLI field setto "11" and a
DataFieldLength Indicator set to O (bytes). A DataField length of 1 byte can be encoded with the PLI field set to "01" or
with the PLI field set to " 11" and a DataFieldLength Indicator set to 1 (byte). A DataField length of 4 bytes can be
encoded with the PLI field set to "10" (4 bytes) or with the PLI field set to "11" and a DataFieldLength Indicator set to
4 (bytes). The PLI field (possibly together with DataFieldLength indicator field) shall only be used to determine the
length of the DataField; the interpretation of the DataField shall not depend on the value of the PLI field!

6.2.1 Future expansion of the parameter data field

The length of a parameter's DataField is described by the Parameter Length Indicator (PLI) and the DataFieldLength
Indicator. The generic structure and flexibility of MOT allows future expansions of the parameter datafield.

Therefore each parameter with afixed DataField length in one revision of the MOT standard can be expanded in alater
revision of the MOT standard by appending new information at the end of the data field (without changing the
definition of the original datafield; see figure 23). A decoder working according to the older revision of the MOT
standard will still be able to extract all the expected data, while a decoder working according to the later revision can
additionally interpret the extended information.

2 bits 6 bits 1 bit 7 bits 8 bits N x 8 bits
PLI Paramld Ext. Length CompressionType T\Ie_w_pa_rar_ne_terfiTeIcT 1
11 000110 0 1+N I
_________ o

Figure 23: Example for the expansion of a defined parameter
An MOT decoder evaluating an MOT parameter with fixed DataField length shall not check if the MOT parameter

length is equal to what the MOT decoder expects. It shall always check if the length of the DataField is equal or greater
than what the MOT decoder expects!

ETSI

27 ETSI EN 301 234 V2.1.1 (2006-05)

6.2.2 Parameters of the header extension for MOT header mode and
MOT directory mode

The header extension contains transport protocol specific and user application specific parameters. The following
clauses describe the transport specific parameters grouped by functionality.

The user application defines which MOT parameters are used and the user application definition might also restrict the
range of values permitted for MOT parameters.
6.2.2.1 MOT Basic transport parameters

The MOT basic transport parameters are used to identify and describe the MOT body.

6.2.2.1.1 ContentName

The parameter Cont ent Nane is used to uniquely identify an object. At any time only one object with a certain
Cont ent Nane shall be broadcast.

The DataField of this parameter starts with a one byte field, comprising a 4-bit character set indicator

(see TS 101 756 [7], table 19 for the list of permitted character sets) and a 4-bit Rfafield. The preferred character set is
ISO latinl. The following character field contains a unique name or identifier for the object. The total number of bytes
is determined by the DataFieldLength indicator minus one byte.

4 bits 4 bits (n - 1) bytes
character set Rfa character field
indicator
b, b, bj by

Figure 24: Coding of the MOT parameter ContentName

Hierarchical structures shall use aslash "/" to separate different levels. No system specific restrictions shall be applied.
Forward dashes ("/") inside the Cont ent Nane separate levels and slashes are not permitted for any other meaning
than this.

Unless explicitly required by the user application definition, the Cont ent Narre does not have to be avalid filename
for any operating system. Thus a general purpose MOT decoder can not use the Cont ent Nane as (part of) the
filename where it storesthe MOT body. Unique filenames (e.g. containing the Transportld) should be used. The MOT
decoder must be able to map the Cont ent Namnes required by the user application to the internally used filename or
data structure that holds the MOT body.

6.2.2.1.2 MimeType

In HTTP, the type of an object isindicated using the Multi-purpose Internet Mail Extensions (MIME) [4] mechanism.
MIME strings categorize object types according to first a general type followed by a specific format,
eg. "text/htm ", "i mage/j peg” and"appl i cati on/ oct et -streant.

NOTE: Thebasic MIME string may optionally be followed by a";" and a parameter list. This mechanismis
typically used to indicate character setsfor text types.

In order to correctly present MOT objects, it isrequired for the receiver to be able to determine the type of the object.
Some content types may be signalled using the Cont ent Type and Cont ent SubType fields of the MOT header
information. However, this mechanism is unsuitable for supporting as yet unspecified MIME types, and so limits the
range of types that may be supported even when the receiver is PC based. In order to overcome this limitation, the

M meType parameter may be used to supply aMIME type string for each object.

The user application definition indicates how the user application decoder is informed about the type of an MOT object.
The content type of an MOT object can be indicated using the Cont ent Type/Cont ent SubType field of the MOT
header core, thisMOT parameter M neTy pe or by other means such as the "file name extension”.

ETSI

28 ETSI EN 301 234 V2.1.1 (2006-05)

If auser application definition requires that the MOT parameter M neType is used to indicate the type of the MOT
object, then no user application decoder shall use the "file name extension” to derive the type of an MOT object!

If auser application uses the MOT parameter M me Ty pe to indicate the type of an MOT object, then the fields

Cont ent Type and Cont ent SubType of the MOT header core (see clause 6.1) shall correctly indicate the body's
content type. If a corresponding value of the fields Cont ent Type and Cont ent SubType isnot available in the
enumerated list defined within TS 101 756 [7], table 17, then both fields shall be set to 0 to indicate "general data/object
transfer".

The DataField of this parameter carries the MIME type string appropriate to the object, see [4].

n bytes

character field |

Figure 25: Coding of the MOT parameter MimeType

6.2.2.1.3 CompressionType

The Conpr essi onType parameter is used to indicate that an object has been compressed and which compression
algorithm has been applied to the data. The DataField of this parameter carries a one byte identifier (Compressionid) for
the compressed data format. If new compressed data formats are to be used, a new Compressionld shall be obtained
from and registered with the WorldDAB Information and Registration Centre.

The registered compressed data formats shall be defined in TS 101 756 [7], table 18.

Even an MOT decoder that does not support any compression shall check this parameter to determine if an MOT body
is compressed.

6.2.3 Parameters of the header extension for MOT directory mode only

6.2.3.1 MOT caching support parameters

These parameters can be used to support caching of MOT objects on receiver side. The caching functionality is
described in detail in clause 8.1.

6.2.3.1.1 Expiration

The parameter Expi r at i on indicates how long an object can still be used by the MOT decoder after reception loss.
The size of the DataField determines if an absolute or arelative expire time is specified.

The MOT directory extension parameter Def aul t Expi r at i on described in clause 7.2.4.3 (if present) defines a
default value for all MOT objects that do not provide the MOT header information parameter Expi r at i on. The
default value defined by Def aul t Expi r at i on only appliesto an MOT object if no MOT header information
parameter Expi r at i on isprovided for thisMOT object.

If the MOT header information parameter Expi r at i on is provided for an MOT object, it defines the expire time of
the object. If Expi r at i on isnot provided for the object, then the MOT directory extension parameter

Def aul t Expi r at i on defines the expire time of the object. If neither the MOT header information parameter

Expi rati on isprovided for an MOT object nor the MOT directory extension parameter Def aul t Expi rati onis
provided as a default for all objects, then the MOT object never expires.

The content provider shall not transmit expired object (i.e. objects with an already expired absol ute expire time).

6.2.3.1.1.1 Absolute expire times

If the size of the data field is 4 bytes or 6 bytes, then an absolute expire time is defined. The value of the parameter field
iscoded inthe UTC format (see clause 6.2.4.1). It specifies the (absolute) time in UTC when the object expires. The
object is not valid anymore after it expired and therefore it shall no longer be presented.

ETSI

29 ETSI EN 301 234 V2.1.1 (2006-05)

Absolute expire times shall only be used if the expire timeis known in advance and if a change to the expiretimeis
considered unlikely. If the content provider wantsto signal an expire time, but no absolute expire timeisknownin
advance, then arelative expire time shall be used.

6.2.3.1.1.2 Relative expire times

If the size of the data field is 1 byte, then arelative expire time is defined. While an absolute expire time is known in
advance, the relative expire time indicates avalidity interval. The interval indicates the maximum time span an object is
considered valid after the last time the MOT decoder could verify that this object is still broadcast.

The DataField of this parameter is a one byte value specifying the time the MOT object can still be considered valid
starting at the time the MOT decoder no longer receives any segment of the MOT directory (e.g. no more reception or
receiver switched off) and therefore the MOT decoder has no reliable knowledge which files are still broadcast. The
interval ranges from 2 minutes to 63 days. The interval should be longer than the time between two retransmissions of
the MOT directory; the interval shall be longer than the time between the reception of two MOT directory segments.
Note that due to reception errors the MOT decoder might miss MOT directory segments.

The encoding of this parameter is shown in figure 26.

2 bits 6 bits
Granularity Interval
b7 bg bs bg

Figure 26: Coding of the MOT parameter Expiration in case of relative expire times

Granularity: this 2-bit field indicates the temporal resolution of the relative expire time.

Interval: this 6-bit unsigned binary number specifies the relative expire time in multiples of the timeinterval specified
by the field Granularity. The value O is reserved for future use and shall not be used.

Table 1: Resolution and covered time intervals for relative expire times

Granularity Temporal resolution Covered time interval
00 two minutes from 2 minutes to 126 minutes (approx. 2 hours)
(2 minutes, 4 minutes, 6 minutes, 8 minutes, etc.)
01 half hours from half an hour to 31,5 hours
(0,5 hours,1 hour, 1,5 hours, 2 hours, etc.)
10 two hours from 2 hours to 5,25 days
(2 hours, 4 hours, 6 hours, 8 hours, etc.)
11 days from 1 day to 63 days (approx. 2 months)
(1 day, 2 days, 3 days, 4 days, etc.)

6.2.3.1.1.3 Disabling DefaultExpiration

If the MOT directory extension parameter Def aul t Expi r at i on isused, but some MOT aobjects of the MOT data
carousel should never expire, then the absolute expire time of these MOT objects (MOT header information parameter
Expi r at i on) shall be set to the maximum value that can be signalled:

e Validity flag=1.

. MJD: al bitsset to 1.

. UTC flag = 0 (short form of absolute time value).
. UTC: set to 23:59.

NOTE: Evenif the MOT decoder does no special handling of this specific parameter value, this encoding assures
that an MOT object with this absolute expire time will never expire in practice.

ETSI

30 ETSI EN 301 234 V2.1.1 (2006-05)

6.2.3.1.2 PermitOutdatedVersions

When the MOT decoder notices a change to the data carousel (i.e. it getsanew MOT directory) then this parameter can
be used to indicate if an outdated (old) version of an MOT object can be used until the current (new) version of this
object is successfully reassembled.

The DataField of this parameter isasingle byte. A value of 0 indicates that the MOT decoder shall not use any other
version of the MOT object than the one currently broadcast. Any value other than 0 in the current (new) MOT directory
indicates that an already available (older) version of an MOT object can be used until the current (new) version of this
object isreceived.

The MOT directory extension parameter Def aul t Per m t Qut dat edVer si ons defined in clause 7.2.4.2 (if
present) defines a default value for al MOT objects that do not provide the MOT header information parameter

Per m t Qut dat edVer si ons. The default value defined by Def aul t Per mi t Qut dat edVer si ons only applies
to an MOT object if no MOT header information parameter Per i t Qut dat edVer si ons isprovided for this MOT
object.

If the MOT header information parameter Per mi t Qut dat edVer si ons isprovided for an MOT object, then it
indicates whether an outdated version of the object can be presented until the current version of the object isreceived. If
Per m t Qut dat edVer si ons isnot provided for the object, then the MOT directory extension parameter

Def aul t Per mi t Qut dat edVer si ons indicates whether an outdated version of the object can be presented. If
neither the MOT header information parameter Per i t Qut dat edVer si ons isprovided for an MOT object nor the
MOT directory extension parameter Def aul t Per mi t Qut dat edVer si ons isprovided as a default for all objects,
then the MOT decoder shall not present any outdated version of this object. Note that thisis also the behaviour of
legacy MOT decoders, since the former revision of the MOT standard did not permit to keep an outdated version of an
MOT object.

6.2.3.1.3 UniqueBodyVersion
This parameter is used to uniquely identify aversion of an MOT body (identified by its Cont ent Nare) .

The DataField of thisMOT parameter is a 32-bit field. The value of two parameters Uni queBodyVer si on shall be
considered the same if both parameters have the same DataField content.

If thisMOT parameter is used, then every version of an MOT body must have a unique Uni queBodyVer si on
parameter value. The parameter value can be assigned using whatever scheme. It is not mandatory to increment the
parameter value by one for every new version of an object, the only requirement is uniqueness. The MOT decoder shall
therefore not use this parameter to "guess' the age of an object's version!

6.2.3.1.4 Priority

The parameter is used to indicate the storage priority, i.e. in case of a"memory full”" state only the objects having a high
priority should be stored. It indicates the relevance of the content of the particular object for the service, e.g. ahome
page of aHTML based service has a high priority and should therefore not be deleted first, whereas pictures

(e.0. buttons, etc.) are not as important as the home page and hence can be deleted first in case of a memory overflow.
The DataField of this parameter carries an 8-bit unsigned binary number. The possible values range from 0 = "highest
priority" to 255 = "lowest priority".

Note that usually a caching strategy will take into account the priority val ue assigned by the content provider as well as
user preferences.

6.2.3.1.5 RetransmissionDistance

To support advanced caching of objectsin the receiver, this parameter indicates a guaranteed maximum time between
two retransmissions of an object. The resolution in the time domain is 1/10 second to alow an exact synchronization,
whereas the maximum time which can be indicated reaches up to 1 677 721 seconds (equal approx. 19 days, 10 hours
and 2 minutes) for very sow retransmission rates. The DataField of this parameter is encoded as shown in figure 27.

ETSI

31 ETSI EN 301 234 V2.1.1 (2006-05)

8 bits 24 bits
Rfa RetransmissionDistance

Figure 27: Coding of the MOT parameter RetransmissionDistance

6.2.3.2 MOT conditional access parameters

These parameters are used if conditional access on MOT level is applied to the MOT data.

6.2.3.2.1 CAlnfo

The CAl nf o parameter is used to indicate the scrambling status of individual objects within the data carousel where a
service potentially contains both scrambled and unscrambled objects. The syntax of the CAl nf o parameter is defined
in TS 102 367 [8].

Even an MOT decoder that does not support conditional access on MOT level shall check for the MOT parameter

CAl nf o to determine if an MOT body is scrambled. The existence of the MOT parameter CAl nf o for an MOT object
indicates that the body is scrambled. The content of the MOT parameter CAl nf 0 does not have to be evaluated by a
non conditional access aware MOT decoder, while its presence must be evaluated by every MOT decoder.

6.2.3.2.2 CAReplacementObject

If an object within the data carousel is scrambled and the receiver is unable to unscramble the object, it is desirable for
the receiver to be able to present information about how the user may subscribe to the service in order to decrypt the
scrambled objects. The CARepl acenent Obj ect parameter allows this by re-directing the receiver to a replacement
object if the receiver is unable to unscramble a given object. The coding of the parameter is exactly the same as the
coding of the MOT parameter Cont ent Nane. When comparing the parameter CARepl acenent Qbj ect with the
Cont ent Nane of an object, the DataFields shall by compared byte-by-byte including the character set indicator.

NOTE 1: The replacement object will usually have to have the same object type as the object it replaces. So in case
of aBWS, areplacement object for an image should also be an image. The replacement of an HTML
page should be an HTML page.

NOTE 2: It might not be necessary to provide CARepl acenent Cbj ect parameters for every scrambled object.
But if for instance apart of aBWS is scrambled, then at least all MOT objects that can be reached from
unencrypted pages (i.e. the entry pagesto the encrypted part of the BWS) should use
CARepl acenent Obj ect parameters to inform the user how he can access the encrypted data part.

User applications such as the Broadcast Web Site permit to link from one object to the other. Usualy relative links
(e.g. "../images/logo.png”) are used. Relative links require that the presentation engine (e.g. the browser) knows the
name of the currently presented object so that all links within this object can be interpreted relative to the name of the
current object. The presentation engine (e.g. every browser) will always convert relative links within an object (e.g. an
HTML page) to absolute links and always request objects from the MOT decoder by their absolute name.

So if arequested object can not be provided by the MOT decoder because it can not be descrambled, then the MOT
decoder must tell the user application decoder that it has to request the replacement object instead. This assures that the
user application decoder interprets al links within the replacement object relative to the name of the replacement object
(and not relative to the name of the originally requested object). An implementation that just returns the replacement
object instead of the originally requested object will not work for user applications that permit relative links between
objects!

The replacement object shall not be scrambled.

6.2.3.3 MOT profile identification

These parameters can be used if a user application supports multiple profiles.

ETSI

32 ETSI EN 301 234 V2.1.1 (2006-05)

6.2.3.3.1 ProfileSubset

The data carousel for a user application carries objects to support more than one user application profile. Additional
hinting may be applied by the MOT decoder if it knows which profile a given object is used by. For areceiver
conforming to profile x, only objects that are relevant to profile x receivers need be decoded and stored. The optional
Prof i | eSubset parameter alows the content provider to indicate alist of profiles for which any given object is
relevant. The Pr of i | eSubset parameter datafield carriesalist of 8-bit unsigned binary number profile ids which
identifies all of the profiles for which the object isrelevant. All profileids are sorted in ascending order within the list.

ThisMOT parameter assumes that the user application uses 8-bit unsigned binary number profile idsto signal the
profiles supported by the content provider. If the user application uses profile ids of a different size, then this generic
parameter can not be used.

If thePr of i | eSubset parameter is not specified for an object in the data carousel, the receiver shall assume that the
object may be relevant to al signalled user application profiles.

6.2.4 Coding of parameters

6.24.1 Coding of time parameters
Some MOT parameters can signal absolute time values (e.g. Expi r at i on).

Absolute times are coded as shown in figure 28 (see also EN 300 401 [1]).

