

ETSI EG 203 130 V1.1.1 (2013-04)

Methods for Testing and Specification (MTS);
Model-Based Testing (MBT);

Methodology for standardized test specification development

ETSI Guide

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)2

Reference
DEG/MTS-142 MBT_methodology

Keywords
methodology, model, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definitions and abbreviations ... 6

3.1 Definitions .. 6

3.2 Abbreviations ... 7

4 Scope and purpose of these guidelines ... 7

5 Process .. 7

5.1 ETSI test development process .. 7

5.2 Integration of MBT into the ETSI test development process ... 9

6 Modelling for testing .. 10

6.1 Identification of requirements .. 10

6.2 Requirements modelling ... 11

6.3 Identification of modelling strategy ... 12

6.4 Annotating models with references to requirements .. 14

6.5 Modelling guidelines .. 14

6.6 Model quality ... 15

7 Automatic test generation ... 16

7.1 Defining test coverage .. 16

7.2 Generating test cases .. 17

7.3 Quality of generated test cases ... 18

8 Transformation and adaptation of the generated test cases .. 19

8.1 Transformation and adaptation steps .. 19

8.1.1 Adaptation to the target test environment ... 19

8.1.2 Parameterization ... 19

8.1.3 Renaming of identifiers .. 20

8.1.4 Structuring of test behaviour ... 20

8.1.5 Parallelization ... 20

8.1.6 Logging ... 20

8.2 Quality of the transformed and adapted test suite .. 21

History .. 22

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)5

1 Scope
The present document provides a set of guidelines for the use of Model Based Testing in standardized test development.
This includes model creation for test generation and test selection. It also defines a process for development and review
of models and generated tests.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TR 102 840 (V1.2.1): "Methods for Testing and Specifications (MTS); Model-based testing
in standardisation".

[i.2] ETSI ES 202 951 (V1.1.1): "Methods for Testing and Specification (MTS); Model-Based Testing
(MBT); Requirements for Modelling Notations".

[i.3] DTR/MTS-00141: "MBT Case Studies".

[i.4] ISO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance
testing methodology and framework -- Part 1: General concepts".

[i.5] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

[i.6] ETSI TS 102 871-2 (V1.1.1): "Intelligent Transport Systems (ITS); Testing; Conformance test
specifications for GeoNetworking ITS-G5; Part 2: Test Suite Structure and Test Purposes
(TSS&TP)".

[i.7] ETSI ES 202 553: "Methods for Testing and Specification (MTS); TPLan: A notation for
expressing Test Purposes".

[i.8] ETSI EG 202 237: "Methods for Testing and Specification (MTS); Internet Protocol Testing
(IPT); Generic approach to interoperability testing".

http://docbox.etsi.org/Reference

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)6

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

abstract test case: complete and independent specification of the actions required to achieve a specific test purpose,
defined at the level of abstraction of a particular abstract test method, starting in a stable testing state and ending in a
stable testing state

NOTE: See ISO/IEC 9646-1 [i.4].

abstract test method: description of how an IUT is to be tested, given at an appropriate level of abstraction to make the
description independent of any particular realization of a means of testing, but with enough detail to enable abstract test
cases to be specified for this method

NOTE: See ISO/IEC 9646-1 [i.4].

Abstract Test Suite (ATS): test suite composed of abstract test cases

NOTE: See ISO/IEC 9646-1 [i.4].

adaptation of the generated test suite: extending the generated code so that the extension lowers the abstraction level
in order to get and Abstract Test Suite (ATS)

NOTE: See ISO/IEC 9646-1 [i.4].

executable test case: realization of an abstract test case

NOTE: See ISO/IEC 9646-1 [i.4].

Implementation Conformance Statement (ICS): statement made by the supplier of an implementation or system
claimed to conform to a given specification, stating which capabilities have been implemented

NOTE: See ISO/IEC 9646-1 [i.4].

Implementation eXtra Information for Testing (IXIT): statement made by a supplier or implementor of an IUT
which contains or references all of the information (in addition to that given in the ICS) related to the IUT and its
testing environment, which will enable the test laboratory to run an appropriate test suite against the IUT

NOTE: See ISO/IEC 9646-1 [i.4].

Implementation Under Test (IUT): implementation of one or more standards in an adjacent user/provider
relationship, being the part of real open system which is to be studied by testing

Interoperable Function Statement (IFS):document that defines (a) the standardised functions which an IUT supports,
(b) the functions which are optional and (c) those that are conditional on the support of other functions

NOTE: See EG 202 237 [i.8].

means of testing: combination of equipment and procedures that can perform the derivation, selection,
parameterization and execution of test cases, in conformance with a reference standardized ATS and can produce a
conformance log

NOTE: See ISO/IEC 9646-1 [i.4].

Model-Based Testing (MBT): umbrella of approaches that generate tests from models

NOTE: See TR 102 840 [i.1].

system model: computer-readable behavioural model that describes the intended external operational characteristics of
a system, i.e. how the system being modelled interacts with its environment

NOTE: See TR 102 840 [i.1].

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)7

System Under Test (SUT): the real open system in which the IUT resides

NOTE: See ISO/IEC 9646-1 [i.4].

Test Case (TC): abstract or executable test case

NOTE: See ISO/IEC 9646-1 [i.4].

Test Description (TD): prose description of a test case

Test Purpose (TP): prose description of a well defined objective of testing, focusing on a single conformance
requirement or a set of related conformance requirements as specified in the appropriate standard

Test Suite Structure (TSS): document defining (hierarchical) grouping of test cases according to some rules

transformation of the generated test suite: modifying the generated code in order to improve its quality, but without
changing its level of abstraction and its behaviour

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
ASN Abstract Syntax Notation
ATM Automated Teller Machine
ATS Abstract Test Suite
ICS Implementation Conformance Statement
IFS Interoperable Function Statement
ITS Intelligent Transportation Systems
IUT Implementation Under Test
IXIT Implementation eXtra Information for Testing
MBT Model-Based Testing
OSI Open Systems Interconnection
STF Specialist Task Force
SUT System Under Test
TC Test Case
TD Test Description
TP Test Purpose
TSS Test Suite Structure
TTCN Tree and Tabular Combined Notation

4 Scope and purpose of these guidelines
The present document provides general guidelines for using model based testing with automated test generation in
conformance test development for ETSI standards.

