Final draft ETSI EN 300 417-3-1 V1.2.1 (2001-06)

European Standard (Telecommunications series)

Transmission and Multiplexing (TM); Generic requirements of transport functionality of equipment; Part 3-1: Synchronous Transport Module-N (STM-N) regenerator and multiplex section layer functions

Reference REN/TM-01042-3-1

2

Keywords transmission, SDH, interface, architecture

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2001. All rights reserved.

Contents

Intelle	ectual Property Rights	9
Forew	ord	9
1	Scope	11
2	References	11
3	Definitions, abbreviations and symbols	
3.1	Definitions	11
3.2	Abbreviations	11
3.3	Symbols and Diagrammatic Conventions	14
3.4	Introduction	14
4	STM-1 Regenerator Section Layer Functions	14
4.1	STM-1 Regenerator Section Connection functions	15
4.2	STM-1 Regenerator Section Trail Termination functions	16
4.2.1	STM-1 Regenerator Section Trail Termination Source RS1_TT_So	16
4.2.2	STM-1 Regenerator Section Trail Termination Sink RS1_TT_Sk	17
4.3	STM-1 Regenerator Section Adaptation functions	19
4.3.1	STM-1 Regenerator Section to Multiplex Section Adaptation Source RS1/MS1_A_So	19
4.3.2	STM-1 Regenerator Section to Multiplex Section Adaptation Sink RS1/MS1_A_Sk	20
4.3.3	STM-1 Regenerator Section to DCC Adaptation Source RS1/DCC_A_So	21
4.3.4	STM-1 Regenerator Section to DCC Adaptation Sink RS1/DCC_A_Sk	
4.3.5	STM-1 Regenerator Section to P0s Adaptation Source RS1/P0s_A_So/N	
4.3.6	STM-1 Regenerator Section to P0s Adaptation Sink RS1/P0s_A_Sk/N	
4.3.7	STM-1 Regenerator Section to V0x Adaptation Source RS1/V0x_A_So	
4.3.8	STM-1 Regenerator Section to V0x Adaptation Sink RS1/V0x_A_Sk	
5	STM-1 Multiplex Section Layer Functions	
5.1	STM-1 Multiplex Section Connection functions	
5.2	STM-1 Multiplex Section Trail Termination functions	
5.2.1	STM-1 Multiplex Section Trail Termination Source MS1_TT_So	
5.2.2	STM-1 Multiplex Section Trail Termination Sink MS1_TT_Sk	29
5.3	STM-1 Multiplex Section Adaptation functions	
5.3.1	STM-1 Multiplex Section to S4 Layer Adaptation Source MS1/S4_A_So	
5.3.2	STM-1 Multiplex Section to S4 Layer Adaptation Sink MS1/S4_A_Sk	
5.3.3	STM-1 Multiplex Section to DCC Adaptation Source MS1/DCC_A_So	
5.3.4	STM-1 Multiplex Section to DCC Adaptation Sink MS1/DCC_A_Sk	
5.5.5	STM-1 Multiplex Section to POs Adaptation Source MS1/POs_A_So	
5.5.0	STM-1 Multiplex Section to Pos Adaptation Distribution Adaptation Source MS1/SD A. So	
5.2.9	STM-1 Multiplex Section to Synchronization Distribution Adaptation Source MS1/SD_A_S0	
539	STM-1 Multiplex Section to Synchronization Distribution Adaptation Sink MS1/SD_A_SK	
5.3.9	STM-1 Multiplex Section Layer Monitoring Functions	
5.5	STM-1 Multiplex Section Layer Wontoring Functions	
5.51	STM-1 Multiplex Section Linear Trail Protection Connection Functions	
5511	STM-1 Multiplex Section 1+1 Linear Trail Protection Connection MS1P1+1 C	39
5512	STM-1 Multiplex Section 1:n Linear Trail Protection Connection MS1P1:n C	40
5.5.2	STM-1 Multiplex Section Linear Trail Protection Trail Termination Functions	42
5.5.2.1	Multiplex Section Protection Trail Termination Source MS1P TT So	
5.5.2.2	Multiplex Section Protection Trail Termination Sink MS1P TT Sk	43
5.5.3	STM-1 Multiplex Section Linear Trail Protection Adaptation Functions	44
5.5.3.1	STM-1 Multiplex Section to STM-1 Multiplex Section Protection Layer Adaptation Source	11
5.5.3.2	STM-1 Multiplex Section to STM-1 Multiplex Section Protection Laver Adaptation Sink	
5.5.5.2	MS1/MS1P A Sk	45
6	STM 4 Decomposition Leave Experience	4.5
0	STM 4 Decementar Section Connection functions	
0.1	51 vi-4 Regenerator Section Connection functions	

6.2	STM-4 Regenerator Section Trail Termination functions	47
6.2.1	STM-4 Regenerator Section Trail Termination Source RS4_TT_So	47
6.2.2	STM-4 Regenerator Section Trail Termination Sink RS4_TT_Sk	49
6.3	STM-4 Regenerator Section Adaptation functions	51
6.3.1	STM-4 Regenerator Section to Multiplex Section Adaptation Source RS4/MS4_A_So	51
6.3.2	3.2 STM-4 Regenerator Section to Multiplex Section Adaptation Sink RS4/MS4_A_Sk	
6.3.3	STM-4 Regenerator Section to DCC Adaptation Source RS4/DCC_A_So	53
6.3.4	STM-4 Regenerator Section to DCC Adaptation Sink RS4/DCC_A_Sk	54
6.3.5	STM-4 Regenerator Section to P0s Adaptation Source RS4/P0s_A_So/N	55
6.3.6	STM-4 Regenerator Section to P0s Adaptation Sink RS4/P0s_A_Sk/N	56
6.3.7	STM-4 Regenerator Section to V0x Adaptation Source RS4/V0x_A_So	57
6.3.8	STM-4 Regenerator Section to V0x Adaptation Sink RS4/V0x_A_Sk	58
7	STM-4 Multiplex Section Laver Functions	
7.1	STM-4 Multiplex Section Connection functions	61
7.2	STM-4 Multiplex Section Trail Termination functions	
7.2.1	STM-4 Multiplex Section Trail Termination Source MS4 TT So	
7.2.2	STM-4 Multiplex Section Trail Termination Sink MS4 TT Sk	
73	STM-4 Multiplex Section Adaptation functions	65
731	STM-4 Multiplex Section to S4 Laver Adaptation Source MS4/S4 A So/(B 0)	
7.3.2	STM-4 Multiplex Section to S4 Layer Adaptation Sink MS4/S4 A Sk/(B,0).	
733	STM-4 Multiplex Section to S4-4c Layer Adaptation Source MS4/S4-4c. A So	
734	STM-4 Multiplex Section to S4-4c Layer Adaptation Source MS4/S4-4c. A Sk	72
735	STM-4 Multiplex Section to DCC Adaptation Source MS4/DCC A So	73
736	STM-4 Multiplex Section to DCC Adaptation Source in MS4/DCC A Sk	73 74
737	STM-4 Multiplex Section to POs Adaptation Source MS4/POs A So	
738	STM-4 Multiplex Section to P0s Adaptation Sink MS4/P0s A Sk	
739	STM-4 Multiplex Section to Synchronization Distribution Adaptation Source MS4/SD A So	
7310	STM-4 Multiplex Section to Synchronization Distribution Adaptation Source MS4/SD_A_Sk	
7311	STM-4 Multiplex Section I aver Clock Adaptation Source MS4-I C A So	70 77
7.5.11	STM-4 Multiplex Section Layer Monitoring Functions	
7.5	STM-4 Multiplex Section Layer Trail Protection Functions	, ,
7.51	STM-4 Multiplex Section Linear Trail Protection Connection Functions	,,,
7511	STM-4 Multiplex Section 1+1 Linear Trail Protection Connection MS4P1+1 C	
7512	STM-4 Multiplex Section 1:n Linear Trail Protection Connection MS4P1:n C	
7.5.1.2	STM-4 Multiplex Section Linear Trail Protection Trail Termination Functions	ر ب 80
7521	Multiplex Section Protection Trail Termination Source MS4P TT So	80
7522	Multiplex Section Protection Trail Termination Source (ND47_11_50	
753	STM-4 Multiplex Section Linear Trail Protection Adaptation Functions	01 82
7.5.3	STM-4 Multiplex Section to STM-4 Multiplex Section Protection I aver Adaptation Source	
7.5.5.1	MS4/MS4P A So	82
7.5.3.2	2 STM-4 Multiplex Section to STM-4 Multiplex Section Protection Layer Adaptation Sink	
	MS4/MS4P_A_Sk	83
8	STM-16 Regenerator Section Layer Functions	84
81	STM 16 Pagenerator Section Connection functions	
0.1 8 7	STM-16 Regenerator Section Trail Termination functions	05 85
0.2 8 2 1	STM-10 Regenerator Section Trail Termination Source DS16 TT So	05 85
82.1	STM-10 Regenerator Section Trail Termination Source RS10_11_50	85 87
0.2.2	STM-10 Regenerator Section Adaptation functions	/ o
0.5	STM-10 Regenerator Section to Multipley Section Adaptation Source DS16/MS16 A So	09
0.3.1	STM-10 Regenerator Section to Multiplex Section Adaptation Source RS10/MS10_A_S0	
0.3.2	STM-10 Regenerator Section to Multiplex Section Adaptation Silk KS10/MS10_A_Sk	
0.3.3	STM-10 Regenerator Section to DCC Adaptation Source RS10/DCC_A_S0	
0.3.4	STM-10 Regenerator Section to DOC Adaptation Source DS16/DOC_A_SK	
0.3.3	STM-10 Regenerator Section to POS Adaptation Source RS10/POS_A_50/NSTM 16 Degenerator Section to D0s Adaptation Sink DS16/D0s_A_Sk/N	
0.3.0	STW-10 Regenerator Section to VOy Adaptation Source DS16/VOy A So	
0.3.1	STM-10 Regenerator Section to V0x Adaptation Source KS10/V0x_A_S0	93 04
0.5.0		
9	STM-16 Multiplex Section Layer Functions	97
9.1	STM-16 Multiplex Section Connection functions	102
9.2	STM-16 Multiplex Section Trail Termination functions	102
9.2.1	STM-16 Multiplex Section Trail Termination Source MS16_TT_So	102

9.2.2	STM-16 Multiplex Section Trail Termination Sink MS16_TT_Sk	103		
9.3	STM-16 Multiplex Section Adaptation functions	105		
9.3.1	STM-16 Multiplex Section to S4 Layer Adaptation Source MS16/S4_A_So/(C,B,0)10			
9.3.2	STM-16 Multiplex Section to S4 Layer Adaptation Sink MS16/S4_A_Sk/(C,B,0)10			
9.3.3	STM-16 Multiplex Section to S4-4c Layer Adaptation Source MS16/S4-4c_A_So/(C,0,0)109			
9.3.4	STM-16 Multiplex Section to S4-4c Layer Adaptation Sink MS16/S4-4c_A_Sk/(C,0,0)	112		
9.3.5	STM-16 Multiplex Section to S4-16c Layer Adaptation Source MS16/S4-16c_A_So	113		
9.3.6	STM-16 Multiplex Section to S4-16c Layer Adaptation Sink MS16/S4-16c_A_Sk	115		
9.3.7	STM-16 Multiplex Section to DCC Adaptation Source MS16/DCC_A_So	117		
9.3.8	STM-16 Multiplex Section to DCC Adaptation Sink MS16/DCC_A_Sk	118		
9.3.9	STM-16 Multiplex Section to P0s Adaptation Source MS16/P0s_A_So	119		
9.3.10	STM-16 Multiplex Section to P0s Adaptation Sink MS16/P0s_A_Sk	120		
9.3.11	STM-16 Multiplex Section to Synchronization Distribution Adaptation Source MS16/SD_A_So	121		
9.3.12	STM-16 Multiplex Section to Synchronization Distribution Adaptation Sink MS16/SD_A_Sk	121		
9.3.13	STM-16 Multiplex Section Layer Clock Adaptation Source MS16-LC_A_So	121		
9.4	STM-16 Multiplex Section Layer Monitoring Functions	121		
9.5	STM-16 Multiplex Section Linear Trail Protection Functions	121		
9.5.1	STM-16 Multiplex Section Linear Trail Protection Connection Functions	121		
9.5.1.1	STM-16 Multiplex Section 1+1 Linear Trail Protection Connection MS16P1+1 C	121		
9.5.1.2	STM-16 Multiplex Section 1:n Linear Trail Protection Connection MS16P1:n C	123		
9.5.2	STM-16 Multiplex Section Linear Trail Protection Trail Termination Functions	125		
9.5.2.1	Multiplex Section Protection Trail Termination Source MS16P TT So	125		
9.5.2.2	Multiplex Section Protection Trail Termination Sink MS16P TT Sk	126		
9.5.3	STM-16 Multiplex Section Linear Trail Protection Adaptation Functions	127		
9.5.3.1	STM-16 Multiplex Section to STM-16 Multiplex Section Protection Layer Adaptation Source			
	MS16/MS16P A So	127		
9.5.3.2	STM-16 Multiplex Section to STM-16 Multiplex Section Protection Layer Adaptation Sink			
	MS16/MS16P A Sk	128		
9.6	STM-16 Multiplex Section 2 Fibre Shared Protection Ring Functions	129		
9.6.1	STM-16 Multiplex Section 2 Fibre Shared Protection Ring Connection MS16P2fsh C	129		
9.6.2	STM-16 Multiplex Section 2 Fibre Shared Protection Ring Trail Termination Functions	133		
9.6.2.1	STM-16 Multiplex Section 2 Fibre Shared Protection Ring Trail Termination Source			
	MS16P2fsh TT So	133		
9.6.2.2	STM-16 Multiplex Section 2 Fibre Shared Protection Ring Trail Termination Sink			
	MS16P2fsh TT Sk	134		
9.6.3	STM-16 Multiplex Section 2 Fibre Shared Protection Ring Adaptation Functions	135		
9.6.3.1	STM-16 Multiplex Section to STM-16 Multiplex Section 2 Fibre Shared Protection Ring			
	Adaptation Source MS16/MS16P2fsh A So	135		
9.6.3.2	STM-16 Multiplex Section to STM-16 Multiplex Section 2 Fibre Shared Protection Ring			
	Adaptation Sink MS16/MS16P2fsh A Sk	136		
10 SI	M-64 Regenerator Section layer functions	.137		
10.1	STM-64 Regenerator Section Connection functions	138		
10.2	STM-64 Regenerator Section Trail Termination functions	138		
10.2.1	STM-64 Regenerator Section Trail Termination Source RS64_TT_So	138		
10.2.2	STM-64 Regenerator Section Trail Termination Sink RS64_TT_Sk	140		
10.3	STM-64 Regenerator Section Adaptation functions	142		
10.3.1	STM-64 Regenerator Section to Multiplex Section Adaptation Source RS64/MS64_A_So	142		
10.3.2	STM-64 Regenerator Section to Multiplex Section Adaptation Sink RS64/MS64_A_Sk	143		
10.3.3	STM-64 Regenerator Section to DCC Adaptation Source RS64/DCC_A_So	144		
10.3.4	STM-64 Regenerator Section to DCC Adaptation Sink RS64/DCC_A_Sk	145		
10.3.5	STM-64 Regenerator Section to P0s Adaptation Source RS64/P0s_A_So/N	145		
10.3.6	STM-64 Regenerator Section to P0s Adaptation Sink RS64/P0s_A_Sk/N	146		
10.3.7	STM-64 Regenerator Section to V0x Adaptation Source RS64/V0x_A_So	147		
10.3.8	STM-64 Regenerator Section to V0x Adaptation Sink RS64/V0x_A_Sk	148		
10.3.9	STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation supporting FEC	149		
10.3.9.1	STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC transparent	149		
10.3.9.1.1	STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC transparent			
	Source Function RS64/MSF64_A _So	149		
10.3.9.1.2	STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC transparent Sink			
	Function RS64/MSF64_A _Sk	150		
10.3.9.2	STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC generation	151		

10.3.9.2.	1 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC generation	
	Source Function RS64/MS64-fec_A _So	151
10.3.9.2.	2 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC generation Sink	
	Function RS64/MS64-fec_A _Sk	153
11 S	TM-64 Multiplex Section layer functions	. 155
11.1	STM-64 Multiplex Section Connection functions	158
11.2	STM-64 Multiplex Section Trail Termination functions	158
11.2	STM-64 Multiplex Section Trail Termination Source MS64 TT So	158
11.2.1	STM-64 Multiplex Section Trail Termination Source WiSo4_11_50	160
11.2.2	STM-04 Multiplex Section 11 an Termination Sink MS04_11_SK	160
11.5	STW-64 Multiplex Section Adaptation functions	102
11.3.1	STM-64 Multiplex Section to S4 Layer Adaptation Source MS64/S4_A_S0/(D,C,B,0)	162
11.3.2	STM-64 Multiplex Section to S4 Layer Adaptation Sink MS64/S4_A_Sk/(D,C,B,0)	165
11.3.3	STM-64 Multiplex Section to S4-4c Layer Adaptation Source MS64/S4-4c_A_So/(D,C,0,0)	166
11.3.4	STM-64 Multiplex Section to S4-4c Layer Adaptation Sink MS64/S4-4c_A_Sk/(D,C,0,0)	169
11.3.5	STM-64 Multiplex Section to S4-16c Layer Adaptation Source MS64/S4-16c_A_So/(D,0,0,0)	171
11.3.6	STM-64 Multiplex Section to S4-16c Layer Adaptation Sink MS64/S4-16c_A_Sk/(D,0,0,0)	173
11.3.7	STM-64 Multiplex Section to S4-64c Layer Adaptation Source MS64/S4-64c_A_So	175
11.3.8	STM-64 Multiplex Section to S4-64c Layer Adaptation Sink MS64/S4-64c A Sk	177
11.3.9	STM-64 Multiplex Section to DCC Adaptation Source MS64/DCC A So	179
11.3.10	STM-64 Multiplex Section to DCC Adaptation Sink MS64/DCC A Sk	180
11 3 11	STM-64 Multiplex Section to POs Adaptation Source MS64/POs A So	181
11 3 12	STM-64 Multiplex Section to POs Adaptation Source Files (1) 05_17_50	182
11.3.12	STM 64 Multiplex Section to Synchronization Distribution Adaptation Source MS64/SD A So	183
11.3.13 11.2.14	STM-64 Multiplex Section to Synchronization Distribution Adaptation Source MS64/SD_A_S0	102
11.3.14	STM-64 Multiplex Section to Synchronization Distribution Adaptation Sink MS04/SD_A_Sk	105
11.3.15	SIM-64 Multiplex Section Layer Clock Adaptation Source MS64-LC_A_So	183
11.4	STM-64 Multiplex Section Layer Monitoring Functions	183
11.5	STM-64 Multiplex Section Linear Trail Protection Functions	183
11.5.1	STM-64 Multiplex Section Linear Trail Protection Connection Functions	183
11.5.1.1	STM-64 Multiplex Section 1+1 Linear Trail Protection Connection MS64P1+1_C	183
11.5.1.2	STM-64 Multiplex Section 1:n Linear Trail Protection Connection MS64P1:n_C	185
11.5.2	STM-64 Multiplex Section Linear Trail Protection Trail Termination Functions	187
11.5.2.1	Multiplex Section Protection Trail Termination Source MS64P_TT_So	187
11.5.2.2	Multiplex Section Protection Trail Termination Sink MS64P TT Sk	188
11.5.3	STM-64 Multiplex Section Linear Trail Protection Adaptation Functions	189
11531	STM-64 Multiplex Section to STM-64 Multiplex Section Protection Layer Adaptation Source	
11101011	MS64/MS64P A So	189
11532	STM-64 Multiplex Section to STM-64 Multiplex Section Protection Layer Adaptation Sink	
11.5.5.2	MS64/MS64D A Sh	100
116	WIS04/WIS04F_A_SK	100
11.0	STM-04 Multiplex Section 2 Fibre Shared Frotection King Functions	190
12 S	TM-256 Regenerator Section layer functions	. 191
12.1	STM-256 Regenerator Section Connection functions	. 192
12.2	STM-256 Regenerator Section Trail Termination functions	192
12.2	STM-256 Regenerator Section Trail Termination Source R\$256 TT So	102
12.2.1	STM 256 Regenerator Section Trail Termination Source R5256_TT_St	105
12.2.2	STM-250 Regenerator Section Adoptation functions	107
12.5	STM-250 Regenerator Section Adaptation functions	107
12.3.1	STM-256 Regenerator Section to Multiplex Section Adaptation Source RS256/MS256_A_50	19/
12.3.2	STM-256 Regenerator Section to Multiplex Section Adaptation Sink RS256/MS256_A_Sk	198
12.3.3	STM-256 Regenerator Section to DCC Adaptation Source RS256/DCC_A_So	199
12.3.4	STM-256 Regenerator Section to DCC Adaptation Sink RS256/DCC_A_Sk	200
12.3.5	STM-256 Regenerator Section to P0s Adaptation Source RS256/P0s_A_So/N	201
12.3.6	STM-256 Regenerator Section to POs Adaptation Sink RS256/POs_A_Sk/N	202
12.3.7	STM-256 Regenerator Section to V0x Adaptation Source RS256/V0x_A_So	203
12.3.8	STM-256 Regenerator Section to V0x Adaptation Sink RS256/V0x_A_Sk	204
12.3.9	STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation supporting FEC	205
12.3.9.1	STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC transparent	205
12,3,9,1	1 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC transparent	
	Source Function RS256/MSF256 A So	205
12301	2 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC transparent	
12.3.7.1.	Sink Function R\$256/M\$F256 A Sk	206
12202	SHIK Function N3250/19151230_A_SK	200
12.3.9.2	5114-250 Regenerator Section to 5114-250 Multiplex Section Adaptation FEC generation	

12.3.9.2	.1 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC generation	
	Source Function RS256/MS256-fec_A _So	207
12.3.9.2	2 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC generation	
	Sink Function RS256/MS256-fec_A _Sk	209
13 S	TM-256 Multiplex Section layer functions	.211
13.1	STM-256 Multiplex Section Connection functions	214
13.2	STM-256 Multiplex Section Trail Termination functions	214
13.2.1	STM-256 Multiplex Section Trail Termination Source MS256 TT So	214
13.2.2	STM-256 Multiplex Section Trail Termination Sink MS256 TT Sk	
13.3	STM-256 Multiplex Section Adaptation functions	
13.3.1	STM-256 Multiplex Section to S4 Laver Adaptation Source MS256/S4 A So/(E.D.C.B.0)	
13.3.2	STM-256 Multiplex Section to S4 Layer Adaptation Sink MS256/S4 A Sk/(E.D.C.B.0).	
13 3 3	STM-256 Multiplex Section to S4-4c Layer Adaptation Source MS256/S4-4c A So/(EDC00)	221
1334	STM-256 Multiplex Section to S4-4c Layer Adaptation Sink MS256/S4-4c A Sk/(E D C 0.0)	224
13 3 5	STM-256 Multiplex Section to S4-16c Layer Adaptation Source MS256/S4-16c A So/(ED000)	225
1336	STM-256 Multiplex Section to S4-16c Layer Adaptation Sink MS256/S4-16c A Sk/(E D 0 0 0)	228
13 3 7	STM-256 Multiplex Section to S4-64c Layer Adaptation Source MS256/S4-64c A So/(E 0.0.0.0)	230
13.3.7	STM 256 Multiplex Section to S4 64c Layer Adaptation Source MS256/S4 64c A Sk/(E 0.0.0)	230
13.3.0	STM-256 Multiplex Section to S4-04C Layer Adaptation Source MS256/S4-04C_A_SK(E,0,0,0)	234
13 3 10	STM-256 Multiplex Section to S4-256c Layer Adaptation Source MS256/S4-256c A Sk	236
13.3.10	STM 256 Multiplex Section to DCC Adaptation Source MS256/DCC A So	230
13.3.11	STM 256 Multiplex Section to DCC Adaptation Source MS256/DCC_A_St	230
12 2 12	STM 256 Multiplex Section to Extended DCC Adaptation Source MS256/VDCC A Se	220
12.2.13	STM 256 Multiplex Section to Extended DCC Adaptation Source MS250/ADCC_A_S0	240
12.2.14	STM 256 Multiplex Section to D0a Adoptation Source MS256/D0a A So	240
13.3.15	STM-256 Multiplex Section to POs Adaptation Source MS250/POs_A_S0	241
13.3.10	STM-256 Multiplex Section to PUS Adaptation Sink MS256/PUS_A_SK	
13.3.17	SIM-256 Multiplex Section to Synchronization Distribution Adaptation Source MS256/SD_A_So	243
13.3.18	SIM-256 Multiplex Section to Synchronization Distribution Adaptation Sink MS256/SD_A_Sk	243
13.3.19	STM-256 Multiplex Section Layer Clock Adaptation Source MS256-LC_A_So	243
13.4	STM-256 Multiplex Section Layer Monitoring Functions	243
13.5	STM-256 Multiplex Section Linear Trail Protection Functions	243
13.5.1	STM-256 Multiplex Section Linear Trail Protection Connection Functions	243
13.5.1.1	STM-256 Multiplex Section 1+1 Linear Trail Protection Connection MS256P1+1_C	243
13.5.1.2	STM-256 Multiplex Section 1:n Linear Trail Protection Connection MS256P1:n_C	245
13.5.2	STM-256 Multiplex Section Linear Trail Protection Trail Termination Functions	247
13.5.2.1	Multiplex Section Protection Trail Termination Source MS256P_TT_So	247
13.5.2.2	Multiplex Section Protection Trail Termination Sink MS256P_TT_Sk	248
13.5.3	STM-256 Multiplex Section Linear Trail Protection Adaptation Functions	249
13.5.3.1	STM-256 Multiplex Section to STM-256 Multiplex Section Protection Layer Adaptation Source	2/19
13532	STM-256 Multiplex Section to STM-256 Multiplex Section Protection Layer Adaptation Sink	277
15.5.5.2	MS256/MS256D A Sk	250
126	STM 256 Multiplay Section 2 Fibra Sharad Protection Ding Functions	250
15.0	STM-250 Multiplex Section 2 Fible Shaled Flotection King Functions	230
Annex	A (normative): Generic specification of linear protection switching operation	.251
Annex	B (informative): STM-16 regenerator functional model (example)	.252
Annex	C (informative): Void	. 253
Annov	D (informative): MS protoction examples	254
Annex	D (mor mative). Nis protection examples	. 234
Annex	E (informative): FEC for STM-16 Regenerator Section Layer	.256
E.1	STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation supporting FEC	256
E.1.1	STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC transparent	256
E.1.1.1	STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC transparent Source	
	Function RS16/MSF16_A _So	256
E.1.1.2	STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC transparent Sink	
	Function RS16/MSF16_A _Sk	257
E.1.2	STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC generation	258
E.1.2.1	STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC generation Source	
	Function RS16/MS16-fec_A _So	258

E.1.2.2	STM-16 Reg Function RS	generator Section to STN 16/MS16-fec_A _Sk	A-16 Multiplex Section Adaptation FEC generation Sink	260
Annex F (infor	mative):	Bibliography		.262
History				.263

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

9

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications series) has been produced by ETSI Technical Committee Transmission and Multiplexing (TM), and is now submitted for the ETSI standards One-step Approval Procedure.

The present document is one of a family of documents that has been produced in order to provide inter-vendor and inter-operator compatibility of Synchronous Digital Hierarchy (SDH) equipment.

The present document is part 3-1 of a multi-part EN covering the Generic requirements of transport functionality of equipment, as identified below:

- Part 1-1: "Generic processes and performance".
- Part 1-2: "General information about Implementation Conformance Statement (ICS) proforma".
- Part 2-1: "Synchronous Digital Hierarchy (SDH) and Plesiochronous Digital Hierarchy (PDH) physical section layer functions".
- Part 2-2: "Synchronous Digital Hierarchy (SDH) and Plesiochronous Digital Hierarchy (PDH) physical section layer functions; Implementation Conformance Statement (ICS) proforma specification".
- Part 3-1: "Synchronous Transport Module-N (STM-N) regenerator and multiplex section layer functions".
- Part 3-2: "Synchronous Transport Module-N (STM-N) regenerator and multiplex section layer functions; Implementation Conformance Statement (ICS) proforma specification".
- Part 4-1: "Synchronous Digital Hierarchy (SDH) path layer functions".
- Part 4-2: "Synchronous Digital Hierarchy (SDH) path layer functions; Implementation Conformance Statement (ICS) proforma specification".
- Part 5-1: "Plesiochronous Digital Hierarchy (PDH) path layer functions".
- Part 5-2: "Plesiochronous Digital Hierarchy (PDH) path layer functions; Implementation Conformance Statement (ICS) proforma specification".
- Part 6-1: "Synchronization layer functions".
- Part 6-2: "Synchronization layer functions; Implementation Conformance Statement (ICS) proforma specification".
- Part 7-1: " Equipment management functions and Auxiliary layer functions".
- Part 7-2: "Equipment management functions and Auxiliary layer functions; Implementation Conformance Statement (ICS) proforma specification".
- Part 9-1: "Synchronous Digital Hierarchy (SDH) concatenated path layer functions; Requirements".

Parts 2 to 7 specify the layers and their atomic functions.

NOTE: The SDH radio equipment functional blocks are addressed by ETSI WG TM4.

Various of the above parts have previously been published as parts of ETS 300 417.

They have been converted to parts of EN 300 417 without technical changes, but some editorial changes have been necessary (e.g. references). In particular:

10

- Parts 2-1 and 3-2 have been modified to take account of editorial errors present in edition 1.
- Part 1-1 has had its title change of to align with other parts published at a later date.

Also note that in the meantime parts 8-1, 8-2 and 8-3 have been stopped.

Proposed national transposition dates		
Date of latest announcement of this EN (doa):	3 months after ETSI publication	
Date of latest publication of new National Standard or endorsement of this EN (dop/e):	6 months after doa	
Date of withdrawal of any conflicting National Standard (dow):	6 months after doa	

1 Scope

The present document specifies a library of basic building blocks and a set of rules by which they are combined in order to describe transport functionality of equipment. The library comprises the functional building blocks needed to completely specify the generic functional structure of the European Transmission Hierarchies. Equipment which is compliant with the present document needs to be describable as an interconnection of a subset of these functional blocks contained within the present document. The interconnections of these blocks need to obey the combination rules given. The generic functionality is described in EN 300 417-1-1 [3].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
- [1] ETSI EN 300 147: "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH); Multiplexing structure".
- [2] ETSI EN 300 166 (1993): "Transmission and Multiplexing (TM); Physical and electrical characteristics of hierarchical digital interfaces for equipment using the 2 048 kbit/s based plesiochronous or synchronous digital hierarchies".
- [3] ETSI EN 300 417-1-1: "Transmission and Multiplexing (TM); Generic requirements of transport functionality of equipment; Part 1-1: Generic processes and performance".
- [4] ETSI EN 300 417-4-1: "Transmission and Multiplexing (TM); Generic requirements of transport functionality of equipment; Part 4-1: Synchronous Digital Hierarchy (SDH) path layer functions".
- [5] ETSI EN 300 417–6–1: "Transmission and Multiplexing (TM); Generic requirements of transport functionality of equipment; Part 6-1: Synchronization layer functions".
- [6] ETSI ETS 300 746: "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH); Network protection schemes; Automatic Protection Switch (APS) protocols and operation".

3 Definitions, abbreviations and symbols

3.1 Definitions

The functional definitions are described in EN 300 417-1-1 [3].

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

А	Adaptation function
AcTI	Accepted Trace Identifier
ADM	Add-Drop Multiplexer
AI	Adapted Information
AIS	Alarm Indication Signal

AP	Access Point
APId	Access Point Identifier
APS	Automatic Protection Switch
AU	Administrative Unit
AUG	Administrative Unit Group
AU-n	Administrative Unit level n
REP	Bit Error Patio
DLK	Dit Interlooved Derity
DIF DID N	Dit Interleaved Parity Dit Interleaved Davity, width N
BIP-N	Bit interleaved Parity, widin N
C	Connection function
CI	Characteristic Information
CK	ClocK
CM	Connection Matrix
CP	Connection Point
CS	Clock Source
D	Data
DCC	Data Communications Channel
DEC	DECrement
DEG	DEGraded
DEGTHR	DEGraded THReshold
FBC	Errored Block Count
ECC	Embedded Communications Channel
ECC (v)	Embedded Communications Channel layer y
ECC(X)	Embedded Communications Chamler, layer x
EDC	Error Detection Code
EDCV	Error Detection Code Violation
EMF	Equipment Management Function
EQ	EQuipment
ES	Electrical Section
ES	Errored Second
ExTI	Expected Trace Identifier
F_B	Far-end Block
FAS	Frame Alignment Signal
FOP	Failure Of Protocol
FS	Frame Start signal
HO	Higher Order
HOVC	Higher Order Virtual Container
ноте	Higher order Dath
	Dontifier
	IDenunei In Frome stote
INC	INCrement
INV	INValid
LC	Link Connection
LO	Lower Order
LOA	Loss Of Alignment; generic for LOF, LOM, LOP
LOF	Loss Of Frame
LOP	Loss Of Pointer
LOS	Loss Of Signal
LOVC	Lower Order Virtual Container
MC	Matrix Connection
MCF	Message Communications Function
MDT	Mean Down Time
mei	maintenance event information
MI	Management Information
MO	Management information Managed Object
MON	MONitored
	Mon a generat Daint
MP	Malialan Section
MS	Multiplex Section
MS1	STM-1 Multiplex Section
MS16	STM-16 Multiplex Section
MS4	STM-4 Multiplex Section
MSB	Most Significant Bit
MSOH	Multiplex Section OverHead

MSP	Multiplex Section Protection
MSPG	Multiplex Section Protection Group
N_B	Near-end Block
NC	Network Connection
NC	Not Connected
NDF	New Data Flag
NE	Network Element
nF_B	Number of errored Far-end Blocks
NMON	Not MONitored
nN_B	Number of errored Nearend Blocks
NNI	Network Node Interface
NU	National Use (bits, bytes)
NUx	National Use, bit rate order x
OAM	Operation, Administration and Maintenance
OOF	Out Of Frame state
OS	Optical Section
OSI(x)	Open Systems Interconnection, layer x
OW	Order Wire
Р	Protection
P_A	Protection Adaptation
P_C	Protection Connection
P_TT	Protection Trail Termination
PDH	Plesiochronous Digital Hierarchy
PJE	Pointer Justification Event
PM	Performance Monitoring
Pn	Plesiochronous signal, level n
РОН	Path OverHead
PRC	Primary Reference Clock
PS	Protection Switching
PSC	Protection Switch Count
PTR	PoinTeR
QOS	Quality Of Service
RDI	Remote Defect Indication
REI	Remote Error Indication
RI	Remote Information
RP	Remote Point
RS	Regenerator Section
RS1	STM-1 Regenerator Section
RS16	STM-16 Regenerator Section
RS4	STM-4 Regenerator Section
RSOH	Regenerator Section OverHead
RxTI	Received Trace Identifier
S4	VC-4 path layer
SASE	Stand-Alone Synchronization Equipment
SD	Synchronization Distribution layer, Signal Degrade
SDH	Synchronous Digital Hierarchy
SEC	SDH Equipment Clock
SF	Signal Fail
Sk	Sink
SNC	Sub-Network Connection
SNC/I	Inherently monitored Sub-Network Connection protection
SNC/N	Non-intrusively monitored Sub-Network Connection protection
SNC/S	Sublayer monitored Sub-Network Connection protection
So	Source
SOH	Section OverHead
SPRING	Shared Protection RING
SR	Selected Reference
SSD	Server Signal Degrade
SSF	Server Signal Fail
SSM	Synchronization Status Message
SSU	Synchronization Supply Unit
STM	Synchronous Transport Module

Synchronous Transport Module, level N
Termination Connection Point
Timing Information
Trace Identifier Mismatch
Transmission_Medium
Telecommunications Management Network
Timing Point
Termination Point mode
Time Slot
Trail Signal Degrade
Trail Signal Fail
Trail Termination function
Trail Trace Identifier
Trail Termination supervisory function
Transmitted Trace Identifier
UNEQuipped
User Network Interface
USeR channels
64 kbit/s contradirectional data layer
Virtual Container
Virtual Container, level-n
Working
eXtended DCC

3.3 Symbols and Diagrammatic Conventions

The symbols and diagrammatic conventions are described in EN 300 417-1-1 [3].

3.4 Introduction

The atomic functions defining the regenerator and multiplex section layers are described below (clause 4 onwards).

Figure 1: STM-1 Regenerator Section atomic functions

RS1 Layer CP

The CI at this point is an octet structured, 125 µs framed data stream with co-directional timing. It is the entire STM-1 signal as defined in EN 300 147 [1]. Figure 2 depicts only bytes handled in the RS1 layer.

- NOTE 1: The unmarked bytes [2, 6], [3, 6], [3, 8], [3, 9] in rows 2,3 (figure 2) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The unmarked bytes [2, 2], [2, 3], [2, 5], [3, 2], [3, 3], [3, 5] in rows 2, 3 (figure 2) are reserved for media specific usage (e.g. radio sections). In optical and electrical section applications they are undefined.
- NOTE 3: The bytes for National Use (NU) in rows 1,2 (figure 2) are reserved for operator specific usage. Their processing is not within the province of the present document. If NU bytes [1, 8] and [1, 9] are unused, care should be taken in selecting the binary content of the bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.

