ETSI EG 203 647 vi.1.1 202011

ETSI GUIDE

Methods for Testing and Specification (MTS);
Methodology for RESTful APIs specifications and testing

2 ETSI EG 203 647 V1.1.1 (2020-11)

Reference
DEG/MTS-203647

Keywords
API, methodology, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI EG 203 647 V1.1.1 (2020-11)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 5
01 Yo (o ST 5
MoOdal VErDS TEMINOIOQYccteieeiicieee ettt st e e s te s ae e aesbeeaeesbesreentesaeeasessesneensesreeneensessens 5
S ol LAV N 00 107 YRS 5
1100 [Tox A o] o S 5
1 o0 0L SR 7
2 REFEIBINCES ...ttt ettt a b bt s e et et e s e et e Rt e bt e b e s b et et e e et et enenbeebenrens 7
21 NOFMBLIVE FEFEIEINCEScueitiiteite ittt ettt sttt h ettt ese e ke sh e eb e bt e bt e it e e e s bese e ke sbeeb e e e ens e beae e besaeebenneennennens 7
2.2 INFOrMELIVE FEFEIENCES.......eieieiete ettt ettt b e b bbbt e et se e e b e s bt eb e e e e s e eesn et e saeebenneeneennens 7
3 Definition of terms, symbols and abbreviations............ccoveeciiieiineeeee e 10
31 105 SRR 10
3.2 SYIMDOIS. ..ottt ettt b e et b e et b e s e Rt bt s e e Rt b e e e R AR e AR e Rt SRR Rt R e Rt b e Rt b et b e n e 11
33 F Y o] 1= V7= 0] S 11
4 Specification methodologies for RESTUl APIS.........coe it 12
4.1 RESTful APIs specification in a staged standardization approach...........cecevceeveerecce e 12
4.2 INtroduction 0N RESTTUI INEEITACES........c.oiiiiiiie e et sr e sb e s se e 13
421 1 0o (0o (o] o FEO TSRO UTUTPRURTURURPRRIN 13
4.2.2 Main Principles of the RESTTUl Paradigm.........c.coeiiiiiineneneese e 13
4.2.3 HTTP Methods and their USBgEcoeiiirieieieeee ettt 14
4231 OVEIVIBW ...ttt ettt et e et e et e st e e te e beeatesaeesaeeebe e beeabeeabeeseesaeesheesaeesbeansesaeesseenteenteentesaeesaeesanas 14
4232 1Y TP 14
4233 L] USSP 14
4234 PUT/PATCH ...ttt ettt ettt e et e et e e bee s beesbe e saeeabeenseeaeeeaeeeaeanbeenreensesaeesaeesreesanas 14
4235 DELETE ..ottt sttt sttt b e bbb e e b e be s e e bt e b se st e b e see Rt ek e e et e sbe e ebenaeneenenreneeneas 15
424 0 = o0 o S 15
4241 OVEBIVIBW ...ttt ettt ettt e st e e s et e s e e st b e st e s e b e s e e st e bt s e es e e b e s e e n e e bt e e e e e b e s e st e b e s eneebenbeneebeneenennn 15
4242 (O TT= oL = o TSRS SO PURURURRRPIN 16
4243 T AL g 4 (0 £ PSP PR PR PR 16
4.3 APl SPECITICALION PrOCESS ... eeieeieieiteeste et eeete s e s e e steete et e sreesse e te e seastesseessaesseesseeseansesaeesseaseenseenseensessensnns 17
431 RESTful interface description [aNQUAJES...........coereiriiieinieriee ettt 17
4.3.2 Standardizing RESTful interfaces using OPENAPIooiiiiiiee s 17
4321 OPENAP OVEIVIBW ...ttt ettt ettt h b s bt b e s eb s e st e bt e b et e bt sb e e eb e s e bt e bt e e e b e nneneenis 17
4322 DIOCUIMENT ...ttt sttt e et e st e e e st e st e e e abe e e ke e ease e e ke e eane e e abeeaneeebeeeneeesnneennnee e 18
4.3.2.3 (D= 6 1Y 01T P TR 18
4324 L@ 01 = 1100 J TSSOSO PP PRSURRRO 19
4.3.25 REGUESES ...ttt sttt sttt e et b et e s b et ekt e R e e bt e b e ne e Rt e e et e ke e Ee e ebeeReneenenbeneeneas 20
4.3.2.6 LSS 010] 01 =T SRR 21
4.3.2.7 L0 1 7= os 1TSS 22
4.3.2.8 L@ 1 A o= = 1= (= T PSR R UROPRRRR 23
4.3.29 EXEENSIONS ...ttt ettt bbbttt e e bbbt b e e e R e e eE e e Rt Rt Rt e R e e Rt e R e et et e Rt eheebe e e enneneen 23
4.3.2.10 L@ 1 1= TSR 24
43211 L 07005\ RPN 25
4.4 COMIMON PELEEIMNIS ...ttt ettt ettt st e ae e s bt et e e st e eateeaeesheesaeeeheeaee e et emeeeaeesaeebeemteemteeneesneesneesanas 26
441 FIITEITNG PAILEINS. ...cee ettt bbb et b e et b e e bbbt b e se et bbb e s 26
4411 OVEIVIBW ...ttt ettt et e et e st e e st e e s te e beeatesaeesaeeebe e beenbeeabeeseesaeesheesaeesbeensesaeeaseenbeentesnsesasesseesanas 26
4412 Attribute-based filtering for COIIECHIONS........cccoi i 26
4413 ATTTDULE SEIECTON ...t e bbbt e e st e e e e s b e b e e aeese e e e e e 27
4414 L= 1 7= 1o S 28
442 Pattern FOr URI CrEALION.eiui ittt ettt sh et se et et bt aeeae e e e s e e e e e neenbesbesbe e e ennennens 28
4421 RESOUICE URI SITUCKUNE ...ttt s sn e n e e nneenneennees 28
4422 Design RUIESTOr REST APL URI ..ottt sttt st st s sae bt neenens 29
4.4.3 Pattern to avoid Update Conflict and Data l0SS.........cccveveeiiieecie e e 29
4431 (D= S'el g ol o] o [N TSP OO TSP STPRTOSRUPPTRRON 29

ETSI

4 ETSI EG 203 647 V1.1.1 (2020-11)

4.4.4 Authorization and AULNENEICELION...........coiiiiieieee ettt se e e neene e eneees 30
4441 OVEBIVIEW ...ttt ettt et sttt e et es e e et e st e eEeeeeeaeese e e eneeseeebeeaeeeeemeeneensensenseneeseessesneeneeneenseseans 30
44472 API Authorization using OAULH 2.0 ACCESS tOKENSceiuiriiiririeeee e 31
4.4.4.3 APl Authorization USING TLS CertifiCaleS......couiiiiiieieereeee et 31
4444 API Authorization using Openl D connect With IWT 1D TOKENccooiriiiirieiieneeee e 32
445 N[0 e @ (U I 0] T = 1 o 33
4451 (01 1 o) o S 33
45 NPT g e e 01V 0] 34
4.6 RV = £ o 1 oo PSSR 36
46.1 Specifications and OpenAPI defiNitioNS VEISIONS..........ccveiiiiieiie e ieeseeeste e et e e e eae e sreeaesneesnes 36
4.6.2 Modelling VErsion INFOIMELIONc.couiiieitirieie ettt b et b e et sb e n e 37
4.7 FMPLEMENTALION. ...ttt b e st btk b et h bt b bt e bt b e s st bt s e bt e e nbe e ens 37
5 Testing methodology fOr REST APIS ..ottt sttt sre e e ne s 38
51 L0 o= OSSR 38
5.2 Testing Frameworks and MethOdOIOQIEScocuirieiieie et 38
53 Conformance and INteroperalility TESHING.......cveiveiiiiiiiesiesier e e et eraesraesreennees 39
531 (C1c 07 - OSSO PSP PSP PURT PPN 39
532 RESTTUI API=SPECHTIC ..ttt ettt et 40
533 1] 7= 11 0= o oS 40
54 Test SPeCifiCation DEVEIOPIMENL..........ccueiieeeie ettt e et e e esteeeesaeesreesaeeseenseenseeneesseesreas 40
54.1 (€71 PR 40
542 RESTTUI API-SPECITIC ...ttt bbbttt b e et b e bbb 42
54.3 DOMEIN-SPECITIC. ..ttt et b e bbbt b e bbbt b e et b e s e et b b et b b 52
55 Test Deployment and EXECULTIONc.coiiiiiiiiiiet ettt ettt st bbb resnene 52
5.6 Test MaintenanCe and EVOIULTONooeiiiieee ettt ae e e s e seeseesneene e e eneenes 53
6 T0OO0lING FECOMMENUEBLIONS.......ccveiveriietiriesie sttt sttt b et e be st e st et e e e e e ebeneeseeneeeenes 53
6.1 g1 18 Tot ('l TSR 53
6.2 (DTS Yo T 1= To o = 1o [53
6.2.1 OVEIVIBWW ..ottt ettt bbbt h ket e b8R8 h et E b s 48R et E R A e Rt e b st s e b et s e b et s e b et e er e e 53
6.2.2 Recommendations on editing to0l SEIECHIONcocciiiiiiiee e 54
6.3 Coordination and CONADOALTONeii ettt se e e s e e e e e tesreseesneeneeneeneas 54
6.4 Validation and QUAlTTY CHECKcoiiiiiie bbb bbb seene 54
6.5 POSE PIOCESSING ..ttt ettt ettt ettt h bbb bt b s b bt e e s eh e e e a e e bt ee e s e eb e e e s s e bt e e eh e b e s e s e Rt e e e bt e et bt e ens 55
7 WOTKING EXAMPIES.... oottt ettt e s te e e s b e s beenbesbeeaeetesaeeseestesneesesreeneens 56
8 Survey of Activitiesat ETSI @nd BEYONAc.ooviiiiiiiiiiieresesee s 56
8.1 REVIEW Of DASE HOCUMENES....... .ottt ettt e et e et et et e st et e s e seeseeebeeneenee e eneees 56
8.1.1 ETSI GSMEC 009 (V2.1.0) c.ooveoeeeeeeeeeeeeeeeeeeeseeeeseseeseeesseesses s sss s ses s essesaessesaessessns s sssssssssnssnnnes 56
8.1.2 ETSI GRMEC-DEC 025 (V2. 1. 1) .ottt ettt sttt st s e saestesseese e e eneeseessesneesessesneenseneens 57
8.1.3 Draft ETSI GSMEC-DEC 032-1 (V0.0.3) ...cetetieeteieririeiereeieie st sesiee st se e seesbese e s e e sesesessenesesssnesens 57
8.1.4 ETSI GS CIM 009 (VL1.2.1) cooooeeeeeeeeeeeeeeeeeeeeeeeeeeeesesseeeeseeesess s essses e es s es s es s es s sssssse s ssnnsnssnnnes 57
8.1.5 ETSI GS QKD 014 (VL LL) ittt sttt e e e st e besaeeaeeneenee e e ssesbesaeseessesneeseeneenseneens 57
8.1.6 ETSI TS 129 501 (W 15.3.0) ..0ueeeviuirreresereeiisesieresesseseessese s sesessese st besesssse e b s seessnesesessesssesnesennas 57
8.1.7 ETSI GSNFV-SOL 013 (V2.7.1)...cceieeuieeieiesesieesesieie st ier et enese e 58
8.1.8 ETSI GSNFV-SOL 015 (VL1 1)..ciiieiiieieiesesieesesieie st enese e 58
8.1.9 ETSI GSNFV-TST 010 (V2.4.1) ..ottt ettt 58
8.1.10 ETSI TS 118 115 (V2.0.0) ..cecuiuereriierieiiesieiesesie ettt b s se et b bbbt b e et nnenene e 58
8.1.11 ONEM2M TS-0018 (V3.2.0) ...vveueeeiierierererieieres ettt er et b et b e n bt b b e e bt n b nnen s 59
8.1.12 TM FOrum Open APISINITIALHVE ..ot bbb 59
8.1.13 OMG hD@ata RESTTUI TFaNSPOMTcveeeterieietireeieet sttt ettt b et s it bbb b s b e ens 59
8.1.14 (@S ST OB = = R 0 RSO ARRRR 59
8.2 APL QOOPLION SUNVEY ...ttt sttt ettt eb et b e sh et b s b e st bt e b s e eb e e b e se e bt e b e seebe e b et eb e s b e e ebeebeneebeebenneneas 60
Annex A (informative): Bibliograpny ..o 62
Annex B (informative): ChaNGE HISIONY ... e 63
11 (TSP P PR PRPRPRPROTN 64

ETSI

5 ETSI EG 203 647 V1.1.1 (2020-11)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

ThisETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

Modal verbs terminology

In the present document “should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ET S| Drafting Rules (Verbal forms for the expression of provisions).

"must” and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive Summary

The present document offers areport of standardization activities for telecommunication interfaces and application
programming interfaces based on the REpresentational State Transfer paradigm (RESTful APIs).

The guide collects conventions, methodology and design patterns from ETSI groups and from the industry and proposes
consolidated guidelines to serve the complete lifecycle of standardization, from design to validation.

Introduction

More and more telecommunication and digital interfaces are being implemented as software-based solutions.

A well-known and largely adopted design methodology is taking place across several standardization activities. using
the REpresentational State Transfer (REST) paradigm and resource-oriented protocols (e.g. HTTP(S), CoAP) or other
possibly applicable protocols (MQTT, AMQP).

This phenomenon is becoming common practice in ETSI Technical Bodies (TBs) and Industry Specification Groups
(1SGs) aswell asin ETSl's Partnership Projects standardization activities, across several technologies, often quite
different in scope and user community.

As adoption of standardizing RESTful APIsrises, it isbecoming clear that specification of "RESTful APIS' needsto be:

. Fast, as the interfaces are simpler than other approaches and tend to have a shorter lifespan.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI EG 203 647 V1.1.1 (2020-11)

Automatable, given the high number of conventionsin the design of an API, parts of the specification,
implementation and testing process are well suited to be automated.

Developer friendly, since developers need support in the discovery and implementation of the interfaces by
using tools and methodol ogies more closely aligned with software development.

In this regard, the present Guide for RESTful API specification and testing intends to support:

Consolidation of efforts among different standardization groups and activities, who would be able to leverage
from others' experience.

Delivery time of specifications to be spent on the design of the application level features, more than re-
assessing the principles and details at a transport protocol level.

Standards quality to meet the excellence expected in the whole lifecycle of standardization, such as design,
specification, testability and interoperability validation.

Several TBsand |SGs have aready specified RESTful APIs and documented their conventions and processes in group
specific guidelines. Further initiatives will be carried out during the upcoming years by the same groups as well as new
ones, thereforeit is strategic to align and consolidate the standardization efforts among ETS| membership.

The present document is structured as follows:

clause 4 introduces the main concepts and terminology for the RESTful approach, then presents
recommendations for RESTful API specifications development, with the introduction of a code-first approach
and discussion of the foreseen benefits of its application;

clause 5 presents recommendation and methodology for development of test specifications for RESTful APIs;

clause 6 collects best practices and references to the available tool s to manipulate and present the code needed
artefacts,

clause 7 contains a collection of examples on the expected outcomes of the different parts of the presented
methodol ogy;

clause 8 reports on the outcomes from the analysis of the base documents - from ETSI groups or from other

organizations - for the preparation of the present work and the results of a survey conducted among ETSI
delegates on REST APIs adoption.

ETSI

7 ETSI EG 203 647 V1.1.1 (2020-11)

1 Scope

The scope of the present document is to present a methodology for specification and testing of RESTful APIs,
i.e. telecommunication interfaces based on the Representational State Transfer paradigm, suitable for application in the
standardization context.

In particular, the present guide is meant to serve ETSI membership and groups in the effort to unify and consolidate the
approaches and practices in current and future standardization activities at ETSI and its Partnership Projects.

The Guide collects the best practices from standardization, industry and research in order to provide a modern and
future-proofed approach to the subject.

The intended audience is primarily standardization groups at ETSI, but the guide may also serve as reference for users
and vendorsin industry, with a special focusin Open Source communities.

The Guide recommendations on conventions, methodol ogies, design-patterns and architectural choicesto be used in
standardization of RESTful APIs, specification and execution of standardized conformance and interoperability test
suites.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user with regard to a particular subject area.

[i.1] "A Guide to Writing World Class Standards®.

NOTE: Availableat
https.//portal .etsi.org/Portal S/O/T Bpages/edithel p/Docs/ AGuideT oWritingWorl dClassStandards.pdf 2ver=
2014-05-19-124137-453.

[i.2] Recommendation I TU-T 1.130: "Method for the characterization of telecommunication services
supported by an ISDN and network capabilities of an ISDN".

[i.3] IETF RFC 5023: "The Atom Publishing Protocol".

[i.4] ETSI EG 203 130: "Methods for Testing and Specification (MTS); Model-Based Testing (MBT));
Methodology for standardized test specification development”.

[i.5] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”.

[i.6] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data I nterchange Format”.

[1.7] "The State of API 2019 survey", SmartBear.

[1.8] ETSI EG 201 015: "Methods for Testing and Specification (MTS); Standards engineering process;

A Handbook of validation methods".

ETSI

https://portal.etsi.org/Portals/0/TBpages/edithelp/Docs/AGuideToWritingWorldClassStandards.pdf?ver=2014-05-19-124137-453
https://portal.etsi.org/Portals/0/TBpages/edithelp/Docs/AGuideToWritingWorldClassStandards.pdf?ver=2014-05-19-124137-453

[i.9]

[i.10]

NOTE:

[i.11]

NOTE:

[i.12]

NOTE:

[i.13]

NOTE:

[i.14]

NOTE:

[i.15]

NOTE:

[i.16]

NOTE:

[i.17]

NOTE:

[i.18]

NOTE:

[i.19]

NOTE:

[i.20]

NOTE:

[i.21]

[i.22]

[i.23]

[i.24]

[i.25]

[i.26]

[i.27]

8 ETSI EG 203 647 V1.1.1 (2020-11)
ETSI EG 201 058 (V1.2.4): "Methods for Testing and Specification (MTS); Implementation
Conformance Statement (ICS); proforma style guide”.
Repository of attachmentsfor ETSI EG 203 647 on ETSI Forge.

Available at https://forge.etsi.org/rep/mts'eg-203647-restful -api-guide.

ETSI Forge Platform.

Available at https://forge.etsi.org.

ETSI Labs Platform.

Available at https://labs.etsi.org.

TDL Open Source Project.

Availlable at https://top.€etsi.org.

"YAML Ain't Markup Language (YAML ™) Version 1.2" specification.

Available at https://yaml.org/spec/1.2/spec.html.

OpenAPI™ gpecification, Version 3.0.3.

Available at https://github.com/OA|/OpenA Pl -Specification/blob/master/versions/3.0.3.md.

JSON Schema definition.

Available at https://json-schema.org/.

IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax”.

Available at https://tools.ietf.org/html/rfc3986.

IETF RFC 2388: "Returning Vaues from Forms: multipart/form-data’.

Available at https://tools.ietf.org/html/rfc2388.

IETF RFC 1738: "Uniform Resource Locators (URL)".

Available at https://tools.ietf.org/html/rfc1738.

ETSI Drafting Rules.

Available at https://portal .etsi.org/Services/editHel p/How-to-start/ET Sl -Drafting-Rul es.

