
ETSI EN 300 744 V1.4.1 (2001-01)

European Standard (Telecommunications series)

Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television

Reference REN/JTC-DVB-111

Keywords

DVB, digital, video, broadcasting, terrestrial, MPEG, TV, audio, data

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2001. © European Broadcasting Union 2001. All rights reserved.

Contents

Intelle	Intellectual Property Rights		
Forew	Foreword		
1	Scope	6	
2	References	6	
3	Definitions, symbols and abbreviations	6	
3.1	Definitions		
3.2	Symbols	7	
3.3	Abbreviations		
4	Baseline system		
4.1	General considerations		
4.2	Interfacing		
4.3	Channel coding and modulation		
4.3.1	Transport multiplex adaptation and randomization for energy dispersal		
4.3.2	Outer coding and outer interleaving		
4.3.3	Inner coding		
4.3.4	Inner interleaving		
4.3.4.1	Bit-wise interleaving		
4.3.4.2			
4.3.5	Signal constellations and mapping		
4.4	OFDM frame structure		
4.5	Reference signals		
4.5.1	Functions and derivation		
4.5.2	Definition of reference sequence		
4.5.3	Location of scattered pilot cells		
4.5.4	Location of continual pilot carriers		
4.5.5	Amplitudes of all reference information		
4.6	Transmission Parameter Signalling (TPS)		
4.6.1	Scope of the TPS		
4.6.2	TPS transmission format		
4.6.2.1	Initialization		
4.6.2.2	Synchronization		
4.6.2.3	TPS length indicator		
4.6.2.4	Frame number		
4.6.2.5			
4.6.2.6	6 Hierarchy information		
4.6.2.7			
4.6.2.8			
4.6.2.9	Transmission mode		
4.6.2.1	0 Cell identifier		
4.6.2.1			
4.6.3	TPS modulation		
4.7	Number of RS-packets per OFDM super-frame		
4.8	Spectrum characteristics and spectrum mask		
4.8.1	Spectrum characteristics		
4.8.2	Out-of-band spectrum mask (for 8 MHz channels)		
4.8.3	Centre frequency of RF signal (for 8 MHz UHF channels)		

Annex A (informative):		Simulated system performance for 8 MHz channels		
Anne	x B (informative):	Definition of P ₁ and F ₁	41	
Anne	x C (informative):	Interleaving example	43	
Anne	x D (informative):	Guidelines to implementation of the emitted signal	44	
D.1	Use of the FFT		44	
D.2	Choice of "baseband"	centre frequency	45	
D.3	Other potential diffic	ulties	45	
Anne	x E (normative):	Values for 6 MHz and 7 MHz channels	46	
Histor	ry		49	

4

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications series) has been produced by Joint Technical Committee (JTC) of the European Broadcasting Union (EBU), Comité Européen de Normalisation Electrotechnique (CENELEC) and the European Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body by including in the Memorandum of Understanding also CENELEC, which is responsible for the standardization of radio and television receivers. The EBU is a professional association of broadcasting organizations whose work includes the co-ordination of its members' activities in the technical, legal, programme-making and programme-exchange domains. The EBU has active members in about 60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union CH-1218 GRAND SACONNEX (Geneva) Switzerland Tel: +41 22 717 21 11 Fax: +41 22 717 24 81

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector organizations in the television industry. Its aim is to establish the framework for the introduction of MPEG-2 based digital television services. Now comprising over 200 organizations from more than 25 countries around the world, DVB fosters market-led systems, which meet the real needs, and economic circumstances, of the consumer electronics and the broadcast industry.

National transposition dates	
Date of adoption of this EN:	29 December 2000
Date of latest announcement of this EN (doa):	31 March 2001
Date of latest publication of new National Standard or endorsement of this EN (dop/e):	30 September 2001
Date of withdrawal of any conflicting National Standard (dow):	30 September 2001

1 Scope

The present document describes a baseline transmission system for digital terrestrial TeleVision (TV) broadcasting. It specifies the channel coding/modulation system intended for digital multi-programme LDTV/SDTV/EDTV/HDTV terrestrial services.

The scope is as follows:

- it gives a general description of the Baseline System for digital terrestrial TV;
- it identifies the global performance requirements and features of the Baseline System, in order to meet the service quality targets;
- it specifies the digitally modulated signal in order to allow compatibility between pieces of equipment developed by different manufacturers. This is achieved by describing in detail the signal processing at the modulator side, while the processing at the receiver side is left open to different implementation solutions. However, it is necessary in this text to refer to certain aspects of reception.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
- A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.
- [1] ISO/IEC 13818: "Information technology Generic coding of moving pictures and associated audio information Parts 1 (Systems), 2 (Video) and 3 (Audio)".
- [2] ETSI EN 300 421: "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for 11/12 GHz satellite services".
- [3] ETSI EN 300 429: "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for cable systems".
- [4] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB systems".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following definition applies:

constraint length: number of delay elements +1 in the convolutional coder

3.2 Symbols

For the purposes of the present document, the following symbols apply:

A(e) a _{e,w}	output vector from inner bit interleaver e bit number w of inner bit interleaver output stream e
α	constellation ratio which determines the QAM constellation for the modulation for hierarchical transmission
B(e)	input vector to inner bit interleaver e
b _{e,w}	bit number w of inner bit interleaver input steam e
b _{e,do}	output bit number do of demultiplexed bit stream number e of the inner interleaver demultiplexer
bi	bit number i of the cell identifier
c _{m,l,k}	complex cell for frame m in OFDM symbol l at carrier k
C' _k	Complex modulation for a reference signal at carrier k
C' _{l'k}	Complex modulation for a TPS signal at carrier k in symbol 1
C/N	Carrier-to-Noise ratio
Δ	time duration of the guard interval
d _{free}	convolutional code free distance
f _c	centre frequency of the emitted signal
G ₁ , G ₂	convolutional code Generator polynomials
g(x)	Reed-Solomon code generator polynomial
h(x)	BCH code generator polynomial
H(q) H _e (w)	inner symbol interleaver permutation inner bit interleaver permutation
i	priority stream index
I	Interleaving depth of the outer convolutional interleaver
10,11,12,13,14,15	inner Interleavers
j	branch index of the outer interleaver
k	carrier number index in each OFDM symbol
K	number of active carriers in the OFDM symbol carrier number of the lower and largest active carrier respectively in the OFDM signal
K _{min} , K _{max} 1	OFDM symbol number index in an OFDM frame
m	OFDM frame number index
m'	OFDM super-frame number index
М	convolutional interleaver branch depth for $j = 1$, $M = N/I$
n N	transport stream sync byte number
N N	length of error protected packet in bytes inner symbol interleaver block size
N _{max}	scattered pilot insertion index
p p(x)	RS code field generator polynomial
$P_k(f)$	Power spectral density for carrier k
P(n)	interleaving Pattern of the inner symbol interleaver
r _i	code rate for priority level i
s _i	TPS bit index
t	number of bytes which can be corrected by the Reed-Solomon decoder
Т	elementary Time period
T _S	duration of an OFDM symbol
T _F	Time duration of a frame
T _U	Time duration of the useful (orthogonal) part of a symbol, without the guard interval
u	bit numbering index
V W	number of bits per modulation symbol value of reference PRBS sequence applicable to carrier k
w _k x	input bit number di to the inner interleaver demultiplexer
x'	high priority input bit number di to the inner interleaver demultiplexer
x' _{di}	
x" _{di}	low priority input bit number di to the inner interleaver demultiplexer

Y	output vector from inner symbol interleaver
Y'	intermediate vector of inner symbol interleaver
Уq	bit number q of output from inner symbol interleaver
y'q	bit number q of intermediate vector of inner symbol interleaver
Z	complex modulation symbol
*	complex conjugate

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BERBit Error RatioDBPSKDifferential Binary Phase Shift KeyingDFTDiscrete Fourier TransformDVBDigital Video BroadcastingDVB-TDVB-TerrestrialEDTVEnhanced Definition TeleVisionFFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	ACI	Adjacent Channel Interference
DBPSKDifferential Binary Phase Shift KeyingDFTDiscrete Fourier TransformDVBDigital Video BroadcastingDVB-TDVB-TerrestrialEDTVEnhanced Definition TeleVisionFFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	BCH	Bose - Chaudhuri - Hocquenghem code Bit Error Patio
DFTDiscrete Fourier TransformDVBDigital Video BroadcastingDVB-TDVB-TerrestrialEDTVEnhanced Definition TeleVisionFFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
DVBDigital Video BroadcastingDVB-TDVB-TerrestrialEDTVEnhanced Definition TeleVisionFFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
DVB-TDVB-TerrestrialEDTVEnhanced Definition TeleVisionFFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
EDTVEnhanced Definition TeleVisionFFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		8
FFTFast Fourier TransformFIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
FIFOFirst-In, First-Out shift registerHDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
HDTVHigh Definition TeleVisionHEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
HEXHEXadecimal notationHPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
HPHigh Priority bit streamIFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	HEX	
IFIntermediate FrequencyIFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	HP	
IFFTInverse Fast Fourier TransformLDTVLimited Definition TeleVisionLPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	IF	
LPLow Priority bit streamMPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	IFFT	
MPEGMoving Picture Experts GroupMSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	LDTV	Limited Definition TeleVision
MSBMost Significant BitMUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	LP	Low Priority bit stream
MUXMUltipleXNICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	MPEG	Moving Picture Experts Group
NICAMNear-Instantaneous Companded Audio MultiplexOCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	MSB	Most Significant Bit
OCTOCTal notationOFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	MUX	MUltipleX
OFDMOrthogonal Frequency Division MultiplexingPALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	NICAM	Near-Instantaneous Companded Audio Multiplex
PALPhase Alternating LinePRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	OCT	
PRBSPseudo-Random Binary SequenceQAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	OFDM	
QAMQuadrature Amplitude ModulationQEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	PAL	
QEFQuasi Error FreeQPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	PRBS	
QPSKQuaternary Phase Shift KeyingRFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	•	
RFRadio FrequencyRSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	•	
RSReed-SolomonSDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling	-	
SDTVStandard Definition TeleVisionSECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		1 0
SECAMSystème Sequentiel Couleur A MémoireSFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
SFNSingle Frequency NetworkTPSTransmission Parameter Signalling		
TPS Transmission Parameter Signalling		
	TV	TeleVision
UHF Ultra-High Frequency		
VHF Very-High Frequency	VHF	very-high Frequency

4 Baseline system

4.1 General considerations

The system is defined as the functional block of equipment performing the adaptation of the baseband TV signals from the output of the MPEG-2 transport multiplexer, to the terrestrial channel characteristics. The following processes shall be applied to the data stream (see figure 1):

- transport multiplex adaptation and randomization for energy dispersal;
- outer coding (i.e. Reed-Solomon code);
- outer interleaving (i.e. convolutional interleaving);
- inner coding (i.e. punctured convolutional code);
- inner interleaving;
- mapping and modulation;
- Orthogonal Frequency Division Multiplexing (OFDM) transmission.

The system is directly compatible with MPEG-2 coded TV signals ISO/IEC 13818 [1].

Since the system is being designed for digital terrestrial television services to operate within the existing VHF and UHF (see note) spectrum allocation for analogue transmissions, it is required that the System provides sufficient protection against high levels of Co-Channel Interference (CCI) and Adjacent-Channel Interference (ACI) emanating from existing PAL/SECAM/NTSC services. It is also a requirement that the System allows the maximum spectrum efficiency when used within the VHF and UHF bands; this requirement can be achieved by utilizing Single Frequency Network (SFN) operation.

NOTE: The OFDM system in the present document is specified for 8 MHz, 7 MHz and 6 MHz channel spacing. The basic specification is the same for the three bandwidths except for the parameter *elementary period T*, which is unique for the respective bandwidths. From an implementation point of view the elementary period T can normally be seen as the inverse of the nominal system clock rate. By adjusting the system clock rate the bandwidth and bit rate are modified accordingly.

To achieve these requirements an OFDM system with concatenated error correcting coding is being specified. To maximize commonality with the Satellite baseline specification (see EN 300 421 [2]) and Cable baseline specifications (see EN 300 429 [3]) the outer coding and outer interleaving are common, and the inner coding is common with the Satellite baseline specification. To allow optimal trade off between network topology and frequency efficiency, a flexible guard interval is specified. This will enable the system to support different network configurations, such as large area SFN and single transmitter, while keeping maximum frequency efficiency.

Two modes of operation are defined: a "2K mode" and an "8K mode". The "2K mode" is suitable for single transmitter operation and for small SFN networks with limited transmitter distances. The "8K mode" can be used both for single transmitter operation and for small and large SFN networks.

