Draft EN 301 021 V1.1.1 (1997-02)

European Standard (Telecommunications series)

Transmission and Multiplexing (TM); Digital Radio Relay Systems (DRRS); Time Division Multiple Access (TDMA) point-to-multipoint DRRS in the frequency range 3 to 11 GHz

Reference DEN/TM-04020 (9GC00ICO.PDF)

Keywords DRRS, multipoint, radio, RLL, TDMA, transmission

ETSI Secretariat

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

X.400

c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr http://www.etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 1997. All rights reserved.

Contents

Intelle	lectual Property Rights	4
Forev	word	4
Introc	duction	4
1	Scope	6
1.1	Applications	
1.2	Frequencies	
1.3	Access method	
2	Normative references	6
3	Symbols and abbreviations	8
3.1	Symbols	
3.2	Abbreviations	
4	General system architecture	
4.1	Sub-system types	
4.2	System characteristics	
4.2.1	System capacity	
4.2.2	Transmission error performance	
4.2.3	Round trip delay	
4.2.4	Transparency	
4.2.5	TMN interface	
4.2.6	Synchronization	
5	Radio characteristics	
5.1	Frequency bands	
5.2	Proposed channel arrangement	
5.3	Transmitter (TX) characteristics	
5.3.1	TX power range	
5.3.2	Spectrum mask	
5.3.3	Transmitter spurious emissions	
5.3.4	Radio frequency tolerance	
5.4	Receiver characteristics	
5.4.1	Input level range	
5.4.2	Spurious emissions	
5.4.3	Bit Error Rate (BER) performance	
5.4.4	Interference sensitivity	
5.4.4.1	- J	
5.4.4.2		
5.4.5	Image frequency rejection	
5.5	Antenna port characteristics	
5.5.1	RF interface	
5.5.2	Return loss	
6	Types of subscriber equipment and network interfaces	16
7	Power supply, environmental, and mechanical characteristics	
7.1	Power supply	
7.2	Environmental conditions	
7.2.1	Equipment within weather protected locations	
7.2.2	Equipment for non-weather protected locations	
7.3	Electromagnetic Compatibility (EMC) conditions	
Histo	ory	

Intellectual Property Rights

ETSI has not been informed of the existence of any Intellectual Property Right (IPR) which could be, or could become essential to the present document. However, pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out. No guarantee can be given as to the existence of any IPRs which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications Series) has been produced by ETSI Technical Committee Transmission and Multiplexing (TM), and is now submitted for the Public Enquiry phase of the ETSI standards Two-step Approval Procedure (TAP).

Proposed national transposition dates		
Date of latest announcement of this EN (doa):	3 months after ETSI publication	
Date of latest publication of new National Standard or endorsement of this EN (dop/e):	6 months after doa	
Date of withdrawal of any conflicting National Standard (dow):	6 months after doa	

Introduction

The main field of application of Point-to-Multipoint (P-MP) systems is to provide access to both public and private networks (Public Switched Telephone Networks (PSTN), Private Data Networks (PDN), ...). By means of P-MP systems the network service area may be extended to cover both distant and scattered subscriber locations; and the systems may be applied to build new access networks covering both urban and rural areas.

Subscribers are offered the full range of services by the particular public or private network. Subscribers have access to these services by means of the various standardized user network interfaces (2 wire loop, new data services and Integrated Services Digital Network (ISDN)).

P-MP systems provide standard network interfaces and transparently connect subscribers to the appropriate network node. These systems allow a service to be connected to a number of subscribers ranging from a few to several thousand and over a wide range of distances.

P-MP systems are generally configured as pre-assigned systems or as Demand Assigned Multiple Access (DAMA) radio systems.

The essential features of a typical P-MP DAMA radio systems are:

- efficient use of the radio spectrum;
- concentration;
- transparency.

Radio is often the ideal way of obtaining communications at low cost and almost independent of distance, and difficult topography. Moreover, a small number of sites are required for these installations, thus facilitating rapid implementation and minimizing maintenance requirements of the systems.

Concentration means that "m" subscribers can share "n" radio channels (m being larger than n), allowing a better use to be made of the available frequency spectrum and at a lower equipment cost. The term "multi-access" derives from the fact that every subscriber has access to every channel (instead of a fixed assignment as in most multiplex systems). When a call is initiated one of the available channels is allocated to it. When the call is terminated, the channel is released for another call.

