
Draft EG 201 063 V1.1.1 (1997-05)
ETSI Guide

Multimedia Terminals and Applications (MTA);
End-to-end protocols for

multimedia information retrieval services;
Application walkthrough in a DAVIC system

Draft EG 201 063 V1.1.1 (1997-05)2

Reference
DEG/MTA-001069 (9uc00icq.PDF)

Keywords
MHEG, MMI, multimedia, terminal

ETSI Secretariat

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

X.400
c= fr; a=atlas; p=etsi; s=secretariat

Internet
secretariat@etsi.fr
http://www.etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1997.
All rights reserved.

Draft EG 201 063 V1.1.1 (1997-05)3

Contents

Intellectual Property Rights..4

Foreword ..4

1 Scope..5

2 References..5

3 Definitions and abbreviations ..5
3.1 Definitions ... 5
3.2 Abbreviations... 6

4 The walkthrough scenario..6
4.1 Starting the service gateway welcome application... 6
4.2 Browsing the service gateway welcome application .. 8
4.3 Starting the service provider welcome application .. 11
4.4 Browsing the service provider welcome application.. 13
4.5 Running the movies on demand application .. 13
4.6 Playing a movie.. 18
4.7 Stopping a movie ... 22
4.8 Quitting the movies on demand application... 23
4.9 Quitting the service provider welcome application.. 23
4.10 Quitting the service gateway welcome application .. 23

5 Conclusions..24

History ..25

Draft EG 201 063 V1.1.1 (1997-05)4

Intellectual Property Rights
ETSI has not been informed of the existence of any Intellectual Property Right (IPR) which could be, or could become
essential to the present document. However, pursuant to the ETSI Interim IPR Policy, no investigation, including IPR
searches, has been carried out. No guarantee can be given as to the existence of any IPRs which are, or may be, or may
become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Terminal Equipment (TE) and approved by its
successor ETSI Project Multimedia Terminals and Applications (MTA), and is now submitted for the ETSI standards
Membership Approval Procedure (MAP).

Draft EG 201 063 V1.1.1 (1997-05)5

1 Scope
This ETSI Guide (EG) describes a walkthrough in a DAVIC system at the application level. The DAVIC specifications
define a set of tools enabling the deployment of systems that support audio visual applications including TV distribution,
near Video on Demand , Video on demand, teleshopping, etc.

At the application level, DAVIC has selected:

- the DSM-CC User to User protocol as the tool to be used for end to end communication between a client (a
terminal equipment) and a server;

- the MHEG-5 final form representation as the tool to be used for application interchange.

On the basis of an end-user-oriented concrete scenario, this walkthrough aims at showing how these two technologies
work together and complement themselves.

This walkthrough is illustrated with MHEG-5 objects (using the normative textual notation) and with pieces of code
running at the terminal side (using a Java-like programming language).

2 References
References may be made to:

a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) all versions up to and including the identified version (identified by "up to and including" before the version
identity); or

c) all versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] DAVIC specifications.

[2] ISO/IEC IS 13818-6 (1996): "Information technology - Generic coding of moving pictures and
associated audio information - Part 6: Extension for Digital Storage Media Command and
Control".

[3] ISO/IEC IS 13522-5 (1996): "Information technology - Coding of multimedia and hypermedia
information - Part 5: Support for Base-Level Interactive Applications".

[4] ETS 300 777-2: "Terminal equipment (TE); End-to-end protocols for multimedia information
retrieval services; Part 2: Use of for Digital Storage Media Command and Control (DSM-CC) for
basic multimedia applications".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the definitions in the DAVIC specifications [1], ISO/IEC IS 13818-6 [2] and
ISO/IEC IS 13522-5 [3] apply.

Draft EG 201 063 V1.1.1 (1997-05)6

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

DAVIC Digital Audio Visual Council
DSM-CC Digital Storage Media Command and Control
IEC International Electrotechnical Commission
IS International Standard
ISO International Organization for Standardization
MHEG Multimedia and Hypermedia Expert Group
MTA Multimedia Terminals and Applications
NSAP Network Service Access Point
STU Set Top Unit
U-U User to User

4 The walkthrough scenario
The walkthrough scenario consists of ten steps:

- starting the service gateway welcome application;

- browsing the service gateway welcome application;

- starting the service provider welcome application;

- browsing the service provider welcome application;

- running the movies on demand application;

- playing a movie;

- stopping a movie;

- quitting the movies on demand application;

- quitting the service provider welcome application;

- quitting the service gateway welcome application.

