Final draft EN 301 213-2 V1.1.1 (1999-08) European Standard (Telecommunications series) Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Point-to-multipoint DRRS in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 2: Frequency Division Multiple Access (FDMA) methods #### Reference DEN/TM-04050-2 (b8ci0ico.PDF) #### Keywords DRRS, FDMA, multipoint, radio, RLL, transmission #### **ETSI** #### Postal address F-06921 Sophia Antipolis Cedex - FRANCE #### Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 #### Internet secretariat@etsi.fr Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: editor@etsi.fr #### **Copyright Notification** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1999. All rights reserved. ## Contents | Intelle | ectual Property Rights | | |------------|--|----| | Forev | word | | | 1 | Scope | | | 2 | References | 5 | | 3 | Definitions, symbols and abbreviations | | | 4 | General characteristics | | | 4.1 | General System Architecture | | | 4.2 | Frequency bands and channel arrangements | | | 4.2.1 | Channel plan | | | 4.2.2 | Channel arrangements | | | 4.3 | Compatibility requirements | | | 4.4 | Environmental Conditions | | | 4.5 | Power Supply | | | 4.5
4.6 | Electromagnetic conditions | | | 4.7 | TMN interfaces | | | 4.8 | Synchronization of interface bit rates | | | 4.9 | Branching/feeder/antenna requirement. | | | | • | | | 5 | System parameters for FDMA P-MP systems | | | 5.1 | System Capacity | | | 5.2 | Round Trip Delay | | | 5.3 | Transparency | | | 5.4 | Voice Coding methods | | | 5.5 | Transmitter characteristics | | | 5.5.1 | Transmitter output power | | | 5.5.2 | Transmitter nominal output power | | | 5.5.3 | Transmitter power and frequency control | | | 5.5.4 | RF spectrum mask | | | 5.5.4.1 | 1 | | | 5.5.4.2 | 1 | | | 5.5.5 | Tx Local Oscillator frequency arrangements | | | 5.5.6 | Spurious emissions (external) | | | 5.5.7 | Radio frequency tolerance | | | 5.6 | Receiver characteristics | | | 5.6.1 | Rx Local Oscillator frequency arrangements | | | 5.6.2 | Spurious emissions (external) | | | 5.6.3 | Receiver IF | | | 5.7 | System performance | | | 5.7.1 | Dynamic level range | | | 5.7.2 | BER as a function of Receiver input Signal Level (RSL) | | | 5.7.3 | Equipment Background BER | | | 5.7.4 | Interference sensitivity | | | 5.7.4.1 | , , | | | 5.7.4.2 | | | | 5.7.4.3 | | | | 5.7.5 | Distortion sensitivity | 11 | | 6 | Types of interfaces at the subscriber equipment and the network node | 11 | | Histo | ory | 12 | ## Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available **free of charge** from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. #### **Foreword** This European Standard (Telecommunications series) has been produced by ETSI Technical Committee Transmission and Multiplexing (TM), and is now submitted for the Voting phase of the ETSI standards Two-step Approval Procedure. The present document contains the minimum technical requirements to ensure compatibility of products and conformance with radio regulations across ETSI member states. Radio terminals from different manufacturers are not required to inter work at radio frequency (i.e. no common air interface). The present document defines the requirements radio-relay equipment and associated interfaces. The present document is part 2 of a multi-part European Standard covering the point-to-multipoint digital radio systems in the band 24,5 GHz to 29,5 GHz with different access methods, as identified below: Part 1: "Basic parameters" (EN 301 213-1 [1]); #### Part 2: "Frequency Division Multiple Access Methods (FDMA)"; Part 3: "Time Division Multiple Access (TDMA) methods" (EN 301 213-3 [2]). Parts 2 and 3 are intended to be used in conjunction with part 1, describing the basic parameters common to all access methods. A basic description of the different access methods and a comparison