Telecommunication network equipment;
Harmonised Standard for
ElectroMagnetic Compatibility (EMC) requirements
Reference
REN/ERM-EMC-392

Keywords
EMC, harmonised standard, network, testing

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided “AS IS” with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages
for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.
All rights reserved.
Contents

Intellectual Property Rights...7
Foreword..7
Modal verbs terminology...8
1 Scope ...9
2 References ..10
 2.1 Normative references ..10
 2.2 Informative references...12
3 Definition of terms, symbols and abbreviations..............................15
 3.1 Terms ...15
 3.2 Symbols ..17
 3.3 Abbreviations ..17
4 Installation environment...19
5 Immunity: test methods ..19
 5.0 General requirements ...19
 5.1 Electrostatic discharge..19
 5.2 Electrical fast transients/burst ..19
 5.3 Surges ...20
 5.3.1 Signal line ports ..20
 5.3.2 AC power ports ..20
 5.4 Immunity to continuous conducted signals20
 5.4.1 Radio frequency (> 150 kHz) ...20
 5.4.1.1 AC power port ..20
 5.4.1.2 DC power port ..20
 5.4.1.3 Signal line port ..20
 5.5 Immunity to radiated electromagnetic fields20
 5.6 Voltage dips and short interruptions: AC power port21
6 Emission: test methods ..21
 6.0 General ...21
 6.1 AC power port ..21
 6.2 DC power port ..21
 6.3 Wired network Ports ..22
 6.4 Antenna Port ..22
 6.5 Radiated emission ...22
7 Test levels and limits ...22
 7.0 General requirements ...22
 7.1 Emission ...22
 7.1.1 Enclosure port, Radiated electromagnetic field emissions22
 7.1.2 AC ports ...22
 7.1.2.1 Conducted emissions ...22
 7.1.3 DC ports, Conducted emissions ...22
 7.1.4 Wired network ports, Conducted emissions23
 7.2 Immunity ..23
 7.2.0 General ...23
 7.2.1 Equipment operating in telecommunication centres23
 7.2.1.1 Telecommunication centres equipment, immunity requirement of enclosure port24
 7.2.1.2 Telecommunication centres equipment, immunity requirement of ports for outdoor signal lines and antenna ports ..24
 7.2.1.3 Telecommunication centres equipment, immunity requirements of ports for indoor signal lines ..25
 7.2.1.4 Telecommunication centres equipment, immunity requirements of AC power ports26
 7.2.1.5 Telecommunication centres equipment, immunity requirements of DC power ports27
 7.2.2 Equipment operating in locations other than telecommunication centres ..28
 7.2.2.1 Other than telecommunication centres equipment, immunity requirements of enclosure port28
7.2.2.2 Other than telecommunication centres equipment, immunity requirements of ports for outdoor signal lines and antenna ports ... 29
7.2.2.3 Other than telecommunication centres equipment, immunity requirements of ports for indoor signal lines ... 30
7.2.2.4 Other than telecommunication centres equipment, immunity requirements of AC power ports 31
7.2.2.5 Other than telecommunication centres equipment, immunity requirements of DC power ports 31
8 General test configuration .. 32
9 General operational conditions during testing .. 32
9.0 General requirements ... 32
9.1 Equipment configuration .. 32
9.2 Operation of multimedia network equipment .. 33
10 General immunity conditions .. 33
10.1 General performance criteria ... 33
11 Switching equipment specific requirements ... 34
11.1 Test configuration .. 34
11.2 Operational conditions .. 35
11.2.0 General ... 35
11.2.1 Emission .. 35
11.2.2 Immunity .. 35
11.3 Specific immunity performance criteria .. 35
11.3.0 General ... 35
11.3.1 Digital port performance criteria .. 35
11.3.1.1 Performance criterion A (continuous phenomena) .. 35
11.3.1.2 Performance criterion B (transient phenomena) .. 35
11.3.1.3 Performance criterion C (interruptions) .. 36
11.3.2 Analogue port performance criteria ... 36
11.3.2.1 Performance criterion A (continuous phenomena) .. 36
11.3.2.2 Performance criterion B (transient phenomena) .. 36
11.3.2.3 Performance criterion C (interruptions) .. 36
12 Transmission equipment specific requirements ... 36
12.1 Test configuration .. 36
12.2 Operational conditions .. 37
12.2.0 General ... 37
12.2.1 Emission .. 37
12.2.2 Immunity .. 37
12.3 Specific immunity performance criteria .. 37
12.3.1 Digital signal ports .. 37
12.3.1.0 General .. 37
12.3.1.1 Performance criterion A (continuous phenomena) .. 38
12.3.1.2 Performance criterion B (transient phenomena) .. 38
12.3.1.3 Performance criterion C (interruptions) .. 38
12.3.2 Analogue voice frequency signal ports ... 38
12.3.2.0 General .. 38
12.3.2.1 Performance criterion A (continuous phenomena) .. 38
12.3.2.2 Performance criterion B (transient phenomena) .. 38
12.3.3 SDH and PDH interfaces ... 39
12.3.3.1 Tributary and aggregate interfaces .. 39
12.3.4 ISDN interfaces .. 39
12.3.4.1 Primary rate access ISDN interfaces ... 39
12.3.4.2 Network termination NT1 for ISDN “U” interfaces .. 39
12.3.4.3 Basic access ISDN interfaces .. 39
12.3.5 Analogue interfaces ... 39
12.3.5.1 Trunk interfaces and leased line interfaces .. 39
12.3.5.2 Subscriber interfaces .. 39
12.3.6 V.10, V.11, V.24, V.28, V.36, X.24 and similar V.- and X.- series interfaces 39
12.3.7 Ethernet and packet-data interfaces ... 39
12.3.7.0 General .. 39
12.3.7.1 Performance criterion A (continuous phenomena) .. 39
12.3.7.2 Performance criterion B (transient phenomena) .. 40
12.3.8 Service and maintenance interfaces .. 40
12.3.9 Synchronization interfaces .. 40
12.3.9.0 General ... 40
12.3.9.1 Performance criterion A (continuous phenomena) .. 40
12.3.9.2 Performance criterion B (transient phenomena) ... 40
12.3.10 Remote alarm interfaces ... 40
12.3.10.0 General ... 40
12.3.10.1 Performance criterion A (continuous phenomena) ... 40
12.3.10.2 Performance criterion B (transient phenomena) ... 40
12.4 Digital Subscriber Line (DSL) Access Systems ... 40
12.4.1 Test configuration ... 40
12.4.2 Operational conditions ... 41
12.4.3 Immunity ... 42
12.4.4 Specific immunity performance criteria .. 42
12.4.4.0 General ... 42
12.4.4.1 Performance criteria A (continuous phenomena) ... 42
12.4.4.2 Performance criteria B (transient phenomena) .. 42
12.4.4.3 Performance criteria C (interruptions) ... 42
13 Power supply equipment specific conditions ... 43
13.0 General .. 43
13.1 Test configuration .. 43
13.2 Operational conditions ... 44
13.2.1 Emission .. 44
13.2.2 Immunity .. 44
13.3 Specific immunity performance criteria ... 44
13.3.0 General .. 44
13.3.1 Alternating current secondary interface .. 44
13.3.1.1 Performance criterion A (continuous phenomena) .. 44
13.3.1.2 Performance criterion B (transient phenomena) ... 44
13.3.2 Direct current secondary interface ... 45
13.3.2.1 Performance criterion A (continuous phenomena) .. 45
13.3.2.2 Performance criterion B (transient phenomena) ... 45
13.3.3 Control/signal interface .. 45
13.3.4 Tertiary supply interface ... 46
14 Supervisory equipment specific conditions ... 46
14.1 Test configuration .. 46
14.2 Operational conditions ... 46
14.3 Specific immunity performance criteria ... 47
14.3.1 Performance criterion A (continuous phenomena) ... 47
14.3.2 Performance criterion B (transient phenomena) .. 47
Annex A (informative): Relationship between the present document and the essential requirements of Directives 2014/30/EU and 2014/53/EU .. 48
A.1 Relationship between the present document and the essential requirements of Directive 2014/30/EU.. 48
A.2 Relationship between the present document and the essential requirements of Directive 2014/53/EU .. 50
Annex B (informative): Evaluation of test results ... 52
Annex C (informative): Guidance on EMC performance requirements and methods of measurement for RF ports (also covered by EN 50083-2) of multimedia network equipment .. 54
Annex D (normative): Requirements of radio functions .. 55
D.1 Applicability .. 55
D.2 Exclusion bands ... 55
D.2.1 General .. 55
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: “Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards”, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

BLUETOOTH® is a trademark registered and owned by Bluetooth SIG, Inc.

Foreword

This Harmonised European Standard (EN) has been produced by ETSI Technical Committee Electromagnetic compatibility and Radio spectrum Matters (ERM).

The present document has been prepared:

- under the Commission's standardisation request C(2016) 7641 final of 30.11.2016 [i.43] (‘M/552’), to provide one voluntary means of conforming to the essential requirements of Directive 2014/30/EU on the harmonisation of the laws of the Member States relating to electromagnetic compatibility [i.31];

Once the present document is cited in the Official Journal of the European Union under the Directives, compliance with the normative clauses of the present document given in tables A.1 and A.2 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of the relevant Directives and associated EFTA regulations.
National transposition dates

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of adoption of this EN:</td>
<td>5 September 2022</td>
</tr>
<tr>
<td>Date of latest announcement of this EN (doa):</td>
<td>31 December 2022</td>
</tr>
<tr>
<td>Date of latest publication of new National Standard or endorsement of this EN (dop/e):</td>
<td>30 June 2023</td>
</tr>
<tr>
<td>Date of withdrawal of any conflicting National Standard (dow):</td>
<td>30 June 2024</td>
</tr>
</tbody>
</table>

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
1 Scope

The present document specifies the EMC requirements for telecommunication equipment intended to be used within a telecommunications network, which provides telecommunications between Network Termination Points (NTPs) (i.e. excluding terminal equipment beyond the NTPs). Radio functionality (e.g. Bluetooth®, Wi-Fi®, GPS) incorporated in telecommunication network equipment is also within the scope of the present document. Examples of such equipment are:

1) Switching equipment. Such equipment includes:
 - local telephone exchanges;
 - remote switching concentrators;
 - international switches;
 - telex switches;
 - network packet switches;
 - base station controllers, radio network controllers;
 - network servers and gateways.

2) Non-radio transmission equipment and ancillary equipment. Such equipment includes:
 - multiplexers;
 - line equipment and repeaters, e.g. equipment for:
 - Synchronous Digital Hierarchy (SDH);
 - Plesiochronous Digital Hierarchy (PDH);
 - Asynchronous Transfer Mode (ATM);

such as:
 - Digital Cross Connect systems;
 - network terminations;
 - transmission equipment used in the access network like xDSL.

3) Power supply equipment. Such equipment includes:
 - central power plant;
 - end of suite power supplies;
 - uninterruptible power supplies;
 - stabilized AC power supplies; and
 - other dedicated telecommunication network power supplies,
 but excludes equipment which is uniquely associated with or integrated in other equipment.

4) Supervisory equipment. Such equipment includes:
 - network management equipment;
 - operator access maintenance equipment;
 - traffic measurement systems;
 - line test units;
- functional test units.

NOTE 1: The function of supervision may either be performed by independent equipment or form part of other telecommunication network equipment. If the function of supervision forms part of a telecommunication network equipment, the performance may be evaluated simultaneously with other functions (such as switching and transmission) during EMC testing.

5) Telecommunication network equipment incorporating radio equipment.

6) Data centre equipment which is intended to be used within telecommunication network infrastructure:
 - Storage.
 - Processor.
 - Server.

The requirements applicable to radio interfaces of Telecommunication network equipment within the scope of the present document (e.g. Bluetooth®, Wi-Fi®, GPS) are defined in clause 7 and annex D.

The environmental classification locations used in the present document refer to ETSI TR 101 651 [i.22].

The emission requirements of the present document refer to EN 55032 [31] that have been selected to ensure an adequate level of protection to radio services.

The immunity requirements of the present document have been selected to ensure an adequate level of immunity for the apparatus covered by the scope of the present document. The levels do not, however, cover extreme cases which may occur at any location but with a low probability of occurrence. In special cases, situations may arise where the levels of disturbance may exceed the immunity test levels specified in the present document. In these instances, special mitigation measures may have to be employed.