[»
) >

1 bit 17 bits 2 bit 1 bit 11 or 27 bits
Validity | MJD Rfu uTC utc
flag date flag time
\
short form . long form . -
(UTC flag =0) hours | minutes (UTC flag =1) hours | minutes | seconds | milliseconds

5 bits 6 bits 5 bits 6 bits 6 bits 10 bits

Figure 28: Encoding of absolute time information

Validity flag: This bit is used to indicate whether the time and date information (UTC and MJD) carried in the time
parametersisvalid or not as follows:

- Validity flag=0: "Now"; MJD and UTC shall be ignored and be set to 0.
- Validity flag=1: MJD and UTC arevalid.

Depending on the value of the UTC time flag the size of the DataField is 4 bytes (UTC flag = 0) or 6 bytes
(UTCflag=1).

All numeric values (MJD date, hours, minutes, seconds, milliseconds) are coded as unsigned binary numbers.

6.3 List of all MOT parameters in the MOT header extension

The MOT header extension contains transport protocol specific and user application specific parameters. The transport
protocol specific parameters are defined in this clause.

The present document also defines the range of Parameter Ids to be used for future extension of the MOT transport
protocol and for user application specific parameters.

It is up to the user application to decide which MOT parameters (and also which user application specific parameters, if
any) are used and which parameter values are permitted.

ETSI

33 ETSI EN 301 234 V2.1.1 (2006-05)

A generic MOT decoder will forward al user application specific parametersto the user application decoder, while
protocol specific parameters need to be evaluated and handled by the MOT decoder itself.
The following rules apply:

All mandatory transport specific parameters must be evaluated and handled by the MOT decoder.

All optional transport specific parameters may and all unknown transport specific parameters must be ignored
by the MOT decoder.

For some optional MOT parameters the expected behaviour when ignoring the parameter is explicitly stated
(e.g. for Def aul t Per mi t Qut dat edVer si ons/Per i t Qut dat edVer si ons).

All user application specific parameters must be handed over to the user application decoder.

General rules for transport specific parameters:

One MOT parameter is mandatory for both content provider and MOT decoder: Cont ent Nane.

Every MOT decoder shall check if an MOT body is compressed (MOT parameter Conpr essi onType) or
scrambled (MOT parameter CAl nf 0). The MOT decoder does not necessarily (i.e. unless required by the user

application) have to be able to decompress or unscramble objects, but it shall be able to identify and discard
objects that it can not process.

Thefollowing tablelists al currently defined MOT parameters carried within the MOT header extension (these
parameters refer to asingle MOT object); MOT parameters carried in the MOT directory extension (these parameters
refer to the data carousel as awhole) are defined in clause 7.2.4. For historical reasons some user application specific
parameters are al so included. For user application specific parameters not included in this list the meaning of the
parameter depends on the user application. It is possible that two user applications use the same Parameterld but assign
atotaly different meaning to it. The decoding of the user application specific parameter always has to take into account
which user application provides the data.

ETSI

34

ETSI EN 301 234 V2.1.1 (2006-05)

Table 2: Coding of extension parameter

Parameter Id Parameter Definition Possible Usage mandatory Support
bg by occurrences for content mandatory for
provider MOT decoders
00 0000 reserved for MOT protocol extensions
00 0001 [PermitOutdatedVersions [6.2.3.1.2 |only once [no [no
00 0010
00 0011 reserved for MOT protocol extensions
00 0100
00 0101 |TriggerTime see [5] see [5] see [5] see [5]
(user application specific
parameter)
000110 |reserved for MOT protocol extensions
000111 [RetransmissionDistance [6.2.3.1.5 [only once no [no
00 1000 |reserved for MOT protocol extensions
00 1001 |Expiration 6.2.3.1.1 |only once no yes, if receiver
provides "MOT
caching support"
00 1010 |Priority 6.2.3.1.4 |only once no no
00 1011 |Label see [6] only once no no
(user application specific
parameter)
00 1100 |ContentName 6.2.2.1.1 only once yes yes
001101 |UniqueBodyVersion 6.2.3.1.3 |only once no no
88 ﬁig reserved for MOT protocol extensions
01 0000 |MimeType 6.2.2.1.2 |only once user application user application
specific specific
010001 |CompressionType 6.2.2.1.3 only once yes (if body is yes; every
compressed) receiver must
check if an object
is compressed
01 0010
reserved for MOT protocol extensions
011111
10 0000 |AdditionalHeader see [6] once or several see [6] see [6]
(user application specific times
parameter)
10 0001 [ProfileSubset 6.2.3.3.1 |only once no no
10 0010 reserved for MOT protocol extensions
10 0011 [CAInfo 6.2.3.2.1 |only once yes (if CAis used) |yes; every
receiver must
check if an object
is scrambled
100100 [CAReplacementObject |6.2.3.2.2 |only once no no
10 0101
eoe reserved for user application specific parameters
111111

-

MOT transport modes

The MOT protocol supports two different transport modes:

. MOT header mode;

. MOT directory mode.

MOT header mode is used if thereisjust one MOT object valid at any time (e.g. user application MOT Slide Show
(see TS 101 499 [5]) where anew dlideis received, processed, displayed and discarded). In MOT header mode the
header information describing the single MOT body is carried asan MOT header.

ETSI

35 ETSI EN 301 234 V2.1.1 (2006-05)

MOT directory mode is used if file system structures with multiple files are broadcast as a data carousel. All header
information of all broadcast MOT objects is combined with parameters describing the set of files. The resulting
combined information is called the MOT directory. There isone single MOT directory at any time. A received MOT
directory replaces any former MOT directory.

A user application definition shall specify if the user application uses MOT header mode or MOT directory mode.
Some of the features of the MOT directory mode are:

. MOT directory mode permits simple memory management on receiver side since the content provider can
explicitly signal which MOT aobjects are valid and thisimplicitly a so indicates which MOT objects shall be
removed on receiver side.

. MOT directory mode can assure consistency of the set of objects. It is possible to indicate which version of an
object isto be presented with which version of another object.

. MOT directory mode can be extended to permit persistent caching and delta updating of objects on receiver
side. If several MOT objects of a user application are rarely updated, then persistent caching can significantly
improve the start-up time of the user application.

. MOT directory mode permits conditional access on MOT level where some objects are accessible on all MOT
terminal's supporting the user application whereas some other objects are protected by conditional access.

. MOT directory mode combines all header information of al objectsin one single MOT directory. Since
broadcast of this MOT directory takes some time the MOT directory mode is not well suited for fast changes
to the set of broadcast objects.

MOT header mode can be seen as a specia case of the MOT directory because it describes the one single MOT object
valid at thistime. The MOT directory mode can be used to transmit one single object; whereasthe MOT header mode is
limited to one single file only.

7.1 MOT header mode

This MOT transport mode is used when there is one single valid object at any time. This transport mode is usually used
for user applications that decode, process and discard object after object from a stream of objects. An example user
application isthe MOT Slide Show, see TS 101 499 [5]). If the MOT decoder detects that a new MOT object is being
used and the current MOT object is not yet reassembled, then the MOT decoder shall discard the incomplete object and
start reassembly of the new MOT object.

In MOT header mode the MOT object consists of one MOT header (containing the header information) describing one
MOQOT body (containing the payload).

The MOT header describing the body shall be sent at least once preceding the body of that object and it can be inserted
during the body transmission if required.

The MOT header mode is not intended to carry file system structures (data carousels). Even if a special user application
could use the MOT objects coming out of the MOT decoder to rebuild afile system structure on receiver side, the task
of the MOT decoder islimited to decoding MOT objects and forwarding them one after the other to the user application
decoder.

7.1.1 New object/object update

If anew object istransmitted it will have anew Cont ent Nane and it will get a new Transportid. It will replace any
object already stored in the MOT decoder.

If the information carried in the body of an object is updated, a new object has to be transmitted. A body cannot be
partly updated since MOT header mode just handles the object as an entity. While the Cont ent Nane will be the same,
the Transportld will change. Therefore a new body and a new header have to be transmitted. Header and body segments
of the updated object will be transmitted with the new Transportid.

ETSI

36 ETSI EN 301 234 V2.1.1 (2006-05)

MOT provides two methods to signal a change in the header information of an object:
. changing the Transportid;
. sending a Header Update.

The first method shall be used, if the header information is to be changed and the transmission of the body isto be
continued. Then the transmission of the new object with updated header (but with the same body) is done with a new
Transportld. If the Transportld changes, then the MOT decoder will remove all MOT segments received so far and start
reassembly of the new (but actually unchanged) MOT body from scratch.

The second method shall be used, if only the header is changed, but the body is not sent anymore (for example when an
object istriggered using a HeaderUpdate that overwrites (or sets) the Tr i gger Ti me). The MOT decoder shall pass
any HeaderUpdate to the user application decoder. It is the task of the user application decoder to check if the
HeaderUpdate refers to an object in the user application decoder and it is also the task of the user application decoder to
process the header update. See clause 7.1.3.

7.1.2 Management of Transportlds

The Transportld field is used to uniquely identify a specific version of an object. In order to minimize the risk of
confusion for the MOT decoder when reassembling MOT objects, the content provider has to ensure that Transportlds
are not re-used until all other available Transportlds have been used.

NOTE: The Transportld is used solely for the purpose of identifying the object during transport - it has no user
application significance whatsoever.
7.1.3 Updating header information/triggering objects

The HeaderUpdate is a specific method of updating the parameters of objects, where both header core and header
extension are sent after the entire object (MOT header and MOT body) has aready been transmitted. It is used to update
MOT parameters (e.g. Tr i gger Ti nme). The header update object shall consist at least of the parameters described
hereafter:

ContentName: This parameter is used to link header update to the object to be updated.
ContentType: This parameter shall be set to 0x000101 = MOT Transport.
ContentSubType: This parameter shall be set to 0x0000000000 = UpdateHeader.
BodySize: Thisfield shall be set to zero.

The MOT parameter Cont ent Nane cannot be replaced during a header update since it is used to link the header
update to the object to be updated.

header core header extension
body size =0 | header size ContentType ContentSubType parameter parameter .| parameter
=0x000101 = 0x0000000000
ContentName

Figure 29: Structure of the header update

ETSI

37 ETSI EN 301 234 V2.1.1 (2006-05)

7.2 MOT directory mode

7.2.1 Introduction

MOT directory mode is used if file system structures with multiple files are broadcast as a data carousel. All header
information of al broadcast MOT objects is combined with parameters describing the overall set of files. The resulting
combined information is called the MOT directory. Thereisone single MOT directory at any time. If anew MOT
directory is created it replaces the former MOT directory. ThisMOT directory describing all MOT objectsis sent "in
parallel" (see clause 5.3.2.1) to all the MOT bodiesit describes.

This clause describes the format of the MOT protocol that provides a management mechanism when broadcasting MOT
objectsin adatacarousel. A datacarousel isadelivery system that allows a user application server (the broadcast
component of a user application) to present a set of distinct objects to a user application decoder (aprogram that isrun
by areceiver) by cyclically repeating the contents of the data carousel. For some user applications the data carousel may
complete only afew or asingle cycle.

Within the data carousel, the MOT directory is used to provide a complete description of the content of the data
carousel, together with sufficient information to find the data for each described object. Version control mechanisms
applied both to the objects within the data carousel and the directory itself provide the ability to correctly manage
updates to the data carousel with minimum effort and at al times ensure that the correct version of an object is used by
the user application.

If auser application requests a particular object, the receiver can easily determine by looking in the directory whether or
not the requested objects exists within the data carousel and where to find the object data. If the object the user
application requestsis not yet available in the receiver it may simply wait for the next time that the object is broadcast.
If desired, the receiver may optionally implement caching strategies to reduce the latency of accesses by the user
application decoder and improve the performance of the data carousel.

7.2.2 Assembly of MOT bodies and MOT directory

MOT transfers objects by dividing both MOT directory and MOT bodies into fixed length segments and then
transferring each segment within an M SC data group. In order to reassembl e each body, the MOT decoder uses a
Transportld and a SegmentNumber carried in the Session Header field of the data group to identify which segment of
which body the data group is carrying. The Transportld is a unique identifier for a particular version of an object within
the data carousel and is also used to provide version management of the data. Whenever the MOT object (MOT header
information or MOT body (or the segmentation)) changes, the Transportld of the MOT body is also changed.

7.2.3 MOT directory coding

The MOT directory isthe table of contents for the MOT data carousel and is the mechanism for controlling access to
the objects. Any request for an object can be processed by looking up the object in the MOT directory and using the
directory to identify the Transportld of the desired object. The directory is also the key to managing version control of
objects within the MOT data carousdl; if the Transportld of the directory changes, the contents of the data carousel
should have changed and a simple examination of the directory can identify all the objects that have changed.

The directory contains parameters to describe the entire data carousel together with alist of the required directory
information for each object within the data carousel. The structure of the MOT directory is shown in figure 30.

ETSI

38 ETSI EN 301 234 V2.1.1 (2006-05)

1bit 1 bit 30bits 16 bits 24 bits 1 bit 2bits 13 bits 16 bits m x 8 bits

bO|| b0 |b29 bOJbl5 bO|b23 b0 | bO |bl bO| bl2 bO |bl5 bO
; Data Directory

cFk lriu Dlre_ctory Numper carousel | riul Rfa Seg'ment Extension Dlrectqry Directory Directory Directory
Size |Of Objects Period Size Length Extension| Entry 1 Entry n Entry N

4 kn*8 bits

b15 b0 | header

Transport Id | information
Parameter 1] ... | Parameter p| ...] Parameter P (object n) (object n)

(e bits \

bl b0 | b5 b0

PLI Paramld] Parameter Data

Figure 30: Structure of the MOT directory

CF (CompressionFlag): This bit shall be set to 0.

Rfu: This 1-bit field shall be reserved for future use of the remainder of the structure. The bit shall be set to zero for the
currently specified definition of the MOT directory. An MOT decoder has to verify the value of this bit.

DirectorySize: Indicates the total size of the MOT directory in bytes.
Number OfObjects: Indicates the total number N of objects described by the directory.

DataCarouselPeriod: Indicates the maximum time in tenths of a second for the data carousel to complete acycle. Itis
the longest time taken for any object in the data carousel to be retransmitted. A value of 0 shall indicate that the
DataCarousel Period is undefined.

NOTE: Thisisthe caseif the data carousel only makes one turn or the bit-rate changes dynamically.

Rfu: This 1-bit field shall be reserved for future use of the remainder of the structure. The bit shall be set to zero for the
currently specified definition of the MOT directory. An MOT decoder has to verify the value of this bit.

Rfa: This 2-hit field shall be reserved for future additions. The bits shall be set to zero until they are defined.

SegmentSize: Indicates the SegmentSize in bytes that will be used for the segmentation of objects within the MOT data
carousel. A vaue of O indicates that objects within the data carousel may have different segmentation sizes. The last
segment of an object may be smaller than this SegmentSze.

DirectoryExtensionL ength: Indicates the total number of following directory extension bytes.

DirectoryExtension: Carriesalist of parameters which are used to describe the entire data carousel. The structure of
these parametersis as defined for the MOT header extension parameters (see clauses 6.2 and 7.2.4).

DirectoryEntry: Describes one MOT object. Every DirectoryEntry comprises the Transportld of the MOT object and
its MOT header information.

Transportld: Identifies the object to which the following MOT header information refers.

Header information: Carries the header core and header extension of the object. Every object of the data carousel shall
be described only once per MOT directory, even if an object is transmitted multiple times during one turn of the data
carousel. The coding structure is exactly the same for header information in data groups of type 6 or 7 (i.e. in the MOT
directory) and in data groups of type 3 (i.e. in aseparate MOT header).

ETSI

39 ETSI EN 301 234 V2.1.1 (2006-05)

7.2.4 List of all MOT parameters in the MOT directory extension

The directory entries describe individual objects within the data carousel. Parameters in the directory extension describe
the overall set of objects, i.e. not an individual object. The structure of these parameters is as defined for the header
extension parameters, see clause 6.2.

The directory extension contains transport protocol specific and user application specific parameters. The transport
protocol specific parameters are defined in this clause.

This clause a so defines the range of Parameter 1dsto be used for future extension of the MOT transport protocol and
for user application specific parameters.

It isup to the user application to decide which MOT transport specific parameters (and aso which user application
specific parameters, if any) are used and which parameter values are permitted.

A generic MOT decoder will forward all user application specific parameters to the user application decoder, while
transport protocol specific parameters need to be evaluated and handled by the MOT decoder itself.
The following rules apply:

. All mandatory transport specific parameters must be evaluated and handled by the MOT decoder.
All optional transport specific parameters may and all unknown transport specific parameters must be ignored
by the MOT decoder. For some optional MOT parameters the expected behaviour when ignoring the
parameter is explicitly stated (e.g. for
Def aul t Per mi t Qut dat edVer si ons/Per i t Qut dat edVer si ons).

. All user application specific parameters must be handed over to the user application decoder.

The following tablelists al currently defined MOT parameters carried within the MOT directory extension (these
parameters refer to the data carousel as awhole); MOT parameters carried in the MOT header extension (these
parameters refer to asingle MOT object) are defined in clause 6.3.

