
 EG 202 103 V1.1.1 (1999-05)
ETSI Guide

Methods for Testing and Specification (MTS);
Guide for the use of the second edition of TTCN

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)2

Reference
REG/MTS-00056 (jh000icq.PDF)

Keywords
TTCN, testing, methodology, performance

ETSI

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Internet
secretariat@etsi.fr

Individual copies of this ETSI deliverable
can be downloaded from

http://www.etsi.org
If you find errors in the present document, send your

comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1999.
All rights reserved.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)3

Contents

Intellectual Property Rights ... 6

Foreword .. 6

1 Scope.. 7

2 References ... 7

3 Abbreviations... 8

4 Introduction.. 8

5 Concurrency... 9
5.1 Introduction to Concurrent TTCN ... 9
5.2 Test Components ... 10
5.3 Co-ordination of test components .. 10
5.3.1 Co-ordination points... 10
5.3.2 Co-ordination Messages... 11
5.4 Defining different test configurations .. 11
5.4.1 Connection to the IUT.. 12
5.4.2 Connecting MTCs and PTCs.. 12
5.4.3 The Master and Parallel Test Components... 13
5.4.4 The CREATE Construct... 13
5.4.5 Scope of Variables ... 14
5.5 Verdicts.. 14
5.5.1 R_Type... 14
5.6 The DONE Statement .. 15
5.7 Summary of MTC and PTC characteristics ... 15

6 Encoding .. 16
6.1 Introduction to specifying encoding information in TTCN.. 16
6.2 Scope of application of encoding information ... 17
6.3 Encoding Definitions ... 17
6.4 Encoding Variations .. 18
6.5 Invalid Field Encoding definitions... 18
6.6 Using variant and invalid encodings in PDUs and Constraints.. 19
6.7 Using the ENC keyword .. 20

7 Modular TTCN.. 20
7.1 Introduction ... 20
7.2 Importing objects to a Test Suite or module .. 22
7.3 Exporting objects from a Test Suite or module ... 22
7.4 TTCN modules .. 23
7.5 External TTCN objects .. 24
7.6 Renaming... 24

8 Other TTCN version 2 features ... 24
8.1 Grouping of constraints and other tables ... 24
8.1.1 Global restrictions on groups of tables... 25
8.2 Passing Matching Symbols to constraints .. 25
8.3 Empty PDUs .. 25
8.4 The RETURN statement .. 25
8.5 OTHERWISE and the fail verdict ... 26
8.6 Collective comments.. 26
8.7 Test Suite Constants by Reference... 26
8.8 PCO Type Declarations ... 26
8.9 ACTIVATE statement ... 26
8.10 Test suite operations using the procedural definition... 27
8.11 Using ASN.1 '94 .. 27

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)4

9 Some Do's and Don'ts when using TTCN ... 27
9.1 Use of matching symbols in receive constraints .. 27
9.2 Restriction on using receive events.. 28
9.3 First set of alternatives in default. .. 28
9.4 Declaration part and protocol standard.. 28
9.5 Declaration part and transfer syntax .. 29
9.6 Timers.. 29
9.7 Wild cards in send constraints ... 29
9.8 Use of the metatype PDU .. 29
9.9 Page number in the test suite overview.. 30
9.10 Test case end.. 30
9.11 ASN.1 definitions in TTCN... 31
9.12 Some common errors to avoid ... 32

Annex A (normative): Some examples of the use of TTCN... 33

A.1 Concurrent TTCN.. 33
A.1.1 Example of EN 300 403-7: ATS&PIXIT for DSS1 layer 3 network...33
A.1.1.1 Description of ATM used... 33
A.1.1.2 Conventions for test components and PCOs .. 33
A.1.1.3 The Test Component Configuration Declaration ... 34
A.1.1.4 Example of a test case .. 35
A.1.1.5 Example of a co-ordination message.. 35
A.1.2 Example of ETS 300 806-2: ATS&PIXIT for the Generic Functional Protocol ... 36
A.1.2.1 Test Configurations and use of Concurrent TTCN... 36
A.1.2.2 Test Component Configuration Declaration for the Transit configuration... 37
A.1.2.3 Example of a test case for Transit Configuration ... 38

A.2 Index table of TTCN topics ... 38

Annex B (normative): Application of TTCN to other types of testing ... 40

B.1 Introduction.. 40

B.2 Application specific requirements... 40
B.2.1 CORBA ... 40
B.2.1.1 Dynamic test configurations... 40
B.2.1.2 IDL and TTCN mapping.. 41
B.2.1.3 Dynamic parts of CORBA test cases.. 41
B.2.2 Database applications .. 42

B.3 TTCN based performance testing.. 42
B.3.1 Goal of performance testing... 42
B.3.2 Relations to Quality of Service metrics.. 42
B.3.3 Relations to conformance testing ... 42
B.3.4 Metrics to be measured .. 43
B.3.4.1 Throughput... 43
B.3.4.2 Frame latency ... 44
B.3.4.3 Throughput fairness.. 44
B.3.4.4 Frame Loss Ratio ... 44
B.3.4.5 Maximum Frame Burst Size... 45
B.3.4.6 Call Establishment Latency.. 45
B.3.5 Performance TTCN (PerfTTCN)... 45
B.3.5.1 Concepts of PerfTTCN .. 45
B.3.5.1.1 PerfTTCN Test components... 45
B.3.5.1.2 Performance test configurations ... 46
B.3.5.1.3 Measurements and Analysis ... 46
B.3.5.1.4 Performance test behaviour .. 46
B.3.5.2 PerfTTCN specific language constructs... 46
B.3.5.2.1 Foreground and background test components .. 47
B.3.5.2.2 Background traffic patterns .. 47
B.3.5.2.3 Measurements and Analysis ... 48

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)5

B.3.5.2.4 Performance constraints.. 48
B.3.5.2.5 Performance Test Behaviour .. 49
B.3.5.3 Application of PerfTTCN .. 49
B.3.5.4 Semantics of PerfTTCN... 50
B.3.6 Conclusions.. 50

B.4 TTCN based real-time testing.. 50
B.4.1 Goal of real-time testing .. 50
B.4.2 Relations to conformance testing ... 50
B.4.3 Problems of using TTCN for real-time testing... 51
B.4.4 Real-time TTCN .. 53
B.4.4.1 The RT-TTCN Approach... 53
B.4.4.2 RT-TTCN specific language constructs ... 53
B.4.4.2.1 Extensions of the TTCN declaration part ... 53
B.4.4.2.2 Extensions of the TTCN dynamic part ... 53
B.4.4.2.3 Assigning test verdicts .. 54
B.4.4.3 Semantics of RT-TTCN ... 55
B.4.4.4 Application of RT-TTCN... 55
B.4.5 Conclusion ... 55

B.5 Advanced test architectures... 56

B.6 On the introduction of new TTCN concepts ... 58
B.6.1 Step 1: Generalisation of TTCN concepts ... 58
B.6.2 Step 2: TTCN based real-time testing.. 58
B.6.3 Step 3: TTCN based performance testing .. 58
B.6.4 Related issues... 58

Bibliography .. 59

History.. 60

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect
of ETSI standards", which is available free of charge from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)7

1 Scope
The present document provides an introduction to the new features defined in the second edition of the Tree and Tabular
Combined notation (TTCN) as defined in ISO/IEC 9646-3 [1]. The present document is a revision of EG 201 148 [2].
The present document is intended to be used as introductory reference material for those wishing to gain an
understanding of the new TTCN features and on the application of TTCN to areas other than conformance testing.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

• A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] ISO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[2] EG 201 148 (V1.1): "Methods for Testing and Specification (MTS); Guide for the use of the
second edition of TTCN".

[3] ITU-T Recommendation X.680 Amendment 1 (1994): "Abstract Syntax Notation One (ASN.1):
Specification of basic notation: Rules of extensibility".

[4] TR 101 295 (V1.1): "Methods for Testing and Specification (MTS), Rules for the transformation
of ASN.1 definitions using X.681, X.682 and X.683 to equivalent X.680 constructs".

[5] ETS 300 806-2 (1998): "Private Integrated Services Network (PISN); Inter-exchange signalling
protocol; Generic functional protocol for the support of supplementary services; Part 2: Abstract
Test Suite (ATS) specification".

[6] EN 300 286-6 (V1.2): "Integrated Services Digital Network (ISDN); User-to-User Signalling
(UUS) supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol;
Part 6: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra Information for
Testing (PIXIT) proforma specification for the network".

[7] ISO/IEC 8825-1: "Information technology -- ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)".

[8] EN 300 130-4: "Integrated Services Digital Network (ISDN); Malicious Call Identification
(MCID) supplementary service; Digital Subscriber Signalling System No. one (DSS1) protocol;
Part 4: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra Information for
Testing (PIXIT) proforma specification for the user".

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)8

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
ATM Asynchronous Transmission Mode
ATS Abstract Test Suite
BER Basic Encoding Rules
CC Control of Component
CLR Cell Loss Ratio
CORBA Common Object Request Broker Architecture
CL Communication Link
CM Co-ordination Message
CoP Communication Point
CP Co-ordination Point
EET Earliest Execution Time
FILO First-In-Last-Out
IC Interface Component
IDL Interface Description Language
INAP IN Application Part
IUT Implementation Under Test
LET Latest Execution Time
LILO Last-In-Last-Out
MFBS Maximum Frame Burst Size
MIMO Message-In-Message-Out
MTC Main Test Component
NFOT Nominal Frame Output Time
PCO Point of Control and Observation
PDU Protocol Data Unit
PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation eXtra Information for Testing
PTC Parallel Test Component
QoS Quality of Service
SUT System Under Test
TCAP Transaction Capabilities Application Part
TINA Telecommunications Information Networking Architecture
TSP Test Suite Parameter
TTCN Tree and Tabular Combined Notation

4 Introduction
The present document summarizes and gives examples of the additional features and capabilities of TTCN version 2 that
are considered to be of most interest when specifying Abstract Test Suites for telecommunications protocols and
services. The major new features are:

• concurrency, which allows the parallel execution of different dynamic behaviours;

• encoding definitions, which allows the definition of encoding of PDU types and PDU Constraints (or even
individual Constraint fields);

• modularity, which allows the reuse of parts of existing ATS and the specification of modules;

• use of ASN.1 1994 (X.680 series).

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)9

Less extensive, but nonetheless important, changes are:

• grouping of constraints and other tables;

• possibility to pass matching symbols to Constraints;

• PDUs need not contain any fields;

• the RETURN statement to exit Test Steps and Defaults;

• no longer mandatory that an OTHERWISE in a Default should lead to a fail verdict;

• Collective Comments in some tables;

• predefined type (R_Type) for verdicts;

• use of Active Defaults to switch on/off default behaviour;

• Test Suite Operations may be specified as procedures rather than informal text;

• ability to declare Test Suite Constants by reference.

5 Concurrency

5.1 Introduction to Concurrent TTCN
Unlike TTCN version 1, concurrent TTCN allows test suites:

• to use more than two Points of Control and Observation (PCO);

• to use more than one underlying service provider;

• to have dynamic behaviours executing in parallel;

• to specify co-ordination between concurrently executing test components.

These capabilities have introduced additional concepts, proformas, statements and verdict mechanisms to TTCN.

• Additional concepts:

• Test Components;

• Test Component Configurations;

• Co-ordination Points (CP);

• Co-ordination Messages (CM).

• Additional proformas:

• Test Component Declarations;

• Test Component Configuration Declaration(s);

• CP Declarations;

• CM Declarations (Tabular and ASN.1);

• CM Constraints (Tabular and ASN.1).

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)10

• Additional constructs and statements:

• CREATE;

• DONE.

• Additional verdict mechanisms:

• local result variables;

• global result variable.

5.2 Test Components
The building-blocks of Concurrent TTCN are called test components. A test component can be either a Main Test
Component (MTC) or a Parallel Test Component (PTC). All test components are declared in a single Test Components
Declaration table. In a Test Suite this table comes after the Timer Declarations table.

Table 1: Declaring Test Components

Test Component Declarations
Component Name Component Role Nr of PCOs Nr of CPs Comments

MTC1
PTC1
PTC2

MTC
PTC
PTC

0
1
1

2
1
1

Each test component should have a name that is unique within the test suite and be assigned the role of either MTC or
PTC. This table should contain at least one MTC and at least one PTC (see also subclause 8.1.1).

NOTE 1: MTC and PTC are now reserved words in TTCN.

At this stage we need only define placeholders for the actual PCOs and Co-ordination Points that will later be associated
with the test components in a particular configuration. This is done by simply stating the number of PCOs and/or CPs
that may be associated with each test component.

NOTE 2: A test component may have neither PCOs nor CPs. In fact, it is quite feasible that this could apply even to
an MTC. The MTC could CREATE the PTCs and achieve co-ordination, albeit limited, using the DONE
statement and the implicit verdict mechanism.

5.3 Co-ordination of test components
Explicit co-ordination between test components is achieved using Co-ordination Messages (CM) exchanged at
Co-ordination Points (CP).

5.3.1 Co-ordination points

CPs are very similar to PCOs. They allow asynchronous communication between test components (i.e., between exactly
two PTCs or between one PTC and the MTC). In other words, a CP may not be shared between more than two test
components.

A CP may not be connected to the IUT, either directly or indirectly via a service provider.

In a test suite the Co-ordination Point declarations come after the PCO Declarations.

Table 2: Declaration of Co-ordination Points

Coordination Point Declarations
CP Name Comments

CP1
CP2

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)11

There is a predefined type in TTCN called CP. This is useful when parameterizing PTCs.

NOTE: CP is a reserved word in TTCN.

5.3.2 Co-ordination Messages

CMs are very similar to Abstract Service Primitives (ASP) except that they occur at CPs only. For the definition of a
CM either the tabular form or Abstract Syntax Notation One (ASN.1) as defined in ITU-T Recommendation X.680 [3]
can be used.

NOTE 1: CMs are treated like ASPs and not as PDUs because TTCN is not concerned with the encoding of
Co-ordination messages. That is a matter for the implementers of the test suite.

A CM parameter may be of any TTCN type including structured types and the metatype PDU. Generally, though, it is
recommended that CMs are kept as simple as possible. In many cases a CM will not even have parameters, the name
itself will be adequate (e.g., STOP, WAIT, etc.).

There are no predefined TTCN Co-ordination Messages.

CMs may be declared using either TTCN tables or ASN.1. In a test suite, CM Declarations come after the PDU
Declarations, as illustrated in table 3.

Table 3: Definition of a Co-ordination Message

CM Type Definition
CM Name : CM_ERROR
Comments :

Parameter Name Parameter Type Comments
Error INTEGER

CM constraints are similar to ASP constraints. In a test suite, CM Constraints come after the PDU Constraints.