Concentration requires the use of distributed intelligent control which in turn allows many other operation and maintenance functions to be added.

Transparency means that the exchange and the telephone communicate with each other without being aware of the radio link.

1 Scope

1.1 Applications

The present document covers the following Point-to-Multipoint (P-MP) applications:

- voice telephony;
- fax;
- voice-band data;
- telex;
- data up to 64 kbit/s;
- ISDN.

1.2 Frequencies

The present document covers fixed P-MP services operating in the 3,5 GHz and 10,5 GHz bands and having the frequency plans as given in ERC Recommendations 14-03 [7] and 12-05 [8], respectively.

1.3 Access method

The present document covers Time Division Multiple Access (TDMA) systems.

2 Normative references

References may be made to either:

- a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or
- b) all versions up to and including the identified version (identified by "up to and including" before the version identity); or
- c) all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or
- d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

- [1] ETS 300 012 (1992): "Integrated Services Digital Network (ISDN); Basic user-network interface Layer 1 specification and test principles".
- [2] ITU-T Recommendation G.703: "Physical/electrical characteristics of hierarchical digital interfaces".
- [3] ITU-T Recommendation Q.553 (1994): "Transmission characteristics at 4-wire analogue interfaces of digital exchanges".
- [4] ITU-T Recommendation Q.552 (1994): "Transmission characteristics at 2-wire analogue interfaces of digital exchanges".

- [5] ITU-T Recommendation G.821: "Error performance of an international digital connection forming part of an integrated services digital network".
- [6] ITU-T Recommendation R.20: "Telegraph modem for subscriber lines".
- [7] ERC Recommendation 14-03: "Harmonised radio frequency channel arrangements for low and medium capacity systems in the band 3 400 MHz to 3 600 MHz".
- [8] ERC Recommendation 12-05: "Harmonised radio frequency channel arrangements for digital terrestrial fixed systems operating in the band 10.0 10.68 GHz".
- [9] ETS 300 019, Parts 1 and 2 (1994): "Equipment Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; sub-parts 1-1 to 1-7: Classification of environmental conditions; sub-parts 2-1 to 2-7: Specification of environmental tests".
- [10] ETS 300 132: "Equipment Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 1: Operated by alternating current (ac) and Part 2: Operated by direct current (dc)".
- [11] ITU-T Recommendation G.773 (1993): "Protocol suites for Q-interfaces for management of transmission systems".
- [12] ETS 300 385: "Radio Equipment and Systems (RES); ElectroMagnetic Compatibility (EMC) standard for digital fixed radio links and ancillary equipment with data rates at around 2 Mbit/s and above".
- [13] ITU-T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies".
- [14] ITU-T Recommendation G.726: "40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM)".
- [15] ITU-T Recommendation G.728: "Coding of speech at 16 kbit/s using low-delay code excited linear prediction".
- [16] ITU-R Recommendation F.697-1: "Error performance and availability objectives for the local-grade portion at each end of an ISDN connection utilizing digital radio-relay systems".
- [17] prETS 300 339: "Radio Equipment and Systems (RES); General Electro-Magnetic Compatibility (EMC) for radio equipment".
- [18] ITU-T Recommendation G.729: "Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear-prediction (CS-ACELP)".
- [19] ETS 300 324 (1995): "Signalling Protocols and Switching (SPS); V interfaces at the digital Local Exchange (LE) V5.1 interface for the support of Access Network (AN); Part 1: V5.1 interface specification, Part 5: Test Suite Structure and Test Purposes (TSS&TP) specification for the network layer (LE side) and Part 7: Test Suite Structure and Test Purposes (TSS&TP) specification for the data link layer".
- [20] ETS 300 347 (1994): "Signalling Protocols and Switching (SPS); V interfaces at the digital Local Exchange (LE) V5.2 interface for the support of Access Network (AN) Part 1: V5.2 interface specification and Part 2: Protocol Implementation Conformance Statement (PICS) proforma".
- [21] ITU-R Recommendation F.1191: "Bandwidths and unwanted emissions of digital radio-relay systems".

