
European Telecommunications Standards Institute

 EG 201 148 V1.1.2 (1998-03)
ETSI Guide

Methods for Testing and Specification (MTS);
Guide for the use of the second edition of TTCN

EG 201 148 V1.1.2 (1998-03)2

Reference
DEG/MTS-00036 (amo00ide.PDF)

Keywords
TTCN, testing,

ETSI Secretariat

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Internet
secretariat@etsi.fr
http://www.etsi.fr

http://www.etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1998.
All rights reserved.

EG 201 148 V1.1.2 (1998-03)3

Contents

Intellectual Property Rights..4

Foreword ..4

Introduction ..4

1 Scope..5

2 References..5

3 Abbreviations ...5

4 Concurrency ...6
4.1 Introduction to concurrent TTCN .. 6
4.2 Test Components ... 6
4.3 Co-ordination of Test Components.. 7
4.3.1 Coordination points.. 7
4.3.2 Coordination Messages .. 7
4.4 Test Configurations.. 8
4.4.1 Connection to the IUT.. 8
4.4.2 Connecting MTCs and PTCs.. 9
4.4.3 The Master and Parallel Test Components... 9
4.4.4 The CREATE construct ... 10
4.4.5 Scope of variables .. 10
4.5 Verdicts.. 11
4.5.1 The DONE Statement... 11
4.6 Summary of MTC and PTC characteristics ... 12

5 Encoding ..12
5.1 Introduction to specifying encoding information in TTCN.. 12
5.2 Basic principles.. 13
5.3 Encoding Definitions ... 14
5.4 Encoding Variations .. 14
5.5 Invalid Field Encoding Definitions.. 14
5.6 Using variant and invalid encodings in PDUs and Constraints.. 15
5.7 Using the ENC keyword .. 15

6 Modular TTCN ..16
6.1 Introduction.. 16
6.2 Additions to Test Suites... 18
6.3 Modules ... 19
6.4 External Objects... 20
6.5 Renaming... 20

7 Other additional features..21
7.1 Passing Matching Symbols to constraints .. 21
7.2 Empty PDUs .. 21
7.3 The RETURN statement .. 21
7.4 OTHERWISE and the fail verdict ... 21
7.5 Collective comments.. 22
7.6 R_Type .. 22
7.7 Test Suite Constants by Reference... 22
7.8 PCO Type Declarations ... 22
7.9 ACTIVATE statement ... 22

History..23

EG 201 148 V1.1.2 (1998-03)4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETR 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of
ETSI standards", which is available free of charge from the ETSI Secretariat. Latest updates are available on the ETSI
Web server (http://www.etsi.fr/ipr).

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No
guarantee can be given as to the existence of other IPRs not referenced in ETR 314 (or the updates on
http://www.etsi.fr/ipr) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

Introduction
The present document summarizes the additional features and capabilities of the Tree and Tabular Combined Notation
(TTCN) that are considered to be of most interest when specifying Abstract Test Suites (ATS) for telecommunications
protocols and services. The features that support major new functionality are:

- concurrency, which allows execution of different dynamic behaviours in parallel;

- encoding, which allows to define encoding for each PDU type and to modify it for each PDU Constraint (or even
each field);

- modularity, which allows to reuse parts of existing ATS and to specify modules.

Less extensive, but nonetheless important, changes are:

- the possibility to pass matching symbols to Constraints;

- PDUs need not contain any fields;

- the RETURN statement to exit Test Steps (TS);

- it is no longer mandatory that an OTHERWISE in a Default must lead to a fail verdict;

- Collective Comments in some tables;

- predefined type (R_Type) for verdicts;

- the use of Active Defaults to switch on/off default behaviour;

- Test Suite Operations (TSOs) may be specified as procedures rather than informal text (not described in the
present document);

- ability to declare Test Suite Constants by reference (not described in the present document).

EG 201 148 V1.1.2 (1998-03)5

1 Scope
The present document provides an introduction to the new features defined in the second edition of the Tree and Tabular
Combined Notation (TTCN) as defined in TR 101 101 [1]. The second edition of TTCN incorporates Amendments 1
and 2 and a number of technical corrigenda into the 1991 TTCN standard as defined in ISO/IEC 9646-3 [2].

The present document is intended to be used as introductory reference material for those wishing to gain an
understanding of the new TTCN features (a more detailed version of the present document is intended to be produced by
MTS in 1998).