among them are provided in TR 101 274 [3]. | Proposed national transposition dates | | | | | | |--|---------------------------------|--|--|--|--| | Date of latest announcement of this EN (doa): | 3 months after ETSI publication | | | | | | Date of latest publication of new National Standard or endorsement of this EN (dop/e): | 6 months after doa | | | | | | Date of withdrawal of any conflicting National Standard (dow): | 6 months after doa | | | | | ## 1 Scope The present document specifies the minimum requirements for system parameters of Frequency Division Multiple Access (FDMA) Point-to-Multipoint (P-MP) Radio Systems in the terrestrial fixed services operating in the band 24,5 GHz to 29,5 GHz (CEPT Recommendation T/R 13-02[4]). Only sections specific to FDMA are described in respect to the clauses stated in EN 301 213-1 [1]. The FDMA P-MP system will transmit a RF-signal from the customer site to the Central Radio Station (CRS) only utilizing a spectral bandwidth corresponding to that capacity which is requested from and assigned to the customer by Preassigned Multiple Access or by Demand Assigned Multiple Access. The Central Radio Station receives from each customer site a single modulated carrier being processed independently within the CRS. Thus the CRS is receiving a FDMA P-MP signal. ### 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. - References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific. - For a specific reference, subsequent revisions do not apply. - For a non-specific reference, subsequent revisions do apply. - A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number. - [1] EN 301 213-1: "Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Point-to-multipoint DRRS in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 1: Basic parameters". - [2] EN 301 213-3: "Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Point-to-multipoint DRRS in frequency bands in the range 24,25 GHz to 29,5 GHz using different access methods; Part 3: Time Division Multiple Access (TDMA) methods". - [3] TR 101 274: "Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Point-to-multipoint DRRS in the access network: Overview of different access techniques". - [4] CEPT Recommendation T/R 13-02: "Preferred channel arrangements for the Fixed Services in the range 22,0 29,5 GHz". - [5] ITU-R Recommendation F.1249: "Maximum equivalent isotropically radiated power of transmitting stations in the Fixed Service operating in the frequency band 25,25 27,5 GHz shared with the Inter-Satellite Service". ## 3 Definitions, symbols and abbreviations See EN 301 213-1 [1], clause 3. ## 4 General characteristics ## 4.1 General System Architecture See EN 301 213-1 [1], 4.1. ## 4.2 Frequency bands and channel arrangements #### 4.2.1 Channel plan Bands allocated to the Fixed Service in the range 24,5 GHz to 29,5 GHz shall be used according to CEPT Recommendation T/R 13-02 [4] annexes B and C. The transmit/receive spacing shall be 1 008 MHz. Regulatory bodies may choose appropriate parts of the above mentioned frequency bands for the application for P-MP systems. #### 4.2.2 Channel arrangements The system shall meet one or more of the channel arrangements listed in table 1. Table 1: Channel arrangement | Channel spacing (MHz) | 3,5 | 7 | 14 | 28 | 56 | 112 | |--|-----------------------|-----------------------|------------|------------|---------------------------|--------------------------------| | Min. CRS transmission capacity (kbit/s) 4 state modulation (or equivalent) | 42×64 | 84 × 64;
4 × 2 048 | 8 × 2 048 | 16 × 2 048 | 32 × 2 048 | 64 × 2 048
or STM-1 | | Min. CRS transmission
capacity (kbit/s)
8 state modulation
(or equivalent) | 62 × 64 | 5 × 2 048 | 10 × 2 048 | 20 × 2 048 | 40 × 2 048 | 80 × 2 048 | | Min. CRS transmission
capacity (kbit/s)
16 state modulation
(or equivalent) | 84 × 64;