3 Symbols and abbreviations

3.1 Symbols

For the purposes of this EN, the following symbols apply:

Hertz
kiloHertz
MegaHertz
GigaHertz
kilobits per second
Megabits per second
millisecond
deciBel
deciBel relative to 1 milliwatt

3.2 Abbreviations

For the purposes of this EN, the following abbreviations apply:

Bit Error Ratio
Central Controller Station
Central Station
Central Radio Station
Electromagnetic Compatibility
European Radiocommunications Committee
Integrated Services Digital Network
Pseudo-Random Binary Sequence
Repeater Station
Time Division Multiple Access
Telecommunications Management Network
Terminal Station
Low Delay Code Excited Linear Prediction
Mean Opinion Score
Quantization Distortion Unit
Terminal Station High frequency
Terminal Station Low frequency
Repeater Station
Repeater Station Crossband
Terminal Equipment
Transmitter

4 General system architecture

4.1 Sub-system types

A system could consist of physical sub-systems as follows (see figure 1):

Figure 1: General system architecture

- CS: the Central Station, which can be subdivided into two units:
 - i) the Central Controller Station (CCS), also called the **EXCHANGE UNIT**, which is the interface to the local **exchange**;
 - ii) the Central Radio Station (CRS), also called the **RADIO UNIT**, which is the central baseband/radio transceiver.
- TS: the Terminal Station (outstations with subscriber interfaces). These are sub-divided into two types:
 - i) TSH: (Terminal Station High frequency), i.e. > 3 GHz; and
 - ii) **TSL:** (Terminal Station Low frequency), i.e. < 3 GHz.
- **RS**: the Repeater Station (radio repeater outstations with or without subscriber interfaces). The repeater station can be divided into two types:
 - i) **RS:** (Repeater Station), > 3 GHz; and
 - ii) **RSC:** (Repeater Station with Crossband), i.e. the frequency is transformed to a frequency in another band which is below or above 3 GHz.

The central station performs the interconnection with the local switching exchange carrying out a concentration function by sharing the total number of available channels in the system. The central station is linked to all remote stations (repeater or terminal stations) by microwave transmission paths.

Whenever an existing digital transmission link is available, the network implementation can be optimized by separating the CCS installed at the exchange site and the CRS.

The general characteristics which are typical for P-MP systems are considered in the present document. These characteristics have been categories under four headings:

- 1) system characteristics;
- 2) radio characteristics;
- 3) type of services/subscriber and exchange interface;
- 4) power supply, mechanical and environmental characteristics.

4.2 System characteristics

The following characteristics shall be used:

4.2.1 System capacity

The system traffic carrying capacity shall be below 0,5 Mbit/s or n x 2 Mbit/s (n = 1 or 2).

4.2.2 Transmission error performance

Equipment shall be designed in order to meet network performance and availability requirements specified by ITU-T Recommendation G.821 [5] following the criteria defined in ITU-R Recommendation F.697-1 [16] for the local grade portion of the digital connection.

4.2.3 Round trip delay

The round trip delay for a 64 kbit/s traffic channel shall not exceed 20 ms.

Longer round trip delays may result at other bit rates and when using speech coding at rates lower than 64 kbit/s.

4.2.4 Transparency

The system shall be fully transparent: the exchange and the telephone communicate with each other without being aware of the radio link. The system shall be transparent to analogue or digital subscriber equipment signalling and to voiceband data signals. However, advantage may be taken of coding methods at rates lower than 64 kbit/s to conserve radio spectrum, provided that a means to maintain the above transparency is used.

At least one of the following standard coding methods could be employed:

64 kbit/s:	according to ITU-T Recommendation G.711 [13], which will provide full transparency and permit a direct digital interface to digital switches;
32 kbit/s:	according to ITU-T Recommendation G.726 [14];
16 kbit/s:	according to ITU-T Recommendation G.728 [15] for Low Delay Code Excited Linear Prediction (LD CELP);
8 kbit/s:	according to ITU-T Recommendation G.729 [18].

Other voice coding methods may be employed if the quality, (measured for example in Quantization Distortion Units (QDU) or Mean Opinion Score (MOS)) shall be equivalent to the above.

4.2.5 TMN interface

TMN interface, if any, should be in accordance with ITU-T Recommendation G.773 [11].

4.2.6 Synchronization

Systems employing digital interfaces shall include methods enabling internal and external synchronization to the network. Synchronization tolerance should meet the requirements of ITU-T Recommendation G.703 [2].

5 Radio characteristics

5.1 Frequency bands

Bands allocated to the fixed service in the range 3 GHz to 11 GHz shall be used.