2 References
References may be made to:

a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) all versions up to and including the identified version (identified by "up to and including" before the version
identity); or

c) all versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] TR 101 101 (1997): "Methods for Testing and Specificatin (MTS); TTCN interim version
including ASN.1 1994 support [ISO/IEC 9646-3] (second edition mock-up for JTC1/SC21
review)".

[2] ISO/IEC 9646-3 (1991): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[3] CCITT Recommendation X.208 (1990) : "Specification of Abstract Syntax Notation One
(ASN.1)".

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
BER Basic Encoding Rules
CM Coordination Message
CP Coordination Point
IUT Implementation Under Test
MTC Main Test Component
PCO Point of Control and Observation
PDU Protocol Data Unit
PTC Parallel Test Component
TS Test Steps
TTCN Tree and Tabular Combined Notation
UT Upper Tester

EG 201 148 V1.1.2 (1998-03)6

4 Concurrency

4.1 Introduction to concurrent TTCN
Unlike TTCN version 1, concurrent TTCN allows test suites:

- to use more than two Points of Control and Observation (PCO);

- to use more than one underlying service provider;

- to have dynamic behaviours executing in parallel;

- to specify co-ordination between concurrently executing components.

These capabilities have introduced a number of additional concepts, proformas, statements and verdict mechanisms to
TTCN.

Additional concepts:

- Test Components;

- Test Component Configurations;

- Coordination Points (CPs);

- Coordination Messages (CMs).

Additional proformas:

- Test Component Declarations;

- Test Component Configuration Declaration(s);

- CP Declarations;

- CM Declarations (tabular and Abstract Syntax Notation No.1 (ASN.1));

- CM Constraints (Tabular and ASN.1).

Additional constructs and statements:

- CREATE

- DONE

Additional verdict mechanisms:

- local result variables;

- global result variable.

4.2 Test Components
The building-blocks of Concurrent TTCN are called Test Components. In the present document we will sometimes use
the term component for short. A Test Component can be either a Main Test Component (MTC) or a Parallel Test
Component (PTC). All Test Components are declared in a single Test Components Declaration table. In a Test Suite
this table comes after the Timer Declarations table.

EG 201 148 V1.1.2 (1998-03)7

Test Component Declarations
Component Name Component Role Nr of PCOs Nr of CPs Comments

MTC1
PTC1
PTC2

MTC
PTC
PTC

0
1
1

2
1
1

Figure 1: Declaring Test Components

Each component must have a name that is unique within the test suite and be assigned the role of either MTC or PTC.
This table must contain at least one MTC and zero or more PTCs.

NOTE 1: MTC and PTC are now reserved words in TTCN.

At this stage we need only define placeholders for the actual PCOs and Coordination Points (CPs) that will later be
associated with the components in a particular configuration. This is done by simply stating the number of PCOs and/or
CPs that may be associated with each component.

NOTE 2: A Test Component may have neither PCOs nor CPs. In fact, it is quite feasible that this could apply even
to an MTC. The MTC could CREATE the PTCs and achieve co-ordination, albeit limited, using the
DONE statement and the implicit verdict mechanism.

4.3 Co-ordination of Test Components
Explicit co-ordination between components is achieved using CPs and CMs.

4.3.1 Coordination points

CPs are very similar to PCOs. They allow asynchronous communication between exactly two PTCs or between one PTC
and the MTC. In other words, a CP may not be shared between more than two Test Components. A CP may not be
connected to the Implementation Under Test (IUT), either directly or indirectly via a service provider.

In a test suite the CP declarations come after the PCOs.

Coordination Point Declarations
CP Name Comments

CP1
CP2

Figure 2: Declaration of Coordination Points

There is a predefined type in TTCN called CP. This is useful when parameterizing PTCs.

NOTE: CP is now a reserved word in TTCN.

4.3.2 Coordination Messages

CMs are very similar to Abstract Service Primitives (ASP) except that they occur at CPs. You can do all the things with
a CM that you can do with an ASP. Either the tabular form or ASN.1 as defined in CCITT Recommendation X.208 [3]
can be used.

NOTE: CMs are treated like ASPs and not as Protocol Data Units (PDUs) because TTCN is not concerned with
the encoding of these messages. That is a matter for the implementors of the test suite.

A CM parameter may be of any TTCN type including structured types and the metatype PDU. Generally, though, it is
recommended that CMs are kept as simple as possible. In many cases a CM will not even have parameters, the name
itself will be adequate (e.g. STOP, WAIT, etc.).

There are no predefined TTCN CMs.

EG 201 148 V1.1.2 (1998-03)8

CMs may be declared using either TTCN tables or ASN.1. In a test suite, CM Declarations come after the PDU
Declarations.