The system allows different levels of QAM modulation and different inner code rates to be used to trade bit rate versus ruggedness. The system also allows two level hierarchical channel coding and modulation, including uniform and multi-resolution constellation. In this case the functional block diagram of the system shall be expanded to include the modules shown dashed in figure 1. The splitter separates the incoming transport stream into two independent MPEG transport streams, referred to as the high-priority and the low-priority stream. These two bitstreams are mapped onto the signal constellation by the Mapper and Modulator which therefore has a corresponding number of inputs.

To guarantee that the signals emitted by such hierarchical systems may be received by a simple receiver the hierarchical nature is restricted to hierarchical channel coding and modulation without the use of hierarchical source coding.

A programme service can thus be "simulcast" as a low-bit-rate, rugged version and another version of higher bit rate and lesser ruggedness. Alternatively, entirely different programmes can be transmitted on the separate streams with different ruggedness. In either case, the receiver requires only one set of the inverse elements: inner de-interleaver, inner decoder, outer de-interleaver, outer decoder and multiplex adaptation. The only additional requirement thus placed on the receiver is the ability for the demodulator/de-mapper to produce one stream selected from those mapped at the sending end.

The price for this receiver economy is that reception can not switch from one layer to another (e.g. to select the more rugged layer in the event of reception becoming degraded) while continuously decoding and presenting pictures and sound. A pause is necessary (e.g. video freeze frame for approximately 0,5 seconds, audio interruption for approximately 0,2 seconds) while the inner decoder and the various source decoders are suitably reconfigured and reacquire lock.

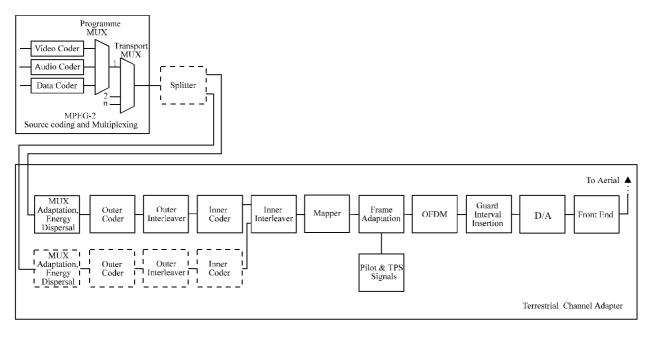


Figure 1: Functional block diagram of the System

4.2 Interfacing

The Baseline System as defined in the present document is delimited by the following interfaces:

Location	Interface	Interface type	Connection
Transmit Station	Input	MPEG-2 transport stream(s) multiplex	from MPEG-2 multiplexer
	Output	RF signal	to aerial
Receive Installation	Input	RF	from aerial
	Output	MPEG-2 transport stream multiplex	to MPEG-2 demultiplexer

4.3 Channel coding and modulation

4.3.1 Transport multiplex adaptation and randomization for energy dispersal

The System input stream shall be organized in fixed length packets (see figure 3), following the MPEG-2 transport multiplexer. The total packet length of the MPEG-2 transport multiplex (MUX) packet is 188 bytes. This includes 1 sync-word byte (i.e. $47_{\rm HEX}$). The processing order at the transmitting side shall always start from the MSB (i.e. "0") of the sync-word byte (i.e. 01 000 111). In order to ensure adequate binary transitions, the data of the input MPEG-2 multiplex shall be randomized in accordance with the configurations depicted in figure 2.

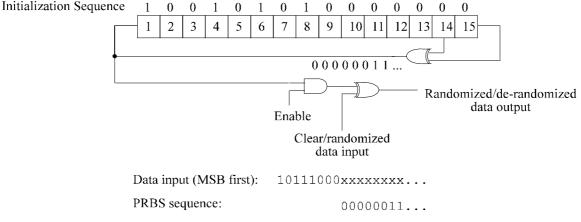


Figure 2: Scrambler/descrambler schematic diagram

The polynomial for the Pseudo Random Binary Sequence (PRBS) generator shall be (see note):

$$1 + X^{14} + X^{15}$$

NOTE: The polynomial description given here is in the form taken from the Satellite baseline specification EN 300 421 [2]. Elsewhere, in both the Satellite baseline specification and in the present document, a different polynomial notation is used which conforms with the standard textbook of Peterson and Weldon (Error correcting codes, second edition, MIT Press, 1972).

Loading of the sequence "100101010000000" into the PRBS registers, as indicated in figure 2, shall be initiated at the start of every eight transport packets. To provide an initialization signal for the descrambler, the MPEG-2 sync byte of the first transport packet in a group of eight packets is bit-wise inverted from 47_{HEX} (SYNC) to B8_{HEX} (SYNC). This process is referred to as "transport multiplex adaptation" (see figure 3b).

The first bit at the output of the PRBS generator shall be applied to the first bit (i.e. MSB) of the first byte following the inverted MPEG-2 sync byte (i.e. $B8_{HEX}$). To aid other synchronization functions, during the MPEG-2 sync bytes of the subsequent 7 transport packets, the PRBS generation shall continue, but its output shall be disabled, leaving these bytes unrandomized. Thus, the period of the PRBS sequence shall be 1 503 bytes.

The randomization process shall be active also when the modulator input bit-stream is non-existent, or when it is non-compliant with the MPEG-2 transport stream format (i.e. 1 sync byte + 187 packet bytes).

4.3.2 Outer coding and outer interleaving

The outer coding and interleaving shall be performed on the input packet structure (see figure 3a).

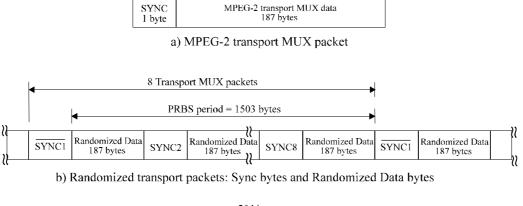
Reed-Solomon RS (204,188, t = 8) shortened code (see note 1), derived from the original systematic RS (255,239, t = 8) code, shall be applied to each randomized transport packet (188 byte) of figure 3b to generate an error protected packet (see figure 3c). Reed-Solomon coding shall also be applied to the packet sync byte, either non-inverted (i.e. 47_{HEX}) or inverted (i.e. $B8_{\text{HEX}}$).

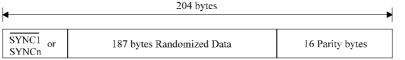
NOTE 1: The Reed-Solomon code has length 204 bytes, dimension 188 bytes and allows to correct up to 8 random erroneous bytes in a received word of 204 bytes.

Code Generator Polynomial: $g(x) = (x+\lambda^0)(x+\lambda^1)(x+\lambda^2)...(x+\lambda^{15})$, where $\lambda = 02_{HEX}$

Field Generator Polynomial: $p(x) = x^8 + x^4 + x^3 + x^2 + 1$

The shortened Reed-Solomon code may be implemented by adding 51 bytes, all set to zero, before the information bytes at the input of an RS (255,239, t = 8) encoder. After the RS coding procedure these null bytes shall be discarded, leading to a RS code word of N = 204 bytes.

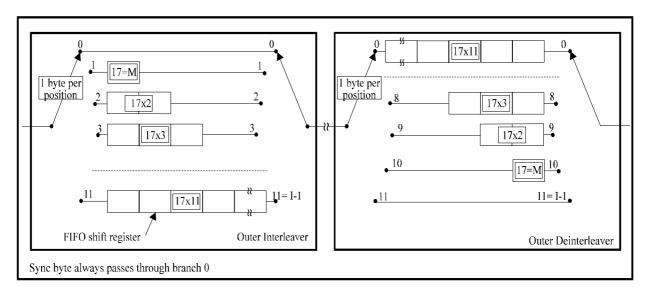

Following the conceptual scheme of figure 4, convolutional byte-wise interleaving with depth I = 12 shall be applied to the error protected packets (see figure 3c). This results in the interleaved data structure (see figure 3d).


The convolutional interleaving process shall be based on the Forney approach which is compatible with the Ramsey type III approach, with I = 12. The interleaved data bytes shall be composed of error protected packets and shall be delimited by inverted or non-inverted MPEG-2 sync bytes (preserving the periodicity of 204 bytes).

The interleaver may be composed of I = 12 branches, cyclically connected to the input byte-stream by the input switch. Each branch j shall be a First-In, First-Out (FIFO) shift register, with depth $j \times M$ cells where M = 17 = N/I, N = 204. The cells of the FIFO shall contain 1 byte, and the input and output switches shall be synchronized.

For synchronization purposes, the SYNC bytes and the SYNC bytes shall always be routed in the branch "0" of the interleaver (corresponding to a null delay).

NOTE 2: The deinterleaver is similar in principle, to the interleaver, but the branch indices are reversed (i.e. j = 0 corresponds to the largest delay). The deinterleaver synchronization can be carried out by routeing the first recognized sync (SYNC or \overline{SYNC}) byte in the "0" branch.


c) Reed-Solomon RS(204,188,8) error protected packets

u	SYNC1 or	203 bytes	SYNC1 or	203 bytes	SYNC1 or	
))	SYNCn		SYNCn		SYNCn	

d) Data structure after outer interleaving; interleaving depth I = 12 bytes

SYNC1: Non randomized complemented sync byte SYNCn: Non randomized sync byte, n = 2, 3, ..., 8

Figure 3: Steps in the process of adaptation, energy dispersal, outer coding and interleaving

 $\overline{\text{SYNC1}}$ is the non randomized complemented sync byte and SYNCn is the non randomized sync byte, n = 2, 3, ..., 8.

4.3.3 Inner coding

3/4

5/6

7/8

The system shall allow for a range of punctured convolutional codes, based on a mother convolutional code of rate 1/2 with 64 states. This will allow selection of the most appropriate level of error correction for a given service or data rate in either non-hierarchical or hierarchical transmission mode. The generator polynomials of the mother code are $G_1 = 171_{OCT}$ for X output and $G_2 = 133_{OCT}$ for Y output (see figure 5).

If two level hierarchical transmission is used, each of the two parallel channel encoders can have its own code rate. In addition to the mother code of rate 1/2 the system shall allow punctured rates of 2/3, 3/4, 5/6 and 7/8.

The punctured convolutional code shall be used as given in table 3. See also figure 5. In this table X and Y refer to the two outputs of the convolutional encoder.

possible code rates				
Code Rates r	Puncturing pattern	Transmitted sequence (after parallel-to-serial conversion)		
1/2	X: 1 Y: 1	X ₁ Y ₁		
2/3	X: 1 0 Y: 1 1	X ₁ Y ₁ Y ₂		

 $X_{1} Y_{1} Y_{2} X_{3}$

 $X_1 Y_1 Y_2 X_3 Y_4 X_5$

X₁ Y₁ Y₂ Y₃ Y₄ X₅ Y₆ X₇

Table 2: Puncturing pattern and transmitted sequence after parallel-to-serial conversion for the
possible code rates

 X_1 is sent first. At the start of a super-frame the MSB of SYNC or \overline{SYNC} shall lie at the point labelled "data input" in figure 5. The super-frame is defined in subclause 4.4.

The first convolutionally encoded bit of a symbol always corresponds to X1.

X: 1 0 1

Y:110

X: 1 0 1 0 1 Y: 1 1 0 1 0

X: 1 0 0 0 1 0 1 Y: 1 1 1 1 0 1 0

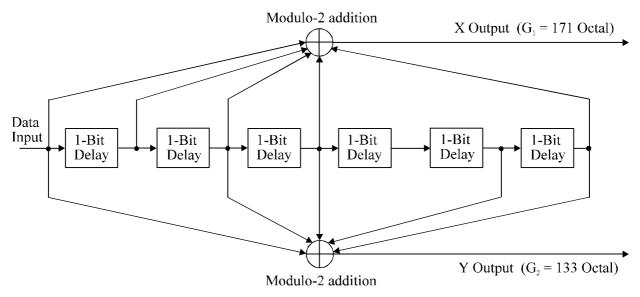


Figure 5: The mother convolutional code of rate 1/2

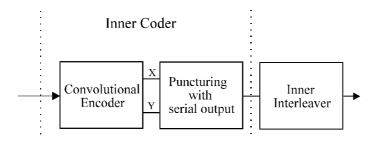


Figure 6: Inner coding and interleaving

4.3.4 Inner interleaving

The inner interleaving consists of bit-wise interleaving followed by symbol interleaving. Both the bit-wise interleaving and the symbol interleaving processes are block-based.

4.3.4.1 Bit-wise interleaving

The input, which consists of up to two bit streams, is demultiplexed into v sub-streams, where v = 2 for QPSK, v = 4 for 16-QAM, and v = 6 for 64-QAM. In non-hierarchical mode, the single input stream is demultiplexed into v sub-streams. In hierarchical mode the high priority stream is demultiplexed into two sub-streams and the low priority stream is demultiplexed into v-2 sub-streams. This applies in both uniform and non-uniform QAM modes. See figures 7a and 7b.