Table 4: A Co-ordination Message constraint

CM Constraint Declaration
Constraint Name : ERR (err_num:INTEGER)
CM Type : CM_ERROR
Derivation Path :
Comments :

Parameter Name Parameter Value Comments
Error err_num

NOTE 2: When a CM has no parameters it is not necessary to define a constraint for it. This also means that an
entry in the constraints' reference column of a dynamic behaviour is not required.

NOTE 3: In TTCN Version 2 this point also applies to ASPs and PDUs generally.

5.4 Defining different test configurations
An actual abstract test architecture is defined by connecting together a number of test components in what is called a
Test Component Configuration Declaration. In the present document we will sometimes use the term configuration for
short.

A configuration will consist of exactly one MTC and zero or more PTCs.

In most practical applications a single ATS will make use of more than one configuration. Each configuration is defined
in a separate Test Component Configuration Declaration Table.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)12

In a test suite, Test Component Configuration Declarations come after the Test Component Declarations.

Table 5: A typical configuration

Test Component Configuration Declaration
Configuration Name : CONFIG1
Comments :

Components Used PCOs Used CPs Used Comments
MTC1
PTC1
PTC2

PCO1
PCO2

CP1, CP2
CP1
CP2

5.4.1 Connection to the IUT

The PCOs Used column (see table 5) lists the actual PCOs (if any) associated with the test components. The relation of
the PCOs to the IUT, either directly (as in the case of a PTC that is part of an Upper Tester) or indirectly via an
underlying service provider is indicated, as usual, in the PCO Declarations table and also in the PCO Type Declarations
table.

Note the following rules:

• each entry in this column is a list of zero or more PCOs;

• for each MTC and each PTC the number of entries in this list should be the same as the corresponding number of
PCOs stated in the declaration of the test component;

• no PCO may be used more than once in a single configuration (i.e., test components cannot share PCOs).

5.4.2 Connecting MTCs and PTCs

The CPs Used column lists the actual CPs (if any) associated with the test components. These entries are used to
interconnect test components.

Note the following rules:

• each entry in this column is a list of zero or more CPs;

• for each PTC the number of entries in this list should be the same as the corresponding number of CPs stated in
the declaration of the test component;

• for each MTC the number of entries may be the same or less but not more. This allows for flexibility when using
the same MTC in various configurations;

• no CP name is allowed to appear more than once in a single list;

• each CP name that is in one list should appear in exactly one other list. In this manner connected pairs of test
components can be specified.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)13

Service Provider(s)

MTC

PTC2PTC1

CP1

PCO1 PCO2

CP2

IUT

Figure 1: The configuration specified in table 5

5.4.3 The Master and Parallel Test Components

Each test configuration shall have one and only one MTC. Furthermore, the MTC shall be located on the Lower Tester
side of the architecture. The MTC is responsible for creating the PTCs, for overall co-ordination of the Test Case and
for assigning the final verdict. This means that the Test Case is the MTC. The variables, constants, timers, etc. of the
Test Case are the variables, constants, timers, etc. of the MTC.

A particular configuration is associated to a Test Case by the (new) entry in the Test Case Dynamic Behaviour header,
as illustrated in table 6.

Table 6: Associating a configuration with a Test Case

Test Case Dynamic Behaviour
Test Case Name :
Group :
Purpose :
Configuration : CONFIG1
Defaults :
Comments :

Nr L Behaviour Description Constraint Ref V Comments

5.4.4 The CREATE Construct

PTC behaviour is specified using Test Steps which may either reside in the Test Step library or be local trees. The MTC
binds dynamic behaviour to the PTCs using the CREATE construct. This construct also has the effect of starting
execution of the named PTC or PTCs. As each created PTC is a separate executing entity the same Test Step may be
used, if wished, to define the behaviour of different PTCs.

Table 7: The CREATE construct

7 :
8 CREATE (PTC1:Step1 (CP1), PTC2:Step2(CP2))
9 :

In table 7 the Test Step Step1 is bound to PTC1 and the Test Step Step2 is bound to PTC2. Note that parameters may be
passed to the PTCs, in this case the Co-ordination Points CP1 and CP2.

Test Steps that are invoked from a Test Case in the normal manner (i.e., + TestStepName) are part of the MTC and
should not be considered as PTCs, only Test Steps that are invoked from a Test Case using the CREATE construct
become PTCs.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)14

5.4.5 Scope of Variables

At the start of execution of the Test Case each test component is allocated its own fresh set of variables, timers,
constraints, etc. These are limited in scope to the test component during the life of the Test Case: data is not shared
between test components.

Only an MTC may use Test Suite Variables.

5.5 Verdicts
Concurrent TTCN includes a number of predefined variables for tracking the intermediate results and the final verdict.
These are:

• each PTC maintains its own local result variable called R;

• the MTC also has a local result variable but this is called MTC_R ;

• the MTC also maintains a global result variable called R.

A PTC may assign a preliminary result (for example (P)) in its verdict column. This has the effect of updating both the
local R and the global R according to the priority table defined in ISO/IEC 9646-3 [1].

NOTE: These priority rules are unchanged from TTCN version 1. Also, MTC_R is now a TTCN reserved word.

A PTC may also assign a result without parentheses (for example P), in its verdict column. This updates the local and
global result variables as usual and terminates execution of the PTC. However, this result is not to be considered as a
final verdict.

 MTC

 PTC

 local result variable R

E.g. P or (P)

 PTC

 local result variable R

E.g. P or (P)

global result variable R

local result variable MTC_R

E.g. P or (P)

Figure 2: Relation between the different result variables

Similarly, the MTC will update its local result variable MTC_R and the global result variable R in accordance with the
priority rules. A result without parentheses in the MTC is considered to be the final verdict and has the effect not only of
terminating execution of the MTC but also of any PTCs that are still executing.

The TTCN standard does not say anything about the actual mechanisms that perform the updating of the local and
global R variables the and MTC_R variable. This is a matter for the implementors of the test suite. Use these variables
with care, for example always after DONE (see subclause 5.6).

5.5.1 R_Type

R_Type is a new predefined type associated with values of verdicts (pass, fail, inconc, none). It can be useful if verdicts
need to be carried, say, in a Co-ordination message.

NOTE: This facility is less useful now because concurrent TTCN supports the implicit passing of verdicts.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)15

5.6 The DONE Statement
The DONE statement is used to check whether or not a test component has terminated execution. It may be used by both
MTCs and PTCs, but should generally be used by the MTC to ensure that all PTCs have ceased execution before
assigning the final verdict.

It is strongly recommended to check that the PTCs have finished their execution, with the use of the DONE statement in
MTC, before terminating the MTC.

Table 8: The DONE Statement

5 :
6 ?DONE (PTC1, PTC2) PASS
8 :

The DONE statement has no effect on the test component being interrogated (it does not terminate execution of a test
component). In a PTC termination will either occur:

• when the PTC behaviour tree ends in a leaf; or

• when an entry without parentheses is encountered in the verdicts column of the PTC or the MTC; or

• when the PTC is instructed to do so by an appropriate CM (which has to be defined in the test suite).

A DONE statement without an argument list has the same effect as interrogating all the PTCs that have been created
prior to the DONE. Only an MTC may do this global interrogation.

Note that ISO/IEC 9646-3 [1] recommends the use of TIMEOUT as an alternative (subsequent) event to DONE. The
present document discourages this practice since this would only handle test case errors and turn them into verdicts.

5.7 Summary of MTC and PTC characteristics
The table 9 summarizes the main characteristics of MTCs and PTCs.

Table 9: Characteristics of MTCs and PTCs

Capability MTC PTC
Is associated with a ... Test Case Test Step
Can use the CREATE construct Yes No
Can use the DONE statement Yes Yes
Results written to the global result variable R Yes Yes
Results written to the local result variable MTC_R Yes No
Results written to a local result variable R No Yes
Can assign a final verdict Yes No
Can use all TTCN types Yes Yes
Can use Test Suite Parameters and other Constants Yes Yes
Can use Test Suite Variables Yes No
Scope of Test Case Variables, Timers, Operations, etc. Local to MTC Local to PTC
Scope of attached Test Steps and Defaults Local to MTC Local to PTC

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)16

6 Encoding

6.1 Introduction to specifying encoding information in TTCN
This addition to TTCN allows test suites to specify the encoding of PDUs. This is useful where a base standard offers
different choices of encoding rules and/or to test how an IUT handles invalid encoding. Mechanisms are provided for
the definition of:

• general encoding;

• variations on the general encoding;

• invalid field encoding.

These mechanisms may be used both with tabular TTCN PDUs and ASN.1 PDUs. They shall not be used for ASPs or
CMs, the encoding of which is an implementation matter.

These capabilities have introduced a number of additional proformas and added header entries and additional columns
to some existing TTCN proformas.

• Additional proformas:

• Encoding Definitions (e.g., table 10);

• Encoding Variations (e.g., table 11);

• Invalid Field Encoding Operation Definition(s) (see subclause 6.5).

• Changes to existing proformas:

• Simple Type Definition(s) - one additional header entry, one additional column;

• Structured Type Definition(s) - one additional header entry, one additional column;

• ASN.1 Type Definition(s) - one additional header entry, some additional syntax;

• ASN.1 Type Definitions by Reference - one additional column;

• PDU Type Definition(s) - two additional header entries, one additional column;

• ASN.1 PDU Type Definition(s) - two additional header entries, some additional syntax;

• ASN.1 PDU Type Definitions by Reference - two additional columns;

• Corresponding changes to the relevant Constraints tables have also been made.

NOTE: All these changes are optional and need not appear if encoding is not used.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)17

6.2 Scope of application of encoding information
The mechanisms for TTCN Encoding Information shall only be used if the protocol or service specification defines or
makes reference to a standardized set of encoding rules. New encoding rules could also be created when needed by an
ATS (e.g. "direct encoding" rule when ASN.1 is used to defined tabular items where BER is not applicable). These new
encodings shall be fully specified in a document provided with the ATS (e.g., ATS&PIXIT document).

Encoding Information can be of the following kinds:

• reference to the general encoding rule(s) applicable to the entire test suite;

• definitions of the encoding variations (if any) on the general encoding rule(s);

• definitions of invalid PDU field encoding (if any).

The encoding may be applied at five levels, given below in increasing order of priority:

• the top-level applies to the entire test suite, that is, the encoding rules apply to all PDUs sent or received in the
test suite, unless overridden by one of the following cases;

• the second level applies to all PDUs of a particular type. All PDUs of this type will be encoded according to the
variant given in the PDU type definition header;

• the third level allows specific fields of a particular PDU type to be given either a variant encoding or an invalid
encoding;

• the fourth level allows an (entire) individual constraint to be given a variant encoding;

• finally, the fifth level allows specific fields of an individual PDU constraint to be given either a variant encoding
or an invalid encoding.

NOTE: For simplicity, this subclause only discusses PDUs and PDU Constraints. The above equally applies to
Structured Types and Structured Constraints (that are used in PDUs). Similarly, the same applies to
Simple Types and Structure elements as to PDU fields. However, re-definition of Encoding Rules is not
permitted in Structured Types.

6.3 Encoding Definitions
The Encoding Definitions figure states the encoding rules that are used in the ATS by referring to the appropriate
standard where the rules are defined. In a Test Suite this table comes immediately before the Test Suite Operation
Definition tables.

Table 10: Typical use of Encoding Definitions

Encoding Definitions
Encoding Rule Name Reference Default Comments

BER
PER
DER
DirEnc

ISO/IEC 8825-1: 1993
ISO/IEC 8825-1: 1993
ISO/IEC 8825-1: 1993
EN 300 130-4

TSP1
[TSP2 OR TSP3]

Direct encoding
defined in the
ISDN standards.

The Boolean expression in the Default column is used to determine the default set of encoding rules. In our example, if
the Test Suite Parameter TSP1 has the value TRUE then BER is used. If either TSP2 or TSP3 evaluates to TRUE then
PER applies. No entry in the Default column has the same effect as writing FALSE. If this column is empty then this is a
test case error (see also subclause 8.1.1).

The DirEnc encoding rule is not specified by a standardization body but is needed for this ATS. The encoding rule is
than defined locally in the ATS&PIXIT document.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)18

6.4 Encoding Variations
The Encoding Variations table states variations on the general encoding rules that are used in the ATS, if any. These
variations are allowed according to the original encoding rules. In a Test Suite this table comes after the Encoding
Definitions.

Table 11: Typical use of Encoding Variations

Encoding Variations
Encoding Rule Name : BER
Type List : INTEGER
Comments :

Encoding Variation Reference Default Comments
SD
LD (len:INTEGER)

6.3.3.1
6.3.3.1

TRUE

Table 10 shows two variations of Basic Encoding Rules (BER, Short Definite and Long Definite encodings for
INTEGER values). The default variant is Short Definite.

The Type List entry indicates to which types this encoding applies. If this entry is empty then the encoding applies to all
types.

NOTE: The encoding variation may be followed by a formal parameter list, if required. In our example, len states
the length of the LD encoding.

6.5 Invalid Field Encoding definitions
The Invalid Field Encoding Definitions table is used to define invalid encodings of PDU fields, if any. In a Test Suite
these tables come after the Encoding Variation tables.

The invalid encodings are defined using the (new) TTCN syntax for procedures (not the free text format).

Table 12: Definition and use of invalid field encodings

Invalid Field Encoding Operation Definition
Group : ProtocolDiscriminator
Operation Name : wrongPD (prDiscr : PD)
Result Type : PD
Comments : Generate a wrong encoded protocol discriminator.

Definition
VAR PD_OUT : PD
ENDVAR
BEGIN
PD_OUT := INT_TO_BIT ((BIT_TO_INT (prDiscr)) + 1 MOD 128)
RETURNVALUE PD_OUT
END

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)19

Table 12a

PDU Type Definition
PDU Name : ALERTING_PDU_wrong_PD
PCO Type : L
Encoding Rule Name :
Encoding Variation :
Comments : The alerting PDU with a wrong encoded protocol

discriminator.
Field Name Field Type Field Encoding Comments

pd PD wrongPD protocol discriminator is not
correctly encoded.

cr CR
mt BITSTRING[8]
chi CHI DirEnc Specified in tabular form in the

protocol specification, but defined
with an ASN.1 table in TTCN.

fie FIES
pi PI
dsp DSP
uui UUI

6.6 Using variant and invalid encodings in PDUs and
Constraints

In the following example, let us assume that the default encoding rules BER apply (as stated in the Encoding Rules table
of table 11).

Table 13: PDU Type definitions with encoding information

PDU Type Definition
PDU Name : A_PDU
PCO Type : L
Encoding Rule Name :
Encoding Variation : LD
Comments : All PDUs (Constraints) of this type will be encoded to BER.

However, all fields of type INTEGER in this PDU will be
 encoded to the Long Definite (LD) variation.