ETSI TS 129 501 (V15.3.0): "5G; 5G System; Principles and Guidelines for Services Definition;
Stage 3 (3GPP TS 29.501 version 15.3.0 Release 15)".

ETSI GSNFV-SOL 015 (V1.1.1): "Network Functions Virtualisation (NFV); Protocols and Data
Models; Specification of Patterns and Conventions for RESTful NFV-MANO APIs".

ETSI GSMEC 009 (V2.1.1): "Multi-access Edge Computing (MEC); General principlesfor MEC
Service APIS".

ETSI GR MEC-DEC 025 (V2.1.1): "Multi-access Edge Computing (MEC); MEC Testing
Framework”.

ETSI GSNFV-TST 002: "Network Functions Virtualisation (NFV); Testing Methodology; Report
on NFV Interoperability Testing Methodology".

ETSI EG 202 568: "Methods for Testing and Specification (MTS); Internet Protocol Testing
(IPT); Testing: Methodology and Framework".

ETSI ES 203 119-4: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 4: Structured Test Objective Specification (Extension)”.

ETSI

https://forge.etsi.org/rep/mts/eg-203647-restful-api-guide
https://forge.etsi.org/
https://labs.etsi.org/
https://top.etsi.org/
https://yaml.org/spec/1.2/spec.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md
https://json-schema.org/
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc2388
https://tools.ietf.org/html/rfc1738
https://portal.etsi.org/Services/editHelp/How-to-start/ETSI-Drafting-Rules

[i.28]

[i.29]

[i.30]

[i.31]

[i.32]

[i.33]

[i.34]

[i.35]
[i.36]

NOTE:

[i.37]

NOTE:

[i.38]

NOTE:

[i.39]

NOTE:

[.40]

NOTE:

[i.41]
[i.42]

[i.43]

NOTE:

[i.44]

NOTE:

[i.45]

NOTE:

[i.46]

NOTE:

[1.47]
[i.48]

9 ETSI EG 203 647 V1.1.1 (2020-11)
ETSI ES 203 119-1: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 1: Abstract Syntax and Associated Semantics'.

ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

ETSI ES 203 119-2: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 2: Graphical Syntax".

ETSI ES 203 119-6: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 6: Mapping to TTCN-3".

ETSI ES 201 873-11: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 11: Using JSON with TTCN-3".

ETSI GR NFV-TST 007: "Network Functions Virtualisation (NFV) Release 2; Testing; Guidelines
on Interoperability Testing for MANO".

ETSI TS 118 115 (V2.0.0): "oneM2M; Testing Framework (oneM2M TS-0015 version 2.0.0
Release 2)".

oneM2M TS-0018 (V3.2.0): "Test Suite Structure & Test Purposes’.
OpenAPI™ Tools website.

Available at https.//openapi.tools.

3GPP validation tools repository.

Available at https://forge.3gpp.org/rep/tool s/3gpp-scripts.

MEC API validation script example.

Available at https://forge.etsi.org/rep/mec/gs011-app-enabl ement-api/blob/v2.1.1/.jenkins.sh.

NFV API validation script example.
Available at https://forge.etsi.org/rep/nfv/SOL 002-SOL003/blob/v2.7.1/.jenkins.sh.

Rapi PDF project.

Availlable at https://mrin9.github.io/RapiPdf/.

REST API Design Rulebook by Mark Massé.

ETSI GSNFV-SOL 013 (V2.7.1): "Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; Specification of common aspects for RESTful NFV MANO APIs".

IETF RFC 7807: "Problem Detailsfor HTTP APIs'.

Available at https://tools.ietf.org/html/rfc7807.

IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

Available at https://tools.ietf.org/html/rfc5246.

IETF RFC 7519: "JSON Web Token (JWT)".

Available at https://tools.ietf.org/html/rfc7519.

ETSI TErms and Definitions Database Interactive (TEDDI).

Available at https://webapp.etsi.org/Teddi/.

IETF RFC 7396: "JSON Merge Patch'".
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch”.

ETSI

https://openapi.tools/
https://forge.3gpp.org/rep/tools/3gpp-scripts
https://forge.etsi.org/rep/mec/gs011-app-enablement-api/blob/v2.1.1/.jenkins.sh
https://forge.etsi.org/rep/nfv/SOL002-SOL003/blob/v2.7.1/.jenkins.sh
https://mrin9.github.io/RapiPdf/
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc7519
https://webapp.etsi.org/Teddi/

10 ETSI EG 203 647 V1.1.1 (2020-11)

[i.49] IETF RFC 5261: "An Extensible Markup Language (XML) Patch Operations Framework Utilizing
XML Path Language (XPath) Selectors'.

[i.50] IETF RFC 8288: "Web Linking".

[i.51] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests".

[i.52] Git website.

NOTE: Available at https://git-scm.com.

[1.53] ETSI GS MEC-DEC 032-1: "Multi-access Edge Computing (MEC); APl Conformance Test
Specification; Part 1: Test Requirements and I mplementation Conformance Statement (1CS)".

[i.54] ETSI GS CIM 009 (V1.2.1): "Context Information Management (CIM); NGSI-LD API".

[1.55] ETSI GS QKD 014 (V1.1.1): "Quantum Key Distribution (QKD); Protocol and data format of

REST-based key delivery API".

[i.56] ETSI GSNFV-TST 010 (V2.4.1): "Network Function Virtualisation (NFV) Release 2; Testing;
API Conformance Testing Specification".

[i.57] TMF630 APl Design Guidelines 4.0.1.

NOTE: Available at https://www.tmforum.org/resources/how-to-quide/tmf630-api-design-quidelines-4-0/.

[1.58] ETSI GSNFV-SOL 002: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; RESTful protocols specification for the Ve-Vnfm Reference Point”.

[1.59] ETSI GSNFV-SOL 003: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; RESTful protocols specification for the Or-V nfm Reference Point™.

[i.60] ETSI GS NFV-SOL 005: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

Application Programming I nterface (API): interface implemented by a software program to be able to interact with
other software programs

ATOM: Atom Publishing Protocol
NOTE: For moreinformation see IETF RFC 5023 [i.3].
collections: set of resources
Hypertext Transfer Protocol (HTTP): application level protocol, on layer 7 of the ISO/OSI model

OpenAPI™ Specification (OAS™): standard, language-agnostic interface to RESTful APIswhich allows both
humans and computers to discover and understand the capabilities of the service without access to source code,
documentation, or through network traffic inspection

representation: concrete entity, which encodes aresourcein e.g. HTML, JSON or XML

NOTE: A resource may be available in multiple representation, such as a JSON message and as an XML
message.

ETSI

https://git-scm.com/
https://www.tmforum.org/resources/how-to-guide/tmf630-api-design-guidelines-4-0/

11 ETSI EG 203 647 V1.1.1 (2020-11)

resour ce: object with atype, associated data, a set of methods that operate onit, and, if applicable, relationshipsto
other resources

NOTE: A resourceisafundamental conceptin a RESTful API. Resources are acted upon by the RESTful API
using the Methods (e.g. POST, GET, PUT, DELETE, etc.). Operations on Resources affect the state of
the corresponding managed entities.

SDO: Standards Developing or Standards Setting Organization

Uniform Resour ce | dentifier (URI): address of the resource and identification of the resource

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ATS Abstract Test Suite

BWC BackWard Compatible

CCl Co-Channel Interference

CIM Cross-cutting Information Management
CR Change Request

CRUD Create, Read, Update, Delete

CTC Change Type Code

CTK Conformance ToolKit

EDM Entity Data Model

EHR Electronic Health Record

EM Element Manager

ETag Entity Tag

ETSI European Telecommunications Standards I nstitute
GS Group Specification

HATEOAS Hypermedia As The Engine Of Application State
HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

ICS Implementation Conformance Statement
IETF Internet Engineering Task Force

IFA InterFaces and Architecture

IFS Interoperable Function Statement

NOTE: Theacronym IFS may also refer to Interoperable Feature Statement, | mplementable Functions Statement
and other similar terminology, al referring to the identification of a communication behaviour which has
relevance for successful interoperability among communicating entities. The list of usages of IFSin
different ETSI specification may be retrieved using the TEDDI tool at the ETSI Portal [i.46].

ISG Industry Specification Group

IT Information Technology

ITU-T International Telecommunication Union - Telecommunication standardization sector
uT Implementation Under Test

JSON JavaScript Object Notation

JWE JSON Web Encryption

WS JSON Web Signature

JWT JSON Web Token

MANO Manager and Orchestrator

MEC Multi-access Edge Computing

MQTT Message Queuing Telemetry Transport
MSC M essage Sequence Chart

ETSI

12 ETSI EG 203 647 V1.1.1 (2020-11)

MTS Methods for Testing and Specification

NBWC Non-BackWard Compatible

NFV Network Functions Virtualisation

OAS OpenAPI™ Specification

OASIS Organization for the Advancement of Structured Information Standards
OMG Object Management Group

PICS Protocol I|mplementation Conformance Statement
QKD Quantum Key Distribution

RAML RESTful APl Modelling Language

REST REpresentational State Transfer

RFC Request For Comments

RPC Remote Procedure Call

SBI South Bound Interface

SDO Standard Development Organization

SOL SOL utions

STF Specialist Task Force

SUT System Under Test

TC Technical Committee

TCP Transmission Control Protocol

TCP/IIP Transmission Control Protocol over the Internet Protocol
TD Test Description

TDL Test Description Language

TDL-TO Test Description Language - Test Objective extension
TDL-GR Test Description Language - Graphical notation
TLS Transport Layer Security

™ Tele Management

TOP TDL Open Source Project

TP Test Purpose

TSS Test Suite Structure

TTCN Test and Test Control Notation

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Unified Resource L ocator

VCS Version Control System

WADL Web Application Description Language

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

ZSM Zero-touch Service Management

4 Specification methodologies for RESTful APIs

4.1 RESTful APIs specification in a staged standardization
approach

Standardization best practices for telecommunications recommend that a staged approach is taken in the definition of
communications systems. The methodology recommended in "A Guide to Writing World Class Standards' [i.1],
page 31, builds upon the Recommendation ITU-T 1.130 [i.2] and indicates three stages to design telecommunication
standards:

. Stage 1: Specify objectives from the user perspective.

. Stage 2: Develop a functional model to meet those objectives.

. Stage 3: Develop a specification of the detailed i mplementation requirements.
These three steps may be refined as follows:

. Stage 1: Specification of high-level user requirements on the technology, i.e. the expectations for the
communications system to meet.

ETSI

13 ETSI EG 203 647 V1.1.1 (2020-11)
. Stage 2: Develop architectures, identify atomic components and reference points interconnecting them and
within the reference points identify the interfaces and information models required.

. Stage 3: Specify implementation level requirements for the interfaces identified, i.e. the protocols, data models
and serialization techniques expected to be seen at a"wire" level.

The specification of RESTful APIs playsitsrole at stage 3: given an interface between two components in the system
architecture, aRESTful API provides the implementation details for the communication between these two entities,
which are then identified as the API Producer (or Server) and the APl Consumer (or Client).

In this respect, the RESTful approach lets the designer of the standard focus on the entities and data exchanged or
manipulated, while providing a framework where (typically) the underlying protocols and serialization techniques are
already specified elsewhere.

Asan example, the HTTP protocol over TCP/IP and XML serialization may be selected (among many others). Once
these choices are made, the designer of the API needs only to focus on the entities manipulated by the interface.

A fourth stage in this process may be identified: the development of testing specifications, for interoperability or for
conformance. As for any communication technology, sound test specifications are required to validate the standards and
to certify the implementations. Given the specific characteristics of RESTful APIs, the generic ETSI test development
methodology will be tailored and documented in subsequent clauses of the present document.

4.2 Introduction on RESTful interfaces

421 Introduction

In computer communications, the term REST, coined by Roy Fielding in the year 2000, indicates the Representational
State Transfer architectural style, defining a set of constraints and agreements based on the concept of Resource
Representations. The REST approach does not enforce rules for implementations at alower level, rather, it draws high-
level design guidelines for interactions among different communicating entities.

An Application Programming Interface (API) is a set of libraries or specifications which alows interaction with an
external artefact or agent from athird party. APIs which comply with the REST constraints are said to be RESTful and
refer to the description of a communication interface that allows interacting with a system based on the REST
architecture style.

Before introducing a methodology for specification of RESTful APIsin standardization, in the next clause the main
principles of REST are presented, to introduce the required terminology and set the background.

4.2.2 Main Principles of the RESTful paradigm

It is recommended for the implementation of APIsto be technology or protocol independent. RESTful APIstake all
aspects of HTTP/1.1[i.5] including its request methods, response codes, and HTTP headers. A RESTful AP
specification comprises of the following information:

. Purpose of the API;

. URIs of resources,

. HTTP methods for a given resource [i.5];

. Supported representations (e.g. JSSON, see [i.6]);
. Request body schema(s) (where applicable);

. Response body schema(s) (where applicable);

. HTTP response status codes.

To abide by certain principles, the use of OpenAPI™ specifications is recommended to design the APIsfirst.

ETSI

14 ETSI EG 203 647 V1.1.1 (2020-11)

REST defines a number of constraints for the API design. Many of the REST constraints are actually HT TP constraints,
and REST leverages these HTTP constraints for the design and specification of APIs. The REST style ensures that the
APIsuse HTTP correctly. These constraints limit the freedom of design. REST imposes the following constraints:

. design resources (houns), not the methods or operations (verbs);

e useof uniforminterface. All resources have the same, uniform interface, which can be used to perform
operations on the resource. The uniform HTTP interface defines the CRUD operations for creating, reading,
updating and deleting resources,

. statel ess communication between client and server;
. use of loose coupling and independence of the requests;
. cacheable;

. use of media-types.

4.2.3 HTTP Methods and their Usage

4231 Overview

In REST, all APl operations are based on the HTTP methods. The most used HTTP methods in RESTful APIsare GET,
POST, PUT/PATCH and DELETE.

4.2.3.2 POST

The HTTP POST method is typically used to create a new resource. It creates a new resource anonymously as part of
the collection resource. Requests sent with the POST method cannot be resubmitted and cannot be cached, since they
are neither safe nor idempotent. If a resource has been created on the origin server in response to the POST method, an
HTTP response with response code 201 Created is returned. The response also contains an entity which describes the
status of the request and refers to the new resource. In case of failure, an appropriate error response is returned.

4.2.3.3 GET

The HTTP GET method is used to retrieve information for a given resource. The GET request does not contain a
payload only response contains the payload. Asthe GET operation is idempotent, the information retrieved by the GET
operation can be cached and resubmitted. For any given HTTP GET AP, if the resource is found on the server, an
HTTP response with response code 200 OK is returned along with the response body. If the resource does not exist, an
HTTP response with 404 Not Found response code is returned.

4.2.3.4 PUT/PATCH

The HTTP PUT method is used to completely update a resource identified by its resource URI. The request typically
contains a representation of the resource to be updated. If applicable, PUT can be used to create a new resource directly.
If the provided resource in the URI already exists, aPUT method isinterpreted as an update. If the resource does not
exigt, it isinterpreted as a creation. It is recommended that the origin server informs the client viathe HTTP response
code 201 Created if anew resource has been created by the PUT operation. For the successful completion of the
reguest, either, the 200 OK or the 204 No Content response code is returned.

NOTE 1: Itisnot advisableto mix creation by PUT and creation by POST in the same API.

The PATCH method, if supported, is used to partially update a resource. If this method is not supported, the response
code 405 Method Not Allowed is returned. For the successful completion of the request, either the 200 OK or the 204 No
Content response code is returned.

NOTE 2: The PATCH method needs to be used with careif it isintended to be idempotent. The dataformat is
defined by IETF RFC 7396 [i.47], IETF RFC 6902 [i.48] for JSON and IETF RFC 5261 [i.49] for XML.

ETSI

15 ETSI EG 203 647 V1.1.1 (2020-11)

4.2.3.5 DELETE

The HTTP DELETE method is used to remove aresource at the specified URL. The DELETE method isidempotent
i.e. if the DELETE method is called on the already deleted resource, the same response will be returned. The response
code 200 OK is expected with the representation of deleted resource. If the action has been queued or the action has
been performed but the response does not include an entity, the response code 204 No Content is expected. However, if
the resource never existed and DELETE is requested, the expected response code is 404 Not Found. The DELETE
method is not supported on collections of resources. Calling it on a collection results in a 405 Method Not Allowed
response code is returned.

4.2.4 Error Reporting

4241 Overview

For the interaction in a distributed system, it is essential that APl Consumers and Producers agree, how to behave if an
error occurs. To achieve this common agreement, conventions, such as status codes are very valuable for error handling.
Among the standardized HT TP status codes, some are defined to indicate error conditions that have occurred and give
indications on which party (the API Consumer or the Producer) is responsible for the generated error.

Together with status code, HTTP allows the possibility to add information on the error conditions in the Body part of a
Response. A best practice for response bodies in error situations is to include a representation of a ProblemDetails data
structure, as specified in IETF RFC 7807 [i.43] that provides additional details of the error in a standardized manner.
When the data structure is serialized in JSON, |IETF RFC 7807 [i.43] mandates the Content-Type HT TP header to be set
to application/problentjson.

The definition of the general ProblemDetails data structure from |[ETF RFC 7807 [i.43] is reproduced in
Table4.2.4.1-1. For more details, the status and detail attributes are included to ensure that the response contains
additional textual information about an error. It is possible that particular APIs or particular implementations define
extensions to introduce additional attributes that provide more information about the error.

NOTE: Implementations may use additional error response codes on top of the ones listed in this clause, aslong
asthey are valid HT TP response codes.

ETSI GSNFV-SOL 013[i.42] and ETSI GS MEC 009 [i.23] specified the ProblemDetails structure mentioned below.
The description column in Table 4.2.4.1-1 only provides some explanation of the meaning to facilitate understanding of
the design. For afull description, see IETF RFC 7807 [i.43].

Table 4.2.4.1-1: The ProblemDetails data structure

Attribute oo .
name Data type |Cardinality Description
type URI 0.1 A URI reference according to IETF RFC 3986 [i.17] that identifies the

problem type. It is encouraged that the URI provides human-readable
documentation for the problem (e.g. using HTML) when dereferenced.
When this member is not present, its value is assumed to be about:blank.
title String 0.1 A short, human-readable summary of the problem type. It should not
change from occurrence to occurrence of the problem, except for the
purposes of localization. If a type is provided and it is other than
about:blank, this attribute will also be provided.

status Integer 1 The HTTP status code for this occurrence of the problem.

detail String 1 A human-readable explanation specific to this occurrence of the problem.

instance URI 0.1 A URI reference that identifies the specific occurrence of the problem. It
may yield further information if dereferenced.

(additional Not 0..N Any number of additional attributes, as defined in a specification or by an

attributes) specified. implementation.

The following common error situations are applicable to all REST resources and related HT TP methods specified in the
present document.

ETSI

16 ETSI EG 203 647 V1.1.1 (2020-11)

4242 Client Errors

The client errors are indicated by a 4xx response codes. These errors can be fixed by the client. It is recommended that
the API provides a suitable error message which enables the client to fix the error, rather than responding with an error
code only.

It isabest practice to include alink to publicly accessible documentation of the error on aweb page. The following
client errors indicate the malformed request:

. 400 Bad Request: If the request is malformed or syntactically incorrect (e.g. if the request URI contains
incorrect query parameters or the payload body contains a syntactically incorrect data structure).

e 404 Not Found: If the API producer did not find a current representation for the resource addressed by the
URI passed in the request or is not willing to disclose that one exists. For example, a non-existing resource-l1d
was specified as path parameter.

e 405 Method Not Allowed: If aparticular HTTP method is not supported for a particular resource, the API
producer will respond with this response code. The ProblemDetails structure may be omitted.