Figure 2: RS1_CI_D signal

RS1 Layer AP

The AI at this point is octet structured and 125 μ s framed with co-directional timing and represents the combination of adapted information from the MS1 layer (2 403 bytes per frame), the management communication DCC layer (3 bytes per frame if supported), the OW layer (1 byte per frame if supported) and the user channel F1 (1 byte per frame if supported). The location of these four components in the frame is defined in EN 300 147 [1] and depicted in figure 3.

NOTE 4: Bytes E1, F1 and D1-D3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

Figure 3: RS1_AI_D signal

4.1 STM-1 Regenerator Section Connection functions

For further study.

4.2 STM-1 Regenerator Section Trail Termination functions

4.2.1 STM-1 Regenerator Section Trail Termination Source RS1_TT_So

16

Symbol:

Figure 4: RS1_TT_So symbol

Interfaces:

Table 1: RS1_TT_So input and output signals

Input(s)	Output(s)
RS1_AI_D	RS1_CI_D
RS1_AI_CK	RS1_CI_CK
RS1_AI_FS	
RS1_TT_So_MI_TxTI	

Processes:

The function builds the STM-1 signal by adding the frame alignment information, bytes A1A2, the STM Section Trace Identifier (STI) byte J0, computing the parity and inserting the B1 byte.

J0: In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in EN 300 417-1-1 [3], clause 7.1.

B1: The function shall calculate a Bit Interleaved Parity 8 (BIP-8) code using even parity. The BIP-8 shall be calculated over all bits of the previous STM-1 frame after scrambling and is placed in byte position B1 of the current STM-1 frame before scrambling (figure 5).

A1A2: The function shall insert the STM-1 frame alignment signal A1A1A1A2A2A2 into the regenerator section overhead as defined in EN 300 147 [1].

Scrambler: This function provides scrambling of the RS1_CI. The operation of the scrambler shall be functionally identical to that of a frame synchronous scrambler of sequence length 127 operating at the line rate. The generating polynomial shall be $1 + X^6 + X^7$. The scrambler shall be reset to "1111 1111" on the most significant bit (MSB) of the byte [1, 10] following the last byte of the STM-1 SOH in the first row. This bit and all subsequent bits to be scrambled shall be modulo 2 added to the output of the X^7 position of the scrambler. The scrambler shall run continuously throughout the remaining STM-1 frame.

Figure 5: Some processes within RS1_TT_So

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

4.2.2 STM-1 Regenerator Section Trail Termination Sink RS1_TT_Sk

Symbol:

Input(s)	Output(s)
RS1_CI_D	RS1_AI_D
RS1_CI_CK	RS1_AI_CK
RS1_CI_FS	RS1_AI_FS
RS1_CI_SSF	RS1_AI_TSF
RS1_TT_Sk_MI_ExTI	RS1_TT_Sk_MI_AcTI
RS1_TT_Sk_MI_TPmode	RS1_TT_Sk_MI_cTIM
RS1_TT_Sk_MI_TIMdis	RS1_TT_Sk_MI_pN_EBC
RS1_TT_Sk_MI_ExTImode	RS1_TT_Sk_MI_pN_DS
RS1 TT Sk MI 1second	

Table 2: RS1_TT_Sk input and output signals

Processes:

This function monitors the STM-1 signal for RS errors, and recovers the RS trail termination status. It extracts the payload independent overhead bytes (J0, B1) from the RS1 layer Characteristic Information.

Descrambling: The function shall descramble the incoming STM-1 signal. The operation of the descrambler shall be functionally identical to that of a scrambler in RS1_TT_So.

B1: Even bit parity is computed for each bit n of every byte of the preceding scrambled STM-1 frame and compared with bit n of B1 recovered from the current frame (n = 1 to 8 inclusive) (figure 7). A difference between the computed and recovered B1 values is taken as evidence of one or more errors (nN_B) in the computation block.

J0: The Received Trail Trace Identifier RxTI shall be recovered from the J0 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in EN 300 417-1-1 [3], clauses 7.1 and 8.2.1.3.

Figure 7: Some processes within RS1_TT_Sk

Defects:

The function shall detect for dTIM defect according the specification in EN 300 417-1-1 [3], clause 8.2.1.

ETSI

Consequent Actions:

aAIS \leftarrow CI_SSF or dTIM.

aTSF \leftarrow CI_SSF or dTIM.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

- NOTE 1: The term "CI_SSF" has been added to the conditions for aAIS while the descrambler function has been moved from the e.g. OS1/RS1_A_Sk to this function. Consequently, an all-ONEs (AIS) pattern inserted in the mentioned adaptation function would be descrambled in this function. A "refreshment" of all-ONEs is required.
- NOTE 2: The insertion of AIS especially due to detection of dTIM will cause the RS-DCC channel to be "squelched" too, so that control of the NE via this channel is lost. If control is via this channel only, there is a risk of a dead-lock situation if dTIM is caused by a misprovisioning of ExTI.

Defect Correlations:

cTIM \leftarrow MON and dTIM.

Performance Monitoring:

For further study.

- 4.3 STM-1 Regenerator Section Adaptation functions
- 4.3.1 STM-1 Regenerator Section to Multiplex Section Adaptation Source RS1/MS1_A_So

Symbol:

Figure 8: RS1/MS1_A_So symbol

Interfaces:

Table 3: RS1/MS1_A_So input and output signals

Input(s)	Output(s)
MS1_CI_D	RS1_AI_D
MS1_CI_CK	RS1_AI_CK
MS1_CI_FS	RS1_AI_FS
MS1_CI_SSF	

Processes:

The function multiplexes the MS1_CI data (2 403 bytes / frame) into the STM-1 byte locations defined in EN 300 147 [1] and depicted in figure 3.

NOTE 1: There might be cases in which the network element knows that the timing reference for a particular STM-1 interface can not be maintained within ±4,6 ppm. For such cases MS-AIS can be generated. This is network element specific and outside the scope of the present document.

None.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output all ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all ONEs signal shall be within 155 520 kHz ± 20 ppm.

NOTE 2: If CI_SSF is not connected (when RS1/MS1_A_So is connected to a MS1_TT_So), SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring: None.

4.3.2 STM-1 Regenerator Section to Multiplex Section Adaptation Sink RS1/MS1_A_Sk

Symbol:

Figure 9: RS1/MS1_A_Sk symbol

Interfaces:

Table 4: RS1/MS1	_A_	_Sk input	and	output	signal	S
------------------	-----	-----------	-----	--------	--------	---

Input(s)	Output(s)
RS1_AI_D	MS1_CI_D
RS1_AI_CK	MS1_CI_CK
RS1_AI_FS	MS1_CI_FS
RS1_AI_TSF	MS1_CI_SSF

Processes:

The function separates MS1_CI data from RS1_AI as depicted in figure 3.

Defects:

None.

None.

Consequent Actions:

aSSF	\leftarrow	AI_TSF.	
Defect Cor	relatio	ns:	

Performance Monitoring:	None.

4.3.3 STM-1 Regenerator Section to DCC Adaptation Source RS1/DCC_A_So

Symbol:

Figure 10: RS1/DCC_A_So symbol

Interfaces:

Table 5: RS1/DCC_A_So input and output signals

Input(s)	Output(s)
	RS1_AI_D
STM1_II_CK STM1_TI_FS	

Processes:

The function multiplexes the DCC CI data (192 kbit/s) into the byte locations D1, D2 and D3 as defined in EN 300 147 [1] and depicted in figure 3.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

4.3.4 STM-1 Regenerator Section to DCC Adaptation Sink RS1/DCC_A_Sk

Symbol:

Figure 11: RS1/DCC_A_Sk symbol

Interfaces:

Table 6: RS1/DCC_A_Sk input and output signals

Input(s)	Output(s)
RS1_AI_D	DCC_CI_D
RS1_AI_CK	DCC_CI_CK
RS1_AI_FS	DCC_CI_SSF
RS1_AI_TSF	

Processes:

The function separates DCC data from RS Overhead as defined in EN 300 147 [1] and depicted in figure 3.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations: None.

Performance Monitoring: None.

4.3.5 STM-1 Regenerator Section to P0s Adaptation Source RS1/P0s_A_So/N

None.

Symbol:

Figure 12: RS1/P0s_A_So symbol

Table 7: RS1/P0s_A_So input an	nd output signals
--------------------------------	-------------------

Input(s)	Output(s)
P0s_CI_D	RS1_AI_D
P0s_CI_CK	
P0s_CI_FS	
STM1_TI_CK	
STM1_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire or user channel information stream into the RS1_AI using slip buffering. It takes P0s_CI, a 64 kbit/s signal as defined in EN 300 166 [2], as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the RSOH byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 3.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-1 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-1 clock, frame position (STM1_TI), and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

64 kbit/s timeslot: The adaptation source function has access to a specific 64 kbit/s channel of the RS access point. The specific 64 kbit/s channel is defined by the parameter N (N = E1, F1).

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

4.3.6 STM-1 Regenerator Section to P0s Adaptation Sink RS1/P0s_A_Sk/N

Symbol:

Figure 13: RS1/P0s_A_Sk symbol

Input(s)	Output(s)
RS1_AI_D	P0s_CI_D
RS1_AI_CK	P0s_CI_CK
RS1_AI_FS	P0s_CI_FS
RS1_AI_TSF	P0s_CI_SSF

Table 8: RS1/P0s_A_Sk input and output signals

Processes:

The function separates POs data from RS Overhead byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 3.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-1 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-1 signal clock (e.g. 155 520 kHz divided by a factor of 2 430).

64 kbit/s timeslot: The adaptation sink function has access to a specific 64 kbit/s of the RS access point. The specific 64 kbit/s is defined by the parameter N (N = E1, F1).

Defects: None.

Consequent Actions:

aSSF	\leftarrow	AI_TSF.
aAIS	\leftarrow	AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations:

Performance Monitoring: None.

4.3.7 STM-1 Regenerator Section toV0x Adaptation Source RS1/V0x_A_So

None.

Symbol:

Input(s)	Output(s)
V0x_CI_D	RS1_AI_D
STM1_TI_CK	V0x_CI_CK
STM1_TI_FS	

Table 9: RS1/V0x_A_So input and output signals

Processes:

None.

This function shall multiplex the V0x_CI data (64 kbit/s) into the byte location F1 as defined in EN 300 147 [1] and depicted in figure 3.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

4.3.8 STM-1 Regenerator Section to V0x Adaptation Sink RS1/V0x_A_Sk

Symbol:

Figure 15: RS1/V0x_A_Sk symbol

Interfaces:

Table 10: RS1/V0x_A_Sk input and output signals

Input(s)	Output(s)
RS1_AI_D	V0x_CI_D
RS1_AI_CK	V0x_CI_CK
RS1_AI_FS	V0x_CI_SSF
RS1_AI_TSF	

Processes:

This function separates user channel data from RS Overhead (byte F1) as defined in EN 300 147 [1] and depicted in figure 3.

Defects:

None.

Consequent Actions:

aSSF	\leftarrow	AI_TSF.
aAIS	\leftarrow	AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

Performance Monitoring: None.

5 STM-1 Multiplex Section Layer Functions

Figure 16: STM-1 Multiplex Section atomic functions

MS1 Layer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is characterized as the MS1_AI with an additional MS Trail Termination overhead in the three B2 bytes, byte M1, and bits 6-8 of the K2 byte in the frame locations defined in EN 300 147 [1] and depicted in figure 17.

- NOTE 1: The unmarked bytes in rows 5, 6, 7, 8 and 9 (see figure 17) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The bytes for National Use (NU) in row 9 (see figure 17) are reserved for operator specific usage. Their processing is not within the province of the present document.

_	1	2	3	4	5	6	7	8	9	10		270
1												
2												
3												
4	H1	"Y"	"Y"	H2	"1"	"1"	H3	H3	H3			
5	B2	B2	B2	K1			K2				AU4 payload capacity	
6	D4			D5			D6				(261 × 9 bytes)	
7	D7			D8			D9					
8	D10			D11			D12					
9	S 1					M1	E2	NU	NU			

Figure 17: MS1_CI_D

MS1 Layer AP

The AI at this point is octet structured and 125 μ s framed with co-directional timing. It represents the combination of information adapted from the VC-4 layer (150 336 kbit/s), the management communications DCC layer (576 kbit/s), the OW layer (64 kbit/s if supported), the AU-4 pointer (3 bytes per frame), the APS signalling channel (13 or 16 bits per frame if supported, see note 3), and the Synchronization Status Message (SSM) channel (4 bits per frame if supported). The location of these five components in the frame is defined in EN 300 147 [1] and depicted in figure 18.

- NOTE 3: 13 bits APS channel for the case of linear MS protection. 16 bits APS channel for the case of MS SPRING protection
- NOTE 4: Bytes E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

Figure 18: MS1_AI_D

NOTE 5: The allocation of definitions and associated processing of unused MS OH bytes might change due to their future application.

Figure 19 shows the MS trail protection specific sublayer atomic functions (MS1/MS1P_A, MS1P_C, MS1P_TT) within the MS1 layer. Note that the DCC (D4-D12), OW (E2), and SSM (S1[5-8]) signals can be accessible before (unprotected) and after (protected) the MS1P_C function. The choice is outside the scope of the present document.

NOTE 6: Equipment may provide MS protection and bi-directional services such as DCC and OW in the MS layer. Where a link uses this provision both ends of the link shall be configured to operate these services in the same mode (i.e. either protected or unprotected).

Figure 19: STM-1 Multiplex Section Linear Trail Protection Functions

MS1P Sublayer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is equivalent to the MS1_AI and depicted in figure 20.

NOTE 7: Bytes S1, E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element or are unprotected (see above).

_	1	2	3	4	5	6	7	8	9	10		270
1												
2												
3												
4	H1	"Y"	"Y"	H2	"1"	"1"	H3	H3	H3			
5				K1			K2*				AU4 payload capacity	
6	D4			D5			D6				(261 $ imes$ 9 bytes)	
7	D7			D8			D9					
8	D10			D11			D12					
9	S1						E2	NU	NU			

Figure 20: MS1P_CI_D

NOTE 8: K2* represents bits 1 to 5 of K2.

5.1 STM-1 Multiplex Section Connection functions

For further study.

5.2 STM-1 Multiplex Section Trail Termination functions

5.2.1 STM-1 Multiplex Section Trail Termination Source MS1_TT_So

Symbol:

Figure 21: MS1_TT_So symbol

Interfaces:

Input(s)	Output(s)
MS1_AI_D	MS1_CI_D
MS1_AI_CK	MS1_CI_CK
MS1 AL FS	MS1_CI_FS
MS1_RI_REI	
MS1_RI_RDI	

Processes:

This function adds error monitoring capabilities and remote maintenance information signals to the MS1_AI.

M1: The function shall within 1 ms insert the value of MS1_RI_REI into the REI (Remote Error Indication) - to convey the count of interleaved bit blocks that have been detected in error by the BIP-24 process in the companion MS1_TT_Sk - in the range of "0000 0000" (0) to "0001 1000" (24).

K2[6-8]: These bits represents the defect status of the associated MS1_TT_Sk. The RDI indication shall be set to "110" on activation of MS1_RI_RDI within 1 ms, determined by the associated MS1_TT_Sk function, and set to "000" within 1 ms on the clearing of MS1_RI_RDI.

B2: The function shall calculate a Bit Interleaved Parity 24 (BIP-24) code using even parity. The BIP-24 shall be calculated over all bits, except those in the RSOH bytes, of the previous STM-1 frame and placed in three B2 bytes of the current STM-1 frame.

NOTE: The BIP-24 procedure is described in EN 300 147 [1].

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

5.2.2 STM-1 Multiplex Section Trail Termination Sink MS1_TT_Sk

Symbol:

Figure 22: MS1_TT_Sk symbol

Input(s)	Output(s)
MS1_CI_D	MS1_AI_D
MS1_CI_CK	MS1_AI_CK
MS1_CI_FS	MS1_AI_FS
MS1_CI_SSF	MS1_AI_TSF
MS1_TT_Sk_MI_DEGTHR	MS1_AI_TSD
MS1_TT_Sk_MI_DEGM	MS1_TT_Sk_MI_cAIS
MS1_TT_Sk_MI_1second	MS1_TT_Sk_MI_cDEG
MS1_TT_Sk_MI_TPmode	MS1_TT_Sk_MI_cRDI
MS1_TT_Sk_MI_SSF_Reported	MS1_TT_Sk_MI_cSSF
MS1_TT_Sk_MI_AIS_Reported	MS1_TT_Sk_MI_pN_EBC
MS1_TT_Sk_MI_RDI_Reported	MS1_TT_Sk_MI_pF_EBC
MS1_TT_Sk_MI_M1_Ignored	MS1_TT_Sk_MI_pN_DS
	MS1_TT_Sk_MI_pF_DS
	MS1_RI_REI
	MS1_RI_RDI

Table 12: MS1_TT_Sk input and output signals

Processes:

This function monitors error performance of associated MS1 including the far end receiver.

B2: The BIP-24 shall be calculated over all bits, except of those in the RSOH bytes, of the previous STM-1 frame and compared with the three error monitoring bytes B2 recovered from the MSOH of the current STM-1 frame. A difference between the computed and recovered B2 values is taken as evidence of one or more errors (nN_B) in the computation block.

NOTE 1: There are 24 blocks consisting of 801 bits and a BIP-1 as EDC per STM-1 frame in the MS1 layer.

M1: The REI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The REI (nF_B) is used to monitor the error performance of the other direction of transmission. The application process is described in EN 300 417-1-1 [3], clause 7.4.2 (REI). If M1_ignored is true, nF_B shall be forced to "0"; if M1_ignored is false, nF_B shall equal the value in REI.

NOTE 2: M1_ignored is a parameter provisioned by the operator to indicate the support of the M1 byte in the incoming STM-1 signal. For the case M1 is supported, M1_ignored should be set to false, otherwise M1_ignored should be set to true.

The function shall interpret the value of the byte (for interworking with old equipment generating a 7 bit code) as shown in table 13.

M1[2-8] code, bits 234 5678	code interpretation [#BIP violations], (nF_B)	
000 0000	0	
000 0001	1	
000 0010	2	
000 0011	3	
:	÷	
001 1000	24	
001 1001	0	
001 1010	0	
:	:	
111 1111	0	
NOTE: Bit 1 of byte M1 is ignored.		

Table 13:	STM-1	M1 int	erpretation
-----------	-------	--------	-------------

NOTE 3: In case of interworking with old equipment not supporting MS-REI, the information extracted from M1 is not relevant.

K2[6-8] - RDI: The RDI information carried in these bits shall be extracted to enable single ended maintenance of a bidirectional trail (section). The RDI provides information as to the status of the remote receiver. A "110" indicates a Remote Defect Indication state, while other patterns indicate the normal state. The application process is described in EN 300 417-1-1 [3], clauses 7.4.11 and 8.2.

K2[6-8] - AIS: The MS-AIS information carried in these bits shall be extracted.

Defects:

The function shall detect for dDEG and dRDI defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2. The x is in range 3 to 5.

Consequent Actions:

aAIS	\leftarrow	dAIS.
aRDI	\leftarrow	dAIS.
aREI	\leftarrow	#EDCV.
aTSF	\leftarrow	dAIS.
aTSD	\leftarrow	dDEG.

On declaration of aAIS the function shall output an all-ONEs signal within 250 $\mu s;$ on clearing of aAIS the function shall output normal data within 250 $\mu s.$

Defect Correlations:

cAIS	\leftarrow	MON and dAIS and (not CI_SSF) and AIS_Reported.
cDEG	\leftarrow	MON and dDEG.
cRDI	\leftarrow	MON and dRDI and RDI_Reported.
cSSF	\leftarrow	MON and dAIS and SSF_Reported.

Performance monitoring:

The performance monitoring process shall be performed as specified in EN 300 417-1-1 [3], clause 8.2.4 through 8.2.7.

pN_DS	\leftarrow	aTSF or dEQ
pF_DS	\leftarrow	dRDI.
pN_EBC	\leftarrow	Σ nN_B.

 $pF_EBC \leftarrow \Sigma nF_B.$

5.3 STM-1 Multiplex Section Adaptation functions

5.3.1 STM-1 Multiplex Section to S4 Layer Adaptation Source MS1/S4_A_So

Symbol:

Figure 23: MS1/S4_A_So symbol

Interfaces:

Table 14: MS1/S4_A_So input and output signals

Input(s)	Output(s)
S4_CI_D	MS1_AI_D
S4_CI_CK	MS1_AI_CK
S4_CI_FS	MS1_AI_FS
S4_CI_SSF	
STM1_TI_CK	MS1/S4_A_So_MI_pPJE+
STM1_TI_FS	MS1/S4_A_So_MI_pPJE-

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4 signal, represented by a nominally $(261 \times 9 \times 64) = 150 336$ kbit/s information stream and the related frame phase with a frequency accuracy within ±4,6 ppm, to be multiplexed into a STM-1 signal.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ±20 ppm network element clock source.

The frame phase of the VC-4 is coded in the related AU-4 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-1 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS1/S4_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4 pointer actions. An example is given in EN 300 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 24 data bits shall be cancelled once and no data written at the three positions H3 + 1. Upon a negative justification action, an extra 24 data bits shall be read out once into the three positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Figure 24: Main processes within MS1/S4_A_So

Buffer size: For further study.

Behaviour at recovery from defect condition: The incoming frequency (S4_CI_CK) of a passing through VC-4 may exceed its limits during a STM1dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevented to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4 pointer is carried in 2 bytes of payload specific OH (H1, H2) in each STM-1 frame. The AU-4 pointer is aligned in the STM-1 payload in fixed position relative to the STM-1 frame. The AU-4 pointer points to the begin of the VC-4 frame within the STM-1. The format of the AU-4 pointer and its location in the frame are defined in EN 300 147 [1].

H1H2 - *Pointer generation:* The function shall generate the AU-4 pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, 1], H2 [4, 4] positions with the SS field set to 10 to indicate AU-4.

YY1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 2], [4, 3] and code "1" = 11111111 in bytes [4, 5], [4, 6]. Bits ss are undefined.

Defects: None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS1/S4_A_So is connected to a S4_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4 only. A locally generated VC-4 may have a fixed frame phase; pointer justifications will not occur.

5.3.2 STM-1 Multiplex Section to S4 Layer Adaptation Sink MS1/S4_A_Sk

Symbol:

Figure 25: MS1/S4_A_Sk symbol

Interfaces:

Table 15: MS1/S4_A_Sk input and output signals

Input(s)	Output(s)
MS1_AI_D	S4_CI_D
MS1_AI_CK	S4_CI_CK
MS1_AI_FS	S4_CI_FS
MS1_AI_TSF	S4_CI_SSF
MS1/S4_A_Sk_MI_AIS_Reported	MS1/S4_A_Sk_MI_cAIS
	MS1/S4_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4 data with frame phase information from the STM-1 as defined in EN 300 147 [1].

H1H2 - *AU-4 pointer interpretation:* An AU-4 pointer consists of 2 bytes, [4, 1] and [4, 4]. The function shall perform AU-4 pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4 frame phase within the STM-1. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase.

YY1*1*: The bytes [4, 2], [4, 3], [4, 5], [4, 6] contain fixed stuff, of a specified value, ignored by the AU-4 pointer interpreter.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AIS_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AIS_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOP_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOP_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not AI_TSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitors:

None.

5.3.3 STM-1 Multiplex Section to DCC Adaptation Source MS1/DCC_A_So

Symbol:

Figure 26: MS1/DCC_A_So symbol

Interfaces:

Table 16: MS1/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	MS1_AI_D
STM1_TI_CK	DCC_CI_CK
STM1_TI_FS	

Processes:

The function multiplexes the DCC CI data (576 kbit/s) into the byte locations D4 to D12 as defined in EN 300 147 [1] and depicted in figure 18.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects: None.

Consequent Actions:None.Defect Correlations:None.

Performance Monitoring: None.

5.3.4 STM-1 Multiplex Section to DCC Adaptation Sink MS1/DCC_A_Sk

Symbol:

Figure 27: MS1/DCC_A_Sk symbol

Interfaces:

Table 17: MS1/DCC_A_Sk input and output signals

Input(s)	Output(s)
MS1_AI_D	DCC_CI_D
MS1_AI_CK	DCC_CI_CK
MS1_AI_FS	DCC_CI_SSF
MS1_AI_TSF	

Processes:

The function separates DCC data from MS Overhead as defined in EN 300 147 [1] and depicted in figure 18.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

None.

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations:	None.
Performance Monitoring:	None.
5.3.5 STM-1 Multiplex Section to P0s Adaptation Source MS1/P0s_A_So

Symbol:

Figure 28: MS1/P0s_A_So symbol

Interfaces:

Table 18: MS1/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	MS1_AI_D
P0s_CI_CK	
P0s_CI_FS	
STM1_TI_CK	
STM1_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire information stream into the MS1_AI using slip buffering. It takes POs_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the MSOH byte E2 as defined in EN 300 147 [1] and depicted in figure 18.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-1 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-1 clock, frame position and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

5.3.6 STM-1 Multiplex Section to P0s Adaptation Sink MS1/P0s_A_Sk

Symbol:

Figure 29: MS1/P0s_A_Sk symbol

Interfaces:

Table 19: MS1/P0s_A_Sk input and output signals

Input(s)	Output(s)
MS1_AI_D	P0s_CI_D
MS1_AI_CK	P0s_CI_CK
MS1_AI_FS	P0s_CI_FS
MS1_AI_TSF	P0s_CI_SSF

Processes:

The function separates P0s data from MS Overhead byte E2 as defined in EN 300 147 [1] and depicted in figure 18.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-1 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-1 signal clock (e.g. 155 520 kHz divided by a factor of 2 430).

Defects: None.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

aAIS \leftarrow AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

Performance Monitoring: None.

5.3.7 STM-1 Multiplex Section to Synchronization Distribution Adaptation Source MS1/SD_A_So

See EN 300 417-6-1 [5].

5.3.8 STM-1 Multiplex Section to Synchronization Distribution Adaptation Sink MS1/SD_A_Sk

See EN 300 417-6-1 [5].

5.3.9 STM-1 Multiplex Section Layer Clock Adaptation Source MS1-LC_A_So

See EN 300 417-6-1 [5].

5.4 STM-1 Multiplex Section Layer Monitoring Functions

For further study.

- 5.5 STM-1 Multiplex Section Linear Trail Protection Functions
- 5.5.1 STM-1 Multiplex Section Linear Trail Protection Connection Functions
- 5.5.1.1 STM-1 Multiplex Section 1+1 Linear Trail Protection Connection MS1P1+1_C

Symbol:

Interfaces:

Table 20: MS1P1+1	C input and	output signals
-------------------	-------------	----------------

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS1P_CI_D	MS1P_CI_D
MS1P_CI_CK	MS1P_CI_CK
MS1P_CI_FS	MS1P_CI_FS
MS1P_CI_SSF	
MS1P_CI_SSD	For connection points N:
	MS1P_CI_D
For connection points N:	MS1P_CI_CK
MS1P_CI_D	MS1P_CI_FS
MS1P_CI_CK	MS1P_CI_SSF
MS1P_CI_FS	
Per function:	Per function:
MS1P_CI_APS	MS1P_CI_APS
MS1P_C_MI_SWtype	MS1P_C_MI_cFOP
MS1P_C_MI_OPERtype	
MS1P_C_MI_WTRTime	
MS1P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Processes:

The function performs the STM-1 linear multiplex section protection process for 1 + 1 protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 48 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #1 reference point can be the signal received via either the associated working #1 section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output connected to the normal #1 input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change between operation types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1+1
Switching type:	uni-directional or bi-directional
Operation type:	revertive or non-revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	(revertive operation) LO, FSw-#1, MSw-#1, CLR, EXER-#1 (non-revertive operation) LO or FSw, FSw-#i, MSw, MSw-#i, CLR, EXER-#i
SFpriority, SDpriority:	high

Table 21: "Parameters for MS1P1+1_C protection process"

Defects: None.

Consequent Actions:

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

None.

Performance Monitoring: None.

5.5.1.2 STM-1 Multiplex Section 1:n Linear Trail Protection Connection MS1P1:n_C

Symbol:

Figure 31: MS1P1:n_C symbol

Interfaces:

Output(s)
For connection points W and P:
MS1P_CI_D
MS1P_CI_CK
MS1P_CI_FS
For connection points N and E:
MS1P_CI_D
MS1P_CI_CK
MS1P CI FS
MS1P_CI_SSF
Per function:
MS1P_CI_APS
MS1P_C_MI_cFOP
als are for further study.

Table 22: MS1P1:n_C input and output signals

Processes:

The function performs the STM-1 linear multiplex section protection process for 1:n protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 47 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #i reference point can be the signal received via either the associated working #i section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected), connected to the extra traffic input, or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1:n (n ≤ 14)
Switching type:	uni-directional or bi-directional
Operation type:	Revertive
APS channel:	13 bits, K1 [1-8] and K2 [1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	LO, FSw-#i, MSw-#i, CLR, EXER

Table 23: "Parameters for MS1P1:n_C protection process"

Defects:

None.

Consequent Actions:

For the case where neither the extra traffic nor a normal signal input is to be connected to the protection section output, the null signal shall be connected to the protection output. The null signal is either one of the normal signals, an all-ONEs, or a test signal.

For the case of a protection switch, the extra traffic output (if applicable) is disconnected from the protection input, set to all-ONEs (AIS) and aSSF is activated.

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

Performance Monitoring: None.

- 5.5.2 STM-1 Multiplex Section Linear Trail Protection Trail Termination Functions
- 5.5.2.1 Multiplex Section Protection Trail Termination Source MS1P_TT_So

Symbol:

Figure 32: MS1P_TT_So symbol

Interfaces:

Table 24: MS1P	_TT_	_So input	and output	signals
----------------	------	-----------	------------	---------

Input(s)	Output(s)
MS1_AI_D	MS1P_CI_D
MS1_AI_CK	MS1P_CI_CK
MS1_AI_FS	MS1P_CI_FS

Processes:

No information processing is required in the MS1P_TT_So, the MS1_AI at its output being identical to the MS1P_CI at its input.

Defects:	None.
Consequent Actions:	None
Defect Correlations:	None.
Performance Monitoring:	None.

5.5.2.2 Multiplex Section Protection Trail Termination Sink MS1P_TT_Sk

Symbol:

Figure 33: MS1P_TT_Sk symbol

Interfaces:

Table 25: MS1P_TT_Sk input and output signals

Input(s)	Output(s)
MS1P_CI_D	MS1_AI_D
MS1P_CI_CK	MS1_AI_CK
MS1P_CI_FS	MS1_AI_FS
MS1P_CI_SSF	MS1_AI_TSF
MS1P_TT_Sk_MI_SSF_Reported	MS1P_TT_Sk_MI_cSSF

Processes:

The MS1P_TT_Sk function reports, as part of the MS1 layer, the state of the protected MS1 trail. In case all connections are unavailable the MS1P_TT_Sk reports the signal fail condition of the protected trail.

Defects:

None.

Consequent Actions:

aTSF \leftarrow CI_SSF.

Defect Correlations:

 $cSSF \leftarrow CI_SSF$ and $SSF_Reported$.

Performance Monitoring: None.

5.5.3 STM-1 Multiplex Section Linear Trail Protection Adaptation Functions

5.5.3.1 STM-1 Multiplex Section to STM-1 Multiplex Section Protection Layer Adaptation Source MS1/MS1P_A_So

Symbol:

Figure 34: MS1/MS1P_A_So symbol

Interfaces:

Table 26: MS1/MS1P_A_So input and output signals

Input(s)	Output(s)
MS1P_CI_D	MS1_AI_D
MS1P_CI_CK	MS1_AI_CK
MS1P_CI_FS	MS1_AI_FS
MS1P_CI_APS	

Processes:

The function shall multiplex the MS1 APS signal and MS1 data signal onto the MS1 access point.

Defects:	None.
Consequent actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

5.5.3.2 STM-1 Multiplex Section to STM-1 Multiplex Section Protection Layer Adaptation Sink MS1/MS1P_A_Sk

Symbol:

Figure 35: MS1/MS1P_A_Sk symbol

Interfaces:

Table 27: MS1/MS1P	_A_	_Sk input	and	output	signals
--------------------	-----	-----------	-----	--------	---------

Input(s)	Output(s)
MS1_AI_D	MS1P_CI_D
MS1_AI_CK	MS1P_CI_CK
MS1_AI_FS	MS1P_CI_FS
MS1 AI TSF	MS1P CI SSF
MS1_AI_TSD	MS1P_CI_SSD
	MS1P_CI_APS (for Protection signal
	only)

Processes:

The function shall extract and output the MS1P_CI_D signal from the MS1_AI_D signal.

K1[1-8]K2[1-5]: The function shall extract the 13 APS bits K1[1-8] and K2[1-5] from the MS1_AI_D signal. A new value shall be accepted when the value is identical for three consecutive frames. This value shall be output via MS1P_CI_APS. This process is required only for the protection section.

Defects: None.

.

Consequent actions:

Performan	ce Moi	nitoring:	None.
Defect Correlations:		None.	
aSSD	\leftarrow	AI_TSD.	
aSSF	\leftarrow	AI_TSF.	

46

6 STM-4 Regenerator Section Layer Functions

Figure 36: STM-4 Regenerator Section atomic functions

RS4 Layer CP

The CI at this point is an octet structured, 125 µs framed data stream with co-directional timing. It is the entire STM-4 signal as defined in EN 300 147 [1]. Figure 37 depicts only bytes handled in the RS4 layer.

- NOTE 1: The unmarked bytes [2, 2] to [2, 12], [2, 14] to [2, 24], [3, 2] to [3, 12], [3, 14] to [3, 24], and [3, 26] to [3, 36] in rows 2 and 3 (see figure 37) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The bytes for National Use (NU) in rows 1, 2 (see figure 37) are reserved for operator specific usage. Their processing is not within the province of the present document. If NU bytes [1, 29] to [1, 36] are unused, care should be taken in selecting the binary content of the bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.
- NOTE 3: The bytes Z0 [1, 26] to [1, 28] are reserved for future international standardization. Currently, they are undefined Care should be taken in selecting the binary content of these bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 1080

Figure 37: RS4_CI_D signal

RS4 Layer AP

The AI at this point is octet structured and 125 μ s framed with co-directional timing and represents the combination of adapted information from the MS4 layer (9 612 bytes per frame), the management communication DCC layer (3 bytes per frame if supported), the OW layer (1 byte per frame if supported) and the user channel F1 (1 byte per frame if supported). The location of these four components in the frame is defined in EN 300 147 [1] and depicted in figure 38.

NOTE 4: Bytes E1, F1 and D1-D3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

Figure 38: RS4_AI_D signal

6.1 STM-4 Regenerator Section Connection functions

For further study.

6.2 STM-4 Regenerator Section Trail Termination functions

6.2.1 STM-4 Regenerator Section Trail Termination Source RS4_TT_So

Symbol:

Interfaces:

Input(s)	Output(s)
RS4_AI_D	RS4_CI_D
RS4_AI_CK	RS4_CI_CK
RS4_AI_FS	
RS4_TT_So_MI_TxTI	

Table 28: RS4_TT_So input and output signals

Processes:

The function builds the STM-4 signal by adding the frame alignment information, bytes A1A2, the STM Section Trace Identifier (STI) byte J0, computing the parity and inserting the B1 byte.

J0: In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in EN 300 417-1-1 [3], clause 7.1.

B1: The function shall calculate a Bit Interleaved Parity 8 (BIP-8) code using even parity. The BIP-8 shall be calculated over all bits of the previous STM-4 frame after scrambling and is placed in byte position B1 of the current STM-4 frame before scrambling (see figure 40).

A1A2: The function shall insert the STM-4 frame alignment signal A1...A1A2...A2 into the regenerator section overhead as defined in EN 300 147 [1] and depicted in figure 37.

Scrambler: This function provides scrambling of the RS4_CI. The operation of the scrambler shall be functionally identical to that of a frame synchronous scrambler of sequence length 127 operating at the line rate. The generating polynomial shall be $1 + X^6 + X^7$. The scrambler shall be reset to "1111 1111" on the most significant bit (MSB) of the byte [1, 37] following the last byte of the STM-4 SOH in the first row. This bit and all subsequent bits to be scrambled shall be modulo 2 added to the output of the X^7 position of the scrambler. The scrambler shall run continuously throughout the remaining STM-4 frame.

Figure 40: Some processes within RS4_TT_So

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

6.2.2 STM-4 Regenerator Section Trail Termination Sink RS4_TT_Sk

Symbol:

Interfaces:

Table 29: RS4_TT_Sk input and output signals

Input(s)	Output(s)
RS4_CI_D	RS4_AI_D
RS4_CI_CK	RS4_AI_CK
RS4_CI_FS	RS4_AI_FS
RS4_CI_SSF	RS4_AI_TSF
RS4_TT_Sk_MI_ExTI	RS4_TT_Sk_MI_AcTI
RS4_TT_Sk_MI_TPmode	RS4_TT_Sk_MI_cTIM
RS4_TT_Sk_MI_TIMdis	RS4_TT_Sk_MI_pN_EBC
RS4_TT_Sk_MI_ExTImode	RS4_TT_Sk_MI_pN_DS
RS4_TT_Sk_MI_1second	

Processes:

This function monitors the STM-4 signal for RS errors, and recovers the RS trail termination status. It extracts the payload independent overhead bytes (J0, B1) from the RS4 layer Characteristic Information:

Descrambling: The function shall descramble the incoming STM-4 signal. The operation of the descrambler shall be functionally identical to that of a scrambler in RS4_TT_So.

