
Draft EN 301 234 V1.2.1 (1998-09)
European Standard (Telecommunications series)

Digital Audio Broadcasting (DAB);
Multimedia Object Transfer (MOT) protocol

EBU
UER

European Broadcasting Union Union Européenne de Radio-Télévision

ETSI

Draft EN 301 234 V1.2.1 (1998-09)2

Reference
REN/JTC-DAB-MOT-1 (bfc00ioo.PDF)

Keywords
DAB, digital, audio, broadcasting, multimedia,

protocol

ETSI

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Internet
secretariat@etsi.fr
http://www.etsi.fr

http://www.etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1998.
© European Broadcasting Union 1998.

All rights reserved.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)3

Contents

Intellectual Property Rights..5

Foreword ..5

1 Scope..6

2 References..6

3 Definitions and abbreviations ..8
3.1 Definitions..8
3.2 Abbreviations ...9

4 General description of the MOT protocol..10
4.1 Requirements of Multimedia services ..10
4.2 Problems MOT is attempting to solve..10
4.3 Receiver architecture reference model ...11

5 Object description ..12
5.1 Header core ..12
5.2 Header extension ..13
5.2.1 Structure of the header extension..14
5.2.2 Future expansion of the parameter data field ..15
5.2.3 Parameters of the header extension...15
5.3 Object body ..18

6 Object transport mechanisms...18
6.1 Segmentation of objects - transport level ...19
6.1.1 Segmentation header...20
6.1.2 Transport of header segments ...20
6.1.3 Transport of body segments..21
6.2 Packetizing segments - network level...21
6.2.1 Packet mode..21
6.2.2 X-PAD..21
6.2.2.1 Indication of the Data Group Length...22
6.3 Different methods of transferring MOT objects. ..23
6.3.1 Repetition on object level ...24
6.3.2 Insertion of additional header information..24
6.3.3 Interleaving objects in one MOT stream...25
6.3.4 Repetition of Data Groups/segments ..25

7 Updating...25
7.1 Object update ...25
7.2 Updating header information/triggering objects...26
7.2.1 Triggering an object..26
7.2.2 Deletion of an object...26

8 MOT directory ...26
8.1 Introduction ..26
8.1A Assembly of MOT objects and MOT directory..27
8.2 MOT directory coding..27
8.2.1 Parameters of the directory extension...28
8.2.2 Segment size of the MOT directory..28
8.2.3 Identification of the MOT directory ...29
8.3 Use of the MOT directory ..29
8.3.1 Segment reception order ...29
8.3.2 Service acquisition..29
8.3.3 Version control ...30
8.3.4 Allocation of Transport Ids...30

ETSI

Draft EN 301 234 V1.2.1 (1998-09)4

8.3.5 Prioritizing objects within the carousel...30
8.3.6 Managing updates to the carousel...30
8.3.7 Cache management ...30

History ..31

ETSI

Draft EN 301 234 V1.2.1 (1998-09)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect
of ETSI standards", which is available free of charge from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (http://www.etsi.fr/ipr or http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword
This European Standard (Telecommunications series) has been produced by the Joint Technical Committee (JTC)
Broadcast of the European Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique
(CENELEC) and the European Telecommunications Standards Institute (ETSI), and is now submitted for the ETSI
standards One-step Approval Procedure.

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about 60
countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

The DAB system is a novel sound broadcasting system intended to supersede the existing analogue amplitude and
frequency modulation systems. It is a rugged, yet highly spectrum and power efficient sound and data broadcasting
system. It has been designed for terrestrial and satellite as well as for hybrid and mixed delivery. The DAB system has
been publicly demonstrated on a number of occasions during its development. It has been subject to extensive field tests
and computer simulations in Europe and elsewhere. In 1995, the European DAB forum (EuroDab) was established to
pursue the introduction of DAB services in a concerted manner world-wide, and it became the World DAB forum
(World DAB) in 1997.

NOTE 2: DAB is a registered trademark owned by one of the Eureka 147 partners.

Proposed national transposition dates

Date of latest announcement of this EN (doa): 3 months after ETSI publication

Date of latest publication of new National Standard
or endorsement of this EN (dop/e): 6 months after doa

Date of withdrawal of any conflicting National Standard (dow): 6 months after doa

ETSI

Draft EN 301 234 V1.2.1 (1998-09)6

1 Scope
The present document specifies a transmission protocol, which allows to broadcast various kinds of data using the
Digital Audio Broadcasting (DAB) system. It is tailored to the needs of Multimedia services and the specific constraints
given by the broadcasting characteristics of the DAB system. After reception this data can be processed and presented to
the user.

The present document defines the transport specific encoding for data types not specified in ETS 300 401 [1] according
to the transport mechanisms provided by DAB. It allows a flexible utilization of the data channels incorporated in the
DAB system, as well as methods to manage and maintain a reliable transmission in a uni-directional broadcast
environment. Provisions are also made for the creation and presentation of advanced Multimedia services using formats
such as Hyper Text Markup Language (HTML) (see RFC 1866 [3]) or Multimedia and Hypermedia information coding
Experts Group (MHEG) (see ISO/IEC CD 13522 [4]).

The present document describes the core transport protocol. Subsequent parts or revisions of the present document will
describe backwards compatible extensions.

Aspects related to the further decoding and processing of the data objects carried are outside the scope of the present
document. Hardware or software implementation considerations are not covered.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

• A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] ETS 300 401: "Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fixed receivers".

[2] Sun Microsystems (1994, 1995): "The Java Language: A White Paper". Called "Java" in the
present document.

[3] RFC 1866 (November 1995): "Hyper Text Markup Language (HTML) Specification-2.0",
T. Berners-Lee, D. Connolly; MIT/LCS onwards.

[4] ISO/IEC CD 13522: "Information Technology; Coding of Multimedia and Hypermedia
Information".

[5] ISO DIS 10918: "Digital Compression and Coding of Continuous-tone Still Images", Joint
Photographers Experts Group (JPEG).

[6] ISO-8859-1 (1987): "International Standard; Information Processing; 8-bit Single-Byte Coded
Graphic Character Sets; Part 1: Latin alphabet No. 1".

[7] ISO-8859-2 (1987): "Information Processing; 8-bit single-byte coded graphic character sets;
Part 2: Latin alphabet No. 2".

[8] RFC 1521 (September 1993): "MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies",
N. Borenstein, N. Freed.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)7

[9] RFC 1945 (May 1996): "Hypertext Transfer Protocol – HTTP/1.0", T. Berners-Lee, R. Fielding,
H. Nielsen.

[10] ISO/IEC 646, (1991): "Information Technology; ISO 7-bit coded character set for information
interchange".

[11] © CompuServe, Incorporated (June 15, 1987): "GIF ™, Graphics Interchange Format ™:
A standard defining a mechanism for the storage and transmission of raster-based graphics
information".

[12] BMP: "Device-independent bitmap format used as default graphics file format for Microsoft
Windows".

[13] ISO/IEC 11172-3 (1993): "Information technology; Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s; Part 3: Audio".

[14] ISO/IEC 13818-3 (1994): "Generic coding of moving pictures and associated audio - Audio part".

