ETSI TS 138 521-3 V15.3.0 (2019-07)

5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios (3GPP TS 38.521-3 version 15.3.0 Release 15)

Reference RTS/TSGR-0538521-3vf30

Keywords

5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019. All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP[™]** and LTE[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M[™]** logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

 $\ensuremath{\mathsf{GSM}}\xspace^{\ensuremath{\$}}$ and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	Intellectual Property Rights2		
Legal	Legal Notice		
Moda	l verbs terminology	2	
Forew	vord	13	
1	Scope	14	
2	References	14	
	Definitions, symbols and abbreviations		
3.1	Definitions		
3.2 3.3	SymbolsAbbreviations		
4	General	16	
4.1	Relationship between minimum requirements and test requirements	16	
4.2	Applicability of minimum requirements		
4.3	Specification suffix information		
4.4	Test points analysis		
4.5	Applicability and test coverage rules		
4.5.1	Test coverage across 5G NR architecture options		
4.6	E-UTRA configuration for EN-DC FR1 tests applying the E-UTRA anchor-agnostic approach		
4.7	E-UTRA configuration for EN-DC FR2 tests applying the E-UTRA anchor-agnostic approach	20	
5	Operating bands and Channel arrangement	22	
5.1	General		
5.2	Operating bands		
5.2A	Operating bands for CA		
5.2A.1			
5.2B	Operating bands for DC		
5.2B.1	General		
5.2B.2	to 5.2B.7 Void		
5.3	UE Channel bandwidth		
5.3A	UE Channel bandwidth for CA	23	
5.3A.1	Inter-band CA between FR1 and FR2	23	
5.3B	UE Channel bandwidth for EN-DC	23	
5.3B.1	Intra-band EN-DC in FR1	24	
5.3B.1			
5.3B.1			
5.3B.1	•		
5.4	Channel arrangement.		
5.4A	Channel arrangement for CA.		
5.4B	Channel arrangement for DC		
5.4B.1	Channel spacing for intra-band EN-DC carriers		
5.5	Configuration		
5.5A	Configuration for CA		
5.5A.1			
5.5B	Configuration for DC		
5.5B.1	General		
5.5B.2	Intra-band contiguous EN-DC	30	
5.5B.3	Intra-band non-contiguous EN-DC	30	
5.5B.4			
5.5B.4	5		
5.5B.4			
5.5B.5	Inter-band EN-DC including FR2		

5.5B.5.1 Inter-band EN-DC configurations including FR2 (two bands)	53
5.5B.5.2 Inter-band EN-DC configurations including FR2 (three bands)	
5.5B.5.3 Inter-band EN-DC configurations including FR2 (four bands)	
5.5B.5.4 Inter-band EN-DC configurations including FR2 (five bands)	
5.5B.5.5 Inter-band EN-DC configurations including FR2 (six bands)	
5.5B.6 Inter-band EN-DC including FR1 and FR2	
5.5B.6.1 Void	
5.5B.6.2 Inter-band EN-DC configurations including FR1 and FR2 (three bands)	
5.5B.6.3 Inter-band EN-DC configurations including FR1 and FR2 (four bands)	
5.5B.6.4 Inter-band EN-DC configurations including FR1 and FR2 (five bands)	
5.5B.6.5 Inter-band EN-DC configurations including FR1 and FR2 (six bands)	
5.5B.7 Inter-band NR-DC between FR1 and FR2	
5.5B.7.1 Inter-band NR-DC configurations between FR1 and FR2 (two bands)	
6 Transmitter characteristics	
6.1 General	
6.2 Transmitter power	
6.2A Transmitter power for CA without EN-DC	
6.2A.1 UE maximum output power for CA	
6.2A.1.1 UE maximum output power for inter-band NR CA between FR 1 and FR 2 without EN-DC	
6.2A.2 UE maximum output power reduction for CA	
6.2A.2.1 UE maximum output power reduction for inter-band NR CA between FR 1 and FR 2 without	
EN-DC	
6.2A.3 UE additional maximum output power reduction for CA	
6.2A.3.1 UE additional maximum output power reduction for inter-band NR CA between FR 1 and FR	
without EN-DC	
 6.2A.4 Configured output power level for CA 6.2A.4.1 Configured output power level for inter-band NR CA between FR 1 and FR 2 without EN-DC 	
6.2A.4.2 ΔTIB,c for CA.	
6.2A.4.2.1 ΔTIB,c for inter-band CA between FR 1 and FR 2	
6.2B Transmitter power for EN-DC	
6.2B.1 UE Maximum Output Power for EN-DC	
6.2B.1.1 UE Maximum Output Power for Intra-Band Contiguous EN-DC	
6.2B.1.2 UE Maximum Output Power for Intra-Band Non-Contiguous EN-DC	
6.2B.1.3 UE Maximum Output Power for Inter-Band EN-DC within FR1	86
6.2B.1.4 UE Maximum Output Power for Inter-Band EN-DC including FR2	
6.2B.1.4.1 UE maximum output power - EIRP and TRP	
6.2B.1.4.2 UE maximum output power - Spherical coverage	
6.2B.1.4.2 UE maximum output power for Inter-band EN-DC including FR2 (3 CCs)	
6.2B.1.4.2.1 UE maximum output power - EIRP and TRP	101
6.2B.1.4.3 UE maximum output power for Inter-band EN-DC including FR2 (4 CCs)	
6.2B.1.4.3.1 UE maximum output power - EIRP and TRP	102
6.2B.1.4.4 UE maximum output power for Inter-band EN-DC including FR2 (5 CCs)	
6.2B.1.4.4.1 UE maximum output power - EIRP and TRP	103
6.2B.2 UE Maximum Output Power reduction for EN-DC	
6.2B.2.0 General	
6.2B.2.1 UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC	
6.2B.2.2 UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC	
6.2B.2.2.1 Test purpose	
6.2B.2.2.2 Test applicability	
6.2B.2.2.3 Minimum conformance requirements	
6.2B.2.2.4 Test description	
6.2B.2.2.5 Test requirement	
6.2B.2.3 UE Maximum Output Power reduction for Inter-Band EN-DC within FR1	
6.2B.2.3.5 Test requirement	
6.2B.2.4 UE Maximum Output Power reduction for Inter-Band EN-DC including FR2	
6.2B.2.4.1 Test purpose	
6.2B.2.4.2 Test applicability	
6.2B.2.4.3 Minimum conformance requirements	
6.2B.2.4.4 Test description	
6.2B.2.4.5 Test requirement	
6.2B.2.4.2 Transmit OFF Power for Inter-band EN-DC including FR2 (3 CCs)	113

6.2B.2.4.3	Transmit OFF Power for Inter-band EN-DC including FR2 (4 CCs)	114
6.2B.2.4.4	Transmit OFF Power for Inter-band EN-DC including FR2 (5 CCs)	
6.2B.2.5	UE Maximum Output power reduction for inter-band EN-DC including both FR1 and FR2	
	E additional maximum output power reduction for EN-DC	
6.2B.3.1	UE Additional Maximum Output Power reduction for Intra-band contiguous EN-DC	
6.2B.3.1.3.2.1	A-MPR _{IM3} for NS_04 to meet -13 dBm / 1MHz for 26dBm UE power	
6.2B.3.1.3.2.2	A-MPR for NS_04 to meet -25 dBm / 1MHz for 26 dBm UE power	
6.2B.3.2	UE Additional Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC	
6.2B.3.2.3.1	A-MPR for NS_04.	
6.2B.3.3	UE Additional Maximum Output Power reduction for Inter-Band EN-DC within FR1	
6.2B.3.3.1	Test purpose	
6.2B.3.3.2	Test applicability	
6.2B.3.3.3	Minimum conformance requirements	
6.2B.3.3.4	Test description	
6.2B.3.4	UE Additional Maximum Output Power reduction for Inter-Band EN-DC including FR2	
6.2B.3.5	UE Additional Maximum Output Power reduction for inter-band EN-DC including P R2.	.154
0.20.3.3	FR2	155
6.2B.4 Co	nfigured Output Power for EN-DC	
6.2B.4.1	Configured Output Power Level for EN-DC	156
6.2B.4.1.0	Minimum Conformance Requirements	156
6.2B.4.1.0.1	Configured output power level	
6.2B.4.1.0.1.1	Intra-band contiguous EN-DC	156
	Intra-band contiguous EN-DC.	150
6.2B.4.1.0.1.2	Intra-band non-contiguous EN-DC	
6.2B.4.1.0.1.3	Inter-band EN-DC within FR1	
6.2B.4.1.0.1.4	Inter-band EN-DC including FR2	
6.2B.4.1.0.1.5	Inter-band EN-DC including both FR1 and FR2	
6.2B.4.1.0.2	$\Delta T_{IB,c}$ for EN-DC	.163
6.2B.4.1.0.2.1	Intra-band contiguous EN-DC.	
6.2B.4.1.0.2.2	Intra-band non-contiguous EN-DC	
6.2B.4.1.0.2.3	Inter-band EN-DC within FR1	
6.2B.4.1.0.2.4	Inter-band EN-DC including FR2	182
6.2B.4.1.0.2.5	Inter-band EN-DC including both FR1 and FR2	183
6.2B.4.1.1	Configured Output Power Level for Intra-Band Contiguous EN-DC	183
6.2B.4.2	ΔTIB,c for EN-DC	
6.2B.4.2.1	Intra-Band Contiguous EN-DC	
6.2B.4.2.2	Intra-Band non-Contiguous EN-DC	
6.2B.4.2.3	Inter-Band EN-DC within FR1	
6.2B.4.2.3.3	ΔTIB,c for EN-DC four bands	
6.2B.4.2.3.4	ΔTIB,c for EN-DC five bands	
6.2B.4.2.3.5	ΔTIB,c for EN-DC six bands	208
6.2B.4.2.4	Inter-band EN-DC including FR2	208
6.2B.4.2.4.1	$\Delta T_{IB,c}$ for EN-DC two bands	208
6.2B.4.2.4.2	$\Delta T_{IB,c}$ for EN-DC three bands	
6.2B.4.2.4.3	$\Delta T_{IB,c}$ for EN-DC four bands	208
6.2B.4.2.4.4	$\Delta T_{IB,c}$ for EN-DC five bands	208
6.2B.4.2.4.5	$\Delta T_{IB,c}$ for EN-DC six bands	209
6.2B.4.2.5	Inter-band EN-DC including both FR1 and FR2	209
6.2B.4.2.5.1	$\Delta T_{IB,c}$ for EN-DC three bands	209
6.2B.4.2.5.2	$\Delta T_{IB,c}$ for EN-DC four bands	209
6.2B.4.2.5.3	$\Delta T_{IB,c}$ for EN-DC five bands	209
6.2B.4.2.5.4	$\Delta T_{IB,c}$ for EN-DC six bands	209
6.3 Outpu	t power dynamics	
6.3B	1 <i>J</i>	
	nimum Output Power for EN-DC	
6.3B.1.1	Minimum Output Power for intra-band contiguous EN-DC	
6.3B.1.2	Minimum output power for intra-band non-contiguous EN-DC	
6.3B.1.3	Minimum output power for inter-band EN-DC within FR1	
6.3B.1.4	Minimum Output Power for EN-DC Interband including FR2	
	ansmit OFF Power for EN-DC	
6.3B.2.1	Transmit OFF Power for intra-band contiguous EN-DC	
6.3B.2.1.1	Test purpose	
6.3B.2.1.2	Test applicability	
	11 V	-

6.3B.2.1.3	Minimum conformance requirements	214
6.3B.2.1.4	Test description	
6.3B.2.1.4	•	
	Test requirements	
6.3B.2.2	Transmit OFF Power for intra-band non-contiguous EN-DC	
6.3B.2.2.1	Test purpose	
6.3B.2.2.2	Test applicability	
6.3B.2.2.3	Minimum conformance requirements	
6.3B.2.2.4	Test description	
6.3B.2.2.5	Test requirements	
6.3B.2.3	Transmit OFF Power for inter-band EN-DC within FR1	215
6.3B.2.3.1	Test purpose	215
6.3B.2.3.2	Test applicability	215
6.3B.2.3.3	Minimum conformance requirements	
6.3B.2.3.4	Test description	
6.3B.2.3.5	Test requirements	
6.3B.3	Tx ON/OFF time mask/PUCCH time mask for EN-DC	
6.3B.3.1	Tx ON/OFF time mask for intra-band contiguous EN-DC	
6.3B.3.1.1	Test purpose	
6.3B.3.1.2	Test applicability	
6.3B.3.1.3	Minimum conformance requirements	
6.3B.3.1.4	Test description	
6.3B.3.2	Tx ON/OFF time mask for intra-band non-contiguous EN-DC	
6.3B.3.2.1	Test purpose	
6.3B.3.2.2	Test applicability	
6.3B.3.2.3	Minimum conformance requirements	
6.3B.3.2.4	Test description	
6.3B.3.2.5	Test requirements	
6.3B.3.3	Tx ON/OFF time mask for inter-band EN-DC within FR1	217
6.3B.3.3.1	Test purpose	217
6.3B.3.3.2	Test applicability	217
6.3B.3.3.3	Minimum conformance requirements	
6.3B.3.3.4	Test description	
6.3B.3.3.5	Test requirements	
6.3B.4	PRACH time mask for EN-DC.	
6.3B.4.1	PRACH time mask for intra-band contiguous EN-DC	
6.3B.4.2	PRACH Time Mask for intra-band non-contiguous EN-DC	
6.3B.4.3	PRACH Time Mask for inter-band EN-DC within FR1	
6.3B.4.3.1	Test purpose	
6.3B.5	Output power dynamics for EN-DC with UL sharing from UE perspective	
6.3B.5.1	E-UTRA and NR switching time mask for TDM based UL sharing from UE perspective	
6.3B.6	Output power dynamics for intra-band EN-DC without dual PA capability	
6.3B.7	Output power dynamics for intra-band EN-DC with dual PA capability	
	Transmit signal quality	
6.4A	Transmit Signal Quality for inter-band NR CA between FR and FR2 without EN-DC	
6.4A.1	Frequency error for inter-band NR CA between FR 1 and FR 2 without EN-DC	221
6.4A.2	Transmit Modulation Quality for inter-band NR CA without EN-DC	222
6.4A.2.1	Error Vector Magnitude for inter-band NR CA between FR 1 and FR 2 without EN-DC	222
6.4A.2.2	Carrier Leakage for inter-band NR CA between FR 1 and FR 2 without EN-DC	222
6.4A.2.3	In-band Emissions for inter-band NR CA between FR 1 and FR 2 without EN-DC	
6.4B		
6.4B.1	Frequency error	
6.4B.1.1	Frequency error for Intra-band contiguous EN-DC	
6.4B.1.2	Frequency error for Intra-band non-contiguous EN-DC	
6.4B.1.3	Frequency error for Inter-band EN-DC within FR1	
6.4B.1.3.1	Test purpose	
6.4B.1.3.2		
	Test applicability Minimum conformance requirements	
6.4B.1.3.3		
6.4B.1.3.4	Test description	
6.4B.1.3.5	Test Requirement	
6.4B.1.4		
6.4B.1.5	Frequency Error for inter-band EN-DC including FR2	
6.4B.1.5.2	Frequency Error for Inter-band EN-DC including FR2 (3 CCs)	225

6.4B.1.5.3	Frequency Error for Inter-band EN-DC including FR2 (4 CCs)	226
6.4B.1.5.4	Frequency Error for Inter-band EN-DC including FR2 (5 CCs)	
6.4B.2		
6.4B.2.1	Transmit Modulation Quality for intra-band contiguous EN-DC	
6.4B.2.1.1	Error Vector Magnitude for intra-band contiguous EN-DC	
6.4B.2.1.2	Carrier Leakage for intra-band contiguous EN-DC	
6.4B.2.1.3	In-band Emissions for intra-band contiguous EN-DC	
6.4B.2.2	Transmit Modulation Quality for intra-band non-contiguous EN-DC	
6.4B.2.2.1	Error Vector Magnitude for intra-band non-contiguous EN-DC	
6.4B.2.2.2	Carrier Leakage for intra-band non-contiguous EN-DC	
6.4B.2.2.3	In-band Emissions for intra-band non-contiguous EN-DC	
6.4B.2.2.4	EVM Equalizer Flatness for intra-band non-contiguous EN-DC	
6.4B.2.3	Transmit Modulation Quality for inter-band EN-DC within FR1	
6.4B.2.3.1	Error Vector Magnitude for inter-band EN-DC within FR1	
6.4B.2.3.2	Carrier Leakage for inter-band EN-DC within FR1	
6.4B.2.3.3	In-band Emissions for inter-band EN-DC within FR1	
6.4B.2.3.4	EVM Equalizer Flatness for inter-band EN-DC within FR1	
6.4B.2.4	Transmit Modulation Quality for inter-band EN-DC including FR2	
6.4B.2.4.1	Error Vector Magnitude for inter-band EN-DC including FR2	
6.4B.2.4.2	Carrier Leakage for inter-band EN-DC including FR2	
6.4B.2.4.3 6.4B.2.4.4	In-band Emissions for inter-band EN-DC including FR2 EVM Equalizer Flatness for inter-band EN-DC including FR2	
	tput RF spectrum emissions	
	tput RF spectrum emissions for CA	
6.5A.1	Occupied bandwidth for CA without EN-DC	
6.5A.2	Out-of-band emissions for CA without EN-DC	
6.5A.2.2	Additional Spectrum emissions mask for CA without EN-DC	
6.5A.2.3	Adjacent channel leakage ratio for CA without EN-DC	
6.5A.3	Spurious emissions for CA without EN-DC	
	tput RF spectrum emissions for DC	
6.5B.1	Occupied bandwidth for EN-DC	
6.5B.1.1	Occupied bandwidth for Intra-Band Contiguous EN-DC	
6.5B.1.2	Occupied bandwidth for Intra-Band Non-Contiguous EN-DC	
6.5B.1.3	Occupied bandwidth for Inter-Band EN-DC within FR1	
6.5B.1.4	Occupied bandwidth for Inter-Band EN-DC including FR2	
6.5B.1.4.2	Occupied bandwidth for Inter-band EN-DC including FR2 (3 CCs)	
6.5B.1.4.3	Occupied bandwidth for Inter-band EN-DC including FR2 (4 CCs)	
6.5B.1.4.4	Occupied bandwidth for Inter-band EN-DC including FR2 (5 CCs)	257
6.5B.2	Out-of-band emissions for EN-DC	258
6.5B.2.1	Out-of-band emissions for Intra-band contiguous EN-DC	
6.5B.2.2	Out-of-band emissions for Intra-band non-contiguous EN-DC	
6.5B.2.2.1	Spectrum emissions mask for intra-band non-contiguous EN-DC	
6.5B.2.2.3	Adjacent channel leakage ratio for intra-band non-contiguous EN-DC	
6.5B.2.3	Out-of-band emissions for Inter-band EN-DC within FR1	
6.5B.2.3.1	Spectrum emissions mask for Inter-band EN-DC within FR1	
6.5B.2.3.2	Additional Spectrum emissions mask for Inter-band EN-DC within FR1	
6.5B.2.3.3	Adjacent channel leakage ratio for inter-band EN-DC within FR1	
6.5B.2.4	Out-of-band emissions for Inter-band EN-DC including FR2	
6.5B.2.4.1	Spectrum emissions mask for Inter-band EN-DC including FR2	
6.5B.2.4.1.1	Test purpose	
6.5B.2.4.1.2	Test applicability	
6.5B.2.4.1.3	Minimum conformance requirements	
6.5B.2.4.1.4 6.5B.2.4.1.4.1	Test description	
6.5B.2.4.1.4. 6.5B.2.4.1.5		
6.5B.2.4.1.5 6.5B.2.4.1.2	Test requirement Spectrum emissions mask for Inter-band EN-DC including FR2 (3 CCs)	
6.5B.2.4.1.2 6.5B.2.4.1.3	Spectrum emissions mask for Inter-band EN-DC including FR2 (3 CCs)	
6.5B.2.4.1.4	Spectrum emissions mask for Inter-band EN-DC including FR2 (4 CCs)	
6.5B.2.4.3	Adjacent channel leakage ratio for Inter-band EN-DC including FR2	
6.5B.2.4.3.1	Test purpose	
6.5B.2.4.3.2	Test applicability	
6.5B.2.4.3.3	Minimum conformance requirements	
0.02.2.1.0.0		

6.5B.2.4.3.4	Test description	
6.5B.2.4.3.4.1	Initial conditions	
6.5B.2.4.3.5	Test requirement	
6.5B.2.4.3.2	Adjacent channel leakage ratio for Inter-band EN-DC including FR2 (3 CCs)	
6.5B.2.4.3.3	Adjacent channel leakage ratio for Inter-band EN-DC including FR2 (4 CCs)	
6.5B.2.4.3.4	Adjacent channel leakage ratio for Inter-band EN-DC including FR2 (5 CCs)	
6.5B.3	Spurious emissions for EN-DC	
6.5B.3.1	Spurious Emissions for intra-band contiguous EN-DC	285
6.5B.3.1.1	General spurious emissions for intra-band contiguous EN-DC	
6.5B.3.1.2	Spurious emission band UE co-existence for intra-band contiguous EN-DC	
6.5B.3.2	Spurious Emission band OE co-cascence for intra-band configuous EN-DC	
6.5B.3.2.1	General spurious emissions for Intra-band non-contiguous EN-DC	
6.5B.3.2.2	Spurious emission band UE co-existence for intra-band non-contiguous EN-DC	
6.5B.3.2.2.1	Test purpose	
6.5B.3.2.2.1	Test applicability	
	Minimum conformance requirements	
6.5B.3.2.2.3 6.5B.3.2.2.4		
	Test description	
6.5B.3.2.2.5 6.5B.3.3	Test Requirement Spurious Emissions for Inter-band EN-DC within FR1	
6.5B.3.3.1		
	General spurious emissions for Inter-band EN-DC within FR1	
6.5B.3.3.2	Spurious emission band UE co-existence for Inter-band within FR1	
6.5B.3.4	Spurious Emissions for Inter-band including FR2	
6.5B.3.4.1	General Spurious Emissions for Inter-band including FR2	
6.5B.3.4.1.2	Transmitter Spurious emissions for Inter-band EN-DC including FR2 (3 CCs)	
6.5B.3.4.1.3	Transmitter Spurious emissions for Inter-band EN-DC including FR2 (4 CCs)	
6.5B.3.4.1.4	Transmitter Spurious emissions for Inter-band EN-DC including FR2 (5 CCs)	
	Additional Spurious Emissions for EN-DC	
6.5B.4.1	Additional Spurious Emissions for Intra-band contiguous EN-DC	
6.5B.4.1.4	Test description	
6.5B.4.1.5	Test Requirement	
6.5B.4.2	Additional Spurious Emissions for Intra-band non-contiguous EN-DC	
6.5B.4.3	Additional Spurious Emissions for Inter-band EN-DC	
	ransmit intermodulation	
6.5B.5.1	Intra-band contiguous EN-DC	
6.5B.5.2	Intra-band non-contiguous EN-DC	
6.5B.5.3	Inter-band EN-DC within FR1	
6.5B.5.3.3	Minimum conformance requirements	
6.5B.5.3.4	Test description	
6.5B.5.3.5	Test Requirement	
6.5B.5.4	Inter-band EN-DC including FR2	
6.5B.5.5	Inter-band EN-DC including both FR1 and FR2	318
7 Receiv	er characteristics	318
	eral	
	rsity characteristics	
7.3A Refe	rence sensitivity rence sensitivity for CA without EN-DC	210
	Seneral	
	Reference sensitivity power level for CA without EN-DC	
7.3A.3 7.3A.3.1	AR _{IB,c} for CA without EN-DC	
	Reference Sensitivity for Inter-band CA between FR1 and FR2 without EN-DC	
	Reference sensitivity exceptions due to UL harmonic interference for CA	
	rence sensitivity level for DC	
	General	
	Reference sensitivity for EN-DC	
7.3B.2.0	Minimum Conformance Requirements of Reference sensitivity for EN-DC	
7.3B.2.0.1	Intra-band contiguous EN-DC	
7.3B.2.0.2	Intra-band non-contiguous EN-DC	
7.3B.2.0.3	Inter-band EN-DC within FR1	
7.3B.2.0.3.1	Reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1	
7.3B.2.0.3.2	Reference sensitivity exceptions due to receiver harmonic mixing for EN-DC in NR FR1	
7.3B.2.0.3.3	Void	327

7.3B.2.0.3		
7.3B.2.0.3	1 1	
7.3B.2.1	Reference sensitivity for Intra-band Contiguous EN-DC (2 CCs)	338
7.3B.2.1.1	Test purpose	338
7.3B.2.1.2	Test applicability	338
7.3B.2.1.3	Minimum conformance requirements	338
7.3B.2.2	Reference sensitivity for Intra-band non-contiguous EN-DC (2 CCs)	342
7.3B.2.2.1	Test purpose	342
7.3B.2.2.2	Test applicability	342
7.3B.2.2.3	Minimum conformance requirements	342
7.3B.2.2.4	Test Description	342
7.3B.2.2.5	Test Requirement	344
7.3B.2.3	Reference sensitivity for Inter-band EN-DC within FR1(2 CCs)	344
7.3B.2.3.1	Test purpose	345
7.3B.2.3.2	Test applicability	345
7.3B.2.3.3	Minimum conformance requirements	345
7.3B.2.3.4	Test description	345
7.3B.2.4	Reference sensitivity for Inter-band EN-DC including FR2	375
7.3B.2.5	Reference sensitivity for Inter-band EN-DC including FR1 and FR2 (3 CCs)	376
7.3B.2.6	Reference sensitivity for EN-DC within FR1(3 CCs)	376
7.3B.3	$\Delta R_{IB,c} \Delta R_{IBNC}$ for EN-DC	388
7.3B.3.1	Reference sensitivity $\Delta R_{IB,c}$ for Intra-band Contiguous EN-DC	
7.3B.3.2	Reference sensitivity $\Delta R_{IB,c}$ for Intra-band non-contiguous EN-DC	390
7.3B.3.3	$\Delta R_{IB,c}$ for Inter-band EN-DC within FR1	
7.3B.3.3.1		
7.3B.3.3.2		
7.3B.3.3.3		
7.3B.3.4	Reference sensitivity for $\Delta R_{IB,c}$ Inter-band EN-DC including FR2	
7.3B.3.4.1		
7.3B.3.4.2		
7.3B.3.4.3	•	
7.3B.3.4.4		
7.3B.3.4.5	• / •	
7.4	Maximum Input Level	
7.4B	Maximum Input Level for EN-DC	
7.4B.0	Minimum conformance requirement	
7.4B.0.1	Intra-band contiguous EN-DC in FR1	
7.4B.0.2	Intra-band non-contiguous EN-DC in FR1	
7.4B.0.3	Inter-band EN-DC within FR1	
7.4B.0.4	Inter-band EN-DC including FR2	
7.4B.0.5	Inter-band EN-DC including both FR1 and FR2	
7.4B.1	Maximum Input Level for Intra-Band Contiguous EN-DC (2 CCs)	
7.4B.1.1	Test purpose	
7.4B.1.2	Test applicability	
7.4B.1.3	Minimum conformance requirements	
7.4B.1.4	Test Description	
7.4B.1.5	Test Requirement	
7.4B.2	Maximum Input Level for Intra-Band Non-Contiguous EN-DC (2 CCs)	413
7.4B.2.1	Test purpose	
7.4B.2.2	Test applicability	
7.4B.2.3	Minimum conformance requirements	
7.4B.2.4	Test Description	
7.4B.2.5	Test Requirement	
7.4B.3	Maximum Input Level for Inter-band EN-DC within FR1	
7.4B.3.1	Test purpose	
7.4B.3.2	Test applicability	
7.4B.3.3	Minimum conformance requirements	
7.4B.3.4	Test Description	
7.4B.3.5	Test Requirement	
7.5	Adjacent channel selectivity	
7.5B	Adjacent channel selectivity for EN-DC	
7.5B.0	Minimum Conformance Requirements	
	-	

		417
7.5B.0.1	Intra-band contiguous EN-DC in FR1	
7.5B.0.2	Intra-band non-contiguous EN-DC in FR1	
7.5B.0.3	Inter-band EN-DC within FR1	
7.5B.0.4	Inter-band EN-DC including FR2 Inter-band EN-DC including both FR1 and FR2	
7.5B.0.5	Adjacent Channel Selectivity for intra-band contiguous EN-DC (2 CCs)	
7.5B.1 7.5B.2		
7.5B.2 7.5B.3	Adjacent Channel Selectivity for intra-band non-contiguous EN-DC (2 CCs) Adjacent Channel Selectivity for inter-band EN-DC within FR1 (2 CCs)	
7.5B.5 7.5B.4	Adjacent Channel Selectivity for inter-band EN-DC within FKI (2 CCs)	
7.5B.4.1	Adjacent Channel Selectivity for inter-band EN-DC including FR2 (2CCs)	
7.5B.4.1.1	Test purpose	
7.5B.4.1.2	Test applicability	
7.5B.4.1.3	Minimum conformance requirements	
7.5B.4.1.4	Test description	
7.5B.4.2	Adjacent Channel Selectivity for inter-band EN-DC including FR2 (3CCs)	
7.5B.4.3	Adjacent Channel Selectivity for inter-band EN-DC including FR2 (4CCs)	
7.5B.4.4	Adjacent Channel Selectivity for inter-band EN-DC including FR2 (5CCs)	
7.5B.4.5	Adjacent Channel Selectivity for inter-band EN-DC including FR2 (6CCs)	
7.5B.5	Adjacent Channel Selectivity for inter-band EN-DC including both FR1 and FR2 (3 CCs)	
	locking characteristics	
	locking characteristics for EN-DC	
7.6B.1	General	
7.6B.2	Inband blocking for EN-DC	
7.6B.2.0	Minimum Conformance Requirements	
7.6B.2.0.1	Intra-band contiguous EN-DC	
7.6B.2.0.2	Intra-band non-contiguous EN-DC	
7.6B.2.0.3	Inter-band EN-DC within FR1	431
7.6B.2.0.4	Inter-band EN-DC including FR2	431
7.6B.2.0.5	Inter-band EN-DC including both FR1 and FR2	431
7.6B.2.1	Inband blocking for intra-band contiguous EN-DC (2 CCs)	431
7.6B.2.2	Inband blocking for intra-band non-contiguous EN-DC (2 CCs)	
7.6B.2.3	Inband blocking for inter-band EN-DC within FR1 (2 CCs)	435
7.6B.2.4	Inband blocking for inter-band EN-DC including FR2	
7.6B.2.4.1	Inband blocking for inter-band EN-DC including FR2 (2 CCs)	
7.6B.2.5	Inband blocking for inter-band EN-DC including both FR1 and FR2	
7.6B.3	Out-of-band blocking for EN-DC	
7.6B.3.0	Minimum Conformance Requirements	
7.6B.3.0.1	Intra-band contiguous EN-DC	
7.6B.3.0.2	Intra-band non-contiguous EN-DC	
7.6B.3.0.3	Inter-band EN-DC within FR1	
7.6B.3.0.4	Inter-band EN-DC including FR2	
7.6B.3.0.5	Inter-band EN-DC including both FR1 and FR2	
7.6B.3.1	Out-of-band blocking for intra-band contiguous EN-DC (2 CCs)	
7.6B.3.2	Out-of-band blocking for intra-band non-contiguous EN-DC (2 CCs)	
7.6B.3.3	Out-of-band blocking for inter-band EN-DC within FR1 (2 CCs)	
7.6B.4 7.6B.4.0	Narrow band blocking for EN-DC in FR1	
7.6B.4.0 7.6B.4.0.1	Minimum Conformance Requirements	
7.6B.4.0.1 7.6B.4.0.2	Intra-band contiguous EN-DC Intra-band non-contiguous EN-DC	
7.6B.4.0.2 7.6B.4.0.3	Inter-band EN-DC within FR1	
7.6B.4.0.4	Inter-band EN-DC within FR1	
7.6B.4.0.5	Inter-band EN-DC including both FR1 and FR2	
7.6B.4.1	Narrow band blocking for intra-band contiguous EN-DC (2 CCs)	
7.6B.4.2	Narrow band blocking for intra-band non-contiguous EN-DC (2 CCs)	
7.6B.4.3	Narrow band blocking for inter-band EN-DC within FR1 (2 CCs)	
	Narrow band blocking for inter-band EN-DC within TRT (2 CCs)	
	purious response for EN-DC in FR1	
7.7B.0	Minimum Conformance Requirements	
7.7B.0.1	Intra-band contiguous EN-DC	
7.7B.0.2	Intra-band non-contiguous EN-DC	
7.7B.0.3	Inter-band EN-DC within FR1	
7.7B.0.4	Inter-band EN-DC including FR2	
	-	

7.7B.0.5	Inter-band EN	-DC including both FR1 and FR2	449
7.7B.1	Spurious Respons	e for intra-band contiguous EN-DC (2 CCs)	450
7.7B.2		e for intra-band non-contiguous EN-DC (2 CCs)	
7.7B.3		e for inter-band EN-DC within FR1 (2 CCs)	
7.8		acteristics	
7.8B		acteristics for EN-DC in FR1	
7.8B.1			
7.8B.2		nodulation	
7.8B.2.0		nformance Requirements	
7.8B.2.0. 7.8B.2.0.		contiguous EN-DC in FR1 non-contiguous EN-DC in FR1	
7.8B.2.0.		EN-DC within FR1	
7.8B.2.0.4		EN-DC within FR1	
7.8B.2.0.		EN-DC including both FR1 and FR2	
7.8B.2.1		ermodulation for intra-band contiguous EN-DC in FR1	
7.8B.2.2		ermodulation for intra-band non-contiguous EN-DC in FR1	
7.8B.2.3		ermodulation for inter-band EN-DC in FR1 (2 CCs)	
7.8B.2.4	Wideband Inte	ermodulation for EN-DC including FR2 (2 CCs)	458
7.8B.2.5	Wideband Inte	ermodulation for inter-band EN-DC including both FR1 and FR2 (3 CCs)	
7.8B.2.6		ermodulation for EN-DC including FR1 (3 CCs)	
7.8B.2.7		ermodulation for EN-DC including FR1 (4 CCs)	
7.8B.2.8		ermodulation for EN-DC including FR1 (5 CCs)	
7.8B.2.9		ermodulation for EN-DC including FR1 (6 CCs)	
7.9			
7.9B		or EN-DC in FR1	
7.9B.0		mance Requirements	
7.9B.0.1 7.9B.0.2		ntiguous EN-DC in FR1 n-contiguous EN-DC in FR1	
7.9B.0.2 7.9B.0.3		-configuous EN-DC III FR1	
7.9B.0.4		-DC within FR1	
7.9B.0.4		-DC including both FR1 and FR2	
7.9B.1		ns for intra-band contiguous EN-DC in FR1(2 CCs)	
7.9B.2		ns for intra-band non-contiguous EN-DC in FR1(2 CCs)	
7.9B.3		ns for inter-band EN-DC within FR1(2 CCs)	
7.9B.4	Spurious Emission	ns for inter-band EN-DC including FR2 (2 CCs)	
7.9B.5	Spurious Emission	ns for inter-band EN-DC including both FR1 and FR2 (3 CCs)	
7.9B.6		ns for EN-DC (3 CCs)	
7.9B.7		ns for EN-DC (4 CCs)	
7.9B.8		ns for EN-DC (5 CCs)	
7.9B.9	Spurious Emission	ns for EN-DC (6 CCs)	
Annex A	(normative):	Measurement Channels	467
A.1 G	eneral		467
A.2 U	reference measure	ment channels for E-UTRA TDD Config 2	467
A.2.1			
A.2.2		ent channels for E-UTRA	
A.2.2.1		n	
A.2.2.1.1	QPSK		
A.2.2.1.2	16-QAM		
A.2.2.1.3	64-QAM		
A.2.2.1.4			
A.2.2.2		ion	
A.2.2.2.1			
A.2.2.2.2	-		
A.2.2.2.3	_		
A.2.2.2.4	256 QAM		4/6
A.3 D		ment channels for E-UTRA	
A.3.1	General		476
Annex E	(normative):	Propagation Conditions	478

Annex C	(normative):	Downlink Physical Channels	479
Annex D	(normative):	Characteristics of the Interfering Signal	480
Annex E	(normative):	Global In-Channel Tx Test	481
Annex F	(informative):	Measurement uncertainties and Test Tolerances	482
F.1	Acceptable uncertai	inty of Test System (normative)	
F.1.1	Measurement of	test environments	
F.1.2	Measurement of	transmitter	
F.1.3	Measurement of	receiver	
F.2	Interpretation of me	easurement results (normative)	
F.3	Test Tolerance and	Derivation of Test Requirements (informative)	490
F.3.1		test environments	
F.3.2	Measurement of	transmitter	491
F.3.3	Measurement of	receiver	496
Annex G	(normative):	Uplink Physical Channels	499
Annex H	[(normative):	Statistical Testing	500
H.1	General	- -	
H.2	Statistical testing of	Freceiver characteristics	
H.2.1	General		
H.2.2	Mapping throug	hput to error ratio	
H.2.3		st	
H.2.4		ition of the pass fail limits	
H.2.5	Pass fail decisio	n rules	
Annex I	(normative):	Void	504
Annex J	(normative):	Test applicability per permitted test method	505
Annex K	(normative):	EIRP, TRP, and EIS measurement procedures	506
Annex L	(normative):	Void	507
Annex M	I (normative):	Dual uplink interferer	508
Annex N	(informative):	Change history	509
History			

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

The present document is part 3 of a multi-part Technical Specification (TS) covering the New Radio (NR) User Equipment (UE) conformance specification, which is divided in the following parts:

FFS

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain RF characteristics for carrier aggregation between Range 1 and Range 2 and additional requirements due to NR non-standalone (NSA) operation mode with E-UTRA.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "*definition and applicability*" part of the test.

For example only Release 15 and later UE declared to support 5G-NR shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

Editor's note: intended to capture more references

3GPP TR 21.905: "Vocabulary for 3GPP Specifications" [1] 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 [2] Standalone". [3] 3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone". 3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 [4] and Range 2 Interworking operation with other radios". 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) [5] radio transmission and reception". [6] 3GPP TS 38.508-1: "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment". [7] 3GPP TR 38.905: "NR; Derivation of test points for radio transmission and reception conformance test cases". 3GPP TS 38.521-1:" User Equipment (UE) conformance specification; Radio transmission and [8] reception; Part 1: Range 1 Standalone. 3GPP TS 38.521-2:" NR; User Equipment (UE) conformance specification; Radio transmission and [9] reception; Part 2: Range 2 Standalone". 3GPP TS 36.521-1:" Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment [10] (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing" 3GPP TS 36.508:" Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet [11] Core (EPC); Common test environments for User Equipment (UE) conformance testing". 3GPP TS 36.133:" Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for [12] support of radio resource management".

- [13] 3GPP TS 36.211: "E-UTRA; Physical channels and modulation".
- [14] 3GPP TS 38.522: "NR; User Equipment (UE) conformance specification; Applicability of radio transmission, radio reception and radio resource management test cases".
- [15] 3GPP TS 38.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC) protocol specification".
- [16] 3GPP TS 38.306: "NR: User Equipment (UE) radio access capabilities"
- [17] 3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification"
- [18] 3GPP TS 38.331: "NR; Radio Resource Control (RRC) protocol specification"
- [19] 3GPP TS 38.213: "NR; Physical layer procedures for control"

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Editor's note: intended to capture definitions

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$\Delta R_{IB,c}$	Allowed reference sensitivity relaxation due to support for CA or DC operation, for serving cell c.
$\Delta T_{IB,c}$	Allowed maximum configured output power relaxation due to support for CA or DC operation, for
	serving cell c
$BW_{\text{E-UTRA_Channel}}$	Channel bandwidth of E-UTRA carrier
$BW_{E\text{-}UTRA_Channel_}$	CA Channel bandwidth of E-UTRA sub-block which is composed of intra-band contiguous CA E-
	UTRA carriers
$BW_{NR_Channel}$	Channel bandwidth of NR carrier
$BW_{NR_Channel_CA}$	Channel bandwidth of NR sub-block which is composed of intra-band contiguous CA NR carriers
Ceil(x)	Rounding upwards; $ceil(x)$ is the smallest integer such that $ceil(x) \ge x$
EN-DC _{ACLR}	The ratio of the filtered mean power centred on the aggregated sub-block bandwidth ENBW to the
	filtered mean power centred on an adjacent bandwidth of the same size ENBW
E-UTRA _{ACLR}	E-UTRA ACLR
F _C	RF reference frequency for the carrier centre on the channel raster
F_{DL_low}	The lowest frequency of the downlink operating band
F_{DL_high}	The highest frequency of the downlink operating band
F_{UL_low}	The lowest frequency of the uplink operating band
F_{UL_high}	The highest frequency of the uplink operating band
Foob	The boundary between the NR out of band emission and spurious emission domains
L _{CRB}	Transmission bandwidth which represents the length of a contiguous resource block allocation
	expressed in units of resources blocks
Max()	The largest of given numbers
Min()	The smallest of given numbers
NR _{ACLR}	NR ACLR
N _{RB}	Transmission bandwidth configuration, expressed in units of resource blocks
P _{CMAX}	The configured maximum UE output power
RB _{start}	Indicates the lowest RB index of transmitted resource blocks
W_{gap}	The sub-block gap between the two sub-blocks

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR	Adjacent Channel Leakage Ratio
ACS	Adjacent Channel Selectivity
A-MPR	Additional Maximum Power Reduction
BCS	Bandwidth Combination Set
CA	Carrier Aggregation
CC	Component Carrier
DC	Dual Connectivity
EN-DC	E-UTRA/NR DC
EVM	Error Vector Magnitude
FR	Frequency Range
ENBW	The aggregated bandwidth of an E-UTRA sub-block and an adjacent NR sub-block
ITU-R	Radiocommunication Sector of the International Telecommunication Union
MBW	Measurement bandwidth defined for the protected band
MPR	Allowed maximum power reduction
MSD	Maximum Sensitivity Degradation
MCG	Master Cell Group
NR	New Radio
NS	Network Signalling
NSA	Non-Standalone, a mode of operation where operation of another radio is assisted with another
	radio
OOB	Out-of-band
OOBE	Out-of-band emission
OTA	Over The Air
PRB	Physical Resource Block
RE	Resource Element
REFSENS	Reference Sensitivity
RF	Radio Frequency
Rx	Receiver
SCG	Secondary Cell Group
SCS	Subcarrier spacing
SEM	Spectrum Emission Mask
SUL	Supplementary uplink
TDM	Time Division Multiplex
Tx	Transmitter
UE	User Equipment
UL-MIMO	Up Link Multiple Antenna transmission
ULSUP	Uplink sharing from UE perspective

4 General

4.1 Relationship between minimum requirements and test requirements

The present document is interwork specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the present specification is demonstrated by fulfilling the test requirements specified in the conformance specification 3GPP TS 38.521-3 [5].

The Minimum Requirements given in this specification make no allowance for measurement uncertainty (MU). The test specification TS 38.521-3 [5] defines test tolerances (TT). These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by either the "Never fail a good DUT" principle for test tolerance equal to measurement uncertainty (TT = MU) or "Shared Risk" principle for Test Tolerance equal to 0 (TT = 0) Test tolerances lower that measurement uncertainty and greater than 0 (0 < TT < MU) are also considered in this specification.

The "Never fail a good DUT" and the "Shared Risk" principles are defined in Recommendation ITU-R M.1545 [6].

4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.
- d) Terminal that supports EN-DC configuration shall meet E-UTRA requirements as specified in TS 36.101 [4] and NR requirements as in TS 38.101-1 [2] and TS 38.101-2 [3] unless otherwise specified in this specification.e) All the requirements for intra-band contiguous and non-contiguous CA apply under the assumption of the same uplink-downlink and special subframe configurations in the PCell and SCells for SA.
- e) All the requirements for intra-band contiguous and non-contiguous EN-DC apply under the assumption of the same uplink-downlink and special subframe configurations in the E-UTRA and slot format indicated by UL-DL-configuration-common in the NR for the EN-DC.
- f) For EN-DC combinations with CA configurations for E-UTRA and/or NR, all the requirements for E-UTRA and/or NR all the requirements for E-UTRA and/or NR intra-band contiguous and non-contiguous CA apply under the assumption of the same slot format indicated by UL-DL-configuration-common in the PSCell and SCells for NR and the same uplink-downlink and special subframe configurations in Pcell and SCells for E-UTRA.

A terminal which supports an inter-band EN-DC configuration shall support all apecified E-UTRA bandwidth combination set that belong to the E-UTRA CA configuration part of E-UTRA – NR DC and shall support all apecified NR bandwidth combination set that belong to the NR CA configuration part of E-UTRA – NR DC.

A terminal which supports an inter-band EN-DC configuration with a certain UL configuration shall support the all lower order DL configurations of the lower order EN-DC combinations, which have this certain UL configuration and the fallbacks of this UL configuration.

Terminal that supports inter-band NR-DC between FR1 and FR2 configuration shall meet the requirements for corresponding CA configuration (suffix A), unless otherwise specified.

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level sub-clause, shown in Table 4.3-1.

Clause suffix	Variant
None	Single Carrier
А	Carrier Aggregation (CA)
В	Dual-Connectivity (DC)
С	Supplement Uplink (SUL)
D	UL MIMO

Table 4.3-1: Definition of suffixes

4.4 Test points analysis

The information on test point analysis and test point selection including number of test points for each test case is shown in TR 38.905 [7] clause 4.3.

4.5 Applicability and test coverage rules

- (1) The applicability and test coverage rules for EN-DC only capable devices shall include the following:
 - (a) Test all the EN-DC exception test requirements as per test procedures in TS38.521-3.
 - (b) Test all the EN-DC FR2 non-exception test requirements in TS38.521-3 with test procedures which refer appropriately back to TS38.521-2. Test only one EN-DC combination per FR2 band for each EN-DC configuration as defined in section 5.5B of 38.101-3 using LTE anchor agnostic approach.
 - (c) Test all the EN-DC FR1 non-exception test requirements in TS38.521-3 with test procedures which refer appropriately back to TS38.521-1. Test only one EN-DC combination per FR1 band for each EN-DC configuration as defined in section 5.5B of 38.101-3using LTE anchor agnostic approach.
- (2) The applicability and test coverage rules for Standalone and EN-DC capable devices shall include the following:
 - (a) Test all the EN-DC exception test requirements as per test procedures in TS38.521-3.
 - (b) Test all the Standalone FR2 test requirements as per test procedures in TS38.521-2. This also fulfils coverage for all non-exception EN-DC FR2 test requirements and need not be retested. If Standalone FR2 cannot be tested (due to test case not being complete), then test in EN-DC mode following (1)(b) above.
 - (c) Test all the Standalone FR1 test requirements as per test procedures in TS38.521-1. This also fulfils coverage for all non-exception EN-DC FR1 test requirements and need not be retested. If Standalone FR1 cannot be tested (due to test case not being complete), then test in EN-DC mode following (1)(c) above.

4.5.1 Test coverage across 5G NR architecture options

The test cases in this specification cover both Standalone (FR1+FR2 CA without DC) as well as Non-Standalone FR1 and FR2 (E-UTRA and 5G NR interworking) testing. Below shall be the understanding with respect to coverage across 5G NR architecture options:

- Unless otherwise stated within the test case, it shall be understood that test requirements are agnostic of the NSA architecture option configured within the test. The test coverage across NSA options shall be considered fulfilled by execution of the NSA test case in one NSA option Subsequently the test execution and test results can be leveraged to other NSA options.
- 2) Only one SA or NSA architecture option type is identified and utilized in the definition of each test case within this test specification. NSA test cases are configured using *Connectivity EN-DC* i.e. NSA Option 3 and Standalone (SA) test cases are configured using *Connectivity NR* i.e. SA Option 2 which shall be the default architecture options used for NSA and SA test execution respectively.
- 3) If a UE does not support NSA Option 3, any other supported NSA option can be configured to execute the test. This is accomplished by appropriately picking the generic procedure paremeter from Table 4.5.1-2. The leverage rule detailed in (1) would apply.

Generic Procedure Parameter to use in Initial Conditions		Description	5G NR SA Architecture Option supported by UE
Connectivity	NR	NG-RAN NR Radio Access	SA Option 2
	E-UTRA	NG-RAN E-UTRA Radio Access	SA Option 5

Editor's Note: Any additional test config details needed for SA Option 5 is FFS.

Generic Procedure Parameter to use in Initial Conditions		Description	5G NR NSA Architecture Option supported by UE
Connectivity	NSA		
	EN-DC	E-UTRA-NR Dual Connectivity	NSA Option 3
	NGEN-DC	NG-RAN E-UTRA-NR Dual Connectivity	NSA Option 4
NE-DC		NR-E-UTRA Dual Connectivity	NSA Option 7

 Table 4.5.1-2: Generic procedure parameter summary for NSA

Editor's Note: Any additional test config details needed for NSA Options 4 and 7 are FFS.

4.6 E-UTRA configuration for EN-DC FR1 tests applying the E-UTRA anchor-agnostic approach

This section applies to EN-DC test cases where E-UTRA anchor needs to be configured as per the anchor-agnostic approach outlined in section 6.1 and 7.1 of TS 38.101-3 [4]. The LTE anchor-agnostic approach is defined as measurements on the NR carrier under conditions where the LTE anchor resources do not interfere with NR operation. The configuration defined in this section ensures establishment of such conditions.

For baseline configuration, the E-UTRA carrier will be configured for each test case in section 6 and 7 as defined in the equivalent standalone E-UTRA test in TS 36.521-1. However, the below exceptions defined in Table 4.6-1, 4.6-2, 4.6-3, 4.6-4 and 4.6-5 are applied to ensure that the E-UTRA anchor resources do not interfere with NR operation.

For EN-DC within FR1 band combinations with multiple E-UTRA component carriers, it is sufficient to configure any one E-UTRA carrier from the carrier group whenever it is determined that anchor agnostic approach can be applied.

Parameter	Value	Comments
Test Frequency during and after connection setup	Mid (See Table 4.6-2)	As defined in TS 36.508 for the LTE band under test
Bandwidth during and after connection setup	5 MHz (See Table 4.6- 2)	Supported by all LTE bands.
DL signal levels during connection setup	RS EPRE -85.0 dBm/15kHz	DL physical channels as defined in Annex C0, C.1, C.2 and Annex C.3 of TS 36.521-1 36.521-1 annex C.0 defines the default DL power level of RS EPRE to be -85dBm/15kHz.
UL Signal levels during connection setup	PUSCH Power	Attained by enabling open loop power control and setting up UL signal levels according to Annex H.0, H.2 and H.3 of TS 36.521-1
DL/UL RMC after connection setup	0 RB allocation on both DL and UL (see Table 4.6-2)	Once the LTE link is established, then LTE Tx can be restricted by configuring 0 RB allocation on DL and UL. <i>TimeAlignmentTimerDedicated</i> IE to be set to infinity to ensure UE doesn't look for TA adjustments (See Table 4.6-5)
CQI Reports and SRS after connection setup	Disabled (See Table 4.6-3 and 4.6-4)	Disable periodic and aperiodic CQI reports to ensure none of these transmissions occur on the LTE uplink. Since LTE transmissions could easily exceed spurious emissions limits, tests that are intended to measure RF parametrics on the NR should simply avoid LTE transmit altogether.

Table 4.6-1: E-UTRA configuration for EN-DC FR1 tests applying anchor agnostic approach

E-UTRA Test Parameters					
E-UTRA Channel	E-UTRA Test	Downlink		Up	link
Bandwidth	Frequency	Modulation	RB allocation	Modulation	RB allocation
5 MHz ²	MidRange ¹	N/A	0	N/A	0
NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [11] subclause 4.3.1.					
NOTE 2: For EN-DC Intra-band tests that need to apply E-UTRA anchor agnostic approach, refer to and					
pick applicable E-UTRA channel bandwidth from subclause 5.3B.1 and indicate within test case					
if it is different than 5 MHz.					

Table 4.6-2: E-UTRA Test Configuration Table

Table 4.6-3: CQI-ReportConfig-DEFAULT: Additional E-UTRA Anchor Configuration

Information Element Value/remark Comment Condition					
NOT PRESENT					
NOT PRESENT					
	NOT PRESENT	NOT PRESENT			

Table 4.6-4: PhysicalConfigDedicated-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: TS 36.508 [7] clause 4.8.2, Table 4.8.2.1.6-1 PhysicalConfigDedicated-DEFAULT					
Information Element Value/remark Comment Cond					
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {					
soundingRS-UL-ConfigDedicated	Not present		RBC		
}					

Table 4.6-5: MAC-MainConfig-RBC: Additional E-UTRA Anchor Configuration

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1 MAC-MainConfig-RBC					
Information Element Value/remark Comment Condition					
timeAlignmentTimerDedicated	Infinity				

4.7 E-UTRA configuration for EN-DC FR2 tests applying the E-UTRA anchor-agnostic approach

This section applies to EN-DC test cases where E-UTRA anchor needs to be configured as per the anchor-agnostic approach outlined in section 6.1 and 7.1 of TS 38.101-3 [4]. The LTE anchor-agnostic approach is defined as measurements on the NR carrier under conditions where the LTE anchor resources do not interfere with NR operation. The configuration defined in this section ensures establishment of such conditions.

For baseline configuration, the E-UTRA carrier will be configured for each test case in section 6 and 7 as defined in the equivalent standalone E-UTRA test in TS 36.521-1. However, the below exceptions defined in Table 4.7-1 to 4.7-7 are applied to ensure that the E-UTRA anchor resources do not interfere with NR operation.

Since the E-UTRA link is always a functional link when testing EN-DC including FR2 band combinations, it is sufficient to configure any one E-UTRA carrier from the carrier group, irrespective of the number of E-UTRA carriers in the EN-DC combination under test.

Parameter	Value	Comments
Test Frequency during and after connection setup	Mid (See Table 4.7-2)	As defined in TS 36.508 for the LTE band under test
Bandwidth during and after connection setup	5 MHz (See Table 4.7- 2)	Supported by all LTE bands.
DL signal levels	See table 4.7-3	DL physical channels as defined in Annex C0, C.1, C.2 and Annex C.3 of TS 36.521-1
UL Signal levels for connection setup and UBF transmission	PUSCH Power	Attained by enabling open loop power control and setting up UL signal levels according to Annex H.0, H.2 and H.3 of TS 36.521-1 with the exception for power control message exception defined in Table 4.7-5
DL/UL RMC after connection setup except for UBF transmission	0 RB allocation on both DL and UL (see Table 4.7-2)	Once the LTE link is established, then LTE Tx can be restricted by configuring 0 RB allocation on DL and UL. <i>TimeAlignmentTimerDedicated</i> IE to be set to infinity to ensure UE doesn't look for TA adjustments (See Table 4.7-7)
CQI Reports and SRS after connection setup	Disabled (See Table 4.7-4 and 4.7-6)	Disable periodic and aperiodic CQI reports to ensure none of these transmissions occur on the LTE uplink. Since LTE transmissions could easily exceed spurious emissions limits, tests that are intended to measure RF parametrics on the NR should simply avoid LTE transmit altogether.

Table 4.7-1: E-UTRA configuration for EN-DC FR2 tests applying anchor agnostic approach

Table 4.7-2: E-UTRA Test Configuration Table

E-UTRA Test Parameters					
E-UTRA Channel	E-UTRA Test	Downlink		Up	link
Bandwidth	Frequency	Modulation	RB allocation	Modulation	RB
					allocation
5 MHz ²	MidRange ¹	N/A	0	N/A	0
NOTE 1: E-UTRA T	NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [11] subclause 4.3.1				
NOTE 2: For EN-DC Intra-band tests that need to apply E-UTRA anchor agnostic approach, refer to and					
pick applicable E-UTRA channel bandwidth from subclause 5.3B.1 and indicate within test case					
if it is diff	erent than 5 MHz.				

	Unit	Band Group			Channel E	Bandwidth		
			1.4 MHz	3 MHz	5MHz	10MHz	15 MHz	20 MHz
RS EPRE	dBm/15kHz	FDD_A, TDD_A	N/A	N/A	≥ -120.0	N/A	N/A	N/A
		FDD_B1, TDD_B1	N/A	N/A	≥ -119.5	N/A	N/A	N/A
		FDD_C, TDD_C	N/A	N/A	≥ -119.0	N/A	N/A	N/A
		FDD_D, TDD_D	N/A	N/A	≥ -118.5	N/A	N/A	N/A
		FDD_E, TDD_E	N/A	N/A	≥ -118.0	N/A	N/A	N/A
		FDD_G, TDD_G	N/A	N/A	≥ -117.0	N/A	N/A	N/A
		FDD_H, TDD_H	N/A	N/A	≥ -116.5	N/A	N/A	N/A
		FDD_N, TDD_N	N/A	N/A	≥ -113.5	N/A	N/A	N/A
Note 1: The power level is specified at RSRP reference point as defined in TS 36.214 [21] Note 2: E-UTRA Band groups are defined in TS 36.133 [12] clause 3.5.1.								

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-2 CQI-ReportConfig-DEFAULT					
Information Element	Value/remark	Comment	Condition		
CQI-ReportConfig-DEFAULT ::= SEQUENCE {					
cqi-ReportModeAperiodic	NOT PRESENT				
cqi-ReportPeriodic	NOT PRESENT				
}					

Table 4.7-4: CQI-ReportConfig-DEFAULT: Additional E-UTRA Anchor Configuration

Table 4.7-5: UplinkPowerControlCommon-DEFAULT : Additional E-UTRA Anchor Configuration

Derivation Path: TS 36.508 [7] clause 4.6.3, UplinkPowerControlCommon-DEFAULT						
Information Element	Value/remark	Comment	Condition			
UplinkPowerControlCommon-DEFAULT ::=						
SEQUENCE {						
p0-NominalPUSCH	-60 (-60 dBm)	To attain				
		maximum power				
		from the DUT				
}						

Table 4.7-6: PhysicalConfigDedicated-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: TS 36.508 [7] clause 4.8.2, Table 4.8.2.1.6-1 PhysicalConfigDedicated-DEFAULT						
Information Element	Value/remark	Comment	Condition			
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {						
soundingRS-UL-ConfigDedicated	Not present		RBC			
}						

Table 4.7-7: MAC-MainConfig-RBC: Additional E-UTRA Anchor Configuration

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1 MAC-MainConfig-RBC					
Information Element	Value/remark	Comment	Condition		
timeAlignmentTimerDedicated	Infinity				

5 Operating bands and Channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specifications are identified as described in Table 5.1-1.

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

Table 5.1-1: Definition of frequency ranges

The present specification covers band combinations including

- at least one FR1 operating band and one FR2 operating band for carrier aggregation and dual connectivity operations;
- at least one E-UTRA operating band for dual connectivity operations.

5.2 Operating bands

NR is designed to operate in FR1 operating bands defined in TS 38.101-1 [2] and FR2 operating bands defined in TS 38.101-2 [3]. E-UTRA is designed to operate in operating bands defined in TS 36.101 [4].

5.2A Operating bands for CA

5.2A.1 Inter-band CA between FR1 and FR2

NR carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1. The band combinations include at least one FR1 operating band and one FR2 operating band.

NR CA Band	NR Band			
CA_n8-n258	n8, n258			
CA_n71-n257 ¹	n71, n257			
CA_n77-n257 ¹	n77, n257			
CA_n78-n257 ¹	n78, n257			
CA_n79-n257 ¹	n79, n257			
NOTE 1: Applicable for UE supporting inter-band carrier aggregation with mandatory simultaneous Rx/Tx capability.				

Table 5.2A.1-1: Band combinations for inter-band NR CA between FR1 and FR2

5.2B Operating bands for DC

5.2B.1 General

The operating bands are specified in subclause 5.5B for operation with EN-DC, NGEN-DC or NR-DC configured.

5.2B.2 to 5.2B.7 Void

- 5.3 UE Channel bandwidth
- 5.3A UE Channel bandwidth for CA

5.3A.1 Inter-band CA between FR1 and FR2

For inter-band NR CA between FR1 and FR2, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class as specified in clause 5.3A.5 of TS 38.101-1 [2] and clause 5.3A.4 of TS 38.101-2 [3] independently.

5.3B UE Channel bandwidth for EN-DC

For intra-band contiguous EN-DC, the aggregated channel bandwidth is sum of the individual NR and E-UTRA channel bandwidths assuming nominal EN-DC channel with 0 kHz offset spacing as specified in sub-clause 5.4.

 $ENBW = BW_{NR_Channel} + BW_{E_UTRA_Channel}$

In the case where the NR sub-block and/or the E-UTRA sub-block itself is composed of intra-band contiguous CA carriers, the EN-DC aggregated channel bandwidth is the sum of the aggregated channel bandwidths of the NR and E-UTRA sub-blocks assuming nominal EN-DC channel spacing between the NR sub-block and E-UTRA sub-block.

 $ENBW = BW_{NR_Channel_CA} + BW_{E_UTRA_Channel_CA}$

For NR inter-band dual connectivity specified in sub-clause 5.2B.7, the corresponding NR CA configurations in subclause 5.5A.1, i.e., dual uplink inter-band carrier aggregation between FR1 and FR2 with uplink assigned to two NR bands, are applicable to Dual Connectivity.

NOTE 1: Requirements for the dual connectivity configurations are defined in the section corresponding NR uplink CA between FR1 and FR2 configurations, unless otherwise specified.

Intra-band contiguous EN-DC configurations are defined using intra-band contiguous EN-DC bandwidth class notation where the first EN-DC bandwidth class letter indicates the number of contiguous E-UTRA carriers and the second EN-DC bandwidth class letter indicates the number of contiguous NR carriers. Applicable contiguous intraband EN-DC bandwidth classes are listed in Table 5.3B-1

Intra-band contiguous EN-DC bandwidth class	Numł contigu	per of ous CC
bandwidth class	E-UTRA	NR
AA	1	1
CA	2	1
DA	3	1

Table 5.3.B-1: Intra-band contiguous EN-DC bandwidth classes

5.3B.1 Intra-band EN-DC in FR1

5.3B.1.1 General

The requirements for intra-band EN-DC in this specification are defined for EN-DC configurations with associated bandwidth combination sets.

For each EN-DC configuration, requirements are specified for all bandwidth combinations contained in a *bandwidth combination set*, which is indicated per supported band combination in the UE radio access capability. A UE can indicate support of several bandwidth combination sets per band combination.

5.3B.1.2 BCS for Intra-band contiguous EN-DC

For intra-band contiguous EN-DC, an EN-DC configuration is a single operating band supporting an intra-band contiguous EN-DC bandwidth class.

Bandwidth combination sets for intra-band contiguous EN-DC are specified in Table 5.3B.1.2-1.

Table 5.3B.1.2-1: EN-DC configurations and bandwidth combination sets defined for intra-band contiguous EN-DC

E-UTRA – NR configuration / Bandwidth combination set						
Downlink		Component carriers in order of increasing carrier frequency			Maximum	Dondwidth
Downlink EN-DC configuration	Uplink EN-DC configurations	Channel bandwidths for LTE carrier (MHz)	Channel bandwidths for NR carrier (MHz)	Channel bandwidths for LTE carrier (MHz)	aggregated bandwidth (MHz)	Bandwidth combination set

DC_(n)41AA	DC_(n)41AA	20	40, 60, 80,100		120	0
			40, 60, 80,100	20		
		20	40, 50, 60, 80,100		120	1
			40, 50, 60, 80,100	20		
DC_(n)41CA	DC_(n)41AA ¹ , DC_41A_n41A ²	20+20	40, 60, 80,100		140	0
			40, 60, 80,100	20+20		
		20+20	40, 50, 60, 80,100		140	1
			40, 50, 60, 80,100	20+20		
DC_(n)41DA	DC_(n)41AA ¹ , DC_41A_n41A ²	20+20+20	40, 60, 80,100		160	0
			40, 60, 80,100	20+20+20		
		20+20+20	40, 50, 60, 80,100		160	1
			40, 50, 60, 80,100	20+20+20		
DC_(n)71AA	DC_(n)71AA ³	15	5		20	0
		10	5, 10			
		5	5, 10, 15			
			5	15		
			5, 10	10		
			5, 10, 15	5		
	ious intra-band EN-D d NR ACLR requiren			d EN-DC uplink	requirements st	nall apply.

5.3B.1.3 BCS for Intra-band non-contiguous EN-DC

For intra-band non-contiguous EN-DC, an EN-DC configuration is a single operating band supporting E-UTRA and NR carriers, where E-UTRA configuration is indicated by using E-UTRA CA bandwidth class as defined in TS 36.101 [4] and NR configuration is indicated by using NR CA bandwidth class as defined in TS 38.101-1 [2].

Requirements for intra-band non-contiguous EN-DC are defined for the EN-DC configurations and bandwidth combination sets specified in Table 5.3B.1.3-1.

Table 5.3B.1.3-1: EN-DC configurations and bandwidth combination sets defined for intra-band noncontiguous EN-DC

E-UTRA – NR configuration / Bandwidth combination set						
Downlink		Component carriers in order of increasing carrier frequency			Maximum	Bandwidth
Downlink EN-DC configuration	Uplink EN-DC configurations	Channel bandwidths for LTE carrier (MHz)	Channel bandwidths for NR carrier (MHz)	Channel bandwidths for LTE carrier (MHz)	aggregated bandwidth (MHz)	combination set

DC_3A_n3A	DC_3A_n3A ⁽¹⁾		5, 10, 15, 20, 25, 30	5, 10, 15, 20	50	0
DC_41A_n41A	DC_41A_n41A	20	40, 60, 80,100		120	0
			40, 60, 80,100	20		
		20	40, 50, 60, 80,100		120	1
			40, 50, 60, 80,100	20		
DC_41C_n41A	DC_41A_n41A	20+20	40, 60, 80,100		140	0
			40, 60, 80,100	20+20		
		20+20	40, 50, 60, 80,100		140	1
			40, 50, 60, 80,100	20+20		
DC_41D_n41A	DC_41A_n41A	20+20+20	40, 60, 80,100		160	0
			40, 60, 80,100	20+20+20		
		20+20+20	40, 50, 60, 80,100		160	1
			40, 50, 60, 80,100	20+20+20		
NOTE 1: Only sir	gle switched UL is	supported in Rel.	15.			

5.4 Channel arrangement

5.4A Channel arrangement for CA

The channel arrangement for CA operations in FR1 and FR2 as specified in 38.101-1 and 38.101-2, respectively.

5.4B Channel arrangement for DC

The channel arrangement for intra-band EN-DC operations in FR1 is specified in TS 36.101 [4] and TS 38.101-1, respectively.

5.4B.1 Channel spacing for intra-band EN-DC carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between and E-UTRA carrier and an adjacent NR carrier for intraband contiguous EN-DC is defined as following:

- For NR operating bands with 15 kHz channel raster,

Nominal Channel spacing = $(BW_{E-UTRA_Channel} + BW_{NR_Channel})/2 + \{-5kHz, 0kHz, 5kHz\}$

- For NR operating bands with 30 kHz channel raster,

Nominal Channel spacing = $(BW_{E-UTRA_Channel} + BW_{NR_Channel})/2 + \{-10kHz, 0kHz, 10kHz\}$

where $BW_{E-UTRA_Channel}$ and $BW_{NR_Channel}$ are the channel bandwidths of the E-UTRA and NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

For intra-band non-contiguous EN-DC the channel spacing between E-UTRA and NR carriers shall be larger than the nominal channel spacing defined in this subclause.

5.5 Configuration

- 5.5A Configuration for CA
- 5.5A.1 Inter-band CA configurations between FR1 and FR2

 Table 5.5A.1-1: Inter-band CA configurations and bandwidth combinations sets between FR1 and FR2 (two bands)

NR CA configu ration	Upli nk CA conf igur atio n	NR Band	SCS (kHz)	5 MHz	10 MHz	15 MH z	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz	200 MHz	400 MHz	Band width combi nation set
			15	Yes	Yes	Ye s	Yes								
CA_n8A	CA_ n8A-	n8	30		Yes	Ye s	Yes								0
-n258A	n25 8A		60 60						Yes			Yes	Yes		
		n258	120						Yes			Yes	Yes	Yes	
			15	Yes	Yes	Ye s	Yes								
CA_n71 A-n257A	-	n71	30		Yes	Ye s	Yes								0
A-11237 A			60						Vaa			Vaa	Vee		
		n257	60 120						Yes Yes			Yes Yes	Yes Yes	Yes	
			15		Yes	Ye s	Yes	Yes	Yes						
CA_n77	CA_ n77	n77	30		Yes	Ye s	Yes	Yes	Yes	Yes	Yes	Yes			
A-n257A	A- n25		60		Yes	Ye	Yes	Yes	Yes	Yes	Yes	Yes			0
	7A	n257	60						Yes			Yes	Yes		
		11237	120						Yes			Yes	Yes	Yes	
	CA_		15		Yes	Ye s	Yes	Yes	Yes						0
CA_n77 A-n257D	n77 A- n25 7A	n77	30		Yes	Ye s	Yes	Yes	Yes	Yes	Yes	Yes			
			60		Yes	Ye s	Yes	Yes	Yes	Yes	Yes	Yes			
		n257			Yes	See CA Ye				1 in TS 3	8.521-2 [9	9]			
	CA_ n77 A- n25		15		Yes	s Ye	Yes	Yes	Yes						
CA_n77 A-n257E		n//	30		Yes	s Ye	Yes	Yes	Yes	Yes	Yes	Yes			0
	7A	<u>~</u> 057	60			s See CA	Yes	Yes	Yes	Yes	Yes 8.521-2 [9	Yes			
		n257	15			Ye				1 11 1 3 3	0.521-2 [9	' <u> </u>	[
04	CA_ n77	- 77	30		Yes	s Ye	Yes	Yes	Yes	Vee	Vaa	Vee			
CA_n77 A-n257F	A- n25	n77	60		Yes	s Ye	Yes	Yes	Yes	Yes	Yes	Yes			0
	7A	n257			Yes	s	Yes An 257Fi	Yes n Table	Yes 5.5A.1-1	Yes I in TS 3	Yes 8.521-2 [9	Yes			
	CA_	n77				See C	A_n77C ii	n Table t	5.5A.1-1	in TS 38	8.521-1 [8]]	1		
CA_n77 C-n257A	n77 A- n25 7A	n257	60 120						Yes Yes			Yes Yes	Yes Yes	Yes	0
	CA_	n77				See C	A_n77C ii	n Table {	5.5A.1-1	in TS 38	8.521-1 [8]				
CA_n77 C- n257D	n77 A- n25 7A	n257									8.521-2 [9	-			0
CA_n77 C-n257E	CA_ n77 A- n25	n77 n257	See CA_n77C in Table 5.5A.1-1 in TS 38.521-1 [8] See CA_n257E in Table 5.5A.1-2 in TS 38.521-2 [9]						0						
CA_n77 C-n257F	7A CA_ n77 A- n25 7A	n77 n257		See CA_n77C in Table 5.5A.1-1 in TS 38.521-1 [8] See CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9]						0					
CA_n78 A-n257A		n78	15 30		Yes Yes	Ye s Ye s	Yes Yes	Yes Yes	Yes Yes	Yes	Yes	Yes			0

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		CA_		60	Yes	Ye									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		n78					Yes	Yes	Yes	Yes	Yes	Yes			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			n257												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			11201	120	No.5	N.			Yes			Yes	Yes	Yes	
CA.770 An2570 An25 An257 An26 An257 An27 An257 An27		CA		15	Yes		Yes	Yes	Yes						
A-DZ37D A-D Column A C	CA n78	n78	n78	30	Yes	Ye	Yes	Yes	Yes	Yes	Yes	Yes			
7A 00 s 1es					Yes										0
CA, 778 An.257 See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] O O CA, 778 An.257 See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2 [9] Image: See CA. n.257F in Table 5.5A.1-1 in TS 38.521.2				60		S									
CA, 778 A-2757E CA A-2 7A To A-2 7A To A-2 7A <thto A-2 7A</thto 			n257	45						in is a	8.521-2 [9	9			
CA. 173 A. Infa 30 Infa Yes Yes <thyes< th=""> <thyes< <="" td=""><td></td><td></td><td></td><td>15</td><td></td><td>s</td><td>Yes</td><td>Yes</td><td>Yes</td><td></td><td></td><td></td><td></td><td></td><td></td></thyes<></thyes<>				15		s	Yes	Yes	Yes						
Arl23/E 7A 60 Yes Yes <thyes< th=""> <thyes< td="" th<=""><td></td><td></td><td>n78</td><td>30</td><td>Yes</td><td>-</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td><td></td><td></td><td>0</td></thyes<></thyes<>			n78	30	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes			0
IA n257 See CA.n257E n7ab (1 = 15) See CA.n257E n7ab (2 = 15) Image: CA.n25 Image: CA.n25 <th< td=""><td>A-n257E</td><td>n25</td><td></td><td>60</td><td>Yes</td><td>Ye</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td><td></td><td></td><td></td></th<>	A-n257E	n25		60	Yes	Ye	Yes	Yes	Yes	Yes	Yes	Yes			
CA. N78 An257F n78 An257 15 An257 Yes Yes <td></td> <td>7A</td> <td>n257</td> <td></td>		7A	n257												
CA.778 An257F An78 An257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-1 [8] O O CA_n78 An78 An257 An78 An257 An78 An257 An78 An257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 An257 An78 An257 An78 An257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 An257 An78 An257 An78 An257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 An257 An78 An257 An78 An257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 An257 An257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 An257 An257 <t< td=""><td></td><td></td><td></td><td>15</td><td></td><td>Ye</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				15		Ye									
CA. 178 A. 178 Insol 60 Yes	.			30											
N25 60 Yes Yes <thyes< th=""> <thyes< th=""> <thyes< th=""></thyes<></thyes<></thyes<>		A-	n78		Yes	s	Yes	Yes	Yes	Yes	Yes	Yes			0
CA, n78 n27 See CA, n277 Yes				60	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
CA, n78 A, n25 C-n257A n78 A, n25 A 60 120 Ves Yes <						See CA]			
CA_N78 Fraction A- ration n257 ration n257 ration n257 ration n257 ration n257 ration n257 ration n267 ration n267 ration n267 ration n267 ration n277 ration n277 ration	.		n78	60		See C	A_n78C ir	n Table {		in TS 3	8.521-1 [8]	Yes	Yes		
R25 res Yes Yes <thyes< th=""> <thyes< th=""> <thyes< th=""></thyes<></thyes<></thyes<>		A-	n257												0
CA, n78 n78 See CA, n78C in Table 5.5A, 1-1 in TS 38.521-1 [8] 0 n257 n25 n257 n257 n257 0 0 CA, n78 n257 n257 n257 n257 0 0 CA, n78 n257 n257 n257 0 0 0 CA, n78 n257 n257 See CA, n267C in Table 5.5A, 1-1 in TS 38.521-2 [9] 0 CA, n78 n257 See CA_n257E in Table 5.5A, 1-1 in TS 38.521-1 [8] 0 0 CA, n78 n257 See CA_n257F in Table 5.5A, 1-1 in TS 38.521-2 [9] 0 0 CA, n78 n257 See CA_n257F in Table 5.5A, 1-1 in TS 38.521-2 [9] 0 0 CA, n78 n257 n257 See CA_n257F in Table 5.5A, 1-1 in TS 38.521-2 [9] 0 A-n25 n257 15 Yes									Yes			Yes	Yes	Yes	
C- n257D A- rZA n257 n257 0 CA_n78 n78 See CA_n78C in Table 5.5A.1-1 in TS 38.521-1 [8] 0 CA_n78 n78 n257 See CA_n257E in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n78 n257 See CA_n257E in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n78 n257 See CA_n267F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n78 n257 See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n79 n79 15 Yes		CA_	n78												
n257D n257 n257 n257 n257 n78 n267 n260 n267 n267						See CA	A_n257D i	n Table	5.5A.1-	1 in TS 3	8.521-2 [9]			0
CA_n78 n78 n257E n78 n257 n25 n78 n257 n25 n78 n257 See CA_n78C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n25 rA n78 n25 n78 n25 See CA_n257E in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n25 rA n78 n25 n78 n25 See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n25 n79 n25 n79 n25 n79 n25 n79 n25 n79 n25 0 0 CA_n78 n25 n79 n25 n79 n25 n79 n25 15 Yes Ye	n257D	n25	n257												-
CA_n78 C-n257E n78 n25 rA n257 rA n257 rA n257 rA n257 rA 0 CA_n78 r.257 n78 rA n78 rA n78 rA n78 rA see CA_n257E in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 rA n78 rA n78 rA n57 rA see CA_n267F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 rA n79 rA n79 rA n79 rA n79 rA n79 rA n79 rA 0 0 0 CA_n79 rA n79 rA n79 rA n79 rA 15 Yes			n78	See CA n78C in Table 5.5A.1-1 in TS 38.521-1 [8]											
Cn257E A25 7A See CA_n257E in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n78 n257 N See CA_n278C in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n78 n257 N See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n78 n79 n79 N See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n79 n79 N See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n79 n79 See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n79 n79 See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n25 15 Yes Yes Yes Yes A-n257D n257 15 Yes Yes Yes Yes Yes A-n257D n74 15 Yes Yes </td <td>CA n78</td> <td>n78</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td> <td></td> <td></td>	CA n78	n78					_				· · ·				
CA_n78 n.78 n.257 n.257 A n78 n.257 n.257 n.25 n78 n.257 n.257 n78 n.257 n.25 n78 n.257 n.257 n78 n.257 n.257 n78 n.257 n.257 n78 n.257 n.257 n78 n.257 n78 n.257 n79 n.257 15 n.257 See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 A-n257 n.257 n79 A n79 a.0 15 n.257 Ves Yes						See CA	A_n257E i	n Table	5.5A.1-′	1 in TS 3	8.521-2 [9]			U
CA_n78 C-n257F n78 A D25 n25 rA n25 rA n25 rA n25 rA n25 rA n25 rA n79 rA n25 rA n79 rA n79 rA n79 rA n79 rA n79 rA n79 rA n79 rA n25 rA						00	A	T -1-1-1			0 504 4 [0]	1			
C-n257F A- n25 7A See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 A-n257A n79 A- n257 n79 A- n257 n79 A- n257 n79 A- n257 15 1 Yes Yes <td< td=""><td>CA 579</td><td></td><td></td><td></td><td></td><td>See C</td><td>A_n780 Ir</td><td>1 Table :</td><td>5.5A.1-1</td><td>IN 153</td><td>8.521-1 [8]</td><td></td><td></td><td></td><td></td></td<>	CA 579					See C	A_n780 Ir	1 Table :	5.5A.1-1	IN 153	8.521-1 [8]				
TA CA TA CA TA TA <thta< th=""> TA TA TA<!--</td--><td></td><td></td><td colspan="7"></td><td>]</td><td></td><td>0</td></thta<>]		0			
CA.n79 A-n257A n79 A. 25 7A n79 A. 25 7A n79 A. 25 7A n79 A. 25 7A n79 A. 25 7A n79 A. 25 7A n79 A. 20 n79 B. 20 n257 B. 20											-	-			
CA_n79 A.n257A A- n257 A A- n257 A A- n257 A A- n257 A A- n257 A A- n79 A- n257 A- n79 A- n257 A- n79 A- n257 A- n79 A- n257 A- n79 A- n257 A- n79 A- n257 15 A- n257 Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257D in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-1 [8] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-1 [8] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-1 [8] Image: CA_n257F in Table 5.5A.1-1 in TS 38.521-1 [8] Image: CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9] Image: CA_n257F in Table 5.5A.1-2 in TS 38.521-2 [9] Image: CA_n257F in Table 5		_	p70							Voo	Vaa	Voo			
IL23 n257 60 Image: constraint of the sector of the se	CA_n79		1179												0
CA_n79 A-n257D n79 A- n25 7A n79 A- n257 n79 A0 n79 A0 15 A0 Yes A0 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	A-11237 A		n257											N	
CA_n79 A-n257D n79 A- n25 7A 30 60 Ves 60 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes								Yes				res	res	res	
A-n257D A- n25 7A 60 Yes	CA_n79	n79	n79	30											
TA II237 Yes Yes <td>A-n257D</td> <td></td> <td>-057</td> <td>60</td> <td></td> <td>See CA</td> <td>) 1. n257D i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>	A-n257D		-057	60		See CA) 1. n257D i								0
CA_n79 A-n257F n79 A- n257 n79 A- n257 n79 A- n257 n79 A- n257 30 Yes Yes <td></td> <td></td> <td>n257</td> <td>15</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>- · - [0</td> <td>•</td> <td></td> <td>1</td> <td> </td>			n257	15		1					- · - [0	•		1	
CA_IN3 A-n257E A- n257 A- n257 A- n257 60 Yes Yes <t< td=""><td>CA 570</td><td>n79</td><td>n79</td><td>30</td><td></td><td></td><td></td><td></td><td></td><td>Yes</td><td>Yes</td><td>Yes</td><td></td><td></td><td></td></t<>	CA 570	n79	n79	30						Yes	Yes	Yes			
7A n257 15 Yes Ye						Sec. 01			Yes						0
CA_n79 A-n257F n79 A- n25 7A n79 A- n257 n79 A- n257 30 Yes		7A	n257			See CA	4_N257EI			in 153	ið.521-2 [9	'I			
CA_IN75 A-n257F A- n257 7A A- n257 A- n257 60 Yes Yes Yes Yes Yes Yes Yes O CA_n757 C-n257A n79 A- n257 n79 A- n257 n79 See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8] 0			p70							Vaa	Vac	Vac			
n12571 n25 n257 See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9] 0 CA_n79 n79 See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8] 0 <	CA_n79 A-n257⊑	A-	119					Yes	Yes	Yes	Yes	Yes			0
CA_n79 n79 C-n257A n79 A- n257 7A See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8] 0 0 CA_n79 A- n257 7A n257 A n257 120 60 Yes Yes </td <td>A-112.571</td> <td></td> <td>n257</td> <td></td> <td></td> <td>See CA</td> <td>_n257F i</td> <td>n Table</td> <td>5.5A.1-′</td> <td>l in TS 3</td> <td>8.521-2 [9</td> <td>]</td> <td></td> <td></td> <td></td>	A-112.571		n257			See CA	_n257F i	n Table	5.5A.1-′	l in TS 3	8.521-2 [9]			
CA_IN79 C-n257A A- n25 7A n257 120 Yes Yes Yes Yes Yes Yes Yes 0 CA_n79 CA_n79 n79 See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8] Ves Yes Yes 0 CA_n79 C- n257D n79 n79 See CA_n257D in Table 5.5A.1-2 in TS 38.521-2 [9] 0		CA_	n79		•	See C	A_n79C ir	n Table :		in TS 3	8.521-1 [8]				
C1237A n25 n25 n25 res Yes Yes <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Yes</td><td></td><td></td><td>Yes</td><td>Yes</td><td></td><td>0</td></t<>									Yes			Yes	Yes		0
CA_ n79 See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8] CA_n79 n79 See CA_n257D in Table 5.5A.1-2 in TS 38.521-2 [9] C- A- n257D n257D n25 0	C-n257A	n25	n257	120					Yes			Yes	Yes	Yes	
CA_n79 n79 See CA_n257D in Table 5.5A.1-2 in TS 38.521-2 [9] 0 C- A- n257D n257 0			n79			See C) Table [#]	5 5A 1-1	in TS 2	8 521-1 [8]	1			
n257D n25 ⁿ²⁵⁷		n79	1173												ĺ
	-		n257	57								0			
	0, D														

	CA_	n79	See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8]	
CA_n79 C-n257E	n79 A- n25 7A	n257	See CA_n257E in Table 5.5A.1-1 in TS 38.521-2 [9]	0
	CA_	n79	See CA_n79C in Table 5.5A.1-1 in TS 38.521-1 [8]	
CA_n79 C-n257F	n79 A- n25 7A	n257	See CA_n257F in Table 5.5A.1-1 in TS 38.521-2 [9]	0

5.5B Configuration for DC

5.5B.1 General

The operating bands and bandwidth classes are specified for operation with EN-DC, NGEN-DC or NR-DC configured. The EN-DC or NGEN-DC band combinations include at least one E-UTRA operating band.

For EN-DC configurations indicated by column "Single Uplink allowed" (e.g., problematic band combinations as defined in TS38.306 [xx]) in tables in this section the UE may indicate capability of not supporting simultaneous dual and triple uplink operation due to possible intermodulation interference to its own primary downlink channel bandwidth if the intermodulation order is 2 or if the intermodulation order is 3 for the combinations when both operating bands are between 450 MHz – 960 MHz or between 1427 MHz – 2690 MHz. In case for the EN-DC configurations listed in tables in this section for which the intermodulation products caused by the dual and triple uplink operation fall into the receive band but do not interfere with the own primary downlink channel bandwidth as defined in Annex-I the UE is mandated to operate in dual and triple uplink mode. Single Uplink is also allowed for certain band combinations where intermodulation products could create difficulty for meeting emission requirements.

For EN-DC combinations of order 3 or higher, "Single Uplink allowed" UL configurations captured in Table 5.5B.2-1, Table 5.5B.3-1, and Table 5.5B.4-1 apply.

If multiple UL DC configurations are listed for multiple DL DC configurations, valid uplink configurations are such that uplink does not have more carriers than downlink.

5.5B.2 Intra-band contiguous EN-DC

Supported channel bandwidths for E-UTRA operating bands are defined in TS 36.521-1 [10] and for NR operating bands in TS 38.521-1 [8].

E	N-DC Configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed				
	DC_(n)41AA⁵ DC_(n)41CA⁵ DC_(n)41DA⁵	DC_(n)41AA	Yes ³				
	DC_(n)41CA⁵ DC_(n)41DA⁵	DC_41A_n41A	Yes ³				
	DC_(n)71AA	DC_(n)71AA	No ⁴				
NOTE 1:	1: Uplink EN-DC configurations are the configurations supported by the present release of specifications.						
		cation apply for NR SCS of 15 kHz only.					
NOTE 3:	Single UL allowed due to potential emission issues, not self-interference.						
NOTE 4:	For UE(s) supporting dynamic power sharing it is mandatory to do dual simultaneous UL. For						
	UE(s) not supporting dynamic power sharing single UL is allowed.						
NOTE 5:	The minimum requirements only apply for non-simultaneous Tx/Rx between all carriers.						

Table 5.5B.2-1: Intra-band contiguous EN-DC configurations

5.5B.3 Intra-band non-contiguous EN-DC

Supported channel bandwidths for E-UTRA operating bands are defined in TS 36.521-1 [10] and for NR operating bands in TS 38.521-1 [8].

EN-DC C	onfiguration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed				
DC_	3A_n3A	DC_3A_n3A ²	Yes ²				
DC_4	1A_n41A ³ 1C_n41A ³ 1D_n41A ³	DC_41A_n41A	Yes				
specifi NOTE 2: Only si	 IE 1: Uplink EN-DC configurations are the configurations supported by the present release of specifications. IE 2: Only single switched UL is supported in Rel.15 						
NOTE 3: The m	TE 3: The minimum requirements only apply for non-simultaneous Tx/Rx between all carriers.						

Table 5.5B.3-1: Intra-band non-contiguous EN-DC configurations

5.5B.4 Inter-band EN-DC within FR1

Supported channel bandwidths for E-UTRA operating bands and CA configurations are defined in TS 36.521-1 [10] and for NR operating bands and CA configurations in TS 38.521-1 [8] and present document.

5.5B.4.1 Inter-band EN-DC configurations within FR1 (two bands)

Table 5.5B.4.1-1: Inter-band EN-DC configurations within FR1 (two bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed
DC_1A_n28A	DC_1A_n28A	No
DC_1A_n40A	DC_1A_n40A	No
DC_1A_n51A	DC_1A_n51A	No
DC_1A_n77A ⁷ DC_1A_n77C ⁷	DC_1A_n77A	DC_1_n77
DC_1A_n78A ⁷ DC_1A_n78C ⁷	DC_1A_n78A	No
DC_1A_n79A ⁷ DC_1A_n79C ⁷	DC_1A_n79A	No
DC_2A_n5A	DC_2A_n5A	No
DC_2A_n66A	DC_2A_n66A	DC_2_n66
DC_2A_n71A	DC_2A_n71A	No
DC_2A_n78A	DC_2A_n78A	DC_2_n78
DC_3A_n7A	DC_3A_n7A	No
DC_3A_n28A	DC_3A_n28A	No
DC_3A_n40A	DC_3A_n40A	No
DC_3A_n51A	DC_3A_n51A	No
DC_3A_n77A ⁷ DC_3A_n77C ⁷	DC_3A_n77A	DC_3_n77
DC_3A_n78A ⁷ DC_3A_n78C ⁷ DC_3C_n78A ⁷	DC_3A_n78A	DC_3_n78
DC_3A_n79A ⁷ DC_3A_n79C ⁷	DC_3A_n79A	No
DC_5A_n40A	DC_5A_n40A	No
DC_5A_n66A	DC_5A_n66A	DC_5_n66
DC_5A_n78A ⁷	DC_5A_n78A	No
DC_7A_n28A	DC_7A_n28A	No
DC_7A_n51A	DC_7A_n51A	No
DC_7A_n78A ⁷ DC_7C_n78A ⁷	DC_7A_n78A DC_7C_n78A	No
DC_7A-7A_n78A ⁷	DC_7A_n78A	No
DC_8A_n40A	DC_8A_n40A	No
DC_8A_n77A ⁷	DC_8A_n77A	No
DC_8A_n78A ⁷	DC_8A_n78A	No
DC_8A_n79A ⁷	DC_8A_n79A	No
DC_11A_n77A7	DC_11A_n77A	No
DC_11A_n78A ⁷	DC_11A_n78A	No
DC_11A_n79A ⁷	DC_11A_n79A	No
 DC_12A_n5A	DC_12A_n5A	No
DC_12A_n66A	 DC_12A_n66A	No
 DC_18A_n77A ⁷	 DC_18A_n77A	No
DC_18A_n78A ⁷	DC_18A_n78A	No
DC_18A_n79A ⁷	DC_18A_n79A	No
 DC_19A_n77A ⁷ DC_19A_n77C ⁷	 DC_19A_n77A	No

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed
DC_19A_n78A ⁷ DC_19A_n78C ⁷	DC_19A_n78A	No
DC_19A_n79A ⁷ DC_19A_n79C ⁷	DC_19A_n79A	No
DC_20A_n8A	DC_20A_n8A	DC_20_n8
DC_20A_n28A ^{8,10}	DC_20A_n28A	No
DC_20A_n51A	DC_20A_n51A	No
DC_20A_n77A	DC_20A_n77A	No
DC_20A_n78A7	DC_20A_n78A	No
DC_21A_n77A ⁷ DC_21A_n77C ⁷	DC_21A_n77A	No
DC_21A_n78A ⁷ DC_21A_n78C ⁷	DC_21A_n78A	No
DC_21A_n79A ⁷ DC_21A_n79C ⁷	DC_21A_n79A	No
DC_25A_n41A	DC_25A_n41A	No
DC_26A_n41A ⁷	DC_26A_n41A	No
DC_26A_n77A ⁷	DC_26A_n77A	No
DC_26A_n78A ⁷	DC_26A_n78A	No
DC_26A_n79A ⁷	DC_26A_n79A	No
DC_28A n51A	DC_28A_n51A	No
DC_28A_n77A ⁷ DC_28A_n77C ⁷	DC_28A_n77A	No
DC_28A_n78A ⁷ DC_28A_n78C ⁷	DC_28A_n78A	No
DC_28A_n79A ⁷ DC_28A_n79C ⁷	DC_28A_n79A	No
DC_30A_n5A	DC_30A_n5A	No
DC_30A_n66A	DC_30A_n66A	No
DC_38A_n78A	N/A	No
DC_39A_n78A ^{5, 7}	DC_39A_n78A	No
DC_39A_n79A ⁷	DC_39A_n79A	No
DC_40A_n77A	N/A	No
DC_41A_n77A DC_41C_n77A	DC_41A_n77A DC_41C_n77A	No
DC_41A_n78A DC_41C_n78A	DC_41A_n78A DC_41C_n78A	No
DC_41A_n79A ^{6,7} DC_41C_n79A ^{6,7}	DC_41A_n79A DC_41C_n79A	No
DC_42A_n51A	DC_42A_n51A	No
DC_42A_n77A ^{3,4,9} DC_42A_n77C ^{3,4,9} DC_42C_n77A ^{3,4,9} DC_42C_n77C ^{3,4,9} DC_42C_n77C ^{3,4,9} DC_42D_n77A ^{3,4,9} DC_42E_n77A ^{3,4,9}	N/A	N/A

El	N-DC configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed				
	DC_42A_n78A ^{3,4,9} DC_42A_n78C ^{3,4,9} DC_42C_n78A ^{3,4,9} DC_42C_n78C ^{3,4,9} DC_42D_n78A ^{3,4,9} DC_42D_n78A ^{3,4,9}	N/A	N/A				
	DC_42A_n79A ⁹ DC_42A_n79C ⁹ DC_42C_n79A ⁹ DC_42C_n79C ⁹ DC_42D_n79A ⁹ DC_42E_n79A ⁹	N/A	N/A				
	DC_46A_n78A ² DC_46C_n78A ² DC_46D_n78A ² DC_46E_n78A ²	N/A	N/A				
	DC_66A_n5A	DC_66A_n5A	DC_66_n5				
	DC_66A_n71A	DC_66A_n71A	No				
	DC_66A_n78A	DC_66A_n78A	No				
NOTE 1:		e the configurations supported by the prese	nt release of				
	downlink operating band for band) of the carrier aggrega	tion when inter-band carrier aggregation is Band 46 is paired with the uplink operating tion configuration that is supporting the cor	band (external E-UTRA				
NOTE 3:	between E-UTRA and NR ca	apply only when there is non-simultaneous arriers. This restriction applies also for thes tion is part of a higher order EN-DC configu	e carriers when				
NOTE 4:	 The minimum requirements for intra-band EN-DC apply. The intra-band requirements also apply for these carriers when applicable EN-DC configuration is a subset of a higher order EN- DC configuration. 						
NOTE 6: NOTE 7:	The frequency range above 3600 MHz for Band n78 is not used in this combination. The frequency range below 2506 MHz for Band 41 is not used in this combination. Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability. The frequency range in band n28 is restricted for this band combination to 703-733 MHz for the UL and 758-788 MHz for the DL.						
	 DTE 9: The combination is not used alone as fall back mode of other band combinations in which UL in Band 42 is not used. DTE 10: The maximum power spectral density imbalance between downlink carriers is within [6] dB. The power spectral density imbalance condition also applies for these carriers when applicable 						
	EN-DC configuration is a su	bset of a higher order EN-DC configuration	•				

5.5B.4.2 Inter-band EN-DC configurations within FR1 (three bands)

Table 5.5B.4.2-1: Inter-band EN-DC configurations within FR1 (three bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A_n28A	DC_1A_n28A DC_3A_n28A
DC_1A-3A_n77A⁵ DC_1A-3A_n77C⁵	DC_1A_n77A DC_3A_n77A
DC_1A-3A_177C	
DC_1A-3A_n78C⁵ DC_1A-3C_n78A⁵	DC_1A_n78A DC_3A_n78A
DC_1A-3C_1178A ⁵ DC_1A-3A_n79A ⁵	DC_1A_n79A
DC_1A-3A_n79C ⁵	DC_3A_n79A
DC_1A-5A_n78A⁵	DC_1A_n78A DC_5A_n78A
DC_1A-7A_n28A⁵	DC_1A_n28A DC_7A_n28A
DC_1A-7A_n78A⁵	DC_1A_n78A DC_7A_n78A
DC_1A-7A-7A_n78A⁵	DC_1A_n78A DC_7A_n78A
DC_1A-8A_n78A⁵	DC_1A_n78A DC_8A_n78A
DC_1A-18A_n77A⁵	DC_1A_n77A DC_18A_n77A
DC_1A-18A_n78A⁵	DC_1A_n78A DC_18A_n78A
DC_1A-18A_n79A	DC_10,_mon DC_1A_n79A DC_18A_n79A
DC_1A-19A_n77A⁵	DC_1A_n77A
DC_1A-19A_n77C ⁵	DC 19A_n77A
DC_1A-19A_n78A⁵ DC_1A-19A_n78C⁵	DC_1A_n78A DC_19A_n78A
DC_1A-19A_n79A⁵	DC_1A_n79A
DC_1A-19A_n79C⁵	DC_19A_n79A
DC_1A-20A_n28A ⁶	DC_1A_n28A DC_20A_n28A
DC_1A-20A_n78A⁵	DC_1A_n78A DC_20A_n78A
DC_1A-21A_n77A ⁵	DC_1A_n77A
DC_1A-21A_n77C⁵ DC_1A-21A_n78A⁵	DC_21A_n77A DC_1A_n78A
DC_1A-21A_n78C ⁵	DC_21A_n78A
DC_1A-21A_n79A⁵ DC_1A-21A_n79C⁵	DC_1A_n79A DC_21A_n79A
DC_1A-28A_n77A ⁵	DC_1A_n77A
DC_1A-28A_n77C⁵	DC_28A_n77A
DC_1A-28A_n78A⁵ DC_1A-28A_n78C⁵	DC_1A_n78A DC_28A_n78A
DC_1A_n28A-n78A⁵	DC_1A_n28A, DC_1A_n78A
DC_1A-28A_n79A DC_1A-28A_n79C	DC_1A_n79A DC_28A_n79A
DC_1A-41A_n77A	DC_1A_n77A
DC_1A-41C_n77A	DC_41A_n77A DC_41C_n77A
DC_1A-41A_n78A	DC_1A_n78A
DC_1A-41C_n78A	DC_41A_n78A DC_41C_n78A
DC_1A-41C_n79A	DC_1A_n79A DC_41C_n79A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-42A_n77A DC_1A-42A_n77C DC_1A-42C_n77A DC_1A-42C_n77C DC_1A-42D_n77A DC_1A-42E_n77A	DC_1A_n77A
DC_1A-42A_n78A DC_1A-42A_n78C DC_1A-42C_n78A DC_1A-42C_n78C DC_1A-42D_n78A DC_1A-42E_n78A	DC_1A_n78A
DC_1A-42A_n79A DC_1A-42A_n79C DC_1A-42C_n79A DC_1A-42C_n79C DC_1A-42D_n79A DC_1A-42E_n79A	DC_1A_n79A
DC_1A_n77A-n79A	DC_1A_n77A DC_1A_n79A
DC_1A_n78A-n79A	DC_1A_n78A DC_1A_n79A
DC_1A_SUL_n78A-n84A⁵	DC_1A_n78A DC_1A_n84A_ULSUP-TDM_n78A DC_1A_n84A_ULSUP-FDM_n78A
DC_2A-5A_n66A	DC_2A_n66A DC_5A_n66A
DC_2A-12A_n66A	DC_2A_n66A DC_12A_n66A
DC_2A-30A_n66A	DC_2A_n66A DC_30A_n66A
DC_2A-66A_n71A	DC_2A_n71A DC_66A_n71A
DC_2A-(n)71AA	DC_2A_n71A DC_(n)71AA
DC_3A_n3A-n77A	DC_3A_n77A DC_3A_n3A ²
DC_3A_n3A-n78A	DC_3A_n78A DC_3A_n3A ²
DC_3A-5A_n78A⁵	DC_3A_n78A DC_5A_n78A
DC_3A-7A_n28A	DC_3A_n28A DC_7A_n28A
DC_3A-7A_n78A⁵ DC_3C-7A_n78A⁵	DC_3A_n78A DC_7A_n78A
DC_3A-7C_n78A ⁵ DC_3C-7C_n78A ⁵	DC_3A_n78A DC_7C_n78A
DC_3A-7A-7A_n78A ⁵	DC_3A_n78A DC_7A_n78A
DC_3A-8A_n78A	DC_3A_n78A DC_8A_n78A
	DC_3A_n77A DC_19A_n77A
DC_3A-19A_n78A⁵ DC_3A-19A_n78C⁵	DC_3A_n78A DC_19A_n78A
DC_3A-19A_n79A ⁵ DC_3A-19A_n79C ⁵	DC_19A_n79A DC_19A_n79A
DC_3A-20A_n28A ^{5,6}	DC_3A_n28A DC_20A_n28A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_3A-20A_n78A⁵ DC_3C-20A_n78A⁵	DC_3A_n78A DC_20A_n78A
DC_3A-21A_n77A⁵ DC_3A-21A_n77C⁵	DC_3A_n77A DC_21A_n77A
DC_3A-21A_n78A⁵ DC_3A-21A_n78C⁵	DC_3A_n78A DC_21A_n78A
DC_3A-21A_n79A ⁵ DC_3A-21A_n79A ⁵ DC_3A-21A_n79C ⁵	DC_3A_n79A DC_21A_n79A
DC_3A-28A_n77A DC_3A-28A_n77C	DC_3A_n77A DC_28A_n77A
DC_3A-28A_n78A⁵ DC_3A-28A_n78C⁵	DC_3A_n78A DC_28A_n78A
DC_3A_n28A-n78A⁵	DC_3A_n28A, DC_3A_n78A
DC_3A-28A_n79A DC_3A-28A_n79C	DC_3A_n79A DC_28A_n79A
DC_3A-38A_n78A	DC_3A_n78A
DC_3A-41A_n78A	DC_3A_n78A DC_41A_n78A
DC_3A-42A_n77A DC_3A-42A_n77C DC_3A-42C_n77A DC_3A-42C_n77C DC_3A-42D_n77A DC_3A-42D_n77A	DC_3A_n77A
DC_3A-42A_n78A DC_3A-42A_n78C DC_3A-42C_n78A DC_3A-42C_n78C DC_3A-42D_n78A DC_3A-42E_n78A	DC_3A_n78A
DC_3A-42A_n79A DC_3A-42A_n79C DC_3A-42C_n79A DC_3A-42C_n79C DC_3A-42D_n79A DC_3A-42D_n79A DC_3A-42E_n79A	DC_3A_n79A
DC_3A_n77A-n79A	DC_3A_n77A DC_3A_n79A
DC_3A_n78A-n79A	DC_3A_n78A DC_3A_n79A
DC_3A_SUL_n78A-n80A⁵	DC_3A_n78A DC_3A_n80A_ULSUP-TDM_n78A DC_3A_n80A_ULSUP-FDM_n78A
DC_3A_SUL_n78A-n82A⁵	DC_3A_n78A DC_3A_n82A
DC_3A_SUL_n79A-n80A⁵	DC_3A_n79A DC_3A_n80A_ULSUP-TDM_n79A DC_3A_n80A_ULSUP-FDM_n79A
DC_5A-7A_n78A	DC_5A_n78A DC_7A_n78A
DC_5A-7A-7A_n78A	DC_5A_n78A DC_7A_n78A
DC_5A-30A_n66A	DC_5A_n66A DC_30A_n66A
DC_7A-20A_n28A ⁶	DC_7A_n28A DC_20A_n28A
DC_7A-20A_n78A⁵	DC_7A_n78A DC_20A_n78A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_7A-28A_n78A⁵	DC_7A_n78A DC_28A_n78A
DC_7C-28A_n78A⁵	DC_7C_n78A DC_28A_n78A
DC_7A_n28A-n78A ⁵	DC_7A_n28A, DC_7A_n78A
DC_7A-46A_n78A ³ DC_7A-46C_n78A ³ DC_7A-46D_n78A ³ DC_7A-46E_n78A ³	DC_7A_n78A
DC_8A_SUL_n78A-n81A ⁵	DC_8A_n78A DC_8A_n81A_ULSUP-TDM_n78A DC_8A_n81A_ULSUP-FDM_n78A
DC_8A_SUL_n79A-n81A⁵	DC_8A_n79A DC_8A_n81A_ULSUP-TDM_n79A DC_8A_n81A_ULSUP-FDM_n79A
DC_12A-30A_n66A	DC_12A_n66A DC_30A_n66A
DC_18A-28A_n77A⁵	DC_18A_n77A DC_28A_n77A
DC_18A-28A_n78A⁵	DC_18A_n78A DC_28A_n78A
DC_18A-28A_n79A⁵	DC_18A_n79A DC_28A_n79A
DC_19A-21A_n77A⁵ DC_19A-21A_n77C⁵	DC_19A_n77A DC_21A_n77A
DC_19A-21A_n78A ⁵ DC_19A-21A_n78C ⁵	DC_19A_n78A DC_21A_n78A
DC_19A-21A_n79A⁵ DC_19A-21A_n79C⁵	DC_19A_n79A DC_21A_n79A
DC_19A-42A_n77A DC_19A-42A_n77C DC_19A-42C_n77A DC_19A-42C_n77C	DC_19A_n77A
DC_19A-42A_n78A DC_19A-42A_n78C DC_19A-42C_n78A DC_19A-42C_n78C	DC_19A_n78A
DC_19A-42A_n79A DC_19A-42A_n79C DC_19A-42C_n79A DC_19A-42C_n79C	DC_19A_n79A
DC_19A_n77A-n79A	DC_19A_n77A DC_19A_n79A
DC_19A_n78A-n79A	DC_19A_n78A DC_19A_n79A
DC_20A_n8A-n75A ⁶	DC_20A_n8A
DC_20A_n28A-n75A ⁶	DC_20A_n28A
DC_20A_n28A-n78A ^{5,6}	DC_20A_n28A DC_20A_n78A
DC_20A_n75A-n78A⁵	DC_20A_n78A
DC_20A_n76A-n78A⁵	DC_20A_n78A
DC_20A_SUL_n78A-n82A⁵	DC_20A_n78A DC_20A_n82A_ULSUP-TDM_n78A DC_20A_n82A_ULSUP-FDM_n78A
DC_20A_SUL_n78A-n83A⁵	DC_20A_n78A DC_20A_n83A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_21A-28A_n77A DC_21A-28A_n77C	DC_21A_n77A DC_28A_n77A
DC_21A-28A_n78A DC_21A-28A_n78C	DC_21A_n78A DC_28A_n78A
DC_21A-28A_n79A DC_21A-28A_n79C	DC_21A_n79A DC_28A_n79A
DC_21A-42A_n77A DC_21A-42A_n77C DC_21A-42C_n77A DC_21A-42C_n77C	DC_21A_n77A
DC_21A-42A_n78A DC_21A-42A_n78C DC_21A-42C_n78A DC_21A-42C_n77C	DC_21A_n78A
DC_21A-42A_n79A DC_21A-42A_n79C DC_21A-42C_n79A DC_21A-42C_n77C	DC_21A_n79A
DC_21A_n77A-n79A	DC_21A_n77A DC_21A_n79A
DC_21A_n78A-n79A	DC_21A_n78A DC_21A_n79A
DC_28A-42A_n77A DC_28A-42A_n77C DC_28A-42C_n77A	DC_28A_n77A
DC_28A-42A_n78A DC_28A-42A_n78C DC_28A-42C_n78A	DC_28A_n78A
DC_28A-42A_n79A DC_28A-42A_n79C DC_28A-42C_n79A	DC_28A_n79A
DC_28A_SUL_n78A-n83A⁵	DC_28A_n78A DC_28A_n83A_ULSUP-TDM_n78A DC_28A_n83A_ULSUP-FDM_n78A
DC_41A-42A_n77A DC_41A-42C_n77A DC_41C-42A_n77A DC_41C-42C_n77A	DC_41A_n77A DC_41C_n77A
DC_41A-42A_n78A DC_41A-42C_n78A DC_41C-42A_n78A DC_41C-42C_n78A	DC_41A_n78A DC_41C_n78A
DC_41A-42A_n79A DC_41A-42C_n79A DC_41C-42A_n79A DC_41C-42C_n79A	DC_41A_n79A DC_41C_n79A
DC_66A_(n)71AA	DC_66A_n71A DC_(n)71AA
DC_66A_SUL_n78A-n86A⁵	DC_66A_n78A DC_66A_n86A_ULSUP-TDM_n78A DC_66A_n86A_ULSUP-FDM_n78A

	EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
NOTE 1:	NOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications.	
NOTE 2:	2: Only single switched UL is supported in Rel.15	
NOTE 3:	downlink operating band for Band 46 is	inter-band carrier aggregation is configured. The s paired with the uplink operating band (external on configuration that is supporting the configured
NOTE 4:	5	and NR SUL carriers in a cell, the switching time arrier can be up to 140us and placed in SUL
NOTE 5:	Applicable for UE supporting inter-banchapability	d EN-DC with mandatory simultaneous Rx/Tx
NOTE 6:	The frequency range in band n28 is reformed for the UL and 758-788 MHz for the DL	stricted for this band combination to 703-733 MHz

5.5B.4.3 Inter-band EN-DC configurations within FR1 (four bands)

Table 5.5B.4.3-1: Inter-band EN-DC configurations within FR1 (four bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-5A_n78A ²	DC_1A_n78A DC_3A_n78A DC_5A_n78A
DC_1A-3A-7A_n28A	DC_1A_n28A DC_3A_n28A DC_7A_n28A
DC_1A-3A-7A_n78A ² DC_1A-3C-7A_n78A ²	DC_1A_n78A DC_3A_n78A DC_7A_n78A
DC_1A-3A-7A-7A_n78A ²	DC_1A_n78A DC_3A_n78A DC_7A_n78A
DC_1A-3A-8A_n78A ²	DC_1A_n78A DC_3A_n78A DC_8A_n78A
DC_1A-3A-19A_n77A ² DC_1A-3A-19A_n77C ²	DC_1A_n77A DC_3A_n77A DC_19A_n77A
DC_1A-3A-19A_n78A ² DC_1A-3A-19A_n78C ²	DC_1A_n78A DC_3A_n78A DC_19A_n78A
DC_1A-3A-19A_n79A ² DC_1A-3A-19A_n79C ²	DC_1A_n79A DC_3A_n79A DC_19A_n79A
DC_1A-3A-20A_n28A ³	DC_1A_n28A DC_3A_n28A DC_20A_n28A
DC_1A-3A-20A_n78A ²	DC_1A_n78A DC_3A_n78A DC_20A_n78A
DC_1A-3A-21A_n77A ² DC_1A-3A-21A_n77C ²	DC_1A_n77A DC_3A_n77A DC_21A_n77A
DC_1A-3A-21A_n78A ² DC_1A-3A-21A_n78C ²	DC_1A_n78A DC_3A_n78A DC_21A_n78A
DC_1A-3A-21A_n79A ² DC_1A-3A-21A_n79C ²	DC_1A_n79A DC_3A_n79A DC_21A_n79A
DC_1A-3A-28A_n77A ²	DC_1A_n77A DC_3A_n77A DC_28A_n77A
DC_1A-3A-28A_n78A ²	DC_1A_n78A DC_3A_n78A DC_28A_n78A
DC_1A-3A_n28A-n78A ²	DC_1A_n28A DC_1A_n78A DC_3A_n28A DC_3A_n78A
DC_1A-3A-28A_n79A ²	DC_1A_n79A DC_3A_n79A DC_28A_n79A
DC_1A-3A-42A_n77A DC_1A-3A-42A_n77C DC_1A-3A-42C_n77A DC_1A-3A-42C_n77C	DC_1A_n77A DC_3A_n77A
DC_1A-3A-42A_n78A DC_1A-3A-42A_n78C DC_1A-3A-42C_n78A DC_1A-3A-42C_n78C	DC_1A_n78A DC_3A_n78A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-42A_n79A DC_1A-3A-42A_n79C DC_1A-3A-42C_n79A DC_1A-3A-42C_n79C	DC_1A_n79A DC_3A_n79A
DC_1A-5A-7A_n78A	DC_1A_n78A DC_5A_n78A DC_7A_n78A
DC_1A-5A-7A-7A_n78A	DC_1A_n78A DC_5A_n78A DC_7A_n78A
DC_1A-7A-20A_n28A ³	DC_1A_n28A DC_7A_n28A DC_20A_n28A
DC_1A-7A-20A_n78A ²	DC_1A_n78A DC_7A_n78A DC_20A_n78A
DC_1A-7A_n28A-n78A ²	DC_1A_n28A DC_1A_n78A DC_7A_n28A DC_7A_n78A
DC_1A-18A-28A_n77A	DC_1A_n77A DC_18A_n77A DC_28A_n77A
DC_1A-18A-28A_n78A	DC_1A_n78A DC_18A_n78A DC_28A_n78A
DC_1A-18A-28A_n79A ²	DC_1A_n79A DC_18A_n79A DC_28A_n79A
DC_1A-19A-21A_n77A DC_1A-19A-21A_n77C	DC_1A_n77A DC_19A_n77A DC_21A_n77A
DC_1A-19A-21A_n78A DC_1A-19A-21A_n78C	DC_1A_n78A DC_19A_n78A DC_21A_n78A
DC_1A-19A-21A_n79A DC_1A-19A-21A_n79C	DC_1A_n79A DC_19A_n79A DC_21A_n79A
DC_1A-19A-42A_n77A DC_1A-19A-42A_n77C DC_1A-19A-42C_n77A DC_1A-19A-42C_n77C	DC_1A_n77A DC_19A_n77A
DC_1A-19A-42A_n78A DC_1A-19A-42A_n78C DC_1A-19A-42C_n78A DC_1A-19A-42C_n78C	DC_1A_n78A DC_19A_n78A
DC_1A-19A-42A_n79A DC_1A-19A-42A_n79C DC_1A-19A-42C_n79A DC_1A-19A-42C_n79C	DC_1A_n79A DC_19A_n79A
DC_1A-20A_n28A-n78A ^{2,3}	DC_1A_n28A DC_1A_n78A DC_20A_n28A DC_20A_n78A
DC_1A-21A-28A_n77A ²	DC_1A_n77A DC_21A_n77A DC_28A_n77A
DC_1A-21A-28A_n78A ²	DC_1A_n78A DC_21A_n78A DC_28A_n78A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-21A-28A_n79A ²	DC_1A_n79A DC_21A_n79A DC_28A_n79A
DC_1A-21A-42A_n77A DC_1A-21A-42A_n77C DC_1A-21A-42C_n77A DC_1A-21A-42C_n77C	DC_1A_n77A DC_21A_n77A
DC_1A-21A-42A_n78A DC_1A-21A-42A_n78C DC_1A-21A-42C_n78A DC_1A-21A-42C_n78C	DC_1A_n78A DC_21A_n78A
DC_1A-21A-42A_n79A DC_1A-21A-42A_n79C DC_1A-21A-42C_n79A DC_1A-21A-42C_n79C	DC_1A_n79A DC_21A_n79A
DC_1A-28A-42A_n77A DC_1A-28A-42C_n77A	DC_1A_n77A DC_28A_n77A
DC_1A-28A-42A_n78A DC_1A-28A-42C_n78A	DC_1A_n78A DC_28A_n78A
DC_1A-28A-42A_n79A DC_1A-28A-42C_n79A	DC_1A_n79A DC_28A_n79A
DC_1A-41A-42A_n77A DC_1A-41A-42C_n77A DC_1A-41C-42A_n77A DC_1A-41C-42C_n77A	DC_1A_n77A DC_41A_n77A
DC_1A-41A-42A_n78A DC_1A-41A-42C_n78A DC_1A-41C-42A_n78A DC_1A-41C-42C_n78A	DC_1A_n78A DC_41A_n78A
DC_1A-41A-42A_n79A DC_1A-41A-42C_n79A DC_1A-41C-42A_n79A DC_1A-41C-42C_n79A	DC_1A_n79A DC_41A_n79A
DC_2A-66A-(n)71AA	DC_2A_n71A DC_66A_n71A DC_(n)71AA
DC_3A-5A-7A_n78A	DC_3A_n78A DC_5A_n78A DC_7A_n78A
DC_3A-5A-7A-7A_n78A	DC_3A_n78A DC_5A_n78A DC_7A_n78A
DC_3A-7A-20A_n28A ³	DC_3A_n28A DC_7A_n28A DC_20A_n28A
DC_3A-7A-20A_n78A ²	DC_3A_n78A DC_7A_n78A DC_20A_n78A
DC_3A-7A-28A_n78A ² DC_3A-7C-28A_n78A ²	DC_3A_n78A DC_7A_n78A DC_28A_n78A
DC_3A-7A_n28A-n78A ²	DC_3A_n28A DC_3A_n78A DC_7A_n28A DC_7A_n78A
DC_3A-19A-21A_n77A ² DC_3A-19A-21A_n77C ²	DC_3A_n77A DC_19A_n77A DC_21A_n77A
DC_3A-19A-21A_n78A ² DC_3A-19A-21A_n78C ²	DC_3A_n78A DC_19A_n78A DC_21A_n78A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_3A-19A-21A_n79A ² DC_3A-19A-21A_n79C ²	DC_3A_n79A DC_19A_n79A DC_21A_n79A
DC_3A-19A-42A_n77A DC_3A-19A-42A_n77C DC_3A-19A-42C_n77A DC_3A-19A-42C_n77C	DC_3A_n77A DC_19A_n77A
DC_3A-19A-42A_n78A DC_3A-19A-42A_n78C DC_3A-19A-42C_n78A DC_3A-19A-42C_n78C	DC_3A_n78A DC_19A_n78A
DC_3A-19A-42A_n79A ² DC_3A-19A-42A_n79C ² DC_3A-19A-42C_n79A ² DC_3A-19A-42C_n79C ²	DC_3A_n79A DC_19A_n79A
DC_3A-20A_n28A-n78A ^{2,3}	DC_3A_n28A DC_3A_n78A DC_20A_n28A DC_20A_n78A
DC_3A-21A-42A_n77A DC_3A-21A-42A_n77C DC_3A-21A-42C_n77A DC_3A-21A-42C_n77C	DC_3A_n77A DC_21A_n77A
DC_3A-21A-42A_n78A DC_3A-21A-42A_n78C DC_3A-21A-42C_n78A DC_3A-21A-42C_n78C	DC_3A_n78A DC_21A_n78A
DC_3A-21A-42A_n79A DC_3A-21A-42A_n79C DC_3A-21A-42C_n79A DC_3A-21A-42C_n79C	DC_3A_n79A DC_21A_n79A
DC_3A-28A-42A_n77A DC_3A-28A-42C_n77A	DC_3A_n77A DC_28A_n77A
DC_3A-28A-42A_n78A DC_3A-28A-42C_n78A	DC_3A_n78A DC_28A_n78A
DC_3A-28A-42A_n79A DC_3A-28A-42C_n79A	DC_3A_n79A DC_28A_n79A
DC_7A-20A_n28A-n78A ^{2,3}	DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n78A
DC_19A-21A-42A_n77A DC_19A-21A-42A_n77C DC_19A-21A-42C_n77A DC_19A-21A-42C_n77C	DC_19A_n77A DC_21A_n77A
DC_19A-21A-42A_n78A DC_19A-21A-42A_n78C DC_19A-21A-42C_n78A DC_19A-21A-42C_n78C	DC_19A_n78A DC_21A_n78A
DC_19A-21A-42A_n79A DC_19A-21A-42A_n79C DC_19A-21A-42C_n79A DC_19A-21A-42C_n79C	DC_19A_n79A DC_21A_n79A
DC_21A-28A-42A_n77A DC_21A-28A-42C_n77A	DC_21A_n77A DC_28A_n77A
DC_21A-28A-42A_n78A DC_21A-28A-42C_n78A	DC_21A_n78A DC_28A_n78A
DC_21A-28A-42A_n79A DC_21A-28A-42C_n79A	DC_21A_n79A DC_28A_n79A

	EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
NOTE 1:	TE 1: Uplink CA configurations are the configurations supported by the present release of specifications.	
NOTE 2:	2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability	
NOTE 3:	The frequency range in band n28 is rest for the UL and 758-788 MHz for the DL	stricted for this band combination to 703-733 MHz

5.5B.4.4 Inter-band EN-DC configurations within FR1 (five bands)

Table 5.5B.4.4-1: Inter-band EN-DC configurations within FR1 (five bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-5A-7A_n78A	DC_1A_n78A DC_3A_n78A DC_5A_n78A DC_7A_n78A
DC_1A-3A-5A-7A-7A_n78A	DC_1A_n78A DC_3A_n78A DC_5A_n78A DC_7A_n78A
DC_1A-3A-7A-20A_n28A ³	DC_1A_n28A DC_3A_n28A DC_7A_n28A DC_20A_n28A
DC_1A-3A-7A-20A_n78A ²	DC_1A_n78A DC_3A_n78A DC_7A_n78A DC_20A_n78A
DC_1A-3A-7A_n28A-n78A ²	DC_1A_n28A DC_1A_n78A DC_3A_n28A DC_3A_n78A DC_7A_n28A DC_7A_n78A
DC_1A-3A-19A-21A_n77A ² DC_1A-3A-19A-21A_n77C ²	DC_1A_n77A DC_3A_n77A DC_19A_n77A DC_21A_n77A
DC_1A-3A-19A-21A_n78A ² DC_1A-3A-19A-21A_n78C ²	DC_1A_n78A DC_3A_n78A DC_19A_n78A DC_21A_n78A
DC_1A-3A-19A-21A_n79A ² DC_1A-3A-19A-21A_n79C ²	DC_1A_n79A DC_3A_n79A DC_19A_n79A DC_21A_n79A
DC_1A-3A-19A-42A_n77A DC_1A-3A-19A-42A_n77C DC_1A-3A-19A-42C_n77A DC_1A-3A-19A-42C_n77C	DC_1A_n77A DC_3A_n77A DC_19A_n77A
DC_1A-3A-19A-42A_n78A DC_1A-3A-19A-42A_n78C DC_1A-3A-19A-42C_n78A DC_1A-3A-19A-42C_n78C	DC_1A_n78A DC_3A_n78A DC_19A_n78A
DC_1A-3A-19A-42A_n79A DC_1A-3A-19A-42A_n79C DC_1A-3A-19A-42C_n79A DC_1A-3A-19A-42C_n79C	DC_1A_n79A DC_3A_n79A DC_19A_n79A
DC_1A-3A-20A_n28A-n78A ^{2,3}	DC_1A_n28A DC_1A_n78A DC_3A_n28A DC_3A_n78A DC_20A_n28A DC_20A_n78A
DC_1A-3A-21A-42A_n77A DC_1A-3A-21A-42A_n77C DC_1A-3A-21A-42C_n77A DC_1A-3A-21A-42C_n77C	DC_1A_n77A DC_3A_n77A DC_21A_n77A
DC_1A-3A-21A-42A_n78A DC_1A-3A-21A-42A_n78C DC_1A-3A-21A-42C_n78A DC_1A-3A-21A-42C_n78C	DC_1A_n78A DC_3A_n78A DC_21A_n78A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-21A-42A_n79A DC_1A-3A-21A-42A_n79C DC_1A-3A-21A-42C_n79A DC_1A-3A-21A-42C_n79C	DC_1A_n79A DC_3A_n79A DC_21A_n79A
DC_1A-3A-28A-42A_n77A DC_1A-3A-28A-42C_n77A	DC_1A_n77A DC_3A_n77A DC_28A_n77A
DC_1A-3A-28A-42A_n78A DC_1A-3A-28A-42C_n78A	DC_1A_n78A DC_3A_n78A DC_28A_n78A
DC_1A-3A-28A-42A_n79A DC_1A-3A-28A-42C_n79A	DC_1A_n79A DC_3A_n79A DC_28A_n79A
DC_1A-7A-20A_n28A-n78A ^{2,3}	DC_1A_n28A DC_1A_n78A DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n78A
DC_1A-19A-21A-42A_n77A DC_1A-19A-21A-42A_n77C DC_1A-19A-21A-42C_n77A DC_1A-19A-21A-42C_n77C	DC_1A_n77A DC_19A_n77A DC_21A_n77A
DC_1A-19A-21A-42A_n78A DC_1A-19A-21A-42A_n78C DC_1A-19A-21A-42C_n78A DC_1A-19A-21A-42C_n78C	DC_1A_n78A DC_19A_n78A DC_21A_n78A
DC_1A-19A-21A-42A_n79A DC_1A-19A-21A-42A_n79C DC_1A-19A-21A-42C_n79A DC_1A-19A-21A-42C_n79C	DC_1A_n79A DC_19A_n79A DC_21A_n79A
DC_1A-21A-28A-42A_n77A DC_1A-21A-28A-42C_n77A	DC_1A_n77A DC_21A_n77A DC_28A_n77A
DC_1A-21A-28A-42A_n78A DC_1A-21A-28A-42C_n78A	DC_1A_n78A DC_21A_n78A DC_28A_n78A
DC_1A-21A-28A-42A_n79A DC_1A-21A-28A-42C_n79A	DC_1A_n79A DC_21A_n79A DC_28A_n79A
DC_3A-7A-20A_n28A-n78A ^{2,3}	DC_3A_n28A DC_3A_n78A DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n78A
 NOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications. NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability NOTE 3: The frequency range in band n28 is restricted for this band combination to 703-733 MHz for the UL and 758-788 MHz for the DL 	

5.5B.4.5 Inter-band EN-DC configurations within FR1 (six bands)

	EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
D	C_1A-3A-7A-20A_n28A-n78A ^{2,3}	DC_1A_n28A DC_1A_n78A DC_3A_n28A DC_3A_n78A DC_7A_n28A DC_7A_n78A DC_20A_n28A DC_20A_n28A
	NOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications.	
NOTE 2:	IOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability	
NOTE 3:	OTE 3: The frequency range in band n28 is restricted for this band combination to 703-733 MH for the UL and 758-788 MHz for the DL	

Table 5.5B.4.5-1: Inter-band EN-DC configurations within FR1 (six bands)

5.5B.5 Inter-band EN-DC including FR2

Supported channel bandwidths for E-UTRA operating bands and CA configurations are defined in TS 36.521-1 [10] and for NR operating bands and CA configurations in TS 38.521-1 [8], TS 38.521-2 [9] and present document.