Field Name Field Type Field Encoding Comments
F1
F2
F3

INTEGER
INTEGER
INTEGER

This field will be encoded Long
Definite
This field will be encoded Long
Definite
This field will be encoded Long
Definite

Table 13a

PDU Type Definition
PDU Name : ALERTING_PDU
PCO Type : L
Encoding Rule Name :
Encoding Variation :
Comments : By Default, all the ASN.1 fields are using BER. However the

field CHI, defined with ASN.1 tables uses a direct encoding.
Field Name Field Type Field Encoding Comments

pd PD
cr CR
mt BITSTRING[8]
chi CHI DirEnc Specified in tabular form in the

protocol specification, but defined
with an ASN.1 table in TTCN.

fie FIES
pi PI
dsp DSP
uui UUI

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)20

Table 14: A constraint with encoding derived from the PDU type

PDU Constraint Declaration
Constraint Name : C1
PDU Type : A_PDU
Derivation Path :
Encoding Rule Name :
Encoding Variation :
Comments : This constraint will be encoded according to the encoding
 information given in the definition of A_PDU (i.e. BER and

Long Definite). However, the encoding of fields F1 and F2
 is explicitly overridden.

Field Name Field Value Field Encoding Comments
F1
F2
F3

123
456
789

SD
INVALID_LENGTH(2)

Switch back to Short Definite
This field will given an invalid
encoding
This field will be encoded Long
Definite

6.7 Using the ENC keyword
In ASN.1 PDU Type Definitions and ASN.1 PDU Constraint Declarations the field encodings are specified using the
ENC keyword instead of the additional column. In ASN.1 the constraint of the example above would be:

Table 15: Use of the ENC keyword in ASN.1

ASN.1 PDU Constraint Declaration
Constraint Name : C1
PDU Type : A_PDU
Derivation Path :
Encoding Rule Name :
Encoding Variation :
Comments : This constraint will be encoded according to the encoding

information given in the definition of A_PDU. However,
the encoding of fields F1 and F2 is explicitly overridden.

Constraint Value
SEQUENCE {

f1 123 ENC SD;
f2 456 ENC INVALID_ENCODING(2);
f3 789 }

7 Modular TTCN

7.1 Introduction
The introduction of modularity in TTCN allows the separation of parts of an abstract test suite into modules. This is
particular useful in view to maintenance and reusability issues. TTCN Edition 2 permits the modularization of test suites
by allowing the specification of two separate entities:

• Test Suites (as in normal TTCN);

• Modules.

A Test Suite may now consist of five (rather than four) parts, that is:

• Test Suite Overview Part;

• Imports Part (new);

• Declarations Part;

• Constraints Part;

• Dynamic Part.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)21

Whereby the Test Suite Overview Part contains a new section for the Exports Part:

• Test Suite Index;

• Test Suite Structure;

• Test Case Index;

• Test Step Index;

• Default Index;

• Test Suite Exports (new).

A Module consists of a similar five parts:

• Module Overview part;

• Module Imports part;

• Declarations part;

• Constraints part;

• Dynamic Part.

Whereby the Module Overview Part contains the section for the Module Exports:

• TTCN Module Exports;

• TTCN Module Structure;

• Test Case Index;

• Test Step Index;

• Default Index.

These capabilities have introduced a number of additional concepts and proformas to TTCN:

• Modules;

• Import and Export of objects;

• EXTERNAL objects;

• Imports proforma used in Test Suite and Modules.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)22

7.2 Importing objects to a Test Suite or module
The types of objects that may be imported/exported are:

Table 16: List of object types which can be imported

SimpleType_Object
StructType_Object
ASN1_Type_Object
TS_Op_Object
TS_Proc_Object
TS_Par_Object
SelectExpr_Object
TS_Const_Object
TS_Var_Object
TC_Var_Object
PCO_Type_Object
PCO_Object
CP_Object

Timer_Object
Tcomp_Object
TcompConfig_Object
TTCN_ASP_Type_Object
ASN1_ASP_Type_Object
TTCN_PDU_Type_Object
ASN1_PDU_Type_Object
TTCN_CM_Type_Object
ASN1_CM_Type_Object
EncodingRule_Object
EncodingVariation_Object
InvalidFieldEncoding_Object
Alias_Object

StructTypeConstraint_Object
ASN1_TypeConstraint_Object
TTCN_ASP_Constraint_Object
ASN1_ASP_ Constraint_Object
TTCN_PDU_ Constraint_Object
ASN1_PDU_ Constraint_Object
TTCN_CM_ Constraint_Object
ASN1_CM_ Constraint_Object
TestCase_Object
TestStep_Object
Default_Object
NamedNumber_Object
Enumeration_Object

The imported objects are declared in the Imports proforma. In a Test Suite this table comes after the test suite overview.

Table 17: Use of the Import proforma

Imports
Source Name : Module_1
Source Ref :
Standards Ref :
Comments :

Object Name Object Type Source Name Comments
SimpleType_A
Timer_A
PDU_A
SETUP_S1(CREF:
CALL_REF_TYPE)

SimpleType_Object
Timer_Object
TTCN_PDU_Type_Object
TTCN_PDU_Object
Constraint_Object

Omit
Module_2

(*)

Detailed Comments:
(*) the corresponding PDU type and the StructuredType definitions that are referenced by
this constraint are implicitly imported but can not be used the test suite unless they are
explicitly imported (and explicitly exported in the module).

7.3 Exporting objects from a Test Suite or module
The exported objects are declared in the exports proforma which is located in the test suite overview part.

Table 18: Use of the Export proforma

Test Suite Exports
Object Name Object Type Source Name Page Nr Comments

String5
Wait
INTC
DEF1
TC_2
TC_3
Preamble

SimpleTypeDef_Object
TimerDcl_Object
TTCN_PDU_Type_Object
Default_Object
TestCase_Object
TestCase_Object
TestStep_Object

Module_B

TestSuite_1
TestSuite_2

EXTERNAL

3

13

33

Detailed Comments:

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)23

7.4 TTCN modules
A module is very similar to a Test Suite in that it may contain declarations, constraints and dynamic behaviours but it is
not complete in itself. In practice a module should concentrate on a particular aspect, for example, only constraints or
only Test Steps. A Module also has an overview part, similar in function to the Test Suite Overview.

Modules are not foreseen to be executed and only consist of a library of TTCN items to be used in other test suites for
execution.

It is strongly recommended to avoid complex structures made of modules and test suites with the use of the
import/export function. The final tree consisting of all the module and test suites with their relationships should stay as
flat as possible.

Objects defined in modules are intended to be imported by Test Suites or other Modules. The objects that are visible to
(i.e., may be imported by) Test Suites and other Modules should be declared in the Module Exports proforma.

Table 19: Use of Module exports

Module Exports
TTCN Module Name: Module_A
Objective :
TTCN ModuleRef :
Standards Ref :
PICS Ref :
PIXIT Ref :
Test Method(s) :
Comments :

Object Name Object Type Source Name Page Nr Comments
String5
Wait
INTC
DEF1
TC_2
TC_3
Preamble

SimpleTypeDef_Object
TimerDcl_Object
TTCN_PDU_Type_Object
Default_Object
TestCase_Object
TestCase_Object
TestStep_Object

Suite_1
Module_1

EXTERNAL

2
3

13
45
56
67

Detailed Comments:

NOTE: The Source Name column may either:

• be empty, i.e., the object is defined in this module; or

• contain a Module Identifier, i.e., the object is defined in another Module; or

• contain a Test Suite Identifier, i.e., the object is defined in another Test Suite; or

• contain the keyword EXTERNAL, i.e., The object is defined externally.

Objects that are defined in the Module, but not declared in the Module Exports table may not be imported directly
although they may be used by the exported objects. For example, suppose the Module defines Test_Case_A which
attaches Test_Step_B but only Test_Case_A is declared in the Module Exports table. This means that Test_Step_B is
still used by Test_Case_A but cannot itself be imported from the Module.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)24

7.5 External TTCN objects
This proforma list the objects being referenced by their identifier in a TTCN module. The object defined in the External
Objects table need to be defined when importing the TTCN module.

Table 20: Use of External objects

External Objects
Object Name Object Type Comments

CRC(P:A_Pdu)
CONSTRAINT_A(acstr:T_CONNECT)
TESTSTEP_A(I:INTEGER)
DEF3

TS_Op_Object
TTCN_PDU_Constraint_Object
TestStop_Object
Default_Object

NOTE: For objects that have formal parameter lists then the list shall be provided too.

7.6 Renaming
It is possible that the identifier of an object that is imported from a module or test suite is the same as an identifier
already existing in the importing instance. In this case a name clash occurs. The importing instance then needs to resolve
the name clash by renaming the imported object to:

Source_Module_Or_Test_Suite_Identifier::Object_Identifier

That is, concatenation of the module or test suite identifier with the object identifier, separated by two colons. For
example, with the module Module1 and test step Preamble1 we would get:

Module1::Preamble1.

The renaming of an object means that:

• the object definition; and/or

• the references to the object.

are renamed.

In most cases it can be expected that this re-naming will automatically be performed by the tool doing the import.

8 Other TTCN version 2 features
This clause describes various other minor, but important, features of TTCN version 2.

8.1 Grouping of constraints and other tables
It is now possible to group sets of similar tables, in the same way that Test Cases and Test Steps can be grouped in the
old TTCN. This will probably be most useful for grouping PDU Type Definitions and PDU Constraint Declarations, for
example.

Table 21: Example of a grouped constraint

PDU Constraint Declaration
Constraint Name : C1
Group : B-ISDN-L3/NetworkSide/Invalid/
PDU Type : A_PDU
Derivation Path :
Encoding Rule Name :
Encoding Variation :
Comments :

Field Name Field Value Field Encoding Comments

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)25

The syntax for the group reference is the same as for test step groups etc. Note that the constraint name should still be
unique across the entire test suite so that constraints can be referenced directly by name and not via the group path. This
also means that the syntax for Derivation Path has not changed.

Note that grouping also applies to tables where in the old TTCN we would only have had one instance of a table, for
example, it is now possible to have a whole set of Test Suite Parameter tables or Test Suite Constant tables. Again, bear
in mind that the group mechanism is only a structuring mechanism. Names of objects that appear in the tables (e.g., a
Test Suite Parameter) should still be unique across the test suite.

8.1.1 Global restrictions on groups of tables.

In several cases TTCN version 2 puts requirements on the contents of a single table that are not strictly correct when
groups of tables are used. For example, the statement that a test component Declarations table should have at least one
MTC and at least one PTC does not apply on a per table basis when these tables are grouped. For example, it may be
desirable to put all the MTCs in one table and all the PTCs into another table. However, what is intended is that the
collection of Test Component Declarations table has at least one MTC and at least one PTC.

Thus, in general, similar restrictions should be read to apply to the groups of a particular table as whole, that is, as if all
the tables in a group were collected into a single table. Other examples of this are Encoding Definitions and Encoding
Variations.

8.2 Passing Matching Symbols to constraints
Matching symbols may now be passed as actual parameters to constraints. For example:

Table 22: Use of matching symbols in a constraints reference

7 :
8 L?A_PDU C1(?, (1,2,3), *,(1..6), "ab?xy*z")
9 :

NOTE: Matching symbols may not be passed to constraints that are to be used in a send event.

8.3 Empty PDUs
PDU declarations need not have any field entries (i.e., the body of the table may be empty) if the corresponding PDU in
the standard does not have any fields. Previously this applied only to ASPs. This also means that constraints for the
'empty' PDU need not be defined.

8.4 The RETURN statement
This statement may only appear in Default dynamic behaviour descriptions. It is intended to be used when incoming
PDUs can occur at any time but which are not considered to be part of the test purpose and which should be ignored. A
RETURN from a Default will cause processing to continue at the first alternative in the set of alternatives that caused
the Default behaviour to be invoked. For example:

Table 23: Use of the RETURN statement

7 :
8 L? PDU_1 C1 Ignore this PDU
9 RETURN
10 ?OTHERWISE inconc
11 :

NOTE: Do not confuse RETURN with the RETURNVALUE keyword which is part of the procedural test suite
operations syntax.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)26

8.5 OTHERWISE and the fail verdict
It is no longer mandatory that an OTHERWISE in a Default should lead to a fail verdict.

8.6 Collective comments
Tables for multiple TTCN objects (e.g., Test Suite Parameters, Test Case Variables) may now contain additional lines
called Collective Comments that can be used to group entries in the table. For example:

Table 24: Use of collective comments

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments

The following parameters are used only in test cases for Valid behaviour
VPAR1
VPAR2

INTEGER
BOOLEAN

ref1
ref2

The following parameters are used only in test cases for Invalid behaviour
IPAR1
IPAR2

INTEGER
BOOLEAN

ref3
ref4

8.7 Test Suite Constants by Reference
Test Suite Constants that are defined externally in ASN.1 may now be referenced using the following proforma:

Table 25: Use of Test Suite Constant Declarations by Reference

Test Suite Constant Declarations by Reference
Constant Name Type Value Reference Comments

TC1
TC2

INTEGER
BOOLEAN

value_of_tc1
value_of_tc2

8.8 PCO Type Declarations
PCO Types should be declared in a (new) single PCO Types Declaration table. In a Test Suite this table comes before
PCO Declarations.

Table 26: Declaration of Co-ordination Points

PCO Type Declarations
Type Name Role Comments

TSAP
SSAP

LT
UT

Two different PCOs, having the same PCO Type, may now use the same ASPs and/or PDUs.

8.9 ACTIVATE statement
The ACTIVATE statement allows Defaults to be selectively activated/deactivated during test case execution. This
feature is powerful and should be used with some care. See A.1.2.3 for an example of the use of ACTIVATE.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)27

8.10 Test suite operations using the procedural definition

Table 27: Typical use and definition of a TTCN procedure

Test Suite Operation Procedural Definition

Operation Name: IncreaseNR (Value : INTEGER)

Result Type: INTEGER

Comments: Operation to increase a value by one with modulo 128

Description

VAR INT : INTEGER
ENDVAR
BEGIN
INT := (Value + 1) MOD 128
RETURNVALUE INT
END

Detailed Comments:

Test Suite Operation Procedural Definition

Operation Name: Assign_CHI (basic_CHI, primary_CHI : CHI, basicAccess :
BOOLEAN)

Result Type: CHI

Comments: This operation is used to assign a correct Channel
identification information element to PDUs dependant on the
type of access that is tested.

Description

IF basicAccess THEN
RETURNVALUE basic_CHI
ELSE
RETURNVALUE primary_CHI
ENDIF

Detailed Comments:

8.11 Using ASN.1 '94
The TTCN version 2 endorses the use of ASN.1 '94 rather than earlier versions of ASN.1. This, however, is misleading
as the X.680 series [3] which describes ASN.1 '94 includes several features (e.g., extensibility, information objects,
parameterization etc.) which cannot easily be accommodated in the TTCN in its present form.

TR 101 295 [4] describes the transformation of these capabilities to forms which can be supported in TTCN's limited
coverage of ASN.1 '94.