All the guidelines presented are tool-independent. The present document does not provide any enumeration of MBT
tools, characterization or comparison of MBT tools, recommendations on using specific MBT tools, or tips on how to
perform conformance test development tasks with the help of specific MBT tools.

5 Process

5.1 ETSI test development process
The ETSI test development process is sketched in Figure 1. In the figure, the boxes describe development steps and the
ellipses describe the corresponding outcomes, e.g. "Requirements Catalogue" is the result of the step "Identification of
Requirements".".

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)8

Figure 1: ETSI test development process

The "Cataloguing of Requirements" comprises the identification of requirements by analysis of the base standard. It is
recommended to collect and structure the identified requirements in a catalogue.

The "Creation of ICS/IFS" step develops Implementation Conformance Statement (ICS) document or Interoperable
Function Statement (IFS) document. ICS/IFS will be presented as templates to be filled by product vendors declaring
which of the optional features in the standard their product is supporting, i.e. implementing. The ICS/IFS templates
make the relationship between features rather clear and easy to follow. Some features are defined to be mandatory in the
standard, the ICS/IFS document should reflect that and the vendor is supposed to declare that their product supports all
mandatory features if he wants to claim conformance to the standard. Some features will be optional and the vendor in
question has full freedom to choose whether they support an optional feature or not. Other features may be conditional,
e.g. if you have selected some option then some other options have to follow. For example, if a protocol message type is
declared to be supported, the data fields in that message need to be supported as well. ICS/IFS are supposed to reflect
what is already written in the standard and should not change the requirements but just express the same thing in a more
clear, concise and precise way. In practice, this is not always the case and ICS/IFS are at times used to effectively create
a profile of a standard. ICS/IFS information from the filled templates is as a rule used to drive the test case selection and
the parameterisation of test cases.

The test suite structure is a tree structure where the root represents the whole test suite and the leaves are the test
purposes/test cases. The nodes represent test groups which either contain subgroups (i.e. other non-leaf nodes) or test
purposes/cases (i.e. leaf nodes).

The usual approach is that the test suite structure follows from the features to be tested and the kind of testing. For
example, test cases for a feature are grouped together and the test cases testing one feature may be further structured in
groups testing valid, invalid or inopportune behaviour.

Test purposes (TPs) are meant to describe what needs to be tested under which conditions, avoiding going into details
on how the tests are to be performed. Almost as a rule TPs are developed as a dedicated effort in an STF or some other
team. However, the Technical Committees review the TPs quite carefully. On that level, the delegates can understand
quite well the text describing the TPs and can relate it well both to the standards and to the products that their
companies are building. With the classical (manual) approach to test development, the interaction between TP
developers and reviewers is most important and readability of the TPs is crucial for that.

Base Standard Specification

Standard

Identification of Requirements

Requirements
Catalogue

Creation of ICS/IFS
ICS/IFS

Definition of Test Suite Structure

TSS

Specification of Test Purposes

TPs

Specification of Test Descriptions
TDs

Specification of Test Cases
TCs

Validation

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)9

A TP has a unique identifier that is derived from the test suite structure. A TP has to contain the initial and
post-conditions and the requirement to be tested including pass criteria, preferably with references to the standard or to
the requirements catalogues. The TPs can be expressed in the dedicated language TPlan ES 202 553 [i.7] or in plain
text. TPs in plain text are often structured in tables so that above elements can clearly be seen.

Following the TP development is the stage of selecting the tests that are to be developed as test cases written in TTCN-3
language ES 201 873-1 [i.5] with the intention of being used in some conformance certification scheme. This phase is
very important to companies and this is where a lot of their attention and energy is going. This level of discussion is
more often than not based on company interest at a given point in time.

For some technologies the TP development is followed by a detailed textual description of test cases denoted as TDs.
Such TDs are very carefully reviewed by standardization delegates before they get approved and published. In fact, all
that was previously said for the TP review would apply to Test Description review. Such detailed TDs are used as input
in writing TTCN-3 test cases. It is important to note that development of 3GPP test specifications includes the
development of detailed test descriptions. As this is by far the biggest test specification effort in ETSI, it would be
important to look at that aspect when it comes to MBT use.

The "Specification of Test Cases" comprises the implementation of TPs (and at times TDs) by TTCN-3 code. In
general, each TP is implemented by one TTCN-3 test case. Almost as a rule TTCN-3 test cases are developed manually
as a dedicated effort in an STF. In contrast to TPs and TDs, the Technical Committee walkthrough review of the code is
rather superficial and the work of testing experts is accepted as a starting point for the test case validation.

Current practice is to structure the test cases into three distinct parts of the code. One is a preamble that drives the
implementation into the initial condition for the test. The other is the test body that implements the behaviour testing the
corresponding TP, including setting of the verdicts. The third part is the postamble that is supposed to drive the
implementation back into a stable testing state such that other tests could be run from that state.

In the "Validation" step, the TTCN-3 test cases are made executable and are executed on test equipment against more
than one SUT provided by ETSI members. If the results obtained are the same, the test case in question can be declared
validated. If there are differences, the analysis of respective traces needs to determine the cause of differences. The
source of the problem may be in the implementation that did not respect the standard, in the test case code that may
either be wrong or incomplete or in the standard that may be imprecise, incomplete, ambiguous or containing
conflicting requirements.

5.2 Integration of MBT into the ETSI test development process
A vision on how MBT could be integrated into the ETSI test development process is shown in Figure 2.