4.1 Starting the service gateway welcome application
On the service gateway system, it is assumed that the DSM-CC tree is organized as described in the following example
in which every element is given as a (kind , id) couple.

(DSM::ServiceGateway, aServiceGateway)
(DSM::Directory, Services)

(DSM::Directory, Welcome) // welcome application
(DSM::File, startup)
(DSM::Directory, Scenes)

(DSM::File, aScene)
...

(DSM::Directory, Contents)
(DSM::File, aContent)
...

(DSM::Directory, InterchangedPrograms)
(DSM::File, anInterchangedProgram)
...

...
...

...

Draft EG 201 063 V1.1.1 (1997-05)7

When the user switches on his STU, the main resident application is automatically started. This application knows a
local DSM session object reference it has to use to attach to the service gateway (for the purpose of the present
document called localSessionObjRef). It knows as well the identification of the server hosting the service
gateway, the logical name of the service gateway and the path to the first service on the service gateway. The STU main
resident application shall invoke a DSM-CC U-U Directory::attach operation on the DSM session local object
reference (localSessionObjRef) in order to get the object reference of the service gateway
(aServiceGatewayObjRef) and the object reference of the first service (that is the welcome application) within the
service gateway (firstServiceObjRef).

The attach operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

void attach
(
in sequence<octet,20> serviceDomain,
in CosNaming::Name pathName,
in UserContext savedContext,
out ObjRefs resolvedRefs
)
raises { ... };

Part of a possible code for the attachment to the service gateway is given hereafter using a Java-like programming
language.

Session localSessionObjRef;
ServiceGateway aServiceGatewayObjRef;
Directory firstServiceObjRef;
Object[] resolvedRefs;
byte[] serviceDomain;
CosNaming::Name pathName;

// attach to the service gateway

// the server identification shall contain the globally unique server network
// address in NSAP address format
serviceDomain = ...;

// the path name shall contain the logical name of the service gateway
// followed by the path to the first service
pathName[1].kind = "DSM::ServiceGateway";
pathName[1].id = "aServiceGateway";
pathName[2].kind = "DSM::Directory";
pathName[2].id = "Services";
pathName[3].kind = "DSM::Directory";
pathName[3].id = "Welcome";

localSessionObjRef.attach
(
serviceDomain,
pathName,
null, // no saved context
resolvedRefs
);

// the object reference of the service gateway will be returned in the first
// element of the array
aServiceGatewayObjRef = (ServiceGateway) resolvedRefs[1];

// the object reference of the first service within the service gateway
// (that is the welcome application) will be returned in the second element
// of the array
firstServiceObjRef = (Directory) resolvedRefs[2];

The STU main resident application shall then invoke a DSM-CC U-U Directory::resolve operation on the
object reference of the service gateway welcome application in order to get the object reference of the application
bootstrap.

The resolve operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

Object resolve(in Name n) raises { ... };

Draft EG 201 063 V1.1.1 (1997-05)8

The service gateway welcome application is MHEG-5 encoded and therefore contains by definition a unique
Application object to be used as a bootstrap. This object is stored in a DSM-CC file called by convention "startup".
The resolve operation is invoked with this name and returns the object reference of the DSM-CC file.

Part of a possible code for the resolve operation invocation is given hereafter using a Java-like programming
language.

Directory firstServiceObjRef;
File applicationObjRef;
CosNaming::Name name;

name[1].kind = "DSM::File";
name[1].id = "startup";
applicationObjRef = (File) firstServiceObjRef.resolve(name);

The STU local application shall then download the Application object in invoking the DSM-CC U-U
File::read operation on the object identified by the applicationObjRef object reference.

The read operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

void read
(
in u_longlong aOffset,
in u_longlong aSize,
in boolean aReliable,
out opaque rData
)
raises { ... };

Part of a possible code for the read operation invocation is given hereafter using a Java-like programming language.

File applicationObjRef;
byte[] application;

applicationObjRef.read
(
0L, // from the beginning
applicationObjRef.getContentSize(), // the whole content
true, // reliable RPC
application
);

Finally, the STU local application shall launch the MHEG-5 engine on the Application object.

4.2 Browsing the service gateway welcome application
From a functional point of view, the service gateway welcome application is in charge of presenting the available
services to the user. It allows for example:

- to easily browse the services directory (e.g. through the use of a scroll list);

- to get more information about a service by:

a) consulting a standardized description; or

b) playing a specific overview (designed by the service provider);

- and finally, to connect to a service.

These welcome applications usually use navigation metaphors like the mall metaphor. They often propose commercial
animation such as dynamic ads, games, etc.