5.2 Proposed channel arrangement

Table 1, below, gives details of proposed bands and channel spacings which have been considered within CEPT and the European Radiocommunications Committee (ERC).

Frequency band	Band limits	Transmit/receive spacing
3,5 GHz	3,4 to 3,6 GHz	50 or 100 MHz,
		ERC Recommendation 14-03 [7]
10,5 GHz	10,15 GHz to 10,3 GHz paired with	350 MHz,
	10,5 GHz to 10,65 GHz	ERC Recommendation 12-05 [8]

Table 1: Frequency bands

Table 2: Channel spacing

Minimum Bit Rate (Mbit/s)	< 0,5	2	4
Channel spacing (MHz)	ERC Recommendations14-03 [7] and 12-05 [8]	1,75/2	3,5

5.3 Transmitter (TX) characteristics

5.3.1 TX power range

The maximum value of output power, referred to point C' of the RF block diagram in figure 2 shall not exceed 35 dBm.

If for proper operation of the system or for regulatory purposes, a reduced range of output power is required, then a built in or added means of adjustment shall be provided.

The tolerance value around the nominal or selected value of output power is ± 1 dB.

The transmitted output power means the value measured where the output is connected to a dummy load, i.e. power meter or spectrum analyser. The transmitted carrier shall be modulated with a signal representing the normal traffic, under all conditions of loading and services.

Two different measurement methods can be used:

- 1) spectrum analyser with resolution bandwidth and video bandwidth greater than 1 MHz; or
- 2) power meter.
- NOTE: Use of a peak power meter is suitable when measuring the output power of transmitters operating in a burst mode.

NOTE: Points B & C and B' and C' will coincide if branching networks are not used.

Figure 2: Radio Frequency (RF) block diagram

5.3.2 Spectrum mask

Spectrum masks are given in figure 3.

The transmitted output power spectrum is defined as: the spectrum when modulated with a signal representing the normal traffic, under all conditions of loading and services.

The spectrum measurement at point C' of the system block diagram shall be performed with the "maximum hold" function selected on the spectrum analyser.

The reference level of the output spectrum means that the 0 dB level is the top of the modulated spectrum.

Figure 3: Power spectrum mask (fo = actual carrier frequency)

		Frequency offset (MHz)				
Minimum bitrate (Mbit/s)	Channel spacing, (MHz)	A	В	С	D	E
< 0,5 (note)		1,7 × Symbol Rate (Mbaud)	2,6 × Symbol Rate (Mbaud)	3,6 × Symbol Rate (Mbaud)	6,4 × Symbol Rate (Mbaud)	10 × Symbol Rate (Mbaud)
2	1,75	0,75	1,15	1,6	2,8	4,375
2	2	0,85	1,3	1,8	3,2	5,0
4 3,5		1,5	2,5	3,7	6,8	8,75
NOTE: TDMA systems with minimum bit rates below 0,5 Mbit/s may use various channel spacings within blocks of slots assigned to an operator according to ERC Recommendations 14-03 [7] or 12-05 [8]. The manufacturer should declare the system traffic bit rate, symbol rate and channel spacing, from which the break points A, B, C and D for the spectrum mask can be calculated.						

Table 3: Reference frequencies for spectrum mask

Table 4: Spectrum analyser settings

Resolution bandwidth	Video bandwidth	Sweep time	Sweep width
30 kHz	300 Hz	10 s	10 MHz

5.3.3 Transmitter spurious emissions

Spurious emissions are defined as emissions at frequencies which are outside the bandwidth defined by nominal carrier frequency $\pm 2,5$ times the relevant channel spacing as in ITU-R Recommendation F.1191 [21].

The frequency range in which the spurious emission specifications apply is 30 MHz to 40 GHz. The limit values measured at point C' are:

30 MHz to 21,2 GHz: value under study (note);

21,2 GHz to 40 GHz: -30 dBm.

For the purposes of this present document, the measuring bandwidth is in the range 100 kHz to 120 kHz.

Within the exclusion bandwidth defined above, the unwanted emission level shall not exceed the limits fixed by the relevant spectrum mask.

NOTE: Value under study within ETSI STC TM4, within the range -40 dBm to -60 dBm.