The MBT step "Modelling for Testing" is based on the standard and the corresponding requirements contained in the
standard. As the modelling formalizes behaviour described in the standard and relates requirements to the model, it can
be seen as an additional validation step for the standard itself and the requirements. Problems and ambiguities may
directly be fed back to the responsible committees at ETSI. The result of the modelling step is a model, which serves as
input for the test generation.

The "Test Generation" step comprises the tool-based generation of test cases. Tools provide different strategies for test
generation and for defining the termination criterion for the generator, e.g. certain coverage should be achieved.
However, during generation problems related to state space explosion or reaching the termination criterion may be
detected. For example, certain requirements cannot be reached or the generator does not terminate. Reasons for such
failures may be related to ambiguities in the standard or inappropriate modelling of requirements. As a result, feedback
on requirements and standard may be given and the test generation will be repeated with an updated model and/or other
termination criteria.

The model should contain only elements that affect the behaviour that is required and will be tested by generated tests.
For example, payload that does not influence the behaviour may not be modelled. As a consequence, the
"Transformation & Adaptation" step bridges the gap between automatically generated test cases and ETSI TTCN-3 test
cases. In addition, further documents like TSS, TP and TD descriptions may have to be generated. Whereas the
generation of TSS, TP and TD descriptions may be straightforward, closing the abstraction gap may require to add
information, e.g. about test environment and the SUT, and to restructure the test cases descriptions, e.g. test behaviour
may have to be parameterized and behaviour may be structured into preamble, test body and postamble.

Whenever possible, the "Transformation & Adaptation" step should be done automatically to avoid inconsistencies
between the documents needed in an MBT-based ETSI test development process.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)10

Figure 2: Using MBT within the ETSI test development process

Test cases derived using MBT approach would have to be validated just like test cases that are manually developed.

6 Modelling for testing
Model-based conformance test development includes creation of a behaviour model of a system to be tested. This
model is used further as an input for test generation. This clause presents guidelines on model creation.

6.1 Identification of requirements
To be used in conformance test development process, the model for testing should adequately reflect the requirements
of the standard, for which conformance tests are to be developed. It is precisely the standard requirements that need to
be checked by the tests generated from the model, so they are the main input for model development.

To make this input available and to provide base for accurate traceability of both the model and the generated tests, one
should identify the requirements, and preferably collect them in a requirements catalogue. Requirements in the
catalogue should posses the following characteristics.

• Each requirement is usually an excerpt (most often, textual, maybe, including formulas or diagrams) from the
standard text, containing usually one specific statement on the conforming system behaviour.

• Implicit requirements implied by the standard text and usage context of conforming systems are made explicit
and put in the catalogue as others.

• Each requirement has a unique identifier for referencing. If the standard under consideration uses references to
others and requirements may originate from different documents, it is recommended that requirement identifier
contains information on source document.

• To facilitate management of large numbers of requirements, they can be grouped according to various criteria
(functionality, source documents, roles, various kinds of requirements, etc.). Those groups can make up a tree-
like hierarchy (or several hierarchies based on different criteria).

Base Standard Specification

Standard

Identification of Requirements

Creation of ICS/IFS

ICS/IFS

Definition of Test Suite Structure

TSS

Specification of Test
Purposes TPs

Specification of Test Descriptions
TDs

Specification of Test Cases
TCs

Validation

Modeling for Testing

Test Generation

Generated Test Cases

Transformation &Adaptation

Model

Requirements
Catalogue

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)11

• Requirements stating effectively the same should be united in a special group (possibly under the single
identifier) provided with the most precise statement expressing them all.

• Applicability context of each requirement - the full set of conditions when this requirement is applicable -
should be specified explicitly.

• Each catalogue has a set of requirements attributes. Each requirement should have a value for each attribute.
The following attributes are used most often.

- Role(s) to apply to:

Components of complex systems are usually play some roles; each role corresponds to a set of functions
performed. A requirement usually provides restrictions on specific role(s), not on all.

- Modality:

A requirement can be obligatory (specified using words like "shall", "must", "always", "definitely",
"never", "required", etc.), recommended (specified using words like "should", "ought to",
"recommended", etc.), or optional (specified using words like "may", "might", "possible", "permitted",
etc.).

- Testability:

Testable requirement has a definite finite procedure, which allows an arbitrary adequately experienced
person to determine whether this requirement holds or not. Non-testable requirements are sometimes
admissible. They usually contain some general statements, which is hard to check in an objective way.

• Requirements applicability conditions can include some options, e.g. each time an optional requirement A
holds, a requirement B should also hold. Requirements, which applicability depends on some options, are
called conditional. Usually each option being implemented implies applicability of a certain set of
requirements. These dependencies between requirements should also be extracted from the standard and
clearly stated in the catalogue.

• Other relations between requirements, e.g. one requirement refines another, formulates alternative behaviour,
is similar, but differs in some detail, etc., can be stated in the catalogue. They become useful when the standard
is changed and consistent modifications should be performed in different parts of the text. Understanding of
such relations also helps adequate understanding of the standard as a whole.

6.2 Requirements modelling
To produce a correct model of the requirements, a modeller should adequately understand their meaning and accurately
implement it in the modelling language. Adequate understanding of requirements requires thorough analysis of their
statements and interrelations, taking into account also usage context and domain rules and restrictions.

Possible issues and problems in requirements representation, which may cause misunderstanding, modelling errors and
so inadequacy and incorrectness of the generated tests, include the following:

• Ambiguities of requirement statements, possibility of different interpretations of the standard text (different
ways of modelling, which leads to externally observable differences in behaviour). Each ambiguity should be
analyzed for its reasons and possibility to remove it.
It may mean just an intentional non-determinism leaving reasonable freedom for standard implementers. In
this case the model should allow the same non-determinism and the tests generated should accurately
distinguish all possible correct behaviours from incorrect ones. Another possible resolution in such a situation
is to make the model more abstract to remove details distinguishing different results of non-deterministic
behaviour, so the resulting model becomes deterministic.
In other cases, when ambiguities are problematic, they should be removed or refined to unambiguous
statements. To do this a modeller may use more specific related requirements from other parts of the standard
(for this reason dependencies between requirements from different clauses are useful), understanding of the
context and domain rules, and additional information from standard developers and domain experts.