Draft EG 201 063 V1.1.1 (1997-05)9

From a technical point of view, the service gateway welcome application is an MHEG-5 encoded application. It is made
of a single Application object (called "startup") and several Scene objects. Application and Scene objects
are the interchanged units. They are composed of Ingredient objects used to present information to the user, to
interact with him and to express the behaviour of the application.

It is assumed that from the standardized description of a service the user can either go back to the services directory or
connect to the service. The first choice will launch a new scene within the current application, the second one will
launch a new application.

An example of part of a Scene object (called "aServiceDescription" in the
"aServiceGateway/Services/Welcome/Scenes/aServiceDescription" directory) representing the standardized description
of a given service is given hereafter using the MHEG-5 textual notation.

{:Scene

// MHEG object reference: object identifier + object number
(~/Scenes/aServiceDescription 0)

:Items // list of items
(

The Bitmap object numbered 1 represents the bitmap to be used as a background. It references a content (called
"background" in the "aServiceGateway/Services/Welcome/Contents" directory). As it is by default initially active, this
object is activated when its embedding scene (called "aServiceDescription" in the
"aServiceGateway/Services/Welcome/Scenes" directory) is activated. Its activation initiates:

- the downloading of the referenced content through the invocation of the DSM-CC U-U
Directory::resolve and File::read operations;

- the displaying of the bitmap on the screen.

// bitmap to be used as a background
{:Bitmap
 1 // object number
 :OrigContent // bitmap content
 :ContentRef // content reference
 "~/Contents/background"
 :OrigBoxSize // bitmap size (full screen)
 640 // length along X-axis
 480 // length along Y-axis
 :OrigPosition // bitmap position
 0 // X position
 0 // Y position
}

Part of a possible code for the referenced content downloading is given hereafter using a Java-like programming
language.

Directory firstServiceObjRef;
File bitmapObjRef;
byte[] bitmap;
CosNaming::Name name;

name[1].kind = "DSM::Directory";
name[1].id = "Contents";
name[2].kind = "DSM::File";
name[2].id = "background";
bitmapObjRef = (File) firstServiceObjRef.resolve(name);

bitmapObjRef.read
(
0L, // from the beginning
bitmapObjRef.getContentSize(), // the whole content
true, // reliable RPC
bitmap
);

Draft EG 201 063 V1.1.1 (1997-05)10

The PushButton object numbered 2 represents the push button which allows the user to go back to the services
directory. It is associated with a Link object (numbered 3) which is fired when the push button is selected, and triggers
a transition to the scene representing the services directory. The TransitionTo elementary action initiates:

- the deactivation and the deletion of the current scene (called "aServiceDescription" in the
"aServiceGateway/Services/Welcome/Scenes" directory);

- the preparation of the new scene (called "servicesDirectory" in the same directory) which includes its
downloading through the invocation of the DSM-CC U-U Directory::resolve and File::read
operations;

- the activation of the new scene.

// push button to go back to the services directory
{:PushButton
 2 // object number
 :OrigBoxSize // push button size
 160 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // push button position
 0 // X position
 0 // Y position
 :OrigLabel // push button label
 "Back to the services directory"
}

// link to trigger the transition to the services directory
{:Link
 3 // object number
 :EventSource // object number of the associated push
 2 // button
 :EventType
 IsSelected
 :LinkEffect
 (
 :TransitionTo
 (
 (// object
 "~/Scenes/servicesDirectory" // reference of
 0 // the targeted
) // scene
)
)
}

Part of a possible code for the new scene downloading is given hereafter using a Java-like programming language.

Directory firstServiceObjRef;
File sceneObjRef;
byte[] scene;
CosNaming::Name name;

name[1].kind = "DSM::Directory";
name[1].id = "Scenes";
name[2].kind = "DSM::File";
name[2].id = "servicesDirectory";
sceneObjRef = (File) firstServiceObjRef.resolve(name);

sceneObjRef.read
(
0L, // from the beginning
sceneObjRef.getContentSize(), // the whole content
true, // reliable RPC
scene
);

Draft EG 201 063 V1.1.1 (1997-05)11

4.3 Starting the service provider welcome application
The PushButton object numbered 4 represents the push button which allows the user to connect to the service. It is
associated with a Link object (numbered 5) which is fired when the push button is selected and triggers the spawning
of a new application. This is done through the use of the Call elementary action followed by a Spawn elementary
action.