[15] ITU-T Recommendation G.711: "Pulse Code Modulation (PCM) of voice frequencies".

[16] Apple Computer, Incorporated: "Audio Interchange File Format (AIFF): A Standard for Samples
Sound Files".

[17] Sony: "Adaptive Transform Acoustic Coding".

[18] Sony: "Adaptive Transform Acoustic Coding II".

[19] ISO/IEC 14496-3: "Very low bitrate audio-visual coding; Part 3: Audio".

[20] ISO/IEC 11172-2 (1993): "Information technology; Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s; Part 2: Video".

[21] ISO/IEC 13818-2 (November 1994): "Generic coding of moving pictures and associated audio -
Video part". It is also standardized by ITU-T as Recommendation H.262.

[22] ISO/IEC 14496-2: "Very Low Bitrate Audio-Visual Coding".

[23] ITU-T Recommendation H.263: "Video coding for low bit rate communication".

[24] ISO 7498 (1984): "Open Systems Interconnection (OSI) Basic Reference Model".

[25] EN 50067: "Specification of the Radio Data System (RDS) for VHF/FM sound broadcasting in the
frequency range from 87,5 MHz to 108,0 MHz".

ETSI

Draft EN 301 234 V1.2.1 (1998-09)8

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following definitions apply:

body: The body carries any kind of data, where structure and content of the data are described in the header.

byte ordering: All numeric values using more than one byte have to be coded in Big Endian Format (most significant
byte first). In all schematics the bits are ordered with the most significant bit of a byte ("b7") at the left end and least
significant bit ("b0") at the right end of the drawing.

Conditional Access (CA): A mechanism by which user access to service components can be restricted.

DAB receiver: The Multimedia Object Transfer (MOT) specific definition of a DAB receiver includes decoding of the
DAB signal and resolving the multiplex structure of the main service channel.

data carousel: A distinct set of objects that are used for cyclic transmission.

data channels: The data channels in DAB (packet mode, X-PAD) provide the functionality on the transport layer in
order to convey the objects.

data decoder: The data decoder processes the MOT data stream and applies both packet mode/X-PAD specific
decoding and then MOT decoding.

ensemble: The transmitted signal, comprising a set of regularly and closely-spaced orthogonal carriers. The ensemble is
the entity which is received and processed. In general, it contains programme and data services.

eXtended Programme Associated Data (X-PAD): The extended part of the PAD carried towards the end of the DAB
audio frame, immediately before the scale factor Cyclic Redundancy Check (CRC). It is used to transport information
together with an audio stream which is related or synchronized to the X-PAD. No provisions for error detection are
included in X-PAD so that additional protocols are required for some applications.

Fast Information Channel (FIC): A part of the transmission frame, comprising the Fast Information Blocks (FIB),
which contains the multiplex configuration information together with optional service information and data service
components.

header: The header consists of the header core and the header extension.

header core: The header core contains information about the size and the content of the object, so that the receiver can
determine whether it has system resources to decode and present the object or not.

header extension: The header extension includes additional information about the body.

Main Service Channel (MSC): A channel which occupies the major part of the transmission frame and which carries
all the digital audio service components, together with possible supporting and additional data service components.

MOT data service: A data service comprises information which is intended to be presented to a user, i.e. text, pictures,
video or audio sequences. An application decoder is required to gain access to the data. This might be a viewer which
decodes text and pictures and displays them on a screen. It might also be a Multimedia engine which manages various
inputs and outputs a number of different audio-visual media synchronously. In terms of MOT a data services consists of
one or an ordered collection of several objects. It is not in the scope of MOT to deal with the content of the object, but
to carry information to support both presentation and handling of these objects.

MOT directory: Within a data carousel the MOT directory contains a complete description of the content of the
carousel.

MOT object: A MOT object is used to transfer data in DAB, the object contains a header and a body carrying the
payload.

MOT stream: One stream of MOT objects is transferred in an individual service component (packet mode) or as part of
the X-PAD of a programme service, where several MOT objects might be conveyed in parallel by interleaving.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)9

packet mode: The mode of data transmission in which data are carried in addressable blocks called packets. Packets are
used to convey MSC Data Groups within a sub-channel. The packet mode carries the load in packets of a certain size,
separating different streams of packets by specific addresses. Error detection and repetition are already covered by
packet mode and thus allow a reliable and flexible data transmission.

Programme Associated Data (PAD): Information which is related to the audio data in terms of content and
synchronization. The PAD field is located at the end of the DAB audio frame.

service: The user-selectable output which can be either a programme service or a data service.

service component: A part of a service which carries either audio (including PAD) or data. The service components of
a given service are linked together by the Multiplex Configuration Information (MCI). Each service component is
carried either in a sub-channel or in the Fast Information Data Channel (FIDC).

service label: Alphanumeric characters associated with a particular service and intended for display in a receiver.

transportId: This 16-bit field shall uniquely identify one data object (file and header information) from a stream of
such objects. It shall be used to indicate the object to which the information carried in the segment belongs or relates. It
is valid only during the transport time of the object.

transport time: The transport time is the entire duration which is needed to transfer a MOT object completely
(including all repetitions), i.e. the time during which a particular TransportId is valid for one MOT object.

X-PAD Data Group: A package of data for carrying one segment of an MOT object in the Extended Programme
Associated Data (X-PAD).

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AIFF Audio Interchange File Format
ASCII American Standard Code for Information Interchange
ATRAC Adaptive Transform Acoustic Coding
BMP Windows Bitmap
CA Conditional Access
CRC Cyclic Redundancy Check
DAB Digital Audio Broadcasting
ECM Entitlement Checking Message
EMM Entitlement Management Message
ETS European Telecommunication Standard
FFT Fast Fourier Transform
FIB Fast Information Block
FIC Fast Information Channel
FIDC Fast Information Data Channel
GIF Graphics Interchange Format
HF High Frequency
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
JFIF JPEG File Interchange Format
JPEG Joint Photographic Experts Group
MCI Multiplex Configuration Information
MHEG Multimedia and Hypermedia information coding Experts Group
MIME Multipurpose Internet Mail Extensions
MJD Modified Julian Date
MOT Multimedia Object Transfer
MPEG Moving Pictures Expert Group
MSC Main Service Channel
PAD Programme Associated Data
PCM Pulse Code Modulation
PLI Parameter Length Indicator
Rfa Reserved for future addition
Rfu Reserved for future use

ETSI

Draft EN 301 234 V1.2.1 (1998-09)10

UTC Universal Time Co-ordinated
X-PAD Extended Programme Associated Data

4 General description of the MOT protocol

4.1 Requirements of Multimedia services
Multimedia in general can be referred to as information and its presentation in various formats (visible, audible, etc.)
and forms (text, pictures, video, etc.). The material is often structured and packaged into a number of containers or files
which shall be either completely available before the presentation or are delivered on request of the user.

Multimedia services require to control the presentation (e.g. the arrangement of visible information on a screen) and
therefore direct access to both hardware and software resources of the receiver/terminal is essential. The appropriate
time shall also be considered for the presentation. Thus it is required to synchronize the various elements (e.g. video
together with the sound), i.e. some kind of a runtime environment is necessary.