• Inability to design a clear checking procedure for a requirement marked as testable. This is a sign of a problem
either with requirement statement, or with the abstraction level chosen for a model. To resolve it the same
actions can be performed as for ambiguity of a requirement.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)12

• Incompleteness of requirements, absence of behaviour-related descriptions for specific situations. Such
incompleteness can also be deliberate and mean that no restrictions are put on the corresponding behaviour, or
it can be a problem to be fixed. The same actions as for ambiguities are helpful.

• Inconsistencies between different requirements statements. Again, some inconsistencies can be just seeming
and be caused by inadequate understanding of standard details or contexts of contradicting statements, others
are problematic and should be resolved by taking into account context and domain knowledge, or additional
information from standard authors and experts.

• Lack of reasonable integrity between different parts of the standard, when very similar things are represented
differently, the same procedure is described several times in different sections, etc. Usually this means that the
standard text is not mature. Resolution of this issue and making adequate decisions on what things are actually
the same and what should be distinguished usually requires deep understanding of the domain and discussions
with standard developers and other experts.

Of course, any issues with standard requirements discovered during modelling and recognized by standard developers
and experts should be fixed in the standard text to prevent further misunderstanding and to save time and effort of other
people, who will work with the standard.

6.3 Identification of modelling strategy
Modelling strategy includes the decisions of the model scope, interface, abstraction level, modular structure and
architecture. These decisions have a significant influence on the results of modelling and the effectiveness of the model
in test generation. Changing such decisions on later phases of model development may be quite laborious and increase
the risks of introducing modelling errors.

This clause provides some guidelines on making these decisions:

• Model scope

Standards often define rather complex behaviour with a lot of separate elements and scenarios. To make
modelling and test development more manageable a model scope - a part of conforming system behaviour to
be modelled - should be selected as a first step. Usually this decision selects a part of the system behaviours
and corresponding set of externally observable events.
If possible, it is preferable to separate a complex behaviour described in a standard into several parts and to
model them separately.
Such a selection or separation should be guided by two factors: necessity to model the behaviour to be checked
by the resulting tests and the cohesion of elements of conforming system behaviour - the selected separate part
should usually have weak relations with behaviour that is left out of the model.
Sometimes the alternative is to model the complete behaviour related with a set of external events (all possible
system reactions on all possible combinations and sequences of these events) or only some scenarios of
conforming system behaviour related to these events. The first approach is preferable, since it provides more
accurate coverage of system behaviour and result in more adequate tests generated. The second approach may
however be chosen due to lack of budget and resources for complete modelling. In this case modeller should
realize possible lack of coverage in the resulting tests of specific situations not touched by the modelled set of
scenarios, so the selection of scenarios to model should be very accurate.

• Model interface

Any standard always specifies reference point(s) between communicating entities, where their behaviour can
be observed and checked. Such points of control and observation are usually described in terms of ports,
operations or methods that can be invoked, commands that can be given, results that can be achieved,
messages or events that can be processed. Representation of all these things in a model is a model interface.
The interface can be extracted from the standard by selecting operations, commands, or events created by an
environment, on which a conforming system should somehow react, and operation results or externally visible
events created by a system.
The set of operations and events chosen as interface ones depend on the model scope. Their specific
composition and data structures used also depend on the abstraction level chosen and on the modularization of
the model.
Operations and events related to the behaviour outside of the chosen model scope are not to be included in the
model interface. Correct processing of events left out of the model scope may have to be ensured on the
adaptation phase.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)13

One more factor to be considered for interface definition is the effort needed to connect the chosen interface to
an implementation under test during test execution. A modeller should examine possible adapters and try to
choose model interface in such a way that minimize of their development effort.

• Model abstraction level

Abstraction level of a model determines the details of modelled part of conforming system behaviour that are
presented in the model. While the model scope determines the mere set of behaviour elements included in the
model, the abstraction level determines the details of their presentation. These details are mostly related with
composition and processing of data structures used as types of interface operation and events parameters and
results, and also as types of internal data used to store history-related information.
The choice of the abstraction level is usually prescribed by the constraints to be checked by the resulting tests -
precisely that details should be modelled that help to check the desired properties in tests, and all the details of
behaviour, which has no relation to the properties to be checked, should be omitted. The abstraction level
chosen for a model further becomes the abstraction level of the generated tests.

• Modular structure of a model

In case of high complexity of behaviour modelled developing a model as a single monolithic module increases
the risk of making errors and complicates further modifications. Designing an appropriate modular structure of
a model helps to cope with these problems. The modular structure defines specific set of modules comprising
the model and possible interactions between them.
Decomposition of a model into modules, along with selecting the part of the behaviour to model, and choosing
the appropriate abstraction level are all the techniques to cope with model complexity. Decomposition into
modules is also a way to organize collaborative parallel work of several developers on one model.
Usually the modular structure can be borrowed from the modular structure of the standard - if it describes a
complex behaviour, it has to be modularized somehow. However, it may appear that the same or very similar
constraints are stated in different requirements of the standard and concern different (at least, at the first look)
situations. In this case it is obligation of a modeller to make a decision whether to put their description in one
module or in different ones. Such a decision should take into account effectiveness of model analysis
performed by the test generation tool used, and also information obtained from experts and standard authors on
future development of the standard to make introduction of most probable changes in the model as easy as
possible.
One more situation where decomposition into modules can be suggested by external factors is use of parts of
the modelled behaviour in other standards - in this case such parts become obvious candidates to be separated
into modules, and these modules may be useful for reuse in other projects.
Additional generic guidelines for choosing modular structure of a model are the same as in general software
engineering - anticipate most probable future changes, write one knowledge in one place, partition complex
tasks, etc.
When deciding the model structure, consider any limitations that the test generation tool may have.