4 × 2 048 | 8 × 2 048 | 16 × 2 048 | 32 × 2 048 | 64 × 2 048
or
STM-1 | 128 × 2 048
or
2 × STM-1 | NOTE 1: "or equivalent" means providing the same spectral efficiency and system performance regardless of the actual modulation scheme. NOTE 2: Allocated RF-channels may be occupied by systems using smaller RF-channel spacing as long as the spectrum mask for the allocated RF-channel is not exceeded. NOTE 3: Any other equivalent transmission capacity may be transported, e.g. instead of 42×64 kbit/s a capacity of 21×128 kbit/s can be transmitted. ## 4.3 Compatibility requirements See EN 301 213-1 [1], 4.3. #### 4.4 Environmental Conditions See EN 301 213-1 [1], 4.4. ## 4.5 Power Supply See EN 301 213-1 [1], 4.5. ## 4.6 Electromagnetic conditions See pr EN 301 213-1 [1], 4.6. #### 4.7 TMN interfaces See EN 301 213-1 [1], 4.7. ## 4.8 Synchronization of interface bit rates See EN 301 213-1 [1], 4.8. ## 4.9 Branching/feeder/antenna requirement See EN 301 213-1 [1], 4.9. ## 5 System parameters for FDMA P-MP systems NOTE: Where a reference is made to the number of states of a modulation scheme, an equivalent modulation scheme may be applied, provided the system parameters are met. #### 5.1 System Capacity See EN 301 213-1 [1], 5.1. ## 5.2 Round Trip Delay See EN 301 213-1 [1], 5.2. ## 5.3 Transparency See EN 301 213-1 [1], 5.3. ## 5.4 Voice Coding methods See EN 301 213-1 [1], 5.4. #### 5.5 Transmitter characteristics See EN 301 213-1 [1], 5.5. ### 5.5.1 Transmitter output power See EN 301 213-1 [1], 5.5.1. #### 5.5.2 Transmitter nominal output power See EN 301 213-1 [1], 5.5.2. ## 5.5.3 Transmitter power and frequency control See EN 301 213-1 [1], 5.5.3. #### 5.5.4 RF spectrum mask The 0 dB level shown on the spectrum masks is the maximum of the modulated spectrum disregarding residual carriers. The masks do not include frequency tolerances. #### 5.5.4.1 RF spectrum mask for the Central Radio Station General test load conditions to measure the spectrum mask for the CRS transceiver: - Number of carriers, N, transmitted over one CRS transceiver should correspond with the full capacity load of the measured CRS. The number shall be declared by the manufacturer. - All carriers are modulated according to the input bit rate (referred to Z' in figure 2 of EN 301 213-1 [1]) declared by the manufacturer. The input signal shall be in accordance to the interfaces stated in table 3 of EN 301 213-1 [1]. - Nominal output power for each carrier: 1/N of the total nominal output power of the CRS referred to point C'. NOTE: Under operational conditions the output power of some carriers may be greater than 1/N of the nominal output power provided that the maximum average output power of +35 dBm is not exceeded and/or ITU-R Recommendation F.1249 [5] is fulfilled. The spectrum mask for the CRS transceiver is shown in figure 1. f_s: RF channel spacing NOTE: The different spectral power NOTE: The different spectral power density levels at point C are related to different modulation schemes. Figure 1: Spectrum Mask for the CRS 9 The spectrum analyser settings for measuring the RF-spectrum masks are listed in table 2. Table 2: Spectrum Analyser Settings for RF Power Spectrum Measurement | RF channelspacing f _s (MHz) | 3,5 | 7 | 14 | 28 | 56 | 112 | |--|--------|--------|--------|--------|--------|--------| | Centre Frequency | actual | actual | actual | actual | actual | actual | | Sweep width (MHz) | 20 | 40 | 80 | 160 | 320 | 640 | | Scan time | auto | auto | auto | auto | auto | auto | | IF bandwidth (kHz) | 30 | 30 | 30 | 100 | 100 | 100 | | Video bandwidth | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | #### 5.5.4.2 RF spectrum mask for the Terminal Station and the Repeater Station The RF spectrum mask for the TS and RS shall comply with the spectrum mask (see figure 1) of the CRS. #### 5.5.5 Tx Local Oscillator