General purpose equipment, which is used as a part of a telecommunication network, may be covered by the scope of other standards. Equipment which also fall within the scope of EN 50083-2 [3] may require additional testing on the relevant RF ports. See clause 9.2 and annex C.

Equipment may provide different functions, i.e. switching equipment may also provide transmission functions and transmission equipment may provide storage capabilities, etc. All available functions of the EUT are to be tested.

NOTE 2: The relationship between the present document and essential requirements of annex I.1 of Directive 2014/30/EU [i.31] and/or article 3.1(b) of Directive 2014/53/EU [i.6] is given in annex A.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[15] ETSI EN 300 132-1 (V2.1.1) (03-2019): "Environmental Engineering (EE); Power supply interface at the input to Information and Communication Technology (ICT) equipment; Part 1: Alternating Current (AC)".

[16] ETSI EN 300 132-2 (V2.6.1) (04-2019): "Environmental Engineering (EE); Power supply interface at the input of Information and Communication Technology (ICT) equipment; Part 2: -48 V Direct Current (DC)".

[21] ETSI EN 301 489-17 (V3.2.4) (09-2020): "ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard for ElectroMagnetic Compatibility".

[22] Void.
2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] ETSI EN 300 011-1 (V1.2.2): "Integrated Services Digital Network (ISDN); Primary rate User Network Interface (UNI); Part 1: Layer 1 specification".

[i.2] ETSI EN 300 012-1 (V1.2.2): "Integrated Services Digital Network (ISDN); Basic User-Network Interface (UNI); Part 1: Layer 1 specification".

[i.3] ETSI EN 300 166 (V1.2.1): "Transmission and Multiplexing (TM); Physical and electrical characteristics of hierarchical digital interfaces for equipment using the 2 048 kbit/s - based plesiochronous or synchronous digital hierarchies".

[i.5] ISO/IEC/IEEE 8802-3 (2014): "Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications".

Void.

Recommendation ITU-T G.761 (1993 + Erratum 1: 2000): "Digital transmission system on metallic local lines for ISDN basic rate access".

Recommendation ITU-T V.10 (1993): "Electrical characteristics for unbalanced double-current interchange circuits operating at data signalling rates nominally up to 100 kbit/s”.

Recommendation ITU-T V.11 (1996): "Electrical characteristics for balanced double-current interchange circuits operating at data signalling rates up to 10 Mbit/s”.

Recommendation ITU-T V.24 (2000): "List of definitions for interchange circuits between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE)”.

Recommendation ITU-T X.24 (1988): "List of definitions for interchange circuits between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) on public data networks”.

Recommendation ITU-T X.25 (1996 + Corrigendum 1: 1998): "Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit”.

ETSI TR 101 651 (V2.1.1): "Classification of the electromagnetic environment conditions for equipment in telecommunication networks”.

Void.

Void.

Void.

ETSI TS 101 135 (V1.5.3): "Transmission and Multiplexing (TM); High bit-rate Digital Subscriber Line (HDSL) transmission systems on metallic local lines; HDSL core specification and applications for combined ISDN-BA and 2 048 kbit/s transmission".

ETSI TS 101 524-1 (V1.1.1): "Transmission and Multiplexing (TM); Access transmission system on metallic access cables; Symmetrical single pair high bitrate Digital Subscriber Line (SDSL); Part 1: Functional requirements".

ETSI TS 101 270-1 (V1.4.1): "Transmission and Multiplexing (TM); Access transmission systems on metallic access cables; Very high speed Digital Subscriber Line (VDSL); Part 1: Functional requirements".

EN 50083 series: "Cable networks for television signals, sound signals and interactive services", (produced by CENELEC).
3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in IEC 60050-161 [17] and the following apply:

NOTE: The definitions taken from IEC 60050-161 [17] have reference in parentheses.

AC secondary interface: output port of an AC power supply

AC secondary voltage: output of the AC power supply at the AC secondary interface

NOTE: The AC secondary voltage may be either:

- a stabilized AC supply derived from a DC primary supply (e.g. where the power supply is an inverter); or
- derived from the AC primary supply (e.g. a stabilized power supply used where the quality of the primary supply is not sufficient to feed telecommunication equipment).

antenna port: port for connection of an antenna used for intentional transmission and/or reception of radiated RF energy

burst (161-02-07): sequence of a limited number of distinct pulses or an oscillation of limited duration

channel width: bandwidth between the two frequencies f_{low} and f_{high} defined as the operating channel within ITU-R

connection: temporary association of transmission channels or telecommunication circuits, switching or other functional units set up to provide for the transfer of information between two or more points in a telecommunication network (IEC 60050-714 [18])

continuous disturbance (161-02-11): electromagnetic disturbance the effects of which on a particular device or equipment cannot be resolved into a succession of distinct effects

critical stored data: data that is essential for an EUT to operate

data centre: structure, or group of structures, dedicated to the centralized accommodation, interconnection and operation of information technology and network telecommunications equipment providing data storage, processing and transport services together with all the facilities and infrastructures for power distribution and environmental control together with the necessary levels of resilience and security required to provide the desired service availability

DC secondary interface: output port of a DC power supply

DC secondary voltage: output of the DC power supply at the DC secondary interface

NOTE: The DC secondary voltage may be derived from the AC primary supply with or without a buffer battery.

duration (of a pulse): interval of time between the instants at which the instantaneous value of a pulse reaches 50 % of the pulse magnitude for the first and last time

duration (of a voltage change) (161-08-03): interval of time for the voltage to increase or decrease from the initial value to the final value

enclosure port: physical boundary of the Equipment Under Test (EUT) through which electromagnetic fields may emanate or on which they may impinge

environment, environmental conditions: electromagnetic conditions external to the equipment, to which it is subjected at a certain time

NOTE: The environmental conditions comprise a combination of single environmental parameters and their severity.

environmental parameters: present one or more properties of the electromagnetic environment
exclusion band(s): frequency range(s) where the emissions are not assessed, and where during immunity test(s) the radio functionality is not required to meet the performance criteria

NOTE: Further information on exclusion bands can be found in annex D.

immunity (to a disturbance) (161-01-20): ability of a device, equipment or system to perform without degradation in the presence of an electromagnetic disturbance

impulsive disturbance (161-02-09): electromagnetic disturbance which, when incident on a particular device or equipment, manifests itself as a succession of distinct pulses or transients

integrated equipment: equipment which cannot be separated into radio and non-radio constituent products that can be assessed individually

interface "A": terminals at which a power supply is connected to the telecommunications equipment

interface A3: interface, physical point, at which power supply is connected in order to operate the telecommunications and datacom (ICT) equipment with input DC voltage between 260 V and 400 V

multimedia network equipment: multimedia network equipment containing broadcast and telecommunication functions

Network Termination Point (NTP): physical point at the boundary of the Telecommunications Networks intended to accept the connection of a Terminal Equipment

nominal voltage: nominal value of voltage that designates the type of supply

normal service: service mode where telecommunications equipment operates within its specification

occupied bandwidth: combined bandwidth (β) of a carrier and its sidebands, below the lower, and above the upper frequency limits, the respective mean powers emitted are each equal to a specified percentage β/2 of the total mean power of that carrier

operating frequency: operating frequency range of the wireless technology as defined in ITU-R

performance criterion: limits of acceptable behaviour of the equipment during and after the application of the electromagnetic phenomenon

NOTE: Performance criteria A apply for continuous phenomena; performance criteria B and C apply for transient phenomena; and performance criteria R apply for resistibility phenomena.

port: particular interface of the EUT with the external electromagnetic environment

power supply: power source (within the scope of the present document) to which telecommunications equipment is intended to be connected

primary supply: public mains or a locally generated AC or DC supply

pulse (161-02-02): abrupt variation of short duration of a physical quantity followed by a rapid return to the initial value

quiescent level: steady state performance of the equipment operating as intended when configured for EMC immunity testing prior to the application of any disturbance signal

radio equipment: "An electrical or electronic product, which intentionally emits and/or receives radio waves for the purpose of radio communication and/or radio determination, or an electrical or electronic product which must be completed with an accessory, such as antenna, so as to intentionally emit and/or receive radio waves for the purpose of radio communication and/or radio determination", definition from Directive 2014/53/EU [i.6].

Radio Frequency (RF): frequency range above 150 kHz

radio module: piece of a radio equipment allowing the radio function of this equipment
rise time (of a pulse) (161-02-05): interval of time between the instants at which the instantaneous value of a pulse first reaches a specified lower value and then a specified upper value

NOTE: Unless otherwise specified, the lower and upper values are fixed at 10 % and 90 % of the pulse magnitude.

secondary supply: supply to the telecommunications equipment (e.g. racks or system blocks), derived from the primary supply

signal line ports: these include wired network ports, RF ports or ports intended for the interconnection of components of an EUT, or between an EUT and AE and used in accordance with relevant functional specifications

NOTE: E.g. for the maximum length of cable connected to it.

surge (voltage) (161-08-11): transient voltage wave propagating along a line or a circuit and characterized by a rapid increase followed by a slower decrease of the voltage

system block: functional group of equipment depending for its operation and performance upon the secondary power supply

telecommunications network: network operated under a licence granted by a national telecommunications authority, which provides telecommunications between Network Termination Points (NTPs)

NOTE: I.e. excluding terminal equipment beyond the NTPs.

tertiary supply: supply to the telecommunications equipment derived from the secondary supply

transient (adjective or noun) (161-02-01): pertaining to or designating a phenomenon or a quantity which varies between two consecutive steady states during a time interval which is short compared with the timescale of interest

wired network ports: point of connection for voice, data and signalling transfers intended to interconnect widely dispersed systems by direct connection to a single-user or multi-user communication network

NOTE 1: E.g. PSTN, ISDN, xDSL, LAN and similar networks.

NOTE 2: A port generally intended for interconnection of components of the EUT (e.g. RS-232, IEEE 1284™ [i.28] (parallel printer), Universal Serial Bus (USB), IEEE 1394™ [i.29] ("Fire Wire"), etc.) and used in accordance with its functional specifications (e.g. for the maximum length of cable connected to it), is not considered to be a wired network port under this definition.

NOTE 3: See EN 55032 [31].

NOTE 4: These ports may support screened or unscreened cables and may also carry AC or DC power where this is an integral part of the communication specification.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternated Current</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude Modulation</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>BSC</td>
<td>Base Station Controller</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>CATV</td>
<td>CAble TeleVision</td>
</tr>
<tr>
<td>CD</td>
<td>Collision Detection</td>
</tr>
<tr>
<td>CHW</td>
<td>CHannel Width</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
</tbody>
</table>