Table 3: Directory extension parameters

Parameter Parameter Definition Possible Usage Support mandatory for MOT
Id occurrences | mandatory for decoders
bg by content provider
00 0000 |SortedHeaderInformation 7.24.1 only once no no
00 0001 |DefaultPermitOutdatedVersions|7.2.4.2 only once no no
00 0010
e reserved for MOT protocol extensions
00 1000
00 1001 |DefaultExpiration 7.2.4.3 only once no yes, if receiver provides "MOT
caching support”
001010
e reserved for MOT protocol extensions
011111
10 0000 S e
10 0001 reserved for user application specific parameters
10 0010 (Directorylndex see [6] once or several|see [6] see [6]
(user application specific times
parameter)
10 0011
oo reserved for user application specific parameters
111111
7.24.1 SortedHeaderInformation

The parameter is used to signal that the headers within the MOT directory are sorted in ascending order of the
Cont ent Nane parameter within every header information block. The parameter has no DataField.

If areceiver gets anew version of the MOT directory it has to compare this new directory with the old version to
determine which objects are still valid, which objects are deleted and which objects were updated.

ETSI

40 ETSI EN 301 234 V2.1.1 (2006-05)

For an efficient implementation it is very helpful if the header information within the MOT directory is already sorted
by the transmission side by definition. It will be especially helpful for receivers with limited resources.

If the parameter Sor t edHeader | nf or mat i on isused, then the header information within the MOT directory shall
be sorted in ascending order of the Cont ent Nane.

The sorting is done byte by byte, comparing the bytes of the character fields of the Cont ent Namne. The character set
indicator field of the Cont ent Name has no impact whatsoever on the sorting. See annex A for a description of the
sorting algorithm.

To reduce receiver complexity the content provider should sort the header information and signal it by using thisMOT
directory extension parameter.

7.2.4.2 DefaultPermitOutdatedVersions
This parameter belongsto MOT functionality "MOT caching support”, see clause 8.1.

When the MOT decoder notices a change to the data carousel (i.e. it getsanew MOT directory) then the MOT decoder
must be told in the current (new) MOT directory if an old version of an MOT object can be used until the current (new)
version of this object isreceived.

The DataField of this parameter isasingle byte. A value of O indicates that the MOT decoder shall not use any other
version of the MOT object than the currently broadcast. Any value other than O indicates that an old version of an MOT
object can be used until the current (new) version of this object is received.

The MOT directory extension parameter Def aul t Per ni t Qut dat edVer si ons defines a default value for all
MOT objectsthat do not provide the MOT parameter Per i t Qut dat edVer si ons. The default value defined by
Def aul t Per mi t Qut dat edVer si ons isonly used for an MOT object if no MOT parameter

Per mi t Qut dat edVer si ons is provided for thisMOT object.

If neither the MOT header information parameter Per mi t Qut dat edVer si ons isprovided for an MOT object nor
the MOT directory extension parameter Def aul t Per m t Qut dat edVer si ons isprovided as a default for all
objects, then the MOT decoder shall not present any outdated version of this object. Note that this is also the behaviour
of legacy MOT decoders, since the former revision of the MOT standard did not permit to keep an outdated version of
an MOT object.

7.24.3 DefaultExpiration
This parameter belongsto MOT functionality "MOT caching support”, see clause 8.1.

The MOT directory extension parameter Def aul t Expi r at i on isused to indicate a default value that specifies how
long an object can still be used by the MOT decoder after reception loss. The coding of this parameter is the same as the
encoding for the MOT header information parameter Expi r at i on, seeclause 6.2.3.1.1.

The MOT directory extension parameter Def aul t Expi r at i on defines a default value for all MOT objects that do
not provide the MOT parameter Expi r at i on. The default value defined by Def aul t Expi r at i on isonly used for
an MOT object if no MOT parameter Expi r at i on isprovided for thisMOT object.

If neither the MOT header information parameter Expi r at i on isprovided for an MOT object nor the MOT directory
extension parameter Def aul t Expi r at i on isprovided as adefault for all objects, then the MOT object never
expires.

7.2.5 Segment size of the MOT directory
For MOT objects within an MOT data carousel, the segmentation size may be indicated in the MOT directory (i.e. the

parameter SegmentSize within the MOT directory core). However, the size of segments for the MOT directory itself
cannot be known before the first MOT directory segment is received.

ETSI

41 ETSI EN 301 234 V2.1.1 (2006-05)

7.2.6 Identification of the MOT directory

The MOT directory isthe key to accessing any object within the data carousel and so it shall be possible for an MOT
decoder to filter for the directory easily. Within an MOT stream that uses MOT directory mode the following rules

apply:

. For each data carousel of objects there shall be one MOT directory that describes all currently broadcast MOT
objects within the data carousel.

. An MOT stream shall contain at most one data carousel.

In order to provide easy and effective filtering for the directory, a particular data group type shall be used -

Type 6: uncompressed MOT directory or Type 7: compressed MOT directory. To identify the MOT directory, the MOT
decoder should filter for the directory by looking for data groups with a data group type 6 or 7. Because there can only
ever be one directory within the stream of data groups, this can always be done unambiguously. Clause C.3.4.3 explains
how the MOT decoder can acquire the MOT directory even if a user application permits both compressed and
uncompressed MOT directory. Once acquired, changes to the directory can always be detected by looking for changes
in the Transportld of the MOT directory.

71.2.7 Use of the MOT directory mode

7.2.7.1 Segment reception order

The order in which MOT segments are received is unimportant for the MOT decoder - the SegmentNumber and
Transportld fields of each segment allow accurate reconstruction of the MOT directory (and of each MOT body)
regardless of when the individual segments are received.

7.2.7.2 Service acquisition

The key to acquiring a service broadcast in a data carousdl is reception of the MOT directory. Once this has been
received, the complete structure and contents of the data carousel is known, even if the data for the objects themselves
has not yet been received. If the scope of the data carousel is known, the receiver has all the information it requiresto
process requests for an object from a user application - it knows whether or not a requested object exists within the data
carousel and how to identify the object when it is received.

The MOT decoder can always determine the correct contents of the data carousel by examining the current
directory - there is no need for an MOT decoder to have any knowledge about previously broadcast information in order
to correctly decode the current data carousel.

7.2.7.3 Version control

The use of adata carousel implies a user application data set that is essentially static - it should be unlikely that the data
carried in the data carousel will change rapidly. However, the data may well need to change and it is important that an
MOT decoder is able to detect when the data carousel has changed so that it can properly manage any stored data, if
applicable.

Each object in the data carousel has a Transportld assigned to it that is carried both in the body segments

(for verification and identification) and in the MOT directory (for data carousel management). If any object in the data
carousel is changed (segmentation, header information or body), a new Transportld shall be assigned to the object. This
requires a change to the directory and so the Transportld of the directory shall also be changed to reflect this - therefore
any change to the data carousel can be detected merely by checking for changes in the Transportld of the MOT
directory.

ETSI

42 ETSI EN 301 234 V2.1.1 (2006-05)

7274 Allocation of Transportlds

The Transportld field is used to uniquely identify a specific version of an object within the data carousel. In order to
minimize the risk of confusion for the MOT decoder when rapid updates are taking place, the content provider hasto
ensure that Transportlds are not re-used until al other available Transportlds have been used. If a data carousel update
occurs the transmission side shall not re-use Transportlds of objects within the old MOT directory for new or updated
objectsin the new MOT directory.

NOTE: The Transportld is used solely for the purpose of identifying the object during transport - it has no user
application significance whatsoever.

7.2.7.5 Prioritizing objects within the data carousel

Because the transmission order of objects (and also their segments) within the data carousel is unimportant, it follows
that objects which have more significance than others to the user application may be repeated multiple times within one
turn of the data carousel, in order that the acquisition time for these objectsis minimized. In particular, the directory
may be treated in thisway, asit is central for the MOT decoder to being able to access the objects within the data
carousel.

NOTE: TheMOT parameter Ret r ansmi ssi onDi st ance may be used to indicate the guaranteed maximum
time until individual objects appear again within the overall data carousel, as this may differ from the
period of the entire data carousel (which is defined as the longest repetition period for any object in the
data carousel).

7.2.7.6 Managing updates to the data carousel

When the data carousel is changed there is no requirement to complete either the current cycle of the data carousel or
the current object.

If the data carousel is changed the next cycle of the data carousel should then start with the new or updated objects
being broadcast first.

The transmission side shall also assure that al objects within the data carousel are broadcast even if a small portion of
the data carousel is updated/added more frequently than one data carousel cycle. It isimportant that a change to the data
carousel does not completely restart the transmission cycle. To give an example:

. If the data carousel cycleis five minutes and some small object is changed every minute, then the data carousel
shall not restart from scratch and shall not start repeating the first minute of the data carousel without ever
broadcasting the data scheduled for the remaining four minutes.

Assoon asan MOT decoder detects a change to the directory, it shall use the information in the new directory to
determine whether or not any previously stored MOT body is still valid.

See annex F for more detailed information how the content provider has to manage changes to the MOT data carousel.

7.2.7.7 MOT decoder behaviour in case no data is received for a long time

If the MOT decoder receives no data for more than one hour, then the MOT decoder shall completely stop processing
MOT body segments and it shall no longer reassemble MOT bodies. Once reception is restored, then the MOT decoder
hasto first successfully reassemble the current MOT directory. It then hasto check if all MOT bodies that are currently
reassembled still use the same Transportld. Only then the MOT decoder is permitted to continue reassembly of MOT
bodies.

The above behaviour is required to assure that an MOT decoder that did not get data for a very long time does not
assume that MOT body segmentsit receives till refer to the very same version of a body.

ETSI

43 ETSI EN 301 234 V2.1.1 (2006-05)

EXAMPLE: The MOT reassembly unit is ordered to reassemble an MOT body A with Transportld X. Before
the MOT body can be completely reassembled, the MOT decoder |oses reception.
For along time the MOT decoder receives no MOT segments at all. After some time the content
provider does not broadcast object A any more and later on re-uses the Transportld X for another
object B.
If reception is now restored, then it might happen that the MOT body segments with Transportld
X (now referring to MOT object B) are received before the current MOT directory is completely
reassembled. If the MOT reassembly unit waiting for MOT body segments with Transportld X
(the outdated object A) now processes the newly received MOT body segments as usual and tries
to complete reassembly of what it believes to be object A, then a mix of MOT body segments of
object A and object B will result. Since there is no error detection on MOT entity level, the MOT
reassembly unit can not detect such inconsistencies and might thus forward a " successfully"”
reassembled MOT body with Transportld X to the object management.
As soon asthe MOT decoder has completely reassembled the current MOT directory, it can detect
that the Transportld now refers to another MOT object and restart reassembly of object B from
scratch, but at this time already erroneous data could have been forwarded to the user application
decoder.

To avoid the inconsistencies explained in the above example, it is necessary that after a reasonable time without
reception the MOT decoder first verifies that the Transportlds of the MOT body segments still refer to the same MOT
objects before it continues reassembly of MOT bodies.

NOTE 1: The content provider hasto ensure that Transportlds are not re-used until all other available Transportlds
have been used. Therefore it will usually take very long until a Transportld is reused. However, the
receiver could have been without reception for avery long time or in the meantime there could have been
a change of the service configuration (e.g. acompletely new data carousel (same user application type) is
now broadcast in the same data channel) and the receiver now gets data that uses the same Transportlds,
but for completely different objects.

To detect "reception loss', the MOT decoder keeps track of the last time the MOT decoder received any segment of the
current MOT directory (i.e. of the MOT directory currently used by the object management). If no segment of the
current MOT directory is received for more than one hour, then the MOT decoder shall stop reassembly and shall first
reassembly and evaluate the current MOT directory before it continues reassembly of MOT bodies.

Reassembly of the MOT directory shall not use MOT directory segments older than one hour.

NOTE 2: Keeping track of the last time an MOT segment of the current MOT directory was received is also needed
for the evaluation of relative expire time. The parameter that holds the last time any segment of the
current MOT directory was received can thus be used for the evaluation of relative expire times and also
to detect "reception loss'.

NOTE 3: Receiverswith advanced reassembly units (see also clause C.3.4.1.1) do not have to discard MOT body
segments once reassembly is stopped. They are permitted to put the MOT body segments into the
"segment buffer" and they may replay the buffered MOT body segments as soon as the current MOT
directory isreceived. Note that the "segment buffer" will discard all MOT body segments that are older
than one hour.

7.2.8 MOT directory compression

The MOT directory contains all Cont ent Names describing the directory structure of the current data carousel. Data
structures containing long "file names' are usually very efficiently compressible.

MOT directory compression is used to reduce the size of the MOT directory, allowing a much more economic and
efficient usage of the (limited) available bandwidth. The repetition rate of the very important MOT directory may be
increased and/or more useful content may be sent over the broadcast channel.

The standard (uncompressed) MOT directory indicates the length of its complete MOT entity at the beginning of the
entity. The compressed MOT directory is also preceded by a data field that indicates the size of the MOT entity at the
beginning of the entity. Assembly of the compressed MOT directory and the uncompressed MOT directory is thus
exactly the same. However, the compressed MOT directory uses the data group type 7 during transfer. The only
additional action that must be performed for compressed MOT directoriesis to de-compress its content
(CompressedM OTDirectoryData) before it is evaluated.

ETSI

44 ETSI EN 301 234 V2.1.1 (2006-05)

1 bit 1bit 30 bit 8 hit 2 bit 30 bit C x 8 bit
Compression| rfu |EntitySize |Compressionld| rfu [Uncompressed|Compressed
Flag DataLength |MOTDirectoryData

Figure 31: Structure of a compressed MOT directory

CompressionFlag: Thisbit shall be set to 1.

rfu: Thisbit isreserved for future use of the remainder of the structure. This bit shall be set to O until it isdefined. An
MOT decoder has to verify the value of this bit.

EntitySize: This 30-bit field, coded as an unsigned binary number, indicates the total size of the entity in bytes (9 bytes
header + length of CompressedM OT DirectoryData (C)).

Compressionld: This 8-bit field coded as an unsigned binary number indicates the compressed data format. For the
values of thisfield see clause 6.2.2.1.3.

rfu: This 2-bit field bit is reserved for future use of the remainder of the structure. These bits shall be set to 0 until they
are defined. An MOT decoder hasto verify the value of these bits.

UncompressedDatal ength: Length in bytes of the standard (uncompressed) MOT directory (after decompression of
the CompressedM OT DirectoryData field). Thisinformation is provided to simplify memory management for the MOT
decoder.

CompressedM OTDirectoryData: The standard MOT directory (see clause 7.2.3) in a compressed form (using the
compressed data format specified by parameter Compressionl d).

Thefirst bit of the MOT entity (the CompressionFlag) indicatesto the MOT decoder if the MOT entity carriesa
standard (uncompressed) MOT directory or a compressed MOT directory.

Data group type 6 is used to carry the uncompressed MOT directory. Data group type 7 is used to carry the compressed
MOT directory. If both compressed and uncompressed MOT directory (describing the very same data carousel) are sent
in parallel, then both shall use the same Transportld.

All MOT decoders that support MOT directory compression shall also support the standard (uncompressed) MOT
directory (that is carried in data group type 6). Clause C.3.4.3 indicates how an MOT decoder that supports MOT
directory compression can easily reassemble a compressed and/or uncompressed MOT directory.

It is up to the user application to decide if MOT directory compression is permitted and which compressed data formats
are permitted.

It isrecommended that all new user applications permit MOT directory compression.

8 MOT functionality

8.1 MOT caching support (MOT directory mode only)

Before MOT caching is explained in detail, this clause will first outline at avery simple MOT decoder without any
caching. Such avery simple MOT decoder will automatically reassemble the MOT directory but not reassemble MOT
objects until the user application decoder requests an object. Such an MOT decoder might even discard every received
object once it was forwarded to the user application decoder. For every request by the user application decoder such an
MOT decoder has to wait until the requested MOT object is broadcast for the next time and until al its ssgments have
been successfully received. If such an MOT decoder is able to inform the user application decoder if data used by the
user application decoder got updated by the content provider then such an MOT decoder could be perfectly compliant to
the MOT standard.

ETSI

45 ETSI EN 301 234 V2.1.1 (2006-05)

It isclear that the user experience of such an MOT decoder would be unacceptabl e because the access times of the
objects would be abysmal: since the data rate within the broadcast channels are relatively low compared to the data that
is broadcast it can take dozens of seconds or even minutes until all datais broadcast. If an object is broadcast once per
minute an MOT decoder that needs to reassemble this object might have to wait a minute (or even multiple minutesin
case of reception errors) until the object is successfully received.

To assure that the access time to MOT objects (i.e. the time a user application decoder (and thus the user) has to wait to
get the requested MOT object) is as short as possible, all MOT decoders will use caching.

The aim of caching is an improved access time to the objects of a user application; caching shall not change the
appearance of the user application. Caching, especially persistent caching where data is stored on permanent memory
such as a hard disk, shall always present the data as the content provider indicates in the broadcast channel. Care hasto
be taken to assure that the user application never presents outdated or inconsistent data (i.e. invalid data). In the case of
the very simple MOT decoder outlined above no data that can no longer be received (i.e. becauseit is no longer
broadcast by the content provider or because there is no reception) will be presented, thus the very simple MOT decoder
assures that no outdated content is presented.

For caching MOT decoders the consistency and validity of datathat is so crucial for the content provider is assured by a
set of MOT transport specific parameters.

Caching implies different tasks:

. Object reassembly: The MOT decoder will try to use al successfully received MOT segments so that all
broadcast MOT objects are reassembled and available to the user application decoder as soon as possible.
Most MOT decoders will start reassembly of all MOT objectsin parallel as soon asthe MOT directory is
received for the first time. More advanced MOT decoders will even use MOT body segments that were
received before the MOT directory could be completely reassembled (see clause C.3.4.1).

. Object validity: the MOT decoder has to assure that the user application decoder gets only MOT objects that
the content provider wants to be available at the time the object is requested by the user application decoder.