4.2 Problems MOT is attempting to solve
The MOT protocol is a data transport protocol specified to provide facilities for the transportation of Multimedia objects
in the DAB system. These objects can consist of:

- self-contained Multimedia objects, such as:

- MHEG (see ISO/IEC CD 13522 [4]); and

- Java [2]; or

- actual files containing for example:

- JPEG pictures (see ISO DIS 10918 [5]);

- American Standard Code for Information Interchange (ASCII) text;

- Moving Pictures Expert Group (MPEG) video or audio sequences.

For transmission of Multimedia objects, the protocol provides the means to use the following data channels of the DAB
system:

- PAD; and

- Packet Mode.

Session layer

Transport layer Packet Mode/X-PAD

Network layer Packets/X-PAD subfields

Figure 1: Target for the MOT protocol

MOT interconnects the closed and well defined world of DAB to the open world of Multimedia services with its large
variety of systems and data formats. It comprises functionality to carry information to the terminal, respectively the user.

MOT does not cover issues specific to runtime environments to control Multimedia services, i.e. the interpretation and
execution of object code, pseudo code or script languages. This shall be included in the particular application.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)11

4.3 Receiver architecture reference model
An example decoding process for MOT objects is shown in figure 2 (data flow top-down).

HF Part

FFT, Demux,

Channel Decoder

PAD stripping

Packet Mode DecoderPAD Decoder

MOT Decoder

Application

D
e
co

d
in

g
 p

ro
ce

ss
P

re
se

n
ta

tio
n

PacketXPAD subfield

Data GroupData Group

Object data Additional information

speaker

Multimedia

terminal

Audio Decoder

ETS 300 401

Figure 2: Example scheme for the data decoding part of a DAB receiver

Additional information: Additional information is carried in the MOT header. It is decoded by the MOT decoder and
forwarded.

Object data: Object data is carried in the MOT body.

Parts within the grey background (HF part, FFT/demux/channel decoder, PAD stripping, PAD decoder, packet mode
decoder and audio decoder) are defined in ETS 300 401 [1]).

Interface to the MOT decoder: Communication between PAD/packet mode decoder and MOT decoder uses complete
Main Service Channel (MSC) Data Groups (see ETS 300 401 [1]). The session header of a Data Group cannot be
omitted, although it is optional in the DAB specification, since it carries the TransportId, which is necessary to
reassemble the MOT objects.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)12

5 Object description
An object consists of an ordered collection of the following three parts (see figure 3):

Header core: The header core contains information about the size and the content of the object, so that the receiver can
determine whether it has system resources to decode and present the object or not.

Header extension: The header extension includes information that supports the handling of the objects (e.g. memory
handling) and provides additional information that can support an application.

Body: The body carries any kind of data, where structure and content of the data is described in the header core and the
header extension.

For transportation the object is split into several segments, at least one header segment and, if present, one body
segment. Each segment is mapped into one Data Group as described in clause 6.

The header is separated from the body during transportation in order to:

- have the possibility to repeat the header several times before and during the transmission of the body (which is
useful when transmitting long objects);

- send the header in advance in order to give the receiver the opportunity to "be prepared in advance" to the data
that is going to be received;

- send the header unscrambled when the body is scrambled.

7 bytes variable variable

header core header extension object body

Figure 3: General object structure

The header shall be sent at least once preceding the body of the object.

5.1 Header core
The header core shall be coded as shown in figure 4:

28 bits 13 bits 6 bits 9 bits

body size header size content type content subtype

b55 b28 b27 b15 b14 b9 b8 b0

Figure 4: Structure of the header core

Body size: This 28-bit field, coded as an unsigned binary number, indicates the total size of the body in bytes. The body
size all ones "FFFFFFF" (hexadecimal notation) indicates unknown size (at the beginning of the transmission).

Header size: This 13-bit field, coded as an unsigned binary number, indicates the total size of the header in bytes.

Content type: This 6-bit field indicates the main category of the body's content (see table 1). All other codes are
reserved for future use.

Content subtype: This 9-bit field indicates the exact type of the body's content depending on the value of the field
ContentType (see table 1). All other codes are reserved for future use.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)13

Table 1: Content types and content subtypes

Content type

b14 b9

Interpretation Content subtype

b8 b0

Interpretation

000000 general data 000000000 Object Transfer
000000001 MIME/HTTP [8], [9]

000001 text 000000000 Text (US ASCII) [10]
000000001 Text (see ISO Latin 1) [6]
000000010 HTML [3]

000010 image 000000000 GIF [11]
000000001 JFIF [5]
000000010 BMP [12]

000011 audio 000000000 MPEG I audio Layer I [13]
000000001 MPEG I audio Layer II [13]
000000010 MPEG I audio Layer III [13]
000000011 MPEG II audio Layer I [14]
000000100 MPEG II audio Layer II [14]
000000101 MPEG II audio Layer III [14]
000000110 uncompressed PCM audio [15]
000000111 AIFF [16]
000001000 ATRAC [17]
000001001 ATRAC II [18]
000001010 MPEG 4 audio [19]

000100 video 000000000 MPEG I video [20]
000000001 MPEG II video [21]
000000010 MPEG 4 video [22]
000000011 H263 [23]

000101 MOT transport 000000000 Header update
000110 system 000000000 MHEG [4]

000000001 Java [2]
111111 proprietary table 000000000

...
111111111

proprietary

5.2 Header extension
The header extension consists of a list of different parameters identified by the related ParameterId field.
These parameters describe several attributes of the object. Some of these parameters may occur more than once as
described separately for the different parameters.

The header extension is used to carry additional information about the object. Depending on the character of the object
the header extension may contain parameters as listed in table 2.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)14

5.2.1 Structure of the header extension

The general structure of the header extension is shown in figures 5 and 6:

Parameter 0 Parameter 1 Parameter n

Figure 5: General structure of the header extension

Parameters belong to one of the types:

2 bits 6 bits

PLI = 00: PLI ParamId Reserved for future use (Rfu)

2 bits 6 bits 8 bits

PLI = 01: PLI ParamId DataField

2 bits 6 bits 32 bits

PLI = 10: PLI ParamId DataField

2 bits 6 bits 1 bit 7 or 15 bits n × 8 bits

PLI = 11: PLI ParamId Ext DataFieldLength Indicator 'n' DataField

Figure 6: Structure of the header extension parameter

PLI (Parameter Length Indicator): This 2-bit field describes the total length of the associated parameter.
The following definitions apply:

- b1 b0

- 0 0 total parameter length = 1 byte; no DataField available;

- 0 1 total parameter length = 2 bytes, length of DataField is 1 byte;

- 1 0 total parameter length = 5 bytes; length of DataField is 4 bytes;

- 1 1 total parameter length depends on the DataFieldLength indicator (the maximum parameter length is
32 770 bytes).

ParamId (Parameter Identifier): This 6-bit field identifies the parameter. The coding is defined in table 2.

Ext (ExtensionFlag): This 1-bit field specifies the length of the DataFieldLength Indicator and is coded as follows:

- 0: the total parameter length is derived from the next 7 bits;

- 1: the total parameter length is derived from the next 15 bits.