The demultiplexing is defined as a mapping of the input bits, x_{di} onto the output bits $b_{e,do}$.

In non-hierarchical mode:

xdi = b[di(mod)v](div)(v/2)+2[di(mod)(v/2)],di(div)v

In hierarchical mode:

x'di = bdi(mod)2, di(div)2

x''di = b[di(mod)(v-2)](div)((v-2)/2)+2[di(mod)((v-2)/2)]+2,di(div)(v-2)

- Where: x_{di} is the input to the demultiplexer in non-hierarchical mode;
 - x'_{di} is the high priority input to the demultiplexer;
 - x"_{di} is the low priority input, in hierarchical mode;
 - di is the input bit number;
 - b_{e.do} is the output from the demultiplexer;
 - e is the demultiplexed bit stream number $(0 \le e < v)$;
 - do is the bit number of a given stream at the output of the demultiplexer;
 - mod is the integer modulo operator;
 - div is the integer division operator.

The demultiplexing results in the following mapping:

QPSK: x_0 maps to $b_{0,0}$

 x_1 maps to $b_{1,0}$

16-QAM non-hierarchical transmission:

x_0 maps to $b_{0,0}$ x'_0 maps to $b_{0,0}$ x_1 maps to $b_{2,0}$ x'_1 maps to $b_{1,0}$ x_2 maps to $b_{1,0}$ x''_0 maps to $b_{2,0}$ x_3 maps to $b_{3,0}$ x''_1 maps to $b_{3,0}$

64-QAM non-hierarchical transmission:

64-QAM hierarchical transmission:

16-QAM hierarchical transmission:

x_0 maps to $b_{0,0}$	x'_0 maps to $b_{0,0}$
x ₁ maps to b _{2,0}	x'_1 maps to $b_{1,0}$
x_2 maps to $b_{4,0}$	x''_0 maps to $b_{2,0}$
x_3 maps to $b_{1,0}$	x''_1 maps to $b_{4,0}$
x_4 maps to $b_{3,0}$	x''_2 maps to $b_{3,0}$
x_5 maps to $b_{5,0}$	x''_{3} maps to $b_{5,0}$

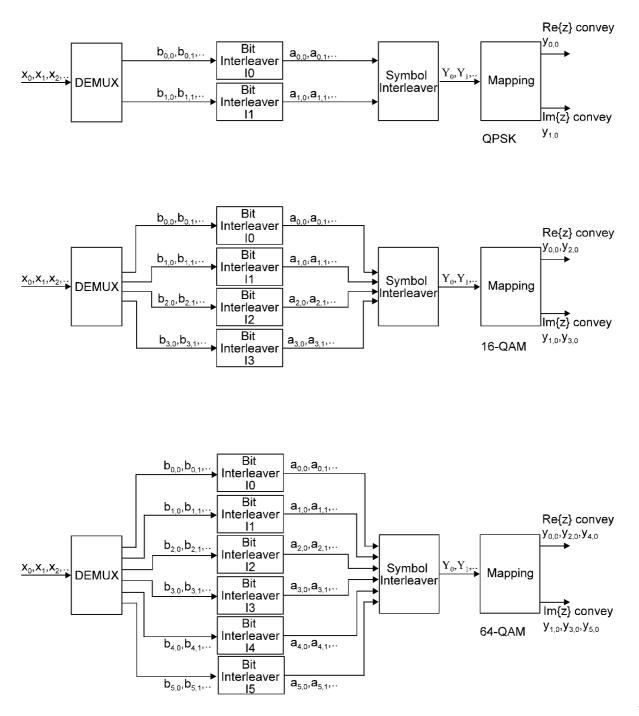
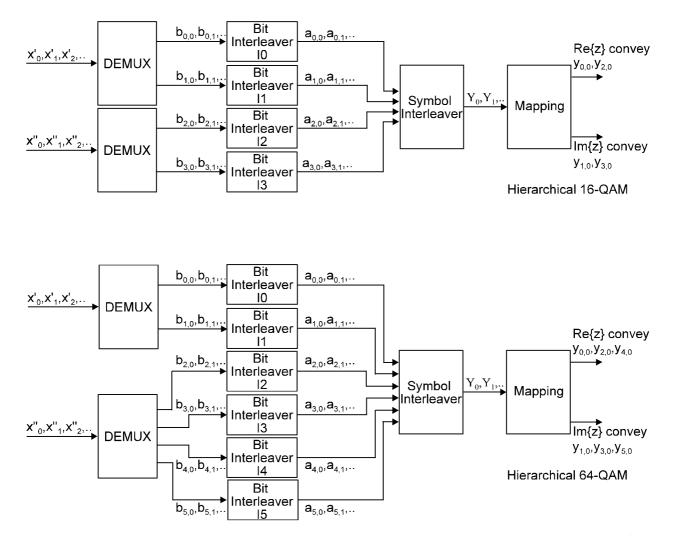



Figure 7a: Mapping of input bits onto output modulation symbols, for non-hierarchical transmission modes

Figure 7b: Mapping of input bits onto output modulation symbols, for hierarchical transmission modes

Each sub-stream from the demultiplexer is processed by a separate bit interleaver. There are therefore up to six interleavers depending on v, labelled I0 to I5. I0 and I1 are used for QPSK, I0 to I3 for 16-QAM and I0 to I5 for 64-QAM.

Bit interleaving is performed only on the useful data. The block size is the same for each interleaver, but the interleaving sequence is different in each case. The bit interleaving block size is 126 bits. The block interleaving process is therefore repeated exactly twelve times per OFDM symbol of useful data in the 2K mode and forty-eight times per symbol in the 8K mode.

For each bit interleaver, the input bit vector is defined by:

$$B(e) = (b_{e,0}, b_{e,1}, b_{e,2}, ..., b_{e,125})$$

where e ranges from 0 to v-1.

The interleaved output vector $A(e) = (a_{e,0}, a_{e,1}, a_{e,2}, ..., a_{e,125})$ is defined by:

$$a_{e,w} = b_{e,He(w)}$$
 w = 0, 1, 2, ..., 125

where $H_e(w)$ is a permutation function which is different for each interleaver.

 $H_e(w)$ is defined as follows for each interleaver:

I0: $H_0(w) = w$ I1: $H_1(w) = (w + 63) \mod 126$ I2: $H_2(w) = (w + 105) \mod 126$

I3: $H_3(w) = (w + 42) \mod 126$

I4: $H_4(w) = (w + 21) \mod 126$

I5: $H_5(w) = (w + 84) \mod 126$

The outputs of the v bit interleavers are grouped to form the digital data symbols, such that each symbol of v bits will consist of exactly one bit from each of the v interleavers. Hence, the output from the bit-wise interleaver is a v bit word y' that has the output of I0 as its most significant bit, i.e.:

18

 $y'_{w} = (a_{0,w}, a_{1,w}, ..., a_{v-1,w})$

4.3.4.2 Symbol interleaver

The purpose of the symbol interleaver is to map v bit words onto the 1 512 (2K mode) or 6 048 (8K mode) active carriers per OFDM symbol. The symbol interleaver acts on blocks of 1 512 (2K mode) or 6 048 (8K mode) data symbols.

Thus in the 2K mode, 12 groups of 126 data words from the bit interleaver are read sequentially into a vector $\mathbf{Y}' = (\mathbf{y}'_0, \mathbf{y}'_1, \mathbf{y}'_2, \dots \mathbf{y}'_{1511})$. Similarly in the 8K mode, a vector $\mathbf{Y}' = (\mathbf{y}'_0, \mathbf{y}'_1, \mathbf{y}'_2, \dots \mathbf{y}'_{6047})$ is assembled from 48 groups of 126 data words.

The interleaved vector $\mathbf{Y} = (y_0, y_1, y_2, \dots, y_{Nmax-1})$ is defined by:

 $y_{H(q)} = y'_q$ for even symbols for $q = 0, ..., N_{max}-1$

 $y_q = y'_{H(q)}$ for odd symbols for $q = 0, ..., N_{max}-1$

where $N_{max} = 1512$ in the 2K mode and $N_{max} = 6048$ in the 8K mode.

The symbol index, defining the position of the current OFDM symbol in the OFDM frame, is defined in subclause 4.4.

H(q) is a permutation function defined by the following.

An $(N_r - 1)$ bit binary word R'_i is defined, with $N_r = \log_2 M_{max}$, where $M_{max} = 2.048$ in the 2K mode and $M_{max} = 8.192$ in the 8K mode, where R'_i takes the following values:

i = 0,1: $R'_{i} [N_{r}-2, N_{r}-3, ..., 1, 0] = 0, 0, ..., 0, 0$

i = 2: $R'_{i} [N_{r}-2, N_{r}-3, ..., 1, 0] = 0, 0, ..., 0, 1$

 $2 < i < M_{max}$: { R'_i[N_r-3, N_r-4, ..., 1, 0] = R'_{i-1} [N_r -2, N_r -3, ..., 2, 1];

in the 2K mode: $R'_{i}[9] = R'_{i-1}[0] \oplus R'_{i-1}[3]$

in the 8K mode:
$$R'_{i}[11] = R'_{i-1}[0] \oplus R'_{i-1}[1] \oplus R'_{i-1}[4] \oplus R'_{i-1}[6]$$

A vector \mathbf{R}_i is derived from the vector \mathbf{R}'_i by the bit permutations given in tables 3a and 3b.

Table 3a: Bit permutations for the 2K mode

R' _i bit positions	9	8	7	6	5	4	3	2	1	0
R _i bit positions	0	7	5	1	8	2	6	9	3	4

Table 3b: Bit permutations for the 8K mode

R' _i bit positions	11	10	9	8	7	6	5	4	3	2	1	0
R _i bit positions	5	11	3	0	10	8	6	9	2	4	1	7

The permutation function H(q) is defined by the following algorithm:

$$\begin{split} q &= 0; \\ &\text{for } (i = 0; i < M_{max}; i = i + 1) \\ &\{ H(q) = (i \ mod 2) \cdot 2^{N_r - 1} + \sum_{j=0}^{N_r - 2} R_i(j) \cdot 2^j; \\ &\text{if } (H(q) < N_{max}) \ q = q + 1; \ \} \end{split}$$

A schematic block diagram of the algorithm used to generate the permutation function is represented in figure 8a for the 2K mode and in figure 8b for the 8K mode.

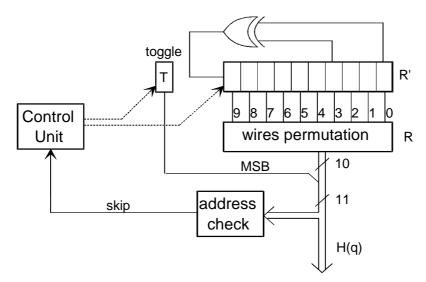


Figure 8a: Symbol interleaver address generation scheme for the 2K mode

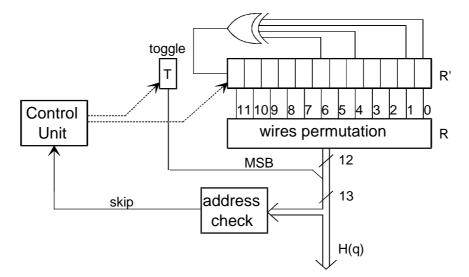


Figure 8b: Symbol interleaver address generation scheme for the 8K mode

In a similar way to y', y is made up of v bits:

$$y_{q'} = (y_{0,q'}, y_{1,q'}, ..., y_{v-1,q'})$$

where q' is the symbol number at the output of the symbol interleaver.

These values of y are used to map the data into the signal constellation, as described in subclause 4.3.5.

4.3.5 Signal constellations and mapping

The system uses Orthogonal Frequency Division Multiplex (OFDM) transmission. All data carriers in one OFDM frame are modulated using either QPSK, 16-QAM, 64-QAM, non-uniform 16-QAM or non-uniform 64-QAM constellations. The constellations, and the details of the Gray mapping applied to them, are illustrated in figure 9.

The exact proportions of the constellations depend on a parameter α , which can take the three values 1, 2 or 4, thereby giving rise to the three diagrams figures 9a to 9c. α is the minimum distance separating two constellation points carrying different HP-bit values divided by the minimum distance separating any two constellation points. Non-hierarchical transmission uses the same uniform constellation as the case with $\alpha = 1$, i.e. figure 9a.