5.5B.5.1 Inter-band EN-DC configurations including FR2 (two bands)

Table 5.5B.5.1-1: Inter-band EN-DC configurations including FR2 (two bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A_n257A DC_1A_n257D DC_1A_n257E DC_1A_n257F	DC_1A_n257A
DC_2A_n257A DC_2C_n257A	DC_2A_n257A
DC_2A_n257(2A)	DC_2A_n257A
DC_2A-2A_n257A	DC_2A_n257A
DC_2A_n260A DC_2A_n260G DC_2A_n260H DC_2A_n260I DC_2A_n260J DC_2A_n260K DC_2A_n260L DC_2A_n260M DC_2C_n260A	DC_2A_n260A
DC_2A_n260(2A)	DC_2A_n260A
DC_2A-2A_n260A DC_2A-2A_n260G DC_2A-2A_n260H DC_2A-2A_n260I DC_2A-2A_n260J DC_2A-2A_n260J DC_2A-2A_n260K DC_2A-2A_n260L DC_2A-2A_n260M	DC_2A_n260A
DC_3A_n257A DC_3A_n257D DC_3A_n257E DC_3A_n257F	DC_3A_n257A
DC_3A_n258A	DC_3A_n258A
DC_5A_n257A DC_5B_n257A	DC_5A_n257A DC_5B_n257A
DC_5A-5A_n257A	DC_5A_n257A
DC_5A_n260A DC_5A_n260B DC_5A_n260C DC_5A_n260D DC_5A_n260E DC_5A_n260F DC_5A_n260G DC_5A_n260H DC_5A_n260I DC_5A_n260J DC_5A_n260K DC_5A_n260L DC_5A_n260C DC_5A_n260P DC_5A_n260P DC_5A_n260Q DC_5B_n260A	DC_5A_n260A DC_5B_n260A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
$\begin{array}{c} DC_{5}A_n260(2A)\\ DC_{5}A_n260(3A)\\ DC_{5}A_n260(4A)\\ DC_{5}A_n260(A-I)\\ DC_{5}A_n260(D-G)\\ DC_{5}A_n260(D-H)\\ DC_{5}A_n260(D-H)\\ DC_{5}A_n260(D-O)\\ DC_{5}A_n260(D-O)\\ DC_{5}A_n260(D-P)\\ DC_{5}A_n260(D-Q)\\ DC_{5}A_n260(E-O)\\ DC_{5}A_n260(E-O)\\ DC_{5}A_n260(E-P)\\ DC_{5}A_n260(E-Q)\\ DC_{5}A_n260(E-Q)\\ DC_{5}A_n260(G-I)\\ \end{array}$	DC_5A_n260A
DC_5A-5A_n260A	DC_5A_n260A
DC_5A_n261A DC_5A_n261B DC_5A_n261C DC_5A_n261D DC_5A_n261E DC_5A_n261F DC_5A_n261G DC_5A_n261H DC_5A_n261I DC_5A_n261J DC_5A_n261J DC_5A_n261L DC_5A_n261M DC_5A_n2610 DC_5A_n261P DC_5A_n261Q	DC_5A_n261A
$\begin{array}{c} DC_{5}A_n261(2A)\\ DC_{5}A_n261(3A)\\ DC_{5}A_n261(4A)\\ DC_{5}A_n261(D\text{-}G)\\ DC_{5}A_n261(D\text{-}H)\\ DC_{5}A_n261(D\text{-}H)\\ DC_{5}A_n261(D\text{-}O)\\ DC_{5}A_n261(D\text{-}O)\\ DC_{5}A_n261(D\text{-}O)\\ DC_{5}A_n261(D\text{-}O)\\ DC_{5}A_n261(E\text{-}O)\\ DC_n26A_n261(E\text{-}O)\\ DC_n26A_n260(E\text{-}O)\\ DC_n26A_n260(E\text{-}O]\\ DC_n26A_n260(E\text{-}O)\\ DC_n26A_n260(\mathsf$	DC_5A_n261A
DC_7A_n257A	DC_7A_n257A
DC_7A-7A_n257A	DC_7A_n257A
DC_7A_n258A	DC_7A_n258A
DC_8A_n257A	DC_8A_n257A
DC_8A_n258A	DC_8A_n258A
DC_11A_n257A	DC_11A_n257A
DC_12A_n260A DC_12A_n260G DC_12A_n260H DC_12A_n260I DC_12A_n260J DC_12A_n260K DC_12A_n260L DC_12A_n260L DC_12A_n260M	DC_12A_n260A
DC_12A_n260(A-I) DC_12A_n260(G-I)	DC_12A_n260A
DC_13A_n257A	DC_13A_n257A
DC_13A_n260A	DC_13A_n260A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_18A_n257A	DC_18A_n257A
DC_19A_n257A DC_19A_n257D DC_19A_n257E DC_19A_n257F	DC_19A_n257A
DC_20A_n258A	DC_20A_n258A
DC_21A_n257A DC_21A_n257D DC_21A_n257E DC_21A_n257F	DC_21A_n257A
DC_26A_n257A	DC_26A_n257A
DC_28A_n257A DC_28A_n257D DC_28A_n257E DC_28A_n257F	DC_28A_n257A
DC_28A_n258A	DC_28A_n258A
DC_30A_n260A DC_30A_n260G DC_30A_n260H DC_30A_n260I DC_30A_n260J DC_30A_n260K DC_30A_n260L DC_30A_n260L DC_30A_n260M	DC_30A_n260A
DC_30A_n260(A-I) DC_30A_n260(G-I)	DC_30A_n260A
DC_39A_n258A	DC_39A_n258A
DC_41A_n257A DC_41C_n257A	DC_41A_n257A DC_41C_n257A
DC_41A_n258A	DC_41A_n258A
DC_42A_n257A DC_42A_n257D DC_42A_n257E DC_42A_n257F DC_42C_n257A DC_42C_n257A DC_42C_n257A DC_42C_n257A DC_42C_n257D DC_42C_n257E DC_42C_n257F DC_42D_n257A	DC_42A_n257A DC_42C_n257A
DC_48A_n257A	DC_48A_n257A
DC_48C_n257A	DC_48C_n257A
DC_48A-48A_n257A DC_48A_n260A DC_48C_n260A	DC_48A_n257A DC_48A_n260A DC_48C_n260A
DC_48A-48A_n260A	DC_48A_n260A
DC_66A_n257A DC_66A_n257G DC_66A_n257G DC_66A_n257H DC_66A_n257I DC_66A_n257J DC_66A_n257X DC_66A_n257K DC_66A_n257L DC_66A_n257M DC_66C_n257A	DC_66A_n257A DC_66C_n257A
DC_66A_n257(2A)	DC_66A_n257A
DC_66A-66A_n257A	DC_66A_n257A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_66A_n260A DC_66A_n260D DC_66A_n260E DC_66A_n260F DC_66A_n260G DC_66A_n260H DC_66A_n260J DC_66A_n260J DC_66A_n260K DC_66A_n260L DC_66A_n260M DC_66A_n260P DC_66A_n260P DC_66A_n260Q	DC_66A_n260A
$\begin{array}{c} DC_66A_n260(2A)\\ DC_66A_n260(3A)\\ DC_66A_n260(4A)\\ DC_66A_n260(A-I)\\ DC_66A_n260(D-G)\\ DC_66A_n260(D-H)\\ DC_66A_n260(D-H)\\ DC_66A_n260(D-O)\\ DC_66A_n260(D-O)\\ DC_66A_n260(D-Q)\\ DC_66A_n260(C-Q)\\ DC_66A_n260(E-O)\\ DC_66A_n260(E-P)\\ DC_66A_n260(E-Q)\\ DC_66A_n260(E-Q)\\ DC_66A_n260(G-I)\\ \end{array}$	DC_66A_n260A
DC_66A-66A_n260A DC_66A-66A_n260G DC_66A-66A_n260H DC_66A-66A_n260I DC_66A-66A_n260J DC_66A-66A_n260K DC_66A-66A_n260L DC_66A-66A_n260M	DC_66A_n260A
DC_66A_n261A DC_66A_n261D DC_66A_n261E DC_66A_n261F DC_66A_n261G DC_66A_n261H DC_66A_n261H DC_66A_n261J DC_66A_n261J DC_66A_n261L DC_66A_n261L DC_66A_n261M DC_66A_n2610 DC_66A_n261P DC_66A_n261P DC_66A_n261Q	DC_66A_n261A
$\begin{array}{c} DC_66A_n261(2A)\\ DC_66A_n261(3A)\\ DC_66A_n261(4A)\\ DC_66A_n261(D-G)\\ DC_66A_n261(D-H)\\ DC_66A_n261(D-H)\\ DC_66A_n261(D-O)\\ DC_66A_n261(D-O)\\ DC_66A_n261(D-Q)\\ DC_66A_n261(E-Q)\\ DC_66A_n261(E-P)\\ DC_66A_n261(E-P)\\ DC_66A_n261(E-Q)\\ \end{array}$	DC_66A_n261A

	EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
NOTE 1:	IOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications.	
NOTE 2:	Applicable for UE supporting inter-bane capability for all of the above combinat	d EN-DC with mandatory simultaneous Rx/Tx ions

5.5B.5.2 Inter-band EN-DC configurations including FR2 (three bands)

Table 5.5B.5.2-1: Inter-band EN-DC configurations including FR2 (three bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A_n257A ² DC_1A-3A_n257D ² DC_1A-3A_n257E ² DC_1A-3A_n257E ²	DC_1A_n257A DC_3A_n257A
DC_1A-5A_n257A ²	DC_1A_n257A DC_5A_n257A
DC_1A-7A_n257A ²	DC_1A_n257A DC_7A_n257A
DC_1A-7A-7A_n257A ²	DC_1A_n257A DC_7A_n257A
DC_1A-8A_n257A ²	DC_1A_n257A DC_8A_n257A
DC_1A-18A_n257A ²	DC_1A_n257A DC_18A_n257A
DC_1A-19A_n257A ² DC_1A-19A_n257D ² DC_1A-19A_n257E ² DC_1A-19A_n257F ²	DC_1A_n257A DC_19A_n257A
DC_1A-21A_n257A ² DC_1A-21A_n257D ² DC_1A-21A_n257E ² DC_1A-21A_n257F ²	DC_1A_n257A DC_21A_n257A
DC_1A-28A_n257A ² DC_1A-28A_n257D ² DC_1A-28A_n257E ² DC_1A-28A_n257F ²	DC_1A_n257A DC_28A_n257A
DC_1A-41A_n257A DC_1A-41C_n257A	DC_1A_n257A DC_41A_n257A DC_41C_n257A
DC_1A-42A_n257A DC_1A-42A_n257D DC_1A-42A_n257E DC_1A-42A_n257F DC_1A-42C_n257A DC_1A-42C_n257A DC_1A-42D_n257A DC_1A-42E_n257A	DC_1A_n257A DC_42A_n257A
 DC_2A-5A_n257A ²	DC_2A_n257A DC_5A_n257A
DC_2A-5A_n260A DC_2A-5A_n260G DC_2A-5A_n260H DC_2A-5A_n260I DC_2A-5A_n260J DC_2A-5A_n260J DC_2A-5A_n260K DC_2A-5A_n260L DC_2A-5A_n260M	DC_2A_n260A DC_5A_n260A
DC_2A-12A_n260A DC_2A-12A_n260G DC_2A-12A_n260H DC_2A-12A_n260I DC_2A-12A_n260J DC_2A-12A_n260J DC_2A-12A_n260K DC_2A-12A_n260L DC_2A-12A_n260M	DC_2A_n260A DC_12A_n260A
DC_2A-13A_n257A ²	DC_2A_n257A DC_13A_n257A
DC_2A-13A_n260A ²	DC_2A_n260A DC_13A_n260A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_2A-30A_n260A DC_2A-30A_n260G DC_2A-30A_n260H DC_2A-30A_n260I DC_2A-30A_n260J DC_2A-30A_n260K DC_2A-30A_n260L DC_2A-30A_n260M	DC_2A_n260A DC_30A_n260A
DC_2A-66A_n257A ²	DC_2A_n257A DC_66A_n257A
DC_2A-66A_n260A DC_2A-66A_n260G DC_2A-66A_n260H DC_2A-66A_n260I DC_2A-66A_n260J DC_2A-66A_n260K DC_2A-66A_n260L DC_2A-66A_n260L	DC_2A_n260A DC_66A_n260A
DC_3A-5A_n257A ²	DC_3A_n257A DC_5A_n257A
DC_3A-7A_n257A ²	DC_3A_n257A DC_7A_n257A
DC_3A-7A-7A_n257A ²	DC_3A_n257A DC_7A_n257A
DC_3A-19A_n257A ² DC_3A-19A_n257D ² DC_3A-19A_n257E ² DC_3A-19A_n257E ²	DC_3A_n257A DC_19A_n257A
DC_3A-21A_n257A ² DC_3A-21A_n257D ² DC_3A-21A_n257E ² DC_3A-21A_n257E ²	DC_3A_n257A DC_21A_n257A
DC_3A-28A_n257A ² DC_3A-28A_n257D ² DC_3A-28A_n257E ² DC_3A-28A_n257E ²	DC_3A_n257A DC_28A_n257A
DC_3A-41A_n257A	DC_3A_n257A DC_41A_n257A
DC_3A-42A_n257A ² DC_3A-42A_n257D ² DC_3A-42A_n257E ² DC_3A-42A_n257F ² DC_3A-42A_n257F ² DC_3A-42C_n257A ² DC_3A-42D_n257A ² DC_3A-42E_n257A ²	DC_3A_n257A DC_42A_n257A
DC_5A-7A_n257A ²	DC_5A_n257A DC_7A_n257A
DC_5A-7A-7A_n257A	DC_5A_n257A DC_7A_n257A
DC_5A-30A_n260A DC_5A-30A_n260G DC_5A-30A_n260H DC_5A-30A_n260I DC_5A-30A_n260J DC_5A-30A_n260K DC_5A-30A_n260L DC_5A-30A_n260M	DC_5A_n260A DC_30A_n260A
DC_5A-66A_n257A	DC_5A_n257A DC_66A_n257A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_5A-66A_n260A DC_5A-66A_n260G DC_5A-66A_n260H DC_5A-66A_n260I DC_5A-66A_n260J DC_5A-66A_n260K DC_5A-66A_n260L DC_5A-66A_n260L	DC_5A_n260A DC_66A_n260A
DC_12A-30A_n260A DC_12A-30A_n260G DC_12A-30A_n260H DC_12A-30A_n260I DC_12A-30A_n260J DC_12A-30A_n260K DC_12A-30A_n260L DC_12A-30A_n260M	DC_12A_n260A DC_30A_n260A
DC_12A-66A_n260A DC_12A-66A_n260G DC_12A-66A_n260H DC_12A-66A_n260I DC_12A-66A_n260J DC_12A-66A_n260K DC_12A-66A_n260L DC_12A-66A_n260M	DC_12A_n260A DC_66A_n260A
DC_13A-66A_n257A ²	DC_13A_n257A DC_66A_n257A
DC_13A-66A_n260A ²	DC_13A_n260A DC_66A_n260A
DC_18A-28A_n257A ²	DC_18A_n257A DC_28A_n257A
DC_19A-21A_n257A ² DC_19A-21A_n257D ² DC_19A-21A_n257E ² DC_19A-21A_n257F ²	DC_19A_n257A DC_21A_n257A
DC_19A-42A_n257A ² DC_19A-42A_n257D ² DC_19A-42A_n257E ² DC_19A-42A_n257F ² DC_19A-42A_n257F ² DC_19A-42C_n257A ²	DC_19A_n257A DC_42A_n257A
DC_21A-28A_n257A ² DC_21A-28A_n257D ² DC_21A-28A_n257E ² DC_21A-28A_n257F ²	DC_21A_n257A DC_28A_n257A
DC_21A-42A_n257A ² DC_21A-42A_n257D ² DC_21A-42A_n257E ² DC_21A-42A_n257F ² DC_21A-42A_n257F ² DC_21A-42C_n257A ²	DC_21A_n257A DC_42A_n257A
DC_28A-42C_n257A ² DC_28A-42A_n257A ²	DC_28A_n257A DC_42A_n257A
DC_30A-66A_n260A DC_30A-66A_n260G DC_30A-66A_n260H DC_30A-66A_n260I DC_30A-66A_n260J DC_30A-66A_n260K DC_30A-66A_n260L DC_30A-66A_n260M	DC_30A_n260A DC_66A_n260A
DC_41A-42A_n257A DC_41A-42C_n257A DC_41C-42A_n257A DC_41C-42C_n257A	DC_41A_n257A DC_42A_n257A

	EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
NOTE 1:	OTE 1: Uplink CA configurations are the configurations supported by the present release of specifications.	
NOTE 2:	NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability	

5.5B.5.3 Inter-band EN-DC configurations including FR2 (four bands)

Table 5.5B.5.3-1: Inter-band EN-DC configurations including FR2 (four bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-5A_n257A ²	DC_1A_n257A DC_3A_n257A DC_5A_n257A
DC_1A-3A-7A_n257A ²	DC_1A_n257A DC_3A_n257A DC_7A_n257A
DC_1A-3A-7A-7A_n257A	DC_1A_n257A DC_3A_n257A DC_7A_n257A
DC_1A-3A-19A_n257A ²	DC_1A_n257A DC_3A_n257A DC_19A_n257A
DC_1A-3A-21A_n257A ²	DC_1A_n257A DC_3A_n257A DC_21A_n257A
DC_1A-3A-28A_n257A ²	DC_1A_n257A DC_3A_n257A DC_28A_n257A
DC_1A-3A-42A_n257A DC_1A-3A-42C_n257A DC_1A-3A-42C_n257D DC_1A-3A-42C_n257E DC_1A-3A-42C_n257F	DC_1A_n257A DC_3A_n257A DC_42A_n257A
DC_1A-5A-7A_n257A ²	DC_1A_n257A DC_5A_n257A DC_7A_n257A
DC_1A-5A-7A-7A_n257A	DC_1A_n257A DC_5A_n257A DC_7A_n257A
DC_1A-18A-28A_n257A ²	DC_1A_n257A DC_18A_n257A DC_28A_n257A
DC_1A-19A-21A_n257A DC_1A-19A-21A_n257D DC_1A-19A-21A_n257E DC_1A-19A-21A_n257F	DC_1A_n257A DC_19A_n257A DC_21A_n257A
DC_1A-19A-42A_n257A DC_1A-19A-42C_n257A DC_1A-19A-42C_n257D DC_1A-19A-42C_n257E DC_1A-19A-42C_n257F	DC_1A_n257A DC_19A_n257A DC_42A_n257A
DC_1A-21A-28A_n257A ²	DC_1A_n257A DC_21A_n257A DC_28A_n257A
DC_1A-21A-42A_n257A DC_1A-21A-42C_n257A DC_1A-21A-42C_n257D DC_1A-21A-42C_n257E DC_1A-21A-42C_n257F	DC_1A_n257A DC_21A_n257A DC_42A_n257A
DC_1A-28A-42A_n257A DC_1A-28A-42C_n257A	DC_1A_n257A DC_28A_n257A DC_42A_n257A
DC_1A-41A-42A_n257A DC_1A-41A-42C_n257A DC_1A-41C-42A_n257A DC_1A-41C-42C_n257A	DC_1A_n257A DC_41A_n257A DC_42A_n257A
DC_3A-5A-7A_n257A ²	DC_3A_n257A DC_5A_n257A DC_7A_n257A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_3A-5A-7A-7A_n257A ²	DC_3A_n257A DC_5A_n257A DC_7A_n257A
DC_3A-19A-21A_n257A ²	DC_3A_n257A DC_19A_n257A DC_21A_n257A
DC_3A-19A-42A_n257A DC_3A-19A-42C_n257A DC_3A-19A-42C_n257D DC_3A-19A-42C_n257E DC_3A-19A-42C_n257F	DC_3A_n257A DC_19A_n257A DC_42A_n257A
DC_3A-21A-42A_n257A DC_3A-21A-42C_n257A DC_3A-21A-42C_n257D DC_3A-21A-42C_n257E DC_3A-21A-42C_n257E	DC_3A_n257A DC_21A_n257A DC_42A_n257A
DC_3A-28A-42A_n257A DC_3A-28A-42C_n257A	DC_3A_n257A DC_28A_n257A DC_42A_n257A
DC_19A-21A-42A_n257A ² DC_19A-21A-42C_n257A ² DC_19A-21A-42C_n257D ² DC_19A-21A-42C_n257E ² DC_19A-21A-42C_n257E ²	DC_19A_n257A DC_21A_n257A DC_42A_n257A
DC_21A-28A-42A_n257A ² DC_21A-28A-42C_n257A ²	DC_21A_n257A DC_28A_n257A DC_42A_n257A
 NOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications. NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability 	

5.5B.5.4 Inter-band EN-DC configurations including FR2 (five bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-5A-7A_n257A ²	DC_1A_n257A DC_3A_n257A DC_5A_n257A DC_7A_n257A
DC_1A-3A-5A-7A-7A_n257A ²	DC_1A_n257A DC_3A_n257A DC_5A_n257A DC_7A_n257A
DC_1A-3A-19A-21A_n257A ² DC_1A-3A-19A-21A_n257D ² DC_1A-3A-19A-21A_n257E ² DC_1A-3A-19A-21A_n257F ²	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_21A_n257A
DC_1A-3A-19A-42A_n257A DC_1A-3A-19A-42A_n257D DC_1A-3A-19A-42A_n257E DC_1A-3A-19A-42A_n257F DC_1A-3A-19A-42C_n257A DC_1A-3A-19A-42C_n257D DC_1A-3A-19A-42C_n257E DC_1A-3A-19A-42C_n257F	DC_1A_n257A DC_3A_n257A DC_19A_n257A DC_42A_n257A
DC_1A-3A-21A-42A_n257A DC_1A-3A-21A-42C_n257A DC_1A-3A-21A-42C_n257D DC_1A-3A-21A-42C_n257E DC_1A-3A-21A-42C_n257F	DC_1A_n257A DC_3A_n257A DC_21A_n257A DC_42A_n257A
DC_1A-3A-28A-42A_n257A DC_1A-3A-28A-42C_n257A	DC_1A_n257A DC_3A_n257A DC_28A_n257A DC_42A_n257A
DC_1A-19A-21A-42A_n257A DC_1A-19A-21A-42A_n257D DC_1A-19A-21A-42A_n257E DC_1A-19A-21A-42A_n257F DC_1A-19A-21A-42C_n257A DC_1A-19A-21A-42C_n257D DC_1A-19A-21A-42C_n257E DC_1A-19A-21A-42C_n257F	DC_1A_n257A DC_19A_n257A DC_21A_n257A DC_42A_n257A
DC_1A-19A-28A-42C_n257A	DC_1A_n257A DC_19A_n257A DC_28A_n257A DC_42A_n257A
DC_1A-21A-28A-42A_n257A	DC_1A_n257A DC_21A_n257A DC_28A_n257A DC_28A_n257A DC_42A_n257A
specifications.	figurations supported by the present release of and EN-DC with mandatory simultaneous Rx/Tx

Table 5.5B.5.4-1: Inter-band EN-DC configurations including FR2 (five bands)

5.5B.5.5 Inter-band EN-DC configurations including FR2 (six bands)

Table 5.5B.5.5-1: Inter-band EN-DC configurations including FR2 (six bands)

	EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
	FFS	
NOTE 1:	 Uplink CA configurations are the configurations supported by the present release of specifications. 	

5.5B.6 Inter-band EN-DC including FR1 and FR2

Supported channel bandwidths for E-UTRA operating bands and CA configurations are defined in TS 36.521-1 [10] and for NR operating bands and CA configurations in TS 38.521-1 [8], TS 38.521-2 [9] and present document.

5.5B.6.1 Void

5.5B.6.2 Inter-band EN-DC configurations including FR1 and FR2 (three bands)

Table 5.5B.6.2-1: Inter-band EN-DC configurations including FR1 and FR2_(three bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A_n77A-n257A DC_1A_n77A-n257D DC_1A_n77A-n257E DC_1A_n77A-n257F DC_1A_n77C-n257A DC_1A_n77C-n257D DC_1A_n77C-n257E DC_1A_n77C-n257F	DC_1A_n77A DC_1A_n257A DC_1A_n77A-n257A
DC_1A_n78A-n257A DC_1A_n78A-n257D DC_1A_n78A-n257E DC_1A_n78A-n257F DC_1A_n78C-n257A DC_1A_n78C-n257D DC_1A_n78C-n257E DC_1A_n78C-n257F	DC_1A_n78A DC_1A_n257A DC_1A_n78A-n257A
DC_1A_n79A-n257A DC_1A_n79A-n257D DC_1A_n79A-n257E DC_1A_n79A-n257F DC_1A_n79C-n257A DC_1A_n79C-n257D DC_1A_n79C-n257E DC_1A_n79C-n257F	DC_1A_n79A DC_1A_n257A DC_1A_n79A-n257A
DC_3A_n77A-n257A DC_3A_n77A-n257D DC_3A_n77A-n257E DC_3A_n77A-n257F DC_3A_n77C-n257A DC_3A_n77C-n257D DC_3A_n77C-n257E DC_3A_n77C-n257F	DC_3A_n77A DC_3A_n257A DC_3A_n77A-n257A
DC_3A_n78A-n257A DC_3A_n78A-n257D DC_3A_n78A-n257E DC_3A_n78A-n257F DC_3A_n78C-n257A DC_3A_n78C-n257D DC_3A_n78C-n257E DC_3A_n78C-n257F	DC_3A_n78A DC_3A_n257A DC_3A_n78A-n257A
DC_3A_n79A-n257A DC_3A_n79A-n257D DC_3A_n79A-n257E DC_3A_n79A-n257F DC_3A_n79C-n257A DC_3A_n79C-n257D DC_3A_n79C-n257E DC_3A_n79C-n257F	DC_3A_n79A DC_3A_n257A DC_3A_n79A-n257A
DC_5A_n78A-n257A ²	DC_5A_n78A DC_5A_n257A
DC_7A_n78A-n257A	DC_7A_n78A DC_7A_n257A
DC_7A-7A_n78A-n257A	DC_7A_n78A DC_7A_n257A DC_7A_n78A-n257A
DC_19A_n77A-n257A DC_19A_n77A-n257D DC_19A_n77A-n257E DC_19A_n77A-n257F DC_19A_n77C-n257A DC_19A_n77C-n257D DC_19A_n77C-n257E DC_19A_n77C-n257F	DC_19A_n77A DC_19A_n257A DC_19A_n77A-n257A

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_19A_n78A-n257A DC_19A_n78A-n257D DC_19A_n78A-n257E DC_19A_n78A-n257F DC_19A_n78C-n257A DC_19A_n78C-n257A DC_19A_n78C-n257E DC_19A_n78C-n257F	DC_19A_n78A DC_19A_n257A DC_19A_n78A-n257A
DC_19A_n79A-n257A DC_19A_n79A-n257D DC_19A_n79A-n257E DC_19A_n79A-n257F DC_19A_n79C-n257A DC_19A_n79C-n257D DC_19A_n79C-n257E DC_19A_n79C-n257F	DC_19A_n79A DC_19A_n257A DC_19A_n79A-n257A
DC_21A_n77A-n257A	DC_21A_n77A DC_21A_n257A
DC_21A_n78A-n257A	DC_21A_n78A DC_21A_n257A
DC_21A_n79A-n257A	DC_21A_n79A DC_21A_n257A
 NOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications. NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability 	

5.5B.6.3 Inter-band EN-DC configurations including FR1 and FR2 (four bands)

DC_1A_n78A DC_1A_n257A DC_3A_n78A DC_3A_n257A DC_1A_n78A DC_1A_n257A DC_5A_n78A DC_5A_n257A DC_1A_n257A DC_1A_n257A DC_7A_n78A DC_7A_n257A DC_1A_n78A DC_1A_n78A DC_1A_n257A
DC_1A_n257A DC_5A_n78A DC_5A_n257A DC_1A_n78A DC_1A_n257A DC_7A_n78A DC_7A_n78A DC_7A_n257A DC_1A_n78A DC_1A_n257A
DC_1A_n257A DC_7A_n78A DC_7A_n257A DC_1A_n78A DC_1A_n257A
DC_1A_n257A
DC_7A_n78A DC_7A_n257A
DC_3A_n78A DC_3A_n257A DC_5A_n78A DC_5A_n257A
DC_3A_n78A DC_3A_n257A DC_7A_n78A DC_7A_n257A
DC_3A_n78A DC_3A_n257A DC_7A_n78A DC_7A_n257A
DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A
DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A

Table 5.5B.6.3-1: Inter-band EN-DC configurations including FR1 and FR2 (four bands)

5.5B.6.4 Inter-band EN-DC configurations including FR1 and FR2 (five bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-5A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_3A_n78A DC_3A_n257A DC_5A_n78A DC_5A_n257A
DC_1A-3A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_3A_n78A DC_3A_n257A DC_7A_n78A DC_7A_n257A
DC_1A-3A-7A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_3A_n78A DC_3A_n257A DC_7A_n78A DC_7A_n257A
DC_1A-5A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A
DC_1A-5A-7A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A
DC_3A-5A-7A_n78A-n257A	DC_3A_n78A DC_3A_n257A DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A
DC_3A-5A-7A-7A_n78A-n257A	DC_3A_n78A DC_3A_n257A DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n257A

5.5B.6.5 Inter-band EN-DC configurations including FR1 and FR2 (six bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A-5A-7A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_3A_n78A DC_3A_n257A DC_5A_n78A DC_5A_n257A DC_7A_n78A DC_7A_n78A DC_7A_n257A
NOTE 1: Uplink CA configurations are the configurations.	gurations supported by the present release of

5.5B.7 Inter-band NR-DC between FR1 and FR2

Supported channel bandwidths for E-UTRA operating bands and CA configurations are defined in TS 36.521-1 [10] and for NR operating bands and CA configurations in TS 38.521-1 [8], TS 38.521-2 [9] and present document.

5.5B.7.1 Inter-band NR-DC configurations between FR1 and FR2 (two bands)

Downlink NR DC configuration	Uplink NR DC configuration (Note 1)
DC_n77A-n257A DC_n77A-n257D DC_n77A-n257E DC_n77A-n257F DC_n77A-n257G DC_n77A-n257H DC_n77A-n257I DC_n77A-n257J DC_n77A-n257J DC_n77A-n257K DC_n77A-n257K DC_n77C-n257A DC_n77C-n257A DC_n77C-n257E DC_n77C-n257F	DC_n77A-n257A
DC_n78A-n257A DC_n78A-n257D DC_n78A-n257E DC_n78A-n257F DC_n78A-n257G DC_n78A-n257H DC_n78A-n257H DC_n78A-n257J DC_n78A-n257X DC_n78A-n257K DC_n78A-n257K DC_n78A-n257M DC_n78C-n257A DC_n78C-n257D DC_n78C-n257E DC_n78C-n257F	DC_n78A-n257A
DC_n79A-n257A DC_n79A-n257D DC_n79A-n257E DC_n79A-n257F DC_n79A-n257G DC_n79A-n257H DC_n79A-n257H DC_n79A-n257J DC_n79A-n257J DC_n79A-n257K DC_n79A-n257K DC_n79A-n257M DC_n79C-n257A DC_n79C-n257D DC_n79C-n257F	DC_n79A-n257A
NOTE 1: NR configuration for FR1 and FR2 are respectively.	defined in TS 38.101-1 [2] and TS 38.101-2 [3]

6 Transmitter characteristics

6.1 General

Editor's Note: Test configurations/environments that require new spherical scan shall be included in test procedure section and identifying such scenarios is currently FFS and owned by RAN5.

For Tx test cases the identified beam peak direction can be stored and reused for a device under test in various configurations/environments for the full duration of device testing as long as beam peak direction is the same.

Unless otherwise stated the transmitter, characteristics are specified at the antenna connector(s) of the UE for the bands operating on frequency range 1 and over the air of the UE for the bands operating on frequency range 2. The requirements for frequency range 1 and frequency range 2 can be verified separately. For the carrier in frequency range 1, requirements can be verified with NR FR2 link disabled. For the carrier in frequency range 2, requirements can be verified in OTA mode with LTE connecting to the network by OTA without calibration.

Unless otherwise stated, requirements for NR transmitter written in TS 38.101-1 and TS 38.101-2 apply and are assumed anchor agnostic. Requirements are verified under conditions where anchor resources do not interfere NR operation.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

For conformance testing involving FR2 test cases in this specification, the UE under test shall disable UL Tx diversity schemes.

6.2 Transmitter power

6.2A Transmitter power for CA without EN-DC

6.2A.1 UE maximum output power for CA

6.2A.1.1 UE maximum output power for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.2A.1.1.1 Test purpose

Same test purpose as in clause 6.2.1 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.2.1 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.2A.1.1.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for maximum output power apply and are tested in TS 38.521-1 [8[clauses 6.2 and 6.2A and TS 38.521-2 [9] clauses 6.2 and 6.2A

6.2A.2 UE maximum output power reduction for CA

6.2A.2.1 UE maximum output power reduction for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.2A.2.1.1 Test purpose

Same test purpose as in 6.2.2 in TS 38.521-1 [8] for NR FR1 carrier(s) and 6.2.2 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.2A.2.1.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for additional spectrum emissions mask apply and are tested in TS 38.521-1 [8] clause 6.2 and 6.2A and TS 38.521-2 [9] clause 6.2 and 6.2A

6.2A.3 UE additional maximum output power reduction for CA

6.2A.3.1 UE additional maximum output power reduction for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.2A.3.1.1 Test purpose

Same test purpose as in 6.2.3.1 in TS 38.521-1 [8] for NR FR1 carrier and 6.2.3.1 in TS 38.521-2 [9] for NR FR2 carrier.

6.2A.3.1.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 and E-UTRA in conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The single carrier requirements for Additional Maximum Output Power apply and are tested as part of 6.2.3 in TS 38.521-1 [8] for NR FR1 carrier and 6.2.3 in TS 38.521-2 [9] for NR FR2 carrier.

6.2A.4 Configured output power level for CA

6.2A.4.1 Configured output power level for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.2A.4.1.1 Test purpose

Same test purpose as in clause 6.2.4 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.2.4 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.2A.4.1.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for configured output power level apply and are tested in TS 38.521-1 [8] clauses 6.2 and 6.2A and TS 38.521-2 [9] clauses 6.2 and 6.2A.

6.2A.4.2 $\Delta TIB,c$ for CA

6.2A.4.2.1 ΔTIB,c for inter-band CA between FR 1 and FR 2

 $\Delta T_{IB,c}$ for NR CA For the UE which supports inter-band NR CA configuration, $\Delta T_{IB,c}$ in Tables below applies. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

6.2B Transmitter power for EN-DC

6.2B.1 UE Maximum Output Power for EN-DC

FFS

6.2B.1.1 UE Maximum Output Power for Intra-Band Contiguous EN-DC

Editor's note: The test case is imcomplete, the following aspects are either missing or not yet determined:- Test applicability for DC_(n)71AA and DC_(n)41AA is TBD

- Recommendation on specifical time difference between MCG and SCG is TBD

6.2B.1.1.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2B.1.1.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC operation on FR1.

6.2B.1.1.3 Minimum conformance requirements

The following UE Power Classes define the total maximum output power for any transmission bandwidth(s) of the CG(s) configured.

The maximum output power is measured as the total maximum output power across the UE antenna connector(s). The period of measurement shall be at least one sub frame.

DC configuration	Power class 2 (dBm)	Tolerance (dB)	Power class 3 (dBm)	Tolerance (dB)	
DC_(n)71AA			23	+2/-3	
DC_(n)41AA	26	+2/-21	23	+2/-2 ¹	
NOTE 1: If all transmitted resource blocks over all component carriers are confined within FUL_low and FUL_low + 4					
MHz or/and FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by					
reducing the lower tolerance limit by 1.5 dB					
NOTE 2: Power Class 3	B is the default power class	unless otherwise stated.			

Table 6.2B.1.1.3-1: Maximum output power for EN-DC (continuous sub-blocks)

If UE supports a different power class than the default UE power class for EN-DC band combination, and the supported power class enables higher maximum output power than that of the default power class:

- if the LTE UL/DL configuration is 0 or 6; or
- if the LTE UL/DL configuration is 1 and special subframe configuration is 0 or 5; or

- if the IE *p-maxUE-FR1* as defined in TS 38.331 [7] is provided and set to the maximum output power of the default power class or lower;

- apply all requirements for the default power class, and set the configured transmitted power as specified in subclause 6.2B.4;

- else

- apply all requirements for the supported power class, and set the configured transmitted power class as specified in sub-clause 6.2B.4;

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.1.

LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.2B.1.1.4 Test description

6.2B.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2.All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2, and are shown in table 6.2B.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2 for E-UTRA RMC for TDD, TS 36.521-1 [10] Annex A.2 for E-UTRA RMC for FDD, and TS 38.521-1 [8] Annex A.2 for NR RMC. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

		Initial Condition	าร		
4.1	S 38.508-1 [6] subclause	NC, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1		Low range, Mid range, High range			
specified in Tabl	bandwidth complitation sets supported by		Lowest, Mid, Highest		
Test SCS for the TS 38.521-1 [8]	NR cell as specified in Table 5.3.5-1	Lowest ,Highest			
		Test Parameter	rs		
Test ID	Downlink		EN-DC Uplink	Configuration	
	Configuration	E-UTR/			Cell
		Modulation	RB allocation	Modulation(NOTE 2)	RB allocation(N OTE 1)
1		NOT	E 3	DFT-s- OFDM PI/2 BPSK	Inner Full
2				DFT-s- OFDM PI/2 BPSK	Inner 1RB Left
3				DFT-s- OFDM PI/2 BPSK	Inner 1RB Right
4	N/A for MOP testing.			DFT-s- OFDM QPSK	Inner Full
5				DFT-s- OFDM QPSK	Inner 1RB Left
6				DFT-s- OFDM QPSK	Inner 1RB Right
NOTE 2: DFT- NOTE 3: Modu 1[10] NOTE 4: Unles suppo accor transi	specific configuration of eac s-OFDM PI/2 BPSK test ap lation and RB allocation fo as per the test channel bar so otherwise stated, for a sp ort of dynamicPowerSharin ding to Clause 5.2B.2, run mission in time; ohtherwise NR UL transmission in time	plies only for UEs r E-UTRA Cell is s indwidth of E-UTR/ pecific intra-band of g in the UE-MRDO test points with E- , run test points w	which supports elected from Ta A cell. contiguous EN-E C-Capability IE a UTRA UL transi	6.1-1. half Pi BPSK in ble 6.2.2.4.1-1 i C comb, if a UE nd Single UL all nission overlapp	n TS 36.521- Eindicates owed is "NO" bing NR UL

Table 6.2B.1.1.4.1-1: Test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.1.4.3.
- 7. Ensure E-UTRA UL transmission overlaps with NR UL transmission in time by restricting timing difference between MCG and SCG to be [TBD], or E-UTRA UL transmission doesn't overlap with NR UL transmission in time by restricting timing difference between MCG and SCG to be [TBD].

6.2B.1.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 6.2B.1.1.4.1-10n E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command for the UE to reach P_{UMAX} level for Power Class 3.
- 3. Measure the mean transmitted power over all EN-DC component carriers in the EN-DC, which shall meet the requirements described in table 6.2B.1.1.5-1 the period of the measurement shall be at least the continuous duration of one active sub-frame.
- 4. For UEs supporting Power Class 2, repeat steps $1 \sim 3$ on the applicable bands except P_{UMAX} level in step 2 is corresponding to Power Class 2.

6.2B.1.1.4.3 Message contents

Message contents are according to TS 36.508-1[11] subclause 4.6.1 and TS 36.508 [11] subclause 4.6.1 and TS 38.508-1 [6] subclause 4.6.1 with the following exceptions.

Derivation Path: TS 38.508-1 [6], Table 4.6.3-106			
Information Element	Value/remark	Comment	Condition
p-NR-FR1	23	Apply if Power Class	
		3 UE	

Derivation Path: TS 36.508 [11], Table 4.6.1-8			
Information Element	Value/remark	Comment	Condition
p-MaxEUTRA-r15	23	Apply if run test points with E-UTRA UL transmission not overlapping with NR UL transmission in time for PC3 UE	
	20	Apply if run test points with E-UTRA UL transmission overlapping with NR UL transmission in time for PC3 UE	

6.2B.1.1.4.3-2: RRCConnectionReconfiguration: nr-Config-r15

6.2B.1.1.4.3-3: RRCConnectionReconfiguration: tdm-PatternConfig if operating on FDD band

Derivation Path: TS 36.508 [11], Table 4.6.1-8			
Information Element	Value/remark	Comment	Condition
setup :: = SEQUENCE {		Apply if operating on FDD band for a UE indicating support of dynamicPowerSharing in the UE-MRDC-Capability IE according to TS 38.213 [x] clause 7.6.1	
subframeAssignment-r15	sa2		
harq-Offset-r15	0		
}			

6.2B.1.1.4.3-4: SystemInfomationBlockType1: tdd-Config if operating on TDD band

Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {		Operating on TDD band	
subframeAssignment	sa2		
specialSubframePatterns	ssp6		

6.2B.1.1.5 Test requirements

The maximum output power for the DC configuration, derived in step 3 shall be within the range prescribed by the DC UE Power Class and tolerance in Table 6.2B.1.1.5-1.

Table 6.2B.1.1.5-1: Maximum output power for EN-DC (continuous sub-blocks) for power class 3

DC configuration	Power class2	Tolerance (dB)	Power class 3 (dBm)	Tolerance (dB)
DC_(n)71B			23	+2+TT/-3-TT
DC_(n)41AA			23	+2+TT/-2 ¹ +TT
NOTE 1: If all transmitted resource blocks over all component carriers are confined within FUL_low and FUL_low + 4 MHz or/and FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB				
	equency and channel band	width is specified in TBD		

Table 6.2B.1.1.5-2: Maximum output power for EN-DC (continuous sub-blocks) for Power Class 2

DC configuration	Power class2	Tolerance (dB)	Power class 3 (dBm)	Tolerance (dB)
DC_(n)41AA	26	+2+TT/-2 ¹ -TT		
NOTE 1: If all transmitted resource blocks over all component carriers are confined within FUL_low and FUL_low + 4 MHz or/and FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB				
NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2B.1.5-3				

Table 6.2B.1.5-3: Test Tolerance

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0.7 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB

6.2B.1.2 UE Maximum Output Power for Intra-Band Non-Contiguous EN-DC

Editor's note: The test case is incomplete, the following aspects are either missing or not yet determined:

- Test applicability for DC_41A_n41A is TBD

- Recommendation on specifical time difference between MCG and SCG is TBD

6.2B.1.2.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2B.1.2.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non contiguous EN-DC operationg on FR1.

NOTE: For the test for DC_41A_(n)41A, it is applicable to UE which supports dynmic power sharing.

6.2B.1.2.3 Minimum conformance requirements

The following UE Power Classes define the total maximum output power for any transmission bandwidth(s) of the CG(s) configured.

The maximum output power is measured as the total maximum output power across the UE antenna connector(s). The period of measurement shall be at least one sub frame.

Table 6.2B.1.2.3-1: Maximum output power for EN-DC (non-continuous sub-blocks)

DC configuration	Power class 2 (dBm)	Tolerance (dB)	Power class 3 (dBm)	Tolerance (dB)	
DC_3A_n3A ⁽²⁾			23	+2/-3	
DC_41A_n41A	26	+2/-2 ¹	23	+2/-21	
NOTE 1: If all transmitted resource blocks over all component carriers are confined within FUL_low and FUL_low + 4 MHz or/and FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB					
NOTE 2: Only single switched UL is supported in Rel.15					
NOTE 3: Power Class 3 is the default power class unless otherwise stated.					

If UE supports a different power class than the default UE power class for EN-DC band combination, and the supported power class enables higher maximum output power than that of the default power class:

- if the LTE UL/DL configuration is 0 or 6; or
- if the LTE UL/DL configuration is 1 and special subframe configuration is 0 or 5; or

- if the IE *p-maxUE-FR1* as defined in TS 38.331 [7] is provided and set to the maximum output power of the default power class or lower;

- apply all requirements for the default power class, and set the configured transmitted power as specified in subclause 6.2B.4;

- else

- apply all requirements for the supported power class, and set the configured transmitted power class as specified in sub-clause 6.2B.4;

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.1.

LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.2B.1.2.4 Test description

6.2B.1.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in Table 5.3B.1.3-1, channel bandwidths and sub-carrier spacings for the NR cell are specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2 All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in Table 5.3B.1.3-1, and are shown in table 6.2B.1.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2.for E-UTRA RMC for TDD, TS 36.521-1 [10] Annex A.2 for E-UTRA RMC for FDD, and TS 38.521-1 [8] Annex A.2 for NR RMC Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Initial Conditions					
4.1	S 38.508-1 [6] subclause	NC, TL/VL, TL/VH, TH/VL, TH/VH			
4.3.1	S 38.508-1 [6] subclause	minWgap , Max∖	Wgap		
specified in Tab	ndwidth combination as le 5.3B.1.2-1 across vination sets supported by	Lowest, Mid, Highest			
Test SCS for the TS 38.521-1 [8]	NR cell as specified in Table 5.3.5-1	Lowest, Highest			
		Test Parameter	rs		
Test ID	Downlink		EN-DC Uplink		
	Configuration	E-UTR/	A Cell		Cell
		Modulation	RB allocation	Modulation(NOTE 2)	RB allocation(N OTE 1)
1		NOT	E 3	DFT-s- OFDM PI/2 BPSK	Inner Full
2				DFT-s- OFDM PI/2 BPSK	Inner 1RB Left
3				DFT-s- OFDM PI/2 BPSK	Inner 1RB Right
4	N/A for MOP testing.			DFT-s- OFDM QPSK	Inner Full
5				DFT-s- OFDM QPSK	Inner 1RB Left
6				DFT-s- OFDM QPSK	Inner 1RB Right
 NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. NOTE 3: Modulation and RB allocation for E-UTRA Cell is selected from Table 6.2.2.4.1-1 in TS 36.521-1[10] as per the test channel bandwidth of E-UTRA cell. NOTE 4: Unless otherwise stated, for a specific intra band non-contiguous EN-DC comb, if a UE indicates support of dynamicPowerSharing in the UE-MRDC-Capability IE and Single UL allowed is "NO" according to Clause 5.2B.3, run test points with E-UTRA UL transmission overlapping NR UL transmission in time; otherwise, run test points with E-UTRA UL transmission not overlapping with NR UL transmission in time. 					

Table 6.2B.1.2.4.1-1: Test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] A.3.1.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.2.4.3.
- 7. Ensure E-UTRA UL transmission overlaps with NR UL transmission in time by restricting timing difference between MCG and SCG to be [TBD], or E-UTRA UL transmission doesn't overlap with NR UL transmission in time by restricting timing difference between MCG and SCG to be [TBD].

6.2B.1.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 6.2B.1.2.4.1-10n E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier according to table 6.2B.1.2.4.1-1 until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command for the UE to reach P_{UMAX} level for Power class 2.
- 3. Measure the mean transmitted power over all EN-DC component carriers in the EN-DC, which shall meet the requirements described in table 6.2B.1.2.5-1 the period of the measurement shall be at least the continuous duration of one active sub-frame.
- 4. For UEs supporting Power Class 2, repeat steps 1~3 on the applicable bands except P_{UMAX} level in step 2 is corresponding to Power Class 2.

6.2B.1.2.4.3 Message contents

Same message contents as specified in 6.2B.1.1.4.3.

6.2B.1.2.5 Test requirements

The maximum output power for the DC configuration, derived in step 3 shall be within the range prescribed by the DC UE Power Class and tolerance in Table 6.2B.1.2.5-1.

DC configuration	Power class 2 (dBm)	Tolerance (dB)	Power class 3 (dBm)	Tolerance (dB)	
DC_3A_n3A ⁽²⁾			23	+2+TT/-3-TT	
DC_41A_n41A			23	+2/-2 ¹	
NOTE 1: If all transmitted resource blocks over all component carriers are confined within FUL_low and FUL_low + 4 MHz or/and FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB					
NOTE 2: Only single switched UL is supported in Rel.15					
NOTE 3: TT for frequency and channel bandwidth is Table 6.2B.1.2.5-3					

Table 6.2B.1.2.5-2: Maximum output power for EN-DC (non-continuous sub-blocks) for power class 2

DC configuration	Power class 2 (dBm)	Tolerance (dB)	Power class 3 (dBm)	Tolerance (dB)
DC_41A_n41A	26	+2+TT/-2 ¹ -TT		
NOTE 1: If all transmitted resource blocks over all component carriers are confined within FUL_low and FUL_low + 4 MHz or/and FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB				
NOTE 2: TT for frequency and channel bandwidth is Table 6.2B.1.2.5-3				

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0.7 dB	1.0 dB
40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB

Table 6.2B.1.2.5-3: Test Tolerance

6.2B.1.3 UE Maximum Output Power for Inter-Band EN-DC within FR1

6.2B.1.3.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2B.1.3.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC operating on FR1.

6.2B.1.3.3 Minimum conformance requirements

For inter-band EN-DC of LTE and NR in FR1, the following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth. The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms). UE maximum output power shall be measured over all component carriers from different bands. If each band has separate antenna connectors, maximum output power is measured as the sum of maximum output power at each UE antenna connector.

Table 6.2B.1.3.3-1: Maximum output power for inter-band EN-DC (two bands)

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)
DC_1A_n28A	23	+2/-3
DC_1A_n40A	23	+2/-3
DC_1A_n51A	23	+2/-3
DC_1A_n77A	23	+2/-3
DC_1A_n78A DC_1A_n84A_ULSUP- TDM_n78A DC_1A_n84A_ULSUP- FDM_n78A	23	+2/-3
DC_1A_n79A	23	+2/-3
DC_2A_n5A	23	+2/-31
DC_2A_n66A	23	+2/-31
DC_2A_n71A	23	+2/-3
DC_2A_n78A	23	+2/-3
DC_3A_n7A	23	+2/-31
DC_3A_n28A	23	+2/-31
DC_3A_n40A	23	+2/-31
DC_3A_n51A	23	+2/-31
DC_3A_n77A	23	+2/-31
DC_3A_n78A DC_3A_n80A_ULSUP- TDM_n78A, DC_3A_n80A_ULSUP- FDM_n78A	23	+2/-31
DC_3A_n79A DC_3A_n80A_ULSUP- TDM_n79A, DC_3A_n80A_ULSUP- FDM_n79A	23	+2/-3 ¹
DC_3A_n82A	23	+2/-31
DC_5A_n40A	23	+2/-31
DC_5A_n66A	23	+2/-31
DC_5A_n78A	23	+2/-3
DC_7A_n28A	23	+2/-31
DC_7A_n51A	23	+2/-31
DC_7A_n78A DC_7C_n78A	23	+2/-3
DC_8A_n40A	23	+2/-3 ¹
DC_8A_n77A	23	+2/-3
DC_8A_n78A DC_8A_n81A_ULSUP- TDM_n78A, DC_8A_n81A_ULSUP- FDM_n78A	23	+2/-3
DC_8A_n79A DC_8A_n81A_ULSUP- TDM_n79A, DC_8A_n81A_ULSUP- FDM_n79A	23	+2/-3
DC_11A_n77A	23	+2/-3
DC_11A_n78A	23	+2/-3
DC_11A_n79A	23	+2/-3
DC_12A_n5A	23	+2/-3
DC_12A_n66A	23	+2/-3

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)
DC_18A_n77A	23	+2/-3
DC_18A_n78A	23	+2/-3
DC_18A_n79A	23	+2/-3
DC_19A_n77A	23	+2/-3
DC_19A_n78A	23	+2/-3
DC_19A_n79A	23	+2/-3
DC_20A_n8A	23	+2/-3
DC_20A_n28A DC_20A_n83A	23	+2/-3
DC_20A_n51A	23	+2/-3
DC_20A_n77A	23	+2/-3
DC_20A_n78A DC_20A_n82A_ULSUP -TDM_n78A, DC_20A_n82A_ULSUP -FDM_n78A	23	+2/-3
DC_21A_n77A	23	+2/-3
DC_21A_n78A	23	+2/-3
DC_21A_n79A	23	+2/-3
DC_25A_n41A	23	+2/-3
DC_26A_n41A	23	+2/-3
DC_26A_n77A	23	+2/-3
DC_26A_n78A	23	+2/-3
DC_26A_n79A	23	+2/-3
DC_28A n51A	23	+2/-3
DC_28A_n77A	23	+2/-3
DC_28A_n78A DC_28A_n83A_ULSUP -TDM_n78A, DC_28A_n83A_ULSUP -FDM_n78A	23	+2/-3
DC_28A_n79A	23	+2/-3
DC_30A_n5A	23	+2/-3
DC_30A_n66A	23	+2/-3
DC_38A_n78A	N/A	N/A
DC_39A_n78A	23	+2/-31
DC_39A_n79A	23	+2/-31
DC_40A_n77A	N/A	N/A
DC_41A_n77A DC_41C_n77A	23	+2/-31
DC_41A_n78A DC_41C_n78A	23	+2/-3 ¹
DC_41A_n79A DC_41C_n79A	23	+2/-31
DC_42A_n51A	23	+2/-3
DC_42A_n77A	N/A	N/A
DC_42A_n78A	N/A	N/A
DC_42A_n79A	N/A	N/A
DC_66A_n5A	23	+2/-3 ¹
DC_66A_n71A	23	+2/-3

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)		
DC_66A_n78A, DC_66A_n86A_ULSUP -TDM_n78A,	23	+2/-3		
DC_66A_n86A_ULSUP -FDM_n78A				
NOTE 1: ² refers to the transmission bandwidths confined within F _{UL_low} and F _{UL_low} + 4 MHz or F _{UL_high} – 4 MHz and F _{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB				
NOTE 2: PPowerClass_EN-DC is the maximum UE power specified without taking into account the tolerance				
NOTE 3: For inter-band EN-DC the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).				

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.1.

LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.2B.1.3.4 Test description

6.2B.1.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, DC configuration specified in clause 5.5B.4 and test channel bandwidths specified in TS 36.508 [6] subclause 4.3.1 and TS 38.508-1 clause 4.3.1, and sub-carrier spacing based on NR operating bands specified in TS 38.521-1 [8] clause 5.3 .All of these configurations shall be tested with applicable test parameters for each EN-DC configuration, and are shown in table 6.2B.1.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2 for E-UTRA RMC for TDD, TS 36.521-1 [10] Annex A.2 for E-UTRA RMC for FDD , and TS 38.521-1 [8] Annex A.2 for NR RMC. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.2B.1.3.4.1-1: Test configuration table

				Defaul	t Conditions			
	rironment	38 508-1	[6] subclar	1 1 001	NC, TL/VL, T	L/VH, TH/VL,	TH/VH	
as specified in TS 38.508-1 [6] subclause 4.1 Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1 and TS 36.508 [6]			Low for E-UTRA CC1 and NR CC1, Mid for E-UTRA CC1 and NR CC1, High for E-UTRA CC1 and NR CC1					
36.508 [6 4.3.1	6] subclaus	se 4.3.1 a	and TS 38.	cified in TS 508-1 clause			d Lowest for NF and Highest for	
	S for the N [8] Table		specified i		Lowest, High	nest		
Test ID	Test	E-	NR	Test I Downlink	Parameters		k Configuratio	<u>n</u>
Testib	Freq	UTRA	BW	Configurat	E-UTR			Cell
		BW		ion	Modulatio	RB	Modulation	RB
					n	allocation (Note 2)		allocation (Note 3)
1	High	5	Default	N/A N/A	QPSK	Outer_1R B_Right	DFT-s- OFDM PI/2 BPSK	Edge_1RB _Right
2	Low	5	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM PI/2 BPSK	Edge_1RB _Left
3	Default	5	Default		QPSK	8	DFT-s- OFDM PI/2 BPSK	Inner_Full
4	High	5	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM QPSK	Edge_1RB _Right
5	Low	5	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM QPSK	Edge_1RB _Left
6	Default	5	Default		QPSK	8	DFT-s- OFDM QPSK	Inner_Full
7	High	10	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM PI/2 BPSK	Edge_1RB _Right
8	Low	10	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM PI/2 BPSK	Edge_1RB _Left
9	Default	10	Default		QPSK	12	DFT-s- OFDM PI/2 BPSK	Inner_Full
10	High	10	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM QPSK	Edge_1RB _Right
11	Low	10	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM QPSK	Edge_1RB _Left
12	Default	10	Default		QPSK	12	DFT-s- OFDM QPSK	Inner_Full
13	High	15	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM PI/2 BPSK	Edge_1RB _Right
14	Low	15	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM PI/2 BPSK	Edge_1RB _Left
15	Default	15	Default		QPSK	16	DFT-s- OFDM PI/2 BPSK	Inner_Full
16	High	15	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM QPSK	Edge_1RB _Right

17	Low	15	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM QPSK	Edge_1RB _Left
18	Default	15	Default		QPSK	16	DFT-s- OFDM QPSK	Inner_Full
19	High	20	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM PI/2 BPSK	Edge_1RB_ Right
20	Low	20	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM PI/2 BPSK	Edge_1RB_ Left
21	Default	20	Default		QPSK	18	DFT-s- OFDM PI/2 BPSK	Inner_Full
22	High	20	Default		QPSK	Outer_1R B_Right	DFT-s- OFDM QPSK	Edge_1RB_ Right
23	Low	20	Default		QPSK	Outer_1R B_Left	DFT-s- OFDM QPSK	Edge_1RB_ Left
24	Default	20	Default		QPSK	18	DFT-s- OFDM QPSK	Inner_Full
NOTE 1:					the RBstart sh ge test frequen		or low and mid	range, and
NOTE 2:							I-1 in TS 38.521	-1 [8].
NOTE 3:	NOTE 3: Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.							
NOTE 4:							E indicates supp	
							allowed is "NO" ang NR UL trans	
							erlapping with N	
		sion in tir						

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.1 for SS and A.3.2.1 for UE.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.3.4.3.
- 7. For the case of testing overlapping E-UTRA and NR UL transmission scenario when both bands are TDD, ensure E-UTRA UL transmission overlaps with NR UL transmission in time by giving SCG a delay of 3 E-UTRA subframes, or by giving MCG a delay of 2 subframes.

6.2B.1.3.3.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 6.2B.1.3.4.1-10n E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean transmitted power over all EN-DC component carriers in the EN-DC, which shall meet the requirements described in table 6.2B.1.3.5-1 the period of the measurement shall be at least the continuous duration of one active sub-frame.

6.2B.1.3.4.3 Message contents

Message contents are according to TS 36.508-1[11] subclause 4.6.1 and TS 38.508-1 [6] subclause 4.6.1 with the following exceptions.

6.2B.1.3.4.3-1: PhysicalCellGroupConfig

Derivation Path: TS 38.508-1 [6], Table 4.6.3-106			
Information Element	Value/remark	Comment	Condition
PhysicalCellGroupConfig ::= SEQUENCE {			
p-NR-FR1	23	Apply if Power Class 3 UE	
}			

6.2B.1.3.4.3-2: RRCConnectionReconfiguration: nr-Config-r15

Derivation Path: TS 36.508 [11], Table 4.6.1-8			
Information Element	Value/remark	Comment	Condition
p-MaxEUTRA-r15	23	Apply if run test points with E-UTRA UL transmission not overlapping with NR UL transmission in time for PC3 UE	
	20	Apply if run test points with E-UTRA UL transmission overlapping with NR UL transmission in time for PC3 UE	

6.2B.1.3.4.3-3: RRCConnectionReconfiguration: tdm-PatternConfig if E-UTRA on FDD band

Information Element	Value/remark	Comment	Condition
setup :: = SEQUENCE {		Apply if operating on FDD band for a UE indicating support of dynamicPowerSharing in the UE-MRDC- Capability IE according to TS 38.213 [x] clause 7.6.1	
subframeAssignment-r15	sa2		
harq-Offset-r15	0		
}			

6.2B.1.3.4.3-4: SystemInfomationBlockType1: tdd-Config if E-UTRA on TDD band

Derivation Path: TS 36.508 [11], Table 4.6.3-23			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {		Operating on TDD band	
subframeAssignment	Sa2		
specialSubframePatterns	Ssp6		
}			

6.2B.1.3.5 Test requirements

The maximum output power for the DC configuration, derived in step 3 shall be within the range prescribed by the UE Power Class and tolerance in Table 6.2B.1.3.5-1.

Table 6.2B.1.3.5-1: Maximum output power for inter-band EN-DC (two bands)

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)
DC_1A_n28A	23	+2 +TT/-3-TT
DC_1A_n40A	23	+2 +TT/-3-TT
DC_1A_n51A	23	+2 +TT/-3-TT
DC_1A_n77A	23	+2 +TT/-3-TT
DC_1A_n78A DC_1A_n84A_ULSUP- TDM_n78A DC_1A_n84A_ULSUP- FDM_n78A	23	+2 +TT/-3-TT
DC_1A_n79A	23	+2 +TT/-3-TT
DC_2A_n5A	23	+2 +TT/-3-TT
DC_2A_n66A	23	+2 +TT/-3-TT
DC_2A_n71A	23	+2 +TT/-3-TT
DC_2A_n78A	23	+2 +TT/-3-TT
DC_3A_n7A	23	+2 +TT/-3-TT
DC_3A_n28A	23	+2 +TT/-3-TT
DC_3A_n40A	23	+2 +TT/-3-TT
DC_3A_n51A	23	+2 +TT/-3-TT
DC_3A_n77A	23	+2 +TT/-3-TT
DC_3A_n78A DC_3A_n80A_ULSUP- TDM_n78A, DC_3A_n80A_ULSUP- FDM_n78A	23	+2 +TT/-3-TT
DC_3A_n79A DC_3A_n80A_ULSUP- TDM_n79A, DC_3A_n80A_ULSUP- FDM_n79A	23	+2 +TT/-3-TT
DC_3A_n82A	23	+2 +TT/-3-TT
DC_5A_n40A	23	+2 +TT/-3-TT
DC_5A_n66A	23	+2 +TT/-3-TT
DC_5A_n78A	23	+2 +TT/-3-TT
DC_7A_n28A	23	+2 +TT/-3-TT
DC_7A_n51A	23	+2 +TT/-3-TT
DC_7A_n78A	23	+2 +TT/-3-TT
DC_8A_n40A	23	+2 +TT/-3-TT
DC_8A_n77A	23	+2 +TT/-3-TT
DC_8A_n78A DC_8A_n81A_ULSUP- TDM_n78A, DC_8A_n81A_ULSUP- FDM_n78A	23	+2 +TT/-3-TT
DC_8A_n79A DC_8A_n81A_ULSUP- TDM_n79A, DC_8A_n81A_ULSUP- FDM_n79A	23	+2 +TT/-3-TT
DC_11A_n77A	23	+2 +TT/-3-TT
DC_11A_n78A	23	+2 +TT/-3-TT
DC_11A_n79A	23	+2 +TT/-3-TT
DC_12A_n5A	23	+2 +TT/-3-TT
DC_12A_n66A	23	+2 +TT/-3-TT

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)
DC_18A_n77A	23	+2 +TT/-3-TT
DC_18A_n78A	23	+2 +TT/-3-TT
DC_18A_n79A	23	+2 +TT/-3-TT
DC_19A_n77A	23	+2 +TT/-3-TT
DC_19A_n78A	23	+2 +TT/-3-TT
DC_19A_n79A	23	+2 +TT/-3-TT
DC_20A_n8A	23	+2 +TT/-3-TT
DC_20A_n28A DC_20A_n83A	23	+2 +TT/-3-TT
DC_20A_n51A	23	+2 +TT/-3-TT
DC_20A_n77A	23	+2 +TT/-3-TT
DC_20A_n78A DC_20A_n82A_ULSUP -TDM_n78A, DC_20A_n82A_ULSUP -FDM_n78A	23	+2 +TT/-3-TT
DC_21A_n77A	23	+2 +TT/-3-TT
DC 21A n78A	23	+2 +TT/-3-TT
DC_21A_n79A	23	+2 +TT/-3-TT
DC 25A n41A	23	+2 +TT/-3-TT
DC_26A_n41A	23	+2 +TT/-3-TT
DC_26A_n77A	23	+2 +TT/-3-TT
DC_26A_n78A	23	+2 +TT/-3-TT
 DC 26A n79A	23	+2 +TT/-3-TT
 DC_28A n51A	23	+2 +TT/-3-TT
 DC_28A_n77A	23	+2 +TT/-3-TT
DC_28A_n78A DC_28A_n83A_ULSUP -TDM_n78A, DC_28A_n83A_ULSUP -FDM_n78A	23	+2 +TT/-3-TT
DC_28A_n79A	23	+2 +TT/-3-TT
DC_30A_n5A	23	+2 +TT/-3-TT
DC_30A_n66A	23	+2 +TT/-3-TT
DC_38A_n78A	N/A	N/A
DC_39A_n78A	23	+2 +TT/-3-TT
DC_39A_n79A	23	+2 +TT/-3-TT
DC_40A_n77A	N/A	N/A
DC_41A_n77A	23	+2 +TT/-3-TT
DC_41A_n78A	23	+2 +TT/-3-TT
DC_41A_n79A	23	+2 +TT/-3-TT
DC_42A_n51A	23	+2 +TT/-3-TT
DC_42A_n77A	N/A	N/A
DC_42A_n78A	N/A	N/A
DC_42A_n79A	N/A	N/A
DC_66A_n5A	23	+2 +TT/-3-TT
DC_66A_n71A	23	+2 +TT/-3-TT

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)			
DC_66A_n78A, DC_66A_n86A_ULSUP -TDM_n78A, DC_66A_n86A_ULSUP -FDM_n78A	23	+2 +TT/-3-TT			
NOTE 1: TT applies to output power in each UL carrier with E-UTRA UL transmission not overlapping with NR UL transmission in time, and its value is the same as TT of standalone E-UTRA or NR transmission. For detailed values refer to Table 6.2B.1.3.5-2.					
NOTE 2: TT applies to overall output power with E-UTRA UL transmission overlapping with NR UL transmission in time, and its value is the maximum TT among all E-UTRA and NR UL carrires. For detailed values refer to Table 6.2B.1.3.5-3.					

Table 6.2B.1.3.5-2: Test Tolerance for UE maximum output power (Non-overlapping UL transmission)

Uplink TX		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
E-UTRA	BW ≤ 20MHz	0.7	1.0	1.3
NR	BW ≤ 40MHz	0.7 dB	1.0 dB	1.0
	40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0

Table 6.2B.1.3.5-3: Test Tolerance for UE maximum output power (Overlapping UL transmission)

TT for overall output power												
			NR									
			B	W ≤ 20Mł	Ηz	20 MHz < BW ≤ 40MHz			40MHz < BW ≤ 100MHz			
			f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz	
E-	BW ≤ 20MHz	f ≤ 3.0GHz	0,7	1,0	1,0	0,7	1,0	1,0	1,0	1,0	1,0	
UTRA		3.0GHz < f ≤ 4.2GHz	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	

6.2B.1.4 UE Maximum Output Power for Inter-Band EN-DC including FR2

6.2B.1.4.1 UE maximum output power - EIRP and TRP

Editor's note: The following aspects are either missing or not yet determined:

- The referred test case 6.2.1.1 in TS 38.521-2 is incomplete for power class 1, 2 and 4.
- The following aspects of the clause are for future consideration:

-Test Procedures for EIRP beam peak Extreme Conditions are FFS

6.2B.1.4.1.1 Test purpose

Same test purpose as in clause 6.2.1.1.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.2B.1.4.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.1.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 subclause 6.2B.1.4.

6.2B.1.4.1.4 Test description

Same test description as in clause 6.2.1.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For initial conditions as in clause 6.2.1.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1 The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1 The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.2.1.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.2.1.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.1.4.1.5 Test requirement

Same test requirement as in clause 6.2.1.1.5 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.2 UE maximum output power - Spherical coverage

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- All clauses related to Power class 3 can be tested using working assumptions of MU/TT
- The referred test case 6.2.1.2 in TS 38.521-2 is incomplete.
- Measurement Uncertainties and Test Tolerances are FFS for power class 1, 2 and 4.

6.2B.1.4.2.1 Test purpose

Same test purpose as in clause 6.2.1.2.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.2B.1.4.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.1.2.3 in TS 38.521-2 [9] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 subclause 6.2B.1.4.

3GPP TS 38.521-3 version 15.3.0 Release 15

6.2B.1.4.2.4 Test description

Same test description as in clause 6.2.1.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For initial conditions as in clause 6.2.1.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

2.1 The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.

3.1 The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of initial conditions as in clause 6.2.1.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.2.1.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.1.4.2.5 Test requirement

Same test requirement as in clause 6.2.1.2.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT created a duplication!!]

6.2B.1.4.2 UE maximum output power for Inter-band EN-DC including FR2 (3 CCs)

6.2B.1.4.2.1 UE maximum output power - EIRP and TRP

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.2A.1.1.1 in TS 38.521-2 is incomplete.

6.2B.1.4.2.1.1 Test purpose

Same test purpose as in clause 6.2.1.1.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.2.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.2B.1.4.2.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.1.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.1.4.

6.2B.1.4.2.1.4 Test description

6.2B.1.4.2.1.4.1 Initial condition

Same test description as in clause 6.2A.1.1.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.2A.1.1.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.2A.1.1.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.2A.1.1.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.1.4.2.1.5 Test Requirements

Same test requirement as in clause 6.2A.1.1.1.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of a duplication!!]

6.2B.1.4.3 UE maximum output power for Inter-band EN-DC including FR2 (4 CCs)

6.2B.1.4.3.1 UE maximum output power - EIRP and TRP

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.2A.1.1.2 in TS 38.521-2 is incomplete.

6.2B.1.4.3.1.1 Test purpose

Same test purpose as in clause 6.2.1.1.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.3.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4 CCs.

6.2B.1.4.3.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.1.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.1.4.

6.2B.1.4.3.1.4 Test description

6.2B.1.4.3.1.4.1 Initial condition

Same test description as in clause 6.2A.1.1.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.2A.1.1.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.2A.1.1.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.2A.1.1.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.1.4.3.1.5 Test Requirements

Same test requirement as in clause 6.2A.1.1.2.5 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.4 UE maximum output power for Inter-band EN-DC including FR2 (5 CCs)

6.2B.1.4.4.1 UE maximum output power - EIRP and TRP

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.2A.1.1.3 in TS 38.521-2 is incomplete.

6.2B.1.4.4.1.1 Test purpose

Same test purpose as in clause 6.2.1.1.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.1.4.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5 CCs.

6.2B.1.4.4.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.1.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.1.4.

6.2B.1.4.4.1.4 Test description

6.2B.1.4.4.1.4.1 Initial condition

Same test description as in clause 6.2A.1.1.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.2A.1.1.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.2A.1.1.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.2A.1.1.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.1.4.4.1.5 Test Requirements

Same test requirement as in clause 6.2A.1.1.3.5 in TS 38.521-2 [9] for the NR carrier.

6.2B.2 UE Maximum Output Power reduction for EN-DC

6.2B.2.0 General

The UE maximum output power reduction (MPR) specified in this subclause is applicable for UEs configured with EN-DC when NS_01 is indicated in the MCG and the SCG. The MPR applies subject to indication in the field *modifiedMPRbehavior* for the SCG [2].

6.2B.2.1 UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC

6.2B.2.1.1 Test purpose

Same test purpose as in clause 6.2.2.1 in TS 38.521-1 [8] for the NR carrier.

6.2B.2.1.2 Test applicability

This test case applies to all types of E-UTRA power class 3 and power class 2 UE release 15 and forward, supporting intra-band EN-DC.

6.2B.2.1.3 Minimum conformance requirements

When the UE is configured for intra-band contiguous EN-DC, the UE determines the total allowed maximum output power reduction as specified in this subclause.

For UE supporting dynamic power sharing the following:

- for the MCG, MPR_c in accordance with [5]
- for the SCG,

 $MPR'_{c} = MPR_{NR} = MAX(MPR_{single,NR}, MPR_{ENDC})$

- for the total configured transmission power,

 $MPR_{tot} = P_{PowerClass,EN-DC} - min(P_{PowerClass,EN-DC}, 10*log_{10}(10^{((P_{PowerClass,E-UTRA} - MPR_{E-UTRA})/10)} + 10^{((P_{PowerClass,NR} - MPR_{NR})/10)})$

where

 $MPR_{E-UTRA} = MAX(MPR_{single,E-UTRA}, MPR_{ENDC})$

with

- MPR_{single, E-UTRA} is the MPR defined for the E-UTRA transmission in [5]
- MPR_{single,NR} is the MPR defined for the NR transmission in [2]

For UEs not supporting dynamic power sharing the following

- for the MCG,

 $MPR_c = MAX(MPR_{single,E-UTRA}, MPR_{ENDC})$

- for the SCG,

$$MPR'_{c} = MAX(MPR_{single,NR}, MPR_{ENDC})$$

where

- MPR_{single,NR} is the MPR defined for the NR transmission in [2]
- MPR_{single,E-UTRA} is the MPR defined for the E-UTRA transmission in [5]

MPR in this sub-clause is applicable for power class 3 and power class 2. The allowed maximum output power reduction applied to transmission on the MCG and the SCG is defined as follows:

$$MPR_{ENDC} = M_A$$

Where M_A is defined as follows

$$\begin{array}{lll} M_A=& [15] & ; & 0\leq B<0.5\\ & [10] & ; & 0.5\leq B<1.0\\ & [8] \; ; & 1.0\leq B<2.0\\ & [6] \; ; & 2.0$$

Where:

For UEs supporting dynamic power sharing,

 $B = (L_{CRB_alloc, E-UTRA} * 12* SCS_{E-UTRA} + L_{CRB_alloc,NR} * 12* SCS_{NR})/1,000,000$

For UEs not supporting dynamic power sharing,

For E-UTRA

 $B = (L_{CRB_alloc, E-UTRA} * 12* SCS_{E-UTRA} + 12* SCS_{NR})/1,000,000$

For NR

$$\mathbf{B} = (12* \text{ SCS}_{\text{E-UTRA}} + L_{\text{CRB}_{\text{alloc},\text{NR}}} * 12* \text{ SCS}_{\text{NR}})/1,000,000$$

and M_A is reduced by 1 dB for B < 2.The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.2.1.

Exception requirements for both NR and E-UTRA are defined for this test when transission on E-UTRA overlap in time with NR. LTE anchor agnostic approach is not applied for this case and referred to as sub-test 1. E-UTRA test point analysis is included and E-UTRA measurements are performed,

ETSI

No exception requirements for NR or E-UTRA are defined for this test when transission on E-UTRA doesn't overlap in time with NR. LTE anchor agnostic approach is applied for this case and referred to as sub-test 2.

6.2B.2.1.4 Test description

6.2B.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial condition part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

1. Sub test: with transmission overlap for all UE's

The initial test configurations consist of environmental conditions, test frequencies and test channel bandwidths based on NR operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4B.2.1.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

				nitial Conditions					
		as specified in TS	38.508-1 [6]	Normal, TL/VL, TL/VH, TH/VL, TH/VH					
subclau									
		as specified in TS	38.508-1 [6]	Low range, High range					
	use 4.3.1								
Test EN	N-DC band	width combination	as specified	Lowest N _{RB_agg} , Highest N _{RB_agg}					
in Table	e 5.3B.1.3-	1		(Note 2)					
Test SC	CS for the N	NR cell as specifie	d in TS	Lowest, Highest					
38.521	-1 [8] Table	5.3.5-1							
				Test Parameters					
Test	Freq	Downlink		EN-DC U	plink Configuration				
ID		Configuration	E-U	TRA Cell	NR Cell				
			Modulation	RB allocation	Modulation	RB allocation (NOTE 1)			
1	Default	N/A	16QAM	Outer_Full	DFT-s-OFDM PI/2 BPSK	Outer_Full			
2	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM QPSK	Edge_1RB_Right			
(Note									
3)									
3	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM 16QAM	Edge_1RB_Left			
(Note									
` 4)									
	Default		16QAM	Outer_Full	CP-OFDM 64QAM	Outer_Full			
4)	Default Default		16QAM 16QAM	Outer_Full Outer_Full	CP-OFDM 64QAM CP-OFDM 256QAM	Outer_Full Outer_Full			
4)				_		_			
4) 4 5 6	Default Default	cific configuration	16QAM 16QAM	Outer_Full 0	CP-OFDM 256QAM	Outer_Full Outer_Full			

Table 6.2B.2.1.4.1-1: Test configuration table

- Lowest ENBW: NR component with lowest NRB is tested.

- Highest ENBW: NR component with highest NRB is tested.

combination to test as follows:

NOTE 3: Applicable when E-UTRA cell carrier frequency is lower than NR cell carrier.

NOTE 4: Applicable when NR cell carrier frequency is lower than E-UTRA cell carrier.

NOTE 5: Outer_Full defined as the transmission bandwidth configuration NRB per channel bandwidth for the E-UTRA component as indicated in TS 36.521 [10] Table 5.4.2-1. Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.

NOTE 6: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

- 1.1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 1.2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 1.3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 1.4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS 38.521-1[8].
- 1.5. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 1.6. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 1.7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.4B.2.1.3.4.3.
- 1.8. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same initial condition as in clause 6.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For initial conditions as in clause 6.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Same initial conditions as in clause 6.2.2.4.1 in TS 38.521-1 [8] with the following steps exception:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.2B.2.1.4.3 Test procedure

The test procedure part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

- 1. Sub test: with transmission overlap for all UE's
 - 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2B.2.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
 - 1.2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

- 1.3. Measure the mean power over all component carriers for the EN-DC configuration, which shall meet the requirements described in table 6.2B.2.1.5. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms). For TDD slots with transient periods are not under test.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2B.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-89 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same test procedure as in clause 6.2.2.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2B.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1 with the following exceptions:

Table 6.2B.2.1.4.3-1: AdditionalSpectrumEmission for MCG

Derivation Path: 36.508 [11] clause 4.6.3, Table 4.4.3.3-1						
Information Element	Value/remark	Comment	Condition			
AdditionalSpectrumEmission	0 (NS_01)					

Table 6.2B.2.1.4.3-2: AdditionalSpectrumEmission for SCG

Derivation Path: 38.508-1 [5] clause 4.6.3, Table 4.6.3-1						
Information Element	Value/remark	Comment	Condition			
AdditionalSpectrumEmission	0 (NS_01)					

Table 6.2B.2.1.4.3-3: RF-Parameters

Derivation Path: 38.331 [15] clause 6.3.3						
Information Element	Value/remark	Comment	Condition			
modifiedMPR-Behaviour	[00000001]					

6.2B.2.1.5 Test requirement

The maximum output power, derived in step 1.3 in sub test 1 shall be within the range prescribed by the nominal maximum output power and tolerance in table 6.2B.2.1.5-1/table 6.2B.2.1.5-2 for UE supporting dynamic power sharing and table 6.2B.2.1.5-3/table 6.2B.2.1.5-4 for UE not supporting dynamic power sharing. Same test requirement as in 6.2.2.5 in TS 38.521-1 [8] for sub test 2.

Table 6.2B.2.1.5-1: UE Power Class 3 test requirements, UE supporting dynamic power sharing

Configuration ID	MPR _{tot} (dB)	PEN-DC, tot_L (dBm)	PEN-DC, tot_H (dBm)	Т∟оw (Рсмах_∟) (dB)	Тнідн (Рсмах_н) (dB)	Upper limit (dBm)	Lower limit (dBm)
1	12.0	11.0	23.0	6.0	3.0	26.0 + TT	5.0 - TT
2	12,0	11,0	23,0	6,0	3,0	26.0 + TT	5.0 - TT
3	12,0	11,0	23,0	6,0	3,0	26.0 + TT	5.0 - TT
4	12,0	11,0	23,0	6,0	3,0	26.0 + TT	5.0 - TT
5	12,0	11,0	23,0	6,0	3,0	26.0 + TT	5.0 - TT
6	12,0	11,0	23,0	6,0	3,0	26.0 + TT	5.0 - TT

Configuration ID	MPR _{tot} (dB)	P _{EN-DC, tot_L} (dBm)	P _{EN-DC, tot_} H (dBm)	T∟ow (Рсмах_∟) (dB)	Тнідн (Рсмах_н) (dB)	Upper limit (dBm)	Lower limit (dBm)
1	12.0	14.0	26.0	6.0	2.0	28.0 + TT	8.0 - TT
2	12.0	14.0	26.0	6.0	2.0	28.0 + TT	8.0 - TT
3	12.0	14.0	26.0	6.0	2.0	28.0 + TT	8.0 - TT
4	12.0	14.0	26.0	6.0	2.0	28.0 + TT	8.0 - TT
5	12.0	14.0	26.0	6.0	2.0	28.0 + TT	8.0 - TT
6	12.0	14.0	26.0	6.0	2.0	28.0 + TT	8.0 - TT

Table 6.2B.2.1.5-2: UE Power Class 2 test requirements, UE supporting dynamic power sharing

Table 6.2B.2.1.5-3: UE Power Class 3 test requirements, UE not supporting dynamic power sharing

Configuration ID	MPR _{tot} (dB)	P _{EN-DC, tot_L} (dBm)	P _{EN-DC, tot_} H (dBm)	Т _{LOW} (Рсмах_L) (dB)	Т _{нібн} (Рсмах_н) (dB)	Upper limit (dBm)	Lower limit (dBm)
1	11.0	12.0	23.0	6.0	2.0	25.0 + TT	6.0 - TT
2	11.0	12.0	23.0	6.0	2.0	25.0 + TT	6.0 - TT
3	11.0	12.0	23.0	6.0	2.0	25.0 + TT	6.0 - TT
4	11.0	12.0	23.0	6.0	2.0	25.0 + TT	6.0 - TT
5	11.0	12.0	23.0	6.0	2.0	25.0 + TT	6.0 - TT
6	11.0	12.0	23.0	6.0	2.0	25.0 + TT	6.0 - TT

Table 6.2B.2.1.5-4: UE Power Class 2 test requirements, UE not supporting dynamic power sharing

Configuration ID	MPR _{tot} (dB)	PEN-DC, tot_L (dBm)	P _{EN-DC, tot_} H (dBm)	Т _{LOW} (Р _{СМАХ_L}) (dB)	Тні дн (Рсмах_н) (dB)	Upper limit (dBm)	Lower limit (dBm)
1	11.0	15.0	26.0	6.0	2.0	28.0 + TT	9.0 - TT
2	11.0	15.0	26.0	6.0	2.0	28.0 + TT	9.0 - TT
3	11.0	15.0	26.0	6.0	2.0	28.0 + TT	9.0 - TT
4	11.0	15.0	26.0	6.0	2.0	28.0 + TT	9.0 - TT
5	11.0	15.0	26.0	6.0	2.0	28.0 + TT	9.0 - TT
6	11.0	15.0	26.0	6.0	2.0	28.0 + TT	9.0 - TT

Table 6.2B.2.1.5-5: Test Tolerance

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0.7	1.0
40MHz < BW ≤ 100MHz	1.0	1.0

6.2B.2.2 UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

- Initial condition is not complete.
- Equations for <Pcmax> is missing in TS 38.521-3, 6.2B.4.1.2
- Test requirement is TBD
- Test tolerance is not complete.
- Wgap not defined

6.2B.2.2.1 Test purpose

FFS

6.2B.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band EN-DC.

6.2B.2.2.3 Minimum conformance requirements

For intra-band non-contiguous EN-DC, single carrier UE maximum output power reduction specified in TS 36.101 [4] for E-UTRA and TS 38.101-1 [2] for NR apply for E-UTRA and NR carriers respectively, unless additional MPR is specified in 6.2B.3.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.2.2.

6.2B.2.2.4 Test description

6.2B.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and test channel bandwidths based on NR operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2B.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521.1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.2B.2.2.4.1-1: Test configuration table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6], Figure A.3.1.1.1 for SS diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.2.2.4.3.

6.2B.2.2.4.2 Test procedure

- NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.2.2.4.1-1 and Table 6.2.2.4.1-2 of TS 38.521-1[8] for UE power class 3 and UE power class 2 respectively. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.2.3.3-1 and Table 6.2.3_1.3-1 of TS 36.521-1[10] for UE power class 3 and UE power class 2 respectively. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 3. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms for the UE to reach P_{UMAX} level.
- 4. Measure the mean power over all component carriers for the EN-DC configuration, which shall meet the requirements described in table 6.2B.2.2.5-1. The period of the measurement shall be at least the continuous duration of [one active sub-frame].
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5B.2.1.2.4.1-1 and 6.5B.2.1.2.4.1-2, send an RRCConnectionReconfiguration message containing NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an RRCConnectionReconfiguration message containing NR RRCReconfiguration message with CP-OFDM condition.

6.2B.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.2B.2.2.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in table 6.2B.2.2.5-1.

Table 6.2B.2.2.5-1: UE Power Class test requirements

TBD

6.2B.2.3 UE Maximum Output Power reduction for Inter-Band EN-DC within FR1

Editor's note:

- Future optimization is possible by include this test case with corresponding ACLR test case
- The reason why minimum requirement doesn't specify "sum of output power at each UE antenna connector", as in corresponding MOP test case, needs to be understood.

6.2B.2.3.1 Test purpose

Same test purpose as in clause 6.2.2.1 in TS 38.521-1 [8] for the NR carrier.

6.2B.2.3.2 Test applicability

The requirements of this test apply to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.2B.2.3.3 Minimum conformance requirements

For inter-band EN-DC between E-UTRA and FR1 NR, UE maximum output power reduction specified in TS 36.101 [5] and TS 38.101-1 [2] apply for E-UTRA and NR respectively.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.2.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.2B.2.3.4 Test description

Same test description as in clause 6.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3 with E-UTRA channel bandwidth and test frequencies defined in Table 6.2B.2.3.4-1.
- 3.1. Downlink E-UTRA signals are initially set up according to TS 36.521-1 [10] Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4.1. The E-UTRA UL Reference Measurement channels are set according to Table 6.2B.2.3.4-1.

Step 6 of Initial conditions as in clause 6.2.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.2.2.4.2 in TS 38.521-1 [8].

6.2B.2.3.5 Test requirement

Same test requirement as in clause 6.2.2.5 in TS 38.521-1 [8].

6.2B.2.4 UE Maximum Output Power reduction for Inter-Band EN-DC including FR2

Editor's Note: This test case is incomplete. Following aspects are missing or under discussion

- Test configuration table is FFS (referenced FR2 test case is incomplete)
- The referred test case 6.2.2 in TS 38.521-2 is incomplete

6.2B.2.4.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified maximum output power with MPR and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2B.2.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.2B.2.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.2.3 in TS 38.521-2 [9] for the NR carrier. No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.2B.2.4.4 Test description

6.2B.2.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and test channel bandwidths based on NR operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2B.2.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521.1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.7-1.

Table 6.2B.2.4.4.1-1: Test configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS38.521-1[8].
- 5. The UL Reference Measurement channels for NR are set according to Table 6.5.3.1.4.1-1 of TS38.521-1[8].
- 8. NR propagation conditions are set according to Annex B.0 of TS38.521-1[8].
- 9. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.2.4.4.3.
- 10 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.2.4.4.2 Test procedure

Same test procedure as in clause 6.2.2.4.2 in TS 38.521-2 [9].

6.2B.2.4.4.3 Message contents

Same message contents as in clause 6.2.2.4.3 in TS 38.521-2 [9].

6.2B.2.4.5 Test requirement

Same test requirement as in clause 6.2.2.5 in TS 38.521-2 [9].

[IS: 5446 NTT created a 2. duplication!!]

6.2B.2.4.2 Transmit OFF Power for Inter-band EN-DC including FR2 (3 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.3A.2.1 in TS 38.521-2 is incomplete.

6.2B.2.4.2.1 Test purpose

Same test purpose as in clause 6.3.2.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.2.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.2B.2.4.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.2.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.2B.2.4.2.4 Test description

6.2B.2.4.2.4.1 Initial condition

Same test description as in clause 6.3A.2.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.3A.2.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.3A.2.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3A.2.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.2.4.2.5 Test Requirements

Same test requirement as in clause 6.3A.2.1.5 in TS 38.521-2 [9] for the NR carrier.

6.2B.2.4.3 Transmit OFF Power for Inter-band EN-DC including FR2 (4 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.3A.2.2 in TS 38.521-2 is incomplete.

6.2B.2.4.3.1 Test purpose

Same test purpose as in clause 6.3.2.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.2.4.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4 CCs.

6.2B.2.4.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.2.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.2B.2.4.3.4 Test description

6.2B.2.4.3.4.1 Initial condition

Same test description as in clause 6.3A.2.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.3A.2.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.3A.2.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3A.2.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.2.4.3.5 Test Requirements

Same test requirement as in clause 6.3A.2.2.5 in TS 38.521-2 [9] for the NR carrier.

6.2B.2.4.4 Transmit OFF Power for Inter-band EN-DC including FR2 (5 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.3A.2.3 in TS 38.521-2 is incomplete.

6.2B.2.4.4.1 Test purpose

Same test purpose as in clause 6.3.2.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.2.4.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5 CCs.

6.2B.2.4.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.2.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.2B.2.4.4.4 Test description

6.2B.2.4.4.4.1 Initial condition

Same test description as in clause 6.3A.2.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.3A.2.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.3A.2.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3A.2.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.2.4.4.5 Test Requirements

Same test requirement as in clause 6.3A.2.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of the 2. duplication!!]

6.2B.2.5 UE Maximum Output power reduction for inter-band EN-DC including both FR1 and FR2

6.2B.2.5.1 Test purpose

Same test purpose as in 6.2B.2.3.1 in TS 38.521-1 [8] for NR FR1 carrier(s) and 6.2B.2.4.1 in 38.521-2 [9] for NR FR2 carrier(s).

6.2B.2.5.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 and E-UTRA in conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The NSA requirements for maximum output power apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 6.2B.

6.2B.3 UE additional maximum output power reduction for EN-DC

6.2B.3.1 UE Additional Maximum Output Power reduction for Intra-band contiguous EN-DC

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- Test requirements and test configuration table for NS_35 incomplete.

- UE Power Class 2 test requirements

- Test requirements for NS_04 power class 3 are TBD.

6.2B.3.1.1 Test purpose

Additional emission requirements can be signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*. To meet these additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table 6.2B.1.1.3-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

6.2B.3.1.2 Test applicability

The requirements of this test apply in test case 6.5B.2.1.2 Additional spectrum emission mask for network signalled values NS_04 and NS_35 to all types of E-UTRA power class 3 and power class 2 UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.2B.3.1.3 Minimum conformance requirements

For EN-DC band combinations with additional requirements the A-MPR allowed are specified in table 6.2B.3.1.3-1 for combinations of network signalling values indicated in E-UTRA or NRcell group(s). Unless otherwise stated the A-MPR specified in sub-clause 6.2B.3.1 for intra-band contiguous EN-DC configurations includes MPR.

Table 6.2B.3.1.3-1: Additional maximum power reduction for Intra-band contiguous EN-DC

DC configuration	Requirement (sub-clause)	E-UTRA network signalling value	NR network signalling value	A-MPR (subclause)			
DC_(n)71AA	6.5B.2.1.2.3.1	NS_35	NS_35	6.2B.3.1.3.1 ³			
DC_(n)41AA ¹	6.5B.2.1.2.3.2	NS_01 or NS_04	NS_04	6.2B.3.1.3.2 ⁴			
NOTE 1: Only app	lies to UEs that supp	ort dual UL transmiss	ion for this EN-DC co	ombination.			
		or NR is mapped to c					
Additiona	AdditionalSpectrumEmission values as specified in [6].						
NOTE 3: The A-MPR is applied as MPR if NS_35 is not signalled.							
NOTE 4: The A-M	PR is applied as MPF	R if NS_04 is not signated as a second signated as a second second second second second second second second se	alled.				

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.3.1.

Exception requirements for both NR and E-UTRA are defined for this test when tramsission on E-UTRA overlap in time with NR.LTE anchor agnostic approach is not applied for this case and referred to as sub-test 1. E-UTRA test point analysis is included and E-UTRA measurements are performed.

No exception requirements for NR or E-UTRA are defined for this test when tramsission on E-UTRA doesn't overlap in time with NR. LTE anchor agnostic approach is applied for this case and referred to as sub-test 2.

6.2B.3.1.3.1 A-MPR for DC_(n)71AA

For UE supporting dynamic power sharing the following:

- for the MCG, A-MPR_c in accordance with [5]
- for the SCG, A-MPR'_c = [A-MPR_{DC}]
- for the total configured transmission power, A-MPR_{tot} = A-MPR_{DC}

with A-MPR_{DC} as defined in this sub-clause.

For UEs not supporting dynamic power sharing the following

- for the MCG,

 $A-MPR_c = A-MPR_{LTE}$

- for the SCG,

 $A-MPR'_c = A-MPR_{NR}$

with A-MPR_{LTE} and A-MPR_{NR} as defined in this sub-clause.

For DC_(n)71AA with configured with network signalling values as per Table 6.2B.3.1.3-1 the allowed A-MPR is defined by

- for UE indicating support of dynamicPowerSharing in the UE-MRDC-Capability IE

$$A-MPR_{DC} = CEIL\{ M_{A,DC}(A), 0.5 \}$$

where A-MPR_{DC} is the total power reduction allowed (dB),

- for OFDM:

- for DFT-S-OFDM:

$M_{A,DC} =$	11.00 - 11.67*A;	$0.00 < A \le 0.30$
8.10 - 2.	00*A;	$0.30 < A \le 0.80$
6.50;		$0.80 < A \le 1.00$
$M_{A,DC} =$	11.00 - 13.33*A;	$0.00 < A \le 0.30$
M _{A,DC} = 8.00 - 3.3		$0.00 < A \le 0.30$ $0.30 < A \le 0.60$
, -		

where

$$A = \frac{L_{CRB,LTE} + L_{CRB,NR}}{N_{RB,LTE} + N_{RB,NR}}$$

with L_{CRB} and N_{RB} the number of allocated PRB and transmission bandwidth for the respective CG,

for UE not indicating support of dynamicPowerSharing

A-MPR_{LTE} = CEIL{ $M_{A,LTE}$, 0.5}

A-MPR_{NR} = CEIL{ $M_{A,NR}$, 0.5}

.

where A-MPR is the total power reduction allowed per CG with . .

$$M_{A,NR} = M_{A,DC} (A_{NR,wc}) - 1 - \Delta_{NR}$$

$$A_{LTE,wc} = \frac{L_{CRB,LTE} + 1}{N_{RB,LTE} + N_{RB,NR}}$$

$$A_{NR,wc} = \frac{1 + L_{CRB,NR}}{N_{RB,LTE} + N_{RB,NR}}$$

$$\Delta_{LTE} = 10 \log_{10} \frac{N_{RB,LTE}}{N_{RB,LTE} + N_{RB,NR}}$$

$$\Delta_{NR} = 10 \log_{10} \frac{N_{RB,NR}}{N_{RB,LTE} + N_{RB,NR}}$$

6.2B.3.1.3.2 A-MPR for NS_04

6.2B.3.1.3.2.0 General

When the UE is configured for B41/n41 intra-band contiguous EN-DC and it receives IE NS_04, the UE determines the total allowed maximum output power reduction as specified in this subclause. The A-MPR for EN-DC defined in this section is used instead of MPR defined in 6.2B.2.2, not additively, so EN-DC MPR=0 when NS_04 is signalled.

For UE supporting dynamic power sharing the following:

- for the MCG, A-MPR_c in accordance with [5]
- for the SCG,

A-MPR'_c = A-MPR_{NR} = MAX(A-MPR_{single,NR}, A-MPR_{IM3})

ETSI

119

- for the total configured transmission power,

$$A-MPR_{tot} = P_{PowerClass,EN-DC} - min(P_{PowerClass,EN-DC}, 10*log_{10}(10^{((P_{PowerClass,E-UTRA} - A-MPR_{E-UTRA})/10) + 10^{((P_{PowerClass,NR} - A-MPR_{NR})/10))}$$

where

$$A-MPR_{E-UTRA} = MAX(A-MPR_{single,E-UTRA} + MPR_{single,E-UTRA}, A-MPR_{IM3})$$

with

- A-MPR_{single, E-UTRA} is the A-MPR defined for the E-UTRA transmission in [5]
- A-MPR_{single,NR} is the A-MPR defined for the NR transmission in [2]
- MPR_{single,E-UTRA} is the MPR defined for the E-UTRA transmission in [5]

For UEs not supporting dynamic power sharing the following

- for the MCG,

 $A-MPR_{c} = MAX(A-MPR_{single, E-UTRA} + MPR_{single, E-UTRA}, A-MPR_{IM3})$

- for the SCG,

A-MPR'_c = MAX(A-MPR_{single,NR}, A-MPR_{IM3})

where

- A-MPR_{single, E-UTRA} is the A-MPR defined for the E-UTRA transmission in [5]
- A-MPR_{single,NR} is the A-MPR defined for the NR transmission in [2]
- MPR_{single,E-UTRA} is the MPR defined for the E-UTRA transmission in [5]

The UE determines the Channel Configuration Case and the value of A-MPR_{IM3} as follows:

If $F_{IM3,low_block,low} < 2490.5 \text{ MHz}$

Channel Configuration Case B. A-MPR_{IM3} defined in subclause 6.2B.3.1.3.2.2.

Else

Channel Configuration Case A. A-MPR_{IM3} defined in subclause 6.2B.3.1.3.2.1.

where

- $F_{IM3,low_block,low} = (2 * F_{low_channel,low_edge}) F_{high_channel,high_edge}$
- Flow_channel.low_edge is the lowermost frequency of lower transmission bandwidth configuration.
- Fhigh_channel,high_edge is the uppermost frequency of upper transmission bandwidth configuration.

6.2B.3.1.3.2.1 A-MPR_{IM3} for NS_04 to meet -13 dBm / 1MHz for 26dBm UE power

A-MPR in this sub-clause is relative to 26 dBm for power class 2. The same A-MPR is used relative to 23 dBm for power class 3. For the UE is configured with channel configurations Case A or Case C (defined in Subclause 6.2B.3.2.3.1), the allowed maximum output power reduction for IM3s applied to transmission on the MCG and the SCG with non-contiguous resource allocation is defined as follows:

$$A-MPR_{IM3} = M_A$$

Where M_A is defined as follows

$$\begin{array}{rll} M_A = & 15 \ ; & 0 \leq B < 0.5 \\ & 10 \ ; & 0.5 \leq B < 1.0 \end{array}$$

8 ;
$$1.0 \le B < 2.0$$

6 ; $2.0 < B$

Where:

For UEs supporting dynamic power sharing,

$$B = (L_{CRB alloc, E-UTRA} * 12* SCS_{E-UTRA} + L_{CRB alloc, NR} * 12* SCS_{NR})/1,000,000$$

For UEs not supporting dynamic power sharing,

For E-UTRA

 $B = (L_{CRB_alloc, E-UTRA} * 12* SCS_{E-UTRA} + 12* SCS_{NR})/1,000,000$

For NR

 $B = (12* SCS_{E-UTRA} + L_{CRB_alloc,NR} * 12 * SCS_{NR})/1,000,000$

and M_A is reduced by 1 dB for B < 2.0.

6.2B.3.1.3.2.2 A-MPR for NS_04 to meet -25 dBm / 1MHz for 26 dBm UE power

A-MPR in this sub-clause is relative to 26 dBm. The same A-MPR is used relative to 23 dBm for power class 3. For the UE is configured with channel configurations Case B or Case D (defined in subclause 6.2B.3.2.1), the allowed maximum output power reduction for IM3s applied to transmission on the MCG and the SCG with non-contiguous resource allocation is defined as follows:

$$A-MPR_{IM3} = M_A$$

Where MA is defined as follows

$$\begin{array}{rll} M_A = & 15 \ ; & 0 \leq B < 1.0 \\ & 14 \ ; & 1.0 \leq B < 2.0 \\ & 13 \ ; & 2.0 \leq B < 5.0 \\ & 12 \ ; & 5.0 < B \end{array}$$

Where:

For UEs supporting dynamic power sharing,

 $B = (L_{CRB_alloc, E-UTRA} * 12* SCS_{E-UTRA} + L_{CRB_alloc,NR} * 12* SCS_{NR})/1,000.000$

For UEs not supporting dynamic power sharing,

For E-UTRA

 $B = (L_{CRB_alloc,E-UTRA} * 12* SCS_{E-UTRA} + 12* SCS_{NR})/1,000,000$

For NR

 $B = (L_{CRB_alloc,E-UTRA} * 12* SCS_{E-UTRA} + 12* SCS_{NR})/1,000,000$

and MA is reduced by 1 dB.

6.2B.3.1.4 Test description

6.2B.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial condition part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

1. Sub test: with transmission overlap for all UE's

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.5B.2.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.2B.3.1.4.1-0: E-UTRA test configuration table for NS_04

E-UTRA Test Parameters							
E-UTRA Channel	E-UTRA Test Frequency	E-UTRA Test Frequency Downlink		Uplink			
Bandwidth	(Note 1)	N/A for A-MPR	Modulation	RB allocation			
20 MHz	Low range and High range (Note 2)	testing.	QPSK	100			
NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [6] subclause 4.3.1 NOTE 2: NR carrier shall be the outermost carrier during test.							

Table 6.2B.3.1.4.1-1: Test configuration table (network signalled value "NS_35")

			Initia	al Conditions			
Test Environi as specified i		8-1 [6] subclause	4.1	NC			
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1				Low range, High range			
Test EN-DC I Table 5.3B.1	Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1				nest N _{RB_agg}		
Test SCS for 1 [8] Table 5.		II as specified in TS	5 38.521-	Lowest, Highest			
		Γ	Tes	t Parameters			
_	_	Downlink	F	EN-DC Up -UTRA Cell	link Configuration	Cell	
Test ID	Freq	Configuration	Modula tion	RB allocation (Note 5)	Modulation	RB allocation (NOTE 1)	
1	Default		16QAM	Outer_Full	DFT-s-OFDM PI/2 BPSK	Outer_Full	
2 (Note 3)	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right	
3 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM PI/2 BPSK	N/A	
4 (Note 3)	High		16QAM	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right	
5 (Note 4)	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left	
6 (Note 4)	Low		16QAM	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left	
7 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM PI/2 BPSK	N/A	
8	Default		16QAM	Outer_Full	DFT-s-OFDM QPSK	Outer_Full	
9 (Note 3)	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM QPSK	Edge_1RB_Right	
10 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM QPSK	N/A	
11 (Note 3)	High		16QAM	N/A	DFT-s-OFDM QPSK	Edge_1RB_Right	
12 (Note 4)	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM QPSK	Edge_1RB_Left	
13 (Note 4)	Low	N/A	16QAM	N/A	DFT-s-OFDM QPSK	Edge_1RB_Left	
14 (Note 4)	High	N/A	16QAM	Outer_1RB_Right	DFT-s-OFDM QPSK	N/A	
15	Default		16QAM	Outer_Full	DFT-s-OFDM 16QAM	Outer_Full	
16 (Note 3)	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM 16QAM	Edge_1RB_Right	
17 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM 16QAM	N/A	
18 (Note 3)	High		16QAM	N/A	DFT-s-OFDM 16QAM	Edge_1RB_Right	
19 (Note 4)	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM 16QAM	Edge_1RB_Left	
20 (Note 4)	Low		16QAM	N/A	DFT-s-OFDM 16QAM	Edge_1RB_Left	
21 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM 16QAM	N/A	
22	Default		16QAM	Outer_Full	DFT-s-OFDM 64QAM	Outer_Full	
23 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM 64QAM	Edge_1RB_Right	
24 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM 64QAM	Edge_1RB_Left	
25	Default		16QAM	Outer_Full	DFT-s-OFDM 256QAM	Outer_Full	
26 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM 256QAM	Edge_1RB_Right	

27 (Note 4)	High	16QAN	1 Outer_1RB_Right	DFT-s-OFDM 256QAM	Edge_1RB_Left				
28	Default	16QAN	1 Outer_Full	CP-OFDM QPSK	Outer_Full				
29 (Note 3)	Default	16QAN	1 Outer_1RB_Left	CP-OFDM QPSK	Edge_1RB_Right				
30 (Note 3)	Low	16QAN	1 Outer_1RB_Left	CP-OFDM QPSK	N/A				
31 (Note 3)	High	16QAN	1 N/A	CP-OFDM QPSK	Edge_1RB_Right				
32 (Note 4)	Default	16QAN	1 Outer_1RB_Right	CP-OFDM QPSK	Edge_1RB_Left				
33 (Note 4)	Low	16QAN	1 N/A	CP-OFDM QPSK	Edge_1RB_Left				
34 (Note 4)	High	16QAN	1 Outer_1RB_Right	CP-OFDM QPSK	N/A				
35	Default	16QAN	1 Outer_Full	CP-OFDM 16QAM	Outer_Full				
36 (Note 3)	Default	16QAN	1 Outer_1RB_Left	CP-OFDM 16QAM	Edge_1RB_Right				
37 (Note 3)	Low	16QAN	1 Outer_1RB_Left	CP-OFDM 16QAM	N/A				
38 (Note 3)	High	16QAN	1 N/A	CP-OFDM 16QAM	Edge_1RB_Right				
39 (Note 4)	Default	16QAN	1 Outer_1RB_Right	CP-OFDM 16QAM	Edge_1RB_Left				
40 (Note 4)	Low	16QAN	1 N/A	CP-OFDM 16QAM	Edge_1RB_Left				
41 (Note 4)	High	16QAN	1 Outer_1RB_Right	CP-OFDM 16QAM	N/A				
42	Default	16QAN	1 Outer_Full	CP-OFDM 64QAM	Outer_Full				
43 (Note 3)	Low	16QAN	1 Outer_1RB_Left	CP-OFDM 64QAM	Edge_1RB_Right				
44 (Note 4)	High	16QAN	1 Outer_1RB_Right	CP-OFDM 64QAM	Edge_1RB_Left				
45	Default	16QAN	1 Outer_Full	CP-OFDM 256QAM	Outer_Full				
46 (Note 3)	Low	16QAN	1 Outer_1RB_Left	CP-OFDM 256QAM	Edge_1RB_Right				
47 (Note 4)	High	16QAN	\$	CP-OFDM 256QAM	Edge_1RB_Left				
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8].								

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. NOTE 2: If the UE supports multiple CC combinations in the EN-DC configuration with the same N_{RB_agg} , select the combination to test as follows:

Lowest ENBW: NR component with lowest NRB is tested.

Highest ENBW: NR component with highest NRB is tested.

NOTE 3: Applicable when E-UTRA cell carrier frequency is lower than NR cell carrier.

NOTE 4: Applicable when NR cell carrier frequency is lower than E-UTRA cell carrier.

NOTE 5: Outer_Full defined as the transmission bandwidth configuration NRB per channel bandwidth for the E-UTRA component as indicated in TS 36.521 [10] Table 5.4.2-1. Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.

NOTE 6: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

Table 6.2B.3.1.4.1-2: NR test configuration table for NS_04

			Initia	al Conditions					
Test Environ as specified i		8-1 [6] subclause	4.1	NC					
Test Frequer as specified i		8-1 [6] subclause	4.3.1	Low range, High range (Note 7)					
Test EN-DC Table 5.3B.1	bandwidth .2-1	combination as sp	ecified in	Lowest N _{RB_agg} , Highest N _{RB_agg} (Note 2)					
Test SCS for 1 [8] Table 5.		II as specified in TS	5 38.521-	Lowest, Highest					
		Γ	Tes	t Parameters					
	_	Downlink	F	EN-DC Up	link Configuration	Cell			
Test ID	Freq	Configuration	Modula tion	RB allocation (Note 5)	Modulation	RB allocation (NOTE 1)			
1	Default		16QAM	Outer_Full	DFT-s-OFDM PI/2 BPSK	Outer_Full			
2 (Note 3)	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right			
3 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM PI/2 BPSK	N/A			
4 (Note 3)	High		16QAM	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right			
5 (Note 4)	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left			
6 (Note 4)	Low		16QAM	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left			
7 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM PI/2 BPSK	N/A			
8	Default		16QAM	Outer_Full	DFT-s-OFDM QPSK	Outer_Full			
9 (Note 3)	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM QPSK	Edge_1RB_Right			
10 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM QPSK	N/A			
11 (Note 3)	High		16QAM	N/A	DFT-s-OFDM QPSK	Edge_1RB_Right			
12 (Note 4)	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM QPSK	Edge_1RB_Left			
13 (Note 4)	Low	N/A	16QAM	N/A	DFT-s-OFDM QPSK	Edge_1RB_Left			
14 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM QPSK	N/A			
15	Default		16QAM	Outer_Full	DFT-s-OFDM 16QAM	Outer_Full			
16 (Note 3)	Default		16QAM	Outer_1RB_Left	DFT-s-OFDM 16QAM	Edge_1RB_Right			
17 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM 16QAM	N/A			
18 (Note 3)	High		16QAM	N/A	DFT-s-OFDM 16QAM	Edge_1RB_Right			
19 (Note 4)	Default		16QAM	Outer_1RB_Right	DFT-s-OFDM 16QAM	Edge_1RB_Left			
20 (Note 4)	Low		16QAM	N/A	DFT-s-OFDM 16QAM	Edge_1RB_Left			
21 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM 16QAM	N/A			
22	Default		16QAM	Outer_Full	DFT-s-OFDM 64QAM	Outer_Full			
23 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM 64QAM	Edge_1RB_Right			
24 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM 64QAM	Edge_1RB_Left			
25	Default		16QAM	Outer_Full	DFT-s-OFDM 256QAM	Outer_Full			
26 (Note 3)	Low		16QAM	Outer_1RB_Left	DFT-s-OFDM 256QAM	Edge_1RB_Right			

27 (Note 4)	High		16QAM	Outer_1RB_Right	DFT-s-OFDM 256QAM	Edge_1RB_Left			
28	Default		16QAM	Outer_Full	CP-OFDM QPSK	Outer_Full			
29 (Note 3)	Default		16QAM	Outer_1RB_Left	CP-OFDM QPSK	Edge_1RB_Right			
30 (Note 3)	Low		16QAM	Outer_1RB_Left	CP-OFDM QPSK	N/A			
31 (Note 3)	High		16QAM	N/A	CP-OFDM QPSK	Edge_1RB_Right			
32 (Note 4)	Default		16QAM	Outer_1RB_Right	CP-OFDM QPSK	Edge_1RB_Left			
33 (Note 4)	Low		16QAM	N/A	CP-OFDM QPSK	Edge_1RB_Left			
34 (Note 4)	High		16QAM	Outer_1RB_Right	CP-OFDM QPSK	N/A			
35	Default		16QAM	Outer_Full	CP-OFDM 16QAM	Outer_Full			
36 (Note 3)	Default		16QAM	Outer_1RB_Left	CP-OFDM 16QAM	Edge_1RB_Right			
37 (Note 3)	Low		16QAM	Outer_1RB_Left	CP-OFDM 16QAM	N/A			
38 (Note 3)	High		16QAM	N/A	CP-OFDM 16QAM	Edge_1RB_Right			
39 (Note 4)	Default		16QAM	Outer_1RB_Right	CP-OFDM 16QAM	Edge_1RB_Left			
40 (Note 4)	Low		16QAM	N/A	CP-OFDM 16QAM	Edge_1RB_Left			
41 (Note 4)	High		16QAM	Outer_1RB_Right	CP-OFDM 16QAM	N/A			
42	Default		16QAM	Outer_Full	CP-OFDM 64QAM	Outer_Full			
43 (Note 3)	Low		16QAM	Outer_1RB_Left	CP-OFDM 64QAM	Edge_1RB_Right			
44 (Note 4)	High		16QAM	Outer_1RB_Right	CP-OFDM 64QAM	Edge_1RB_Left			
45	Default		16QAM	Outer_Full	CP-OFDM 256QAM	Outer_Full			
46 (Note 3)	Low		16QAM	Outer_1RB_Left	CP-OFDM 256QAM	Edge_1RB_Right			
47 (Note 4)	High		16QAM	Outer_1RB_Right	CP-OFDM 256QAM	Edge_1RB_Left			
NOTE 2: If th	 NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. NOTE 2: If the UE supports multiple CC combinations in the EN-DC configuration with the same N_{RB_agg}, select the combination to test as follows: Lowest ENBW: NR component with lowest N_{RB} is tested. Highest ENBW: NR component with highest N_{RB} is tested. 								

Highest ENBW: NR component with highest NRB is tested.
 NOTE 3: Applicable when E-UTRA cell carrier frequency is lower than NR cell carrier.

NOTE 4: Applicable when NR cell carrier frequency is lower than E-UTRA cell carrier.

NOTE 5: Outer_Full defined as the transmission bandwidth configuration N_{RB} per channel bandwidth for the E-UTRA component as indicated in TS 36.521 [10] Table 5.4.2-1. Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.

NOTE 6: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

NOTE 7: Additional IM3 test frequencies may apply.

Table 6.2B.3.1.4.1-3: Additional IM3 Test Frquencies for NS_04 intra-band contiguous EN-DC

Additional Initial Condition							
Additional IM3 Test Frquencies	if SCS 15 kHz, 15 kHz NR raster, and NR ChBw 40 MHz or 50 MHz then IM3 test frequencies as specified in Table 6.2B.3.1.4.1-4.						
	if SCS 30 kHz, 30 kHz NR raster, and NR ChBw 40 MHz, 50 MHz or 60 MHz then IM3 test frequencies as specified in Table 6.2B.3.1.4.1-5.						
	if SCS 60 kHz, 15 kHz NR raster, and NR ChBw 40 MHz, 50 MHz or 60 MHz then IM3 test frequencies as specified in Table 6.2B.3.1.4.1-6.						

Table 6.2B.3.1.4.1-4: EN-DC combination DC_(n)41AA, intra-band contiguous, SCS 15 kHz, 15 kHz NR raster, IM3 test frequencies.

EN-DC channel bandwidth combination	СС	Bandw idth [MHz]	carrier Bandw idth [PRBs]	Ranç	je	Carrier centre [MHz] Note 2	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offset ToCa rrier [Carri er PRBs]	SS block SCS [kHz]	GSCN	absoluteFrequen cySSB [ARFCN]
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2600.400	40694	-	-	-	-	-	-
+ NR: 40MHz	NR CC1	40	216	Downlink & Uplink	IM3	2570.400	514080	2550.96	510192	0	15	6384	514080
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2620.400	40894	-	-	-	-	-	-
+ NR: 50MHz	NR CC1	50	270	Downlink & Uplink	IM3	2585.400	517080	2561.1	512220	0	15	6408	517080

Table 6.2B.3.1.4.1-5: EN-DC combination DC_(n)41AA, intra-band contiguous, SCS 30 kHz, 30 kHz NR raster, IM3 test frequencies.

EN-DC channel bandwidth combination	CC	Bandw idth [MHz]	carrier Bandw idth [PRBs]	Ran	ge	Carrier centre [MHz] Note 2	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offset ToCa rrier [Carri er PRBs]	SS block SCS [kHz]	GSCN	absoluteFrequen cySSB [ARFCN]
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2600.400	40694	-	-	-	-	-	-
+ NR: 40MHz	NR CC1	40	216	Downlink & Uplink	IM3	2570.400	514080	2550.96	510192	0	15	6384	514080
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2620.400	40894	-	-	-	-	-	-
+ NR: 50MHz	NR CC1	50	270	Downlink & Uplink	IM3	2585.400	517080	2561.1	512220	0	15	6408	517080
E-UTRA: 20MHz + NR: 60MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2640.500	41095	-	-	-	-	-	-
	NR CC1	60	162	Downlink & Uplink	IM3	2600.500	520100	2571.34	514268	0	30	6438	520100

EN-DC channel bandwidth combination	СС	Bandw idth [MHz]	carrier Bandw idth [PRBs]	Rang	ge	Carrier centre [MHz] Note 2	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPointA [ARFCN]	offset ToCa rrier [Carri er PRBs]	SS block SCS [kHz]	GSCN	absoluteFrequen cySSB [ARFCN]
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2600.400	40694	-	-	-	-	-	-
+ NR: 40MHz	NR CC1	40	51	Downlink & Uplink	IM3	2570.400	514080	2552.04	510408	0	15	6387	514080
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2620.400	40894	-	-	-	-	-	-
+ NR: 50MHz	NR CC1	50	65	Downlink & Uplink	IM3	2585.400	517080	2562	512400	0	15	6411	517080
E-UTRA: 20MHz	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2640.500	41095	-	-	-	-	-	-
+ NR: 60MHz	NR CC1	60	79	Downlink & Uplink	IM3	2600.500	520100	2572.06	514412	0	15	6435	520100

Editor's note: The following lines belong at the end of section 6.2B.3.1.4.1. As new tables are added to this section, these lines should always follow the tables.

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

- 1.1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 1.2. The parameter settings for E-UTRA the cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 1.3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 1.4 NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS 38.521-1[8].
- 1.5. The UL Reference Measurement channels are set according to TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG link respectively.
- 1.6. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 1.7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.3.1.4.3.
- 1.8. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same initial condition as in clause 6.2.3.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For initial conditions as in clause 6.2.3.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Same initial conditions as in clause 6.2.3.4.1 in TS 38.521-1 [8] with the following steps exception:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.2B.3.1.4.2 Test procedure

The test procedure part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

1. Sub test: with transmission overlap for all UE's

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to table 6.2B.3.1.4.1-1 or 6.2B.3.1.4.1-2 on both EN-DC component carriers. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command for the UE to reach P_{UMAX} level.
- 1.3. Measure the mean power over all component carriers for the EN-DC configuration, which shall meet the requirements described in table 6.2B.3.1.5.1-1 thru 6.2B.3.1.5.2-1. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms).
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2B.3.1.4.1-1 or 6.2B.3.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-89 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same test procedure as in clause 6.2.3.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2B.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1, with the following exceptions for each network signalled value.

6.2B.3.1.4.3.1 Message contents exceptions (network signalled value "NS_04")

1. Information element additionalSpectrumEmission for E-UTRA is set to NS_04. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2B.3.1.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions test requirement for MCG and "NS_04"

Derivation Path: 36.508 [11] clause 4.6.3, Table 4.4.3.3-1					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	1 (NS_04)				

2. Information element AdditionalSpectrumEmission for NR is set to NS_04. This can be set in *nr*-*SecondaryCellGroupConfig* according to TS 36.331[TBD]. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario

Table 6.2B.3.1.4.3.1-2: AdditionalSpectrumEmission: Additional spurious emissions test requirement for SCG and "NS_04"

Derivation Path: TS 38.508-1 [6] clause 4.6.3, Table 4.6.3-1						
Information Element	Value/remark	Comment	Condition			
additionalSpectrumEmission	1 (NS_04)					

6.2B.3.1.4.3.2 Message contents exceptions (network signalled value "NS_35")

1. Information element additionalSpectrumEmission for E-UTRA is set to NS_35. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2B.3.1.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions test requirement for MCG and "NS_35"

Derivation Path: 36.508 [11] clause 4.6.3, Table 4.4.3.3-1					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	1 (NS_35)				

2. Information element AdditionalSpectrumEmission for NR is set to NS_35. This can be set in *nr*-*SecondaryCellGroupConfig* according to TS 36.331[TBD]. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario

Table 6.2B.3.1.4.3.2-2: AdditionalSpectrumEmission: Additional spurious emissions test requirement for for SCG "NS_35"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	1 (NS_35)				

6.2B.3.1.5 Test requirement

6.2B.3.1.5.1 Test requirement for network signalled value "NS_35"

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in table 6.2B.3.1.5.1-1. The allowed A-MPR values specified in table 6.2B.3.1.3-1 are in addition to the allowed MPR requirements specified in clause 6.2B.1.1.3. For the UE maximum output power modified by MPR and/or A-MPR, the power limits specified in table 6.2B.1.1.3-1 apply.