Less influential decisions that can be made and changed later in the process of model development, but has great
significance for the results of modelling, include model instantiation and parameterization:

• Model instantiation

Model instantiation determines the number of instances of model objects or modules used in test generation
process. It is defined on the basis of model modular structure, the desired test coverage (since the set of
situations reachable depends on the objects used in test generation) and capabilities of used test generator
(since complex object structures can be very hard to analyse).
Test configurations developed for the standard under consideration can be a good input for making decisions
on model instantiation.
For example, in ITS case study considered in DTR/MTS-00141 [i.3] the protocol unit model can have only
one instance used for test generation, or can be represented by several interacting instances. In the first case the
set of reachable behaviour scenarios is smaller and is completely determined by the variety of messages used
as inputs for the single model instance. In the second case the variety of possible scenarios grows rapidly with
the number of instances used, because of possible asynchrony in their communications. So, the second case is
much harder for automatic test generation. Nevertheless, the ITS test purposes developed by
TS 102 871-2 [i.6] use 4 manually defined test configurations, each consisting of several protocol unit
instances.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)14

• Model parameters and options

Definition of possible model parameters and options, which may be transferred to the generated test suite,
should be based on possible variety of conforming implementations. Optional or conditional requirements can
be modelled under control of model parameters, which values can be set by a special probe test examining the
corresponding features of the implementation under test before execution of main test cases.
In such a way options related with ICS and parameters related with IXIT can be included in a model.
Possibility to define such parameterization of a model depends on the test generation tool used.

6.4 Annotating models with references to requirements
Referencing requirements from a model contributes considerably to the quality of the model development as the model
developer or readers can quickly check that all the requirements are modelled and there are no model elements for
which no related requirement can be identified. To support an accurate referencing along with traceability of tests and
failures found by them to the initial standard requirements, the model should be annotated with references to the
requirements. Model-based testing tools complying with ES 202 951 standard on modelling notation [i.2] should
support such annotations.

The annotation with reference to a requirement should be placed on the appropriate model element. Specific element to
choose (state, transition, action, constraint, etc.) depends on the tool capabilities; in any case such an element should be
the most relevant one among the elements that allow such annotations. For tools supporting coverage targeted test
generation or coverage measurement, it is recommended to place annotations in such a way that the coverage measured
by the tool according to the annotated elements is as close as possible to coverage of requirements (see clause 7.1).

Reference to a requirement may have a form of its identifier in requirements catalogue, or corresponding section and
paragraph numbers, or full citation of the corresponding element of standard text, or some mixed or intermediate form.
The specific form can be selected on the base of tool capabilities and possible increase or decrease of effort of test
maintenance and test execution report analysis. Sometimes it is better to use only requirements identifiers, because texts
make tests and test reports too large and unmanageable, sometimes it is preferable to have full text in tests and reports,
because they remain compact enough and developers spend less effort on their maintenance and analysis, if they have
no need to look often into other documents.

For better maintainability and readability the chosen form of requirement reference should be the same throughout the
whole model and throughout the set of models if there are several models describing different parts and aspects of the
same standard.

Accurate referencing requirements from a model can help in detecting complex issues. For example, if an execution of a
model exists, which doesn’t touch any model element with annotation referencing to a requirement, this situation
requires additional analysis. It may be a modelling error, which should be somehow fixed, or it may also be caused by
an incompleteness of standard requirements.

6.5 Modelling guidelines
Model maintainability effort depends on model readability; the less readability implies the greater effort needed to make
any modification. The usual guidelines increasing readability of texts and graphical models include the following
recommendations:

• Names of various elements of a model (states, actions, variables, parameters, functions, etc.) should be
self-explanatory, close to the names of the corresponding entities (if any exist) in standard requirements, and at
the same time as compact as possible.

• To decrease the effort of understanding and analysis of models, it is recommended to obey the following
restrictions:

- Number of states or any other solid graphical elements (excluding linear ones) on a diagram should be
not greater than 6. Such solid elements should not overlap, unless it is required by their semantics.

- Transitions or other lines on a graphical diagram should be positioned with as small number of
intersections as possible. They should not lie above or below solid graphical elements, unless it is
required by their semantics.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)15

- Functions or methods should have not greater than 5 parameters; it is preferable to decrease as possible
the number of functions with more than 2 parameters.

- Textual description of a single function or method should not exceed 100 lines and should not contain
more than 5 branching statements or more than 3 loops.

- Complex expressions consisting of more than 5 operands should be avoided and replaced with auxiliary
functions if possible. If expression contains only uniform operators (only conjunctions, or additions, etc.)
this boundary can be increased.

However, these recommendations may be hard to adhere, if the complexity of a modelled behaviour is high. In
such a case a modeller should decide which restrictions should be obeyed and which may be alleviated on the
base of interests of model and test users and maintainers.

• Usual path of human perception of such a model tends to be left-to-right and top-to-down (in Western culture).
So, the sequence of execution of model elements or the sequence of their most natural understanding should be
laid close to those directions. Again, complexity of the model may require breaking this rule of thumb.

• The chosen rules and policies of model elements representation, naming, and layout should be used
homogeneously as possible through the entire model and, maybe, through the set of models describing
different parts and aspects of the same standard.

Additional recommendation concerning improvement of model maintainability is related with logging of test events.
Logging can be very helpful in debugging the complex behaviour. In case of sufficient logging support in the tool used,
use of tool capabilities is preferred. Otherwise, if logging can help in model debugging, even in case of future
modifications, it is recommended that a modeller designs a logging of main test steps and events on the model level, so
that the interpretation of logs in terms of model is easy and natural.

6.6 Model quality
Model quality is determined by attributes related with the ability of the model to be used for effective conformance test
generation and to be maintained and evolved with preservation of this ability and with adequate effort:

• Characteristics, related with model ability to be used for effective test generation, include the following ones:

- Correctness: whether a model correctly represents the standard requirements and other rules and
constraints of the domain.