The exact values of the constellation points are $z \in \{n + j m\}$ with values of n, m given below for the various constellations:

QPSK

 $n \in \, \{\text{-}1,\,1\},\, m \in \, \{\text{-}1,\,1\}$

16-QAM (non-hierarchical and hierarchical with $\alpha = 1$)

 $n \in \, \{\text{-3},\,\text{-1},\,1,\,3\}, \, m \in \, \{\text{-3},\,\text{-1},\,1,\,3\}$

Non-uniform 16-QAM with $\alpha = 2$

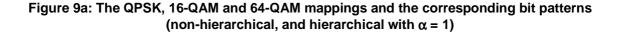
 $n \in \, \{\text{-4}, \, \text{-2}, \, 2, \, 4\}, \, m \in \, \{\text{-4}, \, \text{-2}, \, 2, \, 4\}$

Non-uniform 16-QAM with $\alpha = 4$

 $n \in \{-6, -4, 4, 6\}, m \in \{-6, -4, 4, 6\}$

64-QAM (non-hierarchical and hierarchical with $\alpha = 1$)

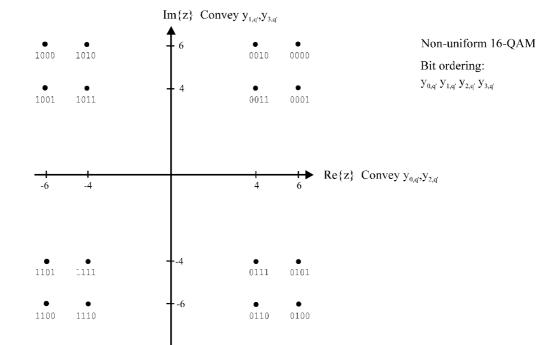
 $n \in \, \{\text{-7, -5, -3, -1, 1, 3, 5, 7}\}, m \in \, \{\text{-7, -5, -3, -1, 1, 3, 5, 7}\}$


Non-uniform 64-QAM with $\alpha=2$

 $n \in \ \{-8, \ -6, \ -4, \ -2, \ 2, \ 4, \ 6, \ 8\}, \ m \in \ \{-8, \ -6, \ -4, \ -2, \ 2, \ 4, \ 6, \ 8\}$

Non-uniform 64-QAM with $\alpha = 4$

 $n \in \{-10, -8, -6, -4, 4, 6, 8, 10\}, m \in \{-10, -8, -6, -4, 4, 6, 8, 10\}$


Im $\{z\}$ Convey $y_{1,a'}$ **QPSK** $\begin{array}{c}
\bullet \\
10 \\
-1 \\
\bullet \\
1
\end{array} Re{z} Convey y_{0,q'}$ Bit ordering: $y_{0,q'}\,y_{1,q'}$ Im $\{z\}$ Convey $y_{1,a}, y_{3,a}$ 16-QAM Bit ordering: $y_{0,q'}\,y_{1,q'}\,y_{2,q'}\,y_{3,q'}$ Im{z} Convey $y_{1,q'}, y_{3,q'}, y_{5,q'}$ 64-QAM Bit ordering: $y_{0,q'} y_{1,q'} y_{2,q'} y_{3,q'} y_{4,q'} y_{5,q'}$ 100001 100011 101011 101001 + 5 • 001001 001011 000011 000001 100101 100111 101101 + 3 001101 001111 000111 000101 • Re{z} Convey $y_{0,q'}, y_{2,q'}, y_{4,q'}$ 110101 110111 111111 111101 -3 011101 011111 010111 010101 • 110001 110011 111001 ⁻⁵ 011001 011011 010011 010001 110000

Im{z} Convey $y_{1,q'}$, $y_{3,q'}$ 1000 1010 Non-uniform 16-QAM 0010 0000 0011 0001 Bit ordering: **L** 2 $y_{0,q'} y_{1,q'} y_{2,q'} y_{3,q'}$ • 1001 -2 Re{z} Convey $y_{0,q'}$, $y_{2,q'}$ 2 -4 0111 0101 1101 1111 • 1110 1100 Im{z} Convey $y_{1,q'}, y_{3,q'}, y_{5,q'}$ Non-uniform 64-QAM +8 • • • • • • 001000 001010 000010 000000 • 101010 101000 100000 100010 Bit ordering: $y_{0,q'} \; y_{1,q'} \; y_{2,q'} \; y_{3,q'} \; y_{4,q'} \; y_{5,q'}$ 101011 101001 100001 100011 001101 001111 000111 000101 • 101111 101101 100101 100111 + 2 • 100100 100110 101110 101100 $\blacktriangleright \text{ Re}\{z\} \text{ Convey } y_{0,q'}, y_{2,q'}, y_{4,q'}$ + 2 6 . 4 -4 -2 -8 -6 8 **-**-2 • 110100 110110 • 111110 111100 • • • • • 011100 011110 010110 010100 011101 011111 0101111 010101 • 110101 110111 • 111111 111101 011001 011011 010011 010001 • 110001 110011 111011 111001 110000 110010 111010 111000 011000 011010 010010 010000

The $y_{u,q'}$ denote the bits representing a complex modulation symbol z.

Figure 9b: Non-uniform 16-QAM and 64-QAM mappings with $\alpha = 2$

The $y_{u,q'}$ denote the bits representing a complex modulation symbol z.

Im{z} Convey $y_{1,q'}, y_{3,q'}, y_{5,q'}$

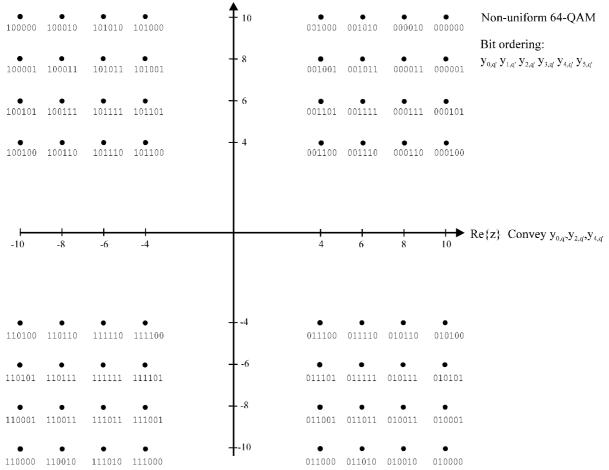


Figure 9c: Non-uniform 16-QAM and 64-QAM mappings with $\alpha = 4$

The $y_{u,a'}$ denote the bits representing a complex modulation symbol z.

Non-hierarchical transmission:

The data stream at the output of the inner interleaver consists of v bit words. These are mapped onto a complex number z, according to figure 9a.

Hierarchical transmission:

In the case of hierarchical transmission, the data streams are formatted as shown in figure 7b, and then the mappings as shown in figures 9a, 9b, or 9c are applied, as appropriate.

For hierarchical 16-QAM:

The high priority bits are the $y_{0,q'}$ and $y_{1,q'}$ bits of the inner interleaver output words. The low priority bits are the $y_{2,q'}$ and $y_{3,q'}$ bits of the inner interleaver output words. The mappings of figures 9a, 9b or 9c are applied, as appropriate. For example, the top left constellation point, corresponding to 1 000 represents $y_{0,q'} = 1$, $y_{1,q'} = y_{2,q'} = y_{3,q'} = 0$. If this constellation is decoded as if it were QPSK, the high priority bits, $y_{0,q'}$, $y_{1,q'}$ will be deduced. To decode the low priority bits, the full constellation shall be examined and the appropriate bits ($y_{2,q'}$, $y_{3,q'}$) extracted from

 $y_{0,q'}, y_{1,q'}, y_{2,q'}, y_{3,q'}$

For hierarchical 64-QAM:

The high priority bits are the $y_{0,q'}$ and $y_{1,q'}$ bits of the inner interleaver output words. The low priority bits are the $y_{2,q'}$, $y_{3,q'}$, $y_{4,q'}$ and $y_{5,q'}$ bits of the inner interleaver output words. The mappings of figures 9a, 9b or 9c are applied, as appropriate. If this constellation is decoded as if it were QPSK, the high priority bits, $y_{0,q'}$, $y_{1,q'}$ will be deduced. To decode the low priority bits, the full constellation shall be examined and the appropriate bits ($y_{2,q'}$, $y_{3,q'}$, $y_{4,q'}$, $y_{5,q'}$,) extracted from $y_{0,q'}$, $y_{1,q'}$, $y_{2,q'}$, $y_{3,q'}$, $y_{4,q'}$, $y_{5,q'}$.

4.4 OFDM frame structure

The transmitted signal is organized in frames. Each frame has a duration of T_F , and consists of 68 OFDM symbols. Four frames constitute one super-frame. Each symbol is constituted by a set of K = 6 817 carriers in the 8K mode and K = 1 705 carriers in the 2K mode and transmitted with a duration T_S . It is composed of two parts: a useful part with duration T_U and a guard interval with a duration Δ . The guard interval consists in a cyclic continuation of the useful part, T_U , and is inserted before it. Four values of guard intervals may be used according to table 5.

The symbols in an OFDM frame are numbered from 0 to 67. All symbols contain data and reference information.

Since the OFDM signal comprises many separately-modulated carriers, each symbol can in turn be considered to be divided into cells, each corresponding to the modulation carried on one carrier during one symbol.

In addition to the transmitted data an OFDM frame contains:

- Scattered pilot cells;
- Continual pilot carriers;
- TPS carriers.

The pilots can be used for frame synchronization, frequency synchronization, time synchronization, channel estimation, transmission mode identification and can also be used to follow the phase noise.

The carriers are indexed by $k \in [K_{min}; K_{max}]$ and determined by $K_{min} = 0$ and $K_{max} = 1704$ in 2K mode and 6816 in 8K mode respectively. The spacing between adjacent carriers is $1/T_U$ while the spacing between carriers K_{min} and K_{max} are determined by $(K-1)/T_U$. The numerical values for the OFDM parameters for the 8K and 2K modes are given in tables 4 and 5 for 8 MHz channels and in tables E.1 to E.4 for 6 MHz and 7 MHz channels. The values for the various time-related parameters are given in multiples of the elementary period T and in microseconds. The elementary period T is 7/64 µs for 8 MHz channels, 1/8 µs for 7 MHz channels and 7/48 µs for 6 MHz channels.

25

Parameter	8K mode	2K mode	
Number of carriers K	6 817	1 705	
Value of carrier number K _{min}	0	0	
Value of carrier number K _{max}	6 816	1 704	
Duration T _U (note 2)	896 µs	224 μs	
Carrier spacing 1/T _U (note 1) (note 2)	1 116 Hz	4 464 Hz	
Spacing between carriers K_{min} and K_{max} (K-1)/T _U (note 2)	7,61 MHz	7,61 MHz	
 NOTE 1: Values in italics are approximate values. NOTE 2: Values for 8 MHz channels. Values for 6 MHz and 7 M and E.2. 	Hz channels are given in	annex E, tables E.1	

The emitted signal is described by the following expression:

$$s(t) = \operatorname{Re} \left\{ e^{j2\pi f_c t} \sum_{m=0}^{\infty} \sum_{l=0}^{67} \sum_{k=K_{\min}}^{K_{\max}} c_{m,l,k} \times \psi_{m,l,k}(t) \right\}$$

where $\Psi_{m,l,k}(t) = \begin{cases} e^{j2\pi \frac{k'}{T_U}(t-\Delta-l\times T_s-68\times m\ \times T_s)} \\ 0 \end{cases}$

$$(l + 68 \times m) \times T_S \le t \le (l + 68 \times m + 1) \times T_S$$

else

where:

k	denotes the carrier number;
1	denotes the OFDM symbol number;
m	denotes the transmission frame number;
К	is the number of transmitted carriers;
T _S	is the symbol duration;
T _U	is the inverse of the carrier spacing;
Δ	is the duration of the guard interval;
f _c	is the central frequency of the RF signal;
k'	is the carrier index relative to the centre frequency, k' = k - (K _{max} + K _{min}) / 2;
c _{m,0,k}	complex symbol for carrier k of the Data symbol no. 1 in frame number m;
c _{m,1,k}	complex symbol for carrier k of the Data symbol no. 2 in frame number m;
c _{m,67,k}	complex symbol for carrier k of the Data symbol no. 68 in frame number m.

Mode		8K mode				2K mode			
Guard interval ∆€⁄ T _U	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32	
Duration of symbol part T _U		8 192 × T 896 μs (note)				2 048 × T 224 μs (note)			
Duration of guard	2 048 × T	$1.024 \times T$	512 × T	256 imes T	512 × T	256 imes T	128 × T	$64 \times T$	
interval Δ	224 µs	112 μs	56 µs	28 µs	56 µs	28 µs	14 μs	7 μs	
Symbol duration	$10240 \times T$	9 216 × T	$8704 \times T$	8 448 × T	2 560 × T	2304 imes T	2 176 × T	2 112 × T	
$T_S = \Delta + T_U$	1 120 µs	1 008 µs	952 μs	924 μs	280 μs	252 μs	238 µs	231 µs	
NOTE: Values for 8 MHz channels. Values for 6 MHz and 7 MHz channels are given in annex E, tables E.3 and E.4.									