CM Type Definition
CM Name : CM_ERROR
Comments :

Parameter Name Parameter Type Comments
Error INTEGER

Figure 3: Definition of a Coordination Message

CM Constraints are similar to ASP Constraints. In a test suite, CM Constraints come after the PDU Constraints.

CM Constraint Declaration
Constraint Name : ERR (err_num:INTEGER)
CM Type : CM_ERROR
Derivation Path :
Comments :

Parameter Name Parameter Value Comments
Cause err_num

Figure 4: A Coordination Message Constraint

Note that when a CM has no parameters it is not necessary to define a constraint for it. This also means that an entry in
the constraints' reference column of a dynamic behaviour is not required.

NOTE: In TTCN Version 2 this point also applies to ASPs and PDUs generally.

4.4 Test Configurations
An actual abstract test architecture is defined by connecting together a number of Test Components in what is called a
Test Component Configuration. In the present document we will sometimes use the term configuration for short.

A configuration will consist of exactly one MTC and zero or more PTCs.

In most practical applications a single ATS will make use of more than one configuration. Each configuration is defined
in a separate Test Component Configuration Declaration Table. In a test suite, Test Component Configuration
Declarations come after the Test Component Declarations.

Test Component Configuration Declaration
Configuration Name : CONFIG1
Comments :

Components Used PCOs Used CPs Used Comments
MTC1
PTC1
PTC2

PCO1
PCO2

CP1, CP2
CP1
CP2

Figure 5: A typical configuration

4.4.1 Connection to the IUT

The PCOs Used column lists the actual PCOs (if any) associated with the Test Components. The relation of the PCOs to
the Implementation Under Test (IUT), either directly (as in the case of a PTC that is part of an Upper Tester(UT)) or
indirectly via an underlying service provider is indicated, as usual, in the PCO Declarations table.

EG 201 148 V1.1.2 (1998-03)9

Note the following rules:

- each entry in this column is a list of zero or more PCOs;

- for each MTC and each PTC the number of entries in this list must be the same as the corresponding number of
PCOs stated in the declaration of the component;

- no PCO may be used more than once in a single configuration (i.e. Test Components cannot share PCOs).

4.4.2 Connecting MTCs and PTCs

The CPs Used column lists the actual CPs (if any) associated with the Test Components. These entries are used to
interconnect Test Components.

Note the following rules:

- each entry in this column is a list of zero or more CPs;

- for each PTC the number of entries in this list must be the same as the corresponding number of CPs stated in the
declaration of the component;

- for each MTC the number of entries may be the same or less but not more. This allows for flexibility when using
the same MTC in various configurations;

- no CP name is allowed to appear more than once in a single list;

- each CP name that is in one list must appear in exactly one other list. In this manner you can specify connected
pairs.

Service Provider(s)

MTC

PTC2PTC1

CP1

PCO1 PCO2

CP2

IUT

Figure 6: The configuration specified in figure 5

4.4.3 The Master and Parallel Test Components

Each configuration shall have one and only one MTC. Furthermore, the MTC shall be located on the Lower Tester side
of the architecture. The MTC is responsible for creating the PTCs, for overall co-ordination of the Test Case and for
assigning the final verdict.

EG 201 148 V1.1.2 (1998-03)10

A particular configuration is associated to a Test Case by the (new) entry in the Test Case Dynamic Behaviour header.

Test Case Dynamic Behaviour
Test Case Name :
Group :
Purpose :
Configuration : CONFIG1
Defaults :
Comments :
Nr L Behaviour Description Constraint Ref V Comments

Figure 7: Associating a configuration with a Test Case

This means that the Test Case is the MTC. The variables, constants, timers, behaviour, etc. of the Test Case are the
variables, constants, timers, behaviour, etc. of the MTC.

4.4.4 The CREATE construct

The MTC binds dynamic behaviour to the PTCs using the CREATE construct. This construct also has the effect of
starting execution of the named PTC or PTCs.

7 :
8 CREATE (PTC1:Step1 (CP1), PTC2:Step2(CP2))
9 :

Figure 8: The CREATE construct

In the previous example, the Test Step Step1 is bound to PTC1 and the Test Step Step2 is bound to PTC2.

NOTE 1: Parameters may be passed to the PTCs, in this case the Coordination Points CP1 and CP2.

NOTE 2: The Test Steps may either reside in the Test Step library or be local trees.

As each created PTC is a separate executing entity the same Test Step may be used, if wished, to define the behaviour of
different PTCs.