The ExtensionFlag is only present if the PLI field is set to 11.

DataFieldLength Indicator: This field specifies as an unsigned binary number the length of the parameter's DataField
in bytes. The length of this field is either 7 or 15 bits, depending on the setting of the ExtensionFlag.

The DataFieldLength Indicator is only present if the PLI field is set to 11.

DataField: This field contains the parameter data and is only present if the contents of the PLI field is either 01, 10
or 11.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)15

5.2.2 Future expansion of the parameter data field

The parameter is determined by the ParamId field, whereas the length is resolved by the Parameter Length Indicator
(PLI) and the DataFieldLength Indicator. In the following subclause a detailed description of each defined parameter is
given. The generic structure and flexibility of MOT allows future expansions of the parameter data field.

Each parameter can be expanded by appending new fields at the end of the data field (see figure 7).

1 bit 7 bits 8 bits N × 8 bits

PLI

11

ParamId

000110

Ext.

0

Length

1 + N
VersionNumber new parameter field

Figure 7: Example for the expansion of a defined parameter

5.2.3 Parameters of the header extension

The following parameters are specified to be used within the header extension. All the other Parameter Types are
reserved for future use.

Table 2: Coding of extension parameter

Parameter
type

b5 b0

Parameter Data field
length

Possible
occurrences

Data field Interpretation

000010 CreationTime 4 bytes
6 bytes

only once see P.1 see P.2

000011 StartValidity 4 bytes
6 bytes

only once see P.1 see P.3

000100 ExpireTime 4 bytes
6 bytes

only once see P.1 see P.4

000101 TriggerTime 4 bytes
6 bytes

once or several times see P.1 see P.5

000110 VersionNumber 1 byte only once see P.6 see P.6
000111 Repetition Distance 4 bytes only once see P.7 see P.7
001000 Group Reference 6 bytes once or several times see P.8 see P.8
001010 Priority 1 byte only once see P.9 see P.9
001011 Label 19 bytes only once see P.10 see P.10
001100 ContentName variable only once see P.11 see P.11
001111 Content Description variable only once see P.12 see P.12
111111 Application specific variable once or several times not defined not defined

P.1 Coding of time parameters: The time information shall be coded as shown in figure 8:

Validity
flag

MJD
date

UTC
time

UTC
flag

hours minutes millisecondssecondshours minutesshort form
(UTC flag =0)

long form
(UTC flag =1)

Rfu

Figure 8: Encoding of time information

ETSI

Draft EN 301 234 V1.2.1 (1998-09)16

Validity flag: This bit is used to indicate whether the time and date information (UTC and MJD) carried in the time
parameters is valid or not as follows:

- Validity flag = 0: "Now"; MJD and UTC shall be ignored and be set to 0;

- Validity flag = 1: MJD and UTC are valid.

P.2 CreationTime: Authoring date of the object. The value of the parameter field is coded in the UTC format
(see ETS 300 401 [1]).

P.3 StartValidity: The received object is valid after the time indicated. The value of the parameter field is coded in
the UTC format (see ETS 300 401 [1]).

P.4 ExpireTime: The received object is not valid anymore after the time indicated. The value of the parameter field
is coded in the UTC format (see ETS 300 401 [1]). If this parameter is not present the object is valid for an undefined
period of time (up to the receiver). The object is not valid anymore after it expired and therefore it should not be
presented anymore.

P.5 TriggerTime: This parameter specifies the time for when the presentation takes place. The TriggerTime
activates the object according to its ContentType. The value of the parameter field is coded in the UTC format
(see ETS 300 401 [1]).

P.6 VersionNumber: If several versions of an object are transferred, this parameter indicates its version number.
The parameter value is coded as an unsigned binary number, starting at 0 and being incremented by 1 modulo 256 each
time the version changes. If the VersionNumber differs, the content of the body was modified.

P.7 RepetitionDistance: To support advanced caching of objects in the receiver, this parameter indicates a
guaranteed maximum time until the next repetition of an object. The resolution in the time domain is 1/10 second to
allow an exact synchronization, whereas the maximum time which can be indicated reaches up to 1 677 721 seconds
(equal approx. 19 days, 10 hours and 2 minutes) for very slow repetition rates.

8 bits 24 bits

Rfa RepetitionDistance

Figure 9: Coding of the RepetitionDistance

P.8 GroupReference: A number of objects forming a logical entity can be managed using the GroupReference,
which allows to identify all members of the group by a single identifier. The 32-bit GroupId can separate a large number
of groups in parallel or during a long time period. "Number of elements" equals "0" means undefined number of
elements. If this "Number of elements" parameter is explicitly given, each group can comprise max. 65 535 elements.

32 bits 16 bits

GroupId Number of elements

Figure 10: Coding of the GroupReference

ETSI

Draft EN 301 234 V1.2.1 (1998-09)17

P.9 Priority: The parameter is used to indicate the storage priority, i.e. in case of a "disk full" state only the objects
having a high priority should be stored. It indicates the relevance of the content of the particular object for the service,
i.e. a home page of a HTML based service has a high priority and should therefore not be deleted first, whereas pictures
(e.g. buttons, etc.) are not as important as the home page and hence can be deleted first in case of a memory overflow.
The possible values range from 0 = highest priority to 255 = lowest priority.

P.10 Label: The field of this parameter starts with a character set indicator (see ETS 300 401 [1]). The other 4 bits are
Reserved for future additions (Rfa). Thereafter the label text follows. The total number of characters is fixed to 16.
The field of this parameter is coded according to "Service label" (see ETS 300 401 [1]), but without the starting
Service Id (see figure 11). It should contain the label text to be displayed on 8- or 16-digit text displays. Labels are used
to launch applications, they might be presented to the user.

4 bits 4 bits 16 × 8 bits 16 bits

character set
indicator

Rfa character field character flag field

b7 b4 b3 b0

Figure 11: Coding of the Label

P.11 ContentName: The DataField of this parameter starts with a one byte field, comprising a 4-bit character set
indicator (see table 3) and a 4-bit Rfa field. The following character field contains a unique name or identifier for the
object. The total number of characters is determined by the DataFieldLength indicator minus one byte.

Hierarchical structures should use a slash "/" to separate different levels. No system specific restrictions shall be applied.
Slashes forward inside the ContentName separate levels and slashes are not permitted for any other meaning than this.

Table 3: Character set indicator for the ContentName

b7 b4 Description
0 0 0 0 complete EBU Latin based repertoire [25]
0 0 0 1 EBU Latin based common core, Cyrillic, Greek [25]
0 0 1 0 EBU Latin based core, Arabic, Hebrew, Cyrillic, Greek [25]
0 0 1 1 ISO Latin Alphabet No 2 (see ISO-8859 Part 2 [7])
0 1 0 0 ISO Latin Alphabet No 1 (see ISO-8859 Part 1 [6])

4 bits 4 bits (n - 1) bytes

character set
indicator

Rfa character field

b7 b4 b3 b0

Figure 12: Coding of the ContentName and the ContentDescription

P.12 ContentDescription: The field of the parameter starts with a 4-bit character set indicator (see ETS 300 401 [1]).
The other 4 bits are Reserved for future additions (Rfa). Afterwards the text describing the content of the object follows.
This description shall be presented on receivers with limited display capabilities (i.e. text-only). The total number of
characters is determined by the DataFieldLength Indicator, decreased by the starting character set indicator (one byte).