Table 5: Duration of symbol part for the allowed guard intervals for 8 MHz channels

The $c_{m,l,k}$ values are normalized modulation values of the constellation point z (see figure 9) according to the modulation alphabet used for the data. The normalization factors yield $E[c \times c^*] = 1$ and are shown in table 6.

Modulation scheme		Normalization factor
QPSK		$c = z/\sqrt{2}$
16-QAM	α = 1	c = z/√10
	α = 2	c = z/√20
	α = 4	c = z/√52
64-QAM	α = 1	c = z/√42
	α = 2	c = z/√60
	α = 4	c = z/√108

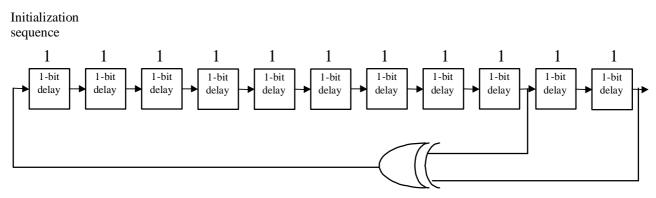
Table 6: Normalization factors for data symbols

4.5 Reference signals

4.5.1 Functions and derivation

Various cells within the OFDM frame are modulated with reference information whose transmitted value is known to the receiver. Cells containing reference information are transmitted at "boosted" power level (see subclause 4.5.5). The information transmitted in these cells are scattered or continual pilot cells.

Each continual pilot coincides with a scattered pilot every fourth symbol; the number of useful data carriers is constant from symbol to symbol: 1 512 useful carriers in 2K mode and 6 048 useful carriers in 8K mode.


The value of the scattered or continual pilot information is derived from a PRBS (Pseudo Random Binary Sequence) which is a series of values, one for each of the transmitted carriers (see subclause 4.5.2).

4.5.2 Definition of reference sequence

The continual and scattered pilots are modulated according to a PRBS sequence, w_k , corresponding to their respective carrier index k. This sequence also governs the starting phase of the TPS information (described in subclause 4.6).

The PRBS sequence is generated according to figure 10.

The PRBS is initialized so that the first output bit from the PRBS coincides with the first active carrier. A new value is generated by the PRBS on every used carrier (whether or not it is a pilot).

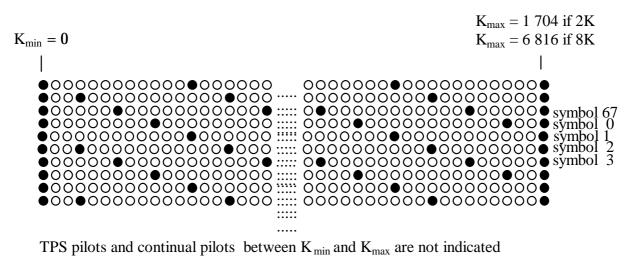
PRBS sequence starts: 11111111111100...

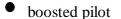
Figure 10: Generation of PRBS sequence

The polynomial for the Pseudo Random Binary Sequence (PRBS) generator shall be:

 $X^{11} + X^2 + 1$ (see figure 10)

4.5.3 Location of scattered pilot cells


Reference information, taken from the reference sequence, is transmitted in scattered pilot cells in every symbol. Scattered pilot cells are always transmitted at the "boosted" power level (see subclause 4.5.5). Thus the corresponding modulation is given by:


$$Re\{c_{m,l,k}\} = 4 / 3 \times 2 (1/2 - w_k)$$
$$Im\{c_{m,l,k,k}\} = 0$$

Where m is the frame index, k is the frequency index of the carriers and l is the time index of the symbols.

For the symbol of index l (ranging from 0 to 67), carriers for which index k belongs to the subset $\{k = K_{min} + 3 \times (1 \mod 4) + 12p \mid p \text{ integer}, p \ge 0, k \in [K_{min}; K_{max}] \}$ are scattered pilots. Where p is an integer that takes all possible values greater than or equal to zero, provided that the resulting value for k does not exceed the valid range $[K_{min}; K_{max}]$.

The pilot insertion pattern is shown in figure 11.

o data

Figure 11: Frame structure

4.5.4 Location of continual pilot carriers

In addition to the scattered pilots described above, 177 continual (see note) pilots in the 8K mode and 45 in the 2K mode, are inserted according to table 7.

NOTE: Where "continual" means that they occur on all symbols.

Table 7: Carrier indices	s for continual	pilot carriers
--------------------------	-----------------	----------------

Continual pilot carrier positions (index number k)					
2K mode	8K mode				
0 48 54 87 141 156 192 201 255 279 282 333 432 450	0 48 54 87 141 156 192 201 255 279 282 333 432 450				
483 525 531 618 636 714 759 765 780 804 873 888 918	483 525 531 618 636 714 759 765 780 804 873 888				
939 942 969 984 1050 1101 1107 1110 1137 1140 1146	918 939 942 969 984 1050 1101 1107 1110 1137 1140				
1206 1269 1323 1377 1491 1683 1704	1146 1206 1269 1323 1377 1491 1683 1704 1752 1758				
	1791 1845 1860 1896 1905 1959 1983 1986 2037 2136				
	2154 2187 2229 2235 2322 2340 2418 2463 2469 2484				
	2508 2577 2592 2622 2643 2646 2673 2688 2754 2805				
	2811 2814 2841 2844 2850 2910 2973 3027 3081 3195				
	3387 3408 3456 3462 3495 3549 3564 3600 3609 3663				
	3687 3690 3741 3840 3858 3891 3933 3939 4026 4044				
	4122 4167 4173 4188 4212 4281 4296 4326 4347 4350				
	4377 4392 4458 4509 4515 4518 4545 4548 4554 4614				
	4677 4731 4785 4899 5091 5112 5160 5166 5199 5253				
	5268 5304 5313 5367 5391 5394 5445 5544 5562 5595				
	5637 5643 5730 5748 5826 5871 5877 5892 5916 5985				
	6000 6030 6051 6054 6081 6096 6162 6213 6219 6222				
	6249 6252 6258 6318 6381 6435 6489 6603 6795 6816				

All continual pilots are modulated according to the reference sequence, see subclause 4.5.2.

The continual pilots are transmitted at "boosted" power level.

Thus the corresponding modulation is given by:

$$\operatorname{Re}\{c_{m,l,k}\} = 4 / 3 \times 2 (1/2 - w_k)$$

$$Im\{c_{m,l,k}\}=0$$

4.5.5 Amplitudes of all reference information

As explained in subclause 4.4 the modulation of all data cells is normalized so that $E[c \times c^*] = 1$.

All cells which are continual or scattered pilots, i.e. they are members of the sets defined in subclauses 4.5.3 or 4.5.4, are transmitted at boosted power so that for these $E[c \times c^*] = 16/9$.

4.6 Transmission Parameter Signalling (TPS)

The TPS carriers are used for the purpose of signalling parameters related to the transmission scheme, i.e. to channel coding and modulation. The TPS is transmitted in parallel on 17 TPS carriers for the 2K mode and on 68 carriers for the 8K mode. Every TPS carrier in the same symbol conveys the same differentially encoded information bit. The following carrier indices contain TPS carriers:

Table 8: Carrier indices for TPS carriers

2K mode	8K mode
34 50 209 346 413 569 595 688 790 901	34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286 1469
1073 1219 1262 1286 1469 1594 1687	1594 1687 1738 1754 1913 2050 2117 2273 2299 2392 2494 2605
	2777 2923 2966 2990 3173 3298 3391 3442 3458 3617 3754 3821
	3977 4003 4096 4198 4309 4481 4627 4670 4694 4877 5002 5095
	5146 5162 5321 5458 5525 5681 5707 5800 5902 6013 6185 6331
	6374 6398 6581 6706 6799

The TPS carriers convey information on:

- a) modulation including the α value of the QAM constellation pattern (see note);
- b) hierarchy information;
- c) guard interval (not for initial acquisition but for supporting initial response of the receiver in case of reconfiguration);
- d) inner code rates;
- e) transmission mode (2K or 8K, not for the initial acquisition but for supporting initial response of the receiver in case of reconfiguration);
- f) frame number in a super-frame;
- g) cell identification.
- NOTE: The α value defines the modulation based on the cloud spacing of a generalized QAM constellation. It allows specification of uniform and non-uniform modulation schemes, covering QPSK, 16-QAM, and 64-QAM.

4.6.1 Scope of the TPS

The TPS is defined over 68 consecutive OFDM symbols, referred to as one OFDM frame. Four consecutive frames correspond to one OFDM super-frame.

The reference sequence corresponding to the TPS carriers of the first symbol of each OFDM frame are used to initialize the TPS modulation on each TPS carrier (see subclause 4.6.3).

Each OFDM symbol conveys one TPS bit. Each TPS block (corresponding to one OFDM frame) contains 68 bits, defined as follows:

- 1 initialization bit;
- 16 synchronization bits;
- 37 information bits;
- 14 redundancy bits for error protection.

Of the 37 information bits, 31 are used at present. The remaining 6 bits are reserved for future use, and should be set to zero.

4.6.2 TPS transmission format

The transmission parameter information shall be transmitted as shown in table 9.

The mapping of each of the transmission parameters: constellation characteristics, α value, code rate(s), super-frame indicator and guard interval onto the bit combinations is performed according to subclauses 4.6.2.1 to 4.6.2.8. The left most bit is sent first.

Bit number	Format	Purpose/Content
s ₀	see subclause 4.6.2.1	Initialization
s ₁ - s ₁₆	0011010111101110 or 1100101000010001	Synchronization word
s ₁₇ - s ₂₂	010 111	Length indicator
s ₂₃ , s ₂₄	see table 10	Frame number
s ₂₅ , s ₂₆	see table 11	Constellation
s ₂₇ , s ₂₈ , s ₂₉	see table 12	Hierarchy information
s ₃₀ , s ₃₁ , s ₃₂	see table 13	Code rate, HP stream
s ₃₃ , s ₃₄ , s ₃₅	see table 13	Code rate, LP stream
s ₃₆ , s ₃₇	see table 14	Guard interval
s ₃₈ , s ₃₉	see table 15	Transmission mode
s ₄₀ - s ₄₇	see subclause 4.6.2.10	Cell identifier
s ₄₀ - s ₅₃	all set to "0"	Reserved for future use
s ₅₄ - s ₆₇	BCH code	Error protection

Table 9: TPS signalling information and format

The TPS information transmitted in super-frame m' bits $s_{25} - s_{39}$ always apply to super-frame m' + 1, whereas all other bits refer to super-frame m'.

4.6.2.1 Initialization

The first bit, s_0 , is an initialization bit for the differential 2-PSK modulation. The modulation of the TPS initialization bit is derived from the PRBS sequence defined in subclause 4.5.2. This process is described in subclause 4.6.3.

4.6.2.2 Synchronization

Bits 1 to 16 of the TPS is a synchronization word.

The first and third TPS block in each super-frame have the following synchronization word:

$$s_1 - s_{16} = 0011010111101110.$$

The second and fourth TPS block have the following synchronization word:

$$s_1 - s_{16} = 1100101000010001.$$

4.6.2.3 TPS length indicator

The first 6 bits of the TPS information is used as a TPS length indicator (binary count) to signal the number of used bits of the TPS. At present this length indicator has the value $s_{17} - s_{22} = 010111$ if the cell identification (see subclause 4.6.2.10) is not supported and the value $s_{17} - s_{22} = 011111$ if the cell identification is supported.

Four frames constitute one super-frame. The frames inside the super-frame are numbered from 0 to 3 according to table 10.

Bits s ₂₃ ,s ₂₄	Frame number
00	Frame number 1 in the super-frame
01	Frame number 2 in the super-frame
10	Frame number 3 in the super-frame
11	Frame number 4 in the super-frame

Table 10: Signalling format for frame number

4.6.2.5 Constellation

The constellation shall be signalled by 2 bits according to table 11. In order to determine the modulation scheme, the receiver shall also decode the hierarchy information given in table 12.

Table 11: Signalling format for the possible constellation patterns

Bits s ₂₅ , s ₂₆	Constellation characteristics
00	QPSK
01	16-QAM
10	64-QAM
11	reserved

4.6.2.6 Hierarchy information

The hierarchy information specifies whether the transmission is hierarchical and, if so, what the α value is. The QAM constellation diagrams which correspond to various α values are shown in figures 9a/b/c. Where α is signalled by three bits according to table 12.

Bits s ₂₇ , s ₂₈ , s ₂₉	α value	
000	Non hierarchical	
001	$\alpha = 1$	
010	α = 2	
011	$\alpha = 4$	
100	reserved	
101	reserved	
110	reserved	
111	reserved	

Table 12: Signalling format for the α values

4.6.2.7 Code rates

Non-hierarchical channel coding and modulation requires signalling of one code rate r. In this case, three bits specifying the code rate according to table 13 are followed by another three bits of value 000.