. 406 Not Acceptable: The API cannot produce aresponse in any of the media-types that client can accept
(e.g. if the Accept HT TP header does not contain at |east one name of a content type that is acceptable to the
API producer).

e 422 Unprocessable Entity: The input isin the appropriate content-type, is syntactically correct (e.g. well-
formed JSON), but is semantically wrong (e.g. because it fails validation against a schema).

e 429 Too Many Requests: The API consumer has sent too many reguests per time window and the AP
producer is able to detect that condition ("rate limiting").

The following authentication and authorization status codes are typically used:
e 401 Unauthorized: Credentials are incorrect or missing. The user is not authenticated in the first place.

e 403 Forbidden: If the API consumer is not allowed to perform a particular request on a given resource.

4.2.4.3 Server Errors

A 5xx response code is used to indicate an error in the API or Server. For server errors, good logging is essential to be
able to find the root cause of the problem.

It is the best practice to inform the API consumers, when the server-side error will be fixed and when the consumer can
retry to send the request. This can be done by including the HTTP header field Retry-After with the delay in secondsin
the response.

e 500 Internal Server Error: If the server is unable to process the request, and retrying the same request later
might eventually succeed, the server will respond with this response code.

. 501 Not Implemented: The functionality requested by the client is not implemented yet.

e 503 Service Unavailable: If the API producer encounters an internal overload situation of itself or of a system
it relies on, it should respond with this response code.

e 504 Gateway Timeout: If the API producer encounters a timeout while waiting for a response from an
upstream server (i.e. aserver that the API producer communicates with when fulfilling a request), it should
respond with this response code.

ETSI

17 ETSI EG 203 647 V1.1.1 (2020-11)

4.3 API specification process

4.3.1 RESTHful interface description languages

Several languages have been devel oped for specifying interface contracts of RESTful APIs. The purpose of an API
specification language isto facilitate the consumption of API specifications by both machines and humans for
validation, implementation and testing of the interfaces.

An appropriate specification language for standardizing APIsis:

. agnostic to implementation language;

e human readable;

J machine readable;

. compliant with REST principles;

e standardized; and

. sufficient for specifying APIsin the level of detailsthat is present in existing standards.
Many languages come into place when designing/creating a new API. Some of these are:

. OpenAPI ™ js a specification and complete framework i mplementation for describing, producing, consuming,
and visualizing RESTful web services. OpenAPI has alarge community support base and support for many
Opensource frameworks.

. RAML standsfor RESTful APl Modelling Language and is based on YAML for describing RESTful APIs.
RAML focuses on modelling more than specification. The tooling for the latest version of RAML (1.0) is
limited. Mulesoft (RAML developers) joined OpenAPI consortium to support OpenAPI™ Specification
(OAS™),

e API Blueprint comes with a syntax closer to markdown to describe the Web APIs. API blueprint has low
adoption and limited community support.

e WADL standsfor the Web Application Description Language comprising an XML vocabulary for expressing
the behaviour of HT TP resources. This approach is not widely adopted due to the complexity of the
specification, vendor-specific limitations, and lack of available tooling.

e OData stands for Open Data Protocol, which isan OASIS standard for the creation and consumption of
gueryable RESTAPIs. It supports ATOM and JSON format. OData is strongly coupled with data structures
and less focused on interface specifications.

Of the languages analysed, OpenAPI was chosen to be used in the API specification process within ETSI asit fulfils all
the requirements, fits well into the specification process, and is considered the de facto standard for API design
according to "The State of APl 2019 survey” [i.7]. The usage of OpenAPI is described in the following clauses.

4.3.2 Standardizing RESTful interfaces using OpenAPI

4321 OpenAPI Overview

An OpenAPI document specifies asingle APl as JSON object that may be represented either in JISON or YAML format
[1.14]. The present document is based on OpenAPI™ Specification version 3.0.3 [i.15].

Not that object namesin OpenAPI ™ specifications are case sensitive. Line comments start with "#".

ETSI

18 ETSI EG 203 647 V1.1.1 (2020-11)

4.3.2.2 Document

Each OpenAPI document specifiesthe title and the version of the API in the info object. The version of OpenAPI ™
standard that the document conformsto is also required.

Following example describes the structure of an OpenAPI document. The components object is a container for all
reusable objects.

The description of the external Docs should specify issuing organization, document number and title. Within ETSI, the
external Docs element should be used to indicate which standardized deliverable is related to the OpenAPI definition,
and the URL should indicate the link to the active work item information (e.g. on the ETSI Portal) or (when present) to
the download location of the related document.

It is strongly recommended that the description of the external Docs contains the exact drafting or publication version of
the related document.

An example of document definition is shown in Figure 4.3.2.2-1.

openapi: 3.0.3

i nfo:
title: 'Exanples for RESTful APl guide'
version: '1.0.0

ext er nal Docs:

description: 'ETSI EG 203 647 ...'

url: "https://docbox.etsi.org/..."
paths: {}
servers: []
security: []

conponents:
schemas: {}
securitySchenes: {}

Figure 4.3.2.2-1: Example of document definitions

4.3.2.3 Data types

OpenAPI specifies a set of primitive data types and rules for defining structured data types. The specification is an
extension of the JSON schema [i.16]. Data type schemas may be defined inline or in a schemas object which enables
reuse of those definitions.

Structured typeis either an array with member type declaration (items object) or an object with properties (properties
object).

For object types the required array lists names of properties that are mandatory in the given data structure. A property
may be constrained by a set of allowed values using an enum array.

Cardinality of the datain message body or parameter value is defined by the data type schema. minltems and maxltems
values may be specified for array types. If an array of certain member type is used with different cardinalities, thenitis
recommended to define the array schemasinline.

OpenAPI defines string, integer, number and boolean primitive types and a number of well-known format identifiers
that are used to encode structured data as primitive value. Primitive types may be extended by specifying additional
non-standard formats as long as encoding of those formats is defined in the API specification.

An example of datatype definitionsis shown in Figure 4.3.2.3-1.

ETSI

19 ETSI EG 203 647 V1.1.1 (2020-11)

conponent s:
schemas:
Name of data type
Sear chResul t s:
Array type
type: array
itens:
Type of array nmenbers, reference to ResourceData
$ref: '#/ conponents/schenas/ Resour ceDat &'
No nore than 10 results
maxl|tens: 10
Resour ceDat a:
Structured type
type: object
properties:
Property nane
id:
Property type
type: string

si ze:
type: string
enum
Set of allowed val ues
- big
- bi gger
- biggerer
Default value for non-required property
default: big
created:

Date-tinme val ue encoded as string
type: string
format: date-tine
required:
Set of required properties
- id
Figure 4.3.2.3-1: Example of data type definitions

Refer to the OpenAPI ™ specification for additional means of constraining the data types.

4.3.2.4 Operations

Resource operations are grouped by paths and specified in the paths array. A path isarelative URL that startswith a"/"
and may include parameters. The format for URLs s specified in IETF RFC 3986 [i.17].

Paths are unique within the document which meansthat all allowed operations on a given path are grouped together. An
operation is defined by request method, parameter declarations and one or more responses.

Method name is one of HT TP methods standardized by IETF RFC 7231 [i.5], but in lower case as required by
OpenAPI™ specification.

The summary contains the text that is used as the title of the respective clause in written specification. The description
contains the contents of the clause.

All parameters used in the path are defined in parameters array for every operation. This can be done using associative
array syntax. It isrecommended to use only string, number or boolean as type of path parameter. Parameters may be
defined in components: parameters object for reuse.

An example of operations definitionsis shown in Figure 4.3.2.4-1.

ETSI

20 ETSI EG 203 647 V1.1.1 (2020-11)

pat hs:
Resource path relative to server, paraneters in curly braces
"/resource/{id}'
Met hod
get:

Uni que, case-sensitive identifier

operationld: getResource

summary: 'Read a resource

description: 'Read full contents of a resource with specific ID

par anet ers:

Paraneter nane used as the key in associative array of paraneters
- nanme: 'id
The location of paraneter: path, query, header or cookie
in: path
required: true
description: 'Resource |D
schema
Primtive type
type: string
responses: # Further content not shown, it includes responses 200, 401, 404

Figure 4.3.2.4-1. Example of operations definitions

4.3.2.5 Requests

Request message is defined by request body and header values. Request body is specified by content media type and
datatype schemain arequestBody object. The schemais either defined inline or as a reference to a schema object.

Headers convey protocol specific information. Some header values such as authentication tokens and message body
content type are specified implicitly by other constructs of OpenAPI.

An example of resource definition supporting a POST request is shown in Figure 4.3.2.5-1.

pat hs:
"/ resource'
POST a JSON obj ect
post :
Info excluded
operationld: postResource
parameters:
Reference to (reusable) paraneter definition
- $ref: '#/ conmponents/ paraneters/resourceld
Reference to (reusable) header definition
- $ref: '#/ conponents/ paraneters/ Version'
request Body:
description: 'Data for new resource
required: true
content:
Content nedia type (Content-Type header val ue)
appl i cation/json
schema
Reference to data type
$ref: '#/ conmponent s/ schemas/ Resour ceDat a'
responses: # Further content not shown, it includes responses 201, 400

Figure 4.3.2.5-1: Example of resource definition supporting a POST request

It is recommended to use multiple part messages when sending files or other binary content. The encoding for parts may
be specified in an encoding object if the default (application/octet-stream) is not applicable.

The usage of multipart/form-datais specified in IETF RFC 2388 [i.18].

An example of resource definition supporting multipart datain the request is shown in Figure 4.3.2.5-2.

ETSI

21 ETSI EG 203 647 V1.1.1 (2020-11)

pat hs:
"Iresource/{id}/file":
Upl oad a resource file
put:
Info excluded
operationld: uploadResourceFile
parameters:
- $ref: '#/ conponents/ paraneters/resourceld'
request Body:
description: '"An image file to be attached to the resource'
content:
nmul tipart/formdata:
schema:
type: object
properties:
Property nane (al so the nane applied to content disposition)
file:
type: string
Sets content type to application/octet-stream
format: binary
encodi ng:
Applies customencoding to "file" property
file:
Override default content type
content Type: i mage/ png
responses: # Further content not shown, it includes responses 200, 201, 204, 400,

Figure 4.3.2.5-2: Example of resource definition supporting multipart data in the request

Custom headers are specified the same way as other parameters. Either inline or defined in a components. parameters
object. It isrecommended to use only string and number as the type of a header parameter.

An example of definition of custom request headers is shown in Figure 4.3.2.5-3.

conponents:
paraneters:
Ver si on:
name: ' Version'
description: '"APlI version'
in: header
required: true
schema:
type: string

Figure 4.3.2.5-3: Example of definition of custom request headers

4.3.2.6 Responses

For each request, all acceptable responses should be specified. Response isidentified by response code. The body is
optional and specified in a content object similar to request body.

Custom headers may be specified in a headers object.

Examples of response definitions are shown in Figure 4.3.2.6-1.

ETSI

ETSI EG 203 647 V1.1.1 (2020-11)

22
pat hs:
"/resourcel/{id}":
get:
Request and paraneters excl uded
responses:
Response code
200:
description: 'The requested resource'
Cust om headers
header s:
ETag:
Reference to (reusable) header definition
$ref: ' #/ conponents/ headers/ETag'
Response body
content:
application/json:
schema:
$ref: '#/ conponents/schenas/ Resour ceDat &'
401:
Reference to (reusable) response definition
$ref: '#/ conponents/responses/ 401’
404
$ref: ' #/ conponent s/ responses/ 404"
conponent s:
responses:
Common responses with response code as identifier
204:
description: 'No content'
401:
description: 'Unauthenticated'
404:
description: 'Not found'
headers:
Definition of ETag header
ETag:
description: 'ldentifier for a specific version of a resource'
schena:
type: string
Figure 4.3.2.6-1: Examples of response definitions
4.3.2.7 Callbacks

One or more callbacks may be specified for a request allowing to describe more complicated scenarios. Nota that the
order of responses and callbacks is unspecified. Callbacks may be defined in components: callbacks object for reuse.

Callback path may contain runtime expressions referring to properties of the request (such as body or header) to identify

the callback URL.
See the examples for using the callback objectsin clause 4.3.

An example of callback definition is shown in Figure 4.3.2.7-1.

ETSI

23 ETSI EG 203 647 V1.1.1 (2020-11)

"/ subscription'
post :
sunmary: ' Subscribe to authenticated notifications
Description excluded
operationld: subscribeNotifications
request Body:
content:
application/json
schema
Subscription containing callbackU | property
$ref: ' #/ conponents/schenas/ Subscri ption
responses
Subscription was created
201:
$ref: ' #/ conmponents/responses/ 201
Qut-of -band notifications from server
cal | backs
Named cal | back object (inline or reference)
aut h:
Local path used by server for callback(s)
" {$request . body#/ cal | backUr |} /i ncom ng'
post :
request Body:
content:
application/json
schema
$ref: ' #/ component s/ schemas/ Aut henti catedNoti fication
responses: # Content excluded

Figure 4.3.2.7-1: Example of callback definition

4.3.2.8 Query parameters
Query parameters are used to customize operations and specify conditions on the data that is requested or provided.

Query parameter values are not limited to primitive types. Various formats exist for converting structured or array
values into strings val ues suitable for query parameters. Chosen format should be specified in API specification and it
should conform to IETF RFC 1738 [i.19].

An example of supported query parameters definition is shown in Figure 4.3.2.8-1.

pat hs:
Exanpl e search path /search?text=rest&m n=5
'/ search’
Exanpl e search path /search?text=rest &max=5
get:

summary: ' Search resource

Description excluded

operationld: searchResource

par anmet ers:

- name: 'text'
in: query
required: true
description: 'Text to search for'
schema
type: string
- nane: ' max'
in: query
Optional paraneter
required: false
description: ' Mxi mum nunber of results expected
schema
type: nunber
responses: # Content excluded

Figure 4.3.2.8-1: Example of supported query parameters definition

4.3.2.9 Extensions

OpenAPI documents may contain non-standard objects. The names of custom objects are prefixed by "x-" and should be
defined in the API specification.

An example of usage of extensionsis shown in Figure 4.3.2.9-1.

ETSI

24 ETSI EG 203 647 V1.1.1 (2020-11)

| service:
get:

operationld: getService

X-etsi-provision: nmandatory
parameters:
- name: 'circuitsw tching'
in: query
required: false
schema:
type: string
x-etsi-capabilities:

- 3G
responses:
200:
description: 'The requested service'
content:
application/json:
schema:
type: object
properties:
speed:
type: string
enum
- fast
- superfast

X-etsi-enum

super fast:
required: false
X-etsi-capabilities:
- 4G
- 5G

Figure 4.3.2.9-1: Example of usage of extensions

Note that OpenAPI editing tools may not support proper representation of custom objects.
Recommended extensions:

. x-etsi-ref: reference to an item in a document. If the document is omitted, then it is areference to the
document specified in the externalDocs property. It is recommended to follow the referring format described
in ETSI Drafting Rules[i.20], clause 2.10.

. x-etsi-note: used for giving additional information in the same way as notesin ETSI deliverables.

. X-etsi-provision: provision on implementation of operation, request, response, parameter or property indicated
as mandatory, optional or other values described in ETSI EG 201 058 [i.9], clause 8.3. The use of the required
property from OpenAPI (where applicable) with value true has the same meaning as the value mandatory of
this extension. If the value of this extension is anything el se, then the required property should be set to false
(or excluded).

. x-etsi-capabilities: an array containing the names of capabilities for which the containing object is applicable
for, or an indication of.

e Xx-etsi-enum: an object that describes applicability of enumeration literals (see Figure 4.3.2.9-1).

If additional extensions are defined, then it is recommended to prefix the names with x-etsi-TBNAME- where TBNAME
is the name of the technical body authoring the document.

4.3.2.10 Other

Reference objects may be used throughout OpenAPI document instead of inline definitions (see for example

Figure 4.3.2.7-1). Reference object contains a $ref property with relative or absolute URL. Relative URLs are relative
to current document. The path is omitted for references in the same document. The fragment part indicates the location
of the referenced object in the document structure followed by the name of the object.

An example of usage of JSON referencesis shown in Figure 4.3.2.10-1.

ETSI

25 ETSI EG 203 647 V1.1.1 (2020-11)

Reference to ResourceData object in the (conponents/schenas object of) the sane docunent
$ref: ' #/ conponent s/ schemas/ Resour ceDat a'

Reference to ResourceData object in a docunent naned types.yan
$ref: 'types.yanl #/ conponent s/ schemas/ Resour ceDat a'

Figure 4.3.2.10-1: Example of usage of JSON references

File naming conventions and directory structure for file storage is outside the scope of present document.

Server object may be used to describe the structure of API URL. This provides the base for relative URLSs of the
operations.

An example of servers object definition is show in Figure 4.3.2.10-2.
servers:

Recommended structure for APl paths
- url: '{api Root}/{api Name}/{api Maj or Versi on}/"'

vari abl es:
api Root :
default: https://exanple.com
api Nane:
description: 'Interface nanme fromthe base docunent'

defaul t: rest-api-guide

api Maj or Ver si on:
description: 'Mjor version of the APl fromthe base docunent'
defaul t: vi

Figure 4.3.2.10-2: Example of servers object definition

Tags may be used to indicate which interface a specific operation belongs to. They are used for grouping by visual
tools.

An example of usage of tagsis shown in Figure 4.3.2.10-3.

pat hs:
/resourcel/{id}:
get:
G oupi ng
tags:
- Resource managenent
tags:
Optional descriptions of tags
- name: Resource managenent
description: Qperations for nmanagi ng resources

Figure 4.3.2.10-3: Example of usage of tags

It is recommended to specify unique operationld for every operation (method at a path). Operation identifiers can be
used as explicit references to the OpenAPI document in derived specifications such as ICSs or test suites. Many tools
use operationld values as implementation names for the operations, thus appropriate naming conventions should be
established.

4.3.2.11 Process

An OpenAPI document defines technical requirements for an APl implementation. It is commonly an accompani ment
to written document that specifies non-technical aspects such as the context, concepts, behavioural semantics and
reguirements. The OpenAPI document may be included in the written document as a whole or in fragments in relevant
clauses. Alternatively, it may be amended as a separate file as electronic attachment.

Clause 5.1 of the ETSI EG 201 015 [i.8] lists a number of common problems found in standards and clause 5.2 provides
recommendations for avoiding those problems. One way to avoid common issuesis to use modelling techniques for the
technical parts of the standard. It is therefore recommended to use OpenAPI document as the single source of truth for
technical aspects of the API throughout the specification process.

ETSI

26 ETSI EG 203 647 V1.1.1 (2020-11)

Compared to written document, OpenAPI tools provide following additional benefits:

. OpenAPI provides known specification format and experts working on the API do not have to get familiar
with custom specification format;

. as adomain specific language, OpenAPI reduces the overhead of descriptive text;
. OpenAPI tools enforce syntactically correct specifications and provide some semantic validation; and
. experts may use the tools that they are already familiar with.

Clause 6 of the ETSI EG 201 015 [i.8] lists various explicit and implicit methods for validating standards. Using
OpenAPI tools for generating prototypical implementation of the API or using OpenAPI tools for exploratory testing
may be considered implicit validation methods of the API specification.