Test Steps that are invoked from a Test Case in the normal manner (i.e. + TestStepName) are part of the MTC and
should not be considered as PTCs, only Test Steps that are invoked from a Test Case using the CREATE construct
become PTCs.

4.4.5 Scope of variables

At the start of execution of the Test Case each Test Component is allocated its own fresh set of variables, timers,
constraints, etc. These are limited in scope to the Test Component during the life of the Test Case: data is not shared
between Test Components.

Only an MTC may use Test Suite Variables.

EG 201 148 V1.1.2 (1998-03)11

4.5 Verdicts
Concurrent TTCN includes a number of predefined variables for tracking the intermediate results and the final verdict.
These are:

- each PTC maintains its own local result variable called R;

- the MTC also has a local result variable but this is called MTC_R;

- the MTC also maintains a global result variable called R.

A PTC may assign a preliminary result (for example (P)) in its verdict column. This has the effect of updating both the
local R and the global R according to the priority table defined in ISO/IEC 9646-3 [2].

NOTE: These priority rules are unchanged from TTCN version 1. Also, MTC_R is now a TTCN reserved word.

A PTC may also assign a result without parentheses (for example P), in its verdict column. This updates the local and
global result variables as usual and terminates execution of the PTC. However, this result is not to be considered as a
final verdict.

 MTC

 PTC

 local result variable R

E.g. P or (P)

 PTC

 local result variable R

E.g. P or (P)

global result variable R

local result variable MTC_R

E.g. P or (P)

Figure 9: Relation between the different result variables

Similarly, the MTC will update its local result variable MTC_R and the global result variable R in accordance with the
priority rules. A result without parentheses in the MTC is considered to be the final verdict and has the effect not only of
terminating execution of the MTC but also of any PTCs that are still executing.

The TTCN standard does not say anything about the actual mechanisms that perform the updating of the local and
global R variables the and MTC_R variable. This is a matter for the implementors of the test suite. Use these variables
with care, for example always after DONE.

4.5.1 The DONE Statement

The DONE statement is used to check whether or not a Test Component has terminated execution. It may be used by
both MTCs and PTCs, but should generally be used by the MTC to ensure that all PTCs have ceased execution before
assigning the final verdict.

5 :
6 ?DONE (PTC1, PTC2) PASS
7 ?TIMEOUT FAIL
8 :

Figure 10: The DONE Statement

EG 201 148 V1.1.2 (1998-03)12

The DONE statement has no effect on the Test Component being interrogated (it does not terminate execution of a Test
Component). In a PTC termination will either occur:

- when the PTC behaviour tree ends in a leaf; or

- when an entry without parentheses is encountered in the verdicts column of a PTC; or

- when the PTC is instructed to do so by an appropriate CM (which must be defined in the test suite).

A DONE statement without an argument list has the same effect as interrogating all the PTCs that have been created
prior to the DONE. Only an MTC may do this.

4.6 Summary of MTC and PTC characteristics
Table 1 summarizes the main characteristics of MTCs and PTCs.

Table 1: Characteristics of MTCs and PTCs

Capability MTC PTC
Is associated with a ... Test Case Test Step
Can use the CREATE construct Yes No
Can use the DONE statement Yes Yes
Results written to the global result variable R Yes Yes
Results written to the local result variable MTC_R Yes No
Results written to a local result variable R No Yes
Can assign a final verdict Yes No
Can use all TTCN types Yes Yes
Can use Test Suite Parameters and other Constants Yes Yes
Can use Test Suite Variables Yes No
Scope of Test Case Variables, Timers, Operations, etc. Local to MTC Local to PTC
Scope of attached Test Steps and Defaults Local to MTC Local to PTC

5 Encoding

5.1 Introduction to specifying encoding information in TTCN
This addition to TTCN allows test suites to specify the encoding of PDUs. This is useful where a base standard offers
different choices of encoding rules and/or to test how an IUT handles invalid encoding. Mechanisms are provided for
the definition of:

- general encoding;

- variations on the general encoding;

- invalid field encoding.

These mechanisms may be used both with tabular TTCN PDUs and ASN.1 PDUs. They shall not be used for ASPs or
CMs, the encoding of which is an implementation matter.

These capabilities have introduced a number of additional proformas and added header entries and additional columns
to some existing TTCN proformas.

Additional proformas:

- encoding definitions;

- encoding variations;

- invalid field encoding operation definition(s).