9 Some Do's and Don'ts when using TTCN

9.1 Use of matching symbols in receive constraints
Matching symbols are often used in the wrong way in constraints. When a matching symbol (? Or *) is used in a field of
a PDU or Structured Type constraints, it means that the contents of the received buffer shall match the field type. But
often the field type consists of BITSTRING, HEXSTRING or OCTETSTRING which are fitting with any kind of data.

The use of matching symbols should be restricted to particular fields of Structured Type tables.

For the fields of PDUs that are optional, it is recommended to define a Structured Type constraint containing at least
values for the fixed part of the table (e.g. identifier, mandatory field) and matching symbols for the optional ones. This
"dummy" Structured Type constraint can then be used instead of a "?" in the PDU constraint. To replace a "*"an
IF_PRESENT can be added to the "dummy" constraint reference. For example:

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)28

Table 28: Use of wildcards and IF_PRESENT

PDU Constraint Declaration
Constraint Name : RL_R1(FLAG: INTEGER; CALL_REF: CALL_REF_TYPE)
PDU Type : RELEASE_PDU
Derivation Path :
Comments : Receive PDU with "don't care values"

Field Name Field Value Comments
pd
cr
mt
cau
…

PROTOCOL_DISCRIMINATOR_Q931
CR1(FLAG,CALL_REF)
MT_RELEASE
CAU_R_DUMMY IF_PRESENT

Table 28a

Structuired Type Constraint Declaration
Constraint Name : CAU_R_DUMMY
PDU Type : CAU
Derivation Path :
Comments : Receive constraint to match any Cause IE

Field Name Field Value Comments
cau_i
cau_l
cau_e3_eb
cau_e3_cs
cau_e3_loc
cau_e4_rec
cau_e5_eb
cau_e5_cv
cau_di

'00001000'B
'0000????'B
?
'000'B
?
*
'1'B
?
*

length < 32

9.2 Restriction on using receive events
A RECEIVE, OTHERWISE or TIMEOUT event line shall only be followed by other RECEIVE, OTHERWISE and
TIMEOUT event lines in a set of alternatives, even through an ATTACH construct.

1 L?PDUr;

2 +STEP;

3 ?TIMEOUT TAC.

STEP shall only contain RECEIVE, OTHERWISE and TIMEOUT event lines on its first set of alternatives.

9.3 First set of alternatives in default.
As a consequence of the restrictions on using receive events, the default trees shall contain only RECEIVE,
OTHERWISE and TIMEOUT event lines on the first set of alternatives.

9.4 Declaration part and protocol standard
The declaration part shall reflect the table structure of the protocol specification. Thus, the Structured Type, ASP and
PDU declaration shall use the same fields as in the protocol specification.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)29

9.5 Declaration part and transfer syntax
Data is transmitted between communication entities as bit streams. Often the data stream should fit in an octet string
format. This requirement is not only the matter of the test equipment but shall also be fully specified in the ATS.

The use of the INTEGER type could be convenient, e.g. for counter field and brings a better overview in the dynamic
part. However it is strongly recommended to translate these INTEGER value into a BITSTRING value before to include
in the corresponding constraints.

EXAMPLE:

Table 29: Use of TTCN predefined operation INT_TO_BIT

Structured Type Constraint
Constraint Name: CST1(CST_VAL: INTEGER)
Structured Type: CST
Derivation Path:
Comments: Constraint with a parametrized Call state value used for sending and

receiving.
Element Name Element Value Comments

cst_i ID_CST

cst_l '00000001'B

cst_cs '00'B

cst_csv INT_TO_BIT(CST_VAL,6)

Detailed Comments:

If ASN.1 is used without BER (direct encoding), the encoding format of an INTEGER should be specified, for example

SequenceNumberType ::= INTEGER(0..7) – to be encoded as bitstring of fixed length 3

9.6 Timers
ATSs can use operational timers (e.g. to fix a delay when a specific receive event is expected). These timers have no
corresponding value in the protocol specification. Instead of fixing the value by a constant in the timer declaration, it is
recommended to use a corresponding a test suite parameter (PIXIT).

9.7 Wild cards in send constraints
Send constraints should not include wildcards ("?" or "*") unless the corresponding fields are assigned a value in the
dynamic behaviour. However it is strongly recommended not to use wildcards in send constraints but to pass the values
over formal parameter in order to increase the overview.

9.8 Use of the metatype PDU
Parameters or fields of ASP and PDU type definitions can be specified as being of metatype PDU. Then in a
corresponding constraint the value for that parameter or field should be specified as the name of a PDU constraint, or
formal parameter.

According to the STATIC SEMANTIC, no reference shall be made (e.g. with assignment in the dynamic behaviour) to
fields of the corresponding substructure.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)30

EXAMPLE:

Table 30: typical use of the PDU metatype

ASP Type Definition
ASP Name: DL_DAT_IN (DL-DATA-INDICATION)
PCO Type: SAP
Comments: CEId: = (SAPI,CES) mapped onto DLCI: = (SAPI,TEI)

This ASP is used to indicate the receipt of layer 3 PDUs using
acknowledged operation (L2 ---> L3).

Parameter Name Parameter Type Comments
mun PDU

Detailed Comments:

Table 30a

ASP Constraint Declaration
Constraint Name: Mr(PARAM: PDU)
ASP Type: DL_DAT_IN
Derivation Path:
Comments: ASP to indicate the receipt of layer 3 messages.

Parameter Name Parameter Value Comments
mun PARAM

Detailed Comments:

Table 30b

PDU Constraint Declaration
Constraint Name: SU_R1
PDU Type: SETUP_PDU
Derivation Path:
Comments: Send PDU

Field Name Field Value Comments
pd PROTOCOL_DISCRIMINATOR_Q931

cr ?

mt MT_SETUP

… … …
Detailed Comments: This PDU is used as base constraint for all SETUP messages to be sent.

With the constraints above the following assignment is not allowed:

| 1 | L?DL_DAT_IN (CREF := DL_DAT_IN.mun.cr) | Ms(SU_R1) |

Actually the field .cr is not known in the data structure of DL_DAT_IN as a metatype PDU is only generic.

9.9 Page number in the test suite overview
The inclusion of the page numbers in the overview part is optional. However this information is very useful for the
future ATS users and could be systematically included in the graphical form (paper version).

9.10 Test case end
The test case shall end leaving the IUT in a stable state from the protocol point of view. Not doing this could prevent the
execution of further test cases unless the correct initial test conditions are reached.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)31

9.11 ASN.1 definitions in TTCN
The ASN.1 definitions used in TTCN should be as simple as possible. Unnecessarily complicated structures should be
avoided, for example a CHOICE with one item:

CHOICE { unexpectedComponentSequence [3] IMPLICIT SEQUENCE { .. }
 }

is more simply written as:

 [3] IMPLICIT SEQUENCE { .. }

Explicit tagging should be avoided in ASN.1 test suite parameters, for example:

 $ASN1_TypeDefinition
 [1] IMPLICIT SEQUENCE {
 informationToSend [0] InformationToSend,
 ...
 }

 $ASN1_ConsValue
 {
 informationToSend TSPX_information_to_send,
 ...
 }

where a better rendition would be:

 $ASN1_ConsValue
 {
 informationToSend [0] TSPX_information_to_send,
 ...
 }

Often protocol specifications use macros (e.g. ROSE) for the ASN.1 coding requirements. The use of type definitions
like ANY DEFINED BY type in these MACRO prevent the test tools from an automatic macro expansion. Thus it is
strongly recommended to expanded the macro manually, according to the protocol specification, before including the
resulting definitions in TTCN.

UserUserService_InvokeComponent ::= SEQUENCE {
 invokeID InvokeIDType,
 operation_value Operation,
 argument Argument}

Argument ::= SEQUENCE { service [1] IMPLICIT Service,
 prefered [2] IMPLICIT Prefered}

is better than:

UserUserService_InvokeComponent ::= SEQUENCE {
 invokeID InvokeIDType,
 operation_value Operation,
 argument ANY DEFINED BY operation_value}

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)32

9.12 Some common errors to avoid
The following is a list of frequently encountered errors found in test suites which should be avoided:

- RECEIVE, TIMEOUT and OTHERWISE events are used together with other event types (e.g. pseudo event,
assignment, …);

- timers are not cancelled when the TIMEOUT branch is left before the timer expiration;

- timers are defined with constant values in the timer declaration, where a variable timer value is needed (value not
defined in a protocol specification). Use a Test Suite Parameter instead;

- wildcards are used in send constraints without corresponding assignment in the dynamic behaviour;

- test Suite Parameters are defined without any PICS/PIXIT reference;

- reference are made to fields (e.g. assignment in the dynamic behaviour) of a substructure of a field defined as
metatype PDU;

- sometimes ATS are distributed using a non-standardized MP format (e.g. editor specific format like ITEX);

- some postambles leave the IUT in an unstable state, provoking an error in the following test case execution;

- some possible events are not always expected in the default behaviour description (e.g., TIMEOUT,
OTHERWISE are often missing);

- two successive receive events in the behaviour description with the second message embedded in the first one (an
INAP message in a TCAP message) that actually correspond to only one event in the PCO.

EXAMPLE:
L?TCAP_message;
L?INAP_message,
with the INAP message being embedded in the TCAP message which consist of the actual PCO
event.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)33

Annex A (normative):
Some examples of the use of TTCN

A.1 Concurrent TTCN

A.1.1 Example of EN 300 403-7: ATS&PIXIT for DSS1 layer 3
network

In the following example, the ATS uses a test configuration with a MTC connected to the IUT by one PCO. Two PTC
are connected by remote access in order to initiate or to answer calls related to the behaviour of the MTC.

A.1.1.1 Description of ATM used

The requirement for testing the network IUT is to focus on the behaviour of the network IUT at the user-network
interface where a T reference point or coincident S and T reference point applies. Thus the IUT is the network DSS1
protocol entity at a particular user-network interface and is not the whole network.

It is possible to specify an ATS based on a Single party (remote) test method for such an IUT. However, it is considered
that an ATS based on such an approach is of limited use as the only way to specify IUT generated PDUs is to use the
"implicit send" statement. Many users of such an ATS would replace the "implicit send" statements with descriptions of
the behaviour at other interfaces.

An ATS based on a multi-party test method is considered to be more useful in that it is closer to how a real test suite
would be constructed. Such a test method specifies behaviour at multiple network interfaces. One very important
limitation here is that tests are focused on one particular interface. Thus the test system is made up one Main Test
Component (MTC) and one or more Parallel Test Components (PTC), see figure A.1.

A.1.1.2 Conventions for test components and PCOs

Master part Slave part

MTCA PTC2

CPA2

PTC1

CPA1

L0 PCO L1 PCO L2 PCO

IUT

ISDN NETWORK

Figure A.1: test architecture

In a master/slave arrangement, the MTC is considered to be the master while the PTCs are the slaves. The "slave" testers
are only an explicit description of how to deal with the "other" interfaces during the testing process, i.e. "how to make
the IUT send the required message".

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)34

This means, in particular, that the verdict will only be assigned from the protocol aspects observed on the interface
under test (i.e. by the "master" tester), as it would be observed by a terminal connected to this interface. A failure in the
correlation between the protocol at the different interfaces to which the different testers are connected, i.e. in the
mechanism of the functional service itself, will not cause a FAIL verdict. For instance, if the IUT fails to send a message
on the tested interface after another interface has received the proper stimulus, the verdict will be INCONCLUSIVE.

The MTC MTCA has two functions in this configuration. Firstly, it has the MTC function of controlling the one or more
PTCs. Thus it is responsible for starting the PTCs and afterwards co-ordinates activities by exchanging Co-ordination
Messages (CM) with the PTCs. Secondly it is responsible for the behaviour of the Lower Tester (LT) at PCO L0.

A combination of the remote and multi-party test methods is applied. As can be seen from figure A.1, several PCOs are
used. All PCOs reside at the service access points between layers 2 and 3.

SUT

Layer 3 MTC
L0

IUT layer 3
L1, L2

PTC1,2 Layer 3

Layer 2
layer 2 layer 2

Layer 2

Layer 1
layer 1 layer 1

layer 1

service
provider

Figure A.2: Combination of the remote and multi-party test methods

The MTC PCO is named "L0" ("L" for Lower). The L0 PCO is used to control and observe the behaviour of the IUT
and test case verdicts are assigned depending on the behaviour observed at this PCO. The PTCs PTC1, PTC2 etc. use
PCOs L1, L2 etc. These PCOs are used to control and, in a limited way, observe the behaviour of the network
equipment at interfaces other than the one under test. No verdicts are assigned at these PCOs.

As stated in a previous paragraph, the non-receipt of network generated messages at L0, which are stimulated by events
at the L1, L2 etc., will result in INCONCLUSIVE rather than FAIL verdicts being assigned.

PTC2 is only activated in a small set of test cases that test the handling of two calls at one time. In test cases which
verify that the IUT rejects invalid or unacceptable SETUP messages, no PTC is activated at all, as these rejection
procedures are considered local to the access between IUT and MTC.

The capability of the IUT to send INFORMATION and PROGRESS messages is tested in different call states. Implicit
send events have to be used in this small set of test cases, as the sending of those messages cannot be triggered via a
PTC. Separate PIXIT questions are asked for each call state, if and how it is possible for the test operator to cause the
sending of the messages.

A.1.1.3 The Test Component Configuration Declaration

Table A.1: Defining various test configurations

Test Component Configuration Declaration
Configuration Name : CONFIG2
Comments : test configuration with 2 remote access.

Components Used PCOs Used CPs Used Comments
MTCA
PTC1
PTC2

L0
L1
L2

CPA1, CPA2
CPA1
CPA2

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)35

A.1.1.4 Example of a test case

Table A.2: Using the CREATE statement

Test Case Dynamic Behaviour
Test Case Name : L3N_N10O_V_006
Group : N10_Outgoing/Valid
Purpose : Ensure that the IUT in the Active call state N10, on receipt of a

SUSPEND message indicating in the Call identity information
element a call identity that is already in use,
sends a SUSPEND REJECT message with a Cause information element
indicating the cause value 84 "call identity in use" and remains
in the Active call state N10.

Configuration : CONFIG2
Defaults :
Comments :

Nr L Behaviour Description Constraint Ref V Comments

1 CREATE (PTC1 : PTC1_OUT) 1)

 CREATE (PTC2 : PTC2_OUT) 2)

 ..

 L0!PDUs Ms(..) 3)

 L0?PDUr Mr(..) 3)

 ..

 CPA1!CM S_DISCONNECT 4)

 ..

Detailed comments :

Comments:

1) This CREATE statement launch the PTC1 test component that executes the test step PTC1_OUT.

2) This CREATE statement launch the PTC1 test component that executes the test step PTC1_OUT.

3) PDU are sent and received by the MTC over the PCO L0.

4) The MTC expect the receipt of a DISCONNECT message. The sending of the corresponding message from the
IUT is initiated by sending a DISCONNECT message to the IUT from the remote access that is connected to the
PTC. A co-ordination message of type CM is sent to PTC1 over the co-ordination point CPA1 to initiate the
sending of the DISCONNECT message.