B1: Even bit parity is computed for each bit n of every byte of the preceding scrambled STM-4 frame and compared with bit n of B1 recovered from the current frame (n = 1 to 8 inclusive) (see figure 42). A difference between the computed and recovered B1 values is taken as evidence of one or more errors (nN_B) in the computation block.

J0: The Received Trail Trace Identifier RxTI shall be recovered from the J0 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in EN 300 417-1-1 [3], clauses 7.1 and 8.2.1.3.

50

Figure 42: Some processes within RS4_TT_Sk

Defects:

The function shall detect for dTIM defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

Consequent Actions:

aAIS	\leftarrow	CI_SSF or dTIM.
aTSF	\leftarrow	CI SSF or dTIM.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

- NOTE 1: The term "CI_SSF" has been added to the conditions for aAIS while the descrambler function has been moved from the e.g. OS4/RS4_A_Sk to this function. Consequently, an all-ONEs (AIS) pattern inserted in the mentioned adaptation function would be descrambled in this function. A "refreshment" of all-ONEs is required.
- NOTE 2: The insertion of AIS especially due to detection of dTIM will cause the RS-DCC channel to be "squelched" too, so that control of the NE via this channel is lost. If control is via this channel only, there is a risk of a dead-lock situation if dTIM is caused by a misprovisioning of ExTI.

Defect Correlations:

cTIM \leftarrow MON and dTIM.

Performance Monitoring:

For further study.

6.3 STM-4 Regenerator Section Adaptation functions

6.3.1 STM-4 Regenerator Section to Multiplex Section Adaptation Source RS4/MS4_A_So

Symbol:

Figure 43: RS4/MS4_A_So symbol

Interfaces:

Table 30: RS4/MS4_A_So input and output signals

Input(s)	Output(s)
MS4_CI_D	RS4_AI_D
MS4_CI_CK	RS4_AI_CK
MS4_CI_FS	RS4_AI_FS
MS4_CI_SSF	

Processes:

The function multiplexes the MS4_CI data (9 612 bytes / frame) into the STM-4 byte locations defined in EN 300 147 [1] and depicted in figure 38.

None.

NOTE 1: There might be cases in which the network element knows that the timing reference for a particular STM-4 interface can not be maintained within ±4,6 ppm. For such cases MS-AIS can be generated. This is network element specific and outside the scope of the present document.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output all ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all ONEs signal shall be within 622,080 kHz ± 20 ppm.

NOTE 2: If CI_SSF is not connected (when RS4/MS4_A_So is connected to a MS4_TT_So), SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring: None.

STM-4 Regenerator Section to Multiplex Section Adaptation Sink 6.3.2 RS4/MS4_A_Sk

Symbol:

Figure 44: RS4/MS4_A_Sk symbol

Interfaces:

Table 31: RS4/MS4_A_Sk input and output signals

Input(s)	Output(s)
RS4_AI_D	MS4_CI_D
RS4_AI_CK	MS4_CI_CK
RS4_AI_FS	MS4_CI_FS
RS4_AI_TSF	MS4_CI_SSF

Processes:

The function separates MS4_CI data from RS4_AI as depicted in figure 38.

Defects: None. **Consequent Actions:** aSSF AI_TSF. \leftarrow **Defect Correlations:** None. None.

Performance Monitoring:

6.3.3 STM-4 Regenerator Section to DCC Adaptation Source RS4/DCC_A_So

Symbol:

Figure 45: RS4/DCC_A_So symbol

Interfaces:

Table 32: RS4/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	RS4_AI_D
STM4_TI_CK	DCC_CI_CK
STM4_TI_FS	

Processes:

The function multiplexes the DCC CI data (192 kbit/s) into the byte locations D1, D2 and D3 as defined in EN 300 147 [1] and depicted in figure 38.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

6.3.4 STM-4 Regenerator Section to DCC Adaptation Sink RS4/DCC_A_Sk

Symbol:

Figure 46: RS4/DCC_A_Sk symbol

Interfaces:

Table 33: RS4/DCC_A_Sk input and output signals

Input(s)	Output(s)
RS4_AI_D	DCC_CI_D
RS4_AI_CK	DCC_CI_CK
RS4_AI_FS	DCC_CI_SSF
RS4_AI_TSF	

Processes:

The function separates DCC data from RS Overhead as defined in EN 300 147 [1] and depicted in figure 38.

None.

None.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations:

Performance Monitoring: None.

6.3.5 STM-4 Regenerator Section to P0s Adaptation Source RS4/P0s_A_So/N

Symbol:

55

Figure 47: RS4/P0s_A_So symbol

Interfaces:

	Table 34: RS4/P0s	A So	input and	output signals
--	-------------------	------	-----------	----------------

Input(s)	Output(s)
P0s_CI_D	RS4_AI_D
P0s_CI_CK	
P0s_CI_FS	
STM4_TI_CK	
STM4_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire or user channel information stream into the RS4_AI using slip buffering. It takes P0s_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the RSOH byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 38.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-4 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-4 clock, frame position (STM4_TI), and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

64 kbit/s timeslot: The adaptation source function has access to a specific 64 kbit/s channel of the RS access point. The specific 64 kbit/s channel is defined by the parameter N (N = E1, F1).

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

6.3.6 STM-4 Regenerator Section to P0s Adaptation Sink RS4/P0s_A_Sk/N

Symbol:

Figure 48: RS4/P0s_A_Sk symbol

Interfaces:

Table 35: RS4/P0s_A_Sk input and output signals

Input(s)	Output(s)
RS4_AI_D	P0s_CI_Sk_D
RS4_AI_CK	P0s_CI_Sk_CK
RS4_AI_FS	P0s_CI_FS
RS4_AI_TSF	P0s_CI_SSF

Processes:

The function separates P0s data from RS Overhead byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 38.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-4 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-4 signal clock (e.g. 622 080 kHz divided by a factor of 9 720).

64 kbit/s timeslot: The adaptation sink function has access to a specific 64 kbit/s of the RS access point. The specific 64 kbit/s is defined by the parameter N (N = E1, F1).

None.

Defects:

Consequent Actions:

aSSF	\leftarrow	AI_TSF.

 $aAIS \quad \leftarrow \quad AI_TSF.$

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

Performance Monitoring: None.

6.3.7 STM-4 Regenerator Section to V0x Adaptation Source RS4/V0x_A_So

Symbol:

Figure 49: RS4/V0x_A_So symbol

Interfaces:

Table 36: RS4/V0x_A_So input and output signals

Input(s)	Output(s)
V0x_CI_D	RS4_AI_D
STM4_TI_CK	V0x_CI_CK
STM4_TI_FS	

Processes:

None.

This function shall multiplex the V0x_CI data (64 kbit/s) into the byte location F1 as defined in EN 300 147 [1] and depicted in figure 38.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

STM-4 Regenerator Section to V0x Adaptation Sink RS4/V0x_A_Sk 6.3.8

58

Symbol:

Figure 50: RS4/V0x_A_Sk symbol

Interfaces:

Table 37: RS4/V0x_A_Sk input and output signals

Input(s)	Output(s)
RS4_AI_D	V0x_CI_D
RS4_AI_CK	V0x_CI_CK
RS4_AI_FS	V0x_CI_SSF
RS4_AI_TSF	

Processes:

This function separates user channel data from RS Overhead (byte F1) as defined in EN 300 147 [1] and depicted in figure 38.

Defects:

None.

Consequent Actions:

aSSF AI_TSF. \leftarrow aAIS

shall output normal data within 1 ms.

 \leftarrow

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 1 ms; on clearing of aAIS the function

Defect	Correlations:	N	lone.
		-	

AI_TSF.

Performance Monitoring: N	None.
---------------------------	-------

STM-4 Multiplex Section Layer Functions

59

Figure 51: STM-4 Multiplex Section atomic functions

MS4 Layer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is characterized as the MS4_AI with an additional MS Trail Termination overhead in the twelve B2 bytes, byte M1, and bits 6-8 of the K2 byte in the frame locations defined in EN 300 147 [1] and depicted in figure 52.

- NOTE 1: The unmarked bytes in rows 5, 6, 7, 8, 9 (see figure 52) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The bytes for National Use (NU) in row 9 (see figure 52) are reserved for operator specific usage. Their processing is not within the province of the present document.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	1080
1																																						
2																																					l	
3																																					STM-4	payload
4	H1	H1	H1	H1	Y	Y	Y	Y	Y	Y	Y	Y	H2	H2	H2	H2	'1'	'1'	'1'	'1'	'1'	'1'	'1'	'1'	НЗ	НЗ	H3	НЗ	H3	H3	HЗ	НЗ	H3	H3	H3	H3	(4 x 261	x 9 bytes)
5	B2	B2	B2	B2	B2	B2	В2	B2	B2	B2	B2	B2	K1												K2												l	
6	D4												D5												D6												1	
7	D7												D8												D9												l	
8	D10												D11												D12	2											1	
9	S1														M1										E2	NU	l											

Figure 52: MS4_CI_D

MS4 Layer AP

The AI at this point is octet structured and 125 µs framed with co-directional timing. It represents the combination of information adapted from the VC-4 layer (150 336 kbit/s), the management communications DCC layer (576 kbit/s), the OW layer (64 kbit/s if supported), the AU-4 pointer (3 bytes per frame), the APS signalling channel (13 or 16 bits per frame if supported, see note 3), and the SSM channel (4 bits per frame if supported). The location of these five components in the frame is defined in EN 300 147 [1] and depicted in figure 53.

- NOTE 3: 13 bits APS channel for the case of linear MS protection. 16 bits APS channel for the case of MS SPRING protection.
- NOTE 4: Bytes E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

The composition of the payload transported by an STM-4 will be determined by the client layer application. Typical compositions of the payload include:

- one VC-4-4c of 601 344 kbit/s;
- four VC-4s of 150 336 kbit/s.

Figure 51 shows that more than one adaptation source function exists in the MS4 layer that can be connected to one MS4 access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific AU timeslot. Access to the same AU timeslot by other adaptation source functions shall be denied. In contradiction with the source direction, adaptation sink functions may be activated all together. This may cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

NOTE 5: If one adaptation function only is connected to the AP, it will be activated. If one or more other functions are connected to the same AP accessing the same AU timeslot, one out of the set of functions will be active.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37-48 49 1080

Figure 53: MS4_AI_D

Figure 54 shows the MS trail protection specific sublayer atomic functions (MS4/MS4P_A, MS4P_C, MS4P_TT) within the MS4 layer. Note that the DCC (D4-D12), OW (E2), and SSM (S1[5-8]) signals can be accessible before (unprotected) and after (protected) the MS4P_C function. The choice is outside the scope of the present document.

NOTE 6: Equipment may provide MS protection and bi-directional services such as DCC and OW in the MS layer. Where a link uses this provision both ends of the link shall be configured to operate these services in the same mode (i.e. either protected or unprotected).

Final draft ETSI EN 300 417-3-1 V1.2.1 (2001-06)

61

Figure 54: STM-4 Multiplex Section Linear Trail Protection Functions

MS4P Sublayer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is equivalent to the MS4_AI and depicted in figure 55.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 1080

Figure 55: MS4P_CI_D

7.1 STM-4 Multiplex Section Connection functions

For further study.

NOTE 7: Bytes S1, E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element or are unprotected (see above).

7.2 STM-4 Multiplex Section Trail Termination functions

7.2.1 STM-4 Multiplex Section Trail Termination Source MS4_TT_So

62

Symbol:

Figure 56: MS4_TT_So symbol

Interfaces:

Table 38: MS4_TT_So input and output signals

Input(s)	Output(s)
MS4_AI_D	MS4_CI_D
MS4_AI_CK	MS4_CI_CK
MS4_AI_FS	MS4_CI_FS
MS4_RI_REI	
MS4_RI_RDI	

Processes:

This function adds error monitoring capabilities and remote maintenance information signals to the MS4_AI.

M1: The function shall within 1 ms insert the value of MS4_RI_REI into the REI (Remote Error Indication) - to convey the count of interleaved bit blocks that have been detected in error by the BIP-96 process in the companion MS4_TT_Sk - in the range of "0000 0000" (0) to "0110 0000" (96).

K2[6-8]: These bits represents the defect status of the associated MS4_TT_Sk. The RDI indication shall be set to "110" on activation of MS4_RI_RDI within 1 ms, determined by the associated MS4_TT_Sk function, and passed through transparently (except for incoming codes "111" and "110") within 1 ms on the MS4_RI_RDI removal. If MS4_RI_RDI is inactive an incoming codes "111" or "110" shall be replaced by code "000".

NOTE 1: K2[6-8] can not be set to "000" on clearing of RI_RDI; MS SPRING APS extends into those bits. The bits shall be passed transparently in this case. With linear MS protection or without protection it shall be guaranteed that neither code "111" nor "110" will be output.

B2: The function shall calculate a Bit Interleaved Parity 96 (BIP-96) code using even parity. The BIP-96 shall be calculated over all bits, except those in the RSOH bytes, of the previous STM-4 frame and placed in twelve B2 bytes of the current STM-4 frame.

NOTE 2: The BIP-96 procedure is described in EN 300 147 [1].

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

7.2.2 STM-4 Multiplex Section Trail Termination Sink MS4_TT_Sk

Symbol:

Interfaces:

	Table 39: MS4_TT	_Sk input and	output signals
--	------------------	---------------	----------------

Input(s)	Output(s)
MS4_CI_D	MS4_AI_D
MS4_CI_CK	MS4_AI_CK
MS4_CI_FS	MS4_AI_FS
MS4_CI_SSF	MS4_AI_TSF
MS4_TT_Sk_MI_DEGTHR	MS4_AI_TSD
MS4_TT_Sk_MI_DEGM	MS4_TT_Sk_MI_cAIS
MS4_TT_Sk_MI_1second	MS4_TT_Sk_MI_cDEG
MS4_TT_Sk_MI_TPmode	MS4_TT_Sk_MI_cRDI
MS4_TT_Sk_MI_SSF_Reported	MS4_TT_Sk_MI_cSSF
MS4_TT_Sk_MI_AIS_Reported	MS4_TT_Sk_MI_pN_EBC
MS4_TT_Sk_MI_RDI_Reported	MS4_TT_Sk_MI_pF_EBC
MS4_TT_Sk_MI_M1_Ignored	MS4_TT_Sk_MI_pN_DS
•	MS4_TT_Sk_MI_pF_DS
	MS4_RI_REI
	MS4_RI_RDI

Processes:

This function monitors error performance of associated MS4 including the far end receiver.

B2: The BIP-96 shall be calculated over all bits, except of those in the RSOH bytes, of the previous STM-4 frame and compared with the three error monitoring bytes B2 recovered from the MSOH of the current STM-4 frame. A difference between the computed and recovered B2 values is taken as evidence of one or more errors (nN_B) in the computation block.

NOTE 1: There are 96 blocks consisting of 801 bits and a BIP-1 as EDC per STM-4 frame in the MS4 layer.

M1: The REI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The REI (nF_B) is used to monitor the error performance of the other direction of transmission. The application process is described in EN 300 417-1-1 [3], clause 7.4.2 (REI). If M1_ignored is true, nF_B shall be forced to "0"; if M1_ignored is false, nF_B shall equal the value in REI.

NOTE 2: M1_ignored is a parameter provisioned by the operator to indicate the support of the M1 byte in the incoming STM-4 signal. For the case M1 is supported, M1_ignored should be set to false, otherwise M1_ignored should be set to true.

The function shall interpret the value in the byte (to allow interworking with old equipment generating a 7 bit code), as shown in table 40.

M1[2-8] code, bits 234 5678	code interpretation [#BIP violations], (nF_B)	
000 0000	0	
000 0001	1	
000 0010	2	
000 0011	3	
000 0100	4	
000 0101	5	
:	÷	
110 0000	96	
110 0001	0	
110 0010	0	
:	:	
111 1111	0	
NOTE: Bit 1 of byte M1 is janored.		

Table 40: STM-4 M1 interpretation

NOTE 3: In case of interworking with old equipment not supporting MS-REI, the information extracted from M1 is not relevant.

K2[6-8] - RDI: The RDI information carried in these bits shall be extracted to enable single ended maintenance of a bidirectional trail (section). The RDI provides information as to the status of the remote receiver. A "110" indicates a Remote Defect Indication state, while other patterns indicate the normal state. The application process is described in EN 300 417-1-1 [3], clauses 7.4.11 and 8.2.

K2[6-8] - AIS: The MS-AIS information carried in these bits shall be extracted.

Defects:

The function shall detect for dDEG and dRDI defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2. The x shall be in range 3 to 5.

Consequent Actions:

aAIS	\leftarrow	dAIS.
aRDI	\leftarrow	dAIS.
aREI	\leftarrow	#EDCV.
aTSF	\leftarrow	dAIS.
aTSD	\leftarrow	dDEG.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

Defect Correlations:

cAIS	\leftarrow	MON and	dAIS and	(not CI_	_SSF)	and AIS	_Reported.

 $cDEG \quad \leftarrow \quad MON \text{ and } dDEG.$

- $cRDI \quad \leftarrow \quad MON \text{ and } dRDI \text{ and } RDI_Reported.$
- $\mathsf{cSSF} \quad \leftarrow \quad \mathsf{MON} \text{ and } \mathsf{dAIS} \text{ and } \mathsf{SSF}_\mathsf{Reported}.$

Performance monitoring:

The performance monitoring process shall be performed as specified in EN 300 417-1-1 [3], clause 8.2.4 through 8.2.7.

- $pN_DS \leftarrow aTSF \text{ or } dEQ.$
- $pF_DS \leftarrow dRDI.$
- $pN_EBC \leftarrow \Sigma nN_B.$
- $pF_EBC \ \leftarrow \ \Sigma \, nF_B.$

7.3 STM-4 Multiplex Section Adaptation functions

7.3.1 STM-4 Multiplex Section to S4 Layer Adaptation Source MS4/S4_A_So/(B,0)

Symbol:

Figure 58: MS4/S4_A_So symbol

Interfaces:

Table 41: MS4/S4_A_So input and output signals

Input(s)	Output(s)
S4_CI_D	MS4_AI_D
S4_CI_CK	MS4_AI_CK
S4_CI_FS	MS4_AI_FS
S4_CI_SSF	
STM4_TI_CK	MS4/S4_A_So_MI_pPJE+
STM4_TI_FS	MS4/S4_A_So_MI_pPJE-
MS4/S4_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4 signal, represented by a nominally $(261 \times 9 \times 64) = 150 336$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-4 signal at the AU tributary location indicated by (B,0), where B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ±20 ppm network element clock source.

The frame phase of the VC-4 is coded in the related AU-4 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-4 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS4/S4_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4 pointer actions. An example is given in EN 300 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 24 data bits shall be cancelled once and no data written at the three positions H3 + 1. Upon a negative justification action, an extra 24 data bits shall be read out once into the three positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Figure 59: Main processes within MS4/S4_A_So

Buffer size: For further study.

Behaviour at recovery from defect condition: The incoming frequency (S4_CI_CK) of a passing through VC-4 may exceed its limits during a STM4dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

None.

The AU-4 pointer is carried in 2 bytes of payload specific OH (H1, H2) in each STM-4 frame. The AU-4 pointer is aligned in the STM-4 payload in fixed position relative to the STM-4 frame. The AU-4 pointer points to the begin of the VC-4 frame within the STM-4. The format of the AU-4 pointer and its location in the frame are defined in EN 300 147 [1].

H1H2 - *Pointer generation:* The function shall generate the AU-4 pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 12+N] positions with the SS field set to 10 to indicate AU-4. N=B + 1.

YY1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 4+N] and [4, 8+N] and code "1" = 111111111 in bytes [4, 16+N] and [4, 20+N]. N=B + 1. Bits ss are undefined.

AU-4 timeslot: The adaptation source function has access to a specific AU-4 of the MS4 access point. The AU-4 is defined by the parameter (B,0) (B = 1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS4/S4_A_So is connected to a S4_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4 only. A locally generated VC-4 may have a fixed frame phase; pointer justifications will not occur.

7.3.2 STM-4 Multiplex Section to S4 Layer Adaptation Sink MS4/S4_A_Sk/(B,0)

Symbol:

68

Figure 60: MS4/S4_A_Sk symbol

Interfaces:

Table 42: MS4/S4_A_Sk input and output signals

Input(s)	Output(s)
MS4_AI_D	S4_CI_D
MS4_AI_CK	S4_CI_CK
MS4_AI_FS	S4_CI_FS
MS4_AI_TSF	S4_CI_SSF
MS4/S4_A_Sk_MI_Active	MS4/S4_A_Sk_MI_cAIS
MS4/S4_A_Sk_MI_AIS_Reported	MS4/S4_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4 data with frame phase information from the STM-4 as defined in EN 300 147 [1]. The VC-4 is extracted from the AU tributary location indicated by (B,0), where B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H2 - *AU-4 pointer interpretation:* An AU-4 pointer consists of 2 bytes, [4, N] and [4, 12+N]. The function shall perform AU-4 pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4 frame phase within the STM-4. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N=B + 1.

YY1*1*: The bytes [4, 4+N], [4, 8+N], [4, 16+N], and [4, 20+N] contain fixed stuff, of a specified value, ignored by the AU-4 pointer interpreter. N=B + 1.

AU-4 timeslot: The adaptation sink function has access to a specific AU-4 of the MS4 access point. The AU-4 is defined by the parameter (B,0) (B = 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AIS_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AIS_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOP_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOP_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not AI_TSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

7.3.3 STM-4 Multiplex Section to S4-4c Layer Adaptation Source MS4/S4-4c_A_So

Symbol:

Figure 61: MS4/S4-4c_A_So symbol

Interfaces:

Table 43: MS4/S4-4c_A_So input and output signals

Input(s)	Output(s)
S4-4c_CI_D	MS4_AI_D
S4-4c_CI_CK	MS4_AI_CK
S4-4c_CI_FS	MS4_AI_FS
S4-4c_CI_SSF	
STM4_TI_CK	MS4/S4-4c_A_So_MI_pPJE+
STM4_TI_FS	MS4/S4-4c_A_So_MI_pPJE-
MS4/S4-4c_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-4c signal, represented by a nominally $(4 \times 261 \times 9 \times 64) = 601$ 344 kbit/s information stream and the related frame phase with a frequency accuracy within \pm 4,6 ppm, to be multiplexed into a STM-4 signal. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-4c is coded in the related AU-4-4c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-4 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS4/S4-4c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-4c pointer actions. An example is given in EN 300 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 96 data bits shall be cancelled once and no data written at the twelve positions H3 + 1. Upon a negative justification action, an extra 96 data bits shall be read out once into the twelve positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Figure 62: Main processes within MS4/S4-4c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-4c_CI_CK) of a passing through VC-4-4c may exceed its limits during a STM4dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-4c pointer is carried in 2 + 6 bytes of payload specific OH in each STM-4 frame. The AU-4-4c pointer is aligned in the STM-4 payload in fixed position relative to the STM-4 frame. The AU-4-4c pointer points to the begin of the VC-4-4c frame within the STM-4. The format of the AU-4-4c pointer and its location in the frame are defined in EN 300 147 [1].

H1H1H1H1H2H2H2H2 - *Pointer generation:* The function shall generate the AU-4-4c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, 1], H2 [4, 13] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-4c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 2] to [4, 4], H2 [4, 14] to [4, 16]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined bits.

YYYYYYY1*1*1*1*1*1*1*1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 5] to [4, 12] and code "1" = 11111111 in bytes [4, 17] to [4, 24]. Bits ss are undefined.

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS4/S4-4c_A_So is connected to a S4-4c_TT_So), CI_SSF is assumed to be false.

Defect Correlations:

None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second, the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-4c only. A locally generated VC-4-4c may have a fixed frame phase; pointer justifications will not occur.

7.3.4 STM-4 Multiplex Section to S4-4c Layer Adaptation Sink MS4/S4-4c_A_Sk

Symbol:

Figure 63: MS4/S4-4c_A_Sk symbol

Interfaces:

Table 44: MS4/S4-4c_A_Sk input and output signals

Input(s)	Output(s)
MS4_AI_D	S4-4c_CI_D
MS4_AI_CK	S4-4c_CI_CK
MS4_AI_FS	S4-4c_CI_FS
MS4_AI_TSF	S4-4c_CI_SSF
MS4/S4-4c_A_Sk_MI_Active	MS4/S4-4c_A_Sk_MI_cAIS
MS4/S4-4c_A_Sk_MI_AIS_Reported	MS4/S4-4c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-4c data with frame phase information from the STM-4 as defined in EN 300 147 [1]. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H2 - AU-4-4c pointer interpretation: An AU-4-4c pointer consists of 4 x 2 bytes, [4, 1]/[4, 13], [4, 2]/[4, 14], [4, 3]/[4, 15], and [4, 4]/[4, 16]. The last three pairs of pointer bytes contain the concatenation indication. The function shall perform AU-4-4c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-4c frame phase within the STM-4. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase.

YY1*1*: The bytes [4, 5] to [4, 12] and [4, 17] to [4, 24] contain fixed stuff, of a specified value, ignored by the AU-4-4c pointer interpreter.

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.
Consequent Actions:

aAIS \leftarrow dAIS or dLOP.

aSSF \leftarrow dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

7.3.5 STM-4 Multiplex Section to DCC Adaptation Source MS4/DCC_A_So

Symbol:

Figure 64: MS4/DCC_A_So symbol

Interfaces:

Table 45: MS4/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	MS4_AI_D
STM4_TI_CK	DCC_CI_CK
STM4_TI_FS	

Processes:

The function multiplexes the DCC CI data (576 kbit/s) into the byte locations D4 to D12 as defined in EN 300 147 [1] and depicted in figure 53.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

7.3.6 STM-4 Multiplex Section to DCC Adaptation Sink MS4/DCC_A_Sk

Symbol:

Figure 65: MS4/DCC_A_Sk symbol

Interfaces:

Table 46: MS4/DCC_A_Sk input and output signals

Input(s)	Output(s)
MS4_AI_D	DCC_CI_D
MS4_AI_CK	DCC_CI_CK
MS4_AI_FS	DCC_CI_SSF
MS4_AI_TSF	

Processes:

The function separates DCC data from MS Overhead as defined in EN 300 147 [1] and depicted in figure 53.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects: None.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

Defect Correlations: None.

7.3.7 STM-4 Multiplex Section to P0s Adaptation Source MS4/P0s_A_So

Symbol:

Figure 66: MS4/P0s_A_So symbol

Interfaces:

Table 47: MS4/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	MS4/P0s_AI_So_D
P0s_CI_CK	
P0s_CI_FS	
STM4_TI_CK	
STM4_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire information stream into the MS4_AI using slip buffering. It takes POs_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the MSOH byte E2 as defined in EN 300 147 [1] and depicted in figure 53.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-4 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-4 clock, frame position, and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

7.3.8 STM-4 Multiplex Section to P0s Adaptation Sink MS4/P0s_A_Sk

Symbol:

Figure 67: MS4/P0s_A_Sk symbol

Interfaces:

Table 48: MS4/P0s_A_Sk input and output signals

Input(s)	Output(s)
MS4_AI_D	P0s_CI_Sk_D
MS4_AI_CK	P0s_CI_Sk_CK
MS4_AI_FS	P0s_CI_FS
MS4_AI_TSF	P0s_CI_SSF

Processes:

The function separates P0s data from MS Overhead byte E2 as defined in EN 300 147 [1] and depicted in figure 53.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-4 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-4 signal clock (e.g. 622 080 kHz divided by a factor of 9 720).

Defects: None.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

aAIS \leftarrow AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

Performance Monitoring: None.

7.3.9 STM-4 Multiplex Section to Synchronization Distribution Adaptation Source MS4/SD_A_So

See EN 300 417-6-1 [5].

7.3.10 STM-4 Multiplex Section to Synchronization Distribution Adaptation Sink MS4/SD_A_Sk

See EN 300 417-6-1 [5].

7.3.11 STM-4 Multiplex Section Layer Clock Adaptation Source MS4-LC_A_So

See EN 300 417-6-1 [5].

7.4 STM-4 Multiplex Section Layer Monitoring Functions

For further study.

- 7.5 STM-4 Multiplex Section Linear Trail Protection Functions
- 7.5.1 STM-4 Multiplex Section Linear Trail Protection Connection Functions
- 7.5.1.1 STM-4 Multiplex Section 1+1 Linear Trail Protection Connection MS4P1+1_C

Symbol:

Interfaces:

Table 49: MS4P1+1	_C input and	output signals
-------------------	--------------	----------------

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS4P_CI_D	MS4P_CI_D
MS4P_CI_CK	MS4P_CI_CK
MS4P_CI_FS	MS4P_CI_FS
MS4P_CI_SSF	MS4P_CI_SSF
MS4P_CI_SSD	
	For connection points N:
For connection points N:	MS4P_CI_D
MS4P_CI_D	MS4P_CI_CK
MS4P_CI_CK	MS4P_CI_FS
MS4P_CI_FS	MS4P_CI_SSF
Per function:	Per function:
MS4P_CI_APS	MS4P_CI_APS
MS4P_C_MI_SWtype	MS4P_C_MI_cFOP
MS4P_C_MI_OPERtype	
MS4P_C_MI_WTRTime	
MS4P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Processes:

The function performs the STM-4 linear multiplex section protection process for 1 + 1 protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 48 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #1 reference point can be the signal received via either the associated working #1 section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is connected to the normal #1 input.

Provided no protection switching action is activated / required, the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change between operation types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics:

Architecture:	1 + 1
Switching type:	uni-directional or bi-directional
Operation type:	revertive or non-revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	(revertive operation) LO, FSw-#1, MSw-#1, CLR, EXER-#1
	(non-revertive operation) LO or FSw, FSw-#i, MSw, MSw-#i, CLR, EXER-#1
SFpriority, SDpriority:	high

Table 50 "Parameters for MS41P1+1_C protection process"

Defects:

Consequent Actions: None.

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

None.

7.5.1.2 STM-4 Multiplex Section 1:n Linear Trail Protection Connection MS4P1:n_C

79

Symbol:

Figure 69: MS4P1:n_C symbol(s)

Interfaces:

Table 51: MS4P1:n	C input and or	utput signals
_		

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS4P_CI_D	MS4P_CI_D
MS4P_CI_CK	MS4P_CI_CK
MS4P_CI_FS	MS4P_CI_FS
MS4P_CI_SSF	MS4P_CI_SSF
MS4P_CI_SSD	
MS4P_MI_Sfpriority	For connection points N and E:
MS4P_MI_Sdpriority	MS4P_CI_D
	MS4P_CI_CK
For connection points N and E:	MS4P_CI_FS
MS4P_CI_D	MS4P_CI_SSF
MS4P_CI_CK	
MS4P_CI_FS	Per function:
	MS4P_CI_APS
Per function:	
MS4P_CI_APS	MS4P_C_MI_cFOP
MS4P_C_MI_Swtype	
MS4P_C_MI_EXTRAtraffic	
MS4P_C_MI_WTRTime	
MS4P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Processes:

The function performs the STM-4 linear multiplex section protection process for 1:n protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 47 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #i reference point can be the signal received via either the associated working #i section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected), connected to the extra traffic input, or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1:n (n ≤ 14)
Switching type:	uni-directional or bi-directional
Operation type:	Revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	LO, FSw-#i, MSw-#i, CLR, EXER

Table 52: "Parameters for MS4P1:n_C protection process"

Defects:

None.

Consequent Actions:

For the case where neither the extra traffic nor a normal signal input is to be connected to the protection section output, the null signal shall be connected to the protection output. The null signal is either one of the normal signals, an all-ONEs, or a test signal.

For the case of a protection switch, the extra traffic output (if applicable) is disconnected from the protection input, set to all-ONEs (AIS) and aSSF is activated.

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

Performance Monitoring: None.

7.5.2 STM-4 Multiplex Section Linear Trail Protection Trail Termination Functions

7.5.2.1 Multiplex Section Protection Trail Termination Source MS4P_TT_So

Symbol:

Figure 70: MS4P_TT_So symbol

Interfaces:

Table 53: MS4P_TT_So input and output signals

Input(s)	Output(s)
MS4_AI_D	MS4P_CI_D
MS4_AI_CK	MS4P_CI_CK
MS4_AI_FS	MS4P_CI_FS

Processes:

No information processing is required in the MS4P_TT_So, the MS4_AI at its output being identical to the MS4P_CI at its input.

Defects:	None.
Consequent Actions:	None
Defect Correlations:	None.
Performance Monitoring:	None.

7.5.2.2 Multiplex Section Protection Trail Termination Sink MS4P_TT_Sk

Symbol:

Interfaces:

Table 54: MS4P_TT_Sk input and output signals

Input(s)	Output(s)
MS4P_CI_D	MS4_AI_D
MS4P_CI_CK	MS4_AI_CK
MS4P_CI_FS	MS4_AI_FS
MS4P CI SSF	MS4 AI TSF
MS4P_TT_Sk_MI_SSF_Reported	MS4P_TT_Sk_MI_cSSF

Processes:

The MS4P_TT_Sk function reports, as part of the MS4 layer, the state of the protected MS4 trail. In case all connections are unavailable the MS4P_TT_Sk reports the signal fail condition of the protected trail.

Defects: None.

Consequent Actions:

aTSF \leftarrow CI_SSF.

Defect Correlations: None.

 $cSSF \leftarrow CI_SSF$ and $SSF_Reported$.

7.5.3 STM-4 Multiplex Section Linear Trail Protection Adaptation Functions

7.5.3.1 STM-4 Multiplex Section to STM-4 Multiplex Section Protection Layer Adaptation Source MS4/MS4P_A_So

Symbol:

Figure 72: MS4/MS4P_A_So symbol

Interfaces:

Table 55: MS4/MS4P_A_So input and output signals

Input(s)	Output(s)
MS4P_CI_D	MS4_AI_D
MS4P_CI_CK	MS4_AI_CK
MS4P_CI_FS	MS4_AI_FS
MS4P_CI_APS	

Processes:

The function shall multiplex the MS4 APS signal and MS4 data signal onto the MS4 access point.

Defects:	None.
Consequent actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

7.5.3.2 STM-4 Multiplex Section to STM-4 Multiplex Section Protection Layer Adaptation Sink MS4/MS4P_A_Sk

Symbol:

Figure 73: MS4/MS4P_A_Sk symbol

Interfaces:

Table 56: MS4/MS4P_A_Sk input and output signals

Input(s)	Output(s)
MS4_AI_D	MS4P_CI_D
MS4_AI_CK	MS4P_CI_CK
MS4_AI_FS	MS4P_CI_FS
MS4_AI_TSF	MS4P_CI_SSF
MS4_AI_TSD	MS4P_CI_SSD
	MS4P_CI_APS (for Protection signal only)

Processes:

The function shall extract and output the MS4P_CI_D signal from the MS4_AI_D signal.

None.

K1[1-8]K2[1-5]: The function shall extract the 13 APS bits K1[1-8] and K2[1-5] from the MS4_AI_D signal. A new value shall be accepted when the value is identical for three consecutive frames. This value shall be output via MS4P_CI_APS. This process is required only for the protection section.

Defects:

Consequent actions:

ne.

84

8 STM-16 Regenerator Section Layer Functions

Figure 74: STM-16 Regenerator Section atomic functions

RS16 Layer CP

The CI at this point is an octet structured, $125 \,\mu s$ framed data stream with co-directional timing. It is the entire STM-16 signal as defined in EN 300 147 [1]. The figure 75 depicts only bytes handled in the RS16 layer.

- NOTE 1: The unmarked bytes [2, 2] to [2, 48], [2, 50] to [2, 96], [3, 2] to [3, 48], [3, 50] to [3, 96], and [3, 98] to [3, 144] in rows 2,3 (figure 75) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The bytes for National Use (NU) in rows 1,2 (figure 75) are reserved for operator specific usage. Their processing is not within the province of the present document. If NU bytes [1, 113] to [1, 144] are unused, care should be taken in selecting the binary content of the bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.
- NOTE 3: The bytes Z0 [1, 98] to [1, 112] are reserved for future international standardization. Currently, they are undefined. Care should be taken in selecting the binary content of these bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.

Figure 75: RS16_CI_D signal

RS16 Layer AP

The AI at this point is octet structured and 125 μ s framed with co-directional timing and represents the combination of adapted information from the MS16 layer (38 448 bytes per frame), the management communication DCC layer (3 bytes per frame if supported), the OW layer (1 byte per frame if supported) and the user channel F1 (1 byte per frame if supported). The location of these four components in the frame is defined in EN 300 147 [1] and depicted in figure 76.

NOTE 4: Bytes E1, F1 and D1-D3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

Figure 76: RS16_AI_D signal

8.1 STM-16 Regenerator Section Connection functions

For further study.

- 8.2 STM-16 Regenerator Section Trail Termination functions
- 8.2.1 STM-16 Regenerator Section Trail Termination Source RS16_TT_So

Symbol:

Interfaces:

Input(s)	Output(s)
RS16_AI_D	RS16_CI_D
RS16_AI_CK	RS16_CI_CK
RS16_AI_FS	
RS16_TT_So_MI_TxTI	

Table 57: RS16_TT_So input and output signals

Processes:

The function builds the STM-16 signal by adding the frame alignment information, bytes A1A2, the STM Section Trace Identifier (STI) byte J0, computing the parity and inserting the B1 byte.