. Object management: the MOT decoder must do memory management in case the data carousel contains more
objects than the MOT decoder is able to storein its memory. In this case the MOT decoder will try to keep
those MOT objectsinits cache that are "most likely" or "most frequently" requested by the user application
decoder in order to minimize the average accesstime.

To support caching MOT decoders the MOT protocol provides parameters that help the MOT decoder to determine if a
cached object can be consider valid (i.e. forwarded to the user application decoder upon request). Other MOT
parameters support the memory management of the MOT decoder.

Note that the content provider might use just some of the MOT parameters defined for MOT caching. He might for
instance decide not to provide MOT parameters Ret r ansmi ssi onDi stance orPriority.

Thefollowing tableslist all MOT parameters used for MOT caching support.

Table 4: Caching support parameters in the MOT header information

Parameter Id Parameter Definition Possible Usage mandatory Support
bg bg occurrences for content mandatory for
provider MOT decoders
00 0001 |PermitOutdatedVersions [6.2.3.1.2 |only once no no
00 0111 |RetransmissionDistance [6.2.3.1.5 |only once no no
00 1001 |Expiration 6.2.3.1.1 only once no yes, if receiver

provides "MOT
caching support"
001010 |Priority 6.2.3.1.4 |only once no No

001101 |UnigueBodyVersion 6.2.3.1.3 |only once no No

ETSI

46 ETSI EN 301 234 V2.1.1 (2006-05)

Table 5: Caching support parameters in the MOT directory

Parameter Parameter Definition | Possible | Usage mandatory Support
Id occurrences for content mandatory for
b by provider MOT decoders
00 0001 |[DefaultPermitOutdatedVersions|7.2.4.2 only once no no
00 1001 |DefaultExpiration 7.2.4.3 only once no yes, if receiver
provides "MOT
caching support"

The following clauses give additional details to the above given tasks and they also describe the MOT parameters that
support these tasks.

8.1.1 Object reassembly

The object reassembly unit should try to reassemble all MOT objects as soon as possible. Preferably the MOT decoder
should be able to decode all MOT aobjectsin paraldl, i.e. use all MOT segments that are successfully received.

To improve the acquisition time of the broadcast MOT objects, the MOT decoder should also be able to use MOT
segments received before an MOT directory could be first reassembled (at MOT decoder start-up) aswell asMOT
segments of new/updated MOT objects received before the updated MOT directory could be successfully reassembled,
see clause C.3.4.1.

8.1.2 Object validity

Assuring object validity means that only those objects are presented to the user, that the content provider wantsto be
presented at this point in time.

If the user application decoder requests an object, then the standard behaviour of an MOT decoder will be to check if
the requested MOT object is part of the current MOT directory. The MOT decoder will then check if the current version
of the requested MOT object is aready reassembled and if the MOT objectsis valid; in this case the MOT decoder will
forward this MOT object to the user application decoder.

MOT parameters will assist the MOT decoder answering the following questions:
1) How doesthe MOT decoder know if an MOT object is part of the current directory?

2) How doesthe MOT decoder know if an available MOT body can be forwarded to the user application
decoder?

Answer to question 1: Aslong asthe MOT decoder receives MOT directory segments al the time, it is easy to
determine if an MOT object is part of the current MOT directory. As soon as we take into account that there might be
no or just little reception, this issue gets more complex. Receivers might experience bad reception, receivers might get
outside of the reception area (e.g. if the receiver isin a subway train or too far away from the transmitter) or receivers
might be tuned to another ensemble. In all these casesthe MOT decoder is unable to reassemble the currently broadcast
MOQOT directory and may even be unable to detect if the MOT directory has changed at all.

Note that to detect a change to the MOT directory the MOT decoder just needs to receive asingle MOT directory
segment. By checking its Transportld the MOT decoder will detect if there was a change to the MOT directory.
Successful reassembly of the full updated MOT directory is needed in order to be able to tell which MOT objects were
affected.

Since the MOT decoder might have no chance to verify if an MOT object is still broadcast the content provider can

indicate how long an MOT object can still be considered valid after reception islost. Absolute and relative expire times
assure that no outdated content is presented to the user.

ETSI

a7 ETSI EN 301 234 V2.1.1 (2006-05)

NOTE: Thereisafundamental difference between object management (list of objects provided by the MOT
directory) and object expiration (provided by the MOT parameters Expi r at i on and
Def aul t Expi rati on). Aslong asthe MOT decoder receives the MOT directory, it will reliably
know which objects are valid. Since the transmission side is not permitted to transmit outdated objects,
every object listed inthe MOT directory isimplicitly valid.
But if the MOT decoder no longer receives the MOT directory, the MOT decoder has no meansto tell if
an object is il part of the MOT directory. Therefore the MOT parameters Expi r at i on and
Def aul t Expi rat i on can be used to tell the MOT decoder how long an object can be considered
valid once the MOT directory isno longer received (and the MOT decoder can no longer verify that the
object is still valid).

MOT objects that are no longer part of the MOT directory shall be removed from the MOT decoder
cache. Expired objects on the other hand shall not be presented any more, they do not necessarily have to
be removed, see clause C.3.5.1.

For a description of absolute and relative expire time parameters see clause 8.1.2.1. The support of the MOT parameters
Expi rati on and Def aul t Expi r at i on ismandatory for all MOT decoders that use caching.

Answer to question 2: Two MOT parameters help the MOT decoder to determine if an already available MOT body can
be forwarded to the user application decoder. The MOT standard requires that the current version of an MOT object is
forwarded to the user application decoder, but the content provider can permit the MOT decode to use an older version
of an object until the current version is successfully received.

If the header information or the segmentation of an MOT object is changed then a change of the Transportld of this
object isrequired. The MOT parameter Uni queBody Ver si on indicatesif the MOT body of an MOT object
(identified by its Cont ent Nane) is the same as the formerly received MOT body of this MOT object. If the MOT
body is the same then no reassembly of the MOT body is necessary and the already available MOT body can be used.
ThisMOT parameter is especialy useful for MOT decoders that use persistent caching. For details regarding this MOT
parameter see clause 8.1.2.2.

If MOT objects are updated, an updated version of the MOT directory will be broadcast. As soon asthe MOT decoder
successfully reassembled the updated MOT directory it will detect which MOT objects were updated. From the moment
the MOT decoder detected a new version of an MOT object it could still take some time until the new version of this
MOT aobject is successfully reassembled, see figure 32.

| | |
>
| | | t
to tl t2
to: new MOT directory t;: MOT decoder finishes t,: MOT decoder finishes
isbroadcast indicating reassembly of new MOT reassembly of updated MOT
updated MOT bodies directory bodies
VT

During this period the MOT decoder is aware that some
MOT bodies are outdated, but it could not yet reassemble
the current (new) version of these MOT bodies

Figure 32: Delay between detecting changes to the data carousel and
receiving the current (new) data

The MOT directory extension parameter Def aul t Per m t Qut dat edVer si ons and the MOT header information
parameter Per m t Qut dat edVer si ons indicate if an already available older version of an MOT object may be used
until the current version of the MOT body has been received, see clause 8.1.2.3.

It isrecommended that MOT decoders support both parameters Per nmi t Qut dat edVer si ons and
Uni queBodyVer si on.

ETSI

48 ETSI EN 301 234 V2.1.1 (2006-05)

8.1.2.1 MOT expire time handling

If the MOT decoder provides "MOT caching support”, then support of the MOT parameters Expi r at i on and
Def aul t Expi r at i on is mandatory.

The MOT parameters Expi r at i on and Def aul t Expi r at i on are used to indicate an absolute or arelative expire
time of an MOT object. An absolute expire time is used, if the (absolute) time when the object expiresis known in
advance (e.g. for an advertisement).

A relative expire time is used to indicate the maximum time span an object is considered valid after the last time the
MOT decoder could verify that this object is still broadcast. This parameter can for instance be used for news articles
that should be presented as long as they are broadcast. If reception islost, then they can still be presented; but they will
not be presented if reception islost for more than the indicated period specified by the content provider.

A relative expire time is for instance used for regularly updated data applications, where it is not known in advance
when an object expires (e.g. when atraffic information should be removed). Absolute trigger times could theoretically
be used and adjusted at every update to the data carousel. But every change to MOT header information causes a change
to the Transportld, therefore such behaviour would cause removal-and-reassembly of the object's body on ssimple MOT
decoders. Simple MOT decoders assume that in case of a change to the Transportld also the object's body is changed
and therefore they reassemble the (same) MOT body from scratch.

EXAMPLE: A traffic information data application with an update interval of e.g. 5 minutes will usually set the
relative expire time to a multiple of the update interval of the data carousel; e.g. to 15 minutes. So
traffic information can still be browsed in the underground, but if the MOT decoder can not
validate for more than 15 minutes that the traffic information is still broadcast (i.e. the MOT
decoder receives no MOT directory), then the traffic information will no longer be presented.

Annex E gives an example of the use of relative expire times.

Every time an MOT object is requested by the user application decoder, the MOT decoder shall evaluate the
Expi rati on/ Def aul t Expi r at i on parameters as follows:

. First the MOT decoder checksif the MOT object hasthe MOT header information parameter Expi r at i on.
If it has, itsvalueis used and this eval uation process ends.

. Then the MOT decoder checksif the MOT directory extension parameter Def aul t Expi rati onis
available. If itis, itsvalueis used and this eval uation process ends.

. If neither the MOT header information Expi r at i on for the object nor adefault value in the MOT directory
extension parameter Def aul t Expi r at i on isavailable, then the object never expires.

If the above evaluation yields an absolute expire time (i.e. the size of the datafield is 4 bytes or 6 bytes), then the MOT
decoder compares the given absolute expire time with the current time. If the object is not yet expired, the MOT
decoder will forward the MOT object to the user application decoder.

If the above evaluation yields arelative expire time (i.e. the size of the data field is 1 byte), then the MOT decoder adds
the given relative expire time to the last time the MOT decoder got a segment of the current MOT directory. The MOT
decoder compares the resulting time with the current time. If the object is not yet expired, the MOT decoder will
forward the MOT object to the user application decoder.

A battery powered real time clock is required for persistent caching so that expire times can be checked even if thereis
no DAB reception at all.

The MOT decoder is not required to delete an expired object (see also annex C); but it shall no longer provide this
object to the user application decoder.

If the content provider explicitly gives expire times, then no MOT decoder shall forward expired MOT objects to the
user application decoder. It is not the receiver manufacturer to decide if outdated content should be preferred over no
content at all. Thisisthe content provider's prerogative.

ETSI

49 ETSI EN 301 234 V2.1.1 (2006-05)

NOTE: For some user applications the content provider might choose to explicitly indicate the authoring date and
time inside the transmitted content (e.g. a BWS might include a time stamp for every news article). In this
case the user can see how newsworthy the content really is. However, if the content provider does not
want outdated content to be presented to the user even in case of reception loss, he must be ableto rely on
the automatic and reliable object expiration done by the MOT decoder. It is clear that it can not be the
user's duty to verify the time stamp of every information received via DAB. That is the reason why the
handling of object expiration is mandatory for caching MOT decoders.

8.1.2.2 Unique MOT body version

If the MOT decoder gets anew MOT directory it checks for every MOT object if it uses the same Transportld in the
new MOT directory. If it does, then the MOT decoder knows that it is the very same object (header information and
body) asit was broadcast before.

If the Transportld of the MOT object differs, this could be caused by:
. a change to the header information (e.g. achanged MOT parameter Expi r at i on);
. achange to the MOT body;
. differing segmentation size.

It isvery helpful for the MOT decoder to know if the change of the Transportld was made because of some change to
the MOT header information or if also the MOT body was changed. In the latter case the MOT decoder hasto
re-assemble the current (new) version of the MOT body. This will take some time and thus increase the access time for
the user application.

This parameter Uni queBody Ver si on helpsthe MOT decoder to determine if an already available (i.e. aready
received) MOT body still has the very same content even if the Transportld for this MOT object has been changed in
the current (new) MOT directory. If this parameter is used by the content provider and evaluated by the MOT decoders
then changes to MOT header information can be made without implicitly invalidating the MOT body of an MOT object
(and thus causing reassembly of the MOT body).

This parameter Uni queBody Ver si on uniquely identifies a version of the body of an MOT object (identified by a
Cont ent Nane). If the body of an MOT object is changed, the parameter Uni queBody Ver si on (if broadcast) of
the MOT object shall be changed. The MOT encoder shall never use the same value for the parameter

Uni queBodyVer si on (if broadcast) for an MOT object unlessit refersto the very same body content for this MOT
object (identified by a Cont ent Nane). Because Uni queBodyVer si on uniquely identifies aversion of an MOT
body, this parameter is also used to support persistent caching of MOT objects where MOT decoders need to reliably
determine if an MOT body in the persistent cache is the same asthe MOT body currently broadcast.

To determine if an aready available version of an MOT body has exactly the same content as the currently broadcast
version of the MOT object the MOT decoder shall compare the parameter Uni queBodyVer si on aswell asthe
parameter Body Si ze. If both parameters have the same value for old and new MOT object version, then the MOT
decoder may safely assume that the body content is exactly the same.

Two MOT objects (i.e. having two different Cont ent Nanes) that have the same value for the parameter

Uni queBodyVer si on do NOT have to have the same body content. The parameter Uni queBodyVer si on shall
only be used to compare two versions of one MOT object (i.e. the Cont ent Nane of the two versions must be the
same).

If the parameter Uni queBodyVer si on isnot available for both versions of an MOT object then the MOT decoder
can not reliably determineif two versions have the same body content. In this case the MOT decoder shall assume that
the body content differs when it detects that the Transportld was changed.

An MOT decoder that does not support this parameter Uni queBodyVer si on shall also assume that the body content
differs when it detects that the Transportld was changed (thisis the default behaviour of the MOT decoder anyway).

Examples how the values for the parameter Uni queBodyVer si on could be managed by the content provider:

. the parameter is treated as a 32-bit unsigned binary version number. For every new version of an MOT object
the MOT encoder increments the version number for this object;

ETSI

50 ETSI EN 301 234 V2.1.1 (2006-05)

. the content provider uses a 32-bit data field that holds the date/time when the object was created. It must be
assured that no two different versions of an object are created having the same time stamp. If aversion of an
object has exactly the same content as an older version, its MOT parameter Uni queBodyVer si on could be
set to the same value the older version had.

The parameter Uni queBodyVer si on isused exclusively to determineif two versions of an object have the same
body content. This parameter shall not be used to derive an order (e.g. age of an object's version)!

Every receiver that supports the parameter Uni queBody Ver si on shall aso support the parameters Expi r at i on
and Def aul t Expi r at i on which are mandatory for "MOT caching support”.

8.1.2.3 Temporarily using outdated MOT bodies

The MOT directory indicates the versions of all MOT objects within the data carousel so that the MOT decoder can
assure a consistent set of objects at all times.

Usually aconsistent set of objectsisrequired. E.g. if a news content provider broadcasts an HTML page with an inline
image and later updates both HTML page and inline image (i.e. keeping the same Cont ent Nane for the HTML page
and the inline image) with other news, then the MOT directory assures that the MOT decoder knows which version of
the HTML object and which version of the inline image belong together and the MOT decoder can assure that news will
never be presented with the wrong inline image.

If consistency isrequired, then the MOT decoder is not permitted to provide a different version of an MOT object than
indicated in the MOT directory (i.e. an earlier received MOT object with the same Cont ent Nane). The MOT decoder
has to wait until the current version of the object isreceived. So if the HTML page with the current football scoresis
not yet received the MOT decoder is not permitted to present the old object during the time until the new object is
received. The MOT decoder must therefore remove an object from its cache as soon as it detects that a different version
of an object (with the same Cont ent Nan®e) is broadcast.

The MOT header information parameter Per mi t Qut dat edVer si ons aswell asthe MOT directory extension

parameter Def aul t Per mi t Qut dat edVer si ons use adatafield of one byte. A value of 0 indicates that the MOT
decoder may not use any other version of an object than the current (new) one. If the current (new) version of the MOT
object is not yet available when requested by the user application decoder, then the MOT decoder shall NEVER use an
old version of this MOT object. Any value other than 0 means that the MOT decoder may use ANY older version of an
object (provided that this version of the object has not expired) until the current (new) version of the object is received.

The parameter Def aul t Per mi t Qut dat edVer si ons used within the new MOT directory defines the default
behaviour for the objects within the data carousel. An MOT header information parameter
Per m t Qut dat edVer si ons can set adifferent behaviour for asingle MOT object.

For every updated MOT object the MOT decoder shall evaluate the
Per m t Qut dat edVer si ons/ Def aul t Per m t Qut dat edVer si ons parameters as follows:

. First the MOT decoder checksif the MOT object hasthe MOT header information parameter
Per m t Qut dat edVer si ons (inthe current (new) MOT directory). If it has, its value is used and this
evaluation process ends.

. Then the MOT decoder checksif the MOT directory extension parameter
Def aul t Per mi t Qut dat edVer si ons isavailable (in the current (new) MOT directory). If it is, itsvalue
is used and this evaluation process ends.

. If neither the MOT header information parameter Per ni t Qut dat edVer si ons for the object nor a default
valuein the MOT directory extension parameter Def aul t Per ni t Qut dat edVer si ons isavailable, then
avaue of 0 (it is not permitted to use outdated versions of any object) shall be used.

If the above evaluation yields a value other than 0 then the MOT decoder is permitted to provide older and not yet
expired versions of MOT objects (i.e. having the same Cont ent Nane) from its cache until the current version of the
MOT aobject is successfully received. The current (new) version of the MOT object shall then replace the older version
assoon asit is successfully received.

The MOT decoder shall never provide a version of an object that is already expired, even if the MOT decoder is
permitted to provide outdated versions of an object!