NOTE: A co-ordination message could also be used to exchange values between test components.

A.1.1.5 Example of a co-ordination message

In the example above, the co-ordination message is used to trigger off the sending or the receipt of PDU between test
components. Their content is not relevant as it only enables the recognition of the co-ordination message itself.

Table A.3: Definition of CMs

CM Type Definition
CM Name : CP_M
Comments : coordination message

Parameter Name Parameter Type Comments
CM_content IA5String [0 TO 26] message content in clear

text

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)36

Table A.3a

CM Constraint Declaration
Constraint Name : S_DISCONNECT
CM Type : CP_M
Derivation Path :
Comments :

Parameter Name Parameter Value Comments
CM_content "SEND_DISCONNECT"

In this example, the parameter value is not significant from the formal point of view as it only serve to trigger off the
receipt of the co-ordination message.

A.1.2 Example of ETS 300 806-2: ATS&PIXIT for the Generic
Functional Protocol

This example is taken from for ATS for Generic Functional Protocol of the Inter-exchange signalling protocol for
Private Integrated Services Network ETS 300 806-2 [5].

Contrary to the example above, in this ATS the MTC, when the multi-party configuration applies, do not use any PCO,
but synchronize two PTC at which a PCO is connected.

A.1.2.1 Test Configurations and use of Concurrent TTCN

As this ATS covers both single-party testing using non-concurrent TTCN, and multi-party testing using concurrent
TTCN, the notation chosen for the complete ATS is the concurrent TTCN syntax. Therefore, test components are
defined to describe the two configurations: the "mono" configuration, and the "transit" configuration, as shown in
figures A.5 and A.6.

The mono configuration is used in case of single-party testing, i.e. for the following:

• ROSE testing;

• Co-ordination Function testing;

• Protocol Control testing;

for End PINX and Transit PINX (single Transit interface active).

Only one test component, which is the Master Test Component MTC_MONO, connected to the IUT via the PCO LX, is
needed in this case.

IU T

M T C _M O N O

LX

Figure A.3: Mono configuration

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)37

The transit configuration is used in case of multi-party testing, i.e. for the following:

• ROSE testing;

• Co-ordination Function testing;

• Protocol Control testing;

for Transit PINX (dual Transit interfaces active).

In this case, three test components are needed, these are the Master Test Component MTC_TRANSIT, and the two
Parallel Test Components PTC_X and PTC_Y, which are connected to the Master Test Component via the two
Co-ordination Points CPX and CPY. PTC_X and PTC_Y are further connected to the IUT via the two PCOs LX and
LY.

LX

PT C _Y

L Y

IU T

CP X C PY

M TC _TR AN SIT

PT C_ X

Figure A.4: Transit configuration

A.1.2.2 Test Component Configuration Declaration for the Transit
configuration

Table A.4: Declaration of the Transit test configurations

Test Component Configuration Declaration
Configuration Name : Config_Transit
Comments : used for tarnsit test cases.

Components Used PCOs Used CPs Used Comments
MTC_TRANSIT
PTCX
PTCY

LX
LY

CPX, CPY
CPX
CPY

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)38

A.1.2.3 Example of a test case for Transit Configuration

Table A.5: Concurrent Test Case

Test Case Dynamic Behaviour
Test Case Name : TC1068t
Group : GFP/CR/COTA/BV/
Purpose : Ensure that the IUT as a Transit PINX, in state TCC_Idle, on

receiving a SETUP message on interface X, containing a Facility IE
which is to be relayed, sends a SETUP message on interface Y
containing this Facility IE

Configuration : Config_Transit
Defaults : def_mtc
Nr L Behaviour Description Constraint Ref V Comments

CREATE(PTCX:SUBTREE_X,PTCY:SUBTREE_Y) 1)

 +mtc_sync 2)

 ..

 ?DONE(PTCX,PTCY) 3)

 ..

SUBTREE_X 4)

ACTIVATE(def_ptcx) 5)

 LX!SETUPrq DLRQ(SET37(..)) 6)

 ..

SUBTREE_Y 4)

ACTIVATE(def_ptcy) 5)

 LY?SETUPin DLIN 6)

 ..

Comments:

1) This CREATE statement launch the PTCX and PTCY test components which executes respectively the local trees
SUBTRE_X and SUBTREE_Y.

2) The mtc_sync test step contains events that consist of exchanging co-ordination messages in order to synchronize the
actions of PTCX and PTCY.

3) This DONE event waits for the end of PTCX and PTCY before to execute the next event.

4) The local tree SUBTREE_X (SUBTREE_Y) is executed by PTCX (PTC_Y). The definition as local tree increases
the readability of the of the test case from the point of view of the complete environment. It could be replaced by a
test step if the behaviour is comment to several test cases

5) The role of the ACTIVATE operation is to apply the given tree as default tree from the point where the operation is
called. In this example, the default tree for each PTC is different from the MTC default reference, so that each PTC
is applied a specific default tree reference by the ACTIVATE operation.

6) A SETUP message is sent from PTCX to the IUT over the PCO LX, that should result in the receipt of a
corresponding SETUP message over the PCO LY at PTCY.

A.2 Index table of TTCN topics
To illustrate the different TTCN topics, the following ATS from ETSI has been chosen because it contains good
examples for the major TTCN parts:

- EN 300 286-6 - ATS for the UUS DSS1 [6] supplementary service, network side.

NOTE: Can be found in the free downloadable area on the ETSI server.

Examples on a specific TTCN topic can be found by referencing the page number (of the TTCN GR of
EN 300 286-6 [6]) given in table A.6.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)39

Table A.6: Index of the TTCN topics in EN 300 286-6 [6]

TTCN topics [Item name -] Page Nr
Simple types definitions with:
value list, value range, length, length range.

p 20

Structured Type Definition. p 24 to 31
ASN.1 type definition for components defined in ASN.1 in the protocol specification. p 32 to 37
ASN.1 type definition for an information element (Facility) defined in tabular form in the
protocol specification.

p 33

Test suite operation definition with operation description in text. p39
Test suite parameter related to a PICS item. p 40
Test suite parameter related to a PIXIT item. p 41
Test case selection expression. p 43
Timer declaration using test suite parameter for the duration. p 50
Test component declarations and configuration (1 PCO for the MTC, and 2 PTCs). p 51, 52
Tabular ASP type definitions with and without parameter. p 53 to 66
Tabular PDU type definitions, some containing a field defined in ASN.1 p 67 to 79
CM (co-ordination message) type definitions containing only a "text" (IA5String type)
message to synchronize test components.

CP_M - p 80

CM (co-ordination message) type definitions containing also integer fields to pass values
between test components.

CP_M_CAU_ERR - p 81

Alias definitions p 82
Structured type constraints using direct values and Test Suite Parameters. BCAP20 - p 84
Structured type constraints using matching symbols, an operation and a formal parameter. CAU4 - p 87
Structured type constraints using IF_PRESENT. CHI3p - p91
Tabular PDU constraint declaration using formal parameter, Structured Type Constraint
reference, Test suite Operation, and containing a field defined in ASN.1

AL20 - p 128

Tabular CM constraint declaration using formal parameters which allow to pass integer
values between test components.

R_DI_CAU_ERRs - p 203

A test case using the following TTCN features
− a PTC of which behaviour description is defined in a test step,
− a constraint reference is passed to the PTC in the CREATE statement,
− co-ordination messages to synchronize the test components

UUS_N01_001 - p 219

Test step to be executed by a PTC, containing co-ordination messages PTC1_wait_msg - p 489
Defaults dynamic behaviour table using the return statement DF69901 - p 540

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)40

Annex B (normative):
Application of TTCN to other types of testing

B.1 Introduction
This annex looks at the application of TTCN to other types of testing and identifies possible new requirements for future
versions of TTCN. By the fulfilment of these requirements the scope of TTCN would be opened towards

• the use of TTCN for the specification of test cases for non-OSI compliant applications, e.g., CORBA based
systems; and

• the application of TTCN for testing non functional properties.

This annex is restricted to discussing issues that have been raised by ETSI TC MTS and/or regular TTCN users within
the ETSI membership and is not intended to be a complete study of the subject.

This annex is structured as follows: In clause B.2 application specific requirements are analysed. The requirements are
driven by the fast dissemination of CORBA based applications. In clause B.3 the use of TTCN for performance testing
is analysed. In clause B.4 TTCN based real-time testing is discussed. Architectural issues related to the requirements on
TTCN are discussed in clause B.5. Finally, in clause B.6 a possible strategy for the introduction of new concepts is
described.

B.2 Application specific requirements

B.2.1 CORBA
The use of CORBA (see bibliography 3) and IDL (see bibliography 3) is becoming of increasing relevance to ETSI.
With respect to the relation of CORBA and IDL to TTCN two main areas of interest have been identified:

• dynamic test configurations; and

• mapping rules from IDL to TTCN.

NOTE: IDL has been defined by the Object Management Group in the context of CORBA.

B.2.1.1 Dynamic test configurations

The only thing that restricts TTCN test methods/architectures from being applied to CORBA is the test configuration,
which is specified as a flat 'tree' of connected test components. The test configuration for each test case is static and
fixed.

TTCN operational semantics require that only a Main Test Component be able to start a Parallel Test Component, which
simply means that there can be only one main (MTC) process and as many as the number of PTCs of parallel sub-
processes running at the same time. The PTC processes can communicate with each other and with the MTC process,
but a PTC process can not activate any other PTC process.

This will restrict TTCN from being used to test situations such as when a major process activates one sub-process and
this sub-process activates another sub-process and so on. It is suggested that the operational semantics of TTCN be
extended so that any PTC process can activate another PTC process, but can not recursively activate itself either directly
or indirectly. With this extension, TTCN will be able to apply to any protocol.

NOTE: The lack of dynamic test configurations in TTCN seems to be a more general problem for testing
applications on architectures which cannot be directly mapped onto the OSI reference model. Dynamic
test configurations are also needed for performance testing architectures (see clause B.3). The problem
should be studied generally, not only in the context of CORBA.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)41

B.2.1.2 IDL and TTCN mapping

A major problem in testing CORBA based applications with TTCN is that there is no IDL-TTCN mapping. The
mapping proposed by Conformance Texting of TINA Service Components (see bibliography 4) as a result of TTCN
based testing of TINA services implemented on CORBA platforms is summarized below:

• The IDL module provides a name scope and a mechanism to group interfaces. Due to the fact that name scoping
is not supported by any tool. It has to be checked whether this can be represented (modelled) adequately by using
modular TTCN.

• For each IDL interface type, a separate test group is introduced to structure the TTCN test suite in accordance
with the interface structure of the tested TINA service component. For each TINA service component with
multiple interfaces a test group is introduced which contains sub test groups, one for each provided interface.

• In contrast to IDL, interface inheritance is not supported by TTCN. Therefore, everything to be inherited will be
duplicated for the derived type.

• TTCN uses asynchronous communication. Synchronous IDL operations may be modelled by using two ASP
types.

- an ASP type for operation requests; and

- an ASP for replies of the operation.

 Name prefixes may improve the readability of the test suite, e.g., sCALL_operationName for an operation call
and sREPLY_operationName for the answer of an operation.

• IDL exceptions may occur during the invocation or execution of an operation. Such an exception may also be
mapped onto an ASP type. A special name prefix, e.g., pRAISE_operationName , denoting that the ASP
represents an exception, may increase the readability of the test suite.

• An IDL attribute definition is logically equivalent to a pair of access functions: get to retrieve a value, set to
change or set a value:

- set is mapped to a one-way operation, i.e., modelled as one ASP type,

- get is mapped to two ASP types, one (without parameters) for the request, one (with parameters) to retrieve
the result.

• For read-only attributes only, the get function has to be defined.

• Most IDL basic types are mapped onto ASN.1 types of the TTCN test suite. The types float and double cannot be
mapped, because these types are not supported by TTCN. IDL typedef are translated to TTCN ASN.1 type
definitions.

• IDL constants are mapped to TTCN constant declarations.

NOTE: With the upcoming importance of CORBA, ETSI and ETSI members will be confronted with IDL
specifications and with the test of interfaces described by means of IDL. The relation between TTCN and
IDL has therefore to be studied in more detail. The first conclusion is that an IDL to TTCN mapping and
vice versa is possible.

B.2.1.3 Dynamic parts of CORBA test cases

The IDL mapping rules only describe the mapping of the static parts of a TTCN test suite. Besides the dynamic test
configurations, the TTCN test case dynamic behaviour tables seem to be applicable for the test specification of CORBA
based applications.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)42

B.2.2 Database applications
TTCN could also be used for functionality testing and for database application testing. There is no standard testing
language/notation for database application at all. Database application test cases are written in an informal manner.
While most test cases for database applications, such as Oracle forms, are nothing but the specification of database
tables, columns, events, timing and verdicts of testing and they are part of OSI layer 7 'protocol'. All of these can easily
be described by TTCN.

NOTE: While this is a completely new application area for TTCN it is probably outside the scope of the ETSI
work.

B.3 TTCN based performance testing
The text in this clause mainly is based on the 'ATM Forum Performance Testing Specification - Baseline Text' (see
bibliography 1) and on a non-standardized TTCN extension for performance testing, called PerfTTCN, which has been
developed at the GMD in Berlin (see bibliography 5 and 6).

B.3.1 Goal of performance testing
The goal of performance testing is to measure the level of (performance-) quality of an implementation under test (IUT)
under well-known conditions. The level of quality can be expressed in form of metrics such as latency, effective
throughput or end-to-end delay. The well-known conditions are related to the reproduction of test results and to the fact
that performance testing normally is carried out in normal and overload situations of the IUT.

B.3.2 Relations to Quality of Service metrics
Performance quality is not equivalent to Quality of Service. Most of the QoS metrics, such as cell transfer delay, cell
delay variation, cell loss ratio (CLR), and so on, may or may not be reflected directly in the performance perceived by
the user. For example, consider the comparison of two switches: If one gives a CLR of 0,1 % and a frame loss ratio of
0,1 % while the other gives a CLR of 1 % but a frame loss ratio of 0,05 %, the second switch will be considered superior
by many users.

B.3.3 Relations to conformance testing
Conformance testing can be seen as a pre-requisite for performance testing because errors in the functionality should
have no impact on the performance measurements. However, overload may degrade the functional behaviour and
therefore test results of performance measurements in overload situations have to be analysed and interpreted carefully.

In contrast to conformance testing, the performance characteristics of the used equipment have big impact on the test
results, e.g., testing the performance of the same application over TCP/IP and over an ATM may lead to totally different
results. This means performance test suites will impose (performance-) requirements on the environment in which the
IUT is tested, i.e., a performance test suite may be tailored to a specific environment of the IUT. Note that in
conformance testing, an ATS requires the correct functional behaviour of the components in which the IUT may be
embedded and the underlying service over which the IUT is tested.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)43

B.3.4 Metrics to be measured
Performance testing is related to some metrics which should be measured. For ATM networks, these metrics are defined
in (see bibliography 1). The content of the present document is restricted to the native ATM layer and the adaptation
layer. All work related to performance measurements of the higher layers is being deferred for further study.