- Functional completeness: whether a model describe the full set of the constraint on the conforming
system behaviour on the chosen abstraction level, or only a part of them; whether it describes all the
possible situations of conforming system interaction with environment, or only a part of them.

- Traceability to standard requirements: whether a model contains adequate references to standard
requirements, and what part of model elements has such references.

- Processability: whether a model can be processed effectively by tools to generate necessary tests.

• Characteristics, related with model maintainability and evolvability:

- Readability and intelligibility for human readers. Includes adherence to suitable naming conventions,
demonstrativeness of graphical diagrams, and clarity of textual parts of model.

- Maintainability related with effort required to fix errors, make minor changes, and low-level refactoring,
and also with effort required to add new features and modules, to make high-level restructuring of a
model.

- Integrity related with consistency of representation of different model element and consistency of rules
and policies, which should be obeyed to make correct modifications and additions in different parts of a
model.

The presented list is not complete, some other attributes and characteristics that are significant for model quality may be
extracted and added to it.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)16

It is hard to provide general guidelines for objective measuring or achieving higher levels of these quality attributes.
Some guidelines of the second kind are presented above, but the specifics of the project and domain, complexity of the
modelled behaviour, and project environment influence all these attributes significantly, so any general
recommendation may fail in some specific situation.

7 Automatic test generation
This clause provides guidelines on test generation in the process of model-based conformance test development.

7.1 Defining test coverage
Test coverage achieved is one of the main characteristics of the tests, and test coverage criterion chosen as a target for
test generation is the main means of developer control over test generation process and the main input to this process in
addition to the model used.

Test coverage plays two roles in test development: a final measure of the completeness and adequacy of the tests, and a
target value of such a measure to be achieved by test development. In both cases there are no absolute expression of test
coverage, specific test coverage value can be achieved according to some coverage criterion. Such a criterion should
provide some classification of possible system behaviours, so that one can evaluate the extent of a set of behaviours
observed during testing with respect to all possible behaviours. Usually this classification is based on (classes of)
situations - each (class of) situations correspond to some set, sequence, or more complex aggregate of events occurred
during system operation.

Coverage criterion is a rule, which can be applied to some class of systems to define a finite set of situations related
with system behaviour. Each scenario of system behaviour can be further considered as corresponding to one or several
situations defined by a criterion. Test coverage achieved according to such a criterion is the percentage of these
situations actually realized during test execution. Since coverage criterion is applicable to many systems, occasionally
some of situations it defines for specific system cannot be achieved in any possible its execution. In this case such
unreachable situations are removed and test coverage achieved is calculated using only the set of reachable situations.
This rule ensures that less than 100 % coverage according to a criterion always means that some reachable behaviour is
not covered and makes understanding of coverage reports easier.

When a coverage criterion is used as a target for test development, developers try to ensure that a certain value (e.g.
100 %) of test coverage according to this criterion will be achieved by the tests developed.

The following list provides non-exhaustive set of coverage criteria examples:

• A situation corresponds to realization of applicability conditions of some requirement. The full set of situations
corresponds to the full set of requirements. This is so called requirements coverage criterion.

• A situation corresponds to execution of a transition in a state machine model. The full set of situations
corresponds to all transitions. This is so called transition coverage criterion.

• A situation corresponds to execution of a statement of textual code. The full set of situations corresponds to all
statements. This is so called statement coverage criterion.

• Cards, which can be inserted into an ATM, can be valid or invalid. This gives possibility to use coverage
criterion classifying all possible interactions with ATM in two classes: whether a valid or invalid card is used.
This is an example of coverage criterion based on input data partitioning.

• If a system code has an expression x + y, its behaviours may be classified as follows: values of x and y used
are such that the result of x + y is different from 0; x + y is different from x; x +y is different from y; x + y is
different from x - y; x + y is different from x * y; x + y is different from x / y. This is an example of
mutation-based coverage criterion - one designs a set of possible simple faults called mutations and measures
test suite adequacy by its capability to detect such faults.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)17

Several coverage criteria can be combined in a mixed one in many ways. Such mixed coverage criteria are more
suitable to evaluate test adequacy for complex systems with many different aspects of behaviour:

• A mixture coverage criterion contains all the situations, which are defined by initial coverage criteria. A set of
situations of this criterion is simply a union of sets of situations of original criteria.
For example, one may decide to measure test adequacy in testing based on state machine model by
combination of requirements coverage and transition coverage: 100 % coverage here means that all
requirements are covered and all transitions are executed.

• A product coverage criterion contains all possible combinations of situations of the initial criteria.
For example, one may partition ATM cards into invalid ones, valid ones with zero balance, valid ones with
small (< $100) balance, and valid ones with significant (>= $100) balance. Further one may try to cover all
possible combinations of transitions performed in ATM state machine model and card classes. In this example
not all theoretically possible combinations can be realized - usually one cannot request money with an invalid
card. Usage of product coverage criteria often requires accurate detection of such unreachable situations,
which should be removed from the criterion.

• Sequences coverage criterion contains all possible sequences of certain length of situations of one initial
coverage criterion.
For example, to test rather complex behaviour one can use pairs of transitions criterion - a situation in this
criterion corresponds to an execution of a pair of consecutive transitions in state machine model. Again, like
with product criteria, not all theoretically possible sequences can be reachable in practice; such unreachable
situations should be detected and removed from coverage criterion.

The choice of specific coverage criterion as a test construction target is one of the main decisions during test
development. In conformance testing it should be based on accurate understanding of conforming system behaviour and
possible serious breaches of the standard, which may prevent interoperability of systems in the domain. Requirements
coverage criterion is recommended as a starting point. If necessary developer may add more details from model to be
taken into account, until the coverage criterion becomes a good reflection of what is considered as really adequate tests.

Choosing coverage criterion (both as a measurement and as a target) in model-based testing projects should take into
account effort needed to evaluate it adequately. Use of model-based testing can lead to large numbers of tests and may
involve rather complex models. In such situation it is important to have some reliable automation for coverage
measurement, or, at least, it should not use too laborious manual procedures, lest evaluating coverage achieved will
require a lot of effort and may get unreliable results. So, the choice of coverage criteria in case of working with complex
models and large amounts of tests should be based on reliable tools capable to measure it or may include only as simple
as possible manual procedures (also for the possibility to double-check evaluated coverage if necessary).