ETSI

51 ETSI EN 301 234 V2.1.1 (2006-05)

Use of avalue other than 0 (outdated versions of an object may be used) for the parameter

Per m t Qut dat edVer si ons impliesthat the content provider uses the same Cont ent Namre for an MOT object if
the MOT object is updated. If the content of an MOT object can not be considered an update of an MOT object then the
MOT object shall get anew Cont ent Name. Since MOT decoders might use persistent caching the content provider
must assure that a Cont ent Nane is not reused unless it can be considered an update for ALL earlier (and not yet
expired) version of thisMOT object.

The default behaviour of MOT directory mode assures consistency. If neither the MOT directory extension parameter
Def aul t Per mi t Qut dat edVer si ons nor the MOT header information parameter

Per m t Qut dat edVer si ons isavailable for an MOT object then the MOT decoder shall NOT use an older version
of the object.

If an MOT decoder does not evaluate the Def aul t Per mi t Qut dat edVer si ons/ Per m t Qut dat edVer si ons
parametersit shall never present older versions of an MOT aobject.

Since little or no consistency requirements will usually provide a better user experience the content provider should try
to set up his user application so that consistency requirements are as little as possible (i.e. whenever possible, the
content provider should permit to temporarily use an outdated version of an MOT object).

If MOT consistency is not required (i.e. outdated versions of objects may temporarily be used), then care has to be taken
with respect to receivers that use persistent caching. The use of expire timesis highly recommended for content
providers, see clause 8.1.2.1.

If an outdated version of an MOT object may temporarily be used, then the ENTIRE MOT OBJECT shall be used until
the current (new) version of the MOT object is successfully reassembled. No MOT decoder shall use an outdated
version of the MOT body together with the current (new) version of the MOT header information! See clause C.3.5.1.1
for implementation tips.

Every receiver that supports the parameters
Def aul t Per mi t Qut dat edVer si ons/ Per m t Qut dat edVer si ons shall also support the parameter
Expi rati on and Def aul t Expi r at i on; the latter two parameters are mandatory for "MOT caching support".

8.1.3 Object management

If the MOT decoder does not have enough cache memory to hold all MOT objects within the current MOT directory it
must use some strategy to decide which objectsit will keep in its memory and which MOT object to remove in case
memory is needed.

The MOT decoder will try to keep those MOT objectsin its cache that are "most likely" requested by the user
application decoder in order to minimize the average accesstime.

The MOT parameter Pri or i t y indicates the content provider's default storage priority. An MOT decoder should
initially prefer MOT objects with high priority to MOT objects with lower priority. Usually a caching strategy will take
into account the priority as assigned by the content provider as well as user preferences. This meansthat if the memory
management can get an indication of the user's preferences or alist of objects that will most likely be needed by the user
from the user application decoder (e.g. in case of a Broadcast Website all the HTML pages that can be reached from the
currently displayed HTML page), then this information will most likely have stronger impact on the memory
management strategy than the (static) information provided by the content provider.

The MOT parameter Ret r ansmi ssi onDi st ance indicates the maximum time between two retransmissions of an
object. The MOT decoder can take this value as an indication how long it will take to reassemble an MOT object
(taking into account that several retransmissions of an object might be needed in case of reception problems). Note that
astrategy that prefersto cache rarely broadcast objects to objects that are retransmitted every few seconds might have
the undesired side effect that those objects that the content provider considers to be the most important ones (hence they
are broadcast so frequently) have the longest access times.

Note that the parameter Ret r ansi ssi onDi st ance indicates the (maximum) time between two retransmissions.
The actual timeinterval might be much shorter. It is also important to note that this parameter does not indicate the time
interval between reception of the MOT directory and reception of the MOT body. It indicates the time between two
MOT body retransmissions.

ETSI

52 ETSI EN 301 234 V2.1.1 (2006-05)

8.2 Transfer of directory structures using MOT

User applications may need to transfer a set of filesto the receiversin a certain directory structure. For these user
applications to work on the receiver it is necessary to carry the complete directory structure from the user application
provider side to the receiver side.

A user application that wants to use the MOT functionality "transfer of directory structures' shall indicate thisin the
user application definition. The interface between MOT decoder and user application shall then assure that the directory
structure of the files on content provider side can be rebuilt on receiver side.

NOTE 1: A generic MOT decoder will not use the MOT parameter ContentName as (part of) the filename where it
storesthe MOT body (see clause 6.2.2.1.1). The user application decoder will use the appropriate
interface of the MOT decoder to access the broadcast directory structure.

An example for adirectory structure is given below.

For transmission the compl ete path of every object in the directory structure is signalled in the MOT parameter

Cont ent Nane. The absolute path consists of <n> directory path components and the basename of the file. Between
two directory path components (if any) as well as between the last directory path component and the basename of the
file the character slash ("/") isused as delimiter.

The following rules shall be observed for the Cont ent Nare:
. No Cont ent Nane shall have aleading "/".
. Theuseof ".","..","?" and "*" as a path name component or as a basename is not allowed.
. The character "\" shall not be used. The directory hierarchy delimiter isthe"/" character.
. No referencesto physical or logical devices are allowed (for example "C:", "/dev/ttyS1").

. For an end-to-end system, where the MOT directory transfer is the transportation means, system dependent
characters encodingsin the Cont ent Nane can be used.

. TheCharacter Set I|ndicator shouldbe settothe character set the user application uses. This will
most probably be | SO/IEC 8859-1 [10], also known as 1SO-latinl (character set indicator value 4) or
ISO/IEC 10646 [11], UTF8 encoding (character set indicator value 15). Character set indicator values besides
15 or the values 0 to 4 shall not be used. Neither the MOT decoder nor the interface between the MOT decoder
and the user application shall do any character set conversion. The MOT decoder shall completely ignore the
character set indicator.

ETSI

53 ETSI EN 301 234 V2.1.1 (2006-05)

Depending on the user application additional rules may apply.

EXAMPLE: If files for a computer game for a Windows system are transported, then all characters permitted
by Windows systems may be permitted. If a user application should run on as many receiver
platforms as possible, then the permitted characters might be much more restricted.

NOTE 2: If auser application uses characters within the Cont ent Narme that are not permitted by the MOT
standard or the user application definition, then the transmission side may convert these charactersto
permitted characters (e.g., replace "\" by "%?5c").

Many user applications will use references from one file to another file (e.g. a"playlist” will reference
audio files, an executable might reference software libraries or entry pages). In such a case also the
references must be adjusted.

Examplesfor valid Cont ent Nanes:
root/dirl/file2
images/logo.jpg
news.xml
many/subdirectories/for/thig/file.txt

Examplesfor invalid Cont ent Namnes:

root\dir1\file3 (the character "\" shall not be used as directory delimiter)
root/dir2/../dirlffile (".." shall not be used)

images/logo/ (no basename is given)

/images (aleading "/" is not permitted)

coml: (alogical device on Windows™ systems)

Other MOT parameters than the Cont ent Narre can be used for each object in the carousel. The user application
description shall define which parameters are relevant and their possible values. The following list mentions some MOT
parameters that the user application might want to consider using:

. M neType: indicates the type of the object. This parameter is useful if the user application needs an explicit
indication of an object'stype (e.g., Broadcast website). Other user applications might use the file extension or
other means to identify an object's type.

The user application must specify if it distinguishes different types of objects. If it does, then the user
application must specify how the user application decoder can determine the type of an object.

. Conpr essi onType: indicates that an object is compressed and which compression algorithm has been used.
The user application will define whether the MOT objects can be compressed and which agorithms are
supported. Evaluation of this parameter is mandatory for the MOT decoder. An MOT decoder that cannot
decompress an object shall discard it.

NOTE 3: Some implementations might decide to decompress some objects inside the user application decoder
instead of the MOT decoder. In such a case, if neither the MOT decoder nor the user application decoder
can decompress an object, then the MOT decoder shall discard it.

. Prof i | eSubset : alowsthe service provider to indicate alist of profiles for which the given object is
relevant. This parameter will be useful if the user application supports multiple profiles and some files are not
used by al profiles.

. CAl nf o: this parameter shall always be checked to determine if the body is scrambled, even if the receiver
does not support conditional access. If the MOT decoder is unable to descramble an object it shall discard the
object.

. Additional user application specific MOT parameters might be needed by such user applications.

Caching support and conditional access are optional for both the content provider and the receiver. If Caching is
supported by the receiver, then at |east the parameters Expi r at i on and Def aul t Expi r at i on shall be evaluated
by the MOT decoder.

Transfer of directory structure uses the MOT Directory.

ETSI

54 ETSI EN 301 234 V2.1.1 (2006-05)

Annex A (normative):
Comparing ContentNames

This"compare" function is needed if the MOT directory extension parameter Sor t edHeader | nf or mat i on inside
the MOT directory signals that its header information is sorted in ascending order of the parameter Cont ent Narne
within every header information.

When sorting the header information a function assuring the same sorting order as the following function shall be used
to compare two Cont ent Nanes. The same function will also be used inside the MOT decoder to compare an old
MOT directory with the currently received one.

The reference function is specified in C code:

/*

conpar e:

the pointers cnl_ptr and cn2_ptr point to the "character field" (sequence of bytes) of the

Content Nane (i.e. the character set indicator and the rfa bits

are not conpared and does not influence sorting)

returns a negative nunber if cl < c2;

returns O if both ContentNanes are the sane

returns a positive nunber if cl > c2

*/

int conpare (const unsigned char *cnl_ptr, unsigned int cnl_|ength,
const unsigned char *cn2_ptr, unsigned int cn2_length)

{
int ii, diff;
int mn = cnl_|length;
if (cn2_length < min) mn = cn2_|ength;
for (ii =0; ii <mn; ii++)

diff =cnl_ptr[ii] - cn2_ptr[ii];
if (diff !'=0) return diff;

if (cnl_length < cn2_length) return -1,
if (cnl_length > cn2_length) return 1,
/* both strings are equal */

return O;

ETSI

55 ETSI EN 301 234 V2.1.1 (2006-05)

Annex B (informative):
User application definitions and MOT

Every user application that uses MOT hasto defineif it uses:
. MOT header mode; or
. MOT directory mode.

If the user application needs user application specific MOT parameters or MOT directory extension parameters, it hasto
define their meaning and encoding and assign a Parameter|d. Different user applications might assign totally different
meanings to the same Parameter|d. The meaning and encoding of user application specific parameters depends on the
user application being decoded.

If MOT directory mode is used and MOT directory compression is permitted by the user application definition, then the
user application also has to define which compression methods for the MOT directory are supported.

For every parameter the user applications has to specify if:
. the parameter is optional or mandatory for the content/service provider;
. the parameter is optional or mandatory for the MOT decoder/user application decoder;
. the parameter can occur once or multiple times per MOT object;

. there are some restrictions on the permitted values of the parameter (e.g. arestriction on the length or the
permitted charactersinside a Cont ent Namne or on the permitted compression data formats of the parameter
Conpr essi onType).

The gzip compression data format supports multiple gzip window sizes that determine the memory regquirements for
decompression. If gzip compression is permitted for MOT directory compression and/or MOT body compression, then
it is also necessary to specify thelist of permitted gzip window sizes.

If MOT header mode is used the user application hasto indicate if HeaderUpdates are permitted and which MOT
parameters will be updated.

For some MOT functionality available in MOT directory mode such as "caching" or "conditional accesson MOT
level", more than one parameter is needed. So usually the complete functionality including all its parameters will be
optional or mandatory. The user application should not explicitly indicate which caching or conditional access
parameters are to be supported; it should just mention the functionality.

It is recommended for every user application definition to permit the MOT functionality "caching" - if not mandatory,
"caching" support should at least be optional for both content provider and MOT decoder.

It is recommended for every user application definition to permit the use of conditional access on MOT level. The
minimum requirement for every MOT decoder isthat it shall always check if the MOT parameter CAl nf o issignalled
for an MOT object. Even if the MOT decoder does not support conditional access on MOT level, it does know that the
presence of the MOT parameter indicates a scrambled MOT body.

Every user application definition should explicitly state that all MOT decoders shall check for the MOT parameter
Conpr essi onType. Every MOT decoder should at least be able to detect and discard all MOT bodiesit can not
uNCoOMpress.

Like the MOT parameters CAl nf 0 and Conpr essi onType, al user application specific parameters that change the
encoding of the MOT body (i.e. the MOT body can not be processed if this user application specific parameter is
signalled) also need to be mandatory for the MOT decoder/user application decoder.

User applications that foresee fast changes to the data carousel should require collecting of MOT body segments whose
Transportlds are not (yet) listed in the current MOT directory (see clause C.3.4.1 and annex F).

ETSI

56 ETSI EN 301 234 V2.1.1 (2006-05)

In addition to the MOT related settings every user application definition also has to define how the user application is
signaled in the FIC (FIG0/13). A user application identifier needs to be defined and the user application specific data

(if any).
If a user application supports different profiles, then the list of user application profiles supported by the content
provider should be carried in the User Application Datafield in FIGO/13. If the MOT parameter Pr of i | eSubset

should be used, then the profileids of al supported profiles must be 8-bit unsigned binary numbers that should be
sorted in ascending order within the User Application Data field.

ETSI

57 ETSI EN 301 234 V2.1.1 (2006-05)

Annex C (informative):
Model of an MOT decoder and its interfaces

The model describes the functionality of the MOT decoder on different levelsincluding the interfacesto a DAB
receiver (providing a stream of MSC data groups) and the terminal (running an MOT based user application decoder),
see also figure 1. Real implementations may be quite different, optimized according user application specific needs and
receiver design constraints etc.

The data flow up to the user application decoder and the interfaces between all the levels described in this clause are
summarized in figure C.1.

User application *
Level User application .
decoder Terminal
A
MOT object
) Object management
Object Level
o . MOT
Bodies; directories or headers T data
Reassembly unit decoder
A
Segmentation Level MOT Segments | (+ additional information)
Data Group Decoder
Dat Level
agrotp -ev T MSC data groups T
Packet Mode PAD
decoder decoder
Network Level T T
Packets X-PAD data subfields

Figure C.1: General description of a MOT decoder and its interfaces

Figure C.2 explains the functionality of the MOT directory mode decoder in detail.

Note that the object management also performs caching of the MOT bodies.

ETSI

User application
Level

Object Level

Segmentation Level

Data group Level

Network Level

58 ETSI EN 301 234 V2.1.1 (2006-05)

X

A

User application
decoder

A

MOT object

Object management

directory MOT

Bodies, directories Bodies
N

Reassembly Unit

Tida
Tidb
Tidc TIdm
I I
MOT body MOT directory

MOT SegmentsT (+ additional information)

Data Group Decoder

T MSC data groups T

Packet Mode PAD
decoder decoder

| !

Packets X-PAD data subfields

Terminal

MOT
data
decoder

Figure C.2: General description of a MOT directory mode decoder and its interfaces

Figure C.3 explains the functionality of the MOT header mode decoder in detail.

Note that object management is very simple. Incoming MOT objects are just forwarded to the user application decoder
as soon as they are fully reassembled from their MOT segments. Thereisno MOT object caching in MOT header

mode.

ETSI

User application
Level

Object Level

Segmentation Level

Data group Level

Network Level

59

ETSI EN 301 234 V2.1.1 (2006-05)

X

A
User application
decoder Terminal
MOQOT object T
Object management
header
Bodies, headers T
Reassembly Unit MOT
data
decoder

MOT body MOT header

MOT Segments | (+ additional information)

Data Group Decoder

T MSC data groups

1

Packet Mode

PAD

decoder decoder

|

I

Packets X-PAD data subfields

Figure C.3: General description of a MOT header mode decoder and its interfaces

C.1 Network level

At the network level packets and/or X-PAD data subfields are processed as described in clause 5.2 and complete MSC
data groups are passed to the data group level.

In packet mode, the packet address has to be used to identify a particular service component within a subchannel. The
packets are collected by taking into account the packet Continuity index. The length of the data group is derived from
the First/Last flag and the Useful data length in the packet headers. The validity of each packet is verified by the

eva uation of the packet CRC.

In X-PAD mode, the X-PAD application type is used to identify all X-PAD subfields belonging to the user application.
The MSC data group length is derived from the DataGroupL engthlndicator (X-PAD application type 1) immediately
preceding the start of the M SC data group.

ETSI

60 ETSI EN 301 234 V2.1.1 (2006-05)

C.2 MSC Data group level

The validity of each single M SC data group is verified by the evaluation of the MSC data group CRC. An MOT
decoder needs to decode only data group types 1, 3, 4,5, 6 and 7. If the MOT decoder does not support conditional
accesson MOT level, then it only needs to decode data group types 3, 4, 6 and 7. Data groups of type 7 are only
decoded if the MOT decoder supports MOT directory compression. Data groups with other Data group types are
discarded. The MSC data group data field contains a complete segment (including the segmentation header with
RepetitionCount and SegmentSize). The corresponding SegmentNumber and the Transportld are provided by the session
header of the data group. A CRC checked segment, together with its corresponding Segmentation header, Data group
Type, Transportld and SegmentNumber (see clause 5.1 for more details) will be passed to are-assembly unit working at
the segmentation level.

C.3 Segmentation and object level

The reassembly unit reassembles segments with the same Transportld. The reassembly unit processes data groups with
Data group type 3 (MOT header), type 4 (MOT body), type 5 (scrambled MOT body and CA parameters), type 6
(uncompressed MOT directory), type 7 (compressed MOT directory) and type 1 (CA messages).

C.3.1 General description of the MOT decoder

The MOT decoder consists of two parts:
. The reassembly unit reassembles MOT headers, MOT bodies and the MOT directory.

. The object management controls the reassembly unit, stores the received objects and handles requests by the
user application.