For performance measurement, we have to distinguish between foreground traffic and background traffic. Foreground
traffic refers to the traffic whose performance is measured. Background traffic describes the traffic used to set the SUT
to load situations. Performance tests can be conducted with and without background traffic.

NOTE: In ATM Forum Performance Testing Specification (see bibliography 1) the description of performance
metrics, the abbreviation SUT (System Under Test) refers to an ATM switch.

The metrics defined in ATM Forum Performance Testing Specification (see bibliography 1) are throughput, frame
latency, throughput fairness, frame loss ratio, maximum fame burst size, and call establishment latency. In the following,
these performance metrics are briefly described. This summary provides the general information and abstracts from
ATM characteristics. Note that a test specification language for performance testing should be able to describe such
metrics.

B.3.4.1 Throughput

Throughput defines the number of information units (e.g. bits, bytes or ATM frames) transported in a certain amount of
time. At frame level, there are three throughput metrics that are of interest to an ATM user:

1) Loss-less throughput: Loss-less throughput is the maximum rate at which none of the offered frames is dropped
by the SUT.

2) Peak throughput: Peak throughput is the maximum rate at which the SUT operates regardless of frames
dropped. The maximum rate can occur when the loss is not zero.

3) Full-load throughput: Full-load throughput is the rate at which the SUT operates when the input links are
loaded at 100 % of their capacity.

Throughput measurements should be provided in effective bits/sec, counting only bits from frames excluding the
overhead introduced by the ATM technology and transmission systems. This is preferred over the measurement of
frames/sec or cells/sec. Frames/sec requires specifying the frame size; cells/sec is not a good unit for frame-level
performance since cells aren't seen by the user.

Throughput tests require several test runs during which the relevant bits are counted. The preamble of a throughput test
includes not only steps to bring the system into a situation where frames are exchanged, but also into the condition
where the throughput rate to be checked can be measured. For example, for testing the loss-less throughput rate we have
at first to set-up the required foreground traffic. A test run ends and the foreground traffic is stopped when the average
cell transfer delay has not significantly changed (not more than 5 %) during a period of at least 5 minutes.

In ATM Forum Performance Testing Specification (see bibliography 1), only the measurement procedures for tests
without background traffic are defined. Measurements of throughput with background traffic are under study.

For the foreground traffic, the throughput measurement may not only take place at one input and one output channel.
There are several connection configurations defined. For n input/output channels we can distinguish the connection
configurations:

• n-to-n straight;

• n-to-(n−1)full cross;

• n-to-mpartial cross, (1 ≤ m ≤ n−1);

• k-to-1 (1 < k < n);

• 1-to-(n−1)multicast;

• n-to-(n−1)multicast.

These connection configurations may be comparable to the abstract test methods in ISO/IEC 9646.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)44

B.3.4.2 Frame latency

Frame latency for an SUT is measured by using a 'Message-In Message-Out' (MIMO) definition. One MIMO latency
definition is:

MIMO latency =
{ LILO latency

FILO latency − NFOT

if Input Link Rate ≤ Output Link Rate

otherwise

NOTE: ATM Forum Performance Testing Specification (see bibliography 1) also presents a second definition.

where:

• LILO latency = Time between the last-bit entry and the last-bit exit

• FILO latency = Time between the first-bit entry and the last-bit exit

• NFOT = Nominal Frame Output Time, defined as the time a frame needs to pass through
the zero-delay switch

In case that the Input Link Rate is smaller than the Output Link Rate, the MIMO latency for a given frame can be
calculated by recording the time when the last-bit of the frame enters into the SUT and when the last-bit of the frame
exits from the SUT. A detailed description of the second case, a comprehensive explanation of MIMO latency and its
justification can be found in ATM Forum Performance Testing Specification (see bibliography 1). Frame latency should
be defined in µsec.

For the given foreground and background traffic, the required times and/or delays needed for MIMO latency calculation,
are recorded for several frames. Based on these values, statistical values like mean MIMO latency, standard error and
100(1−α)-percent confidence interval should be calculated.

Frame latency is dependent on foreground and background traffic. Background traffic characteristics that affect frame
latency are the type of background VCCs, connection configuration, service class, arrival pattern, frame length and input
rate.

In the scope of the present document, the details are not interesting. It should only be noted that conformance testing and
TTCN cannot cope with statistical values and background traffic. Even if the times for the occurrence of the bits of a
frame can be measured by using TTCN, their interpretation and the determination of a test verdict (based on statistical
values) is outside the scope of conformance testing.

B.3.4.3 Throughput fairness

The two throughput fairness metrics that are of interest to users are:

1) Peak throughput fairness: the fairness at a frame load for the peak throughput.

2) Full-load throughput fairness: the fairness at a frame load for the full-load throughput.

The procedures to measure the throughput fairness are performed similarly to the throughput measurements described in
subclause B.3.4.1.

B.3.4.4 Frame Loss Ratio

Frame loss ratio is defined as the fraction of frames that are not forwarded by an SUT due to lack of resources. The two
frame loss ratio metrics which are of interest to a user are:

1) Peak throughput frame loss ratio: the frame loss ratio at a frame load for the peak throughput.

2) Full-load throughput frame loss ratio: the frame loss ratio at a frame load for the full-load throughput.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)45

The frame loss ratio metric is related to throughput:

Frame Loss Ratio = (Input Rate − Throughput)/Input Rate

For calculating the frame loss ratios no special measurements are necessary. The ratios can be calculated from
throughput measurements of subclause B.3.4.1.

B.3.4.5 Maximum Frame Burst Size

Maximum Frame Burst Size (MFBS) is the maximum number of frames that each of the source end systems can send at
the peak rate through the SUT without incurring any losses. MFBS measures the data buffering capability and its ability
to handle back-to-back frames. MFBS should be expressed in octets of AAL payload fields.

MFBS is measured for a k-to-1 connection configuration as was briefly sketched in subclause B.3.4.1. The measurement
procedure requires a number of tests. Each test includes simultaneous generations of fixed lengths of bursts through all k
channels and counting of all cells transmitted by the SUT. If there is no loss of cells, the length of bursts is increased,
but in case of loss, the length of bursts is decreased. The next test is performed with the new burst length. The procedure
is finished when the MFBS is found. The tests are conducted without any background traffic.

B.3.4.6 Call Establishment Latency

Call establishment latency is an important part of the user perceived performance. Informally it can be defined by the
time between submission of a setup message to a network and the reception of the connect message from the network.
The time lost at the destination while the destination was deciding whether to accept the call is not under network
control and is not included in the call establishment latency. This means:

Call Establishment Latency = MIMO Latency for setup message
+ MIMO Latency for the corresponding connect message

The procedures for measurement and calculation of latency metrics have been sketched in subclause B.3.4.2 and should
not be repeated here.

B.3.5 Performance TTCN (PerfTTCN)
Performance TTCN (PerfTTCN) (see bibliography 5 and 6) is a performance extension of TTCN. The aim of
PerfTTCN is to allow the specification of performance tests in an unambiguous and reusable way with the benefit of
making performance test results comparable by using a TTCN oriented notation. In the following the performance
specific TTCN extensions of PerfTTCN are briefly described.

B.3.5.1 Concepts of PerfTTCN

The concepts of the approach are related to test components, performance test configurations, measurements, and test
behaviour.

B.3.5.1.1 PerfTTCN Test components

A performance test consists of distributed foreground test components, background test components and a main test
component which co-ordinates the foreground and background test components. Foreground test components realize the
communication with the IUT. Background test components generate continuous streams of data to cause load for the
IUT. Background test components do not communicate directly with the IUT. They only influence the IUT implicitly by
bringing the IUT into normal and overload situations.

Traffic models describe traffic patterns for continuous streams and data packets with varying inter-arrival times and
varying packet length. Due to their generosity and efficiency, Markov Modulated Poison Processes are an often used
model for the description of traffic patterns.

Points of control and observation (PCOs) and co-ordination points (CPs) are used in the same manner as in normal
conformance testing with the one exception that PCOs are also used for connecting background test components to the
system under test.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)46

B.3.5.1.2 Performance test configurations

In analogy to the abstract test methods in conformance testing, different performance test configurations may have to be
defined. In Testing of Communicating Systems (see bibliography 6), three performance test configurations are
identified, they may be used for testing:

• an end-user telecommunication application;

• an end-to-end telecommunication service; or

• a communication protocol.

The last configuration corresponds to the distributed test method in conformance testing. However, additional
configurations may have to be defined for testing further network components.

B.3.5.1.3 Measurements and Analysis

Measurements are one of the main new concepts to be introduced into TTCN in order to widen its scope to include
performance testing. A measurement is started during a test run. It describes the period of time during which the
performance is observed. A measurement may be performed by monitoring the test components that are sensitive to the
test events to be measured, i.e., time stamps for the sensitive test events are collected. Constraints describe the format of
the test events belonging to a measurement so that the monitor collects a time stamp whenever an event at a PCO
matches that format. The constraints used follow the constraint definitions in TTCN. More elaborated performance
characteristics such as means or standard deviations (see subclause B.3.4) can be calculated based on several
measurements.

Performance characteristics may be evaluated off-line, i.e., after the performance test is finished, or on-line, i.e., during
the performance test itself. For the on-line evaluation, performance constraints have to be specified. Performance
constraints may be used to control the execution of a performance test. If the required performance characteristics is
violated, the test run may be finished and a fail test verdict may be assigned.

B.3.5.1.4 Performance test behaviour

A performance test specification language has to offer features:

• to start and cancel background and foreground test components;

• to start and cancel measurements;

• to interact with the IUT;

• to generate a controlled load to the IUT; and

• to access recent measurements via performance constraints.

At the end of a performance test, a final test verdict has to be assigned. The result of a performance test should not only
evaluate the observed performance, but also return the measured performance characteristics.

B.3.5.2 PerfTTCN specific language constructs

PerfTTCN is an extension of TTCN in order to use TTCN for performance test specification. In this clause, we sketch
the additional language constructs of PerfTTCN as described in Testing of Communicating Systems (see bibliography 6)
and An AAL5 Performance Test Suite in PerfTTCN (see bibliography 5). With the allowance of the authors, the
examples are taken from Testing of Communicating Systems (see bibliography 6).

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)47

B.3.5.2.1 Foreground and background test components

Foreground and background test components are specified in an extended Test Component Configuration Declaration
Table as shown in table B.1.

Table B.1: Extended Test Component Configuration Declaration Table

Test Component Configuration Declaration
Configuration name: CONFIG_2

Components Used PCOs Used CPs Used Comments
MTC PCO_1 CP1
PTC1 PCO_2 MCP2, CP1
Background Test Components

Components Used PCOs Used CPs Used Comments
traffic1 (PCO_B1)->(PCO_B2) BCP1, BCP2 Point to Point
traffic2 (PCO_B1)->(PCO_B4) BCP1, BCP2 Point to Point

B.3.5.2.2 Background traffic patterns

Background traffic is meant to be a continuous, uninterrupted, and predictable stream of data packets following a well
defined traffic pattern. A traffic pattern defines the lengths and the inter-arrival times of the data packets. The format of
the background data packets may be defined in the declarations and constraints part of the PerfTTCN test suite by using
TTCN mechanisms.

Background traffic patterns may be defined in Traffic Model Declaration Tables. Two examples are shown in
figure B.2.

Figure B.2 part a) specifies a Markov Modulated Poison Process.

Figure B.2 part b) describes a Constant Bit Rate. PerfTTCN provides different types of Traffic Model Declaration
Tables for different kinds of background traffic patterns.

The relation between background traffic patterns and background test components is made by using a Background
Traffic Stream Declaration Table. An example is shown in table B.3.

Traffic Model Declaration Traffic Model Declaration

Name: on_off

Type: MMPP

Comments:

Name: const1

Type: CBR

Comments:

Length S1 10 PCR 10 Mbit/s

Length S2 1000

Rate S1 2

Rate S2 10

Transition S1, S2 3

Transition S2, S1 5

a) Markov Modulated Poisson Process b) Constant Bit Rate

Figure B.1: Examples of Traffic Model Declaration Tables

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)48

Table B.2: Background Traffic Stream Declaration

Background Traffic Stream Declaration
Traffic Name Background Test Component Model Name Nr. of Instances

load1 traffic1 on_off 6
load2 traffic1 const1 2
load3 traffic2 const1 8

B.3.5.2.3 Measurements and Analysis

PerfTTCN offers special tables to declare measurements and performance characteristics. An example for a
measurement declaration is shown in table B.3. A measurement has a name, defines the metric to be measured and
includes one or two test events that define the critical events of the measurement. The example in table B.3 measures the
FILO delay between a Request message sent at PCO_1 and a Response message received at PCO_1.

NOTE: FILO (= first bit in, last bit out) is explained in clause B.3.4.2.

Table B.3: Measurement Declaration Table

Measurement Declaration
Name Metric Unit event 1 constraint 1 event 1 constraint 2

response_delay DELAY_FILO ms PCO_1!Request s_req_spc PCO_1?Response r_rep_spc

The evaluation of measurements is defined by performance characteristics. These are declared in Performance
Characteristics Declaration Tables. An example is shown in table B.4 performance characteristic refers to a single
measurement. In order to be statistically significant, a performance characteristics should be calculated only if the
measurement has been repeated several times. Therefore it is possible to define a sample size or a time duration of the
measurement for the calculation of a performance characteristic.

Table B.4: Performance Characteristics Declaration Table

Performance Characteristics Declaration
Name Calculation Measurement Sample size Duration

res_dealay_mean MEAN response_delay 20
res_delay_max MAX response_delay 1 min

B.3.5.2.4 Performance constraints

For the on-line analysis of performance characteristics, performance constraints have to be defined. In contrast to normal
TTCN constraints, the evaluation of performance constraints is based on repeated measurement of test events rather than
the matching of a single event. A performance constraint declaration consists of a name and a logical expression. The
logical expression may refer to performance characteristics. For example, the performance constraint declarations shown
in table B.5 refer to performance characteristics specified in table B.4.

Table B.5: Performance Constraints Declaration Table

Performance Constraints Declaration
Name Constraint Value Expression Comments
p_resp (res_delay_mean < 5) AND (res_delay_max < 10)

n_p_resp NOT (p_resp)

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)49

B.3.5.2.5 Performance Test Behaviour

In PerfTTCN the behaviour of a performance test is specified in the dynamic part of the test suite. The main tester
controlling the test run is specified in the test cases. All other test components are specified by test steps. Test
components are created by a START command and their termination may be required explicitly via co-ordination
messages. The control of measurements is similar to the control of timers, i.e. START and CANCEL commands are
used to start and stop a measurement. Performance constraints may be used in the constraints reference column if an on-
line evaluation of the performance characteristics is required.