Two different code rates may be applied to two different levels of the modulation with the aim of achieving hierarchy. Transmission then starts with the code rate for the HP level (r_1) of the modulation and ends with the one for the LP level (r_2) . Each code rate shall be signalled according to table 13.

Bits s ₃₀ , s ₃₁ , s ₃₂ (HP stream) s ₃₃ , s ₃₄ , s ₃₅ (LP stream)	Code rate
000	1/2
001	2/3
010	3/4
011	5/6
100	7/8
101	reserved
110	reserved
111	reserved

Table 13: Signalling format for each of the code rates

4.6.2.8 Guard Intervals

The value of the guard interval is signalled according to table 14:

Table 14: Signalling format for each of the guard interval values

Bits s ₃₆ , s ₃₇	Guard interval values (Δ/T _U)
00	1/32
01	1/16
10	1/8
11	1/4

4.6.2.9 Transmission mode

Two bits are used to signal the transmission mode (2K mode or 8K mode).

Table 15: Signalling format for transmission mode

Bits s ₃₈ , s ₃₉	Transmission mode			
00	2K mode			
01	8K mode			
10	reserved			
11	reserved			

4.6.2.10 Cell identifier

The eight bits s_{40} to s_{47} are used to identify the cell from which the signal comes from. The most significant byte of the cell_id [4], i.e. $b_{15} - b_{8}$, shall be transmitted in super-frames with the frame number 1 and 3. The least significant byte of the cell_id, i.e. $b_7 - b_{0}$, shall be transmitted in super-frames with the frame number 2 and 4. The mapping of bits is according to Table 18. If the provision of the cell_id is not foreseen the eight bits shall be set to zero.

TPS bit number	Frame number 1 or 3	Frame number 2 or 4	
s ₄₀	cell_id b ₁₅	cell_id b ₇	
s ₄₁	cell_id b ₁₄	cell_id b ₆	
s ₄₂	cell_id b ₁₃	cell_id b ₅	
s ₄₃	cell_id b ₁₂	cell_id b ₄	
s ₄₄	cell_id b ₁₁	cell_id b ₃	
s ₄₅	cell_id b ₁₀	cell_id b ₂	
s ₄₆	cell_id b ₉	cell_id b ₁	
s ₄₇	cell_id b ₈	cell_id b ₀	

Table 15a: Mapping of the cell_id on the TPS bits

33

4.6.2.11 Error protection of TPS

The 53 bits containing the TPS synchronization and information (bits $s_1 - s_{53}$) are extended with 14 parity bits of the BCH (67,53, t = 2) shortened code, derived from the original systematic BCH (127,113, t = 2) code.

Code generator polynomial:

 $h(x) = x^{14} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1.$

The shortened BCH code may be implemented by adding 60 bits, all set to zero, before the information bits input of an BCH(127,113, t = 2) encoder. After the BCH encoding these null bits shall be discarded, leading to a BCH code word of 67 bits.

4.6.3 TPS modulation

TPS cells are transmitted at the "normal" power level, i.e. they are transmitted with energy equal to that of the mean of all data cells, i.e. $E[c \times c^*] = 1$.

Every TPS carrier is DBPSK modulated and conveys the same message. The DBPSK is initialized at the beginning of each TPS block.

The following rule applies for the differential modulation of carrier k of symbol 1(1 > 0) in frame m:

- if
$$s_1 = 0$$
, then $\text{Re}\{c_{m,l,k}\} = \text{Re}\{c_{m,l-1,k}\}$; $\text{Im}\{c_{m,l,k}\} = 0$;

- if $s_1 = 1$, then $\operatorname{Re}\{c_{m1k}\} = -\operatorname{Re}\{c_{m1-1k}\}$; $\operatorname{Im}\{c_{m1k}\} = 0$.

The absolute modulation of the TPS carriers in the first symbol in a frame is derived from the reference sequence w_k as follows:

Re{
$$c_{m,l,k}$$
} = 2 (1/2 - w_k)
Im{ $c_{m,l,k}$ } = 0

4.7 Number of RS-packets per OFDM super-frame

The OFDM frame structure allows for an integer number of Reed-Solomon 204 byte packets to be transmitted in an OFDM super-frame, and therefore avoids the need for any stuffing, whatever the constellation, the guard interval length, the coding rate or the channel bandwidth may be. See table 16.

The first data byte transmitted in an OFDM super-frame shall be one of the SYNC/ \overline{SYNC} bytes.

ETSI

Code rate	QPSK		16-QAM		64-QAM	
	2K mode	8K mode	2K mode	8K mode	2K mode	8K mode
1/2	252	1008	504	2016	756	3024
2/3	336	1344	672	2688	1008	4032
3/4	378	1512	756	3024	1134	4536
5/6	420	1680	840	3360	1260	5040
7/8	441	1764	882	3528	1323	5292

Table 16: Number of Reed-Solomon packets per OFDM super-frame for all combinations of guard interval, code rates and modulation forms

34

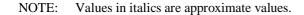
Table 17: Useful bitrate (Mbit/s) for all combinations of guard interval, constellation and code rate for non-hierarchical systems for 8 MHz channels

Modulation	Code rate		Guard interval				
		1/4	1/8	1/16	1/32		
	1/2	4,98	5,53	5,85	6,03		
	2/3	6,64	7,37	7,81	8,04		
QPSK	3/4	7,46	8,29	8,78	9,05		
	5/6	8,29	9,22	9,76	10,05		
	7/8	8,71	9,68	10,25	10,56		
	1/2	9,95	11,06	11,71	12,06		
	2/3	13,27	14,75	15,61	16,09		
16-QAM	3/4	14,93	16,59	17,56	18,10		
	5/6	16,59	18,43	19,52	20,11		
	7/8	17,42	19,35	20,49	21,11		
	1/2	14,93	16,59	17,56	18,10		
	2/3	19,91	22, 12	23,42	24,13		
64-QAM	3/4	22,39	24,88	26,35	27,14		
	5/6	24,88	27,65	29,27	30, 16		
	7/8	26,13	29,03	30,74	31,67		
NOTE: Figures in italics are approximate values for 8 MHz channels. Values for 6 MHz and 7 MHz channels							
are given in annex E, tables E.5 and E.6.							
For the hierarchical schemes the useful bit rates can be obtained from table 17 as follows:							
HP stream: figures from QPSK columns;							
LP stream, 16-QAM: figures from QPSK columns;							
LP stream, 64-QAM: figures from 16-QAM columns.							

4.8 Spectrum characteristics and spectrum mask

4.8.1 Spectrum characteristics

The OFDM symbols constitute a juxtaposition of equally-spaced orthogonal carriers. The amplitudes and phases of the data cell carriers are varying symbol by symbol according to the mapping process described in subclause 4.3.5.


The power spectral density $P_k(f)$ of each carrier at frequency:

$$f_k = f_c + \frac{k}{T_u}; (-\frac{K-1}{2} \le k\frac{K-1}{2})$$

is defined by the following expression:

$$P_k(f) = \left[\frac{\sin \pi (f - f_k)T_s}{\pi (f - f_k)T_s}\right]^2$$

The overall power spectral density of the modulated data cell carriers is the sum of the power spectral densities of all these carriers. A theoretical DVB transmission signal spectrum is illustrated in figure 12 (for 8 MHz channels). Because the OFDM symbol duration is larger than the inverse of the carrier spacing, the main lobe of the power spectral density of each carrier is narrower than twice the carrier spacing. Therefore the spectral density is not constant within the nominal bandwidth of 7,608 259 MHz for the 8K mode or 7,611 607 MHz for the 2K mode (see note).

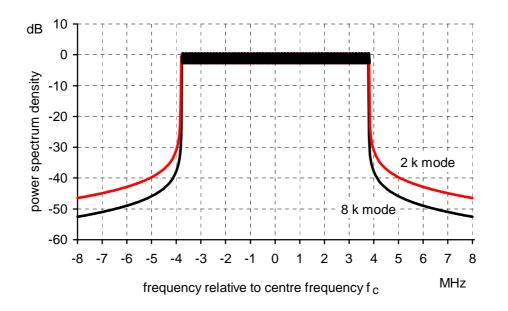


Figure 12: Theoretical DVB transmission signal spectrum for guard interval $\Delta = T_u /4$ (for 8 MHz channels)

4.8.2 Out-of-band spectrum mask (for 8 MHz channels)

The level of the spectrum at frequencies outside the nominal bandwidth can be reduced by applying appropriate filtering.

Spectrum masks for cases where a transmitter for digital terrestrial television is co-sited with, and operating on a channel adjacent to, a transmitter for analogue television are given in figure 13 and table 18 for the following analogue television systems:

G / PAL / A2 and G / PAL / NICAM;

I / PAL / NICAM;

K / SECAM and K / PAL;

L / SECAM / NICAM.

The masks shown in figure 13 cover the minimum protection needed for analogue television where the analogue and the digital television transmitters are co-sited and are applicable for cases where:

- no polarization discrimination between digital and analogue television is used; and
- the radiated power from both transmitters is the same (analogue sync-peak power equal to total power from the digital television transmitter).

If the radiated powers from the two transmitters are not identical, proportional correction can be applied as follows:

correction = minimum analogue erp - maximum digital erp.

Corrected breakpoints equal reference breakpoints plus correction (dB).

Power level measured in a 4 kHz bandwidth,

where 0 dB corresponds to the total output power.

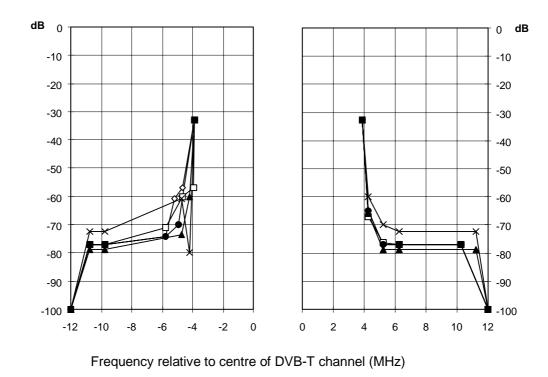


Figure 13: Spectrum masks for a digital terrestrial television transmitter operating on a lower or higher adjacent channel to a co-sited analogue television transmitter

				E	Breakpoint	S				
	G/PAL /	NICAM	G/PA	L / A2	I/PAL / NICAM		K/SECAM K/PAL		L/SECAM / NICAM	
see notes below	rel. freq. MHz	rel. level dB								
1	-12	-100	-12	-100	-12	-100	-12	-100	-12	-100
2	-10,75	-76,9	-10,75	-76,9	-10,75	-76,9	-10,75	-78,7	-10,75	-72,4
3	-9,75	-76,9	-9,75	-76,9	-9,75	-76,9	-9,75	-78,7	-9,75	-72,4
4	-5,75	-74,2	-5,75	-74,2	-5,75	-70,9	-4,75	-73,6	-4,75	-60,9
5	-5,185	-60,9	-5,185	n.a.	-4,685	-59,9	-4,185	-59,9	-4,185	-79,9
6	n.a.	n.a.	-4,94	-69,9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	-4,65	-56,9	n.a.	n.a.	-3,925	-56,9	n.a.	n.a.	-4,65	n.a.
8	-3,9	-32,8	-3,9	-32,8	-3,9	-32,8	-3,9	-32,8	-3,9	-32,8
9	+3,9	-32,8	+3,9	-32,8	+3,9	-32,8	+3,9	-32,8	+3,9	-32,8
10	+4,25	-64,9	+4,25	-64,9	+4,25	-66,9	+4,25	-66,1	+4,25	-59,9
11	+5,25	-76,9	+5,25	-76,9	+5,25	-76,2	+5,25	-78,7	+5,25	-69,9
12	+6,25	-76,9	+6,25	-76,9	+6,25	-76,9	+6,25	-78,7	+6,25	-72,4
13	+10,25	-76,9	+10,25	-76,9	+10,25	-76,9	+11,25	-78,7	+11,25	-72,4
14	+12	-100	+12	-100	+12	-100	+12	-100	+12	-100
		of lower ad			•	•	•	•	•	

Table 18: Breakpoints for spectrum mask

NOTE 2: Vision carrier in lower adjacent channel. NOTE 3: Vision carrier + 1 MHz in lower adjacent channel.

NOTE 4: Upper end of video sideband in lower adjacent channel.

NOTE 5: Upper end of the RF bandwidth of the first soundcarrier in lower adjacent channel.

NOTE 6: Upper end of the RF bandwidth of the A2 second soundcarrier in lower adjacent channel.

NOTE 7: Upper end of the RF bandwidth of the NICAM signal in the lower adjacent channel.