Various OpenAPI processing tools are available for producing written documents based on OpenAPI documents. Such
tools may be used as the mechanism for integrating OpenAPI definitions into written document. The integration process
isusually manual dueto inconsistent structuring of written APl specifications.

4.4 Common Patterns

4.4.1 Filtering Patterns

4411 Overview

This clause specifies the structure and constraints of query operations that allow controlling the size of the large result
set of the GET requests. Standardization groups within ETSI (ETSI GS NFV-SOL 013[i.42] and ETSI

GS MEC 009 [i.23]) and other SDOs (TM Forum guides) mentioned some of the common patterns for filtering large
guery result. Filtering patterns included in the present document are:

e Attribute-based filtering.
. Attribute Selector.

. Pagination.

4.4.1.2 Attribute-based filtering for collections

Filtering can be implemented as a query parameter named for the attributes to be filtered on. Attribute-based filtering
allows reducing the number of objects returned by a query operation. Typicaly, attribute-based filtering is applied to a
GET request that queries a resource that represents alist of objects (e.g. child resources). Only those objects that match
the filter are returned as part of the resource representation in the payload body of the GET response.

Attribute-based filtering is requested by adding a set of URI query parameters, the "attribute-based filtering parameters”
or here refer as afilter to aresource URI. The directivefilter is provided to retrieve aresource.

The complete resource representation (with all the attributes) is returned If no attribute is provided in the "filter”.
The following representations may apply:

. The GET request with filter

GET ../ Resource?filter=(< opr>, "AttrName", "AttrValue")

. For hierarchically-structured data, filters can also be applied to attributes deeper in the hierarchy. It is
separated by slash ("/").

GET ../ Resource?filter=(< opr>, "AttrName" / ["heir-AttrName"], "AttrValue")

ETSI

27 ETSI EG 203 647 V1.1.1 (2020-11)

. If afilter contains multiple sub-parts and they share the same attribute prefix, they are eval uated together per
array entry when traversing an array. The filters sub-parts are separated by ";".

GET ../ Resource?filter=(< opr>,
"AttrName" / ["heir-AttrName"],

"AttrName" / ["heir-AttrNanme"],
"AttrVal ue")

"AttrValue") ; (< opr>,

The AttrName is the name of one attribute in the data type that defines the representation of the resource and AttrValue
entry contains a scalar value of type Number, String, Boolean, Enum or DateTime. heir-AttrName is the resource within
the hierarchy.

The operatorslisted in Table 4.4.1.2-1 is supported.

Table 4.4.1.2-1: Supported operators for Attribute-based filtering

Operators with parameters
eq,< AttrName> < AttrValue>
neq,< AttrName>< AttrValue>
gt,< AttrName>,< AttrValue>
gte,< AttrName>,< AttrValue>
It,< AttrName>,< AttrValue>
Ite,< AttrName>,< AttrValue>

Description
Attribute equal to < AttrValue>
Attribute not equal to < AttrValue>
Attribute greater than < AttrValue>
Attribute greater than or equal to < AttrValue>
Attribute less than < AttrValue>
Attribute less than or equal to < AttrValue>

cont,< AttrName>,< AttrValue> [,< AttrValue>]*

String attribute contains (at least) one of the values in the list

ncont,< AttrName>,< AttrValue> [,< AttrValue>]*

String attribute does not contain any of the values in the list

in,< AttrName>,< AttrValue> [,< AttrValue>]*

Attribute equal to one of the values in the list ("in set" relationship)

nin,< AttrName>,< AttrValue> [,< AttrValue>]*

Attribute not equal to any of the values in the list ("not in set"

relationship)

In response to the HTTP request, the response code 200 OK is returned for a success. In case of an invalid attribute
filtering query, 400 Bad Request is returned.

In response to the HT TP request, the response code 200 OK is returned for a success. 400 Bad Request is returned in
case of an invalid attribute filtering query.

441.3 Attribute Selector

In certain scenarios, resource representations can become quite big, in particular, if the resource contains multiple sub-
resources, or if the resource representation itself contains a deeply nested structure. It is often desirable to reduce the
amount of data exchanged over the interface and processed by the API consumer application.

ETSI NFV and MEC groups specified the filtering pattern known as an attribute selector, which is typically part of a
query, allowsthe APl consumer to choose which attributes it wants to be contained in the response. Only attributes that
are not required to be present, i.e. those with alower bound of zero on their cardinality (e.g. 0..1, 0..N) and that are not
conditionally mandatory, are allowed to be omitted as part of the selection process. Attributes can be marked for
inclusion or exclusion. The pattern is applicable to GET methods.

Table 4.4.1.3-1 defines the valid parameter combinationsin a GET request and their effect on the response body.

Table 4.4.1.3-1: Attribute Selector with valid combinations

Parameter combination The GET response body includes

(none) same as "exclude_default".
all_fields all attributes.
fields=< list> all attributes except all complex attributes with minimum cardinality of zero that are not

conditionally mandatory, and that are not provided in < list>.

all attributes except those complex attributes with a minimum cardinality of zero that are
not conditionally mandatory, and that is provided in < list>.

all attributes except those complex attributes with a minimum cardinality of zero that are
not conditionally mandatory, and that is part of the "default exclude set" defined in the API
specification for the particular resource.

all attributes except those complex attributes with a minimum cardinality of zero that are
not conditionally mandatory and that is part of the "default exclude set" defined in the API
specification for the particular resource, but that is not part of < list>.

exclude_fields=< list>

exclude_default

exclude_default and
fields=< list>

ETSI

28 ETSI EG 203 647 V1.1.1 (2020-11)
NOTE 1: Theall_fields value is recommended to be used as default when the goal isto represent alist of itemsthe
same way as the individual items.

NOTE 2: The exclude_default value is recommended to be used as a default when the goal isto create alist that isa
digest of theindividual items.

In response to the HT TP request, the response code 200 OK is returned for success along with resource representations.
In case of an invalid attribute filtering query, 400 Bad Request is returned.

4.4.1.4 Pagination

In some cases, Collection resources become too large that the response to the query will adversely affect the
performance of the server. If it is not possible to return the complete collection due to its size, the response can be
chunked up in the form of bite-sized chunks called pages.

Pagination should be configurable via query parameters. To help API consumer navigate through the pages, the API
producer provides aresponse that contains a first page (subset) of the results to the query and provides the meta-
information. This meta-information includes a Link HTTP header (according to the IETF RFC 8288 [i.50]) with therel
attribute set to next, which communicates a URI that allows to obtain the next page of resultsto the origina query.

The API consumer can send a GET request to the URI communicated in the Link header to obtain the next page of
results. The response which returns that next page contains the Link header to point to the next page unless there are no
further pages available in which case the Link header is omitted.

Alternatively, if the API producer does not support pagination, the server will reject the query request with a 400 Bad
Request response and include the ProblemDetails (refer to clause 4.2.4.1) payload body to provide more information
about the error.

Pagination can be implemented using one or both of two query parameters:
. limit: to define the number of items returned in the response;
. mar ker: to specify the ID of the last seen item;
. offset: to define the requested index for the start of resources to be provided.

Figure 4.4.1.4-1 depicts the generic flow of paging mechanism usage.

AP| Consumer API Producer

1 T
:
loop / [Till no further pages available]

.
GET Request (../resource?limit=30&offset=0)

>

206 Partial content (result, Link:ref="URI_of_next_page, rel="next") i

<
€ |

| Alternative: Paging not supported by API Producer B]

T
alt /i [Paging not supported]

1

1

GET Request (../resource?limit=30&offset=0) i

404 Bad request (ProblemDetail)

AP| Consumer API Producer

Figure 4.4.1.4-1: Generic flow of paged response

4472 Pattern for URI Creation

44.2.1 Resource URI Structure

REST APIs use Uniform Resource Identifiers (URIS) to address resources. Resources are either individual resources or
structured resources that can contain child resources. IETF RFC 3986 [i.17] defines the generic URI syntax shown
below:

URI = schene "://" authority "/" path ["?" query] ["#" fragnent]

ETSI

29 ETSI EG 203 647 V1.1.1 (2020-11)

From the reference from standardization groups within ETSI (NFV, MEC) and its Partnership Projects (3GPP), when a
resource URI is an absolute URI, the URI structure is specified as follows:

{api Root }/ { api Nanme}/ {api Versi on}/ {api Speci fi cResourceUri Part}

The URI prefix isbriefly reported in Table 4.4.2.1-1.

Table 4.4.2.1-1: Path structure for URI creation

URI Parts Descriptions
{apiRoot} Indicates: - The scheme ("HTTP" or "https") - The fixed string "://" - authority (host and
optional port) as defined in IETF RFC 3986 [i.17] - An optional deployment-specific
string (API prefix).
{apiName} Defines the name of the API or the interface name of the implementation.
{apiVersion} Indicates the current major version of the API.
{apiSpecificResourceUriPart} |Defines a resource URI of the API relative to the base URI.

All resource URIs of the API should comply with the URI syntax as defined in IETF RFC 3986 [i.17]. It is
recommended that an implementation that dynamically generates resource URI parts (individual path segments,
sequences of path segments, query parameter values) should ensure that the character set that is allowed by IETF
RFC 3986 [i.17] only be used in these URI parts.

4.4.2.2 Design Rules for REST API URI

The "REST API Design Rulebook” [i.41] introduced some design rules that generally apply on URI creation. This
clause provides some recommendations mentioned in the Design Rulebook for consistent URI formatting:

. Use forward-glash ("/") to indicate hierarchical relationships.
. Do not use trailing forward-slash ("/") in URIs.

. Use hyphens ("-") to improve the readability of URIs.

. Do not use underscores (*"_"*).

. Use lowercase lettersin URIs.

J Do not use file extensions.

NOTE: Implementation specific constraint takes precedence over these design rules.
4.4.3 Pattern to avoid Update Conflict and Data loss

4431 Description

The concurrent update conflict or race condition mostly arises when two clients try to update a resource using the PUT
or PATCH method concurrently. If another client modifies the resource after receiving the response to the GET request
and before sending the PUT request, that modification getslost (which is known as the lost update phenomenon in
concurrent systems).

HTTP (see IETF RFC 7232 [i.51]) supports conditional requests to detect such a situation and allows the client to deal
with it. For that purpose, each version of aresource gets assigned an entity tag (ETag) that is modified by the server
each time the resource is changed. Thisinformation is delivered to the client in the ETag HTTP header in HTTP
responses. An ETag header in aresponse does not indicate in itself that the resource requires concurrency control.

If the client wishes that the server executes the modification request only if the ETag has not changed since the time the
GET response was generated, the client adds to the modification request the HT TP header If-Match with the ETag value
obtained from the GET request. The server executes the modification request only if the ETag in the If-Match HTTP
header matches the current ETag of the resource and responds with 412 Precondition Failed otherwise. In that conflict
case, the client needs to repeat the GET-PUT sequence.

ETSI

30 ETSI EG 203 647 V1.1.1 (2020-11)

This REST Client REST Server Other REST Client

T
i
! Get request
1
| (.../resource)
!
1
1
!

200 OK
(resource representation, Etag=0)

Cache data and prepare the changes to \
Resource representation refered to as "Modifications”

_ Get Request (.../resource)

200 OK (resource representation, Etag=0)\

>

Cache data and prepare the changes to
Resource representation I

HTTP update request
.../resource (Modifications, lf—Match=O)\

200 OK
> (resource representation, Etag=1)

HTTP update request
../resource (modifications, If-Match=0)

412
Precondition failed

Get request
(.../resource)

200 OK
P (resource representation, Etag=1)

Cache data again and prepare the changes
according to new resource state

HTTP update request

../resource (modifications, If-Match=1)

200 OK
(resource representation, Etag=2)

This REST Client REST Server Other REST Client

Figure 4.4.3.1-1: Flow of concurrent update of a Resource

This pattern applies to any HT TP modification request i.e. PUT and PATCH. In aparticular AP, it is recommended to
stick to one update pattern - either PUT or PATCH.

On success, either 200 OK or 204 No Content is returned. If the ETag value in the "If-Match" HTTP header of the
PATCH request does not match the current ETag val ue of the resource, 412 Precondition Failed is returned. Otherwise,
on failure, the appropriate error code is returned.

4.4.4 Authorization and Authentication

4441 Overview

For secure systems, APIs are only allowed to be accessed by authorized consumers. Handling of authorization differs
between making an API call and sending a notification. This clause outlines several methods for authentication and
authorization:

e OAuth2.0.
. Openl D connect with JIWT ID Token.

° TLS Certificates.

ETSI

31 ETSI EG 203 647 V1.1.1 (2020-11)

4.4.4.2 API Authorization using OAuth 2.0 Access tokens

The HTTP-based OAuth 2.0 framework allows REST clients to obtain access to a resource exposed by an API. To
facilitate this, REST APIs may collaborate with an OAuth 2.0 Authorization Server, checking each incoming call for an
access token, which it should validate with the Authorization Server. The response from the Authorization Server
indicates whether the access token is valid (it was issued by the OAuth Provider and it has not expired) as well as the
scope of access for which the token was issued. The API security framework assumes an Authorization Server to be
available for both the APl Consumer and the API Producer. This Authorization Server can be used to perform the
authentication for the credentials of the REST APl Consumer and the API Producer.

AP| Consumer API Producer

HTTP request

>

401 Unauthorized

2)

|
Accegs token request

|
Access token response (access token)
T

<
€

| HTTP request with access token ‘
r >

| !
i 1 Check authorization based on access token
|

|
alt /| [Authorized]

|

|

HTTP response

<

[Access token invalid] .
] 401 Unauthorized !
~ 1
[Insufficielm scope]
! 403 Forbidden

1
1
1
'
'
'
|
'
'
1
'
1
'
1
1
'
1
1
1
'
1
'
1
'
1
1
'
'
1
1
'

| |
AP| Consumer API Producer

Figure 4.4.4.2-1: Flow of APl authorization using OAuth 2.0 access token

To ensure that no third party can eavesdrop on sensitive information such as client credentials or access tokens, HTTP
over TLS can be used to protect the transport.

4443 API Authorization using TLS Certificates

The security of the API keys, HTTP basic authentication and OAuth 2.0 depends on TLS. The authentication and
authorization are defined herein based on TLS certificates, applying the IETF RFC 5246 [i.44]. To facilitate mutual
authentication during the TLS tunnel setup process, the server requests a client certificate as described in section 7.4.4
in [ETF RFC 5246 [i.44]. Before the API request, it is assumed that the Authorization Server is configured with the
authorization policy and access rights against the certificates. The APl Consumer accesses a resource provided by the
API Producer using a TLS tunnel where the certificates of both the APl Producer and API Consumer are used to
establish the secure tunnel. The API Producer checks authorization based on the TL'S certificate of the APl Consumer.
The TLS certificate of the APl Consumer is obtained during the TL S handshake.

TLS ensures the confidentiality and integrity of the input and output of the API Producer and API Producer i.e. the
information in the HTTP body, header and in the URI. API producers can reject the requests without TLS by sending
the HT TP response code 403 Forbidden.

It is assumed that the certificates should be aready enrolled in the communicating entities and the Authorization server
should be configured with the authorization policy and access rights against the certificates.

ETSI

32 ETSI EG 203 647 V1.1.1 (2020-11)

APl Consumer API Producer

T { T

I TLS certificates enrolled in the communicating entities b]

i]
|_Setup TLS tunnel using the API Consumer and API Producer certificates 1

! i
HTTP request for a resource over TLS tunnel

i
!
i
i
i
i
i
Check authorization policy |
i
i
i
i
i
i
i
i
i
i

i
i
!
i
i Authorization response
I

<
S

alt /i [Client certificates authorized]
!
! HTTP response

2

[Client ceriificates not authorized]
| 403 Forbidden :

G

API Consumer API Producer

Figure 4.4.4.3-1: Flow of APl authorization using TLS certificates

Two-way TLS protection is well suited for point-to-point integration with trusted partners. It is recommended to
upgrade the API platform to support the latest TLS version.

4.4.4.4 API Authorization using OpenID connect with JWT ID Token

Openl D Connect is a standardized identity layer on top of the OAuth 2.0 protocol. By design, OAuth does not expose
the identity of the end user towards the API Consumer. Only the access token is provided to the APl Consumer i.e. it
only acts as arandom identifier. Thus, the rights for access are not encoded into the access token, but only associated
with thisidentifier.

Openl D Connect extends OAuth by using the additional token, the ID token. It allows clients to verify the identity of an
end-user based on the authentication performed by an authorization server as well asto obtain basic profile information
about the end-user in an interoperable and REST-like manner, by means of an additional API, the userinfo API. The
userinfo API is protected by OAuth 2.0 and provides additional identity information about the user. The ID token holds
identity information (or "claims") about the user i.e. name, email address, etc. OpenlD Connect specifies a RESTful
HTTP API, using JSON as a data format.

The ID token is formatted according to the JSON Web Token (JWT) standards. JSON Web Tokens are an open,
industry-standard IETF RFC 7519 [i.45] method for representing claims securely between the parties. Claims or user
information are represented as JSON data structures. The information can be signed according to the JSON Web
Signature (JWS) to ensure the integrity and can be encrypted according to JSON Web Encryption (JWE) to ensure
privacy. The mechanism of work for WS and JWE is out of the scope of the present document.

ETSI

33 ETSI EG 203 647 V1.1.1 (2020-11)

API Provider Userlnfo Endpoint

T T T T
'
Prepare authentication request

! i
| 302 Redirect to Authhorization Server :

]
Authorization request (User ID; redirect uri)
i]

Authenticate End User

I Consent / Authorization
T

i
Return Access Token and ID token and redirect...

! ...to API Provider !

>

' Validate ID token

|
| L
! '«
i
User is authenticated

|
opt [User info retrievalj

:
. ' Request additional user info (ID token)
| r T

i

User info response

L 1
API Provider Userlnfo Endpoint

Figure 4.4.4.4-1: Flow of APl authorization using OpenID connect

4.4.5 Non-CRUD operations

4451 Description

In REST interfaces, the goal isto use only four operations on resources. Create, Read, Update, Delete (the so-called
CRUD principle). However, in several cases, actual operations needed in system design are difficult to model as CRUD
operations, be it because they involve multiple resources, or because that they are processes that modify a resource and
that take several input parameters that do not appear in the resource representation. Such operations can be modelled as
"task resources’.

A task resource is a child resource of a primary resource that isintended as an endpoint to invoke a non-CRUD
operation. That non-CRUD operation executes a procedure that modifies the state of that actual resource in a specific
way or performs computation and returns the result.

NOTE: Theterm "task resource" iscommonly used in ETSI'sNFV (ETSI GS NFV-SOL 013 [i.42]) and MEC
(ETSI GSMEC 009 [i.23]) specifications as well asin TM Forum guides. The same approach can also be
called asa"controller resource” (refer to "REST API Design Rulebook” [i.41]) or as " sub-resource”.

The only HTTP method that is supported for atask resource is POST, with a payload body that provides input
parameters to the process which is triggered by the request. HTTP calls the POST request method unsafe and non-
idempotent, thus, to trigger the operations that cannot be intuitively mapped to one of the other core HTTP methods.

Different responses to a POST request to atask resource are possible, such as:
. 200 OK to provide a computation result based on the state of the resource and additional parameters.
. 204 No Content to signal success but not return aresult.

e 303 See Other to indicate the operation modifies another resource other than primary resource. In case the
operation modifies a primary resource, the Location HT TP header points to the primary resource.