An example of a PerfTTCN main test component is shown in table B.6. In line 1 the background test component load2
(for the definition of load2 see tables B.1 to B.2) is started and the timer T_response_delay is started.
Afterwards (line 2) a Request message is sent via PCO1 and the measurement response_delay is started. If the
IUT answers with a Response message according to the performance constraint p_resp a preliminary pass is
assigned to the variable R (line 3) and the test case loops back to line 2. If the received Response message is not
according to the performance constraint (line 5) a preliminary inconclusive is assigned to R and as specified in line 6 the
test case continues with line 2. The test case ends with the timeout of T_response_delay (line 7). Then the
measurement is cancelled (line 7) and the background test component is stopped (line 8). The final test verdict is defined
by the value of R. The test execution of the test case may also end if something unexpected is received (lines 9, 10).

NOTE: It should be noted that after the assignment of (inconc) the value of R cannot be changed again to (pass),
i.e., the verdict assignment in line 3 will have no effect on the final test verdict.

Table B.6: PerfTTCN dynamic behaviour description

Test Case Dynamic Behaviour

Test Case Name: www_get

Group:

Purpose:

Configuration: CONFIG_2

Default:

Comments:

Nr Label Behaviour Description Constr. Ref. Verdicts Comments

1 BCP1!START(load2)
START T_response_delay

start backgr. Traffic load2

2 top PCO_1!Request
START response_delay

s_req start measurements

3 PCO_1?Response p_rep (pass) acceptable performance

4 GOTO top

5 PCO_1?Response n_p_rep (inconc) unacceptable performance

6 GOTO top

7 ? T_response_delay
CANCEL response_delay

measurement terminates

8 BCP1!Stop(load2) R stop background traffic

9 PCO_1?OTHERWISE
CANCEL response_delay
CANCEL T_response_delay

fail unexpected event,
stop measurement

10 BCP1!Stop(load2) R stop background traffic

Detailed Comments:

B.3.5.3 Application of PerfTTCN

Three applications have shown that PerfTTCN test cases can be implemented and executed. PerfTTCN was used to
specify and implement performance tests for an HTTP server, an SMTP server Testing of Communicating Systems (see
bibliography 6) and for AAL5 implementations (see bibliography 5).

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)50

B.3.5.4 Semantics of PerfTTCN

The operational semantics is under development.

B.3.6 Conclusions
From the work which has been done, we can conclude that there is a need for the specification of performance tests in an
unambiguous and reusable manner with the aim of making performance test results comparable. The work on PerfTTCN
shows that an extension of TTCN with performance concepts is feasible. The performance concepts which have to be
integrated into TTCN are:

• performance test components, especially background test components with specific traffic models;

• performance test configurations which are comparable to the abstract test architectures in conformance testing;

• measurements defining the period of time within the test run during which the performance is measured; and

• performance specific extensions of the test case behaviour.

Furthermore, the concepts performance metrics and performance constraints have to be integrated to allow an on-line
and off-line evaluation of performance characteristics. The integration of performance concepts into TTCN will be a
major change of the language and should be studied carefully before integration. Especially the semantics should be
clarified first.

B.4 TTCN based real-time testing
The ideas in this subclause are mainly based on a non-standardized real-time extension of TTCN, called RT-TTCN,
which has been developed within a Cupertino of the Medical University of Luebeck (Germany) and the Swiss Federal
Institute of Technology Zuerich (see bibliography 7 and 8).

B.4.1 Goal of real-time testing
The goal of real-time testing is to test hard time conditions of real-time systems, e.g., systems controlling physical
devices and processes, flight control systems, control systems of nuclear power plants and also, multimedia applications
and protocols. For these systems, real-time communication is essential for their correct behaviour. In contrast to that,
performance testing as described in the previous sections deals with the measurement of soft time conditions, i.e., time
conditions with statistical variations.

B.4.2 Relations to conformance testing
The relation of real-time and conformance testing is very close. The correct behaviour of a protocol implementation due
to setting, timeout and cancellation of timers can be seen as part of the correct functional behaviour, i.e., the behaviour is
tested by means of conformance testing. However, the timers in protocol standards are in most cases not critical. This
means timers are used for driving the protocol into a stable state if a communication partner does not react or a resource
is not available. In order to be in-line with the following statement in part 1 of ISO/IEC 9646-3 [1]: "The relative speed
of the systems executing the test case should not have an impact on the test result", test equipment for conformance
testing should be able to check these timers without any problems.

In real-time testing, timing constraints are essential for the correct behaviour of the system and they may be hard to test.
Test equipment may have to be tuned in order to be able to check real-time requirements. In other words, the speed of
test equipment running the test case may have an impact on the test result.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)51

B.4.3 Problems of using TTCN for real-time testing
With the assumption that the test equipment running the TTCN test case is always much faster than the SUT, TTCN can
be used to specify real-time tests. As a result of this assumption, during the test run the maximal number of ASPs or
PDUs waiting for processing is one and their waiting time is negligible. Furthermore, timer setting, resetting,
cancellation and timeout events can be seen as instantaneous, i.e., can be used to measure real-time.

From a telecommunication point of view, the performance of a protocol will involve two major things: one is the
response time and the other is the throughput. While the response time can be easily described via TTCN START
TIMER, READ TIMER, TIMEOUT as well as CANCEL TIMER events and the protocol throughput can be defined as
the number of ASPs or PDUs or CMs sent/received during a time period, which can also be easily described via TTCN.

However, the assumption about the speed of the test equipment is an implicit requirement on the test equipment to be
used. Implicit requirements are always dangerous, because if they are violated they influence the test results and the
violation is difficult to detect.

This can be explained by using the example shown in table B.7. The purpose of the shown test case is to check if 1 000
DATAind messages arrive with an interval of at least 4 ms but not more than 6 ms. All violations to this requirement are
interpreted as fail cases. The test case is specified as follows: After a execution of a preamble (line 1) the timer T1 for
the earliest arrival time of the next DATAind message is set (line 2). The counter for the DATAind messages counts
(line 3) and the timeout for the T1 is awaited. On arrival of the timeout message (line 4) the timer T2 for the latest
arrival time of the next DATAind message is started. Afterwards the DATAind message is awaited. If it arrives in time
(line 5), a preliminary pass is assigned to R and depending on the number of already received DATAind messages, the
test case may loop back to line 2 (lines 6, 7) or end by executing a postamble (lines 8, 9). If the DATAind message does
not arrive in time T2 will produce a timeout message and the test case ends with a FAIL verdict. All alternatives are
guarded by an OTHERWISE event (lines 11, 12) in order to cope with unexpected messages. On the reception of
unexpected messages, the running timers are stopped and the test case ends with a FAIL verdict.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)52

Table B.7: TTCN dynamic behaviour description for a real-time test

Test Case Dynamic Behaviour

Test Case Name: RT_Testing_Example

Group:

Purpose: 1 000 DATAind messages should arrive with a distance of at least 4 ms but not bigger than
6 ms. All violations of this requirement have to be interpreted as fail.

Configuration:

Default:

Comments:

Nr Label Behaviour Description Constr. Ref. Verdicts Comments

1 +PREAMBLE some preamble

2 top START T1 (4 ms) set timer for earliest arrival
time

3 (counter := counter +1) some calculation

4 ?TIMEOUT T1 START T2 (2 ms) timeout of T1 and set timer
for latest arrival time

5 PCO1?DATAind STOP T2 C_DATA (pass) DATAind arrives in time ?

6 [counter<1 000]

7 GOTO top another DATAind required

8 [counter>=1 000]

9 +POSTAMBLE TC finishes with postamble

10 ?TIMEOUT T2 FAIL DATAind arrives not in time

11 PCO1?OTHERWISE STOP T2 FAIL some other message

12 PCO1?OTHERWISE STOP T1 FAIL some other message

Detailed Comments:

This specification is incorrect with regard to statement "the relative speed of the systems executing the test case should
not have an impact on the test result" in ISO/IEC IS 9646-3 [1]. The speed of the test equipment running the test case
may very well have an influence on the test result. If the test equipment is very fast, i.e. the execution of a TTCN
statement is negligible compared to the precision of the measurement (= ms), then the test case may run without
problems. But, if the execution of a TTCN statement is slow, e.g., 3 ms, the following may happen due to the TTCN
snapshot semantics:

A first DATAind message may arrive after 2 ms and a second one arrives after 10 ms. Both should lead to a FAIL
verdict. However, the start of the timer T1 (line 1) takes 3 ms and the first DATAind message has already arrived. The
execution of the statement in line 3 costs another 3 ms. This means after 6 ms the first snapshot is taken. The timer T1 is
already expired and its timeout message is part of the actual snapshot. The timeout is executed which takes again 3 ms
(line 4) and T2 is started then after 9 ms the next snapshot is taken. The first DATAind is available, causing the
cancellation of T2 (which already is expired) and via line 6 and line 7 the test case continues after 18 ms with a new
setting of T1 in line 2. It is obvious that the violation of the time distance requirement between the two DATAind
messages will also not be detected. Exchanging the order of timeout and DATAind receive events in the TTCN
description will not help. It is possible to construct another erroneous behaviour which will also pass the test.

From this example it can be seen that for testing real-time requirements by using TTCN test specifications, the speed of
the test equipment may very well influence the test result. The problematic part of the TTCN test description for real-
time testing is the timer construct. In our example the effect of the timer on the test case behaviour is delayed. Even
worse, due to the possibility of delaying the execution of timeout events inadequate or slow test equipment will be able
to interpret test cases in the way explained by the example. A new or modified timer concept may help to overcome
these problems.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)53

B.4.4 Real-time TTCN
The only known proposal for a real-time extension of TTCN is Real-time TTCN or for short RT-TTCN which has been
developed within a Cupertino of the Medical University of Luebeck (Germany) and the Swiss Federal Institute of
Technology Zuerich (Switzerland). The following summary is based on Testing of Communicating Systems (see
bibliography 7) and A Proposal for a Real-Time Extension for TTCN (see bibliography 8).

B.4.4.1 The RT-TTCN Approach

The approach of RT-TTCN is to allow the annotation of TTCN statements with time labels. The time labels define the
earliest execution time (EET) and the latest execution time (LET) of the statement. This means the time labels form a
time interval during which the statement has to be executed. The time labels may be specified relative to the enabling
time of the statement or the execution time of previous statements.

NOTE: The abbreviations LET and EET are keywords for default time labels in the RT-TTCN syntax. Different
fonts are used to distinguish between syntax, EET and LET, and semantics, EET and LET.

B.4.4.2 RT-TTCN specific language constructs

For being somehow compatible with the existing TTCN definition, RT-TTCN proposes only small language extensions.
With the allowance of the authors, some examples in this subclause are taken from Testing of Communicating Systems
(see bibliography 7).

B.4.4.2.1 Extensions of the TTCN declaration part

In order to allow the comfortable specification of time labels by using meaningful names, an Execution Time
Declarations Table has to be introduced. An example is shown in table B.8. Execution Time Declarations Tables are
used for the specification of time names, time values and units. Apart from the headings, the table looks much like the
TTCN Timer Declarations Table. Time names are declared in the Time Names column. Their values and the
corresponding time units are specified on the same line in the Value and Units column. The declaration of the time
values is optional. EET and LET are predefined time names (keywords) with default values zero and infinity. As shown
in table B.8 these default time values can be overwritten.

Table B.8: Execution Time Declarations Table

Execution Time Declarations
Time Name Value Unit Comments

EET 1 s Redefined EET value
LET 1 min Redefined LET value
WFN 5 ms Wait For Nothing

NoDur min No value specified

Besides of the static declarations of time values in an Execution Time Declarations Table, changing these values within
a behaviour description table can be done by means of assignments. Examples are shown in line 2 and line 4 of
table B.9. However, evaluation of time labels attached to a test event should always result in EET and LET values for
which 0 ≤ EET ≤ LET holds.

B.4.4.2.2 Extensions of the TTCN dynamic part

RT-TTCN introduces two new columns in dynamic behaviour description tables. These are a Time and a Time Options
column. In table B.9 a RT-TTCN Test Case Dynamic Behaviour table is shown. The same additional columns are also
introduced in Test Step Dynamic Behaviour and Default Dynamic Behaviour tables.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)54

Table B.9: RT-TTCN Test Case Dynamic Behaviour Table

Test Case Dynamic Behaviour

Test Case Name: RT_TTCN_Example

Group:

Purpose: just an example

Configuration:

Default:

Comments:

Nr Label Time Time
Options

Behaviour Description Constr.
Ref.

Verdicts Comments

1 L1 2, 4 M A?DATAind Time label
Mandatory EET

2 (NoDur := 3) Time assignment

3 2, NoDur A!DATAack

4 (LET := 50) LET update (ms)

5 A?DATAind

6 L1+WFN,
L1+LET

M, N B?ALARM Mandatory EET
not pre-emptive

Detailed Comments

An entry in the Time column specifies EET and LET for the corresponding TTCN statement. Entries may be constants
(line 1), time names (use of NoDur in line 3), or expressions (line 6).

In general, EET and LET values are interpreted relative to the enabling time of alternatives at a level of indentation, i.e.,
the time when the level of indentation becomes the current level. However, some applications may require to define EET
and LET values relative to the execution of an earlier test event, i.e., not restricted just to the previous one. In support of
this requirement, a label in the Label column may not only be used in a GOTO but can also be used in the Time column,
so that EET and LET values are computed relative to the execution time of the alternative identified by the label: In
table B.9 on line 6, the time labels (L1+WFN, L1+LET) are referring to the execution time of the alternative in
line 1 (for which label L1 is defined). Statements which are not annotated with time labels are by default annotated with
EET and LET.

Entries in the Time Options column are combinations of symbols M and N. Similar to using labels in expressions, time
option N allows to express time values relative to the alternative's own enabling time, even though some TTCN
statements may be executed in between two successive visits of the same level of indentation.

Thus, the amount of time needed to execute the sequence of TTCN statements in between two successive visits is
compensated. If time option N is defined, then execution of this alternative is not pre-emptive with respect to the timing
of all alternatives at the same level of indentation.

In some executions of a test case, a receive or otherwise event may be evaluated successfully before it has been enabled
for EET units. If the intention to define EET as a mandatory lower bound when an alternative may be evaluated
successfully, then time option M has to be specified. Informally, if time option M is specified and the corresponding
alternative can be successfully evaluated before it has been enabled for EET units, then this results in a FAIL verdict.

B.4.4.2.3 Assigning test verdicts

RT-TTCN introduces one additional rule for the assignment of test verdicts to test runs. This is the following: A Fail
verdict is assigned and the test execution ends if a specified real-time requirement is violated during a test run. All other
TTCN rules for assigning test verdicts remain the same.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)55

B.4.4.3 Semantics of RT-TTCN

RT-TTCN has an elaborated semantics which is based on timed transition systems (see bibliography 2). Additionally, a
refined TTCN snapshot semantics that takes time annotations into account is provided in Testing of Communicating
Systems (see bibliography 7).