// push button to connect to the service
{:PushButton
 4 // object number
 :OrigBoxSize // push button size
 160 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // push button position
 160 // X position
 0 // Y position
 :OrigLabel // push button label
 "Connect to the service"
}

// link to trigger the connection to the service
{:Link
 5 // object number
 :EventSource // object number of the associated push
 4 // button
 :EventType
 IsSelected
 :LinkEffect
 (
 :Call
 (
 6 // object number of the interchanged program
 7 // object number of a boolean variable

// to store the completion status of the
// call

 :GOctetString // first parameter : server
 "..." // identification
 :GOctetString // second parameter : service gateway
 "aServiceProvider" // logical name
 :GOctetString // third parameter : path to the first
 "Services/Welcome" // service
)
 :Spawn
 (// object reference
 ("~/startup" 0) // of the targeted
) // application
)
}

The Call elementary action targets an InterchangedProgram object (numbered 6) in charge of transferring to a
new service (detach from the current service gateway and to attach to the new one). This interchanged program uses the
DSM-CC U-U Session::detach and Session::attach operations.

{:InterchgPrg
 6 // object number
 :OrigContent // interchanged program content
 :ContentRef // content reference
 "~/Programs/ServiceTransfer"
 :Name // interchanged program name
 "ServiceTransfer"
}

{:BooleanVar
 7 // object number
 :OriginalValue
 false
}

) // end of list of items
}

The detach operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

Draft EG 201 063 V1.1.1 (1997-05)12

void detach
(
in boolean aSuspend,
out UserContext savedContext
)
raises { ... };

Part of a possible code included in (or referenced by) the InterchangedProgram object is given hereafter using a
Java-like programming language.

Session localSessionObjRef;
ServiceGateway aServiceGatewayObjRef;
Directory firstServiceObjRef;
Object[] resolvedRefs;
byte[] serviceDomain;
CosNaming::Name pathName;

// detach from the current service gateway
aServiceGatewayObjRef.detach(false,null);

// attach to the new one

// the server identification shall contain the globally unique server network
// address in NSAP address format
// it shall be set to the value of the interchanged program first parameter
serviceDomain = ...;

// the path name shall contain the logical name of the service gateway
// followed by the path to the first service
pathName[1].kind = "DSM::ServiceGateway";
// the following identifier shall be set to the value of the interchanged
// program second parameter
pathName[1].id = ...;
pathName[2].kind = "DSM::Directory";
// the following identifier shall be extracted from the value of the
// interchanged program third parameter
pathName[2].id = ...;
pathName[3].kind = "DSM::Directory";
// the following identifier shall be extracted from the value of the
// interchanged program third parameter
pathName[3].id = ...;

localSessionObjRef.attach
(
serviceDomain,
pathName,
null, // no saved context
resolvedRefs
);

// the object reference of the new service gateway will be returned in the
// first element of the array
aServiceGatewayObjRef = (ServiceGateway) resolvedRefs[1];

// the object reference of the first service within the new service gateway
// (that is the welcome application) will be returned in the second element
// of the array
firstServiceObjRef = (File) resolvedRefs[2];

NOTE: The detach operation is invoked on the remote service gateway object reference; the attach operation
is invoked on the local DSM session object reference.

The Spawn elementary action initiates:

- the deactivation and the deletion of the current Scene object (called "aServiceDescription" " in the
"aServiceGateway/Services/Welcome/Scenes");

- the deactivation and the deletion of the current Application object (called "startup" in the
"aServiceGateway/Services/Welcome" directory);

Draft EG 201 063 V1.1.1 (1997-05)13

- the preparation of the new Application object (called "startup" in the "aServiceProvider/Services/Welcome"
directory) to be launched which includes its downloading through the invocation of the DSM-CC U-U
Directory::resolve and File::read operations;

- the activation of the new Application object.

4.4 Browsing the service provider welcome application
The aim of the service provider welcome application is to guide the user through the bouquet of services.

On the service provider system, it is assumed that the DSM-CC tree is organized as described in the following example
in which every element is given as a (kind , id) couple.

(DSM::ServiceGateway, aServiceProvider)
(DSM::Directory, Services)

(DSM::Directory, Welcome) // welcome application
(DSM::File, startup)
(DSM::Directory, Scenes)

(DSM::File, aScene)
...

(DSM::Directory, Contents)
(DSM::File, aContent)
...

...
(DSM::Directory, MoviesOnDemand) // movies on demand application

(DSM::File, startup)
(DSM::Directory, Scenes)

(DSM::File, aScene)
...

(DSM::Directory, Contents)
(DSM::File, aContent)
...

(DSM::Directory, RemotePrograms)
(DSM::File, aRemoteProgram)
...

(DSM::Directory, Movies)
(DSM::Stream, aMovie)
...

...
...

...

