# Draft ETSI EN 301 213-3 V1.2.1 (2000-04) European Standard (Telecommunications series) Fixed Radio Systems; Point-to-multipoint equipment; Point-to-multipoint digital radio systems in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 3: Time Division Multiple Access (TDMA) methods #### Reference #### REN/TM-04098 #### Keywords DRRS, FWA, multipoint, radio, RLL, TDMA, transmission #### **ETSI** #### Postal address F-06921 Sophia Antipolis Cedex - FRANCE #### Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 #### Internet secretariat@etsi.fr Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: editor@etsi.fr #### Important notice This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. #### **Copyright Notification** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2000. All rights reserved. # Contents | intelle | ectual Property Rights | | |--------------------|--------------------------------------------------------|---| | Forew | vord | 5 | | 1 | Scope | 6 | | 2 | References | 6 | | 3 | Definitions, symbols and abbreviations | 7 | | 3.1 | Definitions | | | 3.2 | Symbols | | | 3.3 | Abbreviations | | | 4 | General characteristics | 7 | | 4.1 | General System Architecture | | | 4.2 | Frequency bands and channel arrangements | | | 4.2.1 | Channel plan | | | 4.2.2 | Channel arrangements | 7 | | 4.3 | Compatibility requirements | 8 | | 4.4 | Environmental conditions | 8 | | 4.5 | Power supply | 8 | | 4.6 | Electromagnetic compatibility conditions | 8 | | 4.7 | TMN interfaces | 8 | | 4.8 | Synchronization of interface bit rates | | | 4.9 | Branching/feeder/antenna requirements | 8 | | 5 | System parameters for TDMA P-MP systems | | | 5.1 | System capacity | | | 5.2 | Round trip delay | | | 5.3 | Transparency | | | 5.4 | Voice coding methods | | | 5.5 | Transmitter characteristics | | | 5.5.1 | Transmitter output power | | | 5.5.2 | Transmitter nominal output power | | | 5.5.3 | Transmitter power and frequency control | | | 5.5.4 | RF spectrum mask | | | 5.5.4.1<br>5.5.4.2 | 1 | | | 5.5.4.2<br>5.5.5 | Tx local oscillator frequency arrangements | | | 5.5.6 | Spurious emissions (external) | | | 5.5.7 | Radio frequency tolerance | | | 5.6 | Receiver characteristics | | | 5.6.1 | Rx local oscillator frequency arrangements. | | | 5.6.2 | Spurious emissions (external) | | | 5.6.3 | Receiver IF | | | 5.7 | System performance | | | 5.7.1 | Dynamic level range | | | 5.7.2 | BER as a function of Receiver input Signal Level (RSL) | | | 5.7.3 | Equipment residual BER (RBER) | | | 5.7.4 | Interference sensitivity | | | 5.7.4.1 | · | | | 5.7.4.2 | | | | 5.7.4.3 | <b>3</b> | | | 5.7.5 | Distortion sensitivity | | | Types of interfaces at the user equipment and the network node | | | | | |----------------------------------------------------------------|---------------------------------------------|----|--|--| | Annex A (normative): | System type codes for regulatory procedures | 17 | | | | Bibliography | | 18 | | | | History | | 20 | | | # Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. #### **Foreword** This European Standard (Telecommunications series) has been produced by ETSI Technical Committee Transmission and Multiplexing (TM), and is now submitted for the ETSI standards One-step Approval Procedure. The present document contains the minimum technical requirements to ensure compatibility of products and conformance with radio regulations across ETSI member states. Radio terminals from different manufacturers are not required to inter work