EG 201 148 V1.1.2 (1998-03)13

Changes to existing proformas:

- structured type definition(s) - one additional header entry, one additional column;

- ASN.1 Type definition(s) - one additional header entry, some additional syntax;

- ASN.1 Type definitions by Reference - one additional column;

- PDU Type definition(s) - two additional header entries, one additional column;

- ASN.1 PDU type definition(s) - two additional header entries, some additional syntax;

- ASN.1 PDU type definitions by reference - two additional columns;

- corresponding changes to the relevant constraints tables have also been made.

NOTE: All these changes are optional and need not appear if encoding is not used.

5.2 Basic principles
The mechanisms for TTCN encoding information shall only be used if the protocol or service specification defines or
makes reference to a standardized set of encoding rules. If no such rules exist then a TTCN test suite cannot 'invent'
them.

Encoding Information can be of the following kinds:

- reference to the general encoding rule(s) applicable to the entire test suite;

- definitions of the encoding variations (if any) on the general encoding rule(s);

- definitions of invalid PDU field encoding (if any).

The encoding may be applied at five levels, given below in increasing order of priority:

- the top-level applies to the entire test suite, that is, the encoding rules apply to all PDUs sent or received in the
test suite, unless overridden by one of the following cases;

- the second level applies to all PDUs of a particular type. All PDUs of this type will be encoded according to the
variant given in the PDU type definition header;

- the third level allows specific fields of a particular PDU type to be given either a variant encoding or an invalid
encoding;

- the fourth level allows an (entire) individual constraint to be given a variant encoding;

- finally, the fifth level allows specific fields of an individual PDU Constraint to be given either a variant encoding
or an invalid encoding;

NOTE: For simplicity, in this section we have only talked about PDUs and PDU constraints. The above equally
applies to structured types and structured constraints (that are used in PDUs). Similarly, the same applies
to Simple Types and Structure elements as to PDU fields.

EG 201 148 V1.1.2 (1998-03)14

5.3 Encoding Definitions
The Encoding Definitions table states the encoding rules that are used in the ATS by referencing the appropriate
standard where the rules are defined. In a Test Suite this table comes after the test suite type definitions and before the
Test Suite Operation Definition(s).

Encoding Definitions
Encoding Rule Name Reference Default Comments

BER
PER
DER

ISO/IEC 8825-1: 1993
ISO/IEC 8825-1: 1993
ISO/IEC 8825-1: 1993

TSP1
[TSP2 OR TSP3]

Figure 11: Encoding Definitions

The Boolean expression in the Default column is used to determine the default set of encoding rules. In our example, if
the Test Suite Parameter TSP1 has the value TRUE then BER is used. If either TSP2 or TSP3 evaluates to TRUE then
PER applies. No entry in the Default column has the same effect as writing FALSE. If this column is empty then the first
entry in the Encoding Rule Name column is taken to be the default.

5.4 Encoding Variations
The Encoding Variations table states variations on the general encoding rules that are used in the ATS, if any. These
variations must be allowed according to the original encoding rules. In a Test Suite this table comes after the Encoding
Definitions.

Encoding Variations
Encoding Rule Name : BER
Type List : INTEGER
Comments :

Encoding Variation Reference Default Comments
SD
LD (len:INTEGER)

6.3.3.1
6.3.3.1

TRUE

Figure 12: Encoding Variations

This example shows two variations of Basic Encoding Rules (BER), (Short Definite and Long Definite encodings for
INTEGER values). The default variant is Short Definite.

The Type List entry indicates to which types this encoding applies. If this entry is empty then the encoding applies to all
types.

NOTE: The encoding variation may be followed by a formal parameter list, if required. In our example, len states
the length of the LD encoding.

5.5 Invalid Field Encoding Definitions
The Invalid Field Encoding Definitions table is used to define invalid encodings of PDU fields, if any. In a Test Suite
these tables come after the Encoding Variations.

The invalid encodings are defined using the (new) TTCN syntax for procedures (not the free text format).

EG 201 148 V1.1.2 (1998-03)15

5.6 Using variant and invalid encodings in PDUs and
Constraints

In the following example, let us assume that the default encoding rules BER apply (as stated in the Encoding Rules table
earlier).

PDU Type Definition
PDU Name : A_PDU
PCO Type : L
Encoding Rule Name :
Encoding Variation : LD
Comments : All PDUs (Constraints) of this type will be encoded to BER.