. 202 Accepted for asynchronous invocation.
On failure, the appropriate error code is returned.

A task resource that models an operation on a particular primary resource is often defined as a child resource of that
primary resource. The name of the resource should be a verb that indicates which operation is executed when sending a
POST request to the resource.

ETSI

34 ETSI EG 203 647 V1.1.1 (2020-11)

EXAMPLE:

...lcall _sessions/{sessionld}/call _participants/{participantld}/transfer

Figure 4.4.5.1-1 illustrates the flow for Non-CRUD operation.

AP| Consumer API Producer

|
})g

! POST request (.../resource/.../{Operation})

200 OK (computation result) !

< 5
) |
|

|

For long running asynchronous operationslﬁ

|
opt 2 [Async operation]

|

|

202 Accepted

<
<

T
alt / [Resource modification]

|

|

303 See other

2
<

[No result]
|

l 204 No content i
€ 1
T T

AP| Consumer API Producer

Figure 4.4.5.1-1: Generic flow of Non-CRUD operations

4.5 Naming conventions

Naming conventions help keeping different specifications consistent, thus easier to be understood and adopted.

In drafting an API specifications, coordination and conventions may be applied on several aspects. For this reason,
several standardization groups within ETS| and its Partnership Projects has specified their own internal guidelines for
naming conventions.

The aim of the present guide is not to replace the practices and conventions aready established in those groups, but to
offer aframework for novel activities and to emphasize the common rules and guidelines already present.

First of dl, thelist identifiesin Table 4.5-1, the aspects of an API that require conventions.

Table 4.5-1: APl aspects which may require naming conventions

Id API Aspect Description

1 |[Folder and file names |YAML or JSON files containing the API definition. A set of several files may be used and
organized to isolate reusable definitions.

2 |APIl names Name of the API.

3 |URI path segments Identifiers of resources and sub-resources, mapped to the entities manipulated by the
API.

4 |URI Query segments Parameters available as query segments

5 |Data types names Reusable data definitions.

6 |Data attributes names |Data type instances used as parameters or members of other data definitions or
API calls.

Moreover, a definition of letter-casing styles is provided in several guides, to clearly identify stylesto be used to define
the naming conventions. The case conventions defined in ETSI TS 129 501 [i.21], ETSI GS NFV-SOL 015 [i.22] and
ETSI GSMEC 009 [i.23] are briefly reported in Table 4.5-2.

ETSI

35

ETSI EG 203 647 V1.1.1 (2020-11)

Table 4.5-2: Case definitions from 3GPP, ETSI NFV and ETSI MEC specifications

Name

Description

Reference

Examples

UPPER_WITH_UNDERSCORE

All letters of a string are
capital letters. Digits are
allowed. Word boundaries are
represented by the
underscore "_" character. No
other characters are allowed.

3GPP,
MEC,

DATA_MANAGEMENT,
CELL_CHANGE

lower_with_underscore

All letters of a string are
lowercase letters. Digits are
allowed. Word boundaries are
represented by the
underscore "_" character. No
other characters are allowed.

3GPP,
MEC

data_management, cell_change

UPPER-WITH-HYPHEN

All letters of a string are
capital letters. Digits are
allowed. Word boundaries are
represented by the hyphen "-"
character. No other characters
are allowed.

3GPP

DATA-MANAGEMENT, CELL-
CHANGE

lower-with-hyphen

All letters of a string are
lowercase letters. Digits are
allowed. Word boundaries are
represented by the hyphen "-"
character. No other characters
are allowed.

3GPP

data-management, cell-change.

UpperCamel

A string is formed by
concatenating words. Each
word starts with a letter or a
digit. The first letter of each
word is an uppercase letter; all
other characters in the word
are lowercase letters or digits.
Abbreviations follow the same
scheme (i.e. first letter
uppercase, all other letters
lowercase).

3GPP,
MEC

DataManagement, CellChange,
5QiPriorityLevel,
Amf3GppAccessRegistration

lowerCamel

A string is formed by
concatenating words. Each
word starts with a letter or a
digit. The first letter of the first
word is a lowercase letter; the
first letter of the rest of the
words is an uppercase letter.
All other characters in the
words are lowercase letters or
digits. Abbreviations follow the
same scheme.

3GPP,
MEC

dataManagement, cellChange,
5qiPriorityLevel

ALLUPPER

All letters of a string are
uppercase letters. Digits may
be used except at the first
position. Other characters are
not used.

NFV

MANAGEMENTINTERFACE,
ETSINFVMANAGEMENT?2

alllower

All letters of a string are
lowercase letters. Digits may
be used except at the first
position. Other characters are
not used.

NFV

managementinterface,
etsinfvmanagement2

ETSI

36 ETSI EG 203 647 V1.1.1 (2020-11)

4.6 Versioning

4.6.1 Specifications and OpenAPI definitions versions

In the lifespan of certain standardized technology, from design to decommissioning, several versions of interfaces
specifications and implementations are cyclically defined, following developments and maintenance of the standardized
systems.

In order to track consistently and precisely the version information among interoperable solutions, a unified versioning
scheme should be designed as part of the communication system itself. RESTful APIs are no exception.

In the context of standardized machine-readable definitions, version information may refer to:
e theversion of the standardized interface, following the versioning rules of the related SDO;

e theversion of the OpenAPI™ Specification (OAS™) definition w.r.t to the interface it defines, to allow
incrementa development; and

. the version of implementations for producers and consumers communicating over the standardized interface.

A complete versioning scheme should take into account these three components, which will be referred to as
doc_version, oas version, impl_version. The model of relationship between the three versionsis depicted in
Figure 4.6.1-1 by means of a class diagram.

Drafting phase

D .
OAS refers 1 Spec
Draft Draft

I
I |
]

levolves into levolves into
1 I
I 1
i 1
[

;1 Publication

1
[, 1 refers 1 I
OAS_PUB |- -1 DOC_PuB

Figure 4.6.1-1: Versioning model

The following recommendations should apply:
. Each version of an OpenAPI should refer univocally to a specific version of the specification.

. Multiple versions of the OpenAPI definition for the same specification version are allowed in the drafting
phase, i.e. when the specification is not in the Published state.

o Each published specification should refer univocally to a specific OpenAPI definition.

Following the recommendations above, it is not be allowed to create maintenance versions of an OpenAPI™
specification after the related interface specification has been published. In this situation, if changes are needed in the
OpenAPI it isrecommended that a new version of the specification is edited.

Similarly, if anew version of the base specification is drafted, the referenced OAS version should always be
incremented. When an update of the base specification does not introduce provisions that would be expressed in the
OAS itsdlf and resulting in changes of the OAS definition file, the base document may nonethel ess set provisions
relevant on the interface implementations. Therefore at least the external Documents element should be updated in the
OpenAPI definition file to refer to the new version of the related specification, and the version of the file should be
incremented as well.

ETSI

37 ETSI EG 203 647 V1.1.1 (2020-11)

4.6.2 Modelling version information

The OpenAPI metamodel identifies a specific attribute to specify version information. Moreover, the APl may define
other ways to negotiate and identify implementation versions at design-time or runtime that may be modelled in the
OpenAPI definition as well.

A (incomplete) list of such mechanismsis:
. specifying the version field in the information object of the OpenAPI metamodel;
. using a URI parameter to identify the version of the specification (e.g. as a path segment or query parameter);
. using HTTP Headers;

. modelling specific version management endpoints as part of the interface itself (i.e. resources and related
operations to discover and invoke specific versions of the API).

4.7 Implementation

In the specification approach presented in the previous clauses, the OpenAPI ™ specification language is recommended
to be used, in order to provide a clear description of the standardized protocol interface.

Nevertheless, the original design of OpenAPI language (previously known as Swagger language) aimed at defining
contract documents to be served together with the APl implementation itself, at the same location where the serviceis
exposed.

This use case does not directly apply to standardization of APIs, asthey are meant to serve as blueprints for
implementation and testing, but they do not identify a specific implementation.

Moreover, a standardized APl may be (and often is) expanded with custom and proprietary features which would not be
described in the OpenAPI file.

Therefore, the implementers of a standardized API should take care to complete or finalize the OpenAPI definition
before it can be served at the point of service for the API.

In particular three aspects should at least be taken in consideration:
. redefinition of the server element in the OpenAPI definition file;

e elaboration of the version element, which could be extended to identify the proprietary implementation while
stating which standardized version it conforms to. More information on versioning approachesis availablein
clause 4.6;

. documentation of custom or proprietary features of the API (resources, methods, data elements) that extend the
standardized API. Such extensions may be decorated in OpenAPI with a schema extension such as x-etsi-
proprietary-capability or - when the extension comprises many features - a custom complementary OpenAPI
file. The use of the first solution is shown in the example in Figure 4.7-1.

/resl:
/res2:
description: ...

X-etsi-proprietary-capability:
- ACMEAuUt hSyst em

Figure 4.7-1: Usage example for the proprietary capability extension

ETSI

38 ETSI EG 203 647 V1.1.1 (2020-11)

5 Testing methodology for REST APIs

5.1 Overview

Testing methodol ogies are well established within ETSI and beyond. With the adoption of RESTful APIsin various
domains, 1SGs, and partnership projects, suchas ETSI ISG NFV, ETSI 1ISG MEC, and oneM2M ™ guidelines and
frameworks for the testing of RESTful APIs specific to each group started to emerge, based on more general principles
and guidelines established by TC MTS and I SO/IEC. Within these newly emerging guidelines, thereis no clear
distinction between the general guidelines, guidelines specific to the testing of RESTful APIs, and guidelines specific to
the domain. Additionally, some of the guidelines within one ISG (e.g. ETSI GR MEC-DEC 025 [i.24]) refer to
guidelines by another I1SG (e.g. ETSI GSNFV-TST 002 [i.25]). While this may reduce some redundancies, it also
creates complex interdependencies between the specifications by the different |SGs that may result in unforeseen
challengesin the evolution and use of these guidelines.

Clause 5 of the present document collects principles, conventions, and guidelines for the testing of RESTful APIsfrom
ETSI groups and from the industry in order to provide consolidated guidelines serving as a unified future reference for
ETSI groups to streamline the process of identifying relevant guidelines and providing domain specific extensions
where applicable.

In the following, information and guidelines gathered from the existing sourcesis consolidated and reorganized across
the following dimensions:

. General: fundamental testing principles and guidelines, applicable to testing in a broader scope, regardless of
technology and architectural style, primarily based on MTS guides.

o RESTful API-specific: principles and guidelines specific to the testing of RESTful APIs, in particular also
such that are applicable to RESTful APIs specified by means of OpenAPI. as recommended by the
methodology described in clause 4.3.

. Domain-specific: principles and guidelines related to a specific technology and application domain, including
specialization and extension points for the general and the RESTful API-specific guidelines, including pointers
to further information examples in existing domain-specific guidelines that can be used as a starting point for
guidelinesin new domains.

5.2 Testing Frameworks and Methodologies

Given the frequent mixed use of the terms testing frameworks and testing methodol ogies, there is some need for
establishing the basic terminology. Beyond the specifics of test implementation and automation frameworks, atesting
framework comprises general guidelines of what needs to be done without a particular focus on the how. As such, while
frameworks provide some structure and direction, they can be inherently ambiguous, leaving alot of freedom without
specific guidance on the individual activities necessary to obtain the desired results. A testing methodology, on the other
hand, adds the necessary detail describing how individual tasks should be performed, including processes, deliverables,
rules, methods, notations, conventions, etc. As such, a methodology helps ensure that the necessary activities can be
performed in a coherent, consistent, and repeatable manner, resulting in predictable quality of the outcomes, while
reducing the impact of variability in the development process and the risks of potential defects asresulting from it. Both
frameworks and methodologies can be tailored to various extents to accommodate the needs of a specific context or a
specific domain, while maintaining the fundamental principles.

Fundamentally, a general testing framework covers the following aspects:

e Test subject and test environment: Identification of the implementations under test (IUT) for conformance
testing and the device under test (DUTSs) for interoperability, i.e. answering the question "what is to be tested".

e Test procedures: Definition of the applicable test procedures, i.e. answering the question "how isit to be
tested".

e Test development: Definition of the procedure for development of test specifications and deliverables (for
instance: Test Purposes (TPs) in case of conformance testing and Test Descriptions (TDs) in case of
interoperability testing, documentation, etc.).

ETSI

39 ETSI EG 203 647 V1.1.1 (2020-11)
e Test deployment and execution: Definition of the procedures for the deployment, execution, and eval uation
of tests.

Within this framework, atesting methodology applied to a specific domain typically provides further domain-specific
guidelines and refinements, including the following:

o Definition of atest architecture:
- definition of a generic System Under Test (SUT) architecture;
- selection of SUT and specification of SUT configurations for different scenarios;
- identification of reference points, test interfaces, test environment, and test drivers.
J Definition of notations and conventions:
- selection and/or definition of structured notations for test architectures, TPs. TDs, TCs,
- style guidelines and examples;
- naming and notation conventions;
- traceability links between the individual elements of atest specification.
. Definition of adocumentation structure and process.

- catalogue of capabilitiesin the form of ICS and/or IFS;

high-level grouping of testsin the Test Suite Structure (TSS);

high-level test designsin the form of TPsand/or TDs,

- detailed test specificationsin the Abstract Test Suite (ATS).
. Definition of the testing and validation process:

- steps for deployment;

- steps for execution;

- steps for evaluation of the test results.

Based on the general guidance, the individual guidelines can be tailored further to accommodate the needs of the
specific domain. The specifics of the tailoring need to be documented as part of the test development process. For the
testing of RESTful APIs, in particular also for the testing of RESTful APIs specified by means of OpenAPI, the
guidelines include recommendations to make use of additional assets in order to streamline the overall process.

5.3 Conformance and Interoperability Testing

531 General

Conformance Testing and Interoperability Testing are the two main and complementary testing methodol ogies to test
standardized systems and products implementing standardized services. The basic concepts for Conformance Testing
and Interoperability Testing are defined as follows:

. Conformance Testing can show that a product or service correctly implements a particular standard, that is, it
establishes whether or not the product or service meets the requirements regarding protocol message contents
and formats as well as the permitted sequences of messages.

o I nter oper ability Testing can demonstrate that a product or service will work with other similar productsin a
defined environment. It proves that end-to-end functionality between (at least) two products or services
embedded in a defined environment is as required by the standards on which those products or services are
based.

ETSI

40 ETSI EG 203 647 V1.1.1 (2020-11)

o I nter oper ability Testing with Confor mance Checks can provide both the proof of conformance and the
guarantee of interoperation, where interfaces between the products or services are monitored to verify the
appropriate sequence and contents of protocol messages, API calls, interface operations, etc.

5.3.2 RESTful API-specific

Conformance testing for RESTful APIs focuses on validating the correct implementation of an API with respect to the
correct functionality including URIs, accepted requests, provided responses, as well as concerns related to authorization
and authentication, filtering, pagination, and concurrent updates. Test abstractions may focus on the functional aspects
where details related to serialization and adaptation are |eft to adaptation layers. It is recommended that conformance
test include both valid request and erroneous ones. OpenAPI ™ specifications can serve as the basis for the specification
of conformance tests.

Interoperability testing for RESTful APIs goes beyond the individual APl implementations, assuming that they are
conforming to the specifications, and focuses on validating the correct functionality of different implementations of the
same APl embedded in alarger operational context. Teststrigger a chain of API requests and responses between the
involved components including the implementations under test to ensure that the end-to-end functionality is not affected
by the different implementations of the API. OpenAPI™ specifications do not provide any indication of how
implementations are embedded in an operational context. While OpenAPI ™ specifications can provide the specification
of the end-user APIs, additional artefacts are necessary to capture the operational context.

5.3.3 Domain-specific

Domain-specific refinements focus on specific aspects pertaining to the application domain with regard to the needs of
conformance testing and interoperability testing. As such they should be defined on top of the general methodology and
captured in the resulting documents.

54 Test Specification Development

541 General

Traditionally, the test specification development process involves multiple stages of refinement as outlined in

Figure 5.4.1-1 (based on ETS| EG 203 130 [i.4]). Asin the original figure, the boxes describe development steps and
the ellipses describe the corresponding outcomes, e.g. "Requirements Catalogue” is the result of the step "Identification
of Requirements'. Typically, each step builds on the outcomes of the previous step. In some scenarios, certain steps,
e.g. "Specification of Test Purposes’ or " Specification of Test Descriptions’ may be skipped based on the guidelines
within the specific context or the type of test specifications, e.g. interoperability testing or conformance testing. Refer to
ETSI EG 203 130 [i.4] and ETSI EG 201 015 [i.8] for a detailed description of the individual steps and their outcomes.

ETSI

41 ETSI EG 203 647 V1.1.1 (2020-11)

Base Standard Specification

Standard

v

Identification of Requirements
Requirements

Creation of ICS/IFS ﬁ ,/—>
ICS/IFS

Definition of Test Suite Structure —\
TSS

Specification of Test Purposes —1
TPs

Specification of Test Descriptions —I -

TDs

Specification of Test Cases —‘
TCs

Validation of Test Cases

Figure 5.4.1-1: ETSI Test Specification Process (based on ETSI EG 203 130 [i.4])

Given a base specification, the recommended first step is to identify, collect, and categorize requirements in a structured
requirements catalogue. This step may include collecting excerpts from the base specification indicating specific
statements regarding the expected behaviour, making implicit requirements explicit, grouping and/or tagging the
requirements based on various criteria, indicating their applicability and relationships among them, and assigning
unique identifiers for referencing and traceability. Detailed guidelines can be found in ETSI EG 202 568 [i.26].

The Implementation Conformance Statements (1CSs) and Interoperable Function Statements (IFSs) identify the IUT
features and options to be tested for conformance and interoperability respectively. They are created based on the
requirements and provisions in the specifications. The capabilities are specified in the ICS to indicate which options
need to be tested and to assess the achieved coverage by an IUT. In addition to the required capabilities, supported
optional and conditional capabilities may be indicated by the provider of the IUT. The indicated capabilities may
influence the selection and the parameterization of tests during the test deployment and execution.

NOTE: Theacronym IFS may also refer to Interoperable Feature Statement, | mplementable Functions Statement
and other similar terminology, al referring to the identification of a communication behaviour which has
relevance for successful interoperability among communicating entities. Thelist of usages of IFSin
different ETSI specification may be retrieved using the TEDDI tool at the ETSI Portal [i.46].

The ICSs are typically structured in atabular form and categorized based functional groups and other aspects.
A standardized template for specifying and indicating I CS is recommended, which should follow the recommendations
contained in ETSI EG 201 058 [i.9].

The Test Suite Structure (TSS) defines atree-like structure where the nodes represent test groups which either contain
subgroups (i.e. other non-leaf nodes) or test documents (i.e. leaf nodes), such as test purposes, test descriptions, or test
cases. The TSS may be based on functional grouping in the requirements catal ogue, but also consider further criteria,
such asthe kind of testing (valid, invalid, timing, etc.)

The Test Purposes (TPs) describe the objective of atest for a given requirement or a set of related requirementsin a
well-defined manner, i.e. what needs to be tested and under which conditions. The TPs do not provide additional details
on how the tests need to be performed. TPs should be understandable for a wide spectrum of involved stakeholders. As
such, TPs are typically specified in aprose-like (semi-) structured text, often presented in a tabular form for better
readability. Message sequence charts and/or additional tables may be included for further clarification.