133

Table 6.2B.3.1.5.1-1: UE Power Class test requirements for network signalled value "NS_35" for UEs not supporting dynamic power sharing

Test ID	Test freq. rang e	E- UTRA BW	NR BW	Modulation	P _{PowerC} lass (dBm)	ΔP _{Po} werClas s (dB)	A-MPRc (dB)	ΔTC,c (dB) Note 7	Р _{СМАХ} ,с (dBm)	T(Рсмах_ _{L,f,c}) (dB)	T∟,c (dB)	Upper limit	Lower limit
1, 8, 15, 22, 25	Low	5	5	E-UTRA/NR	23	0	6.0	0	17.0	5	+2/-3	25+TT	12-TT
1, 8, 15, 22, 25	Low	5	15	E-UTRA/NR	23	0	6.0	0	17.0	5	+2/-3	25+TT	12-TT
1, 8, 15, 22, 25	High	5	5	E-UTRA/NR	23	0	6.0	0	17.0	5	+2/-3	25+TT	12-TT
1, 8, 15, 22, 25	High	15	5	E-UTRA/NR	23	0	6.0	0	17.0	5	+2/-3	25+TT	12-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	Low	5	5	E-UTRA/NR	23	0	10.5	0	12.5	6	+2/-3	25+TT	6.5-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	Low	5	15	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	High	5	5	E-UTRA/NR	23	0	10.5	0	12.5	6	+2/-3	25+TT	6.5-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	High	15	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
3, 10, 17	Low	5	5	E-UTRA/NR	23	0	12.5	0	10.5	6	+2/-3	25+TT	4.5-TT
3, 14, 17	Low	5	15	E-UTRA/NR	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
4, 11, 18	High	5	5	E-UTRA/NR	23	0	12.5	0	10.5	12.5	+2/-3	25+TT	4.5-TT
4, 11, 18	High	15	5	E-UTRA/NR	23	0	16.0	0	7.0	16.0	+2/-3	25+TT	0-TT
6, 13, 20	Low	5	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
6, 13, 20	Low	5	15	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
7, 14, 21	High	5	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
7, 14, 21	High	15	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
28, 35, 42. 45	Low	5	5	E-UTRA/NR	23	0	6.5	0	16.5	5	+2/-3	25+TT	11.5-TT
28, 35, 42. 45	Low	5	15	E-UTRA/NR	23	0	6.5	0	16.5	5	+2/-3	25+TT	11.5-TT
28, 35, 42. 45	High	5	5	E-UTRA/NR	23	0	6.5	0	16.5	5	+2/-3	25+TT	11.5-TT
28, 35, 42. 45	High	15	5	E-UTRA/NR	23	0	6.5	0	16.5	5	+2/-3	25+TT	11.5-TT
29, 35, 42, 45	Low	5	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6.5-TT
29, 35, 42, 45	Low	5	15	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT

134

3GPP TS 38.521-3 version 15.3.0 Release 15

ETSI TS 138 521-3 V15.3.0 (2019-07)

29, 35, 42, 45	High	5	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6.5-TT
29, 35, 42, 45	High	15	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
30, 34, 37, 41	Low	5	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
30, 34, 37, 41	Low	5	15	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
31, 33, 38, 40	High	5	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
31, 33, 38, 40	High	15	5	E-UTRA/NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT

136

Table 6.2B.3.1.5.1-1A: UE Power Class test requirements for network signalled value "NS_35" for UEs supporting dynamic power sharing

Test ID	Test freq. range	E- UTRA BW	NR BW	Modulation	P _{PowerC} lass (dBm)	ΔP _{Po} werClas s (dB)	A-MPR₀ (dB)	ΔTC,c (dB) Note 7	P _{CMAX} ,c (dBm)	Т(Рсмах_ _{L,f,c}) (dB)	T _{L,c} (dB)	Upper limit	Lower limit
1, 8, 15, 22, 25	Low	5	5	E-UTRA	23	0	8.5	0	14.5	5	+2/-3	25+TT	9.5-TT
1, 8, 15, 22, 25	Low	5	5	NR	23	0	8.5	0	14.5	5	+2/-3	25+TT	9.5-TT
1, 8, 15, 22, 25	Low	5	15	E-UTRA	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
1, 8, 15, 22, 25	Low	5	15	NR	23	0	6.5	0	16.5	5	+2/-3	25+TT	11.5-TT
1, 8, 15, 22, 25	High	5	5	E-UTRA	23	0	8.5	0	14.5	5	+2/-3	25+TT	9.5-TT
1, 8, 15, 22, 25	High	5	5	NR	23	0	8.5	0	14.5	5	+2/-3	25+TT	9.5-TT
1, 8, 15, 22, 25	High	15	5	E-UTRA	23	0	6.5	0	16.5	5	+2/-3	25+TT	11.5-TT
1, 8, 15, 22, 25	High	15	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	Low	5	5	E-UTRA	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	Low	5	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	Low	5	15	E-UTRA	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	Low	5	15	NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	High	5	5	E-UTRA	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	High	5	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT

137

ETSI TS 138 521-3 V15.3.0 (2019-07)

2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	High	15	5	E-UTRA	23	0	11.5	0	11.5	6	+2/-3	25+TT	5.5-TT
2, 5, 9, 12, 16, 19, 23, 24, 2, 26, 27	High	15	5	NR	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
3, 10, 17	Low	5	5	E-UTRA/	23	0	12.5	0	10.5	6	+2/-3	25+TT	4.5-TT
3, 10, 17	Low	5	15	E-UTRA	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
4, 11, 18	High	5	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
4, 11, 18	High	15	5	NR	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
6, 17, 20	Low	5	5	E-UTRA/	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
6, 17, 20	Low	5	15	E-UTRA	23	0	16.5	0	6.5	7	+2/-3	25+TT	-0.5-TT
7, 14, 21	High	5	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
7, 14, 21	High	15	5	NR	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
28, 35, 42, 45	Low	5	5	E-UTRA	23	0	9.5	0	13.5	5	+2/-3	25+TT	8.5-TT
28, 35, 42, 45	Low	5	5	NR	23	0	9.5	0	13.5	5	+2/-3	25+TT	8.5-TT
28, 35, 42, 45	Low	5	15	E-UTRA	23	0	13.5	0	9.5	6	+2/-3	25+TT	3.5-TT
28, 35, 42, 45	Low	5	15	NR	23	0	7.0	0	16.0	5	+2/-3	25+TT	11-TT
28, 35, 42, 45	High	5	5	E-UTRA	23	0	9.5	0	13.5	5	+2/-3	25+TT	8.5-TT
28, 35, 42, 45	High	5	5	NR	23	0	9.5	0	13.5	5	+2/-3	25+TT	8.5-TT
28, 35, 42, 45	High	15	5	E-UTRA	23	0	7.0	0	16.0	5	+2/-3	25+TT	11-TT
28, 35, 42, 45	High	15	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
29, 36, 43, 46	Low	5	5	E-UTRA	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
29, 36, 43, 46	Low	5	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
29, 36, 43, 46	Low	5	15	E-UTRA	23	0	16.0	0	7.0	7	+2/-3	25+TT	0-TT
29, 36, 43, 46	Low	5	15	NR	23	0	11.0	0	12.0	6	+2/-3	25+TT	6-TT
29, 36, 43, 46	High	5	5	E-UTRA	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT
29, 36, 43, 46	High	5	5	NR	23	0	13.0	0	10.0	6	+2/-3	25+TT	4-TT

138

3GPP TS 38.521-3 version 15.3.0 Release 15

ETSI TS 138 521-3 V15.3.0 (2019-07)

29, 36, 43, 46	High	15	5	E-UTRA	23	0	11.5	0	11.5	6	+2/-3	25+TT	0-TT
29, 36, 43, 46	High	15	5	NR	23	0	16.0	0	7.0	7	+2/-3	25+TT	5.5-TT
30, 37	Low	5	5	E-UTRA/	23	0	13.0	0	10.0	6		25+TT	4-TT
30, 37	Low	5	15	E-UTRA	23	0	16.0	0	7.0	7		25+TT	0-TT
31, 38	High	5	5	NR	23	0	13.0	0	10.0	6		25+TT	4-TT
31, 38	High	15	5	NR	23	0	16.0	0	7.0	7		25+TT	0-TT
34, 41	High	5	5	NR	23	0	13.0	0	10.0	6		25+TT	4-TT
34, 41	High	15	5	NR	23	0	16.0	0	7.0	7		25+TT	0-TT
33,40	Low	5	5	E-UTRA/	23	0	13.0	0	10.0	6		25+TT	4-TT
33,40	Low	5	15	E-UTRA	23	0	16.5	0	6.5	7		25+TT	-0.5-TT

140

6.2B.3.1.5.2 Test requirement for network signalled value "NS_04"

Table 6.2B.3.1.5.2-1: UE Power Class 3 test requirements for network signalled value "NS_04"

ETSI TS 138 521-3 V15.3.0 (2019-07)

Test ID	Modulatio n	ΔP _{Po} werClas s (dB)	MPR (dB)	A-MPR (dB)	A-MPRı _{M3} (dB)	A-MPRc (dB)	ΔTC,c (dB) Note 7	Р _{смах,с} (dBm)	T(P _{CMAX_} _{L,f,c}) (dB)	T _{L,c} (dB)	Upper limit	Lower limit
1, 8, 15, 22, 25, 28, 35, 42 and 45	E-UTRA Note 1	0	2	0	6	6	0 (1.5)	17 (15.5)	5 (5)	2 (3.5)	25+TT	12-TT (10.5-TT)
1, 8, 15, 22, 25, 28, 35, 42 and 45	E-UTRA Note 2	0	2	0	11	11	0 (1.5)	12 (10.5)	6 (6)	2 (3.5)	25+TT	6+TT (4.5-TT)
1, 8, 15, 22, 25, 28, 35, 42 and 45	NR, Note 1	0	-	Note 5	6	6	0 (1.5)	17 (15.5)	5 (5)	2 (3.5)	25+TT	12-TT (10.5-TT)
1, 8, 15, 22, 25, 28, 35, 42 and 45	NR, Note 2	0	-	Note 5	11	11	0 (1.5)	12 (10.5)	6 (6)	2 (3.5)	25+TT	6+TT (4.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	E-UTRA Note 1, 3	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	E-UTRA Note 1, 4	0	1	Note 6	9	9	0 (1.5)	14 (12.5)	5 (6)	2 (3.5)	25+TT	9-TT (6.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	E-UTRA Note 2	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6	2 (3.5)	25+TT	3-TT (0.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	NR Note 1, 3	0	-	Note 5	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)

141

.

ETSI TS 138 521-3 V15.3.0 (2019-07)

2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	NR Note 1, 4	0	-	Note 5	9	9	0 (1.5)	14 (12.5)	5 (6)	2 (3.5)	25+TT	9-TT (6.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	NR Note 2	0	-	Note 5	11	11	0 (1.5)	9 (7.5)	6 (6)	2 (3.5)	25+TT	3-TT (0.5-TT)
3, 7, 10, 14, 17, 21, 30, 34, 37, 41	E-UTRA Note 1	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
3, 7, 10, 14, 17, 21, 30, 34, 37 and 41	E-UTRA Note 2	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
4, 6, 11, 13, 18, 20, 31, 33,38 and 40	NR Note 1, 3	0	-	Note 5	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
4, 6, 11, 13, 18, 20, 31, 33,38 and 40	NR Note 1,4	0	-	Note 5	9	9	0 (1.5)	14 (12.5)	5 (6)	2 (3.5)	25+TT	9-TT (6.5-TT)
4, 6, 11, 13, 18, 20, 31, 33,38 and 40	NR Note 2	0	-	Note 5	14	14	0 (1.5)	9 (7.5)	6 (6)	2 (3.5)	25+TT	3-TT (0.5-TT)

NOTE 1: When F_{IM3,low_block,low} ≥ 2490.5 MHz (Case A)

NOTE 2: When FIM3,low_block,low < 2490.5 MHz (Case B)

NOTE 3: When NR SCS = 15kHz.

NOTE 4: When NR SCS = 30 kHz or 60 kHz.

NOTE 5: NR A-MPR values for NS_04 are defined in Table 6.2.3.3.2-1.

NOTE 6: E-UTRA A-MPR= 3 dB for 1 RB and fc < 2517.5 MHz, otherwise 0 dB.

NOTE 7: ΔT_{C,c} = 1.5 dB for transmission bandwidths confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high}, otherwise 0 dB.

NOTE 8: TT for each frequency and channel bandwidth is specified in Table 6.2B.3.1.5.2-2.

142

OLS :												
Configuration ID	F _{IM3,low_bl} ock.low	A-MPR _{IM3} (dB)	A-MPR (dB)	TBD	Р _{СМАХ,с} (dBm)	T(Р _{СМАХ_L,с}) (dB)	Upper limit (dBm)	Lower limit (dBm)				
1	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD				
2	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD				
3	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD				
4	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD				
5	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD				
6	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD				

Table 6.2B.3.1.5.2-2: UE Power Class 2 test requirements for network signalled value "NS_04" for UEs supporting dynamic power sharing with backoff applied equally to LTE and NR

143

Table: 6.2B.3.1.5.2-2: Test Tolerance for UE maximum output power (LTE, NR TX seperately)

Uplink TX		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
LTE	BW ≤ 20MHz	0.7	1.0	1.3
NR	BW ≤ 40MHz	0.7 dB	1.0 dB	1.0
	40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0

6.2B.3.2 UE Additional Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- UE Power Class 2 test requirements

- Test frequencies for the Minimum W_{GAP}

6.2B.3.2.1 Test purpose

Additional emission requirements can be signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*. To meet these additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table 6.2B.1.1.3-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

6.2B.3.2.2 Test applicability

The requirements of this test apply in test case 6.5B.2.1.2 Additional spectrum emission mask for network signalled values NS_04 to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.2B.3.2.3 Minimum conformance requirements

For intra-band EN-DC band combinations with additional requirements the A-MPR allowed are specified in table 6.2B.3.2.3-1 for combinations of network signalling values indicated in E-UTRA or NR cell group(s). Unless otherwise stated the A-MPR specified in sub-clause 6.2B.3.2 for intra-band non-contiguous EN-DC configurations includes MPR.

DC	Requirement	E-UTRA network	NR network	A-MPR				
configuration	(sub-clause)	signalling value	signalling value	(subclause)				
	6.6.3.3.19 and	NS_01 or NS_04	NS_04	6.2B.3.2.3.1				
	6.6.2.2.2 of TS							
DC 41A n41 ¹	36.101 [5] and							
DC_41A_1141	6.5.2.3.2 and							
	6.5.3.3.1 of TS							
	38.101-1 [2]							
NOTE 1: Only applies to UEs that support dual UL transmission for this EN-DC combination.								
NOTE 2: The A-MPR is applied as MPR if NS_04 is not signalled								

Table 6.2B.3.2.3-1: Allowed power reduction for intra-band non-contiguous EN-DC

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.3.2.

Exception requirements for both NR and E-UTRA are defined for this test when transission on E-UTRA overlap in time with NR.LTE anchor agnostic approach is not applied for this case and referred to as sub-test 1. E-UTRA test point analysis is included and E-UTRA measurements are performed.

No exception requirements for NR or E-UTRA are defined for this test when tramsission on E-UTRA doesn't overlap in time with NR. LTE anchor agnostic approach is applied for this case and referred to as sub-test 2.

6.2B.3.2.3.1 A-MPR for NS_04

When the UE is configured for B41/n41 intra-band non-contiguous EN-DC and it receives IE NS_04, the UE determines the total allowed maximum output power reduction as specified in this subclause. The A-MPR for EN-DC defined in this section is used instead of MPR defined in 6.2B.2.2, not additively, so EN-DC MPR=0 when NS_04 is signalled.

For UE supporting dynamic power sharing the following:

- for the MCG, A-MPR_c in accordance with [4]
- for the SCG,

 $A-MPR'_{c} = A-MPR_{NR} = MAX(A-MPR_{single,NR}, A-MPR_{EN-DC})$

- for the total configured transmission power,

```
A-MPR_{tot} = P_{PowerClass,EN-DC} - min(P_{PowerClass,EN-DC}, 10*log_{10}(10^{((P_{PowerClass,E-UTRA} - A-MPR_{E-UTRA})/10) + 10^{((P_{PowerClass,NR} - A-MPR_{NR})/10))}
```

where

```
A-MPR_{E-UTRA} = MAX(A-MPR_{single,E-UTRA} + MPR_{single,E-UTRA}, A-MPR_{EN-DC})
```

 $A-MPR_{EN-DC} = MAX(A-MPR_{IM3}, A-MPR_{ACLRoverlap})$

with

- A-MPR_{single, E-UTRA} is the A-MPR defined for the E-UTRA transmission in [4]
- A-MPR_{single,NR} is the A-MPR defined for the NR transmission in [2]
- MPR_{single,E-UTRA} is the MPR defined for the E-UTRA transmission in [4]

For UEs not supporting dynamic power sharing the following

- for the MCG,

```
A-MPR<sub>c</sub> = MAX( A-MPR<sub>single, E-UTRA</sub> + MPR<sub>single,E-UTRA</sub>, A-MPR<sub>IM3</sub>, A-MPR<sub>ACLRoverlap</sub>)
```

- for the SCG,

A-MPR'_c = MAX(A-MPR_{single,NR}, A-MPR_{IM3}, A-MPR_{ACLRoverlap})

where

- A-MPR_{single, E-UTRA} is the A-MPR defined for the E-UTRA transmission in [5]
- A-MPR_{single,NR} is the A-MPR defined for the NR transmission in [2]
- MPR_{single,E-UTRA} is the MPR defined for the E-UTRA transmission in [5]

The UE determines the Channel Configuration Case and the value of A-MPR_{IM3} as follows:

If AND($F_{IM3,low_block,high} < F_{filter,low}$, MAX(SEM_13,high, $F_{IM3,high_block,low}$) > $F_{filter,high}$)

Channel Configuration Case C. A-MPR_{IM3} defined in Subclause 6.2B.3.1.3.2.1

Else

Channel Configuration Case D. A-MPR_{IM3} defined in Subclause 6.2B.3.1.3.2.2

where

- $F_{IM3,low_block,high} = (2 * F_{low_channel,high_edge}) F_{high_channel,low_edge}$
- $F_{IM3,high_block,low} = (2 * F_{high_channel,low_edge}) F_{low_channel,high_edge}$
- F_{low_channel,low_edge} is the lowermost frequency of lower transmission bandwidth configuration.
- Flow_channel,high_edge is the uppermost frequency of lower transmission bandwidth configuration.
- F_{high_channel,low_edge} is the lowermost frequency of upper transmission bandwidth configuration.
- Fhigh_channel,high_edge is the uppermost frequency of upper transmission bandwidth configuration.
- $F_{\text{filter,low}} = 2480 \text{ MHz}$
- $F_{\text{filter,high}} = 2745 \text{ MHz}$
- SEM_{-13,high} = Threshold frequency where upper spectral emission mask for upper channel drops from -13 dBm / 1MHz to -25 dBm / 1MHz, as specified in Subclause 6.2B.3.1.3.2.2.

The UE determines the value of A-MPR_{ACLRoverlap} as specified in Table 6.2B.3.2.3.1-1:

Table 6.2B.3.2.3.1-1: A-MPR_{ACLRoverlap}

W _{gap}	A-MPR _{ACLRoverlap}
< BW _{channel,E} -UTRA + BW _{channel,NR}	4 dB
≥ BW _{channel,E} -UTRA + BW _{channel,NR}	0 dB
NOTE 1: Wgap = Fhigh_channel,low_edge - Flow_channel	el,high_edge

The UE determines the total allowed maximum output power reduction as follows:

For UEs not supporting dynamic power sharing, with backoff applied independently

 $A-MPR_{E-UTRA} = MAX(A-MPR_{single, E-UTRA} + MPR_{single, E-UTRA}, A-MPR_{IM3}, A-MPR_{ACLRoverlap})$

$$A-MPR_{NR} = MAX(A-MPR_{single,NR}, A-MPR_{IM3}, A-MPR_{ACLRoverlap})$$

For UEs supporting dynamic power sharing, with IM3 backoff applied equally to E-UTRA and NR

 $A-MPR_{EN-DC} = MAX(A-MPR_{IM3}, A-MPR_{ACLRoverlap})$

 $A-MPR_{E-UTRA} = MAX(A-MPR_{single,E-UTRA} + MPR_{single,E-UTRA}, A-MPR_{EN-DC})$

 $A-MPR_{NR} = MAX(A-MPR_{single,NR}, A-MPR_{EN-DC})$

where

- A-MPR_{single,E-UTRA} is the A-MPR defined for the E-UTRA transmission in TS 36.101 [5].
- A-MPR_{single,NR} is the A-MPR defined for the NR transmission in TS 38.101-1 [2].
- MPR_{single,E-UTRA} is the MPR defined for the E-UTRA transmission in [5].

6.2B.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial condition part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

1. Sub test: with transmission overlap for all UE's

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2B.3.1-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in test configuration table 6.2B.3.1.4.1-1 through 6.2B.3.1.4.1-2 with additional IM3 test frequencies for NS_04 in 6.2B.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A2. Configurations of PDSCH and PDCCH before measurement are specified in Annex TS 36.521-1 [10] Annex C and in Annex C2 for LTE link and NR link respectively.

Table 6.2B.3.2.4.1-0: E-UTRA test configuration table

E-UTRA Test Parameters								
E-UTRA Channel	E-UTRA Test Frequency	Downlink	Upli	nk				
Bandwidth	(Note 1)	N/A for A-MPR testing	Modulation	RB allocation				
20 MHz	Low range and High range (Note 2)		QPSK	100				
NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [6] subclause 4.3.1 NOTE 2: NR carrier shall be the outermost carrier during test.								

Table 6.2B.3.2.4.1-1: Additional IM3 Test Frquencies for NS_04 intra-band non-contiguous EN-DC

Additional Initial Condition								
Additional IM3 Test Frquencies	if maximum W_{GAP} > 88.4 MHz, and SCS 15 kHz, 15 kHz NR raster then IM3 test frequencies as specified in Table 6.2B.3.2.4.1-2.							
	if maximum W _{GAP} > 88.4 MHz, and SCS 15 kHz, 30 kHz NR raster then IM3 test frequencies as specified in Table 6.2B.3.2.4.1-3.							
	if maximum W_{GAP} > 88.4 MHz, and SCS 15 kHz, 60 kHz NR raster then IM3 test frequencies as specified in Table 6.2B.3.2.4.1-4.							

EN-DC channel bandwidth combination	cc	Bandwidth [MHz]	<i>carrierBandwidth</i> [PRBs]	Range	•	Carrier centre [MHz] Note 2	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offsetTo Carrier [Carrier PRBs]	SS block SCS [kHz]	GSC N	absoluteF requency SSB [ARFCN]
E-UTRA: 20MHz + NR:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2666.700	41357	-	-	-	-	-	-
40MHz	NR CC1	40	216	Downlink & Uplink	IM3	2548.300	509660	2528.86	505772	0	15	6327	509660
NR: 40MHz + E-UTRA:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2558.300	40273	-	-	-	-	-	-
20MHz	NR CC1	40	216	Downlink & Uplink	IM3	2676.700	535340	2657.26	531452	0	15	6648	535340
E-UTRA: 20MHz + NR:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2524.900	39939	-	-	-	-	-	-
50MHz	NR CC1	50	270	Downlink & Uplink	IM3	2665.000	533000	2640.7	528140	0	15	6606	533000
NR: 50MHz + E-UTRA:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2666.700	41357	-	-	-	-	-	-
20MHz	NR CC1	50	270	Downlink & Uplink	IM3	2543.300	508660	2519	503800	0	15	6303	508660

Table 6.2B.3.2.4.1-2: EN-DC combination DC_41A_n41A, intra-band non-contiguous, SCS 15 kHz, 15 kHz NR raster, IM3 test frequencies

EN-DC channel bandwidth combination	CC	Bandwidth [MHz]	<i>carrierBandwidth</i> [PRBs]	Range		Carrier centre [MHz] Note 2	Carrier centre [ARFCN]	point A [MHz]
E-UTRA: 20MHz + NR:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2666.700	41357	-
40MHz	NR CC1	40	106	Downlink & Uplink	IM3	2548.300	509660	2529.22
NR: 40MHz + E-UTRA:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2558.300	40273	-
20MHz	NR CC1	40	106	Downlink & Uplink	IM3	2676.700	535340	2657.62
E-UTRA: 20MHz + NR:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2524.900	39939	-
50MHz	NR CC1	50	133	Downlink & Uplink	IM3	2665.000	533000	2641.06
NR: 50MHz + E-UTRA:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2666.700	41357	-
20MHz	NR CC1	50	133	Downlink & Uplink	IM3	2543.300	508660	2519.36

Table 6.2B.3.2.4.1-3: EN-DC combination DC_41A_n41A, intra-band non-contiguous, SCS 30 kHz, 30 kHz NR raster, IM3 test frequencies

EN-DC channel bandwidth combination	СС	Bandwidth [MHz]	<i>carrierBandwidth</i> [PRBs]	Range	e	Carrier centre [MHz] Note 2	Carrier centre [ARFCN]	point A [MHz]
E-UTRA: 20MHz + NR:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2666.700	41357	-
40MHz	NR CC1	40	51	Downlink & Uplink	IM3	2548.300	509660	2529.94
NR: 40MHz + E-UTRA:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2558.300	40273	-
20MHz	NR CC1	40	51	Downlink & Uplink	IM3	2676.700	535340	2658.34
E-UTRA: 20MHz + NR:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2524.900	39939	-
50MHz	NR CC1	50	65	Downlink & Uplink	IM3	2665.000	535340	2653.3
NR: 50MHz + E-UTRA:	E-UTRA CC1	20	100	Downlink & Uplink	IM3	2666.700	41357	-
20MHz	NR CC1	50	65	Downlink & Uplink	IM3	2543.300	508660	2519.9

Table 6.2B.3.2.4.1-4: EN-DC combination DC_41A_n41A, intra-band non-contiguous, SCS 60 kHz, 15 kHz NR raster, IM3 test frequencies

Editor's note: The following lines belong at the end of section 6.2B.3.2.4.1. As new tables are added to this section, these lines should always follow the tables.

- 1.1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 1.2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 1.3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 1.4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS 38.521-1[8].
- 1.5. The UL Reference Measurement channels are set according to TS 36.521-1 [10] Annex A.2 and Annex A for LTE link and NR link respectively.
- 1.6. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 1.7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.3.2.4.3.
- 1.8. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same initial condition as in clause 6.2.3.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For initial conditions as in clause 6.2.3.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.

3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Same initial conditions as in clause 6.2.3.4.1 in TS 38.521-1 [8] with the following steps exception:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.2B.3.2.4.2 Test procedure

The test procedure part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

- 1. Sub test: with transmission overlap for all UE's
 - 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to table 6.2B.3.2.4.1-1 on both EN-DC component carriers. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
 - 1.2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
 - 1.3. Measure the mean power over all component carriers for the EN-DC configuration, which shall meet the requirements described in table 6.2B.3.2.5-1. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms).
 - NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2B.3.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-89 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same test procedure as in clause 6.2.3.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2B.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1, with the following exceptions for each network signalled value.

6.2B.3.2.4.3.1 Message contents exceptions (network signalled value "NS_04")

For "NS_04" see A-MPR test case in table 6.2B.3.1.4.3.1-1 and table 6.2B.3.1.4.3.1-2.

6.2B.3.2.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in table 6.2B.3.2.5-1. The allowed A-MPR values specified in table 6.2B.3.2.3-1 are in addition to the allowed MPR requirements specified in clause 6.2B.1.1.3. For the UE maximum output power modified by MPR and/or A-MPR, the power limits specified in table 6.2B.1.1.3-1 apply.

Table 6.2B.3.2.5-1: UE Power Class 3 test requirements for network signalled value "NS_04"

Test ID	Modulation	ΔP _{PowerClass} (dB)	MPR (dB)	A- MPR (dB)	A-MPR _{EN-} DC (dB)	A-MPRc (dB)	ΔTC,c (dB) Note 7	Р _{СМАХ,с} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit	Lower limit
1, 8, 15, 22, 25, 28, 35, 42 and 45	E-UTRA Note 1	0	2	0	6	6	0 (1.5)	17 (15.5)	5 (5)	2 (3.5)	25+TT	12-TT (10.5- TT)
1, 8, 15, 22, 25, 28, 35, 42 and 45	E-UTRA Note 2	0	2	0	11	11	0 (1.5)	12 (10.5)	6 (6)	2 (3.5)	25+TT	6+TT (4.5-TT)
1, 8, 15, 22, 25, 28, 35, 42 and 45	NR, Note 1	0	-	Note 5	6	6	0 (1.5)	17 (15.5)	5 (5)	2 (3.5)	25+TT	12-TT (10.5- TT)
1, 8, 15, 22, 25, 28, 35, 42 and 45	NR, Note 2	0	-	Note 5	11	11	0 (1.5)	12 (10.5)	6 (6)	2 (3.5)	25+TT	6+TT (4.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	E-UTRA Note 1, 3	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	E-UTRA Note 1, 4	0	1	Note 6	9	9	0 (1.5)	14 (12.5)	5 (6)	2 (3.5)	25+TT	9-TT (6.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	E-UTRA Note 2	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6	2 (3.5)	25+TT	3-TT (0.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	NR Note 1, 3	0	-	Note 5	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	NR Note 1, 4	0	-	Note 5	9	9	0 (1.5)	14 (12.5)	5 (6)	2 (3.5)	25+TT	9-TT (6.5-TT)

2, 5, 9, 16, 19, 23, 24, 26, 27, 29, 32, 36, 39, 43, 44, 46, and 47	NR Note 2	0	-	Note 5	11	11	0 (1.5)	9 (7.5)	6 (6)	2 (3.5)	25+TT	3-TT (0.5-TT)
3, 7, 10, 14, 17, 21, 30, 34, 37, 41	E-UTRA Note 1	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
3, 7, 10, 14, 17, 21, 30, 34, 37 and 41	E-UTRA Note 2	0	1	Note 6	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
4, 6, 11, 13, 18, 20, 31, 33,38 and 40	NR Note 1, 3	0	-	Note 5	14	14	0 (1.5)	9 (7.5)	6 (7)	2 (3.5)	25+TT	3-TT (0.5-TT)
4, 6, 11, 13, 18, 20, 31, 33,38 and 40	NR Note 1,4	0	-	Note 5	9	9	0 (1.5)	14 (12.5)	5 (6)	2 (3.5)	25+TT	9-TT (6.5-TT)
4, 6, 11, 13, 18, 20, 31, 33,38 and 40	NR Note 2	0	-	Note 5	14	14	0 (1.5)	9 (7.5)	6 (6)	2 (3.5)	25+TT	3-TT (0.5-TT)
NOTE 2: \ NOTE 3: \ NOTE 4: \ NOTE 5: I	NOTE 1: When $F_{IM3,low_block,low} \ge 2490.5$ MHz (Case A) NOTE 2: When $F_{IM3,low_block,low} < 2490.5$ MHz (Case B) NOTE 3: When NR SCS = 15kHz. NOTE 4: When NR SCS = 30 kHz or 60 kHz. NOTE 5: NR A-MPR values for NS_04 are defined in Table 6.2.3.3.2-1. NOTE 6: E-UTRA A-MPR= 3 dB for 1 RB and fc < 2517.5 MHz, otherwise 0 dB.											

NOTE 7: $\Delta T_{C,c} = 1.5 \text{ dB}$ for transmission bandwidths confined within F_{UL_low} and $F_{UL_low} + 4 \text{ MHz}$ or $F_{UL_high} - 4 \text{ MHz}$ and F_{UL_high} , otherwise 0 dB.

NOTE 8: TT for each frequency and channel bandwidth is specified in Table 6.2B.3.2.5-2.

Table 6.2B.3.2.5-2: Test Tolerance for UE maximum output power (LTE, NR TX seperately)

Uplink TX		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
LTE	BW ≤ 20MHz	0.7	1.0	1.3
NR	BW ≤ 40MHz	0.7 dB	1.0 dB	1.0
	40MHz < BW ≤ 100MHz	1.0 dB	1.0 dB	1.0

6.2B.3.3 UE Additional Maximum Output Power reduction for Inter-Band EN-DC within FR1

Editor's note:

- Future optimization is possible by include this test case with corresponding ACLR test case
- The reason why minimum requirement doesn't specify "sum of output power at each UE antenna connector", as in corresponding MOP test case, needs to be understood.

6.2B.3.3.1 Test purpose

Same test purpose as in clause 6.2.3.1 in TS 38.521-1 [8] for the NR carrier.

6.2B.3.3.2 Test applicability

The requirements of this test apply to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.2B.3.3.3 Minimum conformance requirements

For inter-band EN-DC between E-UTRA and FR1 NR, UE additional maximum output power reduction specified in TS 36.101 [5] and TS 38.101-1 [2] apply for E-UTRA and NR respectively.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.3.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied

6.2B.3.3.4 Test description

Same test description as in clause 6.2.3.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.2.3.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3 with E-UTRA channel bandwidth and test frequencies defined in Table 6.2B.3.3.4-1.
- 3.1. Downlink E-UTRA signals are initially set up according to TS 36.521-1 [10] Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4.1. The E-UTRA UL Reference Measurement channels are set according to Table 6.2B.3.3.4-1.

Step 6 of Initial conditions as in clause 6.2.3.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.2.3.4.2 in TS 38.521-1 [8].

6.2B.3.3.5 Test requirement

Same test requirement as in clause 6.2.2.5 in TS 38.521-1 [8].

6.2B.3.4 UE Additional Maximum Output Power reduction for Inter-Band EN-DC including FR2

Editor's Note: This test case is incomplete. Following aspects are missing or under discussion

- Measurement Uncertainties and Test Tolerances are FFS.
- This test is intended to be covered by Additional Spurious Emissions test case which is currently missing.
- Test configuration table in referenced TS38.521-2 test case is incomplete
- Test requirements in referenced TS38.521-2 test case is incomplete

6.2B.3.4.1 Test purpose

Same test purpose as in clause 6.2.3.1 in TS 38.521-2 [9] for the NR carrier.

6.2B.3.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.2B.3.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.2.2.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.2B.3.4.4 Test description

6.2B.3.4.4.1 Initial conditions

Same test description as in clause 6.2.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.2.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.2.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

6.2B.3.4.4.2 Test procedure

Same test procedure as in clause 6.2.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.2B.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions for each network signalled value.

1. Information element AdditionalSpectrumEmission for NR can be set in *nr-SecondaryCellGroupConfig* according to TS 36.331[15]. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2B.3.4.4.3-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1							
Information Element Value/remark Comment Condition							
AdditionalSpectrumEmission	1 (NS_201)	for band n258					

6.2B.3.4.5 Test requirement

Same test requirement as in clause 6.2.2.5 in TS 38.521-2 [9] for the NR carrier.

6.2B.3.5 UE Additional Maximum Output power reduction for inter-band EN-DC including both FR1 and FR2

6.2B.3.5.1 Test purpose

Same test purpose as in 6.2.3.1 in TS 38.521-1 [8] for NR FR1 carrier and 6.2.3.1 in TS 38.521-2 [9] for NR FR2 carrier.

6.2B.3.5.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 and E-UTRA in conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The NSA requirements for Additional Maximum Output Power apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 6.2B.3.

6.2B.4 Configured Output Power for EN-DC

6.2B.4.1 Configured Output Power Level for EN-DC

- 6.2B.4.1.0 Minimum Conformance Requirements
- 6.2B.4.1.0.1 Configured output power level
- 6.2B.4.1.0.1.1 Intra-band contiguous EN-DC

The following requirements apply for one component carrier per CG configured for synchronous DC.

For intra-band dual connectivity with one uplink serving cell per CG on E-UTRA and NR respectively, the UE is allowed to set its configured maximum output power $P_{CMAX,c(i),i}$ for serving cell c(i) of CG i, i = 1,2, and its total configured maximum transmission power for EN-DC operation \hat{P}_{Total}^{EN-DC} .

The configured maximum output power $P_{CMAX_E-UTRA,c}(p)$ in sub-frame *p* for the configured E-UTRA uplink carrier shall be set within the bounds:

 $P_{\text{CMAX_L_E-UTRA},c}\left(p\right) \leq P_{\text{CMAX_E-UTRA},c}\left(p\right) \leq P_{\text{CMAX H_E-UTRA},c}\left(p\right)$

where $P_{CMAX_{L_{e-UTRA,c}}}$ and $P_{CMAX H_{e-UTRA,c}}$ are the limits for a serving cell *c* as specified in TS 36.101 [4] sub-clause 6.2.5 modified by P_{LTE} as follows:

 $P_{CMAX_L_E-UTRA,c} = MIN \{MIN(P_{EMAX,c}, P_{EMAX, EN-DC}, P_{LTE}) - \Delta t_{c_E-UTRA,c}, (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C_E-UTRA,c} + \Delta T_{ProSe}, P-MPR_c)\}$

 $P_{CMAX H_E-UTRA,c} = MIN \{P_{EMAX,c}, P_{EMAX, EN-DC}, P_{LTE}, P_{PowerClass} - \Delta P_{PowerClass} \}$

- for a UE indicating support of dynamicPowerSharing, the A-MPR_c is determined in accordance with the DCI of serving cell c of the CG 1 and the specification in sub-clause 6.2.4 of [4];
- for a UE not indicating support of dynamicPowerSharing, the A-MPR_c is determined in accordance with subclause 6.2B.3.1 with parameters applicable for UEs not indicating support of dynamicPowerSharing and MPR_c = 0 dB;

The configured maximum output power $P_{CMAX_NR,c}(q)$ in physical channel q for the configured NR carrier shall be set within the bounds:

$$P_{\text{CMAX}_\text{L},\text{f},c,,NR}(q) \leq P_{\text{CMAX},\text{f},c,NR}(q) \leq P_{\text{CMAX}_\text{H},\text{f},c,NR}(q)$$

where $P_{CMAX_L_NR,c}$ and $P_{CMAX H_NR,c}$ are the limits for a serving cell c as specified in sub-clause 6.2.4 of TS 38.101-1 [2] modified by P_{NR} as follows:

$$\begin{split} P_{CMAX_L,f,c,,NR} = MIN \; \{ MIN(P_{EMAX,c} \;, \; P_{EMAX,\; EN\text{-}DC}, \; P_{NR}) - \Delta T_{C_NR,\;c}, \; (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C_NR,\;c} + \Delta T_{RxSRS}, \; P-MPR_c) \; \} \end{split}$$

 $P_{CMAX_H,f,{\it c,NR}} = MIN \ \{ P_{EMAX,c}, P_{EMAX,\ EN-DC}, P_{NR} \ , P_{PowerClass} - \Delta P_{PowerClass} \ \}$

- P_{LTE} and P_{NR} are the linear values for the P_{LTE} and P_{NR} respectively signalled by RRC defined in [7]
- ΔT_{c_E-UTRA, c} = 1.5dB when NOTE 2 in Table 6.2.2-1 in TS 36.101 [4] applies for a serving cell c, otherwise ΔT_{C_E-UTRA,c} = 0dB;

- $\Delta T_{C_NR,c} = 1.5$ dB when NOTE 3 in Table 6.2.1-1 in TS 38.101-1 [2] applies for a serving cell *c*, otherwise $\Delta T_{C_NR,c} = 0$ dB;
- ΔT_{IB,c} specified in sub-clause 6.2.7 for EN-DC, the individual Power Class defined in table 6.2B.1-3 and any other additional power reductions parameters specified in sub-clauses 6.2.3 and 6.2.4 for EN-DC are applicable to P_{CMAX_E-UTRA,c} and P_{CMAX_NR,c} evaluations.
- for a UE indicating support of dynamicPowerSharing, A-MPR_c = A-MPR'_c with A-MPR'_c determined in accordance with sub-clause 6.2B.3.1 and MPR_c = 0 dB if transmission(s) in subframe p on CG 1 overlap in time with physical channel q on CG 2;
- for a UE indicating support of dynamicPowerSharing, A-MPR_c is determined in accordance with [2] if transmission(s) in subframe *p* on CG 1 does not overlap in time with physical channel *q* on CG 2;
- for a UE not indicating support of dynamicPowerSharing, the A-MPR_c is determined in accordance with subclause 6.2B.3.1 with parameters applicable for UEs not indicating support of dynamicPowerSharing and MPR_c = 0 dB;

If the transmissions from NR and E-UTRA do not overlap, then the complete sub-clauses for configured transmitted power for E-UTRA and NR respectively from their own specifications apply with the modifications specified above. The lower value between $P_{PowerClass, EN-DC}$ or $P_{EMAX, EN-DC}$ shall not be exceeded at any time by UE.

If the EN-DC UE is not supporting dynamic power sharing, then the complete sub-clauses for configured transmitted power for E-UTRA and NR respectively from their own specifications TS 36.101 [4] and TS 38.101-1 [2] respectively apply with the modifications specified above.

For UEs indicating support of dynamicPowerSharing in the UE-MRDC-Capability IE the UE can configure the total transmission power within the range

 $P_{\text{EN-DC,tot_L}} \leq P_{\text{EN-DC,tot}} \leq P_{\text{EN-DC,tot_H}}$

where

 $P_{\text{EN-DC,tot}_{L}}(p,q) = MIN\{ P_{\text{PowerClass,EN-DC}} - A-MPR_{\text{tot}}, P_{\text{EMAX,EN-DC}} \}$

 $P_{\text{EN-DC,tot}_H}(p,q) = \text{MIN}\{P_{\text{PowerClass,EN-DC}}, P_{\text{EMAX,EN-DC}}\}$

for sub-frame p on CG 1 overlapping with physical channel q on CG 2 and A-MPR_{tot} in accordance with sub-clause 6.2B.3.1.

The measured total maximum output power P_{UMAX} over both CGs/RATs, measured over the transmission reference time duration is

 $P_{\text{UMAX}} = 10 \log_{10} \left[p_{\text{UMAX}, c, E-\text{UTRA}} + p_{\text{UMAX}, f, c, NR} \right],$

where p_{UMAX,c,E-UTRA} and p_{UMAX,c,NR} denotes the measured output power of serving cell *c* for *E*-UTRA and NR respectively, expressed in linear scale.

For UEs indicating support of dynamicPowerSharing, the measured total configured maximum output power P_{UMAX} shall be within the following bounds:

 $P_{CMAX_L} \text{ -} T_{LOW} \left(P_{CMAX_L} \right) \ \leq \ P_{UMAX} \ \leq \ P_{CMAX_H} + T_{HIGH} \left(P_{CMAX_H} \right)$

with the tolerances $T_{LOW}(P_{CMAX_L})$ and $T_{HIGH}(P_{CMAX_H})$ for applicable values of P_{CMAX_L} and P_{CMAX_L} specified in Table 6.2B.4.1.0.1.1-2.

When an UL subframe transmission p from E-UTRA overlap with a physical channel q from the NR, then for P_{UMAX} evaluation, the E-UTRA subframe p is taken as reference period T_{REF} and always considered as the reference measurement duration and the following rules are applicable.

 T_{REF} and T_{eval} are specified in Table 6.2B.4.1.0.1.1-1 when same or different subframes and physical channel durations are used in aggregated carriers. $P_{PowerClass, EN-DC}$ shall not be exceeded by the UE during any evaluation period of time.

transmission duration	TREF	T _{eval}
Different transmission duration in	LTE Subframe	Min(<i>Tno_hopping</i> , Physical
different RAT carriers		Channel Length)

Table 6.2B.4.1.0.1.1-1: PCMAX evaluation window

For each T_{REF} , the P_{CMAX_H} is evaluated per T_{eval} and given by the maximum value over the transmission(s) within the T_{eval} as follows:

 $P_{CMAX_H} = MAX \{ P_{CMAX_EN-DC_H}(p,q), P_{CMAX_EN-DC_H}(p,q+1), \dots, P_{CMAX_EN-DC_H}(p,q+n) \}$

where $P_{CMAX_EN-DC_H}$ are the applicable upper limits for each overlapping scheduling unit pairs (p,q), (p, q+1), up to (p, q+n) for each applicable T_{eval} duration, where q+n is the last NR UL physical channel overlapping with LTE subframe p.

While P_{CMAX L} is computed as follows:

 $P_{CMAX_L} = MIN \{ P_{CMAX_EN-DC_L}(p,q), P_{CMAX_EN-DC_L}(p,q+1), \dots, P_{CMAX_EN-DC_L}(p,q+n) \}$

where $P_{CMAX_EN-DC_L}$ are the applicable lower limits for each overlapping scheduling unit pairs (p,q), (p, q+1), up to (p, q+n) for each applicable T_{eval} duration, where q+n is the last NR UL physical channel overlapping with LTE subframe p,

With

 $P_{\text{CMAX}_\text{EN-DC}_\text{H}}(p,q) = \text{MIN} \{10 \log_{10} [p_{\text{CMAX} \text{ H}_\text{E-UTRA},c}(p) + p_{\text{CMAX} \text{ H},\text{f},c,NR} c(q)], P_{\text{EMAX},\text{EN-DC}}, P_{\text{PowerClass},\text{EN-DC}} \}$

And:

 $a = 10 \log_{10} \left[p_{CMAX_E-UTRA,c}(p) + p_{CMAX,f,c,NR}(q) \right] > P_{EN-DC,tot_L}$

 $b=10 \log_{10} \left[p_{\text{CMAX}_\text{E-UTRA},c}(p) + p_{\text{CMAX},f,c,NR}(q) / X_\text{scale} \right] > P_{\text{EN-DC},\text{tot}_\text{L}}$

If a = FALSE and the configured transmission power spectral density between the MCG and SCG differs by less than [6] dB

 $P_{CMAX_EN-DC_L}(p,q) = MIN \{10 \log_{10} [p_{CMAX L_E-UTRA,c}(p) + p_{CMAX L,f,c,NR,c}(q)], P_{EMAX,EN-DC}, P_{PowerClass,EN-DC} \}$

ELSE If (a=TRUE) AND (b=FALSE) and the configured transmission power spectral density between the MCG and SCG differs by less than [6] dB

 $P_{CMAX_EN-DC_L}(p,q) = MIN \{10 \log_{10} [p_{CMAX L_E-UTRA,c}(p) + p_{CMAX L_f,c_n,NR,c}(q) / X_scale], P_{EMAX_EN-DC}, P_{PowerClass, EN-DC} \}$

ELSE If b= TRUE or the configured transmission power spectral density between the MCG and SCG differs by more than [6] dB

 $P_{\text{CMAX}_\text{EN-DC}_L}(p,q) = \text{MIN} \{10 \log_{10} [p_{\text{CMAX} L_\text{E-UTRA},c}(p)], P_{\text{EMAX}, \text{EN-DC}}, P_{\text{PowerClass}, \text{EN-DC}} \}$

where

- $p_{CMAX H}$ E-UTRA, c(p) is the E-UTRA higher limit of the maximum configured power expressed in linear scale;
- $p_{CMAX H_NR,c}(q)$ is the NR higher limit of the maximum configured power expressed in linear scale;
- $p_{CMAX L_E-UTRA,c}(p)$ is the E-UTRA lower limit of the maximum configured power expressed in linear scale;
- $p_{CMAX L}$ NR.(q) is the NR lower limit of the maximum configured power expressed in linear scale;
- P_{PowerClass, EN-DC} is defined in sub-clause 6.2B.1.1-1 for intra-band EN-DC;
- X_scale is the linear value of X dB which is configured by RRC and can only take values [0, 6] dB
- p_{CMAX E-UTRA,c}(p) is the linear value of P_{CMAX E-UTRA,c}(p), the real configured max power for LTE
- $p_{CMAX,f,c} NR(q)$ is the linear value of $P_{CMAX,f,c} NR(q)$, the real configured max power of NR

Р _{смах} (dBm)	Tolerance T∟ow (Рсмах_∟) (dB)	Tolerance Тнідн (Рсмах_н) (dB)
$23 \le P_{CMAX} \le 33$	[3.0]	[2.0]
22 ≤ P _{CMAX} < 23	[5.0]	[2.0]
21 ≤ P _{CMAX} < 22	[5.0]	[3.0]
20 ≤ P _{CMAX} < 21	[6.0]	[4.0]
16 ≤ P _{CMAX} < 20	[5.0]
11 ≤ P _{CMAX} < 16	[6.0]	
-40 ≤ P _{CMAX} < 11	[7.0]

Table 6.2B.4.1.0.1.1-2: P_{CMAX} tolerance for Dual Connectivity LTE-NR

If the UE supports dynamic power sharing, and when LTE and NR transmissions overlap and the condition (If (a=TRUE) AND (b=FALSE)) is met, SCG shall be transmitted and the following supplementary minimum requirement apply for the measured SCG power, $P_{\text{UMAX,f,c,NR}}(q)$, under nominal conditions and unless otherwise stated

 $10 \log(p_{\text{CMAX L,f,c,NR}}(q) | X_\text{scale}) - T_{\text{LOW}} (10 \log(p_{\text{CMAX L,f,c,NR}}(q) | X_\text{scale})) \} \leq P_{\text{UMAX,f,c,NR}}(q) \leq 10 \log(p_{\text{CMAX H, f,c,NR}}(q)) + T_{\text{HIGH}} (10 \log(p_{\text{CMAX H, f,c,NR}}(q))).$

with the tolerances T_{LOW} and T_{HIGH} for applicable values of P_{CMAX} specified in Table 6.2B.4.1.0.1.1-2.

If the UE supports dynamic power sharing, the measured maximum output power in subframe p on CG 1, $p_{UMAX,c,E-UTRA}$, shall meet the requirements in subclause 6.2.5 in [4] with the limits $P_{CMAX_L,c}$ and $P_{CMAX_L,c}$ replaced by $P_{CMAX_L,E-UTRA,c}$ and $P_{CMAX_L,E-UTRA,c}$ as specified above, respectively.

If the configured transmission power spectral density between the MCG and SCG differs by more than [6] dB, then

 $P_{\text{UMAX},\text{f},c,NR}(q) \leq 10 \log(p_{\text{CMAX H},\text{f},c,NR}(q)) + T_{\text{HIGH}}(10 \log(p_{\text{CMAX H},\text{f},c,NR}(q))).$

6.2B.4.1.0.1.2 Intra-band non-contiguous EN-DC

< equations for Pcmax >

The following requirements apply for one component carrier per CG configured for synchronous DC. The CG(s) are indexed by j = 1 for MCG and j = 2 for SCG.

The configured maximum output power $P_{CMAX_E-UTRA,c}(p)$ in sub-frame *p* for the configured E-UTRA uplink carrier shall be set in accordance with sub-clause 6.2B.4.1.0.1.1 but where

- for a UE not indicating support of dynamicPowerSharing, the A-MPR_c determined in accordance with subclause 6.2B.3.2 with parameters applicable for UEs not indicating support of dynamicPowerSharing and MPR_c = 0 dB;

The configured maximum output power $P_{CMAX_NR,c}(q)$ in physical channel q for the configured NR carrier shall be set in accordance with sub-clause 6.2B.4.1.0.1.1 but where

- for a UE indicating support of dynamicPowerSharing, A-MPR_c = A-MPR'_c with A-MPR'_c determined in accordance with sub-clause 6.2B.3.2 and MPR_c = 0 dB if transmission(s) in subframe p on CG 1 overlap in time with physical channel q on CG 2;
- for a UE indicating support of dynamicPowerSharing, A-MPR_c is determined in accordance with [2] if transmission(s) in subframe p on CG 1 does not overlap in time with physical channel q on CG 2;
- for a UE not indicating support of dynamicPowerSharing, the A-MPR_c is determined in accordance with subclause 6.2B.3.2 with parameters applicable for UEs not indicating support of dynamicPowerSharing and MPR_c = 0 dB;

For UEs indicating support of dynamicPowerSharing in the *UE-MRDC-Capability IE*, the UE can configure the total transmission power in accordance with sub-clause 6.2B.4.1.0.1.1 but with P_{powerclass,EN-DC} the EN-DC power class of the intra-band non-contiguous band combination configured and A-MPR determined in accordance with sub-clause 6.2B.3.2.

The total maximum output power P_{UMAX} over both CGs is measured in accordance with sub-clause 6.2B.4.1.0.1.1 and shall be within the limits specified in sub-clause 6.2B.4.1.0.1.1 but with parameters applicable for the non-contiguous band combination configured.

The maximum output power levels $p_{UMAX,c,E-UTRA}$ and $p_{UMAX,f,c,NR}$ for the CGs are measured in accordance with subclause 6.2B.4.1.0.1.1 and shall be within the limits specified in sub-clause 6.2B.4.1.0.1.1 but with parameters applicable for the non-contiguous band combination configured.

6.2B.4.1.0.1.3 Inter-band EN-DC within FR1

For inter-band dual connectivity with one uplink serving cell per CG on E-UTRA and NR respectively, the UE is allowed to set its configured maximum output power $P_{CMAX,c(i),i}$ for serving cell c(i) of CG i, i = 1,2, and its total configured maximum transmission power for EN-DC operation, \hat{P}_{Total}^{EN-DC} .

The configured maximum output power $P_{CMAX_E-UTRA,c}(p)$ in sub-frame *p* for the configured E-UTRA uplink carrier shall be set within the bounds:

 $P_{CMAX_{L}_{E}-UTRA,c}(p) \leq P_{CMAX_{E}-UTRA,c}(p) \leq P_{CMAX H_{E}-UTRA,c}(p)$

where $P_{CMAX_L_E-UTRA,c}$ and $P_{CMAX H_E-UTRA,c}$ are the limits for a serving cell *c* as specified in TS 36.101 [4] sub-clause 6.2.5 modified by P_{LTE} as follows:

 $P_{CMAX_L_E-UTRA,c} = MIN \{ P_{EMAX, EN-DC}, (P_{PowerClass, EN-DC} - \Delta P_{PowerClass}), MIN(P_{EMAX,c}, P_{LTE}) - \Delta t_{C_E-UTRA,c}, (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C_E-UTRA,c} + \Delta T_{ProSe}, P-MPR_c) \}$

 $P_{CMAX H_E-UTRA,c} = MIN \{P_{EMAX,c}, P_{EMAX, EN-DC}, (P_{PowerClass, EN-DC} - \Delta P_{PowerClass}), P_{LTE}, P_{PowerClass} - \Delta P_{PowerClass}\}$

The configured maximum output power $P_{CMAX_NR,c}(q)$ in physical-channel q for the configured NR carrier shall be set within the bounds:

$$P_{CMAX_L,f,c,,NR}(q) \leq P_{CMAX,f,c,NR}(q) \leq P_{CMAX_H,f,c,NR}(q)$$

where $P_{CMAX_{L_NR,c}}$ and $P_{CMAX H_NR,c}$ are the limits for a serving cell c as specified in sub-clause 6.2.4 of TS 38.101-1 [2] modified by P_{NR} as follows:

$$\begin{split} P_{CMAX_L,f,c,,NR} = MIN \; \{ \; P_{EMAX,\;EN-DC} \; , \; (P_{PowerClass,\;EN-DC} - \Delta P_{PowerClass} \;), \\ MIN(P_{EMAX,c} \; , \; P_{NR} \;) \; - \; \Delta T_{C_NR,\;c} \; , \; (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MPR_c + A - MPR_c + \Delta T_{IB,c} + \Delta T_{C_NR,\;c} + \Delta T_{RxSRS} \; , \; P - MPR_c) \; \} \end{split}$$

 $P_{CMAX_H,f,c,NR} = MIN \{ P_{EMAX,c}, P_{EMAX,EN-DC} , (P_{PowerClass,EN-DC} - \Delta P_{PowerClass}), P_{NR} , P_{PowerClass} - \Delta P_{PowerClass} \}$

- P_{LTE} signalled by RRC as p-MaxEUTRA in [36.331]
- P_{NR} signalled by RRC as p-NR-FR1 defined in [38.331]
- ΔT_{c_E-UTRA, c} = 1.5dB when NOTE 2 in Table 6.2.2-1 in TS 36.101 [4] applies for a serving cell c, otherwise ΔT_{C_E-UTRA,c} = 0dB;
- $\Delta T_{C_NR,c} = 1.5$ dB when NOTE 3 in Table 6.2.1-1 in TS 38.101-1 [2] applies for a serving cell *c*, otherwise $\Delta T_{C_NR,c} = 0$ dB;
- ΔT_{IB,c} specified in sub-clause 6.2.7 for EN-DC, the individual Power Class defined in table 6.2B.1-3 and any other additional power reductions parameters specified in sub-clauses 6.2.3 and 6.2.4 for EN-DC are applicable to P_{CMAX_E-UTRA,c} and P_{CMAX_NR,c} evaluations.

If the transmissions from NR and E-UTRA do not overlap, then the complete sub-clauses for configured transmitted power for E-UTRA and NR respectively from their own specifications apply with the modifications specified above. The lower value between $P_{PowerClass, EN-DC}$ or $P_{EMAX, EN-DC}$ shall not be exceeded at any time by UE.

The total configured maximum transmission power for both synchronous and non-synchronous operation is

 $P_EN-DC_Total = MIN \{ P_{EMAX, EN-DC}, P_{PowerClass, EN-DC} - \Delta P_{PowerClass} \}$

P_EN-DC_Total is the dB value of \hat{P}_{Total}^{EN-DC} , which is used in [38.213] and P_{EMAX, EN-DC} is p-maxUE-FR1-r15 value signalled by RRC and defined in [36.331];

If the UE does not support dynamic power sharing,

 $P_EN-DC_Total = MIN \{ P_{EMAX, EN-DC}, P_{PowerClass, EN-DC} \} + 0.3 dB$

If the EN-DC UE does not support dynamic power sharing, then the complete sub-clauses for configured transmitted power for E-UTRA and NR respectively from their own specifications TS 36.101 [4] and TS 38.101-1 [2] respectively apply with the modifications specified above and P_EN-DC_Total applies.

When a UE supporting dynamic sharing is configured for overlapping E-UTRA uplink and NR uplink transmissions, the UE can set its configured maximum output power $P_{CMAX_E-UTRA,c}$ and $P_{CMAX_NR,c}$ for the configured E-UTRA and NR uplink carriers, respectively, and its configured maximum transmission power for EN-DC operation, \hat{P}_{Total}^{EN-DC} , as specified above.

The measured total maximum output power P_{UMAX} over both CGs/RATs, measured over the transmission reference time duration is

 $P_{\text{UMAX}} = 10 \log_{10} \left[p_{\text{UMAX},c,E-UTRA} + p_{\text{UMAX},c,NR} \right],$

where p_{UMAX,c,E-UTRA} and p_{UMAX,c,NR} denotes the measured output power of serving cell *c* for *E*-UTRA and NR respectively, expressed in linear scale.

The measured total configured maximum output power P_{UMAX} shall be within the following bounds:

$$P_{CMAX_L}$$
 - T_{LOW} (P_{CMAX_L}) $\leq P_{UMAX} \leq P_{CMAX_H} + T_{HIGH}$ (P_{CMAX_H})

with the tolerances $T_{LOW}(P_{CMAX_H})$ and $T_{HIGH}(P_{CMAX_H})$ for applicable values of P_{CMAX} specified in Table 6.2B.4.1.0.1.3-2.

When an UL subframe transmission p from E-UTRA overlap with a physical-channel q from the NR, then for P_{UMAX} evaluation, the E-UTRA subframe p is taken as reference period T_{REF} and always considered as the reference measurement duration and the following rules are applicable.

 T_{REF} and T_{eval} are specified in Table 6.2B.4.1.0.1.3-1 when same or different subframe and physical-channel durations are used in aggregated carriers. $P_{PowerClass, EN-DC}$ shall not be exceeded by the UE during any evaluation period of time.

Table 6.2B.4.1.0.1.3-1: P_{CMAX} evaluation window

Ī	transmission duration	T _{REF}	T _{eval}
	Different transmission duration in different RAT carriers	LTE Subframe	Min(<i>T_{no_hopping}</i> , Physical Channel Length)

For each T_{REF} , the P_{CMAX_H} is evaluated per T_{eval} and given by the maximum value over the transmission(s) within the T_{eval} as follows:

 $P_{CMAX_{H}} = MAX \{ P_{CMAX_{EN-DC_{H}}}(p,q), P_{CMAX_{EN-DC_{H}}}(p,q+1), \dots, P_{CMAX_{EN-DC_{H}}}(p,q+n) \}$

where $P_{CMAX_EN-DC_H}$ are the applicable upper limits for each overlapping scheduling unit pairs (p,q), (p, q+1), up to (p, q+n) for each applicable T_{eval} duration, where q+n is the last NR UL physical-channel overlapping with LTE subframe p.

While P_{CMAX_L} is computed as follows:

 $P_{CMAX_L} = MIN \{ P_{CMAX_EN-DC_L}(p,q), P_{CMAX_EN-DC_L}(p,q+1), \dots, P_{CMAX_EN-DC_L}(p,q+n) \}$

where $P_{CMAX_EN-DC_L}$ are the applicable lower limits for each overlapping scheduling unit pairs (p,q), (p, q+1), up to (p, q+n) for each applicable T_{eval} duration, where q+n is the last NR UL physical-channel overlapping with LTE subframe p,

With

```
P_{CMAX}_{EN-DC}(p,q) = MIN \{10 \log_{10} [p_{CMAX} H_{E-UTRA,c}(p) + p_{CMAX} H, f, c, NR c(q)], P_{EMAX}, EN-DC, P_{PowerClass}, EN-DC \}
```

And:

a= 10 log₁₀ [$p_{CMAX_E-UTRA,c}(p) + p_{CMAX,f,c,NR}(q)$] > P_EN-DC_Total

 $b=10 \log_{10} \left[p_{CMAX_E-UTRA,c}(p) + p_{CMAX,f,c,NR}(q) / X_scale \right] > P_EN-DC_Total$

If a= FALSE

 $P_{CMAX_EN-DC_L}(p,q) = MIN \{10 \log_{10} [p_{CMAX L_E-UTRA,c}(p) + p_{CMAX L,f,c,,NR c}(q)], P_{EMAX,EN-DC}, P_{PowerClass,EN-DC}\}$ ELSE If (a=TRUE) AND (b=FALSE)

 $P_{CMAX_EN-DC_L}(p,q) = MIN \{10 \log_{10} [p_{CMAX L_E-UTRA,c}(p) + p_{CMAX L,f,c,,NR c}(q) / X_scale], P_{EMAX, EN-DC}, P_{PowerClass, EN-DC} \}$ ELSE If b= TRUE

 $P_{CMAX_EN-DC_L}(p,q) = MIN \{10 \log_{10} [p_{CMAX L_E-UTRA,c}(p)], P_{EMAX,EN-DC}, P_{PowerClass,EN-DC} \}$

where

- p_{CMAX H_E-UTRA,c}(p) is the E-UTRA higher limit of the maximum configured power expressed in linear scale;
- $p_{CMAX H_NR,c}(q)$ is the NR higher limit of the maximum configured power expressed in linear scale;
- $p_{CMAX L_E-UTRA,c}(p)$ is the E-UTRA lower limit of the maximum configured power expressed in linear scale;
- $p_{CMAX L_NR,c}(q)$ is the NR lower limit of the maximum configured power expressed in linear scale;
- P_{PowerClass, EN-DC} is defined in sub-clause 6.2B.1.3-1 for inter-band EN-DC;
- X_scale is the linear value of X dB which is configured by RRC and can only take values [0, 6]
- p_{CMAX_E-UTRA,c}(p) is the linear value of P_{CMAX_E-UTRA,c}(p), the real configured max power for LTE
- $p_{CMAX,f,c,NR}(q)$ is the linear value of $P_{CMAX,f,c,NR}(q)$, the real configured max power of NR

Table 6.2B.4.1.0.1.3-2: P_{CMAX} tolerance for Dual Connectivity LTE-NR

P _{CMAX} (dBm)	Tolerance TLow (Рсмах_L) (dB)	Tolerance Тнідн (Рсмах_н) (dB)
23 ≤ P _{CMAX} ≤ 33	[3.0]	[2.0]
$22 \le P_{CMAX} < 23$	[5.0]	[2.0]
21 ≤ P _{CMAX} < 22	[5.0]	[3.0]
20 ≤ P _{CMAX} < 21	[6.0]	[4.0]
16 ≤ P _{CMAX} < 20	[5.0]	
11 ≤ P _{CMAX} < 16	[6.0]	
-40 ≤ P _{CMAX} < 11	[7.0]	
NOTE 1: For UEs not indicating support of dynamic power sharing, the upper tolerance T _{high} shall be reduced by 0.3 dB for P ≥ 20 dBm.		

When LTE and NR transmissions overlap and the condition (If (a=TRUE) AND (b=FALSE)) is met, SCG shall be transmitted and the following supplementary minimum requirement apply for the measured SCG power, $P_{UMAX,f,c,NR}(q)$, under nominal conditions.

 $10 \log(p_{\text{CMAX L,f,c,NR }c}(q) | X_\text{scale}) - T_{\text{LOW}} (10 \log(p_{\text{CMAX L,f,c,NR }c}(q) | X_\text{scale})) \} \leq P_{\text{UMAX,f,c,NR}}(q) \leq 10 \log(p_{\text{CMAX H, f,c,NR }c}(q)) + T_{\text{HIGH}} (10 \log(p_{\text{CMAX H, f,c,NR }c}(q))).$

with the tolerances T_{LOW} and T_{HIGH} for applicable values of P_{CMAX} specified in Table 6.2B.4.1.0.1.3-2.

6.2B.4.1.0.1.4 Inter-band EN-DC including FR2

For inter-band dual connectivity with one uplink serving cell per CG on E-UTRA and NR respectively, with NR configured in FR2, the UE is allowed to set its configured maximum output power PCMAX,c(i), i for serving cell c(i) of CG i, i = 1,2.

The UE maximum configured power PCMAX,c(i), on E-UTRA for the subframe i shall be set according to subclause 6.2.5 from TS 36.101 [4]. Applicable inter-band Δ TIB,c parameters shall be used according to the subclauses 6.2B.4.1.0.2.4 or 6.2B.4.1.0.2.5.

The UE maximum configured power PCMAX,c(j), on NR for the slot j shall be set according to subclause 6.2.4 from TS 38.101-2 [3].

For the configured power measurements TS 36.101 [4] subclause 6.2.5 and TS 38.101-2 [3] subclause 6.2.4 are applicable.

6.2B.4.1.0.1.5 Inter-band EN-DC including both FR1 and FR2

< equations for Pcmax >

6.2B.4.1.0.2 ΔT_{IB,c} for EN-DC

For the UE which supports inter-band EN-DC configuration, $\Delta T_{IB,c}$ in Tables below applies where unless otherwise stated, the same $\Delta T_{IB,c}$ is applicable to NR band(s) part for DC configurations which have the same NR operating band combination. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

6.2B.4.1.0.2.1 Intra-band contiguous EN-DC

 $\Delta T_{IB,c}$ is not applicable for intra-band contiguous EN-DC.

6.2B.4.1.0.2.2 Intra-band non-contiguous EN-DC

 $\Delta T_{IB,c}$ is not applicable for intra-band non-contiguous EN-DC.

- 6.2B.4.1.0.2.3 Inter-band EN-DC within FR1
- 6.2B.4.1.0.2.3.1 $\Delta T_{IB,c}$ for EN-DC two bands

Table 6.2B.4.1.0.2.3.1-1: $\Delta T_{IB,c}$ due to EN-DC(two bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_1_n28 -		0.3
00_1_120	n28	0.6
DC_1_n40	1	0.5
	n40 1	0.5 0.6
DC_1_n51	n51	0.6
DC_1_n77 -	1	0.6
DC_1_117	n77	0.8
DC_1_n78	1	0.3
	n78 2	0.8 0.3
DC_2_n5	n5	0.3
	2	0.5
DC_2_n66	n66	0.5
DC_2_n71	2	0.3
		0.3
DC_2_n78	n78	0.6 0.8
	3	0.5
DC_3_n7	n7	0.5
DC_3_n28 -	3	0.3
DC_5_1120	n28	0.3
DC_3_n40	3	0.5
	n40 3	0.5 0.3
DC_3_n51		0.3
	3	0.6
DC_3_n77	n77	0.8
DC_3_n78	3	0.6
	n78	0.8
DC_5_n40	5	0.3
	n40 5	0.3 0.3
DC_5_n66		0.3
DC 5 x78	5	0.6
DC_5_n78	n78	0.8
DC_7_n28	7	0.3
	n28	0.3
DC_7_n51	7 n51	0.3 0.3
	7	0.5
DC_7_n78	n78	0.8
DC_8_n40 -	8	0.3
	n40	0.3
DC_8_n77	8	0.6
	n77 8	0.8 0.6
DC_8_n78	8 	0.8
50.44.77	11	0.4
DC_11_n77	n77	0.8
DC_11_n78	11	0.4
20_11_11/0	n78	0.8
DC_12_n5	12	0.4
	n5 12	0.8 0.8
DC_12_n66	n66	0.3
DC 40 = 77	18	0.3
DC_18_n77	n77	0.8
DC_18_n78 -	18	0.3
20_10_110	n78	0.8
DC_19_n77	19	0.3
 DC_19_n78	n77 19	0.8 0.3
00_13_11/0	13	0.3

nter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	n78	0.8
DC_20_n8	20	0.4
DC_20_16	n8	0.4
DC_20_n28	20	0.5
DC_20_1120	n28	0.5
DC_20_n51	20	0.5
DC_20_1151	n51	0.5
DC_20_n77	20	0.6
D0_20_1171	n77	0.8
DC_20_n78	20	0.6
D0_20_1170	n78	0.8
DC_21_n77	21	0.4
00_21_111	n77	0.8
-	21	0.4
DC_21_n78	n78	0.8
	n77	0.8
-	25	0.5
DC_25_n41	n41	0.31
		0.8 ²
DC_26_n41	26	0.3
DO_20_1141	n41	0.3
DC_26_n77	26	0.3
D0_20_111	n77	0.8
DC_26_n78	26	0.3
00_20_1110	n78	0.8
DC_28_n51	28	0.5
D0_20_101	n51	0.5
DC_28_n77	28	0.5
50_20_111	n77	0.8
DC_28_n78	28	0.5
50_20_1110	n78	0.8
DC_30_n5	30	0.3
20_000	n5	0.3
DC_30_n66	30	0.5
	n66	0.8
DC_38_n78	n78	0.5
DC_39_n78	39	0.3
	n78	0.8
DC_39_n79	39	0.3
	n79	0.8
DC_40_n77	n77	0.5
DC_41_n77	41	0.3
	n77	0.8
DC_41_n78	41	0.3
·_··· -	n78	0.8
DC_41_n79	41	0.3
· · _ · · _ · · · •	n79	0.8
DC_42_n51	42	0.6
	n51	0.8
DC_66_n5	66	0.3
20_00_00	n5	0.3
DC_66_n71	66	0.3
50_00_m	n71	0.3
DC_66_n78	66	0.6
DO_00_00	n78	0.8

6.2B.4.1.0.2.3.2 $\Delta T_{IB,c}$ for EN-DC three bands

Table 6.2B.4.1.0.2.3.2-1: $\Delta T_{IB,c}$ due to EN-DC (three bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.3
DC_1-3_n28	3	0.3
	n28	0.6
	1	0.6
DC_1-3_n77	3	0.6
	n77	0.8
DC_1-3_n78	3	0.6
DC_1-5_1176		0.8
	1	0.3
DC_1-3_n79	3	0.3
	1	0.3
DC_1-5_n78	5	0.6
	n78	0.8
	1	0.5
DC_1-7_n28	7	0.6
	n28	0.6
	1	0.6
DC_1-7_n78	7 n78	0.6
	1	0.8
DC_1-7-7_n78	7	0.6
	n78	0.8
	1	0.3
DC_1-8_n78	8	0.6
	n78	0.8
	1	0.3
DC_1-1A_n77	18	0.3
	n77	0.8
DC 4 40 +70	1	0.3
DC_1-18_n78	18 n78	0.3
	1	0.8
	19	0.3
	n77	0.8
	1	0.3
DC_1-19_n78	19	0.3
	n78	0.8
DC_1-19_n79	1	0.3
	19	0.3
DC 4 00 #00	1	0.3
DC_1-20_n28	20 N28	0.6
	1	0.3
DC_1-20_n78	20	0.3
	n78	0.8
	1	0.3
DC_1-21_n77	21	0.3
	n77	0.8
	1	0.6
DC_1-21_n78	21	0.4
		0.8
DC_1-21_n79	21	0.3
	1	0.5
DC_1-41_n77	41	0.5
	n77	0.8
	1	0.5
DC_1-41_n78	41	0.5
	n78	0.8
DC_1-41_n79	1	0.5
	41	0.5
DC_1-28_n77	1	0.3

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	28	0.6
	n77	0.8
	1	0.3
DC_1-28_n78	28	0.6
		0.8
	1	0.3
DC_1_n28-n78	n28	0.6
	n78 1	0.8
DC_1_n28-n79	28	0.3
	1	0.6
DC_1-42_n77	42	0.8
	n77	0.8
	1	0.3
DC_1-42_n78	42	0.8
	n78	0.8
DO 1 10 x 70	1	0.3
DC_1-42_n79	42	0.8
	1	0.3
DC_1_SUL_n78-n84	n78	0.8
	n84	0.3
	1	0.6
DC_1_n77-n79	n77	0.8
	n79	0
	1	0.3
DC_1_n78-n79	n78	0.8
	n79	0.5
	2	0.3
DC_2-(n)71	71	0.3
	<u>n71</u>	
	2 5	0.5
DC_2-5_n66		0.3 0.5
	n66 2	0.5
DC_2-30_n66	30	0.3
		0.5
	2	0.5
DC_2-66_n71	66	0.5
	n71	0.3
	3	0.6
DC_3_n3-n77	n3	0.6
	n77	0.8
	3	0.6
DC_3_n3-n78	n3	0.6
	n78	0.8
	3	0.6
DC_3-5_n78	5	0.6
	n78	0.8
	3	0.5
DC_3-7_n28	7	0.5
	n28	0.3
DC_3-7_n78, DC_3-7-	3	0.6
7_n78	7	0.6
	n78	0.8
	3	0.6
DC_3-8_n78	8	0.6
	n78	0.8
	3	0.6
DC_3-19_n77	19	0.3
	n77	0.8
DC_3-19_n78	3	0.6 0.3
	19	03

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_3-19_n79	3	0.3
	19	0.3
	3	0.3
DC_3-20_n28	20	0.5
	n28 3	0.5
DC_3-20_n78	20	0.3
	n78	0.8
	3	0.8
DC_3-21_n77	21	0.9
	n77	0.8
	3	0.8
DC_3-21_n78	21	0.9
	n78	0.8
DC_3-21_n79	3	0.8
	21	0.9
	3 28	0.5 0.3
DC_3-28_n78	28 n78	0.3
	3	0.5
DC_3_n28-n78		0.3
	n78	0.8
	3	0.6
DC_3-38_n78	n78	0.8
	3	0.6
DC_3-41_n78	41	0.31
DC_3-41_11/8		0.82
	n78	0.8
	3	0.6
DC_3-42_n77	42	0.8
	n787	0.8
DC_3-42_n78	<u>3</u> 42	0.6
DC_3-42_11/8	n78	0.8
	3	0.6
DC_3-42_n79	42	0.8
	3	0.6
DC_3_n77-n79	n77	0.8
	n79	0
	3	0.6
DC_3_n78-n79	n78	0.8
	n79	0.5
	3	0.6
DC_3_SUL_n78-n80	n78	0.8
	n80	0.6
DC_3_SUL_n78-n82	3 n78	0.8
		0.3
	5	0.6
DC_5-7_n78, DC_5-7-	7	0.6
7_n78	n78	0.8
	5	0.3
DC_5_30_n66	30	0.3
	n66	0.5
DC_7-7_n78	7	0.5
	n78	0.8
	7	0.3
	00	
DC_7-20_n28	20	0.6
DC_7-20_n28	n28	0.6
	n28 7	0.6 0.3
DC_7-20_n28	n28	0.6

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	28	0.3
	n78	0.8
	7	0.3
DC_7_n28-n78	n28	0.3
	n78	0.8
DC_7-46_n78	7	0.5
202	n78	0.8
	8	0.6
DC_8_SUL_n78- n81	n78	0.8
		0.6
DC 18 28 p77	18	0.5
DC_18-28_n77	28 n77	0.5
DC_18-28_n78	18 28	0.5
DC_18-28_11/8	n78	0.5
	18	0.5
DC_18-28_n79	28	0.5
	19	0.3
DC_19-21_n77	21	0.3
		0.8
	19	0.3
DC_19-21_n78	21	0.4
	n78	0.8
	19	0.3
DC_19-21_n79	21	0.4
	19	0.3
DC_19-42_n77	42	0.8
	n77	0.8
	19	0.3
DC_19-42_n78	42	0.8
	n78	0.8
DO 10 10 70	19	0.3
DC_19-42_n79	42	0.8
	19	0.3
DC_19_n77-n79	n77	0.8
	n79	0
	19	0.3
DC_19_n78-n79	n78	0.8
	n79	0.5
DC_20_n8-n75	20	0.4
00_20_110-1179	n8	0.4
DC_20_n28-n75	20	0.5
20_20_n20 m0	n28	0.7
	20	0.6
DC_20_n28-n78	n28	0.6
	n78	0.8
DC_20_n75-n78	20	0.5
	n78	0.8
DC_20_n76-n78	20	0.5
	n78	0.8
	20	0.6
DC_20_SUL_n78-n82		0.8
		0.6
	20	0.8
DC_20_SUL_n78-n83	n78	0.8
		0.8
	21	0.4
DC_21-42_n77	42	0.8
		0.8
	21 42	0.4
DC_21-42_n78	42	0.8

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_21-42_n79	21	0.4
DC_21-42_1179	42	0.8
	21	0.4
DC_21_n77-n79	n77	0.8
	n79	0
	21	0.4
DC_21_n78-n79	n78	0.8
	n79	0.5
	28	0.5
DC_28-42_n77	42	0.8
	n77	0.8
	28	0.5
DC_28-42_n78	42	0.8
	n78	0.8
DC_28-42_n79	28	0.5
	42	0.8
	28	0.5
DC_28_SUL_n78-n83	n78	0.8
	n83	0.5
	41	0.5
DC_41-42_n77	42	0.8
	n77	0.8
	41	0.5
DC_41-42_n78	42	0.8
	n78	0.8
DC_41-42_n79	41	0.
	42	0.8
DC_41_n77	41	0.3
	n77	0.8
DC_41_n78	41	0.3
	n78	0.8
DC_41_n79	41	0.3
	n79	0.8
	66	0.3
DC_66_(n)71	71	0.3
	n71	0.3
	66	0.6
DC_66_SUL_n78-n86	n78	0.8
	n86	0.6
2690MHz.	s applied for UE transmitting on the t	

6.2B.4.1.0.2.3.3 $\Delta T_{IB,c}$ for EN-DC four bands

Table 6.2B.4.1.0.2.3.3-1: $\Delta T_{IB,c}$ due to EN-DC(four bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
.	1	0.6
	3	0.6
DC_1-3-5_n78	5	0.3
Γ	n78	0.8
	1	0.6
DC 1 2 7 p29	3	0.6
DC_1-3-7_n28	7	0.6
	n28	0.6
	1	0.7
DC_1-3-7_n78	3	0.7
DC_1-3-7-7_n78	7	0.7
	n78	0.8
	1	0.6
	3	0.6
DC_1-3-8_n78	8	0.6
	n78	0.8
	1	0.6
	3	0.6
DC_1-3-28_n77	28	0.6
F	n77	0.8
	1	0.6
	3	0.6
DC_1-3-28_n78	28	0.6
	n78	0.8
	1	0.6
	3	0.6
DC_1-3_n28-n78	n28	0.6
	n78	0.8
	1	0.6
DC 1 2 28 p70	3	0.6
DC_1-3-28_n79		
	28	0.6
-	1 3	0.6
DC_1-3-19_n78	19	0.8
-		
	n78	0.8
	1	0.3
DC_1-3-19_n79	3	0.3
	19	0.3
_	1	0.3
DC_1-3-20_n28	3	0.3
	20	0.6
	n28	0.6
Ļ	1	0.6
DC_1-3-20_n78	3	0.6
0	20	0.3
	n78	0.8
	1	0.6
DC_1-3-21_n77	3	0.8
	21	0.9
	n77	0.8
	1	0.6
DC_1-3-21_n78	3	0.8
00_1-0-21_11/0	21	0.9
	n78	0.8
	1	0.3
DC_1-3-21_n79	3	0.8
Ē	21	0.9
	1	0.6
	3	0.6
DC_1-3-42_n77	42	0.8
F	n77	0.8
DC_1-3-42_n78	1	0.6

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	42	0.8
	n78	0.8
	1	0.6
DC_1-3-42_n79	3	0.6
	42	0.8
	1	0.6
DC_1-5-7_n78	5	0.6
DC_1-5-7-7_n78	7	0.6
	n78	0.8
	1	0.5
DC_1-7-20_n28	7	0.6
00_1720_120	20	0.6
	n28	0.6
	1	0.6
DC_1-7-20_n78	7	0.7
DO_1-7-20_1170	20	0.4
	n78	0.8
	1	0.6
DC 17 p28 p78	7	0.6
DC_1-7_n28-n78	n28	0.6
Ē	n78	0.8
	1	0.3
DC 1 10 00 = 77	18	0.5
DC_1-18-28_n77	28	0.5
	n77	0.8
	1	0.3
	18	0.5
DC_1-18-28_n78	28	0.5
	n78	0.8
	1	0.3
DC_1-18-28_n79	18	0.5
00_11020_1110	28	0.5
	1	0.6
	19	0.3
DC_1-19-42_n77	42	0.8
	n77	0.8
	1	0.3
	19	0.3
DC_1-19-42_n78	42	0.8
-	n78	0.8
	1	0.3
DC 1 10 42 p70	19	0.3
DC_1-19-42_n79		
	42	0.8
4	1	0.3
DC_1-20_n28-n78	20	0.6
4	n28	0.6
		0.8
4	1	0.6
DC_1-21-28_n77	21	0.4
	28	0.6
	n77	0.8
Let a la construction de	1	0.3
DC_1-21-28_n78	21	0.4
	28	0.6
	n78	0.8
	1	0.3
DC_1-21-28_n79	21	0.4
	28	0.6
	1	0.6
DC_1-21-42_n77	21	0.4
	42	0.8
	n77	0.8
DC_1-21-42_n78	1	0.3

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
~	21	0.4
	42	0.8
	n78	0.8
	1	0.3
DC_1-21-42_n79	21	0.4
	42	0.8
	1	0.6
DC_1-28-42_n77	28	0.6
	42	0.8
DC_1-28-42_n78	n77	0.8
	1	0.3
	28	0.6
	42	0.8
	n78	0.8
DC_1-28-42_n79	1	0.3
	28	0.6
	42	0.8
	1	0.5
DC_1-41-42_n77	41	0.5
	42	0.8
	1	0.8
	41	0.5
DC_1-41-42_n78	41 42	
		0.8
	n78	0.8
	41	0.5 0.5
DC_1-41-42_n79		
	42	0.8 0.5
		0.5
DC_2-66-(n)71	66	0.5
	71 n71	0.3
	3	0.6
DC_3-5-7_n78, DC_3-5-	5	0.6
	7	0.6
/-/_I//0	n78	0.8
	3	0.5
	7	0.5
DC_3-7-20_n28	20	0.6
	n28	0.5
	3	0.6
DC_3-7-20_n78	7	0.6
	20	0.3
le l		0.8
	3	0.6
DC_3-7-28_n78	7	0.6
	28	0.6
	n78	0.8
DC_3-7_n28-n78	3	0.6
	7	0.6
	n28	0.6
	n78	0.8
	3	0.8
DC_3-19-21_n77	19	0.3
	21	0.9
	n77	0.8
	3	0.8
DC_3-19-21_n78	19	0.3
	21	0.9
	n78	0.8
DC_3-19-21_n79	3	0.8
	19	0.3
	21	0.9
	L I	0.0

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_3-19-42_n77	3	0.6
	19	0.3
	42	0.8
	n77	0.8
DC_3-19-42_n78	3	0.6
	19	0.3
	42	0.8
	n78	0.8
	3	0.6
DC_3-19-42_n79	19	0.3
	42	0.8
	3	0.6
DC_3-20_n28-n78	20	0.6
	n28	0.6
	n78	0.8
_	3	0.6
	28	0.5
DC_3-28-42_n77	42	0.8
	n77	0.8
	3	0.6
	28	0.5
DC_3-28-42_n78	42	0.8
-		
	n78	0.8
DC_3-28-42_n79	3	0.6
	28	0.5
	42	0.8
	3	0.8
DC_3-21-42_n77	21	0.9
00_021 12_117	42	0.8
	n77	0.8
	3	0.8
DC_3-21-42_n78	21	0.9
	42	0.8
	n78	0.8
	3	0.8
DC_3-21-42_n79	21	0.9
	42	0.8
	7	0.3
	20	0.6
DC_7-20_n28-n78	n28	0.6
	n78	0.8
	19	0.3
DC_19-21-42_n77	21	0.4
	42	0.8
	n77	0.8
	19	0.3
	21	0.4
DC_19-21-42_n78	42	0.4
	n78	0.8
		0.8
	19	
DC_19-21-42_n79	21	0.4
	42	0.8
4	21	0.4
DC_21-28-42_n77	28	0.5
	42	0.8
	n77	0.8
DC_21-28-42_n78	21	0.4
	28	0.5
	42	0.8
	n78	0.8
DC_21-28-42_n79	21	0.4
	28	0.5
	42	0.8

6.2B.4.1.0.2.3.4 $\Delta T_{IB,c}$ for EN-DC five bands

Table 6.2B.4.1.0.2.3.4-1: $\Delta T_{IB,c}$ due to EN-DC (five bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.6
DC_1-3-5-7_n78, DC_1-3-5-7-7_n78	3	0.6
	5	0.6
	7	0.6
	n78	0.8
	1	0.6
	3	0.6
DC_1-3-7-20_n28	7	0.6
	20	0.6
	n28	0.6
	1	0.6
	3	0.6
DC_1-3-7-20_n78	7	0.6
	20	0.6
	n78	0.6
	1	0.7
	3	0.7
DC_1-3-7_n28-n78	7	0.7
	n28	0.6
	n78	0.8
	1	0.6
	3	0.8
DC_1-3-19-21_n77	19	0.3
	21	0.9
	n77	0.8
	1	0.6
	3	0.8
DC_1-3-19-21_n78	19	0.3
00_101021_110	21	0.9
	n78	0.8
	1	0.3
	3	0.8
DC_1-3-19-21_n79	19	0.8
	21	0.3
	1	
		0.6
	3	0.6
DC_1-3-19-42_n77	19	0.3
	42	0.8
	n77	0.8
	1	0.6
	3	0.6
DC_1-3-19-42_n78	19	0.3
	42	0.8
	n78	0.8
	1	0.6
DC_1-3-19-42_n79	3	0.6
	19	0.3
	42	0.8
	1	0.6
	3	0.6
DC_1-3-20_n28-n78	20	0.6
	n28	0.6
	n78	0.8
	1	0.6
	3	0.8
DC_1-3-21-42_n77	21	0.9
	42	0.8
	n77	0.6
		0.0

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.6
DC_1-3-21-42_n78	3	0.8
	21	0.9
	42	0.8
	n78	0.6
	1	0.6
	3	0.8
DC_1-3-21-42_n79	21	0.9
	42	0.8
	n79	0
	1	0.6
	3	0.6
DC_1-3-28-42_n77	28	0.6
	42	0.8
	n77	0.8
	1	0.6
	3	0.6
DC_1-3-28-42_n78	28	0.6
	42	0.8
	n78	0.8
	1	0.6
DC_1-3-28-42_n79	3	0.6
	28	0.6
	42	0.8
	1	0.6
	7	0.7
DC_1-7-20_n28-n78	20	0.6
	n28	0.6
	n78	0.8
	1	0.3
	19	0.3
DC_1-19-21-42_n77	21	0.4
	42	0.8
	n77	0.8
	1	0.3
	19	0.3
DC_1-19-21-42_n78	21	0.4
	42	0.8
	n78	0.8
	1	0.3
DC_1-19-21-42_n79	19	0.3
	21	0.4
	42	0.8
	1	0.6
	21	0.4
DC_1-21-28-42_n77	28	0.6
	42	0.8
	n77	0.8
	1	0.3
	21	0.4
DC_1-21-28-42_n78	28	0.6
	42	0.8
	n78	0.8
	1	0.3
DC_1-21-28-42_n79	21	0.4
_	28	0.6
	42	0.8
DC_3-7-20_n28-n78	3	0.6

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	7	0.6
	20	0.6
	n28	0.6
	n78	0.8

6.2B.4.1.0.2.3.5 $\Delta T_{IB,c}$ for EN-DC six bands

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.7
	3	0.7
	7	0.7
DC_1-3-7-20_n28-n78	20	0.6
-	n28	0.6
	n78	0.8

6.2B.4.1.0.2.4 Inter-band EN-DC including FR2

6.2B.4.1.0.2.4.1 $\Delta T_{IB,c}$ for EN-DC two bands

Unless otherwise stated, $\Delta T_{IB,c}$ for E-UTRA and FR2 NR bands of inter-band EN-DC combinations defined in table 5.2B.5.1-1 is set to zero.

Table 6.2B.4.1.0.2.4.1-1: ΔT_{IB,c} due to EN-DC(two bands)

FFS

6.2B.4.1.0.2.4.2 $\Delta T_{IB,c}$ for EN-DC three bands

Unless otherwise stated, $\Delta T_{IB,c}$ for FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA bands for inter-band EN-DC defined in table 5.2B.5.2-1 is the same as those for the corresponding E-UTRA CA configuration specified in TS 36.101 [4], without the FR2 NR bands.

Table 6.2B.4.1.0.2.4.2-1: ΔT_{IB,c} due to EN-DC (three bands)

FFS

6.2B.4.1.0.2.4.3 $\Delta T_{IB,c}$ for EN-DC four bands

Unless otherwise stated, $\Delta T_{IB,c}$ for FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA bands for inter-band EN-DC defined in table 5.2B.5.3-1 is the same as those for the corresponding E-UTRA CA configuration specified in TS 36.101 [4], without the FR2 NR bands.

Table 6.2B.4.1.0.2.4.3-1: ΔT_{IB,c} due to EN-DC(four bands)

FFS

6.2B.4.1.0.2.4.4 $\Delta T_{IB,c}$ for EN-DC five bands

Unless otherwise stated, $\Delta T_{IB,c}$ for FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA bands for inter-band EN-DC defined in table 5.2B.5.4-1 is the same as those for the corresponding E-UTRA CA configuration specified in TS 36.101 [4], without the FR2 NR bands.

Table 6.2B.4.1.0.2.4.4-1: ΔT_{IB,c} due to EN-DC (five bands)

FFS

6.2B.4.1.0.2.4.5 $\Delta T_{IB,c}$ for EN-DC six bands

FFS

- -
- 6.2B.4.1.0.2.5 Inter-band EN-DC including both FR1 and FR2
- 6.2B.4.1.0.2.5.1 $\Delta T_{IB,c}$ for EN-DC three bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table5.5B.6.2-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.1.0.2.3.

Table 6.2B.4.1.0.2.5.1-1: ΔT_{IB,c} due to EN-DC (three bands)

FFS

6.2B.4.1.0.2.5.2 $\Delta T_{IB,c}$ for EN-DC four bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table5.5B.6.3-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.1.0.2.3.

6.2B.4.1.0.2.5.3 $\Delta T_{IB,c}$ for EN-DC five bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table5.5B.6.4-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.1.0.2.3.

6.2B.4.1.0.2.5.4 ΔT_{IB,c} for EN-DC six bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table5.5B.6.5-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.1.0.2.3.

6.2B.4.1.1 Configured Output Power Level for Intra-Band Contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

- Test description is FFS.
- MU and TT are FFS.
- 6.2B.4.1.1.1 Test purpose

Editor's Note: Explanatory test is needed.

6.2B.4.1.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.2B.4.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2B.4.1.0.1.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.2B.4.1.1.4 Test description

6.2B.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.2B.4.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.2B.4.1.1.4.1-1: Test configurations table for intra-band contiguous EN-DC

		Initial Conditio	ns		
Test Environment as specified in TS		Normal, TL/VL,	TL/VH, TH/VL, T	H/VH	
38.508-1 [5] sub	clause 4.1				
	ncies as specified in TS	Mid range			
38.508-1 [5] sub					
	equencies as specified in				
] subclause 4.3.1				
	dwidth combination as	Lowest N _{RB_agg} ,	Highest N _{RB_agg}		
	88.508-1 [5] subclause				
4.3.1					
	NR Test SCS as specified in Table 5.3.5-		ed SCS		
1 in TS 38.521-1	1 in TS 38.521-1[8]				
		E-UTRA Test Par			
Test ID	Downlink		EN-DC Uplink		
	Configuration	E-UTRA Cell NR Cell			
		Modulation	RB	Modulation	RB
			allocation		allocation
			(NOTE 2)		(NOTE 1)
1	N/A for Configured	QPSK	Outer_Full	CP-OFDM	Outer_Full
				QPSK	
2	transmitted power	QPSK	Table	DFT-s-	Inner Full
	testing.		6.2B.4.1.1.4.	OFDM	
			1-2	QPSK	
	ecific configuration of each				
NOTE 2: Outer_Full defined as the transmission bandwidth configuration NRB per channel bandwidth for					
the E-UTRA component as indicated in TS 36.521-1 [10] Table 5.4.2-1.					

LTE Ch BW	RB allocation
5MHz	8@0
10MHz	12@0
15MHz	16@0
20MHz	18@0

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.

- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.4.1.1.4.3.

6.2B.4.1.1.4.2 Test procedure

FFS

6.2B.4.1.1.4.3 Message contents

FFS

6.2B.4.1.1.5 Test requirement

FFS

6.2B.4.1.2 Configured Output Power for Intra-Band Non-Contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

- Test description is FFS.

- MU and TT are FFS.

6.2B.4.1.2.1 Test purpose

Editor's Note: Explanatory test is needed.

6.2B.4.1.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.2B.4.1.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2B.4.1.0.1.2.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.2B.4.1.2.4 Test description

6.2B.4.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.2B.4.1.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Initial Conditions					
	nt as specified in TS	Normal, TL/VL,	TL/VH, TH/VL, T	H/VH	
38.508-1 [5] sub					
	ncies and E-UTRA Test	Refer to test poi			
Frequencies as	specified in TS 38.508-1	A: Maximum Wo	gap		
[5] subclause 4.					
Test EN-DC bar	ndwidth combination as	Lowest N _{RB_agg} ,	Highest NRB_agg		
specified in TS 3	38.508-1 [5] subclause				
4.3.1					
NR Test SCS as	s specified in Table 5.3.5-	Highest support	ed SCS		
1 in TS 38.521-	1[8]	•			
	NR/E-UTRA Test Parameters				
Test ID	Downlink		EN-DC Uplink	Configuration	
	Configuration	E-UTRA Cell NR Cell		Cell	
		Modulation	RB	Modulation	RB
			allocation		allocation
			(NOTE 2)		(NOTE 1)
1	N/A	QPSK	Outer Full	CP-OFDM	Outer Full
				QPSK	
2	1	QPSK	Table	DFT-s-	Inner Full
			6.2B.4.1.2.4.	OFDM	
			1-2	QPSK	
NOTE 1. The sr	ecific configuration of each	RB allocation is o	· -		21-1 [8]
	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. NOTE 2: Outer_Full defined as the transmission bandwidth configuration NRB per channel bandwidth for				
the E-UTRA component as indicated in TS 36.521-1 [10] Table 5.4.2-1.					
tho E	-LITRA component as indic	ated in TS 36 521	1_1 [10] Tabla 5 /	1 2_1	

Table 6.2B.4.1.2.4.1-1: Test configurations table for intra-band contiguous EN-DC

Table 6.2B.4.1.2.4.1-2: RB allocation table for LTE carrier

LTE Ch BW	RB allocation
5MHz	8@0
10MHz	12@0
15MHz	16@0
20MHz	18@0

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.4.1.2.4.3.

6.2B.4.1.2.5 Test requirement

FFS

6.2B.4.1.3 Configured Output Power for Inter-Band EN-DC within FR1

Editor's note: The following aspects are either missing or not yet determined:

- Minimum requirements are pending RAN4.
- Test description is not complete.

6.2B.4.1.3.1 Test purpose

Editor's Note: Explanatory test is needed.

6.2B.4.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

6.2B.4.1.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.2B.4.1.0.1.3.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.2B.4.1.3.4 Test description

6.2B.4.1.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.2B.4.1.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.2B.4.1.3.4.1-1: Test configurations table for intra-band contiguous EN-DC

Initial Conditions					
Test Environmer 38.508-1 [5] sub	nt as specified in TS clause 4.1	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
38.508-1 [5] sub E-UTRA Test Fr	ncies as specified in TS iclause 4.3.1 equencies as specified in] subclause 4.3.1	Mid range			
	ndwidth combination as 38.508-1 [5] subclause	Lowest N _{RB_agg} ,	Highest N _{RB_agg}		
NR Test SCS as 1 in TS 38.521-1	s specified in Table 5.3.5- I[8]	Table 5.3.5- Highest supported SCS			
	NR/E-UTRA Test Parameters				
Test ID	Downlink		EN-DC Uplink (Configuration	
	Configuration	E-UTRA Cell NR Cell		Cell	
		Modulation	RB	Modulation	RB
			allocation		allocation (NOTE 1)
1	N/A for Configured transmitted power testing.	QPSK	Table 6.2B.4.1.3.4. 1-2	DFT-s- OFDM QPSK	Inner Full
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8].					

LTE Ch BW	RB allocation
5MHz	8@0
10MHz	12@0
15MHz	16@0
20MHz	18@0

Table 6.2B.4.1.3.4.1-2: RB allocation table for LTE carrier

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.4.1.3.4.3.

6.2B.4.1.3.5 Test requirement

FFS

6.2B.4.1.4 Configured Output Power for Inter-Band EN-DC including FR2

Editor's note: The following aspects are either missing or not yet determined:

- Minimum requirements are pending RAN4.
- Test description is FFS.
- MU and TT are FFS.

6.2B.4.1.4.1 Test purpose

Editor's Note: Explanatory test is needed.

6.2B.4.1.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.2B.4.1.4.3 Minimum conformance requirements

FFS

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.4.1.4.

6.2B.4.1.4.4 Test description

FFS

6.2B.4.1.4.5 Test requirement

FFS

6.2B.4.1.5 Configured Output Power for Inter-Band EN-DC including both FR1 and FR2

Editor's note: The following aspects are either missing or not yet determined:

- Minimum requirements are pending RAN4.
- Test description is FFS.
- MU and TT are FFS.

6.2B.4.1.5.1 Test purpose

Editor's Note: Explanatory test is needed.

6.2B.4.1.5.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including both FR1 and FR2.

6.2B.4.1.5.3 Minimum conformance requirements

FFS

The normative reference for this requirement is TS 38.101-3 [4] clause 6.2B.4.1.5.

6.2B.4.1.5.4 Test description

FFS

6.2B.4.1.5.5 Test requirement

FFS

6.2B.4.2 ΔTIB,c for EN-DC

For the UE which supports inter-band EN-DC configuration, $\Delta T_{IB,c}$ in Tables below applies where unless otherwise stated, the same $\Delta T_{IB,c}$ is applicable to NR band(s) part for DC configurations which have the same NR operating band combination. Unless otherwise stated, $\Delta T_{IB,c}$ is set to zero.

6.2B.4.2.1 Intra-Band Contiguous EN-DC

 $\Delta T_{IB,c}$ is not applicable for intra-band contiguous EN-DC.

6.2B.4.2.2 Intra-Band non-Contiguous EN-DC

 $\Delta T_{IB,c}$ is not applicable for intra-band non-contiguous EN-DC.

- 6.2B.4.2.3 Inter-Band EN-DC within FR1
- 6.2B.4.2.3.1 $\Delta T_{IB,c}$ for EN-DC two bands

Table 6.2B.4.2.3.1-1: $\Delta T_{IB,c}$ due to EN-DC(two bands)

DC_1_n28 1 0.3 DC_1_n40 1 0.5 DC_1_n51 1 0.6 DC_1_n77 1 0.6 DC_1_n77 1 0.6 DC_1_n78 1 0.6 DC_1_n78 1 0.8 DC_1_n78 1 0.3 DC_2_n6 2 0.3 DC_2_n66 n66 0.5 DC_2_n76 2 0.3 DC_2_n76 2 0.6 DC_2_n78 3 0.5 DC_2_n78 3 0.5 DC_2_n78 3 0.5 DC_3_n7 3 0.5 DC_3_n28 n77 0.5 DC_3_n40 n40 0.5 DC_3_n77 3 0.6 DC_3_n78 3 0.6 DC_3_n78 7 0.3 DC_5_n40 6 0.3 DC_5_n78 n78 0.8 DC_5_n78 n78 0.8 </th <th>Inter-band EN-DC configuration</th> <th>E-UTRA or NR Band</th> <th>ΔΤ_{ΙΒ,c} (dB)</th>	Inter-band EN-DC configuration	E-UTRA or NR Band	ΔΤ _{ΙΒ,c} (dB)
IE2 0.0 0C_1_n40 1 0.5 0C_1_n51 1 0.6 DC_1_n77 n71 0.8 DC_1_n78 1 0.6 DC_2_n5 n78 0.3 DC_2_n66 2 0.3 DC_2_n66 2 0.3 DC_2_n71 2 0.3 DC_2_n78 2 0.3 DC_2_n78 2 0.6 DC_2_n71 2 0.3 DC_3_n7 77 0.5 DC_3_n28 n78 0.3 DC_3_n40 3 0.5 DC_3_n51 3 0.3 DC_3_n61 3 0.3 DC_3_n77 77 0.8 DC_3_n78 n77 0.8 DC_3_n61 3 0.3 DC_3_n77 77 0.8 DC_3_n78 n77 0.8 DC_3_n78 n78 0.8 DC_3_n78 n78 0.8		· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50_1_120		
DC_1_n61 1 0.6 DC_1_n77 n77 0.8 DC_1_n78 n1 0.3 DC_2_n5 2 0.3 DC_2.n66 n66 0.5 DC_2.n78 2 0.3 DC_2.n78 2 0.3 DC_2.n78 n78 0.8 DC_2.n78 n78 0.8 DC_2.n78 n78 0.6 DC_2.n78 n77 0.3 DC_2.n78 n78 0.8 DC_3.n7 n7 0.5 DC_3.n28 n28 0.3 DC_3.n40 3 0.5 DC_3.n51 n3 0.6 DC_3.n77 n77 0.8 DC_3.n78 3 0.6 DC_3.n78 n78 0.8 DC_5.n66 n66 0.3 DC_5.n66 n66 0.3 DC_5.n78 n78 0.8 DC_1.n77 0.8 0.3 DC_1.n77 0.8	DC_1_n40		
DC_1_n61 n61 0.6 DC_1_n77 n77 0.8 DC_1_n78 1 0.3 DC_2_n5 2 0.3 DC_2_n66 2 0.5 DC_2_n71 2 0.3 DC_2_n74 2 0.3 DC_2_n74 2 0.3 DC_2_n76 2 0.6 DC_3_n7 3 0.6 DC_3_n7 77 0.5 DC_3_n8 n78 0.8 DC_3_n40 3 0.5 DC_3_n40 3 0.5 DC_3_n71 3 0.6 DC_3_n73 3 0.3 DC_3_n74 3 0.6 DC_3_n75 77 0.8 DC_3_n78 3 0.6 DC_3_n78 77 0.8 DC_5_n66 5 0.3 DC_5_n66 6 0.3 DC_5_n78 n78 0.8 DC_7_n78 7 0.3 <td></td> <td></td> <td></td>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_1_n51	-	
DC_1_n77 0.8 DC_1_n78 1 0.3 DC_2_n5 2 0.3 DC_2_n66 2 0.5 DC_2_n71 2 0.3 DC_2_n78 2 0.3 DC_2_n78 2 0.3 DC_3_n7 n71 0.3 DC_3_n7 7 0.5 DC_3_n88 n28 0.3 DC_3_n70 3 0.5 DC_3_n71 7 0.5 DC_3_n74 3 0.5 DC_3_n74 3 0.5 DC_3_n75 3 0.6 DC_3_n77 7 0.8 DC_3_n78 3 0.6 DC_3_n78 3 0.6 DC_3_n78 7 0.3 DC_5_n66 6 0.3 DC_5_n78 7 0.3 DC_5_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 D	DO 1 77		
DC_1/1/8 n78 0.8 DC_2.n5	DC_1_n/7	n77	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DC 1 n78		
bc_2_ns n5 0.3 DC_2_n66 2 0.5 DC_2_n71 2 0.3 DC_2_n78 2 0.6 DC_3_n7 3 0.5 DC_3_n7 3 0.5 DC_3_n28 3 0.3 DC_3_n28 3 0.3 DC_3_n40 3 0.5 DC_3_n51 3 0.3 DC_3_n77 3 0.3 DC_3_n78 3 0.3 DC_3_n78 3 0.6 DC_5_n40 5 0.3 DC_5_n66 5 0.3 DC_5_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_8_n70 8 0.3 DC_1_n78 0.8 0.3 DC_1_n78 7 0.3 DC_5_n66 16 0.3 DC_5_n78 7 0.3 DC_1_n78 0.8 0.3	20_1_110		
DC_2_n66 2 0.5 DC_2_n71 2 0.3 DC_2_n78 71 0.3 DC_2_n78 2 0.6 DC_3_n7 3 0.5 DC_3_n28 3 0.3 DC_3_n28 3 0.5 DC_3_n40 3 0.5 DC_3_n51 3 0.5 DC_3_n77 77 0.8 DC_3_n77 77 0.8 DC_3_n77 3 0.6 DC_3_n77 77 0.8 DC_3_n78 3 0.6 DC_3_n78 0.6 0.3 DC_5_n66 5 0.3 DC_5_n66 78 0.3 DC_5_n78 5 0.6 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_1_n77 8 0.6 DC_1_n77 0.8 0.6 </td <td>DC_2_n5</td> <td></td> <td></td>	DC_2_n5		
DC_2_nee n66 0.5 DC_2_n71 2 0.3 DC_2_n78 2 0.6 DC_3_n7 3 0.5 DC_3_n28 n78 0.3 DC_3_n28 n28 0.3 DC_3_n40 3 0.5 DC_3_n51 3 0.5 DC_3_n77 3 0.6 DC_3_n77 3 0.5 DC_3_n77 3 0.6 DC_3_n77 7 0.8 DC_3_n78 3 0.6 DC_3_n78 3 0.6 DC_5_n66 5 0.3 DC_5_n66 n66 0.3 DC_7_n28 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.5 DC_1_n78 0.8 0.6 DC_1_n77 0.8 0.6 DC_1_n78 0.8 0.6			
DC_2_n71 2 0.3 DC_2_n78 2 0.6 DC_3_n7 3 0.5 DC_3_n28 n78 0.3 DC_3_n40 3 0.5 DC_3_n51 3 0.5 DC_3_n51 3 0.5 DC_3_n77 0.5 0.3 DC_3_n51 3 0.6 DC_3_n77 0.8 0.3 DC_3_n77 0.8 0.6 DC_3_n77 0.8 0.6 DC_3_n78 7 0.8 DC_5_n66 5 0.3 DC_5_n66 5 0.3 DC_5_n78 7 0.8 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_8_n77 8 0.3 DC_8_n78 0.8 0.3 DC_11_n77 0.8 0.3 DC_12_n51 7 0.3 DC_8_n78 8 0.6 0.11 0.4 0.3	DC_2_n66		
Intra 0.3 DC_2_n78 2 0.6 n78 0.8 DC_3_n7 n7 0.5 DC_3_n28 n28 0.3 DC_3_n40 3 0.5 DC_3_n51 3 0.5 DC_3_n51 3 0.5 DC_3_n77 n77 0.8 DC_3_n78 n78 0.8 DC_5_n40 5 0.3 DC_5_n66 5 0.3 DC_5_n66 5 0.3 DC_7_n28 7 0.3 DC_7_n78 7 0.3 DC_11_n77 8 0.8 DC_8_n78 8 0.6 DC_11_n77 11 0.4 DC_11_n77 0.8 0.6 DC_111_n77	DC 0 =71		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_2_N71	n71	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DC 2 n78		
DC_s_n/2 n7 0.5 DC_3_n28 3 0.3 DC_3_n40 3 0.5 DC_3_n51 n51 0.3 DC_3_n77 0.8 0.3 DC_3_n77 0.8 0.6 DC_3_n78 0.6 0.6 DC_3_n78 0.6 0.6 DC_5_n40 5 0.3 DC_5_n66 5 0.3 DC_5_n78 5 0.3 DC_7_n28 7 0.3 DC_7_n51 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_7_n78 7 0.3 DC_8_n77 0.8 0.3 DC_8_n77 0.8 0.3 DC_8_n77 0.8 0.3 DC_11_n78 7 0.3 DC_8_n77 8 0.6 0.8 0.6 0.3 DC_8_n77 0.8 0.6 <td>20_2</td> <td></td> <td></td>	20_2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_3_n7		
DC_3_n28 n28 0.3 DC_3_n40 3 0.5 DC_3_n51 n61 0.3 DC_3_n77 3 0.6 DC_3_n78 3 0.6 DC_5_n40 5 0.3 DC_5_n66 5 0.3 DC_5_n78 5 0.6 DC_7_n28 7 0.3 DC_7_n51 7 0.3 DC_7_n51 7 0.3 DC_8_n77 0.8 0.8 DC_8_n77 0.8 0.8 DC_8_n77 8 0.6 DC_8_n78 0.8 0.3 DC_8_n77 0.8 0.8 DC_8_n78 7 0.8 DC_8_n77 8 0.6 DC_11_n78 11 0.4 DC_12_n66 12 0.8 <td></td> <td></td> <td></td>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_3_n28		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DO 0 = 10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_3_n40	n40	0.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DC 3 n51		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DC_3_n77		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c} \begin{tabular}{ c c c c c c } \hline 5 & 0.3 \\ \hline n40 & 0.3 \\ \hline 0C_5_n66 & 5 & 0.3 \\ \hline DC_5_n78 & 5 & 0.6 \\ \hline n66 & 0.3 \\ \hline DC_5_n78 & 7 & 0.3 \\ \hline DC_7_n28 & n78 & 0.8 \\ \hline DC_7_n28 & n28 & 0.3 \\ \hline DC_7_n51 & 7 & 0.3 \\ \hline DC_7_n78 & 7 & 0.5 \\ \hline T & 0.5 \\ \hline DC_8_n40 & 8 & 0.6 \\ \hline DC_8_n77 & 0.8 \\ \hline DC_8_n78 & 8 & 0.6 \\ \hline DC_8_n78 & 8 & 0.6 \\ \hline DC_8_n78 & 11 & 0.4 \\ \hline DC_11_n78 & 11 & 0.4 \\ \hline DC_11_n78 & 11 & 0.4 \\ \hline DC_11_n78 & 11 & 0.4 \\ \hline DC_12_n66 & 12 & 0.8 \\ \hline DC_12_n66 & 12 & 0.8 \\ \hline DC_18_n77 & 0.8 \\ \hline DC_18_n77 & 18 & 0.8 \\ \hline DC_11_n77 & 0.8 \\ \hline DC_12_n66 & 12 & 0.4 \\ \hline DC_11_n78 & 11 & 0.4 \\ \hline DC_12_n66 & 166 & 0.3 \\ \hline DC_18_n77 & 0.8 \\ \hline DC_18_n77 & 0.8 \\ \hline DC_11_n78 & 11 & 0.4 \\ \hline DC_11_n78 & 11 & 0.4 \\ \hline DC_11_n78 & 0.8 \\ \hline DC_12_n66 & 12 & 0.8 \\ \hline DC_18_n77 & 0.8 \\ \hline DC_18_n78 & 0.3 \\ \hline DC_18_n78 & 0.8 \\ \hline DC_19_n77 & 0.$	DC_3_n78		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DO E 10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_5_n40	n40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC 5 n66	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20_0_100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_5_n78		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_7_n28	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC 7 =51		
DC_1_n78 n78 0.8 DC_8_n40 n40 0.3 DC_8_n77 8 0.6 DC_8_n78 8 0.6 DC_11_n77 0.8 0.6 DC_11_n78 11 0.4 DC_12_n5 12 0.4 DC_12_n66 n5 0.8 DC_18_n77 0.8 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.8		n51	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC 7 n78	•	
DC_8_n40 n40 0.3 DC_8_n77 8 0.6 DC_8_n78 8 0.6 DC_11_n77 0.8 0.4 DC_11_n77 0.8 0.4 DC_11_n77 0.8 0.4 DC_11_n78 11 0.4 DC_11_n78 11 0.4 DC_12_n5 12 0.4 DC_12_n66 n66 0.3 DC_18_n77 0.8 0.8 DC_18_n77 0.8 0.8 DC_18_n78 18 0.3 DC_19_n77 0.8 0.8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_8_n40		
DC_8_n77 0.8 DC_8_n78 n77 0.8 DC_11_n77 11 0.4 DC_11_n77 n77 0.8 DC_11_n77 n77 0.8 DC_11_n78 11 0.4 DC_12_n5 11 0.4 DC_12_n66 n5 0.8 DC_18_n77 0.8 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DC_8_n//		
Intra 0.8 DC_11_n77 0.8 DC_11_n78 11 0.4 DC_11_n78 11 0.4 DC_12_n5 12 0.4 DC_12_n66 12 0.8 DC_18_n77 18 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.8	DC 8 n78	8	0.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00_0_m0		
Intra 0.8 DC_11_n78 11 0.4 DC_12_n5 12 0.4 DC_12_n66 n5 0.8 DC_18_n77 18 0.3 DC_18_n78 0.8 0.3 DC_19_n77 0.8 0.3 DC_19_n77 0.8 0.3	DC_11_n77		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
DC_12_n5 12 0.4 DC_12_n66 12 0.8 DC_18_n77 18 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.3 DC_19_n77 0.8 0.3	DC_11_n78		
DC_12_n65 n5 0.8 DC_12_n66 12 0.8 DC_18_n77 18 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.3 DC_19_n77 0.8 0.3	DO 10 5		
DC_12_n66 12 0.8 DC_18_n77 18 0.3 DC_18_n77 0.8 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.3 DC_19_n77 0.8 0.3	DC_12_n5		
Intel 0.3 DC_18_n77 18 0.3 DC_18_n78 18 0.3 DC_19_n77 0.8 0.3 DC_19_n77 0.8 0.3	DC 12 n66		0.8
DC_18_n77 n77 0.8 DC_18_n78 18 0.3 DC_19_n77 19 0.3 DC_19_n77 0.8 0.8	50_12_000		
Intra 0.8 DC_18_n78 18 0.3 DC_19_n77 19 0.3 n77 0.8 0.8	DC_18_n77		
DC_18_n78 n78 0.8 DC_19_n77 19 0.3 n77 0.8			
DC_19_n77 19 0.3 0.8	DC_18_n78		
n77 0.8	DO (0		
	DC_19_n77		
	DC_19_n78		

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
g	n78	0.8
	20	0.4
DC_20_n8	n8	0.4
DC_20_n28 -	20	0.5
56_20_1120	n28	0.5
DC_20_n51	20	0.5
	n51	0.5
DC_20_n77	20	0.6
		0.8
DC_20_n78 -	20	0.6
	n78 21	0.8
DC_21_n77 -	21	0.4
	21	0.4
DC_21_n78	n78	0.8
		0.8
	25	0.5
DC_25_n41		0.41
	n41 —	0.92
DO 00 = 11	26	0.3
DC_26_n41 -	n41	0.3
DO 00 77	26	0.3
DC_26_n77	n77	0.8
	26	0.3
DC_26_n78	n78	0.8
DC 28 pE1	28	0.5
DC_28_n51	n51	0.5
DC_28_n77 -	28	0.5
DC_28_1177	n77	0.8
DC_28_n78	28	0.5
86_26_11/6	n78	0.8
DC_30_n5	30	0.3
20_00_110	n5	0.3
DC_30_n66	30	0.5
	n66	0.8
DC_38_n78	n78	0.5
DC_39_n78	39	0.3
	n78	0.8
DC_39_n79	39	0.3
 DC_40_n77	n79	0.8
	n77 41	0.5 0.3
DC_41_n77 -	n77	0.8
	41	0.8
DC_41_n78	n78	0.8
	41	0.3
DC_41_n79		0.8
	42	0.6
DC_42_n51	n51	0.8
	66	0.3
DC_66_n5	n5	0.3
20.00	66	0.3
DC_66_n71	n71	0.3
	66	0.6
DC_66_n78	n78	0.8
	s applied for UE transmitting on the frees applied for UE transmitting on the frees	quency range of 2545-2690 MH

6.2B.4.2.3.2 ΔTIB,c for EN-DC three bands

Table 6.2B.4.2.3.2-1: $\Delta T_{\text{IB},\text{c}}$ due to EN-DC (three bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.3
DC_1-3_n28	3	0.3
	n28	0.6
	1	0.6
DC_1-3_n77	3	0.6
	n771	0.8
DC_1-3_n78	1 3	0.6
DC_1-5_1178		0.8
	1	0.3
DC_1-3_n79	3	0.3
	1	0.3
DC_1-5_n78	5	0.6
	n78	0.8
	1	0.5
DC_1-7_n28	7	0.6
	n28	0.6
$DC_{1,7,0,70}$	1 7	0.6
DC_1-7_n78	n78	0.6
	1	0.6
DC_1-7-7_n78	7	0.6
	n78	0.8
	1	0.3
DC_1-8_n78	8	0.6
	n78	0.8
	1	0.3
DC_1-18_n77	18	0.3
	n77	0.8
DO 4 40 - 70	1	0.3
DC_1-18_n78	18 n78	0.3 0.8
	1	0.3
DC_1-19_n77	19	0.3
	n77	0.8
	1	0.3
DC_1-19_n78	19	0.3
	n78	0.8
DC_1-19_n79	1	0.3
	19	0.3
	1	0.3
DC_1-20_n28	20	0.6
	n28 1	0.6 0.3
DC_1-20_n78	20	0.3
		0.8
	1	0.3
DC_1-21_n77	21	0.3
	n77	0.8
	1	0.6
DC_1-21_n78	21	0.4
	n78	0.8
DC_1-21_n79	1	0.3
-	21	0.3 0.5
DC_1-41_n77	41	0.5
וווו_ודיו_טט	n77	0.8
	1	0.5
DC_1-41_n78	41	0.5
····	n78	0.8
DC 1 11 p70	1	0.5
DC_1-41_n79	41	0.5
DC_1-28_n77	1	0.3

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	28	0.6
	n77	0.8
	1	0.3
DC_1-28_n78	28	0.6
	n78	0.8
DC 1 228 278	1	0.3 0.6
DC_1_n28-n78	n28 n78	0.8
	1	0.3
DC_1_n28-n79	n28	0.3
	1	0.6
DC_1-42_n77	42	0.8
	n77	0.8
	1	0.3
DC_1-42_n78	42	0.8
	n78	0.8
DC_1-42_n79	1	0.3
	42	0.8
	1	0.3
DC_1_SUL_n78-n84	n78	0.8
		0.3
DC_1_n77-n79	n77	0.8
	n79	0
	1	0.3
DC_1_n78-n79	n78	0.8
	n79	0.5
	2	0.3
DC_2-(n)71	71	0.3
	n71	0:3
	2	0.5
DC_2-5_n66	5	0.3
		0.5
	2	0.5
DC_2-30_n66	30 n66	0.3 0.5
	2	0.5
DC_2-66_n71	66	0.5
	n71	0.3
	3	0.6
DC_3_n3-n77	n3	0.6
Γ	n77	0.8
	3	0.6
DC_3_n3-n78	n3	0.6
	n78	0.8
D0 0 5 x70	3	0.6
DC_3-5_n78	5	0.6
	n78	0.8
DC_3-7_n28	3 7	0.5 0.5
	n28	0.3
	3	0.6
DC_3-7_n78, DC_3-7-	7	0.6
7_n78	n78	0.8
	3	0.6
DC_3-8_n78	8	0.6
F	n78	0.8
	3	0.6
DC_3-19_n77	19	0.3
	n77	0.8
	3	0.6
DC_3-19_n78	19	0.3
	n78	0.8

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_3-19_n79	3	0.3
D0_3-13_11/3	19	0.3
	3	0.3
DC_3-20_n28	20	0.5
	n28 3	0.5
DC_3-20_n78	20	0.3
00_3-20_1170		0.8
	3	0.8
DC_3-21_n77	21	0.9
	n77	0.8
	3	0.8
DC_3-21_n78	21	0.9
	n78	0.8
DC_3-21_n79	3	0.8
00_021_000	21	0.9
	3	0.5
DC_3-28_n78	28	0.3
		0.8
DC 2 n20 n70	3	0.5
DC_3_n28-n78	n28 n78	0.3 0.8
	3	0.8
DC_3-38_n78		0.8
	3	0.6
		0.31
DC_3-41_n78	41	0.8 ²
F	n78	0.8
	3	0.6
DC_3-42_n77	42	0.8
	n77	0.8
	3	0.6
DC_3-42_n78	42	0.8
	n78	0.8
DC_3-42_n79	3	0.6
	42	0.8
 DC_3_n77-n79	3	
	n79	0.8
	3	0.6
DC_3_n78-n79	n78	0.8
	n79	0.5
	3	0.6
DC_3_SUL_n78-n80	n78	0.8
	n80	0.6
Ĺ	3	0.5
DC_3_SUL_n78-n82	n78	0.8
	n82	0.3
DC_5-7_n78,	5	0.6
DC_5-7-7_n78	7	0.6
	n78 5	0.8
 DC_5-30_n66	30	0.3
		0.5
	7	0.5
DC_7-7_n78	n78	0.8
	7	0.3
DC_7-20_n28	20	0.6
	n28	0.6
	7	0.3
DC_7-20_n78	20	0.3
	n78	0.8
DC_7-28_n78	7	0.3

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	28	0.3
	n78	0.8
Ĺ	7	0.3
DC_7_n28-n78	n28	0.3
	n78	0.8
DC_7-46_n78	7	0.5
	n78	0.8
DC_8_SUL_n78- n81	8 n78	0.6 0.8
	n81	0.6
	18	0.5
DC_18-28_n77	28	0.5
F	n77	0.8
	18	0.5
DC_18-28_n78	28	0.5
	n78	0.8
DC_18-28_n79	18	0.5
20_10 20_110	28	0.5
	19	0.3
DC_19-21_n77	21	0.4
	n77 19	0.8
DC_19-21_n78	21	0.3
00_19-21_11/0		0.8
	19	0.3
DC_19-21_n79	21	0.4
	19	0.3
DC_19-42_n77	42	0.8
Γ	n77	0.8
	19	0.3
DC_19-42_n78	42	0.8
	n78	0.8
DC_19-42_n79	19	0.3
	42	0.8
DC_19_n77-n79	19 n77	0.3
DC_19_117-1179	n79	0.8
	19	0.3
DC_19_n78-n79		0.8
	n79	0.5
DO 00 0 75	20	0.4
DC_20_n8-n75	n8	0.4
DC_20_n28-n75	20	0.5
DC_20_1128-1175	n28	0.7
Ļ	20	0.6
DC_20_n28-n78	n28	0.6
	n78	0.8
DC_20_n75-n78	20	0.5
		0.8
DC_20_n76-n78	20 n78	0.8
	20	0.6
DC_20_SUL_n78-n82	n78	0.8
	n82	0.6
	20	0.8
DC_20_SUL_n78-n83	n78	0.8
F	n83	0.8
	21	0.4
DC_21-42_n77	42	0.8
	n77	0.8
	21	0.4
DC_21-42_n78	42	0.8
	n78	0.8

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_21-42_n79	21	0.4
DC_21-42_1179	42	0.8
	21	0.4
DC_21_n77-n79	n77	0.8
	n79	0
	21	0.4
DC_21_n78-n79	n78	0.8
	n79	0.5
	28	0.5
DC_28-42_n77	42	0.8
	n77	0.8
	28	0.5
DC_28-42_n78	42	0.8
	n78	0.8
DC_28-42_n79	28	0.5
DC_28-42_1179	42	0.8
	28	0.5
DC_28_SUL_n78-n83	n78	0.8
Γ	n83	0.5
	41	0.5
DC_41-42_n77	42	0.8
Γ	n77	0.8
	41	0.5
DC_41-42_n78	42	0.8
Γ	n78	0.8
DC 41 42 p70	41	0.
DC_41-42_n79	42	0.8
D0 44 = 77	41	0.3
DC_41_n77	n77	0.8
DO 11 - 70	41	0.3
DC_41_n78	n78	0.8
DO 11 - 70	41	0.3
DC_41_n79	n79	0.8
	66	0.3
DC_66_(n)71	71	0.3
	n71	0.3
	66	0.6
DC_66_SUL_n78-n86	n78	0.8
	n86	0.6
MHz.	is applied for UE transmitting on the fr	

6.2B.4.2.3.3 ΔTIB,c for EN-DC four bands

Table 6.2B.4.2.3.3-1: $\Delta T_{IB,c}$ due to EN-DC(four bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
<u> </u>	1	0.6
DC = 1.25 p78	3	0.6
DC_1-3-5_n78	5	0.3
	n78	0.8
	1	0.6
DC_1-3-7_n28	3	0.6
50_107_120	7	0.6
	n28	0.6
	1	0.7
DC_1-3-7_n78	3	0.7
DC_1-3-7-7_n78	7	0.7
		0.8
-	1	
DC_1-3-8_n78	3	0.6
-	8 n78	0.6
	1	0.6
	3	0.6
DC_1-3-28_n77	28	0.6
	20	0.8
	1	0.6
	3	0.6
DC_1-3-28_n78	28	0.6
-	n78	0.8
	1	0.6
	3	0.6
DC_1-3_n28-n78	n28	0.6
	n78	0.8
	1	0.6
DC_1-3-28_n79	3	0.6
	28	0.6
	1	0.6
DO 4 0 40 x70	3	0.6
DC_1-3-19_n78	19	0.3
	n78	0.8
	1	0.3
DC_1-3-19_n79	3	0.3
	19	0.3
	1	0.3
DC_1-3-20_n28	3	0.3
00_1-5-20_120	20	0.6
	n28	0.6
	1	0.6
DC_1-3-20_n78	3	0.6
20_1020_110	20	0.3
	n78	0.8
	1	0.6
DC_1-3-21_n77	3	0.8
	21	0.9
	n77	0.8
	1	0.6
DC_1-3-21_n78	<u>3</u> 21	0.8
00_1021_110	21	0.9
4		
	n78	0.8
DC 1 2 21 ~70	n78 1	0.8 0.3
DC_1-3-21_n79	n78 1 3	0.8 0.3 0.8
DC_1-3-21_n79	n78 1 3 21	0.8 0.3 0.8 0.9
	n78 1 3 21 1	0.8 0.3 0.8 0.9 0.6
DC_1-3-21_n79	n78 1 3 21 1 3 3 21 1 3	0.8 0.3 0.8 0.9 0.6 0.6
	n78 1 3 21 1 3 42	0.8 0.3 0.8 0.9 0.6 0.6 0.8
	n78 1 3 21 1 3 3 21 1 3	0.8 0.3 0.8 0.9 0.6 0.6

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	42	0.8
	n78	0.8
	1	0.6
DC_1-3-42_n79	3	0.6
	42	0.8
	1	0.6
DC_1-5-7_n78	5	0.6
DC_1-5-7-7_n78	7	0.6
	n78	0.8
-	1	0.5
DC_1-7-20_n28	7	0.6
	20	0.6
	n28	0.6
	1	0.6
DC_1-7-20_n78	7	0.7
	20	0.4
	n78	0.8
Ļ	1	0.6
DC_1-7_n28-n78	7	0.6
	n28	0.6
	n78	0.8
Ļ	1	0.3
DC_1-18-28_n77	18	0.5
	28	0.5
	n77	0.8
-	1	0.3
DC_1-18-28_n78	18	0.5
-	28	0.5
	n78	0.8
DC 1 18 28 p70	1	0.3
DC_1-18-28_n79	18 28	<u> </u>
	1	0.5
-	19	0.8
DC_1-19-42_n77	42	0.8
-	n77	0.8
	1	0.3
-	19	0.3
DC_1-19-42_n78	42	0.8
-	n78	0.8
	1	0.3
DC_1-19-42_n79	19	0.3
DC_1-19-42_11/9	42	0.8
	1	0.3
	20	0.6
DC_1-20_n28-n78		0.6
	n78	0.8
	1	0.6
	21	0.4
DC_1-21-28_n77	28	0.6
	n77	0.8
	1	0.3
	21	0.4
DC_1-21-28_n78	28	0.6
	n78	0.8
	1	0.3
DC_1-21-28_n79	21	0.4
	28	0.6
	1	0.6
	21	0.4
DC_1-21-42_n77	42	0.8
	n77	0.8
	117.7	0.0

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
C	21	0.4
	42	0.8
	n78	0.8
	1	0.3
DC_1-21-42_n79	21	0.4 0.8
	42	0.8
	28	0.6
DC_1-28-42_n77	42	0.8
	n77	0.8
	1	0.3
DC_1-28-42_n78	28	0.6
DC_1-20-42_11/0	42	0.8
	n78	0.8
	1	0.3
DC_1-28-42_n79	28	0.6
	42	0.8 0.5
-	41	0.5
DC_1-41-42_n77	41 42	0.5
-	n77	0.8
	1	0.5
DO 4 44 40 70	41	0.5
DC_1-41-42_n78	42	0.8
-	n78	0.8
	1	0.5
DC_1-41-42_n79	41	0.5
	42	0.8
	2	0.5
DC_2-66-(n)71	66	0.5
_ ()	71	0.3
	n71 3	0.6
DC_3-5-7_n78	5	0.6
DC_3-5-7-7_n78	7	0.6
	n78	0.8
	3	0.5
	7	0.5
DC_3-7-20_n28	20	0.6
	n28	0.5
	3	0.6
DC_3-7-20_n78	7	0.6
	20	0.3
	n78 3	0.8
	7	0.6
DC_3-7-28_n78	28	0.6
	n78	0.8
	3	0.6
DC 2 7 p20 p70	7	0.6
DC_3-7_n28-n78	n28	0.6
	n78	0.8
	3	0.8
DC_3-19-21_n77	19	0.3
	21	0.9
	n77	0.8
4	<u>3</u> 19	0.8 0.3
DC_3-19-21_n78	21	0.3
-	n78	0.8
	3	0.8
DC_3-19-21_n79	19	0.3
	21	0.9

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	3	0.6
DC_3-19-42_n77	19	0.3
DC_3-19-42_1177	42	0.8
	n77	0.8
	3	0.6
DC_3-19-42_n78	19	0.3
	42	0.8
	n78	0.8
	3	0.6
DC_3-19-42_n79	19	0.3
	<u>42</u> 3	0.8 0.6
-	20	0.6
DC_3-20_n28-n78	n28	0.6
-		
	n78 3	0.8 0.6
-	28	0.5
DC_3-28-42_n77	42	0.5
	n77	0.8
	3	0.6
	28	0.5
DC_3-28-42_n78	42	0.8
F		0.8
	3	0.6
DC_3-28-42_n79	28	0.5
	42	0.8
	3	0.8
	21	0.9
DC_3-21-42_n77	42	0.8
	n77	0.8
	3	0.8
	21	0.9
DC_3-21-42_n78	42	0.8
	n78	0.8
	3	0.8
DC_3-21-42_n79	21	0.9
	42	0.8
	7	0.3
DC 7 20 p28 p78	20	0.6
DC_7-20_n28-n78	n28	0.6
	n78	0.8
	19	0.3
DC_19-21-42_n77	21	0.4
	42	0.8
	n77	0.8
	19	0.3
DC_19-21-42_n78	21	0.4
	42	0.8
	n78	0.8
	19	0.3
DC_19-21-42_n79	21	0.4
	42	0.8
	21	0.4
DC_21-28-42_n77	28	0.5
	42	0.8
	n77	0.8
	21	0.4 0.5
DC_21-28-42_n78	<u>28</u> 42	0.5
	42 n78	0.8
	21	0.8
 DC_21-28-42_n79	28	0.4
	42	0.8
	42	0.0

ETSI

6.2B.4.2.3.4 ΔTIB,c for EN-DC five bands

Table 6.2B.4.2.3.4-1: $\Delta T_{IB,c}$ due to EN-DC (five bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.6
	3	0.6
DC_1-3-5-7_n78,	5	0.6
DC_1-3-5-7-7_n78	7	0.6
	n78	0.8
	1	0.6
	3	0.6
DC_1-3-7-20_n28	7	0.6
	20	0.6
	n28	0.6
	1	0.6
DC 1 3 7 30 x79	3 7	0.6
DC_1-3-7-20_n78		0.6
	20	0.6
	n78	0.6
	1	0.7
	3	0.7
DC_1-3-7_n28-n78	7	0.7
	n28	0.6
	n78	0.8
	1	0.6
	3	0.8
DC_1-3-19-21_n77	19	0.3
	21	0.9
	n77	0.8
	1	0.6
	3	0.8
DC_1-3-19-21_n78	19	0.3
	21	0.9
	n78	0.8
	1	0.3
	3	0.8
DC_1-3-19-21_n79	19	0.3
	21	0.9
	1	0.6
	3	0.6
DC_1-3-19-42_n77	19	0.0
DC_1-3-19-42_1177		
	42	0.8
	n77	0.8
	1	0.6
DC 4 3 40 40 - 70	3	0.6
DC_1-3-19-42_n78	19	0.3
	42	0.8
	n78	0.8
	1	0.6
DC_1-3-19-42_n79	3	0.6
	19	0.3
	42	0.8
	1	0.6
	3	0.6
DC_1-3-20_n28-n78	20	0.6
	n28	0.6
	n78	0.8
	1	0.6
	3	0.8
DC_1-3-21-42_n77	21	0.9
	42	0.8
	n77	0.6

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	1	0.6
DC_1-3-21-42_n78	3	0.8
	21	0.9
	42	0.8
	n78	0.6
	1	0.6
	3	0.8
DC_1-3-21-42_n79	21	0.9
	42	0.8
	n79	0
	1	0.6
	3	0.6
DC_1-3-28-42_n77	28	0.6
	42	0.8
	n77	0.8
	1	0.6
	3	0.6
DC_1-3-28-42_n78	28	0.6
	42	0.8
	n78	0.8
	1	0.6
DC_1-3-28-42_n79	3	0.6
DC_1-5-20-42_11/9	28	0.6
	42	0.8
	1	0.6
	7	0.7
DC_1-7-20_n28-n78	20	0.6
	n28	0.6
	n78	0.8
	1	0.3
	19	0.3
DC_1-19-21-42_n77	21	0.4
	42	0.8
	n77	0.8
	1	0.3
DC 1 10 01 10 =70	19	0.3
DC_1-19-21-42_n78	21	0.4
	42	0.8
	n78 1	0.8
	19	0.3
DC_1-19-21-42_n79	21	0.3
	42	0.4
<u> </u>	1	0.6
	21	0.4
DC_1-21-28-42_n77	28	0.6
	42	0.8
	n77	0.8
	1	0.3
DC_1-21-28-42_n78	21	0.4
	28	0.6
	42	0.8
	n78	0.8
	1	0.3
DC 1 21 28 42 ~70	21	0.4
DC_1-21-28-42_n79	28	0.6
	42	0.8
DC_3-7-20_n28-n78	3	0.6

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
	7	0.6
	20	0.6
	n28	0.6
	n78	0.8

6.2B.4.2.3.5 ΔTIB,

 Δ TIB,c for EN-DC six bands

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔT _{IB,c} (dB)
DC_1-3-7-20_n28-n78	1	0.7
	3	0.7
	7	0.7
	20	0.6
	n28	0.6
	n78	0.8

6.2B.4.2.4 Inter-band EN-DC including FR2

6.2B.4.2.4.1 $\Delta T_{IB,c}$ for EN-DC two bands

Unless otherwise stated, $\Delta T_{IB,c}$ for E-UTRA and FR2 NR bands of inter-band EN-DC combinations defined in table 5.2B.5.1-1 is set to zero.