However, all fields of type INTEGER in this PDU will be
 encoded to the Long Definite (LD) variation.
Field Name Field Type Field Encoding Comments

F1
F2
F3

INTEGER
INTEGER
INTEGER

This field will be encoded Long
Definite
This field will be encoded Long
Definite
This field will be encoded Long
Definite

Figure 13: PDU Type definition with encoding information

PDU Constraint Declaration
Constraint Name : C1
PDU Type : A_PDU
Derivation Path :
Encoding Rule Name :
Encoding Variation :
Comments : This constraint will be encoded according to the encoding
 information given in the definition of A_PDU (i.e. BER and

Long Definite). However, the encoding of fields F1 and F2
 is explicitly overridden.
Field Name Field Value Field Encoding Comments

F1
F2
F3

123
456
789

SD
INVALID_LENGTH(2)

Switch back to Short Definite
This field will given an invalid
encoding
This field will be encoded Long
Definite

Figure 14: A constraint with encoding derived from the PDU type

5.7 Using the ENC keyword
In ASN.1 PDU Type Definitions and ASN.1 PDU Constraint Declarations the field encodings are specified using the
ENC keyword instead of the additional column. In ASN.1 the constraint of the example above would be:

ASN.1 PDU Constraint Declaration
Constraint Name : C1
PDU Type : A_PDU
Derivation Path :
Encoding Rule Name :
Encoding Variation :
Comments : This constraint will be encoded according to the encoding

information given in the definition of A_PDU. However, the
encoding of fields F1 and F2
 is explicitly overridden.

Constraint Value
SEQUENCE {

f1 123 ENC SD;
f2 456 ENC INVALID_ENCODING(2);
f3 789 }

Figure 15: Use of the ENC keyword in ASN.1

EG 201 148 V1.1.2 (1998-03)16

6 Modular TTCN

6.1 Introduction
The introduction of modularity in TTCN allows the separation of parts of an abstract test suite into modules. This is
particular useful in view to maintencance and reusability issues. TTCN Edition 2 permits the modularization of test
suites by allowing the specification of two separate entities:

- Test Suites (as in normal TTCN);

- Modules.

A Test Suite may now consist of five (rather than four) parts, that is:

- Test Suite Overview Part;

- Imports Part (new);

- Declarations Part;

- Constraints Part;

- Dynamic Part.

Whereby the Test Suite Overview Part contains a new section for the Exports Part:

- Test Suite Index;

- Test Suite Structure;

- Test Case Index;

- Test Step Index;

- Default Index;

- Test Suite Exports (new).

A Module consists of a similar five parts:

- Module Overview Part;

- Module Imports Part;

- Declarations Part;

- Constraints Part;

- Dynamic Part.

Whereby the Module Overview Part contains the section for the Module Exports:

- TTCN Module Exports;

- TTCN Module Structure;

- Test Case Index;

- Test Step Index;

- Default Index.

These capabilities have introduced a number of additional concepts and proformas to TTCN.

EG 201 148 V1.1.2 (1998-03)17

Additional concepts:

- Modules;

- Import and Export of objects;

- EXTERNAL objects.

Additional proformas:

- Imports proforma used in Test Suite and Modules.

Imports

Source Name :

Source Ref :

Standards Ref :

Comments :

Object Name Object Type Source Name Comments

Detailed Comments:

- Exports proforma used in Test Suites.

 Test Suite Exports

Object Name Object Type Source Name Page Nr Comments

Detailed Comments:

- Exports proforma used in modules.

Module Exports

TTCN Module Name :

Objective :

TTCN ModuleRef :

Standards Ref :

PICS Ref :

PIXIT Ref :

Test Method(s) :
Comments :

Object Name Object Type Source Name Page Nr Comments

Detailed Comments:

EG 201 148 V1.1.2 (1998-03)18

- External objects proforma used in modules located in the module imports part.

External Objects

Object Name Object Type Comments

6.2 Additions to Test Suites
The types of objects that may be imported/exported are:

Table 2: List of object types which can be imported

SimpleType_Object
StructType_Object
ASN1_Type_Object
TS_Op_Object
TS_Proc_Object
TS_Par_Object
SelectExpr_Object
TS_Const_Object
TS_Var_Object
TC_Var_Object
PCO_Type_Object
PCO_Object
CP_Object

Timer_Object
Tcomp_Object
TcompConfig_Object
TTCN_ASP_Type_Object
ASN1_ASP_Type_Object
TTCN_PDU_Type_Object
ASN1_PDU_Type_Object
TTCN_CM_Type_Object
ASN1_CM_Type_Object
EncodingRule_Object
EncodingVariation_Object
InvalidFieldEncoding_Object
Alias_Object

StructTypeConstraint_Object
ASN1_TypeConstraint_Object
TTCN_ASP_Constraint_Object
ASN1_ASP_ Constraint_Object
TTCN_PDU_ Constraint_Object
ASN1_PDU_ Constraint_Object
TTCN_CM_ Constraint_Object
ASN1_CM_ Constraint_Object
TestCase_Object
TestStep_Object
Default_Object
NamedNumber_Object
Enumeration_Object

The imported objects are declared in the Imports proforma. In a Test Suite this table comes after the test suite overview.