at radio frequency (i.e. no common air interface). The present document defines the requirements of radio terminal and radio-relay equipment and associated interfaces. The present document is Part 2 of a multi-Part European Standard covering the Fixed Radio Systems; Point-to-multipoint equipment; Point-to-multipoint digital radio systems in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods, as identified below: - Part 1: "Basic parameters"; - Part 2: "Frequency Division Multiple Access (FDMA) methods"; - Part 3: "Time Division Multiple Access (TDMA) methods"; - Part 4: "Direct Sequence Code Division Multiple Access (DS-CDMA) methods"; - Part 5: "Multi-Carrier Time Division Multiple Access (TDMA) methods". The former title of the present document was: "Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Point-to-multipoint DRRS in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 3: Time Division Multiple Access (TDMA) methods". | Proposed national transposition dates | | | | | | |----------------------------------------------------------------------------------------|---------------------------------|--|--|--|--| | Date of latest announcement of this EN (doa): | 3 months after ETSI publication | | | | | | Date of latest publication of new National Standard or endorsement of this EN (dop/e): | 6 months after doa | | | | | | Date of withdrawal of any conflicting National Standard (dow): | 6 months after doa | | | | | ## 1 Scope Point-to-Multipoint Radio Relay Systems (P-MP) may use different access methods. As some technical parameters are different for the various access methods, the standard is divided in four parts. A basic description of the different access methods and a comparison among them is provided in TR 101 274 [2]. The present document (Time Division Multiple Access Methods, TDMA) is to be used in conjunction with Part 1, describing the basic parameters common to all access methods. The present document specifies the minimum requirements for system parameters of Time Division Multiple Access (TDMA) Point-to-Multipoint (P-MP) Radio Systems in the terrestrial fixed services operating in the band 24,5 GHz to 29,5 GHz (see CEPT Recommendation T/R 13-02 [3]). Only sections specific to TDMA are described in respect to the paragraphs stated in EN 301 213-1 [1]. Time Division Multiple Access (TDMA) is an alternative to FDMA and CDMA covered in other parts of the present document. In TDMA point to Multipoint (P-MP) systems, a central station broadcasts information to terminal stations in a continuous Time Division Multiplex (TDM) or in a burst TDMA mode. The Terminal stations transmit in TDMA mode. The users may have access to the spectrum by sharing it through time multiplexing. The present version V.1.2.1 mod 1 contains a revision from version V 1.1.1 mod 1 in the areas of: - introduction of System types codes for regulatory unique reference to the various system types detailed in the present document, refer to new annex A (normative) and related categorization into equipment classes of spectral efficiency; - introduction of an additional system type C; - introduction of an additional set of spectrum masks applicable to systems radiating more than one carrier per channel; - introduction of specifications for discrete CW components which exceed the spectrum masks. ## 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. - References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific. - For a specific reference, subsequent