To browse the service provider welcome application, the same techniques and mechanisms are used as for the service
gateway welcome application: a transition from a scene to another scene initiates the downloading of the targeted scene,
the presentation of a referenced content initiates the downloading of the content and so on.

When the user chooses one of the proposed services, the corresponding application is spawned. In our scenario, we
assume that the user chooses the movies on demand service.

4.5 Running the movies on demand application
The movies on demand application guides the user through the catalogue of available movies. A detailed description is
associated with each movie which gives all the relevant information (title, date, duration, director's name, casting,
language, subtitled or not, etc.) including the cost. The description is illustrated with the film poster. The consultation of
a trailer is offered as well. From that description, the user can play the movie.

An example of part of a Scene object (called "aMovieDescription" in the
"aServiceProvider/Services/MoviesOnDemand/Scenes" directory) representing the detailed description of a given movie
is given hereafter using the MHEG-5 textual notation.

Draft EG 201 063 V1.1.1 (1997-05)14

{:Scene

// MHEG object reference: object identifier + object number
(~/Scenes/aMovieDescription 0)

:Items // list of items
(

The PushButton object numbered 1 represents the push button which allows the user to play the movie.

// push button to select the movie
{:PushButton
 1 // object number
 :OrigBoxSize // push button size
 160 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // push button position
 0 // X position
 0 // Y position
 :OrigLabel // push button label
 "Play the movie"
}

It is associated with a Link object (numbered 2) which is fired when the push button is selected and triggers the
presentation of a dialogue for the user to enter the password. This is done through the use of the Run elementary action
targeted at the objects representing this dialogue.

// link to trigger the password dialogue
{:Link
 2 // object number
 :EventSource
 1 // object number of the associated push button
 :EventType
 IsSelected
 :LinkEffect
 (
 :Run
 (3) // object number of the targeted text
 :Run
 (4) // object number of the targeted entry field
)
}

The Text object numbered 3 represents the text to ask the user for his password.

The EntryField object numbered 4 represents the entry field for the user to enter its password. The entered
characters shall not be echoed in a readable form (the ObscuredInput exchanged attribute is set to true).

These two objects are not initially activated with their embedding scene (the InitiallyActive exchanged attribute
is set to false) but shall be explicitly activated through the use of the Run elementary action.

Draft EG 201 063 V1.1.1 (1997-05)15

// text to ask for the password
{:Text
 3 // object number
 :InitiallyActive // the text is NOT initially active
 false
 :OrigContent // text content
 "Enter your password"
 :OrigBoxSize // bounding box size
 160 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // bounding box position
 240 // X position
 220 // Y position
}

// entry field to receive the password
{:EntryField
 4 // object number
 :InitiallyActive // the entry field is NOT initially active
 false
 :OrigBoxSize // bounding box size
 160 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // bounding box position
 240 // X position
 240 // Y position
 :ObscuredInput // echo shall not be readable
 true
}

The entry field is associated with a Link object (numbered 5) which is fired at the end of the interaction and triggers:

- the copy of the interaction result into a variable (through the use of the GetTextData elementary action);

- with this variable as an input parameter, the call of a remote program in charge of authenticating the entered
password (trough the use of the Call elementary action);

- the generation of an event if the authentication result is successful (trough the use of the TestVariable
elementary action) in order to fire a link.

Draft EG 201 063 V1.1.1 (1997-05)16

// link to trigger the authentication remote program call
{:Link
 5 // object number
 :EventSource // object number of the associated entry
 4 // field
 :EventType
 InteractionCompleted
 :LinkEffect
 (
 :GetTextData
 (
 4 // object number of the targeted entry field
 6 // object number of an octet string variable to store the

// entry field content
)
 :Call
 (
 7 // object number of the targeted remote program
 8 // object number of a boolean variable to store the
completion status of the call
 :GOctetString // first parameter : password to
 :IndirectRef // authenticate
 6
 :Gboolean // second parameter : authentication
 :IndirectRef // result
 9
)
 :TestVariable
 (
 7 // object number of the targeted

// variable
 1 // operator : 1 means equal
 :Gboolean // comparison value
 :true
)
)
}

// octet string variable to store the entry field content
{:OStringVar
 6 // object number
}

{:RemotePrg
 7 // object number
 :Name // remote program name
 "~/RemotePrograms/Authenticate"
}

// boolean variable to store the call completion status
{:BooleanVar
 8 // object number
 :OriginalValue
 false
}

// boolean variable to store the authentication result
{:BooleanVar
 9 // object number
 :OriginalValue
 false
}