J0: In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in EN 300 417-1-1 [3], clause 7.1.

B1: The function shall calculate a Bit Interleaved Parity 8 (BIP-8) code using even parity. The BIP-8 shall be calculated over all bits of the previous STM-16 frame after scrambling and is placed in byte position B1 of the current STM-16 frame before scrambling (figure 78).

A1A2: The function shall insert the STM-16 frame alignment signal A1...A1A2...A2 into the regenerator section overhead as defined in EN 300 147 [1] and depicted in figure 75.

Scrambler: This function provides scrambling of the RS16_CI. The operation of the scrambler shall be functionally identical to that of a frame synchronous scrambler of sequence length 127 operating at the line rate. The generating polynomial shall be $1 + X^6 + X^7$. The scrambler shall be reset to "1111 1111" on the most significant bit (MSB) of the byte [1, 145] following the last byte of the STM-16 SOH in the first row. This bit and all subsequent bits to be scrambled shall be modulo 2 added to the output of the X^7 position of the scrambler. The scrambler shall run continuously throughout the remaining STM-16 frame.

Figure 78: Some processes within RS16_TT_So

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None

8.2.2 STM-16 Regenerator Section Trail Termination Sink RS16_TT_Sk

Symbol:

Interfaces:

Table 58: RS16_TT_Sk input and output signals

Input(s)	Output(s)
RS16_CI_D	RS16_AI_D
RS16_CI_CK	RS16_AI_CK
RS16_CI_FS	RS16_AI_FS
RS16_CI_SSF	RS16_AI_TSF
RS16_TT_Sk_MI_ExTI	RS16_TT_Sk_MI_AcTI
RS16_TT_Sk_MI_TPmode	RS16_TT_Sk_MI_cTIM
RS16_TT_Sk_MI_TIMdis	RS16_TT_Sk_MI_pN_EBC
RS16_TT_Sk_MI_ExTImode	RS16_TT_Sk_MI_pN_DS
RS16_TT_Sk_MI_1second	

Processes:

This function monitors the STM-16 signal for RS errors, and recovers the RS trail termination status. It extracts the payload independent overhead bytes (J0, B1) from the RS16 layer Characteristic Information:

Descrambling: The function shall descramble the incoming STM-16 signal. The operation of the descrambler shall be functionally identical to that of a scrambler in RS16_TT_So.

B1: Even bit parity is computed for each bit n of every byte of the preceding scrambled STM-16 frame and compared with bit n of B1 recovered from the current frame (n = 1 to 8 inclusive) (figure 80). A difference between the computed and recovered B1 values is taken as evidence of one or more errors (nN_B) in the computation block.

J0: The Received Trail Trace Identifier RxTI shall be recovered from the J0 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in EN 300 417-1-1 [3], clauses 7.1 and 8.2.1.3.

88

Figure 80: Some processes within RS16_TT_Sk

Defects:

The function shall detect for dTIM defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

Consequent Actions:

aAIS	\leftarrow	CI_SSF or dTIM.
aTSF	\leftarrow	CL SSF or dTIM

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

- NOTE 1: The term "CI_SSF" has been added to the conditions for aAIS while the descrambler function has been moved from the e.g. OS16/RS16_A_Sk to this function. Consequently, an all-ONEs (AIS) pattern inserted in the mentioned adaptation function would be descrambled in this function. A "refreshment" of all-ONEs is required.
- NOTE 2: The insertion of AIS especially due to detection of dTIM will cause the RS-DCC channel to be "squelched" too, so that control of the NE via this channel is lost. If control is via this channel only, there is a risk of a dead-lock situation if dTIM is caused by a misprovisioning of ExTI.

Defect Correlations:

cTIM \leftarrow MON and dTIM.

Performance Monitoring:

For further study.

8.3 STM-16 Regenerator Section Adaptation functions

8.3.1 STM-16 Regenerator Section to Multiplex Section Adaptation Source RS16/MS16_A_So

Symbol:

89

Figure 81: RS16/MS16_A_So symbol

Interfaces:

Table 59: RS16/MS16_A_So input and output signals

Input(s)	Output(s)
MS16_CI_D	RS16_AI_D
MS16_CI_CK	RS16_AI_CK
STM16_CI_FS	RS16_AI_FS
STM16_CI_SSF	

Processes:

The function multiplexes the MS16_CI data (38 448 bytes / frame) into the STM-16 byte locations defined in EN 300 147 [1] and depicted in figure 76.

None.

NOTE 1: There might be cases in which the network element knows that the timing reference for a particular STM-16 interface can not be maintained within ±4,6 ppm. For such cases MS-AIS can be generated. This is network element specific and outside the scope of the present document.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all ONEs signal shall be within 2 488,320 kHz ± 20 ppm.

NOTE 2: If CI_SSF is not connected (when RS16/MS16_A_So is connected to a MS16_TT_So), SSF is assumed to be false.

Defect Correlations: None.

8.3.2 STM-16 Regenerator Section to Multiplex Section Adaptation Sink RS16/MS16_A_Sk

Symbol:

Figure 82: RS16/MS16_A_Sk symbol

Interfaces:

Table 60: RS16/MS16_A_Sk input and output signals

Input(s)	Output(s)
RS16_AI_D	MS16_CI_D
RS16_AI_CK	MS16_CI_CK
RS16_AI_FS	MS16_CI_FS
RS16_AI_TSF	MS16_CI_SSF

Processes:

The function separates MS16_CI data from RS16_AI as depicted in figure 76.

 Defects:
 None.

 Consequent Actions:
 aSSF

 aSSF
 ← AI_TSF.

 Defect Correlations:
 None.

 Performance Monitoring:
 None.

ETSI

8.3.3 STM-16 Regenerator Section to DCC Adaptation Source RS16/DCC_A_So

Symbol:

Figure 83: RS16/DCC_A_So symbol

Interfaces:

Table 61: RS16/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	RS16_AI_D
STM16_TI_CK	DCC_CI_CK
STM16_TI_FS	

Processes:

The function multiplexes the DCC CI data (192 kbit/s) into the byte locations D1, D2 and D3 as defined in EN 300 147 [1] and depicted in figure 76.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

8.3.4 STM-16 Regenerator Section to DCC Adaptation Sink RS16/DCC_A_Sk

Symbol:

Figure 84: RS16/DCC_A_Sk symbol

Interfaces:

Table 62: RS16/DCC_A_Sk input and output signals

Input(s)	Output(s)
RS16_AI_D	DCC_CI_D
RS16_AI_CK	DCC_CI_CK
RS16_AI_FS	DCC_CI_SSF
RS16_AI_TSF	

Processes:

The function separates DCC data from RS Overhead as defined in EN 300 147 [1] and depicted in figure 76.

None.

None.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations:

8.3.5 STM-16 Regenerator Section to P0s Adaptation Source RS16/P0s_A_So/N

Symbol:

93

Figure 85: RS16/P0s_A_So symbol

Interfaces:

Table 63: RS16/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	RS16_AI_D
P0s_CI_CK	
P0s_CI_FS	
MS16_TI_CK	
MS16_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire or user channel information stream into the RS16_AI using slip buffering. It takes P0s_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the RSOH byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 76.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-16 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-16 clock, frame position (STM16_TI), and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

64 kbit/s timeslot: The adaptation source function has access to a specific 64 kbit/s channel of the RS access point. The specific 64 kbit/s channel is defined by the parameter N (N = E1, F1).

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

8.3.6 STM-16 Regenerator Section to P0s Adaptation Sink RS16/P0s_A_Sk/N

Symbol:

Figure 86: RS16/P0s_A_Sk symbol

Interfaces:

Table 64: RS16/P0s_A_Sk input and output signals

Input(s)	Output(s)
RS16_AI_D	P0s_CI_Sk_D
RS16_AI_CK	P0s_CI_Sk_CK
RS16_AI_FS	P0s_CI_FS
RS16_AI_TSF	P0s_CI_SSF

Processes:

The function separates P0s data from RS Overhead byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 76.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-16 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-16 signal clock (e.g. 2 488 320 kHz divided by a factor of 38 880).

64 kbit/s timeslot: The adaptation sink function has access to a specific 64 kbit/s of the RS access point. The specific 64 kbit/s is defined by the parameter N (N = E1, F1).

Defects: None.

Consequent Actions:

aSSF	\leftarrow	AI_TSF.

 $aAIS \quad \leftarrow \quad AI_TSF.$

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

8.3.7 STM-16 Regenerator Section to V0x Adaptation Source RS16/V0x_A_So

Symbol:

95

Figure 87: RS16/V0x_A_So symbol

Interfaces:

Table 65: RS16/V0x_A_So input and output signals

Input(s)	Output(s)
V0x_CI_D	RS16_AI_D
STM16_TI_CK	V0x_CI_CK
STM16_TI_FS	

Processes:

None.

This function multiplexes the V0x_CI data (64 kbit/s) into the byte location F1 as defined in EN 300 147 [1] and depicted in figure 76.

The user channel byte F1 shall be added to the 125 μs frame.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

8.3.8 STM-16 Regenerator Section to V0x Adaptation Sink RS16/V0x_A_Sk

Symbol:

96

Figure 88: RS16/V0x_A_Sk symbol

Interfaces:

Table 66: RS16/V0x_A_Sk input and output signals

Input(s)	Output(s)
RS16_AI_D	V0x_CI_D
RS16_AI_CK	V0x_CI_CK
RS16_AI_FS	V0x_CI_SSF
RS16_AI_TSF	

Processes:

This function separates user channel data from RS Overhead (byte F1) as defined in EN 300 147 [1] and depicted in figure 76.

Defects:

None.

Consequent Actions:

 $\begin{array}{rcl} aSSF & \leftarrow & AI_TSF. \\ aAIS & \leftarrow & AI_TSF. \end{array}$

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

9 STM-16 Multiplex Section Layer Functions

97

Figure 89: STM-16 Multiplex Section atomic functions

NOTE 1: The modelling of the MS16 to VC-4 and VC-4-4c layer adaptation functionality requires a further enhancement making it similar to the VC-4 to lower order VC layer adaptation functionality. This is for further study.

MS16 Layer CP

The CI at this point is octet structured and $125 \,\mu s$ framed with co-directional timing. Its format is characterized as the MS16_AI with an additional MS Trail Termination overhead in the forty eight B2 bytes, byte M1, and bits 6-8 of the K2 byte in the frame locations defined in EN 300 147 [1] and depicted in figure 90.

- NOTE 2: The unmarked bytes in rows 5, 6, 7, 8, 9 (figure 90) are reserved for future international standardization. Currently, they are undefined.
- NOTE 3: The bytes for National Use (NU) in row 9 (figure 90) are reserved for operator specific usage. Their processing is not within the province of the present document.

MS16 Layer AP

The AI at this point is octet structured and 125 µs framed with co-directional timing. It represents the combination of information adapted from the VC-4 layer (150 336 kbit/s), the management communications DCC layer (576 kbit/s), the OW layer (64 kbit/s if supported), the AU-4 pointer (3 bytes per frame), the APS signalling channel (13 or 16 bits per frame if supported, see note 4), and the SSM channel (4 bits per frame if supported). The location of these five components in the frame is defined in EN 300 147 [1] and depicted in figure 91.

- NOTE 4: 13 bits APS channel for the case of linear MS protection. 16 bits APS channel for the case of MS SPRING protection.
- NOTE 5: Bytes E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

The composition of the payload transported by an STM-16 will be determined by the client layer application. Typical compositions of the payload include:

- one VC-4-16c of 2 405 376 kbit/s;
- four VC-4-4c of 601 344 kbit/s;
- sixteen VC-4s of 150 336 kbit/s;
- combinations of VC-4s and VC-4-4cs up to the maximum of 16 VC-4 equivalents;
- eight [two] working VC-4s [VC-4-4cs] and eight [two] protection VC-4s [VC-4-4cs] (in MS16 SPRING application).

Figure 89 shows that more than one adaptation source function exists in the MS16 layer that can be connected to one MS16 access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific AU timeslot. Access to the same AU timeslot by other adaptation source functions shall be denied. In contradiction with the source direction, adaptation sink functions may be activated all together. This may cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

NOTE 6: If one adaptation function only is connected to the AP, it will be activated. If one or more other functions are connected to the same AP accessing the same AU timeslot, one out of the set of functions will be active.

Figure 92 shows the MS trail protection specific sublayer atomic functions (MS16/MS16P_A, MS16P_C, MS16P_TT) within the MS16 layer. Note that the DCC (D4-D12), OW (E2), and SSM (S1[5-8]) signals can be accessible before (unprotected) and after (protected) the MS16P_C function. The choice is outside the scope of the present document.

NOTE 7: Equipment may provide MS protection and bi-directional services such as DCC and OW in the MS layer. Where a link uses this provision both ends of the link shall be configured to operate these services in the same mode (i.e. either protected or unprotected).

Figure 92: STM-16 Multiplex Section Linear Trail Protection Functions

MS16P Sublayer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is equivalent to the MS4_AI and depicted in figure 93.

NOTE 8: Bytes S1, E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element or are unprotected (see above).

Figure 93: MS16P_CI_D

101

Figure 94: STM-16 Multiplex Section 2 fibre Shared Protection Ring model (working: AU-4 #1 to AU-4 #8, protection: AU-4 #9 to AU-4 #16)

9.1 STM-16 Multiplex Section Connection functions

For further study.

9.2 STM-16 Multiplex Section Trail Termination functions

9.2.1 STM-16 Multiplex Section Trail Termination Source MS16_TT_So

Symbol:

Figure 95: MS16_TT_So symbol

Interfaces:

Table 67: MS16_TT_So input and output signals

Input(s)	Output(s)
MS16_AI_D	MS16_CI_D
MS16_AI_CK	MS16_CI_CK
MS16 AL FS	MS16 CI FS
MS16_RI_REI	
MS16_RI_RDI	

Processes:

This function adds error monitoring capabilities and remote maintenance information signals to the MS16_AI.

M1: The function shall within 1 ms insert the value of MS16_RI_REI into the REI (Remote Error Indication) - to convey the count of interleaved bit blocks that have been detected in error by the BIP-384 process in the companion MS16_TT_Sk - in the range of "0000 0000" (0) to "1111 1111" (255) where the value conveyed is truncated at 255.

K2[6-8]: These bits represents the defect status of the associated MS16_TT_Sk. The RDI indication shall be set to "110" on activation of MS16_RI_RDI within 1 ms, determined by the associated MS16_TT_Sk function, and passed through transparently (except for incoming codes "111" and "110") within 1 ms on the MS16_RI_RDI removal. If MS16_RI_RDI is inactive an incoming code "111" or "110" shall be replaced by code "000".

NOTE 1: K2[6-8] can not be set to "000" on clearing of RI_RDI; MS SPRING APS extends into those bits. The bits shall be passed transparently in this case. With linear MS protection or without protection it shall be guaranteed that neither code "111" nor "110" will be output.

B2: The function shall calculate a Bit Interleaved Parity 384 (BIP-384) code using even parity. The BIP-384 shall be calculated over all bits, except those in the RSOH bytes, of the previous STM-16 frame and placed in forty-eight B2 bytes of the current STM-16 frame.

NOTE 2: The BIP-384 procedure is described in EN 300 147 [1].

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

9.2.2 STM-16 Multiplex Section Trail Termination Sink MS16_TT_Sk

Symbol:

Interfaces:

Fable 68: MS16_TT	_Sk input and	output signals
-------------------	---------------	----------------

Input(s)	Output(s)
MS16_CI_D	MS16_AI_D
MS16_CI_CK	MS16_AI_CK
MS16_CI_FS	MS16_AI_FS
MS16_CI_SSF	MS16_AI_TSF
MS16_TT_Sk_MI_DEGTHR	MS16_AI_TSD
MS16_TT_Sk_MI_DEGM	MS16_TT_Sk_MI_cAIS
MS16_TT_Sk_MI_1second	MS16_TT_Sk_MI_cDEG
MS16_TT_Sk_MI_TPmode	MS16_TT_Sk_MI_cRDI
MS16_TT_Sk_MI_SSF_Reported	MS16_TT_Sk_MI_cSSF
MS16_TT_Sk_MI_AIS_Reported	MS16_TT_Sk_MI_pN_EBC
MS16_TT_Sk_MI_RDI_Reported	MS16_TT_Sk_MI_pF_EBC
MS16_TT_Sk_MI_M1_Ignored	MS16_TT_Sk_MI_pN_DS
	MS16_TT_Sk_MI_pF_DS
	MS16_RI_REI
	MS16 RI RDI

Processes:

This function monitors error performance of associated MS16 including the far end receiver.

B2: The BIP-384 shall be calculated over all bits, except of those in the RSOH bytes, of the previous STM-16 frame and compared with the three error monitoring bytes B2 recovered from the MSOH of the current STM-16 frame. A difference between the computed and recovered B2 values is taken as evidence of one or more errors (nN_B) in the computation block.

NOTE 1: There are 384 blocks consisting of 801 bits and a BIP-1 as EDC per STM-16 frame in the MS16 layer.

M1: The REI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The REI (nF_B) is used to monitor the error performance of the other direction of transmission. The application process is described in EN 300 417-1-1 [3], clause 7.4.2 (REI). If M1_ignored is true, nF_B shall be forced to "0"; if M1_ignored is false, nF_B shall equal the value in REI.

NOTE 2 : M1_ignored is a parameter provisioned by the operator to indicate the support of the M1 byte in the incoming STM-16 signal. For the case M1 is supported, M1_ignored should be set to false, otherwise M1_ignored should be set to true.

The function shall interpret the value in the byte as shown in table 69.

M1[1-8] code, bits 1234 5678	code interpretation [#BIP violations], (nF_B)
0000 0000	0
0000 0001	1
0000 0010	2
0000 0011	3
0000 0100	4
:	
1111 1111	255

Table 69: STM-16 M1 interpretation

NOTE 3: In case of interworking with old equipment not supporting MS-REI, the information extracted from M1 is not relevant.

K2[6-8] - RDI: The RDI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The RDI provides information as to the status of the remote receiver. A "110" indicates a Remote Defect Indication state, while other patterns indicate the normal state. The application process is described in EN 300 417-1-1 [3], clauses 7.4.11 and 8.2.

K2[6-8] - AIS: The MS-AIS information carried in these bits shall be extracted.

Defects:

The function shall detect for dDEG and dRDI defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2. The x shall be in range 3 to 5.

Consequent Actions:

aAIS	\leftarrow	dAIS.
aRDI	\leftarrow	dAIS.
aREI	\leftarrow	#EDCV.
aTSF	\leftarrow	dAIS.
aTSD	\leftarrow	dDEG.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

Defect Correlations:

cAIS	\leftarrow	MON and dAIS and (not CI_SSF) and AIS_Reported.
cDEG	\leftarrow	MON and dDEG.
cRDI	\leftarrow	MON and dRDI and RDI_Reported.

 $cSSF \leftarrow MON and dAIS and SSF_Reported.$

Performance monitoring:

The performance monitoring process shall be performed as specified in EN 300 417-1-1 [3], clause 8.2.4 through 8.2.7.

$pN_DS \leftarrow$	aTSF or dEQ
--------------------	-------------

- $pF_DS \leftarrow dRDI.$
- $pN_EBC \leftarrow \Sigma nN_B.$
- $pF_EBC \leftarrow \Sigma nF_B.$

9.3 STM-16 Multiplex Section Adaptation functions

9.3.1 STM-16 Multiplex Section to S4 Layer Adaptation Source MS16/S4_A_So/(C,B,0)

Symbol:

Figure 97: MS16/S4_A_So symbol

Interfaces:

Table 70: MS16/S4_A_So input and output signals

Input(s)	Output(s)
S4_CI_D	MS16_AI_D
S4_CI_CK	MS16_AI_CK
S4_CI_FS	MS16_AI_FS
S4_CI_SSF	
STM16_TI_CK	MS16/S4_A_So_MI_pPJE+
STM16_TI_FS	MS16/S4_A_So_MI_pPJE-
MS16/S4_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4 signal, represented by a nominally $(261 \times 9 \times 64) = 150 336$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-16 signal at the AU tributary location indicated by (C,B,0), where C designates the AUG-4 number (1 to 4) and B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4 is coded in the related AU-4 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-16 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS16/S4_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4 pointer actions. An example is given in EN 300 417-4-1 [4], annex A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 24 data bits shall be cancelled once and no data written at the three positions H3 + 1. Upon a negative justification action, an extra 24 data bits shall be read out once into the three positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Figure 98: Main processes within MS16/S4_A_So

Buffer size: For further study.

Behaviour at recovery from defect condition: The incoming frequency (S4_CI_CK) of a passing through VC-4 may exceed its limits during a STM16dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

None.

The AU-4 pointer is carried in 2 bytes of payload specific OH (H1, H2) in each STM-16 frame. The AU-4 pointer is aligned in the STM-16 payload in fixed position relative to the STM-16 frame. The AU-4 pointer points to the begin of the VC-4 frame within the STM-16. The format of the AU-4 pointer and its location in the frame are defined in EN 300 147 [1].

H1H2 - *Pointer generation:* The function shall generate the AU-4 pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 48+N] positions with the SS field set to 10 to indicate AU-4, N = 4(C-1) + B + 1.

YY1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 16+N] and [4, 32+N] and code "1" = 11111111 in bytes [4, 64+N] and [4, 80+N]. N = 4(C-1) + B + 1. Bits ss are undefined.

AU-4 timeslot: The adaptation source function has access to a specific AU-4 of the MS16 access point. The AU-4 is defined by the parameter (C,B,0) (C = 1..4 and B = 1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: if CI_SSF is not connected (when MS16/S4_A_So is connected to a S4_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4 only. A locally generated VC-4 will have a fixed frame phase; pointer justifications will not occur.

9.3.2 STM-16 Multiplex Section to S4 Layer Adaptation Sink MS16/S4_A_Sk/(C,B,0)

Symbol:

Figure 99: MS16/S4_A_Sk symbol

Interfaces:

Table 71: MS16/S4_A_Sk input and output signals

Input(s)	Output(s)
MS16_AI_D	S4_CI_D
MS16_AI_CK	S4_CI_CK
MS16_AI_FS	S4_CI_FS
MS16_AI_TSF	S4_CI_SSF
MS16/S4_A_Sk_MI_Active	MS16/S4_A_Sk_MI_cAIS
MS16/S4_A_Sk_MI_AIS_Reported	MS16/S4_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4 data with frame phase information from the STM-16 as defined in EN 300 147 [1]. The VC-4 is extracted from the AU tributary location indicated by (C,B,0), where C designates the AUG-4 number (1 to 4) and B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H2 - *AU-4 pointer interpretation:* An AU-4 pointer consists of 2 bytes, [4, N] and [4, 48+N]. The function shall perform AU-4 pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4 frame phase within the STM-16. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 4(C-1) + B + 1

YY1*1*: The bytes [4, 16+N], [4, 32+N], [4, 64+N], and [4, 80+N] contain fixed stuff, of a specified value, ignored by the AU-4 pointer interpreter. N = 4(C-1) + B + 1.

AU-4 timeslot: The adaptation sink function has access to a specific AU-4 of the MS16 access point. The AU-4 is defined by the parameter (C,B,0) (C = 1..4 and B = 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.
Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AIS_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AIS_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOP_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOP_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not AI_TSF) and AIS_Reported..

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

9.3.3 STM-16 Multiplex Section to S4-4c Layer Adaptation Source MS16/S4-4c_A_So/(C,0,0)

Symbol:

Figure 100: MS16/S4-4c_A_So symbol

Interfaces:

Table 72: MS16/S4-4c_A_So input and output signals

Input(s)	Output(s)
S4-4c_CI_D	MS16_AI_D
S4-4c_CI_CK	MS16_AI_CK
S4-4c_CI_FS	MS16_AI_FS
S4-4c_CI_SSF	
STM16_TI_CK	MS16/S4-4c_A_So_MI_pPJE+
STM16_TI_FS	MS16/S4-4c_A_So_MI_pPJE-
MS16/S4-4c_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-4c signal, represented by a nominally $(4 \times 261 \times 9 \times 64) = 601 344$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-16 signal at the AU-4-4c tributary location indicated by (C,0.0), where C designates the AUG-4 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-4c is coded in the related AU-4-4c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-16 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS16/S4-4c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-4c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 96 data bits shall be cancelled once and no data written at the twelve positions H3 + 1. Upon a negative justification action, an extra 96 data bits shall be read out once into the twelve positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Figure 101: Main processes within MS16/S4-4c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-4c_CI_CK) of a passing through VC-4-4c may exceed its limits during a STM16dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-4c pointer is carried in 2 + 6 bytes of payload specific OH in each STM-16 frame. The AU-4-4c pointer is aligned in the STM-16 payload in fixed position relative to the STM-16 frame. The AU-4-4c pointer points to the begin of the VC-4-4c frame within the STM-16. The format of the AU-4-4c pointer and its location in the frame are defined in EN 300 147 [1].

H1H1H1H1H2H2H2H2 - *Pointer generation:* The function shall generate the AU-4-4c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 48+N] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-4c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 1+N] to [4, 3+N], H2 [4, 49+N] to [4, 51+N]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined. N = 4(C-1) + 1.

YYYYYYY1*1*1*1*1*1*1*1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 16+N] to [4, 19+N] and [4, 32+N] to [4, 35+N] and code "1" = 11111111 in bytes [4, 64+N] to [4, 67+N] and [4, 80+N] to [4, 83+N], N = 4(C-1) + 1. Bits ss are undefined.

AU-4-4c timeslots: The adaptation source function has access to a specific AU-4-4c of the MS16 access point. The AU-4-4c is defined by the parameter (C,0,0) (C = 1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS16/S4-4c_A_So is connected to a S4-4c_TT_So), CI_SSF is assumed to be false.

Defect Correlations:

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-4c only. A locally generated VC-4-4c may have a fixed frame phase; pointer justifications will not occur.

9.3.4 STM-16 Multiplex Section to S4-4c Layer Adaptation Sink MS16/S4-4c_A_Sk/(C,0,0)

Symbol:

Figure 102: MS16/S4-4c_A_Sk symbol

Interfaces:

Table 73: MS16/S4-4c_A_Sk input and output signals

Input(s)	Output(s)
MS16_AI_D	S4-4c_CI_D
MS16_AI_CK	S4-4c_CI_CK
MS16_AI_FS	S4-4c_CI_FS
MS16_AI_TSF	S4-4c_CI_SSF
MS16/S4-4c_A_Sk_MI_Active	MS16/S4-4c_A_Sk_MI_cAIS
MS16/S4-4c_A_Sk_MI_AIS_Reported	MS16/S4-4c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-4c data with frame phase information from the STM-16 as defined in EN 300 147 [1]. The VC-4-4c is extracted from tributary location indicated by (C,0.0), where C designates the AUG-4 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1 H1H1H1H2H2H2H2 - *AU-4-4c pointer interpretation:* An AU-4-4c pointer consists of 2 bytes, [4, N] and [4, 48 + N]. There will be 3 concatenation indicators, each 2 bytes long, in [4, 1+N]/[4, 49+N], [4, 2+N]/[4, 50+N], and [4, 3 + N]/[4, 51 + N]. The function shall perform AU-4-4c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-4c frame phase within the STM-16. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 4(C-1) + 1.

AU-4-4c timeslots: The adaptation source function has access to a specific AU-4-4c of the MS16 access point. The AU-4-4c is defined by the parameter (C,0,0) (C = 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

9.3.5 STM-16 Multiplex Section to S4-16c Layer Adaptation Source MS16/S4-16c_A_So

Symbol:

Figure 103: MS16/S4-16c_A_So symbol

Interfaces:

Table 74: MS16/S4-16c_A_So input and output signals

Input(s)	Output(s)
S4-16c_CI_D	MS16_AI_D
S4-16c_CI_CK	MS16_AI_CK
S4-16c_CI_FS	MS16_AI_FS
S4-16c_CI_SSF	
STM16_TI_CK	MS16/S4-16c_A_So_MI_pPJE+
STM16_TI_FS	MS16/S4-16c_A_So_MI_pPJE-
MS16/S4-16c_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-16c signal, represented by a nominally $(16 \times 261 \times 9 \times 64) = 2405376$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-16 signal at the AU-4-16c tributary location. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-16c is coded in the related AU-4-16c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-16 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS16/S4-16c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-16c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 96 data bits shall be cancelled once and no data written at the 48 positions H3 + 1. Upon a negative justification action, an extra 384 data bits shall be read out once into the 48 positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Figure 104: Main processes within MS16/S4-16c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-16c_CI_CK) of a passing through VC-4-16c may exceed its limits during a STM16dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

None

The AU-4-16c pointer is carried in 2 + 30 bytes of payload specific OH in each STM-16 frame. The AU-4-16c pointer is aligned in the STM-16 payload in fixed position relative to the STM-16 frame. The AU-4-16c pointer points to the begin of the VC-4-16c frame within the STM-16. The format of the AU-4-16c pointer and its location in the frame are defined in EN 300 147 [1].

 $H1^{16}H2^{16}$ - *Pointer generation:* The function shall generate the AU-4-16c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, 1], H2 [4, 49] positions with the SS field set to 10 to indicate AU-3/AU-4/ AU-4-4c /AU-4-16c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 2] to [4, 48], H2 [4, 50] to [4, 96]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined.

 $\mathbf{Y}^{32}\mathbf{1}^{*32}$ - *Fixed stuff insertion:* The function shall insert fixed stuff codes $\mathbf{Y} = 1001$ ss11 in bytes [4, 17] to [4, 48] and code "1" = 11111111 in bytes [4, 65] to [4, 96]. Bits ss are undefined.

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS16/S4-16c_A_So is connected to a S4-16c_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-16c only. A locally generated VC-4-16c may have a fixed frame phase; pointer justifications will not occur.

9.3.6 STM-16 Multiplex Section to S4-16c Layer Adaptation Sink MS16/S4-16c_A_Sk

Symbol:

Figure 105: MS16/S4-16c_A_Sk symbol

Interfaces:

Input(s)	Output(s)	
MS16_AI_D	S4-16c_CI_D	
MS16_AI_CK	S4-16c_CI_CK	
MS16_AI_FS	S4-16c_CI_FS	
MS16_AI_TSF	S4-16c_CI_SSF	
MS16/S4-16c_A_Sk_MI_Active	MS16/S4-16c_A_Sk_MI_cAIS	
MS16/S4-16c_A_Sk_MI_AIS_Reported	MS16/S4-16c_A_Sk_MI_cLOP	

Table 75: MS16/S4-16c_A_Sk input and output signals

Processes:

This function recovers the VC-4-16c data with frame phase information from the STM-16 as defined in EN 300 147 [1]. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

 $H1^{16}H2^{16}$ - *AU-4-16c pointer interpretation:* An AU-4-16c pointer consists of 2 bytes, [4, 1] and [4, 49]. There will be 15 concatenation indicators, each 2 bytes long, in [4, X]/[4, 48+X], X = (2..16). The function shall perform AU-4-16c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-16c frame phase within the STM-16. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase.

 $Y^{16}1^{*16}$: The bytes [4, 17] to [4, 48] and [4, 65] to [4, 96] contain fixed stuff, of a specified value, ignored by the AU-4-16c pointer interpreter.

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

 $\begin{array}{rcl} \text{aAIS} & \leftarrow & \text{dAIS or dLOP.} \\ \text{aSSF} & \leftarrow & \text{dAIS or dLOP.} \end{array}$

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

9.3.7 STM-16 Multiplex Section to DCC Adaptation Source MS16/DCC_A_So

Symbol:

Figure 106: MS16/DCC_A_So symbol

Interfaces:

Table 76: MS16/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	MS16_AI_D
STM16_TI_CK	DCC_CI_CK
STM16_TI_FS	

Processes:

The function multiplexes the DCC CI data (576 kbit/s) into the byte locations D4 to D12 as defined in EN 300 147 [1] and depicted in figure 91.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.

9.3.8 STM-16 Multiplex Section to DCC Adaptation Sink MS16/DCC_A_Sk

Symbol:

Figure 107: MS16/DCC_A_Sk symbol

Interfaces:

Table 77: MS16/DCC_A_Sk input and output signals

Input(s)	Output(s)
MS16_AI_D	DCC_CI_D
MS16_AI_CK	DCC_CI_CK
MS16_AI_FS	DCC_CI_SSF
MS16_AI_TSF	

Processes:

The function separates DCC data from MS Overhead as defined in EN 300 147 [1] and depicted in figure 91.

None.

None.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations:

9.3.9 STM-16 Multiplex Section to P0s Adaptation Source MS16/P0s_A_So

Symbol:

Figure 108: MS16/P0s_A_So symbol

Interfaces:

Table 78: MS16/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	MS16/P0s_AI_So_D
P0s_CI_CK	
P0s_CI_FS	
STM16_TI_CK	
STM16_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire information stream into the MS16_AI using slip buffering. It takes POs_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s , present at its input and inserts it into the MSOH byte E2 as defined in EN 300 147 [1] and depicted in figure 91.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-16 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-16 clock, frame position, and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

9.3.10 STM-16 Multiplex Section to P0s Adaptation Sink MS16/P0s_A_Sk

Symbol:

Figure 109: MS16/P0s_A_Sk symbol

Interfaces:

Table 79: MS16/P0s_A_Sk input and output signals

Input(s)	Output(s)	
MS16_AI_D	P0s_CI_Sk_D	
MS16_AI_CK	P0s_CI_Sk_CK	
MS16_AI_FS	P0s_CI_FS	
MS16_AI_TSF	P0s_CI_SSF	

Processes:

The function separates P0s data from MS Overhead byte E2 as defined in EN 300 147 [1] and depicted in figure 91.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-16 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-16 signal clock (e.g. 2 488 320 kHz divided by a factor of 38 880).

Defects: None.

Consequent Actions:

aSSF \leftarrow AI_TSF. aAIS \leftarrow AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations:	None.
----------------------	-------

Performance Monitoring:	None.
-------------------------	-------

9.3.11 STM-16 Multiplex Section to Synchronization Distribution Adaptation Source MS16/SD_A_So

See EN 300 417-6-1 [5].

9.3.12 STM-16 Multiplex Section to Synchronization Distribution Adaptation Sink MS16/SD_A_Sk

See EN 300 417-6-1 [5].

9.3.13 STM-16 Multiplex Section Layer Clock Adaptation Source MS16-LC_A_So

See EN 300 417-6-1 [5].

9.4 STM-16 Multiplex Section Layer Monitoring Functions

For further study.

- 9.5 STM-16 Multiplex Section Linear Trail Protection Functions
- 9.5.1 STM-16 Multiplex Section Linear Trail Protection Connection Functions
- 9.5.1.1 STM-16 Multiplex Section 1+1 Linear Trail Protection Connection MS16P1+1_C

Symbol:

Interfaces:

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS16P_CI_D	MS16P_CI_D
MS16P_CI_CK	MS16P_CI_CK
MS16P_CI_FS	MS16P_CI_FS
MS16P_CI_SSF	MS16P_CI_SSF
MS16P_CI_SSD	
	For connection points N:
For connection points N:	MS16P_CI_D
MS16P_CI_D	MS16P_CI_CK
MS16P_CI_CK	MS16P_CI_FS
MS16P_CI_FS	MS16P_CI_SSF
Per function:	Per function:
MS16P_CI_APS	MS16P_CI_APS
MS16P_C_MI_SWtype	MS16P_C_MI_cFOP
MS16P_C_MI_OPERtype	
MS16P_C_MI_WTRTime	
MS16P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Table 80: MS16P1+1_C input and output signals

Processes:

The function performs the STM-16 linear multiplex section protection process for 1 + 1 protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 48 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #1 reference point can be the signal received via either the associated working #1 section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected) or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change between operation types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1 + 1
Switching type:	uni-directional or bi-directional
Operation type:	revertive or non-revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	(revertive operation) LO, FSw-#1, MSw-#1, CLR, EXER-#1 (non-revertive operation) LO or FSw, FSw-#i, MSw, MSw-#i, CLR, EXER-#1
SFpriority, SDpriority:	high

Table 81: "Parameters for MS16P1+1_C protection process"

Defects:

Defects:	None.

Consequent Actions: None.

Defect Correlations: None.

cFOP (see EN 300 417-1-1 [3] annex L). \leftarrow

Performance Monitoring: None.

STM-16 Multiplex Section 1:n Linear Trail Protection Connection 9.5.1.2 MS16P1:n_C

Symbol:

Interfaces:

Table 82: MS16P1:n_C input and output signals

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS16P_CI_D	MS16P_CI_D
MS16P_CI_CK	MS16P_CI_CK
MS16P_CI_FS	MS16P_CI_FS
MS16P_CI_SSF	MS16P_CI_SSF
MS16P CI SSD	
MS16P_MI_Sfpriority	For connection points N and E:
MS16P_MI_Sdpriority	MS16P_CI_D
	MS16P_CI_CK
For connection points N and E:	MS16P_CI_FS
MS16P_CI_D	MS16P_CI_SSF
MS16P_CI_CK	
MS16P CI FS	Per function:
	MS16P_CI_APS
Per function:	
MS16P_CI_APS	MS16P_C_MI_cFOP
MS16P_C_MI_Swtype	
MS16P_C_MI_EXTRAtraffic	
MS16P_C_MI_WTRTime	
MS16P_C_MI_EXTCMD	
NOTE: Protection status reporting signa	als are for further study.