revisions do not apply. - For a non-specific reference, subsequent revisions do apply. - A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number. - [1] ETSI EN 301 213-1: "Fixed Radio Systems; Point-to-multipoint equipment; Point-to-multipoint digital radio systems in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 1: Basic parameters". - [2] ETSI TR 101 274: "Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Point-to-multipoint DRRS in the access network: Overview of different access techniques". - [3] CEPT Recommendation T/R 13-02: "Preferred channel arrangements for the fixed services in the range 22,0 GHz to 29,5 GHz". # 3 Definitions, symbols and abbreviations #### 3.1 Definitions For the purposes of the present document the terms and definitions given in EN 301 213-1 [1] apply. ## 3.2 Symbols For the purposes of the present document the symbols given in EN 301 213-1 [1] apply. #### 3.3 Abbreviations For the purposes of the present document the abbreviations given in EN 301 213-1 [1] apply. ## 4 General characteristics ## 4.1 General System Architecture Refer to EN 301 213-1 [1] subclause 4.1. ## 4.2 Frequency bands and channel arrangements #### 4.2.1 Channel plan Bands allocated to the Fixed Service in the range 24,5 GHz to 29,5 GHz shall be used according to CEPT Recommendation T/R 13-02 [3] annexes B and C. Regulatory bodies may choose appropriate parts of the above mentioned frequency bands for the application for Point-to-Multipoint systems. ## 4.2.2 Channel arrangements The system shall meet at least one or more of the channel arrangements listed in table 1. **Table 1: Channel arrangement** | 0 10 1 10 1 | 0 = 1411 | | 4 4 5 41 1 | 00 1411 | 50 N 41 I | 440 8411 | |--------------------------------------------------------------|-----------|-----------|------------|-----------|------------|------------| | Channel Spacing [MHz] | 3,5 MHz | 7 MHz | 14 MHz | 28 MHz | 56 MHz | 112 MHz | | System Type A | | | | | | | | Minimum CRS bit rate for transmission and reception (Mbit/s) | 4 Mbit/s | 8 Mbit/s | 16 Mbit/s | 32 Mbit/s | 64 Mbit/s | 128 Mbit/s | | System Type B | | | | | | | | Minimum CRS bit rate for transmission and reception (Mbit/s) | 8 Mbit/s | 16 Mbit/s | 32 Mbit/s | 64 Mbit/s | 128 Mbit/s | 256 Mbit/s | | System Type C | | | | | | | | Minimum CRS bit rate for transmission and reception (Mbit/s) | 12 Mbit/s | 24 Mbit/s | 48 Mbit/s | 96 Mbit/s | 192 Mbit/s | 384 Mbit/s | - NOTE 1: The minimum bit rate for transmission and reception is defined as the gross bit rate. The gross bit rate is defined as the transmission bit rate over the air. In the case of a transmitter working in burst mode, the gross bit rate is the instantaneous maximum bit rate during the burst. The gross bit rate has an unique relation to the symbol rate through the implemented modulation format. - NOTE 2: Systems may offer a combination of Type A, Type B, and Type C on a per Terminal Station basis, provided that such a system, when operating in mixed mode, complies with the most stringent spectral mask for the types offered. - NOTE 3: System Type A is primarily covering 4 state or equivalent modulation. System Type B is primarily covering 16 state or equivalent modulation. System type C is primarily covering 64 state or equivalent modulation. - NOTE 4: For regulatory purposes in national procedures for licensing radio equipments according to the present document, the above system types shall be identified by the "system type codes" reported in annex