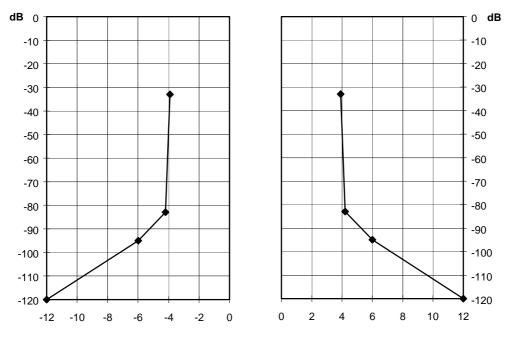
NOTE 8: Lower end of the RF bandwidth of the DVB-T signal.

NOTE 9: Upper end of the RF bandwidth of the DVB-T signal.

NOTE 10: Lower video sideband (vision carrier - 1 MHz) in upper adjacent channel.

NOTE 11: Vision carrier in upper adjacent channel.

NOTE 12: Vision carrier + 1 MHz in upper adjacent channel.


NOTE 13: Upper end of video sideband in upper adjacent channel.

NOTE 14: Upper end of upper adjacent channel.

Cells marked "n.a." in table 18 indicates that this part of the analogue television signal does not exist or has no influence on the shape of the spectrum mask.

For critical cases such as television channels adjacent to other services (low power or receive only) a spectrum mask with higher of out-of-channel attenuation may be needed. A spectrum mask for critical cases is shown in figure 14. Breakpoints for the critical mask are given in table 19.

Power level measured in a 4 kHz bandwidth,

where 0 dB corresponds to the total output power.

Frequency relative to centre of DVB-T channel (MHz)

Figure 14: Spectrum mask for critical cases

Breakpo	oints
relative frequency (MHz)	relative level (dB)
-12	-120
-6	-95
-4,2	-83
-3,8	-32,8
+3,8	-32,8
+4,2	-83
+6	-95
+12	-120

Table 19: Breakpoints for spectrum mask for critical cases

4.8.3 Centre frequency of RF signal (for 8 MHz UHF channels)

The nominal centre frequency \boldsymbol{f}_{c} of the RF signal is given by:

470 MHz + 4 MHz + $i_1 \times 8$ MHz, $i_1 = 0, 1, 2, 3, ...$

This is exactly the centre frequency of the UHF channel in use. This centre frequency may be offset to improve spectrum sharing.

Annex A (informative): Simulated system performance for 8 MHz channels

Tables A.1, A.2 and A.3 give simulated performance anticipating "perfect channel estimation and without phase noise" of channel coding and modulation combinations, and are subject to confirmation by testing.

These results are given for the Gaussian channel, Ricean channel (F_1) and Rayleigh channel (P_1), when the centre carrier of the DVB-T signal is positioned at 32/7 MHz. F_1 and P_1 are described in annex B.

Associated useful bit rates available are also indicated as a function of the guard interval to active symbol duration for the four different values of guard interval.

		BER = 2	quired C/N × 10 ⁻⁴ afte er Reed-S	er Viterbi	Bitrate (Mbit/s)							
Modu- lation	Code rate	Gaussian channel	Ricean channel (F ₁)	Rayleigh channel (P ₁)	Δ/T _U = 1/4	∆/T _U = 1/8	∆/T _U = 1/16	∆/T _U = 1/32				
QPSK	1/2	3, 1	3,6	5,4	4,98	5,53	5,85	6,03				
QPSK	2/3	4,9	5,7	8,4	6,64	7,37	7,81	8,04				
QPSK	3/4	5,9	6,8	10,7	7,46	8,29	8,78	9,05				
QPSK	5/6	6,9	8,0	13,1	8,29	9,22	9,76	10,05				
QPSK	7/8	7,7	8,7	16,3	8,71	9,68	10,25	10,56				
16-QAM	1/2	8,8	9,6	11,2	9,95	11,06	11,71	12,06				
16-QAM	2/3	11,1	11,6	14,2	13,27	14,75	15,61	16,09				
16-QAM	3/4	12,5	13,0	16,7	14,93	16,59	17,56	18,10				
16-QAM	5/6	13,5	14,4	19,3	16,59	18,43	19,52	20,11				
16-QAM	7/8	13,9	15,0	22,8	17,42	19,35	20,49	21,11				
64-QAM	1/2	14,4	14,7	16,0	14,93	16,59	17,56	18,10				
64-QAM	2/3	16,5	17,1	19,3	19,91	22,12	23,42	24,13				
64-QAM	3/4	18,0	18,6	21,7	22,39	24,88	26,35	27,14				
64-QAM	5/6	19,3	20,0	25,3	24,88	27,65	29,27	30,16				
64-QAM	7/8	20,1	21,0	27,9	26,13	29,03	30,74	31,67				
NOTE:		Figures in italics are approximate values. Quasi Error Free (QEF) means less than one uncorrected error event per hour, corresponding to										

Table A.1: Required C/N for non-hierarchical transmission to achieve a BER = 2×10^{-4} after the Viterbi decoder for all combinations of coding rates and modulation types. The net bit rates after the Reed-Solomon decoder are also listed

Quasi Error Free (QEF) means less than one uncorrected error event per hour, corresponding to BER = 10⁻¹¹ at the input of the MPEG-2 demultiplexer.

			BER = 2	quired C/N f 2 × 10 ⁻⁴ after ter Reed-Sc	r Viterbi	Bitrate (Mbit/s)					
Modu- lation	Code Rate	α	Gaussian Channel	Ricean Channel (F ₁)	Rayleigh Channel (P ₁)	Δ/T _U = 1/4	Δ/T _U = 1/8	∆/T _U = 1/16	Δ/T _U = 1/32		
	1/2		4,8	5,4	6,9	4,98	5,53	5,85	6,03		
QPSK	2/3		7,1	7,7	9,8	6,64	7,37	7,81	8,04		
	3/4		8,4	9,0	11,8	7,46	8,29	8,78	9,05		
in		2				+					
	1/2		13,0	13,3	14,9	4,98	5,53	5,85	6,03		
non-	2/3		15,1	15,3	17,9	6,64	7,37	7,81	8,04		
uniform	3/4		16,3	16,9	20,0	7,46	8,29	8,78	9,05		
16-QAM	5/6		16,9	17,8	22,4	8,29	9,22	9,76	10,05		
	7/8		17,9	18,7	24,1	8,71	9,68	10,25	10,56		
	1/2		3,8	4,4	6,0	4,98	5,53	5,85	6,03		
QPSK	2/3		5,9	6,6	8,6	6,64	7,37	7,81	8,04		
	3/4		7,1	7,9	10,7	7,46	8,29	8,78	9,05		
in		4						ł			
	1/2		17,3	17,8	19,6	4,98	5,53	5,85	6,03		
non-	2/3		19,1	19,6	22,3	6,64	7,37	7,81	8,04		
uniform	3/4		20,1	20,8	24,2	7,46	8,29	8,78	9,05		
16-QAM	5/6		21,1	22,0	26,0	8,29	9,22	9,76	10,05		
	7/8		21,9	22,8	28,5	8,71	9,68	10,25	10,56		
NOTE:	Figure	s in	italics are ap	proximate v	alues.						

Table A.2: Required C/N for hierarchical transmission to achieve a BER = 2×10^{-4} after Viterbi decoder

Table A.3: Required C/N for hierarchical transmission to achieve a BER = 2×10^{-4}
after Viterbi decoder

			BER = 2	quired C/N 2 x 10 ⁻⁴ afte ter Reed-Sc	r Viterbi	Bitrate (Mbit/s)				
Modu- lation	Code Rate	α	Gaussian Channel	Ricean Channel (F ₁)	Rayleigh Channel (P ₁)	∆/T _U = 1/4	∆/T _U = 1/8	Δ/T _U = 1/16	Δ/T _U = 1/32	
	1/2		8,9	9,5	11,4	4,98	5,53	5,85	6,03	
QPSK	2/3		12,1	12,7	14,8	6,64	7,37	7,81	8,04	
	3/4		13,7	14,3	17,5	7,46	8,29	8,78	9,05	
in		1						+		
ĺ	1/2		14,6	14,9	16,4	9,95	11,06	11,71	12,06	
uniform	2/3		16,9	17,6	19,4	13,27	14,75	15,61	16,09	
64-QAM	3/4		18,6	19,1	22,2	14,93	16,59	17,56	18,10	
	5/6		20,1	20,8	25,8	16,59	18,43	19,52	20,11	
	7/8		21,1	22,2	27,6	17,42	19,35	20,49	21,11	
	1/2		6,5	7,1	8,7	4,98	5,53	5,85	6,03	
QPSK	2/3		9,0	9,9	11,7	6,64	7,37	7,81	8,04	
	3/4		10,8	11,5	14,5	7,46	8,29	8,78	9,05	
in		2						+		
	1/2		16,3	16,7	18,2	9,95	11,06	11,71	12,06	
non-	2/3		18,9	19,5	21,7	13,27	14,75	15,61	16,09	
uniform	3/4		21,0	21,6	24,5	14,93	16,59	17,56	18,10	
64-QAM	5/6		21,9	22,7	27,3	16,59	18,43	19,52	20,11	
	7/8		22,9	23,8	29,6	17,42	19,35	20,49	21,11	

Annex B (informative): Definition of P_1 and F_1

The performance of the system has been simulated with two channel models for fixed reception $-F_1$ and portable reception $-P_1$, respectively.

The channel models have been generated from the following equations where x(t) and y(t) are input and output signals respectively:

a) Fixed reception F_1 :

$$y(t) = \frac{\rho_0 x(t) + \sum_{i=1}^{N} \rho_i e^{-j\theta_i} x(t - \tau_i)}{\sqrt{\sum_{i=0}^{N} \rho_i^2}}$$

where:

- the first term before the sum represents the line of sight ray;
- N is the number of echoes equals to 20;
- θ_i is the phase shift from scattering of the i'th path listed in table B.1;
- ρ_i is the attenuation of the i'th path listed in table B.1;
- τ_i is the relative delay of the i'th path listed in table B.1.

The Ricean factor K (the ratio of the power of the direct path (the line of sight ray) to the reflected paths) is given as:

$$K = \frac{\rho_0^2}{\sum_{i=1}^N \rho_i^2}$$

In the simulations a Ricean factor K = 10 dB has been used. In this case:

$$\rho_o = \sqrt{10\sum_{i=1}^N \rho_i^2}$$

b) Portable reception, Rayleigh fading (P₁):

$$y(t) = k \sum_{i=1}^{N} \rho_i e^{-j\theta_i} x(t - \tau_i)$$
 where $k = \frac{1}{\sqrt{\sum_{i=1}^{N} \rho_i^2}}$

 θ_i , ρ_i and τ_i are given in table B.1.

i	ρ _i	τ _i [μs]	θ _i [rad]
1	0,057 662	1,003 019	4,855 121
2	0,176 809	5,422 091	3,419 109
3	0,407 163	0,518 650	5,864 470
4	0,303 585	2,751 772	2,215 894
5	0,258 782	0,602 895	3,758 058
6	0,061 831	1,016 585	5,430 202
7	0,150 340	0,143 556	3,952 093
8	0,051 534	0,153 832	1,093 586
9	0,185 074	3,324 866	5,775 198
10	0,400 967	1,935 570	0,154 459
11	0,295 723	0,429 948	5,928 383
12	0,350 825	3,228 872	3,053 023
13	0,262 909	0,848 831	0,628 578
14	0,225 894	0,073 883	2,128 544
15	0,170 996	0,203 952	1,099 463
16	0,149 723	0,194 207	3,462 951
17	0,240 140	0,924 450	3,664 773
18	0,116 587	1,381 320	2,833 799
19	0,221 155	0,640 512	3,334 290
20	0,259 730	1,368 671	0,393 889

Table B.1: Relative power, phase and delay values for F	- ₁ a	and P	1

Annex C (informative): Interleaving example

The bit interleaving and symbol interleaving rules and the corresponding mapping onto carriers are illustrated in table C.1 for the first symbol in a superframe (i.e. even symbol), 2K mode, 64-QAM, non-hierarchical transmission.

Table C.1 shows the input bit indices to the mapping block, shown in figure 7a, when the input bits to the bit interleaver are numbered 0 to 9 071, and the corresponding carrier number. The indices corresponds to the interleaver input bit numbers.