Processes:

The function performs the STM-16 linear multiplex section protection process for 1:n protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 47 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #i reference point can be the signal received via either the associated working #i section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected), connected to the extra traffic input, or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1:n (n ≤ 14)
Switching type:	uni-directional or bi-directional
Operation type:	Revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	LO, FSw-#i, MSw-#i, CLR, EXER

Table 83: "Parameters for MS16P1:n_C protection process"

Defects:

None.

Consequent Actions:

For the case where neither the extra traffic nor a normal signal input is to be connected to the protection section output, the null signal shall be connected to the protection output. The null signal is either one of the normal signals, an all-ONEs, or a test signal.

For the case of a protection switch, the extra traffic output (if applicable) is disconnected from the protection input, set to all-ONEs (AIS) and aSSF is activated.

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

9.5.2 STM-16 Multiplex Section Linear Trail Protection Trail Termination Functions

9.5.2.1 Multiplex Section Protection Trail Termination Source MS16P_TT_So

Symbol:

Figure 112: MS16P_TT_So symbol

Interfaces:

Table 84: MS16P_TT_So input and output signals

Input(s)	Output(s)
MS16_AI_D	MS16P_CI_D
MS16_AI_CK	MS16P_CI_CK
MS16_AI_FS	MS16P_CI_FS

Processes:

No information processing is required in the MS16P_TT_So, the MS16_AI at its output being identical to the MS16P_CI at its input.

Defects:	None.
Consequent Actions:	None
Defect Correlations:	None.
Performance Monitoring:	None.

9.5.2.2 Multiplex Section Protection Trail Termination Sink MS16P_TT_Sk

Symbol:

Figure 113: MS16P_TT_Sk symbol

Interfaces:

Table 85: MS16P_TT_Sk input and output signals

Input(s)	Output(s)
MS16P_CI_D	MS16_AI_D
MS16P_CI_CK	MS16_AI_CK
MS16P_CI_FS	MS16_AI_FS
MS16P_CI_SSF	MS16_AI_TSF
MS16P_TT_Sk_MI_SSF_Reported	MS16P_TT_Sk_MI_cSSF

Processes:

The MS16P_TT_Sk function reports, as part of the MS16 layer, the state of the protected MS16 trail. In case all connections are unavailable the MS16P_TT_Sk reports the signal fail condition of the protected trail.

Defects: None.

Consequent Actions:

aTSF \leftarrow CI_SSF.

Defect Correlations: None.

 $cSSF \leftarrow CI_SSF$ and $SSF_Reported$.

9.5.3 STM-16 Multiplex Section Linear Trail Protection Adaptation Functions

9.5.3.1 STM-16 Multiplex Section to STM-16 Multiplex Section Protection Layer Adaptation Source MS16/MS16P_A_So

Symbol:

Figure 114: MS16/MS16P_A_So symbol

Interfaces:

Table 86: MS16/MS16P_A_So input and output signals

Input(s)	Output(s)
MS16P_CI_D	MS16_AI_D
MS16P_CI_CK	MS16_AI_CK
MS16P_CI_FS	MS16_AI_FS
MS16P_CI_APS	

Processes:

The function shall multiplex the MS16 APS signal and MS16 data signal onto the MS16 access point.

Defects:	None.
Consequent actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

9.5.3.2 STM-16 Multiplex Section to STM-16 Multiplex Section Protection Layer Adaptation Sink MS16/MS16P_A_Sk

Symbol:

Figure 115: MS16/MS16P_A_Sk symbol

Interfaces:

Table 87: MS16/MS16P_A_Sk input and output signals

Input(s)	Output(s)
MS16_AI_D	MS16P_CI_D
MS16_AI_CK	MS16P_CI_CK
MS16_AI_FS	MS16P_CI_FS
MS16_AI_TSF	MS16P_CI_SSF
MS16_AI_TSD	MS16P_CI_SSD
	MS16P_CI_APS (for Protection signal only)

Processes:

The function shall extract and output the MS16P_CI_D signal from the MS16_AI_D signal.

None.

K1[1-8], K2[1-5]: The function shall extract the 13 APS bits K1[1-8] and K2[1-5] from the MS16_AI_D signal. A new value shall be accepted when the value is identical for three consecutive frames. This value shall be output via MS16P_CI_APS. This process is required only for the protection section.

Defects:

Consequent actions:

Pe	erformanc	None.		
D	efect Corr	elation	IS:	None.
	aSSD	\leftarrow	AI_TSD.	
	aSSF	\leftarrow	AI_TSF.	

9.6 STM-16 Multiplex Section 2 Fibre Shared Protection Ring Functions

Figure 116 specifies the 2 fibre STM-16 MS SPRING protection sublayer atomic functions and the 2 fibre MS SPRING protection functional model.

For the characteristics of this protection scheme, see EN 300 417-1-1 [3] clause 9.3.2. The protection protocol and operation is specified in ETS 300 746 [6].

9.6.1 STM-16 Multiplex Section 2 Fibre Shared Protection Ring Connection MS16P2fsh_C

Symbol:

Figure 116: MS16P2fsh_C symbol

Interfaces:

Table 88: MS16P2fsh_C input and output signals

Input(s)	Output(s)
For connection points A West and A East:	For connection points A West and A East:
MS16P2fsh_Cl_Dw	MS16P2fsh_Cl_Dw
MS16P2fsh_Cl_Dp	MS16P2fsh_CI_Dp
MS16P2fsh_CI_CK	MS16P2fsh_CI_CK
MS16P2fsh_CI_FS	MS16P2fsh_CI_FS
MS16P2fsh_CI_SSF	MS16P2fsh_CI_APS
MS16P2fsh_CI_SSD	
MS16P2fsh_CI_APS	For connection points B West and B East:
	MS16P2fsh_Cl_Dw
For connection points B West and B East:	MS16P2fsh_CI_CKw
MS16P2fsh_CI_Dw	MS16P2fsh_CI_FSw
MS16P2fsh_Cl_Dp	MS16P2fsh_CI_SSFw
MS16P2fsh_CI_De	MS16P2fsh_CI_Dp
MS16P2fsh_CI_CK	MS16P2fsh_CI_CKp
MS16P2fsh_CI_FS	MS16P2fsh_CI_FSp
	MS16P2fsh_CI_SSFp
	MS16P2fsh_CI_De
MS16P2fsh_CI_MI_EXTRAtraffic	MS16P2fsh_CI_CKe
MS16P2fsh_C_MI_WTRTime	MS16P2fsh_CI_FSe
MS16P2fsh_C_MI_EXTCMD	MS16P2fsh_CI_SSFe
MS16P2fsh_C_MI_RingNodeID	
MS16P2fsh_C_MI_RingMap	
NOTE: Protection status reporting signals are	for further study.

Processes:

The function is able to route (bridge and select) the Working and Protection group signals between its connection points (inputs / outputs) as specified in ETS 300 746 [6], multiplex section 2 fibre shared protection ring operation.

NOTE 1: The functional model is a maximum model; the extra traffic related inputs and outputs may not be present in an actual equipment.

Possible Matrix Connections that can be supported are:

-	$Ww_A \leftrightarrow Ww_B$	We_A \leftrightarrow We_B.
-	$Pw_A \leftrightarrow Pw_B$	$Pe_A \leftrightarrow Pe_B.$
-	$Pw_A \leftrightarrow Ew_B$	$Pe_A \leftrightarrow Ee_B.$
-	$Pw_A \leftrightarrow We_B$	$Pe_A \leftrightarrow Ww_B.$
-	$Pw_A [TSx] \leftarrow all-ONEs (AIS)$	$Pe_A [TSx] \leftarrow all-ONEs (AIS).$
-	$Pw_A [TSx] \leftarrow unequipped HOVC$	$Pe_A [TSx] \leftarrow unequipped HOVC.$
-	APSw \leftrightarrow APSe (APS pass through) <i>legend</i> :	$Xy_Z - X = Working$, Protection, Extra traffic.
-	APSw sourced	y = west, east.
-	APSe sourced	Z = A, B;
		TSx - AU-4 TimeSlot $#x (x = 116)$.

Table 89: MS16P2fsh_C traffic matrix connections

	traffi	C					OUT	PUTS				
	matri	х			4				I	В		
C	onnect	ions	Ww	Pw	We	Pe	Ww	Ew	Pw	We	Ee	Pe
I	Α	Ww					Х					
N		Pw						Х	Х	Х		
Р		We								Х		
U		Pe					Х				Х	Х
Т	В	Ww	Х			Х						
S		Ew		Х								
		Pw		Х								
		We		Х	Х							
		Ee				X						
		Pe				Х						

In the sink direction (figure 116, from A to B), the signal output at the West [East] Working B MS16P2fsh connection point can be the signal received via either the associated West Working A capacity or the East Protection capacity; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal.

In the source direction, the working A outputs are connected to the associated working B inputs. The protection A outputs are connected to a local unequipped VC generator, extra traffic input, or one of the working inputs at B as shown in figures 117 to 120.

NOTE 2: ETS 300 746 [6] states that protection AUs when not in use (for extra traffic or working traffic) shall be source by VC unequipped signals. This shall be performed in this MS16P2fsh_C functions as ETS 300 746 [6] also shows that the S4_C (S4-4c_C) functions have permanent matrix connections for the protection timeslot capacity. The protection is a MS layer protection scheme and should not impact client layers. In the functional model, the MS16 layer knows the HO VC path multiplex structure, and is able to control HO VC unequipped signal insertion.

Figure 117: Matrix connections in a network element within a ring without a fault; dotted lines represent the case of extra traffic support

Figure 118: Matrix connections in a network element not adjacent to a fault

Figure 119: Matrix connections in a network element adjacent to a fault on its East side

Figure 120: Matrix connections in a network element adjacent to a fault on its west side

MS Protection Operation: The 2 fibre MS shared protection ring trail protection process shall operate as specified in ETS 300 746 [6].

Defects:

For further study.

Consequent Actions:

The function shall generate a VC-4 [VC-4-4c] unequipped signal (plus valid AU-4 [AU-4-4c] pointer) for each protection timeslot when the protection timeslot is not in use.

The function shall insert all-ONEs (AIS) (squelching) for an AU-4 [AU-4-4c] within protection timeslots that would otherwise be misconnected.

Defect Correlations:

For further study.

Performance Monitoring:

For further study.

9.6.2 STM-16 Multiplex Section 2 Fibre Shared Protection Ring Trail Termination Functions

9.6.2.1 STM-16 Multiplex Section 2 Fibre Shared Protection Ring Trail Termination Source MS16P2fsh_TT_So

Symbol:

Figure 121: MS16P2fsh_TT_So symbol

Interfaces:

Table 90: MS16P2fsh_TT_So input and output signals

Input(s)	Output(s)
MS16P2fsh_AI_D	MS16P2fsh_CI_D
MS16P2fsh_AI_CK	MS16P2fsh_CI_CK
MS16P2fsh_AI_FS	MS16P2fsh_CI_FS

Processes:

No information processing is required in the MS16P2fsh_TT_So, the MS16_AI at its output being identical to the MS16P2fsh_CI at its input.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

9.6.2.2 STM-16 Multiplex Section 2 Fibre Shared Protection Ring Trail Termination Sink MS16P2fsh_TT_Sk

Symbol:

Figure 122: MS16P2fsh_TT_Sk symbol

Interfaces:

Table 91: MS16P2fsh_TT_Sk input and output signals

Input(s)	Output(s)
MS16P2fsh_CI_D	MS16_AI_D
MS16P2fsh_CI_CK	MS16_AI_CK
MS16P2fsh_CI_FS	MS16_AI_FS
MS16P2fsh_CI_SSF	MS16_AI_TSF
MS16P2fsh_TT_Sk_MI_SSF_Reported	MS16P2fsh_TT_Sk_MI_cSSF

Processes:

The MS16P2fsh_TT_Sk function reports, as part of the MS16 layer, the state of the protected MS16 trail. In case all connections are unavailable the MS16P2fsh_TT_Sk reports the signal fail condition of the protected trail. This is applicable only for the working capacity.

None.

Defects:

Consequent Actions:

aTSF \leftarrow CI_SSF.

Defect Correlations:

 $cSSF \leftarrow CI_SSF$ and $SSF_Reported$.

9.6.3 STM-16 Multiplex Section 2 Fibre Shared Protection Ring Adaptation Functions

9.6.3.1 STM-16 Multiplex Section to STM-16 Multiplex Section 2 Fibre Shared Protection Ring Adaptation Source MS16/MS16P2fsh_A_So

Symbol:

MS16_AI

Figure 123: MS16/MS16P2fsh_A_So symbol

Interfaces:

Table 92: MS16/MS16P2fsh_A_So input and output signals

Input(s)	Output(s)
MS16P2fsh_CI_Dw	MS16_AI_D
MS16P2fsh_CI_Dp	MS16_AI_CK
MS16P2fsh_CI_CK	MS16_AI_FS
MS16P2fsh_CI_FS	
MS16P2fsh_CI_APS	

Processes:

The function shall multiplex two groups of signals (CI_Dw, CI_Dp) into the MS16 payload (16 AU-4 timeslots). The working group signal shall be multiplexed into AU-4 timeslots 1 to 8 and the protection group signal shall be multiplexed into AU-4 timeslots 9 to 16.

The function shall map the MS16 2 fibre shared protection ring APS signal into bytes K1 and K2.

Defects:	None.
Consequent actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

9.6.3.2 STM-16 Multiplex Section to STM-16 Multiplex Section 2 Fibre Shared Protection Ring Adaptation Sink MS16/MS16P2fsh_A_Sk

Symbol:

MS16_AI

Figure 124: MS16/MS16P2fsh_A_Sk symbol

Interfaces:

Table 93: MS16/MS16P2fsh_A_Sk input and output signals

Input(s)	Output(s)
MS16_AI_D	MS16P2fsh_CI_Dw
MS16_AI_CK	MS16P2fsh_CI_Dp
MS16_AI_FS	MS16P2fsh_CI_CK
MS16_AI_TSF	MS16P2fsh_CI_FS
MS16_AI_TSD	MS16P2fsh_CI_SSF
	MS16P2fsh_CI_SSD
	MS16P2fsh_CI_APS

Processes:

The function shall split the MS16 payload (i.e. 16 AU-4 timeslots) into two groups; the working group contains AU-4 timeslots 1 to 8 and the protection group contains AU-4 timeslots 9 to 16. The working group shall be output at MS16P2fsh_CI_Dw and the protection group at MS16P2fsh_CI_Dp.

K1K2: The function shall extract the 16 APS bits K1[1-8] and K2[1-8] from the MS16_AI_D signal. A new value shall be accepted when the value is identical for three consecutive frames. This value shall be output via MS16P2fsh_CI_APS.

Defects: None.

Consequent actions:

aSSF	\leftarrow	AI_TSF.	
aSSD	\leftarrow	AI_TSD.	
Defect Cor	relatio	ns:	None.
Performan	None.		

10 STM-64 Regenerator Section layer functions

Figure 125: STM-64 Regenerator Section atomic functions

RS64 Layer CP

The CI at this point is an octet structured, $125 \,\mu s$ framed data stream with co-directional timing. It is the entire STM-64 signal as defined in EN 300 147 [1]. The figure 126 depicts only bytes handled in the RS64 layer.

- NOTE 1: The unmarked bytes [2, 2] to [2, 192], [2, 194] to [2, 384], [3, 2] to [3, 192], [3, 194] to [3, 384], and [3, 386] to [3, 576] in rows 2,3 (figure 126) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The bytes for National Use (NU) in rows 1,2 (figure 126) are reserved for operator specific usage. Their processing is not within the province of the present document. If NU bytes [1, 449] to [1, 576] are unused, care should be taken in selecting the binary content of the bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.
- NOTE 3: The bytes Z0 [1, 386] to [1, 448] are reserved for future international standardization. Currently, they are undefined. Care should be taken in selecting the binary content of these bytes which are excluded from the scrambling process of the STM-N signal to ensure that long sequences of "1"s or "0"s do not occur.

1	2	191 192 1	193 194	384	385	386 448	3 449	5	76 57	77 17 280
1 A1	A	A	42	A2	JO	ZO		NU		
2 B1		E	E1		F1		NU			
3 D1		c	02		D3					
4										
5										
6						MS64 CI				
7										
8										
9										

Figure 126: RS64_CI_D signal

RS64 Layer AP

The AI at this point is octet structured and 125 µs framed with co-directional timing and represents the combination of adapted information from the MS64 layer (153 792 bytes per frame), the management communication DCC layer (3 bytes per frame if supported), the OW layer (1 byte per frame if supported) and the user channel F1 (1 byte per frame if supported). The location of these four components in the frame is defined in EN 300 147 [1] and depicted in figure 127.

NOTE 4: Bytes E1, F1 and D1-D3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

10.1 STM-64 Regenerator Section Connection functions

For further study.

- 10.2 STM-64 Regenerator Section Trail Termination functions
- 10.2.1 STM-64 Regenerator Section Trail Termination Source RS64_TT_So

Symbol:

Interfaces:

Input(s)	Output(s)
RS64_AI_D	RS64_CI_D
RS64_AI_CK	RS64_CI_CK
RS64_AI_FS	
RS64_TT_So_MI_TxTI	

Table 94: RS64_TT_So input and output signals

Processes:

The function builds the STM-64 signal by adding the frame alignment information, bytes A1A2, the STM Section Trace Identifier (STI) byte J0, computing the parity and inserting the B1 byte.

J0: In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in EN 300 417-1-1 [3], clause 7.1.

B1: The function shall calculate a Bit Interleaved Parity 8 (BIP-8) code using even parity. The BIP-8 shall be calculated over all bits of the previous STM-64 frame after scrambling and is placed in byte position B1 of the current STM-64 frame before scrambling (figure 129).

A1A2: The function shall insert the STM-64 frame alignment signal A1...A1A2...A2 into the regenerator section overhead as defined in EN 300 147 [1] and depicted in figure 126.

Scrambler: This function provides scrambling of the RS64_CI. The operation of the scrambler shall be functionally identical to that of a frame synchronous scrambler of sequence length 127 operating at the line rate. The generating polynomial shall be $1 + X^6 + X^7$. The scrambler shall be reset to "1111 1111" on the most significant bit (MSB) of the byte [1, 577] following the last byte of the STM-64 SOH in the first row. This bit and all subsequent bits to be scrambled shall be modulo 2 added to the output of the X^7 position of the scrambler. The scrambler shall run continuously throughout the remaining STM-64 frame.

Figure 129: Some processes within RS64_TT_So

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

10.2.2 STM-64 Regenerator Section Trail Termination Sink RS64_TT_Sk

Symbol:

Interfaces:

Table 95: RS64_TT_Sk input and output signals

Input(s)	Output(s)
RS64_CI_D	RS64_AI_D
RS64_CI_CK	RS64_AI_CK
RS64_CI_FS	RS64_AI_FS
RS64_CI_SSF	RS64_AI_TSF
RS64_TT_Sk_MI_ExTI	RS64_TT_Sk_MI_AcTI
RS64_TT_Sk_MI_TPmode	RS64_TT_Sk_MI_cTIM
RS64_TT_Sk_MI_TIMdis	RS64_TT_Sk_MI_pN_EBC
RS64_TT_Sk_MI_ExTImode	RS64_TT_Sk_MI_pN_DS
RS64_TT_Sk_MI_1second	

Processes:

This function monitors the STM-64 signal for RS errors, and recovers the RS trail termination status. It extracts the payload independent overhead bytes (J0, B1) from the RS64 layer Characteristic Information:

Descrambling: The function shall descramble the incoming STM-64 signal. The operation of the descrambler shall be functionally identical to that of a scrambler in RS64_TT_So.

B1: Even bit parity is computed for each bit n of every byte of the preceding scrambled STM-64 frame and compared with bit n of B1 recovered from the current frame (n = 1 to 8 inclusive) (figure 131). A difference between the computed and recovered B1 values is taken as evidence of one or more errors (nN_B) in the computation block.

J0: The Received Trail Trace Identifier RxTI shall be recovered from the J0 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in EN 300 417-1-1 [3], clauses 7.1 and 8.2.1.3.

Figure 131: Some processes within RS64_TT_Sk

Defects:

The function shall detect for dTIM defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

Consequent Actions:

aAIS	\leftarrow	CI_SSF or dTIM.
aTSF	\leftarrow	CI SSF or dTIM.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

- NOTE 1: The term "CI_SSF" has been added to the conditions for aAIS while the descrambler function has been moved from the e.g. OS64/RS64_A_Sk to this function. Consequently, an all-ONEs (AIS) pattern inserted in the mentioned adaptation function would be descrambled in this function. A "refreshment" of all-ONEs is required.
- NOTE 2: The insertion of AIS especially due to detection of dTIM will cause the RS-DCC channel to be "squelched" too, so that control of the NE via this channel is lost. If control is via this channel only, there is a risk of a dead-lock situation if dTIM is caused by a misprovisioning of ExTI.

Defect Correlations:

cTIM \leftarrow MON and dTIM.

Performance Monitoring:

For further study.

10.3 STM-64 Regenerator Section Adaptation functions

10.3.1 STM-64 Regenerator Section to Multiplex Section Adaptation Source RS64/MS64_A_So

Symbol:

Figure 132: RS64/MS64_A_So symbol

Interfaces:

Table 96: RS64/MS64_A_So input and output signals

Input(s)	Output(s)
MS64_CI_D	RS64_AI_D
MS64_CI_CK	RS64_AI_CK
STM64_CI_FS	RS64_AI_FS
STM64_CI_SSF	

Processes:

The function multiplexes the MS64_CI data (153 792 bytes / frame) into the STM-64 byte locations defined in EN 300 147 [1] and depicted in figure 127.

None.

NOTE 1: There might be cases in which the network element knows that the timing reference for a particular STM-64 interface can not be maintained within ±4,6 ppm. For such cases MS-AIS can be generated. This is network element specific and outside the scope of the present document.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all ONEs signal shall be within 9 953 280 kHz ± 20 ppm.

NOTE 2: If CI_SSF is not connected (when RS64/MS64_A_So is connected to a MS64_TT_So), SSF is assumed to be false.

Defect Correlations:None.Performance Monitoring:None.

10.3.2 STM-64 Regenerator Section to Multiplex Section Adaptation Sink RS64/MS64_A_Sk

Symbol:

Figure 133: RS64/MS64_A_Sk symbol

Interfaces:

Table 97: RS64/MS64_A_Sk input and output signals

Input(s)	Output(s)
RS64_AI_D	MS64_CI_D
RS64_AI_CK	MS64_CI_CK
RS64_AI_FS	MS64_CI_FS
RS64_AI_TSF	MS64_CI_SSF

Processes:

The function separates MS64_CI data from RS64_AI as depicted in figure 127.

Defects: None.
Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations: None.

10.3.3 STM-64 Regenerator Section to DCC Adaptation Source RS64/DCC_A_So

Symbol:

Figure 134: RS64/DCC_A_So symbol

Interfaces:

Table 98: RS64/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	RS64_AI_D
STM64_TI_CK	DCC_CI_CK
STM64_TI_FS	

Processes:

The function multiplexes the DCC CI data (192 kbit/s) into the byte locations D1, D2 and D3 as defined in EN 300 147 [1] and depicted in figure 127.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.
10.3.4 STM-64 Regenerator Section to DCC Adaptation Sink RS64/DCC_A_Sk

Symbol:

Figure 135: RS64/DCC_A_Sk symbol

Interfaces:

Table 99: RS64/DCC_A_Sk input and output signals

Input(s)	Output(s)					
RS64_AI_D	DCC_CI_D					
RS64_AI_CK	DCC_CI_CK					
RS64_AI_FS	DCC_CI_SSF					
RS64_AI_TSF						

Processes:

The function separates DCC data from RS Overhead as defined in EN 300 147 [1] and depicted in figure 127.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations: None.

Performance Monitoring: None.

10.3.5 STM-64 Regenerator Section to P0s Adaptation Source RS64/P0s_A_So/N

None.

Symbol:

Figure 136: RS64/P0s_A_So symbol

Table 100: RS64/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	RS64_AI_D
P0s_CI_CK	
P0s_CI_FS	
MS64_TI_CK	
MS64_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire or user channel information stream into the RS64_AI using slip buffering. It takes P0s_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the RSOH byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 127.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-64 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-64 clock, frame position (STM64_TI), and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

64 kbit/s timeslot: The adaptation source function has access to a specific 64 kbit/s channel of the RS access point. The specific 64 kbit/s channel is defined by the parameter N (N = E1, F1).

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

10.3.6 STM-64 Regenerator Section to P0s Adaptation Sink RS64/P0s_A_Sk/N

Symbol:

Figure 137: RS64/P0s_A_Sk symbol

Input(s)	Output(s)					
RS64_AI_D	P0s_CI_Sk_D					
RS64_AI_CK	P0s_CI_Sk_CK					
RS64_AI_FS	P0s_CI_FS					
RS64_AI_TSF	P0s_CI_SSF					

Table 101: RS64/P0s_A_Sk input and output signals

Processes:

The function separates P0s data from RS Overhead byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 127.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-64 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-64 signal clock (e.g. 9 953 280 kHz divided by a factor of 155 520).

64 kbit/s timeslot: The adaptation sink function has access to a specific 64 kbit/s of the RS access point. The specific 64 kbit/s is defined by the parameter N (N = E1, F1).

Defects: None.

Consequent Actions:

aSSF \leftarrow AI_TSF. aAIS \leftarrow AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

Performance Monitoring:

10.3.7 STM-64 Regenerator Section to V0x Adaptation Source RS64/V0x_A_So

None.

Symbol:

Table 102: RS64/V0x_A_So input and output signals

Input(s)	Output(s)
V0x_CI_D	RS64_AI_D
STM64_TI_CK	V0x_CI_CK
STM64_TI_FS	

Processes:

None.

This function multiplexes the V0x_CI data (64 kbit/s) into the byte location F1 as defined in EN 300 147 [1] and depicted in figure 127.

The user channel byte F1 shall be added to the 125 μ s frame.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

10.3.8 STM-64 Regenerator Section to V0x Adaptation Sink RS64/V0x_A_Sk

Symbol:

Figure 139: RS64/V0x_A_Sk symbol

Interfaces:

Table 103: RS64/V0x_A_Sk input and output signals

Input(s)	Output(s)	Output(s)					
RS64_AI_D	V0x_CI_D						
RS64_AI_CK	V0x_CI_CK						
RS64 AI FS	V0x CI SSF						
RS64_AI_TSF							

Processes:

This function separates user channel data from RS Overhead (byte F1) as defined in EN 300 147 [1] and depicted in figure 127.

Defects:

None.

Consequent Actions:

aSSF \leftarrow AI_TSF. aAIS \leftarrow AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations:

Performance Monitoring: None.

10.3.9 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation supporting FEC

None.

- 10.3.9.1 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC transparent
- 10.3.9.1.1 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC transparent Source Function RS64/MSF64_A _So

Symbol:

Figure 140: RS64/MSF64_A_So symbol

Interfaces:

Table 104: RS64/MSF64_A_So input and output signals

Input(s)	Output(s)
MSF64_CI_D	RS64_AI_D
MSF64_CI_CK	RS64_AI_CK
MSF64_CI_FS	RS64_AI_FS
MSF64_CI_SSF	

Processes:

The function multiplexes the MSF64_CI data into the STM-64 byte locations defined in EN 300 147 [1]. MSF64_CI consists of the MS64_CI, see figure 149, and the P1 and Q1 bytes, see ITU-T Recommendation G.707 figure 9-6.

Q1[7-8] - FSI: The function sets bits 7 and 8 of the Q1 byte to "00".

P1 - FEC: The function sets the P1 bytes to "00000000".

Defects: None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONES signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all-ONES signal shall be within the STM-64 level frequency \pm 20 ppm.

Defect Correlations: None.

Performance Monitoring: None.

10.3.9.1.2 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC transparent Sink Function RS64/MSF64_A _Sk

Symbol:

Figure 141: RS64/MSF64_A_Sk symbol

Interfaces:

Table 105: RS64/MSF_A_Sk input and output signals

Input(s)	Output(s)				
RS64_AI_D	MSF64_CI_D				
RS64_AI_CK	MSF64_CI_CK				
RS64_AI_FS	MSF64_CI_FS				
RS64_AI_TSF	MSF64_CI_SSF				

Processes:

The function separates MSF64_CI data from RS64_AI. MSF64_CI consists of the MS64_CI, see figure 149, and the P1 and Q1 bytes, see ITU-T Recommendation G.707 figure 9-6. All P1 and Q1 bytes set to "1".

Defects:

None.

None.

None.

Consequent Actions:

aSSF ← AI_TSF.
Defect Correlations:
Performance Monitoring:

- 10.3.9.2 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC generation
- 10.3.9.2.1 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC generation Source Function RS64/MS64-fec_A _So

Symbol:

Figure 142: RS64/MS64-fec_A_So symbol

Interfaces:

Table 106: RS64/MS64-fec_A_So input and output signals

Input(s)	Output(s)						
MS64_CI_D	RS64_AI_D						
MS64_CI_CK	RS64_AI_CK						
MS64_CI_FS	RS64_AI_FS						
MS64_CI_SSF							
RS64/MS64-fec_A_So_MI_FEC							
RS64/MS64-fec_A_So_MI_Delay							

Processes:

See figure 143.

Delay: If MI_Delay is "on" the delay buffers shall be enabled. If MI_Delay is "off" the delay buffers shall be disabled. The delay must be less than 15 μ s.

NOTE: MI_Delay must be "on" in order for MI_FEC to be "on".

Q1[7-8] - FSI: If MI_FEC is "on" the pattern "01" shall be inserted in bits 7 and 8 of the Q1 byte. If MI_FEC is "off" the pattern "00" shall be inserted in bits 7 and 8 of the Q1 byte.

P1 - FEC: If MI_FEC and MI_Delay is "on" the function calculates the parity according to

ITU-T Recommendation G.707 clause A.2.2 for the information bits according to clause A.3.1. The resulting parity is placed in the P1 locations according to clause A.3.2. The B2 needs to be compensated for the insertion of the parity. If MI_FEC is "off" the P1 bytes shall be set to "00000000".

Figure 143: STM-64 FEC encoding process

Due to the insertion of the parity in the P1 bytes, BIP compensation should be done as is shown in figure 144. The BIP is calculated before and after the overhead insertion. Both results and the related incoming BIP overhead (which is usually transported in the following frame) are combined via an exclusive OR and form the new BIP overhead for the outgoing signal. The related processes are shown in figure 145.

NOTE: The FEC calculation is done after the B2 compensation and includes the compensated B2 as shown in figure 144.

Figure 144: B2 compensation and FEC calculation

exclusive OR

Figure 145: B2 correction; processes

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONES signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all-ONES signal shall be within the STM-64 level frequency \pm 20 ppm.

Defect Correlations: None.

Performance Monitoring: None.

10.3.9.2.2 STM-64 Regenerator Section to STM-64 Multiplex Section Adaptation FEC generation Sink Function RS64/MS64-fec_A _Sk

Symbol:

Figure 146: RS64/MS64-fec_A_Sk symbol

Interfaces:

Table 107: RS64/MS64_fec_A_Sk input and output signals

Input(s)	Output(s)
RS64_AI_D	MS64_CI_D
RS64_AI_CK	MS64_CI_CK
RS64_AI_FS	MS64_CI_FS
RS64_AI_TSF	MS64_CI_SSF
RS64/MS64-fec_A_Sk_MI_Delay	

Processes:

Delay: If MI_Delay is "on" the delay buffers shall be enabled. If MI_Delay is "off" the delay buffers shall be disabled and the FEC decoding can not be enabled. The delay must be less than 15 μ s.

Q1[7-8] - FSI: If MI_Delay is "on" the FEC Status Indication (FSI) controls the FEC decoder, the "on" signal will enable the FEC decoding process. If at least 9 consecutive frames contain the "01" pattern in bits 7 and 8 of the Q1 byte the FEC generation Sink functions enters the "on" state. If in at least 3 consecutive frames any pattern other than the "01" is detected in bits 7 and 8 of the Q1 byte the FEC generation Sink functions enters the "off" state. The transition between the states shall be without bit errors.

K2[6-8], P1, Q1 - AIS: The MSF-dAIS information carried in these bits shall be extracted. If MSF-dAIS is detected the error correction is disabled (enters the "off" state).

P1 - FEC: If the syndrome of a code word indicate errors those are decoded during the time the information bits passes through the delay buffers and is corrected at the egress of the delay buffers. It is outside the scope of the present document to specify how the error(s) are decoded from the syndrome.

Figure 147: STM-64 FEC decoding process

Defects:

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte and the "11111111" pattern in the P1 and Q1 bytes a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2 or the "11111111" pattern in P1 byte or Q1 byte. The x shall be in range 3 to 5.

None.

dDEG: For further study.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

disable error correction \leftarrow dAIS.

Defect Correlations:

Performance Monitoring: None.

155

Figure 148: STM-64 Multiplex Section atomic functions

NOTE 1: The modelling of the MS64 to VC-4 and VC-4-4c layer adaptation functionality requires a further enhancement making it similar to the VC-4 to lower order VC layer adaptation functionality. This is for further study.

The CI at this point is octet structured and $125 \,\mu s$ framed with co-directional timing. Its format is characterized as the MS64_AI with an additional MS Trail Termination overhead in the 192 eight B2 bytes, byte M1, and bits 6-8 of the K2 byte in the frame locations defined in EN 300 147 [1] and depicted in figure 149.

- NOTE 2: The unmarked bytes in rows 5, 6, 7, 8, 9 (figure 149) are reserved for future international standardization. Currently, they are undefined.
- NOTE 3: The bytes for National Use (NU) in row 9 (figure 149) are reserved for operator specific usage. Their processing is not within the province of the present document.

	1	(64 6	65		192 19	93.	256	3 257		3	85		576	577 17 280
1															
2															
3															STM-64 payload
4	H1	H1			Y	н	2	H2		'1'	F	ъ	H3		(64 x 261 x 9 bytes)
5	32			B2		к	1				ĸ	2			
6	D4					D	5				C	6			
7	70					D	8				C	9			
8	D10					D	11				C)12			
9	S1										E	2	NU		
-											,	``.			
		1-4		5-8		M	1								
	S1	undefin	ned	SSM		194 19	95 19	6			3	84			

Figure 149: MS64_CI_D

MS64 Layer AP

The AI at this point is octet structured and 125 μ s framed with co-directional timing. It represents the combination of information adapted from the VC-4 layer (150 336 kbit/s), the management communications DCC layer (576 kbit/s), the OW layer (64 kbit/s if supported), the AU-4 pointer (3 bytes per frame), the APS signalling channel (13 or 16 bits per frame if supported, see note 4), and the SSM channel (4 bits per frame if supported). The location of these five components in the frame is defined in EN 300 147 [1] and depicted in figure 150.

- NOTE 4: 13 bits APS channel for the case of linear MS protection. 16 bits APS channel for the case of MS SPRING protection.
- NOTE 5: Bytes E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

The composition of the payload transported by an STM-64 will be determined by the client layer application. Typical compositions of the payload include:

- one VC-4-64c of 9 621 504 kbit/s;
- four VC-4-16c of 2 405 376 kbit/s;
- sixteen VC-4-4c of 601 344 kbit/s;
- sixty-four VC-4s of 150 336 kbit/s;
- combinations of VC-4s and VC-4-4cs up to the maximum of 64 VC-4 equivalents;
- 32 [two] working VC-4s [VC-4-4cs] and 32 [two] protection VC-4s [VC-4-4cs] (in MS64 SPRING application for further study).

Figure 148 shows that more than one adaptation source function exists in the MS64 layer that can be connected to one MS64 access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific AU timeslot. Access to the same AU timeslot by other adaptation source functions shall be denied. In contradiction with the source direction, adaptation sink functions may be activated all together. This may cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

NOTE 6: If one adaptation function only is connected to the AP, it will be activated. If one or more other functions are connected to the same AP accessing the same AU timeslot, one out of the set of functions will be active.

Figure 151 shows the MS trail protection specific sublayer atomic functions (MS64/MS64P_A, MS64P_C, MS64P_TT) within the MS64 layer. Note that the DCC (D4-D12), OW (E2), and SSM (S1[5-8]) signals can be accessible before (unprotected) and after (protected) the MS64P_C function. The choice is outside the scope of the present document.

NOTE 7: Equipment may provide MS protection and bi-directional services such as DCC and OW in the MS layer. Where a link uses this provision both ends of the link shall be configured to operate these services in the same mode (i.e. either protected or unprotected).

Figure 151: STM-64 Multiplex Section Linear Trail Protection Functions

MS64P Sublayer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is equivalent to the MS4_AI and depicted in figure 152.

NOTE 8: Bytes S1, E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element or are unprotected (see above).

Figure 152: MS64P_CI_D

11.1 STM-64 Multiplex Section Connection functions

For further study.

11.2 STM-64 Multiplex Section Trail Termination functions

11.2.1 STM-64 Multiplex Section Trail Termination Source MS64_TT_So Symbol:

Input(s)	Output(s)
MS64_AI_D	MS64_CI_D
MS64_AI_CK	MS64_CI_CK
MS64_AI_FS	MS64_CI_FS
MS64_RI_REI	
MS64_RI_RDI	
MS64_MI_M0_Generated	

Table 108: MS64_TT_So input and output signals

Processes:

This function adds error monitoring capabilities and remote maintenance information signals to the MS64_AI.