7.2 Generating test cases
In most cases, test generation with the help of an MBT tool is rather straightforward: a developer provides a model,
chooses target coverage criterion, and performs test generation by the tool. However, model complexity or some other
issues may create obstacles on this way. This section provides recommendations on possible overcomes of such issues.

A situation when the test generation tool used directly supports generation targeted on the coverage criterion chosen is
the most simple. In case of lack of such support the following solutions are possible:

• Choose the most close to the chosen one coverage criterion supported by the tool as a target for test generation.

• If the used tool supports test generation targeted at labelled element coverage, test developer can design and
distribute in the model a set of labels corresponding to the desired coverage criterion.
This way may require inserting additional model elements or making instrumented descriptions of particular
scenarios (i.e. insert auxiliary variables serving as counters and flags and statements checking values of these
variables) just for the sake of enabling the tool to cover them.

• If the used tool supports test generation targeted not by a coverage criterion, but some other technique, the
developer should use this technique in a way that gives results as close as possible to satisfy the criterion
chosen. The skills needed for this are related with deep knowledge of tool capabilities.
For example, test generation may be controlled by specification of the set of generic or parameterized
scenarios chosen from the whole model behaviour, which becomes the base scenarios of possible tests. In this
case the developer should design a set of scenarios so that it contains all the situations to be covered targets the
tool to generation of the desired set of tests.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)18

In case when model complexity makes generation of proper tests problematic the techniques for coping with model
complexity presented in clause 6.3 should be applied: partitioning of a model into several separate models, choosing
more high abstractions to represent the desired behaviour, decomposition of a model into modules.

When complex objects are used as input data in the model, additional work may be required to design the necessary test
data. In particular case when test generation is hindered by complex constraints on input data it is useful to create a set
of test data pools for complex data types used in input events or operations and to force the tool to use those data pools
in test data generation (sometimes re-working of model interface may be required to implement this approach). Of
course, this way requires resolving manually at least some of the test data constraints ensuring achievement of desired
coverage goals.

7.3 Quality of generated test cases
Quality of generated tests is determined by attributes related with the ability of the generated tests to be used for
effective conformance testing and to be maintained and evolved with preservation of this ability and with adequate
effort:

• Characteristics, related with test suite ability to be used for effective conformance testing, include the
following ones:

- Correctness: whether a test suite correctly checks the standard requirements and other rules and
constraints of the domain.

- Functional completeness: whether a test suite checks the full set of the constraint on the conforming
system behaviour on the chosen abstraction level, or only a part of them.

- Test adequacy or test completeness: whether a test suite provides complete testing according to a chosen
coverage criterion, or some situations are missing.

- Traceability to standard requirements: whether a test suite contains adequate references to standard
requirements, and what part of tests has such references.

- Portability: whether a test suite can be used to check any implementation of the standard under
consideration, or has some restrictions on implementations under test.

- Usability: how much effort, what skills and knowledge are needed to run the tests, to develop additional
adapters, if needed, and to understand their results adequately.

- Readability and intelligibility for human readers in case of analysis of test behaviour related with failures
detected is required.

- Report completeness: whether the reported data contains all the necessary information on test runs (is a
run successful or not, what part of tests are executed, and what aren’t and why, what are the failures
detected and in what specific situations, what is the resulting test coverage according to some criteria).

- Report readability: whether the reports created are easy enough to comprehend.

• Characteristics related with test suite maintainability and evolvability. The main benefits of model-based
testing are related with transfer of most of maintenance tasks to models. Nevertheless tests suites should be
maintainable, and maintenance tasks implemented manually for them should be minimized:

- Readability and intelligibility for human readers in case of analysis related with possible adaptation or
transformation is required. This attribute is closely related with suitable and uniform structure of
generated tests, traceability of generated code to requirements and model elements, adherence to naming
conventions for functions and variables used in tests, convenient commenting of generated code, etc.

- Effectiveness of debugging the generated test if such need occurs. Since adaptation and transformation
can introduce errors in the tests, their structure and organization should support effective detection and
localization of such errors. One of the suitable means for that is logging, which can be switched on if
necessary and generate logs with information needed to trace and locate various issues.

The presented list is not complete, some other attributes and characteristics that are significant for test suite quality may
be extracted and added to it.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)19

8 Transformation and adaptation of the generated test
cases

Model-based testing (MBT) tools generate a set of tests from the model. The tools allow the users to automatically
transform generated test cases in different useful formats in order to document the test cases and to be able to execute
them. Regardless of the chosen testing language the generated code needs further adaptation until it becomes
executable. The reason for this is that the models are usually on a high abstraction level focusing on data and behaviour
that is important for the particular test goals, consequently the generated tests will also be on the same abstraction level
and details that were left out during modelling need to be added later to get an executable test suite.

Transforming the generated code can be performed not only for adapting the generated tests to get executable tests, but
also to improve their quality. For example, the readability of the generated code can be improved by some renaming,
restructuring of the test cases can enhance maintainability and introducing parameterization makes the executable test
suite more usable.

8.1 Transformation and adaptation steps
Please note, that the transformation and adaptation steps mentioned here are not always needed and are therefore
optional. The order of the clauses does not impose any order for the execution of the steps.

8.1.1 Adaptation to the target test environment

The output of the MBT tools is a generated test suite, where each test case has its test logic that is working with
messages to be sent and expected answers. Since the models are usually on a high abstraction level, the generated test
cases will be on this high abstraction level as well. Some automatic code generation is supported in most cases by the
tools. In order to get an executable test suite the level of abstraction of the generated code should be lowered by making
them more concrete, for example by adding some extensions.