ApplicationSpecific: This parameter field contains private parameters exclusively used by the application itself and
therefore no specification is required.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)18

5.3 Object body
The object body contains the data to be transported (e.g. a file). The structure of the content of the object body is
application specific and not subject to standardization within the present document.

6 Object transport mechanisms
The data flow at the transmitter side is shown in figure 13. The different data files which should be transferred via DAB
are first processed in the MOT encoder, producing MOT objects. Then the PAD or packet mode specific coding is
applied. For all the subsequent stages see ETS 300 401 [1]. This packet mode sub-channel may contain a number of
service components, respectively streams of MOT objects, separated by the packet address. Finally the sub-channels
(stream mode audio, stream mode data, packet mode) are multiplexed into the DAB ensemble.

DAB
audio encoder

audio

DAB-
multiplexer

data

data

data PAD
PAD encoder

packet
mode
dataMOT

encoder

packet
mode

encoder

packet
multi-
plexer

� �
� �
� �

MOT
encoder

data

Figure 13: Data transfer in DAB using MOT

Figure 13 can be converted into a layered scheme indicating the steps which have to be performed (see figure 14).

object data

 (files)

MOT encoding

packet mode / PAD

encoding

DAB multiplexing

MOT decoding

packet mode / PAD

decoding

DAB demultiplexing

session layer

transport layer

network layer

additional

information
object data

 (files)

additional

information

segments / data groups

packets / XPAD subfields

Figure 14: Layered approach

The coding procedure starts at the object level, which stands for the files to be transferred and processed further.

MOT encoding generates the complete MOT objects including the additional information and transforms these objects
into segments of an appropriate size for the lower layer.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)19

Packet mode/PAD encoding transforms these segments into Data Groups and further into packets which fit into the
container provided by DAB (X-PAD subfields, packet mode packets).

DAB encoding and multiplexing handles the output of the PAD/packet mode encoder and supplies either a complete
packet mode sub-channel or fills the X-PAD fields of the audio stream.

Subclauses 6.1, 6.2 and 6.3 describe the coding of data objects on the two layers below the object layer as well as the
different strategies to transfer the obtained packets or X-PAD subfields in data channels.

6.1 Segmentation of objects - transport level
The object, i.e. header core and header extension as well as object body are split into segments to allow a flexible
handling of large data quantities (e.g. big files).

 Body segment 1

File

Data Group Type 3

Data group
data field

Data Group Type 4 or 5

MSC data
group CRC

Header extensionHeader core

Session
header

Data group
header

Data group
data field

Session
header

Data group
header

 Body segment 2 Body segment n

SegmentSegmentation
header

Segmentation
header

Segment

MSC data
group CRC

Figure 15: Segmentation of objects on network level

DataGroup: Information shall be structured into Data Groups for transport in one or more packets or X-PAD subfields.
A Data Group shall contain a Data Group header, a Session header, a Data Group data field and an optional Data Group
CRC. The structure of a Data Group is shown in ETS 300 401 [1].

NOTE: The user access field in the Session header (see ETS 300 401 [1]) is not optional if MOT segments are
carried in MSC Data Groups. It cannot be omitted, since this field contains the TransportId, necessary for
MOT object transfer. The use of the MSC Data Group CRC is strongly recommended.

Segmentation of objects is performed in three steps, where the first step refers to the first layer (MOT encoding) in
figure 14:

- The header core and, if required, the header extension describing the file are created. After that the file, now
called the body of the object, and its header information are independently split into segments of an individual
size. The header shall be sent at least once preceding the body of that object and it can be inserted during the
body transmission if required (see subclause 6.3.2).

- The second and third step reflect the second layer (packet mode/PAD encoding) in figure 14.

The Segmentation header (see subclause 6.1.1) is attached to all segments and both of the above mentioned segment
types (header information and body data) are packed in two different Data Group types (see subclauses 6.1.2 and 6.1.3).

The Data Groups are split in the appropriate packet size for Packet Mode packets or X-PAD data fields.

Layer three in figure 14 (layered approach) is covered by ETS 300 401 [1] and does not belong to the MOT protocol.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)20

The first occurrence of a Data Group type 3 containing header information is referred as the beginning of the object
transmission.

Different segment sizes for header and body can be used to provide independent management of header information and
body data in the two Data Group types. Figure 16 describes this segmentation method.

All segments containing header information have the Segmentation Size X and all segments containing body data have
the Segmentation Size Y. Size X and Size Y can be different. The last segments are just as long as the remaining bytes
of header information and body data require. There shall be no padding bytes at the end of each Data Group.

Header core Header extension Body

Body
segment 2

Header
segment 1

Header
segment 2

Header
segment n

Body
segment 1

Body
segment m

Segment
size X

Segment
size X

Segment
size Y

Segment
size Y

Remaining
bytes of
segment
size ≤ X

Remaining
bytes of
segment
size ≤ Y

Figure 16: Segmentation sizes

6.1.1 Segmentation header

The Segmentation header (see figure 17) shall be attached to each segment of an object and contains information about
the size of the segment and the remaining repetitions of the entire object.

3 bits 13 bits

Repetition count Segment size

b15 b13 b12 b0

Figure 17: Segmentation header

Repetition Count: This 3-bit field indicates, as an unsigned binary number, the remaining transmission repetitions for
the current object (repetition on object level, see figure 23). Exceptionally, the code "111" shall be used to signal that
the repetition continues for an undefined period (> 6 times).

Segment Size: This 13-bit field, coded as an unsigned binary number, indicates the size of the segment data field in
bytes. The maximum length which can be signalled is 8 189 bytes according to the limited total length of a Data Group
(8 191 bytes), so that both, the Segment and the Segmentation header fit into one Data Group.

6.1.2 Transport of header segments

Header information, i.e. the header core and the header extension, are transferred in Data Group type 3
(see ETS 300 401 [1]).

Table 4: Header Data Group types

Data Group type b 3 b0 Description
3 0 0 1 1 MOT header information

ETSI

Draft EN 301 234 V1.2.1 (1998-09)21

6.1.3 Transport of body segments

Body data segments are transferred in Data Group type 4 (see ETS 300 401 [1]). In case of that CA mechanisms are
applied the encrypted MOT body segments are carried in Data Group type 5. The related ECM/EMM information,
conveyed in Data Groups of type 1, is related to the object with the Transport Id encoded in the Session header.

Table 5: Body Data Group types

Data Group type b 3 b0 Description
4 0 1 0 0 MOT data
5 0 1 0 1 MOT data and CA parameters

6.2 Packetizing segments - network level
The coding of the data on network level is described in detail in ETS 300 401 [1], therefore subclauses 6.2.1 and 6.2.2
only explain the actual mapping of the segments obtained on the transport layer into the packet mode packets or X-PAD
subfields.

6.2.1 Packet mode

The Data Groups containing MOT data are transmitted in one or more packets sharing the same address
(see ETS 300 401 [1]).