M0, M1: The function shall within 1 ms insert the value of MS64_RI_REI into the REI (Remote Error Indication) - to convey the count of interleaved bit blocks that have been detected in error by the BIP-1536 process in the companion MS64_TT_Sk. If M0_Generated is True both M0 and M1 are used for the range of "0000 0000, 0000 0000" (0) to "0000 0110, 0000 0000" (1 536), otherwise M0 is undefined and M1 is generated in the range of "0000 0000" (0) to "1111 1111" (255) where the value conveyed is truncated at 255. M0 bit 1 is most significant bit and M1 bit 8 is least significant bit.

K2[6-8]: These bits represents the defect status of the associated MS64_TT_Sk. The RDI indication shall be set to "110" on activation of MS64_RI_RDI within 1 ms, determined by the associated MS64_TT_Sk function, and passed through transparently (except for incoming codes "111" and "110") within 1 ms on the MS64_RI_RDI removal. If MS64_RI_RDI is inactive an incoming code "111" or "110" shall be replaced by code "000".

NOTE 1: K2[6-8] can not be set to "000" on clearing of RI_RDI; MS SPRING APS extends into those bits. The bits shall be passed transparently in this case. With linear MS protection or without protection it shall be guaranteed that neither code "111" nor "110" will be output.

B2: The function shall calculate a Bit Interleaved Parity 1536 (BIP-1536) code using even parity. The BIP-1536 shall be calculated over all bits, except those in the RSOH bytes, of the previous STM-64 frame and placed in 192 B2 bytes of the current STM-64 frame.

NOTE 2: The BIP-384 procedure is described in EN 300 147 [1].

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

11.2.2 STM-64 Multiplex Section Trail Termination Sink MS64_TT_Sk

Symbol:

Figure 154: MS64_TT_Sk symbol

Interfaces:

Table 109: MS64	_TT_	_Sk input	and	output	signals
-----------------	------	-----------	-----	--------	---------

Input(s)	Output(s)
MS64_CI_D	MS64_AI_D
MS64_CI_CK	MS64_AI_CK
MS64_CI_FS	MS64_AI_FS
MS64_CI_SSF	MS64_AI_TSF
MS64_TT_Sk_MI_DEGTHR	MS64_AI_TSD
MS64_TT_Sk_MI_DEGM	MS64_TT_Sk_MI_cAIS
MS64_TT_Sk_MI_1second	MS64_TT_Sk_MI_cDEG
MS64_TT_Sk_MI_TPmode	MS64_TT_Sk_MI_cRDI
MS64_TT_Sk_MI_SSF_Reported	MS64_TT_Sk_MI_cSSF
MS64_TT_Sk_MI_AIS_Reported	MS64_TT_Sk_MI_pN_EBC
MS64_TT_Sk_MI_RDI_Reported	MS64_TT_Sk_MI_pF_EBC
MS64_TT_Sk_MI_M1_Ignored	MS64_TT_Sk_MI_pN_DS
MS64_TT_Sk_MI_M0_Ignored	MS64_TT_Sk_MI_pF_DS
C C	MS64_RI_REI
	MS64 RI RDI

Processes:

This function monitors error performance of associated MS64 including the far end receiver.

B2: The BIP-1536 shall be calculated over all bits, except of those in the RSOH bytes, of the previous STM-64 frame and compared with the three error monitoring bytes B2 recovered from the MSOH of the current STM-64 frame. A difference between the computed and recovered B2 values is taken as evidence of one or more errors (nN_B) in the computation block.

NOTE 1: There are 1 536 blocks consisting of 801 bits and a BIP-1 as EDC per STM-64 frame in the MS64 layer.

M0, M1: The REI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The REI (nF_B) is used to monitor the error performance of the other direction of transmission. The application process is described in EN 300 417-1-1 [3], clause 7.4.2 (REI). If M1_ignored is true, nF_B shall be forced to "0"; if M1_ignored is false, nF_B shall equal the value in REI.

NOTE 2 : M1_ignored is a parameter provisioned by the operator to indicate the support of the M1 byte in the incoming STM-64 signal. For the case M1 is supported, M1_ignored should be set to false, otherwise M1_ignored should be set to true.

If M0_Ignored is False the function shall interpret the value in the bytes as shown in table110. If M0_Ignored is True the function shall interpret the value in the byte as shown in table 111.

M0[1-8] code, bits 1234 5678	M1[1-8] code, bits 1234 5678	code interpretation [#BIP violations], (nF_B)
0000 0000	0000 0000	0
0000 0000	0000 0001	1
0000 0000	0000 0010	2
0000 0000	0000 0011	3
0000 0000	0000 0100	4
	:	
0000 0110	0000 0000	1 536
0001 0110	0000 0001	0
	:	:
1111 1111	1111 1111	0

Table 110: STM-64 M0 and M1 interpretation

Table 111: STM-64 M1 interpretation

M1[1-8] code, bits 1234 5678	code interpretation [#BIP violations], (nF_B)
0000 0000	0
0000 0001	1
0000 0010	2
0000 0011	3
0000 0100	4
1111 1111	255

NOTE 3: In case of interworking with old equipment not supporting MS-REI, the information extracted from M1 is not relevant.

K2[6-8] - RDI: The RDI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The RDI provides information as to the status of the remote receiver. A "110" indicates a Remote Defect Indication state, while other patterns indicate the normal state. The application process is described in EN 300 417-1-1 [3], clauses 7.4.11 and 8.2.

K2[6-8] - AIS: The MS-AIS information carried in these bits shall be extracted.

Defects:

The function shall detect for dDEG and dRDI defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2. The x shall be in range 3 to 5.

Consequent Actions:

aAIS	\leftarrow	dAIS.
aRDI	\leftarrow	dAIS.
aREI	\leftarrow	#EDCV.
aTSF	\leftarrow	dAIS.
aTSD	\leftarrow	dDEG.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

Defect Correlations:

cAIS .	\leftarrow	MON and	dAIS ar	nd (not CI_	_SSF) and	AIS_	Reported.
--------	--------------	---------	---------	-------------	-----------	------	-----------

 $cDEG \leftarrow MON and dDEG.$

- $cRDI \quad \leftarrow \quad MON \text{ and } dRDI \text{ and } RDI_Reported.$
- $\mathsf{cSSF} \quad \leftarrow \quad \mathsf{MON} \text{ and } \mathsf{dAIS} \text{ and } \mathsf{SSF}_\mathsf{Reported}.$

Performance monitoring:

The performance monitoring process shall be performed as specified in EN 300 417-1-1 [3], clause 8.2.4 through 8.2.7.

- $pN_DS \leftarrow aTSF \text{ or } dEQ.$
- $pF_DS \leftarrow dRDI.$
- $pN_EBC \leftarrow \Sigma nN_B.$
- $pF_EBC \ \leftarrow \ \Sigma \, nF_B.$

11.3 STM-64 Multiplex Section Adaptation functions

11.3.1 STM-64 Multiplex Section to S4 Layer Adaptation Source MS64/S4_A_So/(D,C,B,0)

Symbol:

Figure 155: MS64/S4_A_So symbol

Interfaces:

Table 112: MS64/S4_A_So input and output signals

Input(s)	Output(s)
S4_CI_D	MS64_AI_D
S4_CI_CK	MS64_AI_CK
S4_CI_FS	MS64_AI_FS
S4_CI_SSF	
STM64_TI_CK	MS64/S4_A_So_MI_pPJE+
STM64_TI_FS	MS64/S4_A_So_MI_pPJE-
MS64/S4_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4 signal, represented by a nominally $(261 \times 9 \times 64) = 150 336$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-64 signal at the AU tributary location indicated by (D,C,B,0), where D designates the AUG-16 number (1 to 4), C designates the AUG-4 number (1 to 4) and B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4 is coded in the related AU-4 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-64 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS64/S4_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4 pointer actions. An example is given in EN 300 417-4-1 [4], annex A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 24 data bits shall be cancelled once and no data written at the three positions H3 + 1. Upon a negative justification action, an extra 24 data bits shall be read out once into the three positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Figure 156: Main processes within MS64/S4_A_So

Buffer size: For further study.

Behaviour at recovery from defect condition: The incoming frequency (S4_CI_CK) of a passing through VC-4 may exceed its limits during a STM64dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4 pointer is carried in 2 bytes of payload specific OH (H1, H2) in each STM-64 frame. The AU-4 pointer is aligned in the STM-64 payload in fixed position relative to the STM-64 frame. The AU-4 pointer points to the begin of the VC-4 frame within the STM-64. The format of the AU-4 pointer and its location in the frame are defined in EN 300 147 [1].

H1H2 - *Pointer generation:* The function shall generate the AU-4 pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 192+N] positions with the SS field set to 10 to indicate AU-4. N = 16(D-1) + 4(C-1) + B + 1.

YY1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 64+N] and [4, 128+N] and code "1" = 11111111 in bytes [4, 256+N] and [4, 320+N]. N = 16(D-1) + 4(C-1) + B + 1. Bits ss are undefined.

AU-4 timeslot: The adaptation source function has access to a specific AU-4 of the MS64 access point. The AU-4 is defined by the parameter (D,C,B,0) (D= 1..4, C = 1..4 and B = 1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: if CI_SSF is not connected (when MS64/S4_A_So is connected to a S4_TT_So), CI_SSF is assumed to be false.

Defect Correlations:

None.

None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4 only. A locally generated VC-4 will have a fixed frame phase; pointer justifications will not occur.

11.3.2 STM-64 Multiplex Section to S4 Layer Adaptation Sink MS64/S4_A_Sk/(D,C,B,0)

Symbol:

Figure 157: MS64/S4_A_Sk symbol

Interfaces:

Table 113: MS64/S4_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	S4_CI_D
MS64_AI_CK	S4_CI_CK
MS64_AI_FS	S4_CI_FS
MS64_AI_TSF	S4_CI_SSF
MS64/S4_A_Sk_MI_Active	MS64/S4_A_Sk_MI_cAIS
MS64/S4_A_Sk_MI_AIS_Reported	MS64/S4_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4 data with frame phase information from the STM-64 as defined in EN 300 147 [1]. The VC-4 is extracted from the AU tributary location indicated by (D,C,B,0), where D designates the AUG-16 number (1 to 4), C designates the AUG-4 number (1 to 4) and B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H2 - AU-4 pointer interpretation: An AU-4 pointer consists of 2 bytes, [4, N] and [4, 192+N]. The function shall perform AU-4 pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4 frame phase within the STM-64. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 16(D-1) + 4(C-1) + B + 1.

YY1*1*: The bytes [4, 64+N], [4, 128+N], [4, 256+N], and [4, 320+N] contain fixed stuff, of a specified value, ignored by the AU-4 pointer interpreter. N = 16(D-1) + 4(C-1) + B + 1.

AU-4 timeslot: The adaptation sink function has access to a specific AU-4 of the MS64 access point. The AU-4 is defined by the parameter (D,C,B,0) (D= 1..4, C = 1..4 and B = 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AIS_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AIS_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOP_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOP_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not AI_TSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

11.3.3 STM-64 Multiplex Section to S4-4c Layer Adaptation Source MS64/S4-4c_A_So/(D,C,0,0)

Symbol:

Figure 158: MS4/S4-4c_A_So symbol

Interfaces:

Table 114: MS64/S4-4c_A_So input and output signals

Input(s)	Output(s)
S4-4c_CI_D	MS64_AI_D
S4-4c_CI_CK	MS64_AI_CK
S4-4c_CI_FS	MS64_AI_FS
S4-4c_CI_SSF	
STM64_TI_CK	MS64/S4-4c_A_So_MI_pPJE+
STM64_TI_FS	MS64/S4-4c_A_So_MI_pPJE-
MS64/S4-4c_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-4c signal, represented by a nominally $(4 \times 261 \times 9 \times 64) = 601 344$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-64 signal at the AU-4-4c tributary location indicated by (D,C,0,0), where D designates the AUG-16 number (1 to 4) and C designates the AUG-4 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-4c is coded in the related AU-4-4c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-64 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS64/S4-4c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-4c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 96 data bits shall be cancelled once and no data written at the twelve positions H3 + 1. Upon a negative justification action, an extra 96 data bits shall be read out once into the twelve positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Figure 159: Main processes within MS64/S4-4c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-4c_CI_CK) of a passing through VC-4-4c may exceed its limits during a STM64dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-4c pointer is carried in 2 + 6 bytes of payload specific OH in each STM-64 frame. The AU-4-4c pointer is aligned in the STM-64 payload in fixed position relative to the STM-64 frame. The AU-4-4c pointer points to the begin of the VC-4-4c frame within the STM-64. The format of the AU-4-4c pointer and its location in the frame are defined in EN 300 147 [1].

H1H1H1H1H2H2H2H2 - *Pointer generation:* The function shall generate the AU-4-4c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 192+N] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-4c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 1+N] to [4, 3+N], H2 [4, 193+N] to [4, 195+N]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined. N = 16(D-1) + 4(C-1) + 1.

YYYYYYY1*1*1*1*1*1*1*1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 64+N] to [4, 67+N] and [4, 128+N] to [4, 131+N] and code "1" = 11111111 in bytes [4, 256+N] to [4, 259+N] and [4, 320+N] to [4, 323+N], N = 16(D-1) + 4(C-1) + 1. Bits ss are undefined.

AU-4-4c timeslots: The adaptation source function has access to a specific AU-4-4c of the MS64 access point. The AU-4-4c is defined by the parameter (D,C,0,0) (D= 1..4 and C = 1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS64/S4-4c_A_So is connected to a S4-4c_TT_So), CI_SSF is assumed to be false.

Defect Correlations:

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-4c only. A locally generated VC-4-4c may have a fixed frame phase; pointer justifications will not occur.

11.3.4 STM-64 Multiplex Section to S4-4c Layer Adaptation Sink MS64/S4-4c_A_Sk/(D,C,0,0)

Symbol:

Figure 160: MS64/S4-4c_A_Sk symbol

Interfaces:

Table 115: MS64/S4-4c_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	S4-4c_CI_D
MS64_AI_CK	S4-4c_CI_CK
MS64_AI_FS	S4-4c_CI_FS
MS64_AI_TSF	S4-4c_CI_SSF
MS64/S4-4c_A_Sk_MI_Active	MS64/S4-4c_A_Sk_MI_cAIS
MS64/S4-4c_A_Sk_MI_AIS_Reported	MS64/S4-4c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-4c data with frame phase information from the STM-64 as defined in EN 300 147 [1]. The VC-4-4c is extracted from tributary location indicated by (D,C,0.0), where D designates the AUG-16 number (1 to 4) and C designates the AUG-4 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H1H1H1H2H2H2H2 - *AU-4-4c pointer interpretation:* An AU-4-4c pointer consists of 2 bytes, [4, N] and [4, 192+N]. There will be 3 concatenation indicators, each 2 bytes long, in [4, 1+N]/[4, 193+N], [4, 2+N]/[4, 194+N], and [4, 3+N]/[4, 195+N]. The function shall perform AU-4-4c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-4c frame phase within the STM-64. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 16(D-1) + 4(C-1) + 1.

YYYYYYY1*1*1*1*1*1*1*1*1*1*1*1*: The bytes [4, 64+N] to [4, 67+N], [4, 128+N] to [4, 131+N], [4, 256+N] to [4, 259+N] and [4, 320+N] to [4, 323+N] contain fixed stuff, of a specified value, ignored by the AU-4-4c pointer interpreter. N = 16(D-1) + 4(C-1) + 1.

AU-4-4c timeslots: The adaptation source function has access to a specific AU-4-4c of the MS64 access point. The AU-4-4c is defined by the parameter (D,C,0,0) (D= 1..4 and C = 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

11.3.5 STM-64 Multiplex Section to S4-16c Layer Adaptation Source MS64/S4-16c_A_So/(D,0,0,0)

Symbol:

Figure 161: MS64/S4-16c_A_So symbol

Interfaces:

Table 116: MS64/S4-16c_A_So input and output signals

Input(s)	Output(s)
S4-16c_CI_D	MS64_AI_D
S4-16c_CI_CK	MS64_AI_CK
S4-16c_CI_FS	MS64_AI_FS
S4-16c_CI_SSF	
STM64_TI_CK	MS64/S4-16c_A_So_MI_pPJE+
STM64_TI_FS	MS64/S4-16c_A_So_MI_pPJE-
MS64/S4-16c_A_So_MI_Active	·

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-16c signal, represented by a nominally (16 x 261 x 9 x 64) = 2 405 376 kbit/s information stream and the related frame phase with a frequency accuracy within \pm 4,6 ppm, to be multiplexed into a STM-64 signal at the AU-4-16c tributary location indicated by (D,0,0,0), where D designates the AUG-16 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-16c is coded in the related AU-4-16c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-64 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS64/S4-16c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-16c pointer actions. An example is given in EN 300 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 384 data bits shall be cancelled once and no data written at the 48 positions H3 + 1. Upon a negative justification action, an extra 384 data bits shall be read out once into the 48 positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Figure 162: Main processes within MS64/S4-16c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-16c_CI_CK) of a passing through VC-4-16c may exceed its limits during a STM64dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-16c pointer is carried in 2 + 30 bytes of payload specific OH in each STM-64 frame. The AU-4-16c pointer is aligned in the STM-64 payload in fixed position relative to the STM-64 frame. The AU-4-16c pointer points to the begin of the VC-4-16c frame within the STM-64. The format of the AU-4-16c pointer and its location in the frame are defined in EN 300 147 [1].

 $H1^{16}H2^{16}$ - *Pointer generation:* The function shall generate the AU-4-16c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 192+N] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-16c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 1+N] to [4, 15+N], H2 [4, 193+N] to [4, 207+N]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined. N = 16(D-1).

 $Y^{32}1^{*32}$ - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 64+N] to [4, 79+N] and [4, 128+N] to [4, 143+N] and code "1" = 11111111 in bytes [4, 256+N] to [4, 271+N] and [4, 320+N] to [4, 335+N], N = 16(D-1) + 1. Bits ss are undefined.

AU-4-16c timeslots: The adaptation source function has access to a specific AU-4-16c of the MS64 access point. The AU-4-16c is defined by the parameter (D,0,0,0) (D= 1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS64/S4-16c_A_So is connected to a S4-16c_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-16c only. A locally generated VC-4-16c may have a fixed frame phase; pointer justifications will not occur.

11.3.6 STM-64 Multiplex Section to S4-16c Layer Adaptation Sink MS64/S4-16c_A_Sk/(D,0,0,0)

Symbol:

Interfaces:

Table 117: MS64/S4-16c_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	S4-16c_CI_D
MS64_AI_CK	S4-16c_CI_CK
MS64_AI_FS	S4-16c_CI_FS
MS64_AI_TSF	S4-16c_CI_SSF
MS64/S4-16c_A_Sk_MI_Active	MS64/S4-16c_A_Sk_MI_cAIS
MS64/S4-16c_A_Sk_MI_AIS_Reported	MS64/S4-16c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-16c data with frame phase information from the STM-64 as defined in EN 300 147 [1]. The VC-4-16c is extracted from tributary location indicated by (D,0,0.0), where D designates the AUG-16 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

 $H1^{16}H2^{16}$ - AU-4-16c pointer interpretation: An AU-4-16c pointer consists of 2 bytes, [4, N] and [4, 192+N]. There will be 15 concatenation indicators, each 2 bytes long, in [4, 1+N] to [4,15+N] and [4,193+N] to [4, 207+N]. The function shall perform AU-4-16c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the

VC-4-16c frame phase within the STM-64. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 16(D-1) + 4(C-1) + 1.

 $Y^{32}1^{*32}$: The bytes [4, 64+N] to [4, 79+N], [4, 128+N] to [4, 143+N], [4, 256+N] to [4, 271+N] and [4, 320+N] to [4, 335+N] contain fixed stuff, of a specified value, ignored by the AU-4-16c pointer interpreter. N = 16(D-1) + 4(C-1) + 1.

AU-4-16c timeslots: The adaptation source function has access to a specific AU-4-16c of the MS64 access point. The AU-4-16c is defined by the parameter (D,0,0,0) (D= 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

None.

 $cLOP \leftarrow dLOP.$

Performance Monitoring:

11.3.7 STM-64 Multiplex Section to S4-64c Layer Adaptation Source MS64/S4-64c_A_So

Symbol:

Figure 164: MS64/S4-64c_A_So symbol

Interfaces:

Table 118: MS64/S4-64c_A_So input and output signals

Input(s)	Output(s)
S4-64c_CI_D	MS64_AI_D
S4-64c_CI_CK	MS64_AI_CK
S4-64c_CI_FS	MS64_AI_FS
S4-64c_CI_SSF	
STM64_TI_CK	MS64/S4-64c_A_So_MI_pPJE+
STM64_TI_FS	MS64/S4-64c_A_So_MI_pPJE-
MS64/S4-64c_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-64c signal, represented by a nominally $(64 \times 261 \times 9 \times 64) = 9.621.504$ kbit/s information stream and the related frame phase with a frequency accuracy within ± 4.6 ppm, to be multiplexed into a STM-64 signal at the AU-4-64c tributary location. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-64c is coded in the related AU-4-64c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-64 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS64/S4-64c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-64c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 1 536 data bits shall be cancelled once and no data written at the 192 positions H3 + 1. Upon a negative justification action, an extra 1 536 data bits shall be read out once into the 192 positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

176

Figure 165: Main processes within MS64/S4-64c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-64c_CI_CK) of a passing through VC-4-64c may exceed its limits during a STM64dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-64c pointer is carried in 2 + 126 bytes of payload specific OH in each STM-64 frame. The AU-4-64c pointer is aligned in the STM-64 payload in fixed position relative to the STM-64 frame. The AU-4-64c pointer points to the begin of the VC-4-64c frame within the STM-64. The format of the AU-4-64c pointer and its location in the frame are defined in EN 300 147 [1].

 $H1^{64}H2^{64}$ - *Pointer generation:* The function shall generate the AU-4-64c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, 1], H2 [4, 193] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-64c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 2] to [4, 64], H2 [4, 194] to [4, 256]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined.

 $Y^{128}1^{*128}$ - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 65] to [4, 192] and code "1" = 11111111 in bytes [4, 257] to [4, 384]. Bits ss are undefined.

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS64/S4-64c_A_So is connected to a S4-64c_TT_So), CI_SSF is assumed to be false.

Defect Correlations:

None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-64c only. A locally generated VC-4-64c may have a fixed frame phase; pointer justifications will not occur.

11.3.8 STM-64 Multiplex Section to S4-64c Layer Adaptation Sink MS64/S4-64c_A_Sk

Symbol:

Figure 166: MS64/S4-64c_A_Sk symbol

Interfaces:

Table 119: MS64/S4-64c_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	S4-64c_CI_D
MS64_AI_CK	S4-64c_CI_CK
MS64_AI_FS	S4-64c_CI_FS
MS64_AI_TSF	S4-64c_CI_SSF
MS64/S4-64c_A_Sk_MI_Active	MS64/S4-64c_A_Sk_MI_cAIS
MS64/S4-64c_A_Sk_MI_AIS_Reported	MS64/S4-64c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-64c data with frame phase information from the STM-64 as defined in EN 300 147 [1]. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

 $H1^{64}H2^{64}$ - *AU-4-64c pointer interpretation:* An AU-4-64c pointer consists of 2 bytes, [4, 1] and [4, 193]. There will be 63 concatenation indicators, each 2 bytes long, in [4, X]/[4, 192+X], X = 2..64. The function shall perform AU-4-64c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-64c frame phase within the STM-64. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase.

 $Y^{128}1^{*128}$: The bytes [4, 65] to [4, 192] and [4, 257] to [4, 384] contain fixed stuff, of a specified value, ignored by the AU-4-64c pointer interpreter.

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

11.3.9 STM-64 Multiplex Section to DCC Adaptation Source MS64/DCC_A_So

Symbol:

Figure 167: MS64/DCC_A_So symbol

Interfaces:

Table 120: MS64/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	MS64_AI_D
STM64_TI_CK	DCC_CI_CK
STM64_TI_FS	

Processes:

The function multiplexes the DCC CI data (576 kbit/s) into the byte locations D4 to D12 as defined in EN 300 147 [1] and depicted in figure 150.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

11.3.10 STM-64 Multiplex Section to DCC Adaptation Sink MS64/DCC_A_Sk

Symbol:

Figure 168: MS64/DCC_A_Sk symbol

Interfaces:

Table 121: MS64/DCC_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	DCC_CI_D
MS64_AI_CK	DCC_CI_CK
MS64_AI_FS	DCC_CI_SSF
MS64_AI_TSF	

Processes:

The function separates DCC data from MS Overhead as defined in EN 300 147 [1] and depicted in figure 150.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

None.

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations: None.

Performance Monitoring: None.
11.3.11 STM-64 Multiplex Section to P0s Adaptation Source MS64/P0s_A_So

Symbol:

Figure 169: MS64/P0s_A_So symbol

Interfaces:

Table 122: MS64/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	MS64/P0s_AI_So_D
P0s_CI_CK	
P0s_CI_FS	
STM64_TI_CK	
STM64_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire information stream into the MS64_AI using slip buffering. It takes P0s_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the MSOH byte E2 as defined in EN 300 147 [1] and depicted in figure 150.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-64 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-64 clock, frame position, and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

11.3.12 STM-64 Multiplex Section to P0s Adaptation Sink MS64/P0s_A_Sk

Symbol:

Figure 170: MS64/P0s_A_Sk symbol

Interfaces:

Table 123: MS64/P0s_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	P0s_CI_Sk_D
MS64_AI_CK	P0s_CI_Sk_CK
MS64_AI_FS	P0s_CI_FS
MS64_AI_TSF	P0s_CI_SSF

Processes:

The function separates POs data from MS Overhead byte E2 as defined in EN 300 147 [1] and depicted in figure 150.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-64 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-64 signal clock (e.g. 9 953 280 kHz divided by a factor of 155 520).

Defects: None.

Consequent Actions:

 $\begin{array}{rcl} \text{aSSF} & \leftarrow & \text{AI_TSF.} \\ \text{aAIS} & \leftarrow & \text{AI} \ \text{TSF.} \end{array}$

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect	Correlations:	None.

Performance Monitoring: N	None
---------------------------	------

11.3.13 STM-64 Multiplex Section to Synchronization Distribution Adaptation Source MS64/SD_A_So

See EN 300 417-6-1 [5].

11.3.14 STM-64 Multiplex Section to Synchronization Distribution Adaptation Sink MS64/SD_A_Sk

See EN 300 417-6-1 [5].

11.3.15 STM-64 Multiplex Section Layer Clock Adaptation Source MS64-LC_A_So

See EN 300 417-6-1 [5].

11.4 STM-64 Multiplex Section Layer Monitoring Functions

For further study.

- 11.5 STM-64 Multiplex Section Linear Trail Protection Functions
- 11.5.1 STM-64 Multiplex Section Linear Trail Protection Connection Functions
- 11.5.1.1 STM-64 Multiplex Section 1+1 Linear Trail Protection Connection MS64P1+1_C

Symbol:

Figure 171: MS64P1+1_C symbol

Interfaces:

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS64P_CI_D	MS64P_CI_D
MS64P_CI_CK	MS64P_CI_CK
MS64P_CI_FS	MS64P_CI_FS
MS64P_CI_SSF	MS64P_CI_SSF
MS64P_CI_SSD	
	For connection points N:
For connection points N:	MS64P_CI_D
MS64P_CI_D	MS64P_CI_CK
MS64P_CI_CK	MS64P_CI_FS
MS64P_CI_FS	MS64P_CI_SSF
Per function:	Per function:
MS64P_CI_APS	MS64P_CI_APS
MS64P_C_MI_SWtype	MS64P_C_MI_cFOP
MS64P_C_MI_OPERtype	
MS64P_C_MI_WIRTime	
MS64P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Table 124: MS64P1+1_C input and output signals

Processes:

The function performs the STM-64 linear multiplex section protection process for 1 + 1 protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 48 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #1 reference point can be the signal received via either the associated working #1 section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected) or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change between operation types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1 + 1
Switching type:	uni-directional or bi-directional
Operation type:	revertive or non-revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	(revertive operation) LO, FSw-#1, MSw-#1, CLR, EXER-#1 (non-revertive operation) LO or FSw, FSw-#i, MSw, MSw-#i, CLR, EXER-#1
SFpriority, SDpriority:	high

Table 125: "Parameters for MS64P1+1 C protection process"

Defects:

Consequent Actions:	None.
consequence rections.	1,0110.

Defect Correlations: None.

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

Performance Monitoring: None.

11.5.1.2 STM-64 Multiplex Section 1:n Linear Trail Protection Connection MS64P1:n_C

None.

Symbol:

Interfaces:

Table 126: MS64P1:n_C input and output signals

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS64P_CI_D	MS64P_CI_D
MS64P_CI_CK	MS64P_CI_CK
MS64P_CI_FS	MS64P_CI_FS
MS64P_CI_SSF	MS64P_CI_SSF
MS64P_CI_SSD	
MS64P_MI_Sfpriority	For connection points N and E:
MS64P_MI_Sdpriority	MS64P_CI_D
	MS64P CI CK
For connection points N and E:	MS64P_CI_FS
MS64P_CI_D	MS64P_CI_SSF
MS64P_CI_CK	
MS64P_CI_FS	Per function:
	MS64P_CI_APS
Per function:	
MS64P_CI_APS	MS64P_C_MI_cFOP
MS64P_C_MI_Swtype	
MS64P_C_MI_EXTRAtraffic	
MS64P_C_MI_WTRTime	
MS64P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Processes:

The function performs the STM-64 linear multiplex section protection process for 1:n protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 47 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #i reference point can be the signal received via either the associated working #i section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected), connected to the extra traffic input, or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1:n (n ≤ 14)
Switching type:	uni-directional or bi-directional
Operation type:	Revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	LO, FSw-#i, MSw-#i, CLR, EXER

Table 127: "Parameters for MS64P1:n_C protection process"

Defects:

None.

Consequent Actions:

For the case where neither the extra traffic nor a normal signal input is to be connected to the protection section output, the null signal shall be connected to the protection output. The null signal is either one of the normal signals, an all-ONEs, or a test signal.

For the case of a protection switch, the extra traffic output (if applicable) is disconnected from the protection input, set to all-ONEs (AIS) and aSSF is activated.

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

11.5.2 STM-64 Multiplex Section Linear Trail Protection Trail Termination Functions

11.5.2.1 Multiplex Section Protection Trail Termination Source MS64P_TT_So

Symbol:

Figure 173: MS64P_TT_So symbol

Interfaces:

Table 128: MS64P_TT_So input and output signals

Input(s)	Output(s)
MS64_AI_D	MS64P_CI_D
MS64_AI_CK	MS64P_CI_CK
MS64_AI_FS	MS64P_CI_FS

Processes:

No information processing is required in the MS64P_TT_So, the MS64_AI at its output being identical to the MS64P_CI at its input.

Defects:	None.
Consequent Actions:	None
Defect Correlations:	None.
Performance Monitoring:	None.

11.5.2.2 Multiplex Section Protection Trail Termination Sink MS64P_TT_Sk

Symbol:

Figure 174: MS64P_TT_Sk symbol

Interfaces:

Table 129: MS64P_TT_Sk input and output signals

Input(s)	Output(s)
MS64P_CI_D	MS64_AI_D
MS64P_CI_CK	MS64_AI_CK
MS64P_CI_FS	MS64_AI_FS
MS64P_CI_SSF	MS64_AI_TSF
MS64P_TT_Sk_MI_SSF_Reported	MS64P_TT_Sk_MI_cSSF

Processes:

The MS64P_TT_Sk function reports, as part of the MS64 layer, the state of the protected MS64 trail. In case all connections are unavailable the MS64P_TT_Sk reports the signal fail condition of the protected trail.

Defects: None.

Consequent Actions:

aTSF \leftarrow CI_SSF.

Defect Correlations: None.

 $cSSF \leftarrow CI_SSF$ and $SSF_Reported$.

11.5.3 STM-64 Multiplex Section Linear Trail Protection Adaptation Functions

11.5.3.1 STM-64 Multiplex Section to STM-64 Multiplex Section Protection Layer Adaptation Source MS64/MS64P_A_So

Symbol:

Figure 175: MS64/MS64P_A_So symbol

Interfaces:

Table 130: MS64/MS64P_A_So input and output signals

Input(s)	Output(s)
MS64P_CI_D	MS64_AI_D
MS64P_CI_CK	MS64_AI_CK
MS64P_CI_FS	MS64_AI_FS
MS64P_CI_APS	

Processes:

The function shall multiplex the MS64 APS signal and MS64 data signal onto the MS64 access point.

Defects:	None.
Consequent actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

11.5.3.2 STM-64 Multiplex Section to STM-64 Multiplex Section Protection Layer Adaptation Sink MS64/MS64P_A_Sk

Symbol:

Figure 176: MS64/MS64P_A_Sk symbol

Interfaces:

Table 131: MS64/MS64P_A_Sk input and output signals

Input(s)	Output(s)
MS64_AI_D	MS64P_CI_D
MS64_AI_CK	MS64P_CI_CK
MS64_AI_FS	MS64P_CI_FS
MS64_AI_TSF	MS64P_CI_SSF
MS64_AI_TSD	MS64P_CI_SSD
	MS64P_CI_APS (for Protection signal only)

Processes:

The function shall extract and output the MS64P_CI_D signal from the MS64_AI_D signal.

K1[1-8], K2[1-5]: The function shall extract the 13 APS bits K1[1-8] and K2[1-5] from the MS64_AI_D signal. A new value shall be accepted when the value is identical for three consecutive frames. This value shall be output via MS64P_CI_APS. This process is required only for the protection section.

Defects: None.

Consequent actions:

aSSF	\leftarrow	AI_TSF.	
aSSD	\leftarrow	AI_TSD.	
Defect Correlations:			
Douformonoo Monitoring			

None.

Performance Monitoring: None.

11.6 STM-64 Multiplex Section 2 Fibre Shared Protection Ring Functions

For further study.

Figure 177: STM-256 Regenerator Section atomic functions

RS256 Layer CP

The CI at this point is an octet structured, $125 \,\mu s$ framed data stream with co-directional timing. It is the entire STM-256 signal as defined in EN 300 147 [1]. The figure 178 depicts only bytes handled in the RS256 layer.

- NOTE 1: The unmarked bytes [2, 2] to [2, 768], [2, 770] to [2, 1536], [3, 2] to [3, 768], [3, 770] to [3, 1536], and [3, 1538] to [3, 2304] in rows 2,3 (figure 178) are reserved for future international standardization. Currently, they are undefined.
- NOTE 2: The bytes for National Use (NU) in rows 1,2 (figure 178) are reserved for operator specific usage. Their processing is not within the province of the present document.
- NOTE 3: The bytes Z0 [1, 1538] to [1, 1792] are reserved for future international standardization. Currently, they are undefined.

NOTE 4: In row 1 only bytes [1,705] to [1,832] are not scrambled.

Figure 178: RS256_CI_D signal

RS256 Layer AP

The AI at this point is octet structured and 125 μ s framed with co-directional timing and represents the combination of adapted information from the MS256 layer (615 168 bytes per frame), the management communication DCC layer (3 bytes per frame if supported), the OW layer (1 byte per frame if supported) and the user channel F1 (1 byte per frame if supported). The location of these four components in the frame is defined in EN 300 147 [1] and depicted in figure 179.

NOTE 4: Bytes E1, F1 and D1-D3 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

Figure 179: RS256_AI_D signal

12.1 STM-256 Regenerator Section Connection functions

For further study.

- 12.2 STM-256 Regenerator Section Trail Termination functions
- 12.2.1 STM-256 Regenerator Section Trail Termination Source RS256_TT_So

Symbol:

Interfaces:

Input(s)	Output(s)
RS256_AI_D	RS256_CI_D
RS256_AI_CK	RS256_CI_CK
RS256_AI_FS	
RS256_TT_So_MI_TxTI	

Table 132: RS256_TT_So input and output signals

Processes:

The function builds the STM-256 signal by adding the frame alignment information, bytes A1A2, the STM Section Trace Identifier (STI) byte J0, computing the parity and inserting the B1 byte.

J0: In this byte the function shall insert the Transmitted Trail Trace Identifier TxTI. Its format is described in EN 300 417-1-1 [3], clause 7.1.

B1: The function shall calculate a Bit Interleaved Parity 8 (BIP-8) code using even parity. The BIP-8 shall be calculated over all bits of the previous STM-256 frame after scrambling and is placed in byte position B1 of the current STM-256 frame before scrambling (figure 181).

A1A2: The function shall insert the STM-256 frame alignment signal A1...A1A2...A2 into the regenerator section overhead as defined in EN 300 147 [1] and depicted in figure 178.

Scrambler: This function provides scrambling of the RS256_CI. The operation of the scrambler shall be functionally identical to that of a frame synchronous scrambler of sequence length 127 operating at the line rate. The generating polynomial shall be $1 + X^6 + X^7$. The scrambler shall be reset to "1111 1111" on the most significant bit (MSB) of the byte [1, 2304] following the last byte of the STM-256 SOH in the first row. This bit and all subsequent bits to be scrambled shall be modulo 2 added to the output of the X^7 position of the scrambler. The scrambler shall run continuously throughout the remaining STM-256 frame. For the first row of the STM-256 SOH bytes, only [1,705] to [1,832] shall not be scrambled. The scrambler shall continue to run during the above-mentioned frame positions.