Table 6.2B.4.2.4.1-1: ΔT_{IB,c} due to EN-DC(two bands)

FFS

6.2B.4.2.4.2 $\Delta T_{IB,c}$ for EN-DC three bands

Unless otherwise stated, $\Delta T_{IB,c}$ for FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA bands for inter-band EN-DC defined in table 5.2B.5.2-1 is the same as those for the corresponding E-UTRA CA configuration specified in TS 36.101 [4], without the FR2 NR bands.

Table 6.2B.4.2.4.2-1: ΔT_{IB,c} due to EN-DC (three bands)

FFS

6.2B.4.2.4.3 $\Delta T_{IB,c}$ for EN-DC four bands

Unless otherwise stated, $\Delta T_{IB,c}$ for FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA bands for inter-band EN-DC defined in table 5.2B.5.3-1 is the same as those for the corresponding E-UTRA CA configuration specified in TS 36.101 [4], without the FR2 NR bands.

Table 6.2B.4.2.4.3-1: ΔT_{IB,c} due to EN-DC(four bands)

FFS

6.2B.4.2.4.4 $\Delta T_{IB,c}$ for EN-DC five bands

Unless otherwise stated, $\Delta T_{IB,c}$ for FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA bands for inter-band EN-DC defined in table 5.2B.5.4-1 is the same as those for the corresponding E-UTRA CA configuration specified in TS 36.101 [4], without the FR2 NR bands.

Table 6.2B.4.2.4.4-1: ΔT_{IB,c} due to EN-DC (five bands)

FFS

6.2B.4.2.4.5 $\Delta T_{IB,c}$ for EN-DC six bands

Table 6.2B.4.2.4.5-1: ΔT_{IB,c} due to EN-DC (six bands)

Void

6.2B.4.2.5 Inter-band EN-DC including both FR1 and FR2

6.2B.4.2.5.1 $\Delta T_{IB,c}$ for EN-DC three bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table 5.2B.6.2-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.2.3.

Table 6.2B.4.2.5.1-1: ΔT_{IB,c} due to EN-DC (three bands)

FFS

6.2B.4.2.5.2 ΔT_{IB,c} for EN-DC four bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table 5.2B.6.3-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.2.3.

6.2B.4.2.5.3 ΔT_{IB,c} for EN-DC five bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table 5.2B.6.4-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.2.3.

6.2B.4.2.5.4 $\Delta T_{IB,c}$ for EN-DC six bands

Unless otherwise stated, for inter-band EN-DC configurations defined in table 5.2B.6.5-1, $\Delta T_{IB,c}$ for constituent FR2 NR bands is set to zero, and $\Delta T_{IB,c}$ for constituent E-UTRA and FR1 NR bands is the same as those for the corresponding inter band EN-DC configuration without the FR2 bands specified in 6.2B.4.2.3.

6.3 Output power dynamics

6.3B

6.3B.1 Minimum Output Power for EN-DC

6.3B.1.1 Minimum Output Power for intra-band contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

Measurement uncertainty and TT is FFS.

Working assumption: E-UTRA is not tested during test procedure

QPSK

25

6.3B.1.1.1 Test purpose

Same test purpose as in clause 6.3.1.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.1.1.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.3B.1.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.1.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

MidRange

6.3B.1.1.4 Test description

5 MHz

Same test descriptions as in clause 6.3.1.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

E-UTRA Test Parameters				
E-UTRA Channel	E-UTRA Test	Downlink	Uplink	
Bandwidth	Frequency	N/A for min output power test	Modulation	RB
				allocation

Table 6.3B.1.1.4-1: Test configuration table

For Initial conditions as in clause 6.3.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS36.508 [11] subclause 4.4.3 with E-UTRA channel bandwidth and test frequencies defined in Table 6.3B.1.1.4-1.
- 3.1. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4.1. The UL Reference Measurement channels are set according to Table 6.3B.1.1.4-1.

NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [11] subclause 4.3.1

Step 6 of Initial conditions as in clause 6.3.1.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3.1.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

- 1.1. For E-UTRA component, SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to table 6.3B.1.1.4-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2.1. For E-UTRA component, send continuously uplink power control "down" commands in every uplink scheduling information to the UE.

6.3B.1.1.5 Test requirements

Same test requirement as in clause 6.3.1.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.1.2 Minimum output power for intra-band non-contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

- Minimum requirement are pending RAN4.
- Initial condition is not complete.

- Message contents are not complete.
- The test tolerance is not complete.
- 6.3B.1.2.1 Test purpose

Same test purpose as in clause 6.3.1.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.1.2.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.3B.1.2.3 Minimum conformance requirements

FFS

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.

- 6.3B.1.2.4 Test description
- 6.3B.1.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table [TBD]. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3B.1.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes [TBD]. Configurations of PDSCH and PDCCH before measurement are specified in Annexes [TBD].

Table 6.3B.1.2.4.1-1: Test configuration table

Initial Conditions					
Test Environment as specified in TS 38.508-1 [6] subclause 4.1		NC, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1		TBD			
	nations setting (N _{RB_agg}) 'S 38.508-1 [6] subclause	твр			
Test SCS for the TS 38.508-1 [8]	e NR cell as specified in Table 5.3.5-1	ТВD			
		Test Parameter			
Test ID	Downlink	EN-DC Uplink Configuration			
	Configuration	E-UTRA Cell		NR Cell	
		Modulation	RB allocation	Modulation	RB allocation (Note 1)
1		TBD	TBD		
2	N/A for min output	TBD	TBD	TBD	TBD
3	power test	TBD	TBD	שטי	JU
4		TBD	TBD		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1 for SS diagram and A.3.2.1 for UE diagram.

- 2. The parameter settings for the cell are set up according to [TBD].
- 3. Downlink signals are initially set up according to [TBD], and uplink signals according to [TBD].

- 4. The UL Reference Measurement channels are [TBD].
- 5. Propagation conditions are set according to [Annex B.0].
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.3B.1.2.4.3.

6.3B.1.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to table 6.3B.1.2.4.1-1on both EN-DC component carriers. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "down" commands to the UE for NR and E-UTRA carrier in every uplink scheduling information to the UE; allow at least 200ms to ensure that the UE transmits at its minimum output power.
- 3. Measure the mean power of the UE in the associated measurement bandwidth specified in Table 6.3B.1.2.5-1 for the specific channel bandwidth under test in the EN-DC. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.3B.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.3B.1.2.5 Test requirements

FFS

6.3B.1.3 Minimum output power for inter-band EN-DC within FR1

6.3B.1.3.1 Test purpose

Same test purpose as in clause 6.3.1.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.3B.1.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.1.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.1.3.4 Test description

Same test descriptions as in clause 6.3.1.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

Table 6.3B.1.3.4-1: Test configuration table

E-UTRA Test Parameters				
E-UTRA Channel	E-UTRA Test	Downlink	Uplink	
Bandwidth	Frequency	N/A for min output power test	Modulation	RB
				allocation
5 MHz	MidRange		QPSK	25
NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [11] subclause 4.3.1				

For Initial conditions as in clause 6.3.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS36.508 [11] subclause 4.4.3 with E-UTRA channel bandwidth and test frequencies defined in Table 6.3B.1.3.4-1.
- 3.1. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4.1. The UL Reference Measurement channels are set according to Table 6.3B.1.3.4-1.

Step 6 of Initial conditions as in clause 6.3.1.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3.1.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

- 1.1. For E-UTRA component, SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to table 6.3B.1.3.4-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2.1. For E-UTRA component, send continuously uplink power control "down" commands in every uplink scheduling information to the UE.

6.3B.1.3.5 Test requirements

Same test requirement as in clause 6.3.1.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.1.4 Minimum Output Power for EN-DC Interband including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.3.1 in TS 38.521-2 is incomplete.
- Measurement Uncertainty and Test Tolerances are FFS.
- Measurement period is pending RAN4.
- The following aspects of the clause are for future consideration:

-Testing of extreme conditions for FR2 is FFS.

6.3B.1.4.1 Test purpose

Same test purpose as in clause 6.3.1.1 in TS 38.521-2 [9] for the NR carrier.

6.3B.1.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.3B.1.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 subclause 6.3B.1.

6.3B.1.4.4 Test description

Same test description as in clause 6.3.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For initial conditions as in clause 6.3.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1 The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1 The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of initial conditions as in clause 6.3.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.3B.1.4.5 Test requirements

Same test requirement as in clause 6.3.1.5 in TS 38.521-2 [9] for the NR carrier.

6.3B.2 Transmit OFF Power for EN-DC

6.3B.2.1 Transmit OFF Power for intra-band contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

- Measurement uncertainty and TT is FFS.
- Initial condition & test procedure depends on Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC, this test case is incomplete now

Editor's note: Working assumption: E-UTRA is not tested during test procedure

6.3B.2.1.1 Test purpose

Same test purpose as in clause 6.3.2.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.2.1.2 Test applicability

The requirements of this test apply in Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.3B.2.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.2.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.2.1.4 Test description

This test is covered by Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC.

6.3B.2.1.5 Test requirements

Same test requirement as in clause 6.3.2.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.2.2 Transmit OFF Power for intra-band non-contiguous EN-DC

Editor's note: The following aspects are either missing or not yet determined:

- Measurement uncertainty and TT is FFS.
- Initial condition & test procedure depends on Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC, this test case is incomplete now

Editor's note: Working assumption: E-UTRA is not tested during test procedure

6.3B.2.2.1 Test purpose

Same test purpose as in clause 6.3.2.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.2.2.2 Test applicability

The requirements of this test apply in Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.3B.2.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.2.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.2.2.4 Test description

This test is covered by Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC.

6.3B.2.2.5 Test requirements

Same test requirement as in clause 6.3.2.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.2.3 Transmit OFF Power for inter-band EN-DC within FR1

Editor's note: The following aspects are either missing or not yet determined:

- Initial condition & test procedure depends on Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC, this test case is incomplete now

Editor's note: Working assumption: E-UTRA is not tested during test procedure

6.3B.2.3.1 Test purpose

Same test purpose as in clause 6.3.2.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.2.3.2 Test applicability

The requirements of this test apply in Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.3B.2.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.2.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.2.3.4 Test description

This test is covered by Clause 6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC.

6.3B.2.3.5 Test requirements

Same test requirement as in clause 6.3.2.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.3 Tx ON/OFF time mask/PUCCH time mask for EN-DC

6.3B.3.1 Tx ON/OFF time mask for intra-band contiguous EN-DC

6.3B.3.1.1 Test purpose

Same test purpose as in clause 6.3.3.2.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.3.1.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.3B.3.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.3.2.3 in TS 38.521-1 [8] for the NR carrier.

No exception requirements applicable to NR or LTE . LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.3.1.4 Test description

Same test descriptions as in clause 6.3.3.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.3.3.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA Downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.3.3.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, *Connected without release On* according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3.3.2.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

1.1. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.3B.3.1.5 Test requirements

Same test requirement as in clause 6.3.3.2.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.3.2 Tx ON/OFF time mask for intra-band non-contiguous EN-DC

6.3B.3.2.1 Test purpose

Same test purpose as in clause 6.3.3.2.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.3.2.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.3B.3.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.3.2.3 in TS 38.521-1 [8] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.3.2.4 Test description

Same test descriptions as in clause 6.3.3.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.3.3.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA Downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.3.3.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, *Connected without release On* according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3.3.2.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

1.1. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.3B.3.2.5 Test requirements

Same test requirement as in clause 6.3.3.2.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.3.3 Tx ON/OFF time mask for inter-band EN-DC within FR1

6.3B.3.3.1 Test purpose

Same test purpose as in clause 6.3.3.2.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.3.3.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.3B.3.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.3.2.3 in TS 38.521-1 [8] for the NR carrier.

No exception requirements applicable to NR or LTE.LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

6.3B.3.3.4 Test description

Same test descriptions as in clause 6.3.3.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.3.3.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the E-UTRA cell are set up according to TS36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA Downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.3.3.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, *Connected without release On* according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.3.3.2.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

1.1. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.3B.3.3.5 Test requirements

Same test requirement as in clause 6.3.3.2.5 in TS 38.521-1 [8] for the NR carrier.

6.3B.4 PRACH time mask for EN-DC

6.3B.4.1 PRACH time mask for intra-band contiguous EN-DC

6.3B.4.1.1 Test purpose

Same test purpose as in clause 6.3.3.4.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.4.1.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.3B.4.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.3.4.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.3B.4.1.4 Test description

Same test description as in clause 6.3.3.4.4 in TS 38.521-1 [8] with the following exception:

Table 6.3B.4.1.4-1: Test Configuration Table

Initial	Conditions
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1 for different DC bandwidth classes.	Mid range
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE	Highest NRB_agg (NOTE 1)
NOTE 1: If the UE supports multiple CC Combinations in combination with the highest NRB_SCG is test	the EN-DC Configuration with the same NRB_agg , only the ted

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 6.3B.4.1.4-1.

For Initial conditions as in clause 6.3.3.4.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 5 of Initial conditions as in clause 6.3.3.4.4.1 in TS 38.521-1 [8] is replaced by:

5. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.3.3.4.4.2 in TS 38.521-1 [8] for E-UTRA carrier with the following exception:

- 3. The SS measure the UE transmission OFF power during the slot preceding the PRACH preamble excluding a transient period of 10 μ s according to Table 4.6.3-129 in TS 38.508 [6].
- 4. Measure the output power of the transmitted PRACH preamble according to Table 4.6.3-129 in TS 38.508 [6].

6.3B.4.1.5 Test requirements

Same test requirement as in clause 6.3.3.4.5 in TS 38.521-1 [8].

6.3B.4.2 PRACH Time Mask for intra-band non-contiguous EN-DC

6.3B.4.2.1 Test purpose

Same test purpose as in clause 6.3.3.4.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.4.2.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.3B.4.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.3.4.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.3B.4.2.4 Test description

Same test description as in clause 6.3.3.4.4 in TS 38.521-1 [8] with the following exception:

Table 6.3B.4.2.4-1: Test Configuration Table

Initial C	Conditions			
Test Frequencies as specified in TS36TS38.508-1 [76]	[MaxWGap]			
subclause 4.3.1 for different EN-DC bandwidth classes	[IVIAXVV Gap]			
Test EN-DC bandwidth combination as specified in				
Table 5.3B.1.2-1 across bandwidth combination sets	Highest NRB_agg (NOTE1)			
supported by the UE				
NOTE 1: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg , only the				
combination with the highest NRB_SCG is test	ed			

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 6.3B.4.2.4-1.

For Initial conditions as in clause 6.3.3.4.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 5 of Initial conditions as in clause 6.3.3.4.4.1 in TS 38.521-1 [8] is replaced by:

5. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.3.3.4.4.2 in TS 38.521-1 [8] for E-UTRA carrier with the following exception:

- 3. The SS measure the UE transmission OFF power during the slot preceding the PRACH preamble excluding a transient period of $10 \,\mu s$ according to Table 4.6.3-129 in TS 38.508 [6].
- 4. Measure the output power of the transmitted PRACH preamble according to Table 4.6.3-129 in TS 38.508 [6].

6.3B.4.2.5 Test requirements

Same test requirement as in clause 6.3.3.4.5 in TS 38.521-1 [8].

6.3B.4.3 PRACH Time Mask for inter-band EN-DC within FR16.3B.4.3.1 Test purpose

Same test purpose as in clause 6.3.3.4.1 in TS 38.521-1 [8] for the NR carrier.

6.3B.4.3.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.3B.4.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.3.3.4.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.3B.4.3.4 Test description

Same test description as in clause 6.3.3.4.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.3.3.4.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 5 of Initial conditions as in clause 6.3.3.4.4.1 in TS 38.521-1 [8] is replaced by:

5. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.3.3.4.4.2 in TS 38.521-1 [8] for E-UTRA carrier with the following exception:

- 3. The SS measure the UE transmission OFF power during the slot preceding the PRACH preamble excluding a transient period of $10 \,\mu s$ according to Table 4.6.3-129 in TS 38.508 [6].
- 4. Measure the output power of the transmitted PRACH preamble according to Table 4.6.3-129 in TS 38.508 [6].

6.3B.4.3.5 Test requirements

Same test requirement as in clause 6.3.3.4.5 in TS 38.521-1 [8].

6.3B.5 Output power dynamics for EN-DC with UL sharing from UE perspective

6.3B.5.1 E-UTRA and NR switching time mask for TDM based UL sharing from UE perspective

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.3B.6 Output power dynamics for intra-band EN-DC without dual PA capability

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.3B.7 Output power dynamics for intra-band EN-DC with dual PA capability

No test case details are specified. Current test procedures for time masks are based on power measurement in relatively long period compared with transient period. For time masks between 2 active time slots with different power level, the test procedure can't provide enough resolution to identify non-conformant UEs. Therefore the minimum requirement is not testable.

6.4 Transmit signal quality

- 6.4A Transmit Signal Quality for inter-band NR CA between FR and FR2 without EN-DC
- 6.4A.1 Frequency error for inter-band NR CA between FR 1 and FR 2 without EN-DC
- 6.4A.1.1 Test purpose

Same test purpose as in clause 6.4.1 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.4.1 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.4A.1.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for frequency error apply and are tested in TS 38.521-1 [8] clauses 6.4 and 6.4A and TS 38.521-2 [9] clauses 6.4 and 6.4A

6.4A.2 Transmit Modulation Quality for inter-band NR CA without EN-DC

6.4A.2.1 Error Vector Magnitude for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.4A.2.1.1 Test purpose

Same test purpose as in clause 6.4.2.1 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.4.2.1 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.4A.2.1.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for error vector magnitude apply and are tested in TS 38.521-1 [8] clauses 6.4 and 6.4A and TS 38.521-2 [9] clauses 6.4 and 6.4A

6.4A.2.2 Carrier Leakage for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.4A.2.2.1 Test purpose

Same test purpose as in clause 6.4.2.2 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.4.2.2 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.4A.2.2.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for carrier leakage apply and are tested in TS 38.521-1 [8] clauses 6.4 and 6.4A and TS 38.521-2 [9] clauses 6.4 and 6.4A

6.4A.2.3 In-band Emissions for inter-band NR CA between FR 1 and FR 2 without EN-DC

6.4A.2.3.1 Test purpose

Same test purpose as in clause 6.4.2.3 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.4.2.3 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.4A.2.3.1 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for in-band emissions apply and are tested in TS 38.521-1 [8] clauses 6.4 and 6.4A and TS 38.521-2 [9] clauses 6.4 and 6.4A

6.4A.2.4 EVM Equalizer Spectral Flatness for inter-band NR CA between FR 1 and FR 2 without EN-DC6.4A.2.4.1 Test purpose

Same test purpose as in clause 6.4.2.4 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.4.2.4 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.4A.2.4.1 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for EVM equalizer spectral flatness apply and are tested in TS 38.521-1 [8] clauses 6.4 and 6.4A and TS 38.521-2 [9] clauses 6.4 and 6.4A

6.4B

- 6.4B.1 Frequency error
- 6.4B.1.1 Frequency error for Intra-band contiguous EN-DC
- 6.4B.1.2 Frequency error for Intra-band non-contiguous EN-DC
- 6.4B.1.3 Frequency error for Inter-band EN-DC within FR1
- 6.4B.1.3.1 Test purpose

Same test purpose as in clause 6.4.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.4B.1.3.3 Minimum conformance requirements

For inter-band EN-DC with uplink assigned to one E-UTRA band and one NR band, the requirements shall apply on each component carrier as defined in clause 6.5.1 in [5] and in clause 6.4.1 in [2], respectively, with all component carriers active. If multiple component carriers are assigned to one E-UTRA band, the requirements in subclauses 6.5.1A in [5] apply for those component carriers, and if multiple component carriers are assigned to one NR band, the requirements in subclauses 6.4.1 in [2] apply for those component carriers.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this measurement is TS 38.101-3 [4] clause 6.4B.1.3.

6.4B.1.3.4 Test description

Same test description as in clause 6.4.1.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

Notes defined in Table 6.4.1.4.1-1 will be updated as below.

NOTE 2: REFSENS refers to Table 7.3B.2.3.4.1-2a to Table 7.3B.2.3.4.1-3m which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band.

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For Initial conditions as in clause 6.4.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Step 6 of Initial conditions as in clause 6.4.1.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.

Step 3 of Test procedure as in clause 6.4.1.4.2 in TS 38.521-1 [8] is replaced by:

3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3B.2.3.5.1-1, 7.3B.2.3.5.2-1, and 7.3B.2.3.5.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

6.4B.1.3.5 Test Requirement

The 20 frequency error Δf results must fulfil the test requirement defined in 6.4.1.5 TS 38.521-1 [8].

6.4B.1.3.6 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.4B.1.4

6.4B.1.5 Frequency Error for inter-band EN-DC including FR2

Editor's note:

- The following aspects of the clause are for future consideration:
 - Testing of extreme conditions for FR2 is FFS.

6.4B.1.5.1 Test purpose

Same test purpose as in clause 6.4.1.1 in TS 38.521-2 [9] for the NR carrier.

6.4B.1.5.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band EN-DC including FR2.

6.4B.1.5.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.

6.4B.1.5.4 Test description

Same test description as in clause 6.4.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For initial conditions as in clause 6.4.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1 The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1 The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.1.5.5 Test requirements

Same test requirement as in clause 6.4.1.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT created a 3. duplication!!]

6.4B.1.5.2 Frequency Error for Inter-band EN-DC including FR2 (3 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.4A.1.1 in TS 38.521-2 is incomplete.

6.4B.1.5.2.1 Test purpose

Same test purpose as in clause 6.4.1.1 in TS 38.521-2 [9] for the NR carrier.

6.4B.1.5.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.4B.1.5.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.1.4.

6.4B.1.5.2.4 Test description

6.4B.1.5.2.4.1 Initial condition

Same test description as in clause 6.4A.1.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.4A.1.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4A.1.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4A.1.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.1.5.2.5 Test Requirements

Same test requirement as in clause 6.4A.1.1.5 in TS 38.521-2 [9] for the NR carrier.

6.4B.1.5.3 Frequency Error for Inter-band EN-DC including FR2 (4 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.4A.1.2 in TS 38.521-2 is incomplete.

6.4B.1.5.3.1 Test purpose

Same test purpose as in clause 6.4.1.1 in TS 38.521-2 [9] for the NR carrier.

6.4B.1.5.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4CCs.

6.4B.1.5.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.1.4.

6.4B.1.5.3.4 Test description

6.4B.1.5.3.4.1 Initial condition

Same test description as in clause 6.4A.1.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.4A.1.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4A.1.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4A.1.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.1.5.3.5 Test Requirements

Same test requirement as in clause 6.4A.1.2.5 in TS 38.521-2 [9] for the NR carrier.

6.4B.1.5.4 Frequency Error for Inter-band EN-DC including FR2 (5 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.4A.1.3 in TS 38.521-2 is incomplete.

6.4B.1.5.4.1 Test purpose

Same test purpose as in clause 6.4.1.1 in TS 38.521-2 [9] for the NR carrier.

6.4B.1.5.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5CCs.

6.4B.1.5.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.1.4.

6.4B.1.5.4.4 Test description

6.4B.1.5.4.4.1 Initial condition

Same test description as in clause 6.4A.1.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.4A.1.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4A.1.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4A.1.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.1.5.4.5 Test Requirements

Same test requirement as in clause 6.4A.1.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of 3. duplication!!]

6.4B.2

6.4B.2.1 Transmit Modulation Quality for intra-band contiguous EN-DC

6.4B.2.1.1 Error Vector Magnitude for intra-band contiguous EN-DC

6.4B.2.1.1.1 Test purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4B.2.1.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and the duration of PUCCH/PUSCH channel, or one hop, if frequency hopping is enabled for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in subclause 6.3.3.3 of [8].

6.4B.2.1.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band EN-DC.

6.4B.2.1.1.3 Minimum conformance requirements

For the intra-band contiguous EN-DC with one component carrier per CG the EVM requirement applies with PRB allocation in one of the CG and the other CG unallocated.

The EVM requirements for each CG are according to clause 6.5.2 of [5] for the MCG and 6.4.2 of [2] for the SCG with EN-DC configured.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.1.1.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.1.1.4 Test description

Same test description as in clause 6.4.2.1.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

Table 6.4B.2.1.1.4-1: Test Configuration Table

	Initial Conditions
Test Frequencies as specified in TS	Mid range
38.508-1 [6] subclause 4.3.1	
Test EN-DC bandwidth combination as	Highest NRB_agg (NOTE 1)
specified in Table 5.3B.1.2-1	
NOTE 1: If the UE supports multiple CO	C Combinations in the EN-DC Configuration with the same
NRB_agg, only the combinat	ion with the highest NRB_SCG is tested.

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 6.4B.2.1.1.4-1.

For Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.4.2.1.4.2 in TS 38.521-1 [8].

6.4B.2.1.1.5 Test requirements

Same test requirement as in clause 6.4.2.1.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.1.2 Carrier Leakage for intra-band contiguous EN-DC

6.4B.2.1.2.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency or centre frequency of aggregated transmission bandwidth configuration. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. Carrier leakage interferes with the centre sub carriers of the UE under test (if allocated), especially, when their amplitude is small. The measurement interval is defined over one slot in the time domain.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4B.2.1.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band EN-DC.

6.4B.2.1.2.3 Minimum conformance requirements

The carrier leakage requirements for each CG are according to clause 6.5.2 of [5] for the MCG and 6.4.2 of [2] for the SCG with EN-DC configured.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.1.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.1.2.4 Test description

Same test description as in clause 6.4.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

	Initial Conditions
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1	Mid range
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1	Highest NRB_agg (NOTE 1)
NOTE 1: If the UE supports multiple CC C only the combination with the hig	ombinations in the EN-DC Configuration with the same NRB_agg , hest NRB_SCG is tested.

Table 6.4B.2.1.2.4-1: Test Configuration

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 6.4B.2.1.2.4-1For Initial conditions as in clause 6.4.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.

3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

6.4B.2.1.2.5 Test requirements

Same test requirement as in clause 6.4.2.2.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.1.3 In-band Emissions for intra-band contiguous EN-DC

6.4B.2.1.3.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

The in-band emission is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain, however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

6.4B.2.1.3.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.4B.2.1.3.3 Minimum conformance requirements

For the MCG the in-band emission requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 in [5] apply within the aggregated transmission bandwidth configuration of the EN-DC bandwidth with the carriers of both CGs active and one single contiguous PRB allocation of bandwidth L_{CRB} within the MCG at the edge of the said aggregated transmission bandwidth configuration.

For the SCG the in-band emission requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 in [5] apply within the aggregated transmission bandwidth configuration of the EN-DC bandwidth with the carriers of both CGs active and one single contiguous PRB allocation of bandwidth L_{CRB} within the SCG at the edge of the aggregated transmission bandwidth configuration.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.1.3

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.4B.2.1.3.4 Test description

6.4B.2.1.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and test channel bandwidths based on NR operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4B.2.1.3.4.1-1. The details of the uplink

reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521.1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

			In	itial Conditions		
Test Environm as specified in 4.1	ent TS 38.508-1 [6] sul	oclause	NC			
Test Frequenc	ies TS 38.508-1 [6] sul	oclause	Low	range, Mid range, Hig	ıh range	
Test EN-DC bases of the specified in Ta	andwidth combinatio ble 5.3B.1.2-1	on as	Lowe	est NRB_agg, Highest	t NRB_agg (Note 2)	
Test SCS for t 38.521-1 [8] Ta	he NR cell as specif able 5.3.5-1	ied in TS			per Channel Bandwidth	
			T	est Parameters		
Test ID	Downlink				ink Configuration	
	Configuration	Modulat		RA Cell RB allocation	NR Co Modulation	RB allocation (Note 1)
1 (Note3)		QPSk	K	0	DFT-s-OFDM QPSK	Inner_1RB_Left
2 (Note 4)		QPSk	(0	DFT-s-OFDM QPSK	Inner_1RB_Righ
3 (Note3)	N/A for In-band	QPSK	K	0	CP-OFDM QPSK	Inner_1RB_Left
4 (Note 4)	emission test	QPSk	(0	CP-OFDM QPSK	Inner_1RB_Righ
5 (Note3)		QPSk	κ	Outer_1RB_Right	DFT-s-OFDM QPSK	0
6 (Note 4)		QPSK		Outer_1RB_Left	DFT-s-OFDM QPSK	0
NOTE 2: If the com - NOTE 3: Appli NOTE 4: Appli NOTE 5: Oute	UE supports multip bination to test as fo Lowest ENBW: NR Highest ENBW: NR cable when E-UTR/ cable when NR cell r_1RB_Left defined	le CC comb bllows: component component A cell carrier carrier freq as 1 RB all	with lo with lo with h frequ uency ocated	ns in the EN-DC confinence owest N_{RB} is tested. highest N_{RB} is tested. hency is lower than NF is lower than E-UTRA	A cell carrier. e E-UTRA component. O	_{RB_agg} , select the

Table 6.4B.2.1.3.4.1-1: Test configuration table

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operation band and test channel bandwidth as specified in Table 4.6-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS 38.521-1[8].
- 5. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.

- 6. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.4B.2.1.3.4.3.
- 8. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.4B.2.1.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4B.2.1.3.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4B.2.1.3.4.2-1 for the carrier frequency f and the channel bandwidth BW on NR CC.
- 3. Measure In-band emission on NR CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on E-UTRA CC. For TDD slots with transient periods are not under test.
- 4. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $-30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4B.2.1.3.4.2-2 for the carrier frequency f and the channel bandwidth BW on NR CC.
- 5. Measure In-band emission on NR CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on E-UTRA CC. For TDD slots with transient periods are not under test
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to 6.4B.2.1.3.4.2-2 for the carrier frequency f and the channel bandwidth BW on NR CC.
- 7. Measure In-band emission on NR CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on E-UTRA CC. For TDD slots with transient periods are not under test.
- 8. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 3.2 dBm \pm 3.2dB for carrier frequency f \leq 3.0GHz or 3.5dBm \pm 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz on E-UTRA CC.
- 9. Measure In-band emission on E-UTRA CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on NR CC. For TDD slots with transient periods are not under test.
- 10. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 26.8 dBm \pm 3.2dB for carrier frequency f \leq 3.0GHz or -26.5dBm \pm 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz on E-UTRA CC.
- 11. Measure In-band emission on E-UTRA CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on NR CC. For TDD slots with transient periods are not under test
- 12. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is to -36.8 dBm \pm 3.2dB for carrier frequency f \leq 3.0GHz or -36.5dBm \pm 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz on E-UTRA CC.
- 13. Measure In-band emission on E-UTRA CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on NR CC. For TDD slots with transient periods are not under test.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4B.2.1.3.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an NR RRCReconfiguration message with CP-OFDM condition.

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4B.2.1.3.4.2-1: Power Window	(dB) for carrier leakage (steps 2)
	(UD)	101 Carrier leakaye (Sleps Z)

Table 6.4B.2.1.3.4.2-2: Power Window (dB) for carrier leakage (steps 4 and 6)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4B.2.1.3.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.4B.2.1.3.5 Test requirements

Each of the [20] In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4B.2.1.3.5-1.

Table 6.4B.2.1.3.5-1: Test requirements for in-band emissions (allocated component carrier)

Parameter	Unit		Limit	Applicable Frequencies
General	dB	$20 \cdot \log_{10} E$	$ \begin{array}{l} -10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ VM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ 480 kHz - P_{RB} \end{array} \right\} + TT $	Any non-allocated (NOTE 2)
IQ Image	dB		-25	Exception for IQ image (NOTE 3)
Carrier leakage	dBc	25 + TT 20 + TT 10 + TT	Output power > 0 dBm -30 dBm \leq Output power \leq 0 dBm -40 dBm \leq Output power < -30 dBm	Exception for Carrier frequency (NOTE 4)
m (G no NOTE 2: Th all	inimum requirem General, IQ Imag on-allocated RB. ne measurement	ent is calculated e or Carrier leaka bandwidth is 1 R	It is evaluated in each non-allocated RB. For as the higher of P_{RB} - 30 dB and the power ge) that apply. P_{RB} is defined in NOTE 9. T B and the limit is expressed as a ratio of m age power per allocated RB, where the ave	sum of all limit values he limit is evaluated in each easured power in one non-
		general limit are a	allowed for up to $L_{_{CRBs}}$ +1 RBs within a co	ntiguous width of $L_{\scriptscriptstyle CRBs}$ +1
NOTE 4: Ex	xceptions to the andwidth is 1 RB	general limit are a	ent bandwidth is 1 RB. allowed for up to two contiguous non-alloca xpressed as a ratio of measured power in t d RBs.	
NOTE 5: <i>L</i>	CRB is the Trans	mission Bandwid	Ith (see Figure 5.6-1) not exceeding $\lfloor N_{\scriptscriptstyle RB}$	/2-1
	V_{RB} is the Transi located.	mission Bandwidt	h Configuration (see Figure 5.6-1) of the co	omponent carrier with RBs
		•	e 6.5.2.1.1-1 for the modulation format use t between the allocated RB and the measur	
Δ	$\Delta_{RB}=1 \text{ or } \Delta_{RB}$	= -1 for the first	adjacent RB outside of the allocated band	width).
	<i>P_{RB}</i> is the transm est tolerance TT		80 kHz in allocated RBs, measured in dBm	

The in-band emissions results, measured with the spectral test shall not exceed the corresponding values in Table 6.4B.2.1.3.5-2.

Para-	Unit	Meas BW		Limit	remark	Applicable
General	dB	NOTE 1 BW of 1 RB (180KHz rectangular)	$20 \cdot \log_{10}$	$25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$ $EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB},$ $2 / 180 kHz - P_{RB} \}$	The reference value is the average power per allocated RB in the allocated component carrier	Frequencies Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
IQ Image	dB	BW of 1 RB (180KHz rectangular)		-25 + TT NOTE 2	The reference value is the average power per allocated RB in the allocated component carrier	The frequencies of the <i>L_{CRB}</i> contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
		BW of 1 RB (180KHz rectangular)	-25 + TT	NOTE 3 Output power > 0 dBm	The reference value is the total power	The frequencies of the up to 2 non-allocated RBs are
Carrier leakage	dBc		-20 + TT	-30 dBm ≤ Output power ≤ 0 dBm	of the allocated RBs in the allocated component carrier	unknown. The frequency raster of the RBs is derived when this
			-10 + TT	-40 dBm ≤ Output power < -30 dBm	camo	component carrier is allocated with RBs
	Resolution bandwidth		han the me	asurement BW may be integrated t	to achieve the r	neasurement
			limit is are	allowed for up to $L_{\it CRB}$ +1 RBs wit	hin a contiguou	is width of $L_{\scriptscriptstyle CRB}^{}$
NOTE 3: T NOTE 4: I NOTE 5:	Two Exce NOTES 1 Δ_{RB} for r	, 5, 6, 7, 8, 9 fro neasured non-a	m Table 6. Ilocated RE	are allowed for up to two contiguous 5.2A.3.1-1 apply for Table 6.5.2A.3 3 in the non allocated component ca	.1-2 as well. arrier may take	
		ance TT = 0.8 d		veen the CCs is not a multiple of RI	В.	

Table 6.4B.2.1.3.5-2: Test requirements for in-band emissions (not allocated component carrier)

6.4B.2.2 Transmit Modulation Quality for intra-band non-contiguous EN-DC

Editor's Note: Wgap is TBD in TS 38.101-3 for this test case

6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC

6.4B.2.2.1.1 Test purpose

Same test purpose as in clause 6.4.2.1.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.2.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.4B.2.2.1.3 Minimum conformance requirements

For the intra-band non-contiguous EN-DC with one component carrier per CG the EVM requirement applies with PRB allocation in one of the CG and the other CG unallocated.

The EVM requirements for each CG are according to clause 6.5.2.1 of [5] for the MCG and 6.4.2.1.3 of [8] for the SCG with EN-DC configured.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.2.1.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.2.1.4 Test description

Same test description as in clause 6.4.2.1.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.4.2.1.4.2 in TS 38.521-1 [8].

6.4B.2.2.1.5 Test requirement

Same test requirement as in clause 6.4.2.1.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.2.2 Carrier Leakage for intra-band non-contiguous EN-DC

6.4B.2.2.2.1 Test purpose

Same test purpose as in clause 6.4.2.2.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.4B.2.2.2.3 Minimum conformance requirements

The carrier leakage requirements for each CG are according to clause 6.5.2.2 of [5] for the MCG and 6.4.2.2.3 of [8] for the SCG with EN-DC configured and PRB allocation only in the CG being measured.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.2.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.2.2.4 Test description

Same test description as in clause 6.4.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.4.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.2.4.1 in TS 38.521-1 [8] is replaced by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.4B.2.2.2.5 Test requirement

Same test requirement as in clause 6.4.2.2.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.2.3 In-band Emissions for intra-band non-contiguous EN-DC

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Measurement uncertainty and TT is FFS.

6.4B.2.2.3.1 Test purpose

Same test purpose as in clause 6.4.2.3.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.2.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.4B.2.2.3.3 Minimum conformance requirements

For the MCG the in-band emission requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 in [5] apply within the transmission bandwidth configuration of the MCG with the carriers of both CGs active and one single contiguous PRB allocation of bandwidth L_{CRB} within the MCG at the edge of the transmission bandwidth configuration.

For the SCG the in-band emission requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 in [5] apply within the transmission bandwidth configuration of the SCG with the carriers of both CGs active and one single contiguous PRB allocation of bandwidth L_{CRR} within the SCG at the edge of the transmission bandwidth configuration.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.2.3.

No exception requirements applicable to NR or LTE.

6.4B.2.2.3.4 Test description

6.4B.2.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and test channel bandwidths based on NR operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4B.2.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521.1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

			Initial Conditions	6			
Test Env	ironment as specifie	ed in TS	NC				
38.508-1	[6] subclause 4.1						
	quencies as specifie		Low range, Mid rang	Low range, Mid range, High range			
38.508-1 [6] subclause 4.3.1							
Test EN-	DC bandwidth comb	pination as	Lowest, Mid, Highes	st			
specified	in Table 5.3B.1.3-1						
Test SCS	S for the NR cell as	specified in	Smallest supported	SCS per Channel Bandw	vidth		
TS 38.52	1-1 [8] Table 5.3.5-	1					
			Test Parameters				
Test ID	Downlink			Jplink Configuration			
	Configuration		UTRA Cell	NR C	ell		
		Modulati	RB allocation	Modulation	RB allocation		
1							
		on	(NOTE 3)		(NOTE 1,2)		
1	N/A for carrier	on QPSK	(NOTE 3) 0	DFT-s-OFDM QPSK	(NOTE 1,2) Inner_1RB_Left		
2	N/A for carrier leakage testing			DFT-s-OFDM QPSK DFT-s-OFDM QPSK			
2 3		QPSK	0		Inner_1RB_Left		
2 3 4		QPSK QPSK	0	DFT-s-OFDM QPSK	Inner_1RB_Left Inner_1RB_Right		
2 3		QPSK QPSK QPSK	0 0 0	DFT-s-OFDM QPSK CP-OFDM QPSK	Inner_1RB_Left Inner_1RB_Right Inner_1RB_Left		
2 3 4		QPSK QPSK QPSK QPSK	0 0 0 0	DFT-s-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK DFT-s-OFDM QPSK	Inner_1RB_Left Inner_1RB_Right Inner_1RB_Left Inner_1RB_Right		
2 3 4 5 6	leakage testing	QPSK QPSK QPSK QPSK QPSK QPSK	0 0 0 Outer_1RB_Left Outer_1RB_Right	DFT-s-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK DFT-s-OFDM QPSK	Inner_1RB_Left Inner_1RB_Right Inner_1RB_Left Inner_1RB_Right 0 0		
2 3 4 5 6 NOTE 1:	The specific configu	QPSK QPSK QPSK QPSK QPSK QPSK uration of eau	0 0 0 Outer_1RB_Left Outer_1RB_Right ch RB allocation is de	DFT-s-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK	Inner_1RB_Left Inner_1RB_Right Inner_1RB_Left Inner_1RB_Right 0 0 38.521-1 [8].		
2 3 4 5 6 NOTE 1: NOTE 2:	The specific configu When the signalled allocation.	QPSK QPSK QPSK QPSK QPSK QPSK uration of eau DC carrier p	0 0 0 Outer_1RB_Left Outer_1RB_Right Ch RB allocation is de position is at Inner_1R	DFT-s-OFDM QPSK CP-OFDM QPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK fined in Table 6.1-1 in TS B_Left, use Inner_1RB_F	Inner_1RB_Left Inner_1RB_Right Inner_1RB_Left 0 0 38.521-1 [8]. Right for UL RB		
2 3 4 5 6 NOTE 1: NOTE 2:	The specific configue When the signalled allocation. Outer_1RB_Left de	QPSK QPSK QPSK QPSK QPSK QPSK uration of each DC carrier p	0 0 0 0 Outer_1RB_Left Outer_1RB_Right ch RB allocation is de position is at Inner_1R B allocated at the left	DFT-s-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK fined in Table 6.1-1 in TS	Inner_1RB_Left Inner_1RB_Right Inner_1RB_Left Inner_1RB_Right 0 0 38.521-1 [8]. Right for UL RB		

Table 6.4B.2.2.3.4-1: Test Configuration Table

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS38.521-1[8].
- 5. E-UTRA downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0 of TS36.521-1[10].
- 6. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.

- 7. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.4B.2.2.3.4.3.
- 9. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.4B.2.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4B.2.2.3.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $0 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4B.2.2.3.4.2-1 for the carrier frequency f and the channel bandwidth BW on NR CC.
- 3. Measure In-band emission on NR CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on E-UTRA CC. For TDD slots with transient periods are not under test.
- 4. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $-30 + P_W dBm \pm P_W dB$ where P_W is the power window according to Table 6.4B.2.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW on NR CC.
- 5. Measure In-band emission on NR CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on E-UTRA CC. For TDD slots with transient periods are not under test
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is $40 + P_W dBm \pm P_W dB$ where P_W is the power window according to 6.4B.2.2.3.4.2-2 for the carrier frequency f and the channel bandwidth BW on NR CC.
- 7. Measure In-band emission on NR CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on E-UTRA CC. For TDD slots with transient periods are not under test.
- 8. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 3.2 dBm \pm 3.2dB for carrier frequency f \leq 3.0GHz or 3.5dBm \pm 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz on E-UTRA CC.
- 9. Measure In-band emission on E-UTRA CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on NR CC. For TDD slots with transient periods are not under test.
- 10. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 26.8 dBm ±3.2dB for carrier frequency f \leq 3.0GHz or -26.5dBm ±3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz on E-UTRA CC.
- 11. Measure In-band emission on E-UTRA CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on NR CC. For TDD slots with transient periods are not under test
- 12. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is to -36.8 dBm \pm 3.2dB for carrier frequency f \leq 3.0GHz or -36.5dBm \pm 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz on E-UTRA CC.
- 13. Measure In-band emission on E-UTRA CC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on NR CC. For TDD slots with transient periods are not under test.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4B.2.2.3.4.1-1, send an NR RRCConnectionReconfiguration message containing NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-118 PUSCH-Config without CP-OFDM condition. When switching to CP-OFDM waveform, send an RRCConnectionReconfiguration message containing NR RRCReconfiguration message with CP-OFDM condition.

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	[1.4]	[1.7]	[2]
20MHz < BW ≤ 40MHz	[1.4]	[1.7]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.3]

Table 6.4B.2.2.3.4.2-2: Power Window (dB) for carrier leakage (step 4 and step 6)

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 40MHz	[1.7]	[2.0]	[2.2]
40MHz < BW ≤ 100MHz	[2.1]	[2.3]	[2.5]

6.4B.2.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4B.2.2.3.5 Test requirement

Each of the [20] In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Tables 6.4B.2.2.3.5-1.

Paramete	r Unit	Limit	Applicable Frequencies				
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB} \right\}$	Any non-allocated (NOTE 2)				
IQ Image	dB	$-57 \ dBm \ / \ 180 \ kHz \ - P_{RB} $	Exception for IQ image (NOTE 3)				
Carrier leakage	dBc	-25 Output power > 0 dBm -20 -30 dBm ≤ Output power ≤ 0 dBm -10 -40 dBm ≤ Output power < -30 dBm	Exception for Carrier frequency (NOTE 4)				
NOTE 2:	 NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 9. The limit is evaluated in each non-allocated RB. NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. 						
NOTE 3:	Exceptions to the g	eneral limit are allowed for up to $L_{{\scriptscriptstyle CRBs}}$ +1 RBs withir	a contiguous width of $L_{{\it CRBs}}$ +1				
non-allocated RBs. The measurement bandwidth is 1 RB. NOTE 4: Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in the non-allocated RB to the measured total power in all allocated RBs.							
NOTE 5:	DTE 5: L_{CRB} is the Transmission Bandwidth (see Figure [5.6-1]) not exceeding $\lfloor N_{RB} / 2 - 1 \rfloor$						
	EVM is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs. Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.						
	$\Delta_{\rm RB}=1$ or $\Delta_{\rm RB}=-1$ for the first adjacent RB outside of the allocated bandwidth).						
NOTE 9:	$P_{\!_{RB}}$ is the transmitted power per 180 kHz in allocated RBs, measured in dBm.						

Table 6.4B.2.2.3.5-1: Minimum requirements for in-band emissions (allocated component carrier)

Para- meter	Unit	Meas BW NOTE 1		Limit	remark	Applicable Frequencies	
General	dB	BW of 1 RB (180KHz rectangular)	$20 \cdot \log_{10}$	$25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$ $EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB},$ $2 / 180 kHz - P_{RB} \}$	The reference value is the average power per allocated RB in the allocated component carrier	Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs	
IQ Image	dB	BW of 1 RB (180KHz rectangular)	-25 NOTE 2		The reference value is the average power per allocated RB in the allocated component carrier	The frequencies of the L_{CRB} contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs	
		BW of 1 RB (180KHz	NOTE 3		The reference	The frequencies of	
		rectangular)	-25	Output power > 0 dBm	value is the total power	the up to 2 non-allocated	
Carrier leakage	dBc		-20	-30 dBm ≤ Output power ≤ 0 dBm	of the allocated RBs in the allocated component carrier	RBs are unknown. The frequency raster of the RBs is derived when this	
			-10	-40 dBm ≤ Output power < -30 dBm		component carrier is allocated with RBs	
+1 non-allocated RBs. NOTE 3: Two Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs NOTE 4: NOTES 1, 5, 6, 7, 8, 9 from Table 6.4B.2.2.3.5-1 apply for Table 6.4B.2.2.3.5-2 as well. NOTE 5: Δ_{RB} for measured non-allocated RB in the non allocated component carrier may take non-integer							

Table 6.4B.2.2.3.5-2: Minimum requirements for in-band emissions (not allocated component carrier)

6.4B.2.2.4

values when the carrier spacing between the CCs is not a multiple of RB.

Test purpose 6.4B.2.2.4.1

Same test purpose as in clause 6.4.2.4 in TS 38.521-1 [8] for the NR carrier.

EVM Equalizer Flatness for intra-band non-contiguous EN-DC

6.4B.2.2.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.4B.2.2.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.2.4.3 in TS 38.521-1 [8] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.2.4.4 Test description

Same test description as in clause 6.4.2.4.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

Initial Conditions					
Test Environn subclause 4.1	nent as specified in TS 38.508-1 [6]	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequent subclause 4.3	cies as specified in TS 38.508-1 [6] s.1	MaxWGap			
Test Channel Bandwidths as specified in TS 38.508-1 [6] subclause 4.3.1		Highest N _{RB_agg} (NOTE1, 2)			
Test SCS as s	st SCS as specified in Table 5.3.5-1 Lowest				
	Test paramet	ers			
	Downlink Configuration	Downlink Configuration Uplink Configura			
Test ID	N/A for EVM equalizer flatness testing	Modulation	NR RB allocation (NOTE 3)		
1		DFT-s-OFDM QPSK	Outer Full		
2		CP-OFDM QPSK	Outer Full		
NOTE 1: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1 of 38.521-1 [8].					
NOTE 2: Lowest and highest allowed NR channel BW as specified in Table 5.3B.1.3-1. If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg, only the combination with the highest NRB_SCG is tested.					
NOTE 3: The specific configuration of each RB allocation is defined in Table 6.1-1 of 38.521-1 [8].					

Table 6.4B.2.2.4.4-1: Test Configuration Table

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.4.2.4.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.4.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.2.4.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.4B.2.2.4.5 Test requirement

Same test requirement as in clause 6.4.2.4.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3 Transmit Modulation Quality for inter-band EN-DC within FR1

6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR1

6.4B.2.3.1.1 Test purpose

Same test purpose as in clause 6.4.2.1.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.4B.2.3.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.2.1.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.3.1.4 Test description

Same test description as in clause 6.4.2.1.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8] is replaced by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.4.2.1.4.2 in TS 38.521-1 [8].

6.4B.2.3.1.5 Test requirement

Same test requirement as in clause 6.4.2.1.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.2 Carrier Leakage for inter-band EN-DC within FR1

6.4B.2.3.2.1 Test purpose

Same test purpose as in clause 6.4.2.2.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.4B.2.3.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.2.2.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.3.2.4 Test description

Same test description as in clause 6.4.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.4.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.2.2.4.1 in TS 38.521-1 [8] is replaced by by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.4B.2.3.2.5 Test requirement

Same test requirement as in clause 6.4.2.2.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.3 In-band Emissions for inter-band EN-DC within FR1

6.4B.2.3.3.1 Test purpose

Same test purpose as in clause 6.4.2.3.1 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.4B.2.3.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.2.3.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.3.3.4 Test description

Same test description as in clause 6.4.2.1.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-1 [8] is replaced by:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.4.2.3.4.2 in TS 38.521-1 [8].

6.4B.2.3.3.5 Test requirement

Same test requirement as in clause 6.4.2.3.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.4 EVM Equalizer Flatness for inter-band EN-DC within FR1

6.4B.2.3.4.1 Test purpose

Same test purpose as in clause 6.4.2.4 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.3.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.4B.2.3.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.4.2.4.3 in TS 38.521-1 [8] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.3.4.4 Test description

6.4B.2.3.4.4.1 Initial conditions

Same test description as in clause 6.4.2.4.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.4.2.4.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.4.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.2.4.4.2 in TS 38.521-1 [8] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.4B.2.3.4.5 Test requirement

Same test requirement as in clause 6.4.2.4.5 in TS 38.521-1 [8] for the NR carrier.

6.4B.2.4 Transmit Modulation Quality for inter-band EN-DC including FR2

6.4B.2.4.1 Error Vector Magnitude for inter-band EN-DC including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.4.2.1 in TS 38.521-2 is incomplete.
- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4B.2.4.1.1 Test purpose

Same test purpose as in clause 6.4.2.1 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.4B.2.4.1.3 Minimum conformance requirements

For inter-band EN-DC including FR2 or both FR1 and FR2, transmit modulation quality for EN-DC operations in FR1 and FR2 as specified in TS 36.101 [5], 38.101-1 [2] and 38.101-2 [3] apply for E-UTRA, NR FR1 and NR FR2 respectively.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

Same minimum conformance requirements as in clause 6.4.2.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.4.1.4 Test description

6.4B.2.4.1.4.1 Initial conditions

Same test description as in clause 6.4.2.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.4.2.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.2.1.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.2.4.1.5 Test requirement

Same test requirement as in clause 6.4.2.1.5 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.2 Carrier Leakage for inter-band EN-DC including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.4.2.2 in TS 38.521-2 is incomplete.
- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4B.2.4.2.1 Test purpose

Same test purpose as in clause 6.4.2.2 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.4B.2.4.2.3 Minimum conformance requirements

For inter-band EN-DC including FR2 or both FR1 and FR2, transmit modulation quality for EN-DC operations in FR1 and FR2 as specified in TS 36.101 [5], 38.101-1 [2] and 38.101-2 [3] apply for E-UTRA, NR FR1 and NR FR2 respectively.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

Same minimum conformance requirements as in clause 6.4.2.2.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied

6.4B.2.4.2.4 Test description

6.4B.2.4.2.4.1 Initial conditions

Same test description as in clause 6.4.2.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.4.2.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.2.2.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.2.4.2.5 Test requirement

Same test requirement as in clause 6.4.2.2.5 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.3 In-band Emissions for inter-band EN-DC including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.4.2.3 in TS 38.521-2 is incomplete.
- Measurement Uncertainty and Test Tolerance are FFS.
- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4B.2.4.3.1 Test purpose

Same test purpose as in clause 6.4.2.3 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.4B.2.4.3.3 Minimum conformance requirements

For inter-band EN-DC including FR2 or both FR1 and FR2, transmit modulation quality for EN-DC operations in FR1 and FR2 as specified in TS 36.101 [5], 38.101-1 [2] and 38.101-2 [3] apply for E-UTRA, NR FR1 and NR FR2 respectively.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

Same minimum conformance requirements as in clause 6.4.2.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.4.3.4 Test description

6.4B.2.4.3.4.1 Initial conditions

Same test description as in clause 6.4.2.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.4.2.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.2.3.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.2.4.3.5 Test requirement

Same test requirement as in clause 6.4.2.3.5 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.4 EVM Equalizer Flatness for inter-band EN-DC including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.4.2.4 in TS 38.521-2 is incomplete.
- Measurement Uncertainty and Test Tolerance are FFS.

- 38.101-2 Clause 6.3.4.3: Relative power tolerances are in square brackets.

6.4B.2.4.4.1 Test purpose

Same test purpose as in clause 6.4.2.4 in TS 38.521-2 [9] for the NR carrier.

6.4B.2.4.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.4B.2.4.4.3 Minimum conformance requirements

For inter-band EN-DC including FR2 or both FR1 and FR2, transmit modulation quality for EN-DC operations in FR1 and FR2 as specified in TS 36.101 [5], 38.101-1 [2] and 38.101-2 [3] apply for E-UTRA, NR FR1 and NR FR2 respectively.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

Same minimum conformance requirements as in clause 6.4.2.4.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.4B.2.4.4.4 Test description

6.4B.2.4.4.1 Initial conditions

Same test description as in clause 6.4.2.4.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.4.2.4.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.4.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.4.2.4.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.4B.2.4.4.5 Test requirement

Same test requirement as in clause 6.4.2.4.5 in TS 38.521-2 [9] for the NR carrier.

6.5 Output RF spectrum emissions

- 6.5A Output RF spectrum emissions for CA
- 6.5A.1 Occupied bandwidth for CA without EN-DC

6.5A.1.1 Test purpose

Same test purpose as in clause 6.5.1 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.5.1 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.4A.2.4.1 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for occupied bandwidth apply and are tested in TS 38.521-1 [8] clause 6.5 and 6.5A and TS 38.521-2 [9] clauses 6.5 and 6.5A.

6.5A.2 Out-of-band emissions for CA without EN-DC

6.5A.2.2 Additional Spectrum emissions mask for CA without EN-DC

6.5A.2.2.1 Test purpose

Same test purpose as in 6.5.2.3 in TS 38.521-1 [8] for NR FR1 carrier(s) and 6.5.2.2 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.5A.2.2.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for additional spectrum emissions mask apply and are tested in TS 38.521-1 [8] clause 6.5 and 6.5A and TS 38.521-2 [9] clause 6.5 and 6.5A.

6.5A.2.3 Adjacent channel leakage ratio for CA without EN-DC

No test case details specified as there are no exception requirements applicable to NR FR1 or NR FR2 as per TS 38.101-3 [4], clause 6.5A.2. The SA requirement for ACLR applies and is tested in TS 38.521-1 [8] and TS 38.521-2 [9] for FR1 and FR2 respectively.

6.5A.3 Spurious emissions for CA without EN-DC

6.5A.3.1 Test purpose

Same test purpose as in clause 6.5.3 in TS 38.521-1 [8] for NR FR1 carrier(s) and clause 6.5.3 in TS 38.521-2 [9] for NR FR2 carrier(s).

6.5A.3.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The SA requirements for occupied bandwidth apply and are tested in TS 38.521-1 [8] clauses 6.5 and 6.5A and TS 38.521-2 [9] clauses 6.5 and 6.5A.

6.5B Output RF spectrum emissions for DC

6.5B.1 Occupied bandwidth for EN-DC

6.5B.1.1 Occupied bandwidth for Intra-Band Contiguous EN-DC

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- measurement uncertainty for ENBW > 100 MHz is FFS.

6.5B.1.1.1 Test purpose

To verify that the UE occupied bandwidth for intra-band contiguous EN-DC for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5B.1.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.5B.1.1.3 Minimum conformance requirements

For intra-band contiguous EN-DC, the occupied bandwidth is a measure of the bandwidth containing the 99% of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth for EN-DC, denoted as EN-BW in sub-clause 5.3B.

The normative reference for this measurement is TS 38.101-3 [4] clause 6.5B.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.5B.1.1.4 Test description

6.5B.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.5B.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.5B.1.1.4.1-1: Test configuration table

Initial Conditions						
Test Environment as specified in TS 38.508-1 [6] subclause 4.1		NC				
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1		Mid range				
	Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1		All			
Test SCS for the NR cell as specified in TS 38.521-1 [8] Table 5.3.5-1		Lowest SCS per Channel Bandwidth				
		Test Parameter	-			
Test ID	Downlink	EN-DC Uplink Configuration				
	Configuration	E-UTRA Cell		NR Cell		
		Modulation	RB allocation (NOTE 2)	Modulation	RB allocation (NOTE 1)	
1	N/A for OBW testing.	QPSK	Outer_Full	CP-OFDM QPSK	Outer_Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. NOTE 2: Outer_Full defined as the transmission bandwidth configuration N _{RB} per channel bandwidth for the E-UTRA component as indicated in TS 36.521-1 [10] Table 5.4.2-1.						

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.1.4.3.

6.5B.1.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 6.5B.1.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command for the UE to reach P_{UMAX} level.
- 3. Measure the power spectrum distribution over all EN-DC component carriers in the EN-DC within two times or more range over the requirement for Occupied Bandwidth specification for intra-band contiguous EN-DC centring on the current carrier frequency in the EN-DC configuration. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is at least 1ms over consecutive active uplink slots.
- 4. Calculate the total power within the range of all frequencies measured in step 3 and save this value as "Total power".
- 5. Sum up the power upward from the lower boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Lower Frequency".
- 6. Sum up the power downward from the upper boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Upper Frequency".
- 7. Calculate the difference "Upper Frequency" "Lower Frequency" = "Occupied Bandwidth" between the two limit frequencies obtained in step 5 and step 6.

6.5B.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.5B.1.1.5 Test requirements

The measured Occupied Bandwidth shall not exceed values of aggregated channel bandwidth as defined in section 5.3B.1.2 for intra-band contiguous EN-DC.

6.5B.1.2 Occupied bandwidth for Intra-Band Non-Contiguous EN-DC

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Wgap for intraband non-contiguous EN-DC is FFS in TS 38.508-1 due to dependencies with RAN4.

6.5B.1.2.1 Test purpose

Same test purpose as in clause 6.5.1.1 in TS 38.521-1 [8] for the NR carrier.

6.5B.1.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non contiguous EN-DC.

6.5B.1.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.1.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.1.2.4 Test description

Same test description as in clause 6.5.1.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 6.5.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.1.4.1 in TS 38.521-1 [8] is replaced by:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- 7. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.5.1.4.2 in TS 38.521-1 [8].

6.5B.1.2.5 Test requirement

Same test requirement as in clause 6.5.1.5 in TS 38.521-1 [8] for the NR carrier.

6.5B.1.3 Occupied bandwidth for Inter-Band EN-DC within FR1

6.5B.1.3.1 Test purpose

Same test purpose as in clause 6.5.1.1 in TS 38.521-1 [8] for the NR carrier.

6.5B.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.5B.1.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.1.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.1.3.4 Test description

Same test description as in clause 6.5.1.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 6.5.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for the cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.1.4.1 in TS 38.521-1 [8] is replaced by:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.5B.1.3.5 Test requirement

Same test requirement as in clause 6.5.1.5 in TS 38.521-1 [8] for the NR carrier.

6.5B.1.4 Occupied bandwidth for Inter-Band EN-DC including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.5.1 in TS 38.521-2 is incomplete
- Measurement Uncertainty FFS.
- OBW core requirement and waveform defined in TS 38.101-2 is under discussion in RAN4.

6.5B.1.4.1 Test purpose

Same test purpose as in clause 6.5.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.1.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.5B.1.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.1.4.4 Test description

6.5B.1.4.4.1 Initial conditions

Same test description as in clause 6.5.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.5.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.

3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.1.4.5 Test requirement

Same test requirement as in clause 6.5.1.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT created a 4. duplication!!]

6.5B.1.4.2 Occupied bandwidth for Inter-band EN-DC including FR2 (3 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.1.1 in TS 38.521-2 is incomplete.

6.5B.1.4.2.1 Test purpose

Same test purpose as in clause 6.5.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.1.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.5B.1.4.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.1.

- 6.5B.1.4.2.4 Test description
- 6.5B.1.4.2.4.1 Initial condition

Same test description as in clause 6.5A.1.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.1.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.1.1.4.1 in TS 38.521-2 [9] is replaced by:

3GPP TS 38.521-3 version 15.3.0 Release 15

256

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.1.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.1.4.2.5 Test Requirements

Same test requirement as in clause 6.5A.1.1.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.1.4.3 Occupied bandwidth for Inter-band EN-DC including FR2 (4 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.1.2 in TS 38.521-2 is incomplete.

6.5B.1.4.3.1 Test purpose

Same test purpose as in clause 6.5.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.1.4.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4CCs.

6.5B.1.4.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.1.

6.5B.1.4.3.4 Test description

6.5B.1.4.3.4.1 Initial condition

Same test description as in clause 6.5A.1.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.1.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.1.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.1.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.1.4.3.5 Test Requirements

Same test requirement as in clause 6.5A.1.2.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.1.4.4 Occupied bandwidth for Inter-band EN-DC including FR2 (5 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.1.1 in TS 38.521-2 is incomplete.

6.5B.1.4.4.1 Test purpose

Same test purpose as in clause 6.5.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.1.4.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5CCs.

6.5B.1.4.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.1.

6.5B.1.4.4.4 Test description

6.5B.1.4.4.4.1 Initial condition

Same test description as in clause 6.5A.1.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.1.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.1.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.1.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.1.4.4.5 Test Requirements

Same test requirement as in clause 6.5A.1.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of the 4. duplication!!]

6.5B.2 Out-of-band emissions for EN-DC

6.5B.2.1 Out-of-band emissions for Intra-band contiguous EN-DC

6.5B.2.1.1 Spectrum emissions mask for intra-band contiguous EN-DC

6.5B.2.1.1.1 Test purpose

To verify that the power of any UE emissions shall not exceed specified level for the specified aggregated bandwidth for the EN-DC intra-band contiguous.

6.5B.2.1.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.5B.2.1.1.3 Minimum conformance requirements

The general spectrum emission for intra-band contiguous EN-DC is specified in Table 6.5B.2.1.1.3-1.

Table 6.5B.2.1.1.3-1: General spectrum emission mask for intra-band contiguous EN-DC

Δf _{оов} (MHz)	Spectrum emission limit (dBm)	Measurement bandwidth	
± 0 – 1	Max(Round(10*log(0.15/ENBW)),-24)	30 kHz	
± 1 – 5	-10	1 MHz	
± 5 – ENBW	-13	1 MHz	
± ENBW – (ENBW+5)	-25	1 MHz	
NOTE: ENBW refers to the aggregated channel bandwidth in MHz as defined in sub- clause 5.3B.			

The normative reference for this measurement is TS 38.101-3 [4] clause 6.5B.2.1.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.5B.2.1.1.4 Test description

6.5B.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.5B.2.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.5B.2.1.1.4.1-1: Test configuration table

				In	itial Condition	5									
Test Environment as specified in TS 38.508-1 [6] subclause 4.1				NC											
Test Frequencies as specified in TS 38.508-1 [6] subclause			Low range, High range												
	C bandwidt		nation a	S		g, Highest N _{RB_}	agg								
	n Table 5.3 for the NR		pecified	in TS	(Note 2)										
38.521-1 [[8] Table 5.3	3.5-1			Lowest, Highe										
Test ID	Freq	ChB	SCS	Dow		EN-DC Uplink	Configuration								
		w		nlink Conf	E-UTR Modulation	A Cell RB	NR C Modulation	Cell RB							
				igur ation		allocation (Note 5)		allocation (NOTE 1)							
1	Default				16QAM	Outer_Full	DFT-s-OFDM PI/2 BPSK	Outer_Full							
2 (Note 3)	Default				16QAM	Outer_1RB _Left	DFT-s-OFDM PI/2 BPSK	Edge_1RB_ Right							
3 (Note 3)	Low				16QAM	Outer_1RB _Left	DFT-s-OFDM PI/2 BPSK	N/A							
4 (Note 3)	High				16QAM	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_ Right							
5 (Note 4)	Default				16QAM	Outer_1RB _Right	DFT-s-OFDM PI/2 BPSK	Edge_1RB_ Left							
6 (Note 4)	Low					16QAM	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_ Left						
7 (Note 4)	High					16QAM	Outer_1RB _Right	DFT-s-OFDM PI/2 BPSK	N/A						
8	Default								16QAM	Outer_Full	DFT-s-OFDM QPSK	Outer_Full			
9 (Note 3)	Default				16QAM	Outer_1RB _Left	DFT-s-OFDM QPSK	Edge_1RB_ Right							
10 (Note 3)	Low				16QAM	Outer_1RB _Left	DFT-s-OFDM QPSK	N/A							
11 (Note 3)	High					16QAM	N/A	DFT-s-OFDM QPSK	Edge_1RB_ Right						
12 (Note 4)	Default	1				N/A	16QAM	Outer_1RB _Right	DFT-s-OFDM QPSK	Edge_1RB_ Left					
13 (Note 4)	Low	Defa ult	Defa ult	for SEM	16QAM	N/A	DFT-s-OFDM QPSK	Edge_1RB_ Left							
14 (Note 4)	High								case	16QAM	Outer_1RB _Right	DFT-s-OFDM QPSK	N/A		
15	Default				16QAM	Outer_Full	DFT-s-OFDM 16QAM	Outer_Full							
16 (Note 3)	Default								16QAM	Outer_1RB _Left	DFT-s-OFDM 16QAM	Edge_1RB_ Right			
17 (Note 3)	Low				16QAM	Outer_1RB _Left	DFT-s-OFDM 16QAM	N/A							
18 (Note 3)	High				16QAM	N/A	DFT-s-OFDM 16QAM	Edge_1RB_ Right							
19 (Note 4)	Default				16QAM	Outer_1RB _Right	DFT-s-OFDM 16QAM	Edge_1RB_ Left							
20 (Note 4)	Low							16QAM	N/A	DFT-s-OFDM 16QAM	Edge_1RB_ Left				
21 (Note 4)	High					16QAM	Outer_1RB _Right	DFT-s-OFDM 16QAM	N/A						
22	Default				16QAM	Outer_Full	DFT-s-OFDM 64QAM	Outer_Full							
23 (Note 3)	Low											16QAM	Outer_1RB _Left	DFT-s-OFDM 64QAM	Edge_1RB_ Right
24 (Note 4)	High				16QAM	Outer_1RB _Right	DFT-s-OFDM 64QAM	Edge_1RB_ Left							
25	Default				16QAM	Outer_Full	DFT-s-OFDM 256QAM	Outer_Full							

3GPP TS 38.521-3 version 15.3.0 Release 15

261

Low	
High	
Default	
Default	
Low	
High	
Default	
Low	
High	
-	
_	
Default	
Default	
Low	
High	
Default	
Low	
High	
Default	
Low	
High	
Default	
Low	
High	
	High Default Default Low High Default Cow High Default Low High Default Coefault Low High Default Low High Default Low High

16QAM	Outer_1RB _Left	DFT-s-OFDM 256QAM	Edge_1RB_ Right
16QAM	Outer_1RB _Right	DFT-s-OFDM 256QAM	Edge_1RB_ Left
16QAM	Outer_Full	CP-OFDM PI/2 BPSK	Outer_Full
16QAM	Outer_1RB Left	CP-OFDM PI/2 BPSK	Edge_1RB_ Right
16QAM	Outer_1RB _Left	CP-OFDM PI/2 BPSK	N/A
16QAM	N/A	CP-OFDM PI/2 BPSK	Edge_1RB_ Right
16QAM	Outer_1RB _Right	CP-OFDM PI/2 BPSK	Edge_1RB_ Left
16QAM	N/A	CP-OFDM PI/2 BPSK	Edge_1RB_ Left
16QAM	Outer_1RB _Right	CP-OFDM PI/2 BPSK	N/A
16QAM	Outer_Full	CP-OFDM QPSK	Outer_Full
16QAM	Outer_1RB _Left	CP-OFDM QPSK	Edge_1RB_ Right
16QAM	Outer_1RB _Left	CP-OFDM QPSK	N/A
16QAM	N/A	CP-OFDM QPSK	Edge_1RB_ Right
16QAM	Outer_1RB _Right	CP-OFDM QPSK	Edge_1RB_ Left
16QAM	N/A	CP-OFDM QPSK	Edge_1RB_ Left
16QAM	Outer_1RB _Right	CP-OFDM QPSK	N/A
16QAM	Outer_Full	CP-OFDM 16QAM	Outer_Full
16QAM	Outer_1RB _Left	CP-OFDM 16QAM	Edge_1RB_ Right
16QAM	Outer_1RB _Left	CP-OFDM 16QAM	N/A
16QAM	N/A	CP-OFDM 16QAM	Edge_1RB_ Right
16QAM	Outer_1RB _Right	CP-OFDM 16QAM	Edge_1RB_ Left
16QAM	N/A	CP-OFDM 16QAM	Edge_1RB_ Left
16QAM	Outer_1RB _Right	CP-OFDM 16QAM	N/A
16QAM	Outer_Full	CP-OFDM 64QAM	Outer_Full
16QAM	Outer_1RB _Left	CP-OFDM 64QAM	Edge_1RB_ Right
16QAM	Outer_1RB _Right	CP-OFDM 64QAM	Edge_1RB_ Left
16QAM	Outer_Full	CP-OFDM 256QAM	Outer_Full
16QAM	Outer_1RB _Left	CP-OFDM 256QAM	Edge_1RB_ Right
16QAM	Outer_1RB _Right	CP-OFDM 256QAM	Edge_1RB_ Left

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. NOTE 2: If the UE supports multiple CC combinations in the EN-DC configuration with the same N_{RB_agg}, select the combination to test as follows:

- Lowest ENBW: NR component with lowest NRB is tested.
- Highest ENBW: NR component with highest N_{RB} is tested.
- NOTE 3: Applicable when E-UTRA cell carrier frequency is lower than NR cell carrier.
- NOTE 4: Applicable when NR cell carrier frequency is lower than E-UTRA cell carrier.

NOTE 5: Outer_Full defined as the transmission bandwidth configuration N_{RB} per channel bandwidth for the E-UTRA component as indicated in TS 36.521 [10] Table 5.4.2-1. Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.1.4.3.

6.5B.2.1.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 6.5B.1.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command for the UE to reach P_{UMAX} level.
- 3. Measure the mean power over all component carriers for the EN-DC configuration. The period of measurement shall be at least the continuous duration of 1ms over consecutive active uplink slotsFor TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5B.2.1.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5B.2.1.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5B.2.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

6.5B.2.1.2.5 Test requirements

The power of any UE emissions shall fulfil requirements in Table 6.5B.2.1.2.5-1.

Δf _{OOB} (MHz)	Spectrum emission limit (dBm)	Measurement bandwidth		
± 0 - 1	Max(Round(10*log(0.15/ENBW)),-24)	30 kHz		
±1-5	-10 + TT	1 MHz		
± 5 - ENBW	-13 + TT	1 MHz		
± ENBW – (ENBW+5)	-25 + TT	1 MHz		
NOTE: ENBW refers to the aggregated channel bandwidth in MHz as defined in sub-				
clause 5.3B.				

Table 6.5B.2.1.1.5-1: General spectrum emission mask for intra-band contiguous EN-DC

f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
1.5 dB	1.8 dB	1.8 dB

6.5B.2.1.2 Additional spectrum emissions mask for intra-band contiguous EN-DC

6.5B.2.1.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5B.2.1.2.2 Test applicability

This test case applies to all types of E-UTRA power class 3 and power class UE release 15 and forward, supporting intra-band contiguous EN-DC.

6.5B.2.1.2.3 Minimum conformance requirements

6.5B.2.1.2.3.1 Minimum requirement for network signalled value "NS_35"

For contiguous intra-band EN-DC configuration of DC_(n)71AA when NS_35 is indicated for the UE the requirements in table 6.5B.2.1.2.3-1 apply in the frequency ranges immediately adjacent and outside the aggregation of the said subblocks

When NS_35 is indicated in the MCG and NS_35 is indicated in the SCG the requirements in table 6.5B.2.1.2.3.1-1 apply in the frequency ranges immediately adjacent and outside the aggregated sub-blocks of the EN-DC configuration for DC_(n)71AA.

	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement (dBm)	Measurem ent bandwidth	
$0 \text{ MHz} \le \Delta f < 0.1 \text{ MHz}$	$0.015 \text{ MHz} \le f_{offset} < 0.085 \text{ MHz}$	-13	30 kHz	
0.1 MHz ≤ Δf < ENBW	0.15 MHz ≤ f_offset < ENBW-0.05 MHz	-13	100 kHz	
$ENBW \leq \Delta f < ENBW + 5 MHz$	ENBW + 0.5 MHz ≤ f_offset < ENBW + 4.5 MHz	-25	1 MHz	
NOTE: ENBW is the aggregated bandwidth of an E-UTRA sub-block and an adjacent NR sub-block; there is no frequency separation between the said sub-blocks. The sub-block bandwidths include any internal guard bands.				

Table 6.5B.2.1.2.3.1-1: Additional requirements

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.1.2.1.

Exception requirements for both NR and E-UTRA are defined for this test when transission on E-UTRA overlap in time with NR.LTE and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

No exception requirements for NR or E-UTRA are defined for this test when tramsission on E-UTRA doesn't overlap in time with NR. LTE anchor agnostic approach is applied for this case and referred to as sub-test 2.

6.5B.2.1.2.3.2 Minimum requirement for network signalled value "NS_04"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

The Band 41/n41 SEM transition point from -13 dBm/MHz to -25 dBm/MHz is based on the emission bandwidth. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Since the 26 dB emission bandwidth is implementation dependent, the transmission bandwidths occupied by RBs is used for the SEM. The emission bandwidth for LTE carriers is document in 36.101 [5], and the emission bandwidth for NR carriers is documented in 38.101-1 [2]. The total emission bandwidth for contiguous intra-band EN-DC is the sum of the emission bandwidth for each CC plus the guard band between contiguous CCs.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5B.2.1.2.3.2-1.

		S	Spectru				Bm)/ measurement bandwidth nnel bandwidth
∆fOOB MHz	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	> 50 MHz	Measurement bandwidth
±0-1	-18	-20	-21	-24	-2	25	30 kHz
±1-5		-10					
± 5 - X		-13				1 MHz	
± X - (BWChannel + 5 MHz)		-25					
NOTE 1: X is defined as t between contigu			emissio	on band	width o	of the co	omponent carriers plus the guard band

Table 6.5B.2.1.2.3.2-1: n41 SEM with NS 04

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.1.2.2

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.5B.2.1.2.4 Test description

6.5B.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial condition part is separated in two sub tests to verify different aspects of MPR. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

- 1. Sub test: with transmission overlap for all UE's
- The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in test configuration table 6.2B.3.1.4.1-1 through 6.2B.3.1.4.1-26. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

E-UTRA Test Parameters						
E-UTRA Channel	E-UTRA Test Frequency	Downlink	Upli	ink		
Bandwidth	(Note 1)	N/A for A-MPR	Modulation	RB allocation		
20 MHz	Low range and High range (Note 2)	testing.	QPSK	100		
NOTE 1: E-UTRA Test Frequency as specified in TS 36.508 [6] subclause 4.3.1 NOTE 2: NR carrier shall be the outermost carrier during test.						

Table 6.5B.2.1.2.4.1-0: E-UTRA test configuration table

- Editor's note: The following lines belong at the end of section 6.5B.2.1.2.4.1. As new tables are added to this section, these lines should always follow the tables.
- The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.
- 11. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.2.1 for SS diagram and section A.3.2.1 for UE diagram.
- 1.2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 1.3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 1.4 NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS 38.521-1[8].
- 1.5. The UL Reference Measurement channels are set according to TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG link and NR CG link respectively.
- 1.6. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG link and NR CG link respectively.
- 1.7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.5B.2.1.2.4.3.
- 1.8. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same initial condition as in clause 6.2.3.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For initial conditions as in clause 6.5.3.3.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Same initial conditions as in clause 6.5.3.3.4.1 in TS 38.521-1 [8] with the following steps exception:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.5B.2.1.2.4.2 Test procedure

The test procedure part is separated in two sub tests to verify different aspects of Additional spectrum emissions mask for intra-band contiguous EN-DC. Sub test 2 is only applicable to UE's supporting dynamic power sharing.

- 1. Sub test: with transmission overlap for all UE's
 - 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to table 6.2B.3.1.4.1-1 on both EN-DC component carriers. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
 - 1.2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
 - 1.3. Measure the mean power over all component carriers for the EN-DC configuration, which shall meet the requirements described in table 6.5B.2.1.2.5.1-1 thru 6.5B.2.1.2.5.2-1. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms).
 - 1.4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5B.2.1.2.5-1 thru 6.5B.2.1.2.5.2-1. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active time slots.
 - NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.2B.3.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-89 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- 2. Sub test: without transmission overlap for UE's supporting dynamic power sharing

Same test procedure as in clause 6.2.3.4.2 in TS 38.521-1 [8] with the following steps exception:

- 3. Measure the mean power over all component carriers for the EN-DC configuration, which shall meet the requirements described in table 6.5B.2.1.2.5.1-1 thru 6.5B.2.1.2.5.2-1. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms).
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5B.2.1.2.5-1 thru 6.5B.2.1.2.5.2-1. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active time slots.

6.5B.2.1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1, with the following exceptions for each network signalled value.

Editor's note: Exceptions to network signal values should be added as sub-clauses below.

6.5B.2.1.2.4.3.1 Message contents exceptions for network signalled value "NS_35"

For "NS_35" see A-MPR test case in table 6.2B.3.1.4.3.2-1 and table 6.2B.3.1.4.3.2-2.

6.5B.2.1.2.4.3.2 Message contents exceptions for network signalled value "NS_04"

For "NS_04" see A-MPR test case in table 6.2B.3.1.4.3.1-1 and table 6.2B.3.1.4.3.1-2.

- 6.5B.2.1.2.5 Test requirement
- 6.5B.2.1.2.5.1 Test requirement for network signalled value "NS_35"

When "NS_35" is indicated in the cell measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.2B.3.1.5.1-1, and the power of any UE shall not exceed the described values in table

6.5B.2.1.2.5.1-1. The requirements in the table apply in the frequency ranges immediately adjacent and outside the aggregation of the sub-blocks.

Δfooв	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement [dBm]	Measurement bandwidth		
$0 \text{ MHz} \le \Delta f < 0.1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.085 MHz	-11.5	30 kHz		
$0.1 \text{ MHz} \le \Delta f < ENBW$	0.15 MHz ≤ f_offset < ENBW – 0.05 MHz	-11.5	100 kHz		
$ENBW \le \Delta f < ENBW + 5 MHz$	ENBW + 0.5 MHz ≤ f_offset < ENBW + 4.5 MHz	-23.5	1 MHz		
NOTE: ENBW is the aggregated bandwidth of an E-UTRA sub-block and an adjacent NR sub-block; there is no					
frequency separation between the said sub-blocks. The sub-block bandwidths include any internal guard					
bands.					

Table 6.5B.2.1.2.5.1-1: Additional requirements for "NS_35"

6.5B.2.1.2.5.2 Test requirement for network signalled value "NS_04"

When "NS_04" is indicated in the cell measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in tables 6.2B.3.1.5.2-1, and the power of any UE shall not exceed the described values in table 6.5B.2.1.2.5.2-1. The requirements in the table apply in the frequency ranges immediately adjacent and outside the aggregation of the sub-blocks.

Table 6.5B.2.1.2.5.2-1: Additional requ	uirements for n41 SEM with NS_04
---	----------------------------------

	Spectrum emission limit (dBm)/ measurement bandwidth for each channel bandwidth						
Δf _{оов} MHz	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	> 50 MHz	Measurement bandwidth
± 0 - 1	-16.5	-18.5	-19.5	-22.5	-2	3.5	30 kHz
±1-5	-8.5						
± 5 - X		-11.5					1 MHz
± X - (BWChannel + 5 MHz)	± X - (BWChannel + 5 MHz) -23.5						
NOTE 1: X is defined as the sum or contiguous CCs.	f the emissi	ion bandw	idth of the	componer	nt carriers	plus the g	uard band between

6.5B.2.1.3 Adjacent channel leakage ratio for intra-band contiguous EN-DC

Editor's note: Future optimization of this test case might be possible by combining ACLR measurement with MPR measurement

6.5B.2.1.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage Power Ratio (ACLR).

6.5B.2.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band EN-DC.

6.5B.2.1.3.3 Minimum conformance requirements

For EN-DC operation with an E-UTRA sub-block immediately adjacent to an NR sub-block, the ACLR is defined as the ratio of the filtered mean power centred on the aggregated sub-block bandwidth ENBW to the filtered mean power centred on an adjacent bandwidth of the same size ENBW at nominal channel spacing. The UE shall meet the ACLR minimum requirement EN-DC_{ACLR} specified in Table 6.5B.2.1.3-1 with ENBW the sum of the sub-block bandwidths.

The assigned channel power and adjacent channel power are measured with rectangular filters with measurement bandwidths specified in 6.5B.2.1.3-1.

Parameter	Unit	Value		
EN-DC _{ACLR}	dBc	30		
Measurement bandwidth of EN-		1.00*ENBW		
DC channel				
Measurement bandwidth of		0.95*ENBW		
adjacent channel				
Frequency offset of adjacent		ENBW		
channel		/		
		-ENBW		
NOTE 1: ENBW is the aggregate	ed bandwidth in MHz	as defined in sub-		
clause 5.3B.				
NOTE 2: The frequency offset is	that in between the c	entre frequencies of		
the measurement filter	S			

 Table 6.5B.2.1.3-1: ACLR for intra-band EN-DC (contiguous sub-blocks)

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.1.3.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.5B.2.1.3.4 Test description

6.5B.2.1.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.5B.2.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 6.5B.2.1.3.4.1-1: Test Configuration Table

				In	itial Condition	ns			
Test Environment as specified in TS 38.508-1 [6] subclause 4.1					NC, TL/VL, TL/VH, TH/VL, TH/VH				
	Test Frequencies				Low range, High range				
as spe	as specified in TS 38.508-1 [6] subclause 4.3.1				-				
in Tab	Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1					agg, Highest N _{RB_agg}			
Test SCS for the NR cell as specified in TS 38.521-1 [8] Table 5.3.5-1					Lowest, High	nest			
					est Paramete				
Test ID	Freq	ChBw	SCS	Downlink Configuratio	EN-DC Uplink Configuration E-UTRA Cell NR Cell				
				n	Modulatio	RB allocation	Modulatio	RB allocation	
					n	(Note 5)	n	(NOTE 1)	
1	Defaul t				16QAM	Outer_Full	DFT-s- OFDM PI/2 BPSK	Outer_Full	
2 (Not e 3)	Defaul t				16QAM	Outer_1RB_Left	DFT-s- OFDM PI/2 BPSK	Edge_1RB_Rig ht	
3 (Not e 3)	Low				16QAM	Outer_1RB_Left	DFT-s- OFDM PI/2 BPSK	N/A	
4 (Not e 3)	High				16QAM	N/A	DFT-s- OFDM PI/2 BPSK	Edge_1RB_Rig ht	
5 (Not e 4)	Defaul t				16QAM	Outer_1RB_Rig ht	DFT-s- OFDM PI/2 BPSK	Edge_1RB_Left	
6 (Not e 4)	Low				16QAM	N/A	DFT-s- OFDM PI/2 BPSK	Edge_1RB_Left	
7 (Not e 4)	High				16QAM	Outer_1RB_Rig ht	DFT-s- OFDM PI/2 BPSK	N/A	
8	Defaul t				16QAM	Outer_Full	DFT-s- OFDM QPSK	Outer_Full	
9 (Not e 3)	Defaul t	Defaul t	Defaul t	N/A for ACLR test case	16QAM	Outer_1RB_Left	DFT-s- OFDM QPSK	Edge_1RB_Rig ht	
10 (Not e 3)	Low				16QAM	Outer_1RB_Left	DFT-s- OFDM QPSK	N/A	
11 (Not e 3)	High				16QAM	N/A	DFT-s- OFDM QPSK	Edge_1RB_Rig ht	
12 (Not e 4)	Defaul t				16QAM	Outer_1RB_Rig ht	DFT-s- OFDM QPSK	Edge_1RB_Left	
13 (Not e 4)	Low				16QAM	N/A	DFT-s- OFDM QPSK	Edge_1RB_Left	
14 (Not e 4)	High				16QAM	Outer_1RB_Rig ht	DFT-s- OFDM QPSK	N/A	
15	Defaul t				16QAM	Outer_Full	DFT-s- OFDM 16QAM	Outer_Full	
16 (Not e 3)	Defaul t				16QAM	Outer_1RB_Left	DFT-s- OFDM 16QAM	Edge_1RB_Rig ht	
17 (Not e 3)	Low				16QAM	Outer_1RB_Left	DFT-s- OFDM 16QAM	N/A	

3GPP TS 38.521-3 version 15.3.0 Release 15 271 ETSI TS 138 521-3 V15.3.0 (2019-07)

High	
Defaul t	
Low	
High	
Defaul t	
Low	
High	
Defaul t	
Low	
High	
Defaul t	
Defaul t	
Low	
High	
Defaul t	
Low	
High	
Defaul t	
Defaul t	
Low	
	Defaul t Low Defaul t Low High Defaul t Defaul t Defaul t Defaul t Low High Defaul t Defaul t

400.004	1	DET	
16QAM	N/A	DFT-s- OFDM	Edge_1RB_Rig
	14/7	16QAM	ht
16QAM	Outer_1RB_Rig	DFT-s-	
	ht	OFDM	Edge_1RB_Left
16QAM		16QAM DFT-s-	
TOQAIVI	N/A	OFDM	Edge_1RB_Left
	10/7	16QAM	Edgo_IND_Eon
16QAM	Outer_1RB_Rig	DFT-s-	
	ht	OFDM	N/A
400.414		16QAM	
16QAM	Outer_Full	DFT-s- OFDM	Outer_Full
	Outer_Fuil	64QAM	Outer_Fuil
16QAM		DFT-s-	
	Outer_1RB_Left	OFDM	Edge_1RB_Rig
		64QAM	ht
16QAM	Outer_1RB_Rig	DFT-s-	
	ht	OFDM	Edge_1RB_Left
160414		64QAM	
16QAM	Outer_Full	DFT-s- OFDM	Outer_Full
		256QAM	
16QAM		DFT-s-	
	Outer_1RB_Left	OFDM	Edge_1RB_Rig ht
		256QAM	nı
16QAM	Outer_1RB_Rig	DFT-s-	
	ht	OFDM	Edge_1RB_Left
		256QAM	
16QAM	Outer_Full	CP-OFDM	Outer_Full
400.004		QPSK	
16QAM		CP-OFDM	Edge_1RB_Rig
	Outer_1RB_Left	QPSK	ht
16QAM		CP-OFDM	
10.57 (10)	Outer_1RB_Left	QPSK	N/A
			-
16QAM		CP-OFDM	Edge_1RB_Rig
	N/A	QPSK	ht
400414			
16QAM	Outer_1RB_Rig	CP-OFDM	
	ht ht	QPSK	Edge_1RB_Left
I	ł	CP-OFDM	
16QAM			
16QAM	N/A	QPSK	Edge_1RB Left
16QAM	N/A		Edge_1RB_Left
16QAM 16QAM		QPSK CP-OFDM	-
	Outer_1RB_Rig	QPSK	Edge_1RB_Left N/A
16QAM		QPSK CP-OFDM QPSK	-
	Outer_1RB_Rig	QPSK CP-OFDM QPSK CP-OFDM	-
16QAM 16QAM	Outer_1RB_Rig ht	QPSK CP-OFDM QPSK CP-OFDM 16QAM	N/A Outer_Full
16QAM	Outer_1RB_Rig ht Outer_Full	QPSK CP-OFDM QPSK CP-OFDM 16QAM CP-OFDM	N/A Outer_Full Edge_1RB_Rig
16QAM 16QAM	Outer_1RB_Rig ht	QPSK CP-OFDM QPSK CP-OFDM 16QAM	N/A Outer_Full
16QAM 16QAM	Outer_1RB_Rig ht Outer_Full	QPSK CP-OFDM QPSK CP-OFDM 16QAM CP-OFDM	N/A Outer_Full Edge_1RB_Rig
16QAM 16QAM 16QAM	Outer_1RB_Rig ht Outer_Full	QPSK CP-OFDM QPSK CP-OFDM 16QAM 16QAM	N/A Outer_Full Edge_1RB_Rig

38 (Not e 3)	High				16QAM	N/A	CP-OFDM 16QAM	Edge_1RB_Rig ht
39 (Not e 4)	Defaul t				16QAM	Outer_1RB_Rig ht	CP-OFDM 16QAM	Edge_1RB_Left
40 (Not e 4)	Low				16QAM	N/A	CP-OFDM 16QAM	Edge_1RB_Left
41 (Not e 4)	High				16QAM	Outer_1RB_Rig ht	CP-OFDM 16QAM	N/A
42	Defaul t				16QAM	Outer_Full	CP-OFDM 64QAM	Outer_Full
43 (Not e 3)	Low				16QAM	Outer_1RB_Left	CP-OFDM 64QAM	Edge_1RB_Rig ht
44 (Not e 4)	High				16QAM	Outer_1RB_Rig ht	CP-OFDM 64QAM	Edge_1RB_Left
45	Defaul t				16QAM	Outer_Full	CP-OFDM 256QAM	Outer_Full
46 (Not e 3)	Low				16QAM	Outer_1RB_Left	CP-OFDM 256QAM	Edge_1RB_Rig ht
47 (Not e 4)	High				16QAM	Outer_1RB_Rig ht	CP-OFDM 256QAM	Edge_1RB_Left
	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8].							
NOTE	NOTE 2: If the UE supports multiple CC combinations in the EN-DC configuration with the same N _{RB_agg} , select the combination to test as follows:							
	- Lowest ENBW: NR component with lowest N _{RB} is tested.							
NOTE	 Highest ENBW: NR component with highest NRB is tested. NOTE 3: Applicable when E-UTRA cell carrier frequency is lower than NR cell carrier. 							
NOTE	NOTE 4: Applicable when NR cell carrier frequency is lower than E-UTRA cell carrier.							
INDIE	NOTE 5: Outer_Full defined as the transmission bandwidth configuration N_{RB} per channel bandwidth for the E-UTRA							

IOTE 5: Outer_Full defined as the transmission bandwidth configuration N_{RB} per channel bandwidth for the E-UTRA component as indicated in TS 36.521 [10] Table 5.4.2-1. Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.

NOTE 6: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.1.4.3.

6.5B.2.1.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5B.2.1.3.4.1-1 on both EN-DC component carriers. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier until the UE transmits at its P_{UMAX} level; allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the filtered mean power of the transmitted signal centered on the aggregated sub-block ENBW with a measurement filter of bandwidth according to Table 6.5B.2.1.3-1. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the filtered mean power of the first adjacent channel on both lower and upper side of the assigned NR + E-UTRA channel, respectively with a frequency offset and measurement filter of bandwidth according to Table 6.5B.2.1.3-1.
- 5. Calculate the ratios of the power between the values measured in step 5 over step 6 for lower and upper side respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5B.2.1.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [6] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5B.2.1.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.1.

6.5B.2.1.3.5 Test requirement

The measured adjacent channel power ratio, derived in step 5, shall be less than or equal to 30 + TT dBc , where

- TT = 0.8 dB for f \leq 4.0GHz, TT = 1.0 dB for 4.0GHz < f \leq 6.0GHz,

6.5B.2.2 Out-of-band emissions for Intra-band non-contiguous EN-DC

6.5B.2.2.1 Spectrum emissions mask for intra-band non-contiguous EN-DC

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- For Wgap < NR Δ fOOB + E-UTRA Δ fOOB, test description and test requirements are FFS.
- 6.5B.2.2.1.1 Test purpose

Same test purpose as in clause 6.5.2.2 in TS 38.521-1 [8] for the NR carrier.

6.5B.2.2.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.5B.2.2.1.3 Minimum conformance requirements

The spectral emission mask for intra-band non-contiguous EN-DC is a composite of the emission mask for each CC with the level set to the maximum value from each mask for each frequency outside of the transmission bandwidth of either carrier. A composite spectrum emission mask is a combination of individual CC spectrum emissions masks. Where two masks overlap the most relaxed limit is used. Composite spectrum emission mask applies to frequencies up to $\pm \Delta f_{OOB}$ starting from the edges of the sub-blocks. If for some frequency an individual CC spectrum emission mask overlaps with the bandwidth of another CC then the emission mask does not apply for that frequency.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.2.1.

No exception requirements applicable to NR or LTE when Wgap > NR Δf_{OOB} + E-UTRA Δf_{OOB} . LTE anchor agnostic approach is applied when Wgap > NR Δf_{OOB} + E-UTRA Δf_{OOB} .

Exception requirements for both NR and E-UTRA are defined for this test when $Wgap < NR \Delta f_{OOB} + E-UTRA \Delta f_{OOB}$ and therefore LTE anchor agnostic approach is not applied when $Wgap < NR \Delta f_{OOB} + E-UTRA \Delta f_{OOB}$.

6.5B.2.2.1.4 Test description

For Wgap > NR Δf_{OOB} + E-UTRA Δf_{OOB} :

Same test description as in clause 6.5.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.5.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 6.5.2.2.4.1 in TS 38.521-1 [8] is replaced by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.5.2.2.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.

For Wgap < NR Δf_{OOB} + E-UTRA Δf_{OOB} :

FFS.

6.5B.2.2.1.5 Test requirement

For Wgap > NR Δf_{OOB} + E-UTRA Δf_{OOB} :

Power of any UE emission shall fulfil requirements in Table 6.5.2.2.5-1 defined in TS 38.521-1 [8] for the NR carrier.

For Wgap < NR Δf_{OOB} + E-UTRA Δf_{OOB} :

FFS.

6.5B.2.2.3 Adjacent channel leakage ratio for intra-band non-contiguous EN-DC

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- For Wgap < NR adjacent channel + E-UTRA adjacent channel, test description and test requirements are FFS.

6.5B.2.2.3.1 Test purpose

Same test purpose as in clause 6.5.2.4.1.1 in TS 38.521-1 [8] for the NR carrier.

6.5B.2.2.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.5B.2.2.3.3 Minimum conformance requirements

For intra-band non-contiguous EN-DC, the EN-DC Adjacent Channel Leakage power Ratio (EN-DC_{ACLR}) is the ratio of the sum of the filtered mean powers centred on the assigned E-UTRA and NR sub-block frequencies to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. In case the sub-block gap bandwidth Wgap is smaller than a E-UTRA or NR sub-block bandwidth, no EN-DC_{ACLR} requirement is set for the corresponding sub-block for the gap. The assigned EN-DC sub-block power and adjacent channel power are measured with rectangular filters with measurement bandwidths specified in [4] for the E-UTRA sub-block, and [2],[3] for the NR sub-block. If the measured adjacent channel power is greater than -50dBm then the EN-DC_{ACLR} shall be higher than the value specified in for E-UTRA_{ACLR} and NR_{ACLR}.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.2.3.

No exception requirements applicable to NR or LTE when Wgap > NR adjacent channel + E-UTRA adjacent channel. LTE anchor agnostic approach is applied when Wgap > NR adjacent channel + E-UTRA adjacent channel.

Exception requirements for both NR and E-UTRA are defined for this test when Wgap < NR adjacent channel + E-UTRA adjacent channel and therefore LTE anchor agnostic approach is not applied when Wgap < NR adjacent channel + E-UTRA adjacent channel.

6.5B.2.2.3.4 Test description

For Wgap > NR adjacent channel + E-UTRA adjacent channel:

Same test description as in clause 6.5.2.4.1.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.5.2.4.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 6.5.2.4.1.4.1 in TS 38.521-1 [8] is replaced by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.5.2.4.1.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.

For Wgap < NR adjacent channel + E-UTRA adjacent channel:

FFS.

6.5B.2.2.3.5 Test requirement

For Wgap > NR adjacent channel + E-UTRA adjacent channel:

If the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR shall be higher than the limits in table 6.5.2.4.1.5-2 defined in clause 6.5.2.4.1.5 in TS 38.521-1 [8] for the NR carrier.

For Wgap < NR adjacent channel + E-UTRA adjacent channel: FFS.

6.5B.2.3 Out-of-band emissions for Inter-band EN-DC within FR1

6.5B.2.3.1 Spectrum emissions mask for Inter-band EN-DC within FR1

6.5B.2.3.1.1 Test purpose

Same test purpose as in clause 6.5.2.2 in TS 38.521-1 [8] for the NR carrier.

6.5B.2.3.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.5B.2.3.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.2.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.3.

6.5B.2.3.1.4 Test description

Same test description as in clause 6.5.2.2.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.For Initial conditions as in clause 6.5.2.2.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 6.5.2.2.4.1 in TS 38.521-1 [8] is replaced by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.5.2.2.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.5B.2.3.1.5 Test requirement

Power of any UE emission shall fulfil requirements in Table 6.5.2.2.5-1 defined in TS 38.521-1 [8] for the NR carrier.6.5B.2.3.2.

- 6.5B.2.3.3 Adjacent channel leakage ratio for inter-band EN-DC within FR1
- 6.5B.2.3.3.1 Test purpose

Same test purpose as in clause 6.5.2.4.1.1 in TS 38.521-1 [8].

6.5B.2.3.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.5B.2.3.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.4.1.3 in TS 38.521-1 [8] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.5B.2.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied

6.5B.2.3.3.4 Test description

Same test description as in clause 6.5.2.4.1.4 in TS 38.521-1 [TBD] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1.

For Initial conditions as in clause 6.5.2.4.1.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 6.5.2.4.1.4.1 in TS 38.521-1 [8] is replaced by the following two steps:

- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Same test procedure as in clause 6.5.2.4.1.4.2 in TS 38.521-1 [8] with the following steps exception:

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

6.5B.2.3.3.5 Test requirement

If the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR shall be higher than the limits in table 6.5.2.4.1.5-2 defined in clause 6.5.2.4.1.5 in TS 38.521-1 [8] for the NR carrier.

6.5B.2.4 Out-of-band emissions for Inter-band EN-DC including FR2

6.5B.2.4.1 Spectrum emissions mask for Inter-band EN-DC including FR2

6.5B.2.4.1.1 Test purpose

Same test purpose as in clause 6.5.2.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.5B.2.4.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.2.4.1.4 Test description

6.5B.2.4.1.4.1 Initial conditions

Same test description as in clause 6.5.2.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.5.2.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.2.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5.2.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.1.5 Test requirement

Same test requirement as in clause 6.5.2.1.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT created a 5. duplication!!]

6.5B.2.4.1.2 Spectrum emissions mask for Inter-band EN-DC including FR2 (3 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.2.1.1 in TS 38.521-2 is incomplete.

6.5B.2.4.1.2.1 Test purpose

Same test purpose as in clause 6.5.2.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.1.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.5B.2.4.1.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.1.4.

6.5B.2.4.1.2.4 Test description

6.5B.2.4.1.2.4.1 Initial condition

Same test description as in clause 6.5A.2.1.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.2.1.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.2.1.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.2.1.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.1.2.5 Test Requirements

Same test requirement as in clause 6.5A.2.1.1.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.1.3 Spectrum emissions mask for Inter-band EN-DC including FR2 (4 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.2.1.2 in TS 38.521-2 is incomplete.

6.5B.2.4.1.3.1 Test purpose

Same test purpose as in clause 6.5.2.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4CCs.

6.5B.2.4.1.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.1.4.

6.5B.2.4.1.3.4 Test description

6.5B.2.4.1.3.4.1 Initial condition

Same test description as in clause 6.5A.2.1.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.2.1.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.2.1.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.2.1.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.1.3.5 Test Requirements

Same test requirement as in clause 6.5A.2.1.2.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.1.4 Spectrum emissions mask for Inter-band EN-DC including FR2 (5 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.2.1.3 in TS 38.521-2 is incomplete.

6.5B.2.4.1.4.1 Test purpose

Same test purpose as in clause 6.5.2.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.1.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5CCs.

6.5B.2.4.1.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.1.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.1.4.

6.5B.2.4.1.4.4 Test description

6.5B.2.4.1.4.4.1 Initial condition

Same test description as in clause 6.5A.2.1.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.2.1.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.2.1.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.2.1.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.1.4.5 Test Requirements

Same test requirement as in clause 6.5A.2.1.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of 5. duplication!!]

6.5B.2.4.3 Adjacent channel leakage ratio for Inter-band EN-DC including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.5.2.3 in TS 38.521-2 is incomplete.
- 6.5B.2.4.3.1 Test purpose

Same test purpose as in clause 6.5.2.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.5B.2.4.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

- 6.5B.2.4.3.4 Test description
- 6.5B.2.4.3.4.1 Initial conditions

Same test description as in clause 6.5.2.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1. For Initial conditions as in clause 6.5.2.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.2.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5.2.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.3.5 Test requirement

Same test requirement as in clause 6.5.2.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT created a 6. duplication!!]

6.5B.2.4.3.2 Adjacent channel leakage ratio for Inter-band EN-DC including FR2 (3 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.2.2.1 in TS 38.521-2 is incomplete.

6.5B.2.4.3.2.1 Test purpose

Same test purpose as in clause 6.5.2.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.3.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.5B.2.4.3.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

6.5B.2.4.3.2.4 Test description

6.5B.2.4.3.2.4.1 Initial condition

Same test description as in clause 6.5A.2.2.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.2.2.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.2.2.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.2.2.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.3.2.5 Test Requirements

Same test requirement as in clause 6.5A.2.2.1.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.3.3 Adjacent channel leakage ratio for Inter-band EN-DC including FR2 (4 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.2.2.2 in TS 38.521-2 is incomplete.

6.5B.2.4.3.3.1 Test purpose

Same test purpose as in clause 6.5.2.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.3.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4CCs.

6.5B.2.4.3.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

6.5B.2.4.3.3.4 Test description

6.5B.2.4.3.3.4.1 Initial condition

Same test description as in clause 6.5A.2.2.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.2.2.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.2.2.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.2.2.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.3.3.5 Test Requirements

Same test requirement as in clause 6.5A.2.2.2.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.3.4 Adjacent channel leakage ratio for Inter-band EN-DC including FR2 (5 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.2.2.3 in TS 38.521-2 is incomplete.

6.5B.2.4.3.4.1 Test purpose

Same test purpose as in clause 6.5.2.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.2.4.3.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5CCs.

6.5B.2.4.3.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.2.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.2.4.

6.5B.2.4.3.4.4 Test description

6.5B.2.4.3.4.4.1 Initial condition

Same test description as in clause 6.5A.2.2.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.2.2.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.2.2.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.2.2.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.2.4.3.4.5 Test Requirements

Same test requirement as in clause 6.5A.2.2.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of 6 duplication!!]

6.5B.3 Spurious emissions for EN-DC

- Editor's note
- Working assumption: E-UTRA is not tested during test procedure.
- Spurious emission for intra-band non-contiguous EN-DC is FFS.

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions. The spurious emission limits are specified in terms of general requirements inline with SM.329 [3] and *NR* operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5B.3.1 Spurious Emissions for intra-band contiguous EN-DC

6.5B.3.1.1 General spurious emissions for intra-band contiguous EN-DC

6.5B.3.1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5B.3.1.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band EN-DC.

6.5B.3.1.1.3 Minimum conformance requirements

The general spurious emissions requirements specified in sub-clause 6.6.3.1 of TS36.521-1[10] and sub-clause 6.5.3.1 of TS38.521-1[8] apply beyond any frequencies for which the out-of-band emissions requirements in sub-clause 6.5B.2.1 of TS 38.101-3[4] apply.

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.5B.3.1.1.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.3.1.1.4 Test description

6.5B.3.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

The initial test configurations for E-UTRA consist of the test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1, with the exception that the E-UTRA channel bandwidth is the lowest supported value in Table 5.3B.1.3-1 for the EN-DC contiguous configuration under test.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2B.2.1-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing are shown in Table 6.5B.3.1.1.4.1-1 for NR band. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 Annex C2.

Initial Conditions							
Test Environm subclause 4.1	nent as specified in TS 38.508-1 [6]	Normal					
Test Frequence subclause 4.3	cies as specified in TS 38.508-1 [6] .1	Mid range					
Test Channel subclause 4.3	Bandwidths as specified in TS 38.508-1 [6] .1	Highest $N_{RB_{agg}}$ (NOTE1, 2)					
Test SCS as s	specified in Table 5.3.5-1	Lowest	Lowest				
	Test paramete	ers					
	Downlink Configuration	Uplink Configuration					
Test ID	N/A for Spurious emission testing.	Modulation	NR RB				
			allocation				
1		CP-OFDM QPSK	Edge_1RB_Left				
2		CP-OFDM QPSK	Edge_1RB_Right				
3		CP-OFDM QPSK	Outer Full				
3 CP-OFDM QPSK Outer Full NOTE 1: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1 of 38.521-1 [8]. Outer Full NOTE 2: Lowest and highest allowed NR channel BW as specified in Table 5.3B.1.3-1. If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg, only the combination with the highest NRB_SCG is tested							

Table 6.5B.3.1.1.4.1-1: NR test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. The parameter settings for E-URA cell are set up according to TS 36.508 [11] subclause 4.4.3. E-UTRA downlink signal level, and uplink signal level are set according to Table 4.6-1.
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS38.521-1[8].
- 5. The NR UL Reference Measurement channels are set according to Table 6.5B.3.1.1.4.1-1.
- 6. Set up the NR and E-UTRA test frequencies so that NR carrier is located at the lower frequency side as specified in Table 5.3B.1.2-1. Repeat each testing with E-UTRA carrier frequency is located at the lower side as specified in Table 5.3B.1.2-1.
- 7. NR propagation conditions are set according to B.0 of TS38.521-1[8] E-UTRA propagation conditions are set according to B.0 of TS36.521-1[10]..
- 8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters *Connectivity* EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.5B.3.1.1.4. 3.
- 9. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.5B.3.1.1.4.2 Test Procedure

- NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1 of TS38.521-1[8]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. 3. NR SS send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.
- 4. Measure the mean power of each component carriers for the EN-DC configuration, which shall meet the requirements described in table Table 6.2B.1.2.5-1. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms).

5. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5B.3.1.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5B.3.1.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots

6.5B.3.1.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6

6.5B.3.1.1.5 Test Requirement

The measured average power of spurious emission, derived in step 5, shall not exceed the described value in Table 6.5B.3.1.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) from the edge of the channel bandwidth shown in Table 6.5.3.1.5-1 of TS38.521-1[8].

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Frequency Range	Maximum Level	Measurement bandwidth	NOTE		
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz			
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz			
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz			
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz			
	-25 dBm	1 MHz	3		
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1		
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2		
NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz.NOTE 2: Applies for Band that the upper frequency edge of the UL Band more					
 NOTE 2: Applies for Band that the appen nequency edge of the CE Band more than 5.2 GHz. NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in sub-clause 5.2B of [4] when NS_04 is signalled. 					

Table 6.5B.3.1.1.5-1: General spurious emissions test requirements

6.5B.3.1.2 Spurious emission band UE co-existence for intra-band contiguous EN-DC

6.5B.3.1.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions for band UE co-existence for intra-band contiguous EN-DC.

6.5B.3.1.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting intra-band contiguous EN-DC.

6.5B.3.1.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified EN-DC configurations for coexistence with protected bands.

The requirements in Table 6.5B.3.1.2.3-1 apply on each component carrier with all component carriers are active.

EN-DC		Spurious	em	ission			
Configur ation	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE
DC_(n)71B	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 30, 48, 66	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 2, 25, 41, 70	FDL_low	•	F _{DL_high}	-50	1	2
	E-UTRA Band 29	$F_{DL_{low}}F$	-	$F_{DL_high}F$	-38	1	3
		DL_low	-	DL_high			
	E-UTRA Band 71	FDL_low	-	F _{DL_high}	-50	1	3
	E-UTRA Band 40	F _{DL_low}	-	F _{DL_high}	[-40]	1	
NOTE 2:	F_{DL_low} and F_{DL_high} refer to each E-UTRA f As exceptions, measurements with a level 6.5B.3.1.1.5-1 are permitted for each assig 4 th or 5 th harmonic spurious emissions. Du allowed for the first 1 MHz frequency rang the harmonic emission. This results in an (2MHz + N x L _{CRB} x 180kHz), where N is 2 exception is allowed if the measurement b exception interval.	l up to the a ned E-UTR le to spread e immediat overall exce 2, 3, 4, 5 for	appli A c ling ely eptic the	icable requi arrier used of the harm outside the on interval c 2 nd , 3 rd , 4 th	rements defined in the measured onic emission t harmonic emiss entred at the ha or 5 th harmonic	d in Table ment due to the exceptionsion on both armonic em c respective	o 2 nd , 3 rd , on is also n sides of ission of ly. The
	These requirements also apply for the free and Table 6.6.3.1A-1 [2] from the edge of				s than F _{ООВ} (MI	Hz) in Table	e 6.6.3.1-1

Table 6.5B.3.1.2.3-1: Requirements for intra band contiguous EN-DC

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.5B.3.1.2.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.5B.3.1.2.4 Test description

6.5B.3.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.2.1, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 6.5B.3.1.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

			Initial Conditi	ons					
Test Envir as specifie 4.1		nt S 38.508-1 [6] subclause	NC						
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1			Low range, Hig	gh range					
		dwidth combination as e 5.3B.1.2-1	Lowest and Hi (Note 3)	ghest N _{RB_agg}					
		e NR cell as specified in Table 5.3.5-1	Lowest SCS per Channel Bandwidth						
Test Parameters									
Test II	D	Downlink	EN-DC Uplink Configuration						
		Configuration	E-UTR	A Cell	N	R Cell			
			Modulation	RB allocation (NOTE 2)	Modulation	RB allocation (NOTE 1)			
1			QPSK	Outer_Full	CP-OFDM QPSK	Edge_1RB_Left			
2		N/A for Spurious emission.	QPSK	Outer_Full	CP-OFDM QPSK	Edge_1RB_Right			
3			QPSK	Outer_Full	CP-OFDM QPSK	Outer Full			
Note 1:		pecific configuration of eac							
Note 2:		_Full defined as the transn				el bandwidth for			
the E-UTRA component as indicated in TS 36.521-1 [10] Table 5.4.2-1.									
Note 3:									
	Note 3: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same aggregated channel BW, only the combination with the highest NR BW is tested.								

Table 6.5B.3.1.2.4.1-1: Test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. E-UTRA downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0 of TS 36.521-1 [10].
- 4. NR downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0 of TS 38.521-1 [8].
- 5. The UL Reference Measurement channels are set up accordiong to TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 6. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG, respectively.
- 7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.5B.3.1.2.4.3.

6.5B.3.1.2.4.2 Test Procedure

- 1. E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.3.1.4.1-1 of TS36.521-1[10]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1 of TS38.521-1[8]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Both NR and E-UTRA SS send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.

- 4. Measure the mean power of each component carriers for the EN-DC configuration, which shall meet the requirements described in table Table 6.2B.1.2.5-1. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms).
- 5. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table Table 6.5B.3.1.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5B.3.1.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5B.3.2.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5B.3.1.2.5 Test Requirement

Test requirements for Spurious Emissions UE Co-existence for intra-band contiguous EN-DC are the same as described in minimum requirements and are not repeated in this section.

6.5B.3.2 Spurious Emissions for intra-band non-contiguous EN-DC

Editor's Note: Wgap is TBD in TS 38.101-3 for this test case

6.5B.3.2.1 General spurious emissions for Intra-band non-contiguous EN-DC

6.5B.3.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5B.3.2.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward supporting intra-band non-contiguous EN-DC.

6.5B.3.2.1.3 Minimum conformance requirements

The general spurious emissions requirements specified in sub-clause 6.6.3.1 of TS36.521-1[10] and sub-clause 6.5.3.1 of TS38.521-1[8] apply beyond any frequencies for which the out-of-band emissions requirements in sub-clause 6.5B.2.2 of TS 38.101-3[4] apply.

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.5B.3.2.1.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.3.2.1.4 Test description

6.5B.3.2.1.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations for E-UTRA consist of the test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1, with the exception that the E-UTRA channel bandwidth is the lowest supported value in Table 5.3B.1.3-1 for the EN-DC non-contiguous configuration under test and parameters specified in Table 6.5B.3.2.1.4.1-1.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2B.2.1-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing are shown in Table 6.5B.3.2.1.4.1-1 for NR band. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 Annex C2.