MSC Data Group

Segment CRC
Segmentation

Header
Session
Header

Data Group
Header

Packet data field Packet
CRC

Packet
header Packet data field Packet

CRC
Packet
header

...

Data Group Data Field

Figure 18: Relationship between a MSC Data Group and a sequence of packets

6.2.2 X-PAD

The Data Groups containing MOT data are transmitted in one or more X-PAD subfields (see ETS 300 401 [1]) with the
following X-PAD application types:

Table 6: X-PAD application types for MOT

X-PAD application type:
1 MOT X-PAD Data Group length

12 MOT, start of X-PAD Data Group
13 MOT, continuation of X-PAD Data Group
14 MOT, start of CA messages
15 MOT, continuation of CA messages

NOTE: The X-PAD data channel allows to carry several applications in parallel
(e.g. MOT and Dynamic Label), but only one application of a specific type,
consequently the X-PAD data channel belonging to a programme service can
carry not more than one MOT stream.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)22

6.2.2.1 Indication of the Data Group Length

The X-PAD Data Group Length Indicator is related to MOT objects carried in X-PAD and is used to indicate the length
of the following X-PAD Data Group of an application type 12 and 14. Its structure is described hereafter.

Rfa: This 2-bit field is reserved for further amendment.

X-PAD Data Group Length: This 14-bit field (see figure 19) indicates as an unsigned binary number the length of the
following Data Group in bytes.

CRC: A checksum is calculated over the Rfa and the X-PAD Data Group Length field according to the polynomial:

G(x) = x16 + x12 + x5 + 1

The initial state of the shift register is all bits set to 1. The CRC word shall be complemented (1's complement) prior to
transmission.

2 bits 14 bits 16 bits

Rfa X-PAD Data Group Length CRC

Figure 19: Coding of the X-PAD Data Group Length

The X-PAD Data Group length covers the Data Group header, the session header, the Data Group data field and the
optional CRC, if present (see figure 20).

data group header session header data group data field optional CRC

X-PAD Data Group Length

Figure 20: Length of the Data Group

The X-PAD Data Group Length Indicator is carried as a separate X-PAD subfield with the application type 1 and shall
be transmitted immediately before X-PAD subfields with the application type 12 or 14 "MOT, start of X-PAD Data
Group" (see table 6 and figure 21). It always refers to the following application type 12/14.

X-PAD Data Group

Length Indicator

X-PAD subfield

1st Part of the Data Group

X-PAD subfield

2nd Part of the Data Group

X-PAD AppType 1 X-PAD AppType 12 or 14 X-PAD AppType 13 or 15

Figure 21: Position of the DataGroup Length Indicator

In principle the transmission of an X-PAD Data Group may be interrupted by another X-PAD Data Group
(see ETS 300 401 [1]).

There is an exception from this basic rule: The X-PAD Data Group Length Indicator and the start of the following
X-PAD Data Group (e.g. X-PAD Data Group with application type 12 or 14) shall not be interrupted by another Data
Group. This is to ensure the close and unique link between the X-PAD Data Group Length Indicator and the X-PAD
Data Group it is referring to.

The X-PAD Data Group Length Indicator shall be applied to variable size X-PAD as well as to short X-PAD.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)23

MSC Data Group

Segment CRC
Segmentation

Header
Session
Header

Data Group
Header

XPAD Data
Subfield

XPAD Data
Subfield

...

Data Group
Length Indicator

Application
Type 12 or 14

Application
Type 1

Application
Type 13 or 15

XPAD Data
Subfield

Application
Type 1

XPAD Data
Subfield

XPAD Data
Subfield

Application
Type 13 or 15

...

Data Group Data Field

Figure 22a: Example for transportation of Data Groups in X-PAD subfields in case of short X-PAD

MSC Data Group

Segment CRC
Segmentation

Header
Session
Header

Data Group
Header

XPAD Data
Subfield

XPAD Data
Subfield

...

Data Group
Length Indicator

Application
Type 12 or 14

Application
Type 13 or 15

Application
Type 1

XPAD Data
Subfield

XPAD Data
Subfield

Application
Type 13 or 15

...

Data Group Data Field

Figure 22b: Example for transportation of Data Groups in X-PAD subfields
in case of variable size X-PAD

A complete specification of the transport signalling in X-PAD is given in ETS 300 401 [1].

6.3 Different methods of transferring MOT objects.
The MOT protocol allows to flexibly handle and transmit the object, or fragments of it, on various levels shown in
figure 14. The methods which can be applied are listed hereafter together with the level they refer to:

- Repetition on object level object level;

- Insertion of additional header information transport level;

- Interleaving objects in one MOT stream transport level;

- Repetition of Data Groups/segments transport level.

In subclauses 6.3.1 to 6.3.4 the methods are explained separately. Several methods can be applied simultaneously, but
interference shall be considered, especially if they refer to the same level.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)24

6.3.1 Repetition on object level

An object can be transmitted several times so that the receiver can replace an object or segments of an object, lost due to
transmission errors, with the repetition of the same object or object segments if they are received without transmission
errors. Figure 23 shows the repetition method based on transmitting the entire object a number of times.

Object

Segments 1 2 3 4

Repetition on
object level 1 2 3 4 1 2 3 4 1 2 3 4

A

A

Figure 23: Repetition on object level

6.3.2 Insertion of additional header information

During the transmission of body Segments (Data Groups type 4 or 5) of large objects it can be useful to insert the
complete header or part of the header information carried in Data Groups type 3 (see figure 24). This allows the data
decoder to detect the object even if it has not received the start of the object transmission. The data decoder needs only
to complete the missing segments if the object is repeated.

Body
Segment 1

File

Data Group
Type 3

Data Group

Header
extension

Header
core

Data Group
Type 3

Data Group

Data Group
Type 4 or 5

Data Group

Data Group
Type 4 or 5

Data Group

Data Group
Type 3

Data Group

Data Group
Type 4 or 5

Data Group

Data Group
Type 4 or 5

Data Group

additional insertion of Data Group with Type 3

Body
Segment 2

Body
Segment n...

...

Figure 24: Insertion of header information

ETSI

Draft EN 301 234 V1.2.1 (1998-09)25

6.3.3 Interleaving objects in one MOT stream

Transfer of Data Groups of different MOT objects in parallel.

With the MOT protocol it is possible to transmit several objects in parallel in one single data channel (i.e. in one X-PAD
application or with one Packet Address). The different objects are separated by their TransportId (see ETS 300 401 [1]).

Data Group
Transport Id x

Data Group
Transport Id y

Data Group
Transport Id x

Data Group
Transport Id z

Data Group
Transport Id x

Data Group
Transport Id y

Object Y
Object Z

Object X

Figure 25: Interleaving Data Groups

6.3.4 Repetition of Data Groups/segments

Segments of an object can be transmitted several times so that the receiver can replace those segments, lost due to
transmission errors, with the repetition of the same object segments received without errors. Figure 26 shows the
repetition method based on transmitting every segment of an object a number of times.