A TP typically contains a TP header and a behaviour description. The TP header may contain a TP identifier, a
description of the objective or the requirement, external references, as well as applicability with regard to ICSs. The
behaviour description may contain initial conditions, the expected behaviour, and the final conditions. The TDL-TO
ETSI ES 203 119-4 [i.27] specification is the recommended way to specify TPsas it provides a suitable notation to
capture TPsin a consistent, structured, machine-readable manner. The TOP project ([i.13]) providestool support for
working with TPs specified in TDL-TO which can be exported in the desired tabular presentation based on
customisable templ ates.

ETSI

42 ETSI EG 203 647 V1.1.1 (2020-11)

Test Descriptions (TDs) are specified in addition to (or instead of) TPs to provide more detailed description of how a
test isto be performed, including individual test steps that need to be followed. TDs can be an intermediate test design
step between the higher-level declarative TPs and the very detailed test case implementations. TDs are typically used in
the context of interoperability testing to describe actions that need to be performed on/by endpoint devices. Regardless
of whether the tests are to be performed manually or in an automated manner, a precise and unambiguous hotation is
recommended for the specification of TDs. The stepsin the test description can be of different nature, not strictly
related to the IUT as they may involve different participants in atesting scenario. The TDL ETSI ES 203 119-1 [i.28]
specification is the recommended way to specify TDs as it provides suitable notations to capture TDs in a consistent,
structured, machine-readable manner. The TOP project provides tool support for working with TDs specified in TDL.
Different presentations can be derived from the underlying TDL models. The more detailed TDs can then be
transformed into executabl e test cases more easily as the abstraction level gap is much smaller than that of TPs and test
case.

Based on the TPs and/or TDs, detailed Test Cases (TCs) are defined as part of an Abstract Test Suite (ATS). ATSsare
typically specifiedin TTCN-3 ETSI ES 201 873-1 [i.29]. The test suite isthe basis for automated conformance and
interoperability testing. With the precise specification of the functional details of the tests, there is an implicit evaluation
of whether individual requirements are expressed in a clear, precise, and unambiguous manner.

As more and more test-related details are specified along the process, it is often necessary to define generic test
architectures and test configurations specific to certain scenarios. The overall architecture may already be provided in
the base specification indicating the invol ved components and the communication paths between them. Test
configurations indicate the roles of the involved components for specific test scenarios. Test configurations may aso be
useful in determining the TSS.

With the growing need for more streamlined and faster specification and testing cyclesin order to respond to dynamic
market and user needs, the fundamental test specification development process needs to be adapted as well. While the
existing stages are well understood and widely established, the ways in which they are implemented are in need of
improvement. With the increasing adoption of machine-readable documents, new opportunities for faster and more
efficient test specification development begin to emerge. It is recommended to capitalize on the availability of such
machine-readable documents and expand their use throughout the test specification development process so that
traceability, consistency checking, and maintainability can be improved by automated and tool-supported means,
reducing the need for manual interventions to a minimum.

5.4.2 RESTful API-specific

The introduction of OpenAPI™ specifications as an outcome of the Base Standard Specification step can benefit all
subsequent test specification development steps. Normative OpenAPI™ specifications provide machine readable
description of the essential requirements, along with additional annotations to add structured domain-specific
information. An overview of how the availability of OpenAPI™ gpecification impacts the development stepsis shown
inFigure 5.4.2-1.

ETSI

43 ETSI EG 203 647 V1.1.1 (2020-11)

Specification of Test Cases

[— Base Standard Specification —\
OpenAPl Standard
Specification
Identification of Requirements —I
Requirements
Catalogue
Creation of ICS/IFS —\ ©
ICS/IFS
Definition of Test Suite Structure —l
TSS
Specification of Test Purposes ﬁ
TPs
Specification of Test Descriptions —\ -
" Tos

TCs

v

Validation of Test Cases

Figure 5.4.2-1: RESTful API Test Specification Process with OpenAPI

Given that the requirements are already indicated in a structured format with the help of the OpenAPI™ specification,
the OpenAPI artefacts can be utilized to streamline the subsequent steps in the process. Consistent specifications based
on well-defined conventions can be processed by tools to extract and transform the relevant information into templates
for manual refinement or compl ete documents as input for or output from the individual steps in the process. Thus, the
requirements can be derived (semi-) automatically from the OpenAPI ™ specifications, thereby reducing the effort
required for the identification of requirements. The resulting requirements catalogue can either be a by-product of the
process for reference, or also be captured in a machine-readable format in order to ease the subsequent stepsin the
process. Following the guidelinesin ETSI EG 202 568 [i.26], based on the OpenAPI ™ specification fragmentsin
clauses 4.3.2.4 to 4.3.2.5, the requirements can be extracted as shown in Table 5.4.2-1.

Table 5.4.2-1: Extracted requirements

Identifier Reference Type | Applicability Requirement Context
RQ_RESOURCE_GET 001 RESTful API Guide, M RESOURCE |Read full contents of |(relevant
clause 4.3.2.4; a resource with OpenAPI™
Iresource/{id} specific ID specification
(description from fragment)
OpenAPI™)
RQ_RESOURCE_POST_001 |RESTful APl Guide, (M RESOURCE |Create new resource |(relevant
clause 4.3.2.5; (description from OpenAPI™
Iresource OpenAPI™) specification
fragment)
RQ_RESOURCE_PUT_001 RESTful API Guide, |M RESOURCE |Upload a file for a (relevant
clause 4.3.2.5; resource OpenAPI™
Iresource/{id}/file (description from specification
OpenAPI™) fragment)

Beyond the requirement identifiers, all the information is essentially already contained in the OpenAPI™ specification
in this case. The referencesin this case point to the relevant clauses in the present document. They may also refer to
base documents, RFCs, or other documents and artefacts. One requirement may also contain multiple references. This
appliesaso to referencesin ICSs, TPs, TDs, and TCs. The presence of extensions asillustrated in clause 4.3.2.9 needs
to be interpreted accordingly. If no additional provisions are indicated by means of extensions, the requirements are
assumed to be mandatory.

During the creation of the ICSs, with appropriate tooling ICS templates can be generated based on information
extracted from OpenAPI™ specification. Assuming that IUT providers supply an OpenAPI™ specification of the
supported capabilities, these can be matched against the standardized OpenAPI ™ specification to indicate the supported
optional and conditional in the ICS.

ETSI

44 ETSI EG 203 647 V1.1.1 (2020-11)

Following the guidelinesin ETS| EG 202 568 [i.26], based on the OpenAPI ™ specification fragmentsin clauses 4.3.2.4
t0 4.3.2.5, the ICSs can be extracted as shown in Table 5.4.2-2.

Table 5.4.2-2: Extracted ICSs

ID Resource Reference Method | Type Request Response
1 |/resource/{id} |Clause 4.3.2.6 |GET M (request with prescribed id) 200
2 |/resourcef{id} |Clause 4.3.2.6 |GET M (request with protected id) 401
3 |/resource/{id} |Clause 4.3.2.6 |GET M (request with non-existent id) |404

Similar to the requirements, all the information for the ICSsis essentialy provided in the OpenAPI™ specification with
the exception of the request descriptions. They may be populated with placeholders with concrete values defined in
separate tables. The request may be filled with generic descriptions derived from the resource, method, and response
code. It may need to be refined manually subsequently to provide more precise description or example. The presence of
extensions asillustrated in clause 4.3.2.9 needs to be interpreted accordingly. If no additional provisions are indicated
by means of extensions, the ICSs are assumed to be mandatory.

It may be desirable to provide ICSs at different levels of detail. In their most detailed form, the ICSs would include a
detailed breakdown of all methods and all responses for all resources, as exemplified in Table 5.4.2-2. More concise
representations of the ICSs may group together al responses for a given method on a given resource, or even al
methods and responses for a given resource in a hierarchical manner, such that only in the case of deviations or
additional provisionsindicated by means of extensions more detailed information needs to be provided. A more concise
ICS grouping all responses for the different methods is shown in Table 5.4.2-3. Similarly, all methods for agiven
resource may be grouped under asingle ICS as shown in Table 5.4.2-4, or represented hierarchically as atree, as shown

in Table 5.4.2-5.

Table 5.4.2-3: Extracted higher (method) level ICSs

ID Resource Reference Method | Type Request Response
M1 |/resource/{id} |Clause 4.3.2.6 |GET M (request resource with id) 200, 401, 404
M2 |/resource Clause 4.3.2.5 |POST M (create new resource with id and version) 201, 400
M3 |/resource Clause 4.3.2.5 |PUT M (update a resource with id) 200, 201, 204, 400

Table 5.4.2-4: Extracted higher (path) level ICSs

ID Resource Reference Method Type Request Response

P1 |/resource Clause 4.3.2.6 |GET, POST, PUT (M (request, create, and 200, 201, 204, 401,
update resource) 404

P2 |/resourcef{id}/file |Clause 4.3.2.5 |PUT M (upload a resource file) 200, 201, 204, 400

ETSI

45

ETSI EG 203 647 V1.1.1 (2020-11)

Table 5.4.2-5: Extracted hierarchical ICSs

ID Resource Reference Method | Type Request Response
P1 /resource Clause 4.3.2.6 |GET, M (request, create, and 200, 201, 204,
POST, update resource) 401, 404
PUT
P1 M1 /resource/{id} Clause 4.3.2.6 |GET M (request resource with id) 200, 401, 404
P1 M1 R1 |/resource/{id} Clause 4.3.2.6 |GET M (request with prescribed 200
id)
P1 M1 R2 |/resourcel{id} Clause 4.3.2.6 |GET M (request with protected id) |401
P1_M1_R3 |/resource/{id} Clause 4.3.2.6 |GET M (request with non-existent 404
id)
P2_M2 /resource Clause 4.3.25 |POST M (create new resource with (201, 400
id and version)
P2 _M2_R1 |/resource Clause 4.3.25 |POST M (create new resource with {200
id and version)
P2_M3 /resource Clause 4.3.2.5 |PUT M (update a resource with 200, 201, 204,
id) 400
P2 M3 _R1 |/resource Clause 4.3.25 |PUT M (update a resource with 200
id)
P3 /resourcef{id}/file |Clause 4.3.2.5 |PUT M (upload a resource file) 200, 400
P3_M1 Iresourcefid}/file |Clause 4.3.2.5 |PUT M (upload a resource file) 200, 201, 204,
400

A hierarchical presentation allows supported capabilities to be bundled together and only exceptions to be marked as
such explicitly. For example, if P1isonly partially implemented, the implemented parts in the sub-tree need to be
marked as such explicitly, while P1 itself is not marked. If P2 on the other hand is fully implemented, only P2 is
marked as such explicitly and all partsin the sub-tree do not need to be marked.

The TSS may consider mirroring inherent structures in the OpenAPI™ specification, e.g. grouping by APIs, resources
and/or methods. Appropriate tooling can generate aninitial TSS based on the machine-readable specification and pre-
set criteriafor the desired TSS format.

Based on the OpenAPI ™ specification fragmentsin clauses 4.3.2.4 t0 4.3.2.5, the following TSSs shown in

Figure 5.4.2-2 can be extracted. It shows the API as the (sub-) tree root, followed by the paths, methods, and method-
response combinations. The exact representation may vary depending on the constraints and conventionsin use (e.g. not
using spaces, al capitals, etc.). For easier traceability, it is recommended to keep the representation as close to the
OpenAPI as possible. TSSs covering multiple APIs and/or broader application contexts may embed the TSS derived
from the OpenAPI in alarger structure.

- APl: Exanples for RESTful APl guide
- RESOURCE
- CGET
- CGET_200
- CGET_401
- GET_404
- POST

- PUT

Figure: 5.4.2-2: Extracted TSS

TPs can be derived from the OpenAPI™ specification in a straightforward manner as the specification of the expected
behaviour in the structured TDL-TO notation mirrors the request-response declarations in the OpenAPI ™ specification.
With appropriate tooling, TP skeletons can be generated automatically from the OpenAPI ™ specification and refined
further manually, (if needed). This can streamline the very labour-intensive creation and maintenance of the TPs. Based
on the OpenAPI ™ gpecification fragmentsin clauses 4.3.2.4 to 4.3.2.5, the following TPsfor valid and non-existent IDs
can be defined to exemplify the TDL-TO:

ETSI

46 ETSI EG 203 647 V1.1.1 (2020-11)

Test Purpose {
TP 1d TP_RESOURCE_GET_200
Test objective "Read full contents of a resource with a valid ID'
Reference "C ause 4.3.2.4", "Clause 4.3.2.6"
Expect ed behavi our
ensure that {
when {
the Server entity receives a vVGET request containing
uri indicating value "/resource/",
id set to VALID ID;

}
then {
the Server entity sends a HTTP response contai ni ng
status set to "200 K",
body cont ai ni ng
id set to VALID ID;
}

Figure 5.4.2-3: Example TP for valid ID

Test Purpose {
TP |d TP_RESOURCE_GET_404
Test objective "Check for correct response when requesting a non-existent resource"
Reference "C ause 4.3.2.4", "Clause 4.3.2.6"
Expect ed behavi our
ensure that {
when {
the Server entity receives a vGET request containing
uri indicating value "/resource/",
id set to NONEXI STENT_I D

}
then {
the Server entity sends a HTTP response contai ni ng
status set to "404 Not found";
}

Figure 5.4.2-4: Example TP for non-existent ID

While the TP for the valid ID can be derived directly from the OpenAPI™ specification, with some placeholders

(e.g. VALID_IT), the test objective in the TP for the non-existent 1D already needs to be manually adjusted to better
describe the TP based on the specific response. If adefined pattern is put in place, the descriptions can be derived
automatically as well in this case. Beyond that, TPs emphasize the most important and relevant aspects of atest, leaving
out additional implementation details such as authentication, content negotiation, etc., unless these are explicitly the
objective of the test. The additional details may need to be provided at alater stage during the test implementation. The
TPs can be presented in atabular format asillustrated in Figure 5.4.2-5.

ETSI

a7 ETSI EG 203 647 V1.1.1 (2020-11)

TP Id TP_RESOURCE_GET 200
Test Objective Read full contents of a resource with a valid ID
Reference Clause 4.3.2.4

Clause 4.3.2.6

Expected Behaviour

ensure that {
when {
the Server receives a VGET request containing
uri indicating value "/resource/",
id set to VALID ID
}
then {
the Server sends a HTTP response containing
status set to "200 OK",
body containing
id set to VALID ID

TP Id TP _RESOURCE GET 404
Test Objective Check for correct response when requesting a non-existent resource
Reference Clause 4.3.2.4

Clause 4.3.2.6

Expected Behaviour

ensure that {
when {
the Server receives a VGET request containing
uri indicating value "/resource/",
id set to NONEXISTANT ID
}
then {
the Server sends a HTTP response containing
status set to "404 Not found"

Figure 5.4.2-5: Tabular presentation of example TPs

Aslarge chunks of the TPs may remain identical for e.g. different request-response combinations, the use of TP variants
can reduce duplication and improve conciseness and reuse by specifying a generic TP with variants providing concrete
combinations of data elements and overriding the meta-information, e.g. to refine the test objective or the PICS
selection. An example combining the two TPsinto one TP with variantsis shown in Figure 5.4.2-6. The corresponding

tabular presentations are shown in Figure 5.4.2-7.

ETSI

48 ETSI EG 203 647 V1.1.1 (2020-11)

Test Purpose {

TP 1d TP_RESOURCE_CGET

Test objective "Read full contents of a resource with an |D'

Reference "C ause 4.3.2.4", "Clause 4.3.2.6"

Expect ed behavi our

ensure that {
when {
the Server entity receives a vVGET request containing

uri indicating value "/resource/",
idset to ID

}
then {
the Server entity sends a HTTP response contai ni ng
status set to HITP_STATUS;
}

Vari ants
TP_RESOURCE_GET_200v1 {
Test objective "Read full contents of a resource with a valid ID'
Bi ndi ngs
value ID set to VALID ID;
val ue HTTP_STATUS set to "200 OK";

}
TP_RESOURCE_GET_404v2 {
Test objective "Read contents of a resource with a non-existent |D returns 404"
Bi ndi ngs
val ue I D set to NONEXI STENT_I D;
val ue HTTP_STATUS set to "404 Not found";

}
}
Figure 5.4.2-6: Example reusable TP with variants
TP Id TP_RESOURCE_GET
Test Objective Read full contents of a resource with an ID
Reference Clause 4.3.2.4
Clause 4.3.2.6

Expected Behaviour

ensure that ({
when {
the Server receives a VGET request containing
uri indicating value "/resource/",
id set to ID
}
then {
the Server sends a HTTP response containing
status set to HTTP_STATUS

TP Id Description ID HTTP_STATUS

TP_RESOURCE_GET_200v1 "Read full contents ofa |VALID_ID "200 OK"
resource with a valid ID"

TP_RESOURCE_GET_404v2 "Read contents of a NONEXISTENT_ID "404 Not found"
resource with a non-
existent ID returns 404"

Figure 5.4.2-7: Tabular presentation of example TPs with variants

TDs can be derived from the OpenAPI™ specification directly or through the intermediate use of TPsin TDL-TO. The
request-response declarations in the OpenAPI ™ specification can be represented as interactions and visualised with
TDL-GR ETSI ES 203 119-2 [i.30] and the TOP tools [i.13]. With appropriate tooling, TD skeletons can be generated
automatically from the OpenAPI™ gpecification or from the TPsin TDL-TO and refined further manually, (if needed).
This can streamline the very labour-intensive creation and maintenance of the TDs. The TDs can be very detailed,
including inline declarations of the requests and responses, asillustrated in Figure 5.4.2-8, or they may rely on
predefined declarations which abstract away the details and enable reuse, as shown in Figure 5.4.2-9, aswell as
graphically in Figures 5.4.2-10 and 5.4.2-11.

ETSI

49

ETSI EG 203 647 V1.1.1 (2020-11)

Test Description TD RESOURCE_GET_200_I nline uses configuration Basicd ientServer

{
client.http sends GET(
uri = "/resource/{id}",
paraneters = {
new Par anet er (“nane="id",
}
)
to server. http;
server. http sends OK(
status = "200",
body = new ResourceData (
id=Validld
//other properties (created,
)
)
to client. http;
} with {
test objectives : TP_RESOURCE _GET_200;
}

val ue = Vvalidld,

| ocation = path)

size) omtted as they are not

rel evant for the TD

Figure 5.4.2-8: Example TD with inline request/response declarations

Test Description TD_RESOURCE _GET_200 uses configuration BasicCientServer

{
client.http sends getVali dResource to server. http;
server. http sends okWthVali dResource to client.http;
} with {
test objectives : TP_RESOURCE_GET_200;
}
Test Description TD RESOURCE GET_404 uses configuration BasicCientServer
{
client.http sends get NonExi st ant Resource to server. http;
server. http sends Not Found to client. http;
} with {
test objectives : TP_RESOURCE GET_404;
}

Figure 5.4.2-9: Example TDs with reusable predefined request/response declarations

Tester

client : API

SUT

server : API

http : HTTPGate

http : HTTPGate

getValidResource i

I<okWithVaIidResource|

&

m

Figure 5.4.2-10: Graphical presentation of test description with valid 1D

ETSI

50 ETSI EG 203 647 V1.1.1 (2020-11)

Tester SUT
client : API server : API
| http : HTTPGate | | http : HTTPGate |

| getNonExistantRes ource;

|< NotFound |

Figure 5.4.2-11: Graphical presentation of test description with non-existent ID

If the overall TD behaviour isidentical with the exception of small variationsin the detailsin the requests and
responses, parameterized TDs can be defined and reused, similar to how the variants can reduce duplication in TPs. An
example of ageneric parameterized TD and a TD referencing the parameterized TD with different parametersis
illustrated in Figure 5.4.2-12.