5.3.4 Radio frequency tolerance

Maximum radio frequency tolerance shall not exceed the values defined in table 5. These limits include both short-term factors (environmental effects) and long term ageing effects.

In the type test the manufacturer shall state the guaranteed short-term part and the expected ageing part.

Table 5: Permitted frequency tolerance

Frequency band (GHz)	Minimum bit rate (Mbit/s)	Frequency tolerance (kHz)
3,5	< 0,5	±4
3,5	2	±60
10,5	2	±220

The equipment should be designed, manufactured, and maintained to ensure that the long term frequency tolerance remains within the limits above.

5.4 Receiver characteristics

5.4.1 Input level range

The input level range shall be greater than 40 dB above the threshold level for a BER of 10^{-3} referred to point C of the system block diagram (figure 2).

5.4.2 Spurious emissions

Spurious emissions are defined as emissions at frequencies which are outside the bandwidth defined by nominal carrier frequency $\pm 2,5$ times the relevant channel spacing as in ITU-R Recommendation F.1191 [21].

The frequency range in which the spurious emission specifications apply is 30 MHz to 40 GHz. The limit values measured at point C' are:

30 MHz to 21,2 GHz: value under study (note);

21,2 GHz to 40 GHz: -30 dBm.

For the purposes of the present document the measuring bandwidth is in the range 100 kHz to 120 kHz.

Within the exclusion bandwidth defined above the unwanted emission level shall not exceed the limits fixed by the relevant spectrum mask.

NOTE: Value under study within ETSI STC TM4, within the range -40 dBm to -60 dBm.

5.4.3 Bit Error Rate (BER) performance

BER versus receive signal power level, referred to point C of the system block diagram (figure 2) shall be equal to or better than the values in table 5:

Bit rate (Mbit/s)	BER 10 ⁻³ (dBm)	BER 10 ⁻⁶ (dBm)
< 0,5	(note)	(note)
2	-90	-86
4	-87	-83

Table 6: BER versus receiver signal level

NOTE: For these systems the reference levels may be calculated from the following formulas: For BER = 10^{-3} : (-93 + $10\log_{10}$ [bit rate Mbit/s]) dBm; For BER = 10^{-6} : (-89 + $10\log_{10}$ [bit rate Mbit/s]) dBm.

5.4.4 Interference sensitivity

5.4.4.1 Adjacent channel interference

Adjacent channel sensitivity is defined as the ability of the receiver to receive a wanted signal in the presence of a like unwanted signal which is one channel away.

The two signals shall be connected to the receiver input via a combiner, so that the impedance is matched to the nominal impedance.

The wanted signal shall be tuned to the receiver's nominal frequency and be modulated with a Pseudo-Random Binary sequence (PRBS) signal. The interfering signal shall be turned off while the wanted signal is adjusted to the level corresponding to $BER = 10^{-6}$ as specified in table 6.

The interfering signal shall be tuned one channel away from the wanted signal and be modulated with a PRBS signal which is un-correlated to the wanted signal.

The interfering signal shall be adjusted to the same level as the wanted signal. The BER shall not be greater than 10⁻⁵.

Measurement on both sides of the nominal frequency shall be carried out.

5.4.4.2 Co-channel interference

Co-channel sensitivity is defined as the ability of the receiver to receive a wanted signal in the presence of a like unwanted signal on the same frequency.

The two signals shall be connected to the receiver input via a combiner, so that the impedance is in matched to the nominal impedance of the system.

The wanted signal shall be tuned to the receiver's nominal frequency and modulated with a PRBS signal.

The interfering signal shall be turned off while the wanted signal is adjusted to the level corresponding to $BER = 10^{-6}$ as specified in table 6.

The interfering signal shall be tuned to the same frequency as the wanted signal and modulated with a PRBS signal which is uncorrelated to the wanted signal.

The interfering signal shall then be injected at a level which is 23 dB below the wanted signal.

The BER shall not be greater than 10^{-5} .

5.4.5 Image frequency rejection

If applicable image frequency (frequencies) rejection shall be greater than 75 dB.

5.5 Antenna port characteristics

5.5.1 RF interface

The RF interface at reference points C and C' of the system block diagram (figure 2) is to be declared by the manufacturer.

5.5.2 Return loss

The return loss at reference points C and C' of the system block diagram (figure 2) shall be more than 15 dB at the reference impedance for systems with separate antennas.