In this general description two operation modes of an MOT decoder are described:
. The MOT header mode: in this mode MOT header and body are processed (one MOT object at atime).
. The MOT directory mode: in this mode the MOT directory and multiple bodies are processed in parallel.

Both reassembly unit and object management unit are in the same mode, either in MOT header mode or in MOT
directory mode. The mode is determined by the user application.

C.3.2 The reassembly unit

The functionality of the reassembly unit depends on its operation mode:
. MOT header mode: in this mode MOT headers and bodies are reassembled (Data group types 3 and 4).

. MOT directory mode: in this mode the MOT directory and bodies are reassembled (Data group types 6/7 and
4; for CA aso Datagroup types 1 and 5).

The reassembly unit continuously evaluates the incoming data groups carrying MOT segments. It shall be prepared that
in case of MOT directory mode several objects are transmitted applying interleaving, so that they are to be decoded in
parallel. It is not required by the reassembly unit to evaluate the data group Repetition index or the RepetitionCount of
the segmentation header.

C.3.2.1 MOT directory mode

The MOT directory is reassembled and forwarded to the object management. If the MOT directory is forwarded, its
Transportld is stored inside the reassembly unit. From now on all MOT directory segments transported with this
Transportld are discarded, since this MOT directory is already successfully reassembled. If an MOT directory segment
isreceived with a different Transportld this means that the MOT directory is updated and therefore the new MOT
directory is reassembled and forwarded and its Transportld stored.

ETSI

61 ETSI EN 301 234 V2.1.1 (2006-05)

The object management orders the reassembly unit to reassemble MOT bodies. It is up to the object management to
assure that there is enough memory to store these bodies and still reassemble and forward anew MOT directory.

An MOT decoder that does not support conditional access will not order reassembly of scrambled MOT bodies.

C.3.2.2 MOT header mode

When an MOT header isforwarded (to the object management), its Transportld is kept inside the reassembly unit.
From now on all MOT header segments with this Transportld can be ignored, because they are already known by the
object management. If a new Transportld is detected (data group types 3 or 4), then the MOT header mode decoder
removes al MOT header and body segments received so far (no matter if they belong to an already forwarded MOT
object or not) and reassembles the MOT header of the new MOT object.

The object management orders the reassembly unit to reassemble the MOT body. It is up to the object management to
assure that there is enough memory to store the body and still reassemble and forward anew MOT header.

C.3.2.3 Segmentation of MOT bodies

Reassembly of MOT bodies is independent from the mode the reassembly unit isin. If the object management requests
abody, the reassembly unit gets a request indicating which bodies (one body in case of MOT header mode; possibly
multiple bodiesin case of MOT directory mode) are to be reassembled. This request will include the Transportld, the
size of the bodies, an indication if the body is scrambled (MOT directory mode only) and may include also the
SegmentSize (if given in the MOT directory). The reassembly unit can thus allocate memory for the requested bodies.

The Transportld is not only used to reassemble all segments of an MOT header/MOT directory or an MOT body of an
MOT object, but also to establish the link between header information and body and to link them to the related CA
messages, if applicable. If the reassembly unit is ordered to reassemble a body, then it shall collect data groups of type 4
(unscrambled body) or data groups of type 5 and 1 (scrambled body/CA messages) of the indicated Transportld.

C.3.3 The object management unit

The object management stores objects and permits the user application to request objects, e.g. by their Cont ent Nane.
It is the object management that eval uates the header information of reassembled MOT headers or MOT directories
(depending on the operation mode) and orders reassembly of MOT bodies.

According to the model described in this clause, it is the object management that orders the reassembly unit to decode
the MOT bodies. The reassembly unit will only reassemble MOT bodies requested by the object management.

The functionality of the object management depends on its operation mode.

C.3.3.1 MOT directory mode

In case of MOT directory mode the object management can order the reassembly unit to reassemble multiple MOT
bodies. Depending on the memory capacity, caching strategies (e.g. object priority) and CA support of the MOT
decoder, the object management will determine the MOT bodies that are to be reassembled. The reassembly unit will
then process all MOT body segments of the requested MOT bodies as they are incoming, either sequentially one after
the other or interleaved, in parallel. Since the object management unit already knows the size of the bodies from the
MOT directory, it can assure that there is enough memory for the reassembly unit to hold all bodies reassembled in
paralel, and anew MOT directory (the size of the MOT directory is not known in advance).

In MOT directory mode, the reassembly unit will inform the object management after the MOT directory is completely
reassembled. The object management decompresses (if applicable) and processes the MOT directory and then orders
the reassembly unit either to reassemble all incoming bodies or- in case of memory shortage - to select the specific
objects that are to be reassembled, e.g. by starting to request first the entry object(s) of the data carousel or objects with
ahighPri ority parameter until all objects have been received. If thereis not enough memory to hold all objects
within the data carousel, the object management uses a caching strategy that determines which objects should be stored.
A very simple caching strategy would require the reassembly unit to reassemble only the body of the object that is
currently requested by the user application and to store these bodies. A more advanced strategy will try to reassemble
bodies before they are requested by the user application and thus reduce access time.

ETSI

62 ETSI EN 301 234 V2.1.1 (2006-05)

If anew directory is forwarded by the reassembly unit, the object management first checksif it isacompressed MOT
directory. If the MOT directory is compressed the object management de-compresses it. Then the object management
compares the old directory and the new one and removes al objects from its cache that are no longer signalled within
the directory (i.e. their Cont ent Nanes are no longer present in the new MOT directory) or that have been updated
(i.e. adifferent Transportld is used for the same Cont ent Nane). It will then remove the objects that are no longer
present in the MOT directory and order the reassembly unit to reassemble new and updated MOT objects.

Comparing old and new MOT directory can be dramatically simplified if the header information within the MOT
directory is sorted by the Cont ent Nanes, see clause 7.2.4.1 for details.

The object management tries to reduce the object access time and thus includes some caching strategy.

Although the terminal will allocate the greatest part of its memory to the storage of the objects, it shall be prepared for
situations, where the size and number of objects exceeds the memory resources. In such cases, the object management
can make use of additional information on the relevance and availability of every object, i.e. by evaluating the caching
parameters in the header information of the MOT object for optimal use of memory.

An example showing the actions of the MOT decoder after it receivesanew MOT directory can be found in annex D.

C.3.3.2 MOT header mode

In MOT header mode the reassembly unit continuously checks for MOT headers and forwards these to the object
management.

A received MOT header forwarded from the reassembly unit replaces any former MOT header in the object
management since thereisjust one MOT object at any time.

The object management will order the reassembly unit to reassemble the single MOT body described by the current
MOT header. Since the object management unit already knows the size of the body from the MOT header, it can assure
that there is enough memory for the reassembly unit to hold the MOT body and a new MOT header.

When the MOT body has been successfully and completely assembled in the reassembly unit, it is passed over to the
object management in the MOT decoder. The object management will then automatically forward the received MOT
object (header information and body) to the user application decoder.

After successful reassembly of an MOT object, incoming MOT segments with the same Transportld are discarded.

The MOT decoder shall pass any HeaderUpdate to the user application decoder. It is the task of the user application
decoder to check if the HeaderUpdate refers to an object in the user application decoder and it is also the task of the user
application decoder to apply the header update.

C.3.4 Advanced MOT reassembly units

C.3.4.1 Collecting MOT body segments whose Transportld is not described
in the MOT directory

The MOT object management tells the reassembly unit which MOT bodies have to be reassembled and which MOT
bodies do not have to be reassembled. To do this, the object management will provide alist of al the Transportlds
within its current MOT directory and indicate for every Transportld if the MOT reassembly unit has to process MOT
segments having this Transportld (i.e. reassemble the MOT body) or if the reassembly unit has to discard MOT
segments having this Transportlid.

If the Transportld of areceived MOT body segment isin the list provided by the MOT object management, then the
reassembly unit will process the MOT body segment as usual (i.e. the MOT segment is used to reassemble an MOT
body or it is discarded).

This clause only covers MOT body segments whose Transportld the MOT object management did not provide
(i.e. because the MOT aobject management does not yet have the current MOT directory and therefore the object
management does not know the Transportlds of new or updated MOT objects).

ETSI

63 ETSI EN 301 234 V2.1.1 (2006-05)

This clause not only explains how to improve start-up of the MOT decoder and robustness in case of reception errors
during updates of the MOT directory. The mechanisms also permit fast changes to the data carousel (see annex F).

C34.11 Start-up of the MOT directory mode decoder

When the MOT decoder starts up it will take awhile until the MOT directory is successfully received and forwarded to
the object management. If the reassembly unit discards all body segments until the MOT directory is successfully
received then the start of reassembly of MOT bodies can be significantly delayed.

An advanced MOT decoder can thus include a small storage in the reassembly unit ("segment buffer") that collects all
MOT body segments received between start up of the reassembly unit and the order to collect certain (or al) MOT
bodies from the object management unit. If the object management unit tells the reassembly unit which MOT bodies it
should collect then the reassembly unit "replays' the already stored MOT body segments, flushes the storage and from
then on processes the MOT body segments as they are received.

| | >
| | t
to 1:1
to: MOT decoder starts up; it t;: MOT directory successfully
receives MOT body and reassembl ed; object management orders
directory segments reassembly of certain (or al) MOT bodies
i
~— 1
reassembly unit collects reassembly unit replays
MOT body segments into MQOT body segments from
"segment buffer” "segment buffer”

Figure C.4: Improved start-up of MOT decoder

Additional information regarding the collection of MOT body segments can be found in clause C.3.4.1.3.

C.34.1.2 Updates to the MOT directory

If changes to the data carousel are made, then the content of the MOT directory changes and therefore a new
Transportld is assigned to the MOT directory. After the changes to the data carousal the new MOT directory and the
new and updated as well as the unchanged MOT bodieswill be broadcast. The MOT decoder will continuously check
every received MOT directory segment and notice that MOT directory segments with a new Transportld are received.

Due to reception errors it could take quite awhile until the new MOT directory is successfully reassembled and
forwarded to the object management. If the reassembly unit discards all body segments until the new MOT directory is
successfully received then the start of reassembly of updated and new MOT bodies can be significantly delayed.

An advanced MOT decoder will thus have an interface that permits the object management to tell the reassembly unit
for al Transportlds within the current MOT directory what Transportlds the object management is interested in and
which Transportldsit isNOT interested in. If MOT body segments are received with Transportlds that are not
contained in the current MOT directory (i.e. not at all mentioned by the object management) then the reassembly unit
should assume that a change to the data carousel has taken place. It should then collect the MOT body segments into the
"segment buffer". When the next MOT directory is successfully forwarded to the object management and the object
management unit tells the reassembly unit which MOT bodiesit should collect, then the reassembly unit "replays’ the
already stored MOT body segments, flushes the "segment buffer" and from then on processes the MOT body segments
asthey are received.

ETSI

64 ETSI EN 301 234 V2.1.1 (2006-05)

| |
>
| | t
to tl
to: new body segments appear ty: MOT directory successfully
with unknown Transportld (not reassembl ed; object management orders
listed in current MOT directory) reassembly of certain (or al) MOT bodies
— i
v
reassembly unit collects reassembly unit replays
MOT body segments into MOT body segments from
"segment buffer” "segment buffer”

Figure C.5: Improved performance in case of updates to the MOT directory

Additional information regarding the collection of MOT body segments can be found in clause C.3.4.1.3.

C.3.4.13 Collecting MOT body segments

The MOT reassembly unit automatically reassembles the MOT directory, but it isthe task of the object management to
decide which MOT bodies should be reassembled at any given time. The MOT object management therefore provides a
list of ALL Transportlds within the current MOT directory to the MOT reassembly unit. For every Transportld the
object management will indicate if its MOT body has to be reassembled or not.

On MOT decoder start-up, thislist will be empty (the object management simply does not know the current MOT
directory on start-up). Whenever the reassembly unit successfully rebuilds a new (the current) MOT directory, this
MOT directory will be forwarded to the object management. The object management will decide which MOT bodies
are to be reassembled and indicate this to the reassembly unit.

Whenever an MOT body segment is received, the reassembly unit will first check the list provided by the object
management. If the Transportld of the MOT body segment is described by the list provided by the object management
then the MOT body segment will be processed asindicated in the list (i.e. the MOT segment is used for MOT body
reassembly or discarded).

If the Transportld of the MOT body segment is not mentioned in the list, then the advanced reassembly unit will collect
the MOT body segment into the "segment buffer" (hoping that the MOT body segment can be used once the MOT
directory is reassembled and forwarded to the object management).

Depending on the available memory in the reassembly unit, more or less MOT body segments can be collected. To
collect all MOT body segments received in 5 minutes on a 64 kbps channel one would for instance need 2,4 Mbytes.
This number isworst case because it assumes that only MOT body segments with unknown (not in the list provided by
the object management) Transportlds are received and the current (new) MOT directory can not be reassembled. The
advanced reassembly unit will collect as many MOT body segments, asit is able to and may discard the oldest collected
MOT body segment in case a newly received MOT body segment needs to be collected and no more memory is
available for this purpose (i.e. the advanced reassembly unit must be able to do garbage collection).

The main task for the reassembly unit is the reassembly of MOT bodies. If there is not enough memory to collect MOT
body segments in addition to body reassembly, then the reassembly unit will always favour object reassembly.

To assure that no MOT body segments are collected and kept indefinitely, the reassembly unit shall not keep MOT
body segments longer than one hour (atimeout is necessary because a content provider might start reusing Transportlds
after awhile). It is therefore necessary to attach atimestamp to al collected MOT body segments.

NOTE: To save memory when collecting MOT body segmentsit is possible to check if areceived MOT body
segment was already received and collected before into the "segment buffer”. In this case the newly
received MOT body segment replaces the earlier received MOT body segment. It might also be necessary
to adjust all time stamps attached to thisMOT body segment (the time stamps are needed for garbage
collection).

ETSI

65 ETSI EN 301 234 V2.1.1 (2006-05)

C.3.4.2 MOT caching support: relative expire times (MOT parameters
Expiration and DefaultExpiration)

If the MOT decoder provides"MOT caching support", then support of the MOT parameters Expi r at i on and
Def aul t Expi r at i on is mandatory.

To support relative expire times the MOT reassembly unit needs to know the Transportld of the MOT directory
currently used by the object management unit. Therefore an interface between the reassembly unit and the object
management is required. Whenever the object management accepts anew MOT directory it will indicate the
Transportld of the currently used MOT directory to the reassembly unit.

Every time the reassembly unit gets an MOT directory segment (data group types 6 or 7) using thisindicated
Transportld, it will store the time the segment was received.

The reassembly unit will update the time when an MOT directory segment using the indicated Transportld was
received, even if the reassembly unit will then discard all MOT directory segments using the indicated Transportld
(since the MOT directory was already successfully reassembled).

If persistent caching is used, then the reassembly unit shall permanently store the Transportld and the reception time of
itslast received MOT directory segment. On restart of a persistently cached data application, the reassembly unit shall
not assume that Transportlds of MOT segments still correspond to the same MOT entity. Thereforeit shall NOT update
the reception time of the last received MOT directory segment. It shall wait until the object management indicates the
Transportld of the MOT directory currently in use (i.e. it is necessary to assure that the MOT directory is still the same
that is was when the receiver was switched off; to do this the current MOT directory must be successfully reassembled
and processed by the object management) before it resumes normal operation (i.e. store the time the last MOT directory
segment with the given Transportld was received).

See clause C.3.4.3 for a code snippet that outlines the reassembly of the MOT directory; this code also includes some
lines to support the handling of relative expire times.

C.3.4.3 Acquiring both compressed and uncompressed MOT directories

If auser application permits both the compressed and the uncompressed MOT directory, then the MOT reassembly unit
must be able to reassemble the MOT directory no matter if the MOT directory is compressed or uncompressed or if
both the compressed and the uncompressed MOT directory are sent aternately.

An uncompressed MOT directory is carried using M SC data groups of type 6; a compressed MOT directory is carried in
data groups of type 7. If both compressed and uncompressed MOT directory are used, then they will have the same
Transportld for the same version of the MOT directory (i.e. the identical directory content).

One way to acquire the MOT directory (transmitted compressed and/or uncompressed) is to try reassembling both
compressed and uncompressed MOT directory in parallel. Reassembly starts whenever a new Transportld for the MOT
directory is detected (no matter if in a data group of type 6 or 7). Then the parallel reassembly of both the compressed
and the uncompressed MOT directory is started using the Transportld of the MOT directory. The reassembly unit
forwards whatever directory is reassembled first to the object management and stops reassembly of both the compressed
and the uncompressed MOT directory until anew Transportld of the MOT directory is detected.

The above solution requires enough resources to reassemble both the compressed and the uncompressed MOT directory
inparalel. A simpler solution is presented below. It permits to reassemble the MOT directory without the need to
decode both the compressed and the uncompressed MOT directory in parallel (i.e. it saves the memory and code lines
that would be necessary if the reassembly unit tried to reassembl e the compressed and the uncompressed MOT directory
in parallel).

Parallel decoding would of course be better (under certain circumstances the MOT directory could be available earlier).