- NOTE 1: Thus STM-256, SOH bytes [1,1] to [1,704] and [1,833] to [1,2304] shall be scrambled with the scrambler running from the reset in the previous STM-256 frame.
- NOTE 2: For the unused bytes in row 1 of the STM-256 frame a pattern should be used that provides sufficient transitions and no significant DC unbalance after scrambling.

194

Figure 181: Some processes within RS256_TT_So

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

12.2.2 STM-256 Regenerator Section Trail Termination Sink RS256_TT_Sk

Symbol:

Figure 182: RS256_TT_Sk symbol

Interfaces:

Table 133: RS256_TT_Sk input and output signals

Input(s)	Output(s)
RS256_CI_D	RS256_AI_D
RS256_CI_CK	RS256_AI_CK
RS256_CI_FS	RS256_AI_FS
RS256_CI_SSF	RS256_AI_TSF
RS256_TT_Sk_MI_ExTI	RS256_TT_Sk_MI_AcTI
RS256_TT_Sk_MI_TPmode	RS256_TT_Sk_MI_cTIM
RS256_TT_Sk_MI_TIMdis	RS256_TT_Sk_MI_pN_EBC
RS256_TT_Sk_MI_ExTImode	RS256_TT_Sk_MI_pN_DS
RS256_TT_Sk_MI_1second	

Processes:

This function monitors the STM-256 signal for RS errors, and recovers the RS trail termination status. It extracts the payload independent overhead bytes (J0, B1) from the RS256 layer Characteristic Information:

Descrambling: The function shall descramble the incoming STM-256 signal. The operation of the descrambler shall be functionally identical to that of a scrambler in RS256_TT_So.

B1: Even bit parity is computed for each bit n of every byte of the preceding scrambled STM-256 frame and compared with bit n of B1 recovered from the current frame (n = 1 to 8 inclusive) (figure 183). A difference between the computed and recovered B1 values is taken as evidence of one or more errors (nN_B) in the computation block.

J0: The Received Trail Trace Identifier RxTI shall be recovered from the J0 byte and shall be made available as AcTI for network management purposes. The application and acceptance and mismatch detection process shall be performed as specified in EN 300 417-1-1 [3], clauses 7.1, and 8.2.1.3.

196

RS256_CI

Figure 183: Some processes within RS256_TT_Sk

Defects:

The function shall detect for dTIM defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

Consequent Actions:

aAIS	\leftarrow	CI_SSF or dTIM.
aTSF	\leftarrow	CI SSF or dTIM.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

- NOTE 1: The term "CI_SSF" has been added to the conditions for aAIS while the descrambler function has been moved from the e.g. OS256/RS256_A_Sk to this function. Consequently, an all-ONEs (AIS) pattern inserted in the mentioned adaptation function would be descrambled in this function. A "refreshment" of all-ONEs is required.
- NOTE 2: The insertion of AIS especially due to detection of dTIM will cause the RS-DCC channel to be "squelched" too, so that control of the NE via this channel is lost. If control is via this channel only, there is a risk of a dead-lock situation if dTIM is caused by a misprovisioning of ExTI.

Defect Correlations:

cTIM \leftarrow MON and dTIM.

Performance Monitoring:

For further study.

12.3 STM-256 Regenerator Section Adaptation functions

12.3.1 STM-256 Regenerator Section to Multiplex Section Adaptation Source RS256/MS256_A_So

Symbol:

Figure 184: RS256/MS256_A_So symbol

Interfaces:

Table 134: RS256/MS256_A_So input and output signals

Input(s)	Output(s)
MS256_CI_D	RS256_AI_D
MS256_CI_CK	RS256_AI_CK
STM256_CI_FS	RS256_AI_FS
STM256_CI_SSF	

Processes:

The function multiplexes the MS256_CI data (615 168 bytes / frame) into the STM-256 byte locations defined in EN 300 147 [1] and depicted in figure 179.

None.

NOTE 1: There might be cases in which the network element knows that the timing reference for a particular STM-256 interface can not be maintained within ±4,6 ppm. For such cases MS-AIS can be generated. This is network element specific and outside the scope of the present document.

Defects:

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all ONEs signal shall be within 39 813 120 kHz \pm 20 ppm.

NOTE 2: If CI_SSF is not connected (when RS256/MS256_A_So is connected to a MS256_TT_So), SSF is assumed to be false.

Defect Correlations: None.

12.3.2 STM-256 Regenerator Section to Multiplex Section Adaptation Sink RS256/MS256_A_Sk

Symbol:

Figure 185: RS256/MS256_A_Sk symbol

Interfaces:

Table 135: RS256/MS256_A_Sk input and output signals

Input(s)	Output(s)
RS256_AI_D	MS256_CI_D
RS256_AI_CK	MS256_CI_CK
RS256_AI_FS	MS256_CI_FS
RS256_AI_TSF	MS256_CI_SSF

Processes:

The function separates MS256_CI data from RS256_AI as depicted in figure 179.

 Defects:
 None.

 Consequent Actions:
 aSSF

 aSSF
 ← AI_TSF.

 Defect Correlations:
 None.

 Performance Monitoring:
 None.

ETSI

12.3.3 STM-256 Regenerator Section to DCC Adaptation Source RS256/DCC_A_So

Symbol:

Figure 186: RS256/DCC_A_So symbol

Interfaces:

Table 136: RS256/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	RS256_AI_D
STM256_TI_CK	DCC_CI_CK
STM256_TI_FS	

Processes:

The function multiplexes the DCC CI data (192 kbit/s) into the byte locations D1, D2 and D3 as defined in EN 300 147 [1] and depicted in figure 179.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

12.3.4 STM-256 Regenerator Section to DCC Adaptation Sink RS256/DCC_A_Sk

Symbol:

Figure 187: RS256/DCC_A_Sk symbol

Interfaces:

Table 137: RS256/DCC_A_Sk input and output signals

Input(s)	Output(s)
RS256_AI_D	DCC_CI_D
RS256_AI_CK	DCC_CI_CK
RS256_AI_FS	DCC_CI_SSF
RS256_AI_TSF	

Processes:

The function separates DCC data from RS Overhead as defined in EN 300 147 [1] and depicted in figure 179.

None.

None.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations:

12.3.5 STM-256 Regenerator Section to P0s Adaptation Source RS256/P0s_A_So/N

Symbol:

Figure 188: RS256/P0s_A_So symbol

Interfaces:

Table 138: RS256/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	RS256_AI_D
P0s_CI_CK	
P0s_CI_FS	
MS256_TI_CK	
MS256_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire or user channel information stream into the RS256_AI using slip buffering. It takes POs_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the RSOH byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 179.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-256 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-256 clock, frame position (STM256_TI), and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

64 kbit/s timeslot: The adaptation source function has access to a specific 64 kbit/s channel of the RS access point. The specific 64 kbit/s channel is defined by the parameter N (N = E1, F1).

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

12.3.6 STM-256 Regenerator Section to P0s Adaptation Sink RS256/P0s_A_Sk/N

Symbol:

Figure 189: RS256/P0s_A_Sk symbol

Interfaces:

Table 139: RS256/P0s_A_Sk input and output signals

Input(s)	Output(s)
RS256_AI_D	P0s_CI_Sk_D
RS256_AI_CK	P0s_CI_Sk_CK
RS256_AI_FS	P0s_CI_FS
RS256_AI_TSF	P0s_CI_SSF

Processes:

The function separates P0s data from RS Overhead byte E1 or F1 as defined in EN 300 147 [1] and depicted in figure 179.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-256 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-256 signal clock (e.g. 39 813 120 kHz divided by a factor of 155 520).

64 kbit/s timeslot: The adaptation sink function has access to a specific 64 kbit/s of the RS access point. The specific 64 kbit/s is defined by the parameter N (N = E1, F1).

Defects:

None.

Consequent Actions:

aSSF	\leftarrow	AI_TSF.
aAIS	\leftarrow	AI TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

12.3.7 STM-256 Regenerator Section to V0x Adaptation Source RS256/V0x_A_So

Symbol:

Figure 190: RS256/V0x_A_So symbol

Interfaces:

Table 140: RS256/V0x_A_So input and output signals

Input(s)	Output(s)
V0x_CI_D	RS256_AI_D
STM256_TI_CK	V0x_CI_CK
STM256_TI_FS	

Processes:

None.

This function multiplexes the V0x_CI data (64 kbit/s) into the byte location F1 as defined in EN 300 147 [1] and depicted in figure 179.

The user channel byte F1 shall be added to the 125 μs frame.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

12.3.8 STM-256 Regenerator Section to V0x Adaptation Sink RS256/V0x_A_Sk

Symbol:

Figure 191: RS256/V0x_A_Sk symbol

Interfaces:

Table 141: RS256/V0x_A_Sk input and output signals

Input(s)	Output(s)
RS256_AI_D	V0x_CI_D
RS256_AI_CK	V0x_CI_CK
RS256_AI_FS	V0x_CI_SSF
RS256_AI_TSF	

Processes:

This function separates user channel data from RS Overhead (byte F1) as defined in EN 300 147 [1] and depicted in figure 179.

Defects:

None.

Consequent Actions:

 $\begin{array}{rcl} aSSF & \leftarrow & AI_TSF. \\ aAIS & \leftarrow & AI_TSF. \end{array}$

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations: None.

- 12.3.9 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation supporting FEC
- 12.3.9.1 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC transparent
- 12.3.9.1.1 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC transparent Source Function RS256/MSF256_A _So

Symbol:

Figure 192: RS256/MSF256_A_So symbol

Interfaces:

Table 142: RS256/MSF256_A_So input and output signals

Input(s)	Output(s)
MSF256_CI_D	RS256_AI_D
MSF256_CI_CK	RS256_AI_CK
MSF256_CI_FS	RS256_AI_FS
MSF256_CI_SSF	

Processes:

The function multiplexes the MSF256_CI data into the STM-256 byte locations defined in EN 300 147 [1]. MSF256_CI consists of the MS256_CI, see figure 201, and the P1 and Q1 bytes, see ITU-T Recommendation G.707 figure 9-7.

Q1[7-8] - FSI: The function sets bits 7 and 8 of the Q1 byte to "00".

P1 - FEC: The function sets the P1 bytes to "00000000".

Defects: None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONES signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all-ONES signal shall be within the STM-256 frequency \pm 20 ppm.

Defect Correlations: None.

12.3.9.1.2 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC transparent Sink Function RS256/MSF256_A _Sk

Symbol:

Figure 193: RS256/MSF256_A_Sk symbol

Interfaces:

Table 143: RS256/MSF256_A_Sk input and output signals

Input(s)	Output(s)
RS256_AI_D	MSF256_CI_D
RS256_AI_CK	MSF256_CI_CK
RS256_AI_FS	MSF256_CI_FS
RS256_AI_TSF	MSF256_CI_SSF

Processes:

The function separates MSF256_CI data from RS256_AI. MSF256_CI consists of the MS256_CI, see figure 201, and the P1 and Q1 bytes, see ITU-T Recommendation G.707 figure 9-7. All P1 and Q1 bytes set to "1".

Defects:

None.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

Defect Correlations: None.

- 12.3.9.2 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC generation
- 12.3.9.2.1 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC generation Source Function RS256/MS256-fec_A _So

Symbol:

Figure 194: RS256/MS256-fec_A_So symbol

Interfaces:

Table 144: RS256/MS256-fec_A_So input and output signals

Input(s)	Output(s)
MS256_CI_D	RS256_AI_D
MS256_CI_CK	RS256_AI_CK
MS256_CI_FS	RS256_AI_FS
MS256_CI_SSF	
RS/MS256-fec_A_So_MI_FEC	
RS/MS256-fec_A_So_MI_Delay	

Processes:

See figure 195.

Delay: If MI_Delay is "on" the delay buffers shall be enabled. If MI_Delay is "off" the delay buffers shall be disabled. The delay must be less than 15 µs.

NOTE: MI_Delay must be "on" in order for MI_FEC to be "on".

Q1[7-8] - FSI: If MI_FEC is "on" the pattern "01" shall be inserted in bits 7 and 8 of the Q1 byte. If MI_FEC is "off" the pattern "00" shall be inserted in bits 7 and 8 of the Q1 byte.

P1 - FEC: If MI_FEC and MI_Delay is "on" the function calculates the parity according to

ITU-T Recommendation G.707 clause A.2.2 for the information bits according to clause A.3.1. The resulting parity is placed in the P1 locations according to clause A.3.2. The B2 needs to be compensated for the insertion of the parity. If MI_FEC is "off" the P1 bytes shall be set to "00000000".

Due to the insertion of the parity in the P1 bytes, BIP compensation should be done as shown in figure 196. The BIP is calculated before and after the overhead insertion. Both results and the related incoming BIP overhead (which is usually transported in the following frame) are combined via an exclusive OR and form the new BIP overhead for the outgoing signal. The related processes are shown in figure 197.

NOTE: The FEC calculation is done after the B2 compensation and includes the compensated B2 as shown in figure 196.

Figure 196: B2 compensation and FEC calculation

exclusive OR

Figure 197: B2 correction; processes

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONES signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all-ONES signal shall be within the STM-256 level frequency \pm 20 ppm.

Defect Correlations: None.

Performance Monitoring: None.

12.3.9.2.2 STM-256 Regenerator Section to STM-256 Multiplex Section Adaptation FEC generation Sink Function RS256/MS256-fec_A _Sk

Symbol:

Figure 198: RS256/MS256-fec_A_Sk symbol

Interfaces:

Table 145: RS256/MS256-fec_A_Sk input and output signals

Input(s)	Output(s)
RS256_AI_D	MS256_CI_D
RS256_AI_CK	MS256_CI_CK
RS256_AI_FS	MS256_CI_FS
RS256_AI_TSF	MS256_CI_SSF
RS256/MS256-fec_A_Sk_MI_Delay	

Processes:

Delay: If MI_Delay is "on" the delay buffers shall be enabled. If MI_Delay is "off" the delay buffers shall be disabled and the FEC decoding can not be enabled. The delay must be less than 15 µs.

Q1[7-8] - FSI: If MI_Delay is "on" the FEC Status Indication (FSI) controls the FEC decoder, the "on" signal will enable the FEC decoding process. If at least 9 consecutive frames contain the "01" pattern in bits 7 and 8 of the Q1 byte the FEC generation Sink functions enters the "on" state. If in at least 3 consecutive frames any pattern other than the "01" is detected in bits 7 and 8 of the Q1 byte the FEC generation Sink functions enters the "off" state. The transition between the states shall be without bit errors.

K2[6-8], P1, Q1 - AIS: The MSF-dAIS information carried in these bits shall be extracted. If MSF-dAIS is detected the error correction is disabled (enters the "off" state).

P1 - FEC: If the syndrome of a code word indicate errors those are decoded during the time the information bits passes through the delay buffers and is corrected at the egress of the delay buffers. It is outside the scope of the present document to specify how the error(s) are decoded from the syndrome.

Figure 199: STM-256 FEC decoding process

Defects:

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte and the "11111111" pattern in the P1 and Q1 bytes a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2 or the "11111111" pattern in P1 byte or Q1 byte. The x shall be in range 3 to 5.

None.

dDEG:For further study.

Consequent Actions:

aSSF \leftarrow AI_TSF.

disable error correction \leftarrow dAIS.

Defect Correlations:

Figure 200: STM-256 Multiplex Section atomic functions

NOTE 1: The modelling of the MS256 to VC-4, VC-4-4c, VC-4-16c, VC-4-64c and VC-4-64c layer adaptation functionality requires a further enhancement making it similar to the VC-4 to lower order VC layer adaptation functionality. This is for further study.

MS256 Layer CP

The CI at this point is octet structured and $125 \,\mu s$ framed with co-directional timing. Its format is characterized as the MS256_AI with an additional MS Trail Termination overhead in the 768 eight B2 bytes, byte M1, and bits 6-8 of the K2 byte in the frame locations defined in EN 300 147 [1] and depicted in figure 201.

- NOTE 2: The unmarked bytes in rows 5, 6, 7, 8, 9 (figure 201) are reserved for future international standardization. Currently, they are undefined.
- NOTE 3: The bytes for National Use (NU) in row 9 (figure 201) are reserved for operator specific usage. Their processing is not within the province of the present document.

Figure 201: MS256_CI_D

MS256 Layer AP

The AI at this point is octet structured and 125 µs framed with co-directional timing. It represents the combination of information adapted from the VC-4 layer (150 336 kbit/s), the management communications DCC layer (576 kbit/s), the OW layer (64 kbit/s if supported), the AU-4 pointer (3 bytes per frame), the APS signalling channel (13 or 16 bits per frame if supported, see note 4), and the SSM channel (4 bits per frame if supported). The location of these five components in the frame is defined in EN 300 147 [1] and depicted in figure 202.

- NOTE 4: 13 bits APS channel for the case of linear MS protection. 16 bits APS channel for the case of MS SPRING protection.
- NOTE 5: Bytes E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element.

The composition of the payload transported by an STM-256 will be determined by the client layer application. Typical compositions of the payload include:

- one VC-4-256c of 38 486 916 kbit/s;
- four VC-4-64c of 9 621 504 kbit/s;
- sixteen VC-4-16c of 2 405 376 kbit/s;
- sixty-four VC-4-4c of 601 344 kbit/s;
- two- hundred- fifty-six VC-4s of 150 336 kbit/s;
- combinations of VC-4s and VC-4-Xcs up to the maximum of 256 VC-4 equivalents;
- 128 working VC-4s and 128 protection VC-4s (in MS256 SPRING application for further study).

Figure 203 shows that more than one adaptation source function exists in the MS256 layer that can be connected to one MS256 access point. For such case, a subset of these adaptation source functions is allowed to be activated together, but only one adaptation source function may have access to a specific AU timeslot. Access to the same AU timeslot by other adaptation source functions shall be denied. In contradiction with the source direction, adaptation sink functions may be activated all together. This may cause faults (e.g. cLOP) to be detected and reported. To prevent this an adaptation sink function can be deactivated.

NOTE 6: If one adaptation function only is connected to the AP, it will be activated. If one or more other functions are connected to the same AP accessing the same AU timeslot, one out of the set of functions will be active.

Figure 202: MS256_AI_D

Figure 203 shows the MS trail protection specific sublayer atomic functions (MS256/MS256P_A, MS256P_C, MS256P_TT) within the MS256 layer. Note that the DCC (D4-D12), OW (E2), and SSM (S1[5-8]) signals can be accessible before (unprotected) and after (protected) the MS256P_C function. The choice is outside the scope of the present document.

NOTE 7: Equipment may provide MS protection and bi-directional services such as DCC and OW in the MS layer. Where a link uses this provision both ends of the link shall be configured to operate these services in the same mode (i.e. either protected or unprotected).

Figure 203: STM-256 Multiplex Section Linear Trail Protection Functions

MS256P Sublayer CP

The CI at this point is octet structured and 125 μ s framed with co-directional timing. Its format is equivalent to the MS4_AI and depicted in figure 204.

NOTE 8: Bytes S1, E2 and D4-D12 will be undefined when the adaptation functions sourcing these bytes are not present in the network element or are unprotected (see above).

13.1 STM-256 Multiplex Section Connection functions

For further study.

13.2 STM-256 Multiplex Section Trail Termination functions

13.2.1 STM-256 Multiplex Section Trail Termination Source MS256_TT_So Symbol:

Interfaces:

Output(s)
S256_CI_D
S256_CI_CK
S256_CI_FS

Table 146: MS256_TT_So input and output signals

Processes:

This function adds error monitoring capabilities and remote maintenance information signals to the MS256_AI.

M0, M1: The function shall within 1 ms insert the value of MS256_RI_REI into the REI (Remote Error Indication) - to convey the count of interleaved bit blocks that have been detected in error by the BIP-6144 process in the companion MS256_TT_Sk - in the range of "0000 0000, 0000 0000" (0) to "0001 1000, 0000 0000" (6144). M0 bit 1 is most significant bit and M1 bit 8 is least significant bit.

K2[6-8]: These bits represents the defect status of the associated MS256_TT_Sk. The RDI indication shall be set to "110" on activation of MS256_RI_RDI within 1 ms, determined by the associated MS256_TT_Sk function, and passed through transparently (except for incoming codes "111" and "110") within 1 ms on the MS256_RI_RDI removal. If MS256_RI_RDI is inactive an incoming code "111" or "110" shall be replaced by code "000".

NOTE 1: K2[6-8] can not be set to "000" on clearing of RI_RDI; MS SPRING APS extends into those bits. The bits shall be passed transparently in this case. With linear MS protection or without protection it shall be guaranteed that neither code "111" nor "110" will be output.

B2: The function shall calculate a Bit Interleaved Parity 6144 (BIP-6144) code using even parity. The BIP-6144 shall be calculated over all bits, except those in the RSOH bytes, of the previous STM-256 frame and placed in 768 B2 bytes of the current STM-256 frame.

NOTE 2: The BIP-6144 procedure is described in EN 300 147 [1].

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

13.2.2 STM-256 Multiplex Section Trail Termination Sink MS256_TT_Sk

Symbol:

Figure 206: MS256_TT_Sk symbol

Interfaces:

Input(s)	Output(s)
MS256_CI_D	MS256_AI_D
MS256_CI_CK	MS256_AI_CK
MS256_CI_FS	MS256_AI_FS
MS256_CI_SSF	MS256_AI_TSF
MS256_TT_Sk_MI_DEGTHR	MS256_AI_TSD
MS256_TT_Sk_MI_DEGM	MS256_TT_Sk_MI_cAIS
MS256_TT_Sk_MI_1second	MS256_TT_Sk_MI_cDEG
MS256_TT_Sk_MI_TPmode	MS256_TT_Sk_MI_cRDI
MS256_TT_Sk_MI_SSF_Reported	MS256_TT_Sk_MI_cSSF
MS256_TT_Sk_MI_AIS_Reported	MS256_TT_Sk_MI_pN_EBC
MS256_TT_Sk_MI_RDI_Reported	MS256_TT_Sk_MI_pF_EBC
MS256_TT_Sk_MI_M1_Ignored	MS256_TT_Sk_MI_pN_DS
	MS256_TT_Sk_MI_pF_DS
	MS256_RI_REI
	MS256_RI_RDI

Table 147: MS256_TT_Sk input and output signals

Processes:

This function monitors error performance of associated MS256 including the far end receiver.

B2: The BIP-6144 shall be calculated over all bits, except of those in the RSOH bytes, of the previous STM-256 frame and compared with the three error monitoring bytes B2 recovered from the MSOH of the current STM-256 frame. A difference between the computed and recovered B2 values is taken as evidence of one or more errors (nN_B) in the computation block.

NOTE 1: There are 6 144 blocks consisting of 801 bits and a BIP-1 as EDC per STM-256 frame in the MS256 layer.

M0, **M1**: The REI information carried in these bits shall be extracted to enable single ended maintenance of a bidirectional trail (section). The REI (nF_B) is used to monitor the error performance of the other direction of transmission. The application process is described in EN 300 417-1-1 [3], clause 7.4.2 (REI). If M1_ignored is true, nF_B shall be forced to "0"; if M1_ignored is false, nF_B shall equal the value in REI.

NOTE 2: M1_ignored is a parameter provisioned by the operator to indicate the support of the M1 and M0 byte in the incoming STM-256 signal. For the case M1 and M0 are supported, M1_ignored should be set to false, otherwise M1_ignored should be set to true.

The function shall interpret the value in the bytes as shown in table 148.

M0[1-8] code, bits 1234 5678	M1[1-8] code, bits 1234 5678	code interpretation [#BIP violations], (nF_B)
0000 0000	0000 0000	0
0000 0000	0000 0001	1
0000 0000	0000 0010	2
0000 0000	0000 0011	3
0000 0000	0000 0100	4
	:	:
0001 1000	0000 0000	6 144
0001 1000	0000 0001	0
	:	:
1111 1111	1111 1111	0

Table 148: STM-256 M0 and M1 interpretation

NOTE 3: In case of interworking with old equipment not supporting MS-REI, the information extracted from M1 is not relevant.
K2[6-8] - RDI: The RDI information carried in these bits shall be extracted to enable single ended maintenance of a bi-directional trail (section). The RDI provides information as to the status of the remote receiver. A "110" indicates a Remote Defect Indication state, while other patterns indicate the normal state. The application process is described in EN 300 417-1-1 [3], clauses 7.4.11 and 8.2.

K2[6-8] - AIS: The MS-AIS information carried in these bits shall be extracted.

Defects:

The function shall detect for dDEG and dRDI defects according the specification in EN 300 417-1-1 [3], clause 8.2.1.

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2. The x shall be in range 3 to 5.

Consequent Actions:

aAIS	\leftarrow	dAIS.
aRDI	\leftarrow	dAIS.
aREI	\leftarrow	#EDCV.
aTSF	\leftarrow	dAIS.
aTSD	\leftarrow	dDEG.

On declaration of aAIS the function shall output an all-ONEs signal within 250 $\mu s;$ on clearing of aAIS the function shall output normal data within 250 $\mu s.$

Defect Correlations:

cAIS	\leftarrow	MON and dAIS and (not CI_SSF) and AIS_Reported.
cDEG	\leftarrow	MON and dDEG.
cRDI	\leftarrow	MON and dRDI and RDI_Reported.
cSSF	\leftarrow	MON and dAIS and SSF_Reported.

Performance monitoring:

The performance monitoring process shall be performed as specified in EN 300 417-1-1 [3], clause 8.2.4 through 8.2.7.

pN_DS	\leftarrow	aTSF or dEQ
pF_DS	\leftarrow	dRDI.
pN_EBC	\leftarrow	Σ nN_B.

 $pF_EBC \leftarrow \Sigma nF_B.$

13.3 STM-256 Multiplex Section Adaptation functions

13.3.1 STM-256 Multiplex Section to S4 Layer Adaptation Source MS256/S4_A_So/(E,D,C,B,0)

Symbol:

Figure 207: MS256/S4_A_So symbol

Interfaces:

Table 149: MS256/S4_A_So input and output signals

Input(s)	Output(s)
S4_CI_D	MS256_AI_D
S4_CI_CK	MS256_AI_CK
S4_CI_FS	MS256_AI_FS
S4_CI_SSF	
STM256_TI_CK	MS256/S4_A_So_MI_pPJE+
STM256_TI_FS	MS256/S4_A_So_MI_pPJE-
MS256/S4_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4 signal, represented by a nominally $(261 \times 9 \times 64) = 150 336$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-256 signal at the AU tributary location indicated by (E,D,C,B,0), where E designates the AUG-64 number (1 to 4), D designates the AUG-16 number (1 to 4), C designates the AUG-4 number (1 to 4) and B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4 is coded in the related AU-4 pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-256 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS256/S4_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4 pointer actions. An example is given in EN 300 417-4-1 [4], annex A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 24 data bits shall be cancelled once and no data written at the three positions H3 + 1. Upon a negative justification action, an extra 24 data bits shall be read out once into the three positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Figure 208: Main processes within MS256/S4_A_So

Buffer size: For further study.

Behaviour at recovery from defect condition: The incoming frequency (S4_CI_CK) of a passing through VC-4 may exceed its limits during a STM256dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4 pointer is carried in 2 bytes of payload specific OH (H1, H2) in each STM-256 frame. The AU-4 pointer is aligned in the STM-256 payload in fixed position relative to the STM-256 frame. The AU-4 pointer points to the begin of the VC-4 frame within the STM-256. The format of the AU-4 pointer and its location in the frame are defined in EN 300 147 [1].

H1H2 - *Pointer generation:* The function shall generate the AU-4 pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 768+N] positions with the SS field set to 10 to indicate AU-4. N = 64(E-1) + 16(D-1) + 4(C-1) + B + 1.

YY1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 256+N] and [4, 512+N] and code "1" = 11111111 in bytes [4, 1024+N] and [4, 1280+N]. N = 64(E-1) + 16(D-1) + 4(C-1) + B + 1. Bits ss are undefined.

AU-4 timeslot: The adaptation source function has access to a specific AU-4 of the MS256 access point. The AU-4 is defined by the parameter (E,D,C,B,0) (E=1..4, D=1..4, C=1..4 and B=1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: if CI_SSF is not connected (when MS256/S4_A_So is connected to a S4_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4 only. A locally generated VC-4 will have a fixed frame phase; pointer justifications will not occur.

13.3.2 STM-256 Multiplex Section to S4 Layer Adaptation Sink MS256/S4_A_Sk/(E,D,C,B,0)

Symbol:

Figure 209: MS256/S4_A_Sk symbol

Interfaces:

Table 150: MS256/S4_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	S4_CI_D
MS256_AI_CK	S4_CI_CK
MS256_AI_FS	S4_CI_FS
MS256_AI_TSF	S4_CI_SSF
MS256/S4_A_Sk_MI_Active	MS256/S4_A_Sk_MI_cAIS
MS256/S4_A_Sk_MI_AIS_Reported	MS256/S4_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4 data with frame phase information from the STM-256 as defined in EN 300 147 [1]. The VC-4 is extracted from the AU tributary location indicated by (E,D,C,B,0), where E designates the AUG-64 number (1 to 4), D designates the AUG-16 number (1 to 4), C designates the AUG-4 number (1 to 4) and B designates the AUG-1 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H2 - *AU-4 pointer interpretation:* An AU-4 pointer consists of 2 bytes, [4, N] and [4, 768+N]. The function shall perform AU-4 pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4 frame phase within the STM-256. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 64(E-1) + 16(D-1) + 4(C-1) + B + 1.

YY1*1*: The bytes [4, 256+N], [4, 512+N], [4, 1024+N], and [4, 1280+N] contain fixed stuff, of a specified value, ignored by the AU-4 pointer interpreter. N = 64(E-1) + 16(D-1) + 4(C-1) + B + 1.

AU-4 timeslot: The adaptation sink function has access to a specific AU-4 of the MS256 access point. The AU-4 is defined by the parameter (E,D,C,B,0) (E= 1..4, D= 1..4, C= 1..4 and B= 1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AIS_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AIS_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOP_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOP_state.

Consequent Actions:

aSSF \leftarrow dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

- cAIS \leftarrow dAIS and (not AI_TSF) and AIS_Reported..
- $cLOP \quad \leftarrow \quad dLOP.$

Performance Monitoring: None.

13.3.3 STM-256 Multiplex Section to S4-4c Layer Adaptation Source MS256/S4-4c_A_So/(E,D,C,0,0)

Symbol:

Interfaces:

Input(s)	Output(s)
S4-4c_CI_D	MS256_AI_D
S4-4c_CI_CK	MS256_AI_CK
S4-4c_CI_FS	MS256_AI_FS
S4-4c_CI_SSF	
STM256_TI_CK	MS256/S4-4c_A_So_MI_pPJE+
STM256_TI_FS	MS256/S4-4c_A_So_MI_pPJE-
MS256/S4-4c_A_So_MI_Active	

Table 151: MS256/S4-4c_A_So input and output signals

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-4c signal, represented by a nominally $(4 \times 261 \times 9 \times 64) = 601 344$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-256 signal at the AU-4-4c tributary location indicated by (E,D,C,0,0), where E designates the AUG-64 number (1 to 4), D designates the AUG-16 number (1 to 4) and C designates the AUG-4 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-4c is coded in the related AU-4-4c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-256 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS256/S4-4c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-4c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 96 data bits shall be cancelled once and no data written at the twelve positions H3 + 1. Upon a negative justification action, an extra 96 data bits shall be read out once into the twelve positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

223

Figure 211: Main processes within MS256/S4-4c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-4c_CI_CK) of a passing through VC-4-4c may exceed its limits during a STM256dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-4c pointer is carried in 2 + 6 bytes of payload specific OH in each STM-256 frame. The AU-4-4c pointer is aligned in the STM-256 payload in fixed position relative to the STM-256 frame. The AU-4-4c pointer points to the begin of the VC-4-4c frame within the STM-256. The format of the AU-4-4c pointer and its location in the frame are defined in EN 300 147 [1].

H1H1H1H1H2H2H2H2 - *Pointer generation:* The function shall generate the AU-4-4c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 768+N] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-4c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 1+N] to [4, 3+N], H2 [4, 769+N] to [4, 771+N]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined. N = 64(E-1) + 16(D-1) + 4(C-1) + 1.

YYYYYYY1*1*1*1*1*1*1*1*1* - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 256+N] to [4, 259+N] and [4, 512+N] to [4, 515+N] and code "1" = 11111111 in bytes [4, 1024+N] to [4, 1027+N] and [4, 1280+N] to [4, 1283+N], N = 64(E-1) + 16(D-1) + 4(C-1) + 1. Bits ss are undefined.

AU-4-4c timeslots: The adaptation source function has access to a specific AU-4-4c of the MS256 access point. The AU-4-4c is defined by the parameter (E,D,C,0,0) (E=1..4, D=1..4 and C=1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS256/S4-4c_A_So is connected to a S4-4c_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-4c only. A locally generated VC-4-4c may have a fixed frame phase; pointer justifications will not occur.

13.3.4 STM-256 Multiplex Section to S4-4c Layer Adaptation Sink MS256/S4-4c_A_Sk/(E,D,C,0,0)

Symbol:

Figure 212: MS256/S4-4c_A_Sk symbol

Interfaces:

Table 152: MS256/S4-4c_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	S4-4c_CI_D
MS256_AI_CK	S4-4c_CI_CK
MS256_AI_FS	S4-4c_CI_FS
MS256_AI_TSF	S4-4c_CI_SSF
MS256/S4-4c_A_Sk_MI_Active	MS256/S4-4c_A_Sk_MI_cAIS
MS256/S4-4c_A_Sk_MI_AIS_Reported	MS256/S4-4c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-4c data with frame phase information from the STM-256 as defined in EN 300 147 [1]. The VC-4-4c is extracted from tributary location indicated by (E,D,C,0.0), where E designates the AUG-64 number (1 to 4), D designates the AUG-16 number (1 to 4) and C designates the AUG-4 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1H1H1H1H2H2H2H2 - *AU-4-4c pointer interpretation:* An AU-4-4c pointer consists of 2 bytes, [4, N] and [4, 768+N]. There will be 3 concatenation indicators, each 2 bytes long, in [4, 1+N]/[4, 769+N], [4, 2+N]/[4, 770+N], and [4, 3+N]/[4, 771+N]. The function shall perform AU-4-4c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-4c frame phase within the STM-256. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 64(E-1) + 16(D-1) + 4(C-1) + 1.

AU-4-4c timeslots: The adaptation source function has access to a specific AU-4-4c of the MS256 access point. The AU-4-4c is defined by the parameter (E,D,C,0,0) (E=1..4, D=1..4 and C=1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS \leftarrow dAIS or dLOP.

aSSF \leftarrow dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

13.3.5 STM-256 Multiplex Section to S4-16c Layer Adaptation Source MS256/S4-16c_A_So/(E,D,0,0,0)

Symbol:

Figure 213: MS256/S4-16c_A_So symbol

Interfaces:

Input(s)	Output(s)
S4-16c_CI_D	MS256_AI_D
S4-16c_CI_CK	MS256_AI_CK
S4-16c_CI_FS	MS256_AI_FS
S4-16c_CI_SSF	
STM256_TI_CK	MS256/S4-16c_A_So_MI_pPJE+
STM256_TI_FS	MS256/S4-16c_A_So_MI_pPJE-
MS256/S4-16c_A_So_MI_Active	

Table 153: MS256/S4-16c_A_So input and output signals

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-16c signal, represented by a nominally $(16 \times 261 \times 9 \times 64) = 2405376$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-256 signal at the AU-4-16c tributary location indicated by (E,D,0,0,0), where E designates the AUG-64 number (1 to 4) and D designates the AUG-16 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-16c is coded in the related AU-4-16c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-256 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS256/S4-16c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-16c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 384 data bits shall be cancelled once and no data written at the 48 positions H3 + 1. Upon a negative justification action, an extra 384 data bits shall be read out once into the 48 positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

227

Figure 214: Main processes within MS256/S4-16c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-16c_CI_CK) of a passing through VC-4-16c may exceed its limits during a STM256dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-16c pointer is carried in 2 + 30 bytes of payload specific OH in each STM-256 frame. The AU-4-16c pointer is aligned in the STM-256 payload in fixed position relative to the STM-256 frame. The AU-4-16c pointer points to the begin of the VC-4-16c frame within the STM-256. The format of the AU-4-16c pointer and its location in the frame are defined in EN 300 147 [1].

 $H1^{16}H2^{16}$ - *Pointer generation:* The function shall generate the AU-4-16c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 768+N] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-16c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 1+N] to [4, 15+N], H2 [4, 769+N] to [4, 783+N]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined. N = 64(E-1) + 16(D-1).

 $Y^{32}1^{*32}$ - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 256+N] to [4, 271+N] and [4, 512+N] to [4, 527+N] and code "1" = 11111111 in bytes [4, 1024+N] to [4, 1039+N] and [4, 1280+N] to [4, 1295+N], N = 64(E-1) + 16(D-1) + 1. Bits ss are undefined.