In order to keep the consistency between the model and the generated code, it is not recommended to directly modify
the generated code. The reasons are obvious: the modifications will be lost, when a new test (and code) generation is
performed. In order to avoid this situation some tools are generating code which is using a clear API, and the extension
should implement this API. If it is not the case, it is still practical to design such an API between the generated test logic
and the required extensions in order to keep them as clearly separated as possible. These extensions with a well-defined
API are often called test frameworks. Using the OSI terminology ISO/IEC 9646-1 [i.4] the Abstract Test Suite (ATS) is
built from the generated code and (an optional) test framework.

A test framework may have several responsibilities. Typically they are performing a two way transformation between
the data structures of the messages on a high abstraction level in the generated tests and the data structures that are
representing concrete, "real-life" messages. This transformation may include adding values to fields that were not
modelled, or converting the generated values of fields that were differently modelled to keep the abstraction level of the
model high. For example, the data structures that are used for concrete messages can be described in ASN.1. In
communication protocol testing the test framework often implements the encoding and decoding of the low level data
structures and usually has some means to use a transport protocol to send them out, or receive the incoming messages.

Test frameworks are typically manually developed, but provided that the API between the generated code and the test
framework is not changed they can be reused without modification for further test generations. Although the test
frameworks are usually project specific, if their provided API is suitable for models in other projects, they can be
reused.

8.1.2 Parameterization

Parameterization of the generated test cases improves their adaptation to different contexts.

A parameter is a variable for which the value will be provided at testing run time. Parameters can be introduced both in
the model, and they will then appear in the generated test suite, or in the test framework.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)20

The method to add a parameter to the test framework is naturally depending on the language which is used for
implementing the test framework. Some languages have sophisticated means and language structures to support
parameterization, some others needs extra development (e.g. parsing a configuration file). An example for a test
framework parameter can be TTCN-3 module parameters.

In order to get parameterization in the generated test suite code, the modelling language and the model based testing
tool have to support this feature. In case there is no support for parameterization in the model, then it is still possible to
assign some special values to the variables in the model. These special values will be present in the generated code of
the test cases and therefore during the data transformation in the test framework the special generated values can be
replaced with the values of parameters that are coming from an external source. Naturally, it is also possible to add
parameters manually to the generated code, but this has to be done very carefully, because it is possible, that the manual
additions will be lost after a new code generation.

As an example IXIT (Implementation eXtra Information for Testing) has information about the environment and the
SUT (System Under Test), which is inevitable for an executable test suite. The IXIT parameters can appear either as
parameters in the generated code or parameters in the test framework.

8.1.3 Renaming of identifiers

Normally the code generated by an MBT tool is meant to be transparent and not for the eye of the human users, but in
some cases the readability of the generated code can be an important issue. Standardized test specification development
for example is an area, where the readability of the generated code has to be seriously considered, since today this is the
result that will be standardized.

Good naming of the identifiers promotes comprehending the generated code. Suitable names of the test cases help
understanding the goal of the test case.

8.1.4 Structuring of test behaviour

Structuring the test behaviour can improve readability and reusability. For example, in the OSI conformance testing
methodology ES 202 553 [i.7] the tests are divided into three sections: preamble, test body and postamble. The
preamble drives the SUT into the state required to perform the test body, then the test body is executed to verify the test
goal, finally the postamble cleans up and restores the SUT to its initial state.

There are MBT tools that support generating a test suite so that the test cases are organized as preamble, test body and
postamble. In some cases the tools don’t have this feature and therefore some further steps need to be taken to transform
the generated test suite and structure it according to the desired way.

8.1.5 Parallelization

Using concurrent test configurations, where the test behaviour is executed in parallel, has several benefits: it enables to
handle some SUT non-determinisms (for example there can be cases where the order of the expected answers is hard to
guarantee) and identifying behaviours executable in parallel often improves readability and reusability.

TTCN-3 allows creating concurrent test configurations, where the test components are executed in parallel. As of today
the MBT tools are normally not supporting code generation for concurrent test execution. In case it is required the
generated code can be either transformed, or the test framework can be developed in a way, that it takes care of the
creation of parallel test processes and handles their synchronization.

8.1.6 Logging

Log statements are not only making the generated code more readable, but they also help during the analysis of the test
results. Adding logging to the following actions is recommended:

• Sending/receiving messages.

• Verdict changes.

• "Executing" requirement annotations in the model during test execution.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)21

8.2 Quality of the transformed and adapted test suite
Basically the quality characteristics described for the generated test cases (see clause 7.3) apply here as well.

It is important that the adaptation and transformation of the generated test suite should not decrease the quality of the
generated test cases.

From maintainability point of view it is obvious that any manual (not automatic) transformation of the generated code
can decrease maintainability, since the modification of the model, or the (re-)generation of the test suite may overwrite
the manually added transformations. But in the case of manual transformation the consistency of the transformed code
and the model (and the test suite, etc.) should somehow be preserved.

ETSI

ETSI EG 203 130 V1.1.1 (2013-04)22

History

Document history

V1.1.1 February 2013 Membership Approval Procedure MV 20130402: 2013-02-01 to 2013-04-02

V1.1.1 April 2013 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Scope and purpose of these guidelines
	5 Process
	5.1 ETSI test development process
	5.2 Integration of MBT into the ETSI test development process

	6 Modelling for testing
	6.1 Identification of requirements
	6.2 Requirements modelling
	6.3 Identification of modelling strategy
	6.4 Annotating models with references to requirements
	6.5 Modelling guidelines
	6.6 Model quality

	7 Automatic test generation
	7.1 Defining test coverage
	7.2 Generating test cases
	7.3 Quality of generated test cases

	8 Transformation and adaptation of the generated test cases
	8.1 Transformation and adaptation steps
	8.1.1 Adaptation to the target test environment
	8.1.2 Parameterization
	8.1.3 Renaming of identifiers
	8.1.4 Structuring of test behaviour
	8.1.5 Parallelization
	8.1.6 Logging

	8.2 Quality of the transformed and adapted test suite

	History