frequency arrangements See EN 301 213-1 [1], 5.5.5. #### 5.5.6 Spurious emissions (external) See EN 301 213-1 [1], 5.5.6. #### 5.5.7 Radio frequency tolerance See EN 301 213-1 [1], 5.5.7. #### 5.6 Receiver characteristics See EN 301 213-1 [1], 5.6. ## 5.6.1 Rx Local Oscillator frequency arrangements See EN 301 213-1 [1], 5.6.1. #### 5.6.2 Spurious emissions (external) See EN 301 213-1 [1], 5.6.2. #### 5.6.3 Receiver IF See EN 301 213-1 [1], 5.6.3. ## 5.7 System performance All parameters are referred to reference points B or C of figure 2 (EN 301 213-1 [1]). All measurements shall be carried out with the test signals defined in subclause 5.5 of EN 301 213-1 [1] and under full load conditions. #### 5.7.1 Dynamic level range The BER shall be less than 10^{-3} for a dynamic level range which shall exceed 50 dB. The dynamic level range shall be declared by the manufacturer. #### 5.7.2 BER as a function of Receiver input Signal Level (RSL) Table 3: BER performance thresholds for different modulation schemes for each 2 Mbit/s carrier for reference | RSL (dB | m) for BER | < = 10 ⁻³ | RSL (dBm) for BER <= 10 ⁻⁶ | | | | | |---------|-------------------|----------------------|---------------------------------------|-------------------|-------|--|--| | Мо | Modulation states | | | Modulation states | | | | | 4 | 8 | 16 | 4 | 8 | 16 | | | | -95 | -94 | -89 | -92,5 | -91,5 | -86,5 | | | Applying other bit rates the relevant receive levels may be calculated according to the following formulas: 4-state modulation schemes: RSL (dBm(for BER $$10^{-3}$$)) = -98 + $10 \times \log_{10} b$ RSL (dBm(for BER 10^{-6})) = -95,5 + $10 \times \log_{10} b$ - 8-state modulation schemes: RSL (dBm(for BER $$10^{-3}$$)) = -97+ $10 \times \log_{10} b$ RSL (dBm(for BER 10^{-6})) = -94,5 + $10 \times \log_{10} b$ - 16-state modulation schemes: RSL (dBm(for BER $$10^{-3}$$)) = -92 + $10 \times \log_{10} b$ RSL (dBm(for BER 10^{-6})) = -89,5 + $10 \times \log_{10} b$ b = bit rate (Mbit/s) #### 5.7.3 Equipment Background BER See EN 301 213-1 [1], 5.7.3. ## 5.7.4 Interference sensitivity #### 5.7.4.1 Co-channel interference (external) The limits of co-channel interference (external) shall be as in table 4, giving maximum S/I values for 1 dB and 3 dB degradation of the 10⁻⁶ BER limits specified in subclause 5.7.2. **Table 4: Co-channel Interference Sensitivity** | Description | BER = 10 ⁻⁶ | | | |------------------------------|------------------------|----------|--| | Threshold degradation | 1 dB | 3 dB | | | Signal to Interference level | S/I [dB] | S/I [dB] | | | 4 state modulation | 17,5 | 13,5 | | | 8 state modulation | 19,5 | 15,5 | | | 16 state modulation | 26,5 | 22,5 | | #### 5.7.4.2 Adjacent channel interference (external) The limits of adjacent channel interference (external) shall be as given in table 5 for like modulated signals, giving maximum S/I values for 1 dB and 3 dB degradation of the 10⁻⁶ BER limits specified in subclause 5.7.2. **Table 5: Adjacent Channel Interference Sensitivity** | Description | BER = 10 ⁻⁶ | | | |------------------------------|------------------------|----------|--| | Threshold degradation | 1 dB | 3 dB | | | Signal to Interference level | S/I [dB] | S/I [dB] | | | 4 state modulation | -15,5 | -19,5 | | | 8 state modulation | -13,5 | -17,5 | | | 16 state modulation | -6,5 | -10,5 | | #### 5.7.4.3 CW interference See EN 301 213-1 [1], 5.7.4.3. ## 5.7.5 Distortion sensitivity See EN 301 213-1 [1], 5.7.5. # Types of interfaces at the subscriber equipment and the network node See EN 301 213-1 [1], clause 6. # History | Document history | | | | | | | | |------------------|-------------|----------------|----------|--------------------------|--|--|--| | V1.1.1 | June 1998 | Public Enquiry | PE 9845: | 1998-06-17 to 1998-11-13 | | | | | V1.1.1 | August 1999 | Vote | V 9945: | 1999-08-24 to 1999-10-22 |