Object

Segments 1 2 3 4

Repetition on
segment level 1 1 1 2 2 3 3 4 43 43

A

Figure 26: Repetition of Data Groups/segments

7 Updating

7.1 Object update
An object is replaced by a new version of the same object, e.g. because the content may have changed.
The ContentName of the object which replaces an already existing one shall be the same as the substituted object.
An object cannot be partly updated since MOT just handles the object as an entity. The following parameters are used to
manage an update:

ContentName: This parameter is used to link the update to the object to be updated.

VersionNumber: Each time a complete object is updated its version number shall be incremented by 1 modulo 256.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)26

7.2 Updating header information/triggering objects
The header update is a specific method of updating the parameters of objects, where both header core and header
extension are sent after the entire object has already been transmitted. It is used to update the trigger time and other
extension parameters. The header update object shall consist at least of the parameters described hereafter:

ContentName: This parameter is used to link header update to the object to be updated.

ContentType: This parameter shall be set to 0x000101 = MOT Transport.

ContentSubType: This parameter shall be set to 0x0000000000 = UpdateHeader.

BodySize: This field shall be set to zero.

The following header extension parameters cannot be replaced during a header update:

ContentName: This parameter is used to link the header update to the object to be updated.

VersionNumber: This parameter, if used, is used to link the header update to a specific version of the object to be
updated. If the VersionNumber is omitted, the HeaderUpdate is not specific to a certain version of the object, but refers
to all versions.

header core header extension

body size = 0 header size
content type

= 0x000101

content subtype

= 0x0000000000
parameter parameter...

version

number

parameter

content name

Figure 27: Structure of the header update

7.2.1 Triggering an object

An object can be triggered by updating its trigger time. The object can be transmitted and stored in advance and
activated by sending the HeaderUpdate (comparable to e.g. pushing the "red button"). The transfer of the HeaderUpdate
requires just a short time since it is a very small object, its size is only a few bytes.

7.2.2 Deletion of an object

An object can be deleted by updating its expire time. After expiration the object shall not be presented anymore.

8 MOT directory

8.1 Introduction
This clause describes the format of a 'directory' for the MOT protocol that can be used (i.e. the MOT directory is
optional), providing a management mechanism, when broadcasting MOT objects in a data carousel. A data carousel is a
delivery system that allows an application server (the broadcast component of an application) to present a set of distinct
objects to an application decoder (a program that is run by a receiver) by cyclically repeating the contents of the
carousel. (For some applications the data carousel may complete only a few or a single cycle).

ETSI

Draft EN 301 234 V1.2.1 (1998-09)27

Within a data carousel, a directory is used to provide a complete description of the contents of the carousel (i.e. the
headers of the objects), together with sufficient information to find the data for each described object. Version control
mechanisms applied both to the objects within the carousel and the directory itself provides the ability to correctly
manage updates to the carousel with minimum effort and at all times ensure that the correct version of an object is used
by the application.

If an application requests a particular object, the receiver can easily determine by looking in the directory a) whether or
not the requested objects exists within the carousel and b) where to find the object data. If the object the application
requests is not stored in the receiver it may simply wait for the next time that the object is broadcast. If desired, the
receiver may optionally implement caching strategies to reduce the latency of accesses by the application decoder and
improve the performance of the carousel.

8.1A Assembly of MOT objects and MOT directory
MOT transfers objects by dividing both their headers and bodies into fixed length segments and then transferring each
segment within an MOT data group. In order to reassemble each object (with body and header), the MOT decoder uses
a Transport Id and a Segment number carried in the Session Header field of the data group to identify which segment of
which object the data group is carrying. The Transport Id is a unique identifier for the object within the carousel and is
also used to provide version management of the data. Whenever the data for an object changes, the Transport Id is also
changed. The mechanism for assembling the MOT directory is identical.

8.2 MOT directory coding
The MOT directory is the table of contents for the MOT data carousel and is the mechanism for controlling access to the
objects. Any request for an object can be processed by looking up the object in the MOT directory and using the
directory to identify the Transport Id of the desired object. The directory is also the key to managing version control of
objects within the MOT carousel; if the Transport Id of the directory changes, the contents of the carousel must have
changed and a simple examination of the directory can identify all the objects that have changed.

The directory contains parameters to describe the entire carousel together with a list of the required directory
information for each object within the carousel. The structure of the MOT directory is shown in figure 28.

b15 b0

Number
Of Objects

16 bits

b1 b0

Rfa

2 bits

b23 b0

Carousel
Period

24 bits

Segment
Size

13 bits

b13 b0
Directory
Extension

Length

16 bits

b0b15

... Directory
Entry n

... Directory
Entry N

Directory
Entry 1

Directory
Extension

m x 8 bits

b15 b0
Transport Id

(object n)

16 bits

MOT Header
(object n)

Rfu

1 bit

b0

Parameter 1 Parameter p Parameter P... ...

b1 b0

PLI

2 bits

ParamId

6 bits

b5 b0

Parameter Data

b29 b0

Directory
Size

30 bits

b1 b0

Rfu

2 bits

Figure 28: Structure of the MOT directory

Rfu: This 2-bit field shall be reserved for future use of the remainder of the structure. The bit shall be set to zero for the
currently specified definition of the MOT directory. A MOT decoder has to verify the value of this bit.

Directory Size: Indicates the total size of the MOT directory in bytes.

Number Of Objects: Indicates the total number N of objects described by the directory.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)28

Carousel Period: Indicates the maximum time in tenths of a second for the carousel to complete a cycle. It is the
longest time taken for any object in the carousel to be repeated in the transmitted signal.

Rfu: This 1-bit field shall be reserved for future use of the remainder of the structure. The bit shall be set to zero for the
currently specified definition of the MOT directory. A MOT decoder has to verify the value of this bit.

Rfa: This 2-bit field shall be reserved for future additions. The bits shall be set to zero until they are defined.

Segment Size: Indicates the segment size in bytes that will be used for the segmentation of objects within the MOT
carousel. A value of 0 indicates that objects within the carousel may have different segmentation sizes. The last segment
of an object may be smaller than this segment size.

Directory Extension Length: Indicates the total number of following Directory Extension bytes.

Directory Extension: Carries a list of parameters which are used to describe the entire carousel. The structure of these
parameters is as defined for the MOT header extension parameters (cf. 5.2.1).

Transport Id : Identifies the object to which the following MOT header refers (cf. 8.1.1).

MOT Header: Carries the header core and header extension of the object. The coding structure is exactly the same for
MOT headers in data groups of type 6 (i.e. in the MOT directory) and in data groups of type 3 (i.e. in a separate MOT
header, cf. 5.1 and 5.2). If a parameter of the header extension (for example CreationTime) appears in both the MOT
directory and the separate MOT header in an MOT-stream, the entries in both places have to be identical, to ensure
consistency of the parameters. This is also true if a parameter holds several parameter entries of that type. It is however
not mandatory that a parameter type of the header extension, that is optional to both the MOT directory and the separate
MOT header, is present both in the MOT directory and the separate MOT header. In particular this concerns those
parameter types relevant for the object transfer (e.g., the ExpireTime parameter is not useful in the MOT directory but in
the MOT header). The separate MOT object headers and the extension parameters of the MOT directory shall
independently provide the application decoder with complete information.