AU-4-16c timeslots: The adaptation source function has access to a specific AU-4-16c of the MS256 access point. The AU-4-16c is defined by the parameter (E,D,0,0,0) (E=1..4 and D=1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS256/S4-16c_A_So is connected to a S4-16c_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

- NOTE 5: This is applicable for a passing through VC-4-16c only. A locally generated VC-4-16c may have a fixed frame phase; pointer justifications will not occur.
- 13.3.6 STM-256 Multiplex Section to S4-16c Layer Adaptation Sink MS256/S4-16c_A_Sk/(E,D,0,0,0)

Symbol:

Figure 215: MS256/S4-16c_A_Sk symbol

Interfaces:

Table 154: MS256/S4-16c_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	S4-16c_CI_D
MS256_AI_CK	S4-16c_CI_CK
MS256_AI_FS	S4-16c_CI_FS
MS256_AI_TSF	S4-16c_CI_SSF
MS256/S4-16c_A_Sk_MI_Active	MS256/S4-16c_A_Sk_MI_cAIS
MS256/S4-16c_A_Sk_MI_AIS_Reported	MS256/S4-16c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-16c data with frame phase information from the STM-256 as defined in EN 300 147 [1]. The VC-4-16c is extracted from tributary location indicated by (E,D,0,0.0), where E designates the AUG-64 number (1 to 4) and D designates the AUG-16 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

H1¹⁶H2¹⁶ - *AU-4-16c pointer interpretation:* An AU-4-16c pointer consists of 2 bytes, [4, N] and [4, 768+N]. There will be 15 concatenation indicators, each 2 bytes long, in [4, 1+N] to [4,15+N] and [4,769+N] to [4,783+N]. The function shall perform AU-4-16c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-16c frame phase within the STM-256. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 64(E-1) + 16(D-1) + 4(C-1) + 1.

 $Y^{32}1^{*32}$: The bytes [4, 256+N] to [4, 271+N], [4, 512+N] to [4, 527+N], [4, 1024+N] to [4, 1039+N] and [4, 1280+N] to [4, 1295+N] contain fixed stuff, of a specified value, ignored by the AU-4-16c pointer interpreter, N = 64(E-1) + 16(D-1) + 4(C-1) + 1.

AU-4-16c timeslots: The adaptation source function has access to a specific AU-4-16c of the MS256 access point. The AU-4-16c is defined by the parameter (E,D,0,0,0) (E=1..4 and D=1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.

aSSF \leftarrow dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

13.3.7 STM-256 Multiplex Section to S4-64c Layer Adaptation Source MS256/S4-64c_A_So/(E,0,0,0,0)

Symbol:

Figure 216: MS256/S4-64c_A_So symbol

Interfaces:

Input(s)	Output(s)
-64c_CI_D	MS256_AI_D
-64c_CI_CK	MS256_AI_CK
a. a. F0	

Table 155: MS256/S4-64c_A_So input and output signals

S4-64c_CI_D	MS256_AI_D
S4-64c_CI_CK	MS256_AI_CK
S4-64c_CI_FS	MS256_AI_FS
S4-64c_CI_SSF	
STM256_TI_CK	MS256/S4-64c_A_So_MI_pPJE+
STM256_TI_FS	MS256/S4-64c_A_So_MI_pPJE-
MS256/S4-64c_A_So_MI_Active	
S4-64c_CI_SSF STM256_TI_CK STM256_TI_FS MS256/S4-64c_A_So_MI_Active	MS256/S4-64c_A_So_MI_pPJE+ MS256/S4-64c_A_So_MI_pPJE-

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-64c signal, represented by a nominally $(64 \times 261 \times 9 \times 64) = 2405376$ kbit/s information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-256 signal at the AU-4-64c tributary location indicated by (E,0,0,0,0), where E designates the AUG-64 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-64c is coded in the related AU-4-64c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-256 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS256/S4-64c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-64c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 1536 data bits shall be cancelled once and no data written at the 192 positions H3 + 1. Upon a negative justification action, an extra 1536 data bits shall be read out once into the 192 positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

Figure 217: Main processes within MS256/S4-64c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-64c_CI_CK) of a passing through VC-4-64c may exceed its limits during a STM256dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-64c pointer is carried in 2 + 62 bytes of payload specific OH in each STM-256 frame. The AU-4-64c pointer is aligned in the STM-256 payload in fixed position relative to the STM-256 frame. The AU-4-64c pointer points to the begin of the VC-4-64c frame within the STM-256. The format of the AU-4-64c pointer and its location in the frame are defined in EN 300 147 [1].

 $H1^{64}H2^{64}$ - *Pointer generation:* The function shall generate the AU-4-64c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, N], H2 [4, 768+N] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-64c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 1+N] to [4, 63+N], H2 [4, 769+N] to [4, 831+N]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined. N = 64(D-1).

 $Y^{128}1^{*128}$ - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 256+N] to [4, 319+N] and [4, 512+N] to [4, 575+N] and code "1" = 11111111 in bytes [4, 1024+N] to [4, 1087+N] and [4, 1280+N] to [4, 1343+N], N = 64(E-1) + 1. Bits ss are undefined.

AU-4-64c timeslots: The adaptation source function has access to a specific AU-4-64c of the MS256 access point. The AU-4-64c is defined by the parameter (E,0,0,0,0) (E=1..4).

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS256/S4-64c_A_So is connected to a S4-64c_TT_So), CI_SSF is assumed to be false.

Defect Correlations: None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-64c only. A locally generated VC-4-64c may have a fixed frame phase; pointer justifications will not occur.

13.3.8 STM-256 Multiplex Section to S4-64c Layer Adaptation Sink MS256/S4-64c_A_Sk/(E,0,0,0,0)

Symbol:

Figure 218: MS256/S4-64c_A_Sk symbol

Interfaces:

Table 156: MS256/S4-64c_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	S4-64c_CI_D
MS256_AI_CK	S4-64c_CI_CK
MS256_AI_FS	S4-64c_CI_FS
MS256_AI_TSF	S4-64c_CI_SSF
MS256/S4-64c_A_Sk_MI_Active	MS256/S4-64c_A_Sk_MI_cAIS
MS256/S4-64c_A_Sk_MI_AIS_Reported	MS256/S4-64c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-64c data with frame phase information from the STM-256 as defined in EN 300 147 [1]. The VC-4-64c is extracted from tributary location indicated by (E,0,0,0.0), where E designates the AUG-64 number (1 to 4). The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

 $H1^{64}H2^{64}$ - *AU-4-64c pointer interpretation:* An AU-4-64c pointer consists of 2 bytes, [4, N] and [4, 768+N]. There will be 15 concatenation indicators, each 2 bytes long, in [4, 1+N] to [4,63+N] and [4,769+N] to [4, 831+N] The function shall perform AU-4-64c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-64c frame phase within the STM-256. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase. N = 64(E-1)+ 1.

 $Y^{128}1^{*128}$: The bytes [4, 256+N] to [4, 319+N], [4, 512+N] to [4, 575+N], [4, 1024+N] to [4, 1087+N] and [4, 1280+N] to [4, 1343+N] contain fixed stuff, of a specified value, ignored by the AU-4-64c pointer interpreter, N = 64(E-1)+1.

AU-4-64c timeslots: The adaptation source function has access to a specific AU-4-64c of the MS256 access point. The AU-4-64c is defined by the parameter (E,0,0,0,0) (E=1..4).

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

None.

 $cLOP \leftarrow dLOP.$

Performance Monitoring:

13.3.9 STM-256 Multiplex Section to S4-256c Layer Adaptation Source MS256/S4-256c_A_So

Symbol:

Figure 219: MS256/S4-256c_A_So symbol

Interfaces:

Table 157: MS256/S4-256c_A_So input and output signals

Input(s)	Output(s)
S4-256c_CI_D	MS256_AI_D
S4-256c_CI_CK	MS256_AI_CK
S4-256c_CI_FS	MS256_AI_FS
S4-256c_CI_SSF	
STM256_TI_CK	MS256/S4-256c_A_So_MI_pPJE+
STM256_TI_FS	MS256/S4-256c_A_So_MI_pPJE-
MS256/S4-256c_A_So_MI_Active	

Processes:

This function provides frequency justification and bitrate adaptation for a VC-4-256c signal, represented by a nominally $(256 \times 261 \times 9 \times 64) = 38\ 486\ 016\ kbit/s$ information stream and the related frame phase with a frequency accuracy within $\pm 4,6$ ppm, to be multiplexed into a STM-256 signal at the AU-4-256c tributary location. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

NOTE 1: Degraded performance may be observed when interworking with SONET equipment having a ± 20 ppm network element clock source.

The frame phase of the VC-4-256c is coded in the related AU-4-256c pointer. Frequency justification, if required, is performed by pointer adjustments. The accuracy of this coding process is specified below. See EN 300 417-4-1 [4], annex A.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (buffer) process. The data and frame start signals shall be written into the buffer under control of the associated input clock. The data and frame start signals shall be read out of the buffer under control of the STM-256 clock, frame position, and justification decision.

The justification decisions determine the phase error introduced by the MS256/S4-256c_A_So function. The amount of this phase error can be measured at the physical interfaces by monitoring the AU-4-256c pointer actions. An example is given in EN 30 417-4-1 [4], clause A.2.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification action, the reading of 6144 data bits shall be cancelled once and no data written at the 768 positions H3 + 1. Upon a negative justification action, an extra 6144 data bits shall be read out once into the 768 positions H3.

NOTE 2: A requirement for maximum introduced phase error cannot be defined until a reference path is defined from which the requirements for network elements can be deduced. Such a requirement would also limit excessive phase error caused by pointer processors under fixed frequency offset conditions.

Buffer size: For further study.

235

Figure 220: Main processes within MS256/S4-256c_A_So

Behaviour at recovery from defect condition: The incoming frequency (S4-256c_CI_CK) of a passing through VC-4-256c may exceed its limits during a STM256dLOS condition. As a consequence, the buffer (elastic store) fill is not reliable any more. Due to all-ONEs (AIS) insertion after the pointer generator this reliability is not important for the operation of the network element. However, it shall be prevent to generate excessive pointer adjustments when recovering from the defect condition.

NOTE 3: The definition of excessive pointer adjustments is for further study.

The AU-4-256c pointer is carried in 2 + 254 bytes of payload specific OH in each STM-256 frame. The AU-4-256c pointer is aligned in the STM-256 payload in fixed position relative to the STM-256 frame. The AU-4-256c pointer points to the begin of the VC-4-256c frame within the STM-256. The format of the AU-4-256c pointer and its location in the frame are defined in EN 300 147 [1].

 $H1^{256}H2^{256}$ - *Pointer generation:* The function shall generate the AU-4-256c pointer as is described in EN 300 417-1-1 [3], annex A: Pointer Generation. It shall insert the pointer in the H1 [4, 1], H2 [4, 769] positions with the SS field set to 10 to indicate AU-3/AU-4/AU-4-256c. It shall insert the concatenation indicator in the other pointer locations H1 [4, 2] to [4, 256], H2 [4, 770] to [4, 1024]. The concatenation indicator is defined as 1001ss11 1111111, with ss being undefined.

 $Y^{512}1^{*512}$ - *Fixed stuff insertion:* The function shall insert fixed stuff codes Y = 1001ss11 in bytes [4, 257] to [4, 768] and code "1" = 11111111 in bytes [4, 1025] to [4, 1536]. Bits ss are undefined.

Activation: The function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONEs signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s.

NOTE 4: If CI_SSF is not connected (when MS256/S4-256c_A_So is connected to a S4-256c_TT_So), CI_SSF is assumed to be false.

Defect Correlations:

None.

Performance Monitoring:

Every second the number of generated pointer increments within that second shall be counted as the pPJE+. Every second the number of generated pointer decrements within that second shall be counted as the pPJE-.

NOTE 5: This is applicable for a passing through VC-4-256c only. A locally generated VC-4-256c may have a fixed frame phase; pointer justifications will not occur.

13.3.10 STM-256 Multiplex Section to S4-256c Layer Adaptation Sink MS256/S4-256c_A_Sk

Symbol:

M0200_A

Figure 221: MS256/S4-256c_A_Sk symbol

Interfaces:

Table 158: MS256/S4-256c_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	S4-256c_CI_D
MS256_AI_CK	S4-256c_CI_CK
MS256_AI_FS	S4-256c_CI_FS
MS256_AI_TSF	S4-256c_CI_SSF
MS256/S4-256c_A_Sk_MI_Active	MS256/S4-256c_A_Sk_MI_cAIS
MS256/S4-256c_A_Sk_MI_AIS_Reported	MS256/S4-256c_A_Sk_MI_cLOP

Processes:

This function recovers the VC-4-256c data with frame phase information from the STM-256 as defined in EN 300 147 [1]. The VC-4-256c is extracted from tributary location. The function can be activated / deactivated when multiple payload adaptation functions are connected to the access point.

 $H1^{256}H2^{256}$ - *AU-4-256c pointer interpretation:* An AU-4-256c pointer consists of 2 bytes, [4, 1] and [4, 769]. There will be 256 concatenation indicators, each 2 bytes long, in [4, 2] to [4,256] and [4,770] to [4, 1024] The function shall perform AU-4-256c pointer interpretation according to annex B of EN 300 417-1-1 [3] to recover the VC-4-256c frame phase within the STM-256. The process shall maintain its current phase on detection of an invalid pointer and searches in parallel for a new phase.

 $Y^{512}1^{*512}$: The bytes [4, 257] to [4, 768] and [4, 1025] to [4, 1536] contain fixed stuff, of a specified value, ignored by the AU-4-256c pointer interpreter.

Activation: The function shall perform the operation specified above when it is activated (MI_Active is true). Otherwise, it shall transmit the all-ONEs signal at its output (CI_D) and not report its status via its management point.

Defects:

dAIS: The dAIS defect shall be detected if the pointer interpreter is in the AISX_state (see EN 300 417-1-1 [3], annex B). The dAIS defect shall be cleared if the pointer interpreter is not in the AISX_state.

dLOP: The dLOP defect shall be detected if the pointer interpreter is in the LOPX_state (see EN 300 417-1-1 [3], annex B). The dLOP defect shall be cleared if the pointer interpreter is not in the LOPX_state.

Consequent Actions:

aAIS	\leftarrow	dAIS or dLOP.
aSSF	\leftarrow	dAIS or dLOP.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal within 250 μ s; on clearing of aAIS the function shall output the recovered data within 250 μ s.

Defect Correlations:

cAIS \leftarrow dAIS and (not aTSF) and AIS_Reported.

 $cLOP \leftarrow dLOP.$

Performance Monitoring: None.

13.3.11 STM-256 Multiplex Section to DCC Adaptation Source MS256/DCC_A_So

Symbol:

Figure 222: MS256/DCC_A_So symbol

Interfaces:

Table 159: MS256/DCC_A_So input and output signals

Input(s)	Output(s)
DCC_CI_D	MS256_AI_D
STM256_TI_CK	DCC_CI_CK
STM256_TI_FS	

Processes:

The function multiplexes the DCC CI data (576 kbit/s) into the byte locations D4 to D12 as defined in EN 300 147 [1] and depicted in figure 202.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects: None.

Consequent Actions: None.

Defect Correlations: None.

Performance Monitoring: None.

13.3.12 STM-256 Multiplex Section to DCC Adaptation Sink MS256/DCC_A_Sk

Symbol:

Figure 223: MS256/DCC_A_Sk symbol

Interfaces:

Table 160: MS256/DCC_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	DCC_CI_D
MS256_AI_CK	DCC_CI_CK
MS256_AI_FS	DCC_CI_SSF
MS256_AI_TSF	

Processes:

The function separates DCC data from MS Overhead as defined in EN 300 147 [1] and depicted in figure 202.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected DCC_C function is removed.

Defects:

None.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

Defect Correlations: None.

Performance Monitoring: None.

13.3.13 STM-256 Multiplex Section to Extended DCC Adaptation Source MS256/XDCC_A_So

Symbol:

Figure 224: MS256/XDCC_A_So symbol

Interfaces:

Table 161: MS256/XDCC_A_So input and output signals

Input(s)	Output(s)
XDCC_CI_D	MS256_AI_D
STM256_TI_CK	XDCC_CI_CK
STM256_TI_FS	

Processes:

The function multiplexes the extended DCC CI data (9 216 kbit/s) into the byte locations D13 to D156 in [6,9] to [6,56] and [7,9] to [7,56] and [8,9] to [8,56] as defined in EN 300 147 [1] and depicted in figure 202.

NOTE: DCC transmission can be "disabled" when the matrix connection in the connected XDCC_C function is removed.

Defects:None.Consequent Actions:None.Defect Correlations:None.Performance Monitoring:None.

13.3.14 STM-256 Multiplex Section to Extended DCC Adaptation Sink MS256/XDCC_A_Sk

Symbol:

MS256_AI

Figure 225: MS256/XDCC_A_Sk symbol

Interfaces:

Table 162: MS256/XDCC_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	XDCC_CI_D
MS256_AI_CK	XDCC_CI_CK
MS256_AI_FS	XDCC_CI_SSF
MS256_AI_TSF	

Processes:

The function separates extended DCC data from MS Overhead in [6,9] to [6,56] and [7,9] to [7,56] and [8,9] to [8,56] as defined in EN 300 147 [1] and depicted in figure 202.

NOTE: DCC processing can be "disabled" when the matrix connection in the connected XDCC_C function is removed.

Defects:

None.

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations: None.

Performance Monitoring: None.

13.3.15 STM-256 Multiplex Section to P0s Adaptation Source MS256/P0s_A_So

Symbol:

Figure 226: MS256/P0s_A_So symbol

Interfaces:

Table 163: MS256/P0s_A_So input and output signals

Input(s)	Output(s)
P0s_CI_D	MS256/P0s_AI_So_D
P0s_CI_CK	
P0s_CI_FS	
STM256_TI_CK	
STM256_TI_FS	

Processes:

This function provides the multiplexing of a 64 kbit/s orderwire information stream into the MS256_AI using slip buffering. It takes POs_CI, defined in EN 300 166 [2] as an octet structured bit-stream with a synchronous bit rate of 64 kbit/s, present at its input and inserts it into the MSOH byte E2 as defined in EN 300 147 [1] and depicted in figure 202.

NOTE: Any frequency deviation between the 64 kbit/s signal and the associated STM-256 signal leads to octet slips.

Frequency justification and bitrate adaptation: The function shall provide for an elastic store (slip buffer) process. The data signal shall be written into the store under control of the associated input clock. The data shall be read out of the store under control of the STM-256 clock, frame position, and justification decisions.

Each justification decision results in a corresponding negative / positive justification action. Upon a positive justification (slip) action, the reading of one 64 kbit/s octet (8 bits) shall be cancelled once. Upon a negative justification (slip) action, the same 64 kbit/s octet (8 bits) shall be read out a second time.

Buffer size: The elastic store (slip buffer) shall accommodate at least 18 µs of wander without introducing errors.

Defects:	None.
Consequent Actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

13.3.16 STM-256 Multiplex Section to P0s Adaptation Sink MS256/P0s_A_Sk

Symbol:

MS256_AI

Figure 227: MS256/P0s_A_Sk symbol

Interfaces:

Table 164: MS256/P0s_A_Sk input and output signals

Input(s)	Output(s)
MS256_AI_D	P0s_CI_Sk_D
MS256_AI_CK	P0s_CI_Sk_CK
MS256_AI_FS	P0s_CI_FS
MS256_AI_TSF	P0s_CI_SSF

Processes:

The function separates POs data from MS Overhead byte E2 as defined in EN 300 147 [1] and depicted in figure 202.

Data latching and smoothing process: The function shall provide a data latching and smoothing function. Each 8-bit octet received shall be written and latched into a data store under the control of the STM-256 signal clock. The eight data bits shall then be read out of the store using a nominal 64 kHz clock which may be derived directly from the incoming STM-256 signal clock (e.g. 39 813 120 kHz divided by a factor of 155 520).

None.

Defects:

Consequent Actions:

aSSF	\leftarrow	AI_TSF.
aAIS	\leftarrow	AI_TSF.

On declaration of aAIS the function shall output an all-ONEs (AIS) signal - complying to the frequency limits for this signal (a bit rate in range 64 kbit/s \pm 100 ppm) - within 1 ms; on clearing of aAIS the function shall output normal data within 1 ms.

Defect Correlations:	None.

Performance Monitoring:	None.
-------------------------	-------

13.3.17 STM-256 Multiplex Section to Synchronization Distribution Adaptation Source MS256/SD_A_So

See EN 300 417-6-1 [5].

13.3.18 STM-256 Multiplex Section to Synchronization Distribution Adaptation Sink MS256/SD_A_Sk

See EN 300 417-6-1 [5].

13.3.19 STM-256 Multiplex Section Layer Clock Adaptation Source MS256-LC_A_So

See EN 300 417-6-1 [5].

13.4 STM-256 Multiplex Section Layer Monitoring Functions

For further study.

- 13.5 STM-256 Multiplex Section Linear Trail Protection Functions
- 13.5.1 STM-256 Multiplex Section Linear Trail Protection Connection Functions
- 13.5.1.1 STM-256 Multiplex Section 1+1 Linear Trail Protection Connection MS256P1+1_C

Symbol:

Interfaces:

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS256P_CI_D	MS256P_CI_D
MS256P_CI_CK	MS256P_CI_CK
MS256P_CI_FS	MS256P_CI_FS
MS256P_CI_SSF	MS256P_CI_SSF
MS256P_CI_SSD	
	For connection points N:
For connection points N:	MS256P_CI_D
MS256P_CI_D	MS256P_CI_CK
MS256P_CI_CK	MS256P_CI_FS
MS256P_CI_FS	MS256P_CI_SSF
Per function:	Per function:
MS256P_CI_APS	MS256P_CI_APS
MS256P_C_MI_SWtype	MS256P_C_MI_cFOP
MS256P_C_MI_OPERtype	
MS256P_C_MI_WTRTime	
MS256P_C_MI_EXTCMD	
NOTE: Protection status reporting sign	als are for further study.

Table 165: MS256P1+1_C input and output signals

Processes:

The function performs the STM-256 linear multiplex section protection process for 1 + 1 protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 48 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #1 reference point can be the signal received via either the associated working #1 section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected) or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change between operation types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1 + 1
Switching type:	uni-directional or bi-directional
Operation type:	revertive or non-revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	(revertive operation) LO, FSw-#1, MSw-#1, CLR, EXER-#1 (non-revertive operation) LO or FSw, FSw-#i, MSw, MSw-#i, CLR, EXER-#1
SFpriority, SDpriority:	high

Table 166: "Parameters for MS256P1+1 C protection process"

Defects:

Consequent Actions: None.

Defect Correlations: None.

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

Performance Monitoring: None.

13.5.1.2 STM-256 Multiplex Section 1:n Linear Trail Protection Connection MS256P1:n_C

None.

Symbol:

Figure 229: MS256P1:n_C symbol(s)

Interfaces:

Table 167: MS256P1:n_C input and output signals

Input(s)	Output(s)
For connection points W and P:	For connection points W and P:
MS256P_CI_D	MS256P_CI_D
MS256P_CI_CK	MS256P_CI_CK
MS256P_CI_FS	MS256P_CI_FS
MS256P_CI_SSF	MS256P_CI_SSF
MS256P_CI_SSD	
MS256P_MI_Sfpriority	For connection points N and E:
MS256P_MI_Sdpriority	MS256P_CI_D
	MS256P CI CK
For connection points N and E:	MS256P_CI_FS
MS256P_CI_D	MS256P CI SSF
MS256P_CI_CK	
MS256P_CI_FS	Per function:
	MS256P_CI_APS
Per function:	
MS256P_CI_APS	MS256P_C_MI_cFOP
MS256P_C_MI_Swtype	
MS256P C MI EXTRAtraffic	
MS256P_C_MI_WTRTime	
MS256P_C_MI_EXTCMD	
NOTE: Protection status reporting signa	als are for further study.

Processes:

The function performs the STM-256 linear multiplex section protection process for 1:n protection architectures; see EN 300 417-1-1 [3], clause 9.2. It performs the bridge and selector functionality as presented in figure 47 of EN 300 417-1-1 [3]. In the sink direction, the signal output at the normal #i reference point can be the signal received via either the associated working #i section or the protection section; this is determined by the SF, SD conditions (relayed via CI_SSF, CI_SSD signals), the external commands and the information relayed via the APS signal. In the source direction, the working outputs are connected to the associated normal inputs. The protection output is outsourced (no input connected), connected to the extra traffic input, or connected to any normal input.

Provided no protection switching action is activated / required the following changes to (the configuration of) a connection shall be possible without disturbing the CI passing the connection:

- change between switching types;
- change of WTR time.

MS Protection Operation: The MS trail protection process shall operate as specified in annex A, according the following characteristics.

Architecture:	1:n (n ≤ 14)
Switching type:	uni-directional or bi-directional
Operation type:	Revertive
APS channel:	13 bits, K1[1-8] and K2[1-5]
Wait-To-Restore time:	in the order of 0-12 minutes
Switching time:	≤ 50 ms
Hold-off time:	not applicable
Signal switch conditions:	SF, SD
External commands:	LO, FSw-#i, MSw-#i, CLR, EXER

Table 168: "Parameters for MS256P1:n_C protection process"

Defects:

None.

Consequent Actions:

For the case where neither the extra traffic nor a normal signal input is to be connected to the protection section output, the null signal shall be connected to the protection output. The null signal is either one of the normal signals, an all-ONEs, or a test signal.

For the case of a protection switch, the extra traffic output (if applicable) is disconnected from the protection input, set to all-ONEs (AIS) and aSSF is activated.

Defect Correlations:

cFOP \leftarrow (see EN 300 417-1-1 [3] annex L).

Performance Monitoring: None.

13.5.2 STM-256 Multiplex Section Linear Trail Protection Trail Termination Functions

13.5.2.1 Multiplex Section Protection Trail Termination Source MS256P_TT_So

Symbol:

Figure 230: MS256P_TT_So symbol

Interfaces:

Table 169: MS256P_TT_So input and output signals

Input(s)	Output(s)
MS256_AI_D	MS256P_CI_D
MS256_AI_CK	MS256P_CI_CK
MS256_AI_FS	MS256P_CI_FS

Processes:

No information processing is required in the MS256P_TT_So, the MS256_AI at its output being identical to the MS256P_CI at its input.

Defects:	None.
Consequent Actions:	None
Defect Correlations:	None.
Performance Monitoring:	None.

13.5.2.2 Multiplex Section Protection Trail Termination Sink MS256P_TT_Sk

Symbol:

Figure 231: MS256P_TT_Sk symbol

Interfaces:

Table 170: MS256P_TT_Sk input and output signals

Input(s)	Output(s)
MS256P_CI_D	MS256_AI_D
MS256P_CI_CK	MS256_AI_CK
MS256P_CI_FS	MS256_AI_FS
MS256P_CI_SSF	MS256_AI_TSF
MS256P_TT_Sk_MI_SSF_Reported	MS256P_TT_Sk_MI_cSSF

Processes:

The MS256P_TT_Sk function reports, as part of the MS256 layer, the state of the protected MS256 trail. In case all connections are unavailable the MS256P_TT_Sk reports the signal fail condition of the protected trail.

Defects: None.

Consequent Actions:

aTSF \leftarrow CI_SSF.

Defect Correlations: None.

 $cSSF \leftarrow CI_SSF$ and $SSF_Reported$.

Performance Monitoring: None.

13.5.3 STM-256 Multiplex Section Linear Trail Protection Adaptation Functions

13.5.3.1 STM-256 Multiplex Section to STM-256 Multiplex Section Protection Layer Adaptation Source MS256/MS256P_A_So

Symbol:

Figure 232: MS256/MS256P_A_So symbol

Interfaces:

Table 171: MS256/MS256P_A_So input and output signals

Input(s)	Output(s)
MS256P_CI_D	MS256_AI_D
MS256P_CI_CK	MS256_AI_CK
MS256P_CI_FS	MS256_AI_FS
MS256P_CI_APS	

Processes:

The function shall multiplex the MS256 APS signal and MS256 data signal onto the MS256 access point.

Defects:	None.
Consequent actions:	None.
Defect Correlations:	None.
Performance Monitoring:	None.

13.5.3.2 STM-256 Multiplex Section to STM-256 Multiplex Section Protection Layer Adaptation Sink MS256/MS256P_A_Sk

Symbol:

Figure 233: MS256/MS256P_A_Sk symbol

Interfaces:

Table 172: MS256/MS256P_A_Sk input and output signals

Input(s)	Output(s)	
MS256_AI_D	MS256P_CI_D	
MS256_AI_CK	MS256P_CI_CK	
MS256_AI_FS	MS256P_CI_FS	
MS256_AI_TSF	MS256P_CI_SSF	
MS256_AI_TSD	MS256P_CI_SSD	
	MS256P_CI_APS (for Protection signal	
	only)	

Processes:

The function shall extract and output the MS256P_CI_D signal from the MS256_AI_D signal.

K1[1-8], **K2[1-5]**: The function shall extract the 13 APS bits K1[1-8] and K2[1-5] from the MS256_AI_D signal. A new value shall be accepted when the value is identical for three consecutive frames. This value shall be output via MS256P_CI_APS. This process is required only for the protection section.

Defects: None.

Consequent actions:

Performance Monitoring:				
Defect Correlations:				
aSSD	\leftarrow	AI_TSD.		
aSSF	\leftarrow	AI_TSF.		

None.

13.6 STM-256 Multiplex Section 2 Fibre Shared Protection Ring Functions

For further study.

Annex A (normative): Generic specification of linear protection switching operation

The information in this annex has been moved to EN 300 417-1-1 [3].

Annex B (informative): STM-16 regenerator functional model (example)

Figure B.1 presents the combination of atomic functions that represent the transport part of a STM-16 regenerator network element. In this example, a DCC, orderwire and user channel are supported; the physical section atomic functions of the orderwire (E0) and user channel (E0 or V11) are not shown.

252

Figure B.1: STM-16 regenerator model (supporting DCC, OW, USR)
Annex C (informative): Void 253

Annex D (informative): MS protection examples

Figure D.1: 1+1 STM-1 Multiplex Section Linear Trail Protection model (unprotected DCC, OW, protected SSM)

255

Figure D.2: 1:n STM-1 Multiplex Section Linear Trail Protection model (Working / Normal #1 supports (protected) OW,DCC and (unprotected) SSM: Working / Normal #2 does not support OW,DCC,SSM)

Annex E (informative): FEC for STM-16 Regenerator Section Layer

- E.1 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation supporting FEC
- E.1.1 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC transparent
- E.1.1.1 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC transparent Source Function RS16/MSF16_A_So

Symbol:

RS16_AI

Figure 234: RS16/MSF16_A_So symbol

Interfaces:

Input(s)	Output(s)	
MSF16_CI_D	RS16_AI_D	
MSF16_CI_CK	RS16_AI_CK	
MSF16_CI_FS	RS16_AI_FS	
MSF16_CI_SSF		

Processes:

The function multiplexes the MSF16_CI data into the STM-16 byte locations defined in EN 300 147 [1]. MSF64_CI consists of the MS16_CI, see figure 90, and the P1 and Q1 bytes, see ITU-T Recommendation G.707 figure 9-5.

Q1[7-8] - FSI: The function sets bits 7 and 8 of the Q1 byte to "00".

P1 - FEC: The function sets the P1 bytes to "00000000".

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONES signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all-ONES signal shall be within the STM-16 level frequency \pm 20 ppm.

Defect Correlations:

None.

Performance Monitoring: None.

E.1.1.2 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC transparent Sink Function RS16/MSF16_A _Sk

Symbol:

Figure 235: RS16/MSF16_A_Sk symbol

Interfaces:

Table 174: RS16/MSF16_A_Sk input and output signals

Input(s)	Output(s)
RS16_AI_D	MSF16_CI_D
RS16_AI_CK	MSF16_CI_CK
RS16_AI_FS	MSF16_CI_FS
RS16_AI_TSF	MSF16_CI_SSF

Processes:

The function separates MSF16_CI data from RS16_AI. MSF16_CI consists of the MS16_CI, see figure 90, and the P1 and Q1 bytes, see ITU-T Recommendation G.707 figure 9-5. All P1 and Q1 bytes set to "1".

None.

Defects: None.

Consequent Actions:

aSSF \leftarrow AI_TSF.

Defect Correlations:

Performance Monitoring: None.

E.1.2 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC generation

E.1.2.1 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC generation Source Function RS16/MS16-fec_A _So

Symbol:

Figure 236: RS16/MS16-fec_A_So symbol

Interfaces:

Table 175: RS16/MS16-fec_A_So input and output signals

Input(s)	Output(s)	
MS16_CI_D	RS16_AI_D	
MS16_CI_CK	RS16_AI_CK	
MS16_CI_FS	RS16_AI_FS	
MS16_CI_SSF		
RS16/MS16-fec_A_So_MI_FEC		
RS16/MS16-fec_A_So_MI_Delay		

Processes:

See figure 237.

Delay: If MI_Delay is "on" the delay buffers shall be enabled. If MI_Delay is "off" the delay buffers shall be disabled. The delay must be less than 15 μ s.

NOTE: MI_Delay must be "on" in order for MI_FEC to be "on".

Q1[7-8] - FSI: If MI_FEC is "on" the pattern "01" shall be inserted in bits 7 and 8 of the Q1 byte. If MI_FEC is "off" the pattern "00" shall be inserted in bits 7 and 8 of the Q1 byte.

P1 - FEC: If MI_FEC and MI_Delay is "on" the function calculates the parity according to ITU-T Recommendation G.707 clause A.2.2 for the information bits according to clause A.3.1. The resulting parity is placed in the P1 locations according to clause A.3.2. The B2 needs to be compensated for the insertion of the parity. If MI FEC is "off" the P1 bytes shall be set to "00000000".

Figure 237: STM-16 FEC encoding process

Due to the insertion of the parity in the P1 bytes, BIP compensation should be done as shown in figure 238. The BIP is calculated before and after the overhead insertion. Both results and the related incoming BIP overhead (which is usually transported in the following frame) are combined via an exclusive OR and form the new BIP overhead for the outgoing signal. The related processes are shown in figure 239.

NOTE: The FEC calculation is done after the B2 compensation and includes the compensated B2 as shown in figure 238.

Figure 238: B2 compensation and FEC calculation

exclusive OR

Figure 239: B2 correction; processes

Defects:

None.

Consequent Actions:

aAIS \leftarrow CI_SSF.

On declaration of aAIS the function shall output an all-ONES signal within 250 μ s; on clearing of aAIS the function shall output normal data within 250 μ s. The frequency of the all-ONES signal shall be within the STM-16 level frequency \pm 20 ppm.

Defect Correlations: None.

Performance Monitoring: None.

E.1.2.2 STM-16 Regenerator Section to STM-16 Multiplex Section Adaptation FEC generation Sink Function RS16/MS16-fec_A _Sk

Symbol:

Figure 240: RS16/MS16-fec_A_Sk symbol

Interfaces:

Table 176: RS16/MS16-fec_A_Sk input and output signals

Input(s)	Output(s)
RS16_AI_D	MS16_CI_D
RS16_AI_CK	MS16_CI_CK
RS16_AI_FS	MS16_CI_FS
RS16_AI_TSF	MS16_CI_SSF
RS16/MS16-fec_A_Sk_MI_Delay	

Processes:

Delay: If MI_Delay is "on" the delay buffers shall be enabled. If MI_Delay is "off" the delay buffers shall be disabled and the FEC decoding can not be enabled. The delay must be less than $15 \,\mu$ s.

Q1[7-8] - FSI: If MI_Delay is "on" the FEC Status Indication (FSI) controls the FEC decoder, the "on" signal will enable the FEC decoding process. If at least 9 consecutive frames contain the "01" pattern in bits 7 and 8 of the Q1 byte the FEC generation Sink functions enters the "on" state. If in at least 3 consecutive frames any pattern other than the "01" is detected in bits 7 and 8 of the Q1 byte the FEC generation Sink functions enters the "off" state. The transition between the states shall be without bit errors.

K2[6-8], P1, Q1 - AIS: The MSF-dAIS information carried in these bits shall be extracted. If MSF-dAIS is detected the error correction is disabled (enters the "off" state).

P1 - FEC: If the syndrome of a code word indicate errors those are decoded during the time the information bits passes through the delay buffers and is corrected at the egress of the delay buffers. It is outside the scope of the present document to specify how the error(s) are decoded from the syndrome.

Figure 241: STM-16 FEC decoding process

Defects:

dAIS: If at least x consecutive frames contain the "111" pattern in bits 6, 7 and 8 of the K2 byte and the "11111111" pattern in the P1 and Q1 bytes a dAIS defect shall be detected. dAIS shall be cleared if in at least x consecutive frames any pattern other then the "111" is detected in bits 6, 7 and 8 of byte K2 or the "11111111" pattern in P1 byte or Q1 byte. The x shall be in range 3 to 5.

None.

dDEG: For further study.

Consequent Actions:

 $aSSF \leftarrow AI_TSF.$

disable error correction \leftarrow dAIS.

Defect Correlations:

Performance Monitoring: None.

Annex F (informative): Bibliography

- TS 101 009 (V.1.1): "Transmission and Multiplexing (TM); Synchronous Digital Hierarchy (SDH); Network protection schemes; Types and characteristics".
- ITU-T Recommendation G.707: "Network Node Interface for the Synchronous digital hierarchy (SDH)".
- ITU-T Recommendation G.783: "Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks"

History

Document history		
Edition 1	June 1997	Publication as ETS 300 417-3-1
V1.1.2	November 1998	Publication (Converted to EN 300 417-3-1)
V1.2.1	June 2001	One-step Approval Procedure OAP 20011012: 2001-06-13 to 2001-10-12