Draft EG 201 063 V1.1.1 (1997-05)17

The DAVIC 1.1 specifications define in part 5 a mapping for the MHEG-5 call and fork elementary actions targeted
at remote programs. This mapping is as follows:

module DAV
{
 enum parType {boolPar, intPar, octStringPar, objRefPar, contRefPar};
 typedef sequence<octet> octString;
 typedef struct oR {
 octString groupIdentifier;
 long objectNumber;
 } objRef;
 typedef octString contRef;
 union par switch (parType)
 {
 case boolPar: boolean aBoolean;
 case intPar: long anInt;
 case octStringPar: octString aString;
 case objRefPar: objRef anObjRef;
 case contRefPar: contRef aContRef;
 };
 typedef sequence<par> pars;
 interface MHEG {
 void call(
 in octString procedureName,
 inout pars somePars
);
 void fork(
 in octString procedureName,
 inout pars somePars
);
 };
};

This mapping allows the MHEG-5 engine at the terminal side to call a remote program at the server side and to
exchange parameters with this program.

Part of a possible code to call the authentication remote program is given hereafter using a Java-like programming
language.

MHEG MHEGObjRef;
Object[] somePars;

// set the procedure name to the Name attribute of the RemoteProgram object
String procedureName = new String(...);

// set the first parameter to the Value attribute of the OctetStringVariable object
somePars[1] = (Object) new String(...);

MHEGObjRef.call(procedureName, somePars);

// set the Value attribute of the BooleanVariable object to the second
// parameter
... = ((Boolean) somePars[2]).booleanValue();

NOTE 1: In this example it is assumed that the object reference allowing the calling of remote programs
(MHEGObjRef) is returned to the client together with the service gateway object reference
(serviceGatewayObjRef) and the first service object reference (firstServiceObjRef).

NOTE 2: At the server side, DAVIC does not define the communication mechanisms between the server and the
program to be called: is the program a procedure, a thread, a process ? how are the parameters exchanged:
through a pipe, a socket, a shared memory area, etc. ? Hence this is implementation dependant.

The Link object (numbered 10) is associated to the variable returned by the remote program. It is fired when the value
of the variable is true and triggers the playing of the movie.

Draft EG 201 063 V1.1.1 (1997-05)18

// link to trigger the playing of the movie
{:Link
 10 // object number
 :EventSource
 9 // object number of the associated

// variable
 :EventType
 TestEvent
 :EventData
 true
 :LinkEffect
 (
 :TransitionTo
 (
 "~Scenes/aMovie" // object reference of
 0 // the targeted scene
)
)
}

NOTE 3: In this example neither the objects to represent the treatment of an unsuccessful remote program call nor
the objects to represent the treatment of an unsuccessful authentication result are described.

4.6 Playing a movie
Once the user has chosen a movie, this movie is played. During the presentation he can use a VCR-like control panel
which allows him to:

- pause the movie;

- resume the movie;

- play the movie faster in the forward direction;

- play the movie faster in the reverse direction;

- increase the volume;

- decrease the volume.

An example of part of a Scene object (called "aMovie" in the "aServiceProvider/Services/MoviesOnDemand/Scenes"
directory) representing the movie is given hereafter using the MHEG-5 textual notation.

{:Scene

// MHEG object reference: object identifier + object number
(~/Scenes/aMovie 0)

:Items // list of items
(

The Stream object numbered 1 represents the stream which contains the movie. As it is by default initially active, this
object is activated when its embedding scene is activated. Its activation initiates:

- the resolution of the stream name through the invocation of the DSM-CC U-U Directory::resolve
operation;

- the starting of the stream presentation through the invocation of the DSM-CC U-U Stream::resume
operation.

Draft EG 201 063 V1.1.1 (1997-05)19

// stream which contains the movie
{:Stream
 1 // object number
 :OrigContent // stream content
 :ContentRef // content reference
 "~/Streams/aMovie"
 :OrigBoxSize // presentation box original size
 640 // length along X-axis
 460 // length along Y-axis
 :OrigPosition // presentation box original position
 0 // X position
 0 // Y position
 :Multiplex
 (
 {:Video
 2 // object number
 :ComponentTag
 1
 }
 {:Audio
 3 // object number
 :ComponentTag
 2
 }
)
}

Part of a possible code for the resolution of the stream name is given hereafter using a Java-like programming language.

Directory MoDServiceObjRef;
Stream aMovieObjRef;
CosNaming::Name name;

name[1].kind = "DSM::Directory";
name[1].id = "Streams";
name[2].kind = "DSM::Stream";
name[2].id = "aMovie";
aMovieObjRef = (Stream) MoDServiceObjRef.resolve(name);

The resume operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

void resume
(
in AppNPT rStart,
in Scale rScale
)
raises { ... };

Part of a possible code for starting the stream presentation is given hereafter using a Java-like programming language.