	Initial Conditio	ns	
Test Environm subclause 4.1	nent as specified in TS 38.508-1 [6]	Normal	
Test Frequence subclause 4.3	cies as specified in TS 38.508-1 [6] .1	MaxWGap	
Test Channel subclause 4.3	Bandwidths as specified in TS 38.508-1 [6] .1	Highest N _{RB_agg} (NOTE	1, 2)
Test SCS as s	specified in Table 5.3.5-1	Lowest	
	Test paramete	rs	
	Downlink Configuration	Uplink Config	guration
Test ID	N/A for Spurious emission testing.	Modulation	NR RB
			allocation
1		CP-OFDM QPSK	Edge_1RB_Left
2		CP-OFDM QPSK	Edge_1RB_Right
3		CP-OFDM QPSK	Outer Full
cha NOTE 2: Lov sup	at Channel Bandwidths are checked separate innel bandwidths are specified in Table 5.3.5 vest and highest allowed NR channel BW as oports multiple CC Combinations in the EN-E of the combination with the highest NRB_SC	5-1 of 38.521-1 [8]. specified in Table 5.3B.1 DC Configuration with the	.3-1. If the UE

Table 6.5B.3.2.1.4.1-1: Test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1. and propagation conditions are set according to Annex B.0 of TS36.521-1[10].
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS38.521-1[8].
- 5. The UL Reference Measurement channels for NR are set according to Table 6.5B.3.2.1.4.1-1.
- 6. NR propagation conditions are set according to Annex B.0 of TS 38.521-1 [8].
- 7 .Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.5B.3. 2.1.4. 3.
- 8 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

6.5B.3.2.1.4.2 Test Procedure

- 1. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1 of TS38.521-1[8]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. NR carrier sends continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.
- 3. Measure the power of the transmitted NR signal with a measurement filter of bandwidths according to table 6.5.3.1.5-1 in TS 38.521-1 [8]. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.1.5-1 in TS 38.521-1 [8]. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5B.3.2.1.4. 3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5B.3.2.1.5 Test Requirement

Same test requirement as in clause 6.5B.3.1.1.5.

6.5B.3.2.2 Spurious emission band UE co-existence for intra-band non-contiguous EN-DC

Editor's note: Wgap for intra-band non-contiguous EN-DC is FFS in TS 38.508-1.

6.5B.3.2.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions for band UE co-existence for intra-band non-contiguous EN-DC.

6.5B.3.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward supporting intra-band non-contiguous EN-DC.

6.5B.3.2.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified EN-DC configurations for co-existence with protected bands.

The requirements in Table 6.5B.3.2.2.3-1 apply with all component carriers are active.

		Spurious emission								
EN-DC Configuration		Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE		
DC_41A_	_n41A	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 34, 39, 42, 44, 45, 48, 50, 51, 66, 70, 71, 73, 74 NR Band n77, n78 and n79	F _{DL_low}	-	F _{DL_high}	-50	1			
		E-UTRA Band 30, 40	$F_{DL_{low}}$	-	F_{DL_high}	[-40]	1			
	As exc of TS3 3 rd , 4 th also al of the l (2MHz except	and F _{DL_high} refer to each E-UTRA fr eptions, measurements with a level 8.521-1[8] are permitted for each ass or 5 th harmonic spurious emissions. lowed for the first 1 MHz frequency r harmonic emission. This results in ar t + N x L _{CRB} x 180kHz), where N is 2, ion is allowed if the measurement ba ion interval	up to the ap signed E-U Due to spre ange imme overall exc 3, 4, 5 for t	plic FRA adi diate cept he 2	able require carrier use ng of the ha ely outside t ion interval 2 nd , 3 rd , 4 th c	ements defined d in the measu armonic emissic the harmonic en centred at the or 5 th harmonic	in Table 6. rement due on the excep mission on harmonic en respectively	5.3.1.3-2 e to 2 nd , ption is both sides mission of y. The		
	This re	able when co-existence with PHS system equirement applies when the NR carr annel bandwidth is 10 or 20 MHz.					595-2645M	Hz and		

Table 6.5B.3.2.2.3-1: Requirements for intra-band non-contiguous EN-DC

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.5B.3.2.2.

Exception requirements are applicable for NR but not for E-UTRA within this test. LTE anchor agnostic approach is not applied. E-UTRA configuration is included but E-UTRA measurements are not performed.

6.5B.3.2.2.4 Test description

6.5B.3.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2B.2.1-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing are shown in Table 6.5B.3.2.2.4.1-1 for E-UTRA and Table 6.5B.3.2.2.4.1-2 for NR. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex TS 36.521-1 [10] Annex C and in TS 38.521-1 Annex C2 for LTE link and NR link respectively.

		Initial Conditi	ons						
Test Environment as specified in T 4.1	nt 'S 38.508-1 [6] subclause	NC							
Test Frequencie as specified in T 4.3.1	s S 38.508-1 [6] subclause	Low range, Hig	gh range						
Test EN-DC bar specified in Tabl	ndwidth combination as le 5.3B.1.2-1	Lowest and Highest N _{RB_agg} (Note 3)							
Test SCS for the TS 38.521-1 [8]	e NR cell as specified in Table 5.3.5-1	Lowest SCS per Charmer Bandwidth							
		Test Paramet							
Test ID	Downlink		EN-DC Uplin	nk Configuratio	on				
	Configuration	E-UTR	A Cell		R Cell				
		Modulation	RB allocation (NOTE 2)	Modulation	RB allocation (NOTE 1)				
1		QPSK	Outer_Full	CP-OFDM QPSK	Edge_1RB_Left				
2	N/A for Spurious emission.	QPSK	Outer_Full	CP-OFDM QPSK	Edge_1RB_Right				
3		QPSK	Outer_Full	CP-OFDM QPSK	Outer Full				
Note 2: Outer_F E-UTR Note 3: If the UE	S QPSK Outer_run QPSK Outer run Note 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. Note 2: Outer_Full defined as the transmission bandwidth configuration N _{RB} per channel bandwidth for the E-UTRA component as indicated in TS 36.521-1 [10] Table 5.4.2-1. Note 3: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same aggregated channel BW, only the combination with the highest NR BW is tested.								

Table 6.5B.3.2.2.4.1-1: Test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1.1 for SS diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. E-UTRA downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0 of TS 36.521-1 [10].
- 4. NR downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0 of TS 38.521-1 [8].
- 5. The UL Reference Measurement channels are set according to TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 6. For each EN-DC combination specified in Table 5.3B.1.3-1, channel spacing between NR and E-UTRA is specified according to subclause 5.4B.1.
- 7. Propagation conditions are set according to TS 36.521-1 [10] Annex B and TS 38.521-1 [8] Annex B for E-UTRA link and NR link respectively.

8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.5B.3.2.2.4.3.

6.5B.3.2.2.4.2 Test Procedure

- 1. E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5B.3.2.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5B.3.2.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands to the UE for both NR and E-UTRA carriers until the UE transmits at its P_{UMAX} level; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4. Measure the mean power of each component carriers for the EN-DC configuration, which shall meet the requirements described in Table 6.2B.1.2.5-1. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms).
- 5. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5B.3.2.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active time slots.

6.5B.3.2.2.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5B.3.2.2.5 Test Requirement

Test requirements for Spurious Emissions UE Co-existence for intra-band non-contiguous EN-DC are the same as the minimum requirements described in subclause 6.5B.3.2.2.3 and are not repeated in this section.

6.5B.3.3 Spurious Emissions for Inter-band EN-DC within FR1

6.5B.3.3.1 General spurious emissions for Inter-band EN-DC within FR1

6.5B.3.3.1.1 Test purpose

Same test purpose as in clause 6.5B.3.1.1.1.

6.5B.3.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward supporting inter-band EN-DC.

6.5B.3.3.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5B.3.1.1.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

6.5B.3.3.1.4 Test description

6.5B.3.3.1.4.1 Initial condition

Same initial conditions as in clause 6.5B.3.1.1 with the following exceptions:

Instead of Table Table 6.5B.3.1.1.4.1-1 \rightarrow use Table 6.5B.3.3.1.4-1

	Initial Condition	ons			
Test Environm subclause 4.1	nent as specified in TS 38.508-1 [6]	Normal			
Test Frequence subclause 4.3	cies as specified in TS 38.508-1 [6] .1	Low range, High range			
	Bandwidths as specified in TS 38.508-1 [6]	Lowest and Highest NR	3_agg		
subclause 4.3	.1	(Note 2)			
Test SCS as s	specified in Table 5.3.5-1	Lowest			
	Test paramete	ers			
	Downlink Configuration	Uplink Configuration			
Test ID	N/A for Spurious emission testing.	Modulation	NR RB allocation		
1		CP-OFDM QPSK	Edge_1RB_Left		
2		CP-OFDM QPSK	Edge_1RB_Right		
3		CP-OFDM QPSK	Outer Full		
Note 1: Tes	t Channel Bandwidths are checked separat	ely for each NR band, whi	ch applicable		
cha Note 2: If th	nnel bandwidths are specified in Table 5.3. The UE supports multiple CC Combinations in gregated channel BW, only the combination	5-1 of 38.521-1 [8]. the EN-DC Configuration	with the same		

Table 6.5B.3.3.1.4-1: NR test configuration table

Same test procedure as in clause 6.5.3.1.4.2 in TS 38.521-1 [8].

6.5B.3.3.1.4.2 Test procedure

Same test procedure as in clause 6.5B.3.1.1.4.2.

6.5B.3.3.1.4.3 Message Contents

Same message Contents as in clause 6.5B.3.1.1.4.3.

6.5B.3.3.1.5 Test Requirement

Same test requirement as in clause 6.5B.3.1.1.5.

6.5B.3.3.2 Spurious emission band UE co-existence for Inter-band within FR1

Editor's note:

The default and additional test configuration is analysed based on the assumption that only intermodulation products needs to be tested.

6.5B.3.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions for band UE co-existence for inter-band EN-DC.

6.5B.3.3.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward supporting inter-band EN-DC.

6.5B.3.3.2.3 Minimum conformance requirements

The general spurious emissions requirements specified in sub-clause 6.6.3.1 of TS36.521-1[11] and sub-clause 6.5.3.1 of TS38.521-1[8] apply beyond any frequencies for which the out-of-band emissions requirements in sub-clause 6.5B.2.3 apply.

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For inter-band EN_DC with the uplink assigned to both carriers, the requirements in Table 6.5B.3.3.2.3-1 apply on each component carrier with both component carriers are active.

		Spuri	ous	emission			
EN-DC Configuration	Protected band		ency MHz	/ range z)	Maximum Level (dBm)	MBW (MHz)	NOTE
DC_1_n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31, 32, 38, 40, 41, 50, 51, 72, 74	F_{DL_low}	_	F_{DL_high}	-50	1	
	E-UTRA Band42, 43, 75, 76 NR band n78	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA band n3, n34	F _{DL low}	-	F _{DL high}	-50	1	5
	E-UTRA Band 11, 21	F _{DL low}	-	F _{DL high}	-50	1	9, 11
	E-UTRA Band 1, 65	F_{DL_low}	-	F_{DL_high}	-50	1	9, 10
	Frequency range	470	-	694	-42	8	5, 17
	Frequency range	470	-	710	-26.2	6	14
	Frequency range	758	-	773	-32	1	5
	Frequency range	773	-	803	-50	1	
	Frequency range	662	-	694	-26.2	6	5
	Frequency range	1880	-	1895	-40	1	5, 16
	Frequency range	1895	-	1915	-15.5	5	5, 7, 16
	Frequency range	1915	-	1920	+1.6	5	5, 7, 16
	Frequency range	1839.9	-	1879.9	-50	1	5
	Frequency range	1884.5	-	1915.7	-41	0.3	9, 15
DC_1_n40	Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76	F_{DL_low}	-	F_{DL_high}	-50	1	
	Band 3, 34	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	5
	Frequency range	1880		1895	-40	1	5, 17
	Frequency range	1895		1915	-15.5	5	5, 7, 17
	Frequency range	1915		1920	+1.6	5	5, 7, 17
DC_1_n51	E-UTRA Band 7, 12, 13, 17, 20, 22, 27, 28, 29, 31, 38, 44, 48, 67, 68, 69, 72, 73	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 3, 34	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	5, 2
	Frequency range	1880	-	1895	-40	1	5, 16
	Frequency range	1895	-	1915	-15.5	5	5, 7, 16
	Frequency range	1915	-	1920	+1.6	5	5, 7, 16
	E-UTRA Band 5, 6, 8, 26, 30, 40, 41, 42, 43, 46 NR Band n77, n78, n79,	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
DC_1_n77	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	- Francisco - Fran	4000		4005	40		F 0
	Frequency range	1880	-	1895	-40	1	5, 8
	Frequency range	1895	-	1915	-15.5	5	5, 7, 8
DO 4 70	Frequency range	1915	-	1920	+1.6	5	5, 7, 8
DC_1_n78 DC_1_n84_ULS UP-TDM_n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, 41, 65	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	Frequency range	1880	-	1895	-40	1	5, 8
DC_1_n84_ULS	Frequency range	1895	-	1915	-15.5	5	5, 7, 8
UP-FDM_n78	Frequency range	1915	-	1920	+1.6	5	5, 7, 8
DC_1_n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40, 41, 42, 65	F _{DL_low}	-	F _{DL_high}	-50	1	0,7,0
	Frequency range	1880	-	1895	-40	1	5, 8
	Frequency range	1895	-	1915	-15.5	5	5, 7, 8
	Frequency range	1915		1920	+1.6	5	5, 7, 8

Table 6.5B.3.3.2.3-1: Requirements

			1			1	
DC_2_n5	E-UTRA Bands 4, 5, 10, 12, 13, 14,	_		_			
	17, 24, 28, 29, 30, 42, 48, 50, 51, 66,	F_{DL_low}	-	FDL_high	-50	1	
	70, 71, n71, 74, 85						
	E-UTRA Bands 2, 25, 48	F_{DL_low}	-	FDL_high	-50	1	2
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 41, 43	FDL low	-	F_{DL_high}	-50	1	
DC_2_n66	E-UTRA Bands 4, 5, 10, 12, 13, 14,	1 DL_101		· DL_nigh			
DC_2_1100	17, 24, 26, 27, 28, 29, 30, 41, 50, 51,	$F_{DL_{low}}$	_	F _{DL high}	-50	1	
	66, 70, 71, n71, 74, 85	DL_low		 DL_high 	- 50		
	E-UTRA Bands 2, 25	F		F	50	1	Б
	;	F _{DL_low}	-	F _{DL_high}	-50		5
	E-UTRA Bands 42, 48	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
DC_2_n71	E-UTRA Band 4, 5, 12, 13, 14, 17, 24,	F _{DL} low	-	F _{DL high}	-50	1	
	26, 29, 30, 48, 66	-		_ 0			
	E-UTRA Band 2, 25, 41, 70	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA Band n71	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	5
DC_2_n78	E-UTRA Band 4, 5, 10, 12, 13, 14, 17,						
	24, 26, 27, 28, 29, 30, 41, 42, 48, 50,	F _{DL low}	-	F _{DL high}	-50	1	
	51, 66, 70, 71, 74, 85	DL_IOW		DC_mgm			
	E-UTRA Band 2, 25	$F_{DL_{low}}$	_	F_{DL_high}	-50	1	2
DC_3_n7	E-UTRA Band 1, 5, 7, 8, 20, 26, 27,	UL_IOW		• DL_nign	00		4
DC_3_117	28, 31, 32, 33, 34, 40, 43, 44, 50, 51,	F	-	F	50	1	
	28, 31, 32, 33, 34, 40, 43, 44, 50, 51, 65, 67, 72, 74, 75, 76	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50		
				-	50		-
	E-UTRA band 3	F _{DL_low}	-	F _{DL_high}	-50	1	5
	E-UTRA band 22, 42	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	5, 6, 7
	Frequency range	2575	-	2595	-15.5	5	5, 6, 7
	Frequency range	2595	-	2620	-40	1	5, 6
DC_3_n28	E-UTRA Band 1, 42, 43, 50, 51, 65,						
00_0_1120	74, 75, 76	F _{DL} low	-	F_{DL_high}	-50	1	2
	NR n78	· DL_IOW		• DL_nigh	00		-
	E-UTRA band n1	$F_{DL_{low}}$		F _{DL high}	-50	1	9, 10
		_	-				
	E-UTRA band n3	F _{DL_low}	-	F_{DL_high}	-50	1	5
	E-UTRA Band 5, 7, 8, 20, 26, 27, 31,	-		-			
	34, 38, 40, 41, 72	F_{DL_low}	-	F _{DL_high}	-50	1	
1	E-UTRA Band 11, 18, 19, 21	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	13
	E-UTRA Band 11, 18, 19, 21 Frequency range	⊢ _{DL_low} 1884.5	-	F _{DL_high} 1915.7	-50 -41	0.3	<u>13</u> 13
	Frequency range		- - -			-	
	Frequency range Frequency range	<u>1884.5</u> 470	- - -	1915.7 710	-41 -26.2	0.3 6	13 14
	Frequency range Frequency range Frequency range	1884.5 470 758	-	1915.7 710 773	-41 -26.2 -32	0.3 6 1	13
	Frequency range Frequency range Frequency range Frequency range	1884.5 470 758 773	-	1915.7 710 773 803	-41 -26.2 -32 -50	0.3 6 1 1	13 14 5
	Frequency range Frequency range Frequency range Frequency range Frequency range	1884.5 470 758	-	1915.7 710 773	-41 -26.2 -32	0.3 6 1	13 14
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8,	1884.5 470 758 773	-	1915.7 710 773 803	-41 -26.2 -32 -50	0.3 6 1 1	13 14 5
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39,	1884.5 470 758 773 1884.5	-	1915.7 710 773 803 1915.7	-41 -26.2 -32 -50	0.3 6 1 1	13 14 5
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69,	1884.5 470 758 773	-	1915.7 710 773 803	-41 -26.2 -32 -50 -41	0.3 6 1 1 0.3	13 14 5
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76	1884.5 470 758 773 1884.5 F _{DL_low}	-	1915.7 710 773 803 1915.7 F _{DL_high}	-41 -26.2 -32 -50 -41 -50	0.3 6 1 0.3 1	13 14 5 3, 9
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3	1884.5 470 758 773 1884.5 F _{DL_low}	-	1915.7 710 773 803 1915.7 F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50	0.3 6 1 0.3 1 1	13 14 5 3, 9 5
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76	1884.5 470 758 773 1884.5 F _{DL_low}	-	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high}	-41 -26.2 -32 -50 -41 -50	0.3 6 1 0.3 1	13 14 5 3, 9
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range	1884.5 470 758 773 1884.5 F _{DL_low}	- - - -	1915.7 710 773 803 1915.7 F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50	0.3 6 1 0.3 1 1	13 14 5 3, 9 5
	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} 1884.5	- - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50	0.3 6 1 0.3 1 1 1 1	13 14 5 3, 9 5 2
DC_3_n40	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27,	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low}	- - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -41	0.3 6 1 0.3 1 1 1 0.3	13 14 5 3, 9 5 2
	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} 1884.5 F _{DL_low}	- - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -41	0.3 6 1 0.3 1 1 1 0.3	13 14 5 3, 9 5 2 3
	Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 3	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low}	- - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} F _{DL_high} F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1	13 14 5 3, 9 5 2 3
	Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Statistic structure 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 3	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} 1884.5 F _{DL_low}	- - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -41 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1	13 14 5 3, 9 5 2 3
DC_3_n51	Frequency range Frequency range Frequency range Frequency range Frequency range Statistic structure 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low}	- - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} F _{DL_high} F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1	13 14 5 3, 9 5 2 3
	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range State Frequency range State State State State State Frequency range State	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low}	- - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} F _{DL_high} F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1	13 14 5 3, 9 5 2 3
DC_3_n51	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low	- - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 0.3 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 5 2
DC_3_n51 DC_3_n77	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range State State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1 1	13 14 5 3, 9 5 2 3
DC_3_n51 DC_3_n77 DC_3_n78	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 30, 40, 41, 65	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low}	- - - - - - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1 0.3 1 1 1 0.3	13 14 5 3, 9 5 2 3 3 5 2
DC_3_n51 DC_3_n77	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range State State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low	- - - - - - - - - - - - - - - - -	$\begin{array}{c} 1915.7 \\ \hline 710 \\ \hline 773 \\ \hline 803 \\ \hline 1915.7 \\ \hline F_{DL_high} \\ \hline F_{DL_high} \\ \hline 915.7 \\ \hline F_{DL_high} \\ \hline \end{array}$	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 0.3 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 5 2
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 30, 40, 41, 65	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low}	- - - - - - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1 0.3 1 1 1 0.3	13 14 5 3, 9 5 2 3 3 5 2
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS UP-TDM_n78,	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low	- - - - - - - - - - - - - - - - -	$\begin{array}{c} 1915.7 \\ \hline 710 \\ \hline 773 \\ \hline 803 \\ \hline 1915.7 \\ \hline F_{DL_high} \\ \hline F_{DL_high} \\ \hline 915.7 \\ \hline F_{DL_high} \\ \hline \end{array}$	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 1 0.3 1 1 1 0.3 1	13 14 5 3, 9 5 2 3 3 5 2
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 30, 40, 41, 65	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low	- - - - - - - - - - - - - - - - -	$\begin{array}{c} 1915.7 \\ \hline 710 \\ \hline 773 \\ \hline 803 \\ \hline 1915.7 \\ \hline F_{DL_high} \\ \hline F_{DL_high} \\ \hline 915.7 \\ \hline F_{DL_high} \\ \hline \end{array}$	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 0.3 1 1 1 0.3 1 1 1 1 1 0.3 1 1 1 0.3	13 14 5 3, 9 5 2 3 5 2 3
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 5, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range F-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range F-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low	- - - - - - - - - - - - - - - - -	$\begin{array}{c} 1915.7 \\ \hline 710 \\ \hline 773 \\ \hline 803 \\ \hline 1915.7 \\ \hline F_{DL_high} \\ \hline F_{DL_high} \\ \hline 915.7 \\ \hline F_{DL_high} \\ \hline \end{array}$	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 1 0.3 1 1 1 0.3 1	13 14 5 3, 9 5 2 3 5 2 3
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 30, 30, 40, 41, 65	1884.5 470 758 773 1884.5 F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} 1884.5 F _{DL_low} 1884.5	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high} 1915.7 F _{DL_high} 1915.7 F _{DL_high}	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 1 0.3 1 1 1 0.3 1	13 14 5 3, 9 5 2 3 5 2 3
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range Frequency range State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 0.3 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1	13 14 5 3, 9 5 2 3 3 3
DC_3_n51 DC_3_n77 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44. 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 30, 30, 40, 41, 65	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 5 2 3
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range Frequency range State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 0.3 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1	13 14 5 3, 9 5 2 3 3 3
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79,	Frequency range Frequency range Frequency range Frequency range State State State State State Frequency range Frequency range State State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 2 2
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79, DC_3_n80_ULS	Frequency range Frequency range Frequency range Frequency range Frequency range State State State State Frequency range Frequency range State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 0.3 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 0.3 1 1	13 14 5 3, 9 5 2 3 3 3
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79, DC_3_n80_ULS UP-FDM_n79	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 42 Frequency range	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 2 2
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79, DC_3_n80_ULS	Frequency range Frequency range Frequency range Frequency range State State State State State Frequency range Frequency range State State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -50 -50 -41 -50 -41 -50 -41 -50 -41	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 2 2
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79, DC_3_n80_ULS UP-FDM_n79	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 7, 8, 20, 22, 31, 32, 33, 34, 38, 40, 43, 50, 51, 65, 67,	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -50 -50 -41 -50 -50 -50 -50 -50 -50 -50 -50	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 0.3 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 2 2
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79, DC_3_n80_ULS UP-FDM_n79	Frequency range Frequency range Frequency range Frequency range State State State State State Frequency range Frequency range State State State State State State State Frequency range State	1884.5 470 758 773 1884.5 FDL_low FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -50 -50 -41 -50 -41 -50 -41 -50 -41	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 2 3 2 3
DC_3_n51 DC_3_n78 DC_3_n78 DC_3_n80_ULS UP-TDM_n78, DC_3_n80_ULS UP-FDM_n78 DC_3_n79 DC_3_n79 DC_3_n79 DC_3_n80_ULS UP-TDM_n79, DC_3_n80_ULS UP-FDM_n79	Frequency range Frequency range Frequency range Frequency range Frequency range 34, 38, 40, 41, E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 75, 76 E-UTRA Band 3 E-UTRA Band 22, 42, 52 Frequency range E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 7, 8, 12, 13, 17, 20, 27, 28, 31, 33, 38, 48, 67, 68, 69, 72, 73 E-UTRA Band 1, 5, 6, 22, 26, 30, 34, 36, 40, 41, 42, 43, 44, 46, 65, 71 E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 65 Frequency range E-UTRA Band 1, 3, 7, 8, 20, 22, 31, 32, 33, 34, 38, 40, 43, 50, 51, 65, 67,	1884.5 470 758 773 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5	- - - - - - - - - - - - - - - - -	1915.7 710 773 803 1915.7 FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7 FDL_high 1915.7	-41 -26.2 -32 -50 -41 -50 -50 -50 -50 -50 -50 -50 -41 -50 -50 -41 -50 -41 -50 -41 -50 -41	0.3 6 1 1 0.3 1 1 1 0.3 1 1 1 0.3 1 1 0.3 1 1 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1	13 14 5 3, 9 5 2 3 3 2 2

			r –			1	
DC_5_n40	E-UTRA Band 1, 3, 5, 7, 8, 28, 31, 34,	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	38, 42, 43, 45, 65, 73 E-UTRA Band 26	859	_	869	-27	1	
	E-UTRA Band 41, 52	F _{DL_low}		F _{DL_high}	-50	1	
	Frequency range	1884.5		1915.7	-30	0.3	3
	E-UTRA Band 1, 2, 3, 4, 5, 6, 7, 8, 10,	1004.5	-	1915.7	-41	0.5	5
DC_5_n66	12, 13, 14, 17, 24, 25, 28, 29, 30, 34, 38, 40, 43, 45, 50, 51, 65, 66, 70, 71, 85	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 41, 42, 48, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 18, 19	F _{DL_low}	-	F _{DL high}	-40	1	
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_5_n78	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 25, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 65, 66, 70	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 26	859	-	869	-27	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 4
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
	E-UTRA Band 41	F _{DL_low}	-	F _{DL high}	-50	1	7
	E-UTRA Band 18, 19	F _{DL low}	-	F _{DL high}	-40	1	4
	E-UTRA Band 11, 21	F _{DL low}	-	F _{DL high}	-50	1	4
DC_7_n28	E-UTRA Band 2, 3, 5, 7, 8, 20, 26, 27, 31, 34, 40. 72 N	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 4, 10, 42, 43, 50, 65, 66, 74, 75, 76 NR band n78	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA band n1	$F_{DL_{low}}$	-	F _{DL high}	-50	1	9, 10
	Frequency range	758	-	773	-32	1	5
	Frequency range	773	-	803	-50	1	
	Frequency range	2570	-	2575	+1.6	5	5, 6, 7
	Frequency range	2575	-	2595	-15.5	5	5, 6, 7
	Frequency range	2595	-	2620	-40	1	5, 6
DC_7_n51	E-UTRA Band 2, 3, 5, 8, 26, 30, 31,	F _{DL low}	-	F _{DL high}	-50	1	0, 0
00_1_101	32, 33, 34, 40, 48, 72	· DL_10W		· DE_mgn			
	Frequency range	2570	-	2575	+1.6	5	5, 7, 16
	Frequency range	2575	-	2595	-15.5	5	5, 7, 16
	Frequency range	2595	-	2620	-40	1	5, 21
	E-UTRA Band 1, 4, 10, 12, 13, 14, 17, 20, 22, 23, 27, 28, 29, 42, 43, 44, 46, 65, 66, 67, 68 NR Band n77, n78, n79,	F _{DL_low}	-	F _{DL_high}	-50	1	2
DC_7_n78	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 11, 18, 19, 20, 21, 26, 27, 28, 31, 32, 33, 34, 40, 50, 51, 65, 66, 67, 68, 72, 74, 75, 76	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	2570	-	2575	+1.6	5	5, 6, 7
	Frequency range	2575	-	2595	-15.5	5	5, 6, 7
	Frequency range	2595	-	2620	-40	1	5, 6
DC_8_n40	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 3, 7, 22, 41, 42, 43, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 8	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	5
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	12
	Frequency range	860	L -	890	-40	1	5, 12
	Frequency range	1884.5	-	1915.7	-41	0.3	3,12
DC_8_n77	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	_ ,
	E-UTRA band 3, 7, 22, 41	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	E-UTRA Band 8	F _{DL low}	-	F _{DL_high}	-50	1	5
	E-UTRA Band 11, 21	F _{DL low}	-	F _{DL_high}	-50	1	12
	Frequency range	860	-	890	-40	1	5, 12
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 12
DC_8_n78 DC_8_n81_ULS	E-UTRA Band 1,8, 20, 28, 34, 39, 40, 65	F_{DL_low}	-	F _{DL_high}	-50	1	
UP-TDM_n78,	E-UTRA Band 3, 7,41	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	E-UTRA Band 11, 21	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	12

3GPP TS 38.521-3 version 15.3.0 Release 15

299

			r —				
DC_8_n81_ULS	Frequency range	860	-	890	-40	1	5, 12
UP-FDM_n78	Frequency range	1884.5	-	1915.7	-41	0.3	3, 12
DC_8_n79	E-UTRA Band 1,8,28,34,39,40,65	F _{DL_low}	-	F _{DL_high}	-50	1	
DC_8_n81_ULS	E-UTRA Band 3,41,42	F _{DL_low}	-	F _{DL_high}	-50	1	2
UP-TDM_n79,	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	12
DC_8_n81_ULS	Frequency range	860	-	890	-40	1	5, 12
UP-FDM_n79	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_11_n77	E-UTRA Band 1, 3, 18, 19, 28, 34, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_11_n78	E-UTRA Band 1, 3, 18, 19, 28, 34, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_11_n79	E-UTRA Band 1, 3, 18, 19, 28, 34, 42,	F _{DL low}	_	F _{DL_high}	-50	1	
	65	DL_low		DL_high	-30	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_12_n5	E-UTRA Band 2, 5, 12, 13, 14, 17, 24,	F	-	E	-50	1	
	25, 30, 42, 43 50, 51, 71, n71, 74	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 4, 10, 41, 48, 66, 70	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 12, 85	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
DC_12_n66	E-UTRA Band 2, 4, 5, 13, 14, 17, 24,						
DC_12_n5	25, 26, 27, 29, 30, 41, 50, 51, 70, 71,	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	74	_		_ 0			
	E-UTRA Bands 4, 10, 48	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12, 85	F _{DL} low	-	F _{DL_high}	-50	1	5
	E-UTRA Band 2, 5, 12, 13, 14, 17, 24,				50	4	
	25, 30, 42, 43 50, 51, 71, 74	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
DC_18_n77	E-UTRA Band 1, 3, 11, 21, 28, 34, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_18_n78	E-UTRA Band 1, 3, 11, 21, 28, 34, 65	F _{DL low}	-	F _{DL_high}	-50	1	
2000	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	-
	Frequency range	2595	-	2645	-50	1	
DC_18_n79	E-UTRA Band 1, 3, 11, 21, 28, 34, 42,						
00_10_11/0	65	F_{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	-
	Frequency range	2595	-	2645	-50	1	
DC_19_n77	E-UTRA Band 1, 3, 11, 21, 28, 34, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
D0_10_111	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	~
	Frequency range	2595	-	2645	-50	1	
DC_19_n78	E-UTRA Band 1, 3, 11, 21, 28, 34, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
00_19_11/0	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	<u> </u>	1915.7	-50	0.3	3
		2545	-	2575	-41	0.3	3
	Frequency range	2545		2645	-50	1	
DC 10 -70	Frequency range E-UTRA Band 1, 3, 11, 21, 28, 34, 42,	2090		2040	-50		
DC_19_n79	E-01RA Band 1, 3, 11, 21, 28, 34, 42, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
		1884.5	-	1915.7	-50	0.3	3
	Frequency range						3
	Frequency range	2545		2575	-50	1	
	Frequency range	2595		2645	-50	1	
DC_20_n8	E-UTRA Band 1, 3, 7, 22, 28, 31,	-		-	50		
	32, 34, 38, 42, 43, 65, 75, 76, NR	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	band n78		ļ				
DC_20_n28	E-UTRA Band 1, 3, 7, 8, 22, 31, 32,	$F_{DL_{low}}$	l _	F _{DL_high}	-50	1	
DC_20_n83	34, 38, 42, 43, 65, 75, 76	UL_low		• DL_nign	-00	'	

DC_20_n51	E-UTRA Band 1, 3, 4, 8, 17, 22, 28, 29, 31, 40, 43, 48, 65, 66, 68, 72	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 20	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	5
	Frequency range	758	-	788	-50	1	0
	E-UTRA Band 2, 7, 25, 32, 33, 34, 35,						
	36, 37, 38, 39, 41, 42, 46, 69, 70	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	NR Band n77, n78, n79,						
DC_20_n77	E-UTRA Band 1, 3, 7, 8, 31, 32, 33,						
	34, 40, 50, 51, 65, 67, 68, 72, 74, 75,						
	76						
	E-UTRA Band 20	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	5
	E-UTRA Band 38, 69	F_{DL_low}	-	F_{DL_high}	-50	1	2
DC_20_n78	E-UTRA Band 1, 3, 7, 8 22,, 31, 32,						
DC_20_n82_ULS	33, 34, 40, 42, 43, 50, 51, 65, 67, 68, 72, 74, 75, 76						
UP-TDM_n78,	72, 74, 75, 76 E-UTRA Band 20	F		E	-50	1	5
DC_20_n82_ULS		F _{DL_low}	-	F _{DL_high}			
UP-FDM_n78	E-UTRA Band 38, 69	F_{DL_low}	-	F _{DL_high}	-50	1	2
DC_21_n77	E-UTRA Band 1, 3, 18, 19, 21, 28, 34,	F _{DL low}	- I	F _{DL high}	-50	1	
	65		_	- •		1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_21_n78	E-UTRA Band 1, 3, 18, 19, 21, 28, 34,	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	65			=			
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_21_n79	E-UTRA Band 1, 3, 18, 19, 21, 28, 34,	F _{DL} low	-	F _{DL_high}	-50	1	
	42, 65	945		960	-50	1	
	Frequency range	1884.5	-	1915.7		0.3	2
	Frequency range		-		-41		3
	Frequency range	2545 2595	-	2575 2645	-50 -50	1	
DC_25_n41	Frequency range E-UTRA band 4, 5, 10, 12, 13, 14, 17,	2090	-	2045	-50	1	
DC_25_1141	24, 26, 27, 28, 29, 30, 42, 45, 48, 66,	$F_{DL_{low}}$	- I	F _{DL high}	-50	1	
	70.71	DL_low		 DL_high 	50	•	
	E-UTRA/NR Band 2, 25	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	5
	,	DL_IOW		DL_nign			-
DC_26_n41	E-UTRA/NR Band 1, 2, 3, 4, 5, 10, 12,						
	13 , 14, 17, 24, 25, 26, 28, 29, 30, 31,	-		-	50	4	
	34, 39, 40, 42, 43, 48, 50, 51, 65, 66,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	70, 71, 74						
	E-UTRA Band 9, 11, 18, 19, 21	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	19
	Frequency range	1884.5		1915.7	-41	0.3	3, 19
	Frequency range	703	-	799	-50	1	
	Frequency range	799	-	803	-40	1	5
	Frequency range	945	-	960	-50	1	
DC_26_n77	E-UTRA Band 1, 3, 11, 21, 28, 34, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	L	2645	-50	1	
DC_26_n78	E-UTRA Band 1, 3, 11, 21, 28, 34, 65	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
DC_26_n79	E-UTRA Band 1, 3, 11, 21, 28, 34, 42,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	65		ļ	-			
	Frequency range	945	-	960	-50	1	
1		1884.5	-	1915.7	-41	0.3	3
	Frequency range		I -	2575	-50	1	
	Frequency range	2545					
	Frequency range Frequency range	2595	-	2645	-50	1	
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31,		-	2645 F _{DL_high}	-50 -50	1 1	
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31, 34, 38, 40, 41, 66, 72	2595 F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31, 34, 38, 40, 41, 66, 72 E-UTRA Band 4, 10, 20, 22, 24, 32,	2595	-	_			2
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31, 34, 38, 40, 41, 66, 72 E-UTRA Band 4, 10, 20, 22, 24, 32, 42, 43, 45, 46, 65, 66, 71, 73	2595 F _{DL_low}	-	$F_{DL_{high}}$	-50	1	2
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31, 34, 38, 40, 41, 66, 72 E-UTRA Band 4, 10, 20, 22, 24, 32, 42, 43, 45, 46, 65, 66, 71, 73 NR band n78, n79	2595 F _{DL_low}	-	F_{DL_high} F_{DL_high}	-50 -50	1	
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31, 34, 38, 40, 41, 66, 72 E-UTRA Band 4, 10, 20, 22, 24, 32, 42, 43, 45, 46, 65, 66, 71, 73 NR band n78, n79 E-UTRA Band 1	2595 F _{DL_low} F _{DL_low}	-	F _{DL_high} F _{DL_high} F _{DL_high}	-50 -50 -50	1	2, 9, 11
DC_28_n51	Frequency range Frequency range E-UTRA Band 2, 3, 5, 7, 8, 25, 26, 31, 34, 38, 40, 41, 66, 72 E-UTRA Band 4, 10, 20, 22, 24, 32, 42, 43, 45, 46, 65, 66, 71, 73 NR band n78, n79	2595 F _{DL_low}		F_{DL_high} F_{DL_high}	-50 -50	1	

	Frequency range	662	-	694	-26.2	6	5
	Frequency range	758	-	773	-32	1	5
	Frequency range	773	-	803	-50	1	
DC_28_n77	E-UTRA Band 3, 5, 7, 8, 18, 19, 20, 26, 34, 39, 40, 41	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 1, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	9, 10
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	9, 11
	Frequency range	758	-	773	-32	1	
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_28_n78	E-UTRA Band 3, 5, 7, 8, 18, 19, 20,	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
DC_28_n83_ULS	26, 34, 39, 40, 41 E-UTRA Band 1, 65	F _{DL_low}	-	F _{DL high}	-50	1	2
UP-TDM_n78,	E-UTRA Band 1	F _{DL low}	-	F _{DL_high}	-50	1	10, 11
DC_28_n83_ULS	E-UTRA Band 11, 21	F _{DL low}	-	F _{DL high}	-50	1	10, 12
UP-FDM_n78	Frequency range	758	-	773	-32	1	10, 12
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_28_n79	E-UTRA Band 3, 5, 8, 18, 19, 34, 39,						0
20_200	40, 41, 42	F_{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 65	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2
	E-UTRA Band 1	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	9, 10
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	9, 11
	Frequency range	758	-	773	-32	1	
	Frequency range	773	-	803	-50	1	_
	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_30_n5	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 24, 25, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 26	859	-	869	-27	1	
	E-UTRA Band 41, 48, 52	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 18, 19	F _{DL low}	-	F _{DL high}	-40	1	_
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_30_n66	E-UTRA Éand 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 66, 70, 71	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	Bands 48	F _{DL_low}	-	F _{DL_high}	-50	1	2
DC_38_n78			N	/A			
DC_39_n78	E-UTRA Band 1, 8, 34, 40, 41, 44, 45	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	1805	-	1855	-40	1	18
	Frequency range	1855	-	1880	-15.5	5	18
DC_39_n79	E-UTRA Band 1, 8, 34, 40, 41, 44, 45	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	Frequency range	1805	-	1855	-40	1	18
	Frequency range	1855	-	1880	-15.5	5	18
DC_40_n77			N	/A			
DC_41_n77	E-UTRA Band 1, 3, 5, 8, 26, 28, 33, 34, 39, 40, 44, 45, 73, 74	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 9, 11, 18, 19, 21	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	19
	Frequency range	1884.5		1915.7	-41	0.3	3, 19
DC_41_n78	E-UTRA Band 1, 3, 8, 34, 39, 40, 44,	F _{DL low}	-	F _{DL_high}	-50	1	-,
	45 Frequency range	F _{DL_low}	_	F _{DL_high}	-5	100	
DC_41_n79	E-UTRA Band 1, 3, 5, 8, 9, 11, 18, 19,	_			-50	1	
	21, 28, 34, 40, 42, 44, 45, 65	F _{DL_low}	-	F _{DL_high}			
DO 40 54	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_42_n51	E-UTRA Band 3, 8, 20, 25, 30, 31, 34, 39, 41, 73	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 1, 2, 4, 5, 6, 7, 10, 12, 13, 14, 17, 23, 24, 26, 27, 28, 29, 32, 38, 40, 44, 46, 65, 66, 67, 68, 70, 71	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
DC_42_n77			N	/A			
DC_42_n78			N	/A			
DC_42_n79				/A			
DC_66_n5	E-UTRA Band 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 24, 25, 28, 29, 30, 34, 38, 40, 43, 45, 50, 51, 65, 66, 70, 71 p71, 95	F_{DL_low}	-	F _{DL_high}	-50	1	
	71,n71, 85 E-UTRA Band 26	859		869	-27	1	
	E-UTRA Band 26 E-UTRA Band 41, 42, 48, 52	F _{DL_low}	+-	F _{DL_high}	-27	1	2
	E-UTRA Band 18, 19		-		-30	1	2
	L-0117A Dallu 10, 19	F _{DL_low}	<u> </u>	F _{DL_high}	-40		

	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
DC_66_n71	E-UTRA Band 4, 5, 7,10, 13, 14, 17, 22, 24, 26, 27, 29, 30, 43,-50, 51, 66, 74	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 2, 25, 41, 42, 48, 70	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA Band 71	F _{DL_low}	-	F_{DL_high}	-50	1	5
DC_66_n78, DC_66_n86_ULS UP-TDM_n78, DC_66_n86_ULS UP-FDM_n78	E-UTRA Band 1, 3, 5, 7, 8, 20, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	F_{DL_high}	-50	1	

NOTE 1: FDL low and FDL high refer to each E-UTRA frequency band specified in Table 5.2-1 of TS36.121-1[10]. NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5B.3.1.1.5-1 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz). where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval. NOTE 3: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz. NOTE 4: Applicable only when the assigned E-UTRA carrier is confined within 824 MHz and 849 MHz for UE category M1, M2 and UE category NB1 and NB2. NOTE 5: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth. NOTE 6: This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. NOTE 7: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band. NOTE 8: This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the NOTE 9: channel bandwidth used is 5 or 10 MHz. NOTE 10: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 11: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 12: This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 902.5 MHz ≤ Fc < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 907.5 MHz \leq Fc \leq 912.5 MHz without any restriction on uplink transmission bandwidth. - for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart > 3. NOTE13: This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz. NOTE 14: This requirement is applicable for 5 and 10 MHz E-UTRA channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart<48. NOTE 15: Applicable when NS_05 in section 6.6.3.3.1 is signalled by the network. NOTE 16: This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. NOTE 17: This requirement is applicable in the case of a 10 MHz E-UTRA carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies. NOTE 18: This requirement is only applicable for E-UTRA carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for E-UTRA carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for E-UTRA carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz. NOTE 19: This requirement applies when the E-UTRA and NR carriers are confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz. NOTE: To simplify the above Table, E-UTRA band numbers are listed for bands which are specified only for E-

UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

The normative reference for this requirement is TS 38.101-3 [1] subclause 6.5B.3.3.1, Table 6.5B.3.3.1-1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

6.5B.3.3.2.4 Test description

6.5B.3.3.2.4.1 Initial conditions

Same initial conditions as described in subclause 6.5B.3.1.2.4.1 with the following exceptions:

- Instead of Table 6.5B.3.1.2.4.1-1 → use Table 6.5B.3.3.2.4.1-1.

						Initial C	onditions						
as specified in 15 38.508-1 [6] subclause 4.1							NC						
	t Freque specified	ncies in TS 38.8	508-1 [6]	subclaus	se 4.3.1		For test free	quencies refe	r to "Range" co	olumns.			
	t EN-DC 3.1.2-1	bandwidt	h combir	nation as	specified ir	n Table	Refer to "N	R N _{RB} "and "E·	UTRA N _{RB} " c	olumns			
	t SCS fo le 5.3.5-		ell as sp	ecified in	TS 38.521	-1 [8]	Lowest SCS	S per Channe	l Bandwidth				
					Test Par	ameters fo	or DC Config	urations					
		DC	Configu	uration / I	NRB_agg		DL Alle	ocation	UL Allo	cation (Not	e 1,2)		
ID		DC Confi	guratior	ı	E- UTRA	NR	CC MOD	E-UTRA &	CC MOD	E-UTR			
	E-U Band	ITRA Range	N Band	IR Range	Ch BW/N _{RB}	Ch BW/N _{RB}	E- UTRA/NR	NR RB allocation	E- UTRA/NR		allocations (L _{CRB} @ RB _{start})		
	Ballu	Kange	Ballu	-	ult Test Se	ettinas for	a CA XA-YA	Configurati	on				
1	х	Low	Y	Low	Highest N _{RB_agg} /Highest	Highest N _{RB_agg} /Highest	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
2	х	High	Y	High	N _{RB} Highest N _{RB_agg} /Highest N _{RB}	N _{RB} Highest N _{RB_agg} /Highest N _{RB}	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@RB _{max}	1@RB _{max}		
				Т		gs for DC_	3A-n79A Co	nfiguration					
1	3	Low	79	Low	20/100	100/273	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
2	3	High	79	Note 3	20/100	100/273	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@75	1@0		
3	3	High	79	Low	20/100	100/273	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@RB _{max}	1@136		
4	3	High	79	Low	20/100	100/273	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@75	1@RB _{max}		
5	3	Low	79	Low	20/100	100/273	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@RB _{max}	1@136		
6	3	Low	79	Note 3	20/100	100/273	QPSK/CP -OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@RB _{max}	1@RB _{max}		
Not Not	T e 2: X e 3: T A	est Setting , Y corres est Point I	gs, if pre pond to t D 2 for [8700). T	sent in the the differe DC_3A-n7 est Point	e table. Oth ent bands ir '9A have th	nerwise use n the DC Co ne centre ca	e the Default onfiguration. arrier frequen	Test Settings E.g. for DC_1 acy of 4480.5	use test points test points. A-n3A, X=1, N MHz in Band 7 equency of 490	∕=3. ∕9 (NR			

Table 6.5B.3.3.2.4.1-1: Test Configuration Table

6.5B.3.3.2.4.2 Test Procedure

Same test procedure as described in subclause 6.5B.3.1.2.4.2 with the following exceptions:

Instead of Table 6.2B.1.2.5-1 \rightarrow use Table Table 6.2B.3.2.5-1.

For EN-DC only capable devices

Instead of Table 6.5B.3.1.2.3-1 \rightarrow use Table 6.5B.3.3.2.3-1.

For Standalone and EN-DC capable devices

Instead of Table 6.5B.3.1.2.3-1 \rightarrow use Table Table 6.5B.3.3.2.5-1.

6.5B.3.3.2.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5B.3.3.2.5 Test Requirement

For EN-DC only capable devices, test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements and are not repeated in this section.

For Standalone and EN-DC capable devices, the test requirements are in Table 6.5B.3.3.2.5-1.

Table 6.5B.3.3.2.5-1: Requirements for inter-band within FR1

	Spurious emission									
EN-DC Configuration	Protected band	Frequency range (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE					
DC_3-n79	E-UTRA Band 5, 8, 11, 18, 19, 21, 41	F _{DL_low} - F _{DL_high}	-50	1						
NOTE 1: FDL_low a	NOTE 1: F _{DL_low} and F _{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1 of TS 38.101-3 [1].									

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 of TS 38.101-3 [1] are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.

NOTE 3: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz

NOTE 4: Applicable only when the assigned E-UTRA carrier is confined within 824 MHz and 849 MHz for UE category M1, M2 and UE category NB1 and NB2.

- NOTE 5: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 of TS 38.101-3 [1] from the edge of the channel bandwidth.
- NOTE 6: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 7: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 8: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink.
- NOTE 9: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 10: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 11: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 12: This requirement is applicable only for the following cases: for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 902.5 MHz ≤ Fc < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 907.5 MHz ≤ Fc ≤ 912.5 MHz without any restriction on uplink transmission bandwidth. for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart > 3.
- NOTE13: This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz.
- NOTE 14: This requirement is applicable for 5 and 10 MHz E-UTRA channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart<48.
- NOTE 15: Applicable when NS_05 in section 6.6.3.3.1 of TS 38.101-3 [1] is signalled by the network.

NOTE 16: This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.

NOTE 17: This requirement is applicable in the case of a 10 MHz E-UTRA carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.

- NOTE 18: This requirement is only applicable for E-UTRA carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for E-UTRA carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for E-UTRA carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz.
- NOTE 19: This requirement applies when the E-UTRA and NR carriers are confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz.

6.5B.3.4 Spurious Emissions for Inter-band including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.5.3 in TS 38.521-2 is incomplete.

6.5B.3.4.1 General Spurious Emissions for Inter-band including FR2

6.5B.3.4.1.1 Test purpose

Same test purpose as in clause 6.5.3.1.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

6.5B.3.4.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.3.1.3 in TS 38.521-2 [9] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.5B.3.4.

6.5B.3.4.1.4 Test description

6.4B.3.4.1.4.1 Initial conditions

Same test description as in clause 6.5.3.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For Initial conditions as in clause 6.5.3.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1 The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1 The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.3.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5.3.1.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.3.4.1.5 Test requirement

Same test requirement as in clause 6.5.3.1.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT created a 7. duplication!!]

6.5B.3.4.1.2 Transmitter Spurious emissions for Inter-band EN-DC including FR2 (3 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.3.1.1 in TS 38.521-2 is incomplete.

6.5B.3.4.1.2.1 Test purpose

Same test purpose as in clause 6.5.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.1.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 3CCs.

6.5B.3.4.1.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.3.4.

6.5B.3.4.1.2.4 Test description

6.5B.3.4.1.2.4.1 Initial condition

Same test description as in clause 6.5A.3.1.1.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.3.1.1.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.3.1.1.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.3.1.1.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.3.4.1.2.5 Test Requirements

Same test requirement as in clause 6.5A.3.1.1.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.1.3 Transmitter Spurious emissions for Inter-band EN-DC including FR2 (4 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.3.1.2 in TS 38.521-2 is incomplete.

6.5B.3.4.1.3.1 Test purpose

Same test purpose as in clause 6.5.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.1.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 4CCs.

6.5B.3.4.1.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.3.4.

6.5B.3.4.1.3.4 Test description

6.5B.3.4.1.3.4.1 Initial condition

Same test description as in clause 6.5A.3.1.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.3.1.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.3.1.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.3.1.2.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.3.4.1.3.5 Test Requirements

Same test requirement as in clause 6.5A.3.1.2.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.1.4 Transmitter Spurious emissions for Inter-band EN-DC including FR2 (5 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration table and Connection diagram in TS 38.521-2 are TBD
- The referred test case 6.5A.3.1.3 in TS 38.521-2 is incomplete.

6.5B.3.4.1.4.1 Test purpose

Same test purpose as in clause 6.5.3.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.1.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 with 5CCs.

6.5B.3.4.1.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.3.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 [4] clause 6.4B.3.4.

6.5B.3.4.1.4.4 Test description

6.5B.3.4.1.4.4.1 Initial condition

Same test description as in clause 6.5A.3.1.3.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For Initial conditions as in clause 6.5A.3.1.3.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5A.3.1.3.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5A.3.1.3.4.2 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.3.4.1.4.5 Test Requirements

Same test requirement as in clause 6.5A.3.1.3.5 in TS 38.521-2 [9] for the NR carrier.

[IS: 5446 NTT end of a duplication!!]

6.5B.3.4.2 Spurious emission band UE co-existence for Inter-band including FR2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- The referred test case 6.5.3.2 in TS 38.521-2 is incomplete.
- Testability issue for 6GHz ~ [12.75GHz] is identified. How to treat this frequency range is TBD.
- TRP Measurement uncertainty is TBD

6.5B.3.4.2.1 Test purpose

Same test purpose as in clause 6.5.3.2.1 in TS 38.521-2 [9] for the NR carrier.

6.5B.3.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

6.5B.3.4.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.3.2.3 in TS 38.521-2 [9] for the NR carrier.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this requirement is TS 38.101-3 subclause 6.5B.3.4.1.

3GPP TS 38.521-3 version 15.3.0 Release 15

312

6.5B.3.4.2.4 Test description

Same Test description as in clause 6.5.3.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.7-1.

For initial conditions as in clause 6.5.3.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1 The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1 The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 6.5.3.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5.3.2.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

6.5B.3.4.2.5 Test requirement

Same Test requirement as in clause 6.5.3.2.5 in TS 38.521-2 [9] for the NR carrier.

6.5B.4 Additional Spurious Emissions for EN-DC

6.5B.4.1 Additional Spurious Emissions for Intra-band contiguous EN-DC

6.5B.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5B.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward supporting intra-band contiguous EN-DC.

6.5B.4.1.3 Minimum conformance requirements

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5B.4.1.3.1 Minimum requirement (network signalled value "NS_04")

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5B.4. 1.3.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 of TS 38.521-1 [8] from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
2495 ≤ f < 2496	-13	1% of Channel BW for contiguous BW up to 100 MHz, 1 MHz for contiguous BW > 100 MHz
2490.5 ≤ f < 2495	-13	1 MHz
0 < f < 2490.5	-25	1 MHz

Table 6.5B.4.1.3.1-1: Additional requirements

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.5B.4.1.1.

Exception requirements are applicable for NR but not for E-UTRA within this test. LTE anchor agnostic approach is not applied. E-UTRA configuration is included but E-UTRA measurements are not performed.

- 6.5B.4.1.4 Test description
- 6.5B.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2B.2.1-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing are shown in Table 6.5B.4.1.4.1-1 for E-UTRA and Table 6.5B.4.1.4.1-2 for NR. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex TS 36.521-1 [10] Annex C and in TS 38.521-1 Annex C2 for LTE link and NR link respectively.

Table 6.5B.4.1.4.1-1: EN-DC test configuration table for NS_04

Initial Conditions

4.1	TS 38.508-1 [6] subclause	NC								
4.3.1 E-UTRA Test F	encies IS 38.508-1 [6] subclause requencies as specified in 1] subclause 4.3.1	Low range, High range								
specified in Tab		NR: 40 MHz, 1	E-UTRA: 20 MHz NR: 40 MHz, 100 MHz Lowest and Highest N _{RB_agg} (Note 3)							
Test SCS for th TS 38.521-1 [8]	e NR cell as specified in Table 5.3.5-1	Lowest SCS p	er Channel Ba	ndwidth						
		Test Paramet								
Test ID	Downlink			nk Configuratio						
	Configuration	E-UTR/			R Cell					
		Modulation	RB allocation (NOTE 2)	Modulation	RB allocation (NOTE 1)					
1		QPSK	1@0	Same as in Table 6.5.3.3.4.1-1 of TS 38.521-1[8]	Same as in Table 6.5.3.3.4.1-1 of TS 38.521-1[8]					
2	N/A for Spurious emission.	QPSK	Full RB	Same as in Table 6.5.3.3.4.1-1 of TS 38.521-1[8]	Same as in Table 6.5.3.3.4.1-1 of TS 38.521-1[8]					
3		QPSK	Outer_Full	CP-OFDM QPSK	Inner Full					
4		QPSK	Outer_Full	CP-OFDM QPSK	Outer Full					
Note 2: Oute the E Note 3: If the aggre Note 4: Band	4 QPSK Outer_Full QPSK Outer Full Note 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in TS 38.521-1 [8]. Outer_Full defined as the transmission bandwidth configuration NRB per channel bandwidth for the E-UTRA component as indicated in TS 36.521-1 [10] Table 5.4.2-1. Outer Supports multiple CC Combinations in the EN-DC Configuration with the same aggregated channel BW, only the combination with the highest NR BW is tested.									

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [6] Annex A, Figure A.3.1.1.1 for SS diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 4. E-UTRA downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0 of TS 36.521-1 [10].
- 5. NR downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0 of TS 38.521-1 [8].
- 6. The UL Reference Measurement channels are set according to Table 6.5B.4.1.4.1-1.
- 7. NR propagation conditions are set according to B.0 of TS38.521-1[8]. E-UTRA propagation conditions are set according to B.0 of TS36.521-1[10].
- 8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.5B.4.1.4.3.

6.5B.4.1.4.2 Test Procedure

- 1. E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5B.4.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 6.5B.4.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands to the UE for both NR and E-UTRA carriers until the UE transmits at its P_{UMAX} level; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of each component carriers for the EN-DC configuration, which shall meet the requirements described in Table 6.2B.3.1.5.1 thru 6.5B.2.1.2.5.2 depending NS-values. The period of the measurement shall be at least the continuous duration of one sub-frame.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5B.4.1.3.1 -1. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active time slots.

6.5B.4.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions for each network signalled value.

6.5B.4.1.4.3.1 Message contents exceptions for network signalled value "NS_04"

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5B.4.1.4.3.1-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_04"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1								
Information Element	Value/remark	Comment	Condition					
additionalSpectrumEmission	1 (NS_04)							

6.5B.4.1.5 Test Requirement

Test requirements for additional spurious emissions for intra-band contiguous EN-DC are the same as the minimum requirements described in clause 6.5B.4.1.3 and are not repeated in this section.

6.5B.4.2 Additional Spurious Emissions for Intra-band non-contiguous EN-DC

Editor's note: Wgap for intra-band non-contiguous EN-DC is FFS in TS 38.508-1

6.5B.4.2.1 Test purpose

Same minimum conformance requirements as in clause 6.5B.4.1.1.

6.5B.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

6.5B.4.2.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5B.4.1.3.

6.5B.4.2.4 Test description

6.5B.4.2.4.1 Initial conditions

Same initial conditions as described in subclause 6.5B.4.1.4.1 for both E-UTRA and NR carriers with the following exception:

- 1. For each EN-DC combination specified in Table 5.3B.1.3-1, channel spacing between NR and E-UTRA is specified according to subclause 5.4B.1.
- 2. Set up the NR and E-UTRA test frequencies so that NR carrier is located at the lower frequency side as specified in Table 5.3B.1.3-1. Repeat each testing with E-UTRA carrier frequency is located at the lower side as specified in Table 5.3B.1.3-1.

6.5B.4.2.4.2 Test Procedure

Same test procedure as described in subclause 6.5B.4.1.4.2.

6.5B.4.2.4.3 Message Contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions for each network signalled value.

6.5B.4.2.4.3.1 Message contents exceptions for network signalled value "NS_04"

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5B.4.2.4.3.1-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_04"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1								
Information Element	Value/remark	Comment	Condition					
additionalSpectrumEmission	1 (NS_04)							

6.5B.4.2.5 Test Requirement

Test requirements for Spurious Emissions for intra-band non-contiguous EN-DC are the same as the minimum requirements described in 6.5B.4.2.3 and are not repeated in this section.

6.5B.4.3 Additional Spurious Emissions for Inter-band EN-DC

6.5B.4.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5B.4.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward supporting inter-band EN-DC

6.5B.4.3.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5B.4.1.3.

6.5B.4.3.4 Test description

6.5B.4.3.4.1 Initial conditions

Same initial conditions as described in subclause 6.5B.4.1.4.1

6.5B.4.3.4.2 Test Procedure

Same test procedure as described in subclause 6.5B.4.1.4.2.

6.5B.4.3.4.3 Message Contents

Same message contents as described in subclause 6.5B.4.1.4.3.

6.5B.4.3.5 Test Requirement

Test requirements for additional spurious emissions for inter-band EN-DC are the same as the minimum requirements described in 6.5B.4.3.3 and are not repeated in this section.

6.5B.5 Transmit intermodulation

- 6.5B.5.1 Intra-band contiguous EN-DC
- 6.5B.5.2 Intra-band non-contiguous EN-DC
- 6.5B.5.3 Inter-band EN-DC within FR1
- 6.5B.5.3.1 Test purpose

Same test purpose as in clause 6.5.4 in TS 38.521-1 [8] for the NR carrier.

6.5B.5.3.2 Te

editor's note

Editor's note: wrong section starts here!

6.5B.5.3.3 Minimum conformance requirements

The transmit intermodulation requirement specified in sub-clauses 6.7.1 and 6.7.1A of [5] and sub-clauses 6.5.4 and 6.5A.4 of [2] apply for each component carrier in E-UTRA bands and NR bands, respectively.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

The normative reference for this measurement is TS 38.101-3 [4] clause 6.5B.5.3.

6.5B.5.3.4 Test description

Same test description as in clause 6.5.4.4 in TS 38.521-1 [8] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For Initial conditions as in clause 6.5.4.4.1 in TS 38.521-1 [8], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Step 6 of Initial conditions as in clause 6.5.4.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.

Same test procedure as in clause 6.5.4.4.2 in TS 38.521-1 [8].

6.5B.5.3.5 Test Requirement

The ratio derived in step 6 and 8, shall not exceed the described value in Table 6.5.4.5-1 defined in TS 38.521-1 [8].

6.5B.5.4 Inter-band EN-DC including FR2

6.5B.5.5 Inter-band EN-DC including both FR1 and FR2

7 Receiver characteristics

7.1 General

Editor's Note: Test configurations/environments that require new spherical scan shall be included in test procedure section and identifying such scenarios is currently FFS and owned by RAN5.

For Rx test cases the identified beam peak direction can be stored and reused for a device under test in various configurations/environments for the full duration of device testing as long as beam peak direction is the same.

RX requirements for intra-band contiguous and non-contiguous EN-DC only apply for bands < 2.7GHz.

For intra-band non-contiguous EN-DC, the output power is configured as follows:

- One E-UTRA uplink carrier with the output power set to 4dB Below P_{CMAX_L} and the NR band whose downlink is being tested has its uplink carrier output power set to minimum output power as defined in sub-clause 6.3.1 of [2].
- One NR uplink carrier with the output power set to 4dB Below P_{CMAX_L} and the E-UTRA band whose downlink is being tested has its uplink carrier output power set to minimum output power as defined in sub-clause 6.3.2.1 of [4].

For the additional requirements for intra-band non-contiguous EN-DC of two sub-blocks, an in-gap test refers to the case when the interfering signal is located at a negative offset with respect to the assigned lowest channel frequency of the highest sub-block and located at a positive offset with respect to the assigned highest channel frequency of the lowest sub-block.

For the additional requirements for intra-band non-contiguous EN-DC of two sub-blocks, an out-of-gap test refers to the case when the interfering signal(s) is (are) located at a positive offset with respect to the assigned channel frequency of the highest carrier frequency or located at a negative offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous EN-DC of two sub-blocks with channel bandwidth larger than or equal to 5 MHz, the existing adjacent channel selectivity requirements, in-band blocking requirements (for each case), and narrow band blocking requirements apply for in-gap tests only if the corresponding interferer frequency offsets with respect to the two measured carriers satisfy the following condition in relation to the sub-block gap size W_{gap} for at least one of the E-UTRA or NR sub-blocks, so that the interferer frequency position does not change the nature of the core requirement tested:

$Wgap \ge 2 \cdot |FInterferer (offset)| - BWChannel$

For the E-UTRA sub-block, the F_{Interferer (offset)}, for a sub-block with a single component carrier is the interferer frequency offset with respect to carrier as specified in subclause 7.5.1, subclause 7.6.1 and subclause 7.6.3 for the respective requirement in [4] and BW_{Channel}. F_{Interferer (offset)} for the E-UTRA sub-block with two or more contiguous component carriers is the interference frequency offset with respect to the carrier adjacent to the gap is specified in subclause 7.5.1A, 7.6.1A and 7.6.3A in [4].

For the NR sub-block, the $F_{Interferer (offset)}$, for a sub-block with a single component carrier is the interferer frequency offset with respect to carrier as specified in subclause 7.5.1, subclause 7.6.1 and subclause 7.6.3 for the respective requirement in [2] and BW_{Channel}.

The interferer frequency offsets for adjacent channel selectivity, each in-band blocking case and narrow- band blocking shall be tested separately with a single in-gap interferer at a time.

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE for the bands operating on frequency range 1 and over the air of the UE for the bands operating on frequency range 2. The requirements for frequency range 1 and frequency range 2 can be verified separately. For the carrier in frequency range 1, requirements can be verified with NR FR2 link disabled. For the carrier in frequency range 2, requirements can be verified in OTA mode with LTE connecting to the network by OTA without calibration.

The requirements defined in this clause are the extra requirements compared with the single carrier requirements defined in [2] and [3].

Unless otherwise stated, the UL and DL reference measurement channels are the same with the configurations specified in [2] and [3].

Unless otherwise stated, requirements for NR receiver written in TS 38.101-1 and TS 38.101-2 apply and are assumed anchor agnostic. Requirements are verified under conditions where anchor resources do not interfere NR operation.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

For conformance testing involving FR2 test cases in this specification, the UE under test shall disable UL Tx diversity schemes.

- 7.2 Diversity characteristics
- 7.3 Reference sensitivity
- 7.3A Reference sensitivity for CA without EN-DC
- 7.3A.1 General

FFS

7.3A.2 Reference sensitivity power level for CA without EN-DC

FFS

7.3A.3 $\Delta R_{IB,c}$ for CA without EN-DC

For the UE which supports inter-band NR CA configuration, the minimum requirement for reference sensitivity in subclause 7.3.2 in TS 38.101-1 [2] and subclause 7.3.2, 7.3A.2in TS 38.101-2 [3] shall be increased by the amount given in $\Delta R_{IB,c}$ in Tables below. Unless otherwise stated, $\Delta R_{IB,c}$ is set to zero.

In case the UE supports more than one of band combinations for CA, SUL or DC, and an operating band belongs to more than one band combinations then

- When the operating band frequency range is ≤ 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the average value for all band combinations defined in subclause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3], truncated to one decimal place that apply for that operating band among the supported band combinations. In case there is a harmonic relation between low band UL and high band DL, then the maximum $\Delta R_{IB,c}$ among the different supported band combinations involving such band shall be applied

- When the operating band frequency range is > 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the maximum value for all band combinations defined in subclause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [3] for the applicable operating bands.

7.3A.3.1 Reference Sensitivity for Inter-band CA between FR1 and FR2 without EN-DC

(Void)

7.3A.4 Reference sensitivity exceptions due to UL harmonic interference for CA

Sensitivity degradation is allowed for a band in frequency range 2 if it is impacted by UL harmonic interference from the band in frequency range 1 of the same CA configuration. Reference sensitivity exceptions are specified in Table 7.3A.4-1 with uplink configuration specified in Table 7.3A.4-2.

Table 7.3A.4-1: Reference sensitivity exceptions due to UL harmonic for NR CA of FR1+FR2

UL Band	DL Band	50 MHz (dBm)	100 MHz (dBm)	200 MHz (dBm)	400 MHz (dBm)
X	Y				

7.3B Reference sensitivity level for DC

7.3B.1 General

For EN-DC, E-UTRA and NR single carrier REFSENS requirements defined in [2], [3] and [4] apply to all downlink bands of EN-DC configurations listed in clause 5.5B, unless sensitivity degradation exception is allowed in this clause of this specification, section 7.3 in TS 38.101-1 [2] or section 7.3 in TS 36.101 [4]. Allowed exceptions specified in this clause also apply to any higher order EN-DC configuration combination containing one of the band combinations that exception is allowed for. Reference sensitivity exeptions are specified by applying maximum sensitivity degradation (MSD) into applicaple REFSENS requirement. EN-DC REFSENS requirements shall be met for NR uplink transmissions using QPSK DFT-s-OFDM waveforms as defined in clause 7.3.2 [2]. Unless otherwise specified UL allocation uses the lowest SCS allowable for a given channel BW.

In case of interband EN-DC the receiver REFSENS requirements in this clause do not apply for 1.4 and 3 MHz E-UTRA carriers.

7.3B.2 Reference sensitivity for EN-DC

Editor's Note: Final section structure under further analysis and discussion.

7.3B.2.0 Minimum Conformance Requirements of Reference sensitivity for EN-DC

7.3B.2.0.1 Intra-band contiguous EN-DC

For Intra-band contiguous EN-DC configurations listed in Table 7.3B.2.0.1-1, the reference sensitivity is defined only for the specific uplink and downlink test points which are specified in Table 7.3B.2.0.1-1 and E-UTRA and NR single carrier requirements do not apply.Table 7.3B.2.0.1-1: Reference sensitivity (MSD) for intra-band DC bandwidth class

	EN-DC configuration/channel allocations/MSD											
DC configuration	E-UTRA/NR Fc (UL) band (MHz) Channel UL bandwidth allocation (MHz) (LCRB)		Fc (DL) (MHz)	MSD (dB)	Duplex mode							
	71	665.5	5	5 (RB _{end} =24)	619.5	0						
DC_(n)71AA	n71	675.5	15	15 (RB _{start} = 0)	629.5	1.8						
	71	670.5	15	15 (RB _{end} = 74)	624.5	0						
DC_(n)71AA	n71	680.5	5	5 (RB _{start} = 0)	634.5	1.6	FDD					
	71	668	10	10 (RB _{end} = 49)	622	0	FUU					
DC_(n)71AA	n71	678	10	10 (RB _{start} = 0)	632	1.7						
	71	668	10	10 (RB _{start} = 0)	622	17.2						
DC_(n)71AA	n71	678	10	$10 (RB_{end} = 51)$	632	29.4						

7.3B.2.0.2 Intra-band non-contiguous EN-DC

For DC_3A_n3A intra-band non-contiguous EN-DC combination, only single switched UL is supported in rel.15, therefore, no MSD is specified and E-UTRA and NR single carrier requirements apply.

7.3B.2.0.3 Inter-band EN-DC within FR1

Reference sensitivity exceptions are specified for the condition when there is uplink transmission only in the aggressor band.

Editor's note: FFS how to clarify the issues of 1Tx may also exist for 2Tx mode, for example harmonic, etc.

7.3B.2.0.3.1 Reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1

Sensitivity degradation is allowed for a band if it is impacted by UL harmonic interference from another band part of the same DC configuration. Reference sensitivity exceptions are specified in Table 7.3B.2.0.3.1-1 with uplink configuration specified in Table 7.3B.2.0.3.1-2.

Table 7.3B.2.0.3.1-1: Reference sensitivity exceptions (MSD) due to UL harmonic for EN-DC in NR FR1

	E-UTRA or NR Band / Channel bandwidth of the affected DL band / MSD												
UL band	DL band	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	30 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)
1.0	n77 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
1, 3	n77 ³		1.1	0.8	0.3			0	0	0	0	0	0
2	n78 ^{1,2}	27.1	23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
2	n78 ³	1.9	1.1	0.8	0.3			0	0	0	0	0	0
3	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
3	n78 ³		1.1	0.8	0.3			0	0	0	0	0	0
5	n78 ^{6,7}		10.5	8.9	7.8			5.4					
8	n77 ^{6,7} n78 ^{6,7}		10.8	9.1	8			5.1	4.2	3.5	2.3	2.1	1.4
8	n79 ^{4,5}							6.8	6.2	5.6	4.9		4.4
18, 19	n77 ^{4,5}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
28	n77 ^{4,5} n78 ^{4,5}		10.4	8.9	7.8			4.7	3.7	3	1.7	1.2	0.7
20	n77 ^{6,7} n78 ^{6,7}		10.8	9.1	8			6	4.0	3.2	2.0	1.5	1.0
26	N41 ^{8,9}	NA	10.3	8.4	7.4			5	4.3	3.9	3.1	2.7	
26	n77 ^{6,7} n78 ^{6,7}		10.8	9.1	8			6	4.0	3.2	2.0	1.5	1.0
n28	1 ^{8,9,10}	10.2	7.6	6.2	5.3								
n71	2 ¹¹	4.6	1.0	0.7	0.6								
117.1	2 ¹²	1.7	1.0	0.7	0.6								
66	n78 ^{1,2}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
00	n78 ³		1.1	0.8	0.3			0	0	0	0	0	0

NOTE 1:	These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission
	bandwidth of a victim (higher) band.
NOTE 2:	The requirements should be verified for UL EARFCN or NR ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left[f_{DL}^{HB} / 0.2 \right] 0.1$ in MHz and $F_{UL_{-low}}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_{-}high}^{LB} \le F_{UL_{-}high}^{LB} - BW_{Channel}^{LB} / 2$ with carrier
	frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band.
NOTE 3:	The requirements are only applicable to channel bandwidths with a carrier frequency at $\pm (20 + BW_{Channel}^{HB} / 2)$
	MHz offset from $2f_{UL}$ in the victim (higher band) with $F_{UL_{low}} + BW_{Channel} / 2 \leq f_{UL} \leq F_{UL_{high}} - BW_{Channel} / 2$,
	where and $BW_{Channel}^{HB}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in
NOTE	MHz, respectively.
	These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 5 th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
NOTE 5	The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that
	$f_{UL}^{LB} = \left[f_{DL}^{HB} / 0.5 \right] 0.1$ in MHz and $F_{UL_{low}}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_{high}}^{LB} - BW_{Channel}^{LB} / 2$ with carrier frequency in
	the victim (higher) band in MHz and the channel bandwidth configured in the lower band.
NOTE 6:	These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of
	the aggressor (lower) band for which the 4 th transmitter harmonic is within the downlink transmission
NOTE 7	bandwidth of a victim (higher) band.
NOTE 7:	The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left[f_{DL}^{LB} / 0.4 \right] 0.1$ in MHz and $F_{UL_{-low}}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_{-high}}^{LB} = BW_{Channel}^{LB} / 2$ with carrier frequency in
	the victim (higher) band in MHz and the channel bandwidth configured in the lower band.
NOTE 8:	These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of
	a low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of a high band.
NOTE 9	The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB such that
	in MHz and $F_{UL_{low}}^{LB} + B W_{Channel}^{LB} / 2 \le f_{UL_{logh}}^{LB} \le F_{UL_{logh}}^{LB} - B W_{Channel}^{LB} / 2$ with the carrier frequency in the victim (higher)
	band in MHz and the channel bandwidth configured in the low band.
	Applicable for the operations with 2 or 4 antenna ports supported in the band with carrier aggregation configured.
NOTE 11:	These requirements apply when the lower edge frequency of the 5 MHz uplink channel in Band 71 is located
	at or below 668 MHz and the downlink channel in Band 2 is located with its upper edge at 1990 MHz.
NOTE 12:	These requirements apply when the lower edge frequency of the 10 MHz, 15 MHz, or 20 MHz uplink channel
	in Band 71 is located at or below 668 MHz and the downlink channel in Band 2 is located with its upper edge at 1990 MHz.
NOTE 13:	These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of
	the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission
	bandwidth of a victim (higher) band and a range ΔF_{HD} above and below the edge of this downlink transmission
	bandwidth. The value ΔF_{HD} depends on the EN-DC band combination: $\Delta F_{HD} = 10$ MHz for DC_3_n77 and
	$DC_3_n78; \Delta F_{HD} = 20 \text{ MHz for } DC_1_n77.$

	E-UT	RA or N	R Band /	Channel	bandwid	Ith of the	affected	DL band	/ULRB	allocatio	n of the a	gressor k	band
UL band	DL band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
1	n77		25	36	50			100	100	100	100	100	100
2	n78	12	25	36	50			100	100	100	100	100	100
3	n77		25	36	50			50	50	50	50	50	50
3	n78		25	36	50			50	50	50	50	50	50
5	n78	8	16	25	25			25					
8	n77 n78		16	25	25			25	25	25	25	25	25
8	n79							25	25	25	25		25
18	n77		16	25	25			25	25	25	25	25	25
19	n77		16	25	25			25	25	25	25		25
20	n77 n78		16	25	25 ¹ , 25 ²			25	25	25	25	25	25
20	n41		16	25	25			25	25				
26	n77 n78		16	25	25			25	25	25	25	25	25
n28	1	8	16	25	25								
28	n77 n78		10	-15	20			25	25	25	25	25	25
66	n78		25	36	50			100	100	100	100	100	100
n71	2	25 ⁴ 8 ⁵	25 ⁴ 8 ⁵	20 ⁴ 8 ⁵	20 ⁴ 8 ⁵								

Table 7.3B.2.0.3.1-2: Uplink configuration for reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1

NOTE 1: The UL configuration applies regardless of the channel bandwidth of the UL band. UL resource blocks allocation in the table shall be further limited to that specified in Table 7.3.1-2 in TS 36.101 [4] or Table 7.3.2-3 in TS 38.101-1 [2] NOTE 2: Void.

NOTE 3: The RB allocation is at the lower edge of the lowest channel of UL band.

NOTE 4: These requirements apply when the lower edge frequency of the 5 MHz uplink channel in Band 71 is located at or below 668 MHz and the downlink channel in Band 2 is located with its upper edge at 1990 MHz.

NOTE 5: These requirements apply when the lower edge frequency of the 10 MHz, 15 MHz, or 20 MHz uplink channel in Band 71 is located at or below 668 MHz and the downlink channel in Band 2 is located with its upper edge at 1990 MHz.

7.3B.2.0.3.2 Reference sensitivity exceptions due to receiver harmonic mixing for EN-DC in NR FR1

Sensitivity degradation is allowed for a band if it is impacted by receiver harmonic mixing due to another band part of the same EN-DC configuration. Reference sensitivity exceptions for the victim band (low) are specified in Table 7.3B.2.0.3.2-1 with uplink configuration of the agressor band (high) specified in Table 7.3B.2.0.3.2-2.

		E-UTR	A or NR I	Band / C	hannel b	andwidth	of the a	ffected [DL band	/ MSD		
UL band	DL band	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)
2	n71 ⁴	26.8	23.6	21.2	15.6							
n4126	264	24.3	24.3	22.5	N/A							
41	n77 ⁷		8.3	8.0	6.9		3.9	3	2.3	1.2		0.4
41	n78 ⁷		8.3	8.0	6.9		3.9	3	2.3	1.2		0.4
n71	2 ⁵	4.6	1	0.7	0.6							
117 1	2 ⁶	1.7	1	0.7	0.6							
n77	41 ⁸	10.4	10.4	10.4	10.4							N/A
n77	28 ²	28	25	23.2	22							
n78	41 ⁸	10.4	10.4	10.4	10.4							N/A
n79	19 ²	29.5	26.5	24.7								
n79	21 ³	39.3	36.3	34.5								
n79	26 ²	27	24	22.2								
NOTE 2: NOTE 3: NOTE 4:	$f_{DL}^{LB} = \begin{bmatrix} f \\ f_{DL} \end{bmatrix}$ frequence The requence $f_{DL}^{LB} = \begin{bmatrix} f \\ f_{DL} \end{bmatrix}$ frequence The require	$\frac{2}{UL} + 0.5$ ey in the uirements $\frac{2}{UL} + 0.4$ $\frac{2}{UL} + 0.4$ ey in the vertee the the the the the the the the the).1 in MHz victim (lov s should t).1 in MHz victim (lov should be	z and F_{DL}^{L} ver) bance be verified z and F_{DL}^{L} ver) bance e verified	$B_{low} + BW$ I in MHz and for DL E $B_{low} + BW$ I in MHz affor UL EA	$7 \frac{LB}{Channel} / 2$ and the clean contract of the clean contra	$\leq f_{DL}^{LB} \leq$ nannel ba of the vict $\leq f_{DL}^{LB} \leq$ nannel ba f the aggr	$F_{DL_high}^{LB}$ - andwidth tim (lower $F_{DL_high}^{LB}$ - andwidth ressor (high	<i>BW</i> ^{<i>LB</i>} configure r) band (s <i>BW</i> ^{<i>LB</i>} <i>Channel</i> configure gher) ban	/2 with d in the lo uperscrip /2 with d in the lo of (supers	f_{DL}^{LB} carried ower band of LB) suc f_{DL}^{LB} carried ower band script HB)	d. h that d. such
NOTE 6:	frequence These re located a MHz. These re channel i upper ed	ey in the very in the very in the very equirement at or beloe equirement in Band 1 lige at 19	victim (lov nts apply w 668 Mł nts apply n71 is loc 90 MHz.	ver) banc when the Hz and th when the ated at o	I and the e lower ed e downlir e lower ed r below 6	nk channe dge freque 68 MHz a	bandwidth ency of th el in Banc ency of th and the do	n configur ne 5 MHz l 2 is loca ne 10 MH ownlink cl	ed in the uplink ch ted with i z, 15 MH hannel in	higher ba lannel in I ts upper o z, or 20 M Band 2 is	and. Band n71 edge at 1 1Hz uplinl s located	is 990 k with its
NOTE 7:	frequence The requence that $f_{\rm UL}^{\rm LB}$	$= \left\lfloor f_{DL}^{HB} \right/$ ey in the virements $= \left\lfloor 15 * f \right\rfloor$	$\begin{array}{c} 0.15 \ 0.11 \\ victim (high should be $	n MHz ar Jher) ban De verified MHz and	hd $F_{UL_low}^{IB}$ d in MHz d for UL E f $F_{UL_low}^{HB}$ +	$_{v}+BW^{IB}_{Out}$ and the c	$f_{mel}/2 \le f_{mel}$ channel bof the age $f_{UL}/2 \le f_{UL}^{HI}$	$F_{UL}^{IB} \leq F_{UL}^{IB}$ wandwidth gressor (k	$high - BW_{C}$ configure higher) ba $h - BW_{Cha}^{HI}$	$\frac{B}{Drannel}/2$ ved in the land (supe $\frac{B}{mnel}/2$ with $\frac{B}{mnel}/2$ with $\frac{B}{mnel}$	with carrie lower bar rscript HE th $f_{\rm DL}^{\rm LB}$ c	er Id. 3) such arrier

Table 7.3B.2.0.3.2-1: Reference sensitivity exceptions (MSD) due to receiver harmonic mixing for ENDC in NR FR1

UL	DL	SCS	5	10	15	20	and 25	40	50	60	80	90	100
ban	ban	of	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
d	d	UL	(L _{CRB}	(LCRB	(LCRB	(L _{CRB}	(LCRB	(LCRB	(LCRB	(LCRB	(LCRB	(LCRB	(LCRB
		band (kHz))))))))))))
2	n71	15	25	50	50	50							
n41	26	15	25	50	75								
41	n77	15		25	25	25							
41	n78	15		25	25	25							
n77	28	15	25	50	75	100							
n77	41	30	N/A	50	50	50							
n78	41	30	N/A	50	50	50							
n79	19	15	25	50	75								
n79	21	15	25	50	75								
n79	26	15	25	50	75								
NOTE NOTE NOTE	ban or th 2: The that cari 3: The allo	dwidth o ne uplink required $f_{DL}^{LB} =$ rier frequ e UL con	f the viction is a djacen ments shared for the formula $\int_{UL}^{HB} / f_{UL}^{HB}$ is the figuration the table	in (lower t channe ould be $\sqrt{0.3}$ 0.3 0.1 he victim) band fo l's transn verified fo in MHz a (lower) l regardles	r which t hission bases or UL EAI and $F_{UL_{-}}^{LB}$ band and and the	It one ind he 3rd ha andwidth RFCN of $_{low} + BW_{c}^{I}$ I the char channel l that spec	armonic is of an ag the aggre $\frac{LB}{hannel} / 2 \le$ nnel band bandwidt	s within t gressor (essor (high $f_{UL}^{LB} \le F_{UL}^{LB}$ dwidth co h of the l	he uplink higher) b gher) bar ^{LB} ^{UL_high} – B onfigured JL band.	transmis band. nd (super RW ^{LB} _{Channel} / in the hig UL resol	ssion ban script HE ² with th gher band urce bloc	3) such ne d. ks

Table 7.3B.2.0.3.2-2: Uplink configuration for reference sensitivity exceptions due to receiver
harmonic mixing for EN-DC in NR FR1

7.3B.2.0.3.3 Void

Table 7.3B.2.0.3.3-1: Void

Table 7.3B.2.0.3-2: Void

7.3B.2.0.3.4 Reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1

Sensitivity degradation is allowed for a band if it is impacted by UL of another band part of the same EN-DC configuration due to cross band isolation issues. Reference sensitivity exceptions for the victim band are specified in Table 7.3B.2.0.3.4-1 with uplink configuration of the agressor band specified in Table 7.3B.2.0.3.4-2.

		E-l	E-UTRA or NR Band / Channel bandwidth of the affected DL band /MSD													
UL band	DL band	5 MHz (dBm)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)				
n41	25	0.6	0.6	0.6	0.6											
n77	41 ¹	4.5	4.5	4.5	4.5											
n78	41 ¹	4.5	4.5	4.5	4.5											
NOTE 1:	Applicable	e only whe	en harmor	ic mixing I	MSD for th	is combina	ation is not	t applied.								

Table 7.3B.2.0.3.4-1: Reference sensitivity exceptions (MSD) due to cross band isolation for EN-DC in NR FR1

Table 7.3B.2.0.3.4-2: Uplink configuration for reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1

UL band	DL band	SCS of UL band (kHz)	5 MHz (L _{CRB})	10 MHz (L _{CRB})	15 МНz (L _{CRB})	20 МН z (L _{CRB})	25 МН z (L _{CRB})	40 MHz (L _{CRB})	50 МН z (L _{CRB})	60 МН z (L _{CRB})	80 МН z (L _{CRB})	90 МН z (L _{CRB})	100 МНz (L _{CRB})
n41	25	30	160	160	160	160							
n77	41	30	270	270	270	270							
n78	41	30	270	270	270	270							
NOTE										and. UL r I01 or Ta			

7.3B.2.0.3.5 MSD for intermodulation interference due to dual uplink operation for EN-DC in NR FR1

For EN-DC configurations in NR FR1 the UE may indicate capability of not supporting simultaneous dual uplink operation due to possible intermodulation interference overlapping in frequency to its own primary downlink channel bandwidth if

- the intermodulation order is 2;
- the intermodulation order is 3 when both operating bands are between 450 MHz 960 MHz or between 1427 MHz – 2690 MHz

In case for the EN-DC in NR FR1 configurations the intermodulation products caused by dual uplink operation do not interfere with the own primary downlink channel bandwidth as defined in Annex-I the UE is mandated to operate in dual and triple uplink mode.

For EN-DC in NR FR1 with uplink and downlink assigned to E-UTRA and NR FR1 bands given in Table 7.3B.2.0.3.5.1-1, Table 7.3B.2.0.3.5.2-1 and Table 7.3B.2.0.3.5.3-1 the reference sensitivity is defined only for the specific uplink and downlink test points specified in Table 7.3B.2.0.3.5.1-1, Table 7.3B.2.0.3.5.2-1 and Table 7.3B.2.0.3.5.3-1. For these test points the reference sensitivity levels specified in clause 7.3.1 in [4] and 7.3.2.1 of [2] for the corresponding channel bandwidths or in clause 7.3.1 of [4] are relaxed by the amount of the parameter MSD given in Table 7.3B.2.0.3.5.1-1, Table 7.3B.2.0.3.5.2-1 and Table 7.3B.2.0.3.5.3-1.

The throughput on each of the CGs shall be \geq 95% of the maximum throughput of the respective reference measurement channels as specified in ... with parameters specified in Table 7.3B.2.0.3.5-1 with dual UL transmissions overlapping in time unless otherwise stated.

For EN-DC configurations in Table 7.3B.2.0.3.5-1 with UL/DL channel assignments such that Single UL is allowed, the MSD requirement is verified with non-simultaneous uplink transmissions on the two CGs for UEs only indicating support of Single UL.

7.3B.2.0.3.5.1 MSD test points for intermodulation interference due to dual uplink operation for EN-DC in NR FR1 involving two bands

Table 7.3B.2.0.3.5.1-1: MSD test points for PCell due to dual uplink operation for EN-DC in NR FR1
(two bands)

	NR or E-	JTRA Bar	nd / Chan	nel ban	dwidth / N	RB / MSD	
EN-DC Configuration	EUTRA or NR band	UL Fc (MHz)	UL/DL BW (MHz)	UL L _{CRB}	DL Fc (MHz)	MSD (dB)	IMD order
DC_1A_n77A	1	1950	5	25	2140	29.8 32.5 ⁴	IMD2 ³
	n77	4090	10	50	4090	32.5 ⁻ N/A	N/A
DC_1A_n77A DC_1A_n78A,	1	1950	5	25	2140	8.0 10.7 ⁴	IMD4 ³
DC_1A_SUL_n78A- n84A	n77	3710	10	50	3710	N/A	N/A
DC_1A_n78A, DC_1A_SUL_n78A-	1	1950	5	25	2140	8.0 10.7 ⁴	IMD4 ³
n84A	n78	3710	10	25	3710	N/A	11400
DC_2A_n66A	2 n66	1855	5	25	1935	20 N/A	IMD3
	n66 2	1775 1883.3	5 5	25 25	2175 1963.3	N/A N/A	N/A N/A
DC_2A_n66A	 	1750	5	25 25	2150	4	IMD5
	2	1855	5	25 25	1940	26 28.7 ⁴	IMD2 ³
DC_2A_n78A	n78	3795	10	50	3795	N/A	N/A
DC_2A_n78A	2	1885	5	25	1955 -	8.0 10.7 ⁴	IMD4 ³
	n78	3700	10	50	3700	N/A	N/A
DC_3A_n7A	3	1730	5	25	1825	N/A	N/A
	n7	2535	10	50	2655	10.2 ⁵	IMD4
DC_3A_n77A DC_3A_n78A	3	1740	5	25	1835	26 28.7 ⁴	IMD2 ³
DC_3A-SUL_n78A- n80A, DC_3C_n78A	n77, n78	3575	10	50	3575	N/A	N/A
DC_3A_n77A DC_3A_n78A	3	1765	5	25	1860	8.0 10.7 ⁴	IMD4 ³
DC_3A-SUL_n78A- n80A, DC_3C_n78A	n77, n78	3435	10	50	3435	N/A	N/A
	3	1712.5	5	25	1807.5	TBD⁵	IMD2
DC_3A_n78A	n78	3515	10	50	3515	N/A	N/A
DC_3A_II/0A	3	1762.5	5	25	1857.5	N/A	N/A
	n78	3465	10	50	3465	N/A	N/A
DC_3A-SUL_n78A-	3	1740	5	25	1835	26 28.7 ⁴	IMD2 ³
n80A	n78	3575	10	25	3575	N/A	N/A
DC_3A_SUL_n78A-	3	1765	5	25	1860	8.0 10.7 ⁴	IMD4 ³
n80A	n78	3435	10	25	3435	N/A	N/A
DO 00 704	3	1740	5	25	1835	26 28.7 ⁵	IMD2 ⁴
DC_3C_n78A	n78	3575	10	25	3575	N/A	N/A
	n78	3710	10	25	3710	N/A	N/A
DC_3C_n78A	3	1765	5	25	1860	8.0 10.7 ⁵	IMD4 ⁴
	n78	3435	10	25	3435	N/A	N/A
DC_5A_n66A	5	838	5	25	883	30	IMD2 ³
	n66	1721	5	25	2121	N/A	N/A
DC_5A_n78A	5	844	5	25	889	8.3	IMD4
	n78	3421	10	50	3421	N/A	N/A
DC_8A_n77A DC_8A_n78A	8 n77,	897.5	5	25	942.5	8.3	IMD4 H4
DC_8A-SUL_n78A- n81A	n78	3635	10	50	3635	N/A	
	8	897.5	5	25	942.5	4.8	IMD5

DC_8A_n79A DC_8A-SUL_n79A- n81A	n79	4532.5	40	216	4532.5	N/A	N/A
_	20	849.5	5	25	808.5	21	IMD3
DC_20A_n8A	n8	892.5	5	25	937.5	21	IMD3
DC 20A n77A	20	850	5	25	809	11	IMD4
DC_20A_n78A,	n77	3359	10	50	3359	N/A	N/A
DC_20A-							
SUL_n78A-n82A							
DC_20A_n77A,	20	840	5	25	799	6.5	IMD5 ⁴
DC_20A_1177A,	n77	4159	10	50	4159	N/A	N/A
DC 21A n79A	21	1457.5	5	25	1505.5	18.4	IMD3
DC_ZTA_II/9A	n79	4420.5	40	216	4420.5	N/A	N/A
DC 26A n41A	26	839	5	25	884	15.6	IMD3
DC_20A_1141A	n41	2562	10	50	2562	N/A	N/A
DC_28A_n51A	28	742.3	5	25	797.3	5	IMD 4
DC_20A_1151A	n51	1429.5	5	25	1429.5	N/A	N/A
DC 26A n77A	26	836.5	5	25	881.5	11.1	IMD4
DC_26A_n78A	n77, n78	3391	10	50	3391	N/A	N/A
CA_28A_n77A,	28	705.5	5	25	760.5	5.5	IMD5
CA_28A_n78A, DC_28A- SUL_n78A-n83A	n77, n78	3582.5	10	50	3582.5	N/A	N/A
DC 66A n5A	n5	838	5	25	883	30	IMD2 ³
DC_00A_1ISA	66	1721	5	25	2121	N/A	N/A
DC_66A_n71A	66	1750	5	25	2150	5	IMD4
	n71	675	5	25	629	N/A	N/A
6.2.5A.		ers shall be	set min(·	+20 dBm	I, PCMAX_L,c) as defined in	subclause
NOTE 2: RB _{START} =							
NOTE 3: This band i							
			4 antenn	a ports i	s supporte	d in the band	with carrier
aggregatio NOTE 5: Void.	n configure	ed.					

7.3B.2.0.3.5.2 MSD test points for intermodulation interference due to dual uplink operation for EN-DC in NR FR1 involving three bands

Table 7.3B.2.0.3.5.2-0: MSD test points for Pcell due to dual uplink operation for EN-DC in NR FR1 (three bands)

EN-DC Configuration	EUTRA/NR band	UL Fc (MHz)	UL/DL BW (MHz)	UL L _{CRB}	DL F _c (MHz)	MSD (dB)	IMD order
	66	1750	5	25	2150	5	IMD4
DC_66A_(n)71AA	n71	678	10	10 (RB _{start} =0)	632	N/A	

Table 7.3B.2.0.3.5.2-1: MSD test points for Scell due to dual uplink operation for EN-DC in NR FR1
(three bands)

			UL/DL		h / NRB / MSD	1		IMD
EN-DC Configuration	EUTRA/NR band	UL Fc (MHz)	BW (MHz)	UL Lcrb	DL Fc (MHz)	MSD (dB)	Duplex mode	orde
	1	1975	5	25	2165	N/A		N/A
DC_1A-3A_n28A	n28	710.5	5	25	765.5	N/A		N/A
	3	1723.5	5	25	1818.5	4.0		IMD5
	3	1780	5	25	1875	N/A		N/A
DC_1A-3A_n28A	n28	710.5	5	25	765.5	N/A		N/A
	1	1949	5	25	2139	11.0		IMD4
	1	1935	5	25	2125	N/A		N/A
DC_1A-7A_n28A	n28	718	5	25	773	N/A		N/A
	7	2533	10	50	2653	30.0		IMD2
	1	1950	5	25	2140	N/A		N/A
	3	1712.5	5	25	1807.5	31.5		IMD2
	n77	3757.5	10	50	3757.5	N/A		N/A
	1	1950	5	25	2140	N/A		N/A
DC_1A-3A_n77A	3	1775	5	25	1870	8.5		IMD4
	n77	3980	10	50	3980	N/A		N/A
	1	1950	5	25	2140	31.0		IMD2
	3	1775	5	25	1870	N/A		N/A
	n77	3915	10	50	3915	N/A		N/A
	1	1950	5	25	2140	N/A		N/A
		1710 5	_	~-	1007 5			IMD2
	3	1712.5	5	25	1807.5	31.2		f _{B78} -
								f _{B1}
	n78	3757.5	10	50	3757.5	N/A		N/A
	1	1935	5	25	2125	2.8		IMD8 2*f _{B7} 3*f _{B3}
	3	1775	5	25	1870	N/A		N/A
	n78	3725	10	50	3725	N/A		N/A
	1	1932	5	25	2122	18.1		IMD3 f _{B78} -
DC_1A-3A_n78A	5	000	-	25	074	N1/A		2*f _{B5}
DC_1A-3C_n78A	5	829	5	25	874	N/A		N/A
	n78	3780	10	50	3780	N/A		N/A
	1	1975	5	25	2165	N/A		N/A
	5	840	5	25	885	3.1		IMD 2*f _{B7} 3*f _{B1}
	n78	3405	10	50	3405	N/A		N/A
	1	1977.5	5	25	2167.5	N/A		N/A
	7	2507.5	5	25	2627.5	9.1		IMD4 f _{В78} З*f _{В1}
	n78	3305	10	50	3305	N/A		N/A
	1	1950	5	25	2140	8.7		IMD4 2*f _{B7}
	_	0=1-		= 0		N1/2		2*f _{B7}
	7	2510	10	50	2630	N/A		N/A
	n78	3310	10	50	3310	N/A		N/A
	1	1950	5	25	2140	3.6		IMD
DC_1A-3A_n79A	3	1750	5	25	1845	N/A		N/A
	n79	4860	40	216	4860	N/A		N/A
	1	1930	5	25	2120	16.4		IMD:
DC_1A-18A_n77A	18	825	5	25	870	N/A		N/A
	n77	3770	10	50	3770	N/A		N/A
	1	1930	5	25	2120	16.4		IMD
DC_1A-18A_n78A	18	819	5	25	864	N/A		N/A
—	n78	3758	10	50	3758	N/A		N/A
	1	1935	5	25	2125	N/A		N/A
DC_1A-18A_n79A	18	822.5	5	25	867.5	18.3		IMD3

EN-DC Configuration	EUTRA/NR band	UL Fc (MHz)	UL/DL BW (MHz)	UL L _{CRB}	h / NRB / MSD DL Fc (MHz)	MSD (dB)	Duplex mode	IMD order
	n79	4782.5	40	216	4782.5	N/A		N/A
	1	1930	5	25	2120	N/A		N/A
	18	820	5	25	865	8.9		IMD4
	n79	4925	40	216	4925	N/A		N/A
	1	1935	5	25	2125	8.1		IMD4
	18	822.5	5	25	867.5	N/A		N/A
	n79	4782.5	40	216	4782.5	N/A		N/A
DO 44 404	1	1940	5	25	2130	17.8		IMD3
DC_1A-19A_n77A	19	832.5	5	25	877.5	N/A		N/A
DC_1A-19A_n78A	n77, n78	3795	10	50	3795	N/A		N/A
	1	1950	5	25	2140	N/A		N/A
	19	837.5	5	25	882.5	18.3		IMD3
	n79	4782.5	40	216	4782.5	N/A		N/A
DC_1A-19A_n79A	1	1950	5	25	2140	8.1		IMD4
	19	837.5	5	25	882.5	N/A		N/A
	n79	4652.5	40	216	4652.5	N/A		N/A
	1	1930	5	25	2120	20.3		IMD3
DC_1A-20A_n78A	20	835	5	25	794	N/A		N/A
50_11 20A_1110A	n78	3790	10	50	3790	N/A		N/A
	1/0	1950	5	25	2140	N/A		N/A
DC_1A-20A_n78A	20	851	5	25	810	3.0		IMD5
DC_1A-20A_11/0A	n78	3330	10	50	3330	N/A		N/A
	1/0	1964.6	5	25	2154.6	30.6		IMD2
	21		5 5	25		30.6 N/A	-	
		1450.4	-		1498.4	-		N/A
DC_1A-21A_n77A	n77, n78	3605	10	50	3605	N/A		N/A
DC_1A-21A_n78A	1	1950	5	25	2140	N/A	-	N/A
	21	1452	5	25	1500	2.9		IMD5
	n77, n78	3675	10	50	3675	N/A		N/A
	1	1960	5	25	2150	15.8		IMD3
DC_1A-28A_n77A	28	740	5	25	795	N/A		N/A
	n77	3630	10	50	3630	N/A		N/A
	1	1960	5	25	2150	N/A		N/A
DC_1A-28A_n77A	28	725	5	25	780	4.3		IMD5
	n77	3330	10	50	3330	N/A		N/A
	1	1960	5	25	2150	15.7		IMD3
DC_1A-28A_n78A	28	740	5	25	795	N/A		N/A
	n78	3630	10	50	3630	N/A		N/A
	1	1970	5	25	2160	N/A		N/A
DC_1A-28A_n78A	28	739	5	25	794	4.2		IMD5
	n78	3352	10	50	3352	N/A		N/A
	1	1950	5	25	2140	N/A		N/A
	n28	733	5	25	788	N/A		N/A
DC_1A_n28A-n78A	n78	3416	10	50	3416	15.7		IMD3
	1	1950	5	25	2140	N/A		N/A
	n78	3320	10	50	3320	N/A		N/A
	n28	735	5	25	790	3.3		IMD5
	1	1930	5	25	2120	N/A		N/A
	28	733	5	25	788	15.2		IMD3
	n79	4648	40	216	4648	N/A		N/A
	1	1925	5	25	2115	N/A		N/A
	28	740	5	25	795	10.0		IMD4
	n79	4980	40	216	4980	N/A	1	N/A
DC_1A-28A_n79A	1	1977.5	5	25	2167.5	1.2		IMD4
	28	745.5	5	25	800.5	N/A		N/A
	n79	4420	40	216	4420	N/A		N/A
	1	1935	5	210	2125	4.5		IMD5
	28	718	5	25	773	4.5 N/A		N/A
	20 n79	4807	40	25	4807	N/A		N/A
	1	1970	40 5	<u>216</u> 25	2160	N/A		
						IN/A		N/A
DC_1A-41A_n77A	n77 41	<u>3400</u> 2510	10 5	<u>50</u> 25	3400 2510	11.0	ł	IMD4

NR or E-UTRA Band / Channel bandwidth / NRB / MSD									
EN-DC Configuration	EUTRA/NR band	UL Fc (MHz)	BW (MHz)	UL Lcrb	DL Fc (MHz)	MSD (dB)	Duplex mode	orde	
	1	1930	5	25	2120	N/A			
	n77	4150	10	50	4150			N/A	
	41	2510	5	25	2510	3.6		IMD	
	1	1975	5	25	2165	N/A		N/A	
DC_1A-41A_n78A	41		5	25	2515	12		IMD4	
	n78	3410	10	50	3410	N/A		N/A	
	1	1970	5	25	2160	N/A			
	n79	4500	40	216	4500			N/A	
	41	2530	5	25	2530	29.4		IMD	
DC_1A-41A_n79A	1	1922.5	5	25	2112.5	N/A		N/A	
	n79	4980	40	216	4980				
	41	2687.5	5	25	2687.5	0.0		IMD	
	1	1977.5	5	25	2167.5	N/A		N/A	
	n79	4420	40	216	4420				
	42	3490	5	25	3490	4.8		IMD	
	42	3402.5	5	25	3402.5	N/A		N/A	
DC_1A-42A_n79A	n79	4640	40	216	4640	1 1/7 1		1 1/7 1	
DO_1A-42A_11/3A	1	1975	5	210	2165	15.5		IMD3	
	42	3450	5	25	3450	N/A		N/A	
	n79	4520	40	216	4520	IN/A		IN/A	
		1950	40 5	210		0.2			
	1		5 5	25	2140	9.3 N/A		IMD4	
	1	1950			2140			N/A	
	n78	3410	10	50	3410	N/A		N/A	
DC_1A_n78A-n79A	n79	4870	40	216	4870	15.9		IMD:	
	1	1950	5	25	2140	N/A		N/A	
	n79	4670	40	216	4670	N/A		N/A	
	n78	3490	10	50	3490	4.6		IMD	
	3	1712.5	5	25	1807.5	N/A		N/A	
	n28	743	5	25	798	N/A		N/A	
DC_3A-7A_n28A	7	2562	10	50	2682	16.9		IMD	
20_0.0.0.0	7	2543	10	50	2663	N/A		N/A	
	n28	710.5	5	25	765.5	N/A		N/A	
	3	1737.5	5	25	1832.5	26.0		IMD2	
								IMD:	
	3	1725	5	25	1820	17.6		f _{B78}	
								2*f _{B7}	
	7	2565	5	25	2685	N/A		N/A	
DC_3C-7C_n78A	n78	3310	10	50	3310	N/A		N/A	
D0_30-70_1170A								IMD4	
	3	1725	5	25	1820	8.6		2*f _{B7}	
								2*f _{B7}	
	7	2565	5	25	2685	N/A		N/A	
	n78	3475	10	50	3475	N/A		N/A	
DC_3A-20A_n28A	20	852	5	25	811	N/A		N/A	
	n28	738	5	25	793	N/A		N/A	
	3	1723	5	25	1818	9.4		IMD	
	3	1712.5	5	25	1807.5	N/A		N/A	
	28	715	5	25	770	15.3		IMD	
	n77	4195	10	50	4195	N/A		N/A	
	3	1755	5	25	1850	17.0		IMD	
DC_3A-28A_n77A	28	735	5	25	790	N/A		N/A	
_	n77	3320	10	50	3320	N/A		N/A	
	3	1775	5	25	1870	17.3		IMD	
	28	740	5	25	760	N/A		N/A	
	n78	3350	10	25	3350	N/A		N/A	
	3	1770	5	25	1865	N/A		N/A	
	28	725	5	25	780	10.3		IMD	
	n79	4530	40	216	4530	N/A		N/A	
DC_3A-28A_n79A	3	1775	40 5	210	1870	5.7		IMD	
	28	725	5	25	780	N/A		N/A	
	n79	4770	40	216	4770	N/A		N/A	

			UL/DL		h / NRB / MSD			IMD
EN-DC Configuration	EUTRA/NR band	UL F₀ (MHz)	BW (MHz)	UL Lcrb	DL F₀ (MHz)	MSD (dB)	Duplex mode	order
	3	1750	5	25	1845	N/A		N/A
DC_3A_n28A-n78A	n28	743	5	25	798	N/A		N/A
	n78	3764	10	50	3764	4.5		IMD5
	3	1770	5	25	1865	N/A		N/A
	n78	3340	10	50	3340	N/A		N/A
DC_3A_n78A-n79A	n79	4910	40	216	4910	16.3		IMD3
	3	1770	5	25	1865	N/A		N/A
	n79	4510	40	216	4510	N/A		N/A
	n78	3710	10	50	3710	4.2		IMD5
DC_3A-SUL_n78A-	3	1775	5	25	1870	4		IMD4
n82A	n82	840	5	25		N/A		N/A
								IMD3
	3	1725	5	25	1820	17.6		f _{B78} -
DC_3A-7A_n78A								2*f _{B7}
DC_3C-7A_n78A	7	2565	5	25	2685	N/A		N/A
	n78	3310	10	50	3310	N/A		N/A
								IMD4
	3	1725	5	25	1820	8.6		2*f _{B78}
DC_3A-7A_n78A	-			-				2*f _{B7}
DC_3C-7A_n78A	7	2565	5	25	2685	N/A		N/A
	n78	3475	10	50	3475	N/A		N/A
	3	1782.5	5	25	1877.5	0.2		IMD4
DC_3A-19A_n79A	19	842.5	5	25	887.5	0.2 N/A		N/A
DO_3A-13A_1113A		4420	40	216	4420	N/A		N/A
	n79	4420	40	216	4420	IN/A		
	2	4705	-	05	1000	47.0		IMD3
DC_3A-20A_n78A	3	1725	5	25	1820	17.3		f _{B78} -
DC_3C-20A_n78A			_					2*f _{B20}
20_00 20/(_110)(20	845	5	25	804	N/A		N/A
	n78	3510	10	50	3510	N/A		N/A
DC_3A-21A_n77A DC_3A-21A_n78A	3	1767.5	5	25	1862.5	N/A		N/A
	21	1459.5	5	25	1507.5	8.8		IMD4
	n77, n78	3795	10	50	3795	N/A		N/A
	3	1771.6	5	25	1866.6	3.4		IMD5
DC_3A-21A_n77A	21	1450.4	5	25	1498.4	N/A		N/A
	n77	3935	10	50	3935	N/A		N/A
	3	1774.2	5	25	1869.2	17.8		IMD3
	21	1450.4	5	25	1498.4	N/A		N/A
	n79	4770	40	216	4770	N/A		N/A
	5	844	5	25	889	N/A		N/A
	U	011	5	20	000	1 1/7 1		IMD2
	7	2525	5	25	2645	30.1		f _{B78}
	'	2020	5	20	2045	50.1		f _{b5}
	n78	3489	10	50	3489	N/A		N/A
	1170	3409	10	50	3409			IMD2
DC_3A-21A_n79A	F	024	F	25	970	20.2		
	5	834	5	25	879	30.2		f _{B78} -
	7	0550	-	05	0070	N1/A		f _{B7}
	7	2550	5	25	2670	N/A		N/A
	n78	3429	10	50	3429	N/A		N/A
	-		-	05	075			IMD5
	5	830	5	25	875	3.3		2*f _{B78}
	<u>⊢_</u>	0505	<u> </u>	~=	00.45	N1/2		3f _{B7}
	7	2525	5	25	2645	N/A		N/A
	n78	3350	10	50	3350	N/A		N/A
	5	860	5	25	885	30.2		IMD2
	41	2615	5	25	2615	N/A		N/A
	n78	3500	10	50	3500	N/A		N/A
DC_5A_41A_n78A	5	856.5	5	25	881.5	3.1		IMD
	41	2620.5	5	25	2620.5	N/A		N/A
	n78	3490	10	50	3490	N/A	1	N/A
	20	852	5	25	811	N/A		N/A
DC_7A-20A_n28A	n28	738	5	25	793	N/A		N/A
	1140	100		20	100		1	1 11/71

NR or E-UTRA Band / Channel bandwidth / NRB / MSD									
EN-DC Configuration	EUTRA/NR band	UL Fc (MHz)	UL/DL BW (MHz)	UL Lcrb	DL Fc (MHz)	MSD (dB)	Duplex mode	IMD order	
	7	2560	5	25	2680	N/A		N/A	
DC_7A-20A_n78A	20	851	5	25	810	30.5		IMD2 f _{B78} - f _{B7}	
	n78	3370	10	50	3370	N/A		N/A	
	7	2560	5	25	2680	N/A		N/A	
DC_7A-20A_n7 DC_20A_n28A-n78A 8A	20	851	5	25	810	3.0		IMD5 2*f _{B78} - 3*f _{B7}	
0/1	n78	3435	10	50	3435	N/A		N/A	
DC_7A-20A_n78A	7	2555	5	25	2675	30.8		IMD2 f _{B78} - f _{B20}	
	20	845	5	25	804	N/A		N/A	
	n78	3520	10	50	3520	N/A		N/A	
	7	2570	5	25	2670	N/A		N/A	
	28	720	5	25	780	8.3		IMD2	
	n78	3350	10	50	3421	N/A		N/A	
	7	2570	5	25	2670	N/A		N/A	
DC_7A-28A_n78A	28	720	5	25	790	3.0		IMD5	
	n78	3460	10	50	3421	N/A		N/A	
	7	2570	5	25	2650	30.5		IMD2	
	28	740	5	25	768	N/A		N/A	
	n78	3390	10	50	3421	N/A		N/A	
	7	2565	5	25	2685	N/A		N/A	
	n28	745	5	25	800	N/A		N/A	
DC_7A_n28A-n78A	n78	3310	10	50	3310	29.7		IMD2	
	7 n78	2565 3365	5 10	<u>25</u> 50	2685 3365	N/A N/A		N/A N/A	
	n28	745	5	25	800	28.8		IMD2	
	7	N/A	N/A	N/A	N/A	N/A		N/A	
DC_7A-46A_n78A ⁶	46	N/A	N/A	N/A	N/A	N/A		IMD2, IMD5	
	n78	N/A	N/A	N/A	N/A	N/A		N/A	
	18	820	5	25	865	N/A		N/A	
DC_18A-28A_n77A	28	723	5	25	778	4.4		IMD5	
	n77	4058	10	50	4058	N/A		N/A	
	18	820	5	25	865	3.9		IMD5	
DC_18A-28A_n77A	28	723	5	25	778	N/A		N/A	
	n77	3757	10	50	3757	N/A		N/A	
	18	819	5	25	864	3.8		IMD5	
DC_18A-28A_n78A	28	723	5 10	25	778	N/A N/A		N/A	
	n78 19	3756 837.5	5	50 25	3756 882.5	18.7		N/A IMD3	
DC_19A-21A_n77A	21	1450.4	5	25	1498.4	N/A		N/A	
DC_19A-21A_n78A	n77, n78	3783.3	10	50	3783.3	N/A		N/A	
	19	837.5	5	25	882.5	N/A		N/A	
DC_19A-21A_n77A	21	1454.5	5	25	1502.5	9.0	-	IMD4	
00_10/(21/(_1///	n77	4015	10	50	4015	N/A		N/A	
	19	837.5	5	25	882.2	N/A		N/A	
DC_19A-21A_n79A	21	1452	5	25	1500	3.8	1	IMD5	
	n79	4850	40	216	4850	N/A		N/A	
	21	1452	5	25	1500	N/A		N/A	
	28	730.5	5	25	785.5	16.9		IMD3	
	n77	3689.5	10	50	3689.5	N/A		N/A	
DC_21A-28A_n77A	21	1450.5	5	25	1498.5	9.9		IMD4	
	28	730.5	5	25	785.5	N/A		N/A	
	n77	3690	10	50	3690	N/A		N/A	
	21	1450	5	25	1498	5.2		IMD5	
DC_21A-28A_n79A	28	730.5	5	25	785.5	N/A		N/A	
	n79	4420	40	216	4420	N/A		N/A	
DC_28A-42A_79A	28	730	5	25	785	N/A	1	N/A	

NR or E-UTRA Band / Channel bandwidth / NRB / MSD										
EN-DC Configuration	EUTRA/NR band	UL Fc (MHz)	UL/DL BW (MHz)	UL Lcrb	DL Fc (MHz)	MSD (dB)	Duplex mode	IMD order		
	42	3420	5	25	3420	15.3		IMD3		
	n79	4880	40	216	4880	N/A		N/A		
	28	745	5	25	800	16.2		IMD2		
	42	3597.5	5	25	3597.5	N/A		N/A		
	n79	4420	40	216	4420	N/A		N/A		
	19	835	5	25	880	N/A		N/A		
	n78	3680	10	50	3680	N/A		N/A		
DC_19A_n78A-n79A	n79	4515	40	216	4515	29.3		IMD2		
DC_19A_11/0A-11/9A	19	835	5	25	880	N/A		N/A		
	n79	4550	40	216	4550	N/A		N/A		
	n78	3715	10	50	3715	28.8		IMD2		
	20	857	5	25	816	N/A		N/A		
	n28, n83	743	5	25	798	N/A		N/A		
DC_20A_n28A-n78A	n78	3314	10	50	3314	8.7		IMD4		
DC_20A_SUL_n78A- n83A	20	837	5	25	796	N/A		N/A		
HOUR	n78	3310	10	50	3310	N/A		N/A		
	n28	744	5	25	799	9.4		IMD4		
	21	1453	5	25	1501	N/A		N/A		
	n78	3420	10	50	3420	N/A		N/A		
DC 214 p704 p704	n79	4873	40	216	4873	30.1		IMD2		
DC_21A_n78A-n79A	21	1453	5	25	1501	N/A		N/A		
	n79	4940	40	216	4940	N/A		N/A		
	n78	3487	10	50	3487	29.8		IMD2		

7.3B.2.0.3.5.3 MSD exceptions due to Tx leakage issue

Table 7.3B.2.0.3.5.3-1: Void

The normative reference for this requirement is TS 38.101-3 [4] subclause 7.3B.2.

7.3B.2.1 Reference sensitivity for Intra-band Contiguous EN-DC (2 CCs)

7.3B.2.1.1 Test purpose

To verify the ability of UE that support intra-band contiguous EN-DC configurations to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise. A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area.

7.3B.2.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward supporting intra-band EN-DC.

7.3B.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.3B.2.0.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.3B.2.1.4 Test description

7.3B.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations for NR consist of environmental conditions test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 5.3.5-1 of TS 38.521-1[8]. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 of TS 38.521-1[8]. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A2.2 of TS 38.521-1[8]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1[8].

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.4.2.1-1 of TS 36.521-1[10]. All of these configurations shall be tested with applicable test parameters for each channel bandwidth are shown in tables 7.3.4.1-1 and 7.3.4.1-2 of TS36.521-1[10]. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 of TS36.521-1[10]. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS36.521-1[10].

The channel bandwidths for E-UTRA and NR component carriers shall follow the values specified in Table 5.3B.1.2-1 for a given EN-DC combination.

			Ini	itial	Condition	s				
Test Environr	ment as spe	ecified in TS 38			Normal, TL/VL, TL/VH, TH/VL, TH/VH					
[5] subclause										
NR Test Freq	-80	Low, mid and high range								
1 [5] subclaus		es as specified	l in TS							
36.508-1 [11]										
		andwidths as	specifie	ed	5 MHz					
in TS 36.508										
		vidths as speci	fied in	TS	5 MHz, 1	0 MH	Hz, 15 MHz, 2	20 MHz		
38.508-1 [5] s		ed in Table 5.3	5-1 in		Lowest s	unno	orted SCS			
TS 38.521-1			.0 1 111		LOWCOUS	uppe				
L										
			r/e-u1	FRA	Test Para	met				
		onfiguration	_				Uplink Co	nfiguration		
NR Modulation	NR RB allocation		E-UT RB alloca	3	NR Modulati	on	NR RB allocation	E-UTRA Modulation	E-UTRA RB allocation	
CP-OFDM QPSK	Full RB (NOTE 1)	QPSK	Full F		DFT-s- OFDM OPSK 7.3B.2.1.4		Specified in Table 7.3B.2.1.4.1- 2	QPSK	Specified in Table 7.3B.2.1.4.1- 2	
	L 1		Test P	oint	configura	ation	IS	L		
Test ID	E-UTRA/N band	NR Fc (UI (MHz N∪∟	:)		nnel BW MHz)		UL Ilocation (LCRB)	Fc (DL) (MHz) N _{DL}	Duplex mode	
1	71	665.5M N∪∟= 133			5		5@19	619.5 MHz N _{DL} = 68611		
I	n71	675.5 N∪∟= 135			15		15@0	629.5 N _{DL} = 125900		
2	71	670.5 N∪∟= 133	3197		15		15@59	624.5 N _{DL} = 68661		
-	n71	680.5 N _{UL} = 136	5100		5		5@0	634.5 N _{DL} = 126900	FDD	
3	71	668 N _{UL} = 133	3172		10		10@39	622 N _{DL} = 68636		
-	n71 678 NuL= 135600			10		10@0	632 N _{DL} = 126400			
4	71	NuL= 133	668 N∪∟= 133172		10		10@39	622 N _{DL} = 68636	l	
n71 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table										
 7.3.2.4.1-2 of TS 38.521-1[8]. NOTE 2: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.3B.1.2-1. 										

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. The parameter settings for E-URA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1 of TS38.521-1 [8].
- 5. E-UTRA downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0 of TS36.521-1[10].

- 6. The UL Reference Measurement channels for NR are set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 of TS38.521-1[8].
- 7 The UL Reference Measurement channels for E-UTRA are set according to Tables7.3.4.1-1 and 7.3.4.1-2 of TS36.521-1[10].
- 8. NR propagation conditions are set according to Annex B.0 of TS38.521-1[8].
- 9. E-UTRA propagation conditions are set according to B.0 of TS36.521-1[10].
- 10. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters *Connectivity* EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.3B.2.1.4.3.
- 11. The UL Reference Measurement channels configurations for exceptional cases are set according to Table 7.3B.2.1.4.1-1.

7.3B.2.1.4.2 Test procedure

- 1. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.3B.2.3.4.1-1 on both EN-DC component carriers. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.3.1.4.1-1 of TS36.521-1[10]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in TS 38.521-1 [TBD], Table 7.3.3-1 for NR band and TS 36.521-1[10] Table 7.3.3-1 for E-UTRA band. Send continuously uplink power control "up" commands in the uplink scheduling information to both carriers to ensure the UE transmits PUMAX level for at least the duration of the Throughput measurement.
- 4. Measure the average throughput of both NR and E-UTRA for a duration sufficient to achieve statistical significance according to Annex H.2 of TS 38.521-1[8] for NR band, and Annex G.2 of TS36.521-1[10] for EUTRA band.

7.3B.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 for NR band. Message contents are according to TS 36.508 [7] subclause 4.6 for EUTRA band.

7.3B.2.1.5 Test requirement

For intra-band contiguous EN-DC configurations, The throughput of each CG shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with reference receive power level specified in Tables 7.3.2.5-1 and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3 of TS 38.521-1 for NR band , and reference measurement channels as specified in Annex A.3.2 of TS 36.521-1 [10] with parameters specified in Tables 7.3.5-1 and Table 7.3.5-2 of TS 36.521-1 [10] for E-UTRA band.

The maximum allowed degradation MSD of the reference sensitivity level, as specified for the applicable carrier bandwidths in accordance with [5] for the E-UTRA CG and [2] for the NR CG, is specified in Table 7.3B.2.1.5-1.

EN-DC	E-UTRA/ NR band	SCS (kHz)	Channel BW (MHz)	Ref sensitivity (dBm)	Note	Duplex mode			
	71	N/A	5	-97.2					
	n71	15	5	-97.2 +TT					
	71	N/A	5	-97.2					
	n71	15	10	-94.0 +TT					
	B1	N/A	5	-97.2					
	n71	15	15	-91.6 +TT					
	71	N/A	5	-97.2					
	n71	15	20	-86.0 +TT		FDD			
DC_(n)71AA	71	N/A	5	-96.5	Note 1				
	n71	15	15	-89.8 +TT	Note 1				
	71	N/A	15	-91.3	Note 2				
	n71	15	5	-95.6 +TT	Note 2				
	71	N/A	10	-93.5	Note 3				
	n71	15	10	-92.3 +TT	Note 5				
	71	N/A	10	-76.3	Note 4				
	n71	15	10	-64.6 +TT					
	NOTE 1: For test configuration specified by Table 7.3B.2.1.4.1-2 Test ID 1								
NOTE 2: For test configuration specified by Table 7.3B.2.1.4.1-2 Test ID 2									
NOTE 3: For tes									
NOTE 4: For tes	st configurati	on specif	ied by Table	7.3B.2.1.4.1-2	2 Test ID 4				

Table 7.3B.2.1.5-1: Reference sensitivity for intra-band DC_(n)71AA

Table 7.3B.2.1.5-2: Test Tolerance (TT) for NR RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz
0.7 dB	1.0 dB

7.3B.2.2 Reference sensitivity for Intra-band non-contiguous EN-DC (2 CCs)

7.3B.2.2.1 Test purpose

Same as in clause 7.3B.2.1.1.

7.3B.2.2.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

7.3B.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.3B.2.0

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.3B.2.2.4 Test Description

7.3B.2.2.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations for E-UTRA consist of the test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1, with the exception that the E-UTRA channel bandwidth is the lowest supported value in Table 5.3B.1.3-1 for the EN-DC non-contiguous configuration under test.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2B.2.1-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing are shown in Table 7.3B.2.2.4.1-1 for NR band. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 Annex C2.

			Initial Conditions				
Test Enviro	onment as specified se 4.1	d in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
Test Frequencies as specified in TS 38.508-1 [5] subclause4.3.1			Low range, High range				
Test Chanr	nel Bandwidths as	specified in TS	Lowest, Highest				
38.508-1 [5	j subclause 4.3.1		(NOTE 4)				
Test SCS a	as specified in Tab	le 5.3.5-1	Lowest supported SCS per test channe	IBW			
Test Parameters							
Test ID	Downlink	Configuration	Uplink Configuration				
	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM QPSK	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)			
NOTE 1: I	Full RB allocation	shall be used per ead	ch SCS and channel BW as specified in T	able 7.3.2.4.1-2.			
		-	which defines uplink RB configuration and				
SCS, channel BW and NR band.							
NOTE 3: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1 of 38.521-1 [8]							
NOTE 4: Lowest and highest allowed NR channel BW as specified in Table 5.3B.1.3-1							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. E-UTRA downlink signal level, and uplink signal level are set according to Table 4.6-1.
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS38.521-1[8].
- 5. The NR UL Reference Measurement channels for NR are set according to Table 7.3B.2.2.4.1-1.
- 6. Set up the NR and E-UTRA test frequencies so that NR carrier is located at the lower frequency side as specified in Table 5.3B.1.3-1. Repeat each testing with E-UTRA carrier frequency is located at the lower side as specified in Table 5.3B.1.3-1. 7
- 7. NR propagation conditions are set according to Annex B.0 of TS38.521-1[8]. E-UTRA propagation conditions are set according to B.0 of TS36.521-1[10].
- 8 Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause7.3B.2.2.4.3.
- 9 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.3B.2.2.4.2 Test Procedure

- 1. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.3B.22..4.1-1 Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Set the Downlink signal level to the appropriate REFSENS value defined in TS 38.521-1 [8], Table 7.3.3-1 for NR band and TS 36.521-1[10] Table 7.3.3-1 for E-UTRA band. Send continuously uplink power control "up"

commands in the uplink scheduling information to both carriers to ensure the UE transmits PUMAX level for at least the duration of the Throughput measurement.