B.4.4.4 Application of RT-TTCN

RT-TTCN was developed in an academic environment. Therefore the RT-TTCN semantics is well elaborated and its
applicability has been shown by means of some examples. However, until now no big case study has been done.
Table B.10 provides a RT-TTCN specification of the example discussed in subclause B.4.3 and presented in table B.7.
The example and its correct specification in table B.10 may give some indication about the elegance and power of
RT-TTCN.

B.4.5 Conclusion
As long as the test equipment is faster than the applications, the need of a TTCN extension for real-time testing may not
be urgent. However, as seen by the example of RT-TTCN a small extension may help to avoid future problems. It
should also be noted that the RT-TTCN annotation with time labels might also be a more obvious or more
understandable way to express the already existing timing requirements in pure conformance testing.

Table B.10: RT-TTCN description of the TTCN example shown in table B.7

Test Case Dynamic Behaviour

Test Case Name: RT_Testing_Example2

Group:

Purpose: 1 000 DATAind messages should arrive with a distance of at least 4 ms but not bigger than
6 ms. All violations of this requirement have to be interpreted as fail.

Configuration:

Default:

Comments:

Nr Label Time Time
Options

Behaviour Description Constr.
Ref.

Verdicts Comments

1 +PREAMBLE

2 (counter := counter +1)

3 4, 6 M PCO1?DATAind

4 [counter<1 000]

5 GOTO top

6 [counter>=1 000]

7 +POSTAMBLE

8 PCO1?OTHERWISE

Detailed Comments

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)56

B.5 Advanced test architectures
The TTCN extensions and requirements described in the previous sections mainly address the problem of describing the
dynamic test case behaviour properly. But, testing has also architectural aspects. According to ISO/IEC 9646-3 [1], an
abstract test suite is written for a specific abstract test method. Opening the scope of TTCN towards the test of new
applications, real-time testing and performance testing also pose new requirements on test architectures. This means that
a future test architecture model will include new test components beyond lower and upper tester functions (load
generators or monitor components) and should also represent the communication points adequately (the PCO concept
may be extended towards synchronous communications, pure monitor points, or dynamic PCO creation).

A generic test architecture model has been proposed in Testing of Communicating Systems (see bibliography 9). The
basic idea of the approach is to provide a tool box of elements, which can be combined generically into a test
architecture which is suitable for a specific application or system to be tested. A test architecture comprises possibly
several instances of different types of components:

• An Implementation under test (IUT) represents the implementation or parts of the distributed system to be tested. In
principle, an IUT may be distributed over physically separate real systems, i.e., it is allowed to have several IUT
components in a concrete test architecture.

• An Interface Component (IC) is a component which is needed for interfacing IUTs, e.g., an underlying service or a
system in which an IUT is embedded.

• A Test Component (TC) describes a component which contributes to the test verdict by co-ordinating other TCs or
controlling and observing IUTs. A test configuration identifies all TCs necessary for the execution of a specific test
case. A TC exists from the start of a test case or is created dynamically by other TCs. In each test architecture, there
should be one special Main Test Component (MTC) which starts, ends and co-ordinates the test run.

• A Controlled Component (CC) is a component which does not contribute to the test verdict but provides SUT
specific data to TCs or the SUT, e.g., a load generator, an emulator or a simulator.

• A Communication Point (CoP) represents a point at which communication takes place and at which communication
can be observed, controlled or monitored. CoPs may be placed somewhere in the IUT, thus CoPs may be used for
controlling and observing state information internal to the IUT or to monitor communication between IUTs.

• A Communication Link (CL) is a means for describing possible communication flows between TCs, IUTs, ICs and
CCs and the kind of communication which may take place. We distinguish between active and passive CLs. An
active CL can be characterized by its kind (synchronous or asynchronous) and its direction (unidirectional or
bidirectional). A passive CL allows to monitor communication, i.e., to listen at a CoP. For the dynamic creation of
TCs it is assumed that CLs are also created dynamically and that the CoPs linked to the CLs are all known before test
execution, i.e., CoPs cannot to be created dynamically.

• The term System Under Test (SUT) denotes a combination of ICs and IUTs.

An example for the use of the proposed model is shown in figure B.2. The different hard- and software components of
the architecture are shown as boxes and ellipses. The communication flow, the kind of communication and the creation
of TCs is indicated by different types of arrows.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)57

Figure B.2: Example for the use of the generic test architecture

Figure B.2 describes an architecture proposed for interoperability testing in Testing of Communicating Systems (see
bibliography 9). There are two IUTs to be tested. One is called toBeTested1; the other is embedded in the SUT
toBeTested2. The IUTs communicate by using an underlying network which in our case is emulated by the CC Network
Emulator. The IUT toBeTested1 needs the IC Lower Layers for having the interface CoP2 with CC Network Emulator.
The communication at CoP2 is monitored by TC Monitor. This is described by the passive CL between CoP2 and
Monitor. If necessary, the CC Network Emulator can be controlled by the TC Control.

The MTC is called UpperTesterFunction. It communicates asynchronously via CoP5 with the peer TC UpperTester. As
indicated by the dotted arrows, the TCs Monitor and Control are created by the MTC. It is assumed that they are
running on the same computer and perform a synchronous communication with the MTC.

NOTE: When extending TTCN, new test methods should also be investigated. The generic test architecture model
of Testing of Communicating Systems (see bibliography 9) is very general and may be used for this
purpose.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)58

B.6 On the introduction of new TTCN concepts
The introduction of new TTCN concepts should be done carefully. The following proposes a three-step procedure where
each step widens the scope of TTCN in one specific direction. In parallel to all steps, corresponding abstract test
architectures should be developed.

B.6.1 Step 1: Generalisation of TTCN concepts
The first step should widen the scope of TTCN towards the test of applications which are not OSI compliant, e.g.,
CORBA applications. As a consequence, some TTCN restrictions should be dropped and some new concepts should be
introduced. Major topics of this step are:

• It should be allowed to distribute the IUT instead of having only one black box representing the IUT.

• New communication mechanisms should be supported, e.g., synchronous communication, or broadcast messages.

• Dynamic creation and destruction of test components and communication links should be supported.

The work for this first step should be co-ordinated with the ongoing discussions about a simplification of TTCN and
additional constructs proposed for facilitating the use of TTCN.

B.6.2 Step 2: TTCN based real-time testing
In the second step TTCN should be extended to support real-time testing. This may be done by introducing a new timer
concept or by modifying the existing timer concept. In both cases, the semantics of TTCN has to be adapted.

B.6.3 Step 3: TTCN based performance testing
The TTCN extensions to be introduced in a third step should support performance testing. From the point of view of the
semantics, this third step might be the most critical one. The steps one and two are straight forward and can build on the
existing semantics. In the third step, statistical models have to be introduced and interpreted.

B.6.4 Related issues
Some applications use their own description techniques for purposes which affect the TTCN use. For example, IDL is
used for the description of interfaces. The relation of IDL and TTCN is not defined yet and therefore not clear. In cases
where the relationship between TTCN and the other description techniques is important, it should be studied in detail.
As a result of these investigations, mapping rules between the two notations should be defined. In a first step this should
be done for clarifying the relation between TTCN and IDL.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)59

Bibliography
The following material, though not specifically referenced in the body of the present document (or not publicly
available), gives supporting information.

1) R. Jain, G. Babic, A. Durresi. ATM Forum Performance Testing Specification - Baseline Text.
ATM Forum Document Number: BTD-TEST-TM-PERF.00.05 (96-0810R8), February 1998.

2) T. Henzinger, Z. Manna, A. Pnueli. Timed Transition Systems. In Real-Time: Theory and Practice.
LNCS 600, 1991.

3) OMG. The Common Object Request Broker Architecture and Specification. Version 2.2,
Feb. 1998.

4) I. Schieferdecker, M. Li, A. Hoffmann. Conformance Testing of TINA Service Components - the
TTCN/CORBA Gateway. To appear in ISN.98.

5) I. Schieferdecker, M. Li, A. Rennoch. An AAL5 Performance Test Suite in PerfTTCN.
Proceedings of the 1997 GI/ITG technical workshop on formal description techniques in Berlin,
1997.

6) I. Schieferdecker, B. Stepien, A. Rennoch. PerfTTCN, a TTCN language extension for
Performance Testing. In: Testing of Communicating Systems, Volume 10 (M. Kim, S. Kang, K.
Hong editors), Chapman & Hall, September 1997.

7) T. Walter, J. Grabowski. Realtime TTCN for Testing Real-time and Multimedia Systems. In:
Testing of Communicating Systems, Volume 10 (M. Kim, S. Kang, K. Hong editors), Chapman &
Hall, September 1997.

8) T. Walter, J. Grabowski. A Proposal for a Real-Time Extension for TTCN. In Kommunikation in
Verteilten Systemen'97 (KiVS'97), Informatik aktuell, Springer Verlag 1997.

9) T. Walter, I. Schieferdecker, K. Grabowski. Test Architectures for Distributed Systems - State of
the Art and Beyond. In: Testing of Communication Systems, Volume 11 (A. Petrenko, N.
Yevtushenko editors), Chapman & Hall, September 1998.

ETSI

ETSI EG 202 103 V1.1.1 (1999-05)60

History

Document history

V1.1.1 February 1999 Membership Approval Procedure MV 9917: 1999-02-23 to 1999-04-23

V1.1.1 May 1999 Publication

ISBN 2-7437-3093-5
Dépôt légal : Mai 1999

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Abbreviations
	4 Introduction
	5 Concurrency
	5.1 Introduction to Concurrent TTCN
	5.2 Test Components
	5.3 Co-ordination of test components
	5.3.1 Co-ordination points
	5.3.2 Co-ordination Messages

	5.4 Defining different test configurations
	5.4.1 Connection to the IUT
	5.4.2 Connecting MTCs and PTCs
	5.4.3 The Master and Parallel Test Components
	5.4.4 The CREATE Construct
	5.4.5 Scope of Variables

	5.5 Verdicts
	5.5.1 R_Type

	5.6 The DONE Statement
	5.7 Summary of MTC and PTC characteristics

	6 Encoding
	6.1 Introduction to specifying encoding information in TTCN
	6.2 Scope of application of encoding information
	6.3 Encoding Definitions
	6.4 Encoding Variations
	6.5 Invalid Field Encoding definitions
	6.6 Using variant and invalid encodings in PDUs and Constraints
	6.7 Using the ENC keyword

	7 Modular TTCN
	7.1 Introduction
	7.2 Importing objects to a Test Suite or module
	7.3 Exporting objects from a Test Suite or module
	7.4 TTCN modules
	7.5 External TTCN objects
	7.6 Renaming

	8 Other TTCN version 2 features
	8.1 Grouping of constraints and other tables
	8.1.1 Global restrictions on groups of tables.

	8.2 Passing Matching Symbols to constraints
	8.3 Empty PDUs
	8.4 The RETURN statement
	8.5 OTHERWISE and the fail verdict
	8.6 Collective comments
	8.7 Test Suite Constants by Reference
	8.8 PCO Type Declarations
	8.9 ACTIVATE statement
	8.10 Test suite operations using the procedural definition
	8.11 Using ASN.1 '94

	9 Some Do's and Don'ts when using TTCN
	9.1 Use of matching symbols in receive constraints
	9.2 Restriction on using receive events
	9.3 First set of alternatives in default.
	9.4 Declaration part and protocol standard
	9.5 Declaration part and transfer syntax
	9.6 Timers
	9.7 Wild cards in send constraints
	9.8 Use of the metatype PDU
	9.9 Page number in the test suite overview
	9.10 Test case end
	9.11 ASN.1 definitions in TTCN
	9.12 Some common errors to avoid

	Annex A (normative): Some examples of the use of TTCN
	A.1 Concurrent TTCN
	A.1.1 Example of EN 300 403-7: ATS&PIXIT for DSS1 layer 3 network
	A.1.1.1 Description of ATM used
	A.1.1.2 Conventions for test components and PCOs
	A.1.1.3 The Test Component Configuration Declaration
	A.1.1.4 Example of a test case
	A.1.1.5 Example of a co-ordination message

	A.1.2 Example of ETS 300 806-2: ATS&PIXIT for the Generic Functional Protocol
	A.1.2.1 Test Configurations and use of Concurrent TTCN
	A.1.2.2 Test Component Configuration Declaration for the Transit configuration
	A.1.2.3 Example of a test case for Transit Configuration

	A.2 Index table of TTCN topics

	Annex B (normative): Application of TTCN to other types of testing
	B.1 Introduction
	B.2 Application specific requirements
	B.2.1 CORBA
	B.2.1.1 Dynamic test configurations
	B.2.1.2 IDL and TTCN mapping
	B.2.1.3 Dynamic parts of CORBA test cases

	B.2.2 Database applications

	B.3 TTCN based performance testing
	B.3.1 Goal of performance testing
	B.3.2 Relations to Quality of Service metrics
	B.3.3 Relations to conformance testing
	B.3.4 Metrics to be measured
	B.3.4.1 Throughput
	B.3.4.2 Frame latency
	B.3.4.3 Throughput fairness
	B.3.4.4 Frame Loss Ratio
	B.3.4.5 Maximum Frame Burst Size
	B.3.4.6 Call Establishment Latency

	B.3.5 Performance TTCN (PerfTTCN)
	B.3.5.1 Concepts of PerfTTCN
	B.3.5.1.1 PerfTTCN Test components
	B.3.5.1.2 Performance test configurations
	B.3.5.1.3 Measurements and Analysis
	B.3.5.1.4 Performance test behaviour

	B.3.5.2 PerfTTCN specific language constructs
	B.3.5.2.1 Foreground and background test components
	B.3.5.2.2 Background traffic patterns
	B.3.5.2.3 Measurements and Analysis
	B.3.5.2.4 Performance constraints
	B.3.5.2.5 Performance Test Behaviour

	B.3.5.3 Application of PerfTTCN
	B.3.5.4 Semantics of PerfTTCN

	B.3.6 Conclusions

	B.4 TTCN based real-time testing
	B.4.1 Goal of real-time testing
	B.4.2 Relations to conformance testing
	B.4.3 Problems of using TTCN for real-time testing
	B.4.4 Real-time TTCN
	B.4.4.1 The RT-TTCN Approach
	B.4.4.2 RT-TTCN specific language constructs
	B.4.4.2.1 Extensions of the TTCN declaration part
	B.4.4.2.2 Extensions of the TTCN dynamic part
	B.4.4.2.3 Assigning test verdicts

	B.4.4.3 Semantics of RT-TTCN
	B.4.4.4 Application of RT-TTCN

	B.4.5 Conclusion

	B.5 Advanced test architectures
	B.6 On the introduction of new TTCN concepts
	B.6.1 Step 1: Generalisation of TTCN concepts
	B.6.2 Step 2: TTCN based real-time testing
	B.6.3 Step 3: TTCN based performance testing
	B.6.4 Related issues

	Bibliography

	History