Stream aMovieObjRef;

// play now
AppNPT rStart = new AppNPT(0x80000000, 0);

// play forward at the normal viewing rate
Scale rScale = new Scale(1,1);

aMovieObjRef.resume(rStart,rScale);

The PushButton object numbered 4 represents the push button which allows the user to pause the movie.

Draft EG 201 063 V1.1.1 (1997-05)20

// push button to pause the movie
{:PushButton
 4 // object number
 :OrigBoxSize // push button size
 80 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // push button position
 0 // X position
 460 // Y position
 :OrigLabel // push button label
 "Pause the movie"
}

It is associated to a Link object (numbered 5) which is fired when the push button is selected and triggers the pausing
of the movie. This is done through the use of the SetSpeed elementary action targeted at the Video object
representing the video stream within the Stream object representing the movie.

// link to trigger the pausing of the movie
{:Link
 5 // object number
 :EventSource
 4 // object number of the associated push button
 :EventType
 IsSelected
 :LinkEffect
 (
 :SetSpeed
 (
 2 // object number of the targeted video
 0 // new speed numerator
 1 // new speed denominator (could be

// omitted as 1 is the default value)
)
)
}

The SetSpeed elementary action initiates the pausing of the stream presentation through the invocation of the
DSM-CC U-U Stream::pause operation.

The pause operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

void pause
(
in AppNPT rStop
)
raises { ... };

Part of a possible code for pausing the stream presentation is given hereafter using a Java-like programming language.

Stream aMovieObjRef;

// pause now
AppNPT rStop = new AppNPT(0x80000000, 0);

aMovieObjRef.pause(rStop);

Another PushButton object is defined to allow the user to resume the movie. It is associated with a Link object
embedding a SetSpeed elementary action with a NewSpeed parameter value of 1/1. This action initiates the
invocation of the DSM-CC U-U Stream::resume operation with a rStart parameter value meaning "now" and a
rScale parameter value meaning "play forward at the normal viewing rate".

Draft EG 201 063 V1.1.1 (1997-05)21

Another PushButton object is defined to allow the user to play the movie faster in the forward direction. It is
associated with a Link object embedding a SetSpeed elementary action with a NewSpeed parameter value of n/1 (it
is up to the application designer to choose the value of n). This action initiates the invocation of the DSM-CC U-U
Stream::resume operation with an rStart parameter value meaning "now" and an rScale parameter value
meaning "play forward at n times the normal viewing rate".

Another PushButton object is defined to allow the user to play the movie faster in the reverse direction. It is
associated with a Link object embedding a SetSpeed elementary action with a NewSpeed parameter value of -n/1.
This action initiates the invocation of the DSM-CC U-U Stream::resume operation with an rStart parameter
value meaning "now" and an rScale parameter value meaning "play reverse at n times the normal viewing rate".

The PushButton object numbered 6 represents the push button which allows the user to increase the volume.

// push button to pause the movie
{:PushButton
 6 // object number
 :OrigBoxSize // push button size
 80 // length along X-axis
 20 // length along Y-axis
 :OrigPosition // push button position
 320 // X position
 460 // Y position
 :OrigLabel // push button label
 "Increase the volume"
}

It is associated with a Link object (numbered 7) which is fired when the push button is selected and triggers the volume
increasing. This is done through the use of:

- the GetVolume elementary action targeted at the Audio object representing the audio stream within the
Stream object representing the movie to set a Variable object with the current volume;

- the Add elementary action targeted at this Variable object to increase its value by one;

- the SetVolume elementary action targeted at the Audio object to set the volume with the updated value of
the Variable object.

Draft EG 201 063 V1.1.1 (1997-05)22

// link to trigger the volume increasing
{:Link
 7 // object number
 :EventSource
 6 // object number of the associated push button
 :EventType
 IsSelected
 :LinkEffect
 (
 :GetVolume
 (
 3 // object number of the targeted audio
 8 // object number of the variable to

// store the volume
)
 :Add
 (
 8 // object number of the targeted

// variable
 1 // value to add
)
 :SetVolume
 (
 3 // object number of the targeted audio
 :IndirectRef
 8 // object number of the variable to

// retrieve the volume
)
)
}

// integer variable to store the volume
{:IntegerVar
 8 // object number
 :OriginalValue
 0
}

Another PushButton object is defined to allow the user to decrease the volume. It is associated with a Link object
embedding a GetVolume , a Subtract and a SetVolume elementary actions.