3. Measure the average throughput on the NR carrier for a duration sufficient to achieve statistical significance according to Annex H.2 of TS 38.521-1[8] for NR band.

7.3B.2.2.4.3 Message Contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.3B.2.2.5 Test Requirement

For intra-band non-contiguous EN-DC configurations, the measured throughput on the NR carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A with reference receive power level specified in Table 7.3B.2.2.5-1, and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3 of TS 38.521-1[8] for NR band.

Table 7.3B.2.2.5-1: Reference sensitivity for intra-band Non-contiguous EN-DC

EN-DC	E-UTRA/ NR band	SCS (kHz)	Channel BW (MHz)	Ref sensitivity (dBm)	Duplex mode
	3	N/A	5	-96.3	
	n3	15	5	-97.0 +TT	
	3	N/A	5	-96.3	
	n3	15	10	-93.8 +TT	
	3	N/A	5	-96.3	
DC 24 p24	n3	15	15	-92.0 +TT	FDD
DC_3A_n3A	3	N/A	5	-96.3	FUU
	n3	15	20	-90.8 +TT	
	3	N/A	5	-96.3	
	n3	15	25	-89.7 +TT	
	3	N/A	5	-96.3	
	n3	15	30	-88.9 +TT	
	41	N/A	20	-92.0	
	n41	15	40	-88.6 +TT	
	41	N/A	20	-92.0	
	n41	15	50	-87.6 +TT	
DC_41A_n41A	41	N/A	20	-92.0	TDD
DC_41A_1141A	n41	30	60	-86.9 +TT	IDD
	41	N/A	20	-92.0	
	n41	30	80	-85.6 +TT	
	41	N/A	20	-92.0	
	n41	30	100	-84.7 +TT	
Note: NR band T	est tolerance	e (TT) is spe	cified in Tabl	e 7.3B.2.2.5-2	

Table 7.3B.2.2.5-2: Test Tolerance	(TT) for NR RX	sensitivity level
------------------------------------	-----	-------------	-------------------

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz		
0.7 dB	1.0 dB		

7.3B.2.3 Reference sensitivity for Inter-band EN-DC within FR1(2 CCs)

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1 is partially completed.

- Reference sensitivity test requirement exceptions due to receiver harmonic mixing for EN-DC in NR FR1 Reference sensitivity is partially completed.
- Reference sensitivity exceptions due to close proximity of bands for EN-DC in NR FR1 is FFS.- Reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1 is FFS.
- Test requirement and configuration tables for EN-DC configurations without exception requirements in 38.101-3 are complete.

7.3B.2.3.1 Test purpose

Same as in clause 7.3B.2.1.1.

7.3B.2.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward supporting inter-band EN-DC.

7.3B.2.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.3B.2.0.

For EN-DC with no exception requirements applicable to NR or LTE, LTE anchor agnostic approach is applied.

For EN-DC combination with exceptional requirements, LTE anchor agnostic approach is not applied.

7.3B.2.3.4 Test description

7.3B.2.3.4.1 Test description for Inter-band EN-DC without exceptions

7.3B.2.3.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations for E-UTRA consist of the test frequency based on E-UTRA operating band and test channel bandwidth as specified in clause 4.6. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 of TS 36.521-1[10]. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 36.521-1[10].

For each supported inter-band EN-DC combination specified in subclause 5.2B.4.1, the initial test configurations for NR carrier consist of environmental conditions test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 5.3.5-1 of TS 38.521-1[8]. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 of TS 38.521-1[8]. The details of the uplink reference measurement channels (RMCs) are specified in Annex A2.2 of TS 38.521-1[8]. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 of TS 38.521-1[8].

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for NR cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. NR downlink signals are initially set up according to Annex C.0, C.1, C.2, C.3.1, and uplink signals according to Annex G.0, G.1, G.2, and G.3.1 of TS38.521-1 [8].
- 4. NR downlink signals are initially set up according to Annex C.0, C.1, and C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 of TS38.521-1[8].
- 5. The UL Reference Measurement channels for NR are set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 of TS38.521-1[8].
- 6. NR propagation conditions are set according to Annex B.0. E-UTRA propagation conditions are set according to Annex B.0 of TS 36.521-1 [10]
- 7. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* are set according to TS 38.508-1[6] clause 4.5. Message contents are defined in clause 7.3B.2.3.4.1.3.
- 8. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.3B.2.3.4.1.2 Test procedure

- NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 of TS38.521-1[8]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in TS 38.521-1 [8], Table 7.3.3-1 for NR band and TS 36.521-1[10] and Table 7.3.3-1 for E-UTRA band. Send continuously uplink power control "up" commands in the uplink scheduling information to both carriers to ensure the UE transmits PUMAX level for at least the duration of the Throughput measurement.

4. Measure the average throughput of NR carrier for a duration sufficient to achieve statistical significance according to Annex H.2 of TS 38.521-1[8] for NR band, and Annex G.2 of TS 36.521-1[10] for EUTRA band

7.3B.2.3.4.1.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.3B.2.3.4.2 Test description for Inter-band EN-DC with exception requirement

7.3B.2.3.4.2.1 Initial conditions

Same initial conditions with following exceptions:

- 1. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 2. E-UTRA downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0 of TS 36.521-1 [10].
- 3. The initial test configurations for E-UTRA band and NR band consist of environmental conditions, test frequencies, and channel bandwidths and RB allocations for exceptional test scenarios are specified in Table 7.3B.2.3.4.2.1-2a to Table 7.3B.2.3.4.2.1-6.

Table 7.3B.2.3.4.2.1-1: Initial test conditions for reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1

	Initial Conditions						
	Test Environment as specified in TS 38.508-1			Normal, TL/V	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
[6] subclause							
		specified in T	S 38.508-			I NR, unless ot	
1 [6] subclaus				•		.4.2.1-2a to Ta	able
		es as specified	l in TS	7.3B.2.3.4.2.1	1-2t		
38.508-1 [11]	subclause	4.3.1					
NR Test Char	nnel Bandw	vidths as speci	fied in TS	Highest NRB	_agg, unless	otherwise spec	cified in
38.508-1 [6] s	subclause 4	1.3.1		Table 7.3B.2.	3.4.2.1-2a to	Table 7.3B.2.3	3.4.2.1-2t
E-UTRA Test	Channel B	andwidths as	specified				
in TS 36.508							
NR Test SCS	as specifie	ed in Table 5.3	.5-1	Lowest supported SCS otherwise specified			
			Test P	arameters			
De	ownlink Co	onfiguration			Uplink Cor	nfiguration	
E-UTRA	Cell	NR C	ell	E-UTRA	A Cell	NR C	Cell
Modulation	RB allocation	Modulation	RB allocation	Modulation	RB allocation	Modulation	RB allocation
QPSK	Full RB	CP-OFDM QPSK	Full RB (NOTE 1)	OPSK FUILBE OFDM FUILE			
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2 of TS 38.521-1[8].							

Table 7.3B.2.3.4.2.1-2a: Test configurations table for exceptions due to UL harmonic interference for EN-DC 1_n77

E-UTRA Band 1			NR Band 77			
Test ID	Channel BW (MHz)	F _C (UL) (MHz) Nu∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)	
				5	12@0	
				10	25@0	
1		1925MHz/	3850MHz/	15	36@0	
		18050	656666	20	50@0	
				40	100@0	
		10 1950 MHz/ 18300	3900 MHz/ 660000	5	12@0	
				10	25@0	
2	10			15	36@0	
				20	50@0	
				40	100@0	
				5	12@0	
		4075		10	25@0	
3		1975 MU7/18550	3950 MHz/	15	36@0	
		MHz/18550	663333	20	50@0	
				40	100@0	
Note:	Test freque 7.3B.2.0.3	encies are selecte	d to fulfil Note	1 and Note 2 i	n Table	

Table 7.3B.2.3.4.2.1-2b: Test configurations table for exceptions due to UL harmonic interference for EN-DC 1_n77 (For Note 3 in Table 7.3B.2.0.3.1-1)

E-UTRA Band 1			NR Band 77			
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)	
				5	12@0	
1		1925MHz/	3820 MHz/	10	25@0	
I		18050	654666	15	36@0	
				20	50@0	
				5	12@0	
2	10	1950 MHz/	3870 MHz/	10	25@0	
2	10	18300	658000	15	36@0	
				20	50@0	
				5	12@0	
3		1975	3920 MHz/	10	25@0	
3		MHz/18550	651333	15	36@0	
				20	50@0	
Note:	Test freque	encies are selecte	d to fulfil Note	3 in Table 7.3	B.2.0.3.1-1	

Table 7.3B.2.3.4.2.1-2c: Test configurations table for exceptions due to UL harmonic interference for EN-DC 3_n77

		E-UTRA Band 3	NR E	and 77		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N∪∟	NR Fc (UL) (MHz) N∪∟	NR CBW	UL allocation (LCRB)	
				5	12@0	
		1715 MHz/	3430 MHz/	10	25@0	
1		19250	628666	15	36@0	
		19250	020000	20	50@0	
				40	50@0	
		10 1747.5 MHz/ 19575	3495 MHz/ 633000	5	12@0	
				10	25@0	
2	10			15	36@0	
				20	50@0	
				40	50@0	
				5	12@0	
		1700 MU-/		10	25@0	
3		1780 MHz/ 19900	3560 MHz/ 637333	15	36@0	
		19900	03/333	20	50@0	
				40	50@0	
Note:						

	E-UTRA Band 3			NR E	Band 77
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				5	12@0
1		1715 MHz/	3400 MHz/	10	25@0
I		19250	626666	15	36@0
				20	50@0
				5	12@0
2	10	1747.5 MHz/	3465 MHz/	10	25@0
2	10	19575	631000	15	36@0
				20	50@0
				5	12@0
3		1780 MHz/	3590 MHz/	10	25@0
3		19900	639333	15	36@0
				20	50@0
Note:	Test freque	encies are selected	to fulfil Note 3	in Table 7.3B	.2.0.3.1-1.

Table 7.3B.2.3.4.2.1-2d: Test configurations table for exceptions due to UL harmonic interference for EN-DC 3_n77 (For Note 3 in Table 7.3B.2.0.3.1-1

Table 7.3B.2.3.4.2.1-2e: Test configurations table for exceptions due to UL harmonic interference for EN-DC 2_n78

		E-UTRA Band 2		NR E	and 78	
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N∪∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)	
				5	12@0	
		1855MHz/	3710 MHz/	10	26@0	
1		18650	647333	15	39@0	
		10000	047333	20	53@0	
				40	100@0	
	4000 Mile/			5	12@0	
			10	26@0		
2	10	1880 MHz/ 18900	3760 MHz/ 650666	15	39@0	
				20	53@0	
				40	100@0	
				5	12@0	
		1000 MU-/	2790 MU-/	10	26@0	
3		1890 MHz/ 19000	3780 MHz/ 652000	15	39@0	
		19000	052000	20	53@0	
				40	100@0	
Note:						

	E-UTRA Band 2			NR E	and 78
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				5	12@0
1		1855MHz/	3680 MHz/	10	26@0
I		18650	645333	15	39@0
				20	53@0
				5	12@0
2	10	1880 MHz/	3730 MHz/	10	26@0
2	10	18900	648666	15	39@0
				20	53@0
				5	12@0
3		1880 MHz/	3790 MHz/	10	26@0
3		18900	652666	15	39@0
				20	53@0
Note:	Test freque	encies are selected	to fulfil Note 3	in Table 7.3B	.2.0.3.1-1.

Table 7.3B.2.3.4.2.1-2f: Test configurations table for exceptions due to UL harmonic interference for EN-DC 2_n78 (for Note 3 in Table 7.3B.2.0.3.1-1)

Table 7.3B.2.3.4.2.1-2g: Test configurations table for exceptions due to UL harmonic interference for EN-DC 3_n78 (Test frequencies are selected to fulfil Requirement for Note 1 and 2 in Table 7.3B.2.0.3.1-1)

	E-UTRA Band 3			NR E	Band 78	
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)	
				5	12@0	
			2420 MU=/	10	25@0	
1		1715 MHz/ 19250	3430 MHz/ 628666	15	36@0	
		19250	020000	20	50@0	
				40	50@0	
		10 1747.5 MHz/ 19575	3495 MHz/ 633000	5	12@0	
				10	25@0	
2	10			15	36@0	
				20	50@0	
				40	50@0	
				5	12@0	
		1700 MU-/		10	25@0	
3		1780 MHz/ 19900	3560 MHz/ 637333	15	36@0	
		19900	037333	20	50@0	
				40	50@0	
Note:						

 Table 7.3B.2.3.4.2.1-2h: Test configurations table for exceptions due to UL harmonic interference for EN-DC 3_n78 (Test frequencies are selected to fulfil Requirement for Note 3 inTable 7.3B.2.0.3.1-1)

	E-UTRA Band 3			NR Band 78	
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N∪∟	NR CBW	UL allocation (LCRB)
				5	12@0
1		1715 MHz/	3400 MHz/	10	25@0
I		19250	626666	15	36@0
				20	50@0
				5	12@0
2	10	1747.5 MHz/	3465 MHz/	10	25@0
2	10	19575	631000	15	36@0
				20	50@0
				5	12@0
3		1780 MHz/	3590 MHz/	10	25@0
3		19900	639333	15	36@0
				20	50@0
Note:	Test freque	encies are selected	to fulfil Note 3	in Table 7.3B	.2.0.3.1-1.

Table 7.3B.2.3.4.2.1-2i: Test configurations table for exceptions due to UL harmonic interference for EN-DC 8_n77 (Test frequencies are selected to fulfil Requirement of Note 6 and 7 in Table 7.3B.2.0.3.1-1)

	E-UTRA B	and 8	NR Band 77				
Test ID	Channel BW (MHz)	Fc (UL) (MHz) Nu∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)		
				10	16@0		
				15	25@0		
1		882.5 MHz/	3530 MHz/	20	25@0		
1		21475	635333	40	25@0		
				50	25@0		
				60	25@0		
		897.5 MHz/		10	16@0		
				15	25@0		
2	5			20	25@0		
2	5	21625		40	25@0		
				50	25@0		
				60	25@0		
				10	16@0		
				15	25@0		
3		912.5 MHz/	3650 MHz/	20	25@0		
3		21775	643333	40	25@0		
				50	25@0		
				60	25@0		
Note:							

	E-UTRA B	and 8	NR Band 78		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				10	16@0
				15	25@0
1		882.5 MHz/	3530 MHz/	20	25@0
I		21475	635333	40	25@0
				50	25@0
				60	25@0
		897.5 MHz/ 21625	3590 MHz/ 639333	10	16@0
	5			15	25@0
2				20	25@0
2				40	25@0
				50	25@0
				60	25@0
				10	16@0
				15	25@0
3		912.5 MHz/	3650 MHz/	20	25@0
3		21775	643333	40	25@0
				50	25@0
				60	25@0
Note: Test frequencies are selected to fulfil Note 6 and 7in Table 7.3B.2.0.3.1-1.					

Table 7.3B.2.3.4.2.1-2j: Test configurations table for exceptions due to UL harmonic interference for EN-DC 8_n78 (Requirement of Note 6 and 7)

Table 7.3B.2.3.4.2.1-2k: Test configurations table for exceptions due to UL harmonic interference for EN-DC 8_n79 (Requirement of Note 4 and 5)

	E-UTRA Ba	ind 8	NR Band 79		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				40	25@0
		882.5 MHz/	4412.5 MHz/	50	25@0
1		21475	4412.5 MHZ/ 694166	60	25@0
		21475	094100	80	25@0
				100	25@0
		897.5 MHz/ 21625	4487.5 MHz/ 699166	40	25@0
				50	25@0
2	5			60	25@0
		21025		80	25@0
				100	25@0
				40	25@0
				50	25@0
3		912.5 MHz/	4652.5 MHz/	60	25@0
°,		21775	704166	80	25@0
				100	25@0
Note:	Test freque 7.3B.2.0.3.	encies are select 1-1.	ted to fulfil Note	4 and 5 in Tab	ble

Table 7.3B.2.3.4.2.1-2I: Test configurations table for exceptions due to UL harmonic interference for EN-DC 18_n77 (Requirement of Note 4)

E-UTRA Band 18			NR Band 77		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				10	16@0
1		820 MHz/	4100 MHz/	15	25@0
1		23900	673333	20	25@0
				40	25@0
			4112.5 MHz/ 674166	10	16@0
2	2 10	822.5 MHz/ 23925		15	25@0
2				20	25@0
				40	25@0
				10	16@0
3		825 MHz/	4125 MHz/ 675000	15	25@0
		23950		20	25@0
				40	25@0
Note: Test frequencies are selected to fulfil Note 4 in Table 7.3B.2.0.3.1-1.					

Table 7.3B.2.3.4.2.1-2m: Test configurations table for exceptions due to UL harmonic interference for EN-DC 19_n77 (Requirement of Note 4 and 5)

	E-UTRA Ba	nd 19	NR Band 77		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				10	16@0
				15	25@0
				20	25@0
1		835 MHz/	4175 MHz/	40	25@0
1		24050	678333	50	25@0
	10			60	25@0
				80	25@0
				100	25@0
	10			10	16@0
		837.5 MHz/	4187.5 MHz/	15	25@0
				20	25@0
2				40	25@0
2		24075	679166	50	25@0
				60	25@0
				80	25@0
				100	25@0
Note: Test frequencies are selected to fulfil Note 4 and 5 in Table 7.3B.2.0.3.1-1.					

	E-UTRA Bai	nd 28		NR Band 77/7	8
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				10	10@0
				15	15@0
				20	20@0
		700 MU-/		40	25@0
1		708 MHz/ 27260	3540 MHz/ 636000	50	25@0
		27200	030000	60	25@0
				80	25@0
				90	25@0
				100	25@0
		723 MHz/		10	10@0
				15	15@0
				20	20@0
				40	25@0
2	10	27410		50	25@0
		27410		60	25@0
				80	25@0
				90	25@0
				100	25@0
				10	10@0
				15	15@0
				20	20@0
		743 MHz/	3715 MHz/	40	25@0
3		27610	647666	50	25@0
		27010	047000	60	25@0
				80	25@0
				90	25@0
				100	25@0
Note:	Test freque 7.3B.2.0.3.		ted to fulfil Note	4 and 5 in Tab	ble

Table 7.3B.2.3.4.2.1-2n: Test configurations table for exceptions due to UL harmonic interference for EN-DC 28_n77/n78 (Requirement of Note 4 and 5)

 Table 7.3B.2.3.4.2.1-20: Test configurations table for exceptions due to UL harmonic interference for EN-DC 20_n77/78 (Requirement of Note 6 and 7)

	E-UTRA Ba	nd 20		NR Band 77/78		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)	
				5	8@0	
			2240 MU-/	10	16@0	
1		837 MHz/ 24200	3348 MHz/ 623300	15	25@0	
		24200	023300	20	25@0	
				40	25@0	
			3388 MHz/ 625866	5	8@0	
		847 MHz/ 24300		10	16@0	
2	10			15	25@0	
		24300		20	25@0	
				40	25@0	
				5	8@0	
		857 MHz/	3428 MHz/	10	16@0	
3		24400	628533	15	25@0	
		24400	020000	20	25@0	
				40	25@0	
Note:	Test freque	encies are select	ed to fulfil Note	6 in Table 7.3	B.2.0.3.1-1.	

Table 7.3B.2.3.4.2.1-2p: Test configurations table for exceptions due to UL harmonic interference for EN-DC 26_n41 (Requirement of Note 8)
--

	E-UTRA Ba	nd 26	NR Band 41		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) Nu∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				10	25@0
				15	25@0
				20	25@0
1		835 MHz/ 2505 MHz/	40	25@0	
I		26900	501000	50	25@0
	- 10			60	25@0
				80	25@0
				90	25@0
				10	25@0
			2532 MHz/	15	25@0
				20	25@0
2		844 MHz/		40	25@0
2		26990	506400	50	25@0
				60	25@0
				80	25@0
				90	25@0
Note:	Test freque	encies are select	ed to fulfil Note	8 in Table 7.3	B.2.0.3.1-1.

 Table 7.3B.2.3.4.2.1-2q: Test configurations table for exceptions due to UL harmonic interference for EN-DC 26_n77/78 (Requirement of Note 6 and 7)

E-UTRA Band 20			NR Band 77/78		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				5	8@0
			3276 MHz/	10	16@0
1		831.5 MHz/ 26865	621733	15	25@0
				20	25@0
	10			40	25@0
	10			5	8@0
				10	16@0
2		844 MHz/ 226990		15	25@0
		220990	625066	20	25@0
			40	25@0	
Note: Test frequencies are selected to fulfil Note 6 and 7 in Table 7.3B.2.0.3.1-1.					

	E-UTRA Ba	nd 26		NR Band 77		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)	
				5	8@0	
				10	16@0	
				15	25@0	
		819 MHz/	4095 MHz/	20	CBW allocation (LCRB) 5 8@0 10 16@0 15 25@0 20 25@0 40 25@0 50 25@0 60 25@0 80 25@0 100 25@0 5 8@0 10 16@0 15 25@0 20 25@0 40 25@0 20 25@0 40 25@0 40 25@0	
1		26740	673000	40	25@0	
		20740	073000	50	25@0	
	- 10			60	25@0	
				80	25@0	
				100	25@0	
				5	8@0	
				10	16@0	
				15	25@0	
		831.5 MHz/	4158 MHz/	20	25@0	
2		26865	4158 MHZ/ 677200	40	25@0	
		20005	677200	60	25@0	
				80	25@0	
				90	25@0	
				100	25@0	
Note:	Test freque	encies are select	ed to fulfil Note	4 in Table 7.3	B.2.0.3.1-1.	

Table 7.3B.2.3.4.2.1-2r: Test configurations table for exceptions due to UL harmonic interference for EN-DC 26_n77 (Requirement of Note 4)

 Table 7.3B.2.3.4.2.1-2s: Test configurations table for exceptions due to UL harmonic interference for

 EN-DC 66_n78 (Requirement of Note 1 and 2)

E-UTRA Band 66			NR Band 78		
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N⊍∟	NR CBW	UL allocation (LCRB)
				10	26@0
1		1715 MHz/	3430 MHz/	15	39@0
1		132022	628666	20	53@0
				40	100@0
	10	1755 MHz/ 132422	3510 MHz/ 634000	10	26@0
2				15	39@0
2				20	53@0
				40	100@0
				10	26@0
3		1775 MHz/	3550 MHz/ 636666	15	39@0
3		132622		20	53@0
				40	100@0
Note: Test frequencies are selected to fulfil Note 1 and 2 in Table 7.3B.2.0.3.1-1.					

Table 7.3B.2.3.4.2.1-2t: Test configurations table for exceptions due to UL harmonic interference for
EN-DC 66_n78 (Requirement of Note 3)

E-UTRA Band 66			NR Band 78			
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N⊍∟	NR Fc (UL) (MHz) N∪∟	NR CBW	UL allocation (LCRB)	
			3390 MHz/	10	26@0	
1	10	1715 MHz/ 132022	626000 3470 MHz/	15	39@0	
I				20	53@0	
			631333	40	100@0	
		1755 MHz/ 132422	3470 MHz/	10	26@0	
2			631333	15	39@0	
2			3550 MHz/	20	53@0	
			636666	40	100@0	
		1775 MHz/ 132622	3510 MHz/	10	26@0	
3			634000	15	39@0	
			3590 MHz/	20	53@0	
			639333	40	100@0	
Note: Test frequencies are selected to fulfil Note 3 in Table 7.3B.2.0.3.1-1.						

Table 7.3B.2.3.4.2.1-3a: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC 2_n71

	E-UTRA	Band 2	NR Band 71			
Test ID	Channel BW (MHz)/ RB allocation	Fc (UL)	NR Fc (UL)	NR Ch BW	UL allocation (LCRB)	
			Low, Mid	5	25@0	
1	5	Low, Mid, High		10	50@0	
1	25@0			15	75@0	
				20	100@0	
	10 50@0	Low, Mid, High	Low, Mid	5	25@0	
2				10	50@0	
2				15	75@0	
				20	100@0	
	15 50@0	Low, Mid, High	Low, Mid	5	25@0	
3				10	50@0	
5				15	75@0	
				20	100@0	
	20 50@	Low, Mid, High	Low, Mid	5	25@0	
34				10	50@0	
54				15	75@0	
				20	100@0	
Note: Test frequencies are selected to fulfil Note 4 in Table 7.3B.2.0.3.2-1.						

Table 7.3B.2.3.4.2.1-3b: Test configurations table for exceptions due to receiver harmonic mixing forEN-DC n41_26

	NR Bar	nd n41	E-UTRA Band 46				
Test ID	Channel BW (MHz) / RB allocation	NR Fc (UL)	Fc (UL)	E-UTRA Ch BW	UL allocation (LCRB)		
	5 MHz/ 15@0	Mid	Low, Mid, High	5	25@0		
1				10	50@0		
				15	75@0		
	10 MHz 25@0	Mid	Low, Mid, High	5	25@0		
2				10	50@0		
				15	75@0		
	15 MHz 25@0	Mid	Low, Mid, High	5	25@0		
3				10	50@0		
				15	75@0		
	20 MHz 25@0	Mid	Low, Mid,	5	25@0		
4				10	50@0		
			High	15	75@0		
Note:	Test frequencies are selected to fulfil Note 4 in Table 7.3B.2.0.3.2-1.						

Table 7.3B.2.3.4.2.1-3c: Test configurations table for exceptions due to receiver harmonic mixing for
EN-DC 41_n77

	E-UTRA Ba	nd 41	NR Band n77			
Test ID	Channel BW (MHz)/ RB allocation	Fc (UL)	NR Fc (UL)	NR Ch BW	SCS (kHz)	UL allocation (LCRB)
				10	15	50@0
		Low, Mid, High	Mid, High	15	15	75@0
				20	15	100@0
4	5/			40	15	216@0
1	25@0			50	15	270@0
		-		60	30	162@0
				80	30	216@0
				90	30	243@0
				10	15	50@0
		Low, Mid, High	Mid, High	15	15	75@0
				20	15	100@0
0	10/			40	15	216@0
2	25@0			50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
				10	15	50@0
	15/ 25@0	Low, Mid, High	Mid, High	15	15	75@0
				20	15	100@0
0				40	15	216@0
3				50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
				10	15	50@0
	20/ 25@0		Mid, High	15	15	75@0
				20	15	100@0
4		Low, Mid,		40	15	216@0
4		High		50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
Note: Test frequencies are selected to fulfil Note 7 in Table 7.3B.2.0.3.2-1.						

	E-UTRA Ba	nd 41	NR Band n78			
Test ID	Channel BW (MHz)/ RB allocation	Fc (UL)	NR F _c (UL)	NR Ch BW	SCS (kHz)	UL allocation (LCRB)
		Low	High	10	15	50@0
				15	15	75@0
				20	15	100@0
1	5/			40	15	216@0
I	25@0			50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
				10	15	50@0
				15	15	75@0
		Low		20	15	100@0
2	10/		Lliab	40	15	216@0
2	25@0		High	50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
		Low		10	15	50@0
	15/ 25@0		High	15	15	75@0
				20	15	100@0
3				40	15	216@0
3				50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
	20/ 25@0	Low	High	10	15	50@0
				15	15	75@0
				20	15	100@0
				40	15	216@0
4				50	15	270@0
				60	30	162@0
				80	30	216@0
				90	30	243@0
Note:						

Table 7.3B.2.3.4.2.1-3d: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC 41_n78

 Table 7.3B.2.3.4.2.1-3e: Test configurations table for exceptions due to receiver harmonic mixing for

 EN-DC n71_n2

FFS

Table 7.3B.2.3.4.2.1-3f: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC n77_41

FFS -

Table 7.3B.2.3.4.2.1-3g: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC n77_28

	NR Ba	nd n77	E	-UTRA Band	28		
Test ID	Channel BW (MHz)	NR F _c (UL)	Fc (UL)	E-UTRA Ch BW	UL allocation (LCRB)		
				5	25@0		
1	10 MHz	Mid High	Low, Mid,	10	50@0		
I		Mid, High	High	15	75@0		
				20	100@		
				5	25@0		
2	15 MHz	Mid Lligh	Low, Mid,	10	50@0		
2		Mid, High	High	15	75@0		
			-	20	100@		
				5	25@0		
3	20 MHz	Low, Mid,		MHz Mid High Low, Mid, 10		10	50@0
3	20 MHZ	Mid, High	High	15	75@0		
			-	20	100@		
Note:	Test frequence	cies are selecte	d to fulfil Note 2	in Table 7.3B	.2.0.3.2-1.		

Table 7.3B.2.3.4.2.1-3h: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC n78_41

FFS -

Table 7.3B.2.3.4.2.1-3i: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC n79_19

	NR Ba	nd n79	E	-UTRA Band	19					
Test ID	Channel BW (MHz)	NR Fc (UL)	Fc (UL)	E-UTRA Ch BW	UL allocation (LCRB)					
				5	25@0					
1	40 MHz	Low	High	10	50@0					
				15	75@0					
				5	25@0					
2	50 MHz	Low	High	10	50@0					
				15	75@0					
Note:	Test frequencies are selected to fulfil Note 2 in Table 7.3B.2.0.3.2-1.									

Table 7.3B.2.3.4.2.1-3j: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC n79_21

	NR Bar	nd n79	E	-UTRA Band	19							
Test ID	Channel BW (MHz)	NR Fc (UL)	Fc (UL)	E-UTRA Ch BW	UL allocation (LCRB)							
			Low Mid	5	25@0							
1	40 MHz	Low ²	Low, Mid, High	10	50@0							
			riigii	15	75@0							
			Low Mid	5	25@0							
2	50 MHz	Low ²	Low, Mid, High	10	50@0							
			riigii	15	75@0							
Note 1:	Test frequencies are selected to fulfil Note 3 in Table 7.3B.2.0.3.2-1.											
Note 2:	Test point f _{UL/DL} = 4510.2 MHz (N _{DL} = 700680).											

Table 7.3B.2.3.4.2.1-3k: Test configurations table for exceptions due to receiver harmonic mixing for EN-DC n79_26

	NR Bar	nd n79	E	-UTRA Band	26
Test ID	Channel BW (MHz)	NR F _c (UL)	Fc (UL)	E-UTRA Ch BW	UL allocation (LCRB)
				5	25@0
1	40 MHz	Low	High	10	50@0
				15	75@0
				5	25@0
2	50 MHz	Low	High	10	50@0
			-	15	75@0
Note:	Test frequence	ies are selecte	ed to fulfil Note 2	in Table 7.3B	.2.0.3.2-1.

Table 7.3B.2.3.4.2.1-4: Test configurations table for exceptions due to close proximity of bands for EN-DC

FFS

Table 7.3B.2.3.4.2.1-5: Test configurations table for exceptions due to cross band isolation for EN-DC FR1

			Initial	Conditions						
Test Environme		ecified in TS 38	3.508-1	Normal, TL/V	L, TL/VH, TH	/VL, TH/VH				
[6] subclause 4										
NR Test Frequ		specified in TS	S 38.508-							
1 [6] subclause				Mid ????						
E-UTRA Test F			l in							
TS36.508 [11]										
NR Test Chanr			fied in TS	Lowest N _{RB_a}	_{gg} , Highest N _F	RB_agg				
38.508-1 [6] su										
E-UTRA Test C			specified							
in TS 36.508 [1										
NR Test SCS a	as specifie	ed in Table 5.3	.5-1	Lowest supported SCS per test channel BW unless						
				specified						
			NR Test	t Parameters						
Dov	wnlink Co	onfiguration			Uplink Cor	nfiguration				
NR	NR RB	E-UTRA	E-UTRA	NR	NR RB	E-UTRA	E-UTRA			
Modulation a	llocation	Modulation	RB	Modulation	allocation	Modulation	RB			
			allocation		anocation		allocation			
CP-OFDM	Full RB			DFT-s-	Table		Table			
	NOTE 1)	QPSK	Full RB	OFDM	7.3B.2.3.5.4-	QPSK	7.3B.2.3.5.4-			
	NUTE I)			QPSK 2 2						
NOTE 1: Full	RB alloca	tion shall be u	sed per ea	ch SCS and ch	annel BW as	specified in Ta	ble			
7.3.2	2.4.1-2 of	TS 38.521-1[8	8].							

Table 7.3B.2.3.4.2.1-5a: Test configurations table for exceptions due to cross band isolation for EN-DC 25_n41

FFS

Table 7.3B.2.3.4.2.1-5b: Test configurations table for exceptions due to cross band isolation for EN-DC 41_n77

FFS

Table 7.3B.2.3.4.2.1-5c: Test configurations table for exceptions due to cross band isolation for EN-DC 41_n78

FFS

Table 7.3B.2.3.4.2.1-5d: Test configurations table for exceptions due to cross band isolation for EN-DC 3_n41

FFS

Table 7.3B.2.3.4.2.1-5e: Test configurations table for exceptions due to cross band isolation for EN-DC n41_3

FFS

 Table 7.3B.2.3.4.2.1-6: Test Configuration Table Reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (two bands)

						Initial (Conditions						
	Enviro lause 4		specifie	d in TS 38.	.508-1 [6]		NC, TL/VL, T	TL/VH	I, TH/V	L, TH/VH			
NR subo E-U	Test Fre clause4 TRA Te	equencies .3.1,	encies as	cified in TS s specified		[6]	For test freq	uenci	es refe	er to "Range"	columns.		
Test subc	DC Co lause [mbinatior TBD] for t	n setting the DC ((N _{RB_agg}) a Configurationsupported b	on across		Refer to "NR N_{RB} "and "E-UTRA N_{RB} " columns						
Netv	vork sig	Inalling va	alue				NS_01 Unless giver carrier	n by T	able 7	.3.3-3 for the	band with ac	tive uplink	
						rameters f	or DC Config	urati	ons				
		DC	Config	uration / N	RB_agg		DL Allo			UL AI	location (No	te 2,3)	
ID		DC Con	figuratio	on	E- UTRA Ch	NR Ch	CC MOD E-	& F allo	ITRA NR RB catio	CC MOD E-	E-UTR	A & NR ations	
	F-I	JTRA		NR	BW/N	BW/N _{RB}	UTRA/NR		n	UTRA/NR	(L _{CRB} @		
	Ban d	Range	Band	Range	RB			PCC	scc				
				Defau	It Test Se	ttings for	a DC_XA-nY	A Cor	nfigura	ation			
1	х	Mid	Y	Mid	Mid/ Lowes t N _{RB}	Mid/ Lowest N _{RB}	QPSK /CP-OFDM QPSK	All	RBs	QPSK/ DFT-s- OFDM QPSK	REFSENS	REFSENS	
2	х	Mid	Y	Mid	Mid/ Highe st N _{RB}	Mid/ Highest N _{RB}	QPSK /CP-OFDM QPSK	All	RBs	QPSK/ DFT-s- OFDM QPSK	REFSENS	REFSENS	
				Т	est Settin	gs for DC	_1A-n77A Co	nfigu	ration				
1	1	Note 5	77	Note 5	5/25	10/25	Note 7	All	RBs	Note 7	25@0	25@0	
				Т	est Settin	gs for DC	_1A-n78A Co	nfigu	ration				
1	1	Note 5	78	Note 5	5/25	10/25	Note 7		RBs	Note 7	25@0	25@0	
					1	-	_2A-n66A Co	-			1	1	
1	2	Note 5	66	Note 5	5/25	5/25	Note 7		RBs	Note 7	25@0	25@0	
	_				1	-	_2A-n78A Co						
1	2	Note 5	78	Note 5	5/25	10/50	Note 7		RBs	Note 7	25@0	50@0	
4	2	Niete C	44			-	_3A-n41A Co				25@0	52@0	
1	3	Note 5	41	Note 5	5/25	10/52	Note 7		RBs Figurat	Note 7	25@0	52@0	
1	3	Note 5	77/ 78	Note 5	5/25	10/50	Note 7		RBs	Note 7	25@0	50@0	
			_	T	est Settin	gs for DC	_3A-n78A Co	nfigu	ration				
1	3	Note 5	78	Note 5	5/25	10/25	Note 7	All	RBs	Note 7	50@0	25@0	
				Т	est Settin	gs for DC	_5A-n78A Co	nfigu	ration				
1	5	Note 5	78	Note 5	5/25	10/52	Note 7	All	RBs	Note 7	25@0	52@0	
				Т	1	-	_8A-n41A Co	<u> </u>					
1	8	Low	41	High	5/25	10/50	Note 7		RBs	Note 7	25@0	50@0	
1					-		A-n77A/n78A		-				
1	8	Note 5	77	Note 5	5/25	10/52	Note 7		RBs	Note 7	25@0	52@0	
2	8	Note 5	78	Note 5	5/25	10/52	Note 7		RBs	Note 7	25@0	52@0	
				Т	est Settin	gs for DC	_8A-n79A Co	nfigu	ration				

1	8	Note 5	79	Note 5	5/25	40/216	Note 7	All RBs	Note 7	25@0	216@0				
	-		-			gs for DC_	_20A-n77A Co)						
1	20	Note 5	77	Note 5	5/25	10/50	Note 7	All RBs	Note 7	25@0	50@0				
2	20	Note 5	77	Note 5	5/25	10/50	Note 7	All RBs	Note 7	25@0	50@0				
	Test Settings for DC_20A-n78A Configuration														
1															
	Test Settings for DC_21A- n79A Configuration														
1															
	Test Settings for DC_28A- n77/n78A Configuration														
1	1 28 Note 5 77 Note 5 5/25 10/25 Note 7 All RBs Note 7 50@0 25@0														
2															
				Те	st Settin	gs for DC_	66A-n78A Co	onfiguration	1						
1	66	Note 5	78	Note 5	5/25	10/25	Note 7	All RBs	Note 7	50@0	25@0				
				Т	est Setti	ngs for CA	_7A-20A Coi	nfiguration							
1	7	Note 5	20	Note 5	50	25	QPSK	All RBs	QPSK	50@0	25@0				
Note Note	92:	is allowed P _{CMAX_L,c} o Use DC C	and the or set to onfigura	UE only in the maximu tion – spec	dicates si um output ific test p	upport of "S power acc oints if pres	n, P _{CMAX_L,c}) as Bingle UL" the cording to the sent in the tab se the Default	output powe UE power so le, otherwise	er of the activ caling capabi e use test poi	ve UL shall be lity. ints from mate	e set at				
Note Note Note	94:	REFSENS sensitivity	refers t accordir	o the E_UT	RA band 7.3.5-2 of	ls and NR I TS 36.521	Configuration. band N _{RB} 's sin -1 and Table llow Table 7.3	ngle carrier 7.3.2.4.1-3 c	Jplink RB all of TS 38.521	ocation for re -1, respective	ly				
Note Note Note	DC configuration are same, test frequency shall follow the order of Table 7.3B.2.3.3.5.1-1. e 6: Not applicable if the UE only supports Bandwidth Combination Set 1. e 7: Same as default.														

7.3B.2.3.4.2.2 Test procedure

Same as in clause 7.3B.2.3.1.4.2 with following exceptions:

- 1. E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.3.1.4.1-1 of TS 36.521-1[10]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Tables 7.3.4.1-1 and 7.3.4.1-2 of TS38.521-1[8]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Both NR and E-UTRA SS send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.

7.3B.2.3.2.4.2.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.3B.2.3.2.5 Test requirement

For inter-band EN-DC configurations, the throughput of each CG shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with reference receive power level specified in Tables Table 7.3.2.5-1 in TS 38.521-1 [8] and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3 in TS 38.521-1 [8] for NR band.

Note 1: Each EN-DC combination defined in Table 5.2B.4.1-1 shall be tested in ancher-agnoutic mode as described in this section.

- Note 2: Test procedure for exceptional test requirements for reference sensitivity for inter-band EN-DC within FR1 are defined in clause 7.3B.2.3.4.2.2. The test requirement is defined in Table 7.3B.2.3.2.5-1, Table 7.3B.2.3.2.5-2, Table 7.3B.2.3.2.5-3, Table 7.3B.2.3.2.5-4, and Table 7.3B.2.3.2.5-5.
- Note 3: For the UE which supports inter-band EN-DC, the minimum requirement for reference sensitivity in Table 7.3.2.5-1 of TS 38.521-1 [8] for NR band and Table 7.3.5-1 of TS 36.521-1 [10] for EUTRA band, shall be increased by the amount given in $\Delta R_{IB,c}$ defined in subclause 7.3B.3.3 for the applicable for two, three, four and five bands operation.

Reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1, are specified in Table 7.3B.2.3.2.5-1 with uplink configuration specified in Table 7.3B.2.3.4.2.1-2a to Table 7.3B.2.3.4.2.1-2t for each specific EN-DC combination scenario.

Table 7.3B.2.3.2.5-1: Reference sensitivity due to UL harmonic for EN-DC in NR FR1

UL band	DL band	SCS (kHz)	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	30 MHz (dB)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)
		15		-71.4 +TT	-71.4 +TT	-71.3 +TT			-71.2 +TT	-71.3 +TT				
	n77 ^{1,2}	30		-71.7	-71.5	-71.5			-71.3	-71.4	-71.4	-71.3	-71.3	-71.3
	117.7			+TT -72.1	+TT -71.8	+TT -71.7			+TT -71.5	+TT -71.5	+TT -71.5	+TT -71.4	+TT -71.4	+TT -71.4
1 0		60		-72.1 +TT	-71.8 +TT	+TT			-71.5 +TT	+TT	-71.5 +TT	-71.4 +TT	-71.4 +TT	-71.4 +TT
1, 3		15		-94.2	-92.7	-91.9			-89.1	-88.1				
				+TT -94.5	+TT -92.8	+TT -92.1			+TT -89.2	+TT -88.2	-87.4	-86.1	-85.6	-85.1
	n77 ³	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT
		60		-94.9 +TT	-93.1 +TT	-92.3 +TT			-89.4 +TT	-88.3 +TT	-87.5 +TT	-86.2 +TT	-85.7 +TT	-85.2 +TT
		15		-71.4	-71.4	-71.3			-71.2					
		- 10		+TT -71.7	+TT -71.5	+TT -71.5			+TT -71.3					
2	n78 ^{1,2}	30		+TT	+TT	+TT			+TT					
		60		-72.1	-71.8	-71.7			-71.5					
				+TT -94.2	+TT -92.7	+TT -91.9			+TT					
		15		+TT	+TT	+TT								
2	n78 ³	30		-94.5 +TT	-92.8 +TT	-92.1 +TT								
		60		-94.9	-93.1	-92.3								
		00		+TT	+TT	+TT			-71.7	71.0				
		15		-71.9 +TT	-71.9 +TT	-71.8 +TT			-/1./ +TT	-71.8 +TT				
	n78 ^{1,2}	30		-72.2	-72.0	-72.0			-71.8	-71.9	-71.9	-71.8	-71.8	-71.8
				+TT -72.6	+TT -72.3	+TT -72.2			+TT -72.0	+TT -72.0	+TT -72.0	+TT -71.9	+TT -71.9	+TT -71.9
3		60		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT
5		15		-94.7 +TT	-93.2 +TT	-92.4 +TT			-89.6 +TT	-88.6 +TT				
				-95.0	-93.3	-92.6			-89.7	-88.7	-87.9	-86.6	-86.1	-85.6
	n78 ³	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT
		60		-95.4 +TT	-93.6 +TT	-92.8 +TT			-89.9 +TT	-88.8 +TT	-88.0 +TT	-86.7 +TT	-86.2 +TT	-85.7 +TT
		15		-84.5	-84.4	-84.2			-84.0	-83.9				
	n77 ^{6,7}			+TT -84.8	+TT -84.5	+TT -84.4			+TT -84.1	+TT -84.0	-83.9	-83.8	-83.5	-83.7
8	n78 ^{6,7}	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT	+TT
		60		-85.2	-84.8	-84.6			-84.3	-84.1	-84.0	-83.9	-83.6	-83.8
		45		+TT	+TT	+TT			+TT -82.8	+TT -82.4	+TT	+TT	+TT	+TT
		15							+TT	+TT				
8	n79 ^{4,5}	30							-82.9 +TT	-82.5 +TT	-82.3 +TT	-81.7 +TT		-81.2 +TT
		60							-83.1	-82.6	-82.4	-81.8		-81.3
		00		-84.9	-84.6	-84.4			+TT -84.4	+TT -84.4	+TT	+TT		+TT
		15		+TT	-04.0 +TT	-04.4 +TT			-04.4 +TT	+TT				
18,	n77 ^{4,5}	30		-85.2	-84.7	-84.6			-84.5	-84.5	-84.4	-84.4		-84.4
19				+TT -85.6	+TT -85.0	+TT -84.8			+TT -84.7	+TT -84.6	+TT -84.5	+TT -84.5		+TT -84.5
		60		+TT	+TT	+TT			+TT	+TT	+TT	+TT		+TT
		15		-84.9 +TT	-84.6 +TT	-84.4 +TT			-84.4 +TT	-84.4 +TT				
28	n77 ^{4,5}	30		-85.2	-84.7	-84.6		ļ	-84.5	-84.5	-84.4	-84.4		-84.4
20	n78 ^{4,5}	30		+TT	+TT	+TT			+TT	+TT	+TT	+TT		+TT
		60		-85.6 +TT	-85.0 +TT	-84.8 +TT			-84.7 +TT	-84.6 +TT	-84.5 +TT	-84.5 +TT		-84.5 +TT
		15		-84.5	-84.4	-84.2			-83.1					<u> </u>
20	n77 ^{6,7} n78 ^{6,7}			+TT -84.8	+TT -84.5	+TT -84.4			+TT -83.2					
		30		-04.0 +TT	-04.5 +TT	-04.4 +TT			-03.2 +TT					

	1		-		1		1		1	1	1	1	.
		60		-85.2	-84.8	-84.6		-83.4					
				+TT	+TT	+TT		+TT					
				-84.5	-84.6	-84.4		-83.6	-83.3	3.9	3.1	2.7	
				+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	
26	n41	30		-84.8	-84.7	-84.6		-83.7	-83.4	-83.0	-82.5	-82.4	
_0				+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	<u> </u>
		60		-85.2	-85.0	-84.8		-83.9	-83.5	-83.2	-82.5	-82.4	
				+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	<u> </u>
		15		-84.5	-84.4	-84.2		-83.1					
				+TT	+TT	+TT		+TT					
26	n77 ^{6,7}	30		-84.8	-84.5	-84.4		-83.2					
20	n78 ^{6,7}	00		+TT	+TT	+TT		+TT					
		60		-85.2	-84.8	-84.6		-83.4					
		00		+TT	+TT	+TT		+TT					
		15		-84.9	-84.6	-84.4		-84.4	-84.4				
		10		+TT	+TT	+TT		+TT	+TT				
26	n77 ^{4,5}	30		-85.2	-84.7	-84.6		-84.5	-84.5	-84.4	-84.4	-85.6	-84.4
20	1177	30		+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT
		60		-85.6	-85.0	-84.8		-84.7	-84.6	-84.5	-84.5	-85.7	-84.5
		60		+TT	+TT	+TT		+TT	+TT	+TT	+TT	+TT	+TT
	1 ^{8,9,10}	15	-89.1	-88.7	-88.3	-88.0							
	1-,-,-	15	+TT	+TT	+TT	+TT							
n28		15	TBD	TBD	TBD	TBD							
	n75 ^{1,2}	30	TBD	TBD	TBD	TBD							
		60	TBD	TBD	TBD	TBD							
n71	2 ¹¹	15	-92.7	-93.3	-91.8	-90.7							
117-1	2	15	+TT	+TT	+TT	+TT							
n71	2 ¹²	15	-95.6	-93.3	-91.8	-90.7							
117-1	2	15	+TT	+TT	+TT	+TT							
		15		-71.4	-71.4	-71.3		-71.2					
		15		+TT	+TT	+TT		+TT					
	n78 ^{1,2}	30		-71.7	-71.5	-71.5		-71.3					
	11/0',-	30		+TT	+TT	+TT		+TT					
		<u> </u>		-72.1	-71.8	-71.7		-71.5					
66		60		+TT	+TT	+TT		+TT					
00		15		-94.2	-92.7	-91.9							
		15		+TT	+TT	+TT							
	n78 ³	30		-94.5	-92.8	-92.1							
	11/0-	30		+TT	+TT	+TT							
		60		-94.9	-93.1	-92.3							
		00		+TT	+TT	+TT							

- These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor NOTE 1: (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band. NOTE 2: The requirements should be verified for UL EARFCN or NR ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left[f_{DL}^{HB} / 0.2 \right]_{0.1}$ in MHz and $F_{UL_{low}}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_{logh}}^{LB} - BW_{Channel}^{LB} / 2$ with carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band
- NOTE 3: The requirements are only applicable to channel bandwidths with a carrier frequency at $\pm (20 + BW_{Channel}^{HB} / 2)$ MHz offset from $2f_{UL}^{LB}$ in the victim (higher band) with $F_{UL-low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL-high}^{LB} BW_{Channel}^{LB} / 2$, where and $BW_{Channel}^{HB}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively. These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor
- NOTE 4:
- (lower) band for which the 5th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.

NOTE 5: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{HB} = [f_{DL}^{HB}/0.5]0.1$ in MHz and $F_{UL_{low}}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_{logh}}^{LB} - BW_{Channel}^{LB} / 2$ with carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band

- These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor NOTE 6: (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 7: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \int f_{DL}^{HB} / 0.4 [0.1]$

in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$ with carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band

- NOTE 8: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of a high band.
- NOTE 9

The requirements should be verified for UL EARFCN of a low band (superscript LB) such that in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_high}^{LB} - BW_{Channel}^{LB} / 2$ with the carrier frequency of a high band in MHz and the channel bandwidth configured in the low band.

- NOTE 10: Applicable for the operations with 2 or 4 antenna ports supported in the band with carrier aggregation configured.
- NOTE 11: These requirements apply when the lower edge frequency of the 5 MHz uplink channel in Band 71 is located at or below 668 MHz and the downlink channel in Band 2 is located with its upper edge at 1990 MHz.
- NOTE 12: These requirements apply when the lower edge frequency of the 10 MHz, 15 MHz, or 20 MHz uplink channel in Band 71 is located at or below 668 MHz and the downlink channel in Band 2 is located with its upper edge at 1990 MHz.
- NOTE 13: TT is the same as defined in Table 7.3B.2.3.2.5-1a.

Table 7.3B.2.3.2.5-1a: Test Tolerance (TT) for RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz
0.7 dB	1.0 dB

Reference sensitivity exceptions due to receiver harmonic mixing for EN-DC in NR FR1, are specified in Table 7.3B.2.3.2.5-2 with uplink configuration specified in Table 7.3B.2.3.4.2.1-3a to Table 7.3B.2.3.4.2.1-3k for each specific EN-DC combination scenario.

UL band	DL band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm	100 MHz (dBm)
		15	-70.4	-70.4	-70.4	-70.4	((<u>()</u>	((((
2	n714	30	+TT	+TT -70.7	+TT -70.7	+TT -71.8							
		60		+TT -72.4	+TT -72.7	+TT -77.0							
			-72.5	+TT -69.5	+TT -69.5	+TT							
26	n41 ⁴		+TT	+TT	+TT	N/A							
			N/A	-87.0 +TT	-85.5 +TT	-85.3 +TT	N/A	-86.1 +TT	-85.8 +TT				
41	n77 ⁷		N/A	-87.3 +TT	-85.6 +TT	-85.5 +TT	N/A	-86.2 +TT	-85.9 +TT	-86.2 +TT	-85.7 +TT	-85.2 +TT	
			N/A	-87.7	-85.9	-85.7	N/A	-86.4	-86.0	-86.3	-85.8	-85.3	
			N/A	+TT -87.0	+TT -85.5	+TT -85.3	N/A	+TT -86.1	+TT -85.8	+TT	+TT	+TT	
			IN/A	+TT -87.3	+TT -85.6	+TT -85.5	IN/A	+TT -86.2	+TT -85.9	-86.2	-85.7	-85.2	
41	n78 ⁷		N/A	-87.3 +TT	-85.8 +TT	-85.5 +TT	N/A	-00.2 +TT	-85.9 +TT	-00.2 +TT	-85.7 +TT	-05.2 +TT	
			N/A	-87.7 +TT	-85.9 +TT	-85.7 +TT	N/A	-86.4 +TT	-86.0 +TT	-86.3 +TT	-85.8 +TT	-85.3 +TT	
	2 ⁵		TBD	TBD	TBD	TBD							
n71	2 ⁶		TBD	TBD	TBD	TBD							
n77	41 ⁸		-86.9 +TT	-83.9 +TT	-82.1 +TT	-80.9 +TT	N/A	N/A	N/A	N/A	N/A	N/A	
n77	28 ²		-69.8 +TT	-69.8 +TT	-69.8 +TT	-68.3 +TT							
n78	41 ⁸		-86.9	-83.9	-82.1	-80.9	N/A	N/A	N/A	N/A	N/A	N/A	
n79	19 ²		+TT -69.8	+TT -69.8	+TT -69.8	+TT		-	-	-			
1179	19-		+TT	+TT	+TT -60.0								
n79	21 ³		-60.0 +TT	-60.0 +TT	+TT								
n79	26 ²		-69.8 +TT	-69.8 +TT	-69.8 +TT	N/A	N/A	N/A	N/A	N/A	N/A		N/A
NOTE 2	aggree aggree 2: The ru f_{DL}^{LB} = victim 3: The ru f_{DL}^{LB} = victim 4: The rec	essor (high equirement = $\left[f_{UL}^{HB} / 0. \right]$ (lower) be equirement = $\left[f_{UL}^{HB} / 0. \right]$ (lower) be quirement	her) band her) band fts should 5 0.1 in Mi hand in Mi and in Mi and in Mi s should l	for which is within t I be verifie Hz and F Hz and the I be verifie Hz and F Hz and the be verified	the mixin he downli ed for DL $_{DL_{-low}}^{LB} + B$ e channel ed for DL $_{DL_{-low}}^{LB} + B$ e channel d for UL E	g product nk transm EARFCN W ^{LB} _{Channel} / 2 bandwidt EARFCN W ^{LB} _{Channel} / 2 bandwidt ARFCN c	individual due to han hission bar of the vict $f_{DL}^{LB} \leq$ h configur of the vict $f_{DL}^{LB} \leq$ h configur of the aggr $2 \leq f_{UL}^{LB} \leq$	armonic of individith o tim (lower $F_{DL_high}^{LB} -$ red in the tim (lower $F_{DL_high}^{LB} -$ red in the red in the ressor (hig	victim (lo f a victim) band (su <i>BW</i> ^{LB} _{Channel} lower ban) band (su <i>BW</i> ^{LB} _{Channel} lower ban gher) band	wer) band (lower) band uperscript /2 with $fand./2$ with $fand./2$ with $fand./2$ with $fand./2$ with f	d LO with and. LB) such ^{LB} carrier t LB) such ^{LB} carrier t cript HB) s	leakage of that frequency that frequency such that	of / in the / in the
NOTE 7	victim 5: These below 6: These n71 is 7: The re $f_{UL}^{LB} =$ victim 3: The re	(lower) b e requirent 668 MHz e requirent s located a equirent = $\left\lfloor f_{DL}^{HB} / 0. \right\rfloor$ (higher) equirent	and and the nents app a and the nents app at or below nts should $15 \ 0.1$ in I band in M nts should	he chann ly when th downlink of ly when th w 668 MH I be verifie MHz and Hz and th I be verifie	el bandwi he lower e channel ir he lower e z and the ed for UL $F^{IB}_{UL_low}$ + he channe ed for UL	dth config idge frequ o Band 2 i idge frequ downlink EARFCN BW ^{IB} _{Oxmel} / I bandwid EARFCN	ured in the interval of the second s	e higher to be 5 MHz with its up the 10 MHz n Band 2 gressor (lo $C_{UL_high}^{LB}$ – ured in the gressor (h	band. uplink cha oper edge z, 15 MHz is located ower) ban BW_{Cannel}^{IB} e lower ba igher) ban	annel in B at 1990 M with its u d (supers $\frac{7}{2}$ with ca nd.	and n71 i MHz. Hz uplink pper edge cript LB) s arrier freq script HB)	s located channel i e at 1990 such that uency in such tha	at or n Band MHz. the
NOTE 9	victim	(lower) b		Iz and B	$W_{Channel}^{LB}$ th	e channel	bandwidt						

Table 7.3B.2.3.2.5-2: Reference sensitivity due to receiver harmonic mixing for EN-DC in NR FR1

Reference sensitivity exceptions due to close proximity of bands for EN-DC in NR FR1, are specified in Table 7.3B.2.3.2.5-3 with uplink configuration specified in Table 7.3B.2.3.4.2.1-4.

Table 7.3B.2.3.2.5-3: Reference sensitivity exceptions due to close proximity of bands for EN-DC in NR FR1

FFS

Reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1, are specified in Table 7.3B.2.3.2.5-4 with uplink configuration specified in Table 7.3B.2.3.4.2.1-5a to Table 7.3B.2.3.4.2.1-5e.

Table 7.3B.2.3.2.5-4: Reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1

	E-UTRA or NR Band / Channel bandwidth of the affected DL band														
UL	DL	SCS	5	10	15	20	25	40	50	60	80	90	100		
band	band	(kHz)	MHz												
			(dBm)												
3	n41	15		-90.5	-89.0	-87.9			-84.1						
	30 -90.8 -89.1 -88.1 -84.2 -83.6 -82.4 -82.0 -81.7														
				+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT		
		60		-91.2	-89.4	-88.3			-84.3	-83.8	-82.4	-82.0	-81.7		
				+TT	+TT	+TT			+TT	+TT	+TT	+TT	+TT		
n41	3		-93.3	-90.3	-88.5	-87.2									
n77	41 ¹		-93.5	-90.5	-88.7	-87.5									
n78	n78 41 ¹ -93.5 -90.5 -88.7 -87.5														
-	NOTE 1: Applicable only when harmonic mixing MSD for this combination is not applied. NOTE 2: TT is the same as defined in Table 7.3B.2.3.2.5-1a														

Reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1, are specified in Table 7.3B.2.3.2.5-5 with uplink configuration specified in Table 7.3B.2.3.4.2.1-6.

Table 7.3B.2.3.2.5-5: Reference sensitivity exceptions due to dual uplink operation for EN-DC in NRFR1 (two bands)

				NR or E-L	JTRA Ban	d / Chan	nel bandwid	el bandwidth			
EN-DC Configuration	EUTRA or NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm))	20 MHz (dBm)	40 MHz (dBm)	IMD order)	Duplex mode		
DC_1A_n77A	1	N/A	-69.5	-	-	-	-	IMD2 ³	FDD		
	n77	15	-	REFSENS	-	-	-	N/A	TDD		
DC_1A_n77A	1	N/A	-91.3	-	-	-	-	IMD4-	FDD		
	n77	15	-	REFSENS	-	-	-	N/A	TDD		
DC_2A_n66A	2	N/A	-77.3	-	-	-	-	IMD3			
20_2.1_100.1	n66	15	REFSENS	-	-	-	-	N/A			
DC_2A_n66A	2	N/A	REFSENS	-	-	-	-	N/A			
	n66	15	-95.5 +TT	-	-	-	-	IMD5 IMD2 ³			
DC_2A_n78A	2	N/A	-71.3	-	-	-	-	lividz°	FDD		
	n78	15	-	REFSENS	-	-	-	-	TDD		
DC_2A_n78A	2	N/A	-89.3	-	-	-	-	N/A			
	n78	15	-	REFSENS	-	-	-	IMD4 ³	TDD		
	3	N/A	REFSENS	-	-	-	-	-			
DC_3A_n7A	n7	15	-	-84.6 +TT ⁵	-	-	-	-			
DC_3A_n41A	3	N/A	-88.1	-	-	-	-	IMD4	FDD		
DC_3A_114TA	n41	15	-	REFSENS	-	-	-	IMD4	TDD		
DC_3A_n77A	3	N/A	-70.3	-	-	-	-	IMD2 ³			
DC_3A_n78A	n77, n78	15	-	REFSENS	-	-	-	-	TDD		
DC_3A_n77A	3	N/A	-88.3	-	-	-	-	IMD4 ³			
DC_3A_n78A	n77, n78	15	-	REFSENS	-	-	-	N/A	TDD		
	3	N/A	TBD⁵	-	-	-	-	IMD2			
	n78	15	-	REFSENS	-	-	-	N/A	TDD		
DC_3A_n78A	3	N/A	-	-	-	-	-	N/A	No		
	n78	15	-	REFSENS	-	-	-	N/A			
	3	N/A	-70.3	-	-	-	-	IMD2 ⁴			
DC_3C_n78A	n78	15	-	REFSENS	-	-	-	N/A			
	n78	15	-	REFSENS	-	-	-	N/A			
DC 2C p704	3	N/A	-88.3	-	-	-	-	IMD4 ⁴			
DC_3C_n78A	n78	15		REFSENS			-	N/A			
	5	N/A	-89.0	KEFSENS	-	-	-	IMD4	FDD		
DC_5A_n78A	n78	15	-09.0	REFSENS	-	-	-	N/A	TDD		
	8	N/A	-84.2	-	-	-	-	IMD3 ³	FDD		
DC_8A_n41A	n41	15	-	REFSENS	-	-	-	N/A	TDD		
DC_8A_n77A	8	N/A	-88.0	-	-	-	-	IMD4	FDD		
DC_8A_n78A DC_8A-	n77,	15	-	REFSENS	-	_	-	H4	TDD		
SUL_n78A-n81A	n78 8		01 5								
DC_8A_n79A DC_8A-	8 n79	N/A 15	-91.5	-	-	-	- REFSENS	IMD5 N/A	FDD TDD		
SUL_n79A-n81A				-	-	_	ILLI GENO				
	20	N/A	-85.3	-	-	-	-	IMD4	FDD		
DC_20A_n77A	n77	15	-	REFSENS	-	-	-	N/A	TDD		
	20	N/A	-89.8	-	-	-	-	IMD5	FDD		
DO 001	n77	15	-	REFSENS	-	-	-	N/A	TDD		
DC_20A_n78A, DC_20A-	20	N/A	-74.6	-	-	-	-	IMD4 ⁴	FDD TDD		
SUL_n78A-n82A	n78	15	-	REFSENS	-	-	-	N/A			
DC_21A_n79A	21 n79	N/A 15	-80.9	-	-	-	- REFSENS	IMD3 N/A	FDD TDD		

CA_28A_n77A, CA_28A_n78A, DC_28A- SUL_n78A-n83A	n77, n78	15	-	REFSENS	-	-	-	N/A	TDD								
	66	1740	-72.8	-	-	-	-	IMD2 ³	FDD								
DC 66A n78A	n78	3575	-	REFSENS	-	-	-	N/A	TDD								
DC_00A_1178A	66	1765	-90.8	-	-	-	-	IMD4 ³	FDD								
	n78 3435 - REFSENS N/A TDD																
NOTE 1: Both of th									•								
			ly indicates su						all be								
		et to the r	naximum outp	ut power acco	ording to th	ne UE pov	ver scaling ca	pability.									
NOTE 2: RBSTART =	-				· <i>c</i>												
NOTE 3: This band																	
NOTE 4: The symb						•	•	•									
			for 2 antenna	•													
	antenna port E-UTRA band, Table 7.3.2.5-1 for 2 antenna port NR band and Table 7.3.2_1.5-1 for 4																
antenna port NR band.																	
NOTE 5: For UEs only indicating support of Single UL, this requirement is verified with non-simultaneous uplink																	
transmissions on the E-UTRA and NR CGs.																	
NOTE 6: TT is the	same as d	efined in	Table 7.3B.2.3	3.2.5-1a.													

7.3B.2.4 Reference sensitivity for Inter-band EN-DC including FR2

7.3B.2.4.1 Test purpose

Same test purpose as in clause 7.3.2.1 in TS 38.521-2 [9] for the NR carrier.

7.3B.2.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

7.3B.2.4.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 7.3.2.3 in TS 38.521-2 [9] for the NR carrier.

The normative reference for this requirement is TS 38.101-3 [4] subclause 6.3B.2.4.

7.3B.2.4.4 Test description

7.3B.2.4.4.1 Initial conditions

Same test description as in clause 7.3.2.4 in TS 38.521-2 [9] for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1. For Initial conditions as in clause 7.3.2.4.1 in TS 38.521-2 [9], the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to Annex B.0 of TS36.521-1 [10].

Step 6 of Initial conditions as in clause 7.3.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

Same test procedure as in clause 6.5.3.1.4.1 in TS 38.521-2 [9] with the following steps added for E-UTRA component:

1.1 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7.

7.3B.2.4.5 Test requirement

Same test requirement as in clause 7.3.2.5 in TS 38.521-2 [9] for the NR carrier.

7.3B.2.5 Reference sensitivity for Inter-band EN-DC including FR1 and FR2 (3 CCs)

FFS

7.3B.2.6 Reference sensitivity for EN-DC within FR1(3 CCs)

7.3B.2.6.1 Test purpose

Same as in clause 7.3B.2.3.1.1.

7.3B.2.6.2 Test applicability

This test applies to all types of NR UE release 15 and forward supporting inter-band EN-DC.

7.3B.2.6.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.3B.2.0

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

- 7.3B.2.6.4 Test description
- 7.3B.2.6.4.1 Initial conditions

Same initial conditions as in subclause 7.3B.2.3.2.4.1 with following exceptions:

The initial test configurations for E-UTRA band and NR band consist of environmental conditions, test frequencies, and channel bandwidths and RB allocations for exceptional test scenarios are specified in Table 7.3B.2.6.4.1-1.

Table 7.3B.2.6.4.1-1: Test Configuration Table Reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (three bands)

In	itial Conditions
Test Environment as specified in TS 38.508-1 [6] subclause 4.1	NC, TL/VL, TL/VH, TH/VL, TH/VH

E-U ⁻ 4.3.1	TRA Test 1	Frequence	as specified in cies as specif	ied in TS 3	6.508 [11] subclause	For test freque	uencies refer	to "Range" colum	ns. For mappir	ng within Band	refer to "CC"		
[TBD supp	D] for the ported by	DC Config the UE.	setting (NRB_ guration acros				Refer to "NR NRB"and "E-UTRA NRB " columns							
Netv	vork signa	alling valu	e				NS_01 by default, exceptions listed in Table 7.3.3-3, dependent on PCC Band							
	[[Test Paramete		onfiguration	S					
			– E-UTRA			SCC1 – El				CG -				
	Band	Rang e	NR	В	Band	Range	N	RB	Band	Range	NF	RB		
ID	UL	DL	CH BW/ UL alloc	DLalloc	UL	DL MOD	UL/DL Ch BW	DLalloc	UL MOD	UL Ch BW	DL Ch BW	DLalloc		
	MOD	MOD	(Note 2,3,4)		MOD		alloc	ULalloc		RBalloc		Deanoc		
						t Settings for a D	C_XA-YA-ZA	<u> </u>		1		1		
	Х	Note 0		All RBs	Y	Mid		All RBs	Z	Mid		All RBs		
1	QPSK	QPSK	REFSENS	Highest N _{RB}	N/A	QPSK /CP- OFDM QPSK	Mid	All RBs	CP-OFDM QPSK	REFSENS	Mid	Highest N _{RB}		
	Y	Mid		All RBs	Y	Mid		All RBs	Z	Mid		All RBs		
2	QPSK	QPSK	REFSENS	Highest N _{RB}	N/A	QPSK /CP- OFDM QPSK	Mid		CP-OFDM QPSK	REFSENS	Mid	Highest NRB		
	Z	Mid		All RBs	Y	Mid		All RBs	XX	Mid		All RBs		
3	QPSK	QPSK	REFSENS	Highest N _{RB}	N/A	QPSK /CP- OFDM QPSK	Mid	All RBs	CP-OFDM QPSK	REFSENS	Mid	Highest NRB		
						est Settings for I	DC_1A-3A-n7					•		
	1	Note 0	5 MHz	All RBs	3	Note 0		All RBs	n78	Note 0		All RBs		
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0		
	1	Note 0	5 MHz	All RBs	3	Note 0		All RBs	n78	Note 0		All RBs		
2	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0		
	1	Note 0	5 MHz	All RBs	3	Note 0		All RBs	n78	Note 0		All RBs		
3	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHZ	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0		
				I		est Settings for I	DC_1A-5A-n7			1		I		
	1	Note 0	5 MHz	All RBs	5	Note 0	C N (1)	All RBs	n78	Note 0		All RBs		
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0		
						est Settings for I								
1	1	Note 0		All RBs	7	Note 0	5 MHz	All RBs	n78	Note 0	10 MHz	All RBs		

3GPP TS 38.521-3 version 15.3.0 Release 15

ETSI TS 138 521-3 V15.3.0 (2019-07)

								-					
	QPSK	QPSK	5 MHz 25@0	100	N/A	QPSK		25@0	CP-OFDM QPSK	10 MHz 52@0		52@0	
	1	Note 0	5 MHz	All RBs	7	Note 0		All RBs	n78	Note 0		All RBs	
2	QPSK	QPSK	25@0	100	N/A	QPSK	10 MHz	50@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
	•			•	Т	est Settings for D	C_1A-20A-n7	78A Configu	ration				
	1	Note 0	5 MHz	All RBs	20	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
					Т	est Settings for D	C_3A-5A-n7	8A Configur	ration				
	3	Note 0	5 MHz	All RBs	5	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
	3	Note 0	5 MHz	All RBs	5	Note 0		All RBs	n78	Note 0		All RBs	
2	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 25@0	10 MHz	52@0	
					Test Se	ettings for DC_3C	-7C-n78A wit	th UL CA Co	onfiguration				
	3	Note 0	5 MHz	All RBs	7	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
					Т	est Settings for D	C_3A-7A_n7	'8A Configu	ration				
	3	Note 0	5 MHz	All RBs	7	Note 0			All RBs	n78	Note 0		All RBs
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
					Т	est Settings for D	C_3C-7A_n7	8A Configu	ration				
	3	Note 0	5 MHz	All RBs	7	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
					Te	est Settings for D	C_3A-20A_n	78A Configu					
	3	Note 0	5 MHz	All RBs	20	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	N/A	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
					Τe	est Settings for D	C_3C-20A_n	78A Configu	Iration				
	3	Note 0	5 MHz	All RBs	20	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	QPSK	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0	
					Т	est Settings for D	C_5A-7A_n7	'8A Configu					
	5	Note 0	5 MHz	All RBs	7	Note 0		All RBs	n78	Note 0		All RBs	
1	QPSK	QPSK	25@0	100	QPSK	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 Mhz	52@0	
					Te	est Settings for D	C_7A-20A_n	78A Configu	Iration				

3GPP TS 38.521-3 version 15.3.0 Release 15

ETSI TS 138 521-3 V15.3.0 (2019-07)

	7	Note 0	5 MHz	All RBs	20	Note 0		All RBs	n78	Note 0		All RBs
1	QPSK	QPSK	25@0	100	QPSK	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0
	Test Settings for DC_7A-28A_n78A Configuration											
	7	Note 0	5 MHz	All RBs	28	Note 0		All RBs	n78	Note 0		All RBs
1	QPSK	QPSK	25@0	100	QPSK	QPSK	5 MHz	25@0	CP-OFDM QPSK	10 MHz 52@0	10 MHz	52@0

3GPP TS 38.521-3 version 15.3.0 Release 15

Note 0:	Test frequency for each DC configuration shall follow Table 7.3B.2.0.3.5.2-1. If test configurations of each ID in a DC configuration are same, test
	frequency shall follow the order of Table 7.3B.2.0.3.5.2-1.
Note 1:	CA Configuration Test CC Combination test settings are checked separately for each CA Configuration.
Note 2:	Intra-band contiguous & Intra-band contiguous + Inter-band: Use CA Configuration - specific test points if present in the table, otherwise use Default
	Test Settings test points.
Note 3:	Inter-band: Use CA Configuration - specific test points if present in the table, Otherwise use test points from matching Group Test Settings, if present
	in the table. Otherwise use the Default Test Settings test points.
Note 4:	Inter-band & Intra-band contiguous + Inter-band: If, according to the UE declared capability, UE does not support UL in an individual band within the
	CA Configuration, test points with that individual band as PCC are not applicable.
Note 5:	Intra-band contiguous: X corresponds to the band of the CA Configuration. E.g. for CA_41D, X=41
Note 6:	Inter-band: X,Y,Z correspond to the different bands in the CA Configuration. E.g. for CA_1A-3A-19A,X=1,Y=3,Z=19
Note 7:	Intra-band contiguous + Inter-band: X,Y correspond to the different bands in the CA Configuration, e.g. for CA_1C-3A, X=1,Y=3, for CA_1A_42C,
	X=1,Y=42
Note 8:	REFSENS refers to the PCC bands and PCC NRB 's single carrier Uplink RB allocation for reference sensitivity according to table 7.3.5-2.
Note 9:	Intra-band contiguous: If in the CA Configuration UE supports multiple CC Combinations with the same NRB_agg, choose for testing the Combination
	with maximum NRB_PCC and then select maximum NRB_SCC1 for the chosen NRB_PCC
Note 10:	
	Band 4: f _{DL} = 2120.1 MHz (N _{DL} = 2051)
Note 11:	Band 12: fuL = 710.9 MHz (NuL = 23129), fuL = 740.9 MHz (NuL = 5129)
	Band 4: f _{DL} = 2132.7 MHz (N _{DL} = 2177)
Note 12:	N/A
Note 13:	Test points that fulfil criteria of Note 4 in Table 7.3A.5.5-3.
Note 14:	Only Band 1 and Band 42 need to be tested and Band 3 does not need to be tested.
Note 15:	Only Band 1 and Band 3 need to be tested and Band 42 does not need to be tested.
Note 16:	Band 3: fUL = 1720MHz (NUL = 19300), fDL = 1815MHz (NDL = 1300)
	Band 42: fUL/DL = 3440MHz (NUL/DL = 41990)
Note 17:	Band 3: fUL = 1775MHz (NUL = 19850), fDL = 1870MHz (NDL = 1850)
	Band 42: fUL/DL = 3520MHz (NDL = 42790)
Note 18:	N/A
	Only Band 1 and Band 19 need to be tested and Band 28 does not need to be tested.
Note 20:	Intra-band contiguous + Inter-band: If in the CA Configuration UE supports multiple CC Combinations with the same N _{RB_agg} , choose the Combination
	with NRB_PCC = NRB_SCC1 for testing. If no such combination is supported, choose Combination with maximum NRB_PCC for testing.
	Band 42: ful/dL for SCC1 = 3430.2MHz (Nul/dL = 41892), ful/dL for SCC2 = 3450MHz (Nul/dL = 42090).
	Band 42: ful/oL for SCC1 = 3500.2MHz (Nul/oL = 42592), ful/oL for SCC2 = 3520MHz (Nul/oL = 42790).
	Band 28: $f_{UL} = 719.3 MHz$ (N _{UL} = 27373), $f_{DL} = 774.3 MHz$ (N _{DL} = 9373).
	Band 42: ful/DL for SCC1 = 3515.8MHz (NuL = 42748), ful/DL for SCC2 = 3527.5MHz (NDL = 42865).
	Band 8: $f_{UL} = 897.5$ MHz (N _{UL} = 21625), $f_{DL} = 942.5$ MHz (N _{DL} = 3625), Band 42: $f_{UL/DL} = 3590$ MHz (N _{UL/DL} = 43490).
	Band 28: $f_{UL} = 722.5 \text{ MHz}$ (N _{UL} = 27405), $f_{DL} = 777.5 \text{ MHz}$ (N _{DL} = 9405), Band 1: $f_{DL} = 2167.5 \text{ MHz}$ (N _{DL} = 575).
	Band 28: $f_{UL} = 743 \text{ MHz}$ (N _{UL} = 27610), $f_{DL} = 798 \text{ MHz}$ (N _{DL} = 9610). Band 11: $f_{DL} = 1480.9 \text{ MHz}$ (N _{DL} = 4800).
Note 28:	Band 12: $f_{UL} = 704$ MHz (N _{UL} = 23060), $f_{DL} = 734$ MHz (N _{DL} = 5060)
	Band 66: $f_{UL} = 1712.5$ MHz (N _{UL} = 131997), $f_{DL} = 2112.5$ MHz (N _{DL} = 66461)
Note 29:	
	Band 66: $f_{UL} = 1720MHz$ (N _{UL} = 132072), $f_{DL} = 2120MHz$ (N _{DL} = 66536)
Note 30:	Band 12: $f_{UL} = 711 \text{MHz} (N_{UL} = 23130), f_{DL} = 741 \text{MHz} (N_{DL} = 5130)$
	Band 66: f _{UL} = 1717.5MHz (N _{UL} = 132047), f _{DL} = 2117.5MHz (N _{DL} = 66511).

Note 31:	Band 3: fuL = 1757.4MHz (NuL = 19674), foL = 1852.4MHz (NoL = 1674),
	Band 11: $f_{DL} = 1480.9 MHz (N_{DL} = 4800).$
Note 32:	Band 3: $f_{DL} = 1852.4MHz (N_{DL} = 1674),$
	Band 11: $f_{UL} = 1432.9$ MHz (N _{UL} = 22800), $f_{DL} = 1480.9$ MHz (N _{DL} = 4800).
Note 33:	Band 2: $f_{UL} = 1868.3MHz$ (N _{UL} = 18783), $f_{DL} = 1948.3MHz$ (N _{DL} = 783).
	Band 4: fuL = 1735MHz (NuL = 20200), fuL = 2135MHz (NuL = 2200).
Note 34:	The orders and numbering of SCCs in this table does not imply any order in test implementation of SCCs.
Note 35:	Band 3: fuL = 1737MHz (NuL = 19470), fpL = 1832MHz (NpL = 1470).
	Band 7: fuL = 2543MHz (NuL = 23430), fpL = 2663MHz (NpL = 3180).
	Band 20: $f_{UL} = 847MHz (N_{UL} = 24300), f_{DL} = 806MHz (N_{DL} = 6300).$
Note 36:	Band 3: $f_{UL} = 1775MHz$ (N _{UL} = 19850), $f_{DL} = 1870MHz$ (N _{DL} = 1850).
	Band 7: $f_{UL} = 2510MHz$ (N _{UL} = 23100), $f_{DL} = 2630MHz$ (N _{DL} = 2850).
	Band 20: $f_{UL} = 855MHz$ (N _{UL} = 24380), $f_{DL} = 814MHz$ (N _{DL} = 6380).
Note 37:	Band 7: $f_{UL} = 2512MHz$ (N _{UL} = 23120), $f_{DL} = 2632MHz$ (N _{DL} = 2512).
	Band 20: $f_{UL} = 851MHz (N_{UL} = 24340), f_{DL} = 851MHz (N_{DL} = 6340).$
Note 38:	Test frequency for each CA configuration shall follow Table 7.3A.0-0f. If test configurations of each ID in a CA configuration are same, test frequency
	shall follow the order of Table 7.3A.0-0f.
Note 39:	Test frequency for each CA configuration shall follow Table 7.3A.0-0g. If test configurations of each ID in a CA configuration are same, test frequency
	shall follow the order of Table 7.3A.0-0g.

7.3B.2.6.4.2 Test procedure

Same as in clause 7.3B.2.6.0.4.2

7.3B.2.6.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

7.3B.2.6.5 Test requirement

Reference sensitivity exceptions for intermodulation interference due to dual uplink operation for EN-DC in NR FR1, are specified in Table 7.3B.2.6.5-1 with uplink configuration specified in Table 7.3B.2.6.4.1-1.

Table 7.3B.2.6.5-1: Reference sensitivity exceptions for Scell due to dual uplink operation for EN-DC in NR FR1 (three bands)

EN-DC Configuration	EUTRA/ NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	20 MHz (dBm)	40 MHz (dBm)	Duplex mode	IMD order	Single UL allowed
	1	N/A	REFSE NS	-	-	-	FDD	N/A	
	3	N/A	-64.8	-	-	-		IMD2	
	n77	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_1A-3A_n77A	3	N/A	-87.8	- REFSE	-	-		IMD4	
	n77	15	-	NS	-	-	TDD	N/A	
	1	N/A	-68.3 REFSE	-	-	-	FDD	IMD2	
	3	N/A	NS	- REFSE	-	-		N/A	
	n77	15	-	NS	-	-	TDD	N/A	
	1	N/A	-91.0	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B1}	
	3	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	REFSE NS	-	-	-		N/A	
DC_1A-3A_n78A DC_1A-3C_n78A	3	N/A	-65.1	-	-	-	FDD	IMD2 f _{в78} - f _{в1}	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	-96.5	-	-	-	FDD	IMD5 2*f _{B78} -3*f _{B3}	
	3	N/A	REFSE NS	-	-	-		N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	-91.0	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B1}	
	5	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	REFSE NS	-	-	-	FDD	N/A	
	5	N/A	-89.0	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B5}	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
DC_1A-5A_n78A	1	N/A	-81.2	-	-	-	FDD	IMD3 f _{B78} - 2*f _{B5}	
	5	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
-	1	N/A	REFSE NS	-	-	-	FDD	N/A	
	5	N/A	-94.2	-	-	-	FDD	IMD5 2*f _{B78} -3*f _{B1}	
	n78	15	-	REFSE NS	-	-	TDD	N/A	

EN-DC Configuration	EUTRA/ NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	20 MHz (dBm)	40 MHz (dBm)	Duplex mode	IMD order	Single UL allowed
	1	N/A	-91.0	-	-	-	FDD	IMD4 f _{в78} - 3*f _{в1}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_1A-7A_n78A	7	N/A	-88.2	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B1}	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	-90.6	-	-	-	FDD	IMD4 2*f _{B78} -2*f _{B7}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	-79.0	-	-	-	FDD	IMD3	
DC_1A-20A_n78A	20	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	1	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_1A-20A_n78A	20	N/A	-93.3	-	-	-	FDD	IMD5	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	3	N/A	REFSE NS	-	-	-	FDD	N/A	
	5	N/A	-89.0	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B5} ⁴	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
DC_3A-5A_n78A	3	N/A	-70.3	-	-	-	FDD	IMD2 f _{в78} - f _{в3}	
	5	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	3	N/A	-88.3	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B3} ⁴	
			[TBD]			10.7 ⁵			
	3	N/A	-78.7	-	-	-	FDD	IMD3 f _{B78} - 2*f _{B7}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_3C-7C_n78A	n78	15	-	REFSE NS	-	-	TDD	N/A	
	3	N/A	-87.7	-	-	-	FDD	IMD4 2*f _{B78} -2*f _{B7}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	

EN-DC Configuration	EUTRA/ NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	20 MHz (dBm)	40 MHz (dBm)	Duplex mode	IMD order	Single UL allowed
	n78	15	-	REFSE NS	-	-	TDD	N/A	
DC_3A-7A_n78A	3	N/A	-78.7	-	-	-	FDD	IMD3 f _{B78} - 2*f _{B7}	
DC_3C-7A_n78A	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
DC_3A-7A_n78A	3	N/A	-87.7	-	-	-	FDD	IMD4 2*f _{B78} -2*f _{B7}	
DC_3C-7A_n78A DC_3C-7A_n78A	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
DC_3A-20A_n78A	3	N/A	-79.0	-	-	-	FDD	IMD3 f _{B78} - 2*f _{B20}	
DC_3A-20A_178A DC_3C-20A_178A	20	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	5	N/A	-89.0	-	-	-	FDD	IMD4 f _{B78} - 3*f _{B5}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	5	N/A	REFSE NS	-	-	-	FDD	N/A	
	7	N/A	-67.2	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
DC_5A-7A_n78A	5	N/A	-67.1	-	-	-	FDD	IMD2 f _{B78} - f _{B7}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	5	N/A	-94.0	-	-	-	FDD	IMD5 2*f _{B78} -3f _{B7}	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_7A-20A_n78A	20	N/A	-65.8	-	-	-	FDD	IMD2 f _{B78} - f _{B7}	
	n78	3370	-	REFSE NS	-	-	TDD	N/A	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_7A-20A_n78A	20	N/A	-93.3	-	-	-	FDD	IMD5 2*f _{B78} -3*f _{B7}	
	n78	15	-	REFSE NS	-	-	TDD	N/A	

EN-DC Configuration	EUTRA/ NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	20 MHz (dBm)	40 MHz (dBm)	Duplex mode	IMD order	Single UL allowed
	7	N/A	-66.5	-	-	-	FDD	IMD2 f _{B78} - f _{B20}	
DC_7A-20A_n78A	20	N/A	REFSE NS	-	-	-	FDD	N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
	28	N/A	-89.5	-	-	-		IMD2	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	7	N/A	REFSE NS	-	-	-	FDD	N/A	
DC_7A-28A_n78A	28	N/A	-94.8	-	-	-		IMD5	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
	7	N/A	-66.8	-	-	-	FDD	IMD2	
	28	N/A	REFSE NS	-	-	-		N/A	
	n78	15	-	REFSE NS	-	-	TDD	N/A	
at P _{CMAX_L} , NOTE 2: RB _{START} = NOTE 3: For UEs or	red and the U $_{\rm c}$ or set to the	E only indic maximum of S	ates suppo output pow Single UL, t	ort of "Single er accordin	e UL" the c g to the UE	utput power E power scal	of the activing capabil	ve UL sha ity.	all be set

NOTE 4: This band is subject to IMD5 also which MSD is not specified.

NOTE 5: The symbol "REFSENS" in this table refers to the reference sensitivity values for single carrier specified in Table 7.3.5-1 of TS 36.521-1 for 2 antenna port E-UTRA band, Table 7.3_1.5-1 of TS 36.521-1 for 4 antenna port E-UTRA band, Table 7.3.2.5-1 for 2 antenna port NR band and Table 7.3.2.5-2 for 4 antenna port NR band.

NOTE 6: No requirements apply when there is at least one individual RE within the intermodulation generated by the dual uplink is within the downlink transmission bandwidth of the Band 46. The reference sensitivity should only be verified when this is not the case (the requirements for Band 46 specified in the CA_7A-46A in clause 7.3.1 of 36.101 apply).

Test tolerance is the same as given in Table 7.3B.2.3.1.5-2.

7.3B.3 $\Delta R_{IB,c} \Delta R_{IBNC}$ for EN-DC

Editor's Note: Table number to be updated.

For the UE which supports inter-band EN-DC configuration, the minimum requirement for reference sensitivity in Table 7.3.1-1 and Table 7.3.1-1a in TS.36101[5], subclause 7.3.2, 7.3A.2, 7.3C.2 in TS 38.101-1[2] and subclause 7.3.2, 7.3A.2 in TS 38.101-2 [3] shall be increased by the amount given in $\Delta R_{IB,c} \Delta R_{IBNC}$ in Tables below where unless otherwise stated, the same $\Delta R_{IB,c}$, ΔR_{IBNC} are applicable to NR band(s) part for DC configurations which have the same NR operating band combination. Unless otherwise stated, $\Delta R_{IB,c}$ or $\Delta R_{IB,C}$ is set to zero.

In case the UE supports more than one of band combinations for CA, SUL or DC, and an operating band belongs to more than one band combinations then

- When the operating band frequency range is ≤ 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the average value for all band combinations defined in subclause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [4], truncated to one decimal place that apply for that operating band among the supported band combinations. In case there is a harmonic relation between low band UL and high band DL, then the maximum $\Delta R_{IB,c}$ among the different supported band combinations involving such band shall be applied.
- When the operating band frequency range is > 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the maximum value for all band combinations defined in subclause 7.3A, 7.3B, 7.3C in this specification and 7.3A, 7.3B in TS 38.101-3 [4] for the applicable operating bands.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.3B.3.

7.3B.3.1 Reference sensitivity $\Delta R_{IB,c}$ for Intra-band Contiguous EN-DC

FFS

Reference sensitivity $\Delta R_{IB,c}$ for Intra-band non-contiguous EN-DC 7.3B.3.2

DC configuration	Aggregated channel bandwidth (LTE+NR)	W _{gap} / (MHz)	UL LTE allocation	ΔR _{IBNC} (dB)	Duplex mode
	· · · ·	45.0 < W _{gap} ≤ 65.0	12 ¹	4.7	FDD
	5MHz+5MHz	$0.0 < W_{gap} \le 45.0$	25 ¹	0	
	5MHz+10MHz	$40.0 < W_{gap} \le 60.0$	12 ¹	3.8	
		$0.0 < W_{gap} \le 40.0$	25 ¹	0	
	5MHz+15MHz	35.0 < W _{gap} ≤ 55.0	12 ¹	3.6	
		$0.0 < W_{gap} \le 35.0$	25 ¹	0	
	5MHz+20MHz	$30.0 < W_{gap} \le 50.0$	12 ¹	3.4	
		0.0 < W _{gap} ≤ 30.0	25 ¹	0	
	5MHz+25MHz	$25.0 < W_{gap} \le 45.0$	12 ¹	3.2	
		0.0 < W _{gap} ≤ 25.0	25 ¹	0	
	5MHz+30MHz	$20.0 < W_{gap} \le 40.0$	12 ¹	3.0	
		0.0 < W _{gap} ≤ 20.0	25 ¹	0	
	10MHz+5MHz	30.0 < W _{gap} ≤ 60.0	12 ⁵	5.1	
		0.0 < W _{gap} ≤ 30.0	32 ¹	0	
	10MHz+10MHz	25.0 < W _{gap} ≤ 55.0	12 ⁵	4.3	
		0.0 < W _{gap} ≤ 25.0	32 ¹	0	
	10MHz+15MHz	$20.0 < W_{gap} \le 50.0$	12 ⁵	3.8	
		$0.0 < W_{gap} \le 20.0$	32 ¹	0	
	10MHz+20MHz	15.0 < W _{gap} ≤ 45.0	12 ⁵	3.5	
		0.0 < W _{gap} ≤ 15.0	32 ¹	0	
	10MHz+25MHz	10.0 < W _{gap} ≤ 40.0	12 ⁵	3.2	
DC_3A_n3A		0.0 < W _{gap} ≤ 10.0	32 ¹	0	
DO_0/(_10/(10MHz+30MHz	5.0 < W _{gap} ≤ 35.0	12 ⁵	2.8	
		0.0 < W _{gap} ≤ 5.0	32 ¹	0	
	15MHz+5MHz	25.0 < W _{gap} ≤ 55.0	12 ⁶	6.0	
		0.0 < W _{gap} ≤ 25.0	32 ¹	0	
	15MHz+10MHz	20.0 < W _{gap} ≤ 50.0	12 ⁶	4.7	
		0.0 < W _{gap} ≤ 20.0	32 ¹	0	
	15MHz+15MHz	15.0 < W _{gap} ≤ 45.0	12 ⁶	4.2	
		0.0 < W _{gap} ≤ 15.0	32 ¹	0	
	15MHz+20MHz	$10.0 < W_{gap} \le 40.0$	12 ⁶	3.8	
		0.0 < W _{gap} ≤ 10.0	32 ¹	0	
	15MHz+25MHz	5.0 < W _{gap} ≤ 35.0	12 ⁶	3.5	
		0.0 < W _{gap} ≤ 5.0	32 ¹	0	
	15MHz+30MHz	$0.0 < W_{gap} \le 30.0$	<u>12⁶</u>	3.3	
	20MHz+5MHz 20MHz+10MHz 20MHz+15MHz	15.0 < W _{gap} ≤ 50.0	<u>16⁷</u>	6.5	
		0.0 < W _{gap} ≤ 15.0	32 ¹	0	
		$10.0 < W_{gap} \le 45.0$	16 ⁷	5.1	
		$0.0 < W_{gap} \le 10.0$	32 ¹	0	
		5.0 < W _{gap} ≤ 40.0	167	4.5	
		$0.0 < W_{gap} \le 5.0$	32 ¹	0	
	20MHz+20MHz	$0.0 < W_{gap} \le 35.0$	16 ⁷	4.1	
	20MHz+25MHz	$0.0 < W_{gap} \le 30.0$	16 ⁷	3.8	
	20MHz+30MHz	$0.0 < W_{gap} \le 25.0$	16 ⁷	3.6	un lind (
operat NOTE 2: W _{gap} is	ing band but confined w s the sub-block gap betw	cks shall be located as clo ithin the transmission. veen the two sub-blocks. f PCC in the UL operating	·		
operat NOTE 4: All cor	ing band. nbinations of channel ba	andwidths defined in Table	e 5.3B.1.3-1.		

Table 7.3B.3.2-1: Intra-band non-contiguous EN-DC with one uplink configuration for reference sensitivity

NOTE 5: ⁵ refers to the UL resource blocks shall be located at RB_{start}=25.

NOTE 6: ⁶ refers to the UL resource blocks shall be located at RB_{start}=35. NOTE 7: ⁷ refers to the UL resource blocks shall be located at RB_{start}=50.

- 7.3B.3.3 $\Delta R_{IB,c}$ for Inter-band EN-DC within FR1
- 7.3B.3.3.1 $\Delta R_{IB,c}$ for Inter-band EN-DC in two bands within FR1

Table 7.3B.3.3.1-1: $\Delta R_{IB,c}$ due to EN-DC(two bands)

Inter-band EN-DC	E-UTRA or NR Band	ΔR _{IB,c} (dB)
	~28	0.2
DC_1_n28 DC_1_n51	n28 n51	0.2 0.1
DC_1_IIS1	1	0.2
DC_1_n77	n77	0.2
DC_1_n78	n78	0.5
	2	0.3
DC_2_n66	n66	0.3
	2	0.2
DC_2_n78	n78	0.5
50.0.54	3	0.2
DC_3_n51	n51	0.2
DC_3_n77	3	0.2
DC_3_1177	n77	0.5
DC_3_n78	3	0.2
DC_3_1178	n78	0.5
DC_5_n78	5	0.2
	n78	0.5
DC_7_n51	n51	0.2
DC_7_n77	n77	0.5
DC_7_n78	n78	0.5
DC_8_n77	8	0.2
	n77	0.5
DC_8_n78	3	0.2
	n78	0.5
DC_11_n77	n77	0.5
DC_11_n78	n78	0.5
DC_12A_n5A	12	0.3
	n5	0.5
DC_12A_n66A	12	0.5
DC_18_n77	n77	0.5
DC_19_n77		0.5
DC_19_n78 DC_20_n51	n78 n51	0.5 0.2
DC_20_n31 DC_20_n77	n77	0.2
DC_20_n78	n78	0.5
DC_20_178 DC_21_n77	n77	0.5
DC_21_n78	n78	0.5
		0.5 0 ^f
DC_25_n41	n41 —	0.5 ²
DC_26A_n77A	n77	0.5
DC_26_n78	n78	0.5
DC_28A_n51	n51	0.2
	28	0.2
DC_28_n77	n77	0.5
DC 28 = 70	28	0.2
DC_28_n78	n78	0.5
DC 28 579	28	0.2
DC_28_n78	n78	0.5
DC_30_n66	30	0.5
	n66	0.4
DC_38_n78	38	0.4
	n78	0.5
DC_39_n78	n78	0.5
DC_39_n79	n79	0.5
DC_40_n77	40	0.4
	n77	0.5
DC_41_n77	n77	0.5
DC_41_n78	n78	0.5
DC_41_n79	n79	0.5
DC_42_n51	n51	0.2
DC_66A_n78A	66	0.2
	n78	0.5

NOTE 1: The requirement is applied for UE transmitting on the frequency range of 2545-2690MHz. NOTE 2: The requirement is applied for UE transmitting on the frequency range of 2496-2545MHz.

7.3B.3.3.2 $\Delta R_{IB,c}$ for Inter-band EN-DC in three bands within FR1

Table 7.3B.3.3.2-1: $\Delta R_{IB,c}$ due to EN-DC (three bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} (dB)
DC_1-3_n28	n28	0.2
	1	0.2
DC_1-3_n77	3	0.2
	n77	0.5
	1	0.2
DC_1-3_n78	3	0.2
		0.5
	1	0.2
DC_1-5_n78	5	0.2
		0.5
DC_1-7_n28	n28	0.2
DC_1-7_1120		0.2
	7	
DC_1-7_n78		0.2
		0.5
DC_1-8_n78	8	0.2
	n78	0.5
DC_1-18_n77	n77	0.5
DC_1-18_n78	n78	0.5
DC_1-19_n77	n77	0.5
DC_1-19_n78	n78	0.5
DC_1-19_n79	1	0.3
	19	0.3
	1	0.0
DC_1-20_n28	20	0.2
— — — F	n28	0.2
DC_1-20_n78	n78	0.5
DC_1-21_n77	n77	0.5
	1	0.2
DC_1-21_n78	n78	0.5
	28	0.2
DC_1-28_n77		
		0.5
DC_1-28_n78	28	0.2
	n78	0.5
	1	0
DC_1_n28-n78	n28	0.2
	n78	0.5
DC_1_n28-n79	1	0.3
B0_1_120 11 0	28	0.3
	1	0.2
DC_1-42_n77	42	0.5
	n77	0.5
DC_1-41_n77	n77	0.5
DC_1-41_n78	n78	0.5
	1	0.2
DC_1-42_n78	42	0.5
F	n78	0.5
DC_1-42_n79	42	0.5
	1	0.2
DC_1_n77-n79	n77	0.5
	n79	0.0
	1	0.0
	n78	0.5
	n79	0.0
DC_1-SUL_n78-n84	n78	0.5
DC_2_5_n66	2	0.3
	n66	0.3
	2	0.4
DC_2_30_n66	30	0.5
	n66	0.4
DC_2-66_n71B	2	0.3
DC_2-00_11/1B	66	0.3
	3	0.2
DC_3_n3-n77	n3	0.2

Ι	~ 77	0.5
	n77	0.5
DC_3_n3-n78	3	0.2
	n3	0.2
	n78	0.5
	3	0.2
DC_3-5_n78	5	0.2
	n78	0.5
DC_3-7_n78, DC_3-7-	3	0.2
7_n78	7	0.2
7_1176	n78	0.5
	3	0.2
DC_3-8_n78	8	0.2
	n78	0.5
DC 2 10 x77	3	0.2
DC_3-19_n77	n77	0.5
DO 0.40 x70	3	0.2
DC_3-19_n78	n78	0.5
	3	0
DC_3-19_n79	19	0
	n79	0
	3	0.2
DC_3-20_n78		0.5
	n78	
	<u>3</u> 21	0.3 0.5
DC_3-21_n77		
	n77	0.5
	3	0.3
DC_3-21_n78	21	0.5
	n78	0.5
DC_3-21_n79	3	0.3
DO_9-21_11/9	21	0.5
DC_3-28_n78	3	0.2
DC_3-28_1178	n78	0.5
	3	0.2
DC_3_n28-n78	n28	0
	n78	0.5
	3	0.2
DC_3-38_n78	38	0.4
	n78	0.5
	3	0.2
		01
DC_3-41_n78	41	0.5 ²
	n78	0.5
	3	0.2
DC_3-42_n77	42	0.5
D0_3-42_11/1	n77	0.5
		0.2
	3	
DC_3-42_n78	42	0.5
	n78	0.5
	3	0.2
DC_3-42_n79	42	0.5
	n79	0
	3	0.2
DC_3_n77-n79	n77	0.5
	n79	0.0
	3	0.2
DC_3_n78-n79	n78	0.5
	n79	0.0
	3	0.2
DC_3-SUL_n78-n80	n78	0.5
	-	
	3	0.2
DC_3-SUL_n78-n82	0	0.5
	5	0.2
DC_5-7_n78	7	0.2
	n78	0.5

DC_5_30_n66	30	0.5
	n66	0.4
DC_7-7_n78	7	0.0
	n78	0.5
DC_7-20_n28	20	0.2
	n28	0.2
DC_7-20_n78	n78	0.5
DC_7-28_n78	n78	0.5
DC_7_n28-n78	n78	0.5
DC_7-46_n78	n78	0.5
	8	0.2
DC_8A-SUL_n78-n81	n78	0.2
	n77	0.5
DC_18-28_n77	n78	0.5
DC 10 00 = 70		0.5
DC_18-28_n78	n78	0.5
DC_19-21_n77	n77	0.5
DC_19-21_n78	n78	0.5
DC_19-42_n77	42	0.5
	n77	0.5
DC 10 42 579	42	0.5
DC_19-42_n78	n78	0.5
DC_19-42_n79	42	0.5
	19	0.0
DC_19_n77-n79	n77	0.5
	N79	0
	19	0.0
DDC_19_n78-n79	N78	0.5
	n79	0.0
	20	0.0
DC_20_n8-n75	n8	0.0
	n75	0.0
	20	0.0
DC_20_n28-n75	n28	0.2
	n75	0.0
	20	0.2
DC_20_n28-n78	n28	0.2
	n78	0.5
	20	0.0
DC_20_n75-n78	n75	0.0
	n78	0.5
	20	0.0
DC 20 p76 p79		
DC_20_n76-n78		0.0
DO 00 01 11 70 00	n78	0.5
DC_20-SUL_n78-n82	n78	0.5
	20	0.2
DC_20-SUL_n78-n83	n78	0.5
	42	0.5
DC_21-42_n77	n77	0.5
DO 01 10 TO	42	0.5
DC_21-42_n78	n78	0.5
DC_21-42_n79	42	0.5
	21	0.0
DC_21_n77-n79	n77	0.0
	n79	0.0
	21	0.0
DC_21_n78-n79	n78	0.5
	n79	0.0
	n79 28	0.2
DC_28-SUL_n78-n83		
	28	0.2 0.5
	28 n78	0.2

	n77	0.5
	28	0.2
DC_28-42_n78	42	0.5
	n78	0.5
DC 28-42 n79	28	0.2
DC_28-42_1179	42	0.5
DC_41-42_n77	42	0.5
DC_41-42_1177	n77	0.5
DC_41-42_n78	42	0.5
DC_41-42_1178	n78	0.5
DC_41-42_n79	42	0.5
DC_41_n77	n77	0.5
DC_41_n78	n78	0.5
DC_41_n79	n79	0.5
	66	0.2
DC_66-SUL_n78-n86	n78	0.5
NOTE 1: The requirement 2690MHz.	is applied for UE transmitting on the	frequency range of 2545-
NOTE 2: The requirement 2545MHz.	is applied for UE transmitting on the	e frequency range of 2496-

7.3B.3.3.3 $\Delta R_{IB,c}$ for Inter-band EN-DC in four bands within FR1

Table 7.3B.3.3.3-1: ΔRIB,c due to EN-DC (four bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} [dB]
	1	0.2
DC_1-3-5_n78	3	0.2
	n78	0.5
DC_1-3-7_n28	n28	0.2
Ļ	1	0.3
DC_1-3-7_n78	3	0.3
DC_1-3-7-7_n78	7	0.3
	n78	0.5
	1	0.2
DC_1-3-8_n78	3	0.2
	8	0.2
	n78	0.5
	1	0.2
DC_1-3-28_n77	3	0.2
	28	0.2
		0.5
	1	
DC_1-3-28_n78	3 28 or n28	0.2
DC_1-3_n28-n78		0.2
	n78	0.5
 DC_1-3-28_n79	3	0.2
DC_1-3-20_11/9	28	0.2
	1	0.2
DC_1-3-19_n78	3	0.2
DC_1-3-19_178		0.5
	20	0.2
DC_1-3-20_n28	n28	0.2
	1	0.2
DC_1-3-20_n78	3	0.2
DC_1-3-20_11/0		0.5
	1	0.2
	3	0.3
DC_1-3-21_n77	21	0.5
	n77	0.5
	1	0.2
	3	0.3
DC_1-3-21_n78	21	0.5
F	n78	0.5
	3	0.3
DC_1-3-21_n79	21	0.5
	1	0.2
	3	0.2
DC_1-3-42_n77	42	0.5
F	n77	0.5
	1	0.2
	3	0.2
DC_1-3-42_n78	42	0.5
F	n78	0.5
	1	0.2
DC_1-3-42_n79	3	0.2
ř	42	0.5
	1	0.2
DC_1-5-7_n78	5	0.2
DC_1-5-7-7_n78	7	0.2
	n78	0.5
DC_1-7-20_n28	20	0.2
	n28	0.2
	1	0.2
DC_1-7-20_n78	7	0.2
	20	0.2
	n78	0.5
DC_1-7_n28-n78	1	0.2

	7	0.2
	n28	0.2
	n78	0.5
DC_1-18-28_n77	n77	0.5
DC_1-18-28_n78	n78	0.5
	1	0.2
DC_1-19-42_n77	42	0.5
	n77	0.5
DC_1-19-42_n78	42	0.5
	n78	0.5
DC_1-19-42_n79	42	0.5
	1	0.0
DC_1-20_n28-n78	20	0.2
	n28	0.2
	n78	0.5
DC 1 21 42 p77	1	0.2
DC_1-21-42_n77	42 n77	0.5
	42	0.5
DC_1-21-42_n78	n78	0.5
DC_1-21-42_n79	42	0.5
	1	0.2
	28	0.2
DC_1-28-42_n77	42	0.5
	n77	0.5
	28	0.2
DC_1-28-42_n78	42	0.5
	n78	0.5
DC_1-28-42_n79	28	0.2
DC_1-20-42_1179	42	0.5
DC_1-41-42_n78	42	0.5
	n78	0.5
DC_1-41-42_n79	42	0.5
DC_1-41-42_n79	42	0.5
DC_2-66-(n)71	66	0.3
	3	0.3
DC_3-5-7_n78, DC_3-5-	5	0.2
7-7_n78	7	0.2
	n78	0.5
	3	0.2
DC_3-7-7_n78	7	0.2
	n78	0.5
DC_3-7-20_n28	20	0.2
DC_3-7-20_1128	n28	0.1
	3	0.2
DC_3-7-20_n78	7	0.2
	n78	0.5
	3	0.2
DC_3-7-28_n78	7	0.2
DC_3-7_n28-n78	28 or n28	0.2
	n78 3	0.5
DC_3-19-21_n77	21	0.5
	n77	0.5
	3	0.3
DC_3-19-21_n78	21	0.5
	n78	0.5
	3	0.3
DC_3-19-21_n79	21	0.5
	3	0.2
DC_3-19-42_n77	42	0.5
	n77	0.5
DC_3-19-42_n78	0.2	0.2
DC_3-13-42_11/0	0.5	0.5

	0.5	0.5
	3	0.2
DC_3-19-42_n79	42	0.5
	3	0.2
	20	0.2
DC_3-20_n28-n78	n28	0.2
	n78	0.5
	3	0.3
	21	0.5
DC_3-21-42_n77	42	0.5
	n77	0.5
	3	0.3
	21	0.5
DC_3-21-42_n78	42	0.5
	n78	0.5
	3	0.3
DC_3-21-42_n79	21	0.5
	42	0.5
	3	0.2
	28	0.2
DC_3-28-42_n77	42	0.5
	n77	0.5
	3	0.2
	28	0.2
DC_3-28-42_n78	42	0.5
	n78	0.5
	3	0.2
DC_3-28-42_n79	28	0.2
	42	0.5
	5	0.2
DC_5-7-7_n78	7	0.2
	n78	0.5
	7	0.0
	20	0.2
DC_7-20_n28-n78	n28	0.2
	n78	0.5
DO 10 01 10 - 77	42	0.5
DC_19-21-42_n77	n77	0.5
	42	0.5
DC_19-21-42_n78	n78	0.5
DC_19-21-42_n79	42	0.5
	28	0.2
DC_21-28-42_n77	42	0.5
	n77	0.5
	28	0.2
DC_21-28-42_n78	42	0.5
	n78	0.5
	28	0.2
DC_21-28-42_n79	42	0.5

7.3B.3.3.4 $\Delta R_{IB,c}$ for Inter-band EN-DC in five bands within FR1

Table 7.3B.3.3.4-1: $\Delta R_{IB,c}$ due to EN-DC (five bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} [dB]
	1	0.2
	3	0.2
DC_1-3-5-7_n78, DC_1-3-5-7-7_n78	5	0.2
00_1-3-3-7-7_1178	7	0.2
	n78	0.5
DC_1-3-7-20_n28	20	0.2
	n28	0.2
	1	0.2
DC_1-3-7-20_n78	3	0.2
	7	0.2
	n78	0.5
	1 3	0.2
DC_1-3-7_n28-n78	7	0.2
D0_1-0-7_1/20-11/0	n28	0.2
	n78	0.5
	1	0.2
	3	0.3
DC_1-3-19-21-n77	21	0.5
	n77	0.5
	1	0.2
	3	0.3
DC_1-3-19-21_n78	21	0.5
	n78	0.5
DC_1-3-19-21_n79	3	0.3
	21	0.5
	1	0.2
DC_1-3-19-42_n77	3	0.2
	42	0.5
	n77	0.5
DC 1 2 10 42 p70	1 3	0.2
DC_1-3-19-42_n79	42	0.2
	1	0.5
	3	0.2
DC_1-3-28-42_n77	28	0.2
	42	0.5
	n77	0.5
	1	0.2
	3	0.2
DC_1-3-28-42_n78	28	0.2
	42	0.5
	n78	0.5
	1	0.2
DC_1-3-28-42_n79	3	0.2
	28	0.2
	42	0.5
	1	0.2
DC_1-3-20_n28-n78	3 20	0.2
DC_1-3-20_1120-11/0	n28	0.2
	n78	0.2
	1	0.3
	3	0.2
DC_1-3-21-42_n77	21	0.5
	42	0.5
	n77	0.2
	1	0.2
	3	0.3
DC_1-3-21-42_n78	21	0.5
	42	0.5
	n78	0.2
DC_1-3-21-42_n79	1	0.2
	3	0.3

	21	0.5
	42	0.5
	n79	0.0
	1	0.2
	7	0.2
DC_1-7-20_n28-n78 DC	20	0.2
DC	n28	0.2
	n78	0.5
	1	0.2
DC_1-19-21-42_n77	42	0.5
	n77	0.5
DC 1 10 01 10 = 70	42	0.5
DC_1-19-21-42_n78	n78	0.5
DC_1-19-21-42_n79	42	0.5
	1	0.2
DC 1 01 00 10 +77	28	0.2
DC_1-21-28-42_n77	42	0.5
	n77	0.5
	28	0.2
DC_1-21-28-42_n78	42	0.5
	n78	0.5
DC_1-21-28-42_n79	28	0.2
DC	42	0.5
	3	0.2
	7	0.2
DC_3-7-20_n28-n78	20	0.2
	n28	0.2

7.3B.3.3.5 $\Delta R_{IB,c}$ for Inter-band EN-DC six bands within FR1

Table 7.3B.3.3.5-1: ΔR_{IB,c} due to EN-DC (six bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} (dB)
	1	0.2
DC_1-3-7-20_n28-n78	3	0.2
	7	0.2
	20	0.2
	n28	0.2
	n78	0.5

7.3B.3.4 Reference sensitivity for $\Delta R_{IB,c}$ Inter-band EN-DC including FR2

FFS

7.3B.3.4.1 Reference sensitivity for $\Delta R_{IB,c}$ Inter-band EN-DC in two bands including FR2

Table 7.3B.3.4.1-1: ΔR_{IB,c} due to EN-DC(two bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} (dB)

7.3B.3.4.2

Reference sensitivity for $\Delta R_{IB,c}$ Inter-band EN-DC in three bands including FR2

Inter-band EN-DC configuration	E-UTRA or NR Band	$\Delta R_{IB,c}$ (dB)
DC_1-18_n257	1	0.3
	18	0.3
DC_1-28_n257	28	0.2
DC_1-41_n257	1	0.5
DC_1-41_11257	41	0.5
DC_1-42_n257	1	0
DC_1-42_11257	42	0.5
DC_1-77_n257	1	0.2
D6_1-11_11231	n77	0.5
DC_1-78_n257	1	0
D6_1-70_11237	n78	0.5
DC_1-79_n257	1	0.0
DC_1-79_11257	n79	0.0
DC_2-66_n257	2	0.3
D0_2-00_11237	66	0.3
DC_3-21_n257	3	0.3
	21	0.5
DC_3-28_n257	n257	0.5
DC_3-41_n257	41	0 ¹ /0.5 ²
DC_3-42_n257	3	0.2
20_0 12_11201	42	0.5
DC_3-77_n257	3	0.2
20_0 11_1201	n77	0.5
DC_3-78_n257	3	0.2
20_010_1201	n78	0.5
DC_3-79_n257	3	0.0
20_010_1201	n79	0.0
DC_5_n78-n257	5	0.2
20_0_m 0 m201	n78	0.5
DC_7_n78-n257	7	0
<u> </u>	n78	0.5
DC_13-66_n260	13	0.3
	66	0.3
DC_19-42_n257	42	0.5
DC_19-77_n257	19	0.0
200	n77	0.5
DC_19-78_n257	19	0.0
	n78	0.5
DC_19-79_n257	19	0.0
	n79	0.0
DC_21-42_n257	42	0.5
DC_21-77_n257	21	0.0
	n77	0.5
DC_21-78_n257	21	0.0
	n78	0.5
DC_21-79_n257	21	0.0
	n79	0.0
DC_28-42_n257	28	0.2
	42	0.5
DC_41-42_n257	42	0.5
OTE 1: The requirement 2690MHz.	is applied for UE transmitting on the f	requency range of 2545-
	is applied for UE transmitting on the fi	requency range of 2496-

Table 7.3B.3.4.2-1: $\Delta R_{IB,c}$ due to EN-DC (three bands)

7.3B.3.4.3

Reference sensitivity for $\Delta R_{IB,c}$ Inter-band EN-DC in four bands including FR2

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} (dB)
DC_1-3-21_n257	3	0.3
	21	0.5
	1	0.2
DC_1-3-28_n257	3	0.2
	28	0.2
	1	0.2
DC_1-3-42_n257	3	0.2
	42	0.5
	1	0.2
DC_1-3_n78-n257	3	0.2
	n78	0.5
	1	0.2
DC_1-5_n78-n257	5	0.2
	n78	0.5
	1	0.2
DC_1-7_n78-n257	7	0.2
	n78	0.5
DC_1-19-42_n257	42	0.5
DC_1-21-28_n257	28	0.2
DC_1-21-42_n257	42	0.5
DC_1-28-42_n257	28	0.2
DC_1-41-42_n257	42	0.5
	3	0.2
DC_3-5_n78-n257	5	0.2
	n78	0.5
	3	0.2
DC_3-7_n78-n257	7	0.2
	n78	0.5
DC_19-21-42_n257	42	0.5
DC_3-19-21_n257	3	0.3
	21	0.5
DC_3-19-42_n257	3	0.2
20_0 10 12_11201	42	0.5
	3	0.3
DC_3-21-42_n257	21	0.5
	42	0.5
	3	0.2
DC_3-28-42_n257	28	0.2
	42	0.5
	5	0.2
DC_5-7_n78-n257	7	0.2
	n78	0.5
DC_7-7_n78-n257	n78	0.5
DC_21-28-42_n257	28	0.2
DO_21-20-+2_11201	42	0.5

Table 7.3B.3.4.3-1: $\Delta R_{IB,c}$ due to EN-DC (four bands)

7.3B.3.4.4

Reference sensitivity for $\Delta R_{\text{IB,c}}$ Inter-band EN-DC in five bands including FR2

Inter-band EN-DC configuration	E-UTRA or NR Band	
	1	0.2
DC_1-3-5_n78-n257	3	0.2
	5	0.2
	n78	0.5
	1	0.3
DC_1-3-7_n78-n257	3	0.3
	7	0.3
	n78	0.5
DC_1-3-19-21_n257	3	0.3
DC_1-3-19-21_11237	21	0.5
	1	0.2
DC_1-3-19-42_n257	3	0.2
	42	0.5
	1	0.2
DC 4 0 04 40 ±057	3	0.3
DC_1-3-21-42_n257	21	0.5
	42	0.5
	1	0.2
	3	0.2
DC_1-3-28-42_n257	28	0.2
	42	0.5
	1	0.2
	3	0.2
DC_1A-3A-28A-42C_n257A	28	0.2
	42	0.5
	1	0.2
	5	0.2
DC_1-5-7_n78-n257	7	0.2
	n78	0.5
	1	0.2
DC_1-7-7_n78-n257	7	0.2
	n78	0.5
DC_1-19-21-42_n257	42	0.5
	28	0.2
DC_1-21-28-42_n257	42	0.5
	3	0.2
	5	0.2
DC_3-5-7_n78-n257	7	0.2
	n78	0.2
	3	0.0
DC_3-7-7_n78-n257	7	0.2
	/ n78	0.2
	5	0.3
	5	0.2
DC_5-7-7_n78-n257	-	
	n78	0.5

Table 7.3B.3.4.4-1: $\Delta R_{IB,c}$ due to EN-DC (five bands)

7.3B.3.4.5 ΔRIB,c for EN-DC six bands

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} (dB)
J	1	0.2
	3	0.2
DC_1-3-5-7_n78-n257	5	0.2
	7	0.2
	n78	0.5
	1	0.3
DC 1 2 7 7 p78 p257	3	0.3
DC_1-3-7-7_n78-n257	7	0.3
	n78	0.5
	1	0.2
DC 1-5-7-7 n78-n257	5	0.2
DC_1-5-7-7_1176-11257	7	0.2
	n78	0.5
	3	0.2
	5	0.2
DC_3-5-7-7_n78-n257	7	0.2
	n78	0.5

Table 7.3B.3.4.5-1: ΔRIB,c due to EN-DC (six bands)

7.4 Maximum Input Level

7.4B Maximum Input Level for EN-DC

7.4B.0 Minimum conformance requirement

7.4B.0.1 Intra-band contiguous EN-DC in FR1

Intra-band contiguous EN-DC maximum input level requirement and parameters are defined in Table 7.4B.0.1-1.

Table 7.4B.0.1-1: Maximum Input

Power	in Largest CC, E-UTRA or NR, dBm	X1				
	Power in each other CC, dBm	X ¹ – 10*log10(N _x SCS _x /N _y SCS _y)				
NOTE 1:	Power in Largest E-UTRA or NR bandwid	Ith CC, listed in Table 7.4-1 [2]				
NOTE 2:	N _x , SCS _x is the number of RB's and Sub	carrier spacing in the largest carrier bandwidth and				
	could be LTE or NR carrier					
NOTE 3:	Ny, SCSy is the number of RB's in any oth	er carrier.				
NOTE 4:	For NR carrier, the transmitter shall be se	t to 4dB below P _{CMAX_L} at the minimum uplink				
	configuration specified in Table 7.3.2-3 [2] with P _{CMAX_L} as defined in subclause 6.2B.4.				
NOTE 5:	TE 5: For E-UTRA carrier, the transmitter shall be set to 4dB below PCMAX_L at the minimum uplink					
	configuration specified in Table 7.3.1-2 [5] with P _{CMAX_L} as defined in subclause 6.2B.4.				

7.4B.0.2 Intra-band non-contiguous EN-DC in FR1

For the E-UTRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.4.1 for single carrier operation and in sub-clause 7.4.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.4 in [2].

7.4B.0.3 Inter-band EN-DC within FR1

Maximum input level requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.4.1 and 7.4.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.4 and 7.4A of [2] apply.

7.4B.0.4 Inter-band EN-DC including FR2

Maximum input level requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.4.1 and 7.4.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.4 and 7.4A of [3] apply.

7.4B.0.5 Inter-band EN-DC including both FR1 and FR2

Maximum input level requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.4.1 and 7.4.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.4 and 7.4A of [2] and [3] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.4B.

7.4B.1 Maximum Input Level for Intra-Band Contiguous EN-DC (2 CCs)

7.4B.1.1 Test purpose

Maximum input level for intra-band contiguous EN-DC tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to an e-NodeB or a gNB.

7.4B.1.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC operating in FR1.

7.4B.1.3 Minimum conformance requirements

Refer to Clause 7.4B.0.1 for the intra-band contiguous EN-DC maximum input level requirement.

Exception requirements are defined for this test, therefore LTE agnostic approach is not applied, E-UTRA test point analysis is included and E-UTRA measurements are performed.

The normative reference for this requirement is TS 38.101-3 [4] Clause 7.4B.1

7.4B.1.4 Test Description

7.4B.1.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2.All of these configurations shall be tested with applicable test parameters for each intra-band contiguous EN-DC configuration specified in clause 5.3B.1.2, and are shown in table 7.4B.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.for E-UTRA RMC for TDD, TS 36.521-1 [10] Annex A.2 for E-UTRA RMC for FDD , and TS 38.521-1 [8] Annex A.2 for NR RMC Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

	Initial Conditions								
	Environmei					Normal			
as sp	ecified in T	S 38.508-1	[6] subclau	ise 4.1		Norman			
	Frequencie					Mid range	2		
			[6] subclau			wiid range	,		
				specified ir					
			ndwidth cor	nbination se	ets	Lowest, N	/lid, Highest		
	orted by the								
Test SCS for the NR cell as specified in 38.521-1 [8]						Lowest			
Table 5.3.5-1									
Test Parameters for Intra-band Contiguous EN-DC Configuration									
Downlink Configuration Uplink Configuration									
Tes	NR	NR RB	E-UTRA	E-UTRA		NR	NR RB	E-UTRA	E-UTRA
t ID	on	allocation	Modulat ion	RB allocation	Modulation		allocation	Modulat ion	RB allocation
1	CP-OFDM 64QAM	Full RB (NOTE 1)	CP- OFDM 64QAM	Full RB	DFT-s-OFDM QPSK		NOTE 2	QPSK	NOTE 3
2	CP-OFDM 256QAM	Full RB (NOTE 1)	CP- OFDM 256QAM	Full RB	DFT-s-OFDM QPSK		NOTE 2	QPSK	NOTE 3
NOTE	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2								
of TS 38.521-1[8].									
NOTE	NOTE 2: Same RB allocation shall be used per each SCS and channel BW as specified in Table								
	7.3.2.4.1-2 of TS 38.521-1[8].								
NOTE				e used per th	ne E-U	TRA band a	and channel B	W as specifie	ed in Table
	7.3.3-	2 of TS 36.	.521[10].						

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508[11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0, C.1,C.2,C3.1 and TS 38.521-1 [8] Annex C.0,C.1,C.2,C3.1 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H.0,H.1,H.2,H.3.1 and TS 38.521-1 [8] Annex G.0,G.1,G.2,G.3.1 for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.4B.1.4.3.

7.4B.1.4.2 Test Procedure

- SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Tables 7.4B.1.4.1 on the E-UTRA CC and NR CC, The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.4B.1.4.1-1on the E-UTRA CC and NR CC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. SS sets the Downlink signal level for the E-UTRA CC and NR CC to the value defined in Table 7.4B.1.5-1. SS sends continuously uplink power control "up" commands to the UE for the E-UTRA CC and NR CC until the E-

UTRA CC and NR CC output power are within $-P_W \pm P_W dB$ of target level in Table 7.4B.1.5-1, P_W is the power window according to Table 7.4B.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

4. Measure the average throughput for each component carrier for duration sufficient to achieve statistical significance according to Annex H in TS 38.521-1 [8].

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

Table 7.4B.1.4.2-1: Power Window (dB) for Maximum input level

7.4B.1.4.3 Message Contents

Message contents are according to TS 36.508-1[11] subclause 4.6.1 and TS 38.508-1 [6] subclause 4.6.1.