6 Types of subscriber equipment and network interfaces

Table 7 lists a range of interfaces for various voice and data services. At least one of these interfaces shall be implemented in a P-MP system covered by the present document.

Subscriber equipment interfaces			
Analogue (2 wires)	ITU-T Recommendation Q.552 [4].		
Analogue (4 W + E & M)	ITU-T Recommendation Q.553 [3].		
Telex	ITU-T Recommendation R.20 [6];		
	plus the V series of ITU-T recommendations.		
Digital data port	ITU-T Recommendation G.703 [2];		
	the V series of ITU-T recommendations; and		
	the X series of ITU-T recommendations.		
ISDN basic rate	ETS 300 012 [1] (note 1).		
Networ	k Interfaces		
2 Mbit/s	ITU-T Recommendation G.703 [2].		
Analogue (2 wires)	ITU-T Recommendation Q.552 [4].		
Analogue (4 W + E & M)	ITU-T Recommendation Q.553 [3].		
Telex	ITU-T Recommendation R.20 [6];		
	the V series of ITU-T recommendations.		
Digital data port	ITU-T Recommendation G.703 [2];		
	the V series of ITU-T recommendations; and		
	the X series of ITU-T recommendations.		
ISDN basic rate	ETS 300 012 [1] (note 2).		
ISDN + analogue subscribers + leased lines	V5.1: ETS 300 324 [19];		
2 Mbit/s interface	V5.2: ETS 300 347 [20]);		
	ITU-T Recommendation G.703 [2].		
NOTE 1: ETS 300 012 [1] defines the S ISDN interface which is a customer premises interface and			
may not be suitable as a terminal station interface.			
NOTE 0. As a stad shows, ETO 000 040 [4] is a sustained and interface and assumption			
NOTE 2: As noted above, ETS 300 012 [1] is a customer premises interface and may not be suitable as a network interface. However, exchange line interfaces for ISDN basic rate are			
to be vendor - specific and no single standard interface is available.			

Table 7: Types of interfaces

7 Power supply, environmental, and mechanical characteristics

7.1 Power supply

The equipment shall operate from one or more of the power supplies within the ranges specified in tables 8 and 9. The power supply interface shall be in accordance with the characteristics of one or more of the secondary voltages foreseen in ETS 300 132 [10].

Nominal voltage	Voltage range	
12 V	10,8 V to 13,6 V	
24 V	21,8 V to 28,1 V	
48 V	40,5 V to 57 V (see ETS 300 132 [10])	
60 V	50,0 V to 72 V (see ETS 300 132 [10])	

Table 8: Power supplies - DC

Table	9:	Power	supplies	- 6	AC

For 110 V AC nominal	99 V to 121 V	60 Hz ± 2 Hz
For 230 V AC nominal	207 V to 253 V	50 Hz \pm 2 Hz (see ETS 300 132 [10])

7.2 Environmental conditions

The equipment shall meet the environmental conditions set out in ETS 300 019 [9] which defines weather protected and non-weather protected locations classes and test severities.

7.2.1 Equipment within weather protected locations

Equipment intended for operation in temperature controlled locations or partially temperature controlled locations shall meet the requirements of ETS 300 019 [9] classes 3.1 and 3.2 respectively.

Optionally, the more stringent requirements of ETS 300 019 [9] classes 3.3 (non temperature controlled locations), 3.4 (sites with heat trap) and 3.5 (sheltered locations) may be applied.

7.2.2 Equipment for non-weather protected locations

Equipment intended for operation in non weather protected locations shall meet the requirements of ETS 300 019 [9], class 4.1 or 4.1E.

Class 4.1 applies to many European countries and class 4.1E applies to all European countries.

Weather protected equipment conforming to classes 3.3, 3.4 and 3.5 together with an enclosure or cabinet may fulfil the requirements for operating in a non weather protected environment but this is outside the scope of the present document.

7.3 Electromagnetic Compatibility (EMC) conditions

The matter is under study in ETSI TM4, RES 9 and the CEPT.

For those aspects of EMC not specified in the present document, the conditions of ETS 300 385 [12] shall apply to systems operating at rates of 2 Mbit/s and above. For systems operating below 2 Mbit/s, ETS 300 339 [17] shall apply.

History

Document history							
V1.1.1	February 1997	Public Enquiry	PE 9724:	1997-02-14 to 1997-06-13			