ETS1
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSMA</td>
<td>Carrier Sense Multiple Access</td>
</tr>
<tr>
<td>DBS</td>
<td>Digit Broadcast Satellite</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCE</td>
<td>Data Circuit-terminating Equipment</td>
</tr>
<tr>
<td>DLU</td>
<td>Digital Line Unit</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EE</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>EFT</td>
<td>Electrical Fast Transients</td>
</tr>
<tr>
<td>EM</td>
<td>ElectroMagnetic</td>
</tr>
<tr>
<td>EMC</td>
<td>ElectroMagnetic Compatibility</td>
</tr>
<tr>
<td>EN</td>
<td>European Norm</td>
</tr>
<tr>
<td>ESD</td>
<td>ElectroStatic Discharge</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute</td>
</tr>
<tr>
<td>EUT</td>
<td>Equipment Under Test</td>
</tr>
<tr>
<td>GLONASS</td>
<td>GLObal NAvigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HDSL</td>
<td>High bit-rate Digital Subscriber Line</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communications Technology</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunication Union - Telecommunication sector</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>LTG</td>
<td>Line Trunk Group</td>
</tr>
<tr>
<td>MATV</td>
<td>Master Antenna TeleVision (system)</td>
</tr>
<tr>
<td>NT</td>
<td>Network Termination</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Termination Point</td>
</tr>
<tr>
<td>OBw</td>
<td>Occupied Bandwidth</td>
</tr>
<tr>
<td>OFR</td>
<td>Operating Frequency Range</td>
</tr>
<tr>
<td>PDH</td>
<td>Plesiochronous Digital Hierarchy</td>
</tr>
<tr>
<td>POTS</td>
<td>Plain Old Telephone Service</td>
</tr>
<tr>
<td>PRBS</td>
<td>Pseudo Random Bit Sequence</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telecommunication Network</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>rms</td>
<td>root-mean-square</td>
</tr>
<tr>
<td>RNC</td>
<td>Radio Network Controller</td>
</tr>
<tr>
<td>ROMES</td>
<td>Receive Only Mobile Earth Station</td>
</tr>
<tr>
<td>RSL</td>
<td>Receiver Signal Level</td>
</tr>
<tr>
<td>RX</td>
<td>Radio Receiver</td>
</tr>
<tr>
<td>SAT-IF</td>
<td>SATellite-Intermediate Frequency</td>
</tr>
<tr>
<td>SDH</td>
<td>Synchronous Digital Hierarchy</td>
</tr>
<tr>
<td>SDSL</td>
<td>Symmetrical single pair high bit rate Digital Subscriber Line</td>
</tr>
<tr>
<td>SN</td>
<td>Switching Network</td>
</tr>
<tr>
<td>SPL</td>
<td>Sound Pressure Level</td>
</tr>
<tr>
<td>TE</td>
<td>Telecommunication Equipment</td>
</tr>
<tr>
<td>TLS</td>
<td>Test Load Simulator</td>
</tr>
<tr>
<td>TM</td>
<td>Transmission and Multiplexing</td>
</tr>
<tr>
<td>T_r/T_h</td>
<td>Rise time and hold time of transient signal</td>
</tr>
<tr>
<td>TS</td>
<td>Traffic Simulator</td>
</tr>
<tr>
<td>Tx</td>
<td>Radio Transmitter</td>
</tr>
<tr>
<td>UNI</td>
<td>User Network Interface</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VDSL</td>
<td>Very high speed Digital Subscriber Line</td>
</tr>
<tr>
<td>xDSL</td>
<td>As such ADSL, HDSL, VDSL or SDSL</td>
</tr>
</tbody>
</table>
4 Installation environment

ETSI TR 101 651 [i.22] defines four installation environments for the equipment covered by the present document. For the purposes of the present document, these environments are classified as either:

- the telecommunication centre (major and minor); this includes Data centres, see clauses 5.1.1 and 5.1.2 of ETSI TR 101 651 [i.22];
- locations other than telecommunication centre; this includes: outdoor locations (see clause 5.2 of ETSI TR 101 651 [i.22]) and customers' premises locations (see clause 5.3 of ETSI TR 101 651 [i.22]).

If no restrictions are specified in the product documentation for the installation environment, the equipment shall comply with the requirements of both environments.

5 Immunity: test methods

5.0 General requirements

Immunity requirements are defined according to the phenomena defined in EN 61000-6-1 [i.23].

Conducted immunity tests shall be applied to one port at a time.

Based upon actual installation practices, for a single EUT with multiple power ports intended to be connected to the same power source, conducted immunity tests can be applied to all these ports at the same time.

Conducted immunity test shall not be applied to the signal ports that, according to the product documentation, are not permanently connected but just used to setup or perform a maintenance activity of the equipment; these maintenance activities are not intended operating conditions.

All immunity tests defined in clause 7 shall be considered by the test plan, however, where it has been determined in the test plan, that one or more of the tests are not relevant to the EUT, the decision and justification not to perform such tests shall be recorded in the test report. All immunity tests defined in clause 7.2 and required by the test plan shall be applied to the EUT.

Only performance criteria specified in the present document shall apply.

For equipment with a radio function, the exclusion band(s) defined in annex D shall apply.

NOTE: Exclusion of radio frequency conducted immunity tests on cables length intended not greater than 3 m has been adopted in line with Generic Immunity standards EN 61000-6-1 [i.23].

5.1 Electrostatic discharge

The immunity test method and laboratory conditions shall be in accordance to EN 61000-4-2 [9], clauses 6, 7 and 8.

ESD shall be applied only to those points and surfaces of the EUT that are expected to be touched during normal operation including users access as specified in the user manual.

The application of discharges to any point of the EUT which are accessible only for maintenance purposes, are not required. The application of ESD to the contacts of open connectors is not required.

The selected test points shall be defined in the test plan and recorded in the test report.

5.2 Electrical fast transients/burst

The immunity test method and laboratory conditions shall be in accordance to EN 61000-4-4 [11], clauses 7.1, 7.2, 7.3 and 8.
5.3 Surges

5.3.1 Signal line ports

This requirement shall apply to both indoor and outdoor signal line ports.

The immunity test method to be used for signal line ports shall be in accordance to EN 61000-4-5 [12], clauses 7 and 8. The test set up for shielded interface cables is specified in EN 61000-4-5 [12], clause 7.6.

For ports connected to multi-conductor lines, the networks according to EN 61000-4-5 [12], clause 6.3, shall be used.

5.3.2 AC power ports

The immunity test method for AC power line ports shall be in accordance to EN 61000-4-5 [12], clauses 7 and 8.

This test applies to AC power input ports. It also applies to output ports of Power Supply equipment defined in clause 13 of the present document if, according to the EUT’s specifications, they support cable lengths greater than 10 m.

5.4 Immunity to continuous conducted signals

5.4.1 Radio frequency (> 150 kHz)

5.4.1.1 AC power port

The test method shall be in accordance to EN 61000-4-6 [13], clauses 6, 7 and 8.

Power ports, which according to the EUT’s specifications are not intended to be connected to power supply equipment shall not be subjected to these tests.

This test applies to AC power input ports. It also applies to output ports of Power Supply equipment defined in clause 13 of the present document if, according to the EUT’s specifications, they support cable lengths greater than 3 m.

5.4.1.2 DC power port

The test method shall be in accordance to EN 61000-4-6 [13], clauses 6, 7 and 8.

Power ports, which according to the EUT’s specifications are not intended to be connected to power supply equipment with a cable longer than 3 m, shall not be subjected to these tests. The coupling/decoupling network type M1 as given in EN 61000-4-6 [13], annex C, shall be used when the DC return lead at the EUT side is to be connected to the equipment protective earth. If the DC return lead is not connected to the equipment protective earth then the coupling/decoupling network M2 as given in EN 61000-4-6 [13], annex C, shall be used.

This test applies to DC power input ports. It also applies to output ports of Power Supply equipment defined in clause 13 of the present document if, according to the EUT’s specifications, they support cable lengths greater than 3 m.

5.4.1.3 Signal line port

The test method shall be in accordance to EN 61000-4-6 [13], clauses 6, 7 and 8.

It only applies when the overall cable length between the EUT and another item of active equipment may be greater than 3 m.

5.5 Immunity to radiated electromagnetic fields

The test method shall be in accordance to EN 61000-4-3 [10], clauses 6, 7 and 8.
5.6 Voltage dips and short interruptions: AC power port

For EUT with rated input current not exceeding 16 A per phase, test method shall be in accordance with EN 61000-4-11 [14], clause 8.

For EUT with rated input current exceeding 16 A per phase, test method shall be in accordance with EN 61000-4-34 [24], clause 8.

6 Emission: test methods

6.0 General

Where not specified here, the EUT shall be configured, installed, arranged and operated in a manner consistent with normal operation.

All emission tests defined in the present document shall be considered by the test plan, however, where it has been determined in the test plan, that one or more of the tests are not relevant to the EUT, the decision and justification not to perform such tests shall be recorded in the test report.

All emission tests defined in the present document and required by the test plan shall be applied to the EUT.

For equipment with a radio function, the exclusion band(s) defined in annex D shall apply.

In the case where non compliances can be attributed to the transmission of the wanted radio signal from the EUT, these shall be disregarded.

6.1 AC power port

For conducted emission on AC power port in the frequency range 0,15 MHz to 30 MHz, the test method specified in EN 55032 [31], annex A.3, shall apply.

This test applies to AC power input ports. It also applies to output ports of Power Supply equipment defined in clause 13 of the present document if, according to the EUT's specifications, they support cable lengths greater than 3 m.

6.2 DC power port

The measuring methods shall be those specified for the AC mains interface in EN 55032 [31], annex A.3.

Power ports, which according to the EUT's specifications are not intended to be connected to the power supply equipment with a cable longer than 3 m, shall not be subjected to these tests.

This test applies to DC power input ports. It also applies to output ports of Power Supply equipment defined in clause 13 of the present document if, according to the EUT's specifications, they support cable lengths greater than 3 m.

The EUT shall be connected to the DC power supply through an artificial network to provide a defined impedance across EUT at the point of measurement and to provide isolation from the noise on the DC power supply lines.

For an EUT that has several modules, each with its own power cable (however terminated) and for which the manufacturer provides a power strip (multi-socket mains splitter) with a single power cable for connection to the external power source, a single measurement shall be performed at the mains input to that power cable.

The artificial network shall be the one described in EN 55016-1-2 [1], clause 4:

- 0,15 MHz to 30 MHz: (50 Ω // 50 μH).

The DC return lead at the EUT side shall be connected to the protective earth if this is required by the equipment installation specification.
When the use of the artificial network is not suitable (e.g. when the artificial mains network with the current capacity of the EUT is not commercially available) the method described in EN 55016-1-2 [1], clause 5.2, for the voltage probe (1 500 Ω) shall be used.

6.3 Wired network Ports

For conducted emissions on wired network ports in the frequency range 0.15 MHz to 30 MHz, the test method specified in EN 55032 [31], annex A.3, shall apply.

6.4 Antenna Port

Where the EUT has a port intended for the connection of an external antenna, the requirements of EN 55032 [31], annex A.3 for antenna ports shall apply.

6.5 Radiated emission

For radiated emission in the frequency range 30 MHz to 6 000 MHz the test method specified in EN 55032 [31], annex A.2, shall apply.

The test method defined in clause 7.7 of EN 55016-2-3 [2] shall apply to physically large equipment tested in situ.

7 Test levels and limits

7.0 General requirements

The EMC properties of the radio function of the EUT shall be tested against the requirements of the applicable radio EMC standard(s) or the requirements of the present document, including annex D. Where there are conflicts between the EMC requirements of the radio standard and the present document, the requirements of the present document shall apply.

The non-radio function of the EUT shall be tested against the requirements of the present document.

7.1 Emission

7.1.1 Enclosure port, Radiated electromagnetic field emissions

For radiated emissions, the EUT with the radio function in receive mode shall comply with the limits defined in EN 55032 [31], annex A.2.

If the EUT has no receiver but just a transmitter the EUT transmitter shall be set to standby-mode.

7.1.2 AC ports

7.1.2.1 Conducted emissions

The limits defined in EN 55032 [31], annex A.3, shall apply.

7.1.3 DC ports, Conducted emissions

The limits defined in EN 55032 [31], annex A.3, table A.9, shall apply.
NOTE: The limits above apply to DC power ports in any environment defined in clause 4 of the present document, based upon installation practices of the products (e.g. DC power cables of telecommunication network equipment in residential environment are either shorter than 3 m or running underground).

7.1.4 Wired network ports, Conducted emissions

The limits defined in EN 55032 [31], annex A.3, for wired network ports shall apply.

7.2 Immunity

7.2.0 General

Immunity requirements are defined in clause 7.2.1 for equipment operating in telecommunication centres and clause 7.2.2 for equipment operating in other than telecommunication centre.

NOTE: Surge test on DC ports are not defined in the present document because in the environment of "telecommunication centres" the DC power distribution is an indoor network in a controlled environment. Whereas in the environment "other than telecommunication centres" the DC power line is derived from an AC/DC converter with a cable shorter than 10 m and then surge test is performed on the AC port only.
7.2.1 Equipment operating in telecommunication centres

7.2.1.1 Telecommunication centres equipment, immunity requirement of enclosure port

Table 1: Telecommunication centres equipment, immunity requirement of enclosure port

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.1.1 Electrostatic discharge</td>
<td>kV</td>
<td>4 Contact Discharge 4 Air Discharge</td>
<td>EN 61000-4-2 [9]</td>
<td>B</td>
<td>See note 1</td>
</tr>
<tr>
<td>7.2.1.1.2 Electrostatic discharge</td>
<td>kV</td>
<td>4 Contact Discharge 8 Air Discharge</td>
<td>EN 61000-4-2 [9]</td>
<td>B</td>
<td>See note 2</td>
</tr>
<tr>
<td>7.2.1.1.3 Radio frequency electromagnetic field amplitude modulated</td>
<td>MHz V/m % AM (1 kHz)</td>
<td>80 to 690 3 80</td>
<td>EN 61000-4-3 [10]</td>
<td>A</td>
<td>See note 3</td>
</tr>
</tbody>
</table>

NOTE 1: This requirement applies to telecommunication centres where ESD control practice are in place.