Test Description TD RESOURCE GET (
I D of type String,
STATUS of type String
) uses configuration BasicdientServer

{
client.http sends GET(

uri = "/resource/{id}",
paraneters = {

new Paraneter (”name = "id", value = paraneter |D, |location = path)
}

to server. http;
server. http sends new Response(
status = paraneter STATUS
)
to client. http;
} with {
test objectives : TP_RESOURCE_GCET;
}

Test Description TD RESOURCE_GET_All uses configurati on BasicdientServer

{
execute TD RESOURCE_GET(ID = Validld, STATUS = "200") with {

test objectives : TP_RESOURCE_GET_200;

s

execut e TD RESOURCE_GET(| D = NonExistantld, STATUS = "404") with {
test objectives : TP_RESOURCE_GET_404;

b

} with
test objectives : TP_RESOURCE GET, TP_RESOURCE GET 200, TP_RESOURCE GET 404;
}

Figure 5.4.2-12: Example reusable parameterized TD

TDs can be defined and organized at different levels of detail, depending also on the TSS. TDs may target individual
responses for a method on a resource, combine all responses for a method in asingle TD referencing the TDs for the
individual responses (asillustrated in the examplesin Figure 5.4.2-12), combine al the methods for a resource, or even
all the resources for an API. Additionally, they may be organized according to valid and error-handling behaviours.
TDL provides the means to compose and reuse TDs according to the TSS and the specific needsin a given context.

ETSI

51 ETSI EG 203 647 V1.1.1 (2020-11)

Data types defined in an OpenAPI ™ specification declare the structures of requests, parameters, and responses. The
data type definitions are used as the basis for the implementation of the APIs. It is recommended that the same data type
definitions are also used for the development of test specifications directly. Thisimplies direct referencesto the
OpenAPI™ specifications for establishing traceability, validating compatibility, and maintaining consistency asthe
specifications evolve. The traceability chain needs to be established and maintained throughout the test specification
development process, ideally in a machine-readable manner so that appropriate tools can be utilized to support the
continuous maintenance and validation of the test specificationsin accordance with API specifications. Data types and
datainstancesin TDL specified as abstract symbols. Data el ement mappings establish formalized relationships to
concrete data representations or external specifications, which may be defined in external resources, such as TTCN-3,
XML, or JSON documents. The use of external resourcesis declared by means of data resource mappings.

It isimportant to emphasize that data specificationsin TDL and TDL-TO focus on the data elements that are of
relevance for the specification of the tests, not necessarily for their implementation and operationalisation. Through data
element mappings, TDL provides means to abstract away test implementation detailsin the data specifications. These
details, such as additional headers, parameters, etc., may be necessary for the implementation, but if they have no
influence on the test behaviour, they may be omitted from the TPs and TDs to keep them simple and focused on the
essentials, asillustrated in some of the examples. A library of generic data type and data instance definitions for usein
HTTP TPsand TDswith TDL isavailable as part of the examplesin clause 7.

In conformance tests, the test architectures and test configurations for RESTful APIs are usually straightforward,
involving the API producer asthe SUT and the APl consumer as the tester. In interoperability tests, different
implementations of an API are embedded in often complex operational contexts, which need to be well-defined and
documented. The OpenAPI ™ gpecification only provides a description of the capabilities of the API producer. Itis
important to select an appropriate and consistent notation with clear semantics to indicate the involved components their
interfaces and roles, and the communication paths between them. TDL provides means for the formalized specification
of test configurations which are also used in the specification of the TPs and the TDs, enabling a consistent, reusable,
cross-linked definitions. This can streamline the development and maintenance of test specifications, where any
changes from the base specifications can be easily propagated throughout the documentation chain for the test
specifications. An example for aminimal test configurationisillustrated in Figure 5.4.2-13 and Figure 5.4.2-14. The
component and gate types need to be declared in advance.

Test Configuration BasicCientServer

{

create Tester client of type APIl;
create SUT server of type API;
connect client.http to server. http;

Figure 5.4.2-13: Test configuration example

Test Configuration

BasicClientServer

http : HTTPGate http : HTTPGate
|
Tester SUT
client : API server : API

Figure 5.4.2-14: Graphical presentation of test configuration example

ETSI

52 ETSI EG 203 647 V1.1.1 (2020-11)

The detailed TCsin Abstract Test Suite (ATS) can be derived manually or (semi-) automatically from the TPs or TDs
(e.g. using ETSI ES 203 119-6 [i.31] for a standardized TDL to TTCN-3 mapping). Alternative technologies for the
implementation of RESTful API tests may be considered as well, however, it isimportant to recognize that many
technologies emerge and disappear very quickly. Hence, it is recommended to use an established and standardized
technology which will likely last as long as the test specifications are maintained and used. The OpenAPI™
specifications can be used to derive codecs for TTCN-3 as part of the adaptation layers which are relevant for the
deployment and execution of the test cases. ETSI ES 201 873-11 [i.32] provides instructions on the use of JSON with
TTCN-3 which can be helpful for the implementation test cases for RESTful API. A standardized mapping for HTTP
may be of further benefit. An example illustrating the essential parts of a TTCN-3 test case based on the TDsin

Figure 5.4.2-9 and the test configuration in Figures 5.4.2-13 and 5.4.2-14 is shown in Figure 5.4.2-15. The exampleis
derived using the provisionsin ETSI ES 203 119-6 [i.31] for the standardized TDL to TTCN-3 mapping. It includes a
test case as well as the related functions for setting up the test configuration and for the behaviour. A library of generic
data type and data instance definitions for usein HTTP TCswith TTCN-3 is available as part of the examples discussed
inclause7.

function setupTest Configuration_BasicCientServer () runs on MIC BasicdientServer {
client := APl .create ;
map (client : http_to_server_http , system: server_http) ;

function f_RESOURCE_GET_200 () runs on MIC BasicCientServer {
client.start (f_RESOURCE GET_200_client_main ()) ;
}

function f_RESOURCE_GET_200_client_main () runs on APl {
http_to_server_http.send (getValidResource) ;
http_to_server_http.receive (okWthValidResource) ;

}

testcase tc_RESOURCE_GET_200 () runs on MIC BasicdientServer system SYSTEM Basi cClient Server {
set upTest Confi gurati on_Basi cd ientServer () ;
f _RESOURCE_GET_200 () ;
al | conponent. done ;

}

Figure 5.4.2-15: Derived test case example and supporting functions for behaviour and configuration

5.4.3 Domain-specific

The RESTful API testing guidelines can be refined and tailored further to accommodate the needs of specific domain.
This adds another domain-specific layer of guidelines, which need to be documented as part of the test devel opment
process. Domain-specific guidelines and conventions may be related to the specific technology and application domain.
Examples for such conventions can be found in e.g. ETSI| GR MEC-DEC 025 [i.24], ETSI GSNFV-TST 002 [i.25] and
ETSI GR NFV-TST 007 [i.33], or ETSI TS 118 115 [i.34] and oneM2M TS-0018 [i.35]. They may span naming and
structuring guidelines for the TSS as well as recommendations for the specific notation conventionsin TPsand TDs.
The present document provides guidelines at the more generic level of RESTful APIswhich can serve as a baseline for
future domain-specific guidelines. The existing domain-specific guidelines may serve a starting point for domain-
specific refinements in new domains.

5.5 Test Deployment and Execution

OpenAPI™ specifications provide a description of the capabilities of individual API producers. Depending on the type
of test, there may be multiple API producers involved. Traditionally, informal graphical representations are used for
descriptive purposes, which then need to be translated into instructions for manual or automated configuration. The
formalized test configurations early on can help describe complex operational contextsin a consistent way and serve as
the basis for the preparation and configuration of the test environments during test deployment and execution, while
also providing means to visualise the configurations for documentation and communication purposes. Test
configurations may start at a very abstract level and be refined in a stepwise manner throughout the process. Known
common aspects of the target deployment and execution environment may be taken into consideration already during
the early design stages to avoid test designs that may be difficult to deploy. However, tests should be described in an
abstract manner so that they can be deployed and executed against different target systems.

ETSI

53 ETSI EG 203 647 V1.1.1 (2020-11)

Test plan preparation is essential for the effective and efficient test deployment and execution. Test plans typically
include the tests to be included, the order and grouping of the tests and potential relationships among them, the
necessary configuration and preparation for each group of tests, the required technical and human resources for the test
deployment and execution. Test automation can help ensure consistency in the testing environments and test results.
Formalized and machine-readable assets can facilitate the adoption of integrated toolchains around standardized
procedures, e.g. for generating stubs, adapters, and mappings based on OpenAPI ™ specifications, as well as based on
TDL and TTCN-3 specifications. Standardized libraries, e.g. for HTTP or other protocols can provide well-defined
targets for tools to work with, while and facilitate interoperability between different tools at the various stages.

5.6 Test Maintenance and Evolution

As the specifications for products evolve, the corresponding tests need to be maintained as well, both to address
changes to the specifications as well as to improve the tests themselves. In order to facilitate the co-evolution of tests
along the systems and services they are designed to test, a structured process needs to be established. During

mai ntenance and evolution, the process discussed in clause 5.4 typically undergoes multiple iterations. The use of
OpenAPI™ gpecification along with the guidelines for RESTful API testing outline the foundation for the formalized
linking between different assets enabling the use of toolchains to streamline the process and reduce maintenance
overhead while increasing consistency between the different assets throughout the process. For every iteration, change
impact assessment needs to be performed, identifying what can be reused, what needs to be updated, and which steps
need to be carried out in order to minimize the risk of regressions and inconsistencies. With supporting tools, potential
inconsistencies as aresult of changes can be quickly identified or even prevented in case the tools are holistically
integrated in the test devel opment process where changes in the OpenAPI™ specification are directly reflected in the all
the test-related assetsin all steps of the process. Automation during the test deployment and execution is essential for
ensuring consistent testing environments, reliable results, and quick feedback during the iterations. The automation
itself may need to evolve as well over time, so it is essential to document and maintain automation-related assets as part
of the process es well.

6 Tooling recommendations

6.1 Introduction

In clause 4 of the present document, the benefits of formal languages for specification of communication interfaces are
highlighted. RESTful APIs are an exemplary case that shows large adoption of formal specifications, enabling several
degrees of automation for a variety of use cases.

This large adoption has naturally converged towards the availability of a myriad of tools to parse, validate, process and
transform formal definitions of RESTful interfaces, particularly for the most common languages such as OpenAPI.

Therefore, the authors intend to provide the readers with a few pointers to available tools to support the soundness of
the proposed methodology and to serve as a reference for the interested users. Unless specified otherwise, the tools
presented in the following clauses are not devel oped nor endorsed by the authors of the guide.

The list focuses on tools that provide support OpenAPI ™ specifications.

6.2 Design and drafting

6.2.1 Overview

A magjor blocking issue in the drafting of an OpenAPI definition is the correctness of the syntax and the validity of the
OpenAPI metamodel applied. For the user who is not often drafting OpenAPI™ specification by hand this usually
causes an inefficient trial and error process. To maximize the efficiency and minimize entry barrier for new usersin the
standardization environment it is recommended not to draft the OpenAPI definitions by hand in their textual syntax.

Instead a graphical tool should be used to edit the specification and to seriaize it into the OpenAPI textual syntax. A set
of third-party tools supporting this activity are listed below.

ETSI

54 ETSI EG 203 647 V1.1.1 (2020-11)

A fairly comprehensive list of editors and design environments for OpenAPI is available at [i.36], in particular the
sub-lists of graphical editors and textual editors.
6.2.2 Recommendations on editing tool selection

A tool feasible to be utilized in a RESTful APIs standardization context should cover all the following
recommendations:

. It should have the capability to export the API definition in OpenAPI™ 3.0.

. It should have the capability to interact with external versioning systems, i.e. coordination should be donein a
way which isindependent from the tool used to design the API.

o It should have the capability to resolve remote definitions correctly (e.g. include remote data type definitions).

6.3 Coordination and collaboration

The OpenAPI definition are represented and exchanged mainly in the form of Y AML or JSON text files. Therefore, in
order to coordinate distributed development and maintenance of such filesaVersion Control Systems (VCS) should be
used. VSCs enabl e efficient version tracking, concurrent workflows and semi-automated synchronization. Among the
several VCSs available and well established in the industry, the Git [i.52] versioning system is recommended.

ETSI provides hosting for Git repositories through the ETSI Forge platform [i.11], thus offering a solution for
standardization activities that need to coordinate different usersin OpenAPI development. The use of ETSI Forge to
collaborate upon, store and track OpenAPI ™ specifications is recommended, in particular for the following benefits:

. Specific guidance is provided on how to integrate documents and digital attachments with ETSI specifications.

e Theplatformisintegrated in the ETSI ecosystem and user services (e.g. it isaccessible viathe ETSI online
credentials).

e Theplatform includes a set of application and services that are well known and documented thus easing the
discovery, acquisition and adoption of digital attachment to standards by external users and general public.

Usage of public Git hosting solutions is not recommended. Instead, mirroring techniques on such public platforms are
recommended, to allow wider discovery and consumption of the standardized materials.

6.4 Validation and quality check

When synchronization of different contributions happen, syntax and semantic errors may be introduced, even when the
individual contributions were correct. In order to ensure the quality of the final standardized API, automated validation
should be applied to every new revision of the API definition, at the moment in which the contribution happens.

EXAMPLE: In the context of API definitions tracked with V CS repositories, this implies execution of
validation at each contributed commit.

The introduction of errorsinindividual contributionsis certainly mitigated if design tools are used (as recommend in
the previous clause) but this does not remove the need for a centralized and unbiased validation of the contributed
definitions.

Different types of validations may be applied, including:
. Syntactical correctness (e.g. YAML or JSON syntaxes).
e Vdlidity against the metamodel (i.e. matching the schema of OpenAP!).
. Linting or validation of conventions and best practices.

While the first two validation types are required and defined by the OpenAPI ™ specification, the application and
definition of the third typeis optional and agreed by the group producing the API specification.

ETSI

55 ETSI EG 203 647 V1.1.1 (2020-11)

Examples of automated OpenAPI validation as applied for different standardization groups within ETSI are:
. Validation applied in 3GPP projects sources[i.37].
e Vdlidation applied in MEC projects example [i.38].
. Validation applied in NFV projects example [i.39].

Finally, while the selection of design tools may be left to the individual contributors (as long as the tool complies with
the OpenAPI ™ gpecification), the selection of automated validators should be agreed among the contributors since it
provides a common ground for valid contributions. As such, it needs to be a solution that may be acquired and executed
by al the participants as well asin the common IT infrastructure such as ETSI Forge. Therefore, the usage of free and
open source tools is recommended.

6.5 Post processing

Once the OpenAPI definition files are finalized by the standardization group, they may be post-processed to provide
different options to consume them. Example of post-processing activities are:

. resolution of al JSON references in the OpenAPI definition file to generate a standalone and easily portable
file;

. generation of human readable in-browser documentation, either static or dynamically constructed; or

. generation of human readable "print-outs’ of the OpenAPI in portable document formats to facilitate offline
review.

Several tools are freely available to generate documental exports of the OpenAPI definitions. An example of such an
export (generated with the RapiPDF tool [i.40]) is available in Figure 6.5-1.

API
1. RESOURCE MANAGEMENT

Operations for managing resources

1.1 GET /resource/{id}

Read a resource
Read full contents of a resource with specific ID

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION

*id string ResourcelD

RESPONSE

STATUS CODE - 200: The requested resource

RESPONSE MODEL - application/json
{

id=
size DEFAULT:big

Figure 6.5-1: PDF export example

ETSI

56 ETSI EG 203 647 V1.1.1 (2020-11)

7 Working Examples

More comprehensive examples related to the snippets discussed in clause 4 and clause 5 are available in [i.10]. They
include an OpenAPI ™ gpecification, test purpose and test description definitionsin TDL (including supporting data and
configuration definitions), as well astest casesin TTCN-3 and Robot Framework. The examples focus on HTTP. They
can be used as basis for other transports. Further examples for OpenAPI™ specifications and test purpose and test
description definitions are available on the ETS| Forge[i.11] and ETSI Labs[i.12].

The examples related to the present document in [i.10] comprise the following:
. Example OpenAPI ™ specification located in the OpenAPI folder.

. Exampl e requirements, i mplementation conformance statements and test suite structure generated from the
OpenAPI™ specification located in the RQ-ICS TSS.md file (also available as Word document).

o Example test purposes and related resourcesin TDL-TO located in the TP folder, with automatically generated
TP skeletonsin the Generated sub-folder and manually derived TPsin the Manual sub-folder.

. Example test descriptions and related resourcesin TDL located in the TD folder, libraries including Sandard
and HTTP definitions for TDL are located in the Library sub-folder, with automatically generated TD
skeletons in the Generated sub-folder and manually derived TDsin the Manual sub-folder, including data and
behaviour packages for the example. Graphical representations with TDL-GR are also included.

. Example test cases and related resourcesin TTCN-3 located in the TC folder, with automatically generated
TTCN-3 skeletons in the Generated sub-folder and manually derived complete TTCN-3 test casesin the
Manual sub-folder.

. Example test cases and related resources for Robot Framework are located in Robot folder, with JISON
schemas in schemas sub-folder.

To make the best out of the test purposesin TDL-TO and the test descriptionsin TDL, it is recommended to use the
TOP toolset available at [i.13]. Further up-to-date information regarding the examplesis available in the README.md
file.

8 Survey of Activities at ETSI and Beyond

8.1 Review of base documents

8.1.1 ETSI GS MEC 009 (V2.1.1)

ETSI GSMEC 009 [i.23] defines design principles for RESTful MEC service APIs, provides guidelines and templates
for the documentation of these, and defines patterns of how MEC service APIs use RESTful principles. While the
recommendations are intended to be technology implementation independent, the focusison HTTP whichisfully
specified in the recommendations.

The list of recommendations in the document include conventions and best practices related to the specification
structure (including Purpose, URIs + versions, Methods, Representations, Request and Response schemas, Links, Status
codes), the specification of entry points (version, supported features, collections, resources, etc.), as well as security and
privacy considerations (flow, anonymisation, authorization).

Further templates and examples illustrate naming conventions, paths, and queries. The definition of supplementary
OpenAPI™ specifications is recommended, however the base specifications always have precedence. Seventeen
patterns for common operations are described. Normative templates and informative sequence diagrams are outlined.

ETSI

57 ETSI EG 203 647 V1.1.1 (2020-11)

8.1.2 ETSI GR MEC-DEC 025 (V2.1.1)

ETSI GR MEC-DEC 025 [i.24] specifies atesting framework defining a methodology for development of
interoperability and/or conformance test strategies, test systems and the resulting test specifications for MEC standards
and lists and prioritizes the testable requirements. It builds upon ETSI GS NFV-TST 002 [i.25], referencing content
with applicable extensions and modifications.

It covers generic information regarding conformance and interoperability testing and indicates provisions regarding
capabilitiesfor ICS.