7.4B.1.5 Test Requirement

For the NR CC, the throughput measurement of the carrier derived in test procedure shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels with parameters specified in Table 7.4B.1.5-1

		Rx Parameter										
Channel bandwidth of Largest BW CC	Power in the Largest CC	Power in the other CC	Power in the Largest CC	Power in the other CC								
<u> </u>		-25 ² -10*log10(NxSCSx/NySCSy)	-27 ³ -TT									
5 MHz	-25 ² -TT	-TT		-27 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
10 MHz	-25 ² -TT	-25 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-27 ³ -TT	-27 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
15 MHz	-25 ² -TT	-25 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-27 ³ -TT	-27 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
20 MHz	-25 ² -TT	-25 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-27 ³ -TT	-27 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
25 MHz	-24 ² -TT	-24 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-26 ³ -TT	-26 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
30 MHz	-23 ² -TT	-23 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-25 ³ -TT	-25 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
40 MHz	-22 ² -TT	-22 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-24 ³ -TT	-24 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
50 MHz	-21 ² -TT	-21 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-23 ³ -TT	-23 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
60 MHz	-20 ² -TT	-20 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-22 ³ -TT	-22 ³ -10*log10(NxSCSx/NySCSy) -TT								
80 MHz	-20 ² -TT	-20 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-22 ³ -TT	-22 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
90 MHz	-20 ² -TT	-20 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-22 ³ -TT	-22 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
100 MHz	-20 ² -TT	-20 ² -10*log10(N _x SCS _x /N _y SCS _y) -TT	-22 ³ -TT	-22 ³ -10*log10(N _x SCS _x /N _y SCS _y) -TT								
NOTE 1: N _x , SCS carrier. NOTE 2: Referen	ice measurement	f RB's and Sub carrier spacing in th channel refers to Clauses A.3.2.3 c	or A.3.3.3 in TS 38	andwidth and could be LTE or NR 3.521-1[8] for 64-QAM NR Carrier, and								
NOTE 3: Referen	ice measurement	4 for 64QAM in TS 36.521-1[10] for channel refers to Clauses A.3.2.4 c n TS 36.521-1[10] for 256QAM E-U	r A.3.3.4 in TS 38	3.521-1[8] for 256QAM NR Carrier, and								
NOTE 4: Ny, SCS NOTE 5: For NR Table 7 NOTE 6: For E-U	y is the number o carrier, the transm .3.2-3 in [2] with F TRA carrier, the	f RB's in any other carrier mitter shall be set to 4dB below PCM PCMAX_L as defined in subclause 6 transmitter shall be set to 4dB below	/IAX_L at the mini i.2B.4. / P _{CMAX_L} at the mi	mum uplink configuration specified in in inimum uplink configuration specified								
		h P _{CMAX_L} as defined in subclause 6. specified in Table 7.4B.1.5-2	2B.4 for single ca	rrier.								

Table 7.4B.1.5-1: Maximum input level requirement for each CC

f ≤ 3.0GHz	3.0GHz < f ≤6.0GHz
0.7 dB	1.0 dB

7.4B.2 Maximum Input Level for Intra-Band Non-Contiguous EN-DC (2 CCs)

7.4B.2.1 Test purpose

Maximum input level for intra-band non-contiguous EN-DC tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to an e-NodeB or a gNB.

7.4B.2.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non contiguous EN-DC.

7.4B.2.3 Minimum conformance requirements

Refer to Clause 7.4B.0.2 for the intra-band non-contiguous EN-DC maximum input level requirement.

The normative reference for this requirement is TS 38.101-3 [4] Clause 7.4B.2, and 3GPP TS 38.101-1 [2] Clause 7.4, and 3GPP TS 36.101-1 [5] Clauses 7.4 and 7.4A

No exception requirements for E-UTRA CG and NR CG, LTE agnostic approach applies.

7.4B.2.4 Test Description

Same test description as in clause 7.4.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions in the initial test configuration.

- The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.3, all of these configurations shall be tested with applicable test parameters for each intra-band non-contiguous EN-DC configuration specified in clause 5.3B.1.3, and are shown in table 7.4B.2.4.1-1.

Test Environment as specified in TS 38.508-1 [6] subclause 4.1 Normal Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1 MaxWGap for intra-band non-contiguous EN-DC Test EN-DC bandwidth combination as specified in Table 5.3B.1.3-1 across bandwidth combination sets supported by the UE Lowest, Mid, Highest of Channel BW for NR CC Test SCS for the NR cell as specified in 38.521-1 [8] Table 5.3.5-1 Lowest Test Parameters for EN-DC Configuration Uplink Configuration Test NR NR RB E-UTRA E-UTRA	as spe Test F	ecified in TS 3	38.508-1 [6	1 aubalauaa		N	rmol		
as specified in TS 38.508-1 [6] subclause 4.1 Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1 Test EN-DC bandwidth combination as specified in Table 5.3B.1.3-1 across bandwidth combination sets supported by the UE Test SCS for the NR cell as specified in 38.521-1 [8] Table 5.3.5-1 Lowest Lowest Downlink Configuration	Test F		38.508-1 [6	1 aubalauaa					
as specified in TS 38.508-1 [6] subclause 4.3.1 MaxWGap for intra-band non-contiguous EN-DC Test EN-DC bandwidth combination as specified in Table 5.3B.1.3-1 across bandwidth combination sets supported by the UE Lowest, Mid, Highest of Channel BW for NR CC Test SCS for the NR cell as specified in 38.521-1 [8] Table 5.3.5-1 Lowest Test Parameters for EN-DC Configuration Uplink Configuration		-roguonaiaa		j subciause	9 4.1		hinai		
Test EN-DC bandwidth combination as specified in Table 5.3B.1.3-1 across bandwidth combination sets supported by the UE Test SCS for the NR cell as specified in 38.521-1 [8] Table 5.3.5-1 Lowest Lowest Lowest Downlink Configuration Uplink Configuration	as spe	•	. .			M	axWGap for intr	a-band non-contid	nuous EN-DC
Table 5.3B.1.3-1 across bandwidth combination sets supported by the UE Lowest, Mid, Highest of Channel BW for NR CC Test SCS for the NR cell as specified in 38.521-1 [8] Lowest Table 5.3.5-1 Lowest Downlink Configuration									
supported by the UE Image: Constraint of the state									
Test SCS for the NR cell as specified in 38.521-1 [8] Lowest Table 5.3.5-1 Test Parameters for EN-DC Configuration Downlink Configuration Uplink Configuration	· · · · · · · · · · · · · · · · · · ·								W for NR CC
Table 5.3.5-1 Lowest Test Parameters for EN-DC Configuration Downlink Configuration Uplink Configuration									
Test Parameters for EN-DC Configuration Downlink Configuration Uplink Configuration	I OWAST								
Test NR NR RB F-IITRA F-IITRA NR F-IITRA F-IITRA									
	Test	NR	NR RB	E-UTRA	E-UTRA	NR E-UTRA E-UTR			
ID Modulation allocatio Modulat RB Modulation NR RB Modulatio RB allocatio	ID	Modulation	allocatio	Modulat	RB	Modulati	on NR RB	Modulatio	RB allocation
n ion allocati allocation n			n	ion	allocati		allocatio	n n	
on line line line line line line line lin									
		CP-OFDM				-			
1 GADAM NOTE1 NOTE2 NOTE2 OFDM NOTE1 NOTE2 NOTE2	1		NOTE 1	NOTE 2	NOTE 2	-		NOTE 2	NOTE 2
						QPSK			
2 CP-OFDM NOTE 1 NOTE 2 NOTE 2 OFDM NOTE 1 NOTE 2 NOTE 2 OFDM	2	CP-OFDM	NOTE 1						
2 256QAM NOTET NOTEZ NOTEZ OFDM NOTET NOTEZ NOTEZ	2	256QAM	NOTE I	NOTE 2	NOTE 2	-		NOTE 2	NOTE 2
NOTE 1: Same RB allocation shall be used per modulation as specified in Table 7.4.4.1-1 of TS 38.521-									
	NOTE	1: Same R	B allocatioi						
NOTE 2: Modulation and RB allocation for E-UTRA CC refers to the Talbe 4.6-2.	NOTE		B allocation	ii Shali be u	seu per n	loadiation			

Table 7.4B.2.4.1-1: Test configuration table

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 4.6-1 with the exception that

- E-UTRA test frequency are specified in Table 7.4B.2.4.1-1 based on intra-band non-contiguous EN-DC configuration specified in clause 5.3B.1.3.

For Initial conditions as in clause 7.4.4.1 in TS 38.521-1 [8] with the the following steps will be added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

Step 6 of Initial conditions as in clause 6.4.1.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to TS 38.508 [6] clause 4.5.

7.4B.2.5 Test Requirement

Same test requirement as in clause 7.4.5 in TS 38.521-1 [8] for NR carrier.

7.4B.3 Maximum Input Level for Inter-band EN-DC within FR1

7.4B.3.1 Test purpose

Maximum input level for inter-band EN-DC tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to an e-NodeB or a gNB.

7.4B.3.2 Test applicability

This test applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC.

7.4B.3.3 Minimum conformance requirements

For inter-band EN-DC maximum input level is defined as the powers received at the UE antenna port over the Transmission bandwidth configuration of each CC in each CG, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each CC in each CG.

Maximum input level is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel. The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4-1.

Rx	Unit		Channel bandwidth										
Paramete	S	5	10	15	20	25	30	40	50	60	80	90	100
r		MH	МН	МН	МН	МН	МН	мн	MHz	MH	МН	MH	МН
		z	z	z	z	z	z	z		z	Z	Z	z
Power in			-2	5 2		-	-	-	-21 ²		-20 ²		
Transmiss			-2	5		24 ²	23 ²	22 ²	-21				
ion	dB										-2	2 ³	
Bandwidth	m		-2	7 3		-	-	-	-23 ³				
Configurat			-2	1		26 ³	25 ³	24 ³	-23*				
ion													
NOTE 1: The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink configuration specified in Table													
7.	7.3-3 with P _{CMAX_L} as defined in subclause 6.2.4.												
NOTE 2: R	NOTE 2: Reference measurement channel is [TBD] for 64-QAM.												
NOTE 3: R	eference	ce mea	surem	ent ch	annel	is [TBD)] for 2	56-QA	M.				

Table 7.4-1:	Maximum	input level
--------------	---------	-------------

There is no exceptional requirement, LTE agnostic way is applied in the test.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.4B.3 and TS 38.101-1 clause 7.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

3GPP TS 38.521-3 version 15.3.0 Release 15

416

7.4B.3.4 Test Description

7.4B.3.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.4, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2.All of these configurations shall be tested with applicable test parameters for each inter-band EN-DC configuration specified in clause 5.5B.4, and the configurations for NR carrier are shown in TS 38.521-1 [8] table 7.4.4.1-1, the configurations for E-UTRA carrier are shown in Table 4.6-1.The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0, C.1,C.2,C3.1 and TS 38.521-1 [8] Annex C.0,C.1,C.2,C3.1 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H.0,H.1,H.2,H.3.1 and TS 38.521-1 [8] Annex G.0,G.1,G.2,G.3.1 for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.4B.3.4.3.
- 7 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.4B.3.4.2 Test Procedure

Same test procedure as specified in clause 7.4.4.2

7.4B.3.4.3 Message Contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.4B.3.5 Test Requirement

Same test requirement as specified in TS 38.521-1 [8] table 7.4.5.

7.5 Adjacent channel selectivity

7.5B Adjacent channel selectivity for EN-DC

7.5B.0 Minimum Conformance Requirements

7.5B.0.1 Intra-band contiguous EN-DC in FR1

Intra-band contiguous EN-DC ACS requirement and parameters are defined for test case 1 in Table 7.5B.0.1-1 and for test case 2 in Table 7.5B.0.1-2.

EN-DC Aggregated	. 100	>100,	>120,	>140,
Bandwidth, MHz	<=100	<=120	<=140	<=160
ACS, dB	X ¹	19.2	18.5	17.9
	Pl ²	Aggregated	Aggregated	Aggregate
P _{interferer} , dBm		power +	power + 17	d power +
		17.7 dB	dB	16.4dB
Pw in Transmission BW REFSENS +14dB				
configuration, per CC, dBm	n KEFSENS + 140D			
NOTE 1: X is ACS level at the specified EN-DC aggregated Bandwidth from Table				
7.5.1A-1 in [5]				
NOTE 2: Pl is from Table 7.5.1A-2 in [5]				
NOTE 3: Jammer BW and offs	et is from Tab	le 7.5.1A-2 in [5] and is applie	d from the
lowest edge of the lowest carrier and the highest edge of the highest carrier				
NOTE 4: For NR carrier, the transmitter shall be set to 4dB below PCMAX L,f,c at the				
minimum uplink configuration specified in Table 7.3.2-3 in [2] with PCMAX Lf.c				
	as defined in subclause 6.2B.4 from [4].			
NOTE 5: For E-UTRA carrier,	For E-UTRA carrier, the transmitter shall be set to 4dB below $P_{CMAX \ Lc}$ at the			
minimum uplink configuration specified in Table 7.3.1-2 in [5] with PCMAX_Lc				
as defined in subclause 6.2B.4 from [4] for single carrier.				

Table 7.5B.0.1-1: ACS test case 1

EN-DC Aggregated Bandwidth, BW _{agg} , MHz	<=100	>100, <=120	>120, <=140	>140, <=160
Pw in Transmission Bandwidth Configuration, perCC, dBm	Pw ¹	-42.7 +10log ₁₀ (N _{RB,c} SCS _c / BW _{agg})	-42 +10log ₁₀ (N _{RB,c} SCS _c /B W _{agg})	-41.4 +10log ₁₀ (N _{RB,c} SCS _c /B W _{agg})
Pinterferer, dBm	-25			
 Printerferer, 0DIII 1 223 NOTE 1: Pw is wanted signal power level at the specified EN-DC aggregated Bandwidth from Table 7.5.1A-3 in [5] NOTE 2: Jammer BW and offset is from Table 7.5.1A-3 in [5] and is applied from the lowest edge of the lowest carrier and the highest edge of the highest carrier NOTE 3: For NR carrier, the transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 in [2] with P_{CMAX_L,f,c} as defined in subclause 6.2B.4 from [4]. NOTE 4: For E-UTRA carrier, the transmitter shall be set to 4dB below P_{CMAX_L,c} at the minimum uplink configuration specified in Table 7.3.1-2 in [5] with P_{CMAX_L,c} as defined in subclause 6.2B.4 from [4] for single carrier. 				

7.5B.0.2 Intra-band non-contiguous EN-DC in FR1

For the E-UTRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.5.1 for single carrier operation and in sub-clause 7.5.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.5 in [2].

The blocker configuration is defined in the general sub-clause 7.1 in [4].

7.5B.0.3 Inter-band EN-DC within FR1

Adjacent channel selectivity requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.5.1 and 7.5.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.5 and 7.5A of [2] apply.

7.5B.0.4 Inter-band EN-DC including FR2

Adjacent channel selectivity requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.5.1 and 7.5.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.5 and 7.5A of [3] apply.

7.5B.0.5 Inter-band EN-DC including both FR1 and FR2

Adjacent channel selectivity requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.5.1 and 7.5.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.5 and 7.5A of [2] and [3] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.5B.1, 7.5B.2, 7.5B.3, 7.5B.4 and 7.5B.5.

7.5B.1 Adjacent Channel Selectivity for intra-band contiguous EN-DC (2 CCs)

Editor's note: this clause is incomplete. The following aspects are either missing or not yet determined:

- The test point selection analysis is incomplete;
- Test configuration needs further investigation
- Test tolerance analysis is incomplete
- The modulated interferer bandwidth used in Test Procedure Step 4 has not been defined in Annex.

7.5B.1.1 Test purpose

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR and E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5B.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC.

7.5B.1.3 Minimum conformance requirements

Refer to Clause 7.5B.0.1 for the intra-band contiguous EN-DC in FR1.

Exception requirements are applicable for NR but not for E-UTRA within this test. LTE anchor agnostic approach is not applied. E-UTRA test points are defined and measurements performed over the aggregated EN-DC bandwidth.

7.5B.1.4 Test description

7.5B.1.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10]

clause 5.4.2.All of these configurations shall be tested with applicable test parameters for each intra-band contiguous EN-DC configuration specified in clause 5.5B.2, and are shown in table 7.5B.1.4.1-1.

The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2 for E-UTRA RMC for TDD, TS 36.521-1 [10] Annex A.2 for E-UTRA RMC for FDD, TS 38.521-1 [8] Annex A.2 for NR UL RMC and TS 38.521-1 [8] Annex A.3 for NR DL RMC. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 7.5B.1.4.1-1:	Test configuration table
---------------------	--------------------------

Initial Conditions			
Test Environment as specified in TS 38.508-1 [6] subclause 4.1	твр		
Test Frequencies as specified in TS 38.508-1 [6] subclause 4.3.1	твр		
Test CC Combinations setting (N_{RB_agg}) as specified in TS 38.508-1 [6] subclause 4.3.1	твр		
Test SCS for the NR cell as specified in 38.521-1 [8] Table 5.3.5-1	ТВD		
Test Parameters for EN-DC Configuration			
FFS			

- 1. Connect the SS to the UE antenna connectors as shown in A.3.1.1 for SS diagram and A.3.2.1 for UE diagram in TS 38.508-1 [6].
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508[11] subclause 4.4.3, and parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.5B.1.4.3.

7.5B.1.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC on the NR CC according to Table 7.5B.1.4.1-1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC on the E-UTRA CC according to Table 7.5.4.1-1 in TS 36.521-1 [10]. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC on the NR CC according to Table 7.5B.1.4.1-1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC on the E-UTRA CC according to Table 7.5.4.1-1 in TS 36.21-1 [10]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level on the NR CC to the value as defined in Table 7.5.5-2 or Table 7.5.5-5 as appropriate in TS 38.521-1[8] (Case 1). Set the Downlink signal level on the E-UTRA CC to the value as defined in Table 7.5.5-2 in TS 36.521-1 [10] (Case 1).Send Uplink power control commands to the UE for the NR CC and E-UTRA CC (less or equal to 1dB step size should be used), to ensure that the UE output power is within $-P_W \pm P_W$ dB of the target level in Table 7.5 B.0.11- (Case 1) for at least the duration of the Throughput measurement.

P_w is the power window according to Table 7.5B.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

- 4. Set the Interferer signal level to the value as defined in Table 7.5B.0.1-1 (Case 1) and frequency below the wanted signal on the NR CC and E-UTRA CC, using a modulated interferer bandwidth as defined in Annex [TBD].
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 4.
- 7. Set the Downlink signal level on the NR CC to the value as defined in Table 7.5.5-3 or Table 7.5.5-6 as appropriate in TS 38. 521-1[8] (Case 2). Set the Downlink signal level on the E-UTRA CC to the value as defined in Table 7.5.5-3 in TS 36.521-1 [10] (Case 2). Send Uplink power control commands to the UE for the NR CC and E-UTRA CC (less or equal to 1dB step size should be used), to ensure that the UE output power is within- $P_W \pm P_W$ dB of the target level in Table 7.5 B.0.1-2 (Case 2) for at least the duration of the Throughput measurement.

P_W is the power window according to Table 7.5B.1.4.2-1 for the carrier frequency f and the channel bandwidth BW.

- 8. Set the Interferer signal level to the value as defined in Table 7.5B.0.1-2 (Case 2) and frequency below the wanted signal on the NR CC and E-UTRA CC, using a modulated interferer bandwidth as defined in Annex [TBD].
- 9. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H
- 10. Repeat steps from 7 to 9, using an interfering signal above the wanted signal in Case 2 at step 8.
- 11. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

Table 7.5B.1.4.2-1: Power Window (dB) for ACS

[TBD]

7.5B.1.4.3 Message Contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.5B.1.5 Test requirement

For the NR CC, the throughput measurement of the carrier derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3 under the conditions specified in Table 7.5B.0.1-1, and also under the conditions specified in Table 7.5B.0.1-2.

7.5B.2 Adjacent Channel Selectivity for intra-band non-contiguous EN-DC (2 CCs)

Editor's note: this clause is incomplete. The following aspects are either missing or not yet determined:

- The test point selection analysis is incomplete
- Test configuration needs further investigation
- "MaxWGap" in "Table 7.5B.2.4.1-1: Test Configuration Table" need FFS

7.5B.2.1 Test purpose

Same test purpose as sub-clause 7.5B.1.1

7.5B.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC.

7.5B.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

- 7.5B.2.4 Test description
- 7.5B.2.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.3, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2.All of these configurations shall be tested with applicable test parameters for each intra-band non-contiguous EN-DC configuration specified in clause 5.5B.3, and the configuration for NR carrier are shown in TS 38.521-1 [8] clause 7.5.4.1 with the following exceptions:

Table 7.5B.2.4.1-1: Test Configuration Table

Initial Conditions			
Test Frequencies as specified in TS38.508 [7] subclause 4.3.1 for different DC bandwidth classes [MaxWGap]			
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE	Highest N _{RB_agg} (NOTE 1)		
NOTE 1: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg , only the combination with the highest NRB_SCG is tested.			

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 7.5B.2.4.1-1.

For Initial conditions as in clause 7.5.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of Initial conditions as in clause 7.5.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508-1 [6] clause 4.5.

7.5B.2.4.2 Test Procedure

Same test procedure as specified in clause 7.5.4.2 in TS 38.521-1 [8] with the following exceptions for E-UTRA anchor

On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.5B.2.4.3 Message Contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.5B.2.5 Test requirement

Same test requirement as specified in TS 38.521-1 [8] Clause 7.5.5.

7.5B.3 Adjacent Channel Selectivity for inter-band EN-DC within FR1 (2 CCs)

7.5B.3.1 Test purpose

Same test purpose as in clause 7.5B.1.1.

7.5B.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.5B.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.5B.3.4 Test description

Same test description as in clause 7.5.4.2 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.5.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.5.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.5.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.5B.3.5 Test requirement

Same test requirement as specified in TS 38.521-1 [8] Clause 7.5.5.

7.5B.4 Adjacent Channel Selectivity for inter-band EN-DC including FR2

7.5B.4.1 Adjacent Channel Selectivity for inter-band EN-DC including FR2 (2CCs)

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- MU and TT are FFS.
- Testability issue due to high PSD interferer has been identified.

7.5B.4.1.1 Test purpose

Same test purpose as in clause 7.5B.1.1.

7.5B.4.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

7.5B.4.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.5B.4.1.4 Test description

7.5B.4.1.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.5.1, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-2 [9] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each inter-band EN-DC including FR2 configuration specified in clause 5.5B.5.1, and the configuration for NR carrier are shown in TS 38.521-2 [9] Table 7.5.4.1-1.

For initial conditions as in clause 7.5.4.1 in TS 38.521-2 [9], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of initial conditions as in clause 7.5.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

7.5B.4.1.4.2 Test Procedure

Same test procedure as specified in clause 7.5.4.2 in TS 38.521-2 [9] with the following exceptions for E-UTRA anchor

On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.5B.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.5B.4.1.5 Test requirement

Same test requirement as specified in TS 38.521-2 [9] Clause 7.5.5.

7.5B.4.2 Adjacent Channel Selectivity for inter-band EN-DC including FR2 (3CCs)

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- Working assumption: to avoid LTE CA testing in inter-band EN-DC including FR2 and only PCC band is configured.
- MU and TT are FFS.
- [Table 7.5A.4.1-1] in TS 38.521-2 [9] where the configuration for NR CA carriers are shown is FFS.
- [clause 7.5A.4.1] in TS 38.521-2 [9] where the initial conditions for NR CA is FFS.
- [clause 7.5A.4.2] in TS 38.521-2 [9] where the test procedure for NR CA is FFS.
- [Clause 7.5A.5] in TS 38.521-2 [9] where the test requirements for NR CA is FFS.
- [Clause 7.5A] in TS 38.521-2 [9] where the test description for NR CA is FFS.
- How to choose the LTE anchor when LTE CA is implemented is FFS.

7.5B.4.2.1 Test purpose

Same test purpose as in clause 7.5B.1.1.

7.5B.4.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 (3CCs).

7.5B.4.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.5B.4.2.4 Test description

- For inter-band of "single carrier LTE + 2DL FR2 CA", the test description of 2DL FR2 CA for adjacent channel selectivity is the same as in corresponding section [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "2DL LTE CA + single carrier FR2", the test description of single carrier FR2 for adjacent channel selectivity is the same as in corresponding section 7.5 in TS 38.521-2 [9] for FR2 with the exceptions described below.

7.5B.4.2.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.5.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-2 [9] clause 5.3 or clause 5.3A and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2 or clause 5.4.2A. All of these configurations shall be tested with applicable test parameters for each inter-band EN-DC including FR2 configuration specified in clause 5.5B.5.2, and the configuration for NR carrier are shown in TS 38.521-2 [9] Table 7.5.4.1-1 or [Table 7.5A.4.1-1].

For initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9], the following steps are added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

7.5B.4.2.4.2 Test Procedure

Same test procedure as specified in clause 7.5.4.2 or [clause 7.5A.4.2] in TS 38.521-2 [9] with the following exceptions for E-UTRA anchor

On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.5B.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6.1.

7.5B.4.2.5 Test requirement

Same test requirement as specified in TS 38.521-2 [9] Clause 7.5.5 or [Clause 7.5A.5].

7.5B.4.3 Adjacent Channel Selectivity for inter-band EN-DC including FR2 (4CCs)

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- Working assumption: to avoid LTE CA testing in inter-band EN-DC including FR2 and only PCC band is configured.
- MU and TT are FFS.
- [Table 7.5A.4.1-1] in TS 38.521-2 [9] where the configuration for NR CA carriers are shown in FFS.
- [clause 7.5A.4.1] in TS 38.521-2 [9] where the initial conditions for NR CA in FFS.
- [clause 7.5A.4.2] in TS 38.521-2 [9] where the test procedure for NR CA in FFS.
- [Clause 7.5A.5] in TS 38.521-2 [9] where the test requirements for NR CA in FFS.
- [Clause 7.5A] in TS 38.521-2 [9] where the test description for NR CA is FFS.
- How to choose the LTE anchor when LTE CA is implemented is FFS.

7.5B.4.3.1 Test purpose

Same test purpose as in clause 7.5B.1.1.

7.5B.4.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 (4CCs).

7.5B.4.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.5B.4.3.4 Test description

- For inter-band of "single carrier LTE + 3DL FR2 CA", the test description of 3DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "2DL LTE CA + 2DL FR2 CA", the test description of 2DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "3DL LTE CA + single carrier FR2", the test description of single carrier FR2 for adjacent channel selectivity is the same as in corresponding section of clause 7.5 in TS 38.521-2 [9] for FR2 with the exceptions described below.

7.5B.4.3.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.5.3, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-2 [9] clause 5.3 or clause 5.3A and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2 or clause 5.4.2A. All of these configurations shall be tested with applicable test parameters for each inter-band EN-DC including FR2 configuration specified in clause 5.5B.5.3, and the configuration for NR carrier are shown in TS 38.521-2 [9] Table 7.5.4.1-1 or [Table 7.5A.4.1-1].

For initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of initial conditions as in clause 7.5.4.1 or [clause 7.5.4.4.1] in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

7.5B.4.3.4.2 Test Procedure

Same test procedure as specified in clause 7.5B.4.2.4.2.

7.5B.4.3.4.3 Message contents

Same message contents as specified in clause 7.5B.4.2.4.3.

7.5B.4.3.5 Test requirement

Same test requirement as specified in clause 7.5B.4.2.5.

7.5B.4.4 Adjacent Channel Selectivity for inter-band EN-DC including FR2 (5CCs)

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- Working assumption: to avoid LTE CA testing in inter-band EN-DC including FR2 and only PCC band is configured.
- MU and TT are FFS.
- [Table 7.5A.4.1-1] in TS 38.521-2 [9] where the configuration for NR CA carriers are shown is FFS.

- [clause 7.5A.4.1] in TS 38.521-2 [9] where the initial conditions for NR CA is FFS.
- [clause 7.5A.4.2] in TS 38.521-2 [9] where the test procedure for NR CA is FFS.
- [Clause 7.5A.5] in TS 38.521-2 [9] where the test requirements for NR CA is FFS.
- [Clause 7.5A] in TS 38.521-2 [9] where the test description for NR CA is FFS.
- How to choose the LTE anchor when LTE CA is implemented is FFS.

7.5B.4.4.1 Test purpose

Same test purpose as in clause 7.5B.1.1.

7.5B.4.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 (5CCs).

7.5B.4.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.5B.4.4.4 Test description

- For inter-band of "single carrier LTE + 4DL FR2 CA", the test description of 4DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "2DL LTE CA + 3DL FR2 CA", the test description of 3DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "3DL LTE CA + 2DL FR2 CA", the test description of 2DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "4DL LTE CA + single carrier FR2", the test description of single carrier FR2 for adjacent channel selectivity is the same as in corresponding section of clause 7.5 in TS 38.521-2 [9] for FR2 with the exceptions described below.

7.5B.4.4.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.2B.5.4, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-2 [9] clause 5.3 or clause 5.3A and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2 or clause 5.4.2A. All of these configurations shall be tested with applicable test parameters for each inter-band EN-DC including FR2 configuration specified in clause 5.5B.5.4, and the configuration for NR carrier are shown in TS 38.521-2 [9] Table 7.5.4.1-1 or [Table 7.5A.4.1-1].

For initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9], the following steps are added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

7.5B.4.4.4.2 Test Procedure

Same test procedure as specified in clause 7.5B.4.2.4.2.

7.5B.4.4.4.3 Message contents

Same message contents as specified in clause 7.5B.4.2.4.3.

7.5B.4.4.5 Test requirement

Same test requirement as specified in clause 7.5B.4.2.5.

7.5B.4.5 Adjacent Channel Selectivity for inter-band EN-DC including FR2 (6CCs)

Editor's note: This test case is not complete. Following aspects are either missing or not yet determined:

- Working assumption: to avoid LTE CA testing in inter-band EN-DC including FR2 and only PCC band is configured.
- MU and TT are FFS.
- [Table 7.5A.4.1-1] in TS 38.521-2 [9] where the configuration for NR CA carriers are shown is FFS.
- [clause 7.5A.4.1] in TS 38.521-2 [9] where the initial conditions for NR CA is FFS.
- [clause 7.5A.4.2] in TS 38.521-2 [9] where the test procedure for NR CA is FFS.
- [Clause 7.5A.5] in TS 38.521-2 [9] where the test requirements for NR CA is FFS.
- [clause 5.2B.5.5] where EN-DC operating bands have been specified is FFS.
- [Clause 7.5A] in TS 38.521-2 [9] where the test description for NR CA is FFS.
- How to choose the LTE anchor when LTE CA is implemented is FFS.

7.5B.4.5.1 Test purpose

Same test purpose as in clause 7.5B.1.1.

7.5B.4.5.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2 (6CCs).

7.5B.4.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.5B.0.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.5B.4.5.4 Test description

- For inter-band of "single carrier LTE + 5DL FR2 CA", the test description of 5DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "2DL LTE CA + 4DL FR2 CA", the test description of 4DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "3DL LTE CA + 3DL FR2 CA", the test description of 3DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "4DL LTE CA + 2DL FR2 CA", the test description of 2DL FR2 CA for adjacent channel selectivity is the same as in corresponding section of clause [7.5A] in TS 38.521-2 [9] for FR2 with the exceptions described below.
- For inter-band of "5DL LTE CA + single carrier FR2", the test description of single carrier FR2 for adjacent channel selectivity is the same as in corresponding section of clause 7.5 in TS 38.521-2 [9] for FR2 with the exceptions described below.

7.5B.4.5.4.1 Initial Condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in [clause 5.2B.5.5], channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-2 [9] clause 5.3 or clause 5.3A and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2 or clause 5.4.2A. All of these configurations shall be tested with applicable test parameters for each inter-band EN-DC including FR2 configuration specified in clause 5.5B.5.5, and the configuration for NR carrier are shown in TS 38.521-2 [9] Table 7.5.4.1-1 or [Table 7.5A.4.1-1].

For initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS 36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of initial conditions as in clause 7.5.4.1 or [clause 7.5A.4.1] in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to TS 38.508-1 [6] clause 4.5.

7.5B.4.5.4.2 Test Procedure

Same test procedure as specified in clause 7.5B.4.2.4.2.

7.5B.4.5.4.3 Message contents

Same message contents as specified in clause 7.5B.4.2.4.3.

7.5B.4.5.5 Test requirement

Same test requirement as specified in clause 7.5B.4.2.5.

7.5B.5 Adjacent Channel Selectivity for inter-band EN-DC including both FR1 and FR2 (3 CCs)

7.5B.5.1 Test purpose

Same test purpose as in 7.5.1 in TS 38.521-1 [8] for NR FR1 carrier and 7.5.1 in TS 38.521-2 [9] for NR FR2 carrier.

7.5B.5.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 and E-UTRA in conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The NSA requirements for adjacent channel selectivity apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 7.5B.

7.6 Blocking characteristics

7.6B Blocking characteristics for EN-DC

7.6B.1 General

The blocking characteristic for EN-DC in FR1 is a measure of the receiver's ability of an UE that support EN-DC in FR1 to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6B.2 Inband blocking for EN-DC

7.6B.2.0 Minimum Conformance Requirements

7.6B.2.0.1 Intra-band contiguous EN-DC

Intra-band contiguous EN-DC in-band blocking requirement and parameters are defined in Table 7.6B.2.0.1-1.

	C Aggregated dwidth, MHz	<=100	>100, <=120	>120, <=140	>140, <=160
Pw in Transmission		REFSENS + Aggregated BW specific value below			
Bandwidth Configuration, perCC, dBm		Pw ¹	16.8	17.5	18
NOTE 1: P _W is wanted signal power level at the specified EN-DC aggregated					
Bandwidth from Table 7.6.1.1A-1 in [5].					
NOTE 2:	NOTE 2: Interferer values are specified from Table 7.6.1.1A-2 in [5].				
NOTE 3:	NOTE 3: Jammer BW and offset is from Table 7.6.1.1A-1 in [5] and is applied from the				lied from the
	lowest edge of the lowest carrier and the highest edge of the highest carrier.				hest carrier.
NOTE 4:	E For NR carrier, the transmitter shall be set to 4dB below PCMAX Lf.c at the				
	minimum uplink configuration specified in Table 7.3.2-3 [2] with PCMAX Ltc as				
	defined in subclause 6.2.B.				
NOTE 5:	For E-UTRA carrier, the transmitter shall be set to 4dB below PCMAX Lc at the				
	minimum uplink configuration specified in Table 7.3.1-2 [5] with PCMAX Lc as				CMAX_L,c as
	defined in subclause 6.2.B.4 for single carrier.				

Table 7.6B.2.0.1-1: In-band blocking for intra-band contiguous EN-DC

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.2.1.

7.6B.2.0.2 Intra-band non-contiguous EN-DC

For the E-TRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.6.1.1 for single carrier operation and in sub-clause 7.6.1.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.6.2 in [2].

The blocker configuration is defined in the general sub-clause 7.1.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.2.2.

7.6B.2.0.3 Inter-band EN-DC within FR1

Inband blocking requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.1.1 and 7.6.1.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.2 and 7.6A.2 of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.2.3.

7.6B.2.0.4 Inter-band EN-DC including FR2

Inband blocking requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.1.1 and 7.6.1.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.2 and 7.6A.2 of [3] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.2.4.

7.6B.2.0.5 Inter-band EN-DC including both FR1 and FR2

Inband blocking requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.1.1 and 7.6.1.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.2 and 7.6A.2 of [2] and [3] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.2.5.

7.6B.2.1 Inband blocking for intra-band contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.6B.2.1.1 Test Purpose

In-band blocking is defined for an unwanted interfering signal falling into the range from 15MHz below to 15MHz above the UE receive band, at which the relative throughput shall meet or exceed the requirement for the specified measurement channels. The lack of in-band blocking ability will decrease the coverage area when other NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6B.2.1.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC in FR1.

7.6B.2.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7. 6 B.2.0.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.6B.2.1.4 Test Description

7.6 B.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 7.6B.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in TS 38.521-1 [8] Annex A.2 and A.3 respectively. The details of the OCNG patterns used are specified in TS 36.521-1 [10] Annex A.5 and in TS 38.521-1 [8] Annex A.5 for E-UTRA CG and NR CG respectively. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Initial Conditions							
Test Environment as specified in TS 38.508-1			Normal				
	[6] subclause 4.1						
Test Frequen				Mid range			
TS38.508-1 [6] clause 4	.3.1 for differer	nt EN-DC				
bandwidth cla	asses						
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE		Lowest N _{RB_agg} , Highest N _{RB_agg} (NOTE 3)					
NR Test SCS	as specifie	ed in Table 5.3	.5-1 in	Lowest			
TS 38.521-1[8]						
		NF	R/E-UTRA ⁻	Test Paramete	ers		
D	ownlink Co	onfiguration		Uplink Configuration			
NR Modulation	NR NR RB E-UTRA E-UTRA Modulation allocation Modulation RB allocatior				NR RB allocation	E-UTRA Modulation	E-UTRA RB allocation
CP-OFDM QPSK	Full RB (NOTE 1)	QPSK	Full RB	DFT-s- OFDM QPSK	REFSENS	QPSK	REFSENS
 NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2 of TS 38.521-1[8]. NOTE 2: Test Channel Bandwidths are checked separately for each EN-DC band, which applicable channel bandwidths are specified in Table 5.3B.1.2-1. 							
NOTE 3: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same							
 N_{RB_agg}, only the combination with the highest NRB_SCG is tested. NOTE 4: REFSENS refers to Uplink configuration in Table 7.3.2.3-3 in [8] and Table 7.3.3-2 in [10] for NR and E-UTRA CC respectively. 							

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 Annex A, in Figure [A.3.1.4.1] for SS diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C and TS 38.521-1 [8] Annex C for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL and DL Reference Measurement channels are TS 36.521-1 [10] Annex A.2, A.3 and TS 38.521-1 [8] Annex A.2, A.3 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.6B.2.1.4.3.

7.6B.2.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.6B.2.1.4.1-1 on E-UTRA CC and NR CC respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 7.6B.2.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.6B.2.1.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the Throughput measurement:

The E-UTRA CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.6B.2.1.5-1 + [10log(P_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.6B.2.1.5-2 for the carrier frequency f. The NR CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.6B.2.1.5-1 + [10log(S_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.6B.2.1.5-3 for the carrier frequency f and the channel bandwidth BW.

- 4. Set the parameters of the signal generator for an interfering signal below the aggregated component carriers in Case 1 according to Table 7.6B.2.1.5-1.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 6. Repeat steps from 4 to 5, using an interfering signal above the aggregated component carriers in Case 1 at step 4.
- 7. Repeat steps from 4 to 6, using interfering signals in Case 2 at step 4 and 6.

7.6B.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.

7.6B.2.1.5 Test Requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in TS 36.521-1 [10] Annex A.3 and TS 38.521-1 [8] Annex A.3 for E-UTRA CG and NR CG respectively with parameters specified in Table 7.6B.2.1.5-1 for the specified wanted signal mean power in the presence of interfering signals.

Table 7.6B.2.1.5-1: In-band blocking for intra-band contiguous EN-DC

EN-DC Aggregated Bandwidth, MHz	<=100	>100, <=120	>120, <=140	>140, <=160
Pw in Transmission	REFSENS + Aggregated BW specific value below			
Bandwidth Configuration, perCC, dBm	Pw ¹	16.8	17.5	18

NOTE 1:	Pw is wanted signal power level at the specified EN-DC aggregated
	Bandwidth from Table 7.6.1.1A-1 in [5].
NOTE 2:	Interferer values are specified from Table 7.6.1.1A-2 in [5].
NOTE 3:	Jammer BW and offset is from Table 7.6.1.1A-1 in [5] and is applied from the
	lowest edge of the lowest carrier and the highest edge of the highest carrier.
NOTE 4:	For NR carrier, the transmitter shall be set to 4dB below PCMAX_L,f,c at the
	minimum uplink configuration specified in Table 7.3.2-3 with P _{CMAX_L,f,c} as
	defined in subclause 6.2.4 from [2].
NOTE 5:	For E-UTRA carrier, the transmitter shall be set to 4dB below PCMAX_L,c at the
	minimum uplink configuration specified in Table 7.3.1-2 with $P_{CMAX_{L,c}}$ as
	defined in subclause 6.2.5 for single carrier and in Table 7.3.1A-1 with
	P _{CMAX_L} as defined in subclause 6.2.5A for LTE-CA from [5].

f ≤ 3GHz		3GHz < f ≤ 4.2GHz		
1.7		2.0		
NOTE:		w comprises two parts, UE Power step test system power measurement		

Table 7.6B.2.1.5-3: Power Window	(dB) for NR CC
----------------------------------	-----	-------------

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz			
BW ≤ 20MHz	1.4	1.7	2.0			
20MHz < BW ≤ 40MHz	1.4	1.7	2.2			
40MHz < BW ≤ 100MHz	2.1	2.3	2.3			
NOTE: Power Window comprises two parts, UE Power step tolerance and test system						
power measurement uncertainty.						

7.6B.2.2 Inband blocking for intra-band non-contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.6B.2.2.1 Test Purpose

Same test purpose as in clause 7.6.2.1 in TS 38.521-1 [8] for the NR carrier.

7.6B.2.2.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC in FR1.

7.6B.2.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.2.0.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.6B.2.2.4 Test Description

Same test description as in clause 7.6.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

Initial Conditions					
Test Frequencies as specified in TS38.508-1 [6]subclause 4.3.1 for different EN-DC bandwidthclasses					
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE	Highest N _{RB_agg} (NOTE1)				
NOTE 1: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg , only the combination with the highest NRB_SCG is tested.					

Table 7.6B.2.2.4-1: Test Configuration Table

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1 except for the parameters specified in Table 7.6B.2.2.4-1.

For Initial conditions as in clause 7.6.2.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.2.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.6B.2.2.5 Test Requirement

Same test requirement as in clause 7.6.2.5 in TS 38.521-1 [8].

7.6B.2.3 Inband blocking for inter-band EN-DC within FR1 (2 CCs)

7.6B.2.3.1 Test Purpose

Same test purpose as in clause 7.6.2.1 in TS 38.521-1 [8] for the NR carrier.

7.6B.2.3.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.6B.2.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.2.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.6B.2.3.4 Test Description

Same test description as in clause 7.6.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.6.2.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.

3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.2.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.2.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.6B.2.3.5 Test Requirement

Same test requirement as in clause 7.6.2.5 in TS 38.521-1 [8].

7.6B.2.4 Inband blocking for inter-band EN-DC including FR2

7.6B.2.4.1 Inband blocking for inter-band EN-DC including FR2 (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU/TT are FFS.
- UL power level configuration is TBD.
- Throughput calculation procedure is TBD (measurement period as well as dependencies with polarizations).

7.6B.2.4.1.1 Test Purpose

Same test purpose as in clause 7.6.2.1 in TS 38.521-2 [9] for the NR carrier.

7.6B.2.4.1.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC including FR2.

7.6B.2.4.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.2.0.4.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.6B.2.4.1.4 Test Description

Same test description as in clause 7.6.2.4 in TS 38.521-2 [9] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.6.2.4.1 in TS 38.521-2 [9], add step 2.1 and step 3.1 as follows:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.2.4.1 in TS 38.521-2 [9] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.2.4.1 in TS 38.521-2 [9] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.6B.2.4.1.5 Test Requirement

Same test requirement as in clause 7.6.2.5 in TS 38.521-2 [9].

7.6B.2.5 Inband blocking for inter-band EN-DC including both FR1 and FR2

7.6B.2.5.1 Test purpose

Same test purpose as in clause 7.6.2.1 in TS 38.521-1 [8] for NR FR1 carrier and clause 7.6.2.1 in TS 38.521-2 [9] for NR FR2 carrier.

7.6B.2.5.2 Test applicability

The requirements in this test are not testable due to issues with combined testing of NR FR1 and E-UTRA in conducted mode with NR FR2 in radiated mode. Therefore, the conducted and radiated requirements are tested separately.

No test case details are specified. The NSA requirements for Inband blocking apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 7.6B.2.

7.6B.3 Out-of-band blocking for EN-DC

7.6B.3.0 Minimum Conformance Requirements

7.6B.3.0.1 Intra-band contiguous EN-DC

Intra-band contiguous EN-DC out-of-band requirement and parameters are defined in Table 7.6B.3.1-1.

Table 7.6B.3.0-1: Out-of-band blocking for intra-band contiguous EN-DC

EN-DC Aggregated Bandwidth, MHz		<=100	>100, <=120	>120, <=140	>140, <=160		
Pw in Transmission		REFSENS + Aggregated BW specific value below					
Bandwidth Configuration, perCC, dBm		9					
NOTE 1:	Interferer values and offsets are specified from Table 7.6.2.1A-2 in [5].						
NOTE 2:	For NR carrier, the transmitter shall be set to 4dB below P _{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 [2] with P _{CMAX_L,f,c} as defined in subclause 6.2B.4.						
NOTE 3: For E-UTRA carrier, the transmitter shall be set to 4dB below P _{CMAX_L,c} at the minimum uplink configuration specified in Table 7.3.1-2 [5] with P _{CMAX_L,c} as defined in subclause 6.2B.4 for single carrier.							

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.3.1.

7.6B.3.0.2 Intra-band non-contiguous EN-DC

For the E-UTRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.6.2.1 for single carrier operation and in sub-clause 7.6.2.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.6.3 in [2].

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.3.2.

7.6B.3.0.3 Inter-band EN-DC within FR1

Out-of-band blocking requirements for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.2.1 and 7.6.2.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.3 and 7.6A.3 of [2] apply for lowest level EN-DC fallbacks (two bands) in section 5.2B.4.1 with following conditions:

- one E-UTRA uplink carrier with the output power set to 4dB below P_{CMAX_L} and the NR band whose downlink is being tested has its uplink carrier output power set to minimum output power as defined in sub-clause 6.3.1 of [2].
- one NR uplink carrier with the output power set to 4dB below P_{CMAX_L} on the NR band with both E-UTRA and NR downlinks being tested with E-UTRA output power set to minimum output power as defined in sub-clause 6.3.2.1 of [5].

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.3.3.

7.6B.3.0.4 Inter-band EN-DC including FR2

Out-of-band blocking requirements specified for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.2.1 and 7.6.2.1A of [5] apply for lowest level EN-DC fallbacks (two bands) in section 5.2B.5.1 with only E-UTRA UL with output power as in TS 36.101 [5] (4dB below P_{CMAX_L}).

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.3.4.

7.6B.3.0.5 Inter-band EN-DC including both FR1 and FR2

Out-of-band blocking requirements specified for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.2.1 and 7.6.2.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.3 and 7.6A.3 of [2] apply for lowest level EN-DC fallbacks (three bands) in section 5.2B.6.2 with only E-UTRA UL with output power as in TS 36.101 [5] (4dB below P_{CMAX_L}).

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.3.5.

7.6B.3.1 Out-of-band blocking for intra-band contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.6B.3.1.1 Test Purpose

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in sub-clause 7.6B.2.1 and sub-clause 7.5B.1 shall be applied.

The lack of out-of-band blocking ability will decrease the coverage area when other NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6B.3.1.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC in FR1.

7.6B.3.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.3.0.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.6B.3.1.4 Test Description

7.6B.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 7.6B.3.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in TS 38.521-1 [8] Annex A.2 and A.3 respectively. The details of the OCNG patterns used are specified in TS 36.521-1 [10] Annex A.5 and in TS 38.521-1 [8] Annex A.5 for E-UTRA CG and NR CG respectively. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Initial Conditions								
Test Environment as specified in TS 38.508-1			Normal					
[6] subclause 4.1								
Test Frequen	icies as spe	ecified in		One frequence	cy chosen arl	bitrarily from lov	w or high	
TS38.508-1 [6] clause 4	.3.1 for differer	nt EN-DC	range				
bandwidth cla	asses							
		combination as		Highest NRB_a				
specified in T	able 5.3B.1	1.2-1 across ba	andwidth	(NOTE 3)	agg			
		rted by the UE						
NR Test SCS	as specifie	ed in Table 5.3	.5-1 in	Lowest				
TS 38.521-1[8]							
	NR/E-UTRA Test Parameters							
D	ownlink Co	onfiguration	-	Uplink Configuration				
NR Modulation	NR RB allocation	E-UTRA Modulation	E-UTRA RB allocation	NR Modulation	NR RB allocation	E-UTRA Modulation	E-UTRA RB allocation	
CP-OFDM QPSK	Full RB (NOTE 1)	QPSK	Full RB	DFT-s- OFDM QPSK	REFSENS	QPSK	REFSENS	
	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2 of TS 38.521-1[8].							
	NOTE 2: Test Channel Bandwidths are checked separately for each EN-DC band, which applicable							
channel bandwidths are specified in Table 5.3B.1.2-1.								
NOTE 3: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same								
NRB_agg, only the combination with the highest NRB_SCG is tested.								
NOTE 4: REFSENS refers to Uplink configuration in Table 7.3.2.3-3 in [8] and Table 7.3.3-2 in [10]								
for	for NR and E-UTRA CC respectively.							

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 Annex A, in Figure [A.3.1.4.2] for SS diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C and TS 38.521-1 [8] Annex C for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL and DL Reference Measurement channels are TS 36.521-1 [10] Annex A.2, A.3 and TS 38.521-1 [8] Annex A.2, A.3 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.6B.3.1.4.3.

7.6B.3.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.6B.3.1.4.1-1 on E-UTRA CC and NR CC respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 7.6B.3.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.6B.3.1.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the Throughput measurement:

The E-UTRA CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.6B.3.1.5-1 + [10log(P_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.6B.3.1.5-2 for the carrier frequency f. The NR CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.6B.3.1.5-1 + [10log(S_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.6B.3.1.5-3 for the carrier frequency f and the channel bandwidth BW.

- 4. Set the parameters of the CW signal generator for an interfering signal below the aggregated component carriers according to Table 7.6B.3.1.5-1. The frequency step size is 1MHz.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 6. Repeat steps from 4 to 5, using an interfering signal above the aggregated component carriers at step 4.

7.6B.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.

7.6B.3.1.5 Test Requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in TS 36.521-1 [10] Annex A.3 and TS 38.521-1 [8] Annex A.3 for E-UTRA CG and NR CG respectively with parameters specified in Table 7.6B.3.1.5-1 for the specified wanted signal mean power in the presence of interfering signals.

Table 7.6B.3.1.5-1: Out-of-band blocking	for intra-band contiguous EN-DC
--	---------------------------------

	DC Aggregated ndwidth, MHz	<-100		>140, <=160	
Pw i	n Transmission	REFSENS	S + Aggregated	BW specific v	alue below
	dth Configuration, perCC, dBm	9			
NOTE 1:	Interferer values and	d offsets are specified from Table 7.6.2.1A-2 in [5]			
NOTE 2:	For NR carrier, the transmitter shall be set to 4dB below P _{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 with P _{CMAX_L,f,c} as defined in subclause 6.2.4 from [2].				
NOTE 3:	OTE 3: For E-UTRA carrier, the transmitter shall be set to 4dB below P _{CMAX_L,c} at the minimum uplink configuration specified in Table 7.3.1-2 with P _{CMAX_L,c} as defined in subclause 6.2.5 for single carrier and in Table 7.3.1A-1 with P _{CMAX_L} as defined in subclause 6.2.5A for LTE-CA from [5].				

f ≤ 3GHz		3GHz < f ≤ 4.2GHz
	1.7	2.0
NOTE:		w comprises two parts, UE Power step test system power measurement

Table 7.6B.3.1.5-2: Power Window (dB) for E-UTRA CC

Table 7.6B.3.1.5-3: Power Window (dB) for NR CC

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz	
BW ≤ 20MHz	1.4	1.7	2.0	
20MHz < BW ≤ 40MHz	1.4	1.7	2.2	
40MHz < BW ≤ 100MHz	2.1	2.3	2.3	
NOTE: Power Window comprises two parts, UE Power step tolerance and test system				
power measurement uncertainty.				

7.6B.3.2 Out-of-band blocking for intra-band non-contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.6B.3.2.1 Test Purpose

Same test purpose as in clause 7.6.3.1 in TS 38.521-1 [8] for the NR carrier.

7.6B.3.2.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC in FR1.

7.6B.3.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.3.0.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.6B.3.2.4 Test Description

Same test description as in clause 7.6.3.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

Table 7.6B.3.2.4-1: Test Configuration Table

Initial Conditions				
Test Frequencies as specified in TS38.508-1 [6] subclause 4.3.1 for different EN-DC bandwidth classes				
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE				
NOTE 1: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg, only the combination with the highest NRB_SCG is tested.				

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1 except for the parameters specified in Table 7.6B.3.2.4-1.

For Initial conditions as in clause 7.6.3.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.

3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.3.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.3.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.6B.3.2.5 Test Requirement

Same test requirement as in clause 7.6.3.5 in TS 38.521-1 [8].

7.6B.3.3 Out-of-band blocking for inter-band EN-DC within FR1 (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test description for the second condition in 7.6B.3.0.3 is FFS

7.6B.3.3.1 Test Purpose

Same test purpose as in clause 7.6.3.1 in TS 38.521-1 [8] for the NR carrier.

7.6B.3.3.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.6B.3.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.3.0.3.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.6B.3.3.4 Test Description

For the first condition in 7.6B.3.0.3 the following test description applies:

Same test description as in clause 7.6.3.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.6.3.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level is set according to Table 4.6-1, uplink signal level is set by sending uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the 4dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.5 of TS36.521-1[10] for carrier frequency $f \le 3.0$ GHz or within +0, -4.0 dB of the target level for carrier frequency 3.0GHz < f ≤ 4.2 GHz, for at least the duration of the throughput measurement, and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.3.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.3.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 4 of Test Procedure as in clause 7.6.3.4.2 in TS 38.521-1 [8] is replaced by:

4. Set the NR downlink signal level according to the table 7.6.3.5-1 or 7.6.3.5-3 in TS 38.521-1 [8]. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power for at least the duration of the throughput measurement.

For the second condition in 7.6B.3.0.3 the test description is FFS.

7.6B.3.3.5 Test Requirement

For NR carrier same test requirement as in clause 7.6.3.5 in TS 38.521-1 [8] with the exceptions of uplink carrier output power as defined in 7.6B.3.3.3.

For E-UTRA carrier same test requirement as in clause 7.6.2.5 in TS 36.521-1 [10] with the exceptions of uplink carrier output power as defined in 7.6B.3.3.3.

7.6B.4 Narrow band blocking for EN-DC in FR1

7.6B.4.0 Minimum Conformance Requirements

7.6B.4.0.1 Intra-band contiguous EN-DC

Intra-band contiguous EN-DC narrow band blocking requirement and parameters are defined in Table 7.6B.4.0.1-1.

	DC Aggregated ndwidth, MHz	<-100			>140, <=160
Pw i	n Transmission	REFSENS	S + Aggregated	BW specific v	alue below
	dth Configuration, perCC, dBm	16			
Ρι	Jw, dBm (CW)	-55			
 NOTE 1: Jammer offset is from Table 7.6.3.1A-1 in [5] and is applied from the lowest edge of the lowest carrier and the highest edge of the highest carrier. NOTE 2: For NR carrier, the transmitter shall be set to 4dB below P_{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 [2] with P_{CMAX_L,f,c} as defined in subclause 6.2B.4. 			rrier. _{f,c} at the		
	NOTE 3: For E-UTRA carrier, the transmitter shall be set to 4dB below P _{CMAX_L,c} at the minimum uplink configuration specified in Table 7.3.1-2 [5] with P _{CMAX_L,c} as defined in subclause 6.2B.4 for single carrier.				P _{CMAX_L,c} as
NOTE 4:	If NR carrier BW > 40M, no narrow band blocking requirements apply when blocker is applied at the edge of the NR carrier.				

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.4.1.

7.6B.4.0.2 Intra-band non-contiguous EN-DC

For the E-TRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.6.3.1 for single carrier operation and in sub-clause 7.6.3.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.6.4 in [2].

The blocker configuration is defined in the general sub-clause 7.1.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.4.2.

7.6B.4.0.3 Inter-band EN-DC within FR1

Narrow band blocking requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.3.1 and 7.6.3.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.4 and 7.6A.4 of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.4.3.

7.6B.4.0.4 Inter-band EN-DC including FR2

Narrow band blocking requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.3.1 and 7.6.3.1A of [5] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.4.4.

7.6B.4.0.5 Inter-band EN-DC including both FR1 and FR2

Narrow band blocking requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.6.3.1 and 7.6.3.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.6.4 and 7.6A.4 of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.6B.4.5.

7.6B.4.1 Narrow band blocking for intra-band contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

MU is TBD in Annex F

7.6B.4.1.1 Test Purpose

Verifies a receiver's ability to receive EN-DC signals at its assigned channel frequencies in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

The lack of narrow-band blocking ability will decrease the coverage area when other NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6B.4.1.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC in FR1.

7.6B.4.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.4.0.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.6B.4.1.4 Test Description

7.6B.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 7.6B.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annex A.2 and A.3 respectively. The details of the OCNG patterns used are specified in TS 36.521-1 [10] Annex A.5 and in TS 38.521-1 [8] Annex A.5 for E-UTRA CG and NR CG

respectively. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Initial Conditions							
	Test Environment as specified in TS 38.508-1		Normal				
[6] subclause							
Test Frequen				Mid range			
		.3.1 for differer	nt EN-DC				
bandwidth cla							
		combination as		Lowest N _{RB_a}		RB and	
		1.2-1 across ba	ndwidth	(NOTE 3)	gg, g eet	IND_agg	
		rted by the UE		,			
		ed in Table 5.3	.5-1 in	Lowest			
TS 38.521-1[8	8]						
			(/E-UTRA	Test Paramete			
		onfiguration		ND	Uplink Co	nfiguration	
NR	NR RB	E-UTRA Modulation	E-UTRA RB	NR	NR RB	E-UTRA	E-UTRA RB
wooulation	anocation		allocation	allocation		allocation	
			anocation	DFT-s-			anocation
CP-OFDM	Full RB	QPSK	Full RB	OFDM	REFSENS	QPSK	REFSENS
QPSK	(NOTE 1)	QI OK	TUITE	QPSK	ILLI SENS	QI OK	KEI SENS
NOTE 1: Eu	ll RB alloca	ation shall be u	sed per ea		annel BW as	s specified in Ta	able
		TS 38.521-1[8	•				
	NOTE 2: Test Channel Bandwidths are checked separately for each EN-DC band, which applicable						
channel bandwidths are specified in Table 5.3B.1.2-1.							
NOTE 3: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same							
N _{RB_agg} , only the combination with the highest NRB_SCG is tested.							
NOTE 4: RE	NOTE 4: REFSENS refers to Uplink configuration in Table 7.3.2.3-3 in [8] and Table 7.3.3-2 in [10]						
for	NR and E	-UTRA CC resp	pectively.				

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 Annex A, in Figure [A.3.1.4.2] for SS diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C and TS 38.521-1 [8] Annex C for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL and DL Reference Measurement channels are TS 36.521-1 [10] Annex A.2, A.3 and TS 38.521-1 [8] Annex A.2, A.3 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 7.6B.4.1.4.3.

7.6B.4.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.6B.4.1.4.1-1 on E-UTRA CC and NR CC respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 7.6B.4.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

3. Set the Downlink signal level to the value as defined in Table 7.6B.4.1.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the Throughput measurement:

The E-UTRA CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.6B.4.1.5-1 + [10log(P_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.6B.4.1.5-2 for the carrier frequency f. The NR CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.6B.4.1.5-1 + [10log(S_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.6B.4.1.5-3 for the carrier frequency f and the channel bandwidth BW.

- 4. Set the parameters of the CW signal generator for an interfering signal below the aggregated component carriers according to Table 7.6B.4.1.5-1.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 6. Repeat steps from 4 to 5, using an interfering signal above the aggregated component carriers at step 4.

7.6B.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.

7.6B.4.1.5 Test Requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in TS 36.521-1 [10] Annex A.3 and TS 38.521-1 [8] Annex A.3 for E-UTRA CG and NR CG respectively with parameters specified in Table 7.6B.4.1.5-1 for the specified wanted signal mean power in the presence of interfering signals.

Table 7.6B.4.1.5-1: Narrow band blocking for intra-band contiguous EN-DC

EN-DC Aggregated		<=100	>100,	>120,	>140,
Ba	ndwidth, MHz	<=100	<=120	<=140	<=160
Pw ii	n Transmission	REFSENS	S + Aggregated	BW specific v	alue below
	dth Configuration,		1	6	
p	perCC, dBm		I	0	
Pu	Jw, dBm (CW)		-5	55	
NOTE 1: Jammer offset is from Table 7.6.3.1A-1 in [5] and is applied from the lowe			the lowest		
	edge of the lowest carrier and the highest edge of the highest carrier.				rrier.
NOTE 2:	For NR carrier, the tra	ansmitter shal	I be set to 4dB	below PCMAX_L	f,c at the
minimum uplink configuration specified in Table 7.3.2-3 with			.3.2-3 with Рсм	AX_L,f,c as	
	defined in subclause	6.2.4 from [2]			
NOTE 3:	For E-UTRA carrier,	the transmitter	r shall be set to	4dB below Pc	MAX_L,c at the
	minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L,c as				AX_L,c as
defined in subclause 6.2.5 for single carrier and in Table 7.3.1A-1 with				1 with	
	P _{CMAX_L} as defined in subclause 6.2.5A for LTE-CA from [5].				
NOTE 4:	NOTE 4: If NR carrier BW > 40M, no narrow band blocking requirements apply when				apply when
	blocker is applied at the edge of the NR carrier.				

Table 7.6B.4.1.5-2: Power Window (dB) for E-UTRA CC

f ≤ 3GHz		3GHz < f ≤ 4.2GHz
1.7		2.0
NOTE:		w comprises two parts, UE Power step test system power measurement

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz	
BW ≤ 20MHz	1.4	1.7	2.0	
20MHz < BW ≤ 40MHz	1.4	1.7	2.2	
40MHz < BW ≤ 100MHz	2.1	2.3	2.3	
NOTE: Power Window comprises two parts, UE Power step tolerance and test system				
power measurement uncertainty.				

Table 7.6B.4.1.5-3: Power Window (dB) for NR CC

7.6B.4.2 Narrow band blocking for intra-band non-contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.6B.4.2.1 Test Purpose

Same test purpose as in clause 7.6.4.1 in TS 38.521-1 [8] for the NR carrier.

7.6B.4.2.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC in FR1.

7.6B.4.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.4.0.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.6B.4.2.4 Test Description

Same test description as in clause 7.6.4.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

Table 7.6B.4.2.4-1: Test Configuration Table

Initial Conditions				
Test Frequencies as specified in TS38.508-1 [6] subclause 4.3.1 for different EN-DC bandwidth classes	High with maxWGap			
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE				
NOTE 1: If the UE supports multiple CC Combination NRB_agg, only the combination with the hi	5			

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1 except for the parameters specified in Table 7.6B.4.2.4-1.

For Initial conditions as in clause 7.6.4.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.4.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.4.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.6B.4.2.5 Test Requirement

Same test requirement as in clause 7.6.4.5 in TS 38.521-1 [8].

7.6B.4.3 Narrow band blocking for inter-band EN-DC within FR1 (2 CCs)

7.6B.4.3.1 Test Purpose

Same test purpose as in clause 7.6.4.1 in TS 38.521-1 [8] for the NR carrier.

7.6B.4.3.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.6B.4.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.6B.4.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.6B.4.3.4 Test Description

Same test description as in clause 7.6.4.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.6.4.4.1 in TS 38.521-1 [8], add step 2.1 and step 3.1 as follows:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3.
- 3.1. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].

Step 6 of Initial conditions as in clause 7.6.4.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Add step 7 to Initial conditions in clause 7.6.4.4.1 in TS 38.521-1 [8] as follows:

 On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

7.6B.4.3.5 Test Requirement

Same test requirement as in clause 7.6.4.5 in TS 38.521-1 [8].

7.7

7.7B Spurious response for EN-DC in FR1

7.7B.0 Minimum Conformance Requirements

7.7B.0.1 Intra-band contiguous EN-DC

Intra-band contiguous EN-DC spurious response requirement and parameters are defined in Table 7.7B.0.1-1.

Table 7.7B.0.1-1: Spurious Response Parame	eters for intra-band contiguous EN-DC
--	---------------------------------------

EN-DC Aggregated Bandwidth, MHz	<=100	>100, <=120	>120, <=140	>140, <=160	
Pw in Transmission	REFSENS + Aggregated BW specific value belo				
Bandwidth Configuration, perCC, dBm	9				
Pinterferer, dBm (CW)	-44				
NOTE 1: For NR carrier, the tra- minimum uplink confi defined in subclause NOTE 2: For E-UTRA carrier, minimum uplink confi defined in subclause	guration spec 6.2B.4. the transmitter guration spec	ified in Table 7 r shall be set to ified in Table 7	.3.2-3 [2] with F 4dB below Pc	Р _{СМАХ_L,f,c} as _{MAX_L,c} at the	

The normative reference for this requirement is TS 38.101-3 [4] clause 7.7B.1.

7.7B.0.2 Intra-band non-contiguous EN-DC

For the E-UTRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.7.1 for single carrier operation and in sub-clause 7.7.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.7 is [2].

The normative reference for this requirement is TS 38.101-3 [4] clause 7.7B.2.

7.7B.0.3 Inter-band EN-DC within FR1

Spurious response requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.7.1 and 7.7.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.7 and 7.7A of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.7B.3.

7.7B.0.4 Inter-band EN-DC including FR2

Spurious response requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.7.1 and 7.7.1A of [5] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.7B.4.

7.7B.0.5 Inter-band EN-DC including both FR1 and FR2

Spurious response requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.7.1 and 7.7.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.7 and 7.7A of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.7B.5.

7.7B.1 Spurious Response for intra-band contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.7B.1.1 Test Purpose

Spurious response for EN-DC verifies the receiver's ability to receive a wanted aggregated signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6B.3.1 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7B.1.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC in FR1.

7.7B.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.7B.0.1.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.7B.1.4 Test Description

7.7B.1.4.1 Initial condition

The initial conditions shall be the same as in clause 7.6B.3.1.4.1 in order to test spurious responses obtained in clause 7.6B.3.1 under the same conditions.

7.7B.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.6B.3.1.4.1-1 on E-UTRA CC and NR CC respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 7.6B.3.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.7B.1.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the Throughput measurement:

The E-UTRA CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.7B.1.5-1 + [10log(P_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.7B.1.5-2 for the carrier frequency f. The NR CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.7B.1.5-1 + [10log(S_L_{CRB}/N_{RB_alloc})]). P_W is the power window according to Table 7.7B.1.5-3 for the carrier frequency f and the channel bandwidth BW.

- 4. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7B.1.5-1. The spurious frequencies are taken from records in the final step of test procedures in clause 7.6B.3.1.4.2.
- 5. For each spurious frequency, Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

7.7B.1.4.3 Message contents

Message contents are according to TS 38.508-1 [6] subclause 4.6 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.

7.7B.1.5 Test Requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in TS 36.521-1 [10] Annex A.3 and TS 38.521-1 [8] Annex A.3 for E-UTRA CG and NR CG respectively with parameters specified in Table 7.7B.1.5-1 for the specified wanted signal mean power in the presence of interfering signals.

Table 7.7B.1.5-1: Spurious Response for intra-band contiguous EN-DC

	DC Aggregated ndwidth, MHz	<pre><=100 >100, >120, >140 <=120 <=140 <=16</pre>				
Pw ii	n Transmission	REFSENS	S + Aggregated	BW specific v	alue below	
	dth Configuration, perCC, dBm	9				
Pinte	_{rferer,} dBm (CW)	-44				
NOTE 1: For NR carrier, the transmitter shall be set to 4dB below P _{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-3 with P _{CMAX_L,f,c} as defined in subclause 6.2.4 from [2].						
NOTE 2:	 TE 2: For E-UTRA carrier, the transmitter shall be set to 4dB below P_{CMAX_L,c} at the minimum uplink configuration specified in Table 7.3.1-2 with P_{CMAX_L,c} as defined in subclause 6.2.5 for single carrier and in Table 7.3.1A-1 with P_{CMAX_L} as defined in subclause 6.2.5A for LTE-CA from [5]. 					

Table 7.7B.1.5-2: Power Window (dB) for E-UTRA CC

f ≤ 3GHz		3GHz < f ≤ 4.2GHz
	1.7	2.0
NOTE:		w comprises two parts, UE Power step test system power measurement

Table 7.7B.1.5-3: Power Window (dB) for NR CC

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz	
BW ≤ 20MHz	1.4	1.7	2.0	
20MHz < BW ≤ 40MHz	1.4	1.7	2.2	
40MHz < BW ≤ 100MHz	2.1	2.3	2.3	
NOTE: Power Window comprises two parts, UE Power step tolerance and test system				
power measure	ment uncertainty	Ι.		

7.7B.2 Spurious Response for intra-band non-contiguous EN-DC (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- MU is TBD in Annex F

7.7B.2.1 Test Purpose

Same test purpose as in clause 7.7.1 in TS 38.521-1 [8] for the NR carrier.

7.7B.2.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC in FR1.

7.7B.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.7B.0.2.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.7B.2.4 Test Description

Same test description as in clause 7.7.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial conditions shall be the same as the initial conditions in clause 7.6B.3.2.4 in order to test spurious responses obtained in clause 7.6B.3.2 under the same conditions.

7.7B.2.5 Test Requirement

Same test requirement as in clause 7.7.5 in TS 38.521-1 [8].

7.7B.3 Spurious Response for inter-band EN-DC within FR1 (2 CCs)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Exceptions of uplink carrier output power is as defined in 7.6B.3.3.3. (Exceptions of uplink carrier output power is defined for OOBB in RAN4 spec but not defined for Spurious Response in RAN4 spec, uplink carrier output power should be defined the same way as OOBB.)

7.7B.3.1 Test Purpose

Same test purpose as in clause 7.7.1 in TS 38.521-1 [8] for the NR carrier.

7.7B.3.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.7B.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.7B.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.7B.3.4 Test Description

For the first condition in 7.6B.3.3.3 the following test description applies:

Same test description as in clause 7.7.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial conditions shall be the same as the initial conditions in clause 7.6B.3.3.4 in order to test spurious responses obtained in clause 7.6B.3.3 under the same conditions.

Step 4 of Test Procedure as in clause 7.7.4.2 in TS 38.521-1 [8] is replaced by:

4. Set the NR downlink signal level according to the table 7.6.3.5-1 or 7.6.3.5-3 in TS 38.521-1 [8]. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power for at least the duration of the throughput measurement.

For the second condition in 7.6B.3.3.3 the test description is FFS.

7.7B.3.5 Test Requirement

Same test requirement as in clause 7.7.5 in TS 38.521-1 [8].

For NR carrier same test requirement as in clause 7.7.5 in TS 38.521-1 [8] with the exceptions of uplink carrier output power as defined in 7.6B.3.3.3.

For E-UTRA carrier same test requirement as in clause 7.7.5 in TS 36.521-1 [10] with the exceptions of uplink carrier output power as defined in 7.6B.3.3.3.

7.8 Intermodulation characteristics

- 7.8B Intermodulation characteristics for EN-DC in FR1
- 7.8B.1 General
- 7.8B.2 Wide band Intermodulation
- 7.8B.2.0 Minimum Conformance Requirements
- 7.8B.2.0.1 Intra-band contiguous EN-DC in FR1

Intra-band contiguous EN-DC wide band intermodulation requirement and parameters are defined in Table 7.8B.2.0.1-1.

	EN-DC Aggregated Bandwidth, MHz <=100		>100, <=120	>120, <=140	>140, <=160	
Bandwid	Transmission th Configuration, erCC, dBm	Pw ¹ 16.8 17.5 18.0				
Pinterfer	er 1, dBm (CW) ²		-4	16		
Pinterferer 2,	dBm (Modulated) ²	-46				
NOTE 1:	OTE 1: P _W is wanted signal power level from Table 7.8.1A-1 in [5]					
		nd offsets is from Table 7.8.1A-1 [5] and is applied from the				
NOTE 3:	For NR carrier, the tra	lowest carrier and the highest edge of the highest carrier transmitter shall be set to 4dB below P _{CMAX_L,f,c} at the infiguration specified in Table 7.3-3 with P _{CMAX_L,f,c} as se 6.2B.4.				
1	 For E-UTRA carrier, the transmitter shall be set to 4dB below P_{CMAX_L,c} at the minimum uplink configuration specified in Table 7.3-1-2 with P_{CMAX_L,c} as defined in subclause 6.2B.4 for single carrier. 					

Table 7.8B.2.0.1-1: Wide band intermodulation

The normative reference for this requirement is TS 38.101-3 [4] clause 7.8B.2.1.

7.8B.2.0.2 Intra-band non-contiguous EN-DC in FR1

For the E-UTRA sub-block containing one or multiple CC's, the requirement is defined in sub-clause 7.8.1 for single carrier operation and in sub-clause 7.8.1A for CA in [5].

For the NR sub-block, the requirement is defined in sub-clause 7.8.2 in [2].

The blocker configuration is defined in the general sub-clause 7.1 and the requirement only apply for out of gap interferers.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.8B.2.2.

7.8B.2.0.3 Inter-band EN-DC within FR1

Wide band Intermodulation requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.8.1 and 7.8.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.8.2 and 7.8A.2 of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.8B.2.3.

7.8B.2.0.4 Inter-band EN-DC including FR2

Wide band Intermodulation requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.8.1 and 7.8.1A of [5] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.8B.2.4.

7.8B.2.0.5 Inter-band EN-DC including both FR1 and FR2

Wide band Intermodulation requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.8.1 and 7.8.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.8.2 and 7.8A.2 of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.8B.2.5.

7.8B.2.1 Wideband Intermodulation for intra-band contiguous EN-DC in FR1

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- UL Power configuration is TBD

7.8B.2.1.1 Test Purpose

Intermodulation response tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8B.2.1.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC within FR1.

7.8B.2.1.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.8B.2.0.

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

7.8B.2.1.4 Test Description

7.8B.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 7.8B.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

			Initial C	Conditions			
Test Environment as specified in TS 38.508-1			Normal				
[6] subclause							
Test Frequen				Mid range			
		.3.1 for differer	nt EN-DC				
bandwidth cla							
		combination as		Lowest NRB	add Highes	t NRB and	
		1.2-1 across ba	andwidth	(NOTE 3)	_ugg, i lightee	and Lagg	
		rted by the UE	-				
	•	ed in Table 5.3	.5-1 in	Highest			
TS 38.521-1[8]						
			R/E-UTRA	Test Paramete			
		onfiguration			Uplink Co	nfiguration	
ND			E-UTRA	NR		E-UTRA	E-UTRA
NR Modulation	NR RB allocation	E-UTRA Modulation	RB allocation	Modulation	NR RB allocation	Modulation	RB
Modulation CP-OFDM QPSK	Full RB (NOTE 1)	Modulation QPSK	RB allocation Full RB	Modulation DFT-s- OFDM QPSK	allocation REFSENS	Modulation QPSK	RB allocation
Modulation CP-OFDM QPSK	Full RB (NOTE 1)	Modulation QPSK	RB allocation Full RB	Modulation DFT-s- OFDM QPSK	allocation REFSENS	Modulation	RB allocation
Modulation CP-OFDM QPSK NOTE 1: Ft 7.3	Full RB (NOTE 1) Ill RB alloc 3.2.4.1-2 of	Modulation QPSK ation shall be u TS 38.521-1[8	RB allocation Full RB used per ea	Modulation DFT-s- OFDM QPSK ach SCS and cl	allocation REFSENS hannel BW a	Modulation QPSK s specified in T	RB allocation REFSENS able
Modulation CP-OFDM QPSK NOTE 1: Ft 7.3 NOTE 2: Te	Full RB (NOTE 1) ull RB alloc 3.2.4.1-2 of st Channel	Modulation QPSK ation shall be u TS 38.521-1[8 Bandwidths au	RB allocation Full RB used per ea]. re checked	Modulation DFT-s- OFDM QPSK ach SCS and cl separately for	allocation REFSENS hannel BW a each E-UTR	Modulation QPSK	RB allocation REFSENS able
Modulation CP-OFDM QPSK NOTE 1: Ft 7.3 NOTE 2: Te ch	Full RB (NOTE 1) ull RB alloc 3.2.4.1-2 of st Channel annel band	Modulation QPSK ation shall be u TS 38.521-1[8 Bandwidths are widths are spe	RB allocation Full RB used per ea]. re checked cified in Ta	Modulation DFT-s- OFDM QPSK ach SCS and cl separately for ble 5.3B.1.2-1	allocation REFSENS hannel BW a each E-UTR	Modulation QPSK s specified in T A band, which	RB allocation REFSENS able applicable
Modulation CP-OFDM QPSK NOTE 1: Ft 7.3 NOTE 2: Te ch NOTE 3: If t	Full RB (NOTE 1) III RB alloc 3.2.4.1-2 of st Channel annel band he UE sup	Modulation QPSK ation shall be u TS 38.521-1[8 Bandwidths ar widths are spe ports multiple 0	RB allocation Full RB used per ea bl. re checked cified in Ta CC Combin	Modulation DFT-s- OFDM QPSK ach SCS and cl separately for ble 5.3B.1.2-1 ations in the E	allocation REFSENS hannel BW a each E-UTR N-DC Config	Modulation QPSK s specified in T A band, which uration with the	RB allocation REFSENS able applicable
Modulation CP-OFDM QPSK NOTE 1: Fu 7.3 NOTE 2: Te ch NOTE 3: If t	Full RB (NOTE 1) III RB alloc 3.2.4.1-2 of st Channel annel band he UE sup RB_agg , or	Modulation QPSK ation shall be u TS 38.521-1[8 Bandwidths ar widths are spe ports multiple C hly the combina	RB allocation Full RB used per ea bl. re checked cified in Ta CC Combin ation with th	Modulation DFT-s- OFDM QPSK ach SCS and cl separately for ble 5.3B.1.2-1 ations in the E ne highest NRE	allocation REFSENS hannel BW a each E-UTR N-DC Config 3_SCG is tes	Modulation QPSK s specified in T A band, which uration with the sted.	RB allocation REFSENS able applicable same
Modulation CP-OFDM QPSK NOTE 1: Fu 7.3 NOTE 2: Te ch NOTE 3: If t NF NOTE 4: RE	Full RB (NOTE 1) III RB alloc 3.2.4.1-2 of st Channel annel band he UE sup RB_agg , or FSENS re	Modulation QPSK ation shall be u TS 38.521-1[8 Bandwidths ar widths are spe ports multiple C hly the combina	RB allocation Full RB used per ea B]. re checked cified in Ta CC Combin ation with th configuratio	Modulation DFT-s- OFDM QPSK ach SCS and cl separately for ble 5.3B.1.2-1 ations in the E ne highest NRE	allocation REFSENS hannel BW a each E-UTR N-DC Config 3_SCG is tes	Modulation QPSK s specified in T A band, which uration with the	RB allocation REFSENS able applicable same

Table 7.8B.2.1.4.1-1: Test configuration table

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.1.4.3.

7.8B.2.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to table 7.8B.2.1.4.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Set the Downlink signal level to the value as defined in Table 7.8B.2.1.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that for at least the duration of the Throughput measurement:

The E-UTRA CC output power is within $-P_W \pm P_W dB$ of (target level in Table 7.8B.2.1.5-1 + $[10log(P_L_{CRB}/N_{RB_alloc})]$). P_W is the power window according to Table 7.8B.2.1.5-2 for the carrier frequency f and the channel bandwidth BW.

The NR CC output power is within -P_W \pm P_W dB of (target level in Table 7.8B.2.1.5-1 +

 $[10log(S_L_{CRB}/N_{RB_alloc})]$). P_W is the power window according to Table 7.8B.2.1.5-2 for the carrier frequency f and the channel bandwidth BW.

- 3. Set the Interfering signal levels to the values as defined in Table 7.8B.2.1.5-1 and frequency below the wanted signal
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.
- 5. Repeat steps from 2 to 4, using an interfering signal above the wanted signal at step 3.

7.8B.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with DFT-s-OFDM condition in Table 4.6.3-118 PUSCH-Config.

7.8B.2.1.5 Test Requirement

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8B.2.1.5-1 for the specified wanted signal mean power in the presence of two interfering signals.

	DC Aggregated ndwidth, MHz	<=100	>100, <=120	>120, <=140	>140, <=160	
Bandwi	n Transmission dth Configuration, perCC, dBm	Pw ¹ 16.8 17.5 18			18.0	
	_{erer 1,} dBm (CW) ²		-4	16		
Pinterferer 2	, dBm (Modulated) ²		-4	16		
NOTE 1:	TE 1: P _w is wanted signal power level from Table 7.8.1A-1 in [5]					
NOTE 2:		sets is from Table 7.8.1A-1 [5] and is applied from the bowest carrier and the highest edge of the highest carrier				
NOTE 3:		the transmitter shall be set to 4dB below $P_{CMAX_L,f,c}$ at the configuration specified in Table 7.3-3 with $P_{CMAX_L,f,c}$ as				
NOTE 4:	For E-UTRA carrier, t minimum uplink confi defined in subclause P _{CMAX_L} as defined in	the transmitter guration speci 6.2.5 for singl	shall be set to ified in Table 7. e carrier and in	.3-1-2 with Рсм Table 7.3-1А-	AX_L,c as	

Table 7.8B.2.1.5-1: Wide band intermodulation

Table 7.8B.2.1.5-2: Power Window (d	dB) for Wideband Intermodulation
-------------------------------------	----------------------------------

	f ≤ 3GHz	3GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6GHz
BW ≤ 20MHz	1.4	1.7	2.0
20MHz < BW ≤ 40MHz	1.4	1.7	2.2
40MHz < BW ≤ 100MHz	2.1	2.3	2.3

7.8B.2.2 Wideband Intermodulation for intra-band non-contiguous EN-DC in FR1

7.8B.2.2.1 Test Purpose

Same test purpose as in clause 7.8.2.1 in TS 38.521-1 [8] for the NR carrier.

7.8B.2.2.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band non-contiguous EN-DC within FR1.

7.8B.2.2.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.8B.2.0.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.8B.2.2.4 Test Description

Same test description as in clause 7.8.2.4 in TS 38.521-1 [8] with the following exceptions:

Table 7.8B.2.2.4-1: Test Configuration Table

Initial Conditions				
Test Frequencies as specified in TS38.508-1 [6] subclause 4.3.1 for different EN-DC bandwidth classes	High with maxWGap			
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE				
NOTE 1: If the UE supports multiple CC Combinations NRB_agg , only the combination with the hi				

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 7.9B.2.4-1.

For Initial conditions as in clause 7.8.2.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].7. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of Initial conditions as in clause 7.8.2.4.2 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

Step 4 of Test procedure is replaced by:

4. Set the Interfering signal levels to the values as defined in Table 7.8.2.5-1 and frequency at the out-of-gap of the sub-blocks.

Step 6 of Test procedure is removed.

7.8B.2.2.5 Test Requirement

Same test requirement as in clause 7.8.2.5 in TS 38.521-1 [8].

7.8B.2.3 Wideband Intermodulation for inter-band EN-DC in FR1 (2 CCs)

7.8B.2.3.1 Test Purpose

Same test purpose as in clause 7.8.2.1 in TS 38.521-1 [8] for the NR carrier.

7.8B.2.3.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.8B.2.3.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.8B.2.0.No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.8B.2.3.4 Test Description

Same test description as in clause 7.8.2.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.8.2.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].7. On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of Initial conditions as in clause 7.8.2.4.2 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

7.8B.2.3.5 Test Requirement

Same test requirement as in clause 7.8.2.5 in TS 38.521-1 [8].

7.8B.2.4 Wideband Intermodulation for EN-DC including FR2 (2 CCs)

TBD

7.8B.2.5 Wideband Intermodulation for inter-band EN-DC including both FR1 and FR2 (3 CCs)

TBD

7.8B.2.6 Wideband Intermodulation for EN-DC including FR1 (3 CCs)

Editor's Note : This test case is incomplete. The following aspects are either missing or not yet determined:

- Test procedure is TBD
- Message contents is TBD
- Test reqreuiement is TBD
- Test applicability in 38.522 is missing
- MU/TT is TBD

7.8B.2.6.1 Test Purpose

Intermodulation response tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8B.2.6.2 Test Applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting EN-DC within FR1 (3 CCs).

7.8B.2.6.3 Minimum Conformance Requirements

The minimum conformance requirements are defined in clause 7.8B.2.0.

7.8B.2.6.4 Test Description

7.8B.2.6.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.3B.1.2, channel bandwidths and sub-carrier spacings for the NR cell specified in TS 38.521-1 [8] clause 5.3 and channel bandwidth for the E-UTRA cell are specified in TS 36.521-1 [10] clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.3B.1.2 and are shown in table 7.8B.2.6.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 36.521-1 [10] Annex C.2 and in TS 38.521-1 [8] Annex C.2 for E-UTRA CG and NR CG respectively.

Table 7.8B.2.6.4.1-1: Test configuration table

est Envir	onment as speci	fied in TS 3	8 508-1 [6]		itial Conditio	ns NC				
	iencies as specif			For test frequencies refer to "Range" columns. For mapping						
	N-DC bandwidth		.000 . [0] 0	within Band refer to "CC" columns						
	C bandwidth cor Idwidth combina			Refer to "NRB" column						
	CS as specified	in Table 5.3	.5-1 in TS 3		Refer to "SCS" column					
letwork si	gnalling value					NS_01 by default				
			le	st Paramete		Configurations				
ID	CC (NOTE1)	Band	SCS	NRB	Range/ Wgap		DL MOD	UL Alloc	DL Allo	
1	PCC(M)	X ²	N/A	NOTE2	NOTE2	NOTE2	NOTE2	NOTE2	NOT	
	PCC(M) PCC(S) SCC1(S)	<u> </u>	IN/A			nZA in 7.8A.2.1 of 38		NOTEZ		
	3001(3)		Default	Test Setting	s for a DC X	A-nYC Configuration	<u> </u>			
	PCC(M)	X ²	N/A	NOTE2	NOTE2	NOTE2	NOTE2	NOTE2	NOT	
1	PCC(S) SCC1(S)	As per CA_nYC in 7.8A.2.1 of 38.521-1 [1]								
			Default Te	est Settings	for a DC_XA-	XA-nYA Configurati	on			
	PCC(M)	X ²	N/A	NOTE2	NOTE2	NOTE2	NOTE2	NOTE2	NOT	
1	SCC1(M)	X ³	N/A	N/A	N/A	N/A	N/A	N/A	N/.	
	PCC(S)	As per 7.8.2.1 of 38.521-1[1]								
		N/2				C-nYA Configuration		NOTES		
4	PCC(M)	X ² X ³	N/A N/A	NOTE2	NOTE2	NOTE2	NOTE2	NOTE2	NO	
1	SCC1(M) PCC(S)	٨°	N/A	N/A	N/A	N/A 7.8.2.1 of 38.521-1[1]	N/A	N/A	N/	
	FCC(3)		Default Te	est Settings		YA-nZA Configuration				
	PCC(M)	X ²	N/A	NOTE2	NOTE2	NOTE2	NOTE2	NOTE2	NO	
1	SCC1(M)	Y ³	N/A	N/A	N/A	N/A	N/A	N/A	N/	
·	PCC(S)					7.8.2.1 of 38.521-1[1]				
			Default	Test Setting		C-nXA Configuration	1			
	PCC(M)	X ²	N/A	Highest	TBD	NOTE2	NOTE2	NOTE2	NO	
1	SCC1(M)	X ²	N/A		TBD	NOTE2	NOTE2	NOTE2	NO	
	PCC(S)	nX	Highest		TBD		per 7.8.2.1 of 38.5	21-1[1]		
		.,		Test Setting)XCA Configuration				
	PCC(M)	<u>X</u>	N/A	1	Mid/CC1	QPSK	QPSK	REFSENS	All F	
1	SCC1(M)	Х	N/A	Lowest N _{RB_agg}	Mid/CC2	QPSK DFT-s-OFDM	QPSK CP-OFDM	N/A	All F	
	PCC(S)	nX	Highest	INRB_agg	Mid/CC1 Mid/CC1	QPSK QPSK		REFSENS REFSENS	All F	
	PCC(M) SCC1(M)	X X	N/A N/A	Highest	Mid/CC1 Mid/CC2	QPSK QPSK	QPSK QPSK	N/A	All F All F	
2						DFT-s-OFDM	CP-OFDM			
	PCC(S)	nX	Highest		Mid/CC1	QPSK	QPSK	REFSENS	All F	
	PCC(M)	X ²	N/A	Highest	High with	NOTE2	NOTE2	NOTE2	NO	
1	PCC(S)	nX	Highest		maxWGap					
•	SCC1(S)	nY	Highest	Highest	Mid	As per CA_n	XA-nYA in 7.8A.2.	1 of 38.521-1 [1]	
	PCC(M)	X ²	N/A	Highest	High with	NOTE2	NOTE2	NOTE2	NO	
2	SCC1(S)	nX	Highest	N _{RB_agg}	maxWGap					
	PCC(S)	nY	Highest	Highest	Mid	As per CA_n	XA-nYA in 7.8A.2.	1 of 38.521-1 [1]	
			Default T	est Settings	for a DC_YA-	(n)XAA Configuration				
1	PCC(M)	Х	N/A	Lowest	Mid/CC1	QPSK	QPSK	REFSENS	All F	
	PCC(S)	nX	Highest	N _{RB_agg}	Mid/CC1	QPSK	QPSK	REFSENS	All F	
	SCC1(M)	Y ³	N/A	N/A	N/A	N/A	N/A	N/A	N/.	
2	PCC(M)	X	N/A	Highest	Mid/CC1	QPSK	QPSK	REFSENS	All F	
	PCC(S) SCC1(M)	nX Y ³	Highest N/A	N _{RB_agg} N/A	Mid/CC1 N/A	QPSK N/A	QPSK N/A	N/A N/A	All F	
	SI 1 1 1 (N/N)									

NOTE 1: (M) and (S) indicate MCG and SCG respectively. NOTE 2: Anchor agnostic approach applies. Configurations as per section 4.6.

NOTE 3: Note configured

NOTE 4: X, Y and Z in this table correspond to different bands i.e. X != Y != Z NOTE 5: The band combinations with difference appearance order of bands/sub-blocks in the band combination string are not distinguished. E.g. DC_YA-(n)XAA represents the set of DC_YA-(n)XAA and DC_(n)XAA-YA

- 1. Connect the SS to the UE antenna connectors as shown in [6] TS 38.508-1 A.3.1.2.1 for SS diagram and A.3.2.1 for UE diagram.
- 2. The parameter settings for the E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3, and the parameter settings for the NR cell are set up according to TS 38.508-1 [6] subclause 4.4.3.
- Downlink signals are initially set up according to TS 36.521-1 [10] Annex C.0 and TS 38.521-1 [8] Annex C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to TS 36.521-1 [10] Annex H and TS 38.521-1 [8] Annex G for E-UTRA CG and NR CG respectively.
- 4. The UL Reference Measurement channels are TS 36.521-1 [10] Annex A.2 and TS 38.521-1 [8] Annex A.2 for E-UTRA CG and NR CG respectively.
- 5. Propagation conditions are set according to TS 36.521-1 [10] Annex B.0 and TS 38.521-1 [8] Annex B.0 for E-UTRA CG and NR CG respectively.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to TS 38.508-1 [6] clause 4.5. Message contents are defined in clause 6.2B.1.1.4.3.

7.8B.2.6.4.2	Test procedure			
TBD 7.8B.2.6.4.3 TBD	Message contents			
7.8B.2.6.5 TBD	Test Requirement			
7.8B.2.7 TBD	Wideband Intermodulation for EN-DC including FR1 (4 CCs)			
7.8 B.2.8 TBD	Wideband Intermodulation for EN-DC including FR1 (5 CCs)			
7.8 B.2.9 TBD	Wideband Intermodulation for EN-DC including FR1 (6 CCs)			
7.9	Spurious emissions			
7.9B	Spurious emissions for EN-DC in FR1			
7.9B.0	Minimum Conformance Requirements			
7.9B.0.1 The requirem	Intra-band contiguous EN-DC in FR1 ent is defined in sub-clause 7.9A.1 in [2].			
The normative reference for this requirement is TS 38.101-3 [4] clause 7.9B.1.				

7.9B.0.2 Intra-band non-contiguous EN-DC in FR1

Spurious emissions requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.9.1 and 7.9.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.9 and 7.9A of [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.9B.2.

7.9B.0.3 Inter-band EN-DC within FR1

E-UTRA requirements from TS 36.101 [5] and NR requirements from TS 38.101-1 [2] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.9B.3.

7.9B.0.4 Inter-band EN-DC including FR2

Spurious emissions requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.9.1 and 7.9.1A of [5] and for NR single carrier and CA operation specified in sub-clause 7.9 of [3] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.9B.4.

7.9B.0.5 Inter-band EN-DC including both FR1 and FR2

Spurious emissions requirement for E-UTRA single carrier and CA operation specified in sub-clauses 7.9.1 and 7.9.1A of [5] and for NR single carrier and CA operation specified in sub-clauses 7.9 and 7.9A of [2] and [3] apply.

The normative reference for this requirement is TS 38.101-3 [4] clause 7.9B.5.

7.9B.1 Spurious Emissions for intra-band contiguous EN-DC in FR1(2 CCs)

7.9B.1.1 Test purpose

Same test purpose as in clause 7.9.1 in TS 38.521-1 [8] for the NR carrier.

7.9B.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting intra-band contiguous EN-DC within FR1.

7.9B.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.9B.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.9B.1.4 Test description

Same test description as in clause 7.9.4 in TS 38.521-1 [8] with the following exceptions:

Table 7.9B.1.4-1: Test Configuration Table

Initial Conditions					
Test Frequencies as specified in TS38.508-1 [6] subclause 4.3.1 for different DC bandwidth classes.	Mid range				
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE	Highest N _{RB_agg} (NOTE 1)				
NOTE 1: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg , only the combination with the highest NRB_SCG is tested.					

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 7.9B.1.4-1.

For Initial conditions as in clause 7.9.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of Initial conditions as in clause 7.9.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

7.9B.1.5 Test requirement

Same test requirement as in clause 7.9.5 in TS 38.521-1 [8].

7.9B.2 Spurious Emissions for intra-band non-contiguous EN-DC in FR1(2 CCs)

7.9B.2.1 Test purpose

Same test purpose as in clause 7.9.1 in TS 38.521-1 [8] for the NR carrier.

7.9B.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.9B.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.9B.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.9B.2.4 Test description

Same test description as in clause 7.9.4 in TS 38.521-1 [8] with the following exceptions:

Table 7.9B.2.4-1: Test Configuration Table

Initial Conditions						
Test Frequencies as specified in TS38.508-1 [6] subclause 4.3.1 for different DC bandwidth classes	[MaxWGap]					
Test EN-DC bandwidth combination as specified in Table 5.3B.1.2-1 across bandwidth combination sets supported by the UE	Highest N _{RB_agg} (NOTE 1)					
NOTE 1: If the UE supports multiple CC Combinations in the EN-DC Configuration with the same NRB_agg , only the combination with the highest NRB_SCG is tested.						

The initial test configurations for E-UTRA as specified in Table 4.6-1 except for the parameters specified in Table 7.9B.2.4-1.

For Initial conditions as in clause 7.9.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of Initial conditions as in clause 7.9.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

7.9B.2.5 Test requirement

Same test requirement as in clause 7.9.5 in TS 38.521-1 [8].

7.9B.3 Spurious Emissions for inter-band EN-DC within FR1(2 CCs)

7.9B.3.1 Test purpose

Same test purpose as in clause 7.9.1 in TS 38.521-1 [8] for the NR carrier.

7.9B.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 15 and forward, supporting inter-band EN-DC within FR1.

7.9B.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 7.9B.0.3.

No exception requirements applicable to NR or LTE. LTE anchor agnostic approach is applied.

7.9B.3.4 Test description

Same test description as in clause 7.9.4 in TS 38.521-1 [8] for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 4.6-1.

For Initial conditions as in clause 7.9.4.1 in TS 38.521-1 [8], the following steps are added to configure E-UTRA component:

- 2.1. The parameter settings for E-UTRA cell are set up according to TS 36.508 [11] subclause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 and propagation conditions are set according to Annex B.0 of TS36.521-1[10].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6.

Step 6 of Initial conditions as in clause 7.9.4.1 in TS 38.521-1 [8] is replaced by:

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to TS 38.508 [6] clause 4.5.

7.9B.3.5 Test requirement

Same test requirement as in clause 7.9.5 in TS 38.521-1 [8].

7.9B.4 Spurious Emissions for inter-band EN-DC including FR2 (2 CCs)

7.9B.5 Spurious Emissions for inter-band EN-DC including both FR1 and FR2 (3 CCs)

TBD

7.9B.6 Spurious Emissions for EN-DC (3 CCs)

TBD

7.9B.7 Spurious Emissions for EN-DC (4 CCs)

TBD

7.9B.8 Spurious Emissions for EN-DC (5 CCs)

TBD

7.9B.9 Spurious Emissions for EN-DC (6 CCs)

TBD

Annex A (normative): Measurement Channels

Please refer to Annex A in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. EN-DC exceptions will be added.

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels for E-UTRA TDD Config 2

A.2.1 General

The measurement channels in the following subclauses are defined to derive the requirements in clause 6 (Transmitter Characteristics) and clause 7 (Receiver Characteristics). The measurement channels represent example configurations of physical channels for different data rates.

A.2.2 Reference measurement channels for E-UTRA

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1: Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		2	2	2	2	2	2
Special subframe configuration (Note 3)		7	7	7	7	7	7
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size							
For Sub-Frame 2,7	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,7		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,7	Bits	1728	4320	7200	14400	21600	28800
Total symbols per Sub-Frame							
For Sub-Frame 2,7		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1
Note 1: If more than one Code Block is		n addition	al CRC s	sequence	of L = 24	l Bits is a	ttached
to each Code Block (otherwise							
Note 2: As per Table 4.2-2 in TS 36.21							
Note 3: As per Table 4.2-1 in TS 36.21	1 [13]						

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1: Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		2	2	2	2	2	2
Special subframe configuration (Note 3)		7	7	7	7	7	7
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size							
For Sub-Frame 2,7	Bits	2600	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,7		1	1	1	4	4	4
Total number of bits per Sub-Frame							
For Sub-Frame 2,7	Bits	3456	8640	14400	28800	43200	57600
Total symbols per Sub-Frame							
For Sub-Frame 2,7		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥1	≥1	≥2	≥ 2	≥2
Note 1: If more than one Code Block is		an additiona	al CRC seq	uence of L	= 24 Bits i	s attached	to each
Code Block (otherwise L = 0 Bi							
Note 2: As per Table 4.2-2 in TS 36.21	1 [13]						
Note 3: As per Table 4.2-1 in TS 36.21	1 [13]						

A.2.2.1.3 64-QAM

Table A.2.2.1.3-1: Reference Channels for 64-QAM with full RB allocation

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Uplink-Downlink Configuration (Note 2)		2	2	2	2	2	2		
Special subframe configuration (Note 3)		7	7	7	7	7	7		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding rate		3/4	3/4	3/4	3/4	3/4	3/4		
Payload size									
For Sub-Frame 2,7	Bits	3752	9528	15840	31704	46888	63776		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame									
(Note 1)									
For Sub-Frame 2,7		1	2	3	6	8	11		
Total number of bits per Sub-Frame									
For Sub-Frame 2,7	Bits	5184	12960	21600	43200	64800	86400		
Total symbols per Sub-Frame									
For Sub-Frame 2,7 864 2160 3600 7200 10800 14400									
UE Category (Note 4) 5, 8<									
UE UL Category (Note 4)		5, 8,	5, 8,	5, 8,	5, 8,	5, 8,	5, 8,		
		13, 14	13, 14	13, 14	13, 14	13, 14	13, 14		
Note 1: If more than one Code Block is		an additiona	al CRC seq	uence of L	= 24 Bits i	s attached	to each		
Code Block (otherwise L = 0 B									
Note 2: As per Table 4.2-2 in TS 36.21									
Note 3: As per Table 4.2-1 in TS 36.21									
Note 4: If UE does not report UE UL ca	Note 4: If UE does not report UE UL category, then the applicability of reference channel is determined by UE								

Note 4: If UE does not report UE UL category, then the applicability of reference channel is determined by UE category. If UE reports UE UL category, then the applicability of reference channel is determined by UE UL category.

A.2.2.1.4 256 QAM

Table A.2.2.1.4-1: Reference Channels for 256 QAM with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration		2	2	2	2	2	2
(Note 2)							
Special subframe configuration		7	7	7	7	7	7
(Note 3)							
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		256QAM	256QAM	256QAM	256QAM	256QAM	256QAM
Target Coding rate		3/4	3/4	3/4	3/4	3/4	3/4
Payload size							
For Sub-Frame 2,7	Bits	5160	12960	21384	42368	63776	84760
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-							
Frame (Note 1)							
For Sub-Frame 2,7		1	3	4	8	11	15
Total number of bits per Sub-							
Frame							
For Sub-Frame 2,7	Bits	6912	17280	28800	57600	86400	115200
Total symbols per Sub-Frame							
For Sub-Frame 2,7		864	2160	3600	7200	10800	14400
UE UL Category		≥ 15	≥ 15	≥ 15	≥ 15	≥ 15	≥ 15
Note 1: If more than one Code	Block is pr	esent, an ad	ditional CRC	Sequence	of $L = 24$ Bit	s is attached	d to each
Code Block (otherwise							
Note 2: As per Table 4.2-2 in T	S 36.211 [′	13]					
Note 3: As per Table 4.2-1 in T	S 36.211 [′	13]					

A.2.2.2 Partial RB allocation

A.2.2.2.1 QPSK

Table A.2.2.2.1-1: Reference Channels for QPSK with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	UL-DL Configu ration (Note 2)	Special subfra me configu ration (Note 3)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 7	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 7	Total symbol s per Sub- Frame for Sub- Frame 2, 7	UE Categor y
Unit	MHz							Bits	Bits		Bits		
	1.4 - 20	1	2	7	12	QPSK	1/3	72	24	1	288	144	≥ 1
	1.4 - 20	2	2	7	12	QPSK	1/3	176	24	1	576	288	≥ 1
	1.4 - 20	3	2	7	12	QPSK	1/3	256	24	1	864	432	≥ 1
	1.4 - 20	4	2	7	12	QPSK	1/3	392	24	1	1152	576	≥ 1
	1.4 - 20	5	2	7	12	QPSK	1/3	424	24	1	1440	720	≥ 1
	3-20	6	2	7	12	QPSK	1/3	600	24	1	1728	864	≥ 1
	3-20	8	2	7	12	QPSK	1/3	808	24	1	2304	1152	≥ 1
	3-20	9	2	7	12	QPSK	1/3	776	24	1	2592	1296	≥ 1
	3-20	10	2	7	12	QPSK	1/3	872	24	1	2880	1440	≥ 1
	3-20	12	2	7	12	QPSK	1/3	1224	24	1	3456	1728	≥ 1
	5-20	15	2	7	12	QPSK	1/3	1320	24	1	4320	2160	≥ 1
	5-20	16	2	7	12	QPSK	1/3	1384	24	1	4608	2304	≥ 1
ļļ	5-20	18	2	7	12	QPSK	1/3	1864	24	1	5184	2592	≥ 1
	5-20	20	2	7	12	QPSK	1/3	1736	24	1	5760	2880	≥1
├ ──── ↓	5-20	24	2	7	12	QPSK	1/3	2472	24	1	6912	3456	≥1
├ ──── ├	10-20	25	2	7	12	QPSK	1/3	2216	24	1	7200	3600	≥1
	10-20	27	2	7	12	QPSK QPSK	1/3	2792	24	1	7776	3888	≥1
	10-20	30 32	2	7	12 12	QPSK QPSK	1/3 1/3	2664 2792	24 24	1	8640 9216	4320	≥1
	10-20 10-20	32	2	7 7	12	QPSK	1/3	3752	24	1	10368	4608 5184	≥1
	10-20	40	2	7	12	QPSK	1/3	4136	24	1	11520	5760	≥ 1 ≥ 1
}ł	10-20	40	2	7	12	QPSK	1/3	4008	24	1	12960	6480	≥ 1
	10-20	43	2	7	12	QPSK	1/3	4008	24	1	13824	6912	≥ 1
├ ──┤	15 - 20	50	2	7	12	QPSK	1/3	5160	24	1	14400	7200	≥1
<u>├</u>	15 - 20	54	2	7	12	QPSK	1/3	4776	24	1	15552	7776	≥1
	15 - 20	60	2	7	12	QPSK	1/4	4264	24	1	17280	8640	≥ 1
	15 - 20	64	2	7	12	QPSK	1/4	4584	24	1	18432	9216	≥ 1
	15 - 20	72	2	7	12	QPSK	1/4	5160	24	1	20736	10368	≥ 1
	20	75	2	7	12	QPSK	1/5	4392	24	1	21600	10800	≥ 1
	20	80	2	7	12	QPSK	1/5	4776	24	1	23040	11520	≥ 1
	20	81	2	7	12	QPSK	1/5	4776	24	1	23328	11664	≥ 1
	20	90	2	7	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
	20	96	2	7	12	QPSK	1/6	4264	24	1	27648	13824	≥ 1
Note 1: Note 2: Note 3:	Bit) As per ⁻	than one C Table 4.2-2 Table 4.2-1	2 in TS 36.	211 [13]	, an additic	onal CRC s	equence o	of L = 24 \overline{Bi}	ts is attach	ed to each	Code Blo	ck (otherwi	se L = 0

A.2.2.2.2 16-QAM

Parame ter	Ch BW	Allocat ed RBs	UL-DL Configu ration (Note 2)	Special subfra me configu ration (Note 3)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 7	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 7	Total symbol s per Sub- Frame for Sub- Frame 2, 7	UE Categor y
Unit	MHz							Bits	Bits		Bits		
	1.4 - 20	1	2	7	12	16QAM	3/4	408	24	1	576	144	≥ 1
	1.4 - 20	2	2	7	12	16QAM	3/4	840	24	1	1152	288	≥ 1
	1.4 - 20	3	2	7	12	16QAM	3/4	1288	24	1	1728	432	≥ 1
	1.4 - 20	4	2	7	12	16QAM	3/4	1736	24	1	2304	576	≥ 1
	1.4 - 20	5	2	7	12	16QAM	3/4	2152	24	1	2880	720	≥1
	3-20	6	2	7	12	16QAM	3/4	2600	24	1	3456	864	≥ 1
	3-20	8	2	7	12	16QAM	3/4	3496	24	1	4608	1152	≥1
	3-20	9	2	7	12	16QAM	3/4	3880	24	1	5184	1296	≥1
	3-20	10	2	7	12	16QAM	3/4	4264	24	1	5760	1440	≥1
	3-20	12	2	7	12	16QAM	3/4	5160	24	1	6912	1728	≥1
	5-20	15	2	7	12	16QAM	1/2	4264	24	1	8640	2160	≥1
	5-20	16	2	7	12	16QAM	1/2	4584	24	1	9216	2304 2592	≥1
	5-20	18 20	2	7	12	16QAM	1/2	5160	24	1	10368		≥1
	5-20 5-20	20	2	7	12 12	16QAM 16QAM	1/3 1/3	4008 4776	24 24	1	11520 13824	2880 3456	≥1 ≥1
	10-20	24	2	7	12	16QAM	1/3	4968	24	1	13624	3600	≥1 ≥1
	10-20	23	2	7	12	16QAM	1/3	4900	24	1	15552	3888	≥1
	10-20	30	2	7	12	16QAM	3/4	12960	24	3	17280	4320	≥2
	10-20	32	2	7	12	16QAM	3/4	13536	24	3	18432	4608	≥2
	10-20	36	2	7	12	16QAM	3/4	15264	24	3	20736	5184	≥2
	10-20	40	2	7	12	16QAM	3/4	16992	24	3	23040	5760	≥2
	10-20	45	2	7	12	16QAM	3/4	19080	24	4	25920	6480	≥2
	10-20	48	2	7	12	16QAM	3/4	20616	24	4	27648	6912	≥2
	15 - 20	50	2	7	12	16QAM	3/4	21384	24	4	28800	7200	≥2
	15 - 20	54	2	7	12	16QAM	3/4	22920	24	4	31104	7776	≥ 2
	15 - 20	60	2	7	12	16QAM	2/3	23688	24	4	34560	8640	≥ 2
	15 - 20	64	2	7	12	16QAM	2/3	25456	24	4	36864	9216	≥ 2
	15 - 20	72	2	7	12	16QAM	1/2	20616	24	4	41472	10368	≥ 2
	20	75	2	7	12	16QAM	1/2	21384	24	4	43200	10800	≥ 2
	20	80	2	7	12	16QAM	1/2	22920	24	4	46080	11520	≥ 2
	20	81	2	7	12	16QAM	1/2	22920	24	4	46656	11664	≥ 2
	20	90	2	7	12	16QAM	2/5	20616	24	4	51840	12960	≥ 2
	20 If more t	96	2	7	12	16QAM	2/5	22152	24	4	55296	13824	≥ 2

Table A.2.2.2.1: Reference Channels for 16QAM with partial RB allocation

A.2.2.2.3 64-QAM

Table A.2.2.2.3-1: Reference Channels for 64-QAM with partial RB allocation

Param eter	Ch BW	Alloca ted RBs	UL-DL Configura tion (Note 2)	Special subframe configura tion (Note 3)	DFT- OFDM Symb ols per Sub- Frame	Mod' n	Targ et Codi ng rate	Paylo ad size for Sub- Fram e 2, 7	Tran s- port bloc k CRC	Num ber of code block s per Sub- Fram e (Note 1)	Total num ber of bits per Sub- Fram e for Sub- Fram e 2, 7	Total symb ols per Sub- Fram e for Sub- Fram e 2, 7	UE Categ ory (Note 4)	UE UL Categ ory (Note 4)
Unit	M Hz							Bits	Bits		Bits			
	1.4 - 20	1	2	7	12	64Q AM	3/4	616	24	1	864	144	5,8	5, 8, 13, 14
	1.4 - 20	2	2	7	12	64Q AM	3/4	1256	24	1	1728	288	5,8	5, 8, 13, 14
	1.4 - 20	3	2	7	12	64Q AM	3/4	1864	24	1	2592	432	5,8	5, 8, 13, 14
	1.4 - 20	4	2	7	12	64Q AM	3/4	2536	24	1	3456	576	5,8	5, 8, 13, 14
	1.4 - 20	5	2	7	12	64Q AM	3/4	3112	24	1	4320	720	5,8	5, 8, 13, 14
	3- 20	6	2	7	12	64Q AM	3/4	3752	24	1	5184	864	5,8	5, 8, 13, 14
	3- 20	8	2	7	12	64Q AM	3/4	5160	24	1	6912	1152	5,8	5, 8, 13, 14
	3- 20	9	2	7	12	64Q AM	3/4	5736	24	1	7776	1296	5,8	5, 8, 13, 14
	3- 20	10	2	7	12	64Q AM	3/4	6200	24	2	8640	1440	5,8	5, 8, 13, 14
	3- 20	12	2	7	12	64Q AM	3/4	7480	24	2	1036 8	1728	5,8	5, 8, 13, 14
	5- 20	15	2	7	12	64Q AM	3/4	9528	24	2	1296 0	2160	5,8	5, 8, 13, 14
	5- 20	16	2	7	12	64Q AM	3/4	1029 6	24	2	1382 4	2304	5,8	5, 8, 13, 14
	5- 20	18	2	7	12	64Q AM	3/4	1144 8	24	2	1555 2	2592	5,8	5, 8, 13, 14
	5- 20	20	2	7	12	64Q AM	3/4	1257 6	24	3	1728 0	2880	5,8	5, 8, 13, 14
	5- 20	24	2	7	12	64Q AM	3/4	1526 4	24	3	2073 6	3456	5,8	5, 8, 13, 14
	10- 20	25	2	7	12	64Q AM	3/4	1584 0	24	3	2160 0	3600	5,8	5, 8, 13, 14
	10- 20	27	2	7	12	64Q AM	3/4	1699 2	24	3	2332 8	3888	5,8	5, 8, 13, 14
	10- 20	30	2	7	12	64Q AM	3/4	1908 0	24	4	2592 0	4320	5,8	5, 8, 13, 14
	10- 20	32	2	7	12	64Q AM	3/4	2061 6	24	4	2764 8	4608	5,8	5, 8, 13, 14
	10- 20	36	2	7	12	64Q AM	3/4	2292 0	24	4	3110 4	5184	5,8	5, 8, 13, 14
	10- 20	40	2	7	12	64Q AM	3/4	2545 6	24	5	3456 0	5760	5,8	5, 8, 13, 14

	10- 20	45	2	7	12	64Q AM	3/4	2833 6	24	5	3888 0	6480	5,8	5, 8, 13, 14
	10- 20	48	2	7	12	64Q AM	3/4	3057 6	24	5	4147 2	6912	5,8	5, 8, 13, 14
	15 - 20	50	2	7	12	64Q AM	3/4	3170 4	24	6	4320 0	7200	5,8	5, 8, 13, 14
	15 - 20	54	2	7	12	64Q AM	3/4	3400 8	24	6	4665 6	7776	5,8	5, 8, 13, 14
	15 - 20	60	2	7	12	64Q AM	3/4	3788 8	24	7	5184 0	8640	5,8	5, 8, 13, 14
	15 - 20	64	2	7	12	64Q AM	3/4	4057 6	24	7	5529 6	9216	5,8	5, 8, 13, 14
	15 - 20	72	2	7	12	64Q AM	3/4	4535 2	24	8	6220 8	1036 8	5,8	5, 8, 13, 14
	20	75	2	7	12	64Q AM	3/4	4688 8	24	8	6480 0	1080 0	5,8	5, 8, 13, 14
	20	80	2	7	12	64Q AM	3/4	5102 4	24	9	6912 0	1152 0	5,8	5, 8, 13, 14
	20	81	2	7	12	64Q AM	3/4	5102 4	24	9	6998 4	1166 4	5,8	5, 8, 13, 14
	20	90	2	7	12	64Q AM	3/4	5102 4	24	9	7776 0	1296 0	5,8	5, 8, 13, 14
	20	96	2	7	12	64Q AM	3/4	6166 4	24	11	8294 4	1382 4	5,8	5, 8, 13, 14
Note 1: Note 2: Note 3: Note 4:	(oti As As If L	herwise L per Table per Table JE does n	one Code B . = 0 Bit) e 4.2-2 in TS e 4.2-1 in TS ot report UE JL category,	36.211 [13] 36.211 [13] UL categor	y, then th	e applica	bility of	reference	e chanr	nel is det	ermined	by UE ca		ck

A.2.2.2.4 256 QAM

Para meter	Ch BW	Allocat ed RBs	UL-DL Config uration (Note 2)	Special Slot Config uration (Note 3)	DFT- OFDM Symbo Is per Sub- Frame	Mod'n	Target Coding rate	Payload size for Sub- Frame 2, 7	Trans- port block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 7	Total symbols per Sub- Frame for Sub- Frame 2, 7	UE U Categ
Unit	MHz							Bits	Bits		Bits		
	1.4 - 20	1	2	7	12	256QAM	3/4	840	24	1	1152	144	≥ 1:
	1.4 - 20	2	2	7	12	256QAM	3/4	1672	24	1	2304	288	≥ 1{
	1.4 - 20	3	2	7	12	256QAM	3/4	2536	24	1	3456	432	≥ 1{
	1.4 - 20	4	2	7	12	256QAM	3/4	3368	24	1	4608	576	≥ 1{
	1.4 - 20	5	2	7	12	256QAM	3/4	4264	24	1	5760	720	≥ 1;
	3-20	6	2	7	12	256QAM	3/4	5160	24	1	6912	864	≥ 1{
	3-20	8	2	7	12	256QAM	3/4	6712	24	2	9216	1152	≥ 1;
	3-20	9	2	7	12	256QAM	3/4	7736	24	2	10368	1296	≥ 1;
	3-20	10	2	7	12	256QAM	3/4	8504	24	2	11520	1440	≥ 1;
	3-20	12	2	7	12	256QAM	3/4	10296	24	2	13824	1728	≥ 1{
	5-20	15	2	7	12	256QAM	3/4	12960	24	3	17280	2160	≥ 1:
	5-20	16	2	7	12	256QAM	3/4	13536	24	3	18432	2304	≥ 1{
	5-20	18	2	7	12	256QAM	3/4	15264	24	3	20736	2592	≥ 1;
	5-20	20	2	7	12	256QAM	3/4	16992	24	3	23040	2880	≥ 1{
	5-20	24	2	7	12	256QAM	3/4	20616	24	4	27648	3456	≥ 1{
	10-20	25	2	7	12	256QAM	3/4	21384	24	4	28800	3600	≥ 1{
	10-20	27	2	7	12	256QAM	3/4	22920	24	4	31104	3888	≥ 1{
	10-20	30	2	7	12	256QAM	3/4	25456	24	5	34560	4320	≥ 1:
	10-20	32	2	7	12	256QAM	3/4	27376	24	5	36864	4608	≥ 1{
	10-20	36	2	7	12	256QAM	3/4	30576	24	6	41472	5184	≥ 1{
	10-20	40	2	7	12	256QAM	3/4	34008	24	6	46080	5760	≥ 1{
	10-20	45	2	7	12	256QAM	3/4	37888	24	7	51840	6480	≥ 1{
	10-20	48	2	7	12	256QAM	3/4	40576	24	8	55296	6912	≥ 1{
	15 - 20	50	2	7	12	256QAM	3/4	42368	24	8	57600	7200	≥ 1{
	15 - 20	54	2	7	12	256QAM	3/4	46888	24	8	62208	7776	≥ 1:
	15 - 20	60	2	7	12	256QAM	3/4	51024	24	9	69120	8640	≥ 1:
	15 - 20	64	2	7	12	256QAM	3/4	55056	24	9	73728	9216	≥ 1:
	15 - 20	72	2	7	12	256QAM	3/4	61664	24	11	82944	10368	≥ 1{
	20	75	2	7	12	256QAM	3/4	63776	24	11	86400	10800	≥ 1:
	20	80	2	7	12	256QAM	3/4	68808	24	12	92160	11520	≥ 1{
	20	81	2	7	12	256QAM	3/4	68808	24	12	93312	11664	≥ 1{
	20	90	2	7	12	256QAM	3/4	76208	24	13	103680	12960	≥ 1{
	20 : If mor	96 e than on	2	7	12	256QAM	3/4	81176	24	14	110592	13824	≥ 1:

Table A.2.2.2.4-1: Reference Channels for 256 QAM with partial RB allocation

A.3 DL reference measurement channels for E-UTRA

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

Unless otherwise stated, no user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.