NOTE 2: This requirement applies to telecommunication centres where no ESD control practice are in place.

NOTE 3: These test levels have been selected in accordance to the radiated disturbances classified in table 6 of ETSI TR 101 651 [i.22].
7.2.1.2 Telecommunication centres equipment, immunity requirement of ports for outdoor signal lines and antenna ports

Table 2: Telecommunication centres equipment, immunity requirement of ports for outdoor signal lines and antenna ports

<table>
<thead>
<tr>
<th>Immunity</th>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.2.1</td>
<td>Fast transients</td>
<td>kV</td>
<td>TR/TH ns Repetition frequency kHz</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td>For xDSL ports, repetition frequency is 100 kHz</td>
</tr>
<tr>
<td>7.2.1.2.2</td>
<td>Surges, port type:</td>
<td>kV</td>
<td>10/700 (5/320)</td>
<td>EN 61000-4-5 [12] and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See notes 2 and 3</td>
</tr>
<tr>
<td></td>
<td>symmetrical unscreened</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line to Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line to Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.1.2.3</td>
<td>Surges, port type:</td>
<td>kV</td>
<td>1,2/50 (8/20)</td>
<td>EN 61000-4-5 [12] and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See notes 2 and 3</td>
</tr>
<tr>
<td></td>
<td>asymmetrical unscreened</td>
<td>kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line to Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line to Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.1.2.4</td>
<td>Surges, port type:</td>
<td>kV</td>
<td>1,2/50 (8/20)</td>
<td>EN 61000-4-5 [12] and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See notes 3 and 4</td>
</tr>
<tr>
<td></td>
<td>coaxial or screened</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shield to Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.1.2.5</td>
<td>Radio frequency,</td>
<td>MHz</td>
<td>0.15 to 80</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conducted continuous</td>
<td>V</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% AM (1 kHz)</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source impedance Ω</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outdoor lines carrying DC power with superimposed signals shall be treated as outdoor signal lines.

NOTE 2: As a result of the surge, loss of function of the port under test is allowed. The function of the port under test shall be self-recoverable or restored by the intervention of the user. For the whole system, performance degradations are allowed during the application of surge and self-recovery to normal condition is required after the cessation of the test. System Software reboot is not allowed.

NOTE 3: Primary protections shall not be in place for this test.

NOTE 4: No surge test is required on antenna ports. Currently EN 61000-4-5 [12] does not have an effective surge test method and does not apply this test to antenna ports.
7.2.1.3 Telecommunication centres equipment, immunity requirements of ports for indoor signal lines

Only ports connected to inter-system cables are to be tested. Testing of ports for intra-system cabling, e.g. local alarm and control, are to be tested if according to the EUT's specifications these cables may be longer than 3 m (see "Remarks" for test applicability).

Table 3: Telecommunication centres equipment, immunity requirements of ports for indoor signal lines

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast transients</td>
<td>kV</td>
<td>0.5</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td>See note 2. For xDSL ports Repetition frequency is 100 kHz</td>
</tr>
<tr>
<td></td>
<td>Tr/Th ns</td>
<td>5/50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surges Line to Ground</td>
<td>kV</td>
<td>1.2/50 (8/20)</td>
<td>EN 61000-4-5 [12]</td>
<td>B</td>
<td>See note 3</td>
</tr>
<tr>
<td></td>
<td>Tr/Th μs</td>
<td>0.5</td>
<td>and clause 5.3.1 of the present document</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio frequency,</td>
<td>MHz</td>
<td>0.15 to 80</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td>See note 2</td>
</tr>
<tr>
<td>conducted continuous</td>
<td>V</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% AM (1 kHz)</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source impedance Ω</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Indoor lines carrying DC power with superimposed signals shall be treated as indoor signal lines.

NOTE 2: This test applies when the overall cable length between the EUT and another item of active equipment may be greater than 3 m as defined in Generic Immunity standards EN 61000-6-1 [i.23].

NOTE 3: This test applies when the overall cable length between the EUT and another item of active equipment may be greater than 30 m as defined in Generic Immunity standards EN 61000-6-1 [i.23].
7.2.1.4 Telecommunication centres equipment, immunity requirements of AC power ports

Table 4: Telecommunication centres equipment, immunity requirements of AC power ports

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.4.1 Fast transients</td>
<td>kV</td>
<td>1/50 5</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>7.2.1.4.2 Surges Line to Line</td>
<td>kV</td>
<td>1,2/50 (8/20) 0.5 1</td>
<td>EN 61000-4-5 [12]</td>
<td>B B</td>
<td></td>
</tr>
<tr>
<td>7.2.1.4.3 Radio frequency, conducted continuous</td>
<td>MHz</td>
<td>0.15 to 80 3 80 150</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

7.2.1.5 Telecommunication centres equipment, immunity requirements of DC power ports

Table 5: Telecommunication centres equipment, immunity requirements of DC power ports

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.5.1 Fast transients</td>
<td>kV</td>
<td>0.5 5/50 5</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td>See note</td>
</tr>
<tr>
<td>7.2.1.5.2 Radio frequency, conducted continuous</td>
<td>MHz</td>
<td>0.15 to 80 3 80 150</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td>See note</td>
</tr>
</tbody>
</table>

NOTE: This test applies when the overall cable length between the EUT and another item of active equipment may be greater than 3 m as defined in Generic Immunity standards EN 61000-6-1 [123].
7.2.2 Equipment operating in locations other than telecommunication centres

7.2.2.1 Other than telecommunication centres equipment, immunity requirements of enclosure port

Table 6: Other than telecommunication centres equipment, immunity requirements of enclosure port

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2.1.1 Electrostatic discharge</td>
<td>kV</td>
<td>6 contact discharge</td>
<td>EN 61000-4-2 [9]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kV</td>
<td>8 air discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.1.2 Radio frequency electromagnetic field amplitude modulated</td>
<td>MHz</td>
<td>80 to 690</td>
<td>EN 61000-4-3 [10]</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V/m</td>
<td>3</td>
<td>See note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% AM (1 kHz)</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MHz</td>
<td>690 to 6 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V/m</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% AM (1 kHz)</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: These test levels have been selected in accordance to the radiated disturbances classified in table 6 of ETSI TR 101 651 [i.22].
7.2.2.2 Other than telecommunication centres equipment, immunity requirements of ports for outdoor signal lines and antenna ports

Table 7: Other than telecommunication centres equipment, immunity requirements of ports for outdoor signal lines and antenna ports

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2.2.1 Fast transients</td>
<td>kV</td>
<td>0,5</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td>For xDSL ports repetition frequency is 100 kHz</td>
</tr>
<tr>
<td></td>
<td>Tr/Th ns</td>
<td>5/50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repetition frequency kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.2.2 Surges, port type: symmetrical unscreened Line to Ground</td>
<td>kV</td>
<td>10/700 (5/320)</td>
<td>EN 61000-4-5 [12] and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See notes 2 and 3</td>
</tr>
<tr>
<td></td>
<td>Tr/Th μs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kV</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.2.3 Surges, port type: unsymmetrical unscreened Line to Ground Line to Line</td>
<td>kV</td>
<td>1,2/50 (8/20)</td>
<td>EN 61000-4-5 [12] and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See notes 2 and 3</td>
</tr>
<tr>
<td></td>
<td>Tr/Th μs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kV</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.2.4 Surges, port type: coaxial or screened Shield to Ground</td>
<td>kV</td>
<td>1,2/50 (8/20)</td>
<td>EN 61000-4-5 [12] and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See notes 2 and 4</td>
</tr>
<tr>
<td></td>
<td>Tr/Th μs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kV</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.2.5 Radio frequency, conducted continuous</td>
<td>MHz</td>
<td>0,15 to 80</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% AM (1 kHz)</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source impedance Ω</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outdoor lines carrying DC power with superimposed signals shall be treated as outdoor signal lines.

NOTE 2: As a result of the surge, loss of function of the port under test is allowed. The function of the port under test shall be self-recoverable or restored by the intervention of the user. For the whole system, performance degradations are allowed during the application of surge and self-recovery to normal condition is required after the cessation of the test. System Software reboot is not allowed.

NOTE 3: Primary protections shall not be in place for this test.

NOTE 4: No surge test is required on antenna ports. Currently EN 61000-4-5 [12] does not have an effective surge test method and does not apply this test to antenna ports.
7.2.2.3 Other than telecommunication centres equipment, immunity requirements of ports for indoor signal lines

Only ports connected to inter-system cables are to be tested. Testing of ports for intra-system cabling, e.g. local alarm and control are to be tested if according to the EUT’s specifications these cables may be longer than 3 m (see "Remarks" for test applicability).

Table 8: Other than telecommunication centres equipment, immunity requirements of ports for indoor signal lines

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2.3.1 Fast transients</td>
<td>kV</td>
<td>T<sub>r</sub>/T<sub>h</sub> ns Repetition frequency kHz</td>
<td>0.5 5/50 5</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
</tr>
<tr>
<td>7.2.2.3.2 Surges Line to Ground</td>
<td>μs kV</td>
<td>1.2/50 (8/20) 0.5</td>
<td>EN 61000-4-5 [12], and clause 5.3.1 of the present document</td>
<td>B</td>
<td>See note 3</td>
</tr>
<tr>
<td>7.2.2.3.3 Radio frequency, conducted continuous</td>
<td>MHz V % AM (1 kHz) Source impedance Ω</td>
<td>0.15 to 80 3 80 150</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td>See note 2</td>
</tr>
</tbody>
</table>

NOTE 1: Indoor lines carrying DC power with superimposed signals shall be treated as indoor signal lines.
NOTE 2: This test applies when the overall cable length between the EUT and another item of active equipment may be greater than 3 m as defined in Generic Immunity standards EN 61000-6-1 [i.23].
NOTE 3: This test applies when the overall cable length between the EUT and another item of active equipment may be greater than 30 m as defined in Generic Immunity standards EN 61000-6-1 [i.23].
7.2.2.4 Other than telecommunication centres equipment, immunity requirements of AC power ports

Table 9: Other than telecommunication centres equipment, immunity requirements of AC power ports

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2.4.1 Fast transients</td>
<td>kV</td>
<td>1</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>T<sub>r</sub>/T<sub>th</sub> ns</td>
<td>5/50</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition frequency kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.4.2 Surges</td>
<td>kV</td>
<td>1,2/50 (8/20)</td>
<td>EN 61000-4-5 [12]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Line to Line kV</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line to Ground kV</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.4.3 Radio frequency, conducted continuous</td>
<td>MHz</td>
<td>0,15 to 80</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>3</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% AM (1 kHz)</td>
<td>80</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source impedance Ω</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.4.4 Voltage dips and short interruptions</td>
<td>Residual voltage % Cycle</td>
<td>0</td>
<td>EN 61000-4-11 [14] or EN 61000-4-34 [24]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Residual voltage % Cycle</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage % Cycle</td>
<td>70</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage % Cycle</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage % Cycle</td>
<td>0</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 7.2.2.5 Other than telecommunication centres equipment, immunity requirements of DC power ports

Table 10: Other than telecommunication centres equipment, immunity requirements of DC power ports

<table>
<thead>
<tr>
<th>Environmental phenomenon</th>
<th>Unit</th>
<th>Test level and characteristic</th>
<th>Reference</th>
<th>Performance criterion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2.5.1 Fast transients</td>
<td>kV</td>
<td>1</td>
<td>EN 61000-4-4 [11]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>T<sub>r</sub>/T<sub>th</sub> ns</td>
<td>5/50</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition frequency kHz</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.2.5.2 Radio frequency, conducted continuous</td>
<td>MHz</td>
<td>0,15 to 80</td>
<td>EN 61000-4-6 [13]</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>3</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% AM (1 kHz)</td>
<td>80</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source impedance Ω</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This test applies when the overall cable length between the EUT and another item of active equipment may be greater than 3 m as defined in Generic Immunity standards EN 61000-6-1 [I.23].
8 General test configuration

The EUT shall be configured and operated in accordance with the basic EMC standards.