8.2.1 Parameters of the directory extension

Parameters in the MOT header are used to describe objects within the carousel. A number of different parameters are
available but the way in which they are used to access the carousel is defined by the application that is supported by the
MOT carousel. For a large number of applications, the content name parameter will be the access point for objects.

Within the Directory Extension field, the permitted parameters types are defined in Table 7.

Table 7: Directory Extension parameters

ParamId Description
0x00 - 0x1f Reserved for MOT
0x20 - 0x3f Application specific

8.2.2 Segment size of the MOT directory

For ordinary objects within an MOT carousel, the segmentation size may be already known by the MOT decoder from
the directory, but the size of segments for the directory cannot be known before they are received.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)29

8.2.3 Identification of the MOT directory

The directory is the key to accessing any object within the carousel and so it must be possible for a MOT decoder to
filter for the directory easily. Within an MOT stream that contains a directory the following rules apply:

- For each carousel of objects there shall be one directory that describes all objects within the carousel.

- An MOT stream shall contain at most one carousel.

In order to provide easy and effective filtering for the directory, a particular data group type shall be used - Type 6:
MOT directory. To identify the MOT directory, the MOT decoder should filter for the directory by looking for data
groups with a type value of 6. Because there can only ever be one directory within the stream of data groups, this can
always be done unambiguously. Once acquired, changes to the directory can always be detected by looking for changes
in the TransportId of the MOT directory.

NOTE: The MOT directory is an entity of its own, i.e. different to MOT objects, it is not split in header and body.

8.3 Use of the MOT directory

8.3.1 Segment reception order

The order in which MOT segments are received is unimportant - the Segment Number and Transport Id fields of each
segment allow accurate reconstruction of the MOT directory (and of each object) regardless of when the individual
segments are received.

8.3.2 Service acquisition

The key to acquiring a service broadcast in a carousel is reception of the MOT directory. Once this has been received,
the complete structure and contents of the carousel is known, even if the data for the objects themselves has not yet been
received. If the scope of the carousel is known, the receiver has all the information it requires to process requests for an
object from an application - it knows whether or not a requested object exists within the carousel and how to identify the
object when it is broadcast.

The MOT decoder can always determine the correct contents of the carousel by examining the current directory - there
is no need for a MOT decoder to have any knowledge about previously broadcast information in order to correctly
decode the current carousel.

If the MOT decoder does not directly receive a MOT directory (some data carousels may appear with a large number of
objects and therefore the MOT directory can not be sent often enough, due to overhead, to give short access time) it
could at first reassemble objects making use of MOT headers (in data group type 3) of those objects. By this it can build
up a list of objects that have been reassembled. When the MOT decoder has identified and reassembled an MOT
directory, at which point the objects will be completely described, it should base its continued receiving strategy on the
MOT directory instead of the MOT headers. It can then compare the objects already reassembled and stored before the
appearance of the MOT directory and decide on whether to keep them or not.

The MOT decoder is not restricted concerning making use of both the MOT directory and the MOT headers at the same
time in its receiving strategy. It is however strongly recommended that the receiving strategy is based solely on the MOT
directory, if present (note that the use of the MOT directory is optional).

ETSI

Draft EN 301 234 V1.2.1 (1998-09)30

8.3.3 Version control

The use of a data carousel implies an application data set that is essentially static - it should be unlikely that the data
carried in the carousel will change rapidly. However, the data may well need to change and it is important that a MOT
decoder is able to detect when the carousel has changed so that it can properly manage any cached data, if applicable.

Each object in the carousel has a Transport Id assigned to it which is carried both in the object segments
(for verification and identification) and in the MOT directory (for carousel management). If any object in the carousel is
changed (segmentation, header or body), a new Transport Id shall be assigned. This requires a change to the directory
and so the Transport Id of the directory shall also be changed to reflect this - any change to the carousel can be detected
merely by checking for changes in the Transport Id of the MOT directory.

8.3.4 Allocation of Transport Ids

The Transport Id field is used to uniquely identify a specific instance of an object. In order to minimize the risk of
confusion for the MOT decoder when rapid updates are taking place, broadcast servers should ensure that Transport Ids
are not re-used until all other available Transport Ids have been used.

NOTE: The Transport Id is used solely for the purpose of identifying the object during transport - it has no
application significance whatsoever.

8.3.5 Prioritizing objects within the carousel

Because the transmission order of objects (and also their segments) within the carousel is unimportant, it follows that
objects which have more significance than others to the application may be repeated within one turn of the carousel, in
order that the acquisition time for these objects is minimized. In particular, the directory may be treated in this way as it
is central to being able to access the objects within the carousel.

NOTE: The repetition distance may be used to indicate the guaranteed maximum time until individual objects
appear again within the overall carousel, as this may differ from the period of the entire carousel (which is
defined as the longest repetition period for any object in the carousel).

8.3.6 Managing updates to the carousel

When the carousel is changed there is no requirement to complete either the current cycle of the carousel or the current
object. As soon as a MOT decoder detects a change to the directory, it should use the information in the directory to
determine whether or not any cached data is still valid.

8.3.7 Cache management

It is possible for the broadcast server to indicate to the MOT decoder which objects have the greatest importance to the
service at the transport level. This can be done through the use of the priority parameter.

ETSI

Draft EN 301 234 V1.2.1 (1998-09)31

History
Document history

V1.1.1 January 1998 Publication

V1.2.1 September 1998 One-step Approval Procedure OAP 9904: 1998-09-25 to 1999-01-22

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General description of the MOT protocol
	4.1 Requirements of Multimedia services
	4.2 Problems MOT is attempting to solve
	4.3 Receiver architecture reference model

	5 Object description
	5.1 Header core
	5.2 Header extension
	5.2.1 Structure of the header extension
	5.2.2 Future expansion of the parameter data field
	5.2.3 Parameters of the header extension

	5.3 Object body

	6 Object transport mechanisms
	6.1 Segmentation of objects - transport level
	6.1.1 Segmentation header
	6.1.2 Transport of header segments
	6.1.3 Transport of body segments

	6.2 Packetizing segments - network level
	6.2.1 Packet mode
	6.2.2 X-PAD
	6.2.2.1 Indication of the Data Group Length

	6.3 Different methods of transferring MOT objects.
	6.3.1 Repetition on object level
	6.3.2 Insertion of additional header information
	6.3.3 Interleaving objects in one MOT stream
	6.3.4 Repetition of Data Groups/segments

	7 Updating
	7.1 Object update
	7.2 Updating header information/triggering objects
	7.2.1 Triggering an object
	7.2.2 Deletion of an object

	8 MOT directory
	8.1 Introduction
	8.1A Assembly of MOT objects and MOT directory
	8.2 MOT directory coding
	8.2.1 Parameters of the directory extension
	8.2.2 Segment size of the MOT directory
	8.2.3 Identification of the MOT directory

	8.3 Use of the MOT directory
	8.3.1 Segment reception order
	8.3.2 Service acquisition
	8.3.3 Version control
	8.3.4 Allocation of Transport Ids
	8.3.5 Prioritizing objects within the carousel
	8.3.6 Managing updates to the carousel
	8.3.7 Cache management

	History