ETSI

66 ETSI EN 301 234 V2.1.1 (2006-05)

An MOT reassembly unit that just eval uates data group type 6 (uncompressed MOT directory) will contain code
something like this pseudo code:

/1 the followi ng variable holds the Transportld of the currently
/] reassenbled MOT directory
int current_not_directory_ transport_id = -1;

/1 the following variable is used to know if the MOT directory
/1 using the above Transportld

/1 (current_not_directory_transport_id) is already

/] reassenbled; in this case all MOT directory segnents

/1 can be ignored

bool not_directory_conpleted = fal se;

/'l the follow ng variable holds the last time an MOT directory segment
/1 of the current MOT directory was received
time |last_not_directory_segnent_received = 0;

/1 this function is called whenever a data group of type 6 is received.
process_not _directory_segnment (MOT_segnent, unsigned short transport_id)

{

/1 Support for relative expire tines

/1

/1 get_not_transport_id_used_by_object_nanagenent() will return the

/'l Transportld of the MOT directory currently used by the object nanagenent.
/1 This Transportld does not necessarily have to be the sane one as

/1 current_not_directory_transport_id since the latter already changes when a

Il reassenbly of a new MOT directory starts (but reassenbly could fail if
/1 reception is lost).
if (get_not_transport_id_used_by_object_nanagenent () == transport_id) {

/1 get current time and store it as the last time an MOT segment
/1 of the currently used MOT directory was received
| ast_not_directory_segnent_received = get_current_tinme();

}

if (current_not_directory_transport_id != transport_id) {
/! we got a new Transportld for the MOT directory, this
/1 means that we have to rebuild the MOT directory fromscratch
restart_not _directory_reassenbly();
/] store the now used Transportld
current_not_directory_transport_id = transport_id;
not _di rectory_conpl eted = fal se;

}

/1 check if the MOT directory was al ready reassenbl ed.
/1 I'n this case ignore the MOT segment
if (nmot_directory_conpleted) { return; }

/'l process the currently received MOT directory segnent.
add_not _directory_segnent (MOT_segnent);

/Il store information if MOT directory is already conpleted
not _directory_conpleted = is_not_directory_finished();

/1 If the MOT directory is now finished, then forward the
/1 new MOT directory to the reassenbly unit
if (not_directory_conpl eted) {

/1 forward MOT directory to object managenent

}
}

To permit reassembly of the compressed or uncompressed MOT directory (carried in data groups of type 6 or 7), the
function would now look something like (changesin italic):

/1 the follow ng variable holds the Transportld of the currently
/] reassenbled MOT directory
int current_not_directory_transport_id = -1,

/1 the follow ng variable holds the data group type of the MOT directory

/1l that is currently reassenbl ed
int current_dg_type;

ETSI

67 ETSI EN 301 234 V2.1.1 (2006-05)

/1 the following variable is used to know if the MOT directory
/1 using the above Transportld

/1 (current_not_directory_transport_id) is already

/'l reassenbled; in this case all MOT directory segnents

/] can be ignored

bool not_directory_conpleted = fal se;

/1 the following variable holds the last time an MOT directory segnent
/1 of the current MOT directory was received (data group type 6 or 7!)
time | ast_not_directory_segnent _received = O;

/1 this function is called whenever a data group of type 6 or 7 is received)
process_not _directory_segnent (MOT_segnent, unsigned short transport_id,

int dg_type)
{
/1 Handling for relative expire tines
/1

/1 get_not_transport_id_used_by_object_nanagenent() will return the

[/ Transportld of the MOT directory currently used by the object nanagenent.
/1 This Transportld does not necessarily have to be the sane one as

/1 current_not_directory_transport_id since the latter already changes when a

Il reassenbly of a new MOT directory starts (but reassenbly could fail if
/] reception is lost).
if (get_not_transport_id_used_by_object_nanagenent () == transport_id) {

/1 get current time and store it as the last time an MOT segment
/1 of the currently used MOT directory was received
last _not_directory_segment _received = get_current_time();

if (current_not_directory_transport_id != transport_id) {
/1 we got a new Transportld for the MOT directory,
/1 this nmeans that we have to rebuild the MOT directory
/1 fromscratch
restart_not_directory_reassenbly();

/'l store the now used Transportld
current_not_directory_transport_id = transport_id;
current_dg_type = dg_type;

not _di rectory_conpl eted = fal se;

/1 check if the MOT directory was already reassenbled. In
/1 this case ignore the MOT segnent
if (not_directory_conpleted) { return; }

/1 check if the data group type is needed
if (current_dg_type != dg_type) {
/1 if we first received data group type 6 and now get an
/1 MOT segnment of data group type 7, then we switch to data group type 7.
/1 If we're already using data group type 7, then we ignore
/'l data group type 6
if (current_dg_type == 6) ({
/] we switch to the data group type 7,
/1 this nmeans that we have to rebuild the MOT directory
/1 fromscratch
restart_not _directory_reassenbly();

/] store the now used data group type
current_dg_type = dg_type; // will always be 7

el se {
/1 data group type is 6, but we're already reassenbling data group type 7
return; // ignore MOT directory segment of type 6
}
}

/1 process the currently received MOT directory segnent.
add_not _directory_segnent (MOT_segnent);

/Il store information if MOT directory is already conpleted
mot _directory_conpleted = is_not_directory_finished();

ETSI

68 ETSI EN 301 234 V2.1.1 (2006-05)

/1 If the MOT directory is now finished, then forward the
/1 new MOT directory to the reassenbly unit
if (not_directory_conpl eted) {

/1 forward MOT directory to object management

}

The example code starts reassembly with whatever MOT segment isreceived first (MOT segment with data group
types 6 or 7). When the MOT directory is completely reassembled, it will be forwarded to the object management and
all further MOT segments with this Transportld will be ignored.

If reassembly started with an MOT segment of data group type 6 (i.e. the first MOT segment with a new Transportld
was from an uncompressed MOT directory) and aMOT segment with data group type 7 is received, then the
reassembly unit switches over to the reassembly of the compressed MOT directory (from then onignoring all MOT
segments with data group type 6). If anew Transportld for the MOT directory is detected, reassembly starts again with
the data group type that is detected first.

This code snippet has no performance penalty (compared to parallel reassembly) if either compressed or uncompressed
MOT directory istransmitted. If both compressed and uncompressed MOT directory are used alternately, then the
worst-case scenario is arestart of the reassembly of an almost reassembled uncompressed MOT directory with the
reception of an MOT segment of data group type 7.

Alternately transmitting compressed and uncompressed MOT directory only makes sense for backwards compatibility
to simple receivers that do not support compressed MOT directories. In this case it is sensible to send the compressed
MOQOT directory much more frequently than the uncompressed MOT directory (if the uncompressed MOT directory is
sent more frequently, then the MOT directory compression can not sensibly reduce the channel capacity needed for the
MOQOT directory). Therefore switching to data group type 7 should typically result in a quicker reassembly of the MOT
directory.

So this simple extension of the reassembly unit will usually have little or no performance penalty compared to parallel
reassembly of compressed and uncompressed MOT directory.

C.3.5 Advanced MOT object management

C.3.5.1 MOT directory mode

When the object management unit gets anew MOT directory, it has to compare the old MOT directory with the new
MOT directory. The comparison can be done very efficiently if the header information within both the old and the
current (new) MOT directory is sorted. In this case two sorted lists have to be compared and this is much more efficient
than the comparison of two unsorted lists.

Therefore the advanced MOT object management will sort the header information of the new MOT directory (if not
already sorted) before it comparesits MOT objects with the (already sorted) old MOT directory.

The presence of the MOT directory extension parameter Sor t edHeader | nf or mat i on indicates that the header
information is already sorted so that the sorting step can be skipped.

When comparing the sorted MOT header information of the old and the current (new) MOT directory, the compare
function defined in annex A shall be used.

After comparing the old and the new MOT directory the object management knows which MOT objects are updated
(i.e. those MOT objects with the same Cont ent Nane in old and current (new) MOT directory whose Transportld
differs between old and current (new) MOT directory). The MOT decoder will now try to determine if the signalled
change to the MOT object also affectsthe MOT body.

The MOT decoder will check if the MOT object (identified by the same Cont ent Nane) in both the old and the new
MOT directory providesthe MOT parameter Uni queBodyVer si on. If it does and the parameter's value and a so the
value for BodySi ze isthe samein the old and the current (new) MOT directory, then the MOT decoder does not have
to rebuild the MOT body; it can use the old (and still valid) version of the MOT body (if aready available in the cache).
The MOT decoder will nevertheless evaluate the (new) MOT header information (e.g. if an data structure outside the
MOT directory is used to keep the expire times of objects then this data structure might have to be updated).

ETSI

69 ETSI EN 301 234 V2.1.1 (2006-05)

NOTE: When the object management determines that only the object's header information was updated, but it still
has the identical body content, it could happen that the object's body is not yet fully reassembled. In this
case it isuseful if the reassembly unit can be told to finish reassembly of the MOT body even with a
different Transportld.

Continuing reassembly of an MOT body using a different Transportld is not trivial since a different
SegmentationS ze could be used. A good and not too complex compromise seems to be a reassembly unit
that is able to continue reassembly if the SegmentationSize is the same and that restarts reassembly from
scratch if a different SegmentationSize for the MOT body is used.

More sophisticated reassembly units will be able to continue reassembly even if a different
SegmentationSze is used.

The default behaviour of the MOT decoder isto discard all bodies that have been updated (i.e. changed) and wait until
the current (new) version of the body is received (thus ignoring the parameter Uni queBodyVer si on).

The MOT header information parameter Per i t Qut dat edVer si ons (or if not available for the object, then the
MOT directory extension parameter Def aul t Per mi t Qut dat edVer si ons) inthe current MOT directory tellsthe
MOT decoder if it is permitted to keep the old version of an object (and to provide it to the user application decoder)
until the new version of the object is successfully received (see clause 8.1.2.3 for details). As soon as the current (new)
version of an object is successfully received, then it has to replace to old one. Note that the user will usualy prefer to
see older information than nothing at all, so that content providers will most likely permit to temporarily display
outdated content. Clause C.3.5.1.1 indicates how an advanced MOT decoder could implement MOT parameters

Per mi t Qut dat edVer si ons and Def aul t Per m t Qut dat edVer si ons.

The MOT decoder shall NEVER provide expired MOT objects to the user application decoder. So even if the content
provider permitsto present an outdated version of an object until the current (new) version of the object isreceived, it
must still be assured that the outdated version is not yet expired!

An MOT decoder that provides"MOT caching support” has to support object expiration (MOT parameters

Expi rati on and Def aul t Expi r ati on) . An absolute expire time requires the MOT decoder to check if an object
is expired before it honours a request by the user application decoder. A relative expire time requires that the
reassembly unit stores the last time when a segment of the currently used MOT directory was received. Therefore the
object management has to inform the reassembly unit once it accepts the new MOT directory so that the reassembly unit
knows the Transportld it should look for.

If the user application decoder requests an MOT object, then the object management will thus first check if an expire
timeisgiven for the object.

If an absolute expire time has been given, then the object is considered expired if the user application's request was
issued after the given absolute expire time.

If arelative expire time has been given, the object management will ask the reassembly unit when a segment of the
current MOT directory was most recently received. The object is considered expired if the user application's request
was issued after this time plus the given relative expire time.

If the MOT object is requested and it is not expired, then the object management will forward the object to the user
application decoder.

Even though the MOT decoder shall never provide expired objects to the user application decoder it might sometimes
be sensible to keep MOT objects in the cache even if they already expired.

Imagine a scenario where the MOT decoder collected some HTML data and the user wants to browse through it in the
underground. Some traffic data might have atimeout of just some minutes (using relative expire times). Since the MOT
decoder might not receive anything in the underground, it will not provide the expired traffic information to the user
application decoder after the timeout expired. Once the user gets back to the surface and reception of the HTML data
continues, the MOT decoder will (after receiving the MOT directory) detect which of the traffic messages are still valid
(i.e. which are till broadcast). Deleting all MOT objects once they expired would have delayed presentation of the data
once reception is available again. (Note that if the receiver was switched off, then the MOT decoder also has to support
the MOT parameter Uni queBody Ver si on and that this parameter must also be included in the MOT directory: once
reception is restored, the parameter Uni queBodyVer si on will reliably tell the MOT decoder which MOT objects
are still valid).

ETSI

70 ETSI EN 301 234 V2.1.1 (2006-05)

The MOT directory contains object descriptions of all currently broadcast objects and their Transportlds, but it does not
signal when which body is broadcast. Therefore an object management strategy that reassembles objects with the
highest priority first might have a bad start-up time since all other objects broadcast before these objects are ignored.
The reassembly unit might signal to the object management which body Transportlds are currently broadcast. E.g. if the
first segment (not necessarily SegmentNumber 0) of any body is received, this could be signalled to the object
management unit. The object management could then order the reassembly of this body.

The time when the first body segment isreceived and the Ret r ansni ssi onDi st ance parameter of the object can
be used by the object management unit to predict the time of the next retransmission of the body. This permits advanced
caching strategies.

It is also possible to evaluate the data group Repetition index (see clause 5.3.3.1 in EN 300 401 [1]) or the
RepetitionCount of the segmentation header (see clause 5.1.1).

However, such additional processing by the reassembly unit and object management unit is just optional.

C.35.1.1 Support of MOT parameters DefaultPermitOutdatedVersions and
PermitOutdatedVersions

If the content provider indicates that an older (and not yet expired) version of an MOT object can be used until the
current (new) version of an MOT object is received, then it is necessary to keep the entire MOT object (i.e. MOT
header information as well asthe MOT body) until the current (new) version of the MOT object is successfully
reassembl ed.

One way to achieve thisis adata structure that holds all MOT objects that later on will be replaced by the current (new)
version of the MOT object.

Initially this data structure will be empty. Every time an update to the MOT directory is made, the MOT decoder will
check all current (new) MOT objects.

If an update to the MOT object body is signalled, then the MOT decoder will check if it is permitted to use older
versions of thisMOT object. If it is permitted and the MOT object is available in the cache (i.e. the MOT body is
completely reassembl ed), then this object is added to the data structure.

If an MOT object within the data structure is no longer signalled in the MOT directory, then it will be removed from the
data structure.

Every time an MOT object (i.e. its body) is successfully reassembled, the MOT decoder will check if an older version
of thisMOT object isin the above data structure. If it is, the old version of the MOT object will be removed from the
above data structure.

If the MOT decoder is requested to provide an MOT object, then it will always first check if the MOT object isin the
above data structure. If it is, then the MOT decoder will check if the (old) MOT object has already expired. If it is
expired, the MOT decoder will remove the MOT object from the above data structure. If the object is still valid it will
be forwarded to the user application decoder.

Garbage collection can regularly remove expired MOT objects from the above data structure.

An old (outdated) object that is added to the above data structure needs special handling of relative expire times. The
relative expire time indicates how many minutes the MOT objects should be considered valid after reception loss (or
more precise: after the validity of the MOT object can no longer be confirmed).

If the MOT parameter Per mi t Qut dat edVer si ons/Def aul t Per m t Qut dat edVer si ons signalsthat an old
(outdated) version of an MOT object may be used while the current version is reassembled, then the relative expire time
therefore indicates how many minutes the old (outdated) object might still be used at most.

MOT demands that from the instant in time a new version of an object is sent, the old version will no longer be sent.
Thereforeit is very easy to determine the absolute expire time of an outdated MOT object if arelative expiretimeis
indicated for the object. The MOT abject will expire that many minutes (asindicated by the relative expire time) after
the current (new) MOT directory (that caused the MOT object to be considered "outdated") was successfully
reassembled.

So if an MOT object is added to the above data structure, then the absol ute expire time for thisMOT object is
determined by taking into account relative or absolute expire time of this object.

ETSI

71 ETSI EN 301 234 V2.1.1 (2006-05)

The MOT object management "keeps' an entire outdated object (body and header information), but in MOT directory
mode a user application might also put user application specific MOT parameters into the MOT directory extension.
These user application specific parameters are only valid and available as long as the MOT directory carrying themis
available. They are not related to any particular version of any individual object. Therefore content providers shall only
permit "keeping" of an outdated version of an object, if no inconsistency between the information carried in the
outdated (old) MOT header information and the current (new) MOT directory can occur.

Aninconsistency could for instance occur if the user application uses parameters in both MOT header information and
MOT directory extension to efficiently code some data.

An exampleisthe use of adefault parameter value (carried in the MOT directory extension) that appliesto all MOT
objects unless a parameter in the MOT header information of an object explicitly sets a different value for this object.
Another exampleisaMOT directory extension parameter carrying a mapping table that permits to use short "keys' in
the MOT header information instead of long parameter values. The full (long) parameter value is determined by the user
application decoder by alook-up in the MOT directory extension parameter that maps the short key to the final
parameter value used by the user application decoder.

In both examples an inconsistency could occur if the datain the MOT directory extension is changed and an outdated
object is"kept". Therefore user applications that use this or a similar memory optimization have to take care to address
this potential problem.

C.4 User application level

The user application level requests objects from the MOT decoder (MOT directory mode) or gets every object as soon
asit is successfully received (MOT header mode) and presents them.

The specification of the user application level is not a part of MOT.
The MOT decoder shall NEVER provide expired MOT objects to the user application decoder.

ETSI

72 ETSI EN 301 234 V2.1.1 (2006-05)

Annex D (informative):
MOT decoding in MOT directory mode (example)

This example shows the actions of the MOT decoder after it receives an MOT directory. The MOT decoder starts from
scratch (i.e. there are no objects already available).

Tld isused as an abbreviation for Transportld. If the same TId appears more than once in the example, it isthe same
object, i.e. the same header and body.