Imports

Source Name : Module_1

Source Ref :

Standards Ref :

Comments :

Object Name Object Type Source Name Comments

SimpleType_A

Timer_A

PDU_A

SimpleType_Object

Timer_Object

TTCN_PDU_Type_Object

Omit

Module_2

Detailed Comments:

Figure 16: Use of the Import proforma

EG 201 148 V1.1.2 (1998-03)19

The exported objects are declared in the exports proforma which is located in the test suite overview part.

 Test Suite Exports

Object Name Object Type Source Name Page Nr Comments

String5

Wait

INTC

DEF1

TC_2

TC_3
Preamble

SimpleTypeDef_Object

TimerDcl_Object

TTCN_PDU_Type_Object

Default_Object

TestCase_Object

TestCase_Object
TestStep_Object

Module_B

TestSuite_1

TestSuite_2

EXTERNAL

3

13

33

Detailed Comments:

Figure 17: Use of the Export proforma

6.3 Modules
A module is very similar to a Test Suite in that it may contain declarations, constraints and dynamic behaviours but it is
not complete in itself. In practice a module should concentrate on a particular aspect, for example, only constraints or
only Test Steps. A Module also has an overview part, similar in function to the Test Suite Overview.

Objects defined in modules are intended to be imported by Test Suites or other Modules. The objects that are visible to
(i.e. may be imported by) Test Suites and other Modules must be declared in the Module Exports proforma.

Module Exports

TTCN Module Name : Module_A

Objective :

TTCN ModuleRef :

Standards Ref :

PICS Ref :

PIXIT Ref :

Test Method(s) :
Comments :

Object Name Object Type Source Name Page Nr Comments

String5

Wait

INTC

DEF1

TC_2

TC_3
Preamble

SimpleTypeDef_Object

TimerDcl_Object

TTCN_PDU_Type_Object

Default_Object

TestCase_Object

TestCase_Object
TestStep_Object

Suite_1
Module_1

EXTERNAL

2

3

13

45

56

67

Detailed Comments:

Figure 18: Use of Module exports

EG 201 148 V1.1.2 (1998-03)20

NOTE: The Source Name column may either:

- be empty, i.e. the object is defined in this module; or

- contain a Module Identifier, i.e. the object is defined in another Module; or

- contain a Test Suite Identifier, i.e. the object is defined in another Test Suite; or

- contain the keyword EXTERNAL, i.e. the object is defined externally.

Objects that are defined in the Module, but not declared in the Module Exports table may not be imported directly
although they may be used by the exported objects. For example, suppose the Module defines Test_Case_A which
attaches Test_Step_B but only Test_Case_A is declared in the Module Exports table. This means that Test_Step_B is
still used by Test_Case_A but cannot itself be imported from the Module.

6.4 External Objects
This proforma list the objects being referenced by their identifier in a TTCN module. The object defined in the External
Objects table need to be defined when importing the TTCN module.

External Objects

Object Name Object Type Comments

CRC(P:A_Pdu)

CONSTRAINT_A(acstr:T_CONNECT)

TESTSTEP_A(I:INTEGER)

DEF3

TS_Op_Object

TTCN_PDU_Constraint_Object

TestStop_Object

Default_Object

Figure 19: Use of External objects

NOTE: For objects that have formal parameter lists then the list shall be provided too.

6.5 Renaming
It is possible that an object is imported from a module or test suite exists already in the importing instance. In this case a
name clash occurs. The importing instance then needs to resolve the name clash by renaming the imported object to:

Source_Module_or_Test_Suite::Object_Identifier

The renaming of an object means:

- the object definition; and/or

- the references to the object;

are renamed.

EG 201 148 V1.1.2 (1998-03)21

7 Other additional features
This clause describes various other minor, but important, features.

7.1 Passing Matching Symbols to constraints
Matching symbols may now be passed as actual parameters to constraints. An example is given in figure 20.