A. The CRS transmission, defined as the "downstream" direction, may be continuous, i.e. TDM (Time Division Multiplex). The CRS may transmit in the downstream direction even if there are no active calls, for the purpose of synchronization of the Terminal Stations. The Terminal Stations (TS) may transmit only in timeslots allocated by control signals from the CS, or on a fixed basis. The TS transmission direction is defined as "upstream". TS may transmit in a TDMA basis. A TS may transmit control, bandwidth requests or signalling information even during the absent of users activities. TS transmissions consist of bursts of fixed or variable duration, usually an integer multiple of a fundamental timeslot duration. ## 4.3 Compatibility requirements Refer to EN 301 213-1 [1] subclause 4.3. #### 4.4 Environmental conditions Refer to EN 301 213-1 [1] subclause 4.4. ## 4.5 Power supply Refer to EN 301 213-1 [1] subclause 4.5. ## 4.6 Electromagnetic compatibility conditions Refer to EN 301 213-1 [1] subclause 4.6. #### 4.7 TMN interfaces Refer to EN 301 213-1 [1] subclause 4.7. ## 4.8 Synchronization of interface bit rates Refer to EN 301 213-1 [1] subclause 4.8. ## 4.9 Branching/feeder/antenna requirements Refer to EN 301 213-1 [1] subclause 4.9. # 5 System parameters for TDMA P-MP systems NOTE: Where a reference is made to the number of states of a modulation scheme or to the system type class, an equivalent modulation scheme may be applied, provided the system parameters are met. ### 5.1 System capacity Refer to EN 301 213-1 [1] subclause 5.1. ## 5.2 Round trip delay Refer to EN 301 213-1 [1] subclause 5.2. ## 5.3 Transparency Refer to EN 301 213-1 [1] subclause 5.3. ## 5.4 Voice coding methods Refer to EN 301 213-1 [1] subclause 5.4. #### 5.5 Transmitter characteristics Refer to EN 301 213-1 [1] subclause 5.5. #### 5.5.1 Transmitter output power Refer to EN 301 213-1 [1] subclause 5.5.1. #### 5.5.2 Transmitter nominal output power Refer to EN 301 213-1 [1] subclause 5.5.2. The power output of the transmitter at point C and C' (see figure 2 of EN 301 213-1 [1]) shall be appropriate to the mode of use. - a) CRS, or TS "broadcast mode". The power output shall be in conformance with EN 301 213-1 [1]. - b) CRS, or TS operating in TDMA burst mode. The power output during a burst shall be in conformance with EN 301 213-1 [1]. The power may be controlled by ATPC. - c) The power setting shall have a maximum tolerance of $\pm 2dB$ for environmentally protected locations, $\pm 3dB$ for equipment in non protected locations and shall not exceed the maximum allowed transmitter output power. ## 5.5.3 Transmitter power and frequency control Refer to EN 301 213-1 [1] subclause 5.5.3. ## 5.5.4 RF spectrum mask The 0 dB level shown on the spectrum masks is the maximum of the modulated spectrum disregarding residual carriers. The masks do not include frequency tolerances. #### 5.5.4.1 RF spectrum mask for the central radio station General test load conditions to measure the spectrum mask for the CRS transceiver: - the CRS transmitter shall work under full capacity load. For systems which radiate a single carrier per channel, the RF spectrum masks shown in figures 1 and 2 and table 2 below apply: Figure 1: Spectrum masks, types A and B, single carrier (fo = actual carrier frequency) Figure 2: Spectrum mask, type C, single carrier (fo = actual carrier frequency) Table 2: Spectrum masks, single carrier | System Type A | | | | | | | |--------------------------|----------|----------|----------|---------|---------|----------| | Co-polar channel spacing | 0 dB | | -23 dB | -23 dB | -45 dB | -45 dB | | Points in figure 1 | Point A | | Point B | Point C | Point D | Point E | | 3,5 MHz | 1,5 MHz | | 2,8 MHz | 3,7 MHz | 7 MHz | 8,75 MHz | | 7 MHz | 2,8 MHz | | 5,6 MHz | 7 MHz | 14 MHz | 17,5 MHz | | 14 MHz | 5,6 MHz | | 11,2 MHz | 14 MHz | 28 MHz | 35 MHz | | 28 MHz | 11 MHz | | 19 MHz | 25 MHz | 45 MHz | 70 MHz | | 56 MHz | 18 MHz | | 32 MHz | 40 MHz | 70 MHz | 140 MHz | | 112 MHz | 36 MHz | | 64 MHz | 80 MHz | 140 MHz | 280 MHz | | System Type B | | | | | | | | Co-polar channel spacing | 0 dB | | -32 dB | -37 dB | -50 dB | -50 dB | | Points in figure 1 | Point A | | Point B | Point C | Point D | Point E | | 3,5 MHz | 1,5 MHz | | 2,8 MHz | 3,7 MHz | 7 MHz | 8,75 MHz | | 7 MHz | 2,8 MHz | | 5,6 MHz | 7 MHz | 14 MHz | 17,5 MHz | | 14 MHz | 5,6 MHz | | 11,2 MHz | 14 MHz | 28 MHz | 35 MHz | | 28 MHz | 11,2 MHz | | 22,4 MHz | 28 MHz | 56 MHz | 70 MHz | | 56 MHz | 22,5 MHz | | 45 MHz | 56 MHz | 112 MHz | 140 MHz | | 112 MHz | 45 MHz | | 90 MHz | 112 MHz | 224 MHz | 280 MHz | | System Type C | | | | | | | | Co-polar channel spacing | 0 dB | -13 dB | -34 dB | -42 dB | -52 dB | -52 dB | | Points in figure 2 | Point A | Point A' | Point B | Point C | Point D | Point E | | 3,5 MHz | 1,75 MHz | 1,75 MHz | 2,8 MHz | 3,7 MHz | 7 MHz | 8,75 MHz | | 7 MHz | 3,5 MHz | 3,5 MHz | 5,6 MHz | 7 MHz | 14 MHz | 17,5 MHz | | 14 MHz | 7 MHz | 7 MHz | 11,2 MHz | 14 MHz | 28 MHz | 35 MHz | | 28 MHz | 14 MHz | 14 MHz | 22,4 MHz | 28 MHz | 56 MHz | 70 MHz | | 56 MHz | 28 MHz | 28 MHz | 45 MHz | 56 MHz | 112 MHz | 140 MHz | | 112 MHz | 56 MHz | 56 MHz | 90 MHz | 112 MHz | 224 MHz | 280 MHz | For systems where more than one identically modulated carrier is radiated from the same transmitter within each channel, the RF spectrum masks shown in figure 3 and table 3 apply. Figure 3: Spectrum masks, multiple carrier per channel (fo = channel centre frequency) Table 3: Spectrum masks, multiple carrier per channel | System Type A | | | | | | | | |------------------------|---------|---------|---------|---------|---------|---------|---------| | Co-polar chan. Spacing | 0 dB | -8 dB | -18 dB | -23 dB | -23 dB | -45 dB | -45 dB | | Points in figure 3: | Point A | Point B | Point C | Point D | Point E | Point F | Point G | | - | [MHz] | 14 MHz | 7 | 7 | 7.5 | 8.75 | 14 | 28 | 35 | | 28 MHz | 14 | 14 | 15 | 17.5 | 28 | 56 | 70 | | 56 MHz | 28 | 28 | 30 | 35 | 56 | 112 | 140 | | 112 MHz | 56 | 56 | 60 | 70 | 112 | 224 | 280 | | System Type B | | | | | | | | | Co-polar chan. Spacing | 0 dB | -10 dB | -23 dB | -32 dB | -37 dB | -45 dB | -45 dB | | Points in figure 3: | Point A | Point B | Point C | Point D | Point E | Point F | Point G | | - | [MHz] | 14 MHz | 7 | 7 | 7.5 | 8.75 | 14 | 28 | 35 | | 28 MHz | 14 | 14 | 15 | 17.5 | 28 | 56 | 70 | | 56 MHz | 28 | 28 | 30 | 35 | 56 | 112 | 140 | | 112 MHz | 56 | 56 | 60 | 70 | 112 | 224 | 280 | | System Type C | | | | | | | | | Co-polar chan. Spacing | 0 dB | -13 dB | -26 dB | -37 dB | -42 dB | -45 dB | -45 dB | | Points in figure 3: | Point A | Point B | Point C | Point D | Point E | Point F | Point G | | - | [MHz] | 14 MHz | 7 | 7 | 7.5 | 8.75 | 14 | 28 | 35 | | 28 MHz | 14 | 14 | 15 | 17.5 | 28 | 56 | 70 | | 56 MHz | 28 | 28 | 30 | 35 | 56 | 112 | 140 | | 112 MHz | 56 | 56 | 60 | 70 | 112 | 224 | 280 | The spectrum analyser settings for measuring the RF-spectrum masks are listed in table 4. Table 4: Spectrum analyser