The signal or control ports shall be correctly terminated either by auxiliary equipment necessary to exercise the ports or by their nominal impedance.

Adequate measures shall be taken to avoid any effects of unwanted signals on the measuring equipment used to monitor the performance of the EUT.

The test conditions shall be within operating ranges voltage and frequency as defined in the EUT's specifications, having regard to the supply voltage and frequency for the intended market of the EUT.

The equipment test conditions shall be as close as possible to the installed conditions, as defined in the EUT's specifications. Wiring shall be consistent with the EUT's specifications, and the equipment shall be in its housing with all covers and access panels in place as in normal operation, unless otherwise stated. If the equipment is designed to be mounted in a rack or cabinet, it should be tested in this configuration. The justification of the selected test configurations shall be included in the test plan and recorded in the test report.

Signal ports are divided into two categories:

- main signal ports which provide the telecommunications service (third party traffic);
- auxiliary signal ports, i.e. ports for alarms, maintenance, etc., which are only used by the operator or the service provider.

A sufficient number of ports shall be correctly terminated to ensure that the test is representative of normal operating conditions and the selection of ports shall be specified in the test report.

The earth connections of the EUT shall be connected to a reference earth according to the EUT's specifications. Only cables that are permanently connected shall be included.

The types of the cables connected to the EUT shall be indicated in the test report.

9 General operational conditions during testing

9.0 General requirements

The general operational conditions shall allow for appropriate measuring of the emission and for testing of immunity. Special exercising equipment and/or software may be used with the object of reducing the test time and to simulate traffic conditions.

The tests described shall be performed with the Equipment Under Test (EUT) powered up (i.e. connected to an appropriate power supply), and operating in a manner which is as representative of normal operation as possible.

9.1 Equipment configuration

Power and signal distribution, grounding, interconnecting cabling and physical placement of equipment of a test system shall simulate the typical application and usage in so far as is practicable, and shall be in accordance with the relevant EUT's specifications.

The configuration that tends to maximize the EUT's emission or minimize its immunity is not usually intuitively obvious and in most instances selection will involve some trial and error testing.

Where equipment may be connected with cables routed either overhead or from beneath (i.e. equipment mounted on a raised floor) the equipment shall be tested in a manner representative of an installation using overhead cable routing.
EXAMPLE: Interface cables may be moved or equipment re-orientated during initial stages of testing and the effects on the results observed.

Only configurations within the range of positions likely to occur in normal use need to be considered.

The configuration selected shall be fully detailed and documented in the test report, together with the justification for selecting that particular configuration.

9.2 Operation of multimedia network equipment

Multimedia network equipment which is subjected simultaneously to different clauses of the present document and/or other standards (e.g. EN 50083-2 [3]) shall be tested with each function operating in isolation, if this can be achieved without modifying the equipment internally.

For equipment for which it is not practical to test with each function operating in isolation, or where the isolation of a particular function would result in the equipment being unable to fulfil its primary function, the equipment shall be deemed to have complied if the relevant provisions of each clause/standard are taken into account, with the necessary functions operative.

In case of emission requirements, if the limits for the different functions are not identical, the highest limits for the functions in operation apply, taking into account the specific measurement conditions related to those (highest) limits.

EXAMPLE 1: For telecommunication equipment provided with an RF port for CATV distribution, this would mean that the emission requirements at the RF port is in accordance with EN 50083-2 [3].

In case of immunity requirements, if the test levels for the different functions are not identical, the level for the function under test applies, taking into account the performance criteria for this function.

EXAMPLE 2: For telecommunication equipment provided with an RF port for CATV distribution, this would mean that the RF port is in accordance with EN 50083-2 [3].

10 General immunity conditions

10.1 General performance criteria

The general performance criteria apply for those ports for which no specific performance criteria are defined (e.g. auxiliary ports) in the present document.

Where the specific immunity criteria are not relevant or inappropriate, relevant justification shall be included in the test report highlighting how the EUT was fully exercised and met the general immunity criteria defined in this clause.

Performance criterion A:

The EUT shall continue to operate as intended. No change of operational state is allowed. No loss or unintentional change in critical stored data shall occur and no more than a 5 % degradation in transmission performance or 5 % additional errored frames above the quiescent level is allowed during the test.

For instance, in a transmission interface of 10 000 frames, it is not allowed a number of errored frames higher than 5 % of 10 000.

Performance criterion B:

Degradation of the performance below the level described in criterion A is permitted, provided the EUT self-recovers to the condition established prior to the application of the test. The EUT shall operate as intended after the test. No change of actual operating state or critical stored data is allowed.

Performance criterion C:

Degradation of performance as described in criteria A and B is permitted provided that the EUT self-recovers to the condition established prior to the application of the test, or can be restored after the test by the operator.
11 Switching equipment specific requirements

11.1 Test configuration

For network switching equipment, two separate processes are monitored simultaneously, see figure 1. The first is the continuous process of establishing and clearing connections and the second is the stable situation of monitoring signal quality during testing. It is to be considered that at least a part of the set-up for both processes covers the full signal path from subscriber to the network. The signal loop at the network end can either be established by test equipment or by a simple cable loop. In the latter case the simulation of normal grounding and connection practice is required.

The test equipment may be digital or analogue signal analyser as required. The test equipment may also loop back the test signal.

![Diagram of test configuration](image)

If possible, cable harnesses shall be separated and the cables tested individually.

For Base Station Controller (BSC) and Radio Network Controller (RNC) equipment it is not necessary to exercise the continuous process of establishing and clearing connections; a representative configuration with End to End system functionality employing either core network and base station or core network and base station simulators may be tested.
11.2 Operational conditions

11.2.0 General

The general conditions of clause 9 apply.

For switching equipment with less than 32 subscriber lines (analogue or digital), all the lines shall be driven. For switching equipment with more than 32 subscriber lines (analogue or digital) a choice of at least 32 lines shall be made among the available lines. In this case, as it is impossible to do tests at all ports, single ports of each type shall be selected for the testing. At least one port of each type shall be tested.

The ports shall be configured with their nominal impedance for a connection to another port. Auxiliary equipment or loopback may be used to simulate the functional termination of the ports.

Connections have to be provided which shall be established before the start of the tests and then maintained.

11.2.1 Emission

The general requirements for test methods are described in clause 6 of the present document.

11.2.2 Immunity

The general requirements for test methods are described in clause 5 of the present document.

11.3 Specific immunity performance criteria

11.3.0 General

For the switching equipment the following main signal ports are recognized:

- analogue ports (e.g. analogue subscribers' lines, analogue interfaces to transmission equipment);
- digital ports (e.g. digital subscribers' lines (ISDN), digital connections to transmission equipment).

The interfaces shall operate as described in the clauses 11.3.1 and 11.3.2.

11.3.1 Digital port performance criteria

11.3.1.1 Performance criterion A (continuous phenomena)

During the sweep:

- the established connections shall be maintained throughout testing and the transfer of information shall be within the limits of the EUT's specifications;
- loss of frame alignment or loss of synchronization is not allowed during each individual exposure (if applicable);
- no more than 5% additional errored frames above the quiescent level shall be permitted during the exposure.

For instance, in a transmission interface of 10 000 frames, it is not allowed a number of errored frames higher than 5% of 10 000.

11.3.1.2 Performance criterion B (transient phenomena)

The established connections shall be maintained throughout testing except in the case of surge immunity testing at 1 kV where disconnection is allowed on the port being tested:

- it shall be possible to establish a connection between two ports after the end of the transient disturbances;
- it shall be possible to clear a connection in a controlled manner after the end of the transient disturbances.

11.3.1.3 Performance criterion C (interruptions)

The general performance criterion C applies.

11.3.2 Analogue port performance criteria

11.3.2.1 Performance criterion A (continuous phenomena)

During the sweep:
- the established connections shall be maintained throughout testing;
- the noise level at a two wire analogue interface shall be less than -40 dBm at 600 Ω (ignoring the nominal impedance of the port for practical reasons) if not otherwise stated in the EUT's specifications. The measurement shall be done selectively with a bandwidth ≤ 100 Hz at 1 kHz;
- dialling tones shall be available (if applicable).

11.3.2.2 Performance criterion B (transient phenomena)

Established connections shall be maintained throughout testing except in the case of surge immunity testing at 1 kV where disconnection is allowed on the port being tested:
- it shall be possible to establish a connection between two ports after the end of the transient disturbances;
- it shall be possible to clear a connection in a controlled manner after the end of the transient disturbance.

11.3.2.3 Performance criterion C (interruptions)

The general performance criterion C applies.

12 Transmission equipment specific requirements

12.1 Test configuration

Typically the EUT will be configured as shown in figure 2. The EMC test equipment is not shown.

The test configuration shall cover a representative set up of tributary signals within the aggregate interface signals.

In figure 2 a test signal is derived from a signal generator and looped through EUT. If the EUT supports several identical channels, these may be connected in series and the test signal may be looped through all the channels.

The test equipment may be digital or analogue signal analyser as required. The test equipment may also loop-back the test signal.
12.2 Operational conditions

12.2.0 General

The general conditions of clause 9 apply.

An appropriate test signal shall be used. The test signal shall be stated in the test report. The preferred test signal is the Pseudo Random Bit Sequence (PRBS) appropriate for the bit rate of the channel (Recommendation ITU-T O.150 [i.13]).

The modes of operation during testing shall be recorded in the test report.

12.2.1 Emission

The measurements shall be made in the operating mode, with the EUT producing the maximum emission, consistent with normal applications. The EUT load shall be adjusted within the range defined in the EUT's specification in order to maximize the emission.

Conducted emission shall be measured on the power input and output ports, signal ports and wired network ports.

12.2.2 Immunity

Immunity tests shall be performed at nominal values of all signal conditions and with a typical value of line attenuation as defined in the EUT's specifications.

Conducted immunity testing shall be performed on power input and output ports, signal ports and wired network ports.

For surge testing the conducted immunity tests shall be performed on auxiliary (signal) ports that are permanently connected in the normal installation.

12.3 Specific immunity performance criteria

12.3.1 Digital signal ports

12.3.1.0 General

The performance of the equipment shall be verified for digital signal ports:

- by measuring the number of induced bit errors on the main signal port during all exposures;
- by testing the functionality of the main signal port and the other signal ports after the exposure;
by verifying that corruption of software and data held in memory has not occurred.

12.3.1.1 Performance criterion A (continuous phenomena)

The performance of the equipment shall be verified by measuring the additional errors induced due to the application of any electromagnetic phenomena. During the test sweep the established connection shall be maintained throughout the testing and the transfer of information shall be without any additional reproducible bit errors or loss of synchronization. If a degradation in performance is observed and the system is adaptive i.e. has the capability to automatically re-train in the presence of an interfering signal, then for Conducted Immunity tests only the following procedure shall be followed:

1) For each range of interfering frequencies where a degradation in performance is observed, three frequencies (beginning, middle and end) shall be identified.

2) At each of the frequencies identified in step 1, the interfering signal shall be turned on and the system allowed to re-train. If the system is able to re-train and then function without any additional reproducible bit errors or loss of synchronization then the system's performance is considered acceptable.

The frequencies identified in 1) and the data rates achieved in 2) shall be recorded in the test report.

12.3.1.2 Performance criterion B (transient phenomena)

Loss of frame alignment is not allowed during each individual exposure. No alarms shall be generated as a result of the electromagnetic stress.

The above does not apply to surge testing where some loss of frame alignment may be expected. For this test, the EUT shall operate as intended following the cessation of the exposure.

12.3.1.3 Performance criterion C (interruptions)

The general performance criterion C applies.

12.3.2 Analogue voice frequency signal ports

12.3.2.0 General

The performance of the equipment shall be verified for analogue voice frequency signal ports:

- by measuring the audio signal break-through (demodulated 1 kHz) on the signal port during continuous exposures in both signal path directions covering both analogue to digital conversion and digital to analogue conversion;

- by testing the functionality of the main signal port and the other signal ports after the transient exposures;

- by verifying that corruption of software and data held in memory has not occurred.