7 :
8 L?A_PDU C1(?, (1,2,3), *,(1..6), "ab?xy*z")
9 :

Figure 20: Use of matching symbols in a constraints reference

7.2 Empty PDUs
PDU declarations need not have any field entries (i.e. the body of the table may be empty) if the corresponding PDU in
the standard does not have any fields. Previously this applied only to ASPs. This also means that constraints for the
'empty' PDU need not be defined.

7.3 The RETURN statement
This statement may only appear in Default dynamic behaviour descriptions. It is intended to be used when incoming
PDUs can occur at any time but which are not considered to be part of the test purpose and which should be ignored. A
RETURN from a Default will cause processing to continue at the first alternative in the set of alternatives that caused
the Default behaviour to be invoked. For example:

7 :
8 L? PDU_1 C1 Ignore this PDU
9 RETURN
1
0

?OTHERWISE inconc

1
1

:

Figure 21: Use of the RETURN statement

NOTE: Do not confuse RETURN with the RETURNVALUE keyword which is part of the procedural test suite
operations syntax.

7.4 OTHERWISE and the fail verdict
It is no longer mandatory that an OTHERWISE in a Default must lead to a fail verdict.

EG 201 148 V1.1.2 (1998-03)22

7.5 Collective comments
Tables for multiple TTCN objects (e.g. Test Suite Parameters, Test Case Variables) may now contain additional lines
called Collective Comments that can be used to group entries in the table. For example:

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments

The following parameters are used only in test cases for Valid behaviour
VPAR1
VPAR2

INTEGER
BOOLEAN

ref1
ref2

The following parameters are used only in test cases for Invalid behaviour
IPAR1
IPAR2

INTEGER
BOOLEAN

ref3
ref4

Figure 22: Use of collective comments

7.6 R_Type
This is a new predefined type associated with values of verdicts (pass, fail, inconc, none). It can be useful if verdicts
need to be carried, say, in a Coordination message.

NOTE: This facility is less useful now that Concurrent TTCN supports the implicit passing of verdicts.

7.7 Test Suite Constants by Reference
Test Suite Constants that are defined externally in ASN.1 may now be referenced using the following proforma:

Test Suite Constant Declarations by Reference
Constant Name Type Value Reference Comments

TC1
TC2

INTEGER
BOOLEAN

value_of_tc1
value_of_tc2

Figure 23: Use of Test Suite Constant Declarations by Reference

7.8 PCO Type Declarations
PCO Types must be declared in a (new) single PCO Types Declaration table. In a Test Suite this table comes before
PCO Declarations.

PCO Type Declarations

Type Name Role Comments
TSAP
SSAP

LT
UT

Figure 24: Declaration of Coordination Points

Two different PCOs, having the same PCO Type, may now use the same ASPs and/or PDUs.

7.9 ACTIVATE statement
The ACTIVATE statement allows Defaults to be selectively activated/deactivated during test case execution. This
feature is powerful and should be used with some care.

EG 201 148 V1.1.2 (1998-03)23

History

Document history

V1.1.1 December 1997 Membership Approval Procedure MV 9808: 1997-12-23 to 1998-02-20

V1.1.2 March 1998 Publication

ISBN 2-7437-2029-8
Dépôt légal : Mars 1998

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Abbreviations
	4 Concurrency
	4.1 Introduction to concurrent TTCN
	4.2 Test Components
	4.3 Co-ordination of Test Components
	4.3.1 Coordination points
	4.3.2 Coordination Messages

	4.4 Test Configurations
	4.4.1 Connection to the IUT
	4.4.2 Connecting MTCs and PTCs
	4.4.3 The Master and Parallel Test Components
	4.4.4 The CREATE construct
	4.4.5 Scope of variables

	4.5 Verdicts
	4.5.1 The DONE Statement

	4.6 Summary of MTC and PTC characteristics

	5 Encoding
	5.1 Introduction to specifying encoding information in TTCN
	5.2 Basic principles
	5.3 Encoding Definitions
	5.4 Encoding Variations
	5.5 Invalid Field Encoding Definitions
	5.6 Using variant and invalid encodings in PDUs and Constraints
	5.7 Using the ENC keyword

	6 Modular TTCN
	6.1 Introduction
	6.2 Additions to Test Suites
	6.3 Modules
	6.4 External Objects
	6.5 Renaming

	7 Other additional features
	7.1 Passing Matching Symbols to constraints
	7.2 Empty PDUs
	7.3 The RETURN statement
	7.4 OTHERWISE and the fail verdict
	7.5 Collective comments
	7.6 R_Type
	7.7 Test Suite Constants by Reference
	7.8 PCO Type Declarations
	7.9 ACTIVATE statement

	History