Table D.1
MOT directory Actions to do Objects in the object
after reception management
of the MOT directory
Tid 100 = store objects with
TiId1,2,3,4 Tid 1
Tid 2
Td1“a
Tid 3
Td 2 “b TId 4
Tid 3 “c”
Tid 4 “d
Tid 101 = delete object with
Tid1 Tid 2
. keep objects with TId 3
Tid 2 “b’ Md2,34
= store object with TId 4
TId 3 “c” Tid 5 TId 5
Tid 4 “d
Tid 5 “¢”
Tid 102 = delete object with Tid 2
= keep objects with TId 3
Tid 3,4,5
TId 6 “b’ = store object with Tld 6 Thd 4
TId 5
Tid 3 “c” TId 6
Tid 4 “d
Tid5 “¢e”
Tid 103 = delete objects with
Tid 3, 4 TId 5
= keep objects with TId 6
Tid 6 “b” Tld6,5 ,
= store objects with TiId 7
“c” TId7,8
nd7“c | Tid 8
-I-I d 8 113 dll
-I-I d 5 113 ell

ETSI

73 ETSI EN 301 234 V2.1.1 (2006-05)

Annex E (informative):
Example for evaluation of relative expire times (MOT
parameters Expiration and DefaultExpiration)
In this exampl e the following assumptions are made:
. At the beginning the Transportld of the current MOT directory is 0x1000.

. All requests by the user application decoder refer to the same MOT object. This object is aready availablein
the cache at 10:00:00.

. The relative expire time given for the requested MOT object is 15 minutes.

. Starting at 10:02:00 anew MOT directory with Transportld 0x1001 using 2 MOT directory segmentsis
received. The change in the MOT directory does not affect the MOT object requested by the user application
(it still uses the same Transportld in the new MOT directory). Not before 10:18:00 the MOT decoder
successfully reassembles the new MOT directory.

. There is no reception between 10:02:01 and 10:17:59 and after 10:19:00.

ETSI

74 ETSI EN 301 234 V2.1.1 (2006-05)
Table E.1
Time MOT directory segment reception Object-request by user application decoder
10:00:00 An MOT directory segment with Transportld 0x1000
is received.
Set time of last received MOT directory segment to
10:00:00.

10:00:10 MOT object will expire at 10:00:00 + 15 minutes
(10:15:00); it is still valid now.

Return requested MOT object.

10:00:30 An MOT directory segment with Transportld 0x1000

is received.
Set time of last received MOT directory segment to
10:00:30.

10:00:45 MOT object will expire at 10:00:30 + 15 minutes
(10:15:30); it is still valid now.

Return requested MOT object.

10:02:00 An MOT directory segment with Transportld 0x1001

is received. MOT directory with Transportld 0x1001 is
not yet completely reassembled.

The currently used MOT directory uses Transportld
0x1000. No change to the time of last received MOT
directory segment.

10:05:20 MOT object will expire at 10:00:30 + 15 minutes
(10:15:30); it is still valid now.

Return requested MOT object.

10:16:00 MOT object expires at 10:00:30 + 15 minutes
(10:15:30); it is no longer valid now and therefore not
returned (but probably still kept in the cache until
validity of the object can later be re-confirmed)
Indicate that object is not available.

10:18:00 An MOT directory segment with Transportld 0x1001

is received. MOT directory with Transportld 0x1001 is
now completely reassembled and now used as the
current MOT directory.

Set time of last received MOT directory segment to
10:18:00.

10:20:00 MOT object will expire at 10:18:00 + 15 minutes
(10:33:00); it is still valid now.

Return requested MOT object.
10:35:00 MOT object expires at 10:18:00 + 15 minutes

(10:33:00); it is no longer valid now and therefore not
returned (but probably still kept in the cache until
validity of the object can later be re-confirmed)
Indicate that object is not available.

ETSI

75 ETSI EN 301 234 V2.1.1 (2006-05)

Annex F (informative):
Managing changes to the MOT data carousel

The followings clauses outline how the content provider will manage changes to his data carousel.

F.1 General principle

The MOT directory is usually periodically transmitted in parallel to the MOT bodies. The bitrate of the MOT directory
will usually be some predefined percentage of the total bitrate used by the content provider.

On start-up of the MOT decoder no MOT object can be reassembled before the MOT directory is successfully
reassembled and processed for the first time. Therefore the cycle time between two retransmissions of the MOT
directory is an important factor to determine how fast data can be accessed on start-up of the MOT decoder and how
fast changes to the data carousel propagate to the MOT decoder. To assure that the MOT directory can be sent
frequently enough without requiring too much channel capacity, the MOT directory should be made as small as possible
(e.0. by using short Cont ent Namnes) and MOT directory compression should be used (if permitted by the user
application definition).

If a change to the set of broadcast objectsis made, then the content provider will stop sending the old MOT directory
and he will also stop sending MOT segments of MOT bodies that are no longer part of the updated data carousel.

He will then set up the new MOT directory describing the current state of the data carousel and send this new MOT
directory (with anew Transportld) for sometime (to "assure" reception). Then he will start sending the new and
updated MOT bodies (in parallel to the MOT directory). After the new and updated objects were sent, the content
provider will continue sending the unchanged MOT objects.

It isimportant that a change to the data carousel does not completely restart the transmission cycle. To give an example:

. If the data carousel cycleis five minutes and some small object is changed every minute, then the data carousel
shall not restart from scratch and shall not start repeating the first minute of the data carousel without ever
broadcasting the data scheduled for the remaining four minutes.

It is also important to assure that the Transportld of MOT bodies is only changed if their header information, body
content or segmentation is changed. Every unnecessary change of the Transportld will cause smple MOT decodersto
discard al the already received segments of the MOT body!

The MOT parameter Uni queBody Ver si on should be provided so that the MOT decoder can easily determine if a
change of an object's Transportld a so affected the MOT body. Whenever possible, the content provider should also
aim at permitting to keep outdated objects on receiver side (MOT parameters Per mi t Qut dat edVer si ons and
Def aul t Per ni t Qut dat edVer si ons).

F.2 Advanced approach

In the above scenario the MOT directory will be sent quite often in case of a change to the data carousel. The repetition
of the MOT directory is necessary to assure that every MOT decoder will know the Transportlds of the new and
updated MOT objects. Simple MOT decoders will discard all MOT segments whose Transportld they do not (yet)
know.

Advanced MOT decoders collect MOT segments of MOT bodies whose Transportlds are not (yet) listed in the current
MOT directory (see clause C.3.4.1). Therefore the content provider can make faster changes to the data carousel and
then he needs less bitrate for the MOT directory.

In this case the content provider can send the new MOT directory in parallel to the new and updated MOT bodies. This
way the bitrate demand of the MOT directory will not increase with the update frequency of the data carousel. The
content provider will output MOT directory segmentsin regular intervals (depending on the bitrate assigned to the
MOQOT directory). If a change to the data carousel is made, then segments of the new MOT directory are output; it is not
necessary to increase the bitrate of the MOT directory.

ETSI

76 ETSI EN 301 234 V2.1.1 (2006-05)

The above approach has the following implications:

MOT decoders that collect MOT body segments with unknown Transportld in a"segment buffer" will be able
to use the previoudly collected MOT body segments as soon as the current (new) MOT directory isreceived.
However, since the MOT directory is needed to identify the MOT aobject these MOT body segments belong to,
the MOT decoder hasto wait until the MOT directory is received and the collected MOT body segments are
"replayed” by the reassembly unit, before the MOT decoder can identify and forward a new or updated object
to the user application decoder.

MOT decoders that do NOT collect MOT body segments with unknown Transportld will most likely miss
many of the new and updated MOT bodies on their first turn of the data carousel. They will probably need to
wait an additional turn of the data carousel.

The content provider has to assure that every version of the MOT directory is sent often enough so that it can
be reassembled even under bad reception condition. It is possible to repeat an "old" MOT directory in parallel
to new and updated (and unchanged) MOT bodies until a certain reception probability for the MOT directory
has been reached. Then all changes to the data carousel (no matter if there was one big change or many small
ones) can be combined in anew MOT directory that isthen again sent for some time.

Note that collecting MOT body segmentsin a"segment buffer" not only permit faster changes to the data carousel. It
also provides better performance on MOT decoder startup and in case of reception errors during a change to the data
carousel (i.e. if the current (new) MOT directory could not be reassembled on the first transmission).

User applications that foresee fast changes to the data carousel should require collecting ("segment buffer") of MOT
body segments whose Transportlds are not (yet) listed in the current MOT directory (see clause C.3.4.1).

ETSI

77 ETSI EN 301 234 V2.1.1 (2006-05)

Annex G (informative):
Implementation tips for "Transfer of directory structures via
MOT" (receiver side)

The MOT Decoder can make use of (at least) two strategies that both permit to access MOT objectsinside a directory
structure:

. Thefirst strategy usesthe "generic" MOT decoder (see clause 6.2.2.1.1) and provides an additional interface
for user applications that use the "transfer of directory structures'.

The objects are stored in the cache using an internal filename (for example built using the Tr anspor t | d of
the object. The current mapping between the internal filenames and the corresponding Cont ent Names is
also stored. When the user application decoder requests an object with a certain Cont ent Nane, the interface
to the MOT decoder uses the mapping list to determine and return the corresponding internal filename. The
advantage of this method is that the MOT decoder does not have to check the validity of the Cont ent Nane
as a pathname on the file system and does not have to create or destroy directories when storing or deleting
MOT objects. The disadvantage is that the mapping list has to be maintained and that all access from the user
application to the objects must be done via a special interface.

NOTE 1: Tosimplify accessit ispossible to provide avirtua file system. In this case there would be a special
interface between the MOT decoder and the user application that provides avirtual file system. A
possible solution would be an NFS (network file system) or an SMB server. It would provide afile
system with the full directory structure that can be "mounted"”. If for instance the MOT carousel isthen
"mounted” as drive "m:" on a Windows system, then the user application could work on this drive "m:" as
if it were alocal file system. But all file access operations will pass through the interface to the MOT
decoder and thus the MOT decoder will have full knowledge of what files are accessed by the user
application. It will also be possible to "export" the received data to other systems (e.g., viaa WLAN
network).

The second strategy defines an additional operation mode for the MOT decoder. This mode of the MOT decoder uses a
different way to determine the file name that is used to store an MOT object.

If the user application decoder tells the MOT decoder that "transfer of directory structures' is used, then the MOT
objects are stored using the Cont ent Name as afilename relative to adirectory on the file system of the receiver (for
instance, let's assume that the MOT decoder stores al filesin its cache directory "\mot\service_d312\sc_1\". A file with
Cont ent Narre "root/dirLl/file2" would then be stored as "\mot\service_d312\sc_1\root\dir1\file2"): the advantage is
that no mapping list has to be maintained and the files can directly be accessed in the file system of the receiver. The
disadvantage isthat the MOT decoder hasto create or destroy directories and check that the given Cont ent Narne isa
valid pathname on the file system. The MOT decoder also gets no feedback about which objects were accessed at what
time; information that could be useful for the cache management.

The user application decoder just needs to know the path to the cache of the MOT decoder to find the selected objects
by concatenating the directory name of the MOT decoder's cache and the (relative) file name the object given in the
Cont ent Nane (i.e., the full file name would then be "<Cache path>/<Cont ent Nane>").

NOTE 2: An MOT decoder that uses this approach (i.e., the user application directly accessesfilesin the MOT
decoder's cache) must be aware that on some operating systems it isimpossible to update (replace) or
delete afileif thisfileis currently in use by the application decoder. This means that the MOT decoder
may not assume that replacing afile with its updated version or removing an obsolete file will always
succeed. The MOT decoder will need to keep alist of all necessary file replacements/file and directory
deletions that could not be performed because these files are currently accessed by the user application
decoder. Every now and then the MOT decoder must then check if the file operations can be performed.
If some files are often updated/del eted, then multiple entries per file may be added to thelist.

NOTE 3: This strategy can be implemented in two ways: either the MOT decoder directly stores the files according
to its ContentName, or an specia interface (e.g., an additional program) automatically manages the
directory structure by creating and deleting all files and directories. The first approach means two
operating modes for the MOT decoder ("generic" mode and "directory transfer" mode), the latter
approach requires an additional entity that connects to the "generic" MOT decoder and builds the
directory structure.

ETSI

78 ETSI EN 301 234 V2.1.1 (2006-05)

Annex H (informative):
Bibliography

ISO/IEC 7498 (all parts): "Information technology - Open Systems I nterconnection - Basic Reference Model".

L]

. IETF RFC 1950: "ZLIB Compressed Data Format Specification version 3.3".
. IETF RFC 1952: "GZIP file format specification version 4.3".

. CENELEC EN 62106: " Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the
frequency range from 87,5 to 108,0 MHZz".

ETSI

79

ETSI EN 301 234 V2.1.1 (2006-05)

History
Document history

V111 January 1998 Publication

V121 February 1999 Publication

V211 February 2005 One-step Approval Procedure OAP 20050603: 2005-02-02 to 2005-06-03

(Withdrawn)

V2.1.1 January 2006 One-step Approval Procedure OAP 20060519: 2006-01-18 to 2006-05-19
V211 May 2006 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General description of the MOT protocol
	4.1 Requirements of Multimedia services
	4.2 Problems MOT solves
	4.3 Receiver architecture reference model

	5 Structural description
	5.1 Segmentation of MOT entities
	5.1.1 Segmentation header
	5.1.2 Segmentation of the MOT body
	5.1.3 Segmentation of the MOT directory
	5.1.4 Segmentation of the MOT header

	5.2 Transporting MOT segments - network level
	5.2.1 Packet mode
	5.2.2 X-PAD

	5.3 Transmission Mechanisms
	5.3.1 Single object transmission (MOT header mode)
	5.3.1.1 Repetition on object level
	5.3.1.2 Repetition of MSC data groups/MOT segments
	5.3.1.3 Repeated transmission of header information (combined with repetition on object level)

	5.3.2 Multiple object transmissions (MOT directory mode)
	5.3.2.1 Interleaving MOT entities in one MOT stream

	6 MOT header information
	6.1 Header core
	6.2 Header extension
	6.2.1 Future expansion of the parameter data field
	6.2.2 Parameters of the header extension for MOT header mode and MOT directory mode
	6.2.2.1 MOT Basic transport parameters
	6.2.2.1.1 ContentName
	6.2.2.1.2 MimeType
	6.2.2.1.3 CompressionType

	6.2.3 Parameters of the header extension for MOT directory mode only
	6.2.3.1 MOT caching support parameters
	6.2.3.1.1 Expiration
	6.2.3.1.2 PermitOutdatedVersions
	6.2.3.1.3 UniqueBodyVersion
	6.2.3.1.4 Priority
	6.2.3.1.5 RetransmissionDistance

	6.2.3.2 MOT conditional access parameters
	6.2.3.2.1 CAInfo
	6.2.3.2.2 CAReplacementObject

	6.2.3.3 MOT profile identification
	6.2.3.3.1 ProfileSubset

	6.2.4 Coding of parameters
	6.2.4.1 Coding of time parameters

	6.3 List of all MOT parameters in the MOT header extension

	7 MOT transport modes
	7.1 MOT header mode
	7.1.1 New object/object update
	7.1.2 Management of TransportIds
	7.1.3 Updating header information/triggering objects

	7.2 MOT directory mode
	7.2.1 Introduction
	7.2.2 Assembly of MOT bodies and MOT directory
	7.2.3 MOT directory coding
	7.2.4 List of all MOT parameters in the MOT directory extension
	7.2.4.1 SortedHeaderInformation
	7.2.4.2 DefaultPermitOutdatedVersions
	7.2.4.3 DefaultExpiration

	7.2.5 Segment size of the MOT directory
	7.2.6 Identification of the MOT directory
	7.2.7 Use of the MOT directory mode
	7.2.7.1 Segment reception order
	7.2.7.2 Service acquisition
	7.2.7.3 Version control
	7.2.7.4 Allocation of TransportIds
	7.2.7.5 Prioritizing objects within the data carousel
	7.2.7.6 Managing updates to the data carousel
	7.2.7.7 MOT decoder behaviour in case no data is received for a long time

	7.2.8 MOT directory compression

	8 MOT functionality
	8.1 MOT caching support (MOT directory mode only)
	8.1.1 Object reassembly
	8.1.2 Object validity
	8.1.2.1 MOT expire time handling
	8.1.2.2 Unique MOT body version
	8.1.2.3 Temporarily using outdated MOT bodies

	8.1.3 Object management

	8.2 Transfer of directory structures using MOT

	Annex A (normative): Comparing ContentNames
	Annex B (informative): User application definitions and MOT
	Annex C (informative): Model of an MOT decoder and its interfaces
	C.1 Network level
	C.2 MSC Data group level
	C.3 Segmentation and object level
	C.3.1 General description of the MOT decoder
	C.3.2 The reassembly unit
	C.3.2.1 MOT directory mode
	C.3.2.2 MOT header mode
	C.3.2.3 Segmentation of MOT bodies

	C.3.3 The object management unit
	C.3.3.1 MOT directory mode
	C.3.3.2 MOT header mode

	C.3.4 Advanced MOT reassembly units
	C.3.4.1 Collecting MOT body segments whose TransportId is not described in the MOT directory
	C.3.4.1.1 Start-up of the MOT directory mode decoder
	C.3.4.1.2 Updates to the MOT directory
	C.3.4.1.3 Collecting MOT body segments

	C.3.4.2 MOT caching support: relative expire times (MOT parameters Expiration and DefaultExpiration)
	C.3.4.3 Acquiring both compressed and uncompressed MOT directories

	C.3.5 Advanced MOT object management
	C.3.5.1 MOT directory mode
	C.3.5.1.1 Support of MOT parameters DefaultPermitOutdatedVersions and PermitOutdatedVersions

	C.4 User application level

	Annex D (informative): MOT decoding in MOT directory mode (example)
	Annex E (informative): Example for evaluation of relative expire times (MOT parameters Expiration and DefaultExpiration)
	Annex F (informative): Managing changes to the MOT data carousel
	F.1 General principle
	F.2 Advanced approach

	Annex G (informative): Implementation tips for "Transfer of directory structures via MOT" (receiver side)
	Annex H (informative): Bibliography
	History