12.3.2.1 Performance criterion A (continuous phenomena)

The noise signal level received from the EUT measured in an impedance of 600 Ω shall not be greater than -40 dBm. The measurement shall be done selectively with a bandwidth ≤ 100 Hz at the exact frequency of modulation used during the radiated/conducted immunity test (i.e. 1 kHz).

Connections shall be maintained throughout the test.

12.3.2.2 Performance criterion B (transient phenomena)

The established connections shall be maintained throughout testing except in the case of surge immunity testing at 1 kV where disconnection is allowed on the port being tested.

The EUT shall return automatically to normal performance after the cessation of the exposure.
12.3.3 SDH and PDH interfaces

12.3.3.1 Tributary and aggregate interfaces

The criteria specified in clause 12.3.1 apply to the interfaces specified in ETSI EN 300 166 [i.3] (electrical interface) and ETSI ETS 300 232 [i.4], Recommendations ITU-T G.783 [i.25] and G.798 [i.26] (optical interfaces).

12.3.4 ISDN interfaces

12.3.4.1 Primary rate access ISDN interfaces

The criteria specified in clause 12.3.1 apply to the interfaces specified in ETSI EN 300 011-1 [i.1].

12.3.4.2 Network termination NT1 for ISDN "U" interfaces

The criteria specified in clause 12.3.1 apply to the interfaces specified in Recommendation ITU-T G.961 [i.12].

12.3.4.3 Basic access ISDN interfaces

The criteria specified in clause 12.3.1 apply to the interfaces specified in ETSI EN 300 012-1 [i.2].

12.3.5 Analogue interfaces

12.3.5.1 Trunk interfaces and leased line interfaces

The criteria specified in clause 12.3.2 apply to the interfaces specified in Recommendation ITU-T G.712 [i.8].

12.3.5.2 Subscriber interfaces

The criteria specified in clause 12.3.2 apply to the interfaces specified in Recommendation ITU-T Q.552 [i.14].

12.3.6 V.10, V.11, V.24, V.28, V.36, X.24 and similar V.- and X.- series interfaces

The criteria specified in clause 12.3.1 apply to the interfaces specified in Recommendations ITU-T V.10 [i.15], V.11 [i.16], V.24 [i.17], V.28 [i.18], V.36 [i.19] and X.24 [i.20].

12.3.7 Ethernet and packet-data interfaces

12.3.7.0 General

To the interfaces specified in ISO/IEC/IEEE 8802-3 [i.5] and Recommendation ITU-T X.25 [i.21], the criteria defined in clauses 12.3.7.1 and 12.3.7.2 apply.

12.3.7.1 Performance criterion A (continuous phenomena)

For interfaces which are intended for the transmission of third party data traffic, a selected port shall be connected to test equipment (e.g. a data communications analyser) as a single point-to-point data link. This will avoid excessive failed transmission attempts caused by data collisions and bus contention problems.

The interface shall be suitably exercised and monitored throughout the test period for errored frames.

No more than 5 % additional errored frames above the quiescent level shall be permitted during the exposure.
For instance, in a transmission interface of 10 000 frames, it is not allowed a number of errored frames higher than 5% of 10 000.

12.3.7.2 Performance criterion B (transient phenomena)
The established connections shall be maintained throughout testing except in the case of surge immunity testing at 1 kV where disconnection is allowed on the port being tested.

12.3.8 Service and maintenance interfaces
The functional performance of ports of this type not intended to be permanently connected and therefore not subjected to immunity testing shall be verified according to the EUT's specifications following cessation of the electromagnetic exposure on other ports.

12.3.9 Synchronization interfaces

12.3.9.0 General

12.3.9.1 Performance criterion A (continuous phenomena)
During the exposure, synchronization shall not be lost.

12.3.9.2 Performance criterion B (transient phenomena)
No alarm indications shall persist after the exposure.
The functional performance according to the EUT's specifications shall be verified following cessation of the exposure.

12.3.10 Remote alarm interfaces

12.3.10.0 General
These interfaces are defined by in the EUT's specifications.

12.3.10.1 Performance criterion A (continuous phenomena)
No false alarms shall occur during continuous exposures.

12.3.10.2 Performance criterion B (transient phenomena)
No false alarm indications shall persist after the exposure.

12.4 Digital Subscriber Line (DSL) Access Systems

12.4.1 Test configuration
Typically the equipment shall be configured as shown in figure 3. The EMC test Equipment is not shown.
Figure 3: DSL Access System Configuration

For passband systems such as ADSL and VDSL both ends of the equipment under test typically comprise a DSL modem and splitter/filter via which the POTS/ISDN port is presented. The modem and splitter may be separate units or combined into one unit.

For baseband systems such as HDSL and SDSL or passband systems where the DSL modem does not include the splitter then the equipment under test as shown in figure 3 will not include the parts denoted with a dotted line and hence measurements at the analogue port do not apply.

For the test setup, test loops shall be configured using a line simulator or real cable lengths.

12.4.2 Operational conditions

The general conditions of clause 9 shall apply.

The measurements shall be made with the digital transmission system trained up and operating at its nominal transmission rate such that the full frequency spectrum used by the system is utilized. If the system can be operated in asymmetric and symmetric modes then the testing shall be carried out for each of these modes of operation.

Immunity testing shall be performed at nominal values of all signal conditions and with a value of the line attenuation (i.e. using real cable or line simulator) such that the system will be operating at its minimum acceptable noise margin. (E.g. 6 dB noise margin relative to the system’s nominal bit error ratio of 1E-7).

Further details on the noise margin can be found in the following documents:

<table>
<thead>
<tr>
<th>System</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL</td>
<td>Recommendation ITU-T G.996.1 [i.32]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.992.1 [i.36]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.992.3 [i.37]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.992.5 [i.38]</td>
</tr>
<tr>
<td>HDSL</td>
<td>ETSI TS 101 135 [i.33]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.991.1 [i.41]</td>
</tr>
<tr>
<td>SDSL</td>
<td>ETSI TS 101 524-1 [i.34]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.991.2 [i.42]</td>
</tr>
<tr>
<td>VDSL</td>
<td>ETSI TS 101 270-1 [i.35]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.993.1 [i.39]</td>
</tr>
<tr>
<td></td>
<td>Recommendation ITU-T G.993.2 [i.40]</td>
</tr>
</tbody>
</table>

Ports should be either terminated in their nominal impedance or connected to auxiliary equipment that simulates the functional termination of the port.
12.4.3 Immunity

The test methods are given in clause 5 of the present document. Conducted immunity testing shall be performed on all power input ports, DSL port and POTS/ISDN port. Testing on the digital port of the equipment shall only be performed if the length of cable that can be attached to the port may exceed 3 m (30 m for surge tests) as defined in Generic Immunity standards EN 61000-6-1 [i.23].

12.4.4 Specific Immunity performance criteria

12.4.4.0 General

The performance of the equipment shall be verified by:

- Measuring the additional errors induced due to the application of any electromagnetic phenomena.
- Measuring the audio signal break-through (demodulated 1 kHz) at any POTS port whilst continuous interference phenomena are applied.
- Testing the functionality of the system at the cessation of test.
- Ensuring that any software or stored data corruption has not occurred.
- For ISDN ports the performance requirements of clause 12.3.4 shall apply.

12.4.4.1 Performance Criteria A (continuous phenomena)

During the test sweep the established connection shall be maintained throughout the testing and the transfer of information shall be without any additional reproducible bit errors or loss of synchronization. If a degradation in performance is observed and the system is adaptive i.e. has the capability to automatically re-train in the presence of an interfering signal, then for Conducted Immunity tests only the following procedure shall be followed:

1) For each range of interfering frequencies where a degradation in performance is observed, three frequencies (beginning, middle and end) shall be identified.

2) At each of the frequencies identified in step 1, the interfering signal shall be turned on and the system is allowed to re-train. If the system is able to re-train and then function without any additional reproducible bit errors or loss of synchronization then the system's performance is considered acceptable.

3) The frequencies identified in 1) and the data rates achieved in 2) shall be recorded in the test report.

During the test sweep the demodulated noise level at the POTS port shall be less than -40 dBm at 600 Ω (ignoring the nominal port impedance for practical reasons) if not otherwise stated in the EUT's specifications. The measurement shall be done selectively with a bandwidth \(\leq 100 \text{ Hz} \) at 1 kHz. As an alternative method the acoustic Sound Pressure Level (SPL) at the receiver of a telephone connected to the two-wire analogue interface shall not exceed 55 dB (SPL) when measured in a bandwidth \(\leq 100 \text{ Hz} \) at 1 kHz.

12.4.4.2 Performance Criteria B (transient phenomena)

The general performance criteria B shall apply in that errors are acceptable during the application of the test. However the application of the test shall not cause the system to lose the established connection or delay function (e.g. by re-train). At the cessation of the test the system shall continue to function in the state established prior to the application of the test, without user intervention.

The above performance criteria do not apply to surge testing. For this test, the EUT shall not lose the established connection and shall operate as intended following the cessation of the exposure.

12.4.4.3 Performance Criteria C (interruptions)

The general performance criteria C shall apply.
13 Power supply equipment specific conditions

13.0 General

This clause is not applicable to power supplies i.e. DC/DC converters, AC/DC adapters and supplies incorporated within network equipment. It is intended for power supplies aimed at the generation of power for distribution within telecom centres.

13.1 Test configuration

Typically the EUT will be configured as shown in figures 4 and 5. The EMC test equipment is not shown.

The earth connections of the EUT shall be connected to a reference earth according to the EUT's specifications.

The EUT load shall be resistive unless otherwise specified in the EUT's specifications.

For EUT with DC output and battery back-up, EMC tests shall be performed without the battery unless otherwise specified.

Uninterruptible power supplies shall be tested with AC mains supply and also in the configuration when it is fed by the battery only without AC mains.
13.2 Operational conditions

13.2.1 Emission

The measurements shall be made in the operating mode, with the EUT producing the maximum emission, consistent with normal applications. The EUT load shall be adjusted within the range defined in the EUT's specifications in order to maximize the emission.

Conducted emission shall be measured on the power input and output ports.

The conducted emission tests shall only be performed on ports that are permanently connected in the normal installation.

13.2.2 Immunity

Immunity tests may be performed with the EUT operating at reduced output power: 50 % is recommended. The actual output power level for each test shall be stated in the test report.

Conducted immunity tests shall be performed on the power input and output ports, and on one signal/control interface of each type found on the equipment.

The conducted immunity tests need only be performed on ports that are permanently connected in the normal installation.

Power and control cables, which according to the EUT’s specifications are not intended to be longer than 3 m in installed systems, shall not be subjected to conducted immunity testing. However, cables that may be connected to an extensive network shall be subjected to the conducted immunity test.

13.3 Specific immunity performance criteria

13.3.0 General

The ports of the power supply equipment (figure 6) that shall be monitored during the tests can be categorized as one of:

- DC secondary interface;
- AC secondary interface; or
- control/signal interface.

13.3.1 Alternating current secondary interface

13.3.1.1 Performance criterion A (continuous phenomena)

During the exposure, the AC secondary range shall be in accordance with the normal service condition defined in ETSI EN 300 132-1 [15].

The long-term voltage fluctuations at the AC secondary interface shall be within ±10 % of the nominal voltage.

During and after the exposure, the EUT shall operate without alarms, false alarm indications (power supply failure, protection failure, etc.) and false display indications.

13.3.1.2 Performance criterion B (transient phenomena)

Voltage interruptions at the AC secondary interface shall last no longer than 20 ms. The time between two voltage interruptions shall be no less than 10 s.
The voltage fluctuations at the AC secondary interface shall be in accordance with the requirements of ETSI EN 300 132-1 [15]:
- for < 500 ms with respect to rms value: no worse than ±15 % of nominal value;
- for < 2 ms with respect to actual value: no worse than ±40 % of nominal value.

The frequency at the AC secondary interface shall not vary by more than ±3 Hz and shall return to the nominal value within 5 s.

Peaks with a duration shorter than 0.25 of one period (5 ms for a 50 Hz system), which appear during the exposure, are permissible.

After the exposure, the EUT shall operate without alarms or false alarm indications (power supply failure, protection failure, etc.) or false display indications.