4.7 Stopping a movie
At any time during the presentation the user can choose to stop it and go back to the previous scene (that is the movie
description).

A PushButton object is defined for that purpose. It is associated to a Link object embedding a TransitionTo
elementary action targeted at the scene representing the movie description.

This transition to a new scene initiates the deactivation and the deletion of the current scene.

The deactivation of the scene triggers the deactivation of all active embedded ingredients.

In the present case, the deactivation of the stream will stop the presentation through the invocation of the DSM-CC U-U
Stream::pause operation.

The deletion of the scene triggers the deletion of all active embedded ingredients.

In the present case, the deletion of the stream will free all resources allocated to that stream and the deletion of the scene
itself will free all the resources allocated to that scene. Amongst these resources the object reference of the DSM-CC
stream and the object reference of the DSM-CC file will be freed through the invocation of the DSM-CC U-U
Base::close operation.

NOTE: If the MHEG-5 engine implements a caching strategy, it may decide when deleting an object either to
actually free all associated resources or to cache them. Using the GroupCachePriority exchanged
attribute of the object, the application designer can allow or disallow the caching.

The close operation prototype definition is given hereafter (see ISO/IEC IS 13818-6 [2] for more details).

Draft EG 201 063 V1.1.1 (1997-05)23

void close();

Part of a possible code for freeing the object reference of the DSM-CC stream and the object reference of the DSM-CC
file is given hereafter using a Java-like programming language.

Stream aMovieObjRef;
File aSceneObjRef;

aMovieObjRef.close();
aSceneObjRef.close();

4.8 Quitting the movies on demand application
Within the movies on demand application there shall be a means for the user to quit the application and restart the
service provider welcome application.

A PushButton object is defined for that purpose (at the main menu level for example). It is associated with a Link
object embedding a Quit elementary action targeted at the Application object of the movies on demand
application. This will initiate the deletion of the current scene, the deletion of the currently active Application
object and the restarting of the last application that has been pushed in the stack - that is, the service provider welcome
application.

NOTE: Application stacking is an optional feature of the MHEG-5 engine. If the engine does not provide the
functionality, the Launch elementary action (corresponding to the goto instruction of a programming
language) shall be used instead of the Spawn and Quit elementary actions (corresponding to the call
and return instructions of a programming language).

4.9 Quitting the service provider welcome application
Within the service provider welcome application there shall be a means for the user to quit the application and restart the
service gateway welcome application.

A PushButton object is defined for that purpose (at the main menu level for example). It is associated with a Link
object embedding a Call elementary action followed by a Quit elementary action targeted at the Application
object of the service provider welcome application.

The Call elementary action targets a ResidentProgram object (numbered 1) in charge of detaching from the
current service gateway and attaching back to the initial service gateway. This resident program uses the DSM-CC U-U
Session::detach and Session::attach operations.

{:ResidentPrg
 1 // object number
 :Name // resident program name
 "BackToTheServiceGateway"
}

4.10 Quitting the service gateway welcome application
Within the service gateway welcome application there shall be a means for the user to quit the application and shutdown
the terminal.

A PushButton object is defined for that purpose (at the main menu level for example). It is associated with a Link
object embedding Quit elementary action targeted at the Application object of the service gateway welcome
application.

As there are no more applications pushed in the stack, the MHEG engine shall stop when executing this Quit
elementary action and give control back to the STU main resident application.

Draft EG 201 063 V1.1.1 (1997-05)24

The STU main resident application shall then shutdown - that is, free all the resources (and especially network
resources) which includes detaching from the service gateway.

The STU is then ready to be switched off.

5 Conclusions
This application walkthrough shows that the subset of the DAVIC specifications relevant to the present document is
implementable, and fulfils the application requirements.

Draft EG 201 063 V1.1.1 (1997-05)25

History

Document history

V1.1.1 May 1997 Membership Approval Procedure MV 9730: 1997-05-27 to 1997-07-25

	Intellectual Property Rights
	Foreword
	1	Scope
	2	References
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Abbreviations

	4	The walkthrough scenario
	4.1	Starting the service gateway welcome application
	4.2	Browsing the service gateway welcome application
	4.3	Starting the service provider welcome application
	4.4	Browsing the service provider welcome application
	4.5	Running the movies on demand application
	4.6	Playing a movie
	4.7	Stopping a movie
	4.8	Quitting the movies on demand application
	4.9	Quitting the service provider welcome application
	4.10	Quitting the service gateway welcome application

	Conclusions
	History