For conformance testing, it recommends informal TPswritten in prose, optionally including graphical, tabular, or MSC
contents for clarification. It recommends the use of TDL-TO for the specification of test purposesin a structured
manner and provides some conventions and best practices.

For interoperability testing, it recommends the use of TDs in atabular format and defines an interoperability test
process for requirements assessment based on provisions from specifications.

8.1.3 Draft ETSI GS MEC-DEC 032-1 (V0.0.3)

ETSI GS MEC-DEC 032-1 [i.53] applies the testing methodology guidelines and framework specified in ETS

GR MEC-DEC 025 [i.24]. It isatwo part document where Part 1 specifies conformance test related information for the
MEC service APIsincluding test requirements and I mplementation Conformance Statement (ICS) and Part includes the
Test Suite Structure (TSS) and Test Purposes (TPs) using TDL-TO.

NOTE: ETSI GSMEC-DEC 032-1[i.53] istill in the drafting stage as of the time of writing, therefore all
comments are preliminary.

8.1.4 ETSIGS CIM 009 (V1.2.1)

ETSI GS CIM 009 [i.54] defines a standard API for Context Information Management enabling close to real-time
access to information coming from many different sources, including performing updates on context, registering context
providers, querying information on current and historic context information, and subscribing to receive notifications of
context changes.

It outlines to three prototypical architectures (centralized, distributed, federated) where the APIs should enable efficient
support for all of them. Notable aspects of the specification include managing multi-attributes, temporal representations
and properties, and geospatial properties. Query languages are defined for filtering entities and context sources, as well
as filtering based on temporal and geospatia properties.

The specification provides some data representation restrictions and further conventions.

8.1.5 ETSI GS QKD 014 (V1.1.1)

ETSI GS QKD 014 [i.55] describes a communication protocol and data format for a Quantum Key Distribution (QKD)
network to supply cryptographic keys to an application in order to allow interoperability of equipment from different
vendors. While the QKD network can consist of asingle link between a single QKD transmitter and a single QKD
receiver, or it can be an extended network involving many such QKD links, the API defines asingle interface for the
delivery of key material to applications in both scenarios. The specification includes the data formats and the methods
described in tabular format but no methodological information regarding the specification of the APIs.

8.1.6 ETSITS 129 501 (V15.3.0)

ETSI TS 129 501 [i.21] document defines the design principles and documentation guidelines for the RESTful 5GC
SBI APIs. These principles are used for drafting stage 3 specifications for the 5G system. It provides the facilities for
design Principles for REST implementation including Rest API designs, the requirement for secure API design and
REST implementation levels. The specificationsinclude URI Conventions, resource modelling by using 4 different
archetypes and provides the information about the changesin the API that are considered as backward compatible and
those that are considered as backward incompatible. Backward compatible changes are additions or changesin the AP
that do not break the existing Service Consumer behaviour. While backward-incompatible changes are additions or
changesin the API that break the existing Service Consumer behaviour. An example of OpenAPI™ Specification files
is also provided. However, the base specifications always have precedence.

ETSI

58 ETSI EG 203 647 V1.1.1 (2020-11)

8.1.7 ETSI GS NFV-SOL 013 (V2.7.1)

ETSI GSNFV-SOL 013 [i.42] specifies common aspects of RESTful protocols and common data models for NFV
MANO interfaces specified in NFV SOL specifications (ETSI GS NFV-SOL 002 [i.58], ETSI GS NFV-SOL 003 [i.59]
and ETSI GSNFV-SOL 005 [i.60]). It provides normative provisions regarding the HT TP usage (URI structure, Header
fields), Result set control procedures, Effective error reporting mechanism, Authorization of API requests (OAuth 2.0,
TLS certificate) and API versioning (Semantic versioning; Mg or.Minor.Patch). These provisions are referenced from
the ETSI NFV SOL API specifications.

8.1.8 ETSI GS NFV-SOL 015 (V1.1.1)

ETSI GSNFV-SOL 015 [i.22] describes patterns and conventions for RESTful NFV-MANO API specifications, gives
recommendations on APl versioning and provides an APl specification template. The provisions include the Naming
conventions (Name, Strings, and URIs) and Patterns of HTTP methods related to CRUD (Create, GET, Update and
Delete with HTTP methods), Non-CRUD (Task resource) and Asynchronous (with monitoring and without monitoring)
operations.

ETSI GSNFV-SOL 015 [i.22] defines provisions to be followed by the ETSI NFV Industry Specification Group (1SG)
when creating RESTful NFV-MANO API specifications. The provisions do not apply to implementations.

The main difference between ETSI GS NFV-SOL 013 [i.42] and ETSI GSNFV-SOL 015 [i.22] isthat ETS|

GS NFV-SOL 013 [i.42] specifies common implementation level details intended to be referenced from the individual
API specifications while the recommendations provided in ETSI GS NFV-SOL 015 [i.22] apply to the creation of API
specifications and are intended to be implementation independent.

8.1.9 ETSI GS NFV-TST 010 (V2.4.1)

Thegoal ETSI GSNFV-TST 010 [i.56] isto specify the methodologies of conformance test including test descriptions
for NFV implementations with interfaces specified in the following NFV specifications: ETSI GS NFV-SOL 002 [i.58]
for the Ve-Vnfm, ETSI GS NFV-SOL 003 [i.59] for the Or-Vnfm and ETS| GS NFV-SOL 005 [i.60] for the
Os-ma-nfvo reference point. ETSI NFV SOL deliverables specify a set of interfaces built on the RESTful approach and
meant to be used over the HTTP protocol. The document defines the methodol ogies and the procedures with test
descriptions to test the conformance of the exchanged HTTP payloads and the implementation of required actions for
one or more of the available interfaces within a reference point.

The purpose of general conformance testing is to determine to what extent a single implementation of a particular
standard conformsto the individual requirements of that standard. The document defines the System Under Test (SUT),
Test Configurations and test Descriptions for the conformance testing of NFV SOL specification.

8.1.10 ETSITS 118 115 (V2.0.0)

ETSI TS 118 115 [i.34] specifies atesting framework defining a methodology for development of conformance and
interoperability test strategies, test systems and the resulting test specifications for oneM2M standards. The oneM2M
testing framework consists of a documentation structure for the main artefacts (catalogue of capabilities, test suite
structure, test purposes) and a methodology with concrete guidelines, conventions, and notations. The described
notation for test purposes provides some structure and keywords for the specification of test purposes but does not refer
to a standardized notation. The guidelines for the use of TTCN-3 for the abstract test suite specification indicate how to
implement the abstract test architecture, setup test configurations, other conventions. The guidelines for interoperability
testing focus more on test architectures test descriptions. The test description notation includes notations at an abstract
(primitive) level as well as different concrete protocol levels. Relying on such a notation without adequate tool support
islikely to produce a substantial amount of duplicated content for the different concrete protocol levels which need to
be kept consistent.

ETSI

59 ETSI EG 203 647 V1.1.1 (2020-11)

8.1.11 oneM2M TS-0018 (V3.2.0)

oneM2M TS-0018 [i.35] specifies test suite structure and test purposes that are designed to eval uate the conformity of
oneM2M implementations to the oneM2M specifications. It also provides guidelines and notations for the description of
test purposes, test behaviours, and test configurations for conformance testing. The guidelines and notations are based
on ETSI TS 118 115 [i.34]. The test purposes make use of so-called "variants’, where specific test purposes are derived
from the same base test purpose where abstract placeholders (including meta-information) are replaced by more specific
descriptorsin each variant.

8.1.12 TM Forum Open APIs initiative

The Tele Management Forum (TM Forum) is leading an activity to design common RESTful APIs, called the Open API
initiative. Thelist of specified APIsis available at https.//projects.tmforum.org/wiki/display/API/Open+API+Table.

In support of such activity, the Forum has devel oped recommendations and guidelines for common REST patterns (such
as CRUD and Task operations) which are documented in TMF630 API Design Guidelines 4.0.1 [i.57]
https.//www.tmforum.org/resources/ how-to-gui de/tmf630-api-desi gn-guidelines-4-0/. The Guidelines focus on
modelling different operational patterns with a REST paradigm, from CRUD operations to task operations, monitoring,
notifications, polymorphism, hypermedia support and other patterns.

To define the rationale and main approach behind the Open APIs program TM Forum members drafted the Open API
Manifesto https.//www.tmforum.org/open-apis/open-api-manifesto/. The manifesto also includes the commitments
asked to the signees, in terms of participation and adoption of TM Forum developed APIs.

TM Forum also runs a certification program for Open APIs adopters, based on a set of test suites published by TM
Forum itself, defined Conformance ToolKit (CTK).

8.1.13 OMG hData RESTful Transport

The Object Management Group (OMG) is widely known for its Unified Modelling Language™ (UML®). The OMG
hData RESTful Transport document https://www.omg.org/spec/Hdata/About-Hdata/ defines remote operations for
accessing components of a Health Record and sending messages to an Electronic Health Record (EHR) system.

The hDatadocument defines general conventions and provides recommendations regarding default response codes,
compression, content negotiation, versioning, handling intermediaries, rejecting update operations because of integrity
concerns or businessrules, as well as recommended HTTP headers. It does not address data modelling in any form as
hData is designed to be able to transport clinical data of any type. It does not use ETags.

The specification of the operations and their semanticsis provided in natural language with little structuring. A reliable
operation pattern is described for scenarios where reliable transfer of information is required. Such scenarios require
that "both sender and service provider have a confirmation that the other side has successfully received the information
exactly once". The use of the reliable operation pattern is indicated and negotiated by using designated headers. The
mechanism for the implementation of the pattern requires that resources are locked until the pattern completes or a
given timeout has occurred, which inevitably breaks the statelessness of the service. The document describes provisions
for baseline security based on TLS, as well as recommendations for custom security mechanisms.

8.1.14 OASIS OData v4.01

OData or Open Data Protocol is an application-level protocol aimsto define away for creating and consuming
gueryable and interoperable RESTful APIs and interaction with data feed resources using RESTful services. It isbuilt
on technologies like HTTP, ATOM/XML, and JSON. OData is standardized by OASIS and approved as an | SO/IEC
International Standard. At present, it isin version 4.01. OData services are described by an entity-relationship model
and provide two data management models. Entity Data Model (EDM) and Service Model. ODatatriesto enable
information to be accessed from a variety of sourcesincluding relationa databases, file systems, content management
systems, and traditional Web sites.

OpenAPI™ Specification (OAS) has the objective of creating a vendor-neutral, portable, and open specification for
describing REST APIs. On the other hand, Open Data Protocol (OData), OData defines specification for creating data
services over HTTP. OData services are described by an entity-relationship model. It intends to specify the format and
patterns to construct the Web APIs which is convenient to expose and query data sources as REST APIs.

ETSI

https://projects.tmforum.org/wiki/display/API/Open+API+Table
https://www.tmforum.org/resources/how-to-guide/tmf630-api-design-guidelines-4-0/
https://www.tmforum.org/open-apis/open-api-manifesto/
https://www.omg.org/spec/Hdata/About-Hdata/

60 ETSI EG 203 647 V1.1.1 (2020-11)

8.2 APl adoption survey

In preparation for the development of the present guide, in December 2019 ETSI STF 576

https://portal .etsi.org/STF/STFs/ST F-HomePages/STF576 has conducted an online survey on "Current activities related
to the specification, implementation and testing of RESTful APIS". The survey was closed in January 2020 and the
results have been presented in a public webinar in the same month.

The survey was conducted among several ETSI TBs and | SGs (including NFV, MEC, ZSM, 3GPP, SmartM2M, etc.)
for the collection of information on current REST API specification activities and related guidelines specified in the
individual groups. The objective of the survey has been to learn from experiences of groups within ETS| as well asfrom
other SDOs on the Specification and Testing of REST APIs. This consolidation activity helped in developing and
producing the present document meant to provide guidance to standardization groups that adopt the RESTful paradigm
and to harmonize and align their REST API specification methodologies. The survey focused on the following areas:

. Importance of REST APIs

. Challenges affecting the specification of REST APIs
. Essential testing activities

. Important topics to be considered in the guide

e Specifications of common aspects of REST APIs

The survey Participants belonged to different domainsi.e. telecoms, 10T, smart cities, and system engineering and
management. Among the survey respondents, 95 % considered REST APIs substantially critical to their organizations.
While the other 5 % considered REST APIs as somewhat important.

In the survey, participants highlighted some of the major challenges they faced in the specification of REST APIs:
. inconsistency of and between documents; and
. the growing size of documents.

71 % and 59 % of Survey respondents declared | nter operability and Confor mance testing, respectively, as essentia
testing activities.

When asked respondents the I mportant Topics to be covered in the RESTful API Guide, participants provided a wide
range of topics. Some of the highlighted topics were:

. Validation of API specifications
. Selection and usage of tools
. Examples of standard deliverables (TPs, TDs, ATS)

Several questions were included in the survey for collecting and documenting the best practices in the specifications of
common aspects of REST APIs. The following responses proved the most popular:

. 97 % of the respondents reported using JSON as data serialization and exchange format;
. for version management, 68 % use API versioning as a URI path parameter with a version number;

e when asked the question about handling the large query result set, rather split of answers were recorded among
several multiple choices:

- 76 % said they use attribute-based filtering of collections;
- 50 % preferred attribute selector (limit attributes included in the response);
- 47 % use the paged response approach;
. 71 % of respondents considered the "OAuth 2.0" preferred authentication scheme;

e 44 % use ETag asacommon practice to avoid loss in the concurrent update of the same resource, while, 35 %
never considered it as a problem;

ETSI

https://portal.etsi.org/STF/STFs/STF-HomePages/STF576

61 ETSI EG 203 647 V1.1.1 (2020-11)
e for asynchronous communication methods, 79 % chose " Subscribe-notify" (Server-to-Server) approach while
47 % chose web sockets;

. regarding information for the specification of test configurations for conformance/interoperability, 50 % chose
the "Client-server" option.

In conclusion the survey received good participation and provided preciousinput for the development of the present
document.

ETSI

62 ETSI EG 203 647 V1.1.1 (2020-11)

Annex A (informative):

Bibliography
. "Towards conformance testing of REST based Web Services', Lo lacono and Nguyen.
. Open API™ Alliance.

NOTE: Available at https://www.openapis.org.

ETSI

https://www.openapis.org/

63 ETSI EG 203 647 V1.1.1 (2020-11)

Annex B (informative):
Change History

Date

Version

Information about changes

January 2020

0.0.1

Incorporates STF contributions as per development available at
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-

specifications-and-testing/tree/v0.0.1 (access may be required).

May 2020

0.0.2

Incorporates STF contributions as per development available at
https://forge.etsi.org/rep/stf/stf-576/mts-20364 7-methodology-for-restful-apis-

specifications-and-testing/tree/v0.0.1 (access may be required).

July 2020

0.0.3

Incorporates STF contributions as per development available at
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-

specifications-and-testing/tree/v0.0.1 (access may be required).

ETSI

https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-specifications-and-testing/tree/v0.0.1
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-specifications-and-testing/tree/v0.0.1
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-specifications-and-testing/tree/v0.0.1
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-specifications-and-testing/tree/v0.0.1
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-specifications-and-testing/tree/v0.0.1
https://forge.etsi.org/rep/stf/stf-576/mts-203647-methodology-for-restful-apis-specifications-and-testing/tree/v0.0.1

64

ETSI EG 203 647 V1.1.1 (2020-11)

History

Document history
V111 September 2020 | Membership Approval Procedure MV 20201106: 2020-09-07 to 2020-11-06
V111 November 2020 | Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive Summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Specification methodologies for RESTful APIs
	4.1 RESTful APIs specification in a staged standardization approach
	4.2 Introduction on RESTful interfaces
	4.2.1 Introduction
	4.2.2 Main Principles of the RESTful paradigm
	4.2.3 HTTP Methods and their Usage
	4.2.3.1 Overview
	4.2.3.2 POST
	4.2.3.3 GET
	4.2.3.4 PUT/PATCH
	4.2.3.5 DELETE

	4.2.4 Error Reporting
	4.2.4.1 Overview
	4.2.4.2 Client Errors
	4.2.4.3 Server Errors

	4.3 API specification process
	4.3.1 RESTful interface description languages
	4.3.2 Standardizing RESTful interfaces using OpenAPI
	4.3.2.1 OpenAPI Overview
	4.3.2.2 Document
	4.3.2.3 Data types
	4.3.2.4 Operations
	4.3.2.5 Requests
	4.3.2.6 Responses
	4.3.2.7 Callbacks
	4.3.2.8 Query parameters
	4.3.2.9 Extensions
	4.3.2.10 Other
	4.3.2.11 Process

	4.4 Common Patterns
	4.4.1 Filtering Patterns
	4.4.1.1 Overview
	4.4.1.2 Attribute-based filtering for collections
	4.4.1.3 Attribute Selector
	4.4.1.4 Pagination

	4.4.2 Pattern for URI Creation
	4.4.2.1 Resource URI Structure
	4.4.2.2 Design Rules for REST API URI

	4.4.3 Pattern to avoid Update Conflict and Data loss
	4.4.3.1 Description

	4.4.4 Authorization and Authentication
	4.4.4.1 Overview
	4.4.4.2 API Authorization using OAuth 2.0 Access tokens
	4.4.4.3 API Authorization using TLS Certificates
	4.4.4.4 API Authorization using OpenID connect with JWT ID Token

	4.4.5 Non-CRUD operations
	4.4.5.1 Description

	4.5 Naming conventions
	4.6 Versioning
	4.6.1 Specifications and OpenAPI definitions versions
	4.6.2 Modelling version information

	4.7 Implementation

	5 Testing methodology for REST APIs
	5.1 Overview
	5.2 Testing Frameworks and Methodologies
	5.3 Conformance and Interoperability Testing
	5.3.1 General
	5.3.2 RESTful API-specific
	5.3.3 Domain-specific

	5.4 Test Specification Development
	5.4.1 General
	5.4.2 RESTful API-specific
	5.4.3 Domain-specific

	5.5 Test Deployment and Execution
	5.6 Test Maintenance and Evolution

	6 Tooling recommendations
	6.1 Introduction
	6.2 Design and drafting
	6.2.1 Overview
	6.2.2 Recommendations on editing tool selection

	6.3 Coordination and collaboration
	6.4 Validation and quality check
	6.5 Post processing

	7 Working Examples
	8 Survey of Activities at ETSI and Beyond
	8.1 Review of base documents
	8.1.1 ETSI GS MEC 009 (V2.1.1)
	8.1.2 ETSI GR MEC-DEC 025 (V2.1.1)
	8.1.3 Draft ETSI GS MEC-DEC 032-1 (V0.0.3)
	8.1.4 ETSI GS CIM 009 (V1.2.1)
	8.1.5 ETSI GS QKD 014 (V1.1.1)
	8.1.6 ETSI TS 129 501 (V15.3.0)
	8.1.7 ETSI GS NFV-SOL 013 (V2.7.1)
	8.1.8 ETSI GS NFV-SOL 015 (V1.1.1)
	8.1.9 ETSI GS NFV-TST 010 (V2.4.1)
	8.1.10 ETSI TS 118 115 (V2.0.0)
	8.1.11 oneM2M TS-0018 (V3.2.0)
	8.1.12 TM Forum Open APIs initiative
	8.1.13 OMG hData RESTful Transport
	8.1.14 OASIS OData v4.01

	8.2 API adoption survey

	Annex A (informative): Bibliography
	Annex B (informative): Change History
	History