Self-recovery to normal performance shall occur at the cessation of the exposure.

13.3.2 Direct current secondary interface

13.3.2.1 Performance criterion A (continuous phenomena)

During the exposure, the DC secondary voltage range shall be in accordance with the normal service conditions defined in ETSI EN 300 132-2 [16] for 48 V DC or ETSI EN 300 132-3 [28] for 260 V DC to 400 V DC.

The maximum level of wide band noise at the DC secondary interface shall not exceed the limits specified in table 11 of the present document (this requirement is taken from the ETSI EN 300 132-2 [16]).

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Hz to 5 kHz</td>
<td>10 mV Upso_rms (measured over a 50 Ω impedance)</td>
</tr>
</tbody>
</table>

The reference method of measurement is with a psophometer that shall conform to Recommendation ITU-T O.41 [20].

During and after the exposure, the EUT shall operate without alarms or false alarm indications (power supply failure, protection failure, etc.) and false display indications.

13.3.2.2 Performance criterion B (transient phenomena)

After the exposure, the EUT shall operate without alarms or false alarm indications (power supply failure, protection failure, etc.) and false display indications:
- The DC secondary voltage during the exposure shall not exceed the following value:
 - for -48 V DC nominal value: -60 V;
 - for -60 V DC nominal value: -75 V;
 - for 365 V DC ± 15 V nominal value: 410 V;
- peaks originated from the test phenomena that appear in the secondary voltage, during the application of the tests, shall be ignored.

13.3.3 Control/signal interface

The control and signal ports need not be monitoring during the tests, because they are not considered to be primary functions.
13.3.4 Tertiary supply interface

To be considered only for special cases. Performance criteria should be derived from the product specifications.

14 Supervisory equipment specific conditions

14.1 Test configuration

Exercising equipment e.g. a traffic simulator used for testing of other functions and equipment e.g. switching equipment can also be used as exercising equipment for supervisory equipment. Figure 6 shows two examples for a possible test configuration. The EMC test equipment is not shown.

Parts of the supervisory equipment (e.g. terminals) may be connected together but installed at locations other than the supervised equipment. For the purpose of EMC testing, these parts may be tested simultaneously and at the same location as the supervised equipment.

Example A shows a configuration with an external traffic simulator. In example B a test load simulator software is used. The use of either or both configurations is possible. The EMC tests shall be carried out during normal operation of supervisory equipment.

Figure 6: Two examples for the configuration of the EUT and exercising equipment

14.2 Operational conditions

The general conditions of clause 9 apply.
14.3 Specific immunity performance criteria

14.3.1 Performance criterion A (continuous phenomena)

The connection between the supervising and supervised equipment shall be maintained.

No supervisory functions shall be affected by EMC testing.

No false alarms, such as signal lamps or printer misprints shall occur.

14.3.2 Performance criterion B (transient phenomena)

The supervisory equipment shall not affect the normal operation of the equipment being supervised.

The operating speed of the supervising equipment may be reduced.

Any minor priority supervisory function may be affected during EMC testing. These functions shall resume normal performance at cessation of the exposure. For example, false alarms shall reset.
Annex A (informative):
Relationship between the present document and the essential requirements of Directives 2014/30/EU and 2014/53/EU

A.1 Relationship between the present document and the essential requirements of Directive 2014/30/EU

The present document has been prepared under the Commission’s standardisation request C(2016) 7641 final of 30.11.2016 [i.43] (M/552) to provide one voluntary means of conforming to the essential requirements of Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility [i.31].

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.1 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive and associated EFTA regulations.

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Essential requirements of Directive</th>
<th>Clause(s) of the present document</th>
<th>U/C</th>
<th>Requirement Conditionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enclosure port</td>
<td>Annex I. 1(a) (electromagnetic disturbances)</td>
<td>7.1.1</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AC ports</td>
<td>Annex I. 1(a) (electromagnetic disturbances)</td>
<td>7.1.2</td>
<td>C</td>
<td>Only applicable where equipment has AC mains power input ports. For power supply equipment as defined in clause 13, this requirement applies to AC output port in addition.</td>
</tr>
<tr>
<td>3</td>
<td>DC ports</td>
<td>Annex I. 1(a) (electromagnetic disturbances)</td>
<td>7.1.3</td>
<td>C</td>
<td>Only applicable where equipment has DC power input ports. For power supply equipment as defined in clause 13, this requirement applies to DC output port in addition.</td>
</tr>
<tr>
<td>4</td>
<td>Wired network ports</td>
<td>Annex I. 1(a) (electromagnetic disturbances)</td>
<td>7.1.4</td>
<td>C</td>
<td>Only applicable where equipment has wired network ports.</td>
</tr>
<tr>
<td>5</td>
<td>Enclosure port</td>
<td>Annex I. 1(b) (electromagnetic immunity)</td>
<td>7.2.1.1, 7.2.2.1</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Signal line ports</td>
<td>Annex I. 1(b) (electromagnetic immunity)</td>
<td>7.2.1.2, 7.2.1.3, 7.2.2.2, 7.2.2.3</td>
<td>C</td>
<td>Only applicable where equipment has signal line ports.</td>
</tr>
<tr>
<td>7</td>
<td>AC power ports</td>
<td>Annex I. 1(b) (electromagnetic immunity)</td>
<td>7.2.1.4, 7.2.2.4</td>
<td>C</td>
<td>Only applicable where equipment has AC mains power input ports. For power supply equipment as defined in clause 13, this requirement applies to AC output port in addition.</td>
</tr>
<tr>
<td>8</td>
<td>DC power ports</td>
<td>Annex I. 1(b) (electromagnetic immunity)</td>
<td>7.2.1.5, 7.2.2.5</td>
<td>C</td>
<td>Only applicable where equipment has DC power input ports. For power supply equipment as defined in clause 13, this requirement applies to DC output port in addition.</td>
</tr>
</tbody>
</table>
Key to columns:

Requirement:
- No: A unique identifier for one row of the table which may be used to identify a requirement.
- Description: A textual reference to the requirement.

Essential requirements of Directive
- Identification of article(s) defining the requirement in the Directive.

Clause(s) of the present document
- Identification of clause(s) defining the requirement in the present document unless another document is referenced explicitly.

Requirement Conditionality:
- U/C: Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the manufacturer's claimed functionality of the equipment (C).
- Condition: Explains the conditions when the requirement is or is not applicable for a requirement which is classified "conditional".

Presumption of conformity stays valid only as long as a reference to the present document is maintained in the list published in the Official Journal of the European Union. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.

Other Union legislation may be applicable to the product(s) falling within the scope of the present document.
A.2 Relationship between the present document and the essential requirements of Directive 2014/53/EU

The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.7] (M/536) to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.6].

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in table A.2 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive and associated EFTA regulations.

Table A.2: Relationship between the present document and the essential requirements of Directive 2014/53/EU

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Harmonised Standard ETSI EN 300 386</th>
<th>Requirement Conditionality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Requirement</td>
<td>Essential requirements of Directive</td>
</tr>
<tr>
<td>1</td>
<td>Enclosure port</td>
<td>3.1(b)</td>
<td>7.1.1</td>
</tr>
<tr>
<td>2</td>
<td>AC ports</td>
<td>3.1(b)</td>
<td>7.1.2</td>
</tr>
<tr>
<td>3</td>
<td>DC ports</td>
<td>3.1(b)</td>
<td>7.1.3</td>
</tr>
<tr>
<td>4</td>
<td>Wired network ports</td>
<td>3.1(b)</td>
<td>7.1.4</td>
</tr>
<tr>
<td>5</td>
<td>Enclosure port</td>
<td>3.1(b)</td>
<td>7.2.1.1, 7.2.2.1</td>
</tr>
<tr>
<td>6</td>
<td>Antenna port</td>
<td>3.1(b)</td>
<td>7.2.1.2, 7.2.2.2</td>
</tr>
<tr>
<td>7</td>
<td>Signal line ports</td>
<td>3.1(b)</td>
<td>7.2.1.2, 7.2.1.3, 7.2.2.2, 7.2.2.3</td>
</tr>
<tr>
<td>8</td>
<td>AC power ports</td>
<td>3.1(b)</td>
<td>7.2.1.4, 7.2.2.4</td>
</tr>
<tr>
<td>9</td>
<td>DC power ports</td>
<td>3.1(b)</td>
<td>7.2.1.5, 7.2.2.5</td>
</tr>
</tbody>
</table>

Key to columns:

- **Requirement**: A unique identifier for one row of the table which may be used to identify a requirement.
- **Description**: A textual reference to the requirement.
- **Essential requirements of Directive**: Identification of article(s) defining the requirement in the Directive.
Clause(s) of the present document

Identification of clause(s) defining the requirement in the present document unless another document is referenced explicitly.

Requirement Conditionality:

<table>
<thead>
<tr>
<th>U/C</th>
<th>Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the manufacturer's claimed functionality of the equipment (C).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Explains the conditions when the requirement is or is not applicable for a requirement which is classified “conditional”.</td>
</tr>
</tbody>
</table>

Presumption of conformity stays valid only as long as a reference to the present document is maintained in the list published in the Official Journal of the European Union. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.

Other Union legislation may be applicable to the product(s) falling within the scope of the present document.
Annex B (informative):
Evaluation of test results

The test report will comprise:

a) a detailed description of the EUT, the physical aspects of the set-up and of the earthing conditions;

b) a list (and description) of the auxiliary equipment;

c) a detailed description of the operation modes and operational status of the EUT during emission testing;

d) the response of the EUT to the immunity test levels should be expressed in terms of the compliance criteria detailed in the present document;

e) a description of the test conditions (including temperature and relative humidity) and test results together with the method of test. If the method used differs from the preferred method, then the deviations should be recorded and justification made in the test report;

f) a statement of measurement uncertainty;

g) the calibration status of all test equipment used;

h) if an unrepeatable response occurs, this should be noted in the test report, but the response should not be taken into account in the assessment of the EUT.

Test reports

The work carried out by the testing laboratory will be covered by a report which accurately, clearly and unambiguously presents the test results and all other relevant information.

Each test report should include at least the following information:

a) name and address of testing laboratory and location where the test was carried out when different from the address of the testing laboratory;

b) unique identification of report (such as serial number) and of each page, and total number of pages of the report;

c) name and address of client;

d) description and identification of the test item;

e) date of receipt of test item and date(s) of performance of test;

f) identification of the test specification or description of the method or procedure;

g) description of sampling procedure, where relevant;

h) any deviations, additions to or exclusions from the test specification, and any other information relevant to a specific test;

i) identification of any non-standard test method or procedure utilized;

j) measurements, examinations and derived results, supported by tables, graphs, sketches and photographs as appropriate, and any failures identified;

k) a statement on measurement uncertainty (where relevant);

l) a signature and title or an equivalent marking of person(s) accepting technical responsibility for the test report and date of issue;

m) a statement to the effect that the test results relate only to the items tested;

n) a statement that the report cannot be reproduced except in full without the written approval of the testing laboratory.
Particular care and attention need to be paid to the arrangement of the test report, especially with regard to presentation of the test data and ease of assimilation by the reader. The format should be carefully and specifically designed for each type of test carried out, but the headings should be standardized as far as possible.

Corrections or additions to a test report after issue can be made only by a further document suitably marked, e.g. "Amendment/Addendum to test report serial number XXX (or as otherwise identified)", and should meet the relevant requirements of the preceding clauses.

A test report should not include any advice or Recommendation arising from the test results.

Test results should be presented accurately, clearly, completely and unambiguously in accordance with instructions that may be part of the test methods.

Quantitative results should be given together with calculated or estimated uncertainty.

Test results obtained on items, which have been statistically selected from a larger lot, batch or production quantity, are frequently used to infer the properties of the lot, batch or production quantity. Any extrapolation of the test results to the properties of the lot, batch or production quantity should be contained in a separate document.

NOTE: Test results could be measured values, findings from the visual examination or practical use of the test item, derived results or any other type of observation from the testing activities. Test results may be supported by tables, photographs or graphical information of any kind appropriately identified.
Annex C (informative):
Guidance on EMC performance requirements and methods of measurement for RF ports (also covered by EN 50083-2) of multimedia network equipment

This annex provides guidance on additional testing to be performed on network equipment, that is intended to be included in cable distribution systems. This type of equipment is known as “multimedia network equipment”.