2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24*(N_{CB} + 1))/N_{ch}|, where N_{CB} = \begin{cases} 0, & \text{if } C = 1 \\ C, & \text{if } C > 1 \end{cases},$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- 3. If there is more than one *A* that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 3DL+DwPTS (10 OFDM symbol SSF7): 1UL

Annex B (normative): Propagation Conditions

Please refer to Annex B in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. EN-DC exceptions will be added,

Annex C (normative): Downlink Physical Channels

Please refer to Annex C in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. EN-DC exceptions will be added,

Annex D (normative): Characteristics of the Interfering Signal

Please refer to Annex D in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. EN-DC exceptions will be added,

Annex E (normative): Global In-Channel Tx Test

Please refer to Annex E in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. EN-DC exceptions will be added,

Annex F (informative): Measurement uncertainties and Test Tolerances

F.1 Acceptable uncertainty of Test System (normative)

TBD

F.1.1 Measurement of test environments

TBD

F.1.2 Measurement of transmitter

Table F.1.2-1: Maximum Test System Uncertainty for transmitter tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2B.1.1 UE Maximum	f ≤ 3.0GHz	Chicontainty
Output Power for Intra-Band	±0.7 dB, BW ≤ 40MHz	
Contiguous EN-DC	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2GHz < f ≤ 6.0GHz	
	$\pm 1.3 \text{ dB, BW} \le 20 \text{MHz}$	
	$\pm 1.5 \text{ dB}, \text{ BVV} \le 2000 \text{Hz}$ $\pm 1.5 \text{ dB}, 200 \text{Hz} < \text{BW} \le 400 \text{Hz}$	
	$\pm 1.6 \text{ dB}, 40\text{MHz} < \text{BW} \le 100\text{MHz}$	
6.2B.1.2 UE Maximum	MAX (MULTE, MUSA)	MULTE is MU of LTE specified in
Output Power for Intra-Band		6.2.2 in TS 36.521-1.
Non-Contiguous EN-DC	MULTE	0.2.2 11 10 00.021 1.
	±0.7 dB, f ≤ 3.0GHz	MU _{SA} is MU of FR1 SA
	$\pm 1.0 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$	specified in 6.2.1 in TS 38.521-
		1.
	MU _{SA}	
	f ≤ 3.0GHz	
	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	4.2 GHz < f \leq 6.0GHz	
	±1.3 dB, BW ≤ 20MHz	
	$\pm 1.5 \text{ dB}, 20 \text{MHz} < \text{BW} \le 40 \text{MHz}$	
6.2B.1.3 UE Maximum	±1.6 dB, 40MHz < BW ≤ 100MHz MAX (MULTE, MUSA)	MULTE is MU of LTE specified in
Output Power for Inter-Band	MAX (MOLTE, MOSA)	6.2.2 in TS 36.521-1.
EN-DC within FR1	MULTE	0.2.2 11 10 00.021-1.
	$\pm 0.7 \text{ dB}, f \le 3.0 \text{GHz}$	MU _{SA} is MU of FR1 SA
	$\pm 1.0 \text{ dB}, 3.0 \text{GHz} < \text{f} \le 4.2 \text{GHz}$	specified in 6.2.1 in TS 38.521-
		1.
	MU _{SA}	
	f ≤ 3.0GHz	
	±0.7 dB, BW ≤ 40MHz	
	±1.4 dB, 40MHz < BW ≤ 100MHz	
	3.0GHz < f ≤ 4.2GHz	
	±1.0 dB, BW ≤ 40MHz	
	±1.6 dB, 40MHz < BW ≤ 100MHz	
	$4.2 \text{ GHz} < f \le 6.0 \text{ GHz}$	
	±1.3 dB, BW ≤ 20MHz ±1.5 dB, 20MHz < BW ≤ 40MHz	
	$\pm 1.6 \text{ dB}, 40\text{MHz} < \text{BW} \le 100\text{MHz}$	
6.2B.1.4 UE Maximum	Same as 6.2.1 in TS 38.521-2	
Output Power for Inter-Band	Same as 0.2.1 in 10 50.521 2	
EN-DC including FR2		
6.2B.2.1 UE Maximum	Same as 6.2B.1.1	
Output Power reduction for		
Intra-Band Contiguous EN-		
DC		
6.2B.2.2 UE Maximum	Same as 6.2B.1.2	
Output Power reduction for		
Intra-Band Non-Contiguous		
EN-DC		
6.2B.2.3 UE Maximum	Same as 6.2B.1.3	
Output Power reduction for		
Inter-Band EN-DC within		
FR1		

6.2B.3.1 UE Additional	Same as 6.2B.1.1	
Maximum Output Power		
reduction for Intra-band		
contiguous EN-DC		
6.2B.3.2 UE Additional	Same as 6.2B.1.2	
Maximum Output Power		
reduction for Intra-Band		
Non-Contiguous EN-DC		
6.2B.3.3 UE Additional	Same as 6.2B.1.3	
Maximum Output Power		
reduction for Inter-Band EN-		
DC within FR1		
6.2B.4.1.1 Configured	Same as 6.2B.1.1	
Output Power Level for		
Intra-Band Contiguous EN-		
DC		
	Come es C 2D 4 2	
6.2B.4.1.2 Configured	Same as 6.2B.1.2	
Output Power for Intra-Band		
Non-Contiguous EN-DC		
6.2B.4.1.3 Configured	Same as 6.2B.1.3	
Output Power for Inter-Band		
EN-DC within FR1		
6.3B.1.1 Minimum Output	Same as 6.3.1 in TS 38.521-1	
Power for intra-band		
contiguous EN-DC		
6.3B.1.2 Minimum output	Same as 6.3.1 in TS 38.521-1	
	Jaine as 0.3.1 III 13 30.321-1	
power for intra-band non-		
contiguous EN-DC		
6.3B.1.3 Minimum output	Same as 6.3.1 in TS 38.521-1	
power for inter-band EN-DC		
within FR1		
6.3B.1.4 Minimum Output	Same as 6.3.1 in TS 38.521-1	
Power for EN-DC Interband		
including FR2		
6.3B.2.1 Transmit OFF	Same as 6.3.2 in TS 38.521-1	
	Same as 6.3.2 in 15 38.521-1	
Power for intra-band		
contiguous EN-DC		
6.3B.2.2 Transmit OFF	Same as 6.3.2 in TS 38.521-1	
Power for intra-band non-		
contiguous EN-DC		
6.3B.2.3 Transmit OFF	Same as 6.3.2 in TS 38.521-1	
Power for inter-band EN-DC		
within FR1		
6.3B.3.1 Tx ON/OFF time	Same as 6.3.3 in TS 38.521-1	
	Jame as 0.3.3 III 13 30.321-1	
mask for intra-band		
contiguous EN-DC		
6.3B.3.2 Tx ON/OFF time	Same as 6.3.3 in TS 38.521-1	
mask for intra-band non-		
contiguous EN-DC		
6.3B.3.3 Tx ON/OFF time	Same as 6.3.3 in TS 38.521-1	
mask for inter-band EN-DC		
within FR1		
6.4B.1.1 Frequency Error for	ТВD	
	עטו	
intra-band contiguous EN-		
DC		
6.4B.1.2 Frequency Error for	TBD	
intra-band non-contiguous		
EN-DC		
6.4B.1.3 Frequency Error for	Same as 6.4.1 in TS 38.521-1	
inter-band EN-DC within		
FR1		
6.4B.1.5 Frequency Error for	Same as 6.4.1 in TS 38.521-2	
	Jame as 0.4.1 III 13 30.321-2	
inter-band EN-DC including		
FR2		
6.4B.2.1.1 Error Vector	TBD	
Magnitude for intra-band		
contiguous EN-DC		

6.4B.2.1.2 Carrier Leakage	TBD	
for intra-band contiguous		
EN-DC		
	TDD	
6.4B.2.1.3 In-band	TBD	
Emissions for intra-band		
contiguous EN-DC		
6.4B.2.1.4 EVM Equalizer	TBD	
Flatness for intra-band		
contiguous EN-DC		
6.4B.2.2.1 Error Vector	TBD	
Magnitude for intra-band		
non-contiguous EN-DC		
	TBD	
6.4B.2.2.2 Carrier Leakage	ТВО	
for intra-band non-		
contiguous EN-DC		
6.4B.2.2.3 In-band	TBD	
Emissions for intra-band		
non-contiguous EN-DC		
	TRR	
6.4B.2.2.4 EVM Equalizer	TBD	
Flatness for intra-band non-		
contiguous EN-DC		
6.4B.2.3.1 Error Vector	Same as 6.4.2.1 in TS 38.521-1	
Magnitude for inter-band		
EN-DC within FR1		
6.4B.2.3.2 Carrier Leakage	Same as 6.4.2.2 in TS 38.521-1	
for inter-band EN-DC within		
FR1		
6.4B.2.3.3 In-band	Same as 6.4.2.3 in TS 38.521-1	
	Same as 0.4.2.3 m 13 30.321-1	
Emissions for inter-band		
EN-DC within FR1		
6.4B.2.3.4 EVM Equalizer	Same as 6.4.2.4 in TS 38.521-1	
Flatness for inter-band EN-		
DC within FR1		
	0	
6.4B.2.4.1 Error Vector	Same as 6.4.2.1 in TS 38.521-2	
Magnitude for inter-band		
EN-DC including FR2		
6.4B.2.4.2 Carrier Leakage	Same as 6.4.2.2 in TS 38.521-2	
	Game as 0.4.2.2 in 10 30.321-2	
for inter-band EN-DC		
including FR2		
6.4B.2.4.3 In-band	Same as 6.4.2.3 in TS 38.521-2	
Emissions for inter-band		
EN-DC including FR2		
6.4B.2.4.4 EVM Equalizer	Same as 6.4.2.4 in TS 38.521-2	
	Same as 0.4.2.4 in 15 50.521-2	
Flatnessfor inter-band EN-		
DC including FR2		
6.5B.1.1 Occupied	1.5% of aggregated channel bandwidth	
bandwidth for Intra-Band		
Contiguous EN-DC		
6.5B.1.2 Occupied	Same as 6.5.1 in TS 38.521-1	
	Jame as 0.3.1 III 10 30.321-1	
bandwidth for Intra-Band		
Non-Contiguous EN-DC		
		<u> </u>
6.5B.1.3 Occupied	Same as 6.5.1 in TS 38.521-1	
bandwidth for Inter-Band		
EN-DC within FR1		
6.5B.2.1.1 Spectrum	Same as 6.5.2.2 in TS 38.521-1	
	Jame as 0.3.2.2 III 13 30.321-1	
emissions mask for intra-		
band contiguous EN-DC		
6.5B.2.1.2 Additional	Same as 6.5.2.3 in TS 38.521-1	
spectrum emissions mask		
for intra-band contiguous		
EN-DC		
6.5B.2.1.3 Adjacent channel	Same as 6.5.2.3 in TS 38.521-1	
leakage ratio for intra-band		
contiguous EN-DC		
	Sama as 6 5 1 in TS 30 501 3	
6.5B.1.4 Occupied	Same as 6.5.1 in TS 38.521-2	
6.5B.1.4 Occupied	Same as 6.5.1 in TS 38.521-2	
6.5B.1.4 Occupied bandwidth for Inter-Band	Same as 6.5.1 in TS 38.521-2	
6.5B.1.4 Occupied	Same as 6.5.1 in TS 38.521-2	

6.5B.2.2.1 Spectrum	Same as 6.5.2.2 in TS 38.521-1
emissions mask for intra-	
band non-contiguous EN-	
DC	
6.5B.2.2.2 Additional	Same as 6.5.2.3 in TS 38.521-1
Spectrum emissions mask	
for intra-band non-	
contiguous EN-DC	
6.5B.2.2.3 Adjacent channel	TBD
leakage ratio for intra-band	
non-contiguous EN-DC	
6.5B.2.3.1 Spectrum	Same as 6.5.2.2 in TS 38.521-1
emissions mask for Inter-	
band EN-DC within FR1	
6.5B.2.3.2 Additional	Same as 6.5.2.3 in TS 38.521-1
Spectrum emissions mask	
for Inter-band EN-DC within	
FR1	
6.5B.2.3.3 Adjacent channel	Same as 6.5.2.4.1 in TS 38.521-1
leakage ratio for inter-band	
EN-DC within FR1	
6.5B.2.4.1 Spectrum	Same as 6.5.2.1 in TS 38.521-2
emissions mask for Inter-	Same as 0.5.2.1 m 15 30.521-2
band EN-DC including FR2	Same as 6.5.2.3 in TS 38.521-2
6.5B.2.4.3 Adjacent channel	Same as 6.5.2.3 In 15 38.521-2
leakage ratio for Inter-band	
EN-DC including FR2	
6.5B.3.1.1 General spurious	Same as 6.5.3.1 in TS 38.521-1
emissions for intra-band	
contiguous EN-DC	
6.5B.3.1.2 Spurious	Same as 6.5.3.1 in TS 38.521-1
emission band UE co-	
existence for intra-band	
contiguous EN-DC	
6.5B.3.2.1 General spurious	Same as 6.5.3.1 in TS 38.521-1
emissions for Intra-band	
non-contiguous EN-DC	
6.5B.3.2.2 Spurious	Same as 6.5.3.1 in TS 38.521-1
Emission band UE co-	
existence for intra-band non-	
contiguous EN-DC	
6.5B.3.3.1 General spurious	Same as 6.5.3.1 in TS 38.521-1
emissions for Inter-band EN-	
DC within FR1	
6.5B.3.3.2 Spurious	Same as 6.5.3.1 in TS 38.521-1
emission band UE co-	
existence for Inter-band	
within FR1	
6.5B.3.4.2 Spurious	Same as 6.5.3.2 in TS 38.521-2
emission band UE co-	
existence for Inter-band	
including FR2	
6.5B.5.3 Transmit	Same as 6.5.4.3 in TS 38.521-1
intermodulation for Inter-	
band EN-DC within FR1	

F.1.3 Measurement of receiver

Table F.1.3-1: Maximum Test System Uncertainty for receiver tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
7.3B.2.1 Reference sensitivity for Intra-band Contiguous EN-DC	Same as 7.3.2 in TS 38.521-1	
7.3B.2.2 Reference sensitivity for Intra-band non-contiguous EN-DC	Same as 7.3.2 in TS 38.521-1	
7.3B.2.3 Reference sensitivity for Inter-band EN- DC within FR1	Same as 7.3.2 in TS 38.521-1	
7.4B.1 Maximum Input Level for Intra-Band Contiguous EN-DC	Same as 7.4 in TS 38.521-1	
7.4B.2 Maximum Input Level for Intra-Band Non- Contiguous EN-DC	Same as 7.4 in TS 38.521-1	
7.4B.3 Maximum Input Level for Inter-band EN-DC within FR1	Same as 7.4 in TS 38.521-1	
7.5B.1 Adjacent Channel Selectivity for intra-band contiguous EN-DC	TBD	
7.5B.2 Adjacent Channel Selectivity for intra-band non-contiguous EN-DC	TBD	
7.5B.3 Adjacent Channel Selectivity for inter-band EN- DC within FR1	Same as 7.5 in TS 38.521-1	
7.6B.2.1 Inband blocking for intra-band contiguous EN- DC in FR1	TBD	
7.6B.2.2 Inband blocking for intra-band non-contiguous EN-DC in FR1	TBD	
7.6B.2.3 Inband blocking for inter-band EN-DC within FR1	Same as 7.6.2 in TS 38.521-1	
7.6B.3.1 Out-of-band blocking for intra-band contiguous EN-DC in FR1	TBD	
7.6B.3.2 Out-of-band blocking for intra-band non- contiguous EN-DC in FR1	TBD	
7.6B.3.3 Out-of-band blocking for inter-band EN- DC within FR1	Same as 7.6.3 in TS 38.521-1	
7.6B.4.1 Narrow band blocking for intra-band contiguous EN-DC in FR1	TBD	
7.6B.4.2 Narrow band blocking for intra-band non- contiguous EN-DC in FR1	TBD	
7.6B.4.3 Narrow band blocking for inter-band EN- DC within FR1	Same as 7.6.4 in TS 38.521-1	
7.7B.1 Spurious Response for intra-band contiguous EN-DC in FR1	ТВО	
7.7B.2 Spurious Response for intra-band non- contiguous EN-DC in FR1	TBD	
7.7B.3 Spurious Response for inter-band EN-DC within FR1	Same as 7.7 in TS 38.521-1	

7.8B.2.1 Wideband Intermodulation for intra- band contiguous EN-DC in FR1	Same as 7.8.2 in TS 38.521-1	
7.8B.2.2 Wideband Intermodulation for intra- band non-contiguous EN- DC in FR1	Same as 7.8.2 in TS 38.521-1	
7.8B.2.3 Wideband Intermodulation for inter- band EN-DC within FR1	Same as 7.8.2 in TS 38.521-1	
7.9B.1 Spurious Emissions for intra-band contiguous EN-DC within FR1	Same as 7.9 in TS 38.521-1	
7.9B.2 Spurious Emissions for intra-band non- contiguous EN-DC within FR1	Same as 7.9 in TS 38.521-1	
7.9B.3 Spurious Emissions for inter-band EN-DC within FR1	Same as 7.9 in TS 38.521-1	

F.2 Interpretation of measurement results (normative)

TBD

F.3 Test Tolerance and Derivation of Test Requirements (informative)

TBD

F.3.1 Measurement of test environments

TBD

F.3.2 Measurement of transmitter

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
6.2B.1.1 UE Maximum	Same as 6.2.1 in TS 38.521-1	
Output Power for Intra-Band		
Contiguous EN-DC 6.2B.1.2 UE Maximum	MAX (TT _{LTE} , TT _{SA})	TT in TT of LTE appoified in 6.2.2
Output Power for Intra-Band	MAA (TILTE, TISA)	TT_{LTE} is TT of LTE specified in 6.2.2 in TS 36.521-1.
Non-Contiguous EN-DC	TTLTE	
	$\pm 0.7 \text{ dB}, f \le 3.0 \text{GHz}$	TT _{SA} is TT of FR1 SA specified in $6.2.1$ in TS 38.521-1.
	±1.0 dB, 3.0GHz < f ≤ 4.2GHz	0.2.1 11 13 30.321-1.
	TT _{SA}	
	f ≤ 3.0GHz	
	$0.7 \text{ dB}, \text{BW} \le 40 \text{MHz}$	
	1.0 dB, 40MHz < BW ≤ 100MHz 3.0GHz < f ≤ 6.0GHz	
	1.0 dB, BW ≤ 100MHz	
6.2B.1.3 UE Maximum	MAX (TT _{LTE} , TT _{SA})	TT _{LTE} is TT of LTE specified in 6.2.3
Output Power for Inter-Band		in TS 36.521-1.
EN-DC within FR1	<u>TTL⊤</u> ±0.7 dB, f ≤ 3.0GHz	TT _{SA} is TT of FR1 SA specified in
	$\pm 1.0 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$	6.2.2 in TS 38.521-1.
	TTSA	
	$f \leq 3.0 \text{GHz}$	
	0.7 dB, BW ≤ 40MHz 1.0 dB, 40MHz < BW ≤ 100MHz	
	3.0 GHz < f ≤ 6.0 GHz	
	1.0 dB, BW ≤ 100MHz	
6.2B.1.4 UE Maximum	Same as 6.2.1 in TS 38.521-2	
Output Power for Inter-Band		
EN-DC including FR2 6.2B.2.1 UE Maximum	Same as 6.2.2 in TS 38.521-1	
Output Power reduction for		
Intra-Band Contiguous EN-		
DC		
6.2B.2.2 UE Maximum Output Power reduction for	Same as 6.2B.1.2	
Intra-Band Non-Contiguous		
EN-DC		
6.2B.2.3 UE Maximum	Same as 6.2B.1.3	
Output Power reduction for		
Inter-Band EN-DC within FR1 6.2B.3.1 UE Additional	Same as 6.2.3 in TS 38.521-1	
Maximum Output Power		
reduction for Intra-band		
contiguous EN-DC		
6.2B.3.2 UE Additional Maximum Output Power	Same as 6.2B.1.2	
reduction for Intra-Band Non-		
Contiguous EN-DC		
6.2B.3.3 UE Additional	Same as 6.2B.1.3	
Maximum Output Power		
reduction for Inter-Band EN- DC within FR1		
6.2B.4.1.1 Configured Output	Same as 6.2.4 in TS 38.521-1	
Power Level for Intra-Band		
Contiguous EN-DC		
6.2B.4.1.2 Configured Output Power for Intra-Band Non-	Same as 6.2B.1.2	
Contiguous EN-DC		
6.2B.4.1.3 Configured Output	Same as 6.2B.1.3	
Power for Inter-Band EN-DC		
within FR1	0	
6.3B.1.1 Minimum Output Power for intra-band	Same as 6.3.1 in TS 38.521-1	
contiguous EN-DC		
	1	

6.3B.1.2 Minimum output	Same as 6.3.1 in TS 38.521-1	
power for intra-band non-		
contiguous EN-DC		
6.3B.1.3 Minimum output	Same as 6.3.1 in TS 38.521-1	
power for inter-band EN-DC		
within FR1		
	Same as 6.3.1 in TS 38.521-2	
6.3B.1.4 Minimum Output	Same as 6.3.1 In 15 36.521-2	
Power for EN-DC Interband		
including FR2		
6.3B.2.1 Transmit OFF	Same as 6.3.2 in TS 38.521-1	
Power for intra-band		
contiguous EN-DC		
6.3B.2.2 Transmit OFF	Same as 6.3.2 in TS 38.521-1	
Power for intra-band non-		
contiguous EN-DC		
6.3B.2.3 Transmit OFF	Same as 6.3.2 in TS 38.521-1	
	Same as 6.3.2 in 15 36.521-1	
Power for inter-band EN-DC		
within FR1		
6.3B.3.1 Transmit OFF	Same as 6.3.3 in TS 38.521-1	
Power for intra-band		
contiguous EN-DC		
6.3B.3.2 Transmit OFF	Same as 6.3.3 in TS 38.521-1	
Power for intra-band non-		
contiguous EN-DC		
6.3B.3.3 Transmit OFF	Same as 6.3.3 in TS 38.521-1	
	Same as 0.3.3 III 13 30.321-1	
Power for inter-band EN-DC		
within FR1		ļ
6.4B.1.1 Frequency Error for	Same as 6.4.1 in TS 38.521-1	
intra-band contiguous EN-DC		
6.4B.1.2 Frequency Error for	Same as 6.4.1 in TS 38.521-1	
intra-band non-contiguous		
EN-DC		
6.4B.1.3 Frequency Error for	Same as 6.4.1 in TS 38.521-1	
inter-band EN-DC within FR1	Same as 0.4.1 in 15 50.521-1	
	0 0 1 1 1 TO 00 501 0	
6.4B.1.5 Frequency Error for	Same as 6.4.1 in TS 38.521-2	
inter-band EN-DC including		
FR2		
6.4B.2.1.1 Error Vector	Same as 6.4.2.1 in TS 38.521-1	
Magnitude for intra-band		
contiguous EN-DC		
6.4B.2.1.2 Carrier Leakage	Same as 6.4.2.2 in TS 38.521-1	
for intra-band contiguous EN-		
9		
DC 6 4D 2 1 2 In hand Emissions		
6.4B.2.1.3 In-band Emissions	Same as 6.4.2.3 in TS 38.521-1	
for intra-band contiguous EN-		
DC		
6.4B.2.1.4 EVM Equalizer	Same as 6.4.2.4 in TS 38.521-1	
Flatness for intra-band		
contiguous EN-DC		
6.4B.2.2.1 Error Vector	Same as 6.4.2.1 in TS 38.521-1	
Magnitude for intra-band		
non-contiguous EN-DC		
	Same as 6.4.2.2 in TS 38.521-1	
6.4B.2.2.2 Carrier Leakage	Jaine as 0.4.2.2 III 13 30.321-1	
for intra-band non-contiguous		
EN-DC		
6.4B.2.2.3 In-band Emissions	Same as 6.4.2.3 in TS 38.521-1	
for intra-band non-contiguous		
EN-DC		
	Same as 6.4.2.4 in TS 38.521-1	
6.4B.2.2.4 EVM Equalizer	Same as 6.4.2.4 in TS 38.521-1	
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non-	Same as 6.4.2.4 in TS 38.521-1	
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC		
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC 6.4B.2.3.1 Error Vector	Same as 6.4.2.4 in TS 38.521-1 Same as 6.4.2.1 in TS 38.521-1	
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-		
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC 6.4B.2.3.1 Error Vector Magnitude for inter-band EN- DC within FR1	Same as 6.4.2.1 in TS 38.521-1	
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC 6.4B.2.3.1 Error Vector Magnitude for inter-band EN- DC within FR1 6.4B.2.3.2 Carrier Leakage		
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC 6.4B.2.3.1 Error Vector Magnitude for inter-band EN- DC within FR1	Same as 6.4.2.1 in TS 38.521-1	
6.4B.2.2.4 EVM Equalizer Flatness for intra-band non- contiguous EN-DC 6.4B.2.3.1 Error Vector Magnitude for inter-band EN- DC within FR1 6.4B.2.3.2 Carrier Leakage	Same as 6.4.2.1 in TS 38.521-1	

6.4B.2.3.3 In-band Emissions for inter-band EN-DC within	Same as 6.4.2.3 in TS 38.521-1	
FR1		
6.4B.2.3.4 EVM Equalizer	Same as 6.4.2.4 in TS 38.521-1	
Flatness for inter-band EN-		
DC within FR1 6.4B.2.4.1 Error Vector	Same as 6.4.2.1 in TS 38.521-2	
Magnitude for inter-band EN-	Same as 0.4.2.1 in 13 30.321-2	
DC including FR2		
6.4B.2.4.2 Carrier Leakage	Same as 6.4.2.2 in TS 38.521-2	
for inter-band EN-DC		
including FR2 6.4B.2.4.3 In-band Emissions	Same as 6.4.2.3 in TS 38.521-2	
for inter-band EN-DC		
including FR2		
6.4B.2.4.4 EVM Equalizer	Same as 6.4.2.4 in TS 38.521-2	
Flatnessfor inter-band EN-		
DC including FR2 6.5B.1.1 Occupied bandwidth	Same as 6.5.1 in TS 38.521-1	
for Intra-Band Contiguous		
EN-DC		
6.5B.1.2 Occupied bandwidth	Same as 6.5.1 in TS 38.521-1	
for Intra-Band Non- Contiguous EN-DC		
6.5B.1.3 Occupied bandwidth	Same as 6.5.1 in TS 38.521-1	
for Inter-Band EN-DC within		
FR1		
6.5B.1.4 Occupied bandwidth	Same as 6.5.1 in TS 38.521-2	
for Inter-Band EN-DC including FR2		
6.5B.2.1.1 Spectrum	Same as 6.5.2.2 in TS 38.521-1	
emissions mask for intra-		
band contiguous EN-DC		
6.5B.2.1.2 Additional	Same as 6.5.2.3 in TS 38.521-1	
spectrum emissions mask for intra-band contiguous EN-DC		
6.5B.2.1.3 Adjacent channel	Same as 6.5.2.4.1 in TS 38.521-1	
leakage ratio for intra-band		
contiguous EN-DC		
6.5B.2.2.1 Spectrum emissions mask for intra-	Same as 6.5.2.2 in TS 38.521-1	
band non-contiguous EN-DC		
6.5B.2.2.2 Additional	Same as 6.5.2.3 in TS 38.521-1	
Spectrum emissions mask for		
intra-band non-contiguous		
EN-DC 6.5B.2.2.3 Adjacent channel	Same as 6.5.2.4.1 in TS 38.521-1	
leakage ratio for intra-band	0ane as 0.0.2.4.1 III 10 30.021-1	
non-contiguous EN-DC		
6.5B.2.3.1 Spectrum	Same as 6.5.2.2 in TS 38.521-1	
emissions mask for Inter-		
band EN-DC within FR1 6.5B.2.3.2 Additional	Same as 6.5.2.3 in TS 38.521-1	+
Spectrum emissions mask for		
Inter-band EN-DC within FR1		
6.5B.2.3.3 Adjacent channel	Same as 6.5.2.4.1 in TS 38.521-1	
leakage ratio for inter-band EN-DC within FR1		
6.5B.2.4.1 Spectrum	Same as 6.5.2.1 in TS 38.521-2	
emissions mask for Inter-		
band EN-DC including FR2		
6.5B.2.4.3 Adjacent channel	Same as 6.5.2.3 in TS 38.521-2	
leakage ratio for Inter-band EN-DC including FR2		
6.5B.3.1.1 General spurious	Same as 6.5.3.1 in TS 38.521-1	
emissions for intra-band		
contiguous EN-DC		

6.5B.3.1.2 Spurious emission band UE co-existence for intra-band contiguous EN-DC	Same as 6.5.3.2 in TS 38.521-1	
6.5B.3.2.1 General spurious emissions for Intra-band non- contiguous EN-DC	Same as 6.5.3.1 in TS 38.521-1	
6.5B.3.2.2 Spurious Emission band UE co-existence for intra-band non-contiguous EN-DC	Same as 6.5.3.2 in TS 38.521-1	
6.5B.3.3.1 General spurious emissions for Inter-band EN- DC within FR1	Same as 6.5.3.1 in TS 38.521-1	
6.5B.3.3.2 Spurious emission band UE co-existence for Inter-band within FR1	Same as 6.5.3.2 in TS 38.521-1	
6.5B.3.4.2 Spurious emission band UE co-existence for Inter-band including FR2	Same as 6.5.3.2 in TS 38.521-2	
6.5B.5.3 Transmit intermodulation for Inter-band EN-DC within FR1	Same as 6.5.4 in TS 38.521-1	

F.3.3 Measurement of receiver

Table F.3.3-1: Derivation of Test Requirements (Receiver tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
7.3B.2.1 Reference	Same as 7.3.2 in TS 38.521-1	
sensitivity for Intra-band		
Contiguous EN-DC		
7.3B.2.2 Reference	Same as 7.3.2 in TS 38.521-1	
sensitivity for Intra-band non- contiguous EN-DC		
7.3B.2.3 Reference	Same as 7.3.2 in TS 38.521-1	
sensitivity for Inter-band EN-		
DC within FR1		
7.4B.1 Maximum Input Level	Same as 7.4 in TS 38.521-1	
for Intra-Band Contiguous		
EN-DC 7.4B.2 Maximum Input Level	Same as 7.4 in TS 38.521-1	
for Intra-Band Non-		
Contiguous EN-DC		
7.4B.3 Maximum Input Level	Same as 7.4 in TS 38.521-1	
for Inter-band EN-DC within		
FR1	Same as 7.5 in TS 38.521-1	
7.5B.1 Adjacent Channel Selectivity for intra-band	Same as 7.5 in 15 38.521-1	
contiguous EN-DC		
7.5B.2 Adjacent Channel	Same as 7.5 in TS 38.521-1	
Selectivity for intra-band non-		
contiguous EN-DC		
7.5B.3 Adjacent Channel Selectivity for inter-band EN-	Same as 7.5 in TS 38.521-1	
DC within FR1		
7.6B.2.1 Inband blocking for	Same as 7.6.2 in TS 38.521-1	
intra-band contiguous EN-DC		
in FR1		
7.6B.2.2 Inband blocking for	Same as 7.6.2 in TS 38.521-1	
intra-band non-contiguous EN-DC in FR1		
7.6B.2.3 Inband blocking for	Same as 7.6.2 in TS 38.521-1	
inter-band EN-DC within FR1		
7.6B.3.1 Out-of-band	Same as 7.6.3 in TS 38.521-1	
blocking for intra-band		
contiguous EN-DC in FR1 7.6B.3.2 Out-of-band	Same as 7.6.3 in TS 38.521-1	
blocking for intra-band non-		
contiguous EN-DC in FR1		
7.6B.3.3 Out-of-band	Same as 7.6.3 in TS 38.521-1	
blocking for inter-band EN-		
DC within FR1 7.6B.4.1 Narrow band	Same as 7.6.4 in TS 38.521-1	
blocking for intra-band		
contiguous EN-DC in FR1		
7.6B.4.2 Narrow band	Same as 7.6.4 in TS 38.521-1	
blocking for intra-band non-		
contiguous EN-DC in FR1 7.6B.4.3 Narrow band	Same as 7.6.4 in TS 38.521-1	
blocking for inter-band EN-	Same as 7.0.4 III 13 30.321-1	
DC within FR1		
7.7B.1 Spurious Response	Same as 7.7 in TS 38.521-1	
for intra-band contiguous EN-		
DC in FR1	Same as 7.7 in TS 38.521-1	
7.7B.2 Spurious Response for intra-band non-contiguous	Same as 1.1 III 13 30.321-1	
EN-DC in FR1		
7.7B.3 Spurious Response	Same as 7.7 in TS 38.521-1	
for inter-band EN-DC within		
FR1 7.8B.2.1 Wideband	Same as 7.9.2 in TS 20.524.4	
7.8B.2.1 Wideband Intermodulation for intra-band	Same as 7.8.2 in TS 38.521-1	
contiguous EN-DC in FR1		

7.8B.2.2 Wideband Intermodulation for intra-band non-contiguous EN-DC in FR1	Same as 7.8.2 in TS 38.521-1	
7.8B.2.3 Wideband Intermodulation for inter-band EN-DC within FR1	Same as 7.8.2 in TS 38.521-1	
7.9B.1 Spurious Emissions for intra-band contiguous EN- DC within FR1	Same as 7.9 in TS 38.521-1	
7.9B.2 Spurious Emissions for intra-band non-contiguous EN-DC within FR1	Same as 7.9 in TS 38.521-1	
7.9B.3 Spurious Emissions for inter-band EN-DC within FR1	Same as 7.9 in TS 38.521-1	

Annex G (normative): Uplink Physical Channels

Please refer to Annex G in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. EN-DC exceptions will be added,

Annex H (normative): Statistical Testing

Editor's Note:

- Further investigate the technical details behind this statistical method to ensure that this is applicable for FR2 radiated test cases.

H.1 General

FFS.

H.2 Statistical testing of receiver characteristics

H.2.1 General

The test of receiver characteristics is twofold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is >95% of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

H.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.

If payload is received, but damaged and cannot be decoded, the UE signals a NACK.

- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different subframes, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received subframes (ACK), unsuccessfully received subframes (NACK) and no reception at all (DTX-subframes).
- f) DTX-subframes may occur regularly according the applicable reference measurement channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special subframes. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-subframes occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)
 This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs
- number of ACKs and
- number of statDTXs (regDTX is implicitly known to the SS)

The ratio (NACK + statDTX) / (NACK + statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

H.2.3 Design of the test

The test is defined by the following design principles (see clause H.x, Theory....):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Customer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

H.2.4 Numerical definition of the pass fail limits

ne	ns _p	ns _f	ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f
0	67	NA	39	763	500	78	1366	1148	117	1951	1828
1	95	NA	40	778	516	79	1381	1166	118	1965	1845
2	119	NA	41	794	532	80	1396	1183	119	1980	1863
3	141	NA	42	810	548	81	1412	1200	120	1995	1881
4	162	NA	43	826	564	82	1427	1217	121	2010	1899
5	183	NA	44	842	580	83	1442	1234	122	2025	1916
6	202	NA	45	858	596	84	1457	1252	123	2039	1934
7	222	NA	46	873	612	85	1472	1269	124	2054	1952
8	241	NA	47	889	629	86	1487	1286	125	2069	1969
9	259	NA	48	905	645	87	1502	1303	126	2084	1987
10	278	76	49	920	661	88	1517	1321	127	2099	2005
11	296	88	50	936	678	89	1532	1338	128	2113	2023
12	314	100	51	952	694	90	1547	1355	129	2128	2040
13	332	113	52	967	711	91	1562	1373	130	2143	2058
14	349	126	53	983	727	92	1577	1390	131	2158	2076
15	367	140	54	998	744	93	1592	1407	132	2172	2094
16	384	153	55	1014	760	94	1607	1425	133	2187	2111
17	401	167	56	1029	777	95	1623	1442	134	2202	2129
18	418	181	57	1045	793	96	1637	1459	135	2217	2147
19	435	195	58	1060	810	97	1652	1477	136	2231	2165
20	452	209	59	1076	827	98	1667	1494	137	2246	2183
21	469	224	60	1091	844	99	1682	1512	138	2261	2201
22	486	238	61	1106	860	100	1697	1529	139	2275	2218
23	503	253	62	1122	877	101	1712	1547	140	2290	2236
24	519	268	63	1137	894	102	1727	1564	141	2305	2254
25	536	283	64	1153	911	103	1742	1582	142	2320	2272
26	552	298	65	1168	928	104	1757	1599	143	2334	2290
27	569	313	66	1183	944	105	1772	1617	144	2349	2308
28	585	328	67	1199	961	106	1787	1634	145	2364	2326
29	602	343	68	1214	978	107	1802	1652	146	2378	2344
30	618	359	69	1229	995	108	1817	1669	147	2393	2361
31	634	374	70	1244	1012	109	1832	1687	148	2408	2379
32	650	389	71	1260	1029	110	1847	1704	149	2422	2397
33	667	405	72	1275	1046	111	1861	1722	150	2437	2415
34	683	421	73	1290	1063	112	1876	1740	151	2452	2433
35	699	436	74	1305	1080	113	1891	1757	152	2466	2451
36	715	452	75	1321	1097	114	1906	1775	153*)	NA	2469
37	731	468	76	1336	1114	115	1921	1793			
38	747	484	77	1351	1131	116	1936	1810	*) no	te 2 in H	1.2.5

Table H.2.4-1: pass fail limits

NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX)

NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number of NACK + statDTX + ACK)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

H.2.5 Pass fail decision rules

The pass fail decision rules apply for a single test, comprising one component in the test vector. The over all Pass /Fail conditions are defined in clause H.2.6and H.2A.6

Having observed 0 errors, pass the test at	67+ samples,	otherwise continue
Having observed 1 error, pass the test at	95+ otherwise continue	
Having observed 2 errors, pass the test at	119+ samples, fail the test at 2- samples,	otherwise continue
	Etc. etc.	
Having observed 151 errors, pass the test at	2452+ samples, fail the test at 2433- samples,	otherwise continue
Having observed 152 errors, pass the test at	2466+ samples, fail the test at 2451- samples.	
Where x+ means: x or more, x- means x	or less	

NOTE 1: an ideal DUT passes after 67 samples. The maximum test time is 2466 samples.

NOTE 2: It is allowed to deviate from the early decision concept by postponing the decision (pass/fail or continue). Postponing the decision to or beyond the end of Table H.2.4-1 requires a pass fail decision against the test limit: pass the DUT for ER<0.0618, otherwise fail.

Annex I (normative): Void

Annex J (normative): Test applicability per permitted test method

Please refer to Annex J in TS 38.521-1 [8] and 38.521-2 [9] for appropriate details as needed for test cases in this test specification. Exceptions for EN-DC may be added as needed.

Annex K (normative): EIRP, TRP, and EIS measurement procedures

Please refer to Annex K in 38.521-2 [9] for appropriate details as needed for test cases in this test specification. Exceptions for EN-DC may be added as needed.

Annex L (normative): Void

Annex M (normative): Dual uplink interferer

UE is mandated to support operation in dual uplink mode also in EN-DC configuration for FR1 listed in Table 7.3.2.1.5-1 and indicated by column single uplink allowed if the intermodulation products caused by the dual uplink operation do not interfere own primary downlink transmission channel bandwidth. For intermodulation products falling into LTE secondary downlink channel bandwidth, UE single UL capability is not considered.

Formula for determining if the EN-DC in NR FR1 configuration with dual uplink operation interferes own downlink reception.

Interference bandwidth: IBW = |a| * CBW1 + |b| * CBW2

- |a| + |b| = 2 (or 3)
- CBW1 and CBW2 are the transmission bandwidth configurations of the UL channels

Center frequency of IBW: fIBW = |a * f1 + b * f2|

- f1 and f2 are center frequency of the transmission bandwidth configurations of each UL channel

The range of IMD 2 (or 3): [fIBW – IBW/2, fIBW + IBW/2]

- NOTE 1: UE shall be able to apply operations which are configured by RRC reconfiguration and corresponding HARQ timing on the transmission bandwidth.
- NOTE 2: For identified difficult band combination, during two adjacent RRC reconfiguration, the changing of transmission bandwidth should not introduce IM2 and IM3, which will result in UE changing from 2Tx to 1Tx. Otherwise, UE behavior is not specified.

For DC_3A_n3A intra-band non-contiguous EN-DC combination, only single switched UL is supported in rel.15.

Annex N (informative): Change history

Change history							
Date	Meeting	TDoc	CR	R ev	Cat	Subject/Comment	New version
2017-08	RAN5#76	R5-174710	-	-	-	Draft skeleton	0.0.1
2018-01	RAN5#1- 5G-NR Adhoc	R5-180086	-	-	-	TP to add clause 6.2B.3.3 UE A-MPR intra-band EN-DC to 38.521-3	0.1.0
2018-01	RAN5#1- 5G-NR Adhoc	R5-180087	-	-	-	TP to add clause 6.5B.2.1.2 Additional Spectrum emissions mask (contiguous sub-blocks) for intra-band EN-DC to 38.521-3	0.1.0
2018-02		R5-181509	-	-	-	Updated 38.521-3 for new Annex A Dual uplink interferer information	0.2.0
2018-02		R5-181690	-	-	-	Updated 38.521-3 for channel bandwidth information	0.2.0
2018-03	RAN5#2- 5G-NR Adhoc	R5-181760	-	-	-	Draft TS 38.521-3 0.3.0	0.3.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182035	-	-	-	5G-NR Text Proposal to add spurious emissions test case to 38.521- 3	0.4.0
2018-04		R5-182016	-	-	-	TP for new test case: 6.5B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182017	-	-	-	TP to update clause 6.2B.3.1 UE A-MPR intra-band EN-DC to 38.521-3	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-182018	-	-	-	TP to update clause 6.5B.2.1.2 Additional spectrum emission mask to 38.521-3	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181807	-	-	-	Update to Operating bands of 38.521-3	0.4.0
2018-04		R5-181808	-	-	-	Update to section 3 and section 4 of 38.521-3	0.4.0
2018-04	RAN5#2- 5G-NR Adhoc	R5-181828	-	-	-	Updated 38.521-3 for channel bandwidth information with new structure	0.4.0
2018-07		R5-183961	-	-	-	5G_FR1_EN_DC_RF_sensitivity_for_DC	0.5.0
2018-07		R5-183962	-	-	-	Introduction of TC 6.2B.1.3 for EN-DC	0.5.0
2018-07 2018-07		R5-183949 R5-182995	-	-	-	Statistical Testing Annex for 38.521-3 Corrections annex for EIRP and TRP metric definition in TS 38.521-	0.5.0 0.5.0
2018-07	RAN5#79	R5-183707	-	-	-	3 TP for updating test case 6.2B.2.1, UE Maximum Output Power	0.5.0
						reduction for Intra-Band Contiguous EN-DC	
2018-07		<u>R5-183708</u>	-	-	-	Updated clause 5.5B Configuration for DC to 38.521-3	0.5.0
2018-07			-	-	-	TP to add Occupied BW EN-DC test case	0.5.0
2018-07		R5-183710	-	-	-	TP to add SEM EN-DC test case	0.5.0
2018-07 2018-09		R5-183711 R5-185563	-	-	-	TP to add ACLR EN-DC test case FR2_StoreTxRxBeamPeakCoordinates_38.521-3	0.5.0
2018-09		R5-185520	-	1_	-	Addition of TRx MU and TT in TS 38.521-3 Annex	1.0.0
2018-09		R5-185503	-	-	-	Add Clause 7.5B.1 into TS 38.521-3	1.0.0
2018-09		R5-185504	-	-	-	Add Clause 7.5B.2 into TS 38.521-3	1.0.0
2018-09	RAN5#80	R5-185505	-	-	-	Add Clause 7.5B.3 into TS 38.521-3	1.0.0
2018-09		<u>R5-184579</u>	-	-	-	Updated EN-DC configuration information in clause 5	1.0.0
2018-09		<u>R5-184580</u>	-	-	-	TIB value add for EN-DC band in 38.521-3	1.0.0
2018-09		R5-184671		-		Update of References in Section 2 of 38.521-3 spec	1.0.0
2018-09 2018-09		R5-184672 R5-184737		-	E	Updates to Operating Bands in Section 5.2 Dual uplink interferer updated to 38.521-3	1.0.0 1.0.0
2018-09		R5-184737	-	-	E	Dual uplink interferer updated to 38.521-3	1.0.0
2018-09		<u>R5-185332</u>	-	-	-	Addition of 6.2B.4.1.1 Configured OP for Intra-Band Contiguous EN- DC	1.0.0
2018-09		<u>R5-185333</u>	-	-	-	Addition of 6.2B.4.1.2 Configured OP for Intra-Band Non-Contiguous EN-DC	1.0.0
2018-09	RAN5#80	<u>R5-185507</u>	-	-	-	Addition of 6.2B.4.1.3 Configured OP for Inter-Band within FR1	1.0.0
2018-09		R5-185198	-	-	-	Addition of 6.2B.4.1.4 Configured OP for Inter-Band EN-DC including FR2	1.0.0
2018-09		R5-185199	-	-	-	Addition of 6.2B.4.1.5 Configured OP for Inter-Band EN-DC including both FR1 and FR2	1.0.0
2018-09		R5-185469	-	-	-	TP for updating test case 6.2B.3.1 UE AMPR for Intra-band contiguous EN-DC	1.0.0
2018-09	RAN5#80	R5-185470	-	-	-	TP for updating test case 6.2B.3.2 UE AMPR for Intra-band non- contiguous EN-DC	1.0.0
2018-09	RAN5#80	R5-185200	-	-	-	TP for updating test case 6.5B.2.1.2 Additional spectrum emission mask for intra-band contiguous EN-DC	1.0.0

511

2018-09 RAMSR00 R5.185526 - - FR2_UE_Beamlocktrocks.38.21:3 1.0.0 2018-09 RAMSR0 R5.185527 - - Update of TC.28.11 1.0.0 2018-09 RAMSR0 R5.185207 - - Introduction of TC 6.2B.12 1.0.0 2018-09 RAMSR0 R5.185207 - - Introduction of TC 6.2B.12 1.0.0 2018-09 RAMSR0 R5.185200 - - Introduction of TC 6.2B.12 1.0.0 2018-09 RAMSR0 R5.185206 - - Update Of C2.2W R4 1.0.0 2018-09 RAMSR0 R5.185206 - - Update Of C2.2W R4 1.0.0 2018-09 RAMSR0 R5.185207 - - SG NR, E, ND C with FR1 Tott update of R2 samples 1.0.0 2018-09 RAMSR0 R5.185207 - - Addition of TG 3.8 1.1 Minimum Output power for intra-band non- contiguous EV+DC 1.0.0 2018-09 RAMSR0 R5.185207 - - Addition of TG 3.8 1.2 Minimum output power for intr			T		-	1	1	
2018-09 RANSB0 55:55472 - - Introduction of TC 6.28.1.2 1.0.0 2018-09 RANSB0 R5:158472 - - Introduction of TC 7.45.1 1.0.0 2018-09 RANSB0 R5:158201 - - Introduction of 7.45.2 1.0.0 2018-09 RANSB0 R5:156203 - - Introduction of 7.45.2 1.0.0 2018-09 RANSB0 R5:156203 - - Update Occupied Bandwidh for interband EN-DC within FR1 1.0.0 2018-09 RANSB0 R5:158203 - - Update Occupied Bandwidh for interband EN-DC within FR1 1.0.0 2018-09 RANSB0 R5:158206 - - S0 MBANDWID R5:158206 1.0.0 2018-09 RANSB0 R5:158206 - - Addition of TO:58.1.1 Minimum Output power for intra-band non-contiguous EN-DC R5:158207 - - Addition of TO:58.1.1 Minimum Output power for intra-band non-contiguous EN-DC R5:158208 - - Addition of TO:58.1.2 Minimum Output power for intra-band non-contiguous EN-DC 2018-09 RAN	2018-09			-	-	-	FR2_UE_BeamlockInvoke_38.521-3	1.0.0
2018-09 RANE#00 ESC:18:274 - - Update of 6.28.1.3 10.0 2018-09 RANE#00 R5.185:002 - - Introduction of 7.48.2 10.0 2018-09 RANE#00 R5.185:002 - - Introduction of 7.48.2 10.0 2018-09 RANE#00 R5.185:002 - - Update EX Introduction of 7.48.2 10.0 2018-09 RANE#00 R5.185:00 - - Update EX Introduction of 7.48.3 10.0 2018-09 RANE#0 R5.185:01 - - Update EX Introduction of 7.48.3 Introdut				-	-	-		
2016-06 RANS400 R5-185201 - - Introduction of 7.48.1 1.0.0 2018-08 RANS400 R5-185203 - - Introduction of 7.48.2 1.0.0 2018-08 RANS480 R5-185203 - - Introduction of 7.48.3 1.0.0 2018-09 RANS480 R5-185200 - - Update SEM for instand ENDC within FR1 1.0.0 2018-09 RANS480 R5-185200 - - SGN RE, ENDC with R1 Toxt update for RX sensitivity 1.0.0 2018-09 RANS480 R5-185207 - - Alignment of Annex numbering with core spec 1.0.0 2018-09 RANS480 R5-185207 - - Addition of TG-38.1.1 Minimum output power for intra-band non- 1.0.0 2018-09 RANS480 R5-185208 - - - Addition of TG-38.1.1 Minimum output power for intra-band non- 1.0.0 2018-08 RANS480 R5-185201 - - - raided to 75.0.0 with editorial changes only 1.5.0 2018-12 RAN8480				-	-	-		
2018-09 RANSER0 R5.18202 - - Introduction of 7.48.2 1.0.0 2018-09 RANSER0 R5.182079 - - Update SC Marchand ENDC within FR1 1.0.0 2018-09 RANSER0 R5.1826470 - - Update SC Mitherhand ENDC within FR1 1.0.0 2018-09 RANSER0 R5.182641 - - Dipdate SC Mitherhand ENDC within FR1 1.0.0 2018-09 RANSER0 R5.182641 - - GS NR, END C with FR1 Text Update for XS vensitivity 1.0.0 2018-09 RANSER0 R5.18205 - - GS NR, END CS with FR1 Text Update for XS vensitivity 1.0.0 2018-09 RANSER0 R5.18208 - - Addition of TCG 38.1.1 Minimum Output power for intra-band non-contiguous ENDC 1.0.0 2018-09 RANSER0 R5.182081 - - Addition of TCG 38.1.3 Minimum output power for inter-band ENDC 1.0.0 2018-09 RANSER0 R5.182081 - - Addition of TCG 38.1.3 Minimum output power for inter-band ENDC 1.0.0 2018-12				-	-	-		
2018-09 RANER80 R5-185203 - - Introduction of 7.48.3 10.0 2018-09 RANES80 R5.185249 - - Update Cocure Bandwith for interhand ENDC within FR1 10.0 2018-09 RANES80 R5.185248 - - Update ACL Writh FR1 10.0 2018-09 RANES80 R5.185204 - - 50 NR_EN_DC with FR1 Text update for RX sensitivity 10.0 2018-09 RANES80 R5.185204 - - 50 NR_EN_DC with FR1 Text update for RX sensitivity 10.0 2018-09 RANES80 R5.185206 - - Addition of TG.38.1.1 Minimum output power for intra-band 10.0 2018-09 RANES80 R5.185207 - - Addition of TG.38.1.1 Minimum output power for intra-band non- 1.0.0 2018-09 RANES80 R5.185201 - - Addition of TG.38.1.1 Minimum output power for intra-band ontriguous 15.0 2018-09 RANES80 R5.185201 - - raised to r15.0.0 with editorial changes only 15.0 2018-12 RANES80				-	-			
2018-08 RANER0 R5:186479 - - Update SC Number Official SC Number Action Number Actin Number Actin Number Action Number Action Number Action Number				-	-	<u> -</u>		
2018-09 RANS60 Est 155490 - - Update SEM interband ENDC within FR1 1.0.0 2018-09 RANS60 RS155244 - - 50 NR_EN_DC with FR1_Text update for RX sensitivity 1.0.0 2018-09 RANS60 RS155222 - - S0 NR_EN_DC with FR1_Text proposal for TX Sensitivity 1.0.0 2018-09 RANS60 RS155222 - - Alignment of Annex numbering with core spec 1.0.0 2018-09 RANS60 RS155224 - - Addition of TC6.38.1.1 Minimum output power for intra-band 1.0.0 2018-09 RANS60 RS165203 - - Addition of TC6.38.1.2 Minimum output power for intra-band non-contiguous END-C 1.0.0 2018-09 RANS60 RS165203 - - Addition of TC6.38.1.3 Minimum output power for inter-band END-D 1.0.0 2018-09 RANS60 RS165203 - - Addition of TC6.38.1.2 Minimum output power for inter-band END-D 1.0.0 2018-12 RAN82 RS165603 - - Addition of TC6.38.1.2 Minimum output power for inter-band END-D				E	-	<u> </u>		
2018-00 RANE#00 Re-195481 -				-	-	1		
2019-09 RANS#00 RS-195204 -				E		<u> </u>		
2015.00 RANER0 R5-165206 - - 56 NR, EN, DC with FRT, Text, proposal for, TX, Spurious, emission 1.0.0 2018.00 RANER0 R5-165207 - - Updates to Channel Arrangement section in 38.521-3 1.0.0 2018.00 RANER0 R5-165207 - - - Updates to Channel Arrangement section in 38.521-3 1.0.0 2018.00 RANER0 R5-165207 - - - - Addition of TC6-38.1.1 Minimum output power for intra-band non- 1.0.0 2018.00 RANER0 R5-165207 - - - - Addition of TC6-38.1.3 Minimum output power for intra-band non- 1.0.0 2018.00 RANER0 R5-165207 - - - - raised to v15.0.0 With editorial changes only 15.0.0 2018.00 RANER2 R5-16500 00033 - F Dydate scrose EN-DC RT test case updates 15.1.0 2018.12 RANER2 R5-16500 00039 - F 50 KR_LEN_DC with RET Text update for Intra-band contiguous RN (5.1.0 2018.12 RANER2 R5-16600 0042 - F S0 KR_LEN_DC with editorial banges on tra-band				-	1	1		
2018-09 RAN6960 R5-185202 - - Alignment of Annex numbering with core spec 1.0.0 2018-09 RAN6960 R5-185206 - - Addition of TC6.38.1.1 Minimum Output power for intra-band 1.0.0 2018-09 RAN6960 R5-185207 - - Addition of TC6.38.1.2 Minimum output power for intra-band non-contiguous EN-DC 1.0.0 2018-09 RAN6960 R5-185208 - - Addition of TC6.38.1.3 Minimum output power for inter-band EN-DC 1.0.0 2018-09 RAN6960 R5-185208 - - Addition of TC6.38.1.3 Minimum output power for inter-band EN-DC 1.0.0 2018-09 RAN492 R5-186500 0033 - F Intale tor Vis.0. with difficial changes on T38.521-3 1.0.0 2018-12 RAN492 R5-186601 0033 - F Is3.21-3 Applicability Rules 15.1.0 2018-12 RAN492 R5-186601 0049 - F SS.21-3 Applicability Rules 15.1.0 2018-12 RAN492 R5-186601 0044 - F SS.21-				E	-	<u> </u>		
2018-08 RANS#80 R5-134927 -				-	-	1		
2018-09 RAN5800 R5-185206 - - Addition of TC6.38.1.1 Minimum Output power for intra-band non- contiguous EN-DC 10.0 2018-09 RAN5800 R5-185207 - - Addition of TC6.38.1.3 Minimum output power for intra-band non- contiguous EN-DC 10.0 2018-09 RAN5800 R5-185208 - - Addition of TC6.38.1.3 Minimum output power for intra-band EN-DC 1.0.0 2018-09 RAN5800 R5-185201 - - Intra-band En-DC 1.0.0 2018-102 RAN482 R5-185001 0.033 - F 1.0.0 15.0.0 2018-12 RAN482 R5-186501 0.033 - F 2.0.0.0 1.0.0 15.1.0 2018-12 RAN482 R5-186601 0.034 - G S.R.T.D.DC with FR1_Text update for Intra-band contiguous IS.1.0 15.1.0 2018-12 RAN482 R5-186602 0.044 - F Updating test case 6.28.3.1 Additional spectrum emission smask IS.1.0 2018-12 RAN482 R5-186608 0.042 - F Updating te				-	-	1_		
2018-09 RAN5480 R5-185207 - - Addition of TGG.38.1.2 Minimum output power for intra-band non- contiguous EN-DC 10.0 2018-09 RAN5480 R5-185208 - - Addition of TGG.38.1.3 Minimum output power for inter-band EN-DC 10.0 2018-09 RAN540 R5-185201 - - Interview output to the comparison output power for inter-band EN-DC 10.0 2018-12 RAN422 R5-185503 0033 - F Interview output to the comparison output power for inter-band EN-DC 15.1.0 2018-12 RAN422 R5-186507 0035 - F 128 bit 1.4 Applicability Rules 15.1.0 2018-12 RAN422 R5-186601 0039 - F 55 bit 1.7 Exit update for TX spurious emission intra-band contiguous RX 15.1.0 2018-12 RAN422 R5-186607 0042 - F 50 bit 1.7 Exit update for TX spurious emission intra-band contiguous RX 15.1.0 2018-12 RAN422 R5-186672 0044 - F Update for tX spurious emission smask 15.1.0 2018-12 RAN482 R5-186673<				-		-	Addition of TC6.3B.1.1 Minimum Output power for intra-band	
Control Production	2018-09	RAN5#80	R5-185207	-	-	-	Addition of TC6.3B.1.2 Minimum output power for intra-band non-	1.0.0
2016-09 RAW#81 - - raised to v15.0.0 with editorial changes only 15.0.0 2018-12 RAW#82 R5-166503 0033 - F R2 purious Emission test case updates 15.1.0 2018-12 RAW#82 R5-166507 0035 - F 38 genus 15.1.0 2018-12 RAW#82 R5-166507 0039 - F 38 genus 15.1.0 2018-12 RAW#82 R5-166601 0039 - F SS NR, Text update for TX spurious emission intra-band Contiguous RX 15.1.0 2018-12 RAW#82 R5-166608 0042 - F SQ NR, Text update for TX spurious emission intra-band Contiguous RN 15.1.0 2018-12 RAW#82 R5-166673 0045 - F Update text SSG SQ - 1.2 Additional Maximum Output Power 15.1.0 2018-12 RAW#82 R5-166681 0046 - F Update SD - 1.2 Genumma and contiguous EN-DC 15.1.0 2018-12 RAW#82 R5-166684 0047 - F Updates to TX-3.2 Genu and	2018-09	RAN5#80	R5-185208	-	-	-	Addition of TC6.3B.1.3 Minimum output power for inter-band EN-DC	1.0.0
2016-12 RAV#82 R5-166:03 0033 F FR2 Spurious Emission test case updates 15.1.0 2018-12 RAN#82 R5-166:00 0035 F 38.521-3 Applicability Rules 15.1.0 2018-12 RAN#82 R5-166:00 0035 F 38.521-3 Applicability Rules 15.1.0 2018-12 RAN#82 R5-166:00 0040 F SG NR_Text update for TX spurious emission intra-band contiguous 15.1.0 2018-12 RAN#82 R5-166:00 0040 F SG NR_Text update for TX spurious emission intra-band entiguous 16.1.0 2018-12 RAN#82 R5-166:07 0044 F Updating test case 6.28.3.1 Additional Maximum Output Power reduction for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-166:07 0045 F Updating test case 6.28.2.1, Updating and contiguous EN-DC 2018-12 RAN#82 R5-166:684 0047 F Updates to EN-DC test case 6.28.2.1, Updaximum Output Power reduction for Intra-band Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-167:88 0049 F Updates to Ease			R5-185351	-	-	-		
2018-12 RAN#82 R5-186506 0034 F Update Text on Store Beam Peak Coordinate 15.1.0 2018-12 RAN#82 R5-186601 0039 F 36.521-3 Applicability Rules 15.1.0 2018-12 RAN#82 R5-186602 0040 - F 56 NR_EN_DC with FR1_Text update for Intra-Band Contiguous RX 15.1.0 2018-12 RAN#82 R5-186608 0042 - F SG NR_Text update for TX spurious emission intra-band contiguous RX 15.1.0 2018-12 RAN#82 R5-186608 0042 - F Updating test case 6.28.3.1 Additional Maximum Output Power 15.1.0 2018-12 RAN#82 R5-186673 0044 - F Updates to EN-DC Contiguous EN-DC 2018-12 RAN#82 R5-186674 0047 - F Updates to EN-DC Contiguous EN-DC 2018-12 RAN#82 R5-186684 0047 - F Updates to EN-DC Contiguration in clause 5 15.1.0 2018-12 RAN#82 R5-187583 0061 - F Updates to EN-DC 15.1.0 2018-12	2018-09	RAN#81	-	-	-	-	raised to v15.0.0 with editorial changes only	15.0.0
2018-12 RAN#82 R5-186507 0035 F 36.521-3 Applicability Rules 15.1.0 2018-12 RAN#82 R5-186601 0039 - F 36.78. Text update for TX spurious emission intra-band contiguous RX 15.1.0 2018-12 RAN#82 R5-186602 0040 - F SG NR_Text update for TX spurious emission intra-band contiguous 15.1.0 2018-12 RAN#82 R5-186608 0042 - F Spurious emission band UE co-existence for Intra-band Contiguous EN-DC 2018-12 RAN#82 R5-186673 0044 - F Updating test case 6.2B.2.1.1 Additional Spectrum emissions mask for intra-band contiguous EN-DC 2018-12 RAN#82 R5-186681 0046 - F Updates to EN-DC test case 6.2B.2.1.1 UE Maximum Output Power reduction for Intra-band Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-186681 0047 - F Updates to test case 6.2B.2.3. UE Maximum Output Power reduction for Intra-band Suntor update OBW, SEM and ACLR inter-band FR1 test cases 15.1.0 2018-12 RAN#82 R5-187583 0061 - F Matition					-			
2018-12 RAN#82 R5-186601 0039 - F SG NR_EN_DC with FR1_Text update for Intra-Band Contiguous RX 15.1.0 2018-12 RAN#82 R5-186602 0040 - F SG NR_Text update for TX spurious emission intra-band contiguous 15.1.0 2018-12 RAN#82 R5-186608 0042 - F Spurious emission band UE co-existence for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-186673 0045 - F Updating test case 6.5B.2.1.2 Additional spectrum emissions mask 15.1.0 2018-12 RAN#82 R5-186681 0046 - F Updates to text case 6.5B.2.1.2 Additional spectrum emissions mask 15.1.0 2018-12 RAN#82 R5-186681 0046 - F Updates to text case C.3B.2.1 1.0 15.1.0 2018-12 RAN#82 R5-186788 0049 - F Updates to text case C.3B.2.1 12.1.0 Its.1.0 2018-12 RAN#82 R5-187371 0076 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band contiguous EN-DC				0034	-			
Sensitivity Sensitivity 2018-12 RAN#82 R5-186602 0040 - F 55 (R) R_ tot update for TX spurious emission intra-band contiguous 15.1.0 2018-12 RAN#82 R5-186608 0042 - F Spurious emission band UE co-existence for Inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-186673 0045 - F Updating test case 6.2B.3.1 Additional Maximum Output Power 15.1.0 2018-12 RAN#82 R5-186681 0046 - F Updates to EN-DC Updates to EN-DC 15.1.0 2018-12 RAN#82 R5-186684 0047 - F Updates to EN-DC test case 6.2B.2.1.2 Mediximum Output Power reduction for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-186684 0047 - F Updates to test case 6.2B.2.3. UE Maximum Output Power reduction for Intra-band Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-186788 0049 - F Updates to test case 6.2B.2.3. UE Maximum Output Power reduction for Intra-band Contiguous EN-DC 15.1.0 2018-12 RAN#82	2018-12		R5-186507	0035	-	F	38.521-3 Applicability Rules	
EN-DC EN-DC EN-DC 10 2018-12 RAN#82 R5-186608 0042 - F Sprious emission band UE co-existence for Inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-186672 0044 - F Updating test case 6.28.3.1 Additional Maximum Output Power 15.1.0 2018-12 RAN#82 R5-186673 0045 - F Updating test case 6.28.2.1.2 Additional spectrum emissions mask 15.1.0 2018-12 RAN#82 R5-186684 0047 - F Updates to EN-DC test case 6.28.2.1.2 UM Aximum Output Power reduction for Intra-band contiguous EN-DC 2018-12 RAN#82 R5-186788 0049 - F Updates to test case 6.28.2.3.1 UM Aximum Output Power reduction for Intra-band contiguous EN-DC 2018-12 RAN#82 R5-187371 0076 - F Updates to Tes.S.2.1 Transmit OFF Power for Intra-band Contiguous EN-DC 2018-12 RAN#82 R5-187372 0077 - F Addition of TC6.38.2.2 Transmit OFF Power for Intra-band Contiguous EN-DC 2018-12 RAN#82 R5-187559 0083			R5-186601		-		sensitivity	
within FR1 within FR1 2018-12 RAN#82 R5-186672 0044 - F Updating test case 6.2B.3.1 Additional Maximum Output Power reduction for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-186673 0045 - F Updating test case 6.5B.2.1.2 Additional spectrum emissions mask for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-186681 0046 - F Updates to EN-DC test case 6.2B.2.1.9 LEMaximum Output Power reduction for Intra-Band EN-DC within FR1 2018-12 RAN#82 R5-186788 0049 - F Updates to EN-DC test case 6.2B.2.3 UE Maximum Output Power reduction for Intra-Band EN-DC within FR1 2018-12 RAN#82 R5-187373 0061 - F Update OBW, SEM and ACLR inter-band FR1 test cases 15.1.0 2018-12 RAN#82 R5-187373 0076 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band EN-DC 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band non- contiguous EN-DC 15.1.0 2018-12 RA					-		EN-DC	
Construction reduction for Intra-band contiguous EN-DC 2018-12 RAN#82 R5-186673 0045 - F Updating test case 6.5B.2.1.2 Additional spectrum emissions mask 15.1.0 2018-12 RAN#82 R5-186681 0046 - F Updates to EN-DC test case 6.2B.2.3.UE Maximum Output Power 15.1.0 2018-12 RAN#82 R5-186768 0047 - F Updates to test case 6.2B.2.3.UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 2018-12 RAN#82 R5-1867183 0061 - F Updates to test case 6.2B.2.3.UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 2018-12 RAN#82 R5-187371 0076 - F Update DN-DC configuration information in clause 5 15.1.0 2018-12 RAN#82 R5-187372 0077 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band en-Dc 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187552 0084					-	-	within FR1	
Intra-band contiguous EN-DC Intra-band contiguous EN-DC 2018-12 RAN#82 R5-186681 0046 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power 15.1.0 2018-12 RAN#82 R5-186684 0047 - F Updates to test case 6.2B.2.3, UE Maximum Output Power reduction for Intra-Band EN-DC within FR1 2018-12 RAN#82 R5-186783 0049 - F Minor update OBW, SEM and ACLR inter-band FR1 test cases 15.1.0 2018-12 RAN#82 R5-187331 0061 - F Update DR-DC configuration information in clause 5 15.1.0 2018-12 RAN#82 R5-187371 0076 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187563 0086					-		reduction for Intra-band contiguous EN-DC	
Image: Construction of the intra-Band Configuous EN-DC 2018-12 RAN#82 R5-186684 0047 - F Updates to test case 6.2B.2.3, UE Maximum Output Power reduction 15.1.0 2018-12 RAN#82 R5-186788 0049 - F Minor update OBW, SEM and ACLR Inter-band FR1 test cases 15.1.0 2018-12 RAN#82 R5-187371 0076 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band to contiguous EN-DC 2018-12 RAN#82 R5-187373 0077 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Updates to TS 38.2.1 Transmit OFF Power for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187663 0086 -					-		for intra-band contiguous EN-DC	
Image: Construct State Image: Constate Image: Construct State					-	-	reduction for Intra-Band Contiguous EN-DC	
2018-12 RAN#82 R5-187153 0061 - F Updated EN-DC configuration information in clause 5 15.1.0 2018-12 RAN#82 R5-187371 0076 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band contiguous EN-DC 2018-12 RAN#82 R5-187372 0077 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band EN-DC 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Addition of TC6.3B.2.2 Transmit OFF Power for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187563 0084 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Update to TC6.58.3.21 - General Spurious Emissions for intra-band no-Contiguous EN-DC 2018-12 RAN#82 R5-187663 0086 - F Update to TC8.58.321-3 Section 4 with LTE anchor details 15.1.0					-		for Inter-Band EN-DC within FR1	
2018-12 RAN#82 R5-187371 0076 - F Addition of TC6.3B.2.1 Transmit OFF Power for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187372 0077 - F Addition of TC6.3B.2.3 Transmit OFF Power for intra-band EN-DC 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Addition of TC6.3B.2.2 Transmit OFF Power for intra-band non- contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187562 0084 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Update to TC6.5B.3.2.1 - General Spurious Emissions for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187563 0087 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187614 0094 - F Updates to TS 38.521-3					-			
2018-12 RAN#82 R5-187372 0077 F Addition of TC6.3B.2.3 Transmit OFF Power for inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-187373 0078 - F Addition of TC6.3B.2.2 Transmit OFF Power for intra-band non- contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187552 0084 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187562 0085 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Update to 7.3B.2.2 - REFSENS for Intra-band Non-Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187663 0087 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187614 0094 - F Updates to EN-DC 15.1.0 20					-			
within FR1 within FR1 2018-12 RAN#82 R5-187373 0078 - F Addition of TC6.3B.2.2 Transmit OFF Power for intra-band non- contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187552 0084 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187562 0085 - F Update to TC6.5B.3.2.1 - General Spurious Emissions for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-18765 0087 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187614 0094 - F Updates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-band Non-Contiguous EN-DC 15.1.0 2018-12 RAN#82 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>contiguous EN-DC</td><td></td></td<>					-		contiguous EN-DC	
Contiguous EN-DC Contiguous EN-DC 2018-12 RAN#82 R5-187552 0083 - F Updates to TS 38.521-3 common sections 1-4 to align with core spec 15.1.0 2018-12 RAN#82 R5-187559 0084 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187562 0085 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187562 0086 - F Update to 7.3B.2.2 - REFSENS for Intra-band Non-Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187565 0087 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187614 0094 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187816 0048 1 F Updates to EN-DC test case 6.2B.2.4. UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187819 0053 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>within FR1</td><td></td></td<>					-		within FR1	
2018-12 RAN#82 R5-187559 0084 - F Updates to TS 38.521-3 Section 5 to align with core spec 15.1.0 2018-12 RAN#82 R5-187562 0085 - F Update to TC6.5B.3.2.1 - General Spurious Emissions for intra-band Inon-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Update to T.3B.2.2 - REFSENS for Intra-band Non-Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187565 0087 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187614 0094 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187816 0048 1 F Updates to EN-DC including FR2 15.1.0 2018-12 RAN#82 R5-187819 0053 1 F Updates to test case 6.5B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187820 0043 1 F Updates to test case 6.5B.2.1.3, Adjacent channel leakage ratio					-		contiguous EN-DC	
2018-12 RAN#82 R5-187562 0085 - F Update to TC6.5B.3.2.1 - General Spurious Emissions for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187563 0086 - F Update to 7.3B.2.2 - REFSENS for Intra-band Non-Contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187565 0087 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187614 0094 - F Updates to TS 38.521-3 Section 4 with LTE anchor details 15.1.0 2018-12 RAN#82 R5-187816 0048 1 F Update scase 6.2B.2.4, UE Maximum Output Power reduction for Intra-Band EN-DC including FR2 15.1.0 2018-12 RAN#82 R5-187819 0053 1 F Update general parameter Connection without release in initial conditions in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-187820 0043 1 F Update sto test case 6.5B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-187821 0052 1					-		spec	
Image: Constraint of the constratent of the constraint of the constraint of the constraint of the					-			
DCDC2018-12RAN#82R5-1875650087-FUpdates to TS 38.521-3 Section 4 with LTE anchor details15.1.02018-12RAN#82R5-1876140094-FUpdates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC15.1.02018-12RAN#82R5-18781600481FAdding test case 6.2B.2.4, UE Maximum Output Power reduction for Inter-Band EN-DC including FR215.1.02018-12RAN#82R5-18781900531FUpdates to test case 6.2B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC15.1.02018-12RAN#82R5-18782100521FAddition OBW intraband non contiguous EN-DC15.1.02018-12RAN#82R5-18782100521FAddition OBW intraband non contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782500581FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.02018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.0 <td></td> <td></td> <td></td> <td></td> <td> -</td> <td></td> <td>non-contiguous EN-DC</td> <td></td>					-		non-contiguous EN-DC	
2018-12RAN#82R5-1876140094-FUpdates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC15.1.02018-12RAN#82R5-18781600481FAdding test case 6.2B.2.4, UE Maximum Output Power reduction for Inter-Band EN-DC including FR215.1.02018-12RAN#82R5-18781900531FUpdate general parameter Connection without release in initial conditions in TS 38.521-315.1.02018-12RAN#82R5-18782000431FUpdates to test case 6.5B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC15.1.02018-12RAN#82R5-18782100521FAddition OBW intraband non contiguous EN-DC15.1.02018-12RAN#82R5-18782200551FIntroduction of New test case 6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.2.2 Carrier Leakage for intra- band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782500581FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.02018-12RAN#82R5-18782600581FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter-2018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter-2018-12RAN#82R5-					-		DC	
Image: constraint of the constra								
Inter-Band EN-DC including FR22018-12RAN#82R5-18781900531FUpdate general parameter Connection without release in initial conditions in TS 38.521-315.1.02018-12RAN#82R5-18782000431FUpdates to test case 6.5B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC15.1.02018-12RAN#82R5-18782100521FAddition OBW intraband non contiguous EN-DC15.1.02018-12RAN#82R5-18782200551FIntroduction of New test case 6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.2.2 Carrier Leakage for intra- band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782500581FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.02018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- inter-band EN-DC within FR115.1.0					-		reduction for Intra-Band Non-Contiguous EN-DC	
Image: condition in TS 38.521-3Image: condition in TS 38.521-32018-12RAN#82R5-18782000431FUpdates to test case 6.5B.2.1.3, Adjacent channel leakage ratio for intra-band contiguous EN-DC15.1.02018-12RAN#82R5-18782100521FAddition OBW intraband non contiguous EN-DC15.1.02018-12RAN#82R5-18782200551FIntroduction of New test case 6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.2.2 Carrier Leakage for intra- band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782500581FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.02018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- inter-band EN-DC within FR115.1.0							Inter-Band EN-DC including FR2	
Intra-band contiguous EN-DC2018-12RAN#82R5-18782100521FAddition OBW intraband non contiguous EN-DC15.1.02018-12RAN#82R5-18782200551FIntroduction of New test case 6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.2.2 Carrier Leakage for intra- band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782500581FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.02018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- inter-band EN-DC within FR115.1.0							conditions in TS 38.521-3	
2018-12RAN#82R5-18782200551FIntroduction of New test case 6.4B.2.2.1 Error Vector Magnitude for intra-band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782300561FIntroduction of New test case 6.4B.2.2.2 Carrier Leakage for intra- band non-contiguous EN-DC15.1.02018-12RAN#82R5-18782500581FIntroduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR115.1.02018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- inter-band EN-DC within FR12018-12RAN#82R5-18782600591FIntroduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- 15.1.0							intra-band contiguous EN-DC	
2018-12 RAN#82 R5-187823 0056 1 F Introduction of New test case 6.4B.2.2.2 Carrier Leakage for intraband non-contiguous EN-DC 2018-12 RAN#82 R5-187825 0058 1 F Introduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR1 2018-12 RAN#82 R5-187826 0059 1 F Introduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- 2018-12 RAN#82 R5-187826 0059 1 F Introduction of New test case 6.4B.2.3.2 Carrier Leakage for inter-								
band non-contiguous EN-DC 2018-12 RAN#82 R5-187825 0058 1 F Introduction of New test case 6.4B.2.3.1 Error Vector Magnitude for inter-band EN-DC within FR1 2018-12 RAN#82 R5-187826 0059 1 F Introduction of New test case 6.4B.2.3.2 Carrier Leakage for inter- 15.1.0							intra-band non-contiguous EN-DC	
Image: Constraint of the second sec							band non-contiguous EN-DC	
							inter-band EN-DC within FR1	
	2018-12	RAN#82	R5-187826	0059	1	F		15.1.0

512

2016-12 RNN822 R5-187829 OV70 1 F Database Dire Vector Magnitude for intra-band contiguous EN-0 (5.1.0) 2016-12 RAN822 R5-187829 OV71 1 F Introduction of Carrier Leakage for intra-band contiguous EN-0 (5.1.0) 2016-12 RAN822 R5-187332 O089 1 F FR2 General Systomac Emission test case update 15.1.0 2016-12 RAN822 R5-187334 O080 1 F FR2 General Systomac Tission test case update 15.1.0 2018-12 RAN822 R5-187313 O087 1 F Updates to duates to duaty test port selection into general section of 15.1.0 2018-12 RAN822 R5-188013 O067 1 F Updates to duaty test port selection into general section of 15.1.0 2018-12 RAN822 R5-188013 O067 1 F Addition Stytime-band contiguous EN-DC 15.1.0 2018-12 RAN822 R5-188013 O066 1 F Additional Systimous Emissions for intra-band contiguous EN-DC 15.1.0 2018-12 RAN822 R5-	2018-12	RAN#82	R5-187827	0060	1	F	Introduction of New test case 6.4B.2.3.3 In-band Emissions for inter-	15.1.0
2019-12 RANKE2 R5-16722 0007 1 F Introduction of Carrier Leakage for intro-band configuous EH-DC 15.1.0 2019-12 RANKE2 R5-167332 0008 1 F FR2 General Synchus Ensumption 15.1.0 2019-12 RANKE2 R5-167333 0002 1 F FR2 Reference Sensitivity test case update 15.1.0 2019-12 RANKE2 R5-16733 0009 1 F PR2 Reference Sensitivity test case update 15.1.0 2018-12 RANKE2 R5-16731 0067 1 F Addition of notes to clarity test point selection into general section of 15.1.0 2018-12 RANKE2 R5-180110 0066 1 F Addition SDM Intra-band configuous EN-DC 15.1.0 2018-12 RANKE2 R5-180110 0066 1 F Addition SDM Intra-band configuous EN-DC 15.1.0 2018-12 RANKE2 R5-18010 0066 1 F Addition of notes to clarity uses for intra-band configuous EN-DC 15.1.0	2018-12	RAN#82	R5-187828	0070	1	F		15.1.0
2019-12 RAN#22 R5.197331 0008 1 F FF 27. General Spurious Emission test case update 15.1.0 2018-12 RAN#22 R5.197333 0092 1 F Updates to clause 7.38.3.4 in TS 38.521-3 15.1.0 2018-12 RAN#22 R5.197333 0097 1 F Updates to clause 7.187 S3.521-3 15.1.0 2018-12 RAN#28 R5.180012 0057 1 F Updates to clause 5.187 S3.521-3 15.1.0 2018-12 RAN#28 R5.180012 0057 1 F Addition of hore test clarify test point selection into general section of 15.1.0 2018-12 RAN#22 R5.180010 0051 1 F Additional Spurious Emission for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#28 R5.18017 0066 1 F Additional Spurious Emission for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#28 R5.18017 0066 1 F Additional Spurious Emission for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5.18017<	2018-12	RAN#82	R5-187829	0071	1	F		1510
2019-12 RANK22 R5.18732 0008 1 F FF2 Reference Sensitivity test case update 15.10 2019-12 RANK2 R5.187334 0009 1 F Updates to sections 1.4 in TS 38.521-3 15.10 2018-12 RANK2 R5.187334 0009 1 F Updates to Sactions 1.4 in TS 38.521-3 15.10 2018-12 RANK2 R5.187913 0067 1 F Addition of notes to clarity test point selection into general section of 15.10 2018-12 RANK2 R5.188011 0065 1 F Addition of New test case 6.48.2.2.3 In-band Emissions for intra-band contiguous EN-DC 16.10 2018-12 RANK2 R5.188016 0068 1 F Addition 3 Surrious Emissions for intra-band contiguous EN-DC 16.10 2018-12 RANK2 R5.188016 0068 1 F Addition 3 Surrious emission for intra-band contiguous EN-DC 16.10 2018-12 RANK2 R5.188017 0074 1 F Addition of rotes 30.3 17.00 16.10 2018-12 RANK2								
20161:2 RAN#2 R5:187933 0001 1 F Updates to sections 1.4 in TS 38,521-3 to align with core spece 15.10 2018-12 RAN#2 R5:187913 0067 1 F Addition of notes to alight jest point selection into general section of 15.10 2018-12 RAN#2 R5:187913 0067 1 F Addition of notes to alight jest point selection into general section of 15.10 2018-12 RAN#2 R5:180013 0050 1 F Addition SEW intra-band contiguous EN-DC 15.10 2018-12 RAN#2 R5:18011 0064 1 F Additional Spurious Emissions for Intra-band non-contiguous EN-DC 15.10 2018-12 RAN#2 R5:18017 0066 1 F Additional Spurious emission for Intra-band non-contiguous EN-DC 15.10 2018-12 RAN#2 R5:18012 0073 1 F Addition of TCG 3B.3.1 tx ONOFF time mask for intra-band non-contiguous EN-DC 15.10 2018-12 RAN#2 R5:18022 0073 1 F Addition of TCG 3B.3.1 tx ONOFF time mask for intra-band contiguous EN-DC 15.10 </td <td></td> <td>RAN#82</td> <td></td> <td></td> <td>1</td> <td>F</td> <td></td> <td></td>		RAN#82			1	F		
2018-12 RAM822 RS-187833 0007 1 F Updates to Clause 5 in TS 38.521-3 15.10 2018-12 RAM822 RS-187913 0007 1 F Addition of notes to clarify test point selection into general section of 15.10 2018-12 RAM822 RS-188012 0005 1 F Addition Of New test case 6.48.2.2.3 In-band Emissions for intra-band configuous EN-DC 15.10 2018-12 RAM822 RS-188013 00051 1 F Addition Of New test case 6.48.2.2.3 In-band Emissions for intra-band configuous EN-DC 15.10 2018-12 RAM822 RS-188016 00051 F Additional Spurious Emissions for intra-band configuous EN-DC 15.10 2018-12 RAM822 RS-188017 00651 F Additional Spurious Emissions for intra-band configuous EN-DC 15.10 2018-12 RAM822 RS-188020 0073 1 F Additional Spurious EN-DC 15.10 2018-12 RAM822 RS-188020 0073 1 F Addition of TCS 38.3.1 TX ON/OFF time mask for intra-band configuous EN-DC 15.10 2018-12					1	F		15.1.0
2018-12 RAN#82 R5-187913 0067 1 F Addition of notes to clarify test point selection into general section of 1 15.1.0 2018-12 RAN#82 R5-180012 0057 1 F Introduction of New test case 6.48.2.3.1n-band Emissions for Intra- band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-180013 0050 1 F Addition SE Mintz-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-180016 0066 1 F Additional Spurious Emissions for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-180017 0066 1 F Additional Spurious emission for Intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-188019 0072 1 F Introduction of TheSad Emissions for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-188020 0073 1 F Addition of TCS.3.3.3.3.3.3.3.3.7 NONOFF time mask for intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-188020 0075 1 F Addition	2018-12	RAN#82	R5-187834	0090	1	F	Updates to sections 1-4 in TS 38.521-3 to align with core spec	15.1.0
Construction Total F Instruction of New test case 6.4B.2.2.3 In-band Emissions for Intra- band non-contiguous EN-DC 15.10 2018-12 RAN#82 R5-188013 0050 1 F Addition GW intra-band contiguous EN-DC 15.10 2018-12 RAN#82 R5-188013 0066 1 F Additional Spurious Envisions for Intra-band contiguous EN-DC 15.10 2018-12 RAN#82 R5-188016 0065 1 F Additional Spurious Emissions for Intra-band contiguous EN-DC 15.10 2018-12 RAN#82 R5-188016 0066 1 F Additional Spurious Emissions for Intra-band non- 15.10 2018-12 RAN#82 R5-188019 0072 1 F Addition of C63.33 21X ONOFF time mask for intra-band non- 15.10 2018-12 RAN#82 R5-188020 0075 1 F Addition of C63.33 21X ONOFF time mask for intra-band contiguous 15.10 2018-12 RAN#82 R5-188020 0075 1 F Addition of C63.33 21X ONOFF time mask for intra-band contiguous 15.10 2018-12 RAN#	2018-12			0091			Updates to Clause 5 in TS 38.521-3	
Construction Deam	2018-12	RAN#82	R5-187913	0067	1	-		15.1.0
2018-12 RANHE2 R5-188014 0051 1 F Additional Spunious Emissions for Intra-band contiguous EN-DC 15.10. 2018-12 RANHE2 R5-188016 0066 1 F Additional Spunious Emissions for Intra-band contiguous EN-DC 15.10. 2018-12 RANHE2 R5-188018 0066 1 F Additional Spunious Emission for Intra-band contiguous EN-DC 15.10. 2018-12 RANHE2 R5-188019 0072 1 F Introduction of In-band Emissions for Intra-band contiguous EN-DC 15.10. 2018-12 RANHE2 R5-188019 0072 1 F Introduction of TC-38.3.3 TX ON/OFF time mask for Intra-band non- contiguous EN-DC. 15.10. 2018-12 RANHE2 R5-188022 0075 1 F Addition of TC-38.3.3 TX ON/OFF time mask for Intra-band Non- contiguous EN-DC. 15.10. 2018-12 RANHE2 R5-188022 0075 1 F Addition of TC-38.3.3 TX ON/OFF time mask for Intra-band Non- contiguous EN-DC. 15.10. 2018-12 RANHE2 R5-188024 0080 1 F Update of Testas 6.8	2018-12	RAN#82	R5-188012	0057	1	F		15.1.0
2018-12 RAN#82 R5-189015 0064 1 F Additional Spurious Emissions for Intra-band controus USC +DC 15.1.0 2018-12 RAN#82 R5-189017 0066 1 F Additional Spurious Emission for Intra-band non-contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-189019 0076 1 F Additional Spurious EN-DC 15.1.0 2018-12 RAN#82 R5-189019 0072 1 F Introduction of In-hand Emissions for Intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-189021 0071 1 F Addition of TCG 3B.3.2 TX ON/OFF time mask for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-188022 0075 1 F Addition of TCG 3B.3.2 TX ON/OFF time mask for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-188023 0080 1 F Update of test case 6.28.2.1.2 Additional spectrum emission mask for intra-band contiguous EN-DC 15.1.0 2018-12 RAN#82 R5-188024 0081 1 F Update Clasea 6.8.2.1.2 Addition al spectrum emission mask for int	2018-12		R5-188013	0050	1			15.1.0
2018-12 RANKE2 R5-189016 0065 1 F Additional Spurious Emissions for Intra-band En-Docinguous EN-DC 15.1.0 2018-12 RANKE2 R5-189018 0068 1 F Additional Spurious emission for Intra-band EN-DC 15.1.0 2018-12 RANKE2 R5-189019 0072 1 F Introduction of Inband Emissions for Intra-band Contiguous EN-DC 15.1.0 2018-12 RANKE2 R5-189020 0073 1 F Introduction of Inband Emissions for Intra-band contiguous EN-DC 15.1.0 2018-12 RANKE2 R5-188020 0075 1 F Addition of TCG.38.3.2 Tx ON/OFF time mask for Intra-band on- contiguous EN-DC on No. 04 15.1.0 2018-12 RANKE2 R5-188022 0075 1 F Addition of TCG.38.3.3 Tx ON/OFF time mask for Intra-band ond guous EN-DC on No. 04 15.1.0 2018-12 RANKE2 R5-188024 0081 1 F Update of test case 6.2B.3.1 UE A-MPRE for Intra-band contiguous EN-DC on No. 04 15.1.0 2018-12 RANKE2 R5-188025 0038 1 F Update of test c						-		
2018-12 RAN#82 R5-188017 0066 1 F Additional Spurious emission for inter-band ENDC 15.10 2018-12 RAN#82 R5-188019 0072 1 F Spurious emission for inter-band contiguous ENDC 15.10 2018-12 RAN#82 R5-188020 0073 1 F Introduction of In-band Emissions for intra-band contiguous ENDC 15.10 2018-12 RAN#82 R5-188021 0074 1 F Addition of TC3.38.3.1 X ON/OFF time mask for intra-band non- contiguous ENDC 15.10 2018-12 RAN#82 R5-188022 0075 1 F Addition of TC3.38.3.2 TX ON/OFF time mask for intra-band non- contiguous ENDC for ND.04 2018-12 RAN#82 R5-188023 0080 1 F Update for tase 6.58.2.1 2.4dditional spectrum emission mask for intra-band contiguous ENDC for ND.04 2018-12 RAN#82 R5-188026 0038 1 F Update TC 7.48.3 15.1.0 2018-12 RAN#82 R5-188026 0036 1 F Update TC 7.48.3 15.1.0 15.1.0 2018-12					_			
2018-12 RAN#82 R5-188018 0068 1 F Spurious emission band UE co-existence for intra-band non- configuous EN-DC. 2018-12 RAN#82 R5-188019 0073 1 F Addition of TC6.38.3.1 Tx ON/OFF time mask for intra-band non- configuous EN-DC. 2018-12 RAN#82 R5-188021 0074 1 F Addition of TC6.38.3.1 Tx ON/OFF time mask for intra-band non- configuous EN-DC. 2018-12 RAN#82 R5-188021 0075 1 F Addition of TC6.38.3.3 Tx ON/OFF time mask for inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188023 0060 1 F Update of test case 6.5B.2.1.2 Additional spectrum emission mask for inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188024 0061 1 F Update of test case 6.5B.3.1 UE A-MPR for inter-band RN sensitivity first-band contiguous EN-DC for NS, 04 2018-12 RAN#82 R5-188025 0031 1 F Update Case case 2B.3.1 UE A-MPR for inter-band RX sensitivity first-band Case case 2B.3.1 UE A-MPR for inter-band RX sensitivity first-band case for SB.2.1 15.1.0 2018-12 RAN#82 R5-188025 0062					_			
Contiguous EN-DC 2018-12 RAN#82 R5-188019 0073 1 F Introduction of In-band Emissions for intra-band contiguous EN-DC 2018-12 RAN#82 R5-188020 0073 1 F Addition of TC6.38.3.1 Tx ON/OFF time mask for intra-band non- contiguous EN-DC 2018-12 RAN#82 R5-188021 0074 1 F Addition of TC6.38.3.3 Tx ON/OFF time mask for inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188023 0060 1 F Update of test case 6.5B.2.1.2 Additional spectrum emission mask for intra-band contiguous EN-DC for NS_04 15.1.0 2018-12 RAN#82 R5-188025 0036 1 F Update of test case 6.2B.3.1 UE A/MR for Intra-band contiguous EN-DC for NS_04 15.1.0 2018-12 RAN#82 R5-188025 0036 1 F Update Clause 7.5B.3 in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-188026 0037 1 F Update Clause 7.5B.3 in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-188027 0032 1 F Update Clause 7.5B.3 in T					_			
2018-12 RAN#82 R5-188020 0073 1 F Addition of TCG 38.3.1 Tx ON/OFF time mask for intra-band 15.1.0 2018-12 RAN#82 R5-188021 0074 1 F Addition of TCG 38.3.2 Tx ON/OFF time mask for intra-band non- contiguous EN-DC 2018-12 RAN#82 R5-188022 0075 1 F Addition of TCG 38.3.3 Tx ON/OFF time mask for intra-band contiguous EN-DC 2018-12 RAN#82 R5-188023 0060 1 F Update of test case 6.5B.2.1.2 Additional spectrum emission mask for intra-band contiguous EN-DC for NS_04 2018-12 RAN#82 R5-188025 0036 1 F Update Clause 7.5B.3 in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-188026 0031 1 F Update Clause 7.5B.3 in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-188027 0026 1 F Update Clause 7.5B.3 in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-188027 0032 1 F Updates of T1 in TS 38.521-3 Anstre f during RAN5#81 15.1.0 2018-12 RAN#							contiguous EN-DC	
Contiguous EN-DC Contiguous EN-DC Contiguous EN-DC 2018-12 RAN#82 R5-188021 0074 1 F Addition of TC6.38.3.2 Tx ON/OFF time mask for intra-band non- 15.1.0 2018-12 RAN#82 R5-188022 0075 1 F Addition of TC6.38.3.3 Tx ON/OFF time mask for inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188024 0081 1 F Update of test case 6.28.3.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188025 0038 1 F Update of test case 6.28.3.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188025 0038 1 F Update Cause 7.58.3 in TS 38.521-3 3 15.1.0 2018-12 RAN#82 R5-188026 0041 1 F 50.0 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Update of Tim TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0063 1 F LTE Anchor Lin								
contiguous EN-DC contiguous EN-DC contiguous EN-DC 15.10 2018-12 RAN#82 R5-188022 0075 1 F Addition of TCs.3B.3.3 Tx ON/OFF time mask for inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188023 0080 1 F Update of test case 6.5B.2.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188026 0038 1 F Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188026 0038 1 F Update SO RN_END_COWINF PR1_Text update for Inter-Band RX sensitivity 15.1.0 2018-12 RAN#82 R5-188026 0037 1 F Updates of MU in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Lpdates of MU in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0063 1 F LTE Anchor Link configuration for F2 15.1.0 2018-12 RAN#82 R5-188229						-	contiguous EN-DC	
Vithin FR1 within FR1 2018-12 RAN#82 R5-188023 0080 1 F Update of test case 6.5B.2.1.2 Additional spectrum emission mask for intra-band contiguous EN-DC for NS_04 2018-12 RAN#82 R5-188025 0038 1 F Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous EN-DC for NS_04 2018-12 RAN#82 R5-188025 0038 1 F Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous EN-DC for NS_04 2018-12 RAN#82 R5-188025 0038 1 F Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous EN-DC for NS_04 2018-12 RAN#82 R5-188027 0032 1 F Updates of TT in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Updates of TT in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Introduction of receiver spurious emission tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188221 0069 1 F<	2018-12						contiguous EN-DC	
Image: Constraint of the intra-band contiguous EN-DC for NS_04 Image: Constraint of the intra-band contiguous EN-DC for NS_04 2018-12 RAN#82 R5-188024 0081 1 F Update of test case 6.28.3.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188025 0038 1 F Update of test case 6.28.3.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188026 0038 1 F Updates of TL ext update for Inter-Band RX sensitivity 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Updates of MU in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Updates of TT in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0063 1 F LTE Anchor Link configuration for FR2 16 res for FR1 inter-band fs1.10 2018-12 RAN#82 R5-188220 0063 1 F Introduction of rule Tx test in EN-DC 15 r.10 2018-12 RAN#82 R5-188221 0064 1 F <	2018-12	RAN#82	R5-188022	0075	1		within FR1	15.1.0
2018-12 RAN#82 R5-188024 0081 1 F Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous 15.1.0 2018-12 RAN#82 R5-188025 0038 1 F Update Clause 7.5B.3 in TS 38.521-3 15.1.0 2018-12 RAN#82 R5-188026 0041 1 F 5G NR_EN_DC with FR1_Text update for Inter-Band RX sensitivity 15.1.0 2018-12 RAN#82 R5-188027 0036 1 F Update Clause 7.48.3 Text update for Inter-Band RX sensitivity 15.1.0 2018-12 RAN#82 R5-188029 0033 1 F Updates of MU in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188039 0062 1 F LTE Anchor Link configuration for FR2 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F Introduction of wideband intermodulation tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RA	2018-12	RAN#82	R5-188023	0080	1	F		15.1.0
2018-12 RAN#82 R5-188025 0038 1 F Update Clause 7.5B.3 in TS 38.51-3 15.10 2018-12 RAN#82 R5-188026 0041 1 F 5G NR_EN_DC with FR1_Text update for Inter-Band RX sensitivity 15.1.0 2018-12 RAN#82 R5-188027 0082 1 F Update S0 16.1.0 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Updates of MU in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0033 1 F Lipdates of TL in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-18829 0062 1 F Introduction of receiver spurious emission tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188221 0064 1 F Litroduction of wideband intermodulation tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188221 0054 1 F Litroduction of UE Tx test in EN-DC 15.1.0 2018-13 RAN#83 R	2018-12	RAN#82	R5-188024	0081	1	F	Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous	15.1.0
2018-12 RAN#82 R5-188026 0041 1 F 5G NR_EN_DC with FR1_Text update for Inter-Band RX sensitivity 15.10 2018-12 RAN#82 R5-188027 0036 1 F Update TC 7.48.3 15.10 2018-12 RAN#82 R5-188029 0036 1 F Updates of TL in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0033 1 F Updates of TL in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-18829 0063 1 F Introduction of receiver spurious emission tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F Introduction of receiver spurious emission tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F Introduction of TC 7.5B.0 15.1.0 2019-03 RAN#83 R5-191057 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 </td <td>2018-12</td> <td>RAN#82</td> <td>R5-188025</td> <td>0038</td> <td>1</td> <td>F</td> <td></td> <td>15.1.0</td>	2018-12	RAN#82	R5-188025	0038	1	F		15.1.0
2018-12 RAN#82 R5-188027 0082 1 F Update TC 7.4B.3 15.1.0 2018-12 RAN#82 R5-188029 0036 1 F Updates of MU in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0037 1 F Updates of TT in TS 38.521-3 Annex F during RAN5#81 15.1.0 2018-12 RAN#82 R5-188029 0033 1 F Ltz Anchor Link configuration for FR2 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F Introduction of wideband intermodulation tests for FR1 inter-band ENDC 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F Core alignment CR to capture TS 38.101-3 updates during 15.1.0 2018-03 RAN#83 R5-191057 0165 F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191330 0175 F <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td>F</td><td></td><td></td></td<>					_	F		
2018-12 RAN#82 R5-188028 0036 1 F Updates of MU in TS 38.521-3 Annex F during RAN5#81 15.10 2018-12 RAN#82 R5-188039 0037 1 F Updates of TT in TS 38.521-3 Annex F during RAN5#81 15.10 2018-12 RAN#82 R5-188039 0093 1 F LTE Anchor Link configuration for FR2 15.10 2018-12 RAN#82 R5-188220 0063 1 F Introduction of receiver spurious emission tests for FR1 inter-band ENDC 15.10 2018-12 RAN#82 R5-188221 0054 1 F Introduction of videband intermodulation tests for FR1 inter-band ENDC 15.10 2018-12 RAN#82 R5-188221 0054 1 F Cre alignment CR to capture TS 38.101-3 updates during RAN4#89 15.10 2018-03 RAN#83 R5-191057 0165 F Introduction of TC 7.5B.0 15.20 2019-03 RAN#83 R5-191137 0174 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.20								
2018-12 RAN#82 R5-188029 0037 1 F Updates of T1 in TS 38.521-3 Annex F during RAN5#81 15.10 2018-12 RAN#82 R5-188039 0093 1 F LTE Anchor Link configuration for FR2 2018-12 RAN#82 R5-188209 0062 1 F Introduction of receiver spurious emission tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F Introduction of wideband intermodulation tests for FR1 inter-band 15.1.0 2018-12 RAN#82 R5-188221 0054 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F Core alignment CR to capture TS 38.101-3 updates during 15.1.0 2019-03 RAN#83 R5-191057 0165 - F Updated EN-DC configuration information in clause 5 15.2.0 2019-03 RAN#83 R5-19136 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0	2018-12	RAN#82	R5-188028	0036	1	F		15.1.0
2018-12 RAN#82 R5-188219 0062 1 F Introduction of receiver spurious emission tests for FR1 inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188220 0063 1 F Introduction of videband intermodulation tests for FR1 inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188221 0054 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F Core alignment CR to capture TS 38.101-3 updates during RAN4#89 15.1.0 2019-03 RAN#83 R5-191057 0165 - F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191231 0175 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191330 0177 - F Adding test case 6.2B.2.3, Adjacent channel leakage ratio for CA without EN-DC	2018-12		R5-188029	0037	1	F		
EN-DC EN-DC 2018-12 RAN#82 R5-188220 0063 1 F Introduction of wideband intermodulation tests for FR1 inter-band EN-DC 15.1.0 2018-12 RAN#82 R5-188221 0054 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2019-03 RAN#83 R5-191057 0165 - F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191231 0175 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191339 0177 - F Updates to EN-DC test case 6.2B.2.2., UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding test	2018-12	RAN#82	R5-188039	0093	1	F	LTE Anchor Link configuration for FR2	15.1.0
Constraint EN-DC 2018-12 RAN#82 R5-188221 0054 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F Core alignment CR to capture TS 38.101-3 updates during RAN4#89 15.1.0 2019-03 RAN#83 R5-191057 0165 - F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191231 0174 - F Updated EN-DC configuration information in clause 5 15.2.0 2019-03 RAN#83 R5-191231 0176 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191339 0177 - F Updates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding tes	2018-12	RAN#82	R5-188219	0062	1	F		15.1.0
2018-12 RAN#82 R5-188221 0054 1 F LTE TDD configuration for UE Tx test in EN-DC 15.1.0 2018-12 RAN#82 R5-188222 0069 1 F Core alignment CR to capture TS 38.101-3 updates during 15.1.0 2019-03 RAN#83 R5-191057 0165 - F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191157 0174 - F Updated EN-DC configuration information in clause 5 15.2.0 2019-03 RAN#83 R5-191231 0175 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191330 0177 - F Updates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding test case 6.5A.2.3, Adjacent channel leakage ratio for CA without EN-DC	2018-12	RAN#82	R5-188220	0063	1	F		15.1.0
2018-12 RAN#82 R5-188222 0069 1 F Core alignment CR to capture TS 38.101-3 updates during RAN4#89 15.1.0 2019-03 RAN#83 R5-191057 0165 - F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191157 0174 - F Updated EN-DC configuration information in clause 5 15.2.0 2019-03 RAN#83 R5-191231 0175 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191339 0177 - F Updates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding test case 6.5A.2.3, Adjacent channel leakage ratio for CA without EN-DC 15.2.0 2019-03 RAN#83 R5-191637 0193 - F Updates of TT in TS38.521-3 15	2018-12	RAN#82	R5-188221	0054	1	F	LTE TDD configuration for UE Tx test in EN-DC	15.1.0
2019-03 RAN#83 R5-191057 0165 - F Introduction of TC 7.5B.0 15.2.0 2019-03 RAN#83 R5-191157 0174 - F Updated EN-DC configuration information in clause 5 15.2.0 2019-03 RAN#83 R5-191231 0175 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191339 0177 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding test case 6.5A.2.3, Adjacent channel leakage ratio for CA without EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Shared Risk clarification in TS 38.521-3 15.2.0 2019-03 RAN#83 R5-191637 0193 - F Updates of TT in TS38.521-3 Annex F during RAN5#NR4	2018-12				1	F	Core alignment CR to capture TS 38.101-3 updates during	
2019-03 RAN#83 R5-191231 0175 - F Adding missing reference to 38.521-3 15.2.0 2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191339 0177 - F Updates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding test case 6.5A.2.3, Adjacent channel leakage ratio for CA without EN-DC 2019-03 RAN#83 R5-191510 0183 - F Shared Risk clarification in TS 38.521-3 15.2.0 2019-03 RAN#83 R5-191637 0193 - F Updates of TT in TS38.521-3 15.2.0 2019-03 RAN#83 R5-191845 0200 - F Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC 15.2.0 2019-03 RAN#83 R5-191867 0205 - F Addition of 7.3B.2.0 Reference sensitivity Minimum Conformance Requirements for EN-DC <td>2019-03</td> <td>RAN#83</td> <td>R5-191057</td> <td>0165</td> <td>-</td> <td>F</td> <td></td> <td>15.2.0</td>	2019-03	RAN#83	R5-191057	0165	-	F		15.2.0
2019-03 RAN#83 R5-191336 0176 - F Updates to EN-DC test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191339 0177 - F Updates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC 15.2.0 2019-03 RAN#83 R5-191340 0178 - F Adding test case 6.5A.2.3, Adjacent channel leakage ratio for CA without EN-DC 15.2.0 2019-03 RAN#83 R5-191510 0183 - F Shared Risk clarification in TS 38.521-3 15.2.0 2019-03 RAN#83 R5-191637 0193 - F Updates of TT in TS38.521-3 15.2.0 2019-03 RAN#83 R5-191637 0193 - F Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC 15.2.0 2019-03 RAN#83 R5-191867 0200 - F Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC 15.2.0 2019-03 RAN#83 R5-191867 0205 - F Addition of 7.3B.2.0 Reference sensitivity Mini	2019-03	RAN#83	R5-191157	0174	-	F	Updated EN-DC configuration information in clause 5	15.2.0
2019-03RAN#83R5-1913390177-FUpdates to EN-DC test case 6.2B.2.2, UE Maximum Output Power reduction for Intra-Band Non-Contiguous EN-DC15.2.02019-03RAN#83R5-1913400178-FAdding test case 6.5A.2.3, Adjacent channel leakage ratio for CA without EN-DC15.2.02019-03RAN#83R5-1915100183-FShared Risk clarification in TS 38.521-315.2.02019-03RAN#83R5-1916370193-FUpdates of TT in TS38.521-3 Annex F during RAN5#NR415.2.02019-03RAN#83R5-1918450200-FText update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC15.2.02019-03RAN#83R5-1918670205-FAddition of 7.3B.2.0 Reference sensitivity Minimum Conformance Requirements for EN-DC15.2.02019-03RAN#83R5-1920040215-FUpdate of TC 6.2B.1.115.2.0	2019-03	RAN#83	R5-191231	0175	-	F	Adding missing reference to 38.521-3	15.2.0
Image: Second	2019-03	RAN#83	R5-191336	0176	-	F		15.2.0
2019-03 RAN#83 R5-191510 0183 - F Shared Risk clarification in TS 38.521-3 15.2.0 2019-03 RAN#83 R5-191637 0193 - F Updates of TT in TS38.521-3 Annex F during RAN5#NR4 15.2.0 2019-03 RAN#83 R5-191845 0200 - F Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC 15.2.0 2019-03 RAN#83 R5-191867 0205 - F Addition of 7.3B.2.0 Reference sensitivity Minimum Conformance Requirements for EN-DC 15.2.0 2019-03 RAN#83 R5-192004 0215 - F Update of TC 6.2B.1.1 15.2.0	2019-03	RAN#83	R5-191339	0177	-	F		15.2.0
2019-03 RAN#83 R5-191637 0193 - F Updates of TT in TS38.521-3 Annex F during RAN5#NR4 15.2.0 2019-03 RAN#83 R5-191845 0200 - F Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC 15.2.0 2019-03 RAN#83 R5-191867 0205 - F Addition of 7.3B.2.0 Reference sensitivity Minimum Conformance Requirements for EN-DC 15.2.0 2019-03 RAN#83 R5-192004 0215 - F Update of TC 6.2B.1.1 15.2.0	2019-03	RAN#83	R5-191340	0178	-	F		15.2.0
2019-03 RAN#83 R5-191845 0200 - F Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC 15.2.0 2019-03 RAN#83 R5-191867 0205 - F Addition of 7.3B.2.0 Reference sensitivity Minimum Conformance Requirements for EN-DC 15.2.0 2019-03 RAN#83 R5-192004 0215 - F Update of TC 6.2B.1.1 15.2.0	2019-03	RAN#83	R5-191510	0183	-	F	Shared Risk clarification in TS 38.521-3	15.2.0
2019-03 RAN#83 R5-191867 0205 - F Addition of 7.3B.2.0 Reference sensitivity Minimum Conformance Requirements for EN-DC 15.2.0 2019-03 RAN#83 R5-192004 0215 - F Update of TC 6.2B.1.1 15.2.0	2019-03	RAN#83	R5-191637	0193	-	F	Updates of TT in TS38.521-3 Annex F during RAN5#NR4	15.2.0
2019-03 RAN#83 R5-192004 0215 - F Update of TC 6.2B.1.1 15.2.0	2019-03	RAN#83	R5-191845	0200	-	F	Text update for 7.3B.3 deltaRIB,c deltaRIBNC for EN-DC	15.2.0
	2019-03	RAN#83	R5-191867	0205	-	F		15.2.0
2019-03 RAN#83 R5-192005 0216 - F Update of TC 6.2B.1.2 15.2.0	2019-03	RAN#83	R5-192004	0215	-	F	Update of TC 6.2B.1.1	15.2.0
	2019-03	RAN#83	R5-192005	0216	-	F	Update of TC 6.2B.1.2	15.2.0

2019-03	RAN#83	R5-192006	0217	-	F	Update of TC 6.2B.1.3	15.2.0
2019-03	RAN#83	R5-192176	0224	-	F	TIB,c updated for CA and EN-DC cases	15.2.0
2019-03	RAN#83	R5-192177	0225	-	F	Updated to Annex M Dual uplink interferer	15.2.0
2019-03	RAN#83	R5-192206	0228	-	F	38.521-3 Common Section updates to clarify leverage across architecture options	15.2.0
2019-03	RAN#83	R5-192207	0229	-	F	Formatting updates and index correction in TS 38.521-3	15.2.0
2019-03	RAN#83	R5-192208	0230	-	F	38.521-1 Common Section updates to clarify leverage across architecture options	15.2.0
2019-03	RAN#83	R5-192209	0231	-	F	38.521-2 Common Section updates to clarify leverage across architecture options	15.2.0
2019-03	RAN#83	R5-192242	0237	-	F	Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192243	0238	-	F	Update of test case 6.2B.3.4 UE A-MPR for Inter-Band EN-DC including FR2	15.2.0
2019-03	RAN#83	R5-192244	0239	-	F	Update of test case 6.5B.2.1.2 UE Additional spectrum emissions mask for intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192423	0157	1	F	Update of TC 7.5B.1	15.2.0
2019-03	RAN#83	R5-192424	0159	1	F	Introduction of TC 7.5B.4	15.2.0
2019-03	RAN#83	R5-192425	0166	1	F	Update of TC 7.5B.3	15.2.0
2019-03	RAN#83	R5-192427	0180	1	F	Introduction of NSA FR1 7.6B.2.1 Inband blocking for intra-band contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192428	0182	1	F	Introduction of NSA FR1 7.6B.2.3 Inband blocking for inter-band EN- DC within FR1	15.2.0
2019-03	RAN#83	R5-192429	0184	1	F	Introduction of NSA FR1 7.6B.3.1 Out-of-band blocking for intra- band contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192430	0185	1	F	Introduction of NSA FR1 7.6B.3.2 Out-of-band blocking for intra- band non-contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192431	0186	1	F	Introduction of NSA FR1 7.6B.3.3 Out-of-band blocking for inter- band EN-DC within FR1	15.2.0
2019-03	RAN#83	R5-192432	0187	1	F	Introduction of NSA FR1 7.6B.4.1 Narrow band blocking for intra- band contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192433	0188	1	F	Introduction of NSA FR1 7.6B.4.2 Narrow band blocking for intra- band non-contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192434	0189	1	F	Introduction of NSA FR1 7.6B.4.3 Narrow band blocking for inter- band EN-DC within FR1	15.2.0
2019-03	RAN#83	R5-192435	0190	1	F	Introduction of NSA FR1 7.7B.1 Spurious Response for intra-band contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192436	0191	1	F	Introduction of NSA FR1 7.7B.2 Spurious Response for intra-band non-contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192437	0192	1	F	Introduction of NSA FR1 7.7B.3 Spurious Response for inter-band EN-DC within FR1	15.2.0
2019-03	RAN#83	R5-192438	0207	1	F	Text Update for 7.3B.2.2 Reference sensitivity for Intra-band non- contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192439	0234	1	F	TS 38.521-3 corrections and clean-up to TC categories within Clause 7	15.2.0
2019-03	RAN#83	R5-192440	0179	1	F	Editorial: Band combinations for Inter-band CA between FR1 and FR2	15.2.0
1	1	1	_I	1	I		1

2019-03	RAN#83	R5-192441	0232	1	F	TS 38.521-3 Section 5 updates to align with core specification	15.2.0
2019-03	RAN#83	R5-192442	0195	1	F	Addition of TC6.3B.4.3 PRACH Time Mask for inter-band EN-DC within FR1	15.2.0
2019-03	RAN#83	R5-192443	0220	1	F	Update of EN-DC 6.2B.4.1.3 Configured transmitted power inter- band within FR1	15.2.0
2019-03	RAN#83	R5-192445	0233	1	F	TS 38.521-3 corrections and clean-up to TC categories within Clause 6	15.2.0
2019-03	RAN#83	R5-192453	0198	1	F	FR2 NSA Spurious Emission Coexistence test case	15.2.0
2019-03	RAN#83	R5-192454	0199	1	F	FR2 NSA Frequency Error test case	15.2.0
2019-03	RAN#83	R5-192455	0221	1	F	Addition of transmit modulation quality test cases for inter-band EN- DC including FR2	15.2.0
2019-03	RAN#83	R5-192456	0222	1	F	Introduction 6.5B.1.4 OBW interband EN-DC including FR2	15.2.0
2019-03	RAN#83	R5-192457	0223	1	F	Introduction 6.5B.2.4.1 SEM interband EN-DC including FR2	15.2.0
2019-03	RAN#83	R5-192458	0226	1	F	Introduction 6.5B.2.4.3 ACLR interband EN-DC including FR2	15.2.0
2019-03	RAN#83	R5-192459	0236	1	F	Addition of TC6.3B.1.4 - Minimum Output Power for EN-DC Interband including FR2	15.2.0
2019-03	RAN#83	R5-192535	0194	1	F	Clean up of occupied bandwidth for EN-DC within FR1	15.2.0
2019-03	RAN#83	R5-192600	0196	1	F	Addition of TC6.3B.4.1 PRACH Time Mask for intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192601	0197	1	F	Addition of TC6.3B.4.2 PRACH Time Mask for intra-band non- contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192603	0201	1	F	Text Update for 6.5B.3.2 Spurious Emissions for intra-band non- contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192604	0202	1	F	Text Update for 6.5B.3.1 Spurious Emissions for intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192605	0203	1	F	Text Update for 6.5B.3.3 Spurious Emissions for Inter-band EN-DC within FR1	15.2.0
2019-03	RAN#83	R5-192606	0204	1	F	Text Update for 6.5B.4 Additional Spurious Emissions for EN-DC	15.2.0
2019-03	RAN#83	R5-192607	0209	1	F	Update to Carrier Leakage for intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192608	0210	1	F	Introduction of Error Vector Magnitude for intra-band contiguous EN- DC	15.2.0
2019-03	RAN#83	R5-192609	0211	1	F	Update to In-band Emissions for intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192610	0227	1	F	Clarification on UL slots in OBW, SEM and ACLR in TS 38.521-3	15.2.0
2019-03	RAN#83	R5-192611	0158	1	F	Update of TC 7.5B.2	15.2.0
2019-03	RAN#83	R5-192617	0167	1	F	Introducing Wideband Intermodulation for intra-band EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192618	0168	1	F	Introducing receiver spurious emission for intra-band EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192619	0181	1	F	Introduction of NSA FR1 7.6B.2.2 Inband blocking for intra-band non-contiguous EN-DC in FR1	15.2.0
2019-03	RAN#83	R5-192620	0206	1	F	Text Update for 7.3B.2.1 Reference sensitivity for Intra-band Contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192622	0170	1	F	Updates of MU in TS38.521-3 Annex F during RAN5#82	15.2.0
2019-03	RAN#83	R5-192623	0171	1	F	Updates of TT in TS38.521-3 Annex F during RAN5#82	15.2.0
2019-03	RAN#83	R5-192626	0214	1	F	Update of TC 7.4B.2	15.2.0

2019-03	RAN#83	R5-192681	0235	1	F	Addition of TC6.2B.1.4 - Max Output Power for EN-DC Interband	15.2.0
2019-00	111100	132001	0200			including FR2	
2019-03	RAN#83	R5-192689	0218	1	F	Update of 6.2B.4.1.1 Configured output power Intra-band contiguous EN-DC	15.2.0
2019-03	RAN#83	R5-192690	0219	1	F	Update of EN-DC 6.2B.4.1.2 Configured transmitted power Intra- band non-contiguous	15.2.0
2019-03	RAN#83	R5-192844	0213	2	F	Update of TC 7.4B.1	15.2.0
2019-03	RAN#83	R5-192847	0212	1	F	Addition of 7.4B.0	15.2.0
2019-03	RAN#83	R5-192863	0172	1	F	Introduction of TxIM (inter-band EN-DC within FR1)	15.2.0
2019-03	RAN#83	-	-	-	-	Editorial correction of references to TS 38.508-1 clause 4.6 tables	15.2.0
2019-06	RAN#84	R5-193539	0294	-	F	Adding missing reference in 38.521-3	15.3.0
2019-06	RAN#84	R5-193546	0295	-	F	Updates to 6.2B.2.3, UE Maximum Output power reduction for inter- band EN-DC within FR1	15.3.0
2019-06	RAN#84	R5-193547	0296	-	F	Adding test case 6.2B.2.5, UE Maximum Output power reduction for inter-band EN-DC including both FR1 and FR2	15.3.0
2019-06	RAN#84	R5-193548	0297	-	F	Update of test case 6.2B.2.1, UE Maximum Output Power reduction for Intra-Band Contiguous EN-DC	15.3.0
2019-06	RAN#84	R5-193714	0309	-	F	Update of Clause 5.5B Configuration for DC	15.3.0
2019-06	RAN#84	R5-193719	0311	-	F	Update of TC 7.5B.2 ACS for intra-band non-contiguous 2CC	15.3.0
2019-06	RAN#84	R5-193720	0312	-	F	Update of TC 7.5B.3 ACS for inter-band FR1 2CC	15.3.0
2019-06	RAN#84	R5-193722	0314	-	F	Update of TC 7.5B.4.1 ACS for inter-band FR2 2CC	15.3.0
2019-06	RAN#84	R5-193724	0316	-	F	Introduction of TC 7.5B.4.3 ACS for inter-band FR2 4CC	15.3.0
2019-06	RAN#84	R5-193725	0317	-	F	Introduction of TC 7.5B.4.4 ACS for inter-band FR2 5CC	15.3.0
2019-06	RAN#84	R5-193726	0318	-	F	Introduction of TC 7.5B.4.5 ACS for inter-band FR2 6CC	15.3.0
2019-06	RAN#84	R5-193727	0319	-	F	Introduction of TC 7.5B.5 inter-band FR1 FR2 3CC	15.3.0
2019-06	RAN#84	R5-193886	0320	-	F	Introduction of NSA FR2 7.6B.2.4.1	15.3.0
2019-06	RAN#84	R5-193888	0322	-	F	Update of NSA FR1 7.6B.2.0	15.3.0
2019-06	RAN#84	R5-193896	0324	-	F	Update of NSA FR1 7.6B.2.2	15.3.0
2019-06	RAN#84	R5-193899	0324	_	F	Update of NSA FR1 7.6B.3.1	15.3.0
2019-06	RAN#84	R5-193900	0327	_	F	Update of NSA FR1 7.6B.3.2	15.3.0
2019-00	RAN#84	R5-193901	0328	-	F	Update of NSA FR1 7.6B.4.0	15.3.0
2019-00	RAN#84	R5-193902	0328	-	F	Update of NSA FR1 7.6B.4.1	15.3.0
2019-06	RAN#84	R5-193902	0329	-	F	Update of NSA FR1 7.6B.4.2	15.3.0
2019-00	RAN#84	R5-193903	0331	-	F	Update of NSA FR1 7.7B.0	15.3.0
2019-06	RAN#84	R5-193904	0332	-	F	Update of NSA FR1 7.7B.1	15.3.0
2019-00	RAN#84	R5-193906	0333	-	F	Update of NSA FR1 7.7B.2	15.3.0
2019-00	KAN#04	K3-193900	0333	-			15.5.0
0040.00		DE 400047	0242		F	Demoving invelid test IDs from test case 0 5D 0.4.0	45.0.0
2019-06	RAN#84	R5-193947	0343	-	-	Removing invalid test IDs from test case 6.5B.2.1.3	15.3.0
2019-06	RAN#84	R5-194016	0344	-	F	38.521-3 Annex re-alignment	15.3.0
2019-06	RAN#84	R5-194128	0347	-	F	Addition SEM intraband non-contiguos EN-DC in TS 38.521-3	15.3.0
2019-06	RAN#84	R5-194129	0348	-	F	Addition ACLR intraband non-contiguos EN-DC in TS 38.521-3	15.3.0
2019-06	RAN#84	R5-194164	0351	-	F	Update of test case 6.2B.3.1 UE A-MPR for Intra-band contiguous	15.3.0
2019-06	RAN#84	R5-194166	0353		F	EN-DC Update of test case 6.2B.3.3 UE A-MPR for Inter-Band EN-DC within	
				-		FR1	
2019-06	RAN#84	R5-194317	0359	-	F	Text Update for 7.3B.2.3 Reference sensitivity for Inter-band EN-DC within FR1	15.3.0
2019-06	RAN#84	R5-194318	0360	-	F	Text Update for 7.3B.2.1 Ref sensitivity for Intra-band Contiguous EN-DC	15.3.0
2019-06	RAN#84	R5-194319	0361	-	F	Text Update for 6.5B.4 Additional Spurious Emissions for EN-DC	15.3.0
2019-06	RAN#84	R5-194320	0362	-	F	Text Update for 7.3B.3	15.3.0
2019-06	RAN#84	R5-194374	0366	-	F	Text Update for 6.5B.3.3.2 Spurious emission band UE co-existence for Inter-band EN-DC within FR1	15.3.0
2019-06	RAN#84	R5-194375	0367	-	F	Text Update for 7.3B.2.2 Ref sensitivity for Intra-band Non- Contiguous EN-DC	15.3.0
2010 00							15.3.0
2019-06	RAN#84	R5-194376	0368	-	F	Text Update for 7.3B.2.0 Min Requirements of Ref sensitivity for EN- DC	15.3.0
	RAN#84 RAN#84	R5-194376 R5-194400	0368 0372	-	F		15.3.0
2019-06				-		DC Update to Carrier Leakage and In-band Emissions for intra-band	
2019-06 2019-06	RAN#84	R5-194400	0372	-	F	DC Update to Carrier Leakage and In-band Emissions for intra-band contiguous EN-DC Update to 6.2.3 A-MPR FR2 NSA Update EN-DC Transmit modulation quality test cases	15.3.0
2019-06 2019-06 2019-06	RAN#84 RAN#84	R5-194400 R5-194463	0372 0378	- - - -	F F	DC Update to Carrier Leakage and In-band Emissions for intra-band contiguous EN-DC Update to 6.2.3 A-MPR FR2 NSA Update EN-DC Transmit modulation quality test cases Update of transmit modulation quality test cases for inter-band EN- DC including FR2	15.3.0 15.3.0
2019-06 2019-06 2019-06 2019-06	RAN#84 RAN#84 RAN#84	R5-194400 R5-194463 R5-194484	0372 0378 0380	-	F F F	DC Update to Carrier Leakage and In-band Emissions for intra-band contiguous EN-DC Update to 6.2.3 A-MPR FR2 NSA Update EN-DC Transmit modulation quality test cases Update of transmit modulation quality test cases for inter-band EN-	15.3.0 15.3.0 15.3.0

516

2019-06	RAN#84	R5-194708	0384	-	F	TS 38.521-3 updates across section 7 test cases	15.3.0
2019-06	RAN#84	R5-194725	0388	-	F	Update to clarify number of LTE CCs config for anchor agnostic EN- DC RF tests	15.3.0
2019-06	RAN#84	R5-194934	0334	1	F	Update of NSA FR1 RF 6.2B.1.1 MOP	15.3.0
2019-06	RAN#84	R5-194935	0335	1	F	Update of NSA FR1 RF 6.2B.1.2 MOP	15.3.0
2019-06	RAN#84	R5-194936	0337	1	F	Update of NSA FR1 RF 7.4B.1	15.3.0
2019-06	RAN#84	R5-194937	0338	1	F	Update of NSA FR1 RF 7.4B.2	15.3.0
2019-06	RAN#84	R5-194938	0298	1	F	Adding test case 6.5A.2.2, Additional Spectrum emissions mask for	15.3.0
						CA without EN-DC	
2019-06	RAN#84	R5-194941	0350	1	F	Introduction of New test case 6.4B.2.3.4 EVM Equalizer Flatness for inter-band EN-DC within FR1	15.3.0
2019-06	RAN#84	R5-194942	0373	1	F	Update of test case 6.2A.2.1, UE maximum output power reduction for inter-band NR CA between FR1 and FR2 without EN-DC	15.3.0
2019-06	RAN#84	R5-194943	0374	1	F	Update of 6.2B.3.1 A-MPR Intra-band contiguous for NS_35	15.3.0
2019-06	RAN#84	R5-194944	0375	1	F	Update of 6.2B.3.2 A-MPR for Intra-band non-contigous with	15.3.0
						additional test frequencies	
2019-06	RAN#84	R5-194945	0376	1	F	Correction of editorial note in 6.5B.2.1.2	15.3.0
2019-06	RAN#84	R5-194946	0377	1	F	Update to 6.2.3 A-MPR FR1 and FR2	15.3.0
2019-06	RAN#84	R5-194947	0389	1	F	Updates to E-UTRA, FR1,FR2 IW tests in line with agreed way forward	15.3.0
2019-06	RAN#84	R5-194948	0369	1	F	Addition of msg content in TC 6.3B.4.1	15.3.0
2019-06	RAN#84	R5-194949	0370	1	F	Addition of msg content in TC 6.3B.4.2	15.3.0
2019-06	RAN#84	R5-194950	0371	1	F	Addition of msg content in TC 6.3B.4.3	15.3.0
2019-06	RAN#84	R5-194951	0310	1	F	Update of TC 7.5B.0 ACS for EN-DC	15.3.0
2019-06	RAN#84	R5-194952	0321	1	F	Introduction of NSA FR2 7.6B.2.5	15.3.0
2019-06	RAN#84	R5-194953	0323	1	F	Update of NSA FR1 7.6B.2.1	15.3.0
2019-06	RAN#84	R5-194954	0363	1	F	Updated to EN-DC band and TIB information	15.3.0
2019-06	RAN#84	R5-194955	0385	1	F	TS 38.521-3 Section 5 updates to align with core specification	15.3.0
2019-06	RAN#84	R5-194975	0315	1	F	Introduction of TC 7.5B.4.2 ACS for inter-band FR2 3CC	15.3.0
2019-06	RAN#84	R5-195046	0356	1	F	Update to Wideband Intermodulation for EN-DC in FR1- 2CCs	15.3.0
2019-06	RAN#84	R5-195047	0379	1	F	Update to 6.2.3 A-MPR FR1 and FR2 NSA	15.3.0
2019-06	RAN#84	R5-195049	0357	1	F	Correction to 6.5B.3.3.2 Spurious emission band UE co-existence for Inter-band within FR1	15.3.0
2019-06	RAN#84	R5-195050	0358	1	F	Introducing Wideband Intermodulation for EN-DC including FR1 - 3 CCs	15.3.0
2019-06	RAN#84	R5-195051	0391	-	F	Update of 6.5B.3.3.2 spurious co-existence inter-band EN-DC FR1	15.3.0
2019-06	RAN#84	R5-195091	0392	1	F	Update of EN-DC ON_ON time mask test cases	15.3.0
2019-06	RAN#84	R5-195162	0349	1	F	Introduction of New test case 6.4B.2.2.4 EVM Equalizer Flatness for intra-band non-contiguous EN-DC	15.3.0
2019-06	RAN#84	R5-195163	0364	1	F	Clean up FR2 Inter-band EN-DC test cases	15.3.0
2019-06	RAN#84	R5-195164	0390	1	F	Update to UE Maximum Output Power for Inter-Band EN-DC within FR1	15.3.0
2019-06	RAN#84	R5-195165	0325	1	F	Update of NSA FR1 7.6B.3.0	15.3.0
2019-06	RAN#84	R5-195411	0386	1	F	TS 38.521-3 updates across section 6 test cases	15.3.0
2019-06	RAN#84	R5-195412	0387	1	F	TS 38.521-3 updates across section 7 test cases	15.3.0
2019-06	RAN#84	R5-195419	0393	1	F	EN-DC implementation of FR2 UL demod OTA tests using single pol Rx TE	15.3.0
2019-06	RAN#84	R5-195436	0336	1	F	Update of NSA FR1 RF 6.2B.1.3 MOP	15.3.0
2019-06	RAN#84	R5-195437	0299	1	F	Updates of MU and TT in TS 38.521-3	15.3.0
2019-06	RAN#84	R5-195446	0394	1	F	Introduction of Tx test cases for FR2 NSA UL CA	15.3.0

History

	Document history								
V15.0.0	October 2018	Publication							
V15.1.0	April 2019	Publication							
V15.2.0	May 2019	Publication							
V15.3.0	July 2019	Publication							