Input to mapping block	Carrier
y _{q'} = y _{0q'} , y _{1q'} , y _{2q'} , y _{3q'} , y _{4q'} , y _{5q'}	number k
pilot	0
0, 381, 631, 256, 128, 509	1
4602, 4983, 5233, 4858, 4730, 5111	2
36, 417, 667, 292, 164, 545	3
4656, 5037, 5287, 4912, 4784, 5165	4
48, 429, 679, 304, 176, 557	5
2376, 2757, 3007, 2632, 2504, 2885	6
780, 1161, 1411, 1036, 908, 1289	7
6906, 7287, 7537, 7162, 7034, 7415	8
4590, 4971, 5221, 4846, 4718, 5099	9
5286, 4911, 5161, 4786, 4658, 5039	10
2364, 2745, 2995, 2620, 2492, 2873	11
pilot	12
4788, 5169, 4663, 5044, 4916, 4541	13
4194, 3819, 4069, 4450, 4322, 3947	1 691
pilot	1 692
7782, 8163, 7657, 8038, 7910, 8291	1 693
6624, 6249, 6499, 6124, 6752, 6377	1 694
3402, 3027, 3277, 3658, 3530, 3155	1 695
546, 171, 421, 46, 674, 299	1 696
8574, 8955, 8449, 8830, 8702, 8327	1 697
8376, 8757, 9007, 8632, 8504, 8885	1 698
1680, 2061, 1555, 1936, 1808, 2189	1 699
7620, 8001, 8251, 7876, 7748, 8129	1 700
5700, 5325, 5575, 5956, 5828, 5453	1 701
8826, 8451, 8701, 8326, 8954, 8579	1 702
8724, 8349, 8599, 8980, 8852, 8477	1 703
pilot	1 704

Table C.1: Mapping of input bits.

Annex D (informative): Guidelines to implementation of the emitted signal

The present document serves to define only the *emitted signal* (which is all that needs to be standardized) and thus does not consider aspects of implementation. In particular, no mention is made of the Fast Fourier Transform (FFT) which is the expected means of generating and demodulating an OFDM signal. This informative annex explains how to avoid certain pitfalls which may be encountered when the FFT is used.

D.1 Use of the FFT

The emitted signal is unambiguously specified, for every OFDM symbol of every transmission frame, by the equations of subclause 4.4. The apparent complexity of these equations can be simplified if it is noted that the waveform emitted during each transmitted symbol period depends solely on the K complex values $c_{m,l,k}$ which define the complex amplitude of the K active carriers for that period. Each symbol can thus be considered in isolation; for example, the signal for the period from t = 0 to $t = T_S$ is given by:

$$s(t) = \operatorname{Re}\left\{ e^{j2\pi f_C t} \sum_{k=K_{\min}}^{K_{\max}} c_{0,0,k} \qquad e^{j2\pi k'(t-\Delta)/T_U} \right\},\$$

with $k' = k - (K_{\max} + K_{\min})/2$

There is a clear resemblance between this and the inverse Discrete Fourier Transform (DFT) (see note 1):

$$x_n = \frac{1}{N} \sum_{q=0}^{N-1} X_q e^{j 2 \pi n q/N}$$

NOTE 1: This is the definition of the *inverse* DFT in common use in the Engineering Sciences. The corresponding *forward* DFT has -*j* in the exponent. Mathematicians, however, sometimes use the opposite notation, so that their forward transform has -*j*, and their inverse transform has +*j*, in the exponent. Symbols used in this formula follow common nomenclature in engineering and mathematics. They do not represent the symbols used elsewhere in the present document.

Since various efficient Fast Fourier Transform algorithms exist to perform the DFT and its inverse, it is a convenient form of implementation to use the inverse FFT (IFFT) in a DVB-T modulator (see note 2) to generate N samples x_n corresponding to the useful part, T_U long, of each symbol. The guard interval is added by taking copies of the last $N\Delta/T_U$ of these samples and appending them in front. This process is then repeated for each symbol in turn, producing a continuous stream of samples which constitute a complex baseband representation of the DVB-T signal. A subsequent up-conversion process then gives the real signal s(t) centred on the frequency f_C .

However, care is needed in mapping the K values $c_{m,l,k}$ to the N IFFT coefficients X_q .

NOTE 2: The forward FFT may similarly be used in a demodulator.

D.2 Choice of "baseband" centre frequency

The basis function for the middle emitted carrier (k' = 0) is constant throughout each symbol,

$$\Psi_{m,l,(K_{\text{max}}+K_{\text{min}})/2} = 1$$

This carrier is therefore emitted at the centre frequency f_c and has no phase discontinuities when modulated with the same value in every symbol.

It follows that the data for this middle carrier shall be mapped to an IFFT coefficient X_q of index q such that the

corresponding inverse DFT basis function $e^{j2\pi nq/N}$ has a whole number of cycles within the guard interval, regardless of which of the possible guard-interval lengths (1/32, 1/16, 1/8 or 1/4 of the "useful" symbol period T_U) may be in use. The index q chosen for the middle carrier shall therefore be a multiple of 32.

In particular, either of the following alternatives is recommended as they satisfy this requirement while leading to a simple implementation:

- a) assign the middle carrier to the half-way index q = N/2, i.e. the half-sampling-frequency term; or
- b) assign the middle carrier to index q = 0, i.e. the DC or zero-frequency term.

D.3 Other potential difficulties

The conversion process by which the complex baseband signal produced by the IFFT is translated to a real signal centred on the desired centre frequency similarly requires care to ensure that the result complies with the specification.

In particular:

- a) The spectrum of the emitted signal shall not be inverted compared with the specification, i.e. the highest-frequency radiated carrier shall convey the modulation $c_{m,l,K_{\text{max}}}$.
- b) The emitted signal shall not have an "inverted imaginary axis" compared with the specification. This would happen if, in the expression for the emitted signal s(t), the $c_{m,l,k}$ were replaced by the

complex-conjugate values $c_{m,l,k}^*$.

Some possible causes of such error are:

- c) Incorrect complex-to-real conversion may cause inversion of both the spectrum and the imaginary axis.
- d) Using a forward FFT instead of the inverse FFT will cause inversion of the imaginary axis.
- e) If the signal is shifted in frequency by some heterodyning process that causes inversion of the spectrum, then inversion of the imaginary axis will also occur.
 If such a process is repeated, the resulting signal will comply with the specification.

If case e) occurs as a natural consequence of the choices of intermediate frequency(ies), it may be compensated for in the detail of the complex-to-real conversion, or by using a forward FFT to correct for the inversion of the imaginary axis while feeding it with the coefficients in reverse order to correct for inversion of the spectrum.

Annex E (normative): Values for 6 MHz and 7 MHz channels

The system can be scaled to 6 MHz and 7 MHz channels by changing the elementary period to $T = 7/48 \ \mu s$ for 6 MHz channels and $T = 1/8 \ \mu s$ for 7 MHz channels. In a practical implementation this corresponds to a change of clock frequency from 64/7 MHz for 8 MHz channels to 48/7 MHz for 6 MHz channels and 8 MHz for 7 MHz channels.

The frame structure and the rules for coding, mapping and interleaving are kept. The change of elementary period results in change of the carrier spacing, the symbol length, the guard interval length and the useful bit rate as given in tables E.1 to E.6.

Table E.1: Numerical values for the OFDM parameters for the 8K and 2K modes for 6 MHz channels

Parameter	8K mode	2K mode	
Number of carriers K	6 817	1 705	
Value of carrier number K _{min}	0	0	
Value of carrier number K _{max}	6 816	1 704	
Duration T _U	1194,667 μs	298,6667 µs	
Carrier spacing 1/T _U	0,837054 kHz	3,348214 kHz	
Spacing between carriers K_{min} and K_{max} , (K-1)/T _U	5,71 MHz	5,71 MHz	
NOTE: Values in italics are approximate values.		•	

Table E.2: Numerical values for the OFDM parameters for the 8K and 2K modes for 7 MHz channels

Parameter	8K mode	2K mode		
Number of carriers K	6 817	1 705		
Value of carrier number K _{min}	0	0		
Value of carrier number K _{max}	6 816	1 704		
Duration T _U	1 024 μs	256 µs		
Carrier spacing 1/T _U	0,976563 kHz	3,90625 kHz		
Spacing between carriers K_{min} and K_{max} , (K-1)/T _U	6,66 MHz	6,66 MHz		
NOTE: Values in italics are approximate values.	·			

Table E.3: Duration of symbol part for the allowed guard intervals for 6 MHz channels

Mode		8K m	ode		2K mode					
Guard interval ∆€⁄ T _U	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32		
Duration of symbol part T _U		8192 1194,6			2048 × T 298,667 μs					
Duration of guard	$2.048 \times T$	$1.024 \times T$	$512 \times T$	256 imes T	512 × T	256 imes T	128 imes T	64 imes T		
interval ∆	298,667µs	149,333 µs	74,667 μs	37,333 µs	74,667 μs	37,333 µs	18,667 μs	9,333 µs		
Symbol duration	10 240 × T	9 216 × T	8 704 × T	8 448 × T	2 560 × T	$2304 \times T$	2 176 × T	2 112 × T		
$T_S = \Delta + T_U$	1493,3 μs	1344 µs	1269,3 µs	1232 µs	373,3 µs	336 µs	317,3 μs	308 µs		
NOTE: Values in ita	NOTE: Values in italics are approximate values.									

Mode	8K mode				2K mode			
Guard interval ∆€⁄ T _U	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32
Duration of symbol	8 192 × T				2 048 × T			
part T _U	1024 μs				256 μs			
Duration of guard interval Δ	2 048 × T	1 024 × T	512 × T	256 × T	512 × T	256 × T	128 × T	64 × T
	256 μs	128 μs	64 μs	32 μs	64 μs	32 μs	16 μs	8 μs
Symbol duration	10 240 × T	9 216 × T	8 704 × T	8 448 × T	2 560 × T	2 304 × T	2 176 × T	2 112 × T
$T_S = \Delta + T_U$	1280 μs	1152 μs	1088 μs	1056 μs	320 μs	288 μs	272 μs	264 μs

Table E.4: Duration of symbol part for the allowed guard intervals for 7 MHz channels

Table E.5: Useful bitrate (Mbit/s) for all combinations of guard interval, constellation and code rate for non-hierarchical systems for 6 MHz channels

Modulation	Code rate	Guard interval					
		1/4	1/8	1/16	1/32		
	1/2	3,732	4,147	4,391	4,524		
	2/3	4,976	5,529	5,855	6,032		
QPSK	3/4	5,599	6,221	6,587	6,786		
	5/6	6,221	6,912	7,318	7,540		
	7/8	6,532	7,257	7,684	7,917		
	1/2	7,465	8,294	8,782	9,048		
	2/3	9,953	11,059	11,709	12,064		
16-QAM	3/4	11,197	12,441	13,173	13,572		
	5/6	12,441	13,824	14,637	15,080		
	7/8	13,063	14,515	15,369	15,834		
	1/2	11,197	12,441	13,173	13,572		
	2/3	14,929	16,588	17,564	18,096		
64-QAM	3/4	16,796	18,662	19,760	20,358		
	5/6	18,662	20,735	21,955	22,620		
	7/8	19,595	21,772	23,053	23,751		
NOTE: Figures in i	talics are approx	imate values.					
			s can be obtained f	rom table E.5 as fol	lows:		
		QPSK columns;					
		ures from QPSK co					
LP stre	am, 64-QAM: fig	ures from 16-QAM	columns.				

Table E.6: Useful bitrate (Mbit/s) for all combinations of guard interval, constellation and code rate for non-hierarchical systems for 7 MHz channels

Modulation	Code rate	Guard interval					
		1/4	1/8	1/16	1/32		
	1/2	4,354	4,838	5,123	5,278		
	2/3	5,806	6,451	6,830	7,037		
QPSK	3/4	6,532	7,257	7,684	7,917		
	5/6	7,257	8,064	8,538	8,797		
	7/8	7,620	8,467	8,965	9,237		
	1/2	8,709	9,676	10,246	10,556		
	2/3	11,612	12,902	13,661	14,075		
16-QAM	3/4	13,063	14,515	15,369	15,834		
	5/6	14,515	16,127	17,076	17,594		
	7/8	15,240	16,934	17,930	18,473		
	1/2	13,063	14,515	15,369	15,834		
	2/3	17,418	19,353	20,491	21,112		
64-QAM	3/4	19,595	21,772	23,053	23,751		
	5/6	21,772	24,191	25,614	26,390		
	7/8	22,861	25,401	26,895	27,710		
NOTE: Figures in i	talics are approx	imate values.					
For the hie	rarchical scheme	s the useful bit rate	s can be obtained f	rom table E.6 as fol	llows:		
	figures from QP						
		from QPSK colum					
LP stream,	64-QAM: figures	from 16-QAM colu	mns.				

History

Document history					
Edition 1	March 1997	Publication as ETS 300 744			
V1.1.2	August 1997	Publication			
V1.2.1	July 1999	Publication			
V1.3.1	August 2000	One-step Approval Procedure OAP 20001229: 2000-08-30 to 2000-12-29 (withdrawn and replaced by V1.4.1)			
V1.4.1	August 2000	One-step Approval Procedure OAP 20001229: 2000-08-30 to 2000-12-29			
V1.4.1	January 2001	Publication			