The rationale behind this annex is that cable distribution systems for television and sound signals are being used for many more interactive services, some network equipment can include both RF ports as defined in the EN 50083 series [i.44] and RF ports, network ports as defined in the present document (including EN 55032 [3]). Hence these additional requirements will provide a single standard for the EMC assessment of “multimedia network equipment”.

RF ports of multimedia network should comply with the requirements of the following clauses of EN 50083-2 [3] presented in Table C.1.

Table C.1: Additional RF Port test requirements defined in EN 50083-2 [3]

<table>
<thead>
<tr>
<th>Clause</th>
<th>Test</th>
<th>Specifics</th>
<th>Limits/ Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3</td>
<td>Measurement of input terminal disturbance</td>
<td>This measurement is relevant for equipment directly connected to receiving antennas or to satellite outdoor units (e.g. channel converter, DBS tuner, etc.).</td>
<td>5.2.2</td>
</tr>
<tr>
<td></td>
<td>voltage 30 MHz to 3 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>External immunity to ambient fields:</td>
<td>This is included to state that within the LTE band the test level is 1 V/m.</td>
<td>5.4.2</td>
</tr>
<tr>
<td></td>
<td>In-band immunity 790 MHz to 862 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Internal immunity in the frequency range:</td>
<td>Only applicable to equipment directly connected to receiving antennas (from EN 50083-2 [3], clause 4.4.4) and is an RF amplifier and converter (from EN 50083-2 [3], table 16).</td>
<td>5.4.2</td>
</tr>
<tr>
<td></td>
<td>47 MHz to 862 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4.3</td>
<td>Internal immunity in the frequency range:</td>
<td>Applicable to satellite receiving outdoor units for CATV and MATV headend application.</td>
<td>5.4.2</td>
</tr>
<tr>
<td></td>
<td>10.95 GHz to 12.75 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4.4</td>
<td>Immunity of outdoor units to image</td>
<td>The immunity to image frequency signals is given by the image frequency rejection ratio. This is measured for outdoor units used for the reception and conversion of TV-signals with output frequencies in the SAT-IF range.</td>
<td>5.4.3</td>
</tr>
<tr>
<td></td>
<td>frequency signals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table C.2 defines which equipment falls within the scope of this annex.

Table C.2: Port structure of different network equipment

<table>
<thead>
<tr>
<th>Port</th>
<th>Cable network equipment</th>
<th>Telecommunication network equipment</th>
<th>Multimedia network equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Power</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Signal and Control</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Earth</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RF</td>
<td>X</td>
<td>See note X</td>
<td>X</td>
</tr>
<tr>
<td>Telecommunication/Wired Network</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: Telecommunication Network Equipment may have RF ports which are not covered by EN 50083-2 [3].

In table C.2, cable network equipment and telecommunication network equipment have four common ports and one individual port each. Multimedia network equipment has an addition RF port as well as a telecom port.

The EMC requirements for these systems should be common, since they operate in similar environments.
Annex D (normative):
Requirements of radio functions

D.1 Applicability

The present annex establishes the particular modes of operation, performance criteria and exclusion bands to be applied to the EUT radio function during emissions and immunity tests defined in clause 7.

Where the EUT contains two or more radio technologies which are intended to operate simultaneously then it shall be tested with all radio technologies operational. Where the EUT contains more than one radio technology which are intended to operate independently, each radio technology may be tested separately.

D.2 Exclusion bands

D.2.1 General

For each active wireless technology within the EUT, the exclusion band for that active technology is applicable.

Exclusion band(s) associated with the transmitter are not applicable when transmitters are in standby mode.

The exclusion band(s) for channelized and non-channelized systems are shown in figures D.1 and D.2 and determined according to clause D.2.2.

![Figure D.1: Exclusion band for channelized systems](image)

![Figure D.2: Exclusion band for non-channelized systems](image)
D.2.2 Calculation for exclusion Bands

D.2.2.1 Exclusion bands for receivers

D.2.2.1.1 For channelized systems

For channelized equipment the exclusion band shall be calculated by using the following formulae:

For the lower edge for the exclusion band:

$$\text{EXband}(\text{lower}) = \text{Band}_{\text{RX(lower)}} - n\text{ChW}_{\text{RX}}$$

and for the upper edge of the exclusion band:

$$\text{EXband}(\text{upper}) = \text{Band}_{\text{RX(upper)}} + n\text{ChW}_{\text{RX}}$$

Where n = number of channel widths required for exclusion band.

NOTE: For equipment that support multiple channel widths the Channel Width used is the widest supported by the EUT.

D.2.2.1.2 For non-channelized systems

For non-channelized equipment the exclusion band shall be calculated by using the following formulae:

For the lower edge for the exclusion band:

$$\text{EXband}(\text{lower}) = \text{Band}_{\text{RX(lower)}} - n\text{BW}_{\text{RX}}$$

and for the upper edge of the exclusion band:

$$\text{EXband}(\text{upper}) = \text{Band}_{\text{RX(upper)}} + n\text{BW}_{\text{RX}}$$

Where n = multiple of whole bandwidths required to define exclusion band.

NOTE: Bandwidth of Receiver is the occupied bandwidth of the corresponding transmitter signal.

NOTE: For radio technologies which include a blocking requirement, the exclusion band does not need to cover the range defined within the blocking requirement.

D.2.2.2 Exclusion bands for transmitters

D.2.2.2.1 For channelized systems

The exclusion band shall extend 250 % of the CHW either side of the transmitter centre frequency.

D.2.2.2.2 For Non-Channelized Equipment

The exclusion band shall extend 250 % of the OBw either side of the transmitter centre frequency.

NOTE: The exclusion band of 250 % is based on the ITU Radio Regulations [i.11], 1.146, 1.146A and 1.146B.

D.2.3 Example of exclusion Bands

Exclusion bands are defined in specific technology standards such as:

- ETSI EN 301 489-17 [21], clause 4.3 for Broadband Data Transmission Systems (e.g. Wireless LAN, Bluetooth®, Bluetooth® Low Energy, ZigBee®, Wi-Fi®).
- ETSI EN 301 489-19 [23], clause 4.3 for Receive Only Mobile Earth Stations (ROMES) (e.g. GPS).
D.3 Mode of operation

D.3.1 General

The requirements of clause 7 apply. In addition, the tests shall be applied with the EUT in standby mode, if supported by the EUT.

Where external signals are required to exercise the EUT, the signal source should be located outside the test environment, this is to prevent:

- unintended interactions between the EUT and other radio equipment operating nearby;
- transmitting signals the over the air which would not be allowed by country regulations.

The EUT may be exercised by connecting an appropriate signal source to the coaxial antenna port, when available, or by connecting the signal source to an antenna located within the test environment. Where the EUT has multiple coaxial antenna ports, it is recommended to connect all of these ports to coaxial cables to minimize any unwanted interactions.

Alternative to using a radio test set, a local Wi-Fi® (or cellular) network may be used provided that the correct signalling levels defined in table D.1 can be established and that an established link to the network can support the necessary traffic.

D.3.2 Standby Mode

Standby mode shall be considered as a mode of operation, where these modes may be defined as follows:

- Standby Mode 1, a condition in which the EUT is able to resume a function by way of a remotely initiated trigger from a wireless connection.
- Standby Mode 2, the EUT is powered on and active but the wireless function is off (or disabled).

NOTE: This may also be known as idle, listening or power save mode.

D.3.3 Receivers

The wanted RF signal level at the input of the EUT shall be set to value defined in table D.1 to provide a stable communication link. For radiated immunity testing this input level is measured while the power amplifiers generating the EM disturbance are switched on, but without the interfering signal source output power turned on.

<table>
<thead>
<tr>
<th>Clause</th>
<th>RadioTechnology</th>
<th>Value above RSL (see note)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2.1</td>
<td>Wireless LAN, Bluetooth®, Low Energy, ZigBee®, Wi-Fi®</td>
<td>≤ 30 dB</td>
</tr>
<tr>
<td>D.2.2</td>
<td>GPS, GLONASS, GALILEO</td>
<td>≤ 40 dB</td>
</tr>
<tr>
<td>D.2.3</td>
<td>Other</td>
<td>≤ 40 dB</td>
</tr>
</tbody>
</table>

NOTE: RSL is also known as maximum useable sensitivity.

NOTE 1: If the radiated immunity test is performed within the exclusion band(s), some additional measures may be necessary to avoid damage of the radio receiver.

NOTE 2: Be aware of the harmonics of the power amplifier which may appear in the radio receiver band and produce false failures.

NOTE 3: Where possible use a power amplifier with a low noise floor so to limit the impact on communication of the wireless function.
NOTE 4: To establish the RSL for a given test arrangement the following process may be used:

- introduce a variable attenuator into the Tx path to allow the Tx levels to be changed;
- for a given configuration, find the minimum attenuation at which the radio receiver stops working;
- decrease the attenuation by the appropriate value given in table D.1.

D.3.4 Transmitters

The RF output shall be set to the maximum transmit power level for the selected EUT operating mode.

D.3.5 Performance criteria

D.3.5.1 Performance criterion A

The following performance criteria shall apply to radio function:

- ETSI EN 301 489-17 [21], clauses 6.3 and 6.5 for Broadband Data Transmission Systems (e.g. Wireless LAN, Bluetooth®, Bluetooth® Low Energy, ZigBee®, Wi-Fi®).
- ETSI EN 301 489-19 [23], clauses 6.1 or 6.2 or 6.4 for Receive Only Mobile Earth Stations (ROMES) (e.g. GPS).
- ETSI EN 301 489-1 [19], clause 6.1 for radio functions where no technology standards are available.

No monitoring of performance is required if the disturbance is applied within an exclusion band.

D.3.5.2 Performance criterion B

The following performance criteria shall apply to radio function:

- ETSI EN 301 489-17 [21], clauses 6.4 and 6.6 for Broadband Data Transmission Systems (e.g. Wireless LAN, Bluetooth®, Bluetooth® Low Energy, ZigBee®, Wi-Fi®).
- ETSI EN 301 489-19 [23], clauses 6.1 or 6.3 or 6.4 for Receive Only Mobile Earth Stations (ROMES) (e.g. GPS).
- ETSI EN 301 489-1 [19], clause 6.2 for radio functions where no technology standards are available.

D.3.5.3 Performance criterion C

Apply the general performance criterion C defined in clause 10.1.
Annex E (informative):
Bibliography

Annex F (informative):
Change History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Information about changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2016</td>
<td>2.1.1</td>
<td>Scope revised to remove the exclusion of Optical amplifiers, references have been updated and the reference to EN 55032 has been added, radiated immunity requirements have been extended in frequency range up to 6 GHz to cover the immunity requirements of radio services in the frequency range 2.7-6 GHz, EFT pulse repetition rate on signal ports of 100 kHz frequency has been adopted for xDLS ports.</td>
</tr>
<tr>
<td>January 2020</td>
<td>2.2.1</td>
<td>Alignment with HS ETSI template, update of references, revision of general performance criteria, reference to specific clauses of the reference standards have been added about test methods, changed the definition of NTP, changes in surge tests on signal lines, inclusion of requirements of radio technologies when present as secondary function in telecommunication network equipment.</td>
</tr>
</tbody>
</table>
History

| Document history |
|------------------|---
| Edition 1 | December 1994 | Publication as ETSI ETS 300 386-1 |
| Corrigendum 1 | April 1997 | Corrigendum 1 to 1st Edition of ETSI ETS 300 386-1 |
| V1.1.3 | December 1997 | Publication as ETSI EN 300 386-2 (Historical) |
| V1.2.1 | March 2000 | Publication |
| V1.3.1 | September 2001| Publication |
| V1.3.2 | May 2003 | Publication |
| V1.3.3 | April 2005 | Publication |
| V1.4.1 | April 2008 | Publication |
| V1.5.1 | October 2010 | Publication |
| V1.6.1 | September 2012| Publication |
| V2.1.1 | July 2016 | Publication |
| V2.2.0 | October 2020 | EN Approval Procedure AP 20210117: 2020-10-19 to 2021-01-18 |
| V2.2.1 | July 2022 | Vote V 20220904: 2022-07-06 to 2022-09-05 |
| V2.2.1 | September 2022| Publication |