settings for RF power spectrum measurement | RF channel | 3,5 | 7 | 14 | 28 | 56 | 112 | |-----------------|--------|--------|--------|--------|--------|--------| | spacing. (MHz) | | | | | | | | Centre | actual | actual | actual | Actual | Actual | actual | | frequency | | | | | | | | Sweep width | 20 | 40 | 80 | 160 | 320 | 640 | | (MHz) | | | | | | | | Scan time | auto | auto | auto | Auto | Auto | auto | | IF bandwidth | 30 | 30 | 30 | 100 | 100 | 300 | | (kHz) | | | | | | | | Video | 0,1 | 0,3 | 0,3 | 0,3 | 0,3 | 1,0 | | bandwidth (kHz) | | | | | | | #### 5.5.4.2 RF-spectrum mask for the terminal station and the repeater station The RF spectrum masks for the TS and RS shall comply with the spectrum mask of the CRS (see figures 1, 2, and 3). The spectrum analyser settings for RF power Spectrum Measurement for TDMA Terminal Stations (TS) are depending on the burst duration. For a burst duration of $\approx$ 50 us the recommended settings are IF bandwidth $\approx$ 30 kHz and video bandwidth $\approx$ 10kHz. For other pulse durations, the recommended settings are as following: - if bandwidth $\approx 30 \text{ kHz x } 50 \text{us/(pulse duration in us)};$ - video bandwidth ≈ 10kHz x 50us/(pulse duration in us); - the supplier has to declare the settings. #### 5.5.5 Tx local oscillator frequency arrangements Refer to EN 301 213-1 [1] subclause 5.5.5. #### 5.5.6 Spurious emissions (external) Refer to EN 301 213-1 [1] subclause 5.5.6. ## 5.5.7 Radio frequency tolerance Refer to EN 301 213-1 [1] subclause 5.5.7. #### 5.6 Receiver characteristics Refer to EN 301 213-1 [1] subclause 5.6. #### 5.6.1 Rx local oscillator frequency arrangements Refer to EN 301 213-1 [1] subclause 5.6.1. ## 5.6.2 Spurious emissions (external) Refer to EN 301 213-1 [1] subclause 5.6.2. #### 5.6.3 Receiver IF Refer to EN 301 213-1 [1] subclause 5.6.3. ## 5.7 System performance All parameters are referred to reference points B or C of figure 2 of EN 301 213-1 [1]. All measurements shall be carried out with the test signals defined in subclause 5.5 of EN 301 213-1 [1] and under full load conditions and, when applicable, with full load on all carriers transmitted by the same equipment. #### 5.7.1 Dynamic level range The BER shall be less than $10^{-3}$ for a dynamic level range which shall exceed 50 dB. The dynamic level range shall be declared by the manufacturer. ## 5.7.2 BER as a function of Receiver input Signal Level (RSL) The input signal level presented to the receiver under test is adjusted to the levels described in the table 5. The BER shall be less than or equal to the values defined in the table. For the purposes of testing, the transmitter is operated at its maximum rated power level. System Type A Co-polar channel spacing 3,5 MHz 7 MHz 14 MHz 28 MHz 56 MHz 112 MHz Channel bit rate (Mbit/s) 4 Mbit/s 8 Mbit/s 16 Mbit/s 32 Mbit/s 64 Mbit/s 128 Mbit/s -71 dBm 1x10<sup>-3</sup> -83 dBm -80 dBm -77 dBm -74 dBm -68 dBm 1x10<sup>-6</sup> -79 dBm -76 dBm -73 dBm -70 dBm -67 dBm -64 dBm System Type B 3,5 MHz Co-polar channel spacing 7MHz 14 MHz 28 MHz 56 MHz 112 MHz Channel bit rate (Mbit/s) 8 Mbit/s 16 Mbit/s 32 Mbit/s 64 Mbit/s 128 Mbit/s 256 Mbit/s 1x10<sup>-3</sup> -75 dBm -72 dBm -69 dBm -66 dBm -63 dBm -60 dBm 1x10<sup>-6</sup> -71 dBm -68 dBm -65 dBm -62 dBm -59 dBm -56 dBm System Type C Co-polar channel spacing 3,5 MHz 7MHz 14 MHz 28 MHz 56 MHz 112 MHz 24 Mbit/s Channel bit rate (Mbit/s) 12 Mbit/s 48 Mbit/s 96 Mbit/s 192 Mbit/s 384 Mbit/s 1x10<sup>-3</sup> -68 dBm -65 dBm -62 dBm -59 dBm -56 dBm -53 dBm 1x10<sup>-6</sup> -65 dBm -62 dBm -59 dBm -56 dBm -53 dBm -50 dBm **Table 5: BER Performance thresholds** The channel bit rate is the minimum bit rate during a burst. ## 5.7.3 Equipment residual BER (RBER) See EN 301 213-1 [1] subclause 5.7.3. ## 5.7.4 Interference sensitivity #### 5.7.4.1 Co-channel interference (external) The limits of co-channel interference (external) shall be as in table 6, giving maximum S/I values for 1 dB and 3 dB degradation of the $10^{-6}$ BER limits specified in subclause 5.7.2. Table 6: Co-channel interference sensitivity | Description | BER = 10 <sup>-6</sup> | | | |------------------------------|------------------------|----------|--| | Threshold degradation | 1 dB | 3 dB | | | Signal to Interference level | S/I [dB] | S/I [dB] | | | System Type A | 23 | 19 | | | System Type B | 30 | 26,5 | | | System Type C | 36 | 32,5 | | #### 5.7.4.2 Adjacent channel interference (external) The limits of adjacent channel interference (external) shall be as given in table 7 for like modulated signals, giving maximum S/I values for 1 dB and 3 dB degradation of the $10^{-6}$ BER limits specified in subclause 5.7.2. Table 7: Adjacent channel interference sensitivity | Description | BER | = 10 <sup>-6</sup> | |------------------------------|----------|--------------------| | Threshold degradation | 1 dB | 3 dB | | Signal to Interference level | S/I [dB] | S/I [dB] | | System Type A | 0 | -4 | | System Type B | 0 | -4 | | System Type C | 0 | -4 | #### 5.7.4.3 CW interference See EN 301 213-1 [1] subclause 5.7.4.3. #### 5.7.5 Distortion sensitivity See EN 301 213-1 [1] subclause 5.7.5. # Types of interfaces at the user equipment and the network node See EN 301 213-1 [1] clause 6. # Annex A (normative): System type codes for regulatory procedures System types reported in the present document, shall be identified with the codes reported in table A.1. Table A.1: System type codes for radio equipments reported in EN 301 213-3, relevant to regulatory procedures for national licensing | System type | Channel<br>spacing<br>[MHz] | CRS Bit-rate [Mbit/s] | Frequency band (Note 1) | System type codes | |-------------|-----------------------------|-----------------------|-------------------------|-------------------| | | 3,5 | 4 | B1 | 01 | | | | | B2 | 02 | | | 7 | 8 | B1 | 03 | | | | | B2 | 04 | | | 14 | 16 | B1 | 05 | | Α | | | B2 | 06 | | | 28 | 32 | B1 | 07 | | | | | B2 | 08 | | | 56 | 64 | B1 | 09 | | | | | B2 | 10 | | | 112 | 128 | B1 | 11 | | | | | B2 | 12 | | | 3,5 | 8 | B1 | 13 | | | | | B2 | 14 | | | 7 | 16 | B1 | 15 | | | | | B2 | 16 | | | 14 | 32 | B1 | 17 | | В | | | B2 | 18 | | | 28 | 64 | B1 | 19 | | | | | B2 | 20 | | | 56 | 128 | B1 | 21 | | | | | B2 | 22 | | | 112 | 256 | B1 | 23 | | | | | B2 | 24 | | | 3,5 | 12 | B1 | 25 | | | | | B2 | 26 | | | 7 | 24 | B1 | 27 | | | | | B2 | 28 | | | 14 | 48 | B1 | 29 | | С | | | B2 | 30 | | | 28 | 96 | B1 | 31 | | | | | B2 | 32 | | | 56 | 192 | B1 | 33 | | | | | B2 | 34 | | | 112 | 384 | B1 | 35 | | | | | B2 | 36 | NOTE: Option B1 refers to systems operating in frequency band 24500-26500 MHz (ERC Recommendation. T/R 13-02 [3] annex B. Option B2 refers to systems operating in frequency band 27500-29500 MHz (ERC Recommendation. T/R 13-02 [3] annex C. # **Bibliography** The following material, though not specifically referenced in the body of the present document (or not publicly available), gives supporting information. - ETSI ETS 300 019: "Equipment Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment". - ETSI EN 300 339: "Electromagnetic compatibility and Radio spectrum Matters (ERM); General ElectroMagnetic Compatibility (EMC) for radio communications equipment". - ETSI ETS 300 385: "Radio Equipment and Systems (RES); ElectroMagnetic Compatibility (EMC) standard for digital fixed radio links and ancillary equipment with data rates at around 2 Mbit/s and above". - ETSI ETS 300 833: "Fixed Radio Systems; Point to Point Antennas; Antennas for point-to-point fixed radio systems operating in the frequency band 3 GHz to 60 GHz". - ETSI EN 301 021: "Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Time Division Multiple Access (TDMA); Point-to-multipoint DRRS in Frequency Division Duplex (FDD) bands in the range 3 GHz to 11 GHz". - ETSI EN 301 132: "Integrated Services Digital Network (ISDN); Security tools (SET) for use within telecommunication services". - ETSI EN 301 215: "Fixed Radio Systems; Point to Multipoint Antennas; Antennas for point-to-multipoint fixed radio systems in the 11 GHz to 60 GHz band". - ETSI EN 301 390: "Fixed Radio Systems; Point-to-point and Point-to-Multipoint Systems; Spurious emissions and receiver immunity at equipment/antenna port of Digital Fixed Radio Systems". - IEC 60154-2: "Flanges for waveguides. Part 2: Relevant specifications for flanges for ordinary rectangular waveguides". - ITU-R Recommendation F.1249: "Maximum equivalent isotropically radiated power of transmitting stations in the fixed service operating in the frequency band 25.25-27.5 GHz shared with the inter-satellite service". - ITU-T Recommendation G.131: "Control of talker echo". - ITU-T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies". - ITU-T Recommendation G.726: "40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM)". - ITU-T Recommendation G.728: "Coding of speech at 16 kbit/s using low-delay code excited linear prediction". - ITU-T Recommendation G.729: "C source code and test vectors for implementation verification of the G.729 8 kbit/s CS-ACELP speech coder". - ITU-T Recommendation G.773: "Protocol suites for Q-interfaces for management of transmission systems". - ITU-T Recommendation G.810: "Definitions and terminology for synchronization networks". - ITU-T Recommendation G.812: "Timing requirements of slave clocks suitable for use as node clocks in synchronization networks". - ITU-T Recommendation G.813: "Timing characteristics of SDH equipment slave clocks (SEC)". - ITU-T Recommendation G.823: "The control of jitter and wander within digital networks which are based on the 2 048 kbit/s hierarchy". - ITU-T Recommendation G.825: "The control of jitter and wander within digital networks which are based on the synchronous digital hierarchy (SDH)". - ITU-T Recommendation O.151: "Error performance measuring equipment operating at the primary rate and above". - ITU-T Recommendation O.181: "Equipment to assess error performance on STM-N interfaces". - ETSI EN 301 213-2: "Fixed Radio Systems; Point-to-multipoint equipment; Point-to-multipoint digital radio systems in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 2: Frequency Division Multiple Access (FDMA) methods". # History | | Document history | | | | | | | |--------|------------------|-----------------------------|----------------------------------------|--|--|--|--| | V1.2.1 | April 2000 | One-step Approval Procedure | OAP 20000804: 2000-04-05 to 2000-08-04 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |