ETSI TS 138 104 V15.5.0 (2019-05)

5G; NR; Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 15.5.0 Release 15)

Reference

RTS/TSGR-0438104vf50

Keywords

5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019. All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**[™] and LTE[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**[™] logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

 $\ensuremath{\text{GSM}}^{\ensuremath{\text{B}}}$ and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	Intellectual Property Rights2		
Forew	Foreword2		
Moda	Modal verbs terminology2		
Forew	Foreword11		
1	Scope	12	
2	References	12	
3	Definitions, symbols and abbreviations		
3.1	Definitions		
3.2	Symbols		
3.3	Abbreviations	19	
4	General	21	
4.1	Relationship with other core specifications	21	
4.2	Relationship between minimum requirements and test requirements	21	
4.3	Conducted and radiated requirement reference points	21	
4.3.1	BS type 1-C	21	
4.3.2	BS type 1-H	22	
4.3.3	BS type 1-O and BS type 2-O	23	
4.4	Base station classes	23	
4.5	Regional requirements	24	
4.6	Applicability of requirements	24	
4.7	Requirements for contiguous and non-contiguous spectrum	25	
4.8	Requirements for BS capable of multi-band operation	25	
4.9	OTA co-location with other base stations	27	
5	On anothing has do and abarmal among a mont	20	
5	Operating bands and channel arrangement		
5.1	General		
5.2	Operating bands		
5.3	BS channel bandwidth		
5.3.1	General		
5.3.2	Transmission bandwidth configuration		
5.3.3	Minimum guardband and transmission bandwidth configuration		
5.3.4	RB alignment		
5.3.5	BS channel bandwidth per operating band		
5.3A	BS channel bandwidth for CA.		
5.3A.1			
5.3A.2	8		
5.4 5.4.1	Channel arrangement		
5.4.1	Channel spacing Channel spacing for adjacent NR carriers		
- · · ·			
5.4.1.2 5.4.2	· · · · · · · · · · · · · · · · · · ·		
5.4.2 5.4.2.1	Channel raster NR-ARFCN and channel raster		
5.4.2.2			
5.4.2.3			
5.4.2.3 5.4.3	Synchronization raster		
5.4.5 5.4.3.1			
5.4.3.2			
5.4.3.2			
6	Conducted transmitter characteristics		
6.1	General		
6.2	Base station output power		
6.2.1	General		
6.2.2	Minimum requirement for BS type 1-C	44	

6.2.3	Minimum requirement for BS type 1-H	44
6.2.4	Additional requirements (regional)	44
6.3	Output power dynamics	44
6.3.1	General	44
6.3.2	RE power control dynamic range	44
6.3.2.1	General	
6.3.2.2	Minimum requirement for BS type 1-C and BS type 1-H	44
6.3.3	Total power dynamic range	
6.3.3.1	General	45
6.3.3.2	Minimum requirement for BS type 1-C and BS type 1-H	
6.4	Transmit ON/OFF power	
6.4.1	Transmitter OFF power	
6.4.1.1	General	
6.4.1.2	Minimum requirement for BS type 1-C	
6.4.1.3	Minimum requirement for BS type 1-H	
6.4.2	Transmitter transient period	
6.4.2.1	General	
6.4.2.2	Minimum requirement for BS type 1-C and BS type 1-H	
6.4.2.3	Void	
6.5	Transmitted signal quality	
6.5.1	Frequency error	
6.5.1.1	General	
6.5.1.2	Minimum requirement for BS type 1-C and BS type 1-H	
6.5.2	Modulation quality	
6.5.2.1	General	
6.5.2.2	Minimum Requirement for BS type 1-C and BS type 1-H	
6.5.2.3	EVM frame structure for measurement	
6.5.3	Time alignment error	
6.5.3.1	General	
6.5.3.2	Minimum requirement for <i>BS type 1-C</i> and 1-H	
6.6	Unwanted emissions	
6.6.1	General	
6.6.2 6.6.2.1	Occupied bandwidth	
6.6.2.1	General	
6.6.3	Adjacent Channel Leakage Power Ratio	
6.6.3.1	General	
6.6.3.2	Limits and Basic limits	
6.6.3.3	Minimum requirement for BS type 1-C	
6.6.3.4	Minimum requirement for BS type 1-C	
6.6.4	Operating band unwanted emissions	
6.6.4.1	General	
6.6.4.2	Basic limits	
6.6.4.2.1	Basic limits for Wide Area BS (Category A)	
6.6.4.2.2	Basic limits for Wide Area BS (Category B)	
6.6.4.2.2.1		
6.6.4.2.2.2		
6.6.4.2.3	Basic limits for Medium Range BS (Category A and B)	
6.6.4.2.4	Basic limits for Local Area BS (Category A and B)	
6.6.4.2.5	Basic limits for additional requirements	
6.6.4.2.5.1	Limits in FCC Title 47	59
6.6.4.2.5.2	Protection of DTT	59
6.6.4.3	Minimum requirements for BS type 1-C	
6.6.4.4	Minimum requirements for BS type 1-H	
6.6.5	Transmitter spurious emissions	60
6.6.5.1	General	60
6.6.5.2	Basic limits	
6.6.5.2.1	General transmitter spurious emissions requirements	
6.6.5.2.2	Protection of the BS receiver of own or different BS	
6.6.5.2.3	Additional spurious emissions requirements	
6.6.5.2.4	Co-location with other base stations	
6.6.5.3	Minimum requirements for BS type 1-C	74

6.6.5.4	Minimum requirements for BS type 1-H	74
6.7	Transmitter intermodulation	
6.7.1	General	74
6.7.2	Minimum requirements for BS type 1-C	75
6.7.2.1	Co-location minimum requirements	75
6.7.2.2	Additional requirements.	75
6.7.3	Minimum requirements for BS type 1-H	75
6.7.3.1	Co-location minimum requirements	75
6.7.3.2	Intra-system minimum requirements	76
6.7.3.3	Additional requirements	
7	Conducted accelerate above staristics	77
	Conducted receiver characteristics	
7.1	General	
7.2	Reference sensitivity level	
7.2.1	General	
7.2.2	Minimum requirements for BS type 1-C and BS type 1-H	
7.3	Dynamic range	
7.3.1	General	
7.3.2	Minimum requirement for BS type 1-C and BS type 1-H	
7.4	In-band selectivity and blocking	
7.4.1	Adjacent Channel Selectivity (ACS)	
7.4.1.1		
7.4.1.2	in the function of the state of	
7.4.1.3		
7.4.1.4		
7.4.2	In-band blocking	
7.4.2.1		
7.4.2.2	$\gamma_{I} = \gamma_{I} = \gamma_{I$	
7.4.2.3		
7.4.2.4		
7.5	Out-of-band blocking	
7.5.1	General	
7.5.2	Minimum requirement for BS type 1-C and BS type 1-H	
7.5.3	Co-location minimum requirements for BS type 1-C and BS type 1-H	
7.5.4	Void	
7.6	Receiver spurious emissions	
7.6.1	General	
7.6.2	Basic limits	
7.6.3	Minimum requirement for BS type 1-C	
7.6.4	Minimum requirement for BS type 1-H	
7.7	Receiver intermodulation	
7.7.1	General	
7.7.2	Minimum requirement for <i>BS type 1-C</i> and <i>BS type 1-H</i>	
7.8	In-channel selectivity	
7.8.1	General.	
7.8.2	Minimum requirement for BS type 1-C and BS type 1-H	
8	Conducted performance requirements	
8.1	General	
8.1.1	Scope and definitions	
8.1.2	Applicability rule	
8.2	Performance requirements for PUSCH	
8.2.1	Requirements for PUSCH with transform precoding disabled	
8.2.1.1		
8.2.1.2		
8.2.2	Requirements for PUSCH with transform precoding enabled	
8.2.2.1		
8.2.2.2		
8.3	Performance requirements for PUCCH	
8.3.1	DTX to ACK probability	
8.3.1.1	1 V	
8.3.1.2	Minimum requirement	

8.3.2	Performance requirements for PUCCH format 0	
8.3.2.1	General	
8.3.2.2	Minimum requirements	
8.3.3	Performance requirements for PUCCH format 1	
8.3.3.1	NACK to ACK requirements	
8.3.3.1.1	General	
8.3.3.1.2		
8.3.3.2	ACK missed detection requirements	
8.3.3.2.1		
8.3.3.2.2		
8.3.4	Performance requirements for PUCCH format 2	
8.3.4.1	ACK missed detection requirements	
8.3.4.1.1	General	
8.3.4.1.2		
	1	
8.3.4.2	UCI BLER performance requirements	
8.3.4.2.1	General	
8.3.4.2.2		
8.3.5	Performance requirements for PUCCH format 3	
8.3.5.1	General	
8.3.5.2	Minimum requirements	
8.3.6	Performance requirements for PUCCH format 4	
8.3.6.1	General	
8.3.6.2	Minimum requirement	
8.4	Performance requirements for PRACH	
8.4.1	PRACH False alarm probability	
8.4.1.1	General	114
8.4.1.2	Minimum requirement	114
8.4.2	PRACH detection requirements	114
8.4.2.1	General	114
8.4.2.2	Minimum requirements	115
0 D		
	adiated transmitter characteristics	
9.1	General	
9.2	Radiated transmit power	
9.2.1	General	
9.2.2	Minimum requirement for BS type 1-H and BS type 1-O	116
9.2.3	Minimum requirement for BS type 2-O	
9.3		
	OTA base station output power	
9.3.1	General	117 117
9.3.1 9.3.2		117 117
	General	117 117 117
9.3.2	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i>	
9.3.2 9.3.3	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional)	
9.3.2 9.3.3 9.3.4	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics	
9.3.2 9.3.3 9.3.4 9.4 9.4.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General	
9.3.2 9.3.3 9.3.4 9.4	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range	
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General	
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i>	
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range	
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General	117 117 117 118 118 118 118 118 118 118
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i>	117 117 117 118 118 118 118 118 118 118
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i>	117 117 117 118 118 118 118 118 118 118
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power	117 117 117 118 118 118 118 118 118 118
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General	$\begin{array}{c} 117\\ 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General OTA transmitter OFF power	$\begin{array}{c} 117\\ 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General OTA transmitter OFF power General	$\begin{array}{c} 117\\ 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2	General. Minimum requirement for <i>BS type 1-O</i> . Minimum requirements (regional). OTA output power dynamics . General. OTA RE power control dynamic range . General. Minimum requirement for <i>BS type 1-O</i> . OTA total power dynamic range. General. Minimum requirement for <i>BS type 1-O</i> . Minimum requirement for <i>BS type 1-O</i> . Minimum requirement for <i>BS type 2-O</i> . OTA transmit ON/OFF power. General. OTA transmitter OFF power. General. Minimum requirement for <i>BS type 1-O</i> .	$\begin{array}{c} 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> . Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i>	$\begin{array}{c} 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.5.3	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> . Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General OTA transmitter OFF power General OTA transmitter OFF power General OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 2-O</i>	$\begin{array}{c} 117\\ 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.5.3.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> . Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 2-O</i> OTA transmitter of <i>BS type 2-O</i> OTA transitent period General	$\begin{array}{c} 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.5.3.1 9.5.3.2	General Minimum requirement for BS type 1-O Minimum requirement for BS type 2-O Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General OTA total power dynamic range General Minimum requirement for BS type 1-O OTA total power dynamic range General Minimum requirement for BS type 1-O Minimum requirement for BS type 1-O Minimum requirement for BS type 2-O OTA transmit ON/OFF power General General OTA transmitter OFF power General Minimum requirement for BS type 1-O Minimum requirement for BS type 1-O OTA transmitter OFF power General OTA transmitter OFF power General Minimum requirement for BS type 1-O Minimum requirement for BS type 1-O Minimum requirement for BS type 1-O Minimum requirement for BS type 1-O Minimum requirement for BS type 1-O	$\begin{array}{c} 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\ 118\\$
9.3.2 9.3.3 9.3.4 9.4 9.4.1 9.4.2 9.4.2 9.4.2.1 9.4.2.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.5.3.1	General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> . Additional requirements (regional) OTA output power dynamics General OTA RE power control dynamic range General Minimum requirement for <i>BS type 1-O</i> OTA total power dynamic range General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmit ON/OFF power General OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 1-O</i> Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 2-O</i> OTA transmitter OFF power General Minimum requirement for <i>BS type 2-O</i> OTA transmitter of <i>BS type 2-O</i> OTA transitent period General	$\begin{array}{c} 117\\ 117\\ 117\\ 117\\ 118\\ 118\\ 118\\ 118\\$

9.6.1	OTA frequency error	
9.6.1.1	General	
9.6.1.2	Minimum requirement for BS type 1-O	
9.6.1.3	Minimum requirement for BS type 2-0	
9.6.2	OTA modulation quality	
9.6.2.1	General	
9.6.2.2	Minimum Requirement for BS type 1-0	
9.6.2.3	Minimum Requirement for BS type 2-O	
9.6.2.3.1	EVM frame structure for measurement	
9.6.3	OTA time alignment error	
9.6.3.1	General	
9.6.3.2	Minimum requirement for BS type 1-O	
9.6.3.2	Minimum requirement for BS type 2-0	
9.0.3.3	OTA unwanted emissions	
9.7.1	General	
9.7.1	OTA occupied bandwidth	
9.7.2		
	General	
9.7.2.2	Minimum requirement for BS type 1-O and BS type 2-O	
9.7.3 9.7.3.1	OTA Adjacent Channel Leakage Power Ratio (ACLR)	
	General	
9.7.3.2	Minimum requirement for BS type 1-0	
9.7.3.3	Minimum requirement for BS type 2-0	
9.7.4	OTA operating band unwanted emissions	
9.7.4.1	General	
9.7.4.2	Minimum requirement for BS type 1-O	
9.7.4.2.1	Additional requirements	
9.7.4.2.1.		
9.7.4.3	Minimum requirement for BS type 2-O	
9.7.4.3.1	General	
9.7.4.3.2	OTA operating band unwanted emission limits	
9.7.5	OTA transmitter spurious emissions	
9.7.5.1	General	
9.7.5.2	Minimum requirement for BS type 1-O	
9.7.5.2.1	General	
9.7.5.2.2	General OTA transmitter spurious emissions requirements	
9.7.5.2.3	Protection of the BS receiver of own or different BS	
9.7.5.2.4	Additional spurious emissions requirements	
9.7.5.2.5	Co-location with other base stations	
9.7.5.3	Minimum requirement for BS type 2-O	
9.7.5.3.1	General	
9.7.5.3.2	General OTA transmitter spurious emissions requirements	
9.7.5.3.3	Additional OTA transmitter spurious emissions requirements	
9.8	OTA transmitter intermodulation	
9.8.1	General	
9.8.2	Minimum requirement for BS type 1-O	
10 Ra	adiated receiver characteristics	
10.1	General	
10.2	OTA sensitivity	
10.2.1	BS type 1-H and BS type 1-O	
10.2.1.1	General	
10.2.1.2	Minimum requirement	
10.2.2	BS type 2-0	
10.3	OTA reference sensitivity level	
10.3.1	General	
10.3.2	Minimum requirement for BS type 1-O	
10.3.3	Minimum requirement for BS type 2-0	
10.4	OTA Dynamic range	
10.4.1	General	
10.4.2	Minimum requirement for BS type 1-0	
10.4.2	OTA in-band selectivity and blocking.	
10.5.1	OTA adjacent channel selectivity	

10.5.1.1	General	144
10.5.1.2	Minimum requirement for BS type 1-O	144
10.5.1.3	Minimum requirement for BS type 2-O	145
10.5.2	OTA in-band blocking	146
10.5.2.1	General	146
10.5.2.2	Minimum requirement for BS type 1-O	146
10.5.2.3	Minimum requirement for BS type 2-O	149
10.6	OTA out-of-band blocking	150
10.6.1	General	
10.6.2	Minimum requirement for BS type 1-O	
10.6.2.1	General minimum requirement	
10.6.2.2	Co-location minimum requirement	
10.6.3	Minimum requirement for BS type 2-0	
10.6.3.1	General minimum requirement	
10.7	OTA receiver spurious emissions	
10.7.1	General	
10.7.2	Minimum requirement for BS type 1-0	
10.7.3	Minimum requirement for BS type 2-0	
10.8	OTA receiver intermodulation	
10.8.1	General	
10.8.2	Minimum requirement for BS type 1-0	
10.8.3	Minimum requirement for BS type 2-0	
10.9	OTA in-channel selectivity	
10.9.1	General	
10.9.2	Minimum requirement for BS type 1-0	
10.9.3	Minimum requirement for BS type 2-0	161
11 Ra	diated performance requirements	
11.1	General	
11.1.1	Scope and definitions	
11.1.2	OTA demodulation branches	
11.1.3	Applicability rule	
11.2	Performance requirements for PUSCH	
11.2.1	Requirements for BS type 1-O	
11.2.1.1	Requirements for PUSCH with transform precoding disabled	
11.2.1.2	Requirements for PUSCH with transform precoding enabled	
11.2.2	Requirements for BS type 2-O	
11.2.2.1	Requirements for PUSCH with transform precoding disabled	
11.2.2.1.1		
11.2.2.1.2	Minimum requirements	164
11.2.2.2	Requirements for PUSCH with transform precoding enabled	166
11.2.2.2.1	General	166
11.2.2.2.2	Minimum requirements	166
11.3	Performance requirements for PUCCH	
11.3.1	Requirements for BS type 1-O	
11.3.1.1	DTX to ACK probability	167
11.3.1.2	Performance requirements for PUCCH format 0	
11.3.1.3	Performance requirements for PUCCH format 1	
11.3.1.4	Performance requirements for PUCCH format 2	
	Performance requirements for PUCCH format 3	
	Performance requirements for PUCCH format 4	
11.3.2	Requirements for BS type 2-0	
11.3.2.1	DTX to ACK probability	
11.3.2.2	Performance requirements for PUCCH format 0	
11.3.2.2.1		
11.3.2.2.2	1	
11.3.2.3	Performance requirements for PUCCH format 1	
11.3.2.3.1	1	
11.3.2.3.1		
11.3.2.3.1	1	
11.3.2.3.2	1	
11.3.2.3.2	.1 General	169

11.3.2	.3.2.2 Minimum requirements	169
11.3.2		
11.3.2		
11.3.2 11.3.2		
11.3.2		
11.3.2		
11.3.2	1	
11.3.2		
11.3.2 11.3.2		
11.3.2	-	
11.3.2	*	
11.3.2	1	
11.4	Performance requirements for PRACH	
11.4.1 11.4.1	.1 Requirements for <i>BS type 1-O</i> PRACH False alarm probability	
11.4.1		
11.4.2	Requirements for BS type 2-O	173
11.4.2	· · · · · · · · · · · · · · · · · · ·	
11.4.2 11.4.2		
11.4.2		173
11.4.2		
11.4.2	.2.2 Minimum requirements	174
Anne	x A (normative): Reference measurement channels	175
A.1	Fixed Reference Channels for receiver sensitivity and in-channel selectivity (QPSK, R=1/3)	
	•	
A.2	Fixed Reference Channels for dynamic range (16QAM, R=2/3)	
A.3	Fixed Reference Channels for performance requirements (QPSK, R=193/1024)	
A.4	Fixed Reference Channels for performance requirements (16QAM, R=658/1024)	181
A.5	Fixed Reference Channels for performance requirements (64QAM, R=567/1024)	
A.6	PRACH Test preambles	186
Anne	x B (normative): Error Vector Magnitude (FR1)	187
B.1	Reference point for measurement	187
B.2	Basic unit of measurement	187
B.3	Modified signal under test	188
B.4	Estimation of frequency offset	188
B.5	Estimation of time offset	188
B.5.1	General	
B.5.2	Window length	189
B.6	Estimation of TX chain amplitude and frequency response parameters	
B.7	Averaged EVM	192
Anne	x C (normative): Error Vector Magnitude (FR2)	193
C.1	Reference point for measurement	193
C.2	Basic unit of measurement	193
C.3	Modified signal under test	194
C.4	Estimation of frequency offset	194
C.5	Estimation of time offset	194

C.5.1 C.5.2			
C.6	-	in amplitude and frequency response parameters	
C.7	Averaged EVM		197
Anne	x D (normative):	Characteristics of the interfering signals	199
Anne	x E:	Void	200
Anne	x F (normative):	Relationship between EIRP based regulatory requirements and 3GPP requirements	201
F.1	General		201
F.2	Relationship between	EIRP based regulatory requirements and conducted requirements	201
F.3	Relationship between	EIRP based regulatory requirements and OTA requirements	202
Anne	x G (Normative):	Propagation conditions	
G.1	Static propagation cor	ndition	203
$\begin{array}{c} G.2 \\ G.2.1 \\ G.2.1. \\ G.2.2 \\ G.2.3 \\ G.2.3. \\ G.$	Delay profiles 1 Delay profiles fo 2 Delay profiles fo 2 Combinations of cha MIMO Channel Correlation 1 MIMO Correlation 1.1 Definition of 1.2 MIMO Correlation 2 Multi-Antenna cl 2.1 Definition of 2.2 Spatial Correlation 2.2.1 Spatial Correlation 2.2.2 Spatial Correlation 2.3.3 Spatial Correlation 3.3 Spatial Corr	pagation conditions r FR1 r FR2 nnel model parameters relation Matrices on Matrices using Uniform Linear Array (ULA) MIMO Correlation Matrices lation Matrices at High, Medium and Low Level hannel models using cross polarized antennas MIMO Correlation Matrices using cross polarized antennas MIMO Correlation Matrices using cross polarized antennas hation Matrices at UE and gNB sides porrelation Matrices at gNB side lation Matrices using cross polarized antennas	203 204 205 206 206 206 206 208 210 211 211 211 212
	x H (informative):	Change history	
		Change history	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements of NR Base Station (BS).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329: "Unwanted emissions in the spurious domain".
- [3] Recommendation ITU-R SM.328: "Spectra and bandwidth of emissions".
- [4] 3GPP TR 25.942: "RF system scenarios".
- [5] 3GPP TS 38.141-1: "NR; Base Station (BS) conformance testing; Part 1: Conducted conformance testing".
- [6] 3GPP TS 38.141-2: "NR; Base Station (BS) conformance testing; Part 2: Radiated conformance testing".
- [7] Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [8] "Title 47 of the Code of Federal Regulations (CFR)", Federal Communications Commission.
- [9] 3GPP TS 38.211: "NR; Physical channels and modulation".
- [10] 3GPP TS 38.213: "NR; Physical layer procedures for control".
- [11] 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
- [12] ECC/DEC/(17)06: "The harmonised use of the frequency bands 1427-1452 MHz and 1492-1518 MHz for Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)"
- [13] 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception".
- [14] 3GPP TS 37.105: "Active Antenna System (AAS) Base Station (BS) transmission and reception".
- [15] 3GPP TS 38.212: "NR; Multiplexing and channel coding".
- [16] 3GPP TR 38.901: "Study on channel model for frequencies from 0.5 to 100 GHz"

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated BS Channel Bandwidth: The RF bandwidth in which a Base Station transmits and receives multiple contiguously aggregated carriers. The *aggregated BS channel bandwidth* is measured in MHz.

antenna connector: connector at the conducted interface of the BS type 1-C

active transmitter unit: transmitter unit which is ON, and has the ability to send modulated data streams that are parallel and distinct to those sent from other transmitter units to a *BS type 1-C antenna connector*, or to one or more *BS type 1-H TAB connectors* at the *transceiver array boundary*

Base Station RF Bandwidth: RF bandwidth in which a base station transmits and/or receives single or multiple carrier(s) within a supported *operating band*

NOTE: In single carrier operation, the Base Station RF Bandwidth is equal to the BS channel bandwidth.

Base Station RF Bandwidth edge: frequency of one of the edges of the Base Station RF Bandwidth.

basic limit: emissions limit relating to the power supplied by a single transmitter to a single antenna transmission line in ITU-R SM.329 [2] used for the formulation of unwanted emission requirements for FR1

beam: beam (of the antenna) is the main lobe of the radiation pattern of an antenna array

NOTE: For certain BS *antenna array*, there may be more than one beam.

beam centre direction: direction equal to the geometric centre of the half-power contour of the beam

beam direction pair: data set consisting of the beam centre direction and the related beam peak direction

beam peak direction: direction where the maximum EIRP is found

beamwidth: beam which has a half-power contour that is essentially elliptical, the half-power beamwidths in the two pattern cuts that respectively contain the major and minor axis of the ellipse

BS channel bandwidth: RF bandwidth supporting a single NR RF carrier with the transmission bandwidth configured in the uplink or downlink

- NOTE 1: The *BS channel bandwidth* is measured in MHz and is used as a reference for transmitter and receiver RF requirements.
- NOTE 2: It is possible for the BS to transmit to and/or receive from one or more UE bandwidth parts that are smaller than or equal to the BS transmission bandwidth configuration, in any part of the BS transmission bandwidth configuration.

BS transmission bandwidth configuration: set of resource blocks located within the *BS channel bandwidth* which may be used for transmitting or receiving by the BS

BS type 1-C: NR base station operating at FR1 with requirements set consisting only of conducted requirements defined at individual *antenna connectors*

BS type 1-H: NR base station operating at FR1 with a requirement set consisting of conducted requirements defined at individual *TAB connectors* and OTA requirements defined at RIB

BS type 1-O: NR base station operating at FR1 with a requirement set consisting only of OTA requirements defined at the RIB

BS type 2-O: NR base station operating at FR2 with a requirement set consisting only of OTA requirements defined at the RIB

Channel edge: lowest or highest frequency of the NR carrier, separated by the BS channel bandwidth.

Carrier aggregation: aggregation of two or more component carriers in order to support wider transmission bandwidths

Carrier aggregation configuration: a set of one or more *operating bands* across which the BS aggregates carriers with a specific set of technical requirements

co-location reference antenna: a passive antenna used as reference for base station to base station co-location requirements

Contiguous carriers: set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous spectrum: spectrum consisting of a contiguous block of spectrum with no sub-block gap(s).

directional requirement: requirement which is applied in a specific direction within the OTA coverage range for the Tx and when the AoA of the incident wave of a received signal is within the *OTA REFSENS RoAoA* or the minSENS RoAoA as appropriate for the receiver

equivalent isotropic radiated power: equivalent power radiated from an isotropic directivity device producing the same field intensity at a point of observation as the field intensity radiated in the direction of the same point of observation by the discussed device

NOTE: Isotropic directivity is equal in all directions (i.e. 0 dBi).

equivalent isotropic sensitivity: sensitivity for an isotropic directivity device equivalent to the sensitivity of the discussed device exposed to an incoming wave from a defined AoA

NOTE 1: The sensitivity is the minimum received power level at which specific requirement is met.

NOTE 2: Isotropic directivity is equal in all directions (i.e. 0 dBi).

fractional bandwidth: fractional bandwidth FBW is defined as $FBW = 200 \cdot \frac{F_{FBWhigh} - F_{FBWhigh}}{F_{FBWhigh} + F_{FBWhow}} \%$

Highest Carrier: The carrier with the highest carrier frequency transmitted/received in a specified frequency band.

Inter-band carrier aggregation: carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Inter-band gap: The frequency gap between two supported consecutive operating bands.

Intra-band contiguous carrier aggregation: contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: non-contiguous carriers aggregated in the same operating band.

Inter RF Bandwidth gap: frequency gap between two consecutive Base Station RF Bandwidths that are placed within two supported *operating bands*

Lowest Carrier: The carrier with the lowest carrier frequency transmitted/received in a specified frequency band.

Lower sub-block edge: frequency at the lower edge of one *sub-block*.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

maximum carrier output power: mean power level measured per carrier at the indicated interface, during the *transmitter ON period* in a specified reference condition

maximum carrier TRP output power: mean power level measured per RIB during the *transmitter ON period* for a specific carrier in a specified reference condition and corresponding to the declared *rated carrier TRP output* power ($P_{rated,c,TRP}$)

maximum total output power: mean power level measured within the *operating band* at the indicated interface, during the *transmitter ON period* in a specified reference condition

maximum total TRP output power: mean power level measured per RIB during the *transmitter ON period* in a specified reference condition and corresponding to the declared *rated total TRP output* power (P_{rated,t,TRP})

measurement bandwidth: RF bandwidth in which an emission level is specified

minimum EIRP level under extreme condition: For a declared beam and *beam direction pair*, the *minimum EIRP level under extreme condition* is the minimum power that the base station is declared to radiate at the associated *beam peak direction* during the *transmitter ON period* under extreme condition.

minSENS: the lowest declared EIS value for the OSDD's declared for OTA sensitivity requirement.

minSENS RoAoA: The reference RoAoA associated with the OSDD with the lowest declared EIS

multi-band connector: Antenna Connector of *BS type 1-C* or *TAB connector* of *BS type 1-H* associated with a transmitter or receiver that is characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different *operating band* than the other carrier(s) and where this different *operating band* is not a sub-band or superseding-band of another supported *operating band* band

multi-band RIB: *operating band* specific RIB associated with a transmitter or receiver that is characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different *operating band* than the other carrier(s) and where this different *operating band* is not a sub-band or superseding-band of another supported *operating band*

Multi-carrier transmission configuration: set of one or more contiguous or non-contiguous carriers that a NR BS is able to transmit simultaneously according to the manufacturer's specification.

Non-contiguous spectrum: spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

operating band: frequency range in which NR operates (paired or unpaired), that is defined with a specific set of technical requirements

NOTE: The *operating band*(s) for a BS is declared by the manufacturer according to the designations in tables 5.2-1 and 5.2-2.

OTA coverage range: a common range of directions within which TX OTA requirements that are neither specified in the *OTA peak directions sets* nor as *TRP requirement* are intended to be met

OTA peak directions set: set(s) of *beam peak directions* within which certain TX OTA requirements are intended to be met, where all *OTA peak directions set(s)* are subsets of the *OTA coverage range*

NOTE: The *beam peak directions* are related to a corresponding contiguous range or discrete list of *beam centre directions* by the *beam direction pairs* included in the set.

OTA REFSENS RoAoA: the RoAoA determined by the contour defined by the points at which the achieved EIS is 3dB higher than the achieved EIS in the reference direction assuming that for any AoA, the receiver gain is optimized for that AoA

NOTE: This contour will be related to the average element/sub-array radiation pattern 3dB beam width.

OTA sensitivity directions declaration: set of manufacturer declarations comprising at least one set of declared minimum EIS values (with *BS channel bandwidth*), and related directions over which the EIS applies

NOTE: All the directions apply to all the EIS values in an OSDD.

polarization match: condition that exists when a plane wave, incident upon an antenna from a given direction, has a polarization that is the same as the receiving polarization of the antenna in that direction

radiated interface boundary: *operating band* specific radiated requirements reference where the radiated requirements apply

NOTE: For requirements based on EIRP/EIS, the radiated interface boundary is associated to the far-field region

Radio Bandwidth: frequency difference between the upper edge of the highest used carrier and the lower edge of the lowest used carrier

rated beam EIRP: For a declared beam and *beam direction pair*, the *rated beam EIRP* level is the maximum power that the base station is declared to radiate at the associated *beam peak direction* during the *transmitter ON period*

rated carrier output power: mean power level associated with a particular carrier the manufacturer has declared to be available at the indicated interface, during the *transmitter ON period* in a specified reference condition

rated carrier TRP output power: mean power level declared by the manufacturer per carrier, for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the RIB during the *transmitter ON period*

rated total output power: mean power level associated with a particular *operating band* the manufacturer has declared to be available at the indicated interface, during the *transmitter ON period* in a specified reference condition

rated total TRP output power: mean power level declared by the manufacturer, that the manufacturer has declared to be available at the RIB during the *transmitter ON period*

reference beam direction pair: declared *beam direction pair*, including reference *beam centre direction* and reference *beam peak direction* where the reference *beam peak direction* is the direction for the intended maximum EIRP within the *OTA peak directions set*

receiver target: AoA in which reception is performed by BS types 1-H or BS type 1-O

receiver target redirection range: union of all the *sensitivity RoAoA* achievable through redirecting the *receiver target* related to particular OSDD

receiver target reference direction: direction inside the *OTA sensitivity directions declaration* declared by the manufacturer for conformance testing. For an OSDD without *receiver target redirection range*, this is a direction inside the *sensitivity RoAoA*

reference RoAoA: the sensitivity RoAoA associated with the receiver target reference direction for each OSDD.

requirement set: one of the NR base station requirement's set as defined for *BS type 1-C*, *BS type 1-H*, *BS type 1-O*, and *BS type 2-O*

sensitivity RoAoA: RoAoA within the *OTA sensitivity directions declaration*, within which the declared EIS(s) of an OSDD is intended to be achieved at any instance of time for a specific BS direction setting

single-band connector: *BS type 1-C* Antenna Connector or *BS type 1-H TAB connector* supporting operation either in a single *operating band* only, or in multiple *operating bands* but does not meet the conditions for a *multi-band connector*.

single-band RIB: *operating band* specific RIB supporting operation either in a single *operating band* only, or in multiple *operating bands* but does not meet the conditions for a *multi-band RIB*.

sub-band: A sub-band of an operating band contains a part of the uplink and downlink frequency range of the operating band.

sub-block bandwidth: bandwidth of one sub-block.

sub-block: one contiguous allocated block of spectrum for transmission and reception by the same base station

NOTE: There may be multiple instances of sub-blocks within a Base Station RF Bandwidth.

sub-block gap: frequency gap between two consecutive sub-blocks within a *Base Station RF Bandwidth*, where the RF requirements in the gap are based on co-existence for un-coordinated operation

superseding-band: A superseding-band of an operating band includes the whole of the uplink and downlink frequency range of the operating band.

TAB connector: transceiver array boundary connector

TAB connector RX min cell group: *operating band* specific declared group of *TAB connectors* to which *BS type 1-H* conducted RX requirements are applied

NOTE: Within this definition, the group corresponds to the group of *TAB connectors* which are responsible for receiving a cell when the *BS type 1-H* setting corresponding to the declared minimum number of cells with reception on all *TAB connectors* supporting an *operating band*, but its existence is not limited to that condition

TAB connector TX min cell group: *operating band* specific declared group of *TAB connectors* to which *BS type 1-H* conducted TX requirements are applied.

NOTE: Within this definition, the group corresponds to the group of *TAB connectors* which are responsible for transmitting a cell when the *BS type 1-H* setting corresponding to the declared minimum number of cells with transmission on all *TAB connectors* supporting an *operating band*, but its existence is not limited to that condition

total radiated power: is the total power radiated by the antenna

NOTE: The total radiated power is the power radiating in all direction for two orthogonal polarizations. Total radiated power is defined in both the near-field region and the far-field region

transceiver array boundary: conducted interface between the transceiver unit array and the composite antenna

transmission bandwidth: RF Bandwidth of an instantaneous transmission from a UE or BS, measured in resource block units

transmitter OFF period: time period during which the BS transmitter is not allowed to transmit

transmitter ON period: time period during which the BS transmitter is transmitting data and/or reference symbols

transmitter transient period: time period during which the transmitter is changing from the OFF period to the ON period or vice versa

UE transmission bandwidth configuration: set of resource blocks located within the *UE channel bandwidth* which may be used for transmitting or receiving by the UE

upper sub-block edge: frequency at the upper edge of one sub-block.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

β	Percentage of the mean transmitted power emitted outside the occupied bandwidth on the assigned channel
$BeW_{\theta, REFSENS}$	Beamwidth equivalent to the OTA REFSENS RoAoA in the θ -axis in degrees. Applicable for FR1 only.
$BeW_{\phi,REFSENS}$	Beamwidth equivalent to the OTA REFSENS RoAoA in the φ -axis in degrees. Applicable for FR1 only.
BW _{Channel}	BS channel bandwidth
BW _{Channel_CA}	Aggregated BS Channel Bandwidth, expressed in MHz. BW _{Channel_CA} = F _{edge,high} - F _{edge,low} .
BW _{Channel,block}	Sub-block bandwidth, expressed in MHz. $BW_{Channel,block} = F_{edge,block,high}$ - $F_{edge,block,low}$.
BW _{Config}	Transmission bandwidth configuration, where $BW_{Config} = N_{RB} \times SCS \times 12$
BW _{Contiguous}	Contiguous transmission bandwidth, i.e. bandwidth from lowest edge of lowest transmitted
Contiguous	channel in frequency to highest edge of highest transmitted channel in frequency. For non-
	contiguous operation with a band the term is applied per sub-block.
$\mathrm{BW}_{\mathrm{GB,low}}$	The minimum guard band defined in subclause 5.3.3 for lowest assigned component carrier
$\mathrm{BW}_{\mathrm{GB, high}}$	The minimum guard band defined in subclause 5.3.3 for highest assigned component carrier
Δf	Separation between the channel edge frequency and the nominal -3 dB point of the measuring
	filter closest to the carrier frequency
ΔF_{Global}	Global frequency raster granularity
Δf_{max}	f_offset _{max} minus half of the bandwidth of the measuring filter
Δf_{OBUE}	Maximum offset of the operating band unwanted emissions mask from the downlink operating
	band edge
Δf_{OOB}	Maximum offset of the out-of-band boundary from the uplink operating band edge

3GPP TS 38.104 version 15.5.0 Release 15

$\Delta_{\text{FR2}_{\text{REFSENS}}}$	Offset applied to the FR2 OTA REFSENS depending on the AoA
$\Delta_{\min SENS}$	Difference between conducted reference sensitivity and minSENS
$\Delta_{\mathrm{OTAREFSENS}}$	Difference between conducted reference sensitivity and OTA REFSENS
ΔF_{Raster}	Channel raster granularity
$\Delta_{ m shift}$	Channel raster offset for SUL
EISminsens	The EIS declared for the minSENS RoAoA
EIS _{REFSENS}	OTA REFSENS EIS value
EIS _{REFSENS_50M}	Declared OTA reference sensitivity basis level for FR2 based on a reference measurement channel
	with 50MHz BS channel bandwidth
F _{FBWhigh}	Highest supported frequency within supported operating band, for which fractional bandwidth
Ū.	support was declared
F _{FBWlow}	Lowest supported frequency within supported <i>operating band</i> , for which <i>fractional bandwidth</i>
	support was declared
F _C	<i>RF reference frequency</i> on the channel raster, given in table 5.4.2.2-1
$F_{C,block, high}$	Fc of the highest transmitted/received carrier in a sub-block.
F _{C,block, low}	Fc of the lowest transmitted/received carrier in a sub-block.
F _{C,low}	The Fc of the lowest carrier, expressed in MHz.
$F_{C,high}$	The Fc of the highest carrier, expressed in MHz.
F _{edge,low}	The lower edge of Aggregated BS Channel Bandwidth, expressed in MHz. $F_{edge,low} = F_{C,low}$ -
	F _{offset,low.}
Fedge, high	The upper edge of Aggregated BS Channel Bandwidth, expressed in MHz. $F_{edge,high} = F_{C,high} +$
	Foffset,high.
Fedge, block, low	The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset,low}$.
Fedge,block,high	The upper sub-block edge, where $F_{edge,block,high} = F_{C,block,high} + F_{offset,high}$.
F _{filter}	Filter centre frequency
F _{offset,high}	Frequency offset from $F_{C,high}$ to the upper <i>Base Station RF Bandwidth edge</i> , or from $F_{C,block,high}$ to
onseçingi	the upper sub-block edge
Foffset,low	Frequency offset from F _{C,low} to the lower <i>Base Station RF Bandwidth edge</i> , or from F _{C,block, low} to
- onsequow	the lower sub-block edge.
f_offset	Separation between the channel edge frequency and the centre of the measuring filter
f_offset _{max}	The offset to the frequency Δf_{OBUE} outside the downlink <i>operating band</i>
F _{REF}	RF reference frequency
F _{REF-Offs}	Offset used for calculating F_{REF}
F _{REF,shift}	RF reference frequency for Supplementary Uplink (SUL) bands
F _{DL,low}	The lowest frequency of the downlink <i>operating band</i>
F _{DL,high}	The highest frequency of the downlink <i>operating band</i>
F _{UL,low}	The lowest frequency of the uplink <i>operating band</i>
F _{UL,high}	The highest frequency of the uplink <i>operating band</i>
GB _{Channel}	Minimum guard band defined in subclause 5.3.3
N _{cells}	The declared number corresponding to the minimum number of cells that can be transmitted by an
- tens	BS type 1-H in a particular operating band
n	Physical resource block number
n _{PRB}	-
N _{RB}	Transmission bandwidth configuration, expressed in resource blocks
$N_{RB,high}$	Transmission bandwidth configuration for the highest assigned component carrier within a sub-
N	block in CA
$N_{RB,low}$	Transmission bandwidth configuration for the lowest assigned component carrier within a sub-
N.T.	block in CA
N _{REF}	NR Absolute Radio Frequency Channel Number (NR-ARFCN)
N _{REF-Offs}	Offset used for calculating N _{REF}
N _{RXU,active}	The number of active receiver units. The same as the number of <i>demodulation branches</i> to which
N.T.	compliance is declared for chapter 8 performance requirements
N _{RXU,counted}	The number of active receiver units that are taken into account for conducted Rx spurious emission
	scaling, as calculated in subclause 7. 6.1
$N_{RXU,countedpercell}$	The number of active receiver units that are taken into account for conducted RX spurious
	emissions scaling per cell, as calculated in subclause 7.61
N _{TXU,counted}	The number of <i>active transmitter units</i> as calculated in subclause 6.1, that are taken into account
	for conducted TX output power limit in subclause 6.2.1, and for unwanted TX emissions scaling
N _{TXU} ,countedpercell	The number of <i>active transmitter units</i> that are taken into account for conducted TX emissions
	scaling per cell, as calculated in subclause 6.1
P _{EM,n50/n75,ind}	Declared emission level for Band $n50/n75$; ind = a, b
$P_{EIRP,N}$	EIRP level for channel N

3GPP TS 38.104 version 15.5.0 Release 15

19

P _{max,c,AC}	Maximum carrier output power measured per antenna connector
P _{max,c,cell}	The maximum carrier output power per TAB connector TX min cell group
P _{max,c,TABC}	The maximum carrier output power per TAB connector
P _{max,c,TRP}	Maximum carrier TRP output power measured at the RIB(s), and corresponding to the declared
max,e,i i ki	rated carrier TRP output power (P _{rated,c,TRP})
P _{max,c,EIRP}	The maximum carrier EIRP when the NR BS is configured at the maximum rated carrier output
,-,-,	TRP (P _{Rated.c.TRP})
P _{rated,c,AC}	The rated carrier output power per antenna connector
P _{rated,c,cell}	The rated carrier output power per TAB connector TX min cell group
Prated, c, FBWhigh	The rated carrier EIRP for the higher supported frequency range within supported operating band,
	for which fractional bandwidth support was declared
P _{rated,c,FBWlow}	The rated carrier EIRP for the lower supported frequency range within supported operating band,
	for which fractional bandwidth support was declared
P _{rated,c,sys}	The sum of P _{rated,c,TABC} for all TAB connectors for a single carrier
P _{rated,c,TABC}	The rated carrier output power per TAB connector
Prated, c, TRP	Rated carrier TRP output power declared per RIB
Prated,t,AC	The rated total output power declared at the antenna connector
Prated, t, TABC	The rated total output power declared at TAB connector
P _{rated,t,TRP}	Rated total TRP output power declared per RIB
PREFSENS	Conducted Reference Sensitivity power level
SCS _{low}	Sub-Carrier Spacing for the lowest assigned component carrier within a sub-block in CA
SCS _{high}	Sub-Carrier Spacing for the highest assigned component carrier within a sub-block in CA
SSREF	SS block reference frequency position
\mathbf{W}_{gap}	Sub-block gap or Inter RF Bandwidth gap size

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

	A
AA AAS	Antenna Array
ACLR	Active Antenna System Adjacent Channel Leakage Ratio
-	
ACS	Adjacent Channel Selectivity
AoA	Angle of Arrival
AWGN	Additive White Gaussian Noise
BS	Base Station
BW	Bandwidth
CA	Carrier Aggregation
CACLR	Cumulative ACLR
CPE	Common Phase Error
CP-OFDM	Cyclic Prefix-OFDM
CW	Continuous Wave
DFT-s-OFDM	Discrete Fourier Transform-spread-OFDM
DM-RS	Demodulation Reference Signal
EIS	Equivalent Isotropic Sensitivity
EIRP	Effective Isotropic Radiated Power
E-UTRA	Evolved UTRA
EVM	Error Vector Magnitude
FBW	Fractional Bandwidth
FR	Frequency Range
FRC	Fixed Reference Channel
GSCN	Global Synchronization Channel Number
GSM	Global System for Mobile communications
ITU-R	Radiocommunication Sector of the International Telecommunication Union
ICS	In-Channel Selectivity
LA	Local Area
LNA	Low Noise Amplifier
MCS	Modulation and Coding Scheme
1100	Modulation and County Benefic

MR	Medium Range
NR	New Radio
NR-ARFCN	NR Absolute Radio Frequency Channel Number
OBUE	Operating Band Unwanted Emissions
OOB	Out-of-band
OSDD	OTA Sensitivity Directions Declaration
OTA	Over-The-Air
PRB	Physical Resource Block
PT-RS	Phase Tracking Reference Signal
QAM	Quadrature Amplitude Modulation
RDN	Radio Distribution Network
RE	Resource Element
REFSENS	Reference Sensitivity
RF	Radio Frequency
RIB	Radiated Interface Boundary
RMS	Root Mean Square (value)
RoAoA	Range of Angles of Arrival
RS	Reference Signal
RX	Receiver
SCS	Sub-Carrier Spacing
SDL	Supplementary Downlink
SS	Synchronization Symbol
SSB	Synchronization Signal Block
SUL	Supplementary Uplink
TAB	Transceiver Array Boundary
TAE	Time Alignment Error
TX	Transmitter
TRP	Total Radiated Power
UEM	Unwanted Emissions Mask
UTRA	Universal Terrestrial Radio Access
WA	Wide Area
ZF	Zero Forcing

4 General

4.1 Relationship with other core specifications

The present document is a single-RAT specification for a BS, covering RF characteristics and minimum performance requirements. Conducted and radiated core requirements are defined for the BS architectures and BS types defined in subclause 4.3.

The applicability of each requirement is described in clause 5.

4.2 Relationship between minimum requirements and test requirements

Conformance to the present specification is demonstrated by fulfilling the test requirements specified in the conformance specification TS 38.141-1 [5] and TS 38.141-2 [6].

The minimum requirements given in this specification make no allowance for measurement uncertainty. The test specifications TS 38.141-1 [5] and TS 38.141-2 [6] define test tolerances. These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by the shared risk principle.

The shared risk principle is defined in recommendation ITU-R M.1545 [7].

4.3 Conducted and radiated requirement reference points

4.3.1 BS type 1-C

For *BS type 1-C*, the requirements are applied at the BS *antenna connector* (port A) for a single transmitter or receiver with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as an amplifier, a filter or the combination of such devices is used, requirements apply at the far end *antenna connector* (port B).

Figure 4.3.1-1: BS type 1-C transmitter interface

Figure 4.3.1-2: BS type 1-C receiver interface

4.3.2 BS type 1-H

For *BS type 1-H*, the requirements are defined for two points of reference, signified by radiated requirements and conducted requirements.

Transceiver array boundary connector (TAB)

Figure 4.3.2-1: Radiated and conducted reference points for BS type 1-H

Radiated characteristics are defined over the air (OTA), where the *operating band* specific radiated interface is referred to as the *Radiated Interface Boundary* (RIB). Radiated requirements are also referred to as OTA requirements. The (spatial) characteristics in which the OTA requirements apply are detailed for each requirement.

Conducted characteristics are defined at individual or groups of *TAB connectors* at the *transceiver array boundary*, which is the conducted interface between the transceiver unit array and the composite antenna.

The transceiver unit array is part of the composite transceiver functionality generating modulated transmit signal structures and performing receiver combining and demodulation.

The transceiver unit array contains an implementation specific number of transmitter units and an implementation specific number of receiver units. Transmitter units and receiver units may be combined into transceiver units. The transmitter/receiver units have the ability to transmit/receive parallel independent modulated symbol streams.

The composite antenna contains a radio distribution network (RDN) and an antenna array. The RDN is a linear passive network which distributes the RF power generated by the transceiver unit array to the antenna array, and/or distributes the radio signals collected by the antenna array to the transceiver unit array, in an implementation specific way.

How a conducted requirement is applied to the *transceiver array boundary* is detailed in the respective requirement subclause.

4.3.3 BS type 1-0 and BS type 2-0

For *BS type 1-O* and *BS type 2-O*, the radiated characteristics are defined over the air (OTA), where the *operating band* specific radiated interface is referred to as the *Radiated Interface Boundary* (RIB). Radiated requirements are also referred to as OTA requirements. The (spatial) characteristics in which the OTA requirements apply are detailed for each requirement.

Figure 4.3.3-1: Radiated reference points for BS type 1-O and BS type 2-O

Co-location requirements are specified at the conducted interface of the co-location reference antenna, the co-location reference antenna does not form part of the BS under test but is a means to provide OTA power levels which are representative of a co-located system, further defined in subclause 4.9.

For a *BS type 1-O* the transceiver unit array must contain at least 8 transmitter units and at least 8 receiver units. Transmitter units and receiver units may be combined into transceiver units. The transmitter/receiver units have the ability to transmit/receive parallel independent modulated symbol streams.

4.4 Base station classes

The requirements in this specification apply to Wide Area Base Stations, Medium Range Base Stations and Local Area Base Stations unless otherwise stated. The associated deployment scenarios for each class are exactly the same for BS with and without connectors.

For BS type 1-O and 2-O, BS classes are defined as indicated below:

- Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum distance along the ground equal to 35 m.
- Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum distance along the ground equal to 5 m.
- Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum distance along the ground equal to 2 m.

For BS type 1-C and 1-H, BS classes are defined as indicated below:

- Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum coupling loss equal to 70 dB.
- Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum coupling loss equals to 53 dB.
- Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to minimum coupling loss equal to 45 dB.

4.5 Regional requirements

Some requirements in the present document may only apply in certain regions either as optional requirements, or as mandatory requirements set by local and regional regulation. It is normally not stated in the 3GPP specifications under what exact circumstances the regional requirements apply, since this is defined by local or regional regulation.

Table 4.5-1 lists all requirements in the present specification that may be applied differently in different regions.

Clause number	Requirement	Comments
5.2	Operating bands	Some NR operating bands may be applied regionally.
6.2.4	Additional requirements	These requirements may apply in certain regions as additional Operating band unwanted emission limits.
6.6.2, 9.7.2	Occupied bandwidth, OTA occupied bandwidth	The requirement may be applied regionally. There may also be regional requirements to declare the occupied bandwidth according to the definition in present specification.
6.6.4.2.5.1	Limits in FCC Title 47	The BS may have to comply with the additional requirements, when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.
6.6.5.2.1, 9.7.5.2	Tx spurious emissions, OTA Tx spurious emissions	Category A or Category B spurious emission limits, as defined in ITU- R Recommendation SM.329 [2], may apply regionally. The emission limits specified as the <i>basic limit</i> + X (dB) are applicable, unless stated differently in regional regulation.
6.6.5.2.3, 9.7.5.3.3	Tx spurious emissions: additional requirements, OTA Tx spurious emissions: additional requirements	These requirements may be applied for the protection of system operating in frequency ranges other than the BS <i>operating band</i> .
7.6.4, 10.7.2	Rx spurious emissions, OTA Rx spurious emissions	The emission limits specified as the <i>basic limit</i> + X (dB) are applicable, unless stated differently in regional regulation.

4.6 Applicability of requirements

In table 4.6-1, the requirement applicability for each requirement set is defined. For each requirement, the applicable requirement subclause in the specification is identified. Requirements not included in a requirement set is marked not applicable (NA).

Requirement	Requirement set					
·	BS type 1-C	BS type 1-H	BS type 1-O	BS type 2-0		
BS output power	6.2	6.2				
Output power dynamics	6.3	6.3				
Transmit ON/OFF power	6.4	6.4				
Transmitted signal quality	6.5	6.5				
Occupied bandwidth	6.6.2	6.6.2				
ACLR	6.6.3	6.6.3				
Operating band unwanted emissions	6.6.4	6.6.4				
Transmitter spurious emissions	6.6.5	6.6.5				
Transmitter intermodulation	6.7	6.7	NA	NA		
Reference sensitivity level	7.2	7.2				
Dynamic range	7.3	7.3				
In-band selectivity and blocking	7.4	7.4				
Out-of-band blocking	7.5	7.5				
Receiver spurious emissions	7.6	7.6				
Receiver intermodulation	7.7	7.7				
In-channel selectivity	7.8	7.8				
Performance requirements	8	8				
Radiated transmit power		9.2	9.2	9.2		
OTA base station output power			9.3	9.3		
OTA output power dynamics			9.4	9.4		
OTA transmit ON/OFF power			9.5	9.5		
OTA transmitted signal quality			9.6	9.6		
OTA occupied bandwidth			9.7.2	9.7.2		
OTA ACLR		NA	9.7.3	9.7.3		
OTA out-of-band emission			9.7.4	9.7.4		
OTA transmitter spurious emission			9.7.5	9.7.5		
OTA transmitter intermodulation			9.8	NA		
OTA sensitivity	NA	10.2	10.2	NA		
OTA reference sensitivity level	NA		10.3	10.3		
OTA dynamic range			10.4	NA		
OTA in-band selectivity and			10.5	10.5		
blocking						
OTA out-of-band blocking			10.6	10.6		
OTA receiver spurious emission		NA	10.7	10.7		
OTA receiver intermodulation			10.8	10.8		
OTA in-channel selectivity			10.9	10.9		
Radiated performance			11	11		
requirements						

Table 4.6-1: Requirement set applicability

4.7 Requirements for contiguous and non-contiguous spectrum

A spectrum allocation where a BS operates can either be contiguous or non-contiguous. Unless otherwise stated, the requirements in the present specification apply for BS configured for both contiguous spectrum operation and non-contiguous spectrum operation.

For BS operation in non-contiguous spectrum, some requirements apply both at the Base Station RF Bandwidth edges and inside the sub-block gaps. For each such requirement, it is stated how the limits apply relative to the Base Station RF Bandwidth edges and the sub-block edges respectively.

4.8 Requirements for BS capable of multi-band operation

For *multi-band connector* or *multi-band RIB*, the RF requirements in clause 6, 7, 9 and 10 apply separately to each supported *operating band* unless otherwise stated. For some requirements, it is explicitly stated that specific additions or exclusions to the requirement apply at *multi-band connector(s)*, and *multi-band RIB(s)* as detailed in the requirement subclause. For *BS type 1-C* capable of multi-band operation, various structures in terms of combinations of different transmitter and receiver implementations (multi-band or single band) with mapping of transceivers to one or more *antenna connectors* for *BS type 1-C* or *TAB connectors* for *BS type 1-H* in different ways are possible. For *multi-band*

connector(s) the exclusions or provisions for multi-band apply. For *single-band antenna connector(s)*, the following applies:

- Single-band transmitter spurious emissions, *operating band* unwanted emissions, ACLR, transmitter intermodulation and receiver spurious emissions requirements apply to this *antenna connector* that is mapped to single-band.
- If the BS is configured for single-band operation, single-band requirements shall apply to this *antenna connector* configured for single-band operation and no exclusions or provisions for multi-band capable BS are applicable. Single-band requirements are tested separately at the *antenna connector* configured for single-band operation, with all other *antenna connectors* terminated.

A *BS type 1-H* may be capable of supporting operation in multiple *operating bands* with one of the following implementations of *TAB connectors* in the *transceiver array boundary*:

- All TAB connectors are single-band connectors.
 - Different sets of *single-band connectors* support different *operating bands*, but each *TAB connector* supports only operation in one single *operating band*.
 - Sets of *single-band connectors* support operation in multiple *operating bands* with some *single-band connectors* supporting more than one *operating band*.
- All TAB connectors are multi-band connectors.
- A combination of single-band sets and multi-band sets of *TAB connectors* provides support of the type *BS type 1-H* capability of operation in multiple *operating bands*.

Unless otherwise stated all requirements specified for an *operating band* apply only to the set of *TAB connectors* supporting that *operating band*.

In the case of an *operating band* being supported only by *single-band connectors* in a *TAB connector TX min cell group* or a *TAB connector RX min cell group*, *single-band requirements* apply to that set of *TAB connectors*.

In the case of an *operating band* being supported only by *multi-band connectors* supporting the same *operating band* combination in a *TAB connector TX min cell group* or a *TAB connector RX min cell group*, *multi-band requirements* apply to that set of *TAB connectors*.

The case of an *operating band* being supported by both *multi-band connectors* and *single-band connectors* in a *TAB connector TX min cell group* or a *TAB connector RX min cell group* is FFS and is not covered by the present release of this specification.

The case of an *operating band* being supported by *multi-band connectors* which are not all supporting the same *operating band* combination in a *TAB connector TX min cell group* or a *TAB connector RX min cell group* is FFS and is not covered by the present release of this specification.

BS type 1-O may be capable of supporting operation in multiple *operating bands* with one of the following implementations at the *radiated interface boundary*:

- All RIBs are single-band RIBs.
- All RIBs are *multi-band RIBs*.
- A combination of single-band *RIBs* and *multi-band RIBs* provides support of the *BS type 1-O* capability of operation in multiple *operating bands*.

For *multi-band connectors* and *multi-band RIBs* supporting the bands for TDD, the RF requirements in the present specification assume no simultaneous uplink and downlink occur between the bands.

The RF requirements for *multi-band connectors* and *multi-band RIBs* supporting bands for both FDD and TDD are FFS and are not covered by the present release of this specification.

4.9 OTA co-location with other base stations

Co-location requirements are requirements which are based on assuming the *BS type 1-O* is co-located with another BS of the same base station class, they ensure that both co-located systems can operate with minimal degradation to each other.

Unwanted emission and out of band blocking co-location requirements are optional requirements based on declaration. TX OFF and TX IMD are mandatory requirements and have the form of a co-location requirement as it represents the worst-case scenario of all the interference cases.

NOTE: Due to the low level of the unwanted emissions for the spurious emissions and TX OFF level co-location is the most suitable method to show conformance.

The *co-location reference antenna* shall be a single column passive antenna which has the same vertical radiating dimension (h), frequency range, polarization, as the composite antenna of the *BS type 1-O* and nominal 65° horizontal half-power beam width (suitable for 3-sector deployment) and is placed at a distance *d* from the edge of the *BS type 1-O*, as shown in figure 4.9-1.

Figure 4.9-1: Illustration of BS type 1-O enclosure and co-location reference antenna

Edge-to-edge separation *d* between the *BS type 1-O* and the co-location reference antenna shall be set to 0.1 m.

The *BS type 1-O* and the co-location reference antenna shall be aligned in a common plane perpendicular to the mechanical bore-sight direction, as shown in figure 4.9-1.

The co-location reference antenna and the BS type 1-O can have different width.

The vertical radiating regions of the *co-location reference antenna* and the *BS type 1-O* composite antenna shall be aligned.

For co-location requirements where the frequency range of the signal at the co-location reference antenna is different from the *BS type 1-O*, a co-location reference antenna suitable for the frequency stated in the requirement is assumed.

OTA co-location requirements are based on the power at the conducted interface of a *co-location reference antenna*, depending on the requirement this interface is either an input or an output. For *BS type 1-O* with dual polarization *the co-location reference antenna* has two conducted interfaces each representing one polarization.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the *operating bands* and *BS channel bandwidths* defined in the present release of specifications.

NOTE: Other *operating bands* and *BS channel bandwidths* may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to the present version of the specification are identified as described in table 5.1-1.

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

Table 5.1-1: Definition of frequency ranges

5.2 Operating bands

NR is designed to operate in the operating bands defined in table 5.2-1 and 5.2-2.

NR operating band	Uplink (UL) operating band BS receive / UE transmit FuL,low – FUL,high	Downlink (DL) operating band BS transmit / UE receive F _{DL,low} – F _{DL,high}	Duplex Mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	N/A	SUL

Table 5.2-1: NR operating bands in FR1

Table 5.2-2: NR operating bands in FR2

NR operating band	Uplink (UL) and Downlink (DL) operating band BS transmit/receive UE transmit/receive FUL,low – FUL,high FDL,low – FDL,high	Duplex Mode
n257	26500 MHz – 29500 MHz	TDD
n258	24250 MHz – 27500 MHz	TDD
n260	37000 MHz – 40000 MHz	TDD
n261	27500 MHz – 28350 MHz	TDD

5.3 BS channel bandwidth

5.3.1 General

The *BS channel bandwidth* supports a single NR RF carrier in the uplink or downlink at the Base Station. Different *UE channel bandwidths* may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. The placement of the *UE channel bandwidth* is flexible but can only be completely within the *BS channel bandwidth*. The BS shall be able to transmit to and/or receive from one or more UE Bandwidth parts that are smaller than or equal to the number of carrier resource blocks on the RF carrier, in any part of the carrier resource blocks.

The relationship between the channel bandwidth, the guardband and the transmission bandwidth configuration is shown in Figure 5.3.1-1.

Figure 5.3.1-1: Definition of channel bandwidth and transmission bandwidth configuration for one NR channel

5.3.2 Transmission bandwidth configuration

The transmission bandwidth configuration N_{RB} for each *BS channel bandwidth* and subcarrier spacing is specified in table 5.3.2.-1 for FR1 and table 5.3.2-2 for FR2.

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
	NRB	NRB	Nrb	Nrb	Nrb	Nrb	Nrb	Nrb	NRB	Nrb	NRB	Nrb	Nrb
15	25	52	79	106	133	160	216	270	N.A	N.A	N.A	N.A	N.A
30	11	24	38	51	65	78	106	133	162	189	217	245	273
60	N.A	11	18	24	31	38	51	65	79	93	107	121	135

Table 5.3.2-1: Transmission	bandwidth	configuration	N _{RB} for FR1
-----------------------------	-----------	---------------	-------------------------

SCS (kHz)	50 MHz	50 MHz 100 MHz 200 MHz		400 MHz
	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60	66	132	264	N.A
120	32	66	132	264

NOTE: All Tx and Rx requirements are defined based on transmission bandwidth configuration specified in table 5.3.2-1 for FR1 and table 5.3.2-2 for FR2.

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each *BS channel bandwidth* and SCS is specified in table 5.3.3-1 for FR1 and in table 5.3.3-2 for FR2.

Table 5.3.3-1	Minimum	guardband	(kHz)	(FR1)
---------------	---------	-----------	-------	-------

SCS	5	10	15	20	25	30	40	50	60	70	80	90	100
(kHz)	MHz	MHz	MHz	MHz	MHz	MHz							
15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N.A	N.A	N.A	N.A	N.A

30	505	665	645	805	785	945	905	1045	825	965	925	885	845
60	N.A	1010	990	1330	1310	1290	1610	1570	1530	1490	1450	1410	1370

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
60	1210	2450	4930	N.A
120	1900	2420	4900	9860

The minimum guardband of SCS 240 kHz SS/PBCH block for each BS channel bandwidth is specified in table 5.3.3-3 for FR2.

Table: 5.3.3-3: Minimum	guardband (kH	2) of SCS 240 kHz	SS/PBCH block (FR2)

SCS (kHz)	100 MHz	200 MHz	400 MHz
240	3800	7720	15560

NOTE: The minimum guardband in Table 5.3.3-3 is applicable only when the SCS 240 kHz SS/PBCH block is placed adjacent to the edge of the BS channel bandwidth within which the SS/PBCH block is located.

The number of RBs configured in any *BS channel bandwidth* shall ensure that the minimum guardband specified in this clause is met.

Figure 5.3.3-1: BS PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol, the minimum guardband on each side of the carrier is the guardband applied at the configured *BS channel bandwidth* for the numerology that is transmitted/received immediately adjacent to the guard band.

For FR1, if multiple numerologies are multiplexed in the same symbol and the BS channel bandwidth is >50 MHz, the guardband applied adjacent to 15 kHz SCS shall be the same as the guardband defined for 30 kHz SCS for the same BS channel bandwidth.

For FR2, if multiple numerologies are multiplexed in the same symbol and the BS channel bandwidth is >200 MHz, the guardband applied adjacent to 60 kHz SCS shall be the same as the guardband defined for 120 kHz SCS for the same BS channel bandwidth.

Figure 5.3.3-2: Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-2 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

Figure 5.3.3-3: Void

Figure 5.3.3-4: Void

Figure 5.3.3-5: Void

5.3.4 RB alignment

For each BS channel bandwidth and each numerology, *BS transmission bandwidth configuration* must fulfil the minimum guardband requirement specified in subclause 5.3.3.

For each numerology, its common resource blocks are specified in subclause 4.4.4.3 in [9], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology.

For each numerology, all *UE transmission bandwidth configurations* indicated to UEs served by the BS by higher layer parameter *carrierBandwidth* [11] shall fall within the *BS transmission bandwidth configuration*.

5.3.5 BS channel bandwidth per operating band

The requirements in this specification apply to the combination of *BS channel bandwidths*, SCS and *operating bands* shown in table 5.3.5-1 for FR1 and in table 5.3.5-2 for FR2. The transmission bandwidth configuration in table 5.3.2-1 and table 5.3.2-2 shall be supported for each of the *BS channel bandwidths* within the BS capability. The *BS channel bandwidths* are specified for both the Tx and Rx path.

Table 5.3.5-1: BS channel bandwidths and SCS per operating band in FR1

				NF	R band /	SCS /	BS chai	nnel bai	ndwidth	1				
NR Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
	15	Yes	Yes	Yes	Yes									
n1	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes									
n2	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes	Yes	Yes							
n3	30		Yes	Yes	Yes	Yes	Yes							
-	60		Yes	Yes	Yes	Yes	Yes							
	15	Yes	Yes	Yes	Yes									
n5	30		Yes	Yes	Yes									
	60			100	100									
	15	Yes	Yes	Yes	Yes									
n7	30	163	Yes	Yes	Yes									
117	-		Yes	Yes										
	60	Vaa			Yes									
	15	Yes	Yes	Yes	Yes									
n8	30		Yes	Yes	Yes									
	60	X												
	15	Yes	Yes	Yes										
n12	30		Yes	Yes										
	60													
	15	Yes	Yes	Yes	Yes									
n20	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n25	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes									
n28	30		Yes	Yes	Yes									
	60													
	15	Yes												
n34	30													
	60													
	15	Yes	Yes	Yes	Yes									
n38	30		Yes	Yes	Yes									
1100	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n39	30	105	Yes	Yes	Yes	Yes	Yes	Yes						
1129	-					Yes	Yes							
	60	Vaa	Yes	Yes	Yes	Yes		Yes	Vaa					
- 10	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Vaa		Vaa		Vaa
n40	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes		Yes
	60		Yes		Yes		Yes							
	15		Yes	Yes	Yes			Yes	Yes	X	X	X	V	
n41	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						
	15	Yes	Yes	Yes	Yes			Yes	Yes					
n50	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes		
	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes		
	15	Yes												
n51	30													
	60													
	15	Yes	Yes	Yes	Yes									
n65	30		Yes	Yes	Yes									
-	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes			Yes						
	10											-		-
n66	30		Yes	Yes	Yes			Yes						

	15	Yes	Yes	Yes	Yes	Yes								1
n70	30	103	Yes	Yes	Yes	Yes								
1170	60		Yes	Yes	Yes	Yes								<u> </u>
	15	Yes	Yes	Yes	Yes	100								
n71	30		Yes	Yes	Yes									
	60			100	100									
	15	Yes	Yes	Yes	Yes									
n74	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes	Yes	Yes	Yes									
n75	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
	15	Yes												
n76	30													
	60													
	15		Yes	Yes	Yes		Yes	Yes	Yes					
n77	30		Yes	Yes	Yes		Yes							
	60		Yes	Yes	Yes		Yes							
	15		Yes	Yes	Yes		Yes	Yes	Yes					
n78	30		Yes	Yes	Yes		Yes							
	60		Yes	Yes	Yes		Yes							
	15							Yes	Yes					
n79	30							Yes	Yes	Yes		Yes		Yes
	60							Yes	Yes	Yes		Yes		Yes
	15	Yes	Yes	Yes	Yes	Yes	Yes							
n80	30		Yes	Yes	Yes	Yes	Yes							
	60		Yes	Yes	Yes	Yes	Yes							
	15	Yes	Yes	Yes	Yes									
n81	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n82	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes	Yes									
n83	30		Yes	Yes	Yes									
	60	V	X	X	X									
	15	Yes	Yes	Yes	Yes									l
n84	30		Yes	Yes	Yes									
	60	Vaa	Yes	Yes	Yes			¥						
	15	Yes	Yes	Yes	Yes			Yes						
n86	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						L

Table 5.3.5-2: BS channel bandwidths and SCS per operating band in FR2

Ν	NR band / SCS / BS channel bandwidth											
NR Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz							
-057	60	Yes	Yes	Yes								
n257	120	Yes	Yes	Yes	Yes							
m2E0	60	Yes	Yes	Yes								
n258	120	Yes	Yes	Yes	Yes							
2200	60	Yes	Yes	Yes								
n260	120	Yes	Yes	Yes	Yes							
n061	60	Yes	Yes	Yes								
n261	120	Yes	Yes	Yes	Yes							
5.3A BS channel bandwidth for CA

5.3A.1 Transmission bandwidth configuration for CA

For carrier aggregation, the transmission bandwidth configuration is defined per component carrier and the requirement is specified in subclause 5.3.2.

5.3A.2 Minimum guardband and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, *Aggregated BS Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.2-1.

Figure 5.3A.2-1: Definition of Aggregated BS Channel Bandwidth for intra-band carrier aggregation

The aggregated BS Channel Bandwidth, BW_{Channel_CA}, is defined as

$$BW_{Channel_{CA}} = F_{edge,high} - F_{edge,low} [MHz]$$

The lower bandwidth edge $F_{edge, low}$ and the upper bandwidth edge $F_{edge,high}$ of the aggregated BS channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{edge,low} = F_{C,low} - F_{offset,low}$$

$$F_{edge,high} = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$\begin{split} F_{offset,low} &= (N_{RB,low}*12+1)*SCS_{low}/2 + BW_{GB} (MHz) \\ F_{offset,high} &= (N_{RB,high}*12-1)*SCS_{high}/2 + BW_{GB} (MHz) \end{split}$$

 $BW_{GB, low}$ and $BW_{GB, high}$ are the minimum guard band defined in subclause 5.3.3for lowest and highest assigned component carrier, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 or Table 5.3.2-2 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.2-2.

Base Station RF Bandwidth

Figure 5.3A.2-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

 $F_{edge,block, low} = F_{C,block,low} - F_{offset,low}$

The upper sub-block edge of the Sub-block Bandwidth is defined as

 $F_{edge,block,high} = F_{C,block,high} + F_{offset,high}$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

 $BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$

The lower and upper frequency offsets F_{offset,block,low} and F_{offset,block,high} depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

 $F_{offset,block,low} = \ (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB,low} (MHz)$

 $F_{offset,block,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB,high}(MHz)$

where $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 or Table 5.3.2-2 for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} and SCS_{high} are the subcarrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. BW_{GB,low} and BW_{GB,high} are the minimum guard band defined in subclause 5.3.3 for the lowest and highest assigned component carrier respectively

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

 $W_{gap} = F_{edge,block n+1,low} - F_{edge,block n,high} (MHz)$

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the *BS channel bandwidths*. The nominal channel spacing between two adjacent NR carriers is defined as following:

. .

- For NR FR1 operating bands with 100 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

- For NR FR1 operating bands with 15 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-5 \text{ kHz}, 0 \text{ kHz}, 5 \text{ kHz}\}$

- For NR FR2 operating bands with 60 kHz channel raster,

Nominal Channel spacing = (BW_{Channel(1)} + BW_{Channel(2)})/2 + {-20 kHz, 0 kHz, 20 kHz}

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the *BS channel bandwidths* of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.1.2 Channel spacing for CA

For intra-band contiguously aggregated carriers, the channel spacing between adjacent component carriers shall be multiple of least common multiple of channel raster and sub-carrier spacing.

The nominal channel spacing between two adjacent aggregated NR carriers is defined as follows:

For NR operating bands with 100 kHz channel raster:

Nominal channel spacing =
$$\frac{BW_{Channel (1)} + BW_{Channel (2)} - 2|GB_{Channel (1)} - GB_{Channel (2)}|}{0.6} = 0.3 \text{ [MHz]}$$

For NR operating bands with 15 kHz channel raster:

Nominal channel spacing =
$$\frac{BW_{Channel (1)} + BW_{Channel (2)} - 2|GB_{Channel (1)} - GB_{Channel (2)}|}{0.015 * 2^{n+1}} = 0.015 * 2^{n} [MHz]$$

with

$$n = \max(\mu_1, \mu_2)$$

For NR operating bands with 60kHz channel raster:

Nominal channel spacing =
$$\frac{BW_{Channel (1)} + BW_{Channel (2)} - 2|GB_{Channel (1)} - GB_{Channel (2)}|}{0.06 * 2^{n+1}} = 0.06 * 2^{n} [MHz]$$

with

 $n = \max(\mu_1, \mu_2) - 2$

Where BW_{Channel(1)} and BW_{Channel(2)} are the *BS channel bandwidths* of the two respective NR component carriers according to Table 5.3.2-1 and 5.3.2-2 with values in MHz, and the GB_{Channel(i)} is the minimum guard band defined in subclause 5.3.3, while μ_1 and μ_2 are the subcarrier spacing configurations of the component carriers as defined in TS 38.211.

The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency raster defines a set of *RF reference frequencies* F_{REF} . The *RF reference frequency* is used in signalling to identify the position of RF channels, SS blocks and other elements. The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range [0...3279165] on the global frequency raster. The relation between the NR-ARFCN and the *RF reference frequency* F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

 $F_{REF} = F_{REF\text{-}Offs} + \Delta F_{Global} (N_{REF} - N_{REF\text{-}Offs})$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	FREF-Offs (MHz)	NREF-Offs	Range of NREF
0 - 3000	5	0	0	0 – 599999
3000 - 24250	15	3000	600000	600000 - 2016666
24250 - 100000	60	24250.08	2016667	2016667 - 3279165

The *channel raster* defines a subset of *RF reference frequencies* that can be used to identify the RF channel position in the uplink and downlink. The *RF reference frequency* for an RF channel maps to a resource element on the carrier. For each *operating band*, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

For SUL bands and for the uplink of all FDD bands defined in table 5.2-1,

$$F_{REF,shift} = F_{REF} + \Delta_{shift}$$
, $\Delta_{shift} = 0$ kHz or 7.5 kHz

where Δ_{shift} is signalled by the network in higher layer parameter *frequencyShift7p5khz* [11].

The mapping between the *channel raster* and corresponding resource element is given in subclause 5.4.2.2. The applicable entries for each *operating band* are defined in subclause 5.4.2.3.

5.4.2.2 Channel raster to resource element mapping

The mapping between the *RF reference frequency* on the channel raster and the corresponding resource element is given in table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the BS.

	$N_{\rm RB} { m mod}2 = 0$	$N_{\rm RB} {\rm mod} 2 = 1$
Resource element index k	0	6
Physical resource block number <i>n</i> _{PRB}	$n_{\rm PRB} = \left\lfloor \frac{N_{\rm RB}}{2} \right\rfloor$	$n_{\rm PRB} = \left\lfloor \frac{N_{\rm RB}}{2} \right\rfloor$

k, n_{PRB} , N_{RB} are as defined in TS 38.211 [9].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR *operating band* are given through the applicable NR-ARFCN in table 5.4.2.3-1 for FR1 and table 5.4.2.3-2 for FR2, using the channel raster to resource element mapping in subclause 5.4.2.2.

- For NR *operating bands* with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case, every 20th NR-ARFCN within the *operating band* are applicable for the channel raster within the *operating band* and the step size for the channel raster in table 5.4.2.3-1 is given as <20>.
- For NR *operating bands* with 15 kHz channel raster below 3 GHz, $\Delta F_{\text{Raster}} = I \times \Delta F_{\text{Global}}$, where $I \in \{3,6\}$. In this case, every I^{th} NR-ARFCN within the *operating band* are applicable for the channel raster within the *operating band* and the step size for the channel raster in table 5.4.2.3-1 is given as $\langle I \rangle$.
- For NR *operating bands* with 15 kHz and 60 kHz channel raster above 3 GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1, 2\}$. In this case, every I^{th} NR-ARFCN within the *operating band* are applicable for the channel raster within the *operating band* and the step size for the channel raster in table 5.4.2.3-1 and table 5.4.2.3-2 is given as $\langle I \rangle$.
- In frequency bands with two ΔF_{Raster} , the higher ΔF_{Raster} applies to channels using only the SCS that equals the higher ΔF_{Raster} .

NR	ΔF _{Raster}	Uplink	Downlink
Operating	(kHz)	Range of NREF	Range of NREF
band		(First – <step size=""> – Last)</step>	(First – <step size=""> – Last)</step>
n1	100	384000 - <20> - 396000	422000 - <20> - 434000
n2	100	370000 - <20> - 382000	386000 - <20> - 398000
n3	100	342000 - <20> - 357000	361000 - <20> - 376000
n5	100	164800 - <20> - 169800	173800 - <20> - 178800
n7	100	500000 - <20> - 514000	524000 - <20> - 538000
n8	100	176000 - <20> - 183000	185000 - <20> - 192000
n12	100	139800 - <20> - 143200	145800 - <20> - 149200
n20	100	166400 - <20> - 172400	158200 - <20> - 164200
n25	100	370000 - <20> - 383000	386000 - <20> - 399000
n28	100	140600 - <20> - 149600	151600 - <20> - 160600
n34	100	402000 - <20> - 405000	402000 - <20> - 405000
n38	100	514000 - <20> - 524000	514000 - <20> - 524000
n39	100	376000 - <20> - 384000	376000 - <20> - 384000
n40	100	460000 - <20> - 480000	460000 - <20> - 480000
n41	15	499200 - <3> - 537999	499200 - <3> - 537999
114 1	30	499200 - <6> - 537996	499200 - <6> - 537996
n50	100	286400 - <20> - 303400	286400 - <20> - 303400
n51	100	285400 - <20> - 286400	285400 - <20> - 286400
n65	100	384000 - <20> - 402000	422000 - <20> - 440000
n66	100	342000 - <20> - 356000	422000 - <20> - 440000
n70	100	339000 - <20> - 342000	399000 - <20> - 404000
n71	100	132600 - <20> - 139600	123400 - <20> - 130400
n74	100	285400 - <20> - 294000	295000 - <20> - 303600
n75	100	N/A	286400 - <20> - 303400
n76	100	N/A	285400 - <20> - 286400
n77	15	620000 - <1> - 680000	620000 - <1> - 680000
117.7	30	620000 - <2> - 680000	620000 - <2> - 680000
n78	15	620000 - <1> - 653333	620000 - <1> - 653333
1170	30	620000 - <2> - 653332	620000 - <2> - 653332
n79	15	693334 - <1> - 733333	693334 - <1> - 733333
1179	30	693334 - <2> - 733332	693334 - <2> - 733332
n80	100	342000 - <20> - 357000	N/A
n81	100	176000 - <20> - 183000	N/A
n82	100	166400 - <20> - 172400	N/A
n83	100	140600 - <20> -149600	N/A
n84	100	384000 - <20> - 396000	N/A
n86	100	342000 - <20> - 356000	N/A

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band in FR1

NR Operating band	ΔF _{Raster} (kHz)	Uplink and Downlink Range of N _{REF} (First – <step size=""> – Last)</step>
n257	60	2054166 - <1> - 2104165
11237	120	2054167 - <2> - 2104165
n258	60	2016667 - <1> - 2070832
11200	120	2016667 - <2> - 2070831
n260	60	2229166 - <1> - 2279165
11200	120	2229167 - <2> - 2279165
a 001	60	2070833 - <1> - 2084999
n261	120	2070833 - <2> - 2084999

Table 5.4.2.3-2: Applicable NR-ARFCN per operating band in FR2

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in subclause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block is defined separately for each band.

Frequency range	SS block frequency position SS _{REF}	GSCN	Range of GSCN
0 – 3000 MHz	N * 1200kHz + M * 50 kHz, N=1:2499, M ε {1,3,5} (Note)	3N + (M-3)/2	2 – 7498
3000 – 24250 MHz	3000 MHz + N * 1.44 MHz N= 0:14756	7499 + N	7499 – 22255
24250 – 100000 MHz 24250.08 MHz + N * 17.28 MHz N= 0:4383		22256 + N	22256 – 26639
NOTE: The default value for operating bands with SCS spaced channel raster is M=3.			

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in table 5.4.3.2-1. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL.

Resource element index k	0
Physical resource block number $n_{\rm PRB}$ of the SS block	$n_{\rm PRB} = 10$

k, n_{PRB} , are as defined in TS 38.211 [9].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is give in table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in table 5.4.3.3-1 for FR1 and table 5.4.3.3-2 for FR2.

NR Operating band	SS Block SCS	SS Block pattern ¹	Range of GSCN
, c			(First – <step size=""> – Last)</step>
n1	15 kHz	Case A	5279 - <1> - 5419
n2	15 kHz	Case A	4829 - <1> - 4969
n3	15 kHz	Case A	4517 - <1> - 4693
~5	15 kHz	Case A	2177 - <1> - 2230
n5 -	30 kHz	Case B	2183 - <1> - 2224
n7	15 kHz	Case A	6554 - <1> - 6718
n8	15 kHz	Case A	2318 - <1> - 2395
n12	15 kHz	Case A	1828 - <1> - 1858
n20	15 kHz	Case A	1982 - <1> - 2047
n25	15 kHz	Case A	4829 - <1> - 4981
n28	15 kHz	Case A	1901 - <1> - 2002
n34	15 kHz	Case A	5030 - <1> - 5056
n38	15 kHz	Case A	6431 - <1> - 6544
n39	15 kHz	Case A	4706 - <1> - 4795
n40	15 kHz	Case A	5756 - <1> - 5995
n41 -	15 kHz	Case A	6246 - <3> - 6717
1141	30 kHz	Case C	6252 - <3> - 6714
n50	15 kHz	Case A	3584 - <1> - 3787
n51	15 kHz	Case A	3572 - <1> - 3574
n65	15 kHz	Case A	5279 - <1> - 5494
n66	15 kHz	Case A	5279 - <1> - 5494
100	30 kHz	Case B	5285 - <1> - 5488
n70	15 kHz	Case A	4993 - <1> - 5044
n71	15 kHz	Case A	1547 - <1> - 1624
n74	15 kHz	Case A	3692 - <1> - 3790
n75	15 kHz	Case A	3584 - <1> - 3787
n76	15 kHz	Case A	3572 - <1> - 3574
n77	30 kHz	Case C	7711 - <1> - 8329
n78	30 kHz	Case C	7711 - <1> - 8051
n79	30 kHz	Case C	8480 - <16> - 8880
NOTE 1: SS Block patter	n is defined in section 4.	1 in TS 38.213 [10].	

Table 5.4.3.3-1: Applicable SS raster entries per operating band (FF	21)
Table of the for the point of the for the point of the po	`'

Table 5.4.3.3-2: Applicable SS raster entries per operating band (FR2)

NR Operating band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last)</step>
P 0 F 7	120 kHz	Case D	22388 - <1> - 22558
n257	240 kHz	Case E	22390 - <2> - 22556
~2 <u>5</u> 8	120 kHz	Case D	22257 - <1> - 22443
n258	240 kHz	Case E	22258 - <2> - 22442
n260	120 kHz	Case D	22995 - <1> - 23166
11260	240 kHz	Case E	22996 - <2> - 23164
n261	120 kHz	Case D	22446 - <1> - 22492
11261	240 kHz	Case E	22446 - <2> - 22490
NOTE 1: SS Block pattern is defined in section 4.1 in TS 38.213 [10].			

6 Conducted transmitter characteristics

6.1 General

Unless otherwise stated, the conducted transmitter characteristics are specified at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*, with a full complement of transceiver units for the configuration in normal operating conditions.

For *BS type 1-H* the manufacturer shall declare the minimum number of supported geographical cells (i.e. geographical areas covered by beams). The minimum number of supported geographical cells (N_{cells}) relates to the BS setting with the minimum amount of cell splitting supported with transmission on all *TAB connectors* supporting the *operating band*, or with minimum amount of transmitted beams.

For *BS type 1-H* manufacturer shall also declare *TAB connector TX min cell groups*. Every *TAB connector* of the *BS type 1-H* supporting transmission in an *operating band* shall map to one *TAB connector TX min cell group*, where mapping of *TAB connectors* to cells/beams is implementation dependent.

The number of *active transmitter units* that are considered when calculating the conducted TX emissions limits ($N_{TXU,counted}$) for *BS type 1-H* is calculated as follows:

 $N_{TXU,counted} = min(N_{TXU,active}, 8 \times N_{cells})$

 $N_{TXU,countedpercell}$ is used for scaling of *basic limits* and is derived as $N_{TXU,countedpercell} = N_{TXU,counted} / N_{cells}$

NOTE: N_{TXU,active} depends on the actual number of *active transmitter units* and is independent to the declaration of N_{cells}.

6.2 Base station output power

6.2.1 General

The BS conducted output power requirement is at *antenna connector* for *BS type 1-C*, or at *TAB connector* for *BS type 1-H*.

The rated carrier output power of the BS type 1-C shall be as specified in table 6.2.1-1.

	BS class	Prated,c,AC
	Wide Area BS	(Note)
	Medium Range BS	≤ 38 dBm
Local Area BS ≤ 24 dBm		≤ 24 dBm
NOTE:	NOTE: There is no upper limit for the Prated, c, AC rated output power of the Wide Area Base Station.	

Table 6.2.1-1: BS type 1-C rated output power limits for BS classes

The rated carrier output power of the BS type 1-H shall be as specified in table 6.2.1-2.

Table 6.2.1-2: BS type 1-H rated output power limits for BS classes

BS class	Prated,c,sys	Prated,c,TABC	
Wide Area BS	(Note)	(Note)	
Medium Range BS	≤ 38 dBm +10log(N _{TXU,counted})	≤ 38 dBm	
Local Area BS	≤ 24 dBm +10log(N _{TXU,counted})	≤ 24 dBm	
NOTE: There is no upper limit for the P _{Rated,c,sys} or P _{Rated,c,TABC} of the Wide Area Base Station.			

6.2.2 Minimum requirement for *BS type 1-C*

In normal conditions, $P_{max,c,AC}$ shall remain within +2 dB and -2 dB of the rated carrier output power $P_{rated,c,AC}$, declared by the manufacturer.

In extreme conditions, $P_{max,c,AC}$ shall remain within +2.5 dB and -2.5 dB of the rated carrier output power $P_{rated,c,AC}$, declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

6.2.3 Minimum requirement for BS type 1-H

In normal conditions, $P_{max,c,TABC}$ shall remain within +2 dB and -2 dB of the rated carrier output power $P_{rated,c,TABC}$ for each *TAB connector* as declared by the manufacturer.

In extreme conditions, $P_{max,c,TABC}$ shall remain within +2.5 dB and -2.5 dB of the rated carrier output power $P_{rated,c,TABC}$ for each *TAB connector* as declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

6.2.4 Additional requirements (regional)

In certain regions, additional regional requirements may apply.

6.3 Output power dynamics

6.3.1 General

The requirements in subclause 6.3 apply during the *transmitter ON period*. Transmitted signal quality (as specified in subclause 6.5) shall be maintained for the output power dynamics requirements of this subclause.

Power control is used to limit the interference level.

6.3.2 RE power control dynamic range

6.3.2.1 General

The RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power ($P_{max,c,TABC}$) for a specified reference condition.

For BS type 1-C this requirement shall apply at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall apply at each TAB connector supporting transmission in the operating band.

6.3.2.2 Minimum requirement for BS type 1-C and BS type 1-H

RE power control dynamic range:

Modulation scheme used on the RE	RE power control dynamic range (dB)		
	(down)	(up)	
QPSK (PDCCH)	-6	+4	
QPSK (PDSCH)	-6	+3	
16QAM (PDSCH)	-3	+3	
64QAM (PDSCH)	0	0	
256QAM (PDSCH)	0	0	
NOTE: The output power per carrier shall always be less or			
equal to the maximum output power of the base			
station.			

Table 6.3.2.2-1: RE power control dynamic range

6.3.3 Total power dynamic range

6.3.3.1 General

The BS total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

For BS type 1-C this requirement shall apply at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall apply at each TAB connector supporting transmission in the operating band.

NOTE: The upper limit of the dynamic range is the OFDM symbol power for a BS when transmitting on all RBs at maximum output power. The lower limit of the total power dynamic range is the average power for single RB transmission. The OFDM symbol shall carry PDSCH and not contain RS or SSB.

6.3.3.2 Minimum requirement for BS type 1-C and BS type 1-H

The downlink (DL) total power dynamic range for each NR carrier shall be larger than or equal to the level in table 6.3.3.2-1.

BS channel bandwidth (MHz)	Total power dynamic range (dB)			
	15 kHz SCS	30 kHz SCS	60 kHz SCS	
5	13.9	10.4	N/A	
10	17.1	13.8	10.4	
15	18.9	15.7	12.5	
20	20.2	17	13.8	
25	21.2	18.1	14.9	
30	22	18.9	15.7	
40	23.3	20.2	17	
50	24.3	21.2	18.1	
60	N/A	22	18.9	
70	N/A	22.7	19.6	
80	N/A	23.3	20.2	
90	N/A	23.8	20.8	
100	N/A	24.3	21.3	

Table 6.3.3.2-1: Total power dynamic range

6.4 Transmit ON/OFF power

6.4.1 Transmitter OFF power

6.4.1.1 General

Transmit OFF power requirements apply only to TDD operation of NR BS.

Transmitter OFF power is defined as the mean power measured over 70/N us filtered with a square filter of bandwidth equal to the transmission bandwidth configuration of the BS (BW_{Config}) centred on the assigned channel frequency during the *transmitter OFF period*. N = SCS/15, where SCS is Sub Carrier Spacing in kHz.

For *multi-band connectors* and for *single band connectors* supporting transmission in multiple *operating bands*, the requirement is only applicable during the *transmitter OFF period* in all supported *operating bands*.

For BS supporting intra-band contiguous CA, the transmitter OFF power is defined as the mean power measured over 70/N us filtered with a square filter of bandwidth equal to the *Aggregated BS Channel Bandwidth* BW_{Channel_CA} centred on ($F_{edge,high}+F_{edge,low}$)/2 during the *transmitter OFF period*. N = SCS/15, where SCS is the smallest supported Sub Carrier Spacing in kHz in the *Aggregated BS Channel Bandwidth*.

6.4.1.2 Minimum requirement for BS type 1-C

For *BS type 1-C*, the requirements for transmitter OFF power spectral density shall be less than -85 dBm/MHz per *antenna connector*.

6.4.1.3 Minimum requirement for BS type 1-H

For *BS type 1-H*, the requirements for transmitter OFF power spectral density shall be less than -85 dBm/MHz per *TAB* connector.

6.4.2 Transmitter transient period

6.4.2.1 General

Transmitter transient period requirements apply only to TDD operation of NR BS.

The *transmitter transient period* is the time period during which the transmitter is changing from the *transmitter OFF period* to the *transmitter ON period* or vice versa. The *transmitter transient period* is illustrated in figure 6.4.2.1-1.

Figure 6.4.2.1-1: Example of relations between transmitter ON period, transmitter OFF period and transmitter transient period

For *BS type 1-C* this requirement shall be applied at the *antenna connector* supporting transmission in the *operating band*.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.4.2.2 Minimum requirement for BS type 1-C and BS type 1-H

For *BS type 1-C* and *BS type 1-H*, the *transmitter transient period* shall be shorter than the values listed in the minimum requirement table 6.4.2.2-1.

Table 6.4.2.2-1: Minimum requirement for the transmitter transient period for BS type 1-C andBS type 1-H

Transition	Transient period length (µs)
OFF to ON	10
ON to OFF	10

6.4.2.3 Void

6.5 Transmitted signal quality

6.5.1 Frequency error

6.5.1.1 General

The requirements in subclause 6.5.1 apply to the transmitter ON period.

Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

For *BS type 1-C* this requirement shall be applied at the *antenna connector* supporting transmission in the *operating band*.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.5.1.2 Minimum requirement for BS type 1-C and BS type 1-H

For *BS type 1-C* and 1-H, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 6.5.1.2-1 observed over 1 ms.

BS class	Accuracy
Wide Area BS	±0.05 ppm
Medium Range BS	±0.1 ppm
Local Area BS	±0.1 ppm

6.5.2 Modulation quality

6.5.2.1 General

Modulation quality is defined by the difference between the measured carrier signal and a reference signal. Modulation quality can e.g. be expressed as Error Vector Magnitude (EVM). The Error Vector Magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. Details about how the EVM is determined are specified in Annex B.

For *BS type 1-C* this requirement shall be applied at the *antenna connector* supporting transmission in the *operating band*.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.5.2.2 Minimum Requirement for BS type 1-C and BS type 1-H

For *BS type 1-C* and *1-H*, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 6.5.2.2-1 shall be met using the frame structure described in subclause 6.5.2.3.

Modulation scheme for PDSCH	Required EVM
QPSK	17.5 %
16QAM	12.5 %
64QAM	8 %
256QAM	3.5 %

Table 6.5.2.2-1: EVM requirements for BS type 1-C and BS type 1-H carrier

6.5.2.3 EVM frame structure for measurement

EVM shall be evaluated for each NR carrier over all allocated resource blocks and downlink subframes. Different modulation schemes listed in table 6.5.2.2-1 shall be considered for rank 1.

For NR, for all bandwidths, the EVM measurement shall be performed for each NR carrier over all allocated resource blocks and downlink subframes within 10 ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries.

EVM measurements start on the third symbol of a slot (*l*=2) when the first symbol of that slot is a downlink symbol.

6.5.3 Time alignment error

6.5.3.1 General

This requirement shall apply to frame timing in TX diversity, MIMO transmission, carrier aggregation and their combinations.

Frames of the NR signals present at the BS transmitter *antenna connectors* or *TAB connectors* are not perfectly aligned in time. The RF signals present at the BS transmitter *antenna connectors* or *transceiver array boundary* may experience certain timing differences in relation to each other.

The TAE is specified for a specific set of signals/transmitter configuration/transmission mode.

For *BS type 1-C*, the TAE is defined as the largest timing difference between any two signals belonging to different *antenna connectors* for a specific set of signals/transmitter configuration/transmission mode.

For *BS type 1-H*, the TAE is defined as the largest timing difference between any two signals belonging to *TAB* connectors belonging to different transmitter groups at the *transceiver array boundary*, where transmitter groups are associated with the *TAB connectors* in the transceiver unit array corresponding to TX diversity, MIMO transmission, *carrier aggregation* for a specific set of signals/transmitter configuration/transmission mode.

6.5.3.2 Minimum requirement for BS type 1-C and 1-H

For MIMO or TX diversity transmissions, at each carrier frequency, TAE shall not exceed 65 ns.

For intra-band contiguous carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 260ns.

For intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 3µs.

For inter-band carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 3µs.

Table 6.5.3.2-1: Void

Table 6.5.3.2-2: Void

Table 6.5.3.2-3: Void

6.6 Unwanted emissions

6.6.1 General

Unwanted emissions consist of out-of-band emissions and spurious emissions according to ITU definitions [2]. In ITU terminology, out of band emissions are unwanted emissions immediately outside the *BS channel bandwidth* resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The out-of-band emissions requirement for the BS transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and *operating band* unwanted emissions (OBUE).

The maximum offset of the *operating band* unwanted emissions mask from the *operating band* edge is Δf_{OBUE} . The Operating band unwanted emissions define all unwanted emissions in each supported downlink *operating band* plus the frequency ranges Δf_{OBUE} above and Δf_{OBUE} below each band. Unwanted emissions outside of this frequency range are limited by a spurious emissions requirement.

The values of Δf_{OBUE} are defined in table 6.6.1-1 for the NR *operating bands*.

Table 6.6.1-1: Maximum offset of OBUE outside the downlink operating band

BS type	Operating band characteristics	Δfobue (MHz)
DC turno 1 11	$F_{DL,high} - F_{DL,low} < 100 \text{ MHz}$	10
BS type 1-H	$100 \text{ MHz} \leq F_{DL,high} - F_{DL,low} \leq 900 \text{ MHz}$	40
PS tupo 1 C	$F_{DL,high} - F_{DL,low} \le 200 \text{ MHz}$	10
BS type 1-C	200 MHz < $F_{DL,high} - F_{DL,low} \le 900$ MHz	40

For *BS type 1-H* the unwanted emission requirements are applied per the *TAB connector TX min cell groups* for all the configurations supported by the BS. The *basic limits* and corresponding emissions scaling are defined in each relevant subclause.

There is in addition a requirement for occupied bandwidth.

6.6.2 Occupied bandwidth

6.6.2.1 General

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power. See also Recommendation ITU-R SM.328 [3].

The value of $\beta/2$ shall be taken as 0.5%.

The occupied bandwidth requirement shall apply during the *transmitter ON period* for a single transmitted carrier. The minimum requirement below may be applied regionally. There may also be regional requirements to declare the occupied bandwidth according to the definition in the present clause.

For *BS type 1-C* this requirement shall be applied at the *antenna connector* supporting transmission in the *operating band*.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.6.2.2 Minimum requirement for BS type 1-C and BS type 1-H

The occupied bandwidth for each NR carrier shall be less than the *BS channel bandwidth*. For intra-band contiguous CA, the occupied bandwidth shall be less than or equal the *Aggregated BS Channel Bandwidth*.

6.6.3 Adjacent Channel Leakage Power Ratio

6.6.3.1 General

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

The requirements shall apply outside the Base Station RF Bandwidth or Radio Bandwidth whatever the type of transmitter considered (single carrier or multi-carrier) and for all transmission modes foreseen by the manufacturer's specification.

For a BS operating in non-contiguous spectrum, the ACLR requirement in subclause 6.6.3.2 shall apply in *sub block gaps* for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in subclause 6.6.3.2 shall apply in *sub block gaps* for the frequency ranges defined in table 6.6.3.2-3.

For a *multi-band connector*, the ACLR requirement in subclause 6.6.3.2 shall apply in *Inter RF Bandwidth gaps* for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in subclause 6.6.3.2 shall apply in *Inter RF Bandwidth gaps* for the frequency ranges defined in table 6.6.3.2-3.

The requirement shall apply during the transmitter ON period.

6.6.3.2 Limits and Basic limits

The ACLR is defined with a square filter of bandwidth equal to the transmission bandwidth configuration of the transmitted signal (BW_{Config}) centred on the assigned channel frequency and a filter centred on the adjacent channel frequency according to the tables below.

For operation in paired and unpaired spectrum, the ACLR shall be higher than the value specified in table 6.6.3.2-1.

BS channel bandwidth of lowest/highest NR carrier transmitted BW _{Channel} (MHz)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit	
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90,100	BW _{Channel}	NR of same BW (Note 2)	Square (BW _{Config})	45 dB	
	2 x BW _{Channel}	NR of same BW (Note 2)	Square (BW _{Config})	45 dB	
	BW _{Channel} /2 + 2.5 MHz	5 MHz E-UTRA	Square (4.5 MHz)	45 dB (Note 3)	
	BW _{Channel} /2 + 7.5 MHz	5 MHz E-UTRA	Square (4.5 MHz)	45 dB (Note 3)	
 NOTE 1: BW_{Channel} and BW_{Config} are the BS channel bandwidth and transmission bandwidth configuration of the lowest/highest NR carrier transmitted on the assigned channel frequency. NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}). NOTE 3: The requirements are applicable when the band is also defined for E-UTRA or UTRA. 					

Table 6.6.3.2-1: Base station ACLR limit

The ACLR absolute *basic limit* is specified in table 6.6.3.2-2.

BS category / BS class	ACLR absolute basic limit
Category A Wide Area BS	-13 dBm/MHz
Category B Wide Area BS	-15 dBm/MHz
Medium Range BS	-25 dBm/MHz
Local Area BS	-32 dBm/MHz

For operation in non-contiguous spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.3.2-2a.

BS channel bandwidth of lowest/highest NR carrier transmitted BW _{Channel} (MHz)	Sub-block or Inter RF Bandwidth gap size (Wgap) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block or Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
5, 10, 15, 20	W _{gap} ≥ 15 (Note 3) W _{gap} ≥ 45 (Note 4)	2.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	Wgap ≥ 20 (Note 3) Wgap ≥ 50 (Note 4)	7.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
25, 30, 40, 50, 60, 70, 80, 90, 100	Wgap ≥ 60 (Note 4) Wgap ≥ 30 (Note 3)	10 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	Wgap ≥ 80 (Note 4) Wgap ≥ 50 (Note 3)	30 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB
		width configuration of the			
		insmission bandwidth con			
NOTE 3: Applicable in 10, 15, 20 M		I bandwidth of the NR car	rier transmitted	at the other edge of the	gap is 5,
NOTE 4: Applicable in		<i>I bandwidth</i> of the NR car MHz.	rier transmitted	at the other edge of the	gap is

Table 6.6.3.2-2a: Base Station ACLR limit in non-contiguous spectrum or mult	iple bands
Table 0.0.3.2-2a. Dase olation AGEN mint in non-contiguous spectrum of man	ipic banas

The Cumulative Adjacent Channel Leakage power Ratio (CACLR) in a sub-block gap or the Inter RF Bandwidth gap is the ratio of:

- a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap or the Inter RF Bandwidth gap, and
- b) the filtered mean power centred on a frequency channel adjacent to one of the respective sub-block edges or Base Station RF Bandwidth edges.

The assumed filter for the adjacent channel frequency is defined in table 6.6.3.2-3 and the filters on the assigned channels are defined in table 6.6.3.2-4.

For operation in non-contiguous spectrum or multiple bands, the CACLR for NR carriers located on either side of the sub-block gap or the Inter RF Bandwidth gap shall be higher than the value specified in table 6.6.3.2-3.

BS channel bandwidth of lowest/highest NR carrier transmitted BW _{Channel} (MHz)	Sub-block or Inter RF Bandwidth gap size (Wgap) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block or Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
5, 10, 15, 20	5 ≤ Wgap < 15 (Note 3) 5 ≤ Wgap < 45 (Note 4)	2.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	10 < Wgap < 20 (Note 3) 10 ≤ Wgap < 50 (Note 4)	7.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
25, 30, 40, 50, 60, 70, 80,90, 100	20 ≤ Wgap < 60 (Note 4) 20 ≤ Wgap < 30 (Note 3)	10 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	40 < Wgap < 80 (Note 4) 40 ≤ Wgap < 50 (Note 3)	30 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB
NOTE 2: With SCS th NOTE 3: Applicable in 10, 15, 20 M NOTE 4: Applicable in	hat provides largest tr n case the <i>BS channe</i> IHz.	width configuration of the ansmission bandwidth co el bandwidth of the NR ca el bandwidth of the NR ca	nfiguration (BN arrier transmitte	/ _{Config}). d at the other edge of the	

Table 6.6.3.2-3: Base Station CACLR limit

25, 30, 40, 50, 60, 70, 80, 90, 100 MHz.

The CACLR absolute *basic limit* is specified in table 6.6.3.2-3a.

BS category / BS class	CACLR absolute basic limit
Category A Wide Area BS	-13 dBm/MHz
Category B Wide Area BS	-15 dBm/MHz
Medium Range BS	-25 dBm/MHz
Local Area BS	-32 dBm/MHz

Table 6.6.3.2-4: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block or Inter RF Bandwidth gap	Filter on the assigned channel frequency and corresponding filter bandwidth
NR	NR of same BW with SCS that provides largest transmission bandwidth configuration

6.6.3.3 Minimum requirement for BS type 1-C

The ACLR (CACLR) absolute *basic limits* in table 6.6.3.2-2, 6.6.3.2-3a or the ACLR (CACLR) *limits* in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply for each *antenna connector*.

6.6.3.4 Minimum requirement for BS type 1-H

The ACLR (CACLR) absolute *basic limits* in table 6.6.3.2-2 + X, 6.6.3.2-3a + X (where $X = 10log_{10}(N_{TXU,countedpercell}))$ or the ACLR (CACLR) *limits* in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply for each *TAB connector TX min cell group*.

- NOTE: Conformance to the *BS type 1-H* ACLR requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:
 - 1) The ratio of the sum of the filtered mean power measured on each *TAB connector* in the *TAB connector TX min cell group* at the assigned channel frequency to the sum of the filtered mean power measured on each *TAB connector* in the *TAB connector TX min cell group* at the adjacent channel frequency shall be greater than or equal to the ACLR *basic limit* of the BS. This shall apply for each *TAB connector TX min cell group*.

Or

2) The ratio of the filtered mean power at the *TAB connector* centred on the assigned channel frequency to the filtered mean power at this *TAB connector* centred on the adjacent channel frequency shall be greater than or equal to the ACLR *basic limit* of the BS for every *TAB connector* in the *TAB connector TX min cell group*, for each *TAB connector TX min cell group*.

In case the ACLR (CACLR) absolute *basic limit* of *BS type 1-H* are applied, the conformance can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the filtered mean power measured on each *TAB connector* in the *TAB connector TX min cell group* at the adjacent channel frequency shall be less than or equal to the ACLR (CACLR) absolute basic limit + X of the BS. This shall apply to each *TAB* connector *TX min cell group*.

Or

2) The filtered mean power at each *TAB connector* centred on the adjacent channel frequency shall be less than or equal to the ACLR (CACLR) absolute *basic limit* of the BS scaled by X -10log₁₀(*n*) for every *TAB connector* in the *TAB connector TX min cell group*, for each *TAB connector TX min cell group*, where *n* is the number of *TAB connectors* in the *TAB connector TX min cell group*.

6.6.4 Operating band unwanted emissions

6.6.4.1 General

Unless otherwise stated, the operating band unwanted emission (OBUE) limits in FR1 are defined from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band* up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*. The values of Δf_{OBUE} are defined in table 6.6.1-1 for the NR *operating bands*.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. In addition, for a BS operating in non-contiguous spectrum, the requirements apply inside any sub-block gap. In addition, for a BS operating in multiple bands, the requirements apply inside any Inter RF Bandwidth gap.

Basic limits are specified in the tables below, where:

- Δf is the separation between the channel edge frequency and the nominal -3dB point of the measuring filter closest to the carrier frequency.
- f_offset is the separation between the channel edge frequency and the centre of the measuring filter.
- f_{OBUE} is the offset to the frequency Δf_{OBUE} outside the downlink *operating band*, where Δf_{OBUE} is defined in table 6.6.1-1.
- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.

For a *multi-band connector* inside any *Inter RF Bandwidth gaps* with $W_{gap} < 2*\Delta f_{OBUE}$, a combined *basic* limit shall be applied which is the cumulative sum of the *basic limits* specified at the *Base Station RF Bandwidth edges* on each side of the *Inter RF Bandwidth gap*. The *basic limit* for *Base Station RF Bandwidth edge* is specified in subclaus 6.6.4.2.1 to 6.6.4.2.4 below, where in this case:

- Δf is the separation between the *Base Station RF Bandwidth edge* frequency and the nominal -3 dB point of the measuring filter closest to the *Base Station RF Bandwidth edge*.

3GPP TS 38.104 version 15.5.0 Release 15

- f_offset is the separation between the *Base Station RF Bandwidth edge* frequency and the centre of the measuring filter.
- f_offset_{max} is equal to the Inter RF Bandwidth gap minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.

For a *multi-band connector*, the operating band unwanted emission limits apply also in a supported *operating band* without any carrier transmitted, in the case where there are carrier(s) transmitted in another supported *operating band*. In this case, no cumulative *basic limit* is applied in the *inter-band gap* between a supported downlink *operating band* with carrier(s) transmitted and a supported downlink *operating band* without any carrier transmitted and

- In case the *inter-band gap* between a supported downlink *operating band* with carrier(s) transmitted and a supported downlink *operating band* without any carrier transmitted is less than $2*\Delta f_{OBUE}$, f_offset_{max} shall be the offset to the frequency Δf_{OBUE} MHz outside the outermost edges of the two supported downlink *operating bands* and the operating band unwanted emission *basic limits* of the band where there are carriers transmitted, as defined in the tables of the present subclause, shall apply across both downlink bands.
- In other cases, the operating band unwanted emission *basic limits* of the band where there are carriers transmitted, as defined in the tables of the present subclause for the largest frequency offset (Δf_{max}), shall apply from Δf_{OBUE} MHz below the lowest frequency, up to Δf_{OBUE} MHz above the highest frequency of the supported downlink *operating band* without any carrier transmitted.

For a multicarrier *single-band connector* or a *single-band connector* configured for intra-band contiguous or noncontiguous carrier aggregation the definitions above apply to the lower edge of the carrier transmitted at the lowest carrier frequency and the upper edge of the carrier transmitted at the highest carrier frequency within a specified frequency band.

In addition inside any sub-block gap for a *single-band connector* operating in non-contiguous spectrum, a combined *basic* limit shall be applied which is the cumulative sum of the *basic limits* specified for the adjacent sub blocks on each side of the sub block gap. The *basic limit* for each sub block is specified in subclauses 6.6.4.2.1 to 6.6.4.2.4 below, where in this case:

- Δf is the separation between the sub block edge frequency and the nominal -3 dB point of the measuring filter closest to the sub block edge.
- f_offset is the separation between the sub block edge frequency and the centre of the measuring filter.
- f_{max} is equal to the sub block gap bandwidth minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to $f_{offset_{max}}$ minus half of the bandwidth of the measuring filter.

For Wide Area BS, the requirements of either subclause 6.6.4.2.1 (Category A limits) or subclause 6.6.4.2.2 (Category B limits) shall apply.

For Medium Range BS, the requirements in subclause 6.6.4.2.3 shall apply (Category A and B).

For Local Area BS, the requirements of subclause 6.6.4.2.4 shall apply (Category A and B).

The application of either Category A or Category B *basic limits* shall be the same as for Transmitter spurious emissions in subclause 6.6.5.

6.6.4.2 Basic limits

6.6.4.2.1 Basic limits for Wide Area BS (Category A)

For BS operating in Bands n5, n8, n12, n28, n71, basic limits are specified in table 6.6.4.2.1-1.

Table 6.6.4.2.1-1: Wide Area BS operating band unwanted emission limits (NR bands below 1 GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth		
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz		
5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz		
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz \leq f_offset < f_offset _{max}	-13 dBm (Note 3)	100 kHz		
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any <i>operating band</i>, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -13 dBm/100 kHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*Δf_{OBUE} the emission limits within the Inter RF 					
on each side	Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				
NOTE 3: The require	ment is not applicable when $\Delta f_{max} < 10$) MHz.			

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n50, n65, n66, n70, n74, n75, n77, n78, n79, *basic limits* are specified in table 6.6.4.2.1-2:

Table 6.6.4.2.1-2: Wide Area BS operating band unwanted emission limits
(NR bands above 1 GHz) for Category A

Frequency offse measuremen filter -3dB point	t	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth	
0 MHz ≤ ∆f < 5 N	1Hz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz	
5 MHz ≤ ∆f < min(10 MHz, ∆fr		$5.05 \text{ MHz} \le f_{offset} < min(10.05 \text{ MHz}, f_{offset_{max}})$	-14 dBm	100 kHz	
$10 \text{ MHz} \le \Delta f \le \Delta$	max	10.5 MHz ≤ f_offset < f_offset _{max}	-13 dBm (Note 3)	1MHz	
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -13 dBm/1 MHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*∆fo_{BUE} the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth shall be scaled according to the measurement bandwidth of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth. 					
NOTE 3: The re	quirer	nent is not applicable when $\Delta f_{max} < 10$) MHz.		

6.6.4.2.2 Basic limits for Wide Area BS (Category B)

For Category B Operating band unwanted emissions, there are two options for the *basic limits* that may be applied regionally. Either the *basic limits* in subclause 6.6.4.2.2.1 or subclause 6.6.4.2.2.2 shall be applied.

6.6.4.2.2.1 Category B requirements (Option 1)

For BS operating in Bands n5, n8, n12, n20, n28, n71, the *basic limits* are specified in table 6.6.4.2.2.1-1:

Table 6.6.4.2.2.1-1: Wide Area BS operating band unwanted emission limits(NR bands below 1 GHz) for Category B

Frequency measure filter -3dB	ment	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth		
0 MHz ≤ ∆f	< 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz		
≥ 5 MHz min(10 MH		$5.05 \text{ MHz} \le f_\text{offset} < min(10.05 \text{ MHz}, f_\text{offset}_max)$	-14 dBm	100 kHz		
10 MHz ≤ ∆	$f \le \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-16 dBm (Note 3)	100 kHz		
su th or NOTE 2: Fo Bi or Bi Bi Bi	 NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -16 dBm/100 kHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*Δfo_{BUE} the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block shall be added to the far-end sub-block or RF Bandwidth. 					
NOTE 3: T	ne requirer	nent is not applicable when $\Delta f_{max} < 10$) MHz.			

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n50, n65, n66, n70, n75, n77, n78, n79, *basic limits* are specified in tables 6.6.4.2.2.1-2:

Table 6.6.4.2.2.1-2: Wide Area BS operating band unwanted emission limits (NR bands above 1 GHz) for Category B

measu	y offset of rement 8 point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth		
0 MHz ≤ ∆	∆f < 5 MHz	$0.05 \text{ MHz} \le f_{offset} < 5.05 \text{ MHz}$	$-7dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz		
-	: ≤ ∆f < Hz, ∆f _{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz		
10 MHz ≤	$\Delta f \leq \Delta f_{max}$	10.5 MHz \leq f_offset < f_offset _{max}	-15 dBm (Note 3)	1MHz		
NOTE 2:	 NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -15 dBm/1 MHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*∆f_{OBUE} the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth shall be scaled according to the measurement bandwidth of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth. 					
NOTE 3:	The requirer	nent is not applicable when $\Delta f_{max} < 10$	MHz.			

6.6.4.2.2.2 Category B requirements (Option 2)

The limits in this subclause are intended for Europe and may be applied regionally for BS operating in bands n1, n3, n8. For a BS operating in bands n1, n3, n8, n65 *basic limits* are specified in Table 6.6.4.2.2.2-1:

58

ETSI TS 138 104 V15.5.0 (2019-05)

measu	cy offset of urement B point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth	
0 MHz ≤ ∆	∆f < 0.2 MHz	0.015 MHz ≤ f_offset < 0.215 MHz	-14 dBm	30 kHz	
0.2 MHz ≤	≦ ∆f < 1 MHz	0.215 MHz \leq f_offset < 1.015 MHz	$-14dBm - 15 \cdot \left(\frac{f _ offset}{MHz} - 0.215\right) dB$	30 kHz	
(No	ote 4)	1.015 MHz ≤ f_offset < 1.5 MHz	-26 dBm	30 kHz	
1 MH	$z \le \Delta f \le$	1.5 MHz \leq f_offset <	-13 dBm	1 MHz	
min(10 M	MHz, ∆f _{max})	min(10.5 MHz, f_offset _{max})			
10 MHz 5	$\leq \Delta f \leq \Delta f_{max}$	$10.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	-15 dBm (Note 3)	1 MHz	
NOTE 2:	10 MHz ≤ Δf ≤ Δfmax 10.5 MHz ≤ f_offset < f_offsetmax				
NOTE 3:	The requireme	nt is not applicable when Δf_{max} < 10 M range ensures that the range of value			

Table 6.6.4.2.2.2-1: Regional Wide Area BS operating band unwanted emission limits for Category B

6.6.4.2.3 Basic limits for Medium Range BS (Category A and B)

For Medium Range BS, *basic limits* are specified in table 6.6.4.2.3-1 and table 6.6.4.2.3-2.

For the tables in this subclause for *BS type 1-C* $P_{rated,x} = P_{rated,c,AC}$, and for *BS type 1-H* $P_{rated,x} = P_{rated,c,cell} - 10*log_{10}(N_{TXU,countedpercell})$, and for *BS type 1-O* $P_{rated,x} = P_{rated,c,TRP} - 9$ dB.

Frequency offset of measurement	Frequency offset of measurement filter centre	Basic limits (Note 1, 2)	Measurement bandwidth	
<u>filter -3dB point, Δf</u> 0 MHz ≤ Δf < 5 MHz	frequency, f_offset 0.05 MHz ≤ f_offset < 5.05 MHz	$P_{rated,x} - 53dB - \frac{7}{5} \left(\frac{f_o f f set}{MHz} - 0.05 \right) dB$	100 kHz	
5 MHz $\leq \Delta f < min(10)$ MHz, Δf_{max}	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	P _{rated,x} - 60dB	100 kHz	
$10 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$10.05 \text{ MHz} \leq f_offset < f_offset_{max}$	Min(P _{rated,x} - 60dB, -25dBm) (Note 3)	100 kHz	
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any <i>operating band</i> the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be Min(P_{rated,x} -60dB, -25dBm)/100kHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*ΔfoBUE the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap. NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz. 				

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth			
0 MHz ≤ ∆f < 5 MHz	$0.05 \text{ MHz} \le f_{offset} < 5.05 \text{ MHz}$	$-22 \mathrm{dBm} - \frac{7}{5} \left(\frac{f _offset}{MHz} - 0.05 \right) dB$	100 kHz			
5 MHz $\leq \Delta f < min(10)$ MHz, Δf_{max} 5.05 MHz $\leq f_{offset} < min(10.05)$ MHz, f offset _{max}		-29 dBm	100 kHz			
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.05 \text{ MHz} \leq f_offset < f_offset_{max}$	-29 dBm (Note 3)	100 kHz			
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -29dBm/100kHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*Δf_{OBUE} the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap. 						

Table 6.6.4.2.3-2: Medium Range BS operatir	ig band unwanted emission limits, $P_{rated,x} \le 31 \text{ dBm}$
---	--

NOTE 3: The requirement is not applicable when $\Delta f_{max} < 10$ MHz.

6.6.4.2.4 Basic limits for Local Area BS (Category A and B)

For Local Area BS, basic limits are specified in table 6.6.4.2.4-1.

Table 6.6.4.2.4-1: Local Area BS operating band unwanted emission limits

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth			
$0 \text{ MHz} \le \Delta f < 5 \text{ MHz}$	0.05 MHz ≤ f_offset < 5.05 MHz	$-30 dBm - \frac{7}{5} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz			
5 MHz ≤ ∆f < min(10 MHz, Δf _{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-37 dBm	100 kHz			
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-37 dBm (Note 10)	100 kHz			
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any <i>operating band</i> the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gaps. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -37dBm/100kHz. NOTE 2: For a <i>multi-band connector</i> with Inter RF Bandwidth gap < 2*ΔfoBuE the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth 						
on each side	e of the Inter RF Bandwidth gap					

NOTE 3: The requirement is not applicable when $\Delta f_{max} < 10$ MHz.

6.6.4.2.5 Basic limits for additional requirements

6.6.4.2.5.1 Limits in FCC Title 47

In addition to the requirements in subclauses 6.6.4.2.1, 6.6.4.2.2, 6.6.4.2.3 and 6.6.4.2.4, the BS may have to comply with the applicable emission limits established by FCC Title 47 [8], when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.

6.6.4.2.5.2 Protection of DTT

In certain regions the following requirement may apply for protection of DTT. For *BS type 1-C* or *BS type 1-H* operating in Band n20, the level of emissions in the band 470-790 MHz, measured in an 8 MHz filter bandwidth on centre frequencies F_{filter} according to table 6.6.4.2.5.2-1, a *basic limits* $P_{EM,N}$ is declared by the manufacturer. This requirement applies in the frequency range 470-790 MHz even though part of the range falls in the spurious domain.

Filter centre frequency,	Measurement	Declared emission
F _{filter}	bandwidth	basic limit (dBm)
F _{filter} = 8*N + 306 (MHz); 21 ≤ N ≤ 60	8 MHz	Рем,

Table 6.6.4.2.5.2-1: Declared emissions basic limit for protection of DTT

Note: The regional requirement is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the *antenna connector* and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the BS needed to verify compliance with the regional requirement. Compliance with the regional requirement can be determined using the method outlined in TS 36.104 [13], annex G.

6.6.4.3 Minimum requirements for BS type 1-C

The operating band unwanted emissions for *BS type 1-C* for each *antenna connector* shall be below the applicable *basic limits* defined in subclause 6.6.4.2.

6.6.4.4 Minimum requirements for BS type 1-H

The operating band unwanted emissions requirements for *BS type 1-H* are that for each *TAB connector TX min cell* group and each applicable basic limit in subclause 6.6.4.2, the power summation emissions at the *TAB connectors* of the *TAB connector TX min cell* group shall not exceed a BS limit specified as the basic limit + X, where $X = 10\log_{10}(N_{TXU,countedpercell})$.

NOTE: Conformance to the *BS type 1-H* spurious emission requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the emissions power measured on each *TAB connector* in the *TAB connector TX min cell group* shall be less than or equal to the limit as defined in this subclause for the respective frequency span.

Or

2) The unwanted emissions power at each *TAB connector* shall be less than or equal to the *BS type 1-H* limit as defined in this subclause for the respective frequency span, scaled by $-10\log_{10}(n)$, where n is the number of *TAB connectors* in the *TAB connector TX min cell group*.

6.6.5 Transmitter spurious emissions

6.6.5.1 General

The transmitter spurious emission limits shall apply from 9 kHz to 12.75 GHz, excluding the frequency range from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band*, up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*, where the Δf_{OBUE} is defined in table 6.6.1-1. For some *operating bands*, the upper limit is higher than 12.75 GHz in order to comply with the 5th harmonic limit of the downlink *operating band*, as specified in ITU-R recommendation SM.329 [2].

For a *multi-band connector*, for each supported *operating band* together with Δf_{OBUE} around the band is excluded from the transmitter spurious emissions requirement.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

Unless otherwise stated, all requirements are measured as mean power (RMS).

6.6.5.2 Basic limits

6.6.5.2.1 General transmitter spurious emissions requirements

The *basic limits* of either table 6.6.5.2.1-1 (Category A limits) or table 6.6.5. 2.1-2 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for operating band unwanted emissions in subclause 6.6.4.

Table 6.6.5.2.1-1: General BS transmitter spurious emission limits in FR1, Category A

Spurious frequency range	Basic limit	Measurement bandwidth	Notes					
9 kHz – 150 kHz		1 kHz	Note 1, Note 4					
150 kHz – 30 MHz		10 kHz	Note 1, Note 4					
30 MHz – 1 GHz		100 kHz	Note 1					
1 GHz 12.75 GHz	-13 dBm	1 MHz	Note 1, Note 2					
12.75 GHz – 5 th harmonic of the upper frequency edge of the DL		1 MHz	Note 1, Note 2, Note 3					
operating band in GHz								
NOTE 1: Measurement bandwidths	s as in ITU-R SM	/l.329 [2], s4.1.						
NOTE 2: Upper frequency as in IT								
NOTE 3: This spurious frequency r	ange applies on	ly for operating ba	ands for which the 5 th					
harmonic of the upper frequency edge of the DL operating band is reaching beyond								
12.75 GHz.								
NOTE 4: This spurious frequency r	ange applies on	ly to BS type 1-Ca	NOTE 4: This spurious frequency range applies only to BS type 1-C and BS type 1-H.					

Table 6.6.5.2.1-2: General BS transmitter spurious emission limits in FR1, Category B

Spurious frequency range	Basic limit	Measurement bandwidth	Notes	
9 kHz – 150 kHz		1 kHz	Note 1, Note 4	
150 kHz – 30 MHz	-36 dBm	10 kHz	Note 1, Note 4	
30 MHz – 1 GHz		100 kHz	Note 1	
1 GHz – 12.75 GHz		1 MHz	Note 1, Note 2	
12.75 GHz – 5 th harmonic of the upper frequency edge of the DL <i>operating band</i> in GHz	-30 dBm	1 MHz	Note 1, Note 2, Note 3	
 NOTE 1: Measurement bandwidths as in ITU-R SM.329 [2], s4.1. NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1. NOTE 3: This spurious frequency range applies only for <i>operating bands</i> for which the 5th harmonic of the upper frequency edge is reaching beyond 12.75 GHz. 				
NOTE 4: This spurious frequency				

6.6.5.2.2 Protection of the BS receiver of own or different BS

This requirement shall be applied for NR FDD operation in order to prevent the receivers of the BSs being desensitised by emissions from a BS transmitter. It is measured at the transmit *antenna connector* for *BS type 1-C* or at the *TAB connector* for *BS type 1-H* for any type of BS which has common or separate Tx/Rx *antenna connectors / TAB connectors*.

The spurious emission *basic limits* are provided in table 6.6.5.2.2-1.

Table 6.6.5.2.2-1: BS spurious emissions basic limits for protection of the BS receiver

BS class	Frequency range	Basic limits	Measurement bandwidth	Note
Wide Area BS	FUL, low - FUL, high	-96 dBm	100 kHz	
Medium Range BS	FUL, low - FUL, high	-91 dBm	100 kHz	
Local Area BS	FUL,low — FUL,high	-88 dBm	100 kHz	

6.6.5.2.3 Additional spurious emissions requirements

These requirements may be applied for the protection of system operating in frequency ranges other than the BS downlink *operating band*. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR *operating band*. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in subclause 4.5.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, NR, etc.) as listed below.

The spurious emission *basic limits* are provided in table 6.6.5.2.3 -1 for a BS where requirements for co-existence with the system listed in the first column apply. For a *multi-band connector*, the exclusions and conditions in the Note column of table 6.6.5.2.3 -1 apply for each supported *operating band*.

Table 6.6.5.2.3-1: BS spurious emissions basic limits for BS for co-existence with systems operating in other frequency bands

System type for NR to co- exist with	Frequency range for co-existence requirement	Basic limits	Measurement bandwidth	Note
GSM900	921 – 960 MHz	-57 dBm	100 kHz	This requirement does not apply to BS operating in band n8
	876 – 915 MHz	-61 dBm	100 kHz	For the frequency range 880-915 MHz, this requirement does not apply to BS operating in band n8, since it is already covered by the requirement in subclause 6.6.5.2.2.
DCS1800	1805 – 1880 MHz	-47 dBm	100 kHz	This requirement does not apply to BS operating in band n3.
	1710 – 1785 MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n3, since it is already covered by the requirement in subclause 6.6.5.2.2.
PCS1900	1930 – 1990 MHz	-47 dBm	100 kHz	This requirement does not apply to BS operating in band n2, n25 or band n70.
	1850 – 1910 MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n2 or n25 since it is already covered by the requirement in subclause 6.6.5.2.2.
GSM850 or CDMA850	869 – 894 MHz	-57 dBm	100 kHz	This requirement does not apply to BS operating in band n5.
	824 – 849 MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n5, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD Band I or	2110 – 2170 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n1 or n65
E-UTRA Band 1 or NR Band n1	1920 – 1980 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n1 or n65, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD Band II or	1930 – 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n2 or n70.
E-UTRA Band 2 or NR Band n2	1850 – 1910 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n2, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD Band III or	1805 – 1880 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n3.
E-UTRA Band 3 or NR Band n3	1710 – 1785 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n3, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD Band IV or	2110 – 2155 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n66
E-UTRA Band 4	1710 – 1755 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n66, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD Band V or	869 – 894 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n5.
E-UTRA Band 5 or NR Band n5	824 – 849 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n5, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD	860 – 890 MHz	-52 dBm	1 MHz	
Band VI, XIX or E-UTRA Band	815 – 830 MHz 830 – 845 MHz	-49 dBm -49 dBm	1 MHz 1 MHz	
6, 18, 19 UTRA FDD	2620 – 2690 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n7.
Band VII or E-UTRA Band 7 or NR Band n7	2500 – 2570 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n7, since it is already covered by the requirement in subclause 6.6.5.2.2.
UTRA FDD	925 – 960 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n8.
Band VIII or E-UTRA Band 8 or NR Band n8	880 – 915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in subclause 6.6.5.2.2.
	1844.9 – 1879.9 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n3.

	1749.9 – 1784.9	-49 dBm	1 MHz	This requirement does not apply to BS operating in
UTRA FDD	MHz	-49 UDIII		band n3, since it is already covered by the
Band IX or				requirement in subclause 6.6.5.2.2.
E-UTRA Band				
9				
UTRA FDD	2110 – 2170 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band X or				band n66
E-UTRA Band	1710 – 1770 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
10				band n66, since it is already covered by the
				requirement in subclause 6.6.5.2.2.
UTRA FDD	1475.9 – 1510.9	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XI or XXI	MHz			band n50, n74 or n75.
or	1427.9 – 1447.9	-49 dBm	1 MHz	This requirement does not apply to BS operating in
E-UTRA Band	MHz			band n50, n51, n74, n75 or n76.
11 or 21	1447.9 – 1462.9	-49 dBm	1 MHz	This requirement does not apply to BS operating in
	MHz	50 JD	4 1411-	band n50, n74 or n75.
UTRA FDD Band XII or	729 – 746 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
E-UTRA Band	699 – 716 MHz	-49 dBm	1 MHz	band n12. This requirement does not apply to BS operating in
12 or NR Band	699 – 716 WHZ	-49 dBm	TIMHZ	band n12, since it is already covered by the
n12 of NR Band				requirement in subclause 6.6.5.2.2.
UTRA FDD	746 – 756 MHz	-52 dBm	1 MHz	
Band XIII or	740 – 750 MHz 777 – 787 MHz	-32 dBm	1 MHz	
E-UTRA Band				
13				
UTRA FDD	758 – 768 MHz	-52 dBm	1 MHz	
Band XIV or	788 – 798 MHz	-49 dBm	1 MHz	
E-UTRA Band				
14				
E-UTRA Band	734 – 746 MHz	-52 dBm	1 MHz	
17	704 – 716 MHz	-49 dBm	1 MHz	
UTRA FDD	791 – 821 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XX or E-				band n20 or n28.
UTRA Band 20	832 – 862 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
or NR Band				band n20, since it is already covered by the
n20				requirement in subclause 6.6.5.2.2.
UTRA FDD	3510 – 3590 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XXII or				band n77 or n78.
E-UTRA Band	3410 – 3490 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
22				band n77 or n78.
E-UTRA Band	1525 – 1559 MHz	-52 dBm	1 MHz	
24	1626.5 - 1660.5	-49 dBm	1 MHz	
	MHz			
UTRA FDD	1930 – 1995 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XXV or	4050 404557	40.15		band n2, n25 or n70.
E-UTRA Band	1850 – 1915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
25 or NR band				band n25 since it is already covered by the
n25				requirement in subclause 6.6.5.2.2. For BS operating
				in Band n2, it applies for 1910 MHz to 1915 MHz,
	950 004 MIL-	E0 40	4 141-	while the rest is covered in subclause 6.6.5.2.2.
UTRA FDD	859 – 894 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n5.
Band XXVI or E-UTRA Band	814 – 849 MHz	-10 dPm	1 MHz	For BS operating in Band n5, it applies for 814 MHz to
E-UTRA Band 26	014 - 049 IVIAZ	-49 dBm		824 MHz, while the rest is covered in subclause
20				6.6.5.2.2.
E-UTRA Band	852 – 869 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
27				Band n5.
<u> </u>	807 – 824 MHz	-49 dBm	1 MHz	This requirement also applies to BS operating in Band
	007 024 10112	40 GBIII		n28, starting 4 MHz above the Band n28 downlink
				operating band (Note 5).
E-UTRA Band	758 – 803 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
28 or NR Band				band n20 or n28.
ZO ULINK DAHU	700 740 MIL	-49 dBm	1 MHz	This requirement does not apply to BS operating in
n28 n28	/03 – /48 MH7		· · · · · ·	
	703 – 748 MHz			band n28, since it is already covered by the
	703 – 748 MHZ			band n28, since it is already covered by the requirement in subclause 6.6.5.2.2.
	703 – 748 MHz 717 – 728 MHz	-52 dBm	1 MHz	band n28, since it is already covered by the requirement in subclause 6.6.5.2.2.
n28			1 MHz	

				1
E-UTRA Band	2305 – 2315 MHz	-49 dBm	1 MHz	
30 E-UTRA Band	462.5 – 467.5 MHz	-52 dBm	1 MHz	
31	452.5 – 457.5 MHz	-49 dBm	1 MHz	
UTRA FDD	1452 – 1496 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
band XXXII or	1452 - 1490 MITZ	-92 UDIII		band n50, n74 or n75.
E-UTRA band				band 1150, 1174 01 1175.
32				
UTRA TDD	1000 1000 MH-	-52 dBm	1 MHz	
Band a) or E-	1900 – 1920 MHz	-92 UDIII		
UTRA Band 33				
UTRA TDD	2010 – 2025 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band a) or E-	2010 - 2025 10112	-52 UDIT		Band n34.
UTRA Band 34				Danu 1134.
or NR band				
n34				
UTRA TDD	1850 – 1910 MHz	-52 dBm	1 MHz	
Band b) or E-	1000 - 1010 with	-52 dbm		
UTRA Band 35				
UTRA TDD	1930 – 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band b) or E-	1000 1000 1012	02 dBill	1 1011 12	Band n2 or n25.
UTRA Band 36				Bana ne or neo.
UTRA TDD	1910 – 1930 MHz	-52 dBm	1 MHz	
Band c) or E-	1010 1000 1012	02 dBill	1 1011 12	
UTRA Band 37				
UTRA TDD	2570 – 2620 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band d) or E-	2010 2020 10112	02 dBill	1 101112	Band n38.
UTRA Band 38				Dana noo.
or NR Band				
n38				
UTRA TDD	1880 – 1920MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band f) or E-	1000 102010112	02 dBill	1 101112	Band n39.
UTRA Band 39				Bana noo.
or NR band				
n39				
UTRA TDD	2300 – 2400MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band e) or E-				Band n40.
UTRA Band 40				
or NR Band				
n40				
E-UTRA Band	2496 – 2690 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n41.
41 or NR Band				
n41				
E-UTRA Band	3400 – 3600 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n77 or
42				n78.
E-UTRA Band	3600 – 3800 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n77 or
43				n78.
E-UTRA Band	703 – 803 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n28.
44				
E-UTRA Band	1447 – 1467 MHz	-52 dBm	1 MHz	
45				
E-UTRA Band	5150 – 5925 MHz	-52 dBm	1 MHz	
46				
E-UTRA Band	5855 – 5925 MHz	-52 dBm	1 MHz	
47				
E-UTRA Band	3550 – 3700 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n77 or
48				n78.
E-UTRA Band	1432 – 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
50 or NR band				Band n50, n51, n74, n75 or n76.
n50				, , ,
E-UTRA Band	1427 – 1432 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
51 or NR Band				Band n50, n51, n75 or n76.
n51				· ·
	2110 – 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
				band n1 or n65.
e	•			_ ·

E-UTRA Band 65 or NR Band n65	1920 – 2010 MHz	-49 dBm	1 MHz	For BS operating in Band n1, it applies for 1980 MHz to 2010 MHz, while the rest is covered in subclause 6.6.5.2.2. This requirement does not apply to BS operating in band n65, since it is already covered by the requirement in subclause 6.6.5.2.2.
E-UTRA Band 66 or NR Band	2110 – 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n66.
n66	1710 – 1780 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n66, since it is already covered by the requirement in subclause 6.6.5.2.2.
E-UTRA Band 67	738 – 758 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n28.
E-UTRA Band 68	753 -783 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n28.
	698-728 MHz	-49 dBm	1 MHz	For BS operating in Band n28, this requirement applies between 698 MHz and 703 MHz, while the rest is covered in subclause 6.6.5.2.2.
E-UTRA Band 69	2570 – 2620 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n38.
E-UTRA Band 70 or NR Band	1995 – 2020 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n2, n25 or n70
n70	1695 – 1710 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n70, since it is already covered by the requirement in subclause 6.6.5.2.2.
E-UTRA Band 71 or NR Band	617 – 652 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n71
n71	663 – 698 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n71, since it is already covered by the requirement in subclause 6.6.5.2.2.
E-UTRA Band 72	461 – 466 MHz 451 – 456 MHz	-52 dBm -49 dBm	1 MHz 1 MHz	
E-UTRA Band 74 or NR Band	1475 – 1518 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n50, n74 or n75.
n74	1427 – 1470 MHz	-49 dBm	1MHz	This requirement does not apply to BS operating in band n50, n51, n74, n75 or n76.
E-UTRA Band 75 or NR Band n75	1432 – 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75 or n76.
E-UTRA Band 76 or NR Band n76	1427 – 1432 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75 or n76.
NR Band n77	3.3 – 4.2 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n77 or n78
NR Band n78	3.3 – 3.8 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n77 or n78
NR Band n79	4.4 – 5.0 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n79
NR Band n80	1710 – 1785 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n3, since it is already covered by the requirement in subclause 6.6.5.2.2.
NR Band n81	880 – 915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in subclause 6.6.5.2.2.
NR Band n82	832 – 862 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n20, since it is already covered by the
NR Band n83	703 – 748 MHz	-49 dBm	1 MHz	requirement in subclause 6.6.5.2.2. This requirement does not apply to BS operating in band n28, since it is already covered by the requirement in subclause 6.6.5.2.2.
NR Band n84	1920 – 1980 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n1, since it is already covered by the requirement in subclause 6.6.5.2.2.
E-UTRA Band 85	728 – 746 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n12.
	698 – 716 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n12, since it is already covered by the requirement in subclause 6.6.5.2.2.

NR Band n86	1710 – 1780 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in		
				band n66, since it is already covered by the		
				requirement in subclause 6.6.5.2.2.		

- NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band n28, the co-existence requirements in table 6.6.5.2.3 -1 do not apply for the Δf_{OBUE} frequency range immediately outside the downlink *operating band* (see table 5.2-1). Emission limits for this excluded frequency range may be covered by local or regional requirements.
- NOTE 2: Table 6.6.5.2.3 -1 assumes that two *operating bands*, where the frequency ranges in table 5.2-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent *operating bands* can transmit without additional co-existence requirements. For unsynchronized base stations, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 4: For NR Band n28 BS, specific solutions may be required to fulfil the spurious emissions limits for BS for co-existence with E-UTRA Band 27 UL *operating band*.

The following requirement may be applied for the protection of PHS. This requirement is also applicable at specified frequencies falling between Δf_{OBUE} below the lowest BS transmitter frequency of the downlink *operating band* and Δf_{OBUE} above the highest BS transmitter frequency of the downlink *operating band*. Δf_{OBUE} is defined in subclause 6.6.1.

The spurious emission *basic limit* for this requirement is:

Table 6.6.5.2.3-2: BS spurious emissions basic limits for BS for co-existence with PHS

Frequency range	Basic limit	Measurement Bandwidth	Note
1884.5 – 1915.7 MHz	-41 dBm	300 kHz	Applicable when co-existence with PHS system operating in 1884.5 – 1915.7 MHz

Table 6.6.5.2.3-3: Void

In certain regions, the following requirement may apply to NR BS operating in Band n50 and n75 within the 1432 – 1452 MHz, and in Band n51 and Band n76. The *basic limit is* specified in Table 6.6.5.2.3-4. This requirement is also applicable at the frequency range from Δf_{OBUE} below the lowest frequency of the BS downlink *operating band* up to Δf_{OBUE} above the highest frequency of the BS downlink *operating band*.

Table 6.6.5.2.3-4: Additional operating band unwanted emission basic limit for NR BS operating in Band n50 and n75 within 1432 – 1452 MHz, and in Band n51 and n76

Filter centre frequency, F _{filter}	Basic limit	Measurement Bandwidth
F _{filter} = 1413.5 MHz	-42 dBm	27 MHz

In certain regions, the following requirement may apply to BS operating in NR Band n50 and n75 within 1492-1517 MHz and in Band n74 within 1492-1518 MHz. The maximum level of emissions, measured on centre frequencies F_{filter} with filter bandwidth according to Table 6.6.5.2.3-5, shall be defined according to the *basic limits* $P_{EM,n50/n75,a}$ nor $P_{EM,n50/n75,b}$ declared by the manufacturer.

Table 6.6.5.2.3-5: Operating band n50, n74 and n75 declared emission above 1518 MHz

Filter centre frequency, F _{filter}	Declared <i>basic</i> <i>limits</i> (dBm)	Measurement bandwidth
1518.5 MHz ≤ F _{filter} ≤ 1519.5 MHz	P _{EM, n50/n75,a}	1 MHz
1520.5 MHz ≤ F _{filter} ≤ 1558.5 MHz	P _{EM,n50/n75,b}	1 MHz

NOTE: The regional requirement, included in [12], is defined in terms of EIRP, which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex E.

6.6.5.2.4 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD, E-UTRA and/or NR BS are co-located with a BS.

The requirements assume a 30 dB coupling loss between transmitter and receiver and are based on co-location with base stations of the same class.

The *basic limits* are in table 6.6.5.2.4-1 for a BS where requirements for co-location with a BS type listed in the first column apply, depending on the declared Base Station class. For a *multi-band connector*, the exclusions and conditions in the Note column of table 6.6.5.2.4-1 shall apply for each supported *operating band*.

Table 6.6.5.2.4-1: BS spurious emissions basic limits for BS co-located with another BS

Type of co-located BS	Frequency range for	Basic limits			Measurement	Note
	co-location requirement	WA BS	MR BS	LA BS	bandwidth	
GSM900	876 – 915 MHz	-98	-91	-70	100 kHz	
6314900	070 - 915 WILLZ	dBm	dBm	dBm	TOURIZ	
DCS1800	1710 – 1785 MHz	-98	-91	-80	100 kHz	
0001000	1710 - 1703 10112	dBm	dBm	dBm	TOORIZ	
PCS1900	1850 – 1910 MHz	-98	-91	-80	100 kHz	
1001000		dBm	dBm	dBm	100 1112	
GSM850 or CDMA850	824 – 849 MHz	-98	-91	-70	100 kHz	
		dBm	dBm	dBm	100 1012	
UTRA FDD Band I or E-	1920 – 1980 MHz	-96	-91	-88	100 kHz	
UTRA Band 1 or NR Band n1		dBm	dBm	dBm		
UTRA FDD Band II or E-	1850 – 1910 MHz	-96	-91	-88	100 kHz	
UTRA Band 2 or NR Band n2		dBm	dBm	dBm		
UTRA FDD Band III or E-	1710 – 1785 MHz	-96	-91	-88	100 kHz	
UTRA Band 3 or NR Band n3		dBm	dBm	dBm		
UTRA FDD Band IV or E-	1710 – 1755 MHz	-96	-91	-88	100 kHz	
UTRA Band 4		dBm	dBm	dBm		
UTRA FDD Band V or E-	824 – 849 MHz	-96	-91	-88	100 kHz	
UTRA Band 5 or NR Band n5		dBm	dBm	dBm		
UTRA FDD Band VI, XIX	830 – 845 MHz	-96	-91	-88	100 kHz	
or E-UTRA Band 6, 19		dBm	dBm	dBm		
UTRA FDD Band VII or	2500 – 2570 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 7 or NR Band n7		dBm	dBm	dBm		
UTRA FDD Band VIII or	880 – 915 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 8 or NR Band n8		dBm	dBm	dBm		
UTRA FDD Band IX or E-	1749.9 – 1784.9 MHz	-96	-91	-88	100 kHz	
UTRA Band 9		dBm	dBm	dBm		
UTRA FDD Band X or E-	1710 – 1770 MHz	-96	-91	-88	100 kHz	
UTRA Band 10		dBm	dBm	dBm		
UTRA FDD Band XI or E-	1427.9 –1447.9 MHz	-96	-91	-88	100 kHz	This is not
UTRA Band 11		dBm	dBm	dBm		applicable to BS operating in Band n50 or n75
UTRA FDD Band XII or	699 – 716 MHz	-96	-91	-88	100 kHz	Bana noo or mo
E-UTRA Band 12 or NR Band n12		dBm	dBm	dBm		
UTRA FDD Band XIII or	777 – 787 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 13		dBm	dBm	dBm	100 1112	
UTRA FDD Band XIV or	788 – 798 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 14		dBm	dBm	dBm	1001112	
E-UTRA Band 17	704 – 716 MHz	-96	-91	-88	100 kHz	
-		dBm	dBm	dBm		
E-UTRA Band 18	815 – 830 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
UTRA FDD Band XX or	832 – 862 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 20 or NR Band n20		dBm	dBm	dBm		
UTRA FDD Band XXI or	1447.9 – 1462.9 MHz	-96	-91	-88	100 kHz	This is not
E-UTRA Band 21		dBm	dBm	dBm		applicable to BS operating in
						Band n50 or n75
UTRA FDD Band XXII or	3410 – 3490 MHz	-96	-91	-88	100 kHz	This is not
E-UTRA Band 22		dBm	dBm	dBm		applicable to BS
						operating in Band n77 or n78
			1 04	00	100 kHz	1
E-UTRA Band 23	2000 – 2020 MHz	-96	-91	-88	TOO KHZ	
E-UTRA Band 23 E-UTRA Band 24	2000 – 2020 MHz 1626.5 – 1660.5 MHz	-96 dBm -96	-91 dBm -91	-00 dBm -88	100 kHz	
						operating in Band n77 or n78
--	------------------------------------	-------------------	-------------------	-------------------	---------	---
E-UTRA Band 48	3550 – 3700 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS
E-UTRA Band 46	5150 – 5925 MHz	N/A	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 45	1447 – 1467 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
	1447 4467 MIL	dBm	dBm	dBm	100 225	applicable to BS operating in Band n28
E-UTRA Band 44	703 – 803 MHz	-96	-91	-88	100 kHz	Band n77 or n78 This is not
E-UTRA Band 43	3600 – 3800 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in
		dBm	dBm	dBm		applicable to BS operating in Band n77 or n78
Band n41 E-UTRA Band 42	3400 – 3600 MHz	dBm -96	dBm -91	dBm -88	100 kHz	applicable to BS operating in Band n41 This is not
E-UTRA Band 41 or NR	2496 – 2690 MHz	-96	-91	-88	100 kHz	Band n40. This is not
UTRA TDD Band e) or E- UTRA Band 40 or NR Band n40	2300 – 2400MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in
UTRA Band 39 or NR band n39	192010112	dBm	dBm	dBm		applicable to BS operating in Band n39
UTRA Band 38 of NR Band n38 UTRA TDD Band f) or E-	1880 – 1920MHz	-96	-91	-88	100 kHz	operating in Band n38.
UTRA Band 37 UTRA TDD Band d) or E- UTRA Band 38 or NR	2570 – 2620 MHz	dBm -96 dBm	dBm -91 dBm	dBm -88 dBm	100 kHz	This is not applicable to BS
UTRA TDD Band c) or E-	1910 – 1930 MHz	-96	-91 dBm	-88 dBm	100 kHz	1120
UTRA Band 36	1930 – 1930 IVII IZ	dBm	dBm	dBm		applicable to BS operating in Band n2 or band n25
UTRA TDD Band b) or E- UTRA Band 35 UTRA TDD Band b) or E-	1850 – 1910 MHz 1930 – 1990 MHz	-96 dBm -96	-91 dBm -91	-88 dBm -88	100 kHz	This is not
UTRA Band 34 or NR band n34		dBm	dBm	dBm		applicable to BS operating in Band n34
UTRA Band 33 UTRA TDD Band a) or E-	2010 – 2025 MHz	dBm -96	dBm -91	dBm -88	100 kHz	This is not
UTRA TDD Band a) or E-	1900 – 1920 MHz	dBm -96	dBm -91	dBm -88	100 kHz	
E-UTRA Band 31	452.5 – 457.5 MHz	dBm -96	dBm -91	dBm -88	100 kHz	
E-UTRA Band 30	2305 – 2315 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 28 or NR Band n28	703 – 748 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 27	807 – 824 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band XXVI or E-UTRA Band 26	814 – 849 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 25 or NR Band n25	04.4 0.40 Mili-	dBm	dBm	dBm		
UTRA FDD Band XXV or	1850 – 1915 MHz	-96	-91	-88	100 kHz	

	4 400 4 54 7 MU	00	04	00	400 111-	This is a st
E-UTRA Band 50 or NR	1432 – 1517 MHz	-96	-91	-88	100 kHz	This is not
Band n50		dBm	dBm	dBm		applicable to BS
						operating in
						Band n51, n74 or
						n75
E-UTRA Band 51 or NR	1427 – 1432 MHz	N/A	N/A	-88	100 kHz	This is not
Band n51				dBm		applicable to BS
						operating in
						Band n50, n74,
						n75 or n76
E-UTRA Band 65 or NR	1920 – 2010 MHz	-96	-91	-88	100 kHz	
Band n65		dBm	dBm	dBm		
E-UTRA Band 66 or NR	1710 – 1780 MHz	-96	-91	-88	100 kHz	
Band n66		dBm	dBm	dBm		
E-UTRA Band 68	698 – 728 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
E-UTRA Band 70 or NR	1695 – 1710 MHz	-96	-91	-88	100 kHz	
Band n70		dBm	dBm	dBm		
E-UTRA Band 71 or NR	663 – 698 MHz	-96	-91	-88	100 kHz	
Band n71		dBm	dBm	dBm		
E-UTRA Band 72	451 – 456 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
E-UTRA Band 74 or NR	1427 – 1470 MHz	-96	-91	-88	100 kHz	This is not
Band n74		dBm	dBm	dBm		applicable to BS
						operating in
						Band n50 or n51
NR Band n77	3.3 – 4.2 GHz	-96	-91	-88	100 kHz	This is not
		dBm	dBm	dBm		applicable to BS
						operating in
						Band n77 or n78
NR Band n78	3.3 – 3.8 GHz	-96	-91	-88	100 kHz	This is not
		dBm	dBm	dBm		applicable to BS
						operating in
						Band n77 or n78
NR Band n79	4.4 – 5.0 GHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n80	1710 – 1785 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n81	880 – 915 MHz	-96	-91	-88	100 kHz	
	-	dBm	dBm	dBm		
NR Band n82	832 – 862 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n83	703 – 748 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n84	1920 – 1980 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
E-UTRA Band 85	698 – 716 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n86	1710 – 1780 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
		u Din		uDin		

- NOTE 1: As defined in the scope for spurious emissions in this clause, the co-location requirements in table 6.6.5.2.4-1 do not apply for the frequency range extending Δf_{OBUE} immediately outside the BS transmit frequency range of a downlink *operating band* (see table 5.2-1). The current state-of-the-art technology does not allow a single generic solution for co-location with other system on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [4].
- NOTE 2: Table 6.6.5.2.4-1 assumes that two *operating bands*, where the corresponding BS transmit and receive frequency ranges in table 5.2-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-location requirements may apply that are not covered by the 3GPP specifications.

NOTE 3: Co-located TDD base stations that are synchronized and using the same or adjacent *operating band* can transmit without special co-locations requirements. For unsynchronized base stations, special co-location requirements may apply that are not covered by the 3GPP specifications.

6.6.5.3 Minimum requirements for BS type 1-C

The Tx spurious emissions for *BS type 1-C* for each *antenna connector* shall not exceed the *basic limits* specified in subclause 6.6.5.2.

6.6.5.4 Minimum requirements for BS type 1-H

The Tx spurious emissions requirements for *BS type 1-H* are that for each *TAB connector TX min cell group* and each applicable *basic limit* in subclause 6.6.5.2, the power summation emissions at the *TAB connectors* of the *TAB connector TX min cell group* shall not exceed an OTA limit specified as the *basic limit* + X, where $X = 10log_{10}(N_{TXU,countedpercell})$, unless stated differently in regional regulation.

NOTE: Conformance to the *BS type 1-H* spurious emission requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the emissions power measured on each *TAB connector* in the *TAB connector TX min cell group* shall be less than or equal to the limit as defined in this subclause for the respective frequency span.

Or

2) The unwanted emissions power at each *TAB connector* shall be less than or equal to the *BS type 1-H* limit as defined in this subclause for the respective frequency span, scaled by $-10\log_{10}(n)$, where n is the number of *TAB connectors* in the *TAB connector TX min cell group*.

6.7 Transmitter intermodulation

6.7.1 General

The transmitter intermodulation requirement is a measure of the capability of the transmitter unit to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter unit via the antenna, RDN and antenna array. The requirement shall apply during the transmitter ON period and the *transmitter transient period*.

For *BS type 1-C*, the transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the *antenna connector*.

For *BS type 1-H*, the transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the *TAB connector*.

For *BS type 1-H*, there are two types of transmitter intermodulation cases captured by the transmitter intermodulation requirement:

- 1) Co-location transmitter intermodulation in which the interfering signal is from a co-located base station.
- 2) Intra-system transmitter intermodulation in which the interfering signal is from other transmitter units within the *BS type 1-H*.

For *BS type 1-H*, the co-location transmitter intermodulation requirement is considered sufficient if the interference signal for the co-location requirement is higher than the declared interference signal for intra-system transmitter intermodulation requirement.

6.7.2 Minimum requirements for BS type 1-C

6.7.2.1 Co-location minimum requirements

For *BS type 1-C*, the wanted signal and interfering signal centre frequency is specified in table 6.7.2.1-1, where interfering signal level is Rated total output power ($P_{rated,t,AC}$) at *antenna connector* in the *operating band* – 30 dB.

The requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum, the requirement is also applicable inside a sub-block gap for interfering signal offsets where the interfering signal falls completely within the sub-block gap. The interfering signal offset is defined relative to the sub-block edges.

For a *multi-band connector*, the requirement shall apply relative to the Base Station RF Bandwidth edges of each supported *operating band*. In case the *Inter RF Bandwidth gap* is less than 3*BW_{Channel} (where BW_{Channel} is the minimal *BS channel bandwidth* of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the Inter RF Bandwidth gap.

The transmitter intermodulation level shall not exceed the unwanted emission limits in subclauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.2.1-1.

Table 6.7.2.1-1: Interfering and wanted signals for the co-location transmitter intermodulation requirement

	Parameter	Value		
Wanted s	signal type	NR single carrier, or multi-carrier, or multiple intra-band contiguously or non- contiguously aggregated carriers		
Interfering	g signal type	NR signal, the supported minimum <i>BS</i> <i>channel bandwidth</i> (BW _{Channel}) with 15 kHz SCS of the band		
Interferin	g signal level	Rated total output power (P _{rated,t,AC}) in the <i>operating band</i> – 30 dB		
lower/upp	g signal centre frequency offset from the per edge of the wanted signal or edge of sub- ide a sub-block gap	$f_{offset} = \pm BW_{Channel}\left(n - \frac{1}{2}\right)$, for n=1, 2 and 3		
NOTE:	INTE: Interfering signal positions that are partially or completely outside of any downlink operating band of the base station are excluded from the requirement, unless the interfering signal positions fall within the frequency range of adjacent downlink operating bands in the same geographical area. In case that none of the interfering signal positions fall completely within the frequency range of the downlink operating band, TS 38.141-1 [5] provides further guidance regarding appropriate test requirements.			

6.7.2.2 Additional requirements

TBD

6.7.3 Minimum requirements for BS type 1-H

6.7.3.1 Co-location minimum requirements

The transmitter intermodulation level shall not exceed the unwanted emission limits in subclauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.3.1-1

The requirement is applicable outside the *Base Station RF Bandwidth edges*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For *TAB connectors* supporting operation in *non-contiguous spectrum*, the requirement is also applicable inside a *sub-block gap* for interfering signal offsets where the interfering signal falls completely within the *sub-block gap*. The interfering signal offset is defined relative to the *sub-block* edges.

For *multi-band connector*, the requirement shall apply relative to the *Base Station RF Bandwidth edges* of each *operating band*. In case the *inter RF Bandwidth gap* is less than 3*BW_{Channel} (where BW_{Channel} is the minimal *BS channel bandwidth* of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the *inter RF Bandwidth gap*.

Table 6.7.3.1-1: Interfering and wanted signals for the co-location transmitter intermodulation requirement

Parameter	Value			
Wanted signal type	NR single carrier, or multi-carrier, or multiple intra-band contiguously or non- contiguously aggregated carriers			
Interfering signal type	NR signal, the minimum supported <i>BS</i> <i>channel bandwidth</i> (BW _{Channel}) with 15 kHz SCS of the band			
Interfering signal level	Rated total output power per <i>TAB</i> connector (P _{rated,t,TABC}) in the operating band – 30 dB			
Interfering signal centre frequency offset from the lower/upper edge of the wanted signal or edge of <i>subblock</i> inside a gap	$f_{offset} = \pm BW_{Channel}\left(n - \frac{1}{2}\right)$, for n=1, 2 and 3			
NOTE: Interfering signal positions that are partially or completely outside of any downlink operating band of the TAB connector are excluded from the requirement, unless the interfering signal positions fall within the frequency range of adjacent downlink operating bands in the same geographical area. In case that none of the interfering signal positions fall completely within the frequency range of the downlink operating band, TS 38.141-1 [5] provides further guidance regarding appropriate test requirements.				

6.7.3.2 Intra-system minimum requirements

The transmitter intermodulation level shall not exceed the unwanted emission limits in subclauses 6.6.3 and 6.6.4 in the presence of an NR interfering signal according to table 6.7.3.2-1.

Table 6.7.3.2-1: Interfering and wanted signals for intra-system transmitter intermodulation requirement

Parameter	Value			
Wanted signal type	NR signal			
Interfering signal type	NR signal of the same <i>BS channel</i> <i>bandwidth</i> and SCS as the wanted signal (Note 1).			
Interfering signal level	Power level declared by the base station manufacturer (Note 2).			
Frequency offset between interfering signal and wanted signal	0 MHz			
NOTE 1: The interfering signal shall be incoherent with the wanted signal. NOTE 2: The declared interfering signal power level at each <i>TAB connector</i> is the sum of the co- channel leakage power coupled via the combined RDN and Antenna Array from all the other <i>TAB connectors</i> , but does not comprise power radiated from the Antenna Array and reflected back from the environment. The power at each of the interfering <i>TAB connector</i> is P _{rated,c,TABC} .				

6.7.3.3 Additional requirements

TBD

7 Conducted receiver characteristics

7.1 General

Conducted receiver characteristics are specified at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*, with full complement of transceivers for the configuration in normal operating condition.

Unless otherwise stated, the following arrangements apply for conducted receiver characteristics requirements in clause 7:

- Requirements apply during the BS receive period.
- Requirements shall be met for any transmitter setting.
- For FDD operation the requirements shall be met with the transmitter unit(s) ON.
- Throughput requirements defined for the radiated receiver characteristics do not assume HARQ retransmissions.
- When BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier.
- For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower edge and positive offsets of the interfering signal apply relative to the higher edge.
- NOTE 1: In normal operating condition the BS in FDD operation is configured to transmit and receive at the same time.
- NOTE 2: In normal operating condition the BS in TDD operation is configured to TX OFF power during *receive period*.

7.2 Reference sensitivity level

7.2.1 General

The reference sensitivity power level P_{REFSENS} is the minimum mean power received at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* at which a throughput requirement shall be met for a specified reference measurement channel.

7.2.2 Minimum requirements for BS type 1-C and BS type 1-H

For NR, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in table 7.2.2-1 for Wide Area BS, in table 7.2.2-2 for Medium Range BS and in table 7.2.2-3 for Local Area BS.

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, P _{REFSENS} (dBm)			
5, 10, 15	15	G-FR1-A1-1	-101.7			
10, 15	30	G- FR1-A1-2	-101.8			
10, 15	60	G- FR1-A1-3	-98.9			
20, 25, 30, 40, 50	15	G- FR1-A1-4	-95.3			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G- FR1-A1-5	-95.6			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G- FR1-A1-6	-95.7			
NOTE: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full <i>BS channel bandwidth</i> .						

Table 7.2.2-1: NR Wide	Area BS	reference sensitivity	levels
	/		101010

Table 7.2.2-2: NR Medium Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, P _{REFSENS} (dBm)			
5, 10, 15	15	G- FR1-A1-1	-96.7			
10, 15	30	G- FR1-A1-2	-96.8			
10, 15	60	G- FR1-A1-3	-93.9			
20, 25, 30, 40, 50	15	G- FR1-A1-4	-90.3			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G- FR1-A1-5	-90.6			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G- FR1-A1-6	-90.7			
NOTE: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full <i>BS channel bandwidth.</i>						

Table 7.2.2-3: NR Local Area BS reference sensitivity levels
--

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, P _{REFSENS} (dBm)
5, 10, 15	15	G- FR1-A1-1	-93.7
10, 15	30	G- FR1-A1-2	-93.8
10, 15	60	G- FR1-A1-3	-90.9
20, 25, 30, 40, 50	15	G- FR1-A1-4	-87.3
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G- FR1-A1-5	-87.6
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G- FR1-A1-6	-87.7
be met for each to disjoint freque	consecutive applicatio ency ranges with a widt hannel each, except for	Instance of the reference measurement n of a single instance of the reference m th corresponding to the number of resou r one instance that might overlap one ot	neasurement channel mapped Irce blocks of the reference

7.3 Dynamic range

7.3.1 General

The dynamic range is specified as a measure of the capability of the receiver to receive a wanted signal in the presence of an interfering signal at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* inside the received *BS channel bandwidth*. In this condition, a throughput requirement shall be met for a specified reference measurement channel. The interfering signal for the dynamic range requirement is an AWGN signal.

7.3.2 Minimum requirement for BS type 1-C and BS type 1-H

For NR, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in table 7.3.2-1 for Wide Area BS, in table 7.3.2-2 for Medium Range BS and in table 7.3.2-3 for Local Area BS.

BS channe bandwidth (MHz)		Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5	15	G-FR1-A2-1	-70.7	-82.5	AWGN
5	30	G- FR1-A2-2	-71.4	-02.5	AWGN
	15	G-FR1-A2-1	-70.7		
10	30	G- FR1-A2-2	-71.4	-79.3	AWGN
	60	G- FR1-A2-3	-68.4		
	15	G-FR1-A2-1	-70.7		
15	30	G- FR1-A2-2	-71.4	-77.5	AWGN
	60	G- FR1-A2-3	-68.4		
	15	G- FR1-A2-4	-64.5		
20	30	G- FR1-A2-5	-64.5	-76.2	AWGN
	60	G- FR1-A2-6	-64.8		
	15	G- FR1-A2-4	-64.5		
25	30	G- FR1-A2-5	-64.5	-75.2	AWGN
	60	G- FR1-A2-6	-64.8		
	15	G- FR1-A2-4	-64.5		
30	30	G- FR1-A2-5	-64.5	-74.4	AWGN
	60	G- FR1-A2-6	-64.8		
	15	G- FR1-A2-4	-64.5		
40	30	G- FR1-A2-5	-64.5	-73.1	AWGN
	60	G- FR1-A2-6	-64.8		
	15	G- FR1-A2-4	-64.5		
50	30	G- FR1-A2-5	-64.5	-72.2	AWGN
	60	G- FR1-A2-6	-64.8		
	30	G- FR1-A2-5	-64.5		
60	60	G- FR1-A2-6	-64.8	-71.4	AWGN
70	30	G- FR1-A2-5	-64.5	70.0	
70	60	G- FR1-A2-6	-64.8	-70.8	AWGN
	30	G- FR1-A2-5	-64.5	70.4	A14/ON
80	60	G- FR1-A2-6	-64.8	-70.1	AWGN
	30	G- FR1-A2-5	-64.5	00.0	A14/ON
90	60	G- FR1-A2-6	-64.8	-69.6	AWGN
100	30	G- FR1-A2-5	-64.5		
100	60	G- FR1-A2-6	-64.8	-69.1	AWGN
ref ap fre ref	e wanted signal mea erence measuremen plication of a single in quency ranges with a erence measuremen stance to cover the fu	n power is the pow t channel. This rec nstance of the refe a width correspond t channel each, ex	ver level of a sing quirement shall be rence measurem ling to the numbe ccept for one insta	e met for each cons ent channel mappe r of resource block	ecutive d to disjoint s of the

Table 7.3.2-1: Wide Area BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5	15	G-FR1-A2-1	-65.7	-77.5	AWGN
5	30	G- FR1-A2-2	-66.4	-77.5	AWON
	15	G-FR1-A2-1	-65.7		
10	30	G- FR1-A2-2	-66.4	-74.3	AWGN
	60	G- FR1-A2-3	-63.4		
	15	G-FR1-A2-1	-65.7		
15	30	G- FR1-A2-2	-66.4	-72.5	AWGN
	60	G- FR1-A2-3	-63.4		
	15	G- FR1-A2-4	-59.5		
20	30	G- FR1-A2-5	-59.5	-71.2	AWGN
	60	G- FR1-A2-6	-59.8		
	15	G- FR1-A2-4	-59.5		
25	30	G- FR1-A2-5	-59.5	-70.2	AWGN
	60	G- FR1-A2-6	-59.8		
	15	G- FR1-A2-4	-59.5		
30	30	G- FR1-A2-5	-59.5	-69.4	AWGN
	60	G- FR1-A2-6	-59.8		1
	15	G- FR1-A2-4	-59.5		AWGN
40	30	G- FR1-A2-5	-59.5	-68.1	
	60	G- FR1-A2-6	-59.8		
	15	G- FR1-A2-4	-59.5		
50	30	G- FR1-A2-5	59.5	-67.2	AWGN
	60	G- FR1-A2-6	-59.8		
00	30	G- FR1-A2-5	-59.5	00.4	
60	60	G- FR1-A2-6	-59.8	-66.4	AWGN
=0	30	G- FR1-A2-5	-59.5	05.0	
70	60	G- FR1-A2-6	-59.8	-65.8	AWGN
	30	G- FR1-A2-5	-59.5	05.4	
80	60	G- FR1-A2-6	-59.8	-65.1	AWGN
	30	G- FR1-A2-5	-59.5		
90	60	G- FR1-A2-6	-59.8	-64.6	AWGN
105	30	G- FR1-A2-5	-59.5		
100	60	G- FR1-A2-6	-59.8	-64.1	AWGN
refer appli frequ refer	wanted signal mea ence measuremen cation of a single in uency ranges with a ence measuremen nce to cover the fu	n power is the pov t channel. This rec astance of the refe a width correspond t channel each, ex	ver level of a sing quirement shall be rence measurem ling to the numbe ccept for one insta	e met for each cons ent channel mappe r of resource block	ecutive ed to disjoint s of the

Table 7.3.2-2: Medium Range BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5	15	G-FR1-A2-1	-62.7	-74.5	
5	30	G- FR1-A2-2	-63.4	-74.5	AWGN
	15	G-FR1-A2-1	-62.7		
10	30	G- FR1-A2-2	-63.4	-71.3	AWGN
	60	G- FR1-A2-3	-60.4		
	15	G-FR1-A2-1	-62.7		
15	30	G- FR1-A2-2	-63.4	-69.5	AWGN
	60	G- FR1-A2-3	-60.4		
	15	G- FR1-A2-4	-56.5		
20	30	G- FR1-A2-5	-56.5	-68.2	AWGN
	60	G- FR1-A2-6	-56.8		
	15	G- FR1-A2-4	-56.5		AWGN
25	30	G- FR1-A2-5	-56.5	-67.2	
	60	G- FR1-A2-6	-56.8	-	
	15	G- FR1-A2-4	-56.5	-66.4	AWGN
30	30	G- FR1-A2-5	-56.5		
	60	G- FR1-A2-6	-56.8		
	15	G- FR1-A2-4	-56.5	-65.1	AWGN
40	30	G- FR1-A2-5	-56.5		
	60	G- FR1-A2-6	-56.8		
	15	G- FR1-A2-4	-56.5		
50	30	G- FR1-A2-5	-56.5	-64.2	AWGN
00	60	G- FR1-A2-6	-56.8	0	
	30	G- FR1-A2-5	-56.5		
60	60	G- FR1-A2-6	-56.8	-63.4	AWGN
	30	G- FR1-A2-5	-56.5	-62.8	
70	60	G- FR1-A2-6	-56.8	02.0	AWGN
	30	G- FR1-A2-5	-56.5		
80	60	G- FR1-A2-6	-56.8	-62.1	AWGN
	30	G- FR1-A2-5	-56.5		
90	60	G- FR1-A2-6	-56.8	-61.6	AWGN
	30	G- FR1-A2-5	-56.5		
100	60	G- FR1-A2-6	-56.8	-61.1	AWGN
refe app freq refe	wanted signal mea rence measuremen lication of a single in uency ranges with a rence measuremen ance to cover the fu	n power is the pow t channel. This rec nstance of the refe a width correspond t channel each, ex	ver level of a sing quirement shall be rence measurem ling to the numbe ccept for one insta	e met for each cons ent channel mappe r of resource blocks	ecutive d to disjoint s of the

Table 7.3.2-3: Local Area BS dynamic range

7.4 In-band selectivity and blocking

Adjacent Channel Selectivity (ACS) 7.4.1

7.4.1.1 General

Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency at the antenna connector for BS type 1-C or TAB connector for BS type 1-H in the presence of an adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

7.4.1.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel.

For BS, the wanted and the interfering signal coupled to the *BS type 1-C antenna connector* or *BS type 1-H TAB connector* are specified in table 7.4.1.2-1 and the frequency offset between the wanted and interfering signal in table 7.4.1.2-2 for ACS. The reference measurement channel for the wanted signal is identified in table 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The ACS requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any *operating band*, the ACS requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the NR interfering signal in table 7.4.1.2-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a *multi-band connector*, the ACS requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the NR interfering signal in table 7.4.1.2-2. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)		
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 (Note 1)	P _{REFSENS} + 6dB	Wide Area: -52 Medium Range: -47 Local Area: -44		
lowest SCS NOTE 2: PREFSENS dep	The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that bandwidth. PREFSENS depends on the <i>BS channel bandwidth</i> as specified in tables 7.2.2-1, 7.2.2-2, 7.2.2-3			

Table 7.4.1.2-1: Base station ACS requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
5	±2.5025	5 MHz DFT-s-OFDM NR
10	±2.5075	signal
15	±2.5125	SCS: 15kHz, 25 RB
20	±2.5025	505. TSKI12, 25 KB
25	±9.535	
30	±9.585	
40	±9.535	
50	±9.485	20 MHz DFT-s-OFDM NR
60	±9.585	signal
70	±9.535	SCS: 15kHz, 100 RB
80	±9.485	
90	±9.585	
100	±9.535	

7.4.1.3 Void

7.4.1.4 Void

7.4.2 In-band blocking

7.4.2.1 General

The in-band blocking characteristics is a measure of the receiver's ability to receive a wanted signal at its assigned channel at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an unwanted interferer, which is an NR signal for general blocking or an NR signal with one resource block for narrowband blocking.

7.4.2.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* or *BS type 1-H TAB connector* using the parameters in tables 7.4.2.2-1, 7.4.2.2-2 and 7.4.2.2-3 for general blocking and narrowband blocking requirements. The reference measurement channel for the wanted signal is identified in subclause 7.2.2 for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The in-band blocking requirements apply outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

The in-band blocking requirement shall apply from $F_{UL,low}$ - Δf_{OOB} to $F_{UL,high}$ + Δf_{OOB} , excluding the downlink frequency range of the FDD *operating band*. The Δf_{OOB} for *BS type 1-C* and *BS type 1-H* is defined in table 7.4.2.2-0.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

BS type	Operating band characteristics	Δf _{OOB} (MHz)
BS type 1-C	F _{UL,high} – F _{UL,low} ≤ 200 MHz	20
BS type 1-C	200 MHz < F _{UL,high} – F _{UL,low} ≤ 900 MHz	60
BS type 1-H	FUL,high – FUL,low < 100 MHz	20
во туре т-п	100 MHz ≤ F _{UL,high} – F _{UL,low} ≤ 900 MHz	60

Table 7.4.2.2-0: Δf_{OOB} offset for NR operating bands

For a BS operating in non-contiguous spectrum within any *operating band*, the in-band blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in tables 7.4.2.2-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a *multi-band connector*, the blocking requirements apply in the in-band blocking frequency ranges for each supported *operating band*. The requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in tables 7.4.2.2-1.

For a BS operating in non-contiguous spectrum within any *operating band*, the narrowband blocking requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the *channel bandwidth* of the NR interfering signal in Table 7.4.2.2-3. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a *multi-band connector*, the narrowband blocking requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the NR interfering signal in Table 7.4.2.2-3. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)	Type of interfering signal
5, 10, 15, 20	P _{REFSENS} + 6 dB	Wide Area: -43 Medium Range: -38 Local Area: -35	±7.5	5 MHz DFT-s-OFDM NR signal SCS: 15 kHz, 25 RB
25, 30, 40, 50, 60, 70, 80, 90, 100	P _{REFSENS} + 6 dB	Wide Area: -43 Medium Range: -38 Local Area: -35	±30	20 MHz DFT-s-OFDM NR signal SCS: 15 kHz, 100 RB
NOTE: PREFSENS dep	pends on the BS chan	nel bandwidth as specifie	ed in tables 7.2.2-1, 7.2	2.2-2 and 7.2.2-3.

Table 7.4.2.2-2: Base Station narrowband blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)		
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80,90, 100 (Note 1)	P _{REFSENS} + 6 dB	Wide Area: -49 Medium Range: -44 Local Area: -41		
NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that <i>BS channel</i> bandwidth				
NOTE 2: P _{REFSENS} depends on the <i>BS channel bandwidth</i> as specified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3.				

		· · · · · · · ·				
BS channel	Interfering RB centre	Type of interfering signal				
bandwidth of	frequency offset to the					
the	lower/upper Base Station					
lowest/highest	RF Bandwidth edge or sub-					
carrier received	block edge inside a sub-					
(MHz)	block gap (kHz)					
5	±([342.5]+m*180),	5 MHz DFT-s-OFDM NR				
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	signal, 1 RB				
10	±([347.5]+m*180),	SCS: 15 kHz				
	m=0, 1, 2, 3, 4, 9, 14, 19, 24					
15	±([352.5]+m*180),					
	m=0, 1, 2, 3, 4, 9, 14, 19, 24					
20	±([342.5]+m*180),					
	m=0, 1, 2, 3, 4, 9, 14, 19, 24					
25	±([557.5]+m*180),	20 MHz DFT-s-OFDM NR				
	m=0, 1, 2, 3, 4, 29, 54, 79,	signal, 1 RB				
	100	SCS: 15 kHz				
30	±([562.5]+m*180),					
	m=0, 1, 2, 3, 4, 29, 54, 79,					
	100					
40	±([557.5]+m*180),					
	m=0, 1, 2, 3, 4, 29, 54, 79,					
	100					
50	±([552.5]+m*180),					
	m=0, 1, 2, 3, 4, 29, 54, 79,					
60	±([562.5]+m*180),					
	m=0, 1, 2, 3, 4, 29, 54, 79,					
70						
70	±([557.5]+m*180),					
	m=0, 1, 2, 3, 4, 29, 54, 79,					
00	100					
80	$\pm([552.5]+m*180),$					
	m=0, 1, 2, 3, 4, 29, 54, 79,					
00	100					
90	±([562.5]+m*180), m=0, 1, 2, 3, 4, 29, 54, 79,					
	100 n=0, 1, 2, 3, 4, 29, 54, 79,					
100	±([557.5]+m*180),	4				
100	$\pm (1557.5) \pm (1760),$ m=0, 1, 2, 3, 4, 29, 54, 79,					
	100					
NOTE: Interferi						
	NOTE: Interfering signal consisting of one resource block positioned at the stated offset, the <i>channel bandwidth</i> of the interfering signal is located					
adjacently to the lower/upper Base Station RF Bandwidth edge or sub-						
block edge inside a sub-block gap.						
DIOCK edge inside a sub-block gap.						

Table 7.4.2.2-3: Base Station narrowband blocking interferer frequency offsets

- 7.4.2.3 Void
- 7.4.2.4 Void

7.5 Out-of-band blocking

7.5.1 General

The out-of-band blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an unwanted interferer out of the *operating band*, which is a CW signal for out-of-band blocking.

7.5.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* or *BS type 1-H TAB connector* using the parameters in table 7.5.2-1. The reference measurement channel for the wanted signal is identified in subclause 7.2.2 for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The out-of-band blocking requirement apply from 1 MHz to $F_{UL,low}$ - Δf_{OOB} and from $F_{UL,high}$ + Δf_{OOB} up to 12750 MHz, including the downlink frequency range of the FDD *operating band*. The Δf_{OOB} for *BS type 1-C* and *BS type 1-H* is defined in table 7.4.2.2-0.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

For a *multi-band connector*, the requirement in the out-of-band blocking frequency ranges apply for each *operating band*, with the exception that the in-band blocking frequency ranges of all supported *operating bands* according to subclause 7.4.2.2 shall be excluded from the out-of-band blocking requirement.

Wanted Signal mean power (dBm)		Interfering Signal mean power (dBm)	Type of Interfering Signal	
P _{REFSENS} +6 dB (Note)		-15	CW carrier	
NOTE:	PREFSENS depends on the BS channel bandwidth as specified in Table 7.2.2-1, 7.2.2-2, and 7.2.2-3.			

Table 7.5.2-1: Out-of-band blocking performance requirement for NR

7.5.3 Co-location minimum requirements for BS type 1-C and BS type 1-H

This additional blocking requirement may be applied for the protection of NR BS receivers when GSM, CDMA, UTRA, E-UTRA or NR BS operating in a different frequency band are co-located with a NR BS. The requirement is applicable to all *BS channel bandwidths* supported by the NR BS.

The requirements in this clause assume a 30 dB coupling loss between interfering transmitter and NR BS receiver and are based on co-location with base stations of the same class.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* or *BS type 1-H TAB connector* input using the parameters in Table 7.5.3-1 for all the BS classes. The reference measurement channel for the wanted signal is identified in Tables 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each *BS channel bandwidth* and further specified in Annex A. The characteristics of the interfering signal is further specified in annex D.

The blocking requirement for co-location with BS in other bands is applied for all *operating bands* for which co-location protection is provided.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

Table 7.5.3-1: Blocking performance requirement for NR BS when co-located with BS in other frequency bands.

Frequency range of interfering signal	Wanted signal mean power for WA BS (dBm)	Interfering signal mean power for WA BS (dBm)	Interfering signal mean power for MR BS (dBm)	Interfering signal mean power for LA BS (dBm)	Type of interfering signal	
Frequency range of co-located downlink operating band	P _{REFSENS} +6dB (Note 1)	+16	+8	x (Note 2)	CW carrier	
 NOTE 1: PREFSENS depends on the BS channel bandwidth as specified in Table 7.2.2-1, 7.2.2-2, and 7.2.2-3. NOTE 2: x = -7 dBm for NR BS co-located with Pico GSM850 or Pico CDMA850 x = -4 dBm for NR BS co-located with Pico DCS1800 or Pico PCS1900 x = -6 dBm for NR BS co-located with UTRA bands or E-UTRA bands or NR bands NOTE 3: The requirement does not apply when the interfering signal falls within any of the supported uplink operating band(s) or in Δf_{OOB} immediately outside any of the supported uplink operating band(s). 						

7.5.4 Void

7.6 Receiver spurious emissions

7.6.1 General

The receiver spurious emissions power is the power of emissions generated or amplified in a receiver unit that appear at the *antenna connector* (for *BS type 1-C*) or at the *TAB connector* (for *BS type 1-H*). The requirements apply to all BS with separate RX and TX *antenna connectors / TAB connectors*.

NOTE: In this case for FDD operation the test is performed when both TX and RX are ON, with the TX *antenna connectors* / *TAB connectors* terminated.

For antenna connectors / TAB connectors supporting both RX and TX in TDD, the requirements apply during the *transmitter OFF period*. For antenna connectors / TAB connectors supporting both RX and TX in FDD, the RX spurious emissions requirements are superseded by the TX spurious emissions requirements, as specified in subclause 6.6.5.

For RX-only *multi-band connectors*, the spurious emissions requirements are subject to exclusion zones in each supported *operating band*. For *multi-band connectors* that both transmit and receive in *operating band* supporting TDD, RX spurious emissions requirements are applicable during the *TX OFF period*, and are subject to exclusion zones in each supported *operating band*.

For *BS type 1-H* manufacturer shall declare *TAB connector RX min cell groups*. Every *TAB connector* of *BS type 1-H* supporting reception in an *operating band* shall map to one *TAB connector RX min cell group*, where mapping of *TAB connectors* to cells/beams is implementation dependent.

The number of active receiver units that are considered when calculating the conducted RX spurious emission limits ($N_{RXU,counted}$) for *BS type 1-H* is calculated as follows:

 $N_{RXU,counted} = min(N_{RXU,active}, 8 \times N_{cells})$

 $N_{RXU,countedpercell}$ is used for scaling of *basic limits* and is derived as $N_{RXU,countedpercell} = N_{RXU,counted} / N_{cells}$, where N_{cells} is defined in subclause 6.1.

NOTE: NRXU, active is the number of actually active receiver units and is independent to the declaration of Ncells.

7.6.2 Basic limits

The receiver spurious emissions basic limits are provided in table 7.6.2-1.

Spurious frequency	Basic limits	Measurement	Note	
range		bandwidth		
30 MHz – 1 GHz	-57 dBm	100 kHz	Note 1	
1 GHz – 12.75 GHz	-47 dBm	1 MHz	Note 1, Note 2	
12.75 GHz – 5 th	-47 dBm	1 MHz	Note 1, Note 2, Note 3	
harmonic of the upper				
frequency edge of the				
UL operating band in				
GHz				
NOTE 1: The frequen	cy range from Δf	OBUE below the lowest	t frequency of the BS transmitter operating band	
to Δfobue ab	ove the highest frequency of the BS transmitter operating band may be excluded from			
the requirem	ent. Δf_{OBUE} is defined in subclause 6.6.1.			
NOTE 2: For multi-ba	nd connectors, th	connectors, the exclusion applies for all supported operating bands for those		
antenna con	connectors / TAB connectors.			

Table 7.6.2-1: General BS receiver spurious emissions limits

7.6.3 Minimum requirement for *BS type 1-C*

The RX spurious emissions requirements for *BS type 1-C* are that for each *antenna connector*, the power of emissions shall not exceed *basic limits* specified in table 7.6.2-1.

7.6.4 Minimum requirement for BS type 1-H

The RX spurious emissions requirements for *BS type 1-H* are that for each applicable *basic limit* specified in table 7.6.2-1 for each *TAB connector RX min cell group*, the power sum of emissions at respective *TAB connectors* shall not exceed the BS limits specified as the *basic limits* + X, where $X = 10log_{10}(N_{RXU,countedpercell})$, unless stated differently in regional regulation.

The RX spurious emission requirements are applied per the *TAB connector RX min cell group* for all the configurations supported by the BS.

- NOTE: Conformance to the BS receiver spurious emissions requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:
 - 1) The sum of the spurious emissions power measured on each *TAB connector* in the *TAB connector RX min cell group* shall be less than or equal to the BS limit above for the respective frequency span.

Or

2) The spurious emissions power at each *TAB connector* shall be less than or equal to the BS limit as defined above for the respective frequency span, scaled by -10log₁₀(*n*), where *n* is the number of *TAB connectors* in the *TAB connector RX min cell group*.

7.7 Receiver intermodulation

7.7.1 General

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of two interfering signals which have a specific frequency relationship to the wanted signal.

7.7.2 Minimum requirement for BS type 1-C and BS type 1-H

For NR, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the *BS type 1-C antenna connector* or *BS type 1-H TAB connector*, with the conditions specified in tables 7.7.2-1 and 7.7.2-2 for intermodulation performance and in tables 7.7.2-3, and 7.7.2-4 for narrowband intermodulation performance. The reference

measurement channel for the wanted signal is identified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall in general be the same as the subcarrier spacing for the wanted signal, except for the case of wanted signal subcarrier spacing 60 kHz and *BS channel bandwidth* <=20MHz, for which the subcarrier spacing of the interfering signal shall be 30 kHz.

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any *operating band*, the narrowband intermodulation requirement shall apply in addition inside any sub-block gap in case the sub-block gap is at least as wide as the *channel bandwidth* of the NR interfering signal in table 7.7.2-2 or 7.7.2-4. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a *multi-band connector*, the intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the gap size is at least twice as wide as the NR interfering signal centre frequency offset from the Base Station RF Bandwidth edge.

For a *multi-band connector*, the narrowband intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap in case the gap size is at least as wide as the NR interfering signal in tables 7.7.2-2 and 7.7.2-4. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Base Station Type	Wanted Signal mean power (dBm)	Mean power of interfering signals (dBm)	Type of interfering signal
Wide Area BS	PREFSENS +6 dB	-52	
Medium Range BS	PREFSENS +6 dB	-47	See Table 7.7.2-2
Local Area BS	PREFSENS +6 dB	-44	
NOTE 1: PREFSENS O	depends on the BS class and	on the BS channel bandwid	th, see subclause 7.2.

Table 7.7.2-1: General intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz)	Type of interfering signal			
	±7.5	CW			
5	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)			
	±7.45	CW			
10	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)			
	±7.43	CW			
15	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)			
	±7.38	CW			
20	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)			
	±7.45	CW			
25	±25	20MHz DFT-s-OFDM NR signal (Note 2)			
	±7.43	CW			
30	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
	±7.45	CW			
40	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
	±7.35	CW			
50	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
	±7.49	CW			
60	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
70	±7.42	CW			
70	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
00	±7.44				
80	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
00	±7.43				
90	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
400	±7.45	CW			
100	±25	20 MHz DFT-s-OFDM NR signal (Note 2)			
for 30 kHz subcarrier spacing. NOTE 2: Number of RBs is 100 for 15 kHz subcarrier spacing, 50 for 30 kHz subcarrier spacing and 24 for 60 kHz subcarrier spacing.					
52401					

BS type	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal		
Wide Area BS	P _{REFSENS} + 6dB (Note 1)	-52			
Medium Range BS	P _{REFSENS} + 6dB (Note 2)	-47	See Table 7.7.2-4		
Local Area BS	P _{REFSENS} + 6dB (Note 3)	-44			
NOTE 1: PREFSENS depends on the BS channel bandwidth as specified in table 7.2.2-1.					
	REFSENS depends on the BS channel bandwidth as specified in table 7.2.2-2.				
NOTE 3: PREFSENS depe	NOTE 3: PREFSENS depends on the BS channel bandwidth as specified in table 7.2.2-3.				

Table 7.7.2-3: Narrowband intermodulation performance requirement in FR1

· · ·						
BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz)	Type of interfering signal				
	±360	CW				
5	±1420	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±325	CW				
10	±1780	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±380	CW				
15 (Note 2)	±1600	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±345	CW				
20 (Note 2)	±1780	5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±325	CW				
25 (Note 2)	±1990	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±320	CW				
30 (Note 2)	±1990	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±310	CW				
40 (Note 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
(, , _ ,	±330	CW				
50 (Note 2)	±3250	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±350	CW				
60 (Note 2)	±3790	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±400	CW				
70 (Note 2)	±4870	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±390	CW				
80 (Note 2)	±4870	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
	±340	CW				
90 (Note 2)	±5770	20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)				
100 (N=(-0)	±340					
100 (Note 2)	±5770 signal, 1 RB (Note 1)					
 NOTE 1: Interfering signal consisting of one resource block positioned at the stated offset, the BS channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap. NOTE 2: This requirement shall apply only for a G-FRC mapped to the frequency range at the channel edge adjacent to the interfering signals. 						

Table 7.7.2-4: Interfering signals for narrowband intermodulation requirement in FR1

7.8 In-channel selectivity

7.8.1 General

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an NR signal which is time aligned with the wanted signal.

7.8.2 Minimum requirement for BS type 1-C and BS type 1-H

For *BS type 1-C* and *1-H*, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in annex A with parameters specified in Table 7.8.2-1 for Wide Area BS, in Table 7.8.2-2 for Medium Range BS and in Table7.8.2-3 for Local Area BS. The reference measurement channel for the wanted signal is identified in tables 7.8.2-1, 7.8.2-2 and 7.8.2-3 for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-100.6	-81.4	DFT-s-OFDM NR signal, SCS 15 kHz, 10 RB
10,15,20,25,30	15	G-FR1-A1-1	-98.7	-77.4	DFT-s-OFDM NR signal, SCS 15 kHz, 25 RB
40,50	15	G-FR1-A1-4	-92.3	-71.4	NR signal, SCS 15 kHz, 100 RB
5	30	G-FR1-A1-8	-101.3	-81.4	DFT-s-OFDM NR signal, SCS 30 kHz, 5 RB
10,15,20,25,30	30	G-FR1-A1-2	-98.8	-78.4	DFT-s-OFDM NR signal, SCS 30 kHz, 10 RB
40,50,60,70,80,90,100	30	G-FR1-A1-5	-92.6	-71.4	DFT-s-OFDM NR signal, SCS 30 kHz, 50 RB
10,15,20,25,30	60	G-FR1-A1-9	-98.2	-78.4	DFT-s-OFDM NR signal, SCS 60 kHz, 5 RB
40,50,60,70,80,90,100	60	G-FR1-A1-6	-92.7	-71.6	DFT-s-OFDM NR signal, SCS 60 kHz, 24 RB
bandwidth of		according to the ta	able 5.4.2.2-1.	The aggregated v	ined for BS channel vanted and interferer

Table 7.8.2-1: Wide Area B	S in-channel selectivity
----------------------------	--------------------------

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-95.6	-76.4	DFT-s-OFDM NR signal, SCS 15 kHz, 10 RB
10,15,20,25,30	15	G-FR1-A1-1	-93.7	-72.4	DFT-s-OFDM NR signal, SCS 15 kHz, 25 RB
40,50	15	G-FR1-A1-4	-87.3	-66.4	DFT-s-OFDM NR signal, SCS 15 kHz, 100 RB
5	30	G-FR1-A1-8	-96.3	-76.4	DFT-s-OFDM NR signal, SCS 30 kHz, 5 RB
10,15,20,25,30	30	G-FR1-A1-2	-93.8	-73.4	DFT-s-OFDM NR signal, SCS 30 kHz, 10 RB
40,50,60,70,80,90,100	30	G-FR1-A1-5	-87.6	-66.4	DFT-s-OFDM NR signal, SCS 30 kHz, 50 RB
10,15,20,25,30	60	G-FR1-A1-9	-93.2	-73.4	DFT-s-OFDM NR signal, SCS 60 kHz, 5 RB
40,50,60,70,80,90,100	60	G-FR1-A1-6	-87.7	-66.6	DFT-s-OFDM NR signal, SCS 60 kHz, 24 RB
bandwidth of		according to the ta	ble 5.4.2.2-1.	The aggregated w	ined for BS channel vanted and interferer

Table 7.8.2-2: Medium Range BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-92.6	-73.4	DFT-s-OFDM NR signal, SCS 15 kHz, 10 RB
10,15,20,25,30	15	G-FR1-A1-1	-90.7	-69.4	DFT-s-OFDM NR signal, SCS 15 kHz, 25 RB
40,50	15	G-FR1-A1-4	-84.3	-63.4	DFT-s-OFDM NR signal, SCS 15 kHz, 100 RB
5	30	G-FR1-A1-8	-93.3	-73.4	DFT-s-OFDM NR signal, SCS 30 kHz, 5 RB
10,15,20,25,30	30	G-FR1-A1-2	-90.8	-70.4	DFT-s-OFDM NR signal, SCS 30 kHz, 10 RB
40,50,60,70,80,90,100	30	G-FR1-A1-5	-84.6	-63.4	DFT-s-OFDM NR signal, SCS 30 kHz, 50 RB
10,15,20,25,30	60	G-FR1-A1-9	-90.2	-70.4	DFT-s-OFDM NR signal, SCS 60 kHz, 5 RB
40,50,60,70,80,90,100	60	G-FR1-A1-6	-84.7	-63.6	DFT-s-OFDM NR signal, SCS 60 kHz, 24 RB
NOTE: Wanted and interfering signal are placed adjacently around F _c , where the F _c is defined for <i>BS channel</i> bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal.					

Table 7.8.2-3: Local area BS in-channel selectivity

8 Conducted performance requirements

8.1 General

8.1.1 Scope and definitions

Conducted performance requirements specify the ability of the *BS type 1-C* or *BS type 1-H* to correctly demodulate signals in various conditions and configurations. Conducted performance requirements are specified at the *antenna connector(s)* (for *BS type 1-C*) and at the *TAB connector(s)* (for *BS type 1-H*).

Conducted performance requirements for the BS are specified for the fixed reference channels defined in annex A and the propagation conditions in annex G. The requirements only apply to those FRCs that are supported by the base station.

Unless stated otherwise, performance requirements apply for a single carrier only. Performance requirements for a BS supporting carrier aggregation are defined in terms of single carrier requirements.

For FDD operation the requirements in clause 8 shall be met with the transmitter units associated with *antenna connectors* (for *BS type 1-C*) or *TAB connectors* (for *BS type 1-H*) in the *operating band* turned ON.

NOTE: In normal operating conditions, antenna connectors (for *BS type 1-C*) or *TAB connectors* (for *BS type 1-H*) in FDD operation are configured to transmit and receive at the same time. The associated transmitter unit(s) may be OFF for some of the tests as specified in TS 38.141-1 [5].

The SNR used in this clause is specified based on a single carrier and defined as:

$$SNR = S / N$$

Where:

- S is the total signal energy in the slot on a single *antenna connector* (for *BS type 1-C*) or on a single *TAB connector* (for *BS type 1-H*).
- N is the noise energy in a bandwidth corresponding to the transmission bandwidth over the duration of a slot on a single *antenna connector* (for *BS type 1-C*) or on a single *TAB connector* (for *BS type 1-H*).

8.1.2 Applicability rule

Text to be added.

8.2 Performance requirements for PUSCH

8.2.1 Requirements for PUSCH with transform precoding disabled

8.2.1.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Parameter		Value
Transform precoding	Disabled	
Uplink-downlink alloc	ation for TDD	15 kHz SCS:
		3D1S1U, S=10D:2G:2U
		30 kHz SCS:
		7D1S2U, S=6D:4G:4U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DMRS	DMRS configuration type	1
	Maximum number of OFDM symbols for front loaded DMRS	1
	Number of additional DMRS symbols	0, 1
	Number of DMRS CDM group(s) without data	2
	EPRE ratio of PUSCH to DMRS	-3 dB
	DMRS port	{0}, {0, 1}
	DMRS sequence generation	NID=0, NSCID =0
Time domain	PUSCH mapping type	A
resource	PUSCH starting symbol index	0
	PUSCH symbol length	14
Frequency domain	RB assignment	Full applicable test
resource		bandwidth
	Frequency hopping	Disabled
TPMI index for 2Tx two-layer spatial multiplexing transmission		0
Code block group based PUSCH transmission		Disabled

Table: 8.2.1.1-1 Test parameters	for testing PUSCH
----------------------------------	-------------------

8.2.1.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.1.2-1 to 8.2.1.2-7 at the given SNR for 1Tx or for 2Tx two-layer spatial multiplexing transmission. FRCs are defined in annex A.

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
			G)			1.0	[0.00]
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-1 G-FR1-A3-8	1+0 1+1	[2,08]
			TDLC300-100		G-FR1-A3-6	1+1	[-1,99] [12,77]
	2	Normal	Low	70 %	G-FR1-A4-8	1+0	[10,54]
			TDLA30-10		G-FR1-A5-1	1+0	[13,79]
		Normal	Low	70 %	G-FR1-A5-8	1+0	[13,69]
			TDLB100-400		G-FR1-A3-1	1+0	[-2,53]
		Normal	Low	70 %	G-FR1-A3-8	1+0	[-5,57]
			TDLC300-100		G-FR1-A4-1	1+0	[7,37]
1	4	Normal	Low	70 %	G-FR1-A4-8	1+1	[6,53]
		Normal	TDLA30-10	70 %	G-FR1-A5-1	1+0	[9,54]
			Low		G-FR1-A5-8	1+1	[9,38]
		Normal	TDLB100-400	70.9/	G-FR1-A3-1	1+0	[-6,11]
		Normai	Low	70 %	G-FR1-A3-8	1+1	[-8,44]
	0	8 Normal	TDLC300-100	70 %	G-FR1-A4-1	1+0	[3,50]
	0	nomai	Low	10 %	G-FR1-A4-8	1+1	[3,07]
		Normal	TDLA30-10	70 %	G-FR1-A5-1	1+0	[6,02]
		nomai	Low	10 %	G-FR1-A5-8	1+1	[5,93]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	1+1	[TBD]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	1+1	[18,09]
		N	TDLB100-400	70.0/	G-FR1-A3-15	1+0	[TBD]
0	2 4	Normal	Low	70 %	G-FR1-A3-22	1+1	[-1,78]
2		Normal	TDLC300-100	70 %	G-FR1-A4-15	1+0	[TBD]
		nomai	Low	10 %	G-FR1-A4-22	1+1	[10,78]
		Normal	TDLB100-400	70 %	G-FR1-A3-15	1+0	[TBD]
	8	nonnai	Low	10 /0	G-FR1-A3-22	1+1	[TBD]
	0	Normal	TDLC300-100	70 %	G-FR1-A4-15	1+0	[7,63]
		Norma	Low	10 /0	G-FR1-A4-22	1+1	[6,53]

Table 8.2.1.2-1: Minimum requirements for PUSCH, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
		Normal	TDLB100-400	70 %	G-FR1-A3-2	1+0	[1,07]
		Normai	Low	10 /0	G-FR1-A3-9	1+1	[-2,51]
	2	Normal	TDLC300-100	70 %	G-FR1-A4-2	1+0	[12,77]
	-	Horman	Low		G-FR1-A4-9	1+1	[10,54]
		Normal	TDLA30-10	70 %	G-FR1-A5-2	1+0	[13,22]
		Normai	Low	10 /0	G-FR1-A5-9	1+1	[13,45]
		Normal	TDLB100-400	70 %	G-FR1-A3-2	1+0	[-3,07]
		Normai	Low	10 /0	G-FR1-A3-9	1+1	[-5,84]
1	4	Normal	TDLC300-100	70 %	G-FR1-A4-2	1+0	[7,74]
•	1 7	Normai	Low	10 /0	G-FR1-A4-9	1+1	[6,58]
		Normal	TDLA30-10	70 %	G-FR1-A5-2	1+0	[9,31]
			Low		G-FR1-A5-9	1+1	[9,37]
		Normal	TDLB100-400	70 %	G-FR1-A3-2	1+0	[-6,51]
			Low	10 /0	G-FR1-A3-9	1+1	[-8,71]
	8	8 Normal	TDLC300-100	70 %	G-FR1-A4-2	1+0	[3,79]
	0		Low	10 /0	G-FR1-A4-9	1+1	[3,14]
			TDLA30-10	70 %	G-FR1-A5-2	1+0	[5,95]
		Normai	Low	10 /8	G-FR1-A5-9	1+1	[5,73]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	1+1	[0,43]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	1+1	[18,33]
		Normal	TDLB100-400	70.0/	G-FR1-A3-16	1+0	[TBD]
	4	Normai	Low	70 %	G-FR1-A3-23	1+1	[-1,58]
2	2 4	Normal	TDLC300-100	70.0/	G-FR1-A4-16	1+0	[TBD]
		Normai	Low	70 %	G-FR1-A4-23	1+1	[10,91]
		Normal	TDLB100-400	70.0/	G-FR1-A3-16	1+0	[TBD]
	0	Normal	Low	70 %	G-FR1-A3-23	1+1	[-5,21]
	8	Normal	TDLC300-100	70.0/	G-FR1-A4-16	1+0	[7,73]
		Normal	Low	70 %	G-FR1-A4-23	1+1	[6,52]

Table 8.2.1.2-2: Minimum req	uirements for PUSCH.	10 MHz channel bandwidt	h. 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
			matrix (Annex G)				
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-3 G-FR1-A3-10	1+0 1+1	[TBD] [-1,80]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-3 G-FR1-A4-10	1+0 1+1	[13,56] [10,53]
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-3 G-FR1-A5-10	1+0 1+1	[13,48] [13,13]
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-3 G-FR1-A3-10	1+0 1+1	[1,43]
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-3 G-FR1-A4-10	1+0 1+1	[7,83] [6,58]
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-3 G-FR1-A5-10	1+0 1+1	[9,60] [9,17]
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-3 G-FR1-A3-10	1+0 1+1	[-2,72] [-8,43]
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-3 G-FR1-A4-10	1+0 1+1	[3,71] [3,12]
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-3 G-FR1-A5-10	1+0 1+1	[6,12] [5,74]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	1+1	[TBD]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	1+1	[18,37]
	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-17 G-FR1-A3-24	1+0 1+1	[TBD] [TBD]
2	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-17 G-FR1-A4-24	1+0 1+1	[TBD] [10,85]
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-17 G-FR1-A3-24	1+0 1+1	[TBD] [TBD]
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-17 G-FR1-A4-24	1+0 1+1	[8,00] [6,55]

Table 8.2.1.2-3: Minimum requirements for PUSCH, 20 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
			TDLB100-400		G-FR1-A3-4	1+0	[-1.80]
		Normal	Low	70 %	G-FR1-A3-11	1+1	[-2,49]
	2	Normal	TDLC300-100	70 %	G-FR1-A4-4	1+0	[10,72]
	2	normai	Low	70 %	G-FR1-A4-11	1+1	[10,48]
		Normal	TDLA30-10	70 %	G-FR1-A5-4	1+0	[12,62]
		Normai	Low	10 /8	G-FR1-A5-11	1+1	[12,84]
		Normal	TDLB100-400	70 %	G-FR1-A3-4	1+0	[-5,45]
		Normai	Low	10 /0	G-FR1-A3-11	1+1	[-5,86]
1	4	Normal	TDLC300-100	70 %	G-FR1-A4-4	1+0	[6,44]
1	7	Normai	Low	10 /0	G-FR1-A4-11	1+1	[6,18]
		Normal	TDLA30-10	70 %	G-FR1-A5-4	1+0	[TBD]
			Low	10 %	G-FR1-A5-11	1+1	[7,96]
		Normal	TDLB100-400	70 %	G-FR1-A3-4	1+0	[-8,63]
			Low	10 /8	G-FR1-A3-11	1+1	[-8,83]
	0	8 Normal	TDLC300-100	70 %	G-FR1-A4-4	1+0	[2,94]
	0		Low	10 /8	G-FR1-A4-11	1+1	[2,93]
			TDLA30-10	70 %	G-FR1-A5-4	1+0	[5,15]
		nomai	Low	10 %	G-FR1-A5-11	1+1	[TBD]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	1+1	[1,12]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	1+1	[18,32]
		Normal	TDLB100-400	70.0/	G-FR1-A3-18	1+0	[-1,91]
2	2 4	normal	Low	70 %	G-FR1-A3-25	1+1	[-2,40]
2		Normal	TDLC300-100	70 %	G-FR1-A4-18	1+0	[12,00]
		noma	Low	10 %	G-FR1-A4-25	1+1	[11,06]
		Normal	TDLB100-400	70 %	G-FR1-A3-18	1+0	[-4,63]
	8	noma	Low	10 %	G-FR1-A3-25	1+1	[-5,36]
	o	Normal	TDLC300-100	70 %	G-FR1-A4-18	1+0	[7,36]
		noma	Low	10 %	G-FR1-A4-25	1+1	[6,78]

Table 8.2.1.2-4: Minimum requirements for PUSCH, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
		Normal	TDLB100-400	70 %	G-FR1-A3-5	1+0	[-2,03]
		Nomai	Low	10 /8	G-FR1-A3-12	1+1	[-2,87]
	2	Normal	TDLC300-100	70 %	G-FR1-A4-5	1+0	[10,88]
	2	Normai	Low	10 /8	G-FR1-A4-12	1+1	[10,40]
		Normal	TDLA30-10	70 %	G-FR1-A5-5	1+0	[12,79]
		Normai	Low	10 /0	G-FR1-A5-12	1+1	[12,72]
		Normal	TDLB100-400	70 %	G-FR1-A3-5	1+0	[-5,65]
		Normai	Low	10 /0	G-FR1-A3-12	1+1	[-6,20]
1	4	Normal	TDLC300-100	70 %	G-FR1-A4-5	1+0	[6,60]
•	-	Normai	Low	10 /0	G-FR1-A4-12	1+1	[6,11]
		Normal	TDLA30-10	70 %	G-FR1-A5-5	1+0	[8,28]
			Low	10 /0	G-FR1-A5-12	1+1	[7,96]
		Normal	TDLB100-400	70 %	G-FR1-A3-5	1+0	[-8,49]
			Low	10 /0	G-FR1-A3-12	1+1	[-9,05]
	8	8 Normal	TDLC300-100	70 %	G-FR1-A4-5	1+0	[3,04]
	0		Low	10 /0	G-FR1-A4-12	1+1	[2,83]
			TDLA30-10	70 %	G-FR1-A5-5	1+0	[5,39]
		Normai	Low	10 /0	G-FR1-A5-12	1+1	[TBD]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	1+1	[1,00]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	1+1	[19,08]
		Normal	TDLB100-400	70 %	G-FR1-A3-19	1+0	[-1,24]
0	2 4	Normai	Low	70 %	G-FR1-A3-26	1+1	[-2,45]
2		Normal	TDLC300-100	70 %	G-FR1-A4-19	1+0	[11,86]
		Normai	Low	10 %	G-FR1-A4-26	1+1	[11,12]
		Normal	TDLB100-400	70 %	G-FR1-A3-19	1+0	[-4,23]
	8	Normal	Low	10 %	G-FR1-A3-26	1+1	[-5,49]
	o	Normal	TDLC300-100	70 %	G-FR1-A4-19	1+0	[7,24]
		Normai	Low	10 %	G-FR1-A4-26	1+1	[6,60]

Table 8.2.1.2-5: Minimum requirements for PUSCH, 20 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
		Normal	G) TDLB100-400	70 %	G-FR1-A3-6	1+0	[-1,69]
		Normai	Low	10 /8	G-FR1-A3-13	1+1	[-2,73]
	2	Normal	TDLC300-100	70 %	G-FR1-A4-6	1+0	[10,73]
	2	Norman	Low	10 /0	G-FR1-A4-13	1+1	[10,17]
		Normal	TDLA30-10	70 %	G-FR1-A5-6	1+0	[12,15]
		Norman	Low	10 /0	G-FR1-A5-13	1+1	[12,13]
		Normal	TDLB100-400	70 %	G-FR1-A3-6	1+0	[-4,92]
		Norman	Low	10 /0	G-FR1-A3-13	1+1	[-6,01]
1	4	Normal	TDLC300-100	70 %	G-FR1-A4-6	1+0	[6,48]
•	•	Normai	Low	10 /0	G-FR1-A4-13	1+1	[6,03]
		Normal	TDLA30-10 Low 70 %	G-FR1-A5-6	1+0	[8,74]	
		Norma			G-FR1-A5-13	1+1	[TBD]
		Normal	TDLB100-400	70 %	G-FR1-A3-6	1+0	[-8,34]
			Low	,.	G-FR1-A3-13	1+1	[-8,93]
	8	8 Normal	TDLC300-100	70 %	G-FR1-A4-6	1+0	[2,96]
	C C		Low		G-FR1-A4-13	1+1	[2,77]
			TDLA30-10	70 %	G-FR1-A5-6	1+0	[5,42]
			Low	,.	G-FR1-A5-13	1+1	[5,04]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	1+1	[1,08]
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	1+1	[19,17]
		Normal	TDLB100-400	70 %	G-FR1-A3-20	1+0	[-0,63]
	4	normal	Low	10 %	G-FR1-A3-27	1+1	[-2,57]
2	2 4	Normal	TDLC300-100	70 %	G-FR1-A4-20	1+0	[11,84]
		Normal	Low	10 70	G-FR1-A4-27	1+1	[11,10]
		Normal	TDLB100-400	70 %	G-FR1-A3-20	1+0	[-3,97]
	8	Normal	Low	10 70	G-FR1-A3-27	1+1	[-5,42]
	o	Normal	TDLC300-100	70 %	G-FR1-A4-20	1+0	[7,13]
		normal	Low	10 //	G-FR1-A4-27	1+1	[6,71]

Table 8.2.1.2-6: Minimum requirements for PUSCH, 40 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
		Normal	TDLB100-400	70 %	G-FR1-A3-7	1+0	[-1,09]
		Normai	Low	10 /0	G-FR1-A3-14	1+1	[-2,92]
	2	Normal	TDLC300-100	70 %	G-FR1-A4-7	1+0	[10,95]
	2	Normai	Low	10 /0	G-FR1-A4-14	1+1	[10,28]
		Normal	TDLA30-10	70 %	G-FR1-A5-7	1+0	[TBD]
		Normai	Low	10 /0	G-FR1-A5-14	1+1	[TBD]
		Normal	TDLB100-400	70 %	G-FR1-A3-7	1+0	[TBD]
		Normai	Low	10 /0	G-FR1-A3-14	1+1	[-6,11]
1	4	Normal	TDLC300-100	70 %	G-FR1-A4-7	1+0	[6,65]
•	-	Normai	Low	10 /0	G-FR1-A4-14	1+1	[6,17]
		Normal	TDLA30-10	Low 70 %	G-FR1-A5-7	1+0	[9,84]
		Normai			G-FR1-A5-14	1+1	[TBD]
		Normal	TDLB100-400	70 %	G-FR1-A3-7	1+0	[-7,34]
			Low	10 /8	G-FR1-A3-14	1+1	[-8,98]
	8	8 Normal	TDLC300-100	70 %	G-FR1-A4-7	1+0	[3,02]
	0		Low	70 %	G-FR1-A4-14	1+1	[2,85]
			TDLA30-10	70 %	G-FR1-A5-7	1+0	[TBD]
		Normai	Low	70 %	G-FR1-A5-14	1+1	[TBD]
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	1+1	[1,03]
	2	2 Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	1+1	[18,67]
		Normal	TDLB100-400	70 %	G-FR1-A3-21	1+0	[TBD]
	4	normal	Low	10 %	G-FR1-A3-28	1+1	[-2,52]
2	2 4	Normal	TDLC300-100	70 %	G-FR1-A4-21	1+0	[12,36]
		normal	Low	10 %	G-FR1-A4-28	1+1	[11,27]
		Normal	TDLB100-400	70 %	G-FR1-A3-21	1+0	[-3,45]
	8	normal	Low	10 %	G-FR1-A3-28	1+1	[-5,48]
	o	Normal	TDLC300-100	70 %	G-FR1-A4-21	1+0	[7,39]
		Normal	Low	10 %	G-FR1-A4-28	1+1	[6,77]

Table 8.2.1.2-7: Minimum requirements for PUSCH, 100 MHz channel bandwidth, 30 kHz SCS

8.2.2 Requirements for PUSCH with transform precoding enabled

8.2.2.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

	Parameter	Value		
Transform precoding		Enabled		
Uplink-downlink alloc	Uplink-downlink allocation for TDD			
HARQ	Maximum number of HARQ transmissions	7D1S2U, S=6D:4G:4U 4		
	RV sequence	0, 2, 3, 1		
DMRS	DMRS configuration type	1		
	Maximum number of OFDM symbols for front loaded DMRS	1		
	Number of additional DMRS symbols	0, 1		
	Number of DMRS CDM group(s) without data	2		
	EPRE ratio of PUSCH to DMRS	-3 dB		
	DMRS port	0		
	DMRS sequence generation	N _{ID} =0, group hopping and sequence hopping are disabled		
Time domain	PUSCH mapping type	A		
resource	PUSCH starting symbol index	0		
	PUSCH symbol length	14		
Frequency domain resource	RB assignment	15 kHz SCS: 25 PRBs in the middle of the test bandwidth 30 kHz SCS: 24 PRBs in the middle of the test bandwidth		
	Frequency hopping	Disabled		
Code block group bas	sed PUSCH transmission	Disabled		

8.2.2.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.2.2-1 to 8.2.2.2-2 at the given SNR. FRCs are defined in annex A.

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
	2	Normal	TDLB100-400	70 %	G-FR1-A3-29	1+0	[1.6]
	2	Normai			G-FR1-A3-31	1+1	[-2.5]
1	4	Normal	TDLB100-400	70 %	G-FR1-A3-29	1+0	[-3.5]
I	4				G-FR1-A3-31	1+1	[-6.4]
	0	8 Normal	TDLB100-400	70.9/	G-FR1-A3-29	1+0	[-6.9]
	0			70 %	G-FR1-A3-31	1+1	[-8.3]

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
1	2	Normal	TDLB100-400	70 %	G-FR1-A3-30	1+0	[-1.8]
					G-FR1-A3-32	1+1	TBD
	4	Normal	TDLB100-400	70 %	G-FR1-A3-30	1+0	[-5.6]
					G-FR1-A3-32	1+1	[-5.9]
	8	Normal	TDLB100-400	70 %	G-FR1-A3-30	1+0	TBD
					G-FR1-A3-32	1+1	[-8.7]

Table 8.2.2.2-2: Minimum requirements for PUSCH, 10 MHz channel bandwidth, 30 kHz SCS

8.3 Performance requirements for PUCCH

8.3.1 DTX to ACK probability

8.3.1.1 General

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing was sent:

Prob(PUCCH DTX \rightarrow Ack bits) = $\frac{\#(false \ ACK \ bits)}{\#(PUCCH \ DTX)*\#(ACK/NACK \ bits)}$

where:

- #(false ACK bits) denotes the number of detected ACK bits.
- #(ACK/NACK bits) denotes the number of encoded bits per slot
- #(PUCCH DTX) denotes the number of DTX occasions

8.3.1.2 Minimum requirement

The DTX to ACK probability shall not exceed 1% for all PUCCH formats carrying ACK/NACK bits:

Prob(PUCCH DTX \rightarrow Ack bits) $\leq 10^{-2}$

8.3.2 Performance requirements for PUCCH format 0

8.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

Table 8.3.2.1-1: Test Parameters

Parameter	Test		
nrofBits	1		
nrofPRBs	1		
startingPRB	0		
intraSlotFrequencyHopping	enabled		
secondHopPRB	The largest PRB index - nrofPRBs		
initialCyclicShift	0		
startingSymbolIndex	13 for 1 symbol 12 for 2 symbols		

8.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.2.2-1 and in table 8.3.2.2-2.

Table 8.3.2.2-1: Minimum requirements for PUCCH format 0 and 15kHz SCS

Number of TX	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)			
antennas				5 MHz	10 MHz	20 MHz	
1	2	TDLC300-100 Low	1	[9.3]	[8.9]	[9.1]	
			2	TBD	[4.8]	[3.6]	
1	1 4	TDLC300-100 Low	1	TBD	[3.1]	TBD	
			2	TBD	TBD	TBD	
1	8	TDLC300-100 Low	1	TBD	[-1.0]	TBD	
			2	TBD	[-3.6]	TBD	

Table 8.3.2.2-2: Minimum requirements for PUCCH format 0 and 30kHz SCS

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)			
antennas	antennas			10 MHz	20 MHz	40 MHz	100 MHz
1	2	TDLC300-100 Low	1	TBD	TBD	[10.4]	TBD
			2	TBD	TBD	TBD	TBD
1	4	TDLC300-100 Low	1	TBD	TBD	[3.4]	TBD
			2	TBD	TBD	[-0.3]	TBD
1	8	TDLC300-100 Low	1	TBD	TBD	[-0.8]	TBD
			2	TBD	TBD	[-3.7]	TBD

8.3.3 Performance requirements for PUCCH format 1

8.3.3.1 NACK to ACK requirements

8.3.3.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

Prob(PUCCH NACK
$$\rightarrow$$
 ACK bits) = $\frac{\#(\text{NACK bits decoded as ACK bits})}{\#(\text{Total NACK bits})}$,

where:

- #(Total NACK bits) denotes the total number of NACK bits transmitted
- #(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.
Parameter	Test
nrofBits	2
nrofPRBs	1
nrofSymbols	14
startingPRB	0
intraSlotFrequencyHopping	enabled
secondHopPRB	The largest PRB index - nrofPRBs
initialCyclicShift	0
startingSymbolIndex	0
Index of orthogonal sequence (time-domain-OCC)	0

Table	8.3.3.1	.1-1:	Test	Parameters

8.3.3.1.2 Minimum requirements

The NACK to ACK probability shall not exceed 0.1% at the SNR given in table 8.3.3.1.2-1 and table 8.3.3.1.2-2.

Table 8.3.3.1.2-1: Minimum requirements for PUCCH format 1 with 15 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Channel bandwidth / SNR (dB)		/ SNR
antennas	antennas		and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz
1	2	Normal	TDLC-300- 100 Low	[-3.7]	[-3.6]	[-3.6]
	4	Normal	TDLC-300- 100 Low	[-8.4]	[-7.4]	[-8.3]
	8	Normal	TDLC-300- 100 Low	[-11.6]	[-11.3]	[-11.5]

Table 8.3.3.1.2-2: Minimum requirements for PUCCH format 1 with 30 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Channel bandwidth (MHz) / SNR (dB)			/ SNR
antennas	antenna s		and correlation matrix (Annex G)	10 MHz	20 MHz	40 MHz	100 MHz
1	2	Normal	TDLC-300- 100 Low	[-4.0]	[TBD]	[-2.9]	[TBD]
	4	Normal	TDLC-300- 100 Low	[-7.7]	[-8.2]	[-7.0]	[TBD]
	8	Normal	TDLC-300- 100 Low	[-11.4]	[-11.2]	[-11.3]	[- 11.4]

8.3.3.2 ACK missed detection requirements

8.3.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in table 8.3.3.1.1-1 are configured.

8.3.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.3.2.2-1 and in table 8.3.3.2.2-2.

109

1	Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Channel bandwidth / SNR (dB)		
а	ntennas	antennas		and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz
	1	2	Normal	TDLC-300- 100 Low	[-4.8]	[-4.3]	[-4.9]
		4	Normal	TDLC-300- 100 Low	[-8.6]	[-8.0]	[-8.5]
		8	Normal	TDLC-300- 100 Low	[-11.5]	[-11.3]	[-11.3]

Table 8.3.3.2.2-1: Minimum requirements for PUCCH format 1 with 15 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Channel bandwidth (MHz) / SNR (dB)		/ SNR	
antennas	antenna s		and correlation matrix (Annex G)	10 MHz	20 MHz	40 MHz	100 MHz
1	2	Normal	TDLC-300- 100 Low	[-4.0]	[-4.4]	[-4.4]	[-4.3]
	4	Normal	TDLC-300- 100 Low	[-7.9]	[-8.3]	[-8.3]	[-8.3]
	8	Normal	TDLC-300- 100 Low	[-11.1]	[-11.2]	[-11.3]	[- 11.1]

8.3.4 Performance requirements for PUCCH format 2

8.3.4.1 ACK missed detection requirements

8.3.4.1.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

The ACK missed detection requirement only applies to the PUCCH format 2 with 4 UCI bits.

Parameter	Value
Modulation	QSPK
startingPRB	0
intraSlotFrequencyHopping	enable
secondHopPRB	The largest PRB index - nrofPRB
nrofPRB	4
nrofSymbols	1
the number of UCI bits	4
startingSymbolIndex	13

Table 8.3.4.1.1-1: Test Parameters

8.3.4.1.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.4.1.2-1 and table 8.3.4.1.2-2 for 4UCI bits.

Number of	Number of	Cyclic	Propagation	Channel	bandwidth / SN	IR (dB)
TX antennas	RX antennas	Prefix	conditions and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz
	2	Normal	TDLC300-100 Low	[TBD]	[5.5]	[TBD]
1	4	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]
	8	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]

Table 8.3.4.1.2-1: Minimum requirements for PUCCH format 2 with 15 kHz SCS

Table 8.3.4.1.2-2: Minimum requirements for PUCCH format 2 with 30 kHz SCS

Number of	Number of	Cyclic	Propagation	Chai	nnel band	width / SN	R (dB)
TX antennas	RX antennas	Prefix	conditions and correlation matrix	10MHz	20MHz	40MHz	100MHz
			(Annex G)				
	2	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]	[TBD]
1	4	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]	[TBD]
	8	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]	[TBD]

8.3.4.2 UCI BLER performance requirements

8.3.4.2.1 General

The UCI block error probability (BLER) is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. All UCI information shall be decoded.

The UCI block error probability performance requirement only applies to the PUCCH format 2 with 22 UCI bits.

Parameter	Value
Modulation	QSPK
startingPRB	0
intraSlotFrequencyHopping	enable
secondHopPRB	The largest PRB index - nrofPRB
nrofPRB	- 11101FKD
nrofSymbols	2
the number of UCI bits	22
startingSymbolIndex	12

Table 8.3.4.2.1-1: Test Parameters

8.3.4.2.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in table 8.3.4.2.2-1 and table 8.3.4.2.2-2 for 22 UCI bits.

Table 8.3.4.2.2-1: Minimum requirements for PUCCH format 2 with 15 kHz SCS
--

Number of	nber of Number of Cyclic Propagation Channel bandw				bandwidth / SN	IR (dB)	
TX antennas	RX antennas	Prefix	conditions and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz	
	2	Normal	TDLC300-100 Low	[TBD]	[1.05]	[TBD]	
1	4	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]	
1	8	Normal	TDLC300-100 Low	[-6.6]	[-6.5]	[-6.5]	

Number of	Number of	Cyclic	Propagation	Char	Channel bandwidth / SNR (dB)			
TX antennas	RX antennas	Prefix	conditions and correlation matrix	10MHz	20MHz	40MHz	100MHz	
			(Annex G)					
	2	Normal	TDLC300-100 Low	[TBD]	[TBD]	[0.4]	[TBD]	
1	4	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]	[TBD]	
	8	Normal	TDLC300-100 Low	[TBD]	[TBD]	[TBD]	[TBD]	

 Table 8.3.4.2.2-2: Minimum requirements for PUCCH format 2 with 30 kHz SCS

8.3.5 Performance requirements for PUCCH format 3

8.3.5.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. All UCI information shall be decoded.

Parameter	Test 1	Test 2
Modulation	QP	SK
startingPRB	()
intraSlotFrequencyHopping	ena	bled
secondHopPRB		PRB index - PRBs
nrofPRBs	1	3
nrofSymbols	14	4
the number of UCI bits	16	16
startingSymbolIndex	0	0

Table 8.3.5.1-1: Test Parameters

8.3.5.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 8.3.5.2-1 and Table 8.3.5.2-2.

112

Test Number	Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Additional DMRS	Channe	l bandwidth (dB)	/ SNR
	antennas	antennas		and correlation matrix (Annex G)	configuratio n	5 MHz	10 MHz	20 MHz
1	1	2	Normal	TDLC300- 100 Low	No additional DM-RS	TBD	[1.1]	TBD
					Additional DMRS	TBD	[0.5]	[-0.3]
		4	Normal	TDLC300- 100 Low	No additional DM-RS	[-3.7]	[-3.4]	[-3.8]
					Additional DMRS	[-4.4]	[-4.0]	[-4.5]
		8	Normal	TDLC300- 100 Low	No additional DM-RS	[-7.0]	[-6.7]	[-6.8]
					Additional DMRS	[-7.7]	[-7.5]	[-7.7]
2	1	2	Normal	TDLC300- 100 Low	No additional DM-RS	TBD	[1.9]	TBD
		4	Normal	TDLC300- 100 Low	No additional DM-RS	TBD	TBD	TBD
		8	Normal	TDLC300- 100 Low	No additional DM-RS	TBD	TBD	TBD

Table 8.3.5.2-1: Minimum requirements for PUCCH format 3 with 15 kHz SCS

Table 8.3.5.2-2: Minimum requirements for PUCCH format 3 with 30 kHz SCS

Test	Number	Number	Cyclic	Propagation	Additional	Chan	nel bandw	idth / SNR	(dB)
Numbe r	of TX antennas	of RX antenna s	Prefix	conditions and correlation matrix (Annex G)	DMRS configuratio n	10 MHz	20 MHz	40 MHz	100 MHz
1	1	2	Normal	TDLC300-100 Low	No additional DM-RS	TBD	TBD	[0.5]	TBD
					Additional DMRS	TBD	TBD	[0.9]	TBD
		4	Normal	TDLC300-100 Low	No additional DM-RS	[-2.9]	[-3.4]	[-3.3]	TBD
					Additional DMRS	[-3.6]	[-4.2]	[-4.0]	TBD
		8	Normal	TDLC300-100 Low	No additional DM-RS	[-6.4]	[-6.6]	[-6.8]	TBD
					Additional DMRS	[-7.3]	[-7.5]	[-7.5]	TBD
2	1	2	Normal	TDLC300-100 Low	No additional DM-RS	TBD	TBD	[0.9]	TBD
		4	Normal	TDLC300-100 Low	No additional DM-RS	TBD	TBD	TBD	TBD
		8	Normal	TDLC300-100 Low	No additional DM-RS	TBD	TBD	TBD	TBD

8.3.6 Performance requirements for PUCCH format 4

8.3.6.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. All UCI information shall be decoded.

Parameter	Value
Modulation	QPSK
startingPRB	0
intraSlotFrequencyHopping	enabled
secondHopPRB	The largest PRB index - nrofPRBs
nrofSymbols	14
the number of UCI bits	22
startingSymbolIndex	0
occ-Length	n2
occ-Index	n0

Table 8.3.6.1-1: Test parameters

8.3.6.2 Minimum requirement

The UCI block error probability shall not exceed 1% at the SNR given in Table 8.3.6.2-1 and Table 8.3.6.2-2.

Table 8.3.6.2-1: Required	SNR for F	PUCCH format 4	with 15 kHz SCS	
Table 8.3.6.2-1: Required	SNR for F	PUCCH format 4	with 15 kHz SCS	

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Additional DMRS	Channel bandwidth / SNR (dB)		
antennas	antennas		and correlation matrix (Annex G)	configuratio n	5 MHz	10 MHz	20 MHz
1	2	Normal	TDLC300- 100 Low	No additional DM-RS	[1.8]	[2.5]	[2.1]
				Additional DMRS	[1.6]	[2.3]	[1.8]
	4	Normal	TDLC300- 100 Low	No additional DM-RS	[-2.5]	[-2.2]	[-2.4]
				Additional DMRS	[-3.0]	[-2.8]	[-2.9]
	8	Normal	TDLC300- 100 Low	No additional DM-RS	[-5.7]	[-5.8]	[-5.7]
				Additional DMRS	[-6.4]	[-6.4]	[-6.4]

Number	Number	Cyclic	Propagation	Additional	Chan	nel bandw	idth / SNR	(dB)
of TX antennas	of RX antenna s	Prefix	conditions and correlation matrix (Annex G)	DMRS configuratio n	10 MHz	20 MHz	40 MHz	100 MHz
1	2	Normal	TDLC300-100 Low	No additional DM-RS	[3.2]	[2.3]	[3.1]	TBD
				Additional DMRS	[3.0]	[2.3]	[2.8]	TBD
	4	Normal	TDLC300-100 Low	No additional DM-RS	[-1.5]	[-2.1]	[-1.9]	TBD
				Additional DMRS	[-2.1]	[-2.6]	[-2.6]	TBD
	8	Normal	TDLC300-100 Low	No additional DM-RS	[-5.3]	[-5.5]	[-5.6]	TBD
				Additional DMRS	[-5.9]	[-6.1]	[-6.4]	TBD

Table 8.3.6.2-2: Required SNR for PUCCH format 4 with 30 kHz SCS

8.4 Performance requirements for PRACH

8.4.1 PRACH False alarm probability

8.4.1.1 General

The false alarm requirement is valid for any number of receive antennas, for any channel bandwidth.

The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

8.4.1.2 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

8.4.2 PRACH detection requirements

8.4.2.1 General

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN and TDLC300-100, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than the time error tolerance given in Table 8.4.2.1-1.

PRACH	PRACH SCS	Time error	tolerance
preamble	(KHz)	AWGN	TDLC300-100
0	1.25	1.04 us	2.55 us
A1, A2, A3, B4,	15	0.52 us	2.03 us
C0, C2	30	0.26 us	1.77 us

Table 8.4.2.1-1: Time error tolerance for AWGN and TDLC300-100

The test preambles for normal mode are listed in table A.6-1.

8.4.2.2 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in tables 8.4.2.2-1 to 8.4.2.2-3.

Table 8.4.2.2-1: PRACH missed detection requirements for Normal Mode, 1.25 kHz SCS

Number of TX	Number of RX	Propagation conditions and	Frequency offset	SNR (dB)
antennas	antennas	correlation matrix (Annex G)		Burst format 0
1	2	AWGN	0	[-14.5]
		TDLC300-100 Low	400 Hz	[-6.6]
	4	AWGN	0	[-17.3]
		TDLC300-100 Low	400 Hz	[-12.2]
	8	AWGN	0	[-18.9]
		TDLC300-100 Low	400 Hz	[-15.8]

Table 8.4.2.2-2: PRACH missed detection requirements for Normal Mode, 15 kHz SCS

Number	Number	Propagation	Frequency	/ SNR (dB)					
of TX antennas	of RX antennas	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	[-9.3]	TBD	[-14.3]	[16.9]	[-6.3]	TBD
		TDLC300-100 Low	400 Hz	[-2.2]	[-4.8]	[-6.8]	[-8.8]	[0.7]	[-4.9]
	4	AWGN	0	[-12.2]	[-15.0]	[-16.4]	[-19.1]	TBD	[-15.0]
		TDLC300-100 Low	400 Hz	TBD	[-10.2]	[-11.6]	[-13.8]	TBD	[-10.2]
	8	AWGN	0	[-14.0]	[-17.1]	[-18.7]	[-21.2]	[-11.1]	[-17.1]
		TDLC300-100 Low	400 Hz	[-11.1]	[-14.0]	[-15.5]	[-17.3]	[-8.2]	[-14.0]

Table 8.4.2.2-3: PRACH missed detection requirements for Normal Mode, 30 kHz SCS

Number	Number	Propagation	Frequency		SNR (dB)				
of TX antennas	of RX antennas	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	[-9.1]	[-12.0]	[-13.9]	[-16.6]	[-6.1]	[-12.0]
		TDLC300-100 Low	400 Hz	[-2.8]	[-5.8]	[-7.5]	[-10.1]	[0.0]	[-5.7]
	4	AWGN	0	[-12.0]	[-14.9]	[-16.3]	[-19.0]	TBD	[-14.8]
		TDLC300-100 Low	400 Hz	TBD	[-10.4]	[-12.0]	[-14.5]	TBD	[-10.5]
	8	AWGN	0	[-13.8]	[-16.9]	[-18.5]	[-21.0]	[-11.0]	[-16.6]
		TDLC300-100 Low	400 Hz	[-10.7]	[-13.8]	[-15.4]	[-17.6]	[-8.0]	[-13.9]

9 Radiated transmitter characteristics

9.1 General

Radiated transmitter characteristics requirements apply on the BS type 1-H, BS type 1-O, or BS type 2-O including all its functional components active and for all foreseen modes of operation of the BS unless otherwise stated.

9.2 Radiated transmit power

9.2.1 General

BS type 1-H, BS type 1-O and *BS type 2-O* are declared to support one or more beams, as per manufacturer's declarations specified in TS 38.141-2 [6]. Radiated transmit power is defined as the EIRP level for a declared beam at a specific *beam peak direction*.

For each beam, the requirement is based on declaration of a beam identity, *reference beam direction pair*, *beamwidth*, *rated beam EIRP*, *OTA peak directions set*, the *beam direction pairs* at the maximum steering directions and their associated *rated beam EIRP* and *beamwidth(s)*.

For a declared beam and *beam direction pair*, the *rated beam EIRP* level is the maximum power that the base station is declared to radiate at the associated *beam peak direction* during the *transmitter ON period*.

For each *beam peak direction* associated with a *beam direction pair* within the *OTA peak directions set*, a specific *rated beam EIRP* level may be claimed. Any claimed value shall be met within the accuracy requirement as described below. *Rated beam EIRP* is only required to be declared for the *beam direction pairs* subject to conformance testing as detailed in TS 38.141-2 [6].

- NOTE 1: *OTA peak directions set* is set of *beam peak directions* for which the EIRP accuracy requirement is intended to be met. The *beam peak directions* are related to a corresponding contiguous range or discrete list of *beam centre directions* by the *beam direction pairs* included in the set.
- NOTE 2: A *beam direction pair* is data set consisting of the *beam centre direction* and the related *beam peak direction*.
- NOTE 3: A declared EIRP value is a value provided by the manufacturer for verification according to the conformance specification declaration requirements, whereas a claimed EIRP value is provided by the manufacturer to the equipment user for normal operation of the equipment and is not subject to formal conformance testing.

For *operating bands* where the supported fractional bandwidth (FBW) is larger than 6%, two rated carrier EIRP may be declared by manufacturer:

- Prated,c,FBWlow for lower supported frequency range, and
- P_{rated,c,FBWhigh} for higher supported frequency range.

For frequencies in between F_{FBWlow} and F_{FBWhigh} the rated carrier EIRP is:

- $P_{\text{rated,c,FBWlow}}$ for the carrier whose carrier frequency is within frequency range $F_{\text{FBWlow}} \leq f < (F_{\text{FBWlow}} + F_{\text{FBWhigh}}) / 2$,
- $P_{rated,c,FBWhigh}$ for the carrier whose carrier frequency is within frequency range $(F_{FBWlow} + F_{FBWhigh}) / 2 \le f \le F_{FBWhigh}$.

9.2.2 Minimum requirement for BS type 1-H and BS type 1-O

For each declared beam, in normal conditions, for any specific *beam peak direction* associated with a *beam direction* pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within ± 2.2 dB of the claimed value.

117

For *BS type 1-O* only, for each declared beam, in extreme conditions, for any specific *beam peak direction* associated with a *beam direction pair* within the *OTA peak directions set*, a manufacturer claimed EIRP level in the corresponding *beam peak direction* shall be achievable to within ± 2.7 dB of the claimed value.

Normal and extreme conditions are defined in TS 38.141-2, annex B [6].

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

9.2.3 Minimum requirement for BS type 2-0

For each declared beam, in normal conditions, for any specific *beam peak direction* associated with a *beam direction* pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within \pm 3.4 dB of the claimed value.

For each declared beam, in extreme conditions, for any specific *beam peak direction* associated with a *beam direction* pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within ± 4.5 dB of the claimed value.

Normal and extreme conditions are defined in TS 38.141-2, annex B [6].

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

9.3 OTA base station output power

9.3.1 General

OTA BS output power is declared as the TRP radiated requirement, with the output power accuracy requirement defined at the RIB during the *transmitter ON period*. TRP does not change with beamforming settings as long as the *beam peak direction* is within the *OTA peak directions set*. Thus the TRP accuracy requirement must be met for any beamforming setting for which the *beam peak direction* is within the *OTA peak direction set*.

The BS rated carrier TRP output power for BS type 1-O shall be within limits as specified in table 9.3.1-1.

Table 9.3.1-1: BS rated carrier TRP	output power limits f	or BS type 1-O
-------------------------------------	-----------------------	----------------

BS class	Prated,c,TRP	
Wide Area BS	(note)	
Medium Range BS	≤ + 47 dBm	
Local Area BS	≤ + 33 dBm	
NOTE: There is no upp	er limit for the Prated, c, TRP of the Wide Area Base Station.	

There is no upper limit for the rated carrier TRP output power of BS type 2-O.

Despite the general requirements for the BS output power described in subclauses 9.3.2 - 9.3.3, additional regional requirements might be applicable.

NOTE: In certain regions, power limits corresponding to BS classes may apply for BS type 2-O.

9.3.2 Minimum requirement for BS type 1-0

In normal conditions, the BS type 1-O maximum carrier TRP output power, $P_{max,c, TRP}$ measured at the RIB shall remain within ± 2 dB of the rated carrier TRP output power $P_{rated,c,TRP}$, as declared by the manufacturer.

Normal conditions are defined in TS 38.141-1, annex B [6].

9.3.3 Minimum requirement for *BS type 2-O*

In normal conditions, the *BS type 2-O maximum carrier TRP output power*, $P_{max,c, TRP}$ measured at the RIB shall remain within ±3 dB of the *rated carrier TRP output power* $P_{rated,c,TRP}$, as declared by the manufacturer.

Normal conditions are defined in TS 38.141-2, annex B [6].

9.3.4 Additional requirements (regional)

In certain regions, additional regional requirements may apply.

9.4 OTA output power dynamics

9.4.1 General

The requirements in subclause 9.4 apply during the *transmitter ON period*. Transmit signal quality (as specified in subclause 9.6) shall be maintained for the output power dynamics requirements.

The OTA output power requirements are *directional requirements* and apply to the *beam peak directions* over the OTA *peak directions set*.

9.4.2 OTA RE power control dynamic range

9.4.2.1 General

The OTA RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power ($P_{max,c,EIRP}$) for a specified reference condition.

This requirement shall apply at each RIB supporting transmission in the operating band.

9.4.2.2 Minimum requirement for BS type 1-0

The OTA RE power control dynamic range is specified the same as the conducted RE power control dynamic range requirement for *BS type 1-C* and *BS type 1-H* in table 6.3.2.2-1.

9.4.3 OTA total power dynamic range

9.4.3.1 General

The OTA total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

This requirement shall apply at each RIB supporting transmission in the operating band.

NOTE 1: The upper limit of the OTA total power dynamic range is the BS maximum carrier EIRP (P_{max,c,EIRP}) when transmitting on all RBs. The lower limit of the OTA total power dynamic range is the average EIRP for single RB transmission in the same direction using the same beam. The OFDM symbol carries PDSCH and not contain RS or SSB.

9.4.3.2 Minimum requirement for BS type 1-0

OTA total power dynamic range minimum requirement for *BS type 1-O* is specified such as for each NR carrier it shall be larger than or equal to the levels specified for the conducted requirement for *BS type 1-C* and *BS type 1-H* in table 6.3.3.2-1.

9.4.3.3 Minimum requirement for BS type 2-0

OTA total power dynamic range minimum requirement for *BS type 2-O* is specified such as for each NR carrier it shall be larger than or equal to the levels specified in table 9.4.3.3-1.

Table 9.4.3.3-1: Minimum requirement for BS type 2-O total power dynamic range

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz		
3C3 (KHZ)	OTA total power dynamic range (dB)					
60	18.1	21.2	24.2	N.A		
120	15.0	18.1	21.2	24.2		

9.5 OTA transmit ON/OFF power

9.5.1 General

OTA transmit ON/OFF power requirements apply only to TDD operation of NR BS.

9.5.2 OTA transmitter OFF power

9.5.2.1 General

OTA transmitter OFF power is defined as the mean power measured over 70/N μ s filtered with a square filter of bandwidth equal to the transmission bandwidth configuration of the BS (BW_{Config}) centred on the assigned channel frequency during the *transmitter OFF period*. N = SCS/15, where SCS is Sub Carrier Spacing in kHz.

For BS supporting intra-band contiguous CA, the OTA transmitter OFF power is defined as the mean power measured over 70/N us filtered with a square filter of bandwidth equal to the *Aggregated BS Channel Bandwidth* BW_{Channel_CA} centred on $(F_{edge,high}+F_{edge,low})/2$ during the *transmitter OFF period*. N = SCS/15, where SCS is the smallest supported Sub Carrier Spacing in kHz in the *Aggregated BS Channel Bandwidth*.

For *BS type 1-O*, the transmitter OFF power is defined as the output power at the *co-location reference antenna* conducted output(s). For *BS type 2-O* the transmitter OFF power is defined as TRP.

For *multi-band RIBs* and *single band RIBs* supporting transmission in multiple bands, the requirement is only applicable during the *transmitter OFF period* in all supported *operating bands*.

9.5.2.2 Minimum requirement for BS type 1-0

The total power from all co-location reference antenna conducted output(s) shall be less than -106 dBm/MHz.

9.5.2.3 Minimum requirement for BS type 2-0

The OTA transmitter OFF power spectral density for BS type 2-O shallbe less than -36 dBm/MHz.

NOTE: The OTA transmitter OFF power is measured together with the OTA transmitter transient period. As the OTA transmitter OFF power for *BS type 2-O* is defined as TRP, the measurement procedure for the OTA transient period is FFS.

9.5.3 OTA transient period

9.5.3.1 General

The OTA transmitter transient period is the time period during which the transmitter is changing from the transmitter *OFF period* to the *transmitter ON period* or vice versa. The transmitter transient period is illustrated in figure 6.4.2.1-1.

This requirement shall be applied at each RIB supporting transmission in the operating band.

9.5.3.2 Minimum requirement for BS type 1-0

For *BS type 1-O*, the OTA transmitter transient period shall be shorter than the values listed in the minimum requirement table 9.5.3.2-1.

Table 9.5.3.2-1: Minimum requirement for the OTA transmitter transient period for BS type 1-O

Transition	Transient period length (µs)
OFF to ON	10
ON to OFF	10

9.5.3.3 Minimum requirement for BS type 2-0

For *BS type 2-O*, the OTA transmitter transient period shall be shorter than the values listed in the minimum requirement table 9.5.3.3-1.

Table 9.5.3.3-1: Minimum requirement for the OTA transmitter transient period for BS type 2-O

Transition	Transient period length (µs)
OFF to ON	3
ON to OFF	3

9.6 OTA transmitted signal quality

9.6.1 OTA frequency error

9.6.1.1 General

The requirements in subclause 9.6.1 apply to the transmitter ON period.

OTA frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

OTA frequency error requirement is defined as a directional requirement at the RIB and shall be met within the OTA coverage range.

9.6.1.2 Minimum requirement for BS type 1-0

For *BS type 1-O*, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 6.5.1.2-1 observed over 1 ms.

9.6.1.3 Minimum requirement for BS type 2-0

For *BS type 2-O*, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 9.6.1.3-1 observed over 1 ms.

Table 9.6.1.3-1: OTA frequency error minimum requirement

BS class	Accuracy
Wide Area BS	±0.05 ppm
Medium Range BS	±0.1 ppm
Local Area BS	±0.1 ppm

9.6.2 OTA modulation quality

9.6.2.1 General

Modulation quality is defined by the difference between the measured carrier signal and a reference signal. Modulation quality can e.g. be expressed as Error Vector Magnitude (EVM). Details about how the EVM is determined are specified in Annex B for FR1 and Annex C for FR2.

OTA modulation quality requirement is defined as a directional requirement at the RIB and shall be met within the *OTA coverage range*.

9.6.2.2 Minimum Requirement for BS type 1-0

For *BS type 1-O*, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 6.5.2.2-1 shall be met. Requirements shallbe the same as subclause 6.5.2.2 and follow EVM frame structure from subclause 6.5.2.3.

9.6.2.3 Minimum Requirement for BS type 2-O

For *BS type* 2-O, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 9.6.2.3-1 shall be met, following the EVM frame structure described in subclause 9.6.2.3.1.

Modulation scheme for PDSCH	Required EVM (%)
QPSK	17.5
16QAM	12.5
64QAM	8

Table 9.6.2.3-1: EVM requirements for BS type 2-O carrier

9.6.2.3.1 EVM frame structure for measurement

EVM requirements shall apply for each NR carrier over all allocated resource blocks. Different modulation schemes listed in table 9.6.2.3-1 shall be considered for rank 1.

For NR, for all bandwidths, the EVM measurement shall be performed for each NR carrier over all allocated resource blocks and downlink subframes within 10 ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries.

EVM measurements start on the third symbol of a slot (l=2) when the first symbol of that slot is a downlink symbol.

9.6.3 OTA time alignment error

9.6.3.1 General

This requirement shall apply to frame timing in TX diversity, MIMO transmission, carrier aggregation and their combinations.

Frames of the NR signals present in the radiated domain are not perfectly aligned in time. In relation to each other, the RF signals present in the radiated domain may experience certain timing differences.

The TAE is specified for a specific set of signals/transmitter configuration/transmission mode.

[For a specific set of signals/transmitter configuration/transmission mode, the OTA Time Alignment Error (OTA TAE) is defined as the largest timing difference between any two different NR signals.] The OTA time alignment error requirement is defined as a *directional requirement* at the RIB and shall be met within the *OTA coverage range*.

9.6.3.2 Minimum requirement for BS type 1-O

For MIMO or TX diversity transmissions, at each carrier frequency, OTA TAE shall not exceed 65 ns.

122

For intra-band contiguous carrier aggregation, with or without MIMO or TX diversity, OTA TAE shall not exceed 260 ns.

For intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, OTA TAE shall not exceed $3 \,\mu s$.

For inter-band carrier aggregation, with or without MIMO or TX diversity, OTA TAE shall not exceed 3 µs.

Table 9.6.3.2-1: Void

Table 9.6.3.2-2: Void

Table 9.6.3.2-3: Void

9.6.3.3 Minimum requirement for BS type 2-0

For MIMO or TX diversity transmissions, at each carrier frequency, OTA TAE shall not exceed 65 ns.

For intra-band contiguous carrier aggregation, with or without MIMO or TX diversity, OTA TAE shall not exceed 130 ns.

For intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, OTA TAE shall not exceed $3 \,\mu s$.

For inter-band carrier aggregation, with or without MIMO or TX diversity, OTA TAE shall not exceed 3 µs.

Table 9.6.3.3-1: Void Table 9.6.3.3-2: Void Table 9.6.3.3-3: Void

9.7 OTA unwanted emissions

9.7.1 General

Unwanted emissions consist of so-called out-of-band emissions and spurious emissions according to ITU definitions ITU-R SM.329 [2]. In ITU terminology, out of band emissions are unwanted emissions immediately outside the *BS channel bandwidth* resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The OTA out-of-band emissions requirement for the BS type 1-O and BS type 2-O transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and operating band unwanted emissions (OBUE). The OTA Operating band unwanted emissions define all unwanted emissions in each supported downlink *operating band* plus the frequency ranges Δf_{OBUE} above and Δf_{OBUE} below each band. OTA Unwanted emissions outside of this frequency range are limited by an OTA spurious emissions requirement.

The maximum offset of the operating band unwanted emissions mask from the *operating band* edge is Δf_{OBUE} . The value of Δf_{OBUE} is defined in table 9.7.1-1 for *BS type 1-O* and *BS type 2-O* for the NR *operating bands*.

BS type	Operating band characteristics	Δfobue (MHz)
DS turns 1.0	F _{DL,high} – F _{DL,low} < 100 MHz	10
BS type 1-0	$100 \text{ MHz} \leq F_{DL,high} - F_{DL,low} \leq 900 \text{ MHz}$	40
BS type 2-0	$F_{DL,high} - F_{DL,low} \le 3250 \text{ MHz}$	1500

Table 9.7.1-1: Maximum offset Δf_{OBUE} outside the downlink operating band

The unwanted emission requirements are applied per cell for all the configurations. Requirements for OTA unwanted emissions are captured using TRP, *directional requirements* or co-location requirements as described per requirement.

There is in addition a requirement for occupied bandwidth.

9.7.2 OTA occupied bandwidth

9.7.2.1 General

The OTA occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power. See also recommendation ITU-R SM.328 [3].

The value of $\beta/2$ shall be taken as 0.5%.

The OTA occupied bandwidth requirement shall apply during the *transmitter ON period* for a single transmitted carrier. The minimum requirement below may be applied regionally. There may also be regional requirements to declare the OTA occupied bandwidth according to the definition in the present clause.

The OTA occupied bandwidth is defined as a *directional requirement* and shall be met in the manufacturer's declared *OTA coverage range* at the RIB.

9.7.2.2 Minimum requirement for BS type 1-O and BS type 2-O

The OTA occupied bandwidth for each NR carrier shall be less than the *BS channel bandwidth*. For intra-band contiguous CA, the OTA occupied bandwidth shall be less than or equal to the *Aggregated BS Channel Bandwidth*.

9.7.3 OTA Adjacent Channel Leakage Power Ratio (ACLR)

9.7.3.1 General

OTA Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. The measured power is TRP.

The requirement shall be applied per RIB during the transmitter ON period.

9.7.3.2 Minimum requirement for BS type 1-0

The ACLR (CACLR) absolute *basic limits* in table 6.6.3.2-2 + X, 6.6.3.2-2a + X (where X = 9 dB) or the ACLR (CACLR) *basic limit* in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply.

For a *RIB* operating in multi-carrier or contiguous CA, the ACLR requirements in subclause 6.6.3.2 shall apply to *BS channel bandwidths* of the outermost carrier for the frequency ranges defined in table 6.6.3.2-1.For a RIB operating in non-contiguous spectrum, the ACLR requirement in subclause 6.6.3.2 shall apply in sub block gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in subclause 6.6.3.2 shall apply in sub block gaps for the frequency ranges defined in table 6.6.3.2-3.

For a *multi-band RIB*, the ACLR requirement in subclause 6.6.3.2 shall apply in Inter RF Bandwidth gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in subclause 6.6.3.2 shall apply in Inter RF Bandwidth gaps for the frequency ranges defined in table 6.6.3.2-3.

9.7.3.3 Minimum requirement for BS type 2-0

The OTA ACLR limit is specified in table 9.7.3.3-1.

The OTA ACLR absolute limit is specified in table 9.7.3.3-2.

The OTA ACLR (CACLR) absolute limit in table 9.7.3.3-2 or 9.7.3.3-4a or the ACLR (CACLR) limit in table 9.7.3.3-1, 9.7.3.3-3 or 9.7.3.3-4, whichever is less stringent, shall apply.

For a *RIB* operating in multi-carrier or contiguous CA, the OTA ACLR requirements in table 9.7.3.3-1 shall apply to *BS* channel bandwidths of the outermost carrier for the frequency ranges defined in the table.For a RIB operating in noncontiguous spectrum, the OTA ACLR requirement in table 9.7.3.3-3 shall apply in sub-block gaps for the frequency ranges defined in the table, while the OTA CACLR requirement in table 9.7.3.3-4 shall apply in sub-block gaps for the frequency ranges defined in the table.

The CACLR in a sub-block gap is the ratio of:

- a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap, and
- b) the filtered mean power centred on a frequency channel adjacent to one of the respective sub-block edges.

The assumed filter for the adjacent channel frequency is defined in table 9.7.3.3-4 and the filters on the assigned channels are defined in table 9.7.3.3-5.

For operation in non-contiguous spectrum, the CACLR for NR carriers located on either side of the sub-block gap shall be higher than the value specified in table 9.7.3.3-4.

BS channel bandwidth of lowest/highest NR carrier transmitted BW _{Channel} (MHz)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit (dB)
50, 100, 200,	BWChannel	NR of same BW	Square	28 (Note 3)
400		(Note 2)	(BW _{Config})	26 (Note 4)
NOTE 1: BWCha	nnel and BW _{Config} are the B	S channel bandwidth a	and transmission bar	ndwidth configuration of the
lowest	/highest NR carrier transm	nitted on the assigned	channel frequency.	
	SCS that provides largest t			
NOTE 3: Applica	able to bands defined with	in the frequency spect	rum range of 24.25 -	- 33.4 GHz
NOTE 4: Applica	able to bands defined with	in the frequency spect	rum range of 37 – 52	2.6 GHz

Table 9.7.3.3-1: BS type 2-O ACLR limit

Table 9.7.3.3-2: BS type 2-O ACLR absolute limit

BS class	ACLR absolute limit
Wide area BS	-13 dBm/MHz
Medium range BS	-20 dBm/MHz
Local area BS	-20 dBm/MHz

125

BS channel bandwidth of lowest/highest NR carrier transmitted (MHz)	Sub-block gap size (Wgap) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
50, 400	W _{gap} ≥ 100 (Note 5)		50 MHz NR		28 (Note 3)
50, 100	Ŵ _{gap} ≥ 250 (Note 6)	25 MHz	(Note 2)	Square (BW _{Config})	26 (Note 4)
	Wgap ≥ 400 (Note 6)	100 MHz 200 MHz NR (Note 2) Square (BW _{Config}		28 (Note 3)	
200, 400	Wgap ≥ 250 (Note 5)		Square (BW _{Config})	26 (Note 4)	
 NOTE 1: BW_{Config} is the transmission bandwidth configuration of the assumed adjacent channel carrier. NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}). NOTE 3: Applicable to bands defined within the frequency spectrum range of 24.25 – 33.4 GHz. NOTE 4: Applicable to bands defined within the frequency spectrum range of 37 – 52.6 GHz. NOTE 5: Applicable in case the <i>BS channel bandwidth</i> of the NR carrier transmitted at the other edge of the gap is 50 or 100 MHz. NOTE 6: Applicable in case the <i>BS channel bandwidth</i> of the NR carrier transmitted at the other edge of the gap is 200 or 400 MHz. 					

Table 9.7.3.3-3: BS type 2-O ACLR limit in non-contiguous spectrum

BS channel bandwidth of lowest/highest NR carrier transmitted (MHz)	Sub-block gap size (Wgap) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
50, 100	50 ≤ Wgap < 100 (Note 5)	25 MHz 50 MHz NR (Note 2) Square (BW _{Config})		28 (Note 3)	
50, 100	50 ≤ Wgap < 250 (Note 6)			Square (Bwconng)	26 (Note 4)
200, 400	200 ≤ Wgap < 400 (Note 6)	Note 6) 100 MHz 200		200 MHz NR (Nata 2) Square (BW _{Config})	28 (Note 3)
,	200 ≤ Wgap < 250 (Note 5)		(Note 2)		26 (Note 4)
 NOTE 1: BW_{config} is the transmission bandwidth configuration of the assumed adjacent channel carrier. NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{config}). NOTE 3: Applicable to bands defined within the frequency spectrum range of 24.25 – 33.4 GHz. NOTE 4: Applicable to bands defined within the frequency spectrum range of 37 – 52.6 GHz. NOTE 5: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 50 or 100 MHz. 					

NOTE 6: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 200 or 400 MHz.

BS class	CACLR absolute limit
Wide area BS	-13 dBm/MHz
Medium range BS	-20 dBm/MHz
Local area BS	-20 dBm/MHz

Table 9.7.3.3-5: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block gap	Filter on the assigned channel frequency and corresponding filter bandwidth
NR	NR of same BW with SCS that provides largest transmission bandwidth configuration

9.7.4 OTA operating band unwanted emissions

9.7.4.1 General

The OTA limits for operating band unwanted emissions are specified as TRP per RIB unless otherwise stated.

9.7.4.2 Minimum requirement for BS type 1-0

Out-of-band emissions in FR1 are limited by OTA operating band unwanted emission limits. Unless otherwise stated, the operating band unwanted emission limits in FR1 are defined from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band* up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*. The values of Δf_{OBUE} are defined in table 9.7.1-1 for the NR *operating bands*.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. For a *RIB* operating in multi-carrier or contiguous CA, the requirements apply to *BS channel bandwidths* of the outermost carrier for the frequency ranges defined in subclause 6.6.4.1.

For a *RIB* operating in non-contiguous spectrum, the requirements shall apply inside any sub-block gap for the frequency ranges defined in subclause 6.6.4.1.

For a *multi-band RIB*, the requirements shall apply inside any Inter RF Bandwidth gap for the frequency ranges defined in subclause 6.6.4.1.

The OTA operating band unwanted emission requirement for *BS type 1-O* is that for each applicable *basic limit* in subclause 6.6.4.2, the power of any unwanted emission shall not exceed an OTA limit specified as the *basic limit* + X, where X = 9 dB.

9.7.4.2.1 Additional requirements

9.7.4.2.1.1 Protection of DTT

In certain regions the following requirement may apply for protection of DTT. For *BS type 1-O* operating in Band n20, the level of emissions in the band 470-790 MHz, measured in an 8 MHz filter bandwidth on centre frequencies F_{filter} according to table 9.7.4.2.1.1-1, shall not exceed the maximum emission TRP level shown in the table. This requirement applies in the frequency range 470-790 MHz even though part of the range falls in the spurious domain.

$8 + 306 \text{ MHz}, 21 \le N \le 60 8 + 306 \text{ MHz}, 21 \le N \le 60 8 + 306 \text{ MHz}, 21 \le N \le 60 $	$P_{TRP_{10MHz}} \ge 59 \text{ dBm}$ $36 \le P_{TRP_{10MHz}} < 59 \text{ dBm}$ $P_{TRP_{10MHz}} < 36 \text{ dBm}$	0 dBm P _{TRP_10MHz} – 59 dBm -23 dBm	8 MHz 8 MHz 8 MHz
21 ≤ N ≤ 60 8 + 306 MHz, 21 ≤ N ≤ 60			_
21 ≤ N ≤ 60	P _{TRP_10MHz} < 36 dBm	-23 dBm	8 MHz
[:] 8 + 306 MHz, 21 ≤ N ≤ 60	$P_{TRP_{10MHz}} \ge 59 \text{ dBm}$	10 dBm	8 MHz
8 + 306 MHz, 21 ≤ N ≤ 60	$36 \le P_{TRP_{10MHz}} < 59 \text{ dBm}$	$P_{TRP_{10MHz}} - 49 \text{ dBm}$	8 MHz
8 + 306 MHz, 21 ≤ N ≤ 60	P _{TRP_10MHz} < 36 dBm	-13 dBm	8 MHz
8 + 306 MHz, 21 ≤ N ≤ 60	N.A.	22 dBm	8 MHz
	8 + 306 MHz, 21 ≤ N ≤ 60 8 + 306 MHz, 21 ≤ N ≤ 60	$8 + 306 \text{ MHz}$, $P_{TRP_{10MHz}} < 36 \text{ dBm}$ $21 \le N \le 60$ $8 + 306 \text{ MHz}$, $8 + 306 \text{ MHz}$, $N.A.$ $21 \le N \le 60$ $8 + 306 \text{ MHz}$,	$B + 306 \text{ MHz}$, $P_{TRP_{10MHz}} < 36 \text{ dBm}$ -13 dBm $21 \le N \le 60$

 Table 9.7.4.2.1.1-1: Declared emissions levels for protection of DTT

9.7.4.3 Minimum requirement for BS type 2-0

9.7.4.3.1 General

Out-of-band emissions in FR2 are limited by OTA operating band unwanted emission limits. Unless otherwise stated, the OTA operating band unwanted emission limits in FR2 are defined from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band* up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*. The values of Δf_{OBUE} are defined in table 9.7.1-1 for the NR *operating bands*.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. For a *RIB* operating in multi-carrier or contiguous CA, the requirements apply to the frequencies (Δf_{OBUE}) starting from the edge of the *contiguous transmission bandwidth*. In addition, for a *RIB* operating in non-contiguous spectrum, the requirements apply inside any sub-block gap.

Emissions shall not exceed the maximum levels specified in the tables below, where:

- Δf is the separation between the *contiguous transmission bandwidth* edge frequency and the nominal -3dB point of the measuring filter closest to the *contiguous transmission bandwidth* edge.
- f_offset is the separation between the *contiguous transmission bandwidth* edge frequency and the centre of the measuring filter.
- $f_{offset_{max}}$ is the offset to the frequency Δf_{OBUE} outside the downlink *operating band*, where Δf_{OBUE} is defined in table 9.7.1-1.

- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.In addition, inside any sub-block gap for a *RIB* operating in non-contiguous spectrum, emissions shall not exceed the cumulative sum of the limits specified for the adjacent sub blocks on each side of the sub block gap. The limit for each sub-block is specified in the tables subclause 9.7.4.3.2-1 below, where in this case:

- Δf is the separation between the sub block edge frequency and the nominal -3 dB point of the measuring filter closest to the sub block edge.
- f_offset is the separation between the sub block edge frequency and the centre of the measuring filter.
- f_offset_{max} is equal to the sub block gap bandwidth minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.

9.7.4.3.2 OTA operating band unwanted emission limits

BS unwanted emissions shall not exceed the maximum levels specified in table 9.7.4.3.2-1 and 9.7.4.3.2-2.

Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth	
0 MHz ≤ Δf <	$0.5 \text{ MHz} \le f_{offset} < 0.1^*$	Min(-5 dBm, Max(Prated,t,TRP –	1 MHz	
0.1*BW _{contiguous}	BW _{contiguous} +0.5 MHz	35 dB, -12 dBm))		
$0.1*BW_{contiguous} \le \Delta f$	0.1* BW _{contiguous} +0.5 MHz \leq	Min(-13 dBm, Max(Prated,t,TRP	1 MHz	
$< \Delta f_{max}$	f_offset < f_ offset _{max}	– 43 dB, -20 dBm))		
NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block				
gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each				
side of the sub block gap.				

Table 9.7.4.3.2-1: OBUE limits applicable in the frequency range 24.25 – 33.4 GHz

Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth	
$0 \text{ MHz} \le \Delta f <$	0.5 MHz ≤ f_offset < 0.1*	Min(-5 dBm, Max(Prated,t,TRP -	1 MHz	
0.1*BW _{contiguous}	BW _{contiguous} +0.5 MHz	33 dB, -12 dBm))		
0.1*BW _{contiguous} ≤	0.1* BW _{contiguous} +0.5 MHz ≤	Min(-13 dBm, Max(P _{rated,t,TRP} –	1 MHz	
$\Delta f < \Delta f_{max}$	f_offset < f_ offset _{max}	41 dB, -20 dBm))		
NOTE 1: For non-c	contiguous spectrum operation v	within any operating band the limit	within sub-block	
gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each				
side of the sub block gap.				

Table 9.7.4.3.2-2: OBUE limits applicable in the frequency range 37 – 52.6 GHz

9.7.5 OTA transmitter spurious emissions

9.7.5.1 General

Unless otherwise stated, all requirements are measured as mean power.

The OTA spurious emissions limits are specified as TRP per RIB unless otherwise stated.

9.7.5.2 Minimum requirement for BS type 1-0

9.7.5.2.1 General

The OTA transmitter spurious emission limits for FR1 shall apply from 30 MHz to 12.75 GHz, excluding the frequency range from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band*, up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*, where the Δf_{OBUE} is defined in table 9.7.1-1. For some FR1 *operating bands*, the upper limit is higher than 12.75 GHz in order to comply with the 5th harmonic limit of the downlink *operating band*, as specified in ITU-R recommendation SM.329 [2].

For multi-band RIB each supported *operating band* and Δf_{OBUE} MHz around each band are excluded from the OTA transmitter spurious emissions requirements.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

BS type 1-O requirements consists of OTA transmitter spurious emission requirements based on TRP and co-location requirements not based on TRP.

9.7.5.2.2 General OTA transmitter spurious emissions requirements

The Tx spurious emissions requirements for *BS type 1-O* are that for each applicable *basic limit* in subclause 6.6.5.2.1, the TRP of any spurious emission shall not exceed an OTA limit specified as the *basic limit* + X, where X = 9 dB, unless stated differently in regional regulation.

9.7.5.2.3 Protection of the BS receiver of own or different BS

This requirement shall be applied for NR FDD operation in order to prevent the receivers of own or a different BS of the same band being desensitised by emissions from a type 1-O BS.

This requirement is a co-location requirement as defined in subclause 4.9, the power levels are specified at the *co-location reference antenna* output.

The total power of any spurious emission from both polarizations of the *co-location reference antenna* connector output shall not exceed the *basic limits* in subclause 6.6.5.2.2 + X dB, where X = -21 dB.

9.7.5.2.4 Additional spurious emissions requirements

These requirements may be applied for the protection of systems operating in frequency ranges other than the BS downlink *operating band*. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR *operating band*. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in subclause 4.5.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, NR, etc.). The Tx additional spurious emissions requirements for *BS type 1-O* are that for each applicable *basic limit* in subclause 6.6.5.2.3, the TRP of any spurious emission shall not exceed an OTA limit specified as the *basic limit* + X, where X = 9 dB.

9.7.5.2.5 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD, E-UTRA and/or NR BS are co-located with a BS.

The requirements assume co-location with base stations of the same class.

NOTE: For co-location with UTRA, the requirements are based on co-location with UTRA FDD or TDD base stations.

This requirement is a co-location requirement as defined in subclause 4.9, the power levels are specified at the *co-location reference antenna* output(s).

The power sum of any spurious emission is specified over all supported polarizations at the output(s) of the *co-location* reference antenna and shall not exceed the basic limits in subclause 6.6.5.2.4 + X dB, where X = -21 dB.

For a *multi-band RIB*, the exclusions and conditions in the notes column of table 6.6.5.2.4-1 apply for each supported *operating band*.

9.7.5.3 Minimum requirement for BS type 2-0

9.7.5.3.1 General

In FR2, the OTA transmitter spurious emission limits apply from 30 MHz to 2^{nd} harmonic of the upper frequency edge of the downlink *operating band*, excluding the frequency range from Δf_{OBUE} below the lowest frequency of the downlink *operating band*, up to Δf_{OBUE} above the highest frequency of the downlink *operating band*, where the Δf_{OBUE} is defined in table 9.7.1-1.

9.7.5.3.2 General OTA transmitter spurious emissions requirements

The power of any spurious emission shall not exceed the limits in table 9.7.5.3.2-1

Editor's note: The spurious emission limits may be updated, pending further input concerning recommended Category B limits.

Table 9.7.5.3.2-1: BS radiated Tx spurious emission limits in FR2

Frequency range	Limit	Measurement Bandwidth	Note
30 MHz – 1 GHz		100 kHz	Note 1
1 GHz – 2 nd harmonic of	-13 dBm	1 MHz	Note 1, Note 2
the upper frequency edge	-13 0611		
of the DL operating band			
NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1			
NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.			

9.7.5.3.3 Additional OTA transmitter spurious emissions requirements

Editor's note: Additional spurious emissions requirement for protecting specific services are ffs.

9.8 OTA transmitter intermodulation

9.8.1 General

The OTA transmitter intermodulation requirement is a measure of the capability of the transmitter unit to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter unit via the RDN and antenna array from a co-located base station. The requirement shall apply during the *transmitter ON period* and the *transmitter transient period*.

The requirement shall apply at each RIB supporting transmission in the operating band.

The transmitter intermodulation level is the total radiated power of the intermodulation products when an interfering signal is injected into the *co-location reference antenna*.

The OTA transmitter intermodulation requirement is not applicable for BS type 2-O.

9.8.2 Minimum requirement for BS type 1-0

For *BS type 1-O* the transmitter intermodulation level shall not exceed the TRP unwanted emission limits specified for OTA transmitter spurious emission in subclause 9.7.5.2 (except subclause 9.7.5.2.3 and subclause 9.7.5.2.5), OTA operating band unwanted emissions in subclause 9.7.4.2 and OTA ACLR in subclause 9.7.3.2 in the presence of a wanted signal and an interfering signal, defined in table 9.8.2-1.

The requirement is applicable outside the *Base Station RF Bandwidth edges*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For RIBs supporting operation in *non-contiguous spectrum*, the requirement is also applicable inside a *sub-block gap* for interfering signal offsets where the interfering signal falls completely within the *sub-block gap*. The interfering signal offset is defined relative to the *sub-block* edges.

For RIBs supporting operation in multiple *operating bands*, the requirement shall apply relative to the *Base Station RF Bandwidth edges* of each *operating band*. In case the *inter RF Bandwidth gap* is less than 3*BW_{Channel} (where BW_{Channel} is the minimal *BS channel bandwidth* of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the *inter RF Bandwidth gap*.

Parameter	Value	
Wanted signal	NR signal or multi-carrier, or multiple intra-band contiguously or nor	
	contiguously aggregated carriers	
Interfering signal type	NR signal of minimum supported BS channel bandwidth (BW _{Channel})	
	and SCS set to 15 kHz	
Interfering signal level	The interfering signal level is the same power level as the BS	
	(Prated,t,TRP) fed into a <i>co-location reference antenna</i> .	
Interfering signal centre frequency offset from		
the lower (upper) edge of the wanted signal or	$f_{offset} = \pm BW_{Channel}\left(n - \frac{1}{2}\right)$, for n=1, 2 and 3	
edge of sub-block inside a gap	(2)	
NOTE: The P _{rated,t,TRP} is split between polarizations at the co-location reference antenna.		

Table 9.8.2-1: Interfering and wanted signals for the OTA transmitter intermodulation requirement

10 Radiated receiver characteristics

10.1 General

Radiated receiver characteristics are specified at RIB for *BS type 1-H*, *BS type 1-O*, or *BS type 2-O*, with full complement of transceivers for the configuration in normal operating condition.

Unless otherwise stated, the following arrangements apply for the radiated receiver characteristics requirements in clause 10:

- Requirements apply during the BS receive period.
- Requirements shall be met for any transmitter setting.
- For FDD operation the requirements shall be met with the transmitter unit(s) ON.
- Throughput requirements defined for the radiated receiver characteristics do not assume HARQ retransmissions.
- When BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier.
- For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower edge and positive offsets of the interfering signal apply relative to the higher edge.
- Each requirement shall be met over the RoAoA specified.
- NOTE 1: In normal operating condition the BS in FDD operation is configured to transmit and receive at the same time.
- NOTE 2: In normal operating condition the BS in TDD operation is configured to TX OFF power during *receive period*.

For FR1 requirements which are to be met over the OTA REFSENS RoAoA absolute requirement values are offset by the following term:

 $\Delta_{\text{OTAREFSENS}} = 44.1 - 10*\log_{10}(\text{BeW}_{\theta, \text{REFSENS}}*\text{BeW}_{\phi, \text{REFSENS}}) \text{ dB for the reference direction}$

and

 $\Delta_{OTAREFSENS} = 41.1 - 10*log_{10}(BeW_{\theta, REFSENS}*BeW_{\phi, REFSENS}) dB \text{ for all other directions}$

For requirements which are to be met over the *minSENS RoAoA* absolute requirement values are offset by the following term:

 $\Delta_{minSENS} = P_{REFSENS} - EIS_{minSENS} (dB)$

For FR2 requirements which are to be met over the OTA REFSENS RoAoA absolute requirement values are offset by the following term:

 $\Delta_{FR2_REFSENS} = -3 \text{ dB}$ for the reference direction

and

 $\Delta_{FR2_REFSENS} = 0 \text{ dB}$ for all other directions

10.2 OTA sensitivity

10.2.1 BS type 1-H and BS type 1-O

10.2.1.1 General

The OTA sensitivity requirement is a directional requirement based upon the declaration of one or more OTA sensitivity direction declarations (OSDD), related to a BS type 1-H and BS type 1-O receiver.

The BS type 1-H and BS type 1-O may optionally be capable of redirecting/changing the receiver target by means of adjusting BS settings resulting in multiple sensitivity RoAoA. The sensitivity RoAoA resulting from the current BS settings is the active sensitivity RoAoA.

If the BS is capable of redirecting the *receiver target* related to the OSDD then the OSDD shall include:

- The set(s) of RAT, *BS channel bandwidth* and declared minimum EIS level applicable to any active *sensitivity RoAoA* inside the *receiver target redirection range* in the OSDD.
- A declared *receiver target redirection range*, describing all the angles of arrival that can be addressed for the OSDD through alternative settings in the BS.
- Five declared sensitivity RoAoA comprising the conformance testing directions as detailed in TS 38.141-2 [6].
- The receiver target reference direction.

NOTE 1: Some of the declared sensitivity RoAoA may coincide depending on the redirection capability.

NOTE 2: In addition to the declared *sensitivity RoAoA*, several *sensitivity RoAoA* may be implicitly defined by the *receiver target redirection range* without being explicitly declared in the OSDD.

NOTE 3: (Void)

If the BS is not capable of redirecting the *receiver target* related to the OSDD, then the OSDD includes only:

- The set(s) of RAT, *BS channel bandwidth* and declared minimum EIS level applicable to the *sensitivity RoAoA* in the OSDD.
- One declared active *sensitivity RoAoA*.
- The receiver target reference direction.
- NOTE 4: For BS without target redirection capability, the declared (fixed) *sensitivity RoAoA* is always the active *sensitivity RoAoA*.

The OTA sensitivity EIS level declaration shall apply to all supported polarizations, under the assumption of *polarization match*.

10.2.1.2 Minimum requirement

For a received signal whose AoA of the incident wave is within the active *sensitivity RoAoA* of an OSDD, the error rate criterion as described in subclause 7.2 shall be met when the level of the arriving signal is equal to the minimum EIS level in the respective declared set of EIS level and *BS channel bandwidth*.

10.2.2 BS type 2-O

There is no OTA sensitivity requirement for FR2, the OTA sensitivity is the same as the OTA reference sensitivity in subclause 10.3.

10.3 OTA reference sensitivity level

10.3.1 General

The OTA REFSENS requirement is a directional requirement and is intended to ensure the minimum OTA reference sensitivity level for a declared *OTA REFSENS RoAoA*. The OTA reference sensitivity power level EIS_{REFSENS} is the minimum mean power received at the RIB at which a reference performance requirement shall be met for a specified reference measurement channel.

The OTA REFSENS requirement shall apply to all supported polarizations, under the assumption of *polarization match*.

10.3.2 Minimum requirement for BS type 1-O

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in the corresponding table and annex A when the OTA test signal is at the corresponding EIS_{REFSENS} level and arrives from any direction within the *OTA REFSENS RoAoA*.

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA Reference sensitivity level, EIS _{REFSENS} (dBm)
5, 10, 15	15	G- FR1-A1-1	-101.7 - Δotarefsens
10, 15	30	G- FR1-A1-2	-101.8 - DOTAREFSENS
10, 15	60	G- FR1-A1-3	-98.9 - Dotarefsens
20, 25, 30, 40, 50	15	G- FR1-A1-4	-95.3 - D OTAREFSENS
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G- FR1-A1-5	-95.6 - Δotarefsens
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G- FR1-A1-6	-95.7 - Δotarefsens
shall be met for mapped to disjo reference meas	each consecutive app pint frequency ranges	gle instance of the reference measurem olication of a single instance of the refer with a width corresponding to the numb n, except for one instance that might ov	ence measurement channel er of resource blocks of the

Table 10.3.2-1: Wide Area BS reference sensitivity levels

Table 10.3.2-2: Medium	Range BS reference	e sensitivity levels
	riange De rerererer	

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA Reference sensitivity level, EIS _{REFSENS} (dBm)			
5, 10, 15	15	G- FR1-A1-1	-96.7 - $\Delta_{\text{OTAREFSENS}}$			
10, 15	30	G- FR1-A1-2	-96.8 - Dotarefsens			
10, 15	60	G- FR1-A1-3	-93.9 - Dotarefsens			
20, 25, 30, 40, 50	15	G- FR1-A1-4	-90.3 - Dotarefsens			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G- FR1-A1-5	-90.6 - Δotarefsens			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G- FR1-A1-6	-90.7 - Δ _{OTAREFSENS}			
NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full <i>BS channel bandwidth</i> .						

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA Reference sensitivity level, EIS _{REFSENS} (dBm)			
5, 10, 15	15	G- FR1-A1-1	-93.7 - $\Delta_{\text{OTAREFSENS}}$			
10, 15	30	G- FR1-A1-2	-93.8 - $\Delta_{\text{OTAREFSENS}}$			
10, 15	60	G- FR1-A1-3	-90.9 - $\Delta_{\text{OTAREFSENS}}$			
20, 25, 30, 40, 50	15	G- FR1-A1-4	-87.3 - D OTAREFSENS			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G- FR1-A1-5	-87.6 - Δotarefsens			
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G- FR1-A1-6	-87.7 - Δotarefsens			
NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full <i>BS channel bandwidth</i> .						

Table 10.3.2-3: Local Area BS reference sensitivity levels

10.3.3 Minimum requirement for BS type 2-0

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channel as specified in the corresponding table and annex A when the OTA test signal is at the corresponding EIS_{REFSENS} level and arrives from any direction within the *OTA REFSENS RoAoA*.

EIS_{REFSENS} levels are derived from a single declared basis level EIS_{REFSENS_50M}, which is based on a reference measurement channel with 50MHZ *BS channel bandwidth*. EIS_{REFSENS_50M} itself is not a requirement and although it is based on a a reference measurement channel with 50MHz BS channel bandwidth it does not imply that BS has to support 50MHz *BS channel bandwidth*.

For wide area BS, EIS_{REFSENS_50M} is an integer value in the range -96 to -119 dBm. The specific value is declared by the vendor.

For medium range BS, EIS_{REFSENS_50M} is an integer value in the range -91 to -114 dBm. The specific value is declared by the vendor.

For local area BS, EIS_{REFSENS_50M} is an integer value in the range -86- to -109 dBm. The specific value is declared by the vendor.

BS channel Bandwidth (MHz)	Sub-carrier spacing (kHz)	FRC	EIS _{REFSENS} level (dBm)				
50, 100, 200	60	G-FR2-A1-1	EIS _{REFSENS_50M} + Δ _{FR2_REFSENS}				
50	120	G-FR2-A1-2	EISrefsens_50m + Δfr2_refsens				
100, 200, 400	120	G-FR2-A1-3	EISREFSENS_50M + 3 + $\Delta_{FR2_REFSENS}$				
NOTE 1: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full <i>BS channel bandwidth</i> .							
NOTE 2: The decla	NOTE 2: The declared EIS _{REFSENS_50M} shall be within the range specified above.						

Table 10.3.3-1: FR2 OTA Reference sensitivity requirement

10.4 OTA Dynamic range

10.4.1 General

The OTA dynamic range is a measure of the capability of the receiver unit to receive a wanted signal in the presence of an interfering signal inside the received *BS channel bandwidth*.

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals apply to all supported polarizations, under the assumption of *polarization match*.

10.4.2 Minimum requirement for BS type 1-0

For NR, the throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channel.

Table 10.4.2-1: Wide Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
	15	G-FR1-A2-1	-70.7- Δotarefsens		
5	30	G- FR1-A2-2	-71.4- Δotarefsens	-82.5- Δotarefsens	AWGN
	15	G-FR1-A2-1	-70.7- Δotarefsens	-79.3- Δotarefsens	AWGN
10	30	G- FR1-A2-2	-71.4- Δ _{OTAREFSENS}		
	60	G- FR1-A2-3	-68.4- Δotarefsens		
	15	G-FR1-A2-1	-70.7- Δ _{OTAREFSENS}		
15	30	G- FR1-A2-2	-71.4- Δotarefsens	-77.5- Δotarefsens	AWGN
	60	G- FR1-A2-3	-68.4- Δ _{OTAREFSENS}		
	15	G- FR1-A2-4	-64.5- Δotarefsens	_	
20	30	G- FR1-A2-5	-64.5- Δotarefsens	-76.2- Δotarefsens	AWGN
	60	G- FR1-A2-6	-64.8- Δotarefsens		
	15	G- FR1-A2-4	-64.5- Δotarefsens		
25	30	G- FR1-A2-5	-64.5- Δ _{OTAREFSENS}	-75.2- Δotarefsens	AWGN
	60	G- FR1-A2-6	-64.8- Δotarefsens		
	15	G- FR1-A2-4	-64.5- Δ _{OTAREFSENS}	-74.4- Δotarefsens	AWGN
30	30	G- FR1-A2-5	-64.5- Δotarefsens		
	60	G- FR1-A2-6	-64.8- Δ _{OTAREFSENS} -64.5-		
	15	G- FR1-A2-4	-04.5- Δοτarefsens -64.5-	-	AWGN
40	30	G- FR1-A2-5	-64.5- Δ _{OTAREFSENS} -64.8-	-73.1- Δ _{OTAREFSENS}	
	60	G- FR1-A2-6	-04.0- Δοταrefsens -64.5-		
	15	G- FR1-A2-4	-04.5- Δοτarefsens -64.5-	-	
50	30	G- FR1-A2-5	-04.3- Δotarefsens -64.8-	-72.2- Δotarefsens	AWGN
	60	G- FR1-A2-6	Δοταrefsens -64.5-		
60	30	G- FR1-A2-5	-04.3- Δ _{OTAREFSENS} -64.8-	-71.4- Δotarefsens	AWGN
	60	G- FR1-A2-6	-04.0- Δοτarefsens -64.5-		
70	30	G- FR1-A2-5	-04.5- Δ _{OTAREFSENS} -64.8-	-70.8- Δotarefsens	AWGN
	60	G- FR1-A2-6	-04.0- Δotarefsens -64.5-		
80	30	G- FR1-A2-5	Δotarefsens -64.8-	-70.1- Δotarefsens	AWGN
	60	G- FR1-A2-6	Δotarefsens -64.5-		
90	30	G- FR1-A2-5	Δotarefsens -64.8-	-69.6- Δotarefsens	AWGN
	60	G- FR1-A2-6	Δotarefsens -64.5-		
100	30	G- FR1-A2-5		-69.1- Δotarefsens	AWGN

	60	G- FR1-A2-6	-64.8- Δotarefsens		
refer a sir widt exce	ence measuremen gle instance of the corresponding to	t channel. This rea reference measur the number of res	quirement shall be rement channel ma ource blocks of the	e instance of the corresp met for each consecutive apped to disjoint frequence e reference measuremen ce to cover the full <i>BS ch</i>	e application of cy ranges with a t channel each,

Table 10.4.2-2: Medium Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
	15	G-FR1-A2-1	-65.7- Δotarefsens		AWGN
5	30	G- FR1-A2-2	-66.4- Δotarefsens	-77.5- Δotarefsens	
	15	G-FR1-A2-1	-65.7- Δotarefsens	-74.3- Δotarefsens	AWGN
10	30	G- FR1-A2-2	-66.4- Δotarefsens		
	60	G- FR1-A2-3	-63.4- Δotarefsens		
	15	G-FR1-A2-1	-65.7- Δ _{OTAREFSENS}		
15	30	G- FR1-A2-2	-66.4- Δotarefsens	-72.5- Δotarefsens	AWGN
	60	G- FR1-A2-3	-63.4- Δotarefsens		
	15	G- FR1-A2-4	-59.5- Δotarefsens		
20	30	G- FR1-A2-5	-59.5- Δotarefsens	-71.2- Aotarefsens	AWGN
	60	G- FR1-A2-6	-59.8- Δotarefsens		
	15	G- FR1-A2-4	-59.5- Δotarefsens		AWGN
25	30	G- FR1-A2-5	-59.5- Δ _{OTAREFSENS}	-70.2- Δotarefsens	
	60	G- FR1-A2-6	-59.8- Δotarefsens		
	15	G- FR1-A2-4	-59.5- Δ _{otarefsens}	- 69.4- Δotarefsens	AWGN
30	30	G- FR1-A2-5	-59.5- Δotarefsens		
	60	G- FR1-A2-6	-59.8- Δ _{otarefsens}		
	15	G- FR1-A2-4	-59.5- Δotarefsens		AWGN
40	30	G- FR1-A2-5	-59.5- Δ _{OTAREFSENS}	-68.1- Δ _{OTAREFSENS}	
	60	G- FR1-A2-6	-59.8- Δotarefsens		
	15	G- FR1-A2-4	-59.5- Δotarefsens		
50	30	G- FR1-A2-5	-59.5- Δotarefsens	-67.2- Δotarefsens	AWGN
	60	G- FR1-A2-6	-59.8- Δotarefsens		
	30	G- FR1-A2-5	-59.5- Δ _{OTAREFSENS}	CC 4 4	
60	60	G- FR1-A2-6	-59.8- Δotarefsens	-66.4- Δ otarefsens	AWGN
	30	G- FR1-A2-5	-59.5- Δ _{OTAREFSENS}	05.0	
70	60	G- FR1-A2-6	-59.8- Δotarefsens	-65.8- Δ otarefsens	AWGN
22	30	G- FR1-A2-5	-59.5- Δotarefsens	05.4	
80	60	G- FR1-A2-6	-59.8- Δotarefsens	-65.1- Δotarefsens	AWGN
00	30	G- FR1-A2-5	-59.5- Δotarefsens	-64.6- Δotarefsens	
90	60	G- FR1-A2-6	-59.8- Δotarefsens		AWGN
100	30	G- FR1-A2-5	-59.5- Δotarefsens	-64.1- Δotarefsens	AWGN

		60	G- FR1-A2-6	-59.8- Δotarefsens		
NOTE:	refere a sing width	nce measurement gle instance of the corresponding to to for one instance	t channel. This rea reference measur the number of res	quirement shall be rement channel ma ource blocks of the	e instance of the corresp met for each consecutive apped to disjoint frequence e reference measuremen ce to cover the full <i>BS ch</i>	e application of cy ranges with a t channel each,

Table 10.4.2-3: Local Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal	
	15	G-FR1-A2-1	-62.7- Δotarefsens		AWGN	
5	30	G- FR1-A2-2	-64.4- Δotarefsens	-74.5- ∆otarefsens		
	15	G-FR1-A2-1	-62.7- Δotarefsens	-71.3- Δotarefsens	AWGN	
10	30	G- FR1-A2-2	-64.4- Δotarefsens			
	60	G- FR1-A2-3	-60.4- Δotarefsens			
	15	G-FR1-A2-1	-62.7- Δ _{OTAREFSENS}			
15	30	G- FR1-A2-2	-64.4- Δotarefsens	-69.5- Δotarefsens	AWGN	
	60	G- FR1-A2-3	-60.4- Δ _{OTAREFSENS}			
	15	G- FR1-A2-4	-56.5- Δotarefsens			
20	30	G- FR1-A2-5	-56.5- Δotarefsens	-68.2- Aotarefsens	AWGN	
	60	G- FR1-A2-6	-56.8- Δotarefsens			
	15	G- FR1-A2-4	-56.5- Δotarefsens			
25	30	G- FR1-A2-5	-56.5- Δ _{OTAREFSENS}	-67.2- Δotarefsens	AWGN	
	60	G- FR1-A2-6	-56.8- Δotarefsens			
	15	G- FR1-A2-4	-56.5- Δ _{OTAREFSENS}	-66.4- Δotarefsens	AWGN	
30	30	G- FR1-A2-5	-56.5- Δotarefsens			
	60	G- FR1-A2-6	-56.8- Δ _{OTAREFSENS}			
	15	G- FR1-A2-4	-56.5- Δotarefsens	-65.1- Δ _{OTAREFSENS}	AWGN	
40	30	G- FR1-A2-5	-56.5- Δotarefsens			
	60	G- FR1-A2-6	-56.8- Δotarefsens			
	15	G- FR1-A2-4	-56.5- Δotarefsens			
50	30	G- FR1-A2-5	-56.5- Δotarefsens	-64.2- Δotarefsens	AWGN	
	60	G- FR1-A2-6	-56.8- Δotarefsens			
	30	G- FR1-A2-5	-56.5- Δ _{OTAREFSENS}	62.4.4		
60	60	G- FR1-A2-6	-56.8- Δotarefsens	-63.4- Δ otarefsens	AWGN	
70	30	G- FR1-A2-5	-56.5- Δ _{OTAREFSENS}	C2 0 1		
70	60	G- FR1-A2-6	-56.8- Δotarefsens	-62.8- Δ otarefsens	AWGN	
00	30	G- FR1-A2-5	-56.5- Δotarefsens	62.1.1		
80	60	G- FR1-A2-6	-56.8- Δotarefsens	-62.1- Δotarefsens	AWGN	
00	30	G- FR1-A2-5	-56.5- Δotarefsens	61.6.4		
90	60	G- FR1-A2-6	-56.8- Δotarefsens	-01.0- DOTAREFSENS	AWGN	
100	30	G- FR1-A2-5	-56.5- Δotarefsens	-61.1- Δotarefsens	AWGN	
		60	G- FR1-A2-6	-56.8- Δotarefsens		
-------	---------------------------	---	--	--	--	---
NOTE:	refere a sing width	ence measuremen gle instance of the corresponding to of for one instance	t channel. This red reference measur the number of res	wer level of a singl quirement shall be rement channel ma ource blocks of the	le instance of the corresp e met for each consecutive apped to disjoint frequence e reference measuremen ce to cover the full <i>BS ch</i>	e application of cy ranges with a t channel each,

10.5 OTA in-band selectivity and blocking

10.5.1 OTA adjacent channel selectivity

10.5.1.1 General

OTA Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive a OTA wanted signal at its assigned channel frequency in the presence of an OTA adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

10.5.1.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *minSENS RoAoA*.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channel.

For FR1, the OTA wanted and the interfering signal are specified in table 10.5.1.2-1 and table 10.5.1.2-2 for ACS. The reference measurement channel for the OTA wanted signal is further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The OTA ACS requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The OTA interfering signal offset is defined relative to the Base station RF Bandwidth edges or Radio Bandwidth edges.

For RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA ACS requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the NR interfering signal in table 10.5.1.2-2. The OTA interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For *multi-band RIBs*, the OTA ACS requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the NR interfering signal in table 10.5.1.2-2. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

Table 10.5.1.2-1: OTA ACS requirement for BS type 1-0

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm)
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80,90,	EIS _{minSENS} + 6dB	Wide Area: $-52 - \Delta_{minSENS}$ Medium Range: $-47 - \Delta_{minSENS}$
100 (Note 1)		Local Area: -44– Δ _{minSENS}
NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS		
supported by the BS for that bandwidth		
NOTE 2: EISminSENS de	epends on the BS cha	nnel bandwidth

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
5	±2.5025	5 MHz DFT-s-OFDM NR signal SCS: 15kHz, 25 RB
10	±2.5075	5 MHz DFT-s-OFDM NR signal SCS: 15kHz, 25 RB
15	±2.5125	5 MHz DFT-s-OFDM NR signal SCS: 15kHz, 25 RB
20	±2.5025	5 MHz DFT-s-OFDM NR signal SCS: 15kHz, 25 RB
25	±9.535	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
30	±9.585	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
40	±9.535	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
50	±9.485	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
60	±9.585	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
70	±9.535	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
80	±9.485	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
90	±9.585	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB
100	±9.535	20 MHz DFT-s-OFDM NR signal SCS: 15kHz, 100 RB

 Table 10.5.1.2-2: OTA ACS interferer frequency offset for BS type 1-0

10.5.1.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel.

For FR2, the OTA wanted and the interfering signal are specified in table 10.5.1.3-1 and table 10.5.1.3-2 for ACS. The reference measurement channel for the OTA wanted signal is further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The OTA ACS requirement is applicable outside the Base Station RF Bandwidth. The OTA interfering signal offset is defined relative to the Base station RF Bandwidth edges.

For RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA ACS requirement shall apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the NR interfering signal in table 10.5.1.3-2. The OTA interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)			
50, 100, 200, 400	EIS _{REFSENS} + 6dB (Note 3)	EIS _{REFSENS_50M} + 27.7 + Δ _{FR2_REFSENS} (Note 1) EIS _{REFSENS_50M} + 26.7 + Δ _{FR2_REFSENS} (Note 2)			
NOTE 1: Applicable to bands defined within the frequency spectrum range of 24.25					
NOTE 2: Applicable to 52.6 GHz	b bands defined within	the frequency spectrum range of 37 –			
NOTE 3: EISREFSENS is	s given in subclause 10	0.3.3			

Table 10.5.1.3-1: OTA ACS requirement for BS type 2-O

Table 10.5.1.3-2: OTA ACS interferer frequency offset for BS type 2-0

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
50	±24.29	50MHz DFT-s-OFDM NR signal 60 kHz SCS, 64 RB
100	±24.31	50MHz DFT-s-OFDM NR signal 60 kHz SCS, 64 RB
200	±24.29	50MHz DFT-s-OFDM NR signal 60 kHz SCS, 64 RB
400	±24.31	50MHz DFT-s-OFDM NR signal 60 kHz SCS, 64 RB

10.5.2 OTA in-band blocking

10.5.2.1 General

The OTA in-band blocking characteristics is a measure of the receiver's ability to receive a OTA wanted signal at its assigned channel in the presence of an unwanted OTA interferer, which is an NR signal for general blocking or an NR signal with one RB for narrowband blocking.

10.5.2.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction, and:

- when the wanted signal is based on EIS_{REFSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *OTA REFSENS RoAoA*.
- when the wanted signal is based on EIS_{minSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *minSENS RoAoA*.

The wanted and interfering signals apply to all supported polarizations, under the assumption of *polarization match*.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with OTA wanted and OTA interfering signal specified in tables 10.5.2.2-1, table 10.5.2.2-2 and table 10.5.2.2-3 for general OTA and narrowband OTA blocking requirements. The reference measurement channel for the OTA wanted signal is identified in subclause 10.3.2 and are further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The OTA in-band blocking requirements apply outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For *BS type 1-O* the OTA in-band blocking requirement shall apply in the in-band blocking frequency range, which is from $F_{UL,low}$ - Δf_{OOB} to $F_{UL,high}$ + Δf_{OOB} , excluding the downlink frequency range of the FDD *operating band*. The Δf_{OOB} for *BS type 1-O* is defined in table 10.5.2.2-0.

BS type	Operating band characteristics	Δf _{OOB} (MHz)
BS type 1-0	FUL,high – FUL,low < 100 MHz	20
BS type 1-0	$100 \text{ MHz} \leq F_{UL,high} - F_{UL,low} \leq 900 \text{ MHz}$	60

Table 10.5.2.2-0: Δf_{OOB} offset for NR operating bands in FR1

For RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA in-band blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in table 10.5.2.2-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For *multi-band RIBs*, the OTA in-band blocking requirements apply in the in-band blocking frequency ranges for each supported *operating band*. The requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in tables 10.5.2.2-1 and 10.5.2.2-3.

For a RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA narrowband blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the interfering signal minimum offset in table 10.5.2.2-3. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a *multi-band RIBs*, the OTA narrowband blocking requirements apply in the narrowband blocking frequency ranges for each supported *operating band*. The requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the interfering signal minimum offset in table 10.5.2.2-3.

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub- block gap (MHz)	Type of interfering signal
5, 10, 15, 20	EISREFSENS + 6 dB	Wide Area: -43 - Δοταrefsens Medium Range: -38 - Δοταrefsens Local Area: -35 - Δοταrefsens	±7.5	5 MHz DFT-s-OFDM NR signal SCS: 15 kHz, 25 RB
	EIS _{minSENS} + 6 dB	Wide Area: -43 – Δ _{minSENS} Medium Range: -38 – Δ _{minSENS} Local Area: -35 – Δ _{minSENS}	±7.5	5 MHz DFT-s-OFDM NR signal SCS: 15 kHz, 25 RB
25 ,30, 40, 50, 60, 70, 80, 90, 100	EISREFSENS + 6 dB	Wide Area: -43 - Δοτarefsens Medium Range: -38 - Δοτarefsens Local Area: -35 - Δοτarefsens	±30	20 MHz DFT-s-OFDM NR signal SCS: 15 kHz, 100 RB
	EIS _{minSENS} + 6 dB	Wide Area: -43 – Δ _{minSENS} Medium Range: -38 – Δ _{minSENS} Local Area: -35 – Δ _{minSENS}	±30	20 MHz DFT-s-OFDM NR signal SCS: 15 kHz, 100 RB

Table 10.5.2.2-1: General OTA blocking requirement for BS type 1-O

Table 10.5.2.2-2: OTA narrowband blocking requirement for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	OTA Wanted signal mean power (dBm)	OTA Interfering signal mean power (dBm)	
5, 10, 15, 20	EIS _{REFSENS} + 6 dB	Wide Area: -49 - Δοτarefsens Medium Range: -44 - Δοτarefsens	
		Local Area: -41 - DOTAREFSENS	
	EIS _{minSENS} + 6 dB	Wide Area: -49 – Δ _{minSENS} Medium Range: -44 – Δ _{minSENS} Local Area: -41 – Δ _{minSENS}	
25, 30, 40, 50, 60, 70, 80, 90, 100	EIS _{REFSENS} + 6 dB	Wide Area: -49 - ΔοταREFSENS Medium Range: -44 - ΔοταREFSENS Local Area: -41 - ΔοταREFSENS	
	EIS _{minSENS} + 6 dB	Wide Area: -49 – Δ _{minSENS} Medium Range: -44 – Δ _{minSENS} Local Area: -41 – Δ _{minSENS}	
	NOTE: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that bandwidth		

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (kHz)	Type of interfering signal
5	±([342.5] + m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz DFT-s-OFDM NR signal, 1 RB
10	±([347.5] + m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	SCS: 15 kHz
15	±([352.5] + m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	
20	±([342.5] + m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	
25	±([557.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	20 MHz DFT-s-OFDM NR signal, 1 RB SCS: 15 kHz
30	±([562.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
40	±([557.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
50	±([552.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
60	±([562.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
70	±([557.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
80	±([552.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
90	±([562.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
100	±([557.5] + m*180), m=0, 1, 2, 3, 4, 29, 54, 79, 100	
offset, the	signal consisting of one resource channel bandwidth of the interferin pper Base Station RF Bandwidth gap.	ng signal is located adjacently to

10.5.2.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channel.

For *BS type 2-O*, the OTA wanted and OTA interfering signals are provided at RIB using the parameters in table 10.5.2.3-1 for general OTA blocking requirements. The reference measurement channel for the wanted signal is further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The OTA blocking requirements are applicable outside the Base Station RF Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges.

For *BS type 2-O* the OTA in-band blocking requirement shall apply from $F_{UL_low} - \Delta f_{OOB}$ to $F_{UL_high} + \Delta f_{OOB}$. The Δf_{OOB} for *BS type 2-O* is defined in table 10.5.2.3-0.

Table 10.5.2.3-0: Δf_{OOB} offset for NR operating bands in FR2

BS type	Operating band characteristics	Δf оов (MHz)
BS type 2-0	F _{UL_high} – F _{UL_low} ≤ 3250 MHz	1500

For a RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA blocking requirements apply in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in table 10.5.2.3-1. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

BS channel bandwidth of the lowest/highest carrier received (MHz)	OTA wanted signal mean power (dBm)	OTA interfering signal mean power (dBm)	OTA interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)	Type of OTA interfering signal
50, 100, 200, 400	EISrefsens + 6	EISrefsens_50m + 33 + Δfr2_refsens	±75	50 MHz DFT-s-OFDM NR signal 60 kHz SCS, 64 RB
NOTE: EISREFSENS a	and EISREFSENS_50M are	given in subclause 10.3.	3.	

10.6 OTA out-of-band blocking

10.6.1 General

The OTA out-of-band blocking characteristics are a measure of the receiver unit ability to receive a wanted signal at the *RIB* at its assigned channel in the presence of an unwanted interferer.

10.6.2 Minimum requirement for BS type 1-0

10.6.2.1 General minimum requirement

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *minSENS RoAoA*.

The wanted signal applies to all supported polarizations, under the assumption of *polarization match*. The interferer shall be polarization matched in-band and the polarization maintained for out-of-band frequencies.

For OTA wanted and OTA interfering signals provided at the RIB using the parameters in table 10.6.2.1-1, the following requirements shall be met:

The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel. The
reference measurement channel for the OTA wanted signal is identified in subclause 10.3.2 for each BS channel
bandwidth and further specified in annex A. The characteristics of the interfering signal is further specified in
annex D.

For a *multi-band RIB*, the OTA out-of-band requirement shall apply for each supported *operating band*, with the exception that the in-band blocking frequency ranges of all supported *operating bands* according to subclause 7.4.2.2 shall be excluded from the OTA out-of-band blocking requirement.

For *BS type 1-O* the OTA out-of-band blocking requirement apply from 30 MHz to $F_{UL,low}$ - Δf_{OOB} and from $F_{UL,high}$ + Δf_{OOB} up to 12750 MHz, including the downlink frequency range of the FDD *operating band*. The Δf_{OOB} for *BS type 1-O* is defined in table 10.5.2.2-0.

Table 10.6.2.1-1: OTA out-of-band blocking performance requirement

	d signal mean wer (dBm)	Interfering signal RMS field-strength (V/m)	Type of interfering Signal
EISmi	inSENS + 6 dB	0.36	CW carrier
	(Note 1)		
NOTE 1: EISminSENS depends on the channel bandwidth as specified in subclaus			as specified in subclause
	9.2.		
NOTE 2: The RMS field-strength level in V/m is related to the interferer EIRP lev			the interferer EIRP level
	at a distance described as $E = \frac{\sqrt{30EIRP}}{r}$, where EIRP is in W and r is in m;		
for example, 0.36 V/m is equivalent to 36 dBm at fixed distance of 30			at fixed distance of 30 m.

10.6.2.2 Co-location minimum requirement

This additional OTA out-of-band blocking requirement may be applied for the protection of BS receivers when NR, E-UTRA BS, UTRA BS, CDMA BS or GSM/EDGE BS operating in a different frequency band are co-located with a BS.

The requirement is a co-location requirement. The interferer power levels are specified at the *co-location reference antenna* conducted input. The interfering signal power is specified per supported polarization.

The requirement is valid over the minSENS RoAoA.

For OTA wanted and OTA interfering signal provided at the RIB using the parameters in table 10.6.2.1-1, the following requirements shall be met:

The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel. The
reference measurement channel for the OTA wanted signal is identified in subclause 10.3.2 for each BS channel
bandwidth and further specified in annex A. The characteristics of the interfering signal is further specified in
annex D.

For *BS type 1-O* the OTA blocking requirement for co-location with BS in other frequency bands is applied for all *operating bands* for which co-location protection is provided.

Frequency range of interfering signal	Wanted signal mean power (dBm)	Interfering signal mean power for WA BS (dBm)	Interfering signal mean power for MR BS (dBm)	Interfering signal mean power for LA BS (dBm)	Type of interfering signal
Frequency range of co-located downlink operating band	EIS _{minSENS} + 6 dB (Note 1)	+46	+38	+24	CW carrier
NOTE 1: EIS _{minSENS} depends on the BS class and on the BS channel bandwidth, see subclause 10.3. NOTE 2: The requirement does not apply when the interfering signal falls within any of the supported uplink operating band(s) or in Δf_{OOB} immediately outside any of the supported uplink operating band(s).					

Table 10.6.2.2-1: OTA blocking requirement for co-location with BS in other frequency bands

10.6.3 Minimum requirement for BS type 2-0

10.6.3.1 General minimum requirement

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted signal applies to all supported polarizations, under the assumption of *polarization match*. The interferer shall be polarization matched in-band and the polarization maintained for out-of-band frequencies.

For *BS type 2-O* the OTA out-of-band blocking requirement apply from 30 MHz to $F_{UL,low}$ – 1500 MHz and from $F_{UL,high}$ + 1500 MHz up to 2nd harmonic of the upper frequency edge of the *operating band*.

For OTA wanted and OTA interfering signals provided at the RIB using the parameters in table 10.6.3.1-1, the following requirements shall be met:

The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel. The
reference measurement channel for the OTA wanted signal is identified in subclause 10.3.3 for each BS channel
bandwidth and further specified in annex A.

Frequency range of interfering signal (MHz)	Wanted signal mean power (dBm)	Interferer RMS field- strength (V/m)	Type of interfering signal
30 to 12750	EISREFSENS + 6 dB	0.36	CW
12750 to F _{UL,low} – 1500	EISREFSENS + 6 dB	0.1	CW
F _{UL,high} + 1500 to 2 nd harmonic of the upper frequency edge of the <i>operating band</i>	EISREFSENS + 6 dB	0.1	CW

Table 10.6.3.1-1: OTA out-of-band blocking performance requirement

10.7 OTA receiver spurious emissions

10.7.1 General

The OTA RX spurious emission is the power of the emissions radiated from the antenna array from a receiver unit.

The metric used to capture OTA receiver spurious emissions for *BS type 1-O* and *BS type 2-O* is total radiated power (TRP), with the requirement defined at the RIB.

10.7.2 Minimum requirement for BS type 1-0

For a BS operating in FDD, OTA RX spurious emissions requirement do not apply as they are superseded by the OTA TX spurious emissions requirement. This is due to the fact that TX and RX spurious emissions cannot be distinguished in OTA domain.

For a BS operating in TDD, the OTA RX spurious emissions requirement shall apply during the *transmitter OFF period* only.

For RX only *multi-band RIB*, the OTA RX spurious emissions requirements are subject to exclusion zones in each supported *operating band*.

The OTA RX spurious emissions for *BS type 1-O* are that for each *basic limit* specified in table 7.6.2-1, the power sum of emissions at the RIB shall not exceed limits specified as the *basic limit* + X, where X = 9 dB, unless stated differently in regional regulation.

10.7.3 Minimum requirement for BS type 2-0

For the BS type 2-O, the power of any RX spurious emission shall not exceed the limits in table 10.7.3-1.

Limit	Measurement bandwidth	Note	
-57 dBm	100 kHz	Note 1	
-47 dBm	1 MHz	Note 1	
-36 dBm	1 MHz	Note 1, Note 2	
 band band band bandwidth as in ITU-R SM.329 [3], s4.1 Upper frequency as in ITU-R SM.329 [3], s2.5 table 1. The frequency range from Δfo_{BUE} below the lowest frequency of the BS transmitter operating band to Δf_{OBUE} above the highest frequency of the BS transmitter operating band may be 			
	-47 dBm -36 dBm TU-R SM.329 [3], s4.1 as in ITU-R SM.329 [3], s2 nge from Δfo _{BUE} below the pove the highest frequency	-57 dBm 100 kHz -47 dBm 1 MHz -36 dBm 1 MHz TU-R SM.329 [3], s4.1 1 as in ITU-R SM.329 [3], s2.5 table 1. 1 nge from ΔfoBUE below the lowest frequency of the low states frequency of the lowest freq	

Table 10.7.3-1: Radiated Rx spurious emission limits for BS type 2-0

10.8 OTA receiver intermodulation

10.8.1 General

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver unit to receive a wanted signal on its assigned channel frequency in the presence of two interfering signals which have a specific frequency relationship to the wanted signal. The requirement is defined as a directional requirement at the *RIB*.

10.8.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction, and:

- when the wanted signal is based on EIS_{REFSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *OTA REFSENS RoAoA*.
- when the wanted signal is based on EIS_{minSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *minSENS RoAoA*.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

For NR, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals at the RIB. with the conditions specified in tables 10.8.2-1 and 10.8.2-2 for intermodulation performance and in tables 10.8.2-3 and 10.8.2-4 for narrowband intermodulation performance.

The reference measurement channel for the wanted signal is identified in table 10.3.2-1, table 10.3.2-2 and table 10.3.2-3 for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall be the same as the subcarrier spacing for the wanted signal, except for the case of wanted signal subcarrier spacing 60kHz and *BS channel bandwidth* <=20MHz, for which the subcarrier spacing of the interfering signal shall be 30kHz.

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a RIBs supporting operation in non-contiguous spectrum within any *operating band*, the narrowband intermodulation requirement shall apply in addition inside any sub-block gap in case the sub-block gap is at least as wide as the *BS channel bandwidth* of the NR interfering signal in tables 10.8.2-2 and 10.8.2-4. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For *multi-band RIBs*, the intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap, in case the gap size is at least twice as wide as the NR interfering signal centre frequency offset from the Base Station RF Bandwidth edge.

For *multi-band RIBs*, the narrowband intermodulation requirement shall apply in addition inside any Inter RF Bandwidth gap in case the gap size is at least as wide as the NR interfering signal in tables 10.8.2-2 and 10.8.2-4. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

BS class	Wanted Signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
Wide Area BS	EISREFSENS + 6 dB	-52 - ∆otarefsens	
	EIS _{minSENS} + 6 dB	-52 - ∆ _{minSENS}	
Medium Range BS	EISREFSENS + 6 dB	-47 - ∆otarefsens	See Table 10.8.2-2
-	EIS _{minSENS} + 6 dB	-47 - ∆ _{minSENS}	See Table 10.0.2-2
Local Area BS	EIS _{REFSENS} + 6 dB	-44 - ∆otarefsens	
	EIS _{minSENS} + 6 dB	-44 - ∆ _{minSENS}	
NOTE 1: EIS _{REFSENS} and EIS _{minSENS} depend on the BS class and on the BS channel bandwidth, see subclause 10.3 and 10.2.			

Table 10.8.2-1: General intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper base station RF Bandwidth edge (MHz)	Type of interfering signal
	±7.5	CW
5	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.45	CW
10	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.43	CW
15	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.38	CW
20	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.45	CW
25	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.43	CW
30	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.45	CW
40	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.35	CW
50	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.49	CW
60	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.42	CW
70	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.44	CW
80	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.43	CW
90	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.45	CW
100	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
 NOTE 1: Number of RBs is 25 for 15 kHz subcarrier spacing and 10 for 30 kHz subcarrier spacing. NOTE 2: Number of RBs is 100 for 15 kHz subcarrier spacing, 50 for 30 kHz subcarrier spacing and 24 for 60 kHz subcarrier spacing. 		

Table 10.8.2-2: Interfering signals for intermodulation requirement

BS class	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
Wide Area BS	EIS _{REFSENS} + 6 dB (Note 1)	-52 - ∆otarefsens	
Wide Alea BS	EIS _{minSENS} + 6 dB (Note 1)	-52 - $\Delta_{minSENS}$	
Medium Range BS	EIS _{REFSENS} + 6 dB (Note 1)	-47 - Δ otarefsens	See Table 10.8.2-4
Medium Range BS	EIS _{minSENS} + 6 dB (Note 1)	-47 - $\Delta_{minSENS}$	See Table 10.0.2-4
Local Area BS	EIS _{REFSENS} + 6 dB (Note 1)	-44 - Δ otarefsens	
Local Alea DS	EIS _{minSENS} + 6 dB (Note 1)	-44 - $\Delta_{minSENS}$	
NOTE 1: EISREFSENS / E	ISminSENS depends on the	BS channel bandwidth,	see subclause 10.3 and 10.2.

Table 10.8.2-3: Narrowband intermodulation performance requirement in FR1

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz)	Type of interfering signal	
	±360	CW	
5	±1420	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±325	CW	
10	±1780	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±380	CW	
15 (NOTE 2)	±1600	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±345	CW	
20 (NOTE 2)	±1780	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±325	CW	
25 (NOTE 2)	±1990	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±320	CW 20 MHz DFT-s-OFDM NR	
30 (NOTE 2)	±1990	signal, 1 RB (NOTE 1)	
	±310	CW	
40 (NOTE 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±330		
50 (NOTE 2)	±3250	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±350		
60 (NOTE 2)	±3790	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
70 (NOTE 2)	±400	CW 20 MHz DFT-s-OFDM NR	
70 (NOTE 2)	±4870	signal, 1 RB (NOTE 1)	
	±390		
80 (NOTE 2)	±4870	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)	
	±340	CW 20 MHz DFT-s-OFDM NR	
90 (NOTE 2)	±5770	signal, 1 RB (NOTE 1)	
100 (NOTE 2)	±340	CW 20 MHz DFT-s-OFDM NR	
100 (NOTE 2)	±5770	signal, 1 RB (NOTE 1)	
 NOTE 1: Interfering signal consisting of one resource block positioned at the stated offset, the BS channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap. NOTE 2: This requirement shall apply only for a G-FRC mapped to the frequency range at the channel edge adjacent to the 			
interfering signals.			

Table 10.8.2-4: Interfering signals for narrowband intermodulation requirement in FR1

10.8.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals applies to all supported polarizations, under the assumption of *polarization match*.

Throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with OTA wanted signal at the assigned channel frequency and two OTA interfering signals provided at the RIB using the parameters in tables 10.8.3-1 and 10.8.3-2. All of the OTA test signals arrive from the same direction, and the requirement is valid if the signals arrive from any direction within the *OTA REFSENS RoAoA*. The reference measurement channel for the wanted signal is identified in [table 10.3.2-1] for each *BS channel bandwidth* and further specified in annex A. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall be the same as the subcarrier spacing for the wanted signal.

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges.

Table 10.8.3-1: General intermodulation requirement			
el bandwidth of	Wanted signal mean	Interfering signal mean	Type of i

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
50, 100, 200, 400	EISREFSENS + 6	EIS _{REFSENS_50M} + 25 + Δfr2_refsens	See Table 10.8.3-2
NOTE: EISREFSENS and EISREFSENS_50M are given in subclause 10.3.3.			

Table 10.8.3-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge (MHz)	Type of interfering signal
	±7.5	CW
50 MHz	±40	50MHz DFT-s-OFDM NR signal (Note 1)
100 MH-	±6.88	CW
100 MHz -	±40	50MHz DFT-s-OFDM NR signal (Note 1)
200 MH-	±5.64	CW
200 MHz -	±40	50MHz DFT-s-OFDM NR signal (Note 1)
	±6.02	CW
400 MHz	±45	50MHz DFT-s-OFDM NR signal (Note 1)
NOTE 1: Number of R	Bs is 64 for the 60 kHz subcarrier spacing, 3	2 for the 120 kHz subcarrier spacing

10.9 OTA in-channel selectivity

10.9.1 General

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an NR signal as specified in annex A and shall be time aligned with the wanted signal.

10.9.2 Minimum requirement for *BS type 1-O*

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are the same direction and are within the *minSENS RoAoA*

The wanted and interfering signals applies to all supported polarizations, under the assumption of *polarization match*.

For a wanted and an interfering signal coupled to the RIB, the following requirements shall be met:

For BS type 1-O, the throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel as specified in annex A with parameters specified in table 10.9.2-1 for Wide Area BS, in table 10.9.2-2 for Medium Range BS and in table 10.9.2-3 for Local Area BS. The characteristics of the interfering signal is further specified in annex D.

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-100.6- ∆ _{minSENS}	-81.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, SCS 15 kHz, 10 RB
10,15,20,25,30	15	G-FR1-A1-1	-98.7- ∆ _{minSENS}	-77.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, SCS 15 kHz, 25 RB
40,50	15	G-FR1-A1-4	-92.3- ∆minSENS	-71.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 15 kHz, 100 RB
5	30	G-FR1-A1-8	-101.3- ∆minSENS	-81.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 5 RB
10,15,20,25,30	30	G-FR1-A1-2	-98.8- ∆minSENS	-78.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 10 RB
40,50,60,70,80,90,100	30	G-FR1-A1-5	-92.6- ∆minSENS	-71.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 50 RB
10,15,20,25,30	60	G-FR1-A1-9	-98.2- ∆ _{minSENS}	-78.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, SCS 60 kHz, 5 RB
40,50,60,70,80,90,100	60	G-FR1-A1-6	-92.7- ∆ _{minSENS}	-71.6 - Δ _{minSENS}	DFT-s-OFDM NR signal, SCS 60 kHz, 24 RB
bandwidth of		according to the t	able 5.4.2.2-1 . T	he aggregated w	ned for BS channel anted and interferer

Table 10.9.2-1: Wide Area BS in-channel selectivity

Table 10.9.2-2:	Medium Range BS in-channel selectivity
-----------------	--

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-95.6- ∆minSENS	-76.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 15 kHz, 10 RB
10,15,20,25,30	15	G-FR1-A1-1	-93.7- ∆minSENS	-72.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 15 kHz, 25 RB
40,50	15	G-FR1-A1-4	-87.3- ∆ _{minSENS}	-66.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, SCS 15 kHz, 100 RB
5	30	G-FR1-A1-8	-96.3- ∆ _{minSENS}	-76.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, SCS 30 kHz, 5 RB
10,15,20,25,30	30	G-FR1-A1-2	-93.8- ∆minSENS	-73.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 10 RB
40,50,60,70,80,90,100	30	G-FR1-A1-5	-87.6- ∆minSENS	-66.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 50 RB
10,15,20,25,30	60	G-FR1-A1-9	-93.2- ∆minSENS	-73.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 60 kHz, 5 RB
40,50,60,70,80,90,100	60	G-FR1-A1-6	-87.7- ∆minSENS	-66.6 - ∆minSENS	DFT-s-OFDM NR signal, SCS 60 kHz, 24 RB
bandwidth of		according to the t	able 5.4.2.2-1. Tl	he aggregated wa	ned for <i>BS channel</i> anted and interferer

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-92.6- ∆ _{minSENS}	-73.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, SCS 15 kHz, 10 RB
10,15,20,25,30	15	G-FR1-A1-1	-90.7- Δ _{minSENS}	-69.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, SCS 15 kHz, 25 RB
40,50	15	G-FR1-A1-4	-84.3- ∆minSENS	-63.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 15 kHz, 100 RB
5	30	G-FR1-A1-8	-93.3- ∆minSENS	-73.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 5 RB
10,15,20,25,30	30	G-FR1-A1-2	-90.8- ∆minSENS	-70.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 10 RB
40,50,60,70,80,90,100	30	G-FR1-A1-5	-84.6- ∆minSENS	-63.4 - ∆minSENS	DFT-s-OFDM NR signal, SCS 30 kHz, 50 RB
10,15,20,25,30	60	G-FR1-A1-9	-90.2- ∆ _{minSENS}	-70.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, SCS 60 kHz, 5 RB
40,50,60,70,80,90,100	60	G-FR1-A1-6	-84.7- ∆ _{minSENS}	-63.6 - Δ _{minSENS}	DFT-s-OFDM NR signal, SCS 60 kHz, 24 RB
bandwidth of		according to the t	able 5.4.2.2-1. T	he aggregated wa	ned for <i>BS channel</i> anted and interferer

Table 10.9.2-3: Local area BS in-channel selectivity

10.9.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals applies to all supported polarizations, under the assumption of *polarization match*.

For *BS type 2-O*, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in annex A with parameters specified in table 10.9.3-1. The characteristics of the interfering signal is further specified in annex D.

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm) (Note 2)	Type of interfering signal				
50	60	G-FR2-A1-4	EISrefsens_50M + $\Delta_{FR2_REFSENS}$	EIS _{REFSENS_50M} + 10 + Δ _{FR2_REFSENS}	DFT-s-OFDM NR signal, SCS 60 kHz, 32 RB				
100,200	60	G-FR2-A1-1	EIS _{REFSENS_50M} + 3 + Δ _{FR2_REFSENS}	EISrefsens_50m + 13 + Δfr2_refsens	DFT-s-OFDM NR signal, SCS 60 kHz, 64 RB				
50	120	G-FR2-A1-5	EIS _{REFSENS_50M} + Δfr2_refsens	EIS _{REFSENS_50M} + 10 + Δfr2_refsens	DFT-s-OFDM NR signal, SCS 120 kHz, 16 RB				
100,200,400	120	G-FR2-A1-2	$\frac{EIS_{REFSENS_{50M}} + 3 + }{\Delta_{FR2_{REFSENS}}}$	EIS _{REFSENS_50M} + 13 + Δfr2_refsens	DFT-s-OFDM NR signal, SCS 120 kHz, 32 RB				
 NOTE 1: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for BS channel bandwidth of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the BS channel bandwidth of the wanted signal. NOTE 2: EIS_{REFSENS_50M} is defined in subclause 10.3.3. 									

Table 10.9.3-1: OTA in-channel selectivity requirement for BS type 2-O

Table 10.9.3-2: (Void)

Table 10.9.3-3: (Void)

11 Radiated performance requirements

11.1 General

11.1.1 Scope and definitions

Radiated performance requirements specify the ability of the *BS type 1-O* or *BS type 2-O* to correctly demodulate radiated signals in various conditions and configurations. Radiated performance requirements are specified at the RIB.

Radiated performance requirements for the BS are specified for the fixed reference channels defined in annex A and the propagation conditions in annex G. The requirements only apply to those FRCs that are supported by the BS.

The radiated performance requirements for *BS type 1-O* and for the *BS type 2-O* are limited to two OTA *demodulation branches* as described in subclause 11.1.2. Conformance requirements can only be tested for 1 or 2 *demodulation branches* depending on the number of polarizations supported by the BS, with the required SNR applied separately per polarization.

NOTE 1: The BS can support more than 2 *demodulation branches*, however OTA conformance testing can only be performed for 1 or 2 *demodulation branches*.

Unless stated otherwise, radiated performance requirements apply for a single carrier only. Radiated performance requirements for a BS supporting CA are defined in terms of single carrier requirements.

For *BS type 1-O* in FDD operation the requirements in clause 8 shall be met with the transmitter units associated with the RIB in the *operating band* turned ON.

NOTE 2: *BS type 1-O* in normal operating conditions in FDD operation is configured to transmit and receive at the same time. The transmitter unit(s) associated with the RIB may be OFF for some of the tests.

In tests performed with signal generators a synchronization signal may be provided from the BS to the signal generator, to enable correct timing of the wanted signal.

Whenever the "RX antennas" term is used for the radiated performance requirements description, it shall refer to the *demodulation branches* (i.e. not physical antennas of the antenna array).

The SNR used in this clause is specified based on a single carrier and defined as:

SNR = S / N

Where:

- S is the total signal energy in a slot on a RIB.
- N is the noise energy in a bandwidth corresponding to the transmission bandwidth over the duration of a slot on a RIB.

11.1.2 OTA demodulation branches

Radiated performance requirements are only specified for up to 2 demodulation branches.

If the *BS type 1-O*, or the *BS type 2-O* uses polarization diversity and has the ability to maintain isolation between the signals for each of the *demodulation branches*, then radiated performance requirements can be tested for up to two *demodulation branches* (i.e. 1RX or 2RX test setups). When tested for two *demodulation branches*, each demodulation branch maps to one polarization.

If the *BS type 1-O*, or the *BS type 2-O* does not use polarization diversity then radiated performance requirements can only be tested for a single *demodulation branch* (i.e. 1RX test setup).

11.1.3 Applicability rule

Text to be added.

11.2 Performance requirements for PUSCH

11.2.1 Requirements for BS type 1-0

11.2.1.1 Requirements for PUSCH with transform precoding disabled

Apply the requirements defined in subclause 8.2.1 for 2Rx.

11.2.1.2 Requirements for PUSCH with transform precoding enabled

Apply the requirements defined in subclause 8.2.2 for 2Rx.

11.2.2 Requirements for BS type 2-0

11.2.2.1 Requirements for PUSCH with transform precoding disabled

11.2.2.1.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

	Parameter	Value
Transform precoding		Disabled
Uplink-downlink alloc	cation for TDD	60 kHz and 120kHz SCS: 3D1S1U, S=10D:2G:2U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DMRS	DMRS configuration type	1
	Maximum number of OFDM symbols for front loaded DMRS	1
	Number of additional DMRS symbols	0
	Number of DMRS CDM group(s) without data	2
	EPRE ratio of PUSCH to DMRS	-3 dB
	DMRS port	{0}, {0, 1}
	DMRS sequence generation	$N_{ID}=0$, $n_{SCID}=0$
Time domain	PUSCH mapping type	В
resource	PUSCH starting symbol index	0
	PUSCH symbol length	10
Frequency domain resource	RB assignment	Full applicable test bandwidth
	Frequency hopping	Disabled
TPMI index for 2Tx ty	wo-layer spatial multiplexing transmission	0
	sed PUSCH transmission	Disabled
DTDC configuration	Frequency density (<i>K</i> _{PT-RS})	2
PTRS configuration	Time density (L _{PT-RS})	1

Table 11.2.2.1.1-1: Test parameters for testing PUSCH

11.2.2.1.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 11.2.2.1.2-1 to 11.2.2.1.2-5 at the given SNR for 1Tx and for 2Tx two-layer spatial multiplexing transmission.

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configur ation	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-1	1+0	[-1.1]
1		Normal	TDLA30-300 Low	70 %	G-FR2-A4-1	1+0	[12.5]
	2	Normal	TDLA30-75 Low	70 %	G-FR2-A5-1	1+0	[14.7]
2		Normal	TDLA30-300 Low	70 %	G-FR2-A3-6	1+0	[2.6]
2		Normal	TDLA30-300 Low	70 %	G-FR2-A4-6	1+0	[NA]

Table 11.2.2.1.2-1: Minimum requirements for PUSCH, 50 MHz channel bandwidth, 60 kHz SCS

Table 11.2.2.1.2-2: Minimum requirements for PUSCH, 100 MHz channel bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configur ation	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-2	1+0	[-1.4]
1	2	Normal	TDLA30-300 Low	70 %	G-FR2-A4-2	1+0	[12.9]
	2	Normal	TDLA30-75 Low	70 %	G-FR2-A5-2	1+0	[15.0]
2		Normal	TDLA30-300 Low	70 %	G-FR2-A3-7	1+0	[2.3]

Table 11.2.2.1.2-3: Minimum requirements for PUSCH, 50 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configur ation	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-3	1+0	[-0.9]
1		Normal	TDLA30-300 Low	70 %	G-FR2-A4-3	1+0	[12.0]
	2	Normal	TDLA30-75 Low	70 %	G-FR2-A5-3	1+0	[14.6]
2		Normal	TDLA30-300 Low	70 %	G-FR2-A3-8	1+0	[2.2]
2		Normal	TDLA30-300 Low	70 %	G-FR2-A4-8	1+0	[21.1]

Table 11.2.2.1.2-4: Minimum requirements for PUSCH, 100 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configur ation	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-4	1+0	[-1.4]
1	2	Normal	TDLA30-300 Low	70 %	G-FR2-A4-4	1+0	[11.9]
	2	Normal	TDLA30-75 Low	70 %	G-FR2-A5-4	1+0	[14.4]
2		Normal	TDLA30-300 Low	70 %	G-FR2-A3-9	1+0	[2.3]

Table 11.2.2.1.2-5: Minimum requirements for PUSCH, 200 MHz channel bandwidth,	120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configur ation	SNR (dB)
		Normal	TDLA30-300	70 %	G-FR2-A3-5	1+0	[-1.2]
1		Normal	TDLA30-300	70 %	G-FR2-A4-5	1+0	[12.0]
	2	Normal	TDLA30-75	70 %	G-FR2-A5-5	1+0	[15.5]
2		Normal	TDLA30-300	70 %	G-FR2-A3-10	1+0	[2.3]
2		Normal	TDLA30-300	70 %	G-FR2-A4-10	1+0	[21.9]

11.2.2.2 Requirements for PUSCH with transform precoding enabled

11.2.2.2.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

	Parameter	Value
Transform precodi	ng	Enabled
Uplink-downlink all	ocation for TDD	60 kHz and 120kHz SCS: 3D1S1U, S=10D:2G:2U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DMRS	DMRS configuration type	1
	Maximum number of OFDM symbols for front loaded DMRS	1
	Number of additional DMRS symbols	0
	Number of DMRS CDM group(s) without data	2
	EPRE ratio of PUSCH to DMRS	-3 dB
	DMRS port	0
	DMRS sequence generation	N _{ID} =0, group hopping and sequence hopping are disabled
Time domain	PUSCH mapping type	В
resource	PUSCH starting symbol index	0
	PUSCH symbol length	10
Frequency	RB assignment	30 PRBs in the middle of the test bandwidth
domain resource	Frequency hopping	Disabled
Code block group l	based PUSCH transmission	Disabled
PTRS		Not configured

11.2.2.2.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 11.2.2.2.2-1 to 11.2.2.2.2-2 at the given SNR.

Table 11.2.2.2.1: Minimum require	ements for PUSCH, 50 MHz	Channel Bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
1	2	Normal	TDLA30-300	70 %	G-FR2-A3-11	1+0	[TBD]

Table 11.2.2.2.2-2: Minimum requirements for PUSCH, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	DMRS configuration	SNR (dB)
1	2	Normal	TDLA30-300	70 %	G-FR2-A3-12	1+0	[TBD]

11.3 Performance requirements for PUCCH

11.3.1 Requirements for BS type 1-0

11.3.1.1 DTX to ACK probability

Apply the requirements defined in subclause 8.3.1

11.3.1.2 Performance requirements for PUCCH format 0

Apply the requirements defined in subclause 8.3.2 for 2 Rx.

11.3.1.3 Performance requirements for PUCCH format 1

Apply the requirements defined in sub-clause 8.3.3 for 2Rx.

11.3.1.4 Performance requirements for PUCCH format 2

Apply the requirements defined in subclause 8.3.4 for 2Rx.

11.3.1.5 Performance requirements for PUCCH format 3

Apply the requirements defined in subclause 8.3.5 for 2Rx.

11.3.1.6 Performance requirements for PUCCH format 4

Apply the requirements defined in subclause 8.3.6 for 2Rx.

11.3.2 Requirements for BS type 2-0

11.3.2.1 DTX to ACK probability

Apply the requirements defined in subclause 8.3.1.

11.3.2.2 Performance requirements for PUCCH format 0

11.3.2.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

Parameter	Test
nrofBits	1
nrofPRBs	1
startingPRB	0
intraSlotFrequencyHopping	enabled
secondHopPRB	The largest PRB index - nrofPRBs
initialCyclicShift	0
startingSymbolIndex	13 for 1 symbol 12 for 2 symbols

Table 11.3.2.2.1-1: Test Parameters

11.3.2.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 11.3.2.2.2-1 and in table 11.3.2.2.2-2.

Number of TX antennas	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (d	
amerinas	branches		Symbols	50 MHz	100 MHz
1	2	TDLA30-300 Low	1	[8.8]	[9.1]
			2	[4.5]	[3.8]

Table 11.3.2.2.2-1: Minimum requirements for PUCCH format 0 and 60kHz SCS

Table 11.3.2.2.2-2: Minimum requirements for PUCCH format 0 and 120kHz SCS

Number of TX antennas	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwidth / SNR (dB)		/ SNR (dB)
antennas	branches		Symbols	50 MHz	100 MHz	200 MHz
1	2	TDLA30-300 Low	1	TBD	TBD	[8.7]
			2	TBD	TBD	[3.2]

11.3.2.3 Performance requirements for PUCCH format 1

11.3.2.3.1 NACK to ACK requirements

11.3.2.3.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

$$Prob(PUCCHNACK \rightarrow ACK \text{ bits}) = \frac{\#(NACK \text{ bits decoded as } ACK \text{ bits})}{\#(Total NACK \text{ bits})}$$

where:

- #(Total NACK bits) denotes the total number of NACK bits transmitted
- #(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.

Parameter	Test
nrofBits	2
nrofPRBs	1
nrofSymbols	14
startingPRB	0
intraSlotFrequencyHopping	enabled
secondHopPRB	The largest PRB index - nrofPRBs
initialCyclicShift	0
startingSymbolIndex	0
Index of orthogonal sequence (time-domain-OCC)	0

Table 11.3.2.3.1.1-1: Test Parameters

11.3.2.3.1.2 Minimum requirements

The NACK to ACK probability shall not exceed 0.1% at the SNR given in Table 11.3.2.3.1.2-1 and Table 11.3.2.3.1.2-2.

Table 11.3.2.3.1.2-1: Minimum requirements for PUCCH format 1 with 60 kHz SCS

Number of TX	Number of Cyclic Demodulation Prefix				bandwidth / (dB)
antennas	Branches		correlation matrix (Annex G)	50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	[TBD]	[TBD]

Table 11.3.2.3.1.2-2: Minimum requirements for PUCCH format 1 with 120 kHz SCS

Number Number of		Cyclic Propagation		Channel bandwidth / SNR (dB)			
of TX antenna s	Demodulation Branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz	200 MHz	
1	2	Normal	TDLA30-300 Low	[TBD]	[-2.7]	[TBD]	

11.3.2.3.2 ACK missed detection requirements

11.3.2.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in Table 11.3.2.3.1.1-1 are configured.

11.3.2.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in Table 11.3.2.3.2.2-1 and in Table 11.3.2.3.2.2-2.

Table 11.3.2.3.2.2-1: Minimum requirements for PUCCH format 1 with 60 kHz SCS

Number of TX				Channel bandwidth SNR (dB)	
antennas	Branches		correlation matrix (Annex G)	50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	[-4.4]	[-4.1]

Table 11.3.2.3.2.2-2: Minimum requirements for PUCCH format 1 with 120 kHz SCS

Number			Cyclic Propagation		Channel bandwidth / SNR (dB)			
of TX antenna s	Demodulation Branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz	200 MHz		
1	2	Normal	TDLA30-300 Low	[-4.7]	[-4.0]	[-5.4]		

11.3.2.4 Performance requirements for PUCCH format 2

11.3.2.4.1 ACK missed detection requirements

11.3.2.4.1.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

The ACK missed detection requirement only applies to the PUCCH format 2 with 4 UCI bits.

Parameter	Value
Modulation	QSPK
startingPRB	0
intraSlotFrequencyHopping	enable
secondHopPRB	The largest PRB index - nrofPRB
nrofPRB	4
nrofSymbols	1
the number of UCI bits	4
startingSymbolIndex	13

Table 11.3.2.4.1.1-1: Test Parameters

11.3.2.4.1.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 11.3.2.4.1.2-1 and table 11.3.2.4.1.2-2 for 4UCI bits.

Table 11.3.2.4.1.2-1: Minimum requirements for PUCCH format 2 with 60 kHz	SCS
---	-----

Number of	Number of	Cyclic	Propagation	Channel bandwidth / SNR (dB)		
TX antennas	demodulatio n branches	Prefix	conditions and correlation matrix (Annex [G])	50 MHz	100 MHz	
1	2	Normal	TDLA30-300 Low	[TBD]	[TBD]	

Table 11.3.2.4.1.2-2: Minimum requirements for PUCCH format 2 with 120 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel bandwidth / SNR (dB)			
TX antennas	demodulati on branches	Prefix	conditions and correlation matrix (Annex [G])	50 MHz	100 MHz	200 MHz	
1	2	Normal	TDLA30-300 Low	[TBD]	[6.3]	[TBD]	

11.3.2.4.2 UCI BLER performance requirements

11.3.2.4.2.1 General

The UCI block error probability (BLER) is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. All UCI information shall be decoded.

The UCI performance only applies to the PUCCH format 2 with 22 UCI bits.

Parameter	Value
Modulation	QSPK
startingPRB	0
intraSlotFrequencyHopping	enabled
secondHopPRB	The largest PRB index - nrofPRB
nrofPRB	9
nrofSymbols	2
the number of UCI bits	22
startingSymbolIndex	12

Table 11.3.2.4.2.1-1: Test Parameters

11.3.2.4.2.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in table 11.3.2.4.2.2-1 and table 11.3.2.4.2.2-2 for 22 UCI bits.

Table 11.3.2.4.2.2-1: Minimum requirements for PUCCH format 2 with 60 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel bandwidth / SNR (dB)		
TX antennas	demodulati on branches	Prefix	conditions and correlation matrix (Annex [G])	50 MHz	100 MHz	
1	2	Normal	TDLA30-300 Low	[TBD]	[1.0]	

Table 11.3.2.4.2.2-2: Minimum requirements for PUCCH format 2 with 120 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel bandwidth / SNR (dB)			
TX antennas	demodulati on branches	Prefix	conditions and correlation matrix (Annex [G])	50 MHz	100 MHz	200 MHz	
1	2	Normal	TDLA30-300 Low	[TBD]	[1.1]	[1.4]	

11.3.2.5 Performance requirements for PUCCH format 3

11.3.2.5.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. All UCI information shall be decoded.

Parameter	Test 1	Test 2	
Modulation	QPSK		
startingPRB	(C	
intraSlotFrequencyHopping	enabled		
secondHopPRB	The largest PRB index - nrofPRBs		
nrofPRBs	1	3	
nrofSymbols	14	4	
the number of UCI bits	16	16	
startingSymbolIndex	0	0	

Table 11.3.2.5.1-1: Te	est parameters
------------------------	----------------

11.3.2.5.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 11.3.2.5.2-1 and Table 11.3.2.5.2-2.

Table 11.3.2.5.2-1: Required SNR for PUCCH format 3 with 60kHz SCS

Test Number	Number of TX antennas	Number of demodul	Cyclic Prefix	Propagation conditions and correlation	Additional DMRS configuration	Bandwi	annel dth / SNR dB)
		ation branche s		matrix (Annex G)		50 MHz	100 MHz
1	1	2	Normal	TDLA30-300 Low	No additional DM-RS	[1.3]	[0.8]
2	1	2	Normal	TDLA30-300 Low	No additional DM-RS	[2.3]	[1.9]

Table 8.3.2.5.2-2: Required SNR for PUCCH format 3 with 120kHz SCS

Test Number	Number of TX	Number of demodulat	Cyclic Prefix	Propagation conditions	Additional DMRS	Channel Bandwidth / SNR (dB)		
	antennas	ion branches		and correlation matrix (Annex G)	configuration	50 MHz	100 MHz	200 MHz
1	1	2	Normal	TDLA30-300 Low	No additional DM-RS	[0.9]	[0.8]	[1.3]
2	1	2	Normal	TDLA30-300 Low	No additional DM-RS	TBD	[2.4]	[1.5]

11.3.2.6 Performance requirements for PUCCH format 4

11.3.2.6.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. All UCI information shall be decoded.

Parameter	Value
Modulation	QPSK
startingPRB	0
intraSlotFrequencyHopping	enabled
secondHopPRB	The largest PRB index - nrofPRBs
nrofSymbols	14
the number of UCI bits	22
startingSymbolIndex	0
occ-Length	n2
occ-Index	n0

Table 11.3.2.6.1-1: Test parameters

11.3.2.6.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 11.3.2.6.2-1 and Table 11.3.2.6.2-2.

Number of TX antennas	Number of	Cyclic Prefix	Propagation conditions and	Additional DMRS configuration	Channel Bandwidth / SNR (dB)	
	demodula tion branches		correlation matrix (Annex G)		50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	No additional DM- RS	TBD	[2.7]

 Table 11.3.2.6.2-1: Required SNR for PUCCH format 3 with 60kHz SCS

Table 8.3.2.6.2-2: Required SNR for PUCCH format 3 with 120kHz SCS

Number of TX	Number of demodulat	Cyclic Prefix	Propagation conditions and	Additional DMRS configuration	Channe	el Bandwidt (dB)	h / SNR
antennas	ion branches		correlation matrix (Annex G)		50 MHz	100 MHz	200MH z
1	2	Normal	TDLA30-300 Low	No additional DM-RS	[2.8]	[2.8]	[3.0]

11.4 Performance requirements for PRACH

11.4.1 Requirements for BS type 1-O

11.4.1.1 PRACH False alarm probability

Apply the requirements defined in subclause 8.4.1 for 2Rx.

11.4.1.2 PRACH detection requirements

Apply the requirements defined in subclause 8.4.2 for 2Rx.

11.4.2 Requirements for BS type 2-0

11.4.2.1 PRACH False alarm probability

11.4.2.1.1 General

The false alarm requirement is valid for any number of receive antennas, for any channel bandwidth.

The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

11.4.2.1.2 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

11.4.2.2 PRACH detection requirements

11.4.2.2.1 General

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN and TDLA30-300, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than the time error tolerance given in Table 11.4.2.2-1.

PRACH	PRACH SCS	Time error tolerance				
preamble	(KHz)	AWGN	TDLA30-300			
A1, A2, A3, B4,	60	0.13 us	0.28 us			
C0, C2	120	0.07 us	0.22 us			

Table 11.4.2.2-1: Time error tolerance for AWGN and TDLA30-300

The test preambles for normal mode are listed in table A.6-2.

11.4.2.2.2 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 11.4.2.2.2-1 to 11.4.2.2.2-2.

Table 11.4.2.2.2-1: PRACH missed detection requirements for Normal Mode, 60KHz SCS

Number of	Propagation	Frequency			SNR	(dB)		
demodulation branches	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
2	AWGN TDLA30-300 Low	0 4000 Hz	TBD TBD	TBD TBD	TBD TBD	TBD TBD	TBD TBD	TBD TBD
	demodulation branches	demodulation branchesconditions and correlation matrix (Annex G)2AWGN TDLA30-300	demodulation branchesconditions and correlation matrix (Annex G)offset2AWGN02AWGN4000 Hz	demodulation branchesconditions and correlation matrix (Annex G)offset format A12AWGN0TBD2TDLA30-3004000 HzTBD	demodulation branchesconditions andoffsetBurst formatBurst formatcorrelation matrix (Annex G)A1A22AWGN0TBD2AWGN0TBDTDLA30-3004000 HzTBDTBD	demodulation branchesconditions and correlation matrix (Annex G)offsetBurst format A1Burst format A2Burst format A32AWGN0TBDTBDTBD2AWGN4000 HzTBDTBDTBD	demodulation branchesconditions and correlation G)offsetBurst format A1Burst format A2Burst format A3Burst format A32AWGN0TBDTBDTBDTBD2AWGN4000 HzTBDTBDTBDTBDTBD	demodulation branchesconditions and correlation matrix (Annex G)offset offsetBurst format A1Burst format A2Burst format A3Burst format format A3Burst format format A3Burst format format A3Burst format format B4Burst format format C02AWGN0TBDTBDTBDTBDTBD2AWGN0TBDTBDTBDTBDTBD

Table 11.4.2.2.2-2: PRACH missed detection requirements for Normal Mode, 120KHz SCS

Number	Number of	Propagation	Frequency			SNR	(dB)		
of TX antennas	demodulation branches	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	TBD	TBD	TBD	TBD	TBD	TBD
		TDLA30-300 Low	4000 Hz	TBD	TBD	TBD	TBD	TBD	TBD

Annex A (normative): Reference measurement channels

A.1 Fixed Reference Channels for receiver sensitivity and in-channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in table A.1-1 for FR1 receiver sensitivity and inchannel selectivity.

The parameters for the reference measurement channels are specified in table A.1-2 for FR2 receiver sensitivity and inchannel selectivity.

Reference channel	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	
	A1-1	A1-2	A1-3	A1-4	A1-5	A1-6	A1-7	A1-8	A1-9	
Subcarrier spacing (kHz)	15	30	60	15	30	60	15	30	60	
Allocated resource blocks	25	11	11	106	51	24	15	6	6	
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12	12	12	
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	
Payload size (bits)	2152	984	984	9224	4352	2088	1320	528	528	
Transport block CRC (bits)	16	16	16	24	24	16	16	16	16	
Code block CRC size (bits)	-	-	-	24	-	-	-	-	-	
Number of code blocks - C	1	1	1	2	1	1	1	1	1	
Code block size including CRC (bits) (Note 3)	2168	1000	1000	4648	4376	2104	1336	544	544	
Total number of bits per slot	7200	3168	3168	30528	14688	6912	4320	1728	1728	
Total symbols per slot	3600	1584	1584	15264	7344	3456	2160	864	864	
 NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1, UL-DMRS-add-pos = 1 with l₀ = 2, l = 11 as per table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: MCS index 4 and target coding rate = 308/1024 are adopted to calculate payload size for receiver sensitivity and in-channel selectivity 										
NOTE 3: Code block siz	e including	CRC (bits)	NOTE 3: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].							

Table A.1-1: FRC parameters for FR1 receiver sensitivity and in-channel selectivity

Reference channel	G-FR2-A1-1	G-FR2-A1-2	G-FR2-A1-3	G-FR2-A1-4	G-FR2-A1-5			
Subcarrier spacing (kHz)	60	120	120	60	120			
Allocated resource blocks	66	32	66	33	16			
CP-OFDM Symbols per	12	12	12	12	12			
slot (Note 1)								
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK			
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3			
Payload size (bits)	5632	2792	5632	2856	1416			
Transport block CRC (bits)	24	16	24	16	16			
Code block CRC size (bits)	-	-	-	-	-			
Number of code blocks - C	1	1	1	1	1			
Code block size including CRC (bits) (Note 3)	5656	2808	5656	2872	1432			
Total number of bits per slot	19008	9216	19008	9504	4608			
Total symbols per slot	9504	4608	9504	4752	2304			
 NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1, UL-DMRS-add-pos = 1 with l₀ = 2, l = 11 as per table 6.4.1.1.3-3 of TS 38.211 [5]. NOTE 2: MCS index 4 and target coding rate = 308/1024 are adopted to calculate payload size for receiver sensitivity and in-channel selectivity. 								
NOTE 3: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].								

Table A.1-2: FRC parameters for FR2 receiver sensitivity and in-channel selectivity

A.2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

The parameters for the reference measurement channels are specified in table A.2-1 for dynamic range.

Reference channel	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-
	1	2	3	4	5	6
Subcarrier spacing (kHz)	15	30	60	15	30	60
Allocated resource blocks	25	11	11	106	51	24
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	2/3	2/3	2/3	2/3	2/3	2/3
Payload size (bits)	9224	4032	4032	38936	18960	8968
Transport block CRC (bits)	24	24	24	24	24	24
Code block CRC size (bits)	24	-	-	24	24	24
Number of code blocks - C	2	1	1	5	3	2
Code block size including CRC (bits) (Note 3)	4648	4056	4056	7816	6352	4520
Total number of bits per slot	14400	6336	6336	61056	29376	13824
Total symbols per slot	3600	1584	1584	15264	7344	3456
Total symbols per slot3600158415841526473443456NOTE 1:UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1, UL-DMRS-add-pos = 1 with $l_0 = 2$, $l = 11$ as per table 6.4.1.1.3-3 of TS 38.211 [5].NOTE 2:MCS index 16 and target coding rate = 658/1024 are adopted to calculate payload size for dynamic range.NOTE 2:MCS index 16 and target coding rate = 658/1024 are adopted to calculate payload size for dynamic range.						

Table A.2-1: FRC parameters for dynamic range

NOTE 3: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

A.3 Fixed Reference Channels for performance requirements (QPSK, R=193/1024)

The parameters for the reference measurement channels are specified in table A.3-1 to table A.3-6 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.3-1 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer.
- FRC parameters are specified in table A.3-2 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 1 and 1 transmission layer.
- FRC parameters are specified in table A.3-3 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers.
- FRC parameters are specified in table A.3-4 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 1 and 2 transmission layers.
- FRC parameters are specified in table A.3-5 for FR1 PUSCH with transform precoding enabled, *UL-DMRS-add- pos* = 0 and 1 transmission layer.
- FRC parameters are specified in table A.3-6 for FR1 PUSCH with transform precoding enabled, *UL-DMRS-add- pos* = 1 and 1 transmission layer.

The parameters for the reference measurement channels are specified in table A.3-7 to table A.3-9 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.3-7 for FR2 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer.
- FRC parameters are specified in table A.3-8 for FR2 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layer.
- FRC parameters are specified in table A.3-9 for FR2 PUSCH with transform precoding enabled, *UL-DMRS-add- pos* = 0 and 1 transmission layer.

Table A.3-1: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1- A3-1	G-FR1- A3-2	G-FR1- A3-3	G-FR1- A3-4	G-FR1- A3-5	G-FR1- A3-6	G-FR1- A3-7			
Subcarrier spacing [kHz]	15	15	15	30	30	30	30			
Allocated resource blocks	25	52	106	24	51	106	273			
CP-OFDM Symbols per	13	13	13	13	13	13	13			
slot (Note 1)										
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK			
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024			
Payload size (bits)	1480	3104	6280	1416	2976	6280	16136			
Transport block CRC (bits)	16	16	24	16	16	24	24			
Code block CRC size (bits)	-	-	24	-	-	24	24			
Number of code blocks - C	1	1	2	1	1	2	5			
Code block size including CRC (bits) (Note 2)	1496	3120	3176	1432	2992	3176	3256			
Total number of bits per slot	7800	16224	33072	7488	15912	33072	85176			
Total symbols per slot	3900	8112	16536	3744	7956	16536	42588			
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with l_0 = 2 as per table 6.4.1.1.3-3 of TS 38.211 [5].										
NOTE 2: Code block size in	cluding CRC	(bits) equals t	to K' in subc	NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].						

Table A.3-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding
disabled, UL-DMRS-add-pos = 1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1-						
	A3-8	A3-9	A3-10	A3-11	A3-12	A3-13	A3-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	1352	2856	5768	1320	2792	5768	14856
Transport block CRC (bits)	16	16	24	16	16	24	24
Code block CRC size (bits)	-	-	24	-	-	24	24
Number of code blocks - C	1	1	2	1	1	2	4
Code block size including CRC (bits) (Note 2)	1368	2872	2920	1336	2808	2920	3744
Total number of bits per slot	7200	14976	30528	6912	14688	30528	78624
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 1 with l ₀ = 2, l=11 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.3-3: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR1-						
	A3-15	A3-16	A3-17	A3-18	A3-19	A3-20	A3-21
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	13	13	13	13	13	13	13
slot (Note 1)							
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	2976	6152	12552	2856	6024	12552	32304
Transport block CRC (bits)	16	24	24	16	24	24	24
Code block CRC size (bits)	-	24	24	-	24	24	24
Number of code blocks - C	1	2	4	1	2	4	9
Code block size including	2992	3112	3168	2872	3048	3168	3616
CRC (bits) (Note 2)	2992	3112	3100	2012	3040	3100	3010
Total number of bits per	15600	32448	66144	14976	31824	66144	170352
slot	13000	52440	00144	14370	51024	00144	170352
Total symbols per slot	7800	16224	33072	7488	15912	33072	85176
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is							
2, UL-DMRS-add-pos = 0 with I ₀ = 2 as per table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2 . Code black size including CDC (bits) equals to K in subclause 5.2.2 of TC 20.242 [45]							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.3-4: FRC parameters for FR1 PUSCH performance requirements, transform precoding
disabled, UL-DMRS-add-pos = 1 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR1-						
	A3-22	A3-23	A3-24	A3-25	A3-26	A3-27	A3-28
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	2728	5640	11528	2600	5512	11528	29736
Transport block CRC (bits)	16	24	24	16	24	24	24
Code block CRC size (bits)	-	24	24	-	24	24	24
Number of code blocks - C	1	2	4	1	2	4	8
Code block size including CRC (bits) (Note 2)	2744	2856	2912	2616	2792	2912	3744
Total number of bits per slot	14400	29952	61056	13824	29376	61056	157248
Total symbols per slot	7200	14976	30528	6912	14688	30528	78624
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 1 with lo= 2, l=11 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

 Table A.3-5: FRC parameters for FR1 PUSCH performance requirements, transform precoding enabled, UL-DMRS-add-pos = 0 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1-A3-29	G-FR1-A3-30					
Subcarrier spacing [kHz]	15	30					
Allocated resource blocks	25	24					
DFT-s-OFDM Symbols per slot (Note 1)	13	13					
Modulation	QPSK	QPSK					
Code rate (Note 2)	193/1024	193/1024					
Payload size (bits)	1480	1416					
Transport block CRC (bits)	16	16					
Code block CRC size (bits)	-	-					
Number of code blocks - C	1	1					
Code block size including CRC (bits) (Note 2)	1496	1432					
Total number of bits per slot	7800	7488					
Total symbols per slot	3900	3744					
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with l_0 = 2 as per Table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].							
Reference channel	G-FR1-A3-31	G-FR1-A3-32					
---	-------------	-------------	--	--	--	--	--
Subcarrier spacing [kHz]	15	30					
Allocated resource blocks	25	24					
DFT-s-OFDM Symbols per slot (Note 1)	12	12					
Modulation	QPSK	QPSK					
Code rate (Note 2)	193/1024	193/1024					
Payload size (bits)	1352	1320					
Transport block CRC (bits)	16	16					
Code block CRC size (bits)	-	-					
Number of code blocks - C	1	1					
Code block size including CRC (bits) (Note 2)	1368	1336					
Total number of bits per slot	7200	6912					
Total symbols per slot	3600	3456					
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 1 with l_0 = 2, l =11 as per Table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].							

Table A.3-6: FRC parameters for FR1 PUSCH performance requirements, transform precoding enabled, UL-DMRS-add-pos = 1 and 1 transmission layer (QPSK, R=193/1024)

Table A.3-7: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2- A3-1	G-FR2- A3-2	G-FR2- A3-3	G-FR2- A3-4	G-FR2- A3-5		
Subcarrier spacing [kHz]	60	60	120	120	120		
Allocated resource blocks	66	132	32	66	132		
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9		
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK		
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024		
Payload size (bits)	2664	5384	1320	2664	5384		
Transport block CRC (bits)	16	24	16	16	24		
Code block CRC size (bits)	-	24	-	-	24		
Number of code blocks - C	1	2	1	1	2		
Code block size including CRC (bits) (Note 2)	2680	2728	1336	2680	2728		
Total number of bits per slot	14256	28512	6912	14256	28512		
Total symbols per slot	7128	14256	3456	7128	14256		
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with lo= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2: Code block size including CRC (bits)	equals to K	in sub-clause	5.2.2 of TS 3	8.212 [15].			

Table A.3-8: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR2- A3-6	G-FR2- A3-7	G-FR2- A3-8	G-FR2- A3-9	G-FR2- A3-10		
Subcarrier spacing [kHz]	60	60	120	120	120		
Allocated resource blocks	66	132	32	66	132		
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9		
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK		
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024		
Payload size (bits)	5384	10752	2600	5384	10752		
Transport block CRC (bits)	24	24	16	24	24		
Code block CRC size (bits)	24	24	-	24	24		
Number of code blocks - C	2	3	1	2	3		
Code block size including CRC (bits) (Note 2)	2728	3616	2616	2728	3616		
Total number of bits per slot	28512	57024	13824	28512	57024		
Total symbols per slot	14256	28512	6912	14256	28512		
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with l_0 = 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2: Code block size including CRC (bits)	equals to K'	in sub-clause	5.2.2 of TS 3	8.212 [15].			

Reference channel	G-FR2-A3-11	G-FR2-A3-12				
Subcarrier spacing [kHz]	60	120				
Allocated resource blocks	30	30				
DFT-s-OFDM Symbols per slot (Note 1)	9	9				
Modulation	QPSK	QPSK				
Code rate (Note 2)	193/1024	193/1024				
Payload size (bits)	1224	1224				
Transport block CRC (bits)	16	16				
Code block CRC size (bits)	-	-				
Number of code blocks - C	1	1				
Code block size including CRC (bits) (Note 2)	1240	1240				
Total number of bits per slot	6480	6480				
Total symbols per slot	3240	3240				
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with lo= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].						
NOTE 2: Code block size including CRC (bits) equals	s to K' in sub-clause 5.2.2	of TS 38.212 [15].				

Table A.3-9: FRC parameters for FR2 PUSCH performance requirements, transform precoding enabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer (QPSK, R=193/1024)

A.4 Fixed Reference Channels for performance requirements (16QAM, R=658/1024)

The parameters for the reference measurement channels are specified in table A.4-1 to table A.4-4 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.4-1 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer.
- FRC parameters are specified in table A.4-2 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 1 and 1 transmission layer.
- FRC parameters are specified in table A.4-3 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers.
- FRC parameters are specified in table A.4-4 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 1 and 2 transmission layers.

The parameters for the reference measurement channels are specified in table A.4-5 to table A.4-6 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.4-5 for FR2 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer.
- FRC parameters are specified in table A.4-6 for FR2 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers.

Table A.4-1: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	G-FR1-	
	A4-1	A4-2	A4-3	A4-4	A4-5	A4-6	A4-7	
Subcarrier spacing [kHz]	15	15	15	30	30	30	30	
Allocated resource blocks	25	52	106	24	51	106	273	
CP-OFDM Symbols per	13	13	13	13	13	13	13	
slot (Note 1)								
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM	
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	
Payload size (bits)	9992	21000	42016	9480	20496	42016	108552	
Transport block CRC (bits)	24	24	24	24	24	24	24	
Code block CRC size (bits)	24	24	24	24	24	24	24	
Number of code blocks - C	2	3	5	2	3	5	13	
Code block size including CRC (bits) (Note 2)	5032	7032	8432	4776	6864	8432	8376	
Total number of bits per slot	15600	32448	66144	14976	31824	66144	170352	
Total symbols per slot	3900	8112	16536	3744	7956	16536	42588	
	NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with l_0 = 2 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.4-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 1 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR1-						
	A4-8	A4-9	A4-10	A4-11	A4-12	A4-13	A4-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	16QAM						
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	9224	19464	38936	8968	18960	38936	100392
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	3	5	2	3	5	12
Code block size including CRC (bits) (Note 2)	4648	6052	7816	4520	6352	7816	8392
Total number of bits per slot	14400	29952	61056	13824	29376	61056	157248
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 1 with l_0 = 2, l =11 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.4-3: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR1-						
	A4-15	A4-16	A4-17	A4-18	A4-19	A4-20	A4-21
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	13	13	13	13	13	13	13
slot (Note 1)							
Modulation	16QAM						
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	19968	42016	83976	19464	40976	83976	217128
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	3	5	10	3	5	10	26
Code block size including CRC (bits) (Note 2)	6688	8432	8424	6520	8224	8424	8376
Total number of bits per slot	31200	64896	132288	29952	63648	132288	340704
Total symbols per slot	7800	16224	33072	7488	15912	33072	85176
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with <i>l</i> ₀ = 2 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.4-4: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 1 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR1-						
	A4-22	A4-23	A4-24	A4-25	A4-26	A4-27	A4-28
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	16QAM						
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	18432	38936	77896	17928	37896	77896	200808
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	3	5	10	3	5	10	24
Code block size including CRC (bits) (Note 2)	6176	7816	7816	6008	7608	7816	8392
Total number of bits per slot	28800	59904	122112	27648	58752	122112	314496
Total symbols per slot	7200	14976	30528	6912	14688	30528	78624
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 1 with I ₀ = 2, I=11 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.4-5: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, UL-DMRS-add-pos = 0 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-		
	A4-1	A4-2	A4-3	A4-4	A4-5		
Subcarrier spacing [kHz]	60	60	120	120	120		
Allocated resource blocks	66	132	32	66	132		
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9		
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM		
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024		
Payload size (bits)	18432	36896	8968	18432	36896		
Transport block CRC (bits)	24	24	24	24	24		
Code block CRC size (bits)	24	24	24	24	24		
Number of code blocks - C	3	5	2	3	5		
Code block size including CRC (bits) (Note 2)	6176	7408	4520	6176	7408		
Total number of bits per slot	28512	57024	13824	28512	57024		
Total symbols per slot	7128	14256	3456	7128	14256		
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with <i>I</i> ₀ = 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2: Code block size including CRC (bits)	equals to K'	in sub-clause	5.2.2 of TS 3	8.212 [15].			

Table A.4-6: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-		
	A4-6	A4-7	A4-8	A4-9	A4-10		
Subcarrier spacing [kHz]	60	60	120	120	120		
Allocated resource blocks	66	132	32	66	132		
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9		
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM		
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024		
Payload size (bits)	36896	73776	17928	36896	73776		
Transport block CRC (bits)	24	24	24	24	24		
Code block CRC size (bits)	24	24	24	24	24		
Number of code blocks - C	5	9	3	5	9		
Code block size including CRC (bits) (Note 2)	7408	8224	6008	7408	8224		
Total number of bits per slot	57024	114048	27648	57024	114048		
Total symbols per slot	14256	28512	6912	14256	28512		
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without							
data is 2, UL-DMRS-add-pos = 0 with lo= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].							
NOTE 2: Code block size including CRC (bits)	equals to K'	in sub-clause	5.2.2 of TS 3	8.212 [15].			

A.5 Fixed Reference Channels for performance requirements (64QAM, R=567/1024)

The parameters for the reference measurement channels are specified in table A.5-1 to table A.5-2 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.5-1 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer.
- FRC parameters are specified in table A.5-2 for FR1 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 1 and 1 transmission layer.

The parameters for the reference measurement channels are specified in table A.5-3 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.5-3 for FR2 PUSCH with transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer.

Table A.5-1: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR1- A5-1	G-FR1- A5-2	G-FR1- A5-3	G-FR1- A5-4	G-FR1- A5-5	G-FR1- A5-6	G-FR1- A5-7
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	13	13	13	13	13	13	13
Modulation	64QAM						
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	13064	27144	55304	12296	26632	55304	143400
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	4	7	2	4	7	18
Code block size including CRC (bits) (Note 2)	6568	6816	7928	6184	6688	7928	7992
Total number of bits per slot	23400	48672	99216	22464	47736	99216	255528
Total symbols per slot	3900	8112	16536	3744	7956	16536	42588
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with <i>l</i> ₀ = 2 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.5-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 1 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR1- A5-8	G-FR1- A5-9	G-FR1- A5-10	G-FR1- A5-11	G-FR1- A5-12	G-FR1- A5-13	G-FR1- A5-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12
Modulation	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	12040	25104	50184	11528	24576	50184	131176
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	3	6	2	3	6	16
Code block size including CRC (bits) (Note 2)	6056	8400	8392	5800	8224	8392	8224
Total number of bits per slot	21600	44928	91584	20736	44064	91584	235872
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 1 with l_0 = 2, l =11 as per table 6.4.1.1.3-3 of TS 38.211 [5].							

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.5-3: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *UL-DMRS-add-pos* = 0 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-	
	A5-1	A5-2	A5-3	A5-4	A5-5	
Subcarrier spacing [kHz]	60	60	120	120	120	
Allocated resource blocks	66	132	32	66	132	
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9	
Modulation	64QAM	64QAM	64QAM	64QAM	64QAM	
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024	
Payload size (bits)	23568	47112	11528	23568	47112	
Transport block CRC (bits)	24	24	24	24	24	
Code block CRC size (bits)	24	24	24	24	24	
Number of code blocks - C	3	6	2	3	6	
Code block size including CRC (bits) (Note 2)	7888	7880	5800	7888	7880	
Total number of bits per slot	42768	85536	20736	42768	85536	
Total symbols per slot 7128 14256 3456 7128 14256						
NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1 and the number of DM-RS CDM groups without data is 2, UL-DMRS-add-pos = 0 with <i>l</i> ₀ = 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].						
NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].						

A.6 PRACH Test preambles

Burst format	SCS (kHz)	Ncs	Logical sequence index	v
0	1.25	13	22	32
A1, A2, A3,	15	23	0	0
B4, C0, C2	30	46	0	0

Table A.6-2: Test preambles for Normal Mode in FR2

Burst format	SCS (kHz)	Ncs	Logical sequence index	v
A1, A2, A3,	60	69	0	0
B4, C0, C2	120	69	0	0

Annex B (normative): Error Vector Magnitude (FR1)

B.1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in figure B.1-1 below.

Figure B.1-1: Reference point for EVM measurement

B.2 Basic unit of measurement

The basic unit of EVM measurement is defined over one subframe (1ms) in the time domain and N_{BW}^{RB} subcarriers (180 kHz) in the frequency domain:

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z'(t, f) - I(t, f)|^2}{\sum_{t \in T} \sum_{f \in F(t)} |I(t, f)|^2}}$$

where

T is the set of symbols with the considered modulation scheme being active within the subframe,

F(t) is the set of subcarriers within the N_{BW}^{RB} subcarriers with the considered modulation scheme being active in symbol *t*,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,

Z'(t, f) is the modified signal under test defined in annex B.3.

NOTE: Although the basic unit of measurement is one subframe, the equalizer is calculated over 10 subframe measurement periods to reduce the impact of noise in the reference symbols. The boundaries of the 10 subframe measurement periods need not be aligned with radio frame boundaries.

B.3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalised and decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}}{\tilde{a}(f) \cdot e^{j\tilde{\varphi}(f)}}$$

where

z(v) is the time domain samples of the signal under test.

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in annex B.7.

 Δf is the RF frequency offset.

 $\tilde{\varphi}(f)$ is the phase response of the TX chain.

 $\tilde{a}(f)$ is the amplitude response of the TX chain.

B.4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \tilde{f}$ shall be 1 ms.

B.5 Estimation of time offset

B.5.1 General

The observation period for determining the sample timing difference $\Delta \tilde{t}$ shall be 1 ms.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length *W* (defined in annex B.5.2) or the last sample of the first window half if *W* is even.

 $\Delta \tilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on the primary synchronization signal and reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \tilde{t}$ are determined:

$$\Delta \tilde{t}_l = \Delta \tilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$$
 and

$$\Delta \tilde{t}_h = \Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor \text{ where } \alpha = 0 \text{ if } W \text{ is odd and } \alpha = 1 \text{ if } W \text{ is even.}$$

When the cyclic prefix length varies from symbol to symbol then *T* shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

B.5.2 Window length

Table B.5.2-1, B.5.2-2, B.5.2-3 specify the EVM window length (W) for normal CP.

Table B.5.2-1: EVM window length for normal CP, FR1, 15kHz SCS

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-6 and 8-13 in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP length for symbols 1-6 and 8-13 (Note) (%)
5	512	36	14	40
10	1024	72	28	40
15	1536	108	44	40
20	2048	144	58	40
25	2048	144	72	50
30	3072	216	108	50
40	4096	288	144	50
50	4096	288	144	50
NOTE: These percentages are informative and apply to a slot's symbols 1 to 6 and 8 to 13. Symbols 0 and 7 have a longer CP and therefore a lower percentage.				

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-13 in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP length for symbols 1-13 (Note) (%)
5	256	18	8	40
10	512	36	14	40
15	768	54	22	40
20	1024	72	28	40
25	1024	72	36	50
30	1536	108	54	50
40	2048	144	72	50
50	2048	144	72	50
60	3072	216	130	60
70	3072	216	130	60
80	4096	288	172	60
90	4096	288	172	60
100	4096	288	172	60
NOTE: These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 has a longer CP and therefore a lower percentage.				

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-13 in FFT samples	EVM window length W	Ratio of <i>W</i> to total CP length for symbols 1-13 (NOTE) (%)
10	256	18	8	40
15	384	27	11	40
20	512	36	14	40
25	512	36	18	50
30	768	54	26	50
40	1024	72	36	50
50	1024	72	36	50
60	1536	108	64	60
70	1536	108	64	60
80	2048	144	86	60
90	2048	144	86	60
100	2048	144	86	60
NOTE: These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 may have a longer CP and therefore a lower percentage.				

Table B.5.2-4 below specifies the EVM window length (W) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of <i>W</i> to total CP length (Note) (%)	
10	256	64	54	84	
15	384	96	80	83	
20	512	128	106	83	
25	512	128	110	85.9	
30	768	192	164	85.9	
40	1024	256	220	85.9	
50	1024	256	220	85.9	
60	1536	384	340	88.6	
70	1536	384	340	88.7	
80	2048	512	454	88.7	
90	2048	512	454	88.7	
100	2048	512	454	88.7	
NOTE: These percentages are informative.					

ercentages are

Estimation of TX chain amplitude and frequency **B.6** response parameters

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal Z'(t, f) and the post-FFT Ideal signal $I_2(t, f)$, for each reference symbol, over [10 subframes]. This process creates a set of complex ratios:

$$a(t, f).e^{j\varphi(t, f)} = \frac{Z'(t, f)}{I_2(t, f)}$$

Where the post-FFT Ideal signal $I_2(t, f)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted content: i.e. nominal Reference Symbols and the Primary Synchronisation Channel, (all other modulation symbols are set to 0 V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing.

2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is [10 subframes]. Prior to the averaging of the phases $\varphi(t_i, f)$ an unwrap operation must be performed according

to the following definition: The unwrap operation corrects the radian phase angles of $\varphi(t_i, f)$ by adding multiples of 2*PI when absolute phase jumps between consecutive time instances t_i are greater then or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every second subcarrier with the exception of the reference subcarrier spacing across the DC subcarrier).

$$a(f) = \frac{\sum_{i=1}^{N} a(t_i, f)}{N}$$
$$\varphi(f) = \frac{\sum_{i=1}^{N} \varphi(t_i, f)}{N}$$

Where *N* is the number of reference symbol time-domain locations t_i from Z'(f,t) for each reference signal subcarrier *f*.

- 3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every second subcarrier. The moving average window size is 19. For reference subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure B.6-1.
- 4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$, $\tilde{\varphi}(f)$ for each subcarrier.

Figure B.6-1: Reference subcarrier smoothing in the frequency domain

B.7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of 10 downlink subframes:

For FDD the averaging in the time domain equals the 10 subframe duration of the 10 subframes measurement period from the equalizer estimation step.

For TDD the averaging in the time domain can be calculated from subframes of different frames and shallhave a minimum of 10 subframes averaging length. TDD special fields (i.e.GP) are not included in the averaging.

$$\overline{EVM}_{frame} = \sqrt{\frac{1}{\sum_{i=1}^{N_{dl}} Ni} \sum_{i=1}^{N_{dl}} \sum_{j=1}^{Ni} EVM_{i,j}^{2}}$$

Where Ni is the number of resource blocks with the considered modulation scheme in subframe *i* and N_{dl} is the number of allocated downlink subframes in one frame.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{frame, 1}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ in the expressions above and $\overline{\text{EVM}}_{\text{frame, h}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$ in the $\overline{\text{EVM}}_{\text{frame}}$ calculation.

Thus we get:

$$EVM_{frame} = \max(EVM_{frame,1}, EVM_{frame,h})$$

The averaged EVM with the minimum averaging length of at least 10 subframes is then achieved by further averaging of the EVM_{frame} results

$$\overline{EVM} = \sqrt{\frac{1}{N_{frame}}} \sum_{k=1}^{N_{frame}} EVM_{frame,k}^2 , N_{frame} = \left[\frac{10}{N_{dl}}\right]$$

Annex C (normative): Error Vector Magnitude (FR2)

C.1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in figure C.1-1 below.

Figure C.1-1: Reference point for EVM measurement

C.2 Basic unit of measurement

The basic unit of EVM measurement is defined over one subframe (1ms) in the time domain and N_{BW}^{RB} subcarriers (180kHz) in the frequency domain:

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z'(t, f) - I(t, f)|^{2}}{\sum_{t \in T} \sum_{f \in F(t)} |I(t, f)|^{2}}}$$

where

T is the set of symbols with the considered modulation scheme being active within the subframe,

F(t) is the set of subcarriers within the N_{BW}^{RB} subcarriers with the considered modulation scheme being active in symbol *t*,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,

Z'(t, f) is the modified signal under test defined in C.3.

[Note: Although the basic unit of measurement is one subframe, the equalizer is calculated over 10 subframe measurement periods to reduce the impact of noise in the reference symbols. The boundaries of the 10 subframe measurement periods need not be aligned with radio frame boundaries.]

C.3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalised and decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\} e^{j2\pi f\Delta \tilde{t}}}{\tilde{a}(f) \cdot e^{j\tilde{\varphi}(f)}}$$

where

z(v) is the time domain samples of the signal under test.

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in C.7.

 Δf is the RF frequency offset.

 $\tilde{\varphi}(f)$ is the phase response of the TX chain.

 $\tilde{a}(f)$ is the amplitude response of the TX chain.

C.4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \tilde{f}$ shall be 1 ms.

C.5 Estimation of time offset

C.5.1 General

The observation period for determining the sample timing difference $\Delta \tilde{t}$ shall be 1 ms.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in C.5.2) or the last sample of the first window half if W is even.

 $\Delta \tilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on the primary synchronization signal and reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \tilde{t}$ are determined:

$$\Delta \tilde{t}_{l} = \Delta \tilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor \text{ and}$$

$$\Delta \tilde{t}_{h} = \Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor \text{ where } \alpha = 0 \text{ if } W \text{ is odd and } \alpha = 1 \text{ if } W \text{ is even.}$$

When the cyclic prefix length varies from symbol to symbol (e.g. time multiplexed MBMS and unicast) then T shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

C.5.2 Window length

Table C.5.2-1 and Table C.5.2-2 specify the EVM window length (W) for normal CP for FR2 for normal CP.

Table C.5.2-1: EVM window length for normal CP, FR2, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-13 in FFT samples	EVM window length W	Ratio of <i>W</i> to total CP length for symbols 1-13 (Note) (%)
50	1024	72	36	50
100	2048	144	72	50
200	4096	288	144	50
NOTE: These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 may have a longer CP and therefore a lower percentage.				

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-13 in FFT samples	EVM window length W	Ratio of <i>W</i> to total CP length for symbols 1-13 (note) (%)
50	512	36	18	50
100	1024	72	36	50
200	2048	144	72	50
400	4096	288	144	50
NOTE 1: These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 may have a longer CP and therefore a lower percentage.				

Table C.5.2-3 below specifies the EVM window length (W) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Table C.5.2-3: EVM window length for extended CP, FR2, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of <i>W</i> to total CP length (Note) (%)	
50	1024	256	220	85.9	
100	2048	512	440	85.9	
200	4096	1024	880	85.9	
NOTE: These percentages are informative.					

C.6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal Z'(t, f) and the post-FFT Ideal signal $I_2(t, f)$, for each reference symbol, over [10 subframes]. This process creates a set of complex ratios:

$$a(t, f).e^{j\varphi(t, f)} = \frac{Z'(t, f)}{I_2(t, f)}$$

Where the post-FFT Ideal signal $I_2(t, f)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted content: i.e. nominal Demodulation Reference.

2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is [10 subframes]. Prior to the averaging of the phases $\varphi(t_i, f)$ an unwrap operation must be performed according

to the following definition: The unwrap operation corrects the radian phase angles of $\varphi(t_i, f)$ by adding multiples of 2*PI when absolute phase jumps between consecutive time instances t_i are greater then or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every second subcarrier).

$$a(f) = \frac{\sum_{i=1}^{N} a(t_i, f)}{N}$$
$$\varphi(f) = \frac{\sum_{i=1}^{N} \varphi(t_i, f)}{N}$$

- Where *N* is the number of reference symbol time-domain locations t_i from Z'(f,t) for each reference signal subcarrier *f*.
- 3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every second subcarrier. The moving average window size is 19. For reference subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure C.6-1.
- 4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$,

 $\tilde{\varphi}(f)$ for each subcarrier. To account for the common phase error (CPE) experienced in millimetre wave frequencies, $\bar{\varphi}(f)$, in the estimated coefficients contain phase rotation due to the CPE, θ , in addition to the phase of the equalizer coefficient $\tilde{\varphi}(f)$, that is

$$\bar{\varphi}(f) = \tilde{\varphi}(f) + \theta(t)$$

For OFDM symbols where PT-RS does not exist, $\theta(t)$ can be estimated by performing linear interpolation from neighboring symbols where PT-RS is present.

In order to separate component of the CPE, θ , contained in, $\bar{\varphi}(f)$, estimation and compensation of the CPE needs to follow. $\theta(t)$ is the common phase error (CPE), that rotates all the subcarriers of the OFDM symbol at time t.

Estimate of the CPE, $\theta(t)$, at OFDM symbol time, t, can then be obtained from using the PT-RS employing the expression

$$\tilde{\theta}(t) = \arg\left\{\sum_{f \in f^{ptrs}} \left(\frac{Z'(t,f)}{I_{ptrs}(t,f)}\right) \left(\tilde{\alpha}(f)e^{-j\bar{\varphi}(f)}\right)\right\}$$

In the above equation, f^{ptrs} is the set of subcarriers where PT-RS are mapped, $t \in t^{ptrs}$ where t^{ptrs} is the set of OFDM symbols where PT-RS are mapped while Z'(t, f) and $I_{ptrs}(t, f)$ are is the post-FFT acquired signal and the ideal PT-RS signal respectively. That is, estimate of the CPE at a given OFDM symbol is obtained from frequency correlation of the complex ratios at the PT-RS positions with the conjugate of the estimated equalizer complex coefficients. The estimated CPE can be subtracted from $\bar{\varphi}(f)$ to remove influence of the CPE, and obtain estimate of the complex coefficient's phase

$$\tilde{\varphi}(f) = \bar{\varphi}(f) - \tilde{\theta}(t)$$

Figure C.6-1: Reference subcarrier smoothing in the frequency domain

C.7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of [10] downlink subframes:

For FDD the averaging in the time domain equals the [10] subframe duration of the [10] subframes measurement period from the equalizer estimation step.

For TDD the averaging in the time domain can be calculated from subframes of different frames and shallhave a minimum of [10] subframes averaging length. TDD special fields (i.e. GP) are not included in the averaging.

$$\overline{EVM}_{frame} = \sqrt{\frac{1}{\sum_{i=1}^{N_{dl}} Ni} \sum_{i=1}^{N_{dl}} \sum_{j=1}^{Ni} EVM_{i,j}^{2}}$$

Where Ni is the number of resource blocks with the considered modulation scheme in subframe *i* and N_{dl} is the number of allocated downlink subframes in one frame.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{frame, 1}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{l}$ in the expressions above and $\overline{\text{EVM}}_{\text{frame, h}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{h}$ in the $\overline{\text{EVM}}_{\text{frame}}$ calculation.

Thus, we get:

$$EVM_{frame} = \max(EVM_{frame,1}, EVM_{frame,h})$$

The averaged EVM with the minimum averaging length of at least [10] subframes is then achieved by further averaging of the EVM_{frame} results

$$\overline{EVM} = \sqrt{\frac{1}{N_{frame}}} \sum_{k=1}^{N_{frame}} EVM_{frame,k}^2 , N_{frame} = \left\lceil \frac{10}{N_{dl}} \right\rceil$$

Annex D (normative): Characteristics of the interfering signals

The interfering signal shall be a PUSCH containing data and DMRS symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 6 of TS38.211 [9]. Mapping of PUSCH modulation to receiver requirement are specified in table D-1.

Table D-1: Modulation of the interfering signal

Receiver requirement	Modulation
In-channel selectivity	16QAM
Adjacent channel selectivity	QPSK
and narrow-band blocking	
General blocking	QPSK
Receiver intermodulation	QPSK

Annex E: Void

Annex F (normative): Relationship between EIRP based regulatory requirements and 3GPP requirements

F.1 General

This annex applies to FR1 BS type 1-C, BS type 1-H and BS type 1-O.

Some regional requirements are defined per effective isotropic radiated power (EIRP), which is a combination of the transmitted power (or in some cases spectral density) and the effective antenna gain which is a site-specific condition. Such requirements may be applied per antenna, per cell, or per base station. It shall be noted that the definition of BS or cell may differ between regulations.

The regulations are based on the assumption on 1-C conducted requirements and a passive antenna and must be interpreted for active antenna systems that have active beamforming. This annex describes how the power per connector and sum power over *TAB connectors* can be related to such requirements.

Where the regulator prescribes a method for EIRP calculation, that method supersedes the proposed assessment in this annex.

F.2 Relationship between EIRP based regulatory requirements and conducted requirements

When 3GPP specifications mandate manufacturer declarations of the (conducted) output power or power spectral density per connector for the base station under the reference conditions stated as a way to accommodate the referred regional requirements without putting requirements on the local site conditions.

For the case when the base station manufacturer maximum output power or unwanted emission declarations apply per antenna connector, the maximum EIRP can be estimated using the following formulas:

EIRP per antenna (applicable for 1-C): $P_{EIRP} = P_{Tx} + G_{Ant}$

EIRP per cell or per BS (applicable for 1-H): $P_{EIRPcell} = 10 * \log (\sum 10^{PEIRPn/10})$

In case the EIRP requirement is set per polarisation, the summation shall be made per polarisation.

" P_{EIRP} " is the resulting effective isotropic radiated power (or radiated power spectral density) resulting from the power (or power spectral density) declared by the manufacturer in dBm (or dBm/measurement BW).

" P_{Tx} " is the conducted power or power spectral density declared by the manufacturer in dBm (or dBm/measurement BW)

" G_{Ant} " is the effective antenna gain, calculated as the antenna gain (dBi) minus the loss of the site infrastructure connecting the BS antenna connector with the antenna (dB) for the applied frequency. The antenna nominal gain is only applicable within a certain frequency range. For *BS type 1-H*, G_{Ant} shall be an assumption on the gain of a passive antenna system in order to provide a total power emissions level comparable to the level obtained when a 1-C is connected to a passive antenna. A typical example of a passive antenna gain, as used for 1-O, is 17dBi.

"n" is the index number of the co-located antennas illuminating the same cell. PEIRPn is the PEIRP of the n:th antenna.

"Cell" is in this annex used in the sense that it is the limited geographical area covered by the carrier transmitted from one site.

F.3 Relationship between EIRP based regulatory requirements and OTA requirements

The regulations set an EIRP limit considering a passive antenna BS. Although the gain of passive antennas may vary somewhat, the variation is in the order of a few dBs. The gain variation of a 1-O BS may be much larger. However, 1-O unwanted emissions requirements are defined as TRP, since TRP impacts co-existence properties.

In order to relate the EIRP values in the specifications to TRP, a fixed assumption has been made on the gain of a typical passive BS antenna.

Thus, the maximum TRP can be estimated using the following formulas:

TRP limit per antenna: $P_{TRP, antenna} = P_{EIRP} - G_{Ant}$

TRP limit per cell or per BS: $P_{TRP} = P_{TRP,antenna} + 9dB$

It is noted that the 1-O architecture assumes that a BS subject to OTA requirements will have at least 8 antennas.

In case the TRP requirement is set per polarisation, the summation shall be made per polarisation.

"P_{EIRP}" is the effective isotropic radiated power (or radiated power spectral density) set in the regulation (assuming a passive BS antenna) in dBm (or dBm/measurement BW).

" G_{Ant} " is the effective antenna gain, the antenna gain (dBi) is a fixed reference value of 17 dBi. Directivity value should be used in above equations, however with all antenna losses are assumed zero then we can use effective antenna gain.

Annex G (Normative): Propagation conditions

G.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading or multi-paths exist for this propagation model.

G.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum that is characterized by a classical spectrum shape and a maximum Doppler frequency.
- Different models are used for FR1 (below 6 GHz) and FR2 (above 6 GHz).

G.2.1 Delay profiles

The delay profiles are simplified from the TR38.901 [16] TDL models. The simplification steps are shown below for information. These steps are only used when new delay profiles are created. Otherwise, the delay profiles specified in G.2.1.1 and G.2.1.2 can be used as such.

Step 1: Use the original TDL model from TR38.901[16].

Step 2: Re-order the taps in ascending delays

Step 3: Perform delay scaling according to the procedure described in subclause 7.7.3 in TR38.901[16].

Step 4: Apply the quantization to the delay resolution 5 ns. This is done simply by rounding the tap delays to the nearest multiple of the delay resolution.

Step 5: If multiple taps are rounded to the same delay bin, merge them by calculating their linear power sum.

Step 6: If there are more than 12 taps in the quantized model, merge the taps as follows

- Find the weakest tap from all taps (both merged and unmerged taps are considered)
 - If there are two or more taps having the same value and are the weakest, select the tap with the smallest delay as the weakest tap.
- When the weakest tap is the first delay tap, merge taps as follows
 - Update the power of the first delay tap as the linear power sum of the weakest tap and the second delay tap.
 - Remove the second delay tap.
- When the weakest tap is the last delay tap, merge taps as follows
 - Update the power of the last delay tap as the linear power sum of the second-to-last tap and the last tap.
 - Remove the second-to-last tap.

- Otherwise
 - For each side of the weakest tap, identify the neighbour tap that has the smaller delay difference to the weakest tap.
 - o When the delay difference between the weakest tap and the identified neighbour tap on one side equals the delay difference between the weakest tap and the identified neighbour tap on the other side.
 - Select the neighbour tap that is weaker in power for merging.
 - o Otherwise, select the neighbour tap that has smaller delay difference for merging.
 - To merge, the power of the merged tap is the linear sum of the power of the weakest tap and the selected tap.
 - When the selected tap is the first tap, the location of the merged tap is the location of the first tap. The weakest tap is removed.
 - When the selected tap is the last tap, the location of the merged tap is the location of the last tap. The weakest tap is removed.
 - Otherwise, the location of the merged tap is based on the average delay of the weakest tap and selected tap. If the average delay is on the sampling grid, the location of the merged tap is the average delay. Otherwise, the location of the merged tap is rounded towards the direction of the selected tap (e.g. 10 ns & 20 ns → 15 ns, 10 ns & 25 ns → 20 ns, if 25 ns had higher or equal power; 15 ns, if 10 ns had higher power). The weakest tap and the selected tap are removed.
- Repeat step 6 until the final number of taps is 12.

Step 7: Round the amplitudes of taps to one decimal (e.g. -8.78 dB \rightarrow -8.8 dB)

Step 8: If the delay spread has slightly changed due to the tap merge, adjust the final delay spread by increasing or decreasing the power of the last tap so that the delay spread is corrected.

Step 9: Re-normalize the highest tap to 0 dB.

Note: Some values of the delay profile created by the simplification steps may differ from the values in tables G.2.1.1-2, G.2.1.1-3, G.2.1.1-4, and G.2.1.2-2 for the corresponding model.

G.2.1.1 Delay profiles for FR1

The delay profiles for FR1 are selected to be representative of low, medium and high delay spread environment. The resulting model parameters are specified in G.2.1.1-1 and the tapped delay line models are specified in Tables G.2.1.1-2 \sim Table G.2.1.1-4.

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)	Delay resolution
TDLA30	12	30 ns	290 ns	5 ns
TDLB100	12	100 ns	480 ns	5 ns
TDLC300	12	300 ns	2595 ns	5 ns

Tap #	Delay [ns]	Power [dB]	Fading distribution
1	0	-15.5	Rayleigh
2	10	0	Rayleigh
3	15	-5.1	Rayleigh
4	20	-5.1	Rayleigh
5	25	-9.6	Rayleigh
6	50	-8.2	Rayleigh
7	65	-13.1	Rayleigh
8	75	-11.5	Rayleigh
9	105	-11.0	Rayleigh
10	135	-16.2	Rayleigh
11	150	-16.6	Rayleigh
12	290	-26.2	Rayleigh

Table G.2.1.1-2: TDLA30 (DS = 30 ns)

Table G.2.1.1-3: TDLB100 (DS = 100ns)

Tap #	Delay [ns]	Power [dB]	Fading distribution
1	0	0	Rayleigh
2	10	-2.2	Rayleigh
3	20	-0.6	Rayleigh
4	30	-0.6	Rayleigh
5	35	-0.3	Rayleigh
6	45	-1.2	Rayleigh
7	55	-5.9	Rayleigh
8	120	-2.2	Rayleigh
9	170	-0.8	Rayleigh
10	245	-6.3	Rayleigh
11	330	-7.5	Rayleigh
12	480	-7.1	Rayleigh

Tap #	Delay [ns]	Power [dB]	Fading distribution
1	0	-6.9	Rayleigh
2	65	0	Rayleigh
3	70	-7.7	Rayleigh
4	190	-2.5	Rayleigh
5	195	-2.4	Rayleigh
6	200	-9.9	Rayleigh
7	240	-8.0	Rayleigh
8	325	-6.6	Rayleigh
9	520	-7.1	Rayleigh
10	1045	-13.0	Rayleigh
11	1510	-14.2	Rayleigh
12	2595	-16.0	Rayleigh

Table G.2.1.1-4: TDLC300 (DS = 300 ns)

G.2.1.2 Delay profiles for FR2

The delay profiles for FR2 are specified in G.2.1.2-1 and the tapped delay line models are specified in Tables G.2.1.2-2.

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)	Delay resolution
TDLA30	12	30 ns	290 ns	5 ns

Tap #	Delay [ns]	Power [dB]	Fading distribution
1	0	-15.5	Rayleigh
2	10	0	Rayleigh
3	15	-5.1	Rayleigh
4	20	-5.1	Rayleigh
5	25	-9.6	Rayleigh
6	50	-8.2	Rayleigh
7	65	-13.1	Rayleigh
8	75	-11.5	Rayleigh
9	105	-11.0	Rayleigh
10	135	-16.2	Rayleigh
11	150	-16.6	Rayleigh
12	290	-26.2	Rayleigh

Table G.2.1.2-2: TDLA30 (DS = 30 ns)

G.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as a combination of a channel model name and a maximum Doppler frequency, i.e., TDLA<DS>-<Doppler>, TDLB<DS>-<Doppler> or TDLC<DS>-<Doppler> where '<DS>' indicates the desired delay spread and '<Doppler>' indicates the maximum Doppler frequency (Hz).

Table G.2.2-1 and Table G.2.2-2 show the propagation conditions that are used for the performance measurements in multi-path fading environment for low, medium and high Doppler frequencies for FR1 and FR2, respectively.

Combination name	Model	Maximum Doppler frequency
TDLA30-5	TDLA30	5 Hz
TDLA30-10	TDLA30	10 Hz
TDLB100-400	TDLB100	400 Hz
TDLC300-100	TDLC300	100 Hz

Table G.2.2-1: Channel model parameters for FR1

Combination name	Model	Maximum Doppler frequency
TDLA30-75	TDLA30	75 Hz
TDLA30-300	TDLA30	300 Hz

G.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in G.2.3 apply for the antenna configuration using uniform linear arrays at both gNB and UE and for the antenna configuration using cross polarized antennas.

G.2.3.1 MIMO Correlation Matrices using Uniform Linear Array (ULA)

The MIMO channel correlation matrices defined in G.2.3.1 apply for the antenna configuration using uniform linear array (ULA) at both gNB and UE.

G.2.3.1.1 Definition of MIMO Correlation Matrices

Table G.2.3.1.1-1 defines the correlation matrix for the eNodeB:

	One antenna	Two antennas	Four antennas
gNode B Correlation	$R_{gNB} = 1$	$R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{gNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}*} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}*} & \alpha^{\frac{1}{9}*} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}*} & \alpha^{\frac{1}{9}*} & 1 \end{pmatrix}$

Table G.2.3.1.1-1: gNodeB correlation matrix

Table G.2.3.1.1-2 defines the correlation matrix for the UE:

Table G.2.3.1.1-2: UE correlation matrix

	One antenna	Two antennas	Four antennas		
UE Correlation	<i>R_{UE}</i> = 1	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 \end{pmatrix}$		

Table G.2.3.1.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters α and β in Table G.2.3.1.1-3 defines the spatial correlation between the antennas at the gNodeB and UE respectively.

Table G.2.3.1.1-3:	R_{spat}	correlation matrices
--------------------	------------	----------------------

1x2 case	$R_{spat} = R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$
2x2 case	$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \beta & \beta \alpha \\ \alpha^* & 1 & \beta \alpha^* & \beta \\ \beta^* & \beta^* \alpha & 1 & \alpha \end{bmatrix}$
2x4 case	$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{bmatrix} 1 & \beta \\ \beta^{*} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \end{bmatrix}$ $R_{spat} = R_{UE} \otimes R_{gNB} = \begin{pmatrix} 1 & \beta^{1/9} & \beta^{4/9} & \beta \\ \beta^{1/9*} & 1 & \beta^{1/9} & \beta^{4/9} \\ \beta^{4/9*} & \beta^{1/9*} & 1 & \beta^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{1/9} & \alpha^{$
4x4 case	$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9^*}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9^*}} & \beta^{\frac{1}{9^*}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9^*}} & \beta^{\frac{4}{9^*}} & \beta^{\frac{1}{9^*}} & 1 \end{pmatrix} \otimes \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9^*}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9^*}} & \alpha^{\frac{1}{9^*}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9^*}} & \alpha^{\frac{4}{9^*}} & \alpha^{\frac{1}{9^*}} & 1 \end{bmatrix}$

For cases with more antennas at either gNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{UE} and R_{gNB} according to $R_{spat} = R_{UE} \otimes R_{gNB}$.

G.2.3.1.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table G.2.3.1.2-1.

Table G.2.3.1.2-1: Correlation for High Medium and Low Level

Low correlation		Medium Correlation		High Correlation	
α	β	α	β	α	β
0	0	0.9	0.3	0.9	0.9

The correlation matrices for high, medium and low correlation are defined in Table G.2.3.1.2-2, G.2.3.1.2-3 and G.2.3.1.2-4 as below.

The values in Table G.2.3.1.2-2 have been adjusted for the 2x4 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 2x4 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table G.2.3.1.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a =0.00012.

3GPP TS 38.104 version 15.5.0 Release 15

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$
2x4 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.9883 & 0.9542 & 0.8999 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9883 & 1.0000 & 0.9883 & 0.9542 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9542 & 0.9883 & 1.0000 & 0.9883 & 0.8587 & 0.8894 & 0.8999 & 0.8894 \\ 0.8999 & 0.9542 & 0.9883 & 1.0000 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.9542 & 0.9883 & 1.0000 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.8894 & 0.8587 & 0.8099 & 1.0000 & 0.9883 & 0.9542 & 0.8999 \\ 0.8999 & 0.8894 & 0.8587 & 0.8099 & 1.0000 & 0.9883 & 0.9542 & 0.8999 \\ 0.8894 & 0.8999 & 0.8894 & 0.8587 & 0.9883 & 1.0000 & 0.9883 & 0.9542 \\ 0.8587 & 0.8894 & 0.8999 & 0.8894 & 0.9542 & 0.9883 & 1.0000 & 0.9883 \\ 0.8099 & 0.8587 & 0.8894 & 0.8999 & 0.8999 & 0.9542 & 0.9883 & 1.0000 \end{bmatrix}$
4x4 case	$R_{high} = \begin{bmatrix} 1.0000\ 0.9882\ 0.9541\ 0.8999\ 0.9882\ 0.9767\ 0.9430\ 0.8894\ 0.9541\ 0.9430\ 0.9105\ 0.8587\ 0.8999\ 0.8894\ 0.8587\ 0.8099\\ 0.9882\ 1.0000\ 0.9882\ 0.9541\ 0.9767\ 0.9882\ 0.9767\ 0.9430\ 0.9430\ 0.9541\ 0.9430\ 0.9105\ 0.8894\ 0.8894\ 0.8587\ 0.8099\\ 0.9882\ 1.0000\ 0.9882\ 0.9430\ 0.9767\ 0.9882\ 0.9767\ 0.9105\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.8587\ 0.8894\ 0.8999\ 0.8894\\ 0.8999\ 0.9541\ 0.9882\ 1.0000\ 0.8894\ 0.9430\ 0.9767\ 0.9882\ 0.8587\ 0.9105\ 0.9430\ 0.9541\ 0.9430\$

1x2 case	[N/A]
2x2 case	$R_{medium} = \begin{pmatrix} 1.0000 & 0.9000 & 0.3000 & 0.2700 \\ 0.9000 & 1.0000 & 0.2700 & 0.3000 \\ 0.3000 & 0.2700 & 1.0000 & 0.9000 \\ 0.2700 & 0.3000 & 0.9000 & 1.0000 \end{pmatrix}_{1}$
2x4 case	$R_{medium} = \begin{pmatrix} 1.0000 & 0.9884 & 0.9543 & 0.9000 & 0.3000 & 0.2965 & 0.2863 & 0.2700 \\ 0.9884 & 1.0000 & 0.9884 & 0.9543 & 0.2965 & 0.3000 & 0.2965 & 0.2863 \\ 0.9543 & 0.9884 & 1.0000 & 0.9884 & 0.2863 & 0.2965 & 0.3000 & 0.2965 \\ 0.9000 & 0.9543 & 0.9884 & 1.0000 & 0.2700 & 0.2863 & 0.2965 & 0.3000 \\ 0.3000 & 0.2965 & 0.2863 & 0.2700 & 1.0000 & 0.9884 & 0.9543 & 0.9000 \\ 0.2965 & 0.3000 & 0.2965 & 0.2863 & 0.9884 & 1.0000 & 0.9884 & 0.9543 \\ 0.2863 & 0.2965 & 0.3000 & 0.2965 & 0.9543 & 0.9884 & 1.0000 & 0.9884 \\ 0.2700 & 0.2863 & 0.2965 & 0.3000 & 0.9000 & 0.9543 & 0.9884 & 1.0000 \\ \end{bmatrix}_{1}^{2}$
4x4 case	[
	$R_{mexturn} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table G.2.3.1.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
1x4 case	$R_{low} = \mathbf{I}_4$
2x2 case	$R_{low} = \mathbf{I}_4$
2x4 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table G.2.3.1.1-4, \mathbf{I}_d is a $d \times d$ identity matrix.

NOTE: For completeness, the 1x2 cases were defined for high, medium and low correlation but performance requirements exist only for low correlation.

G.2.3.2 Multi-Antenna channel models using cross polarized antennas

The MIMO channel correlation matrices defined in G.2.3.2 apply to two cases as presented below:

- One TX antenna and multiple RX antennas case, with cross polarized antennas used at gNodeB
- Multiple TX antennas and multiple RX antennas case, with cross polarized antennas used at both UE and gNodeB

The cross-polarized antenna elements with +/-45 degrees polarization slant angles are deployed at gNB. For one TX antenna case, antenna element with +90 degree polarization slant angle is deployed at UE. For multiple TX antennas case, cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of TX or RX antennas.

G.2.3.2.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{Spat} = P_{UL} \left(R_{UE} \otimes \Gamma_{UL} \otimes R_{gNB} \right) P_{UL}^{T}$$

Where

- R_{UE} is the spatial correlation matrix at the UE with same polarization,
- R_{gNB} is the spatial correlation matrix at the gNB with same polarization,
- Γ_{UL} is a polarization correlation matrix,
- P_{UL} is a permutation matrix, and
- $(\bullet)^T$ denotes transpose.

Table G.2.3.2.1-1 defines the polarization correlation matrix.

Table G.2.3.2.1-1: Polarization correlation matrix

	One TX antenna	Multiple TX antennas
Polarization correlation matrix	$\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma \\ -\gamma & 1 \end{bmatrix}$	$\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma & 0 & 0 \\ -\gamma & 1 & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ 0 & 0 & \gamma & 1 \end{bmatrix}$

The matrix P_{UL} is defined as

$$\mathbf{P}_{UL}(a,b) = \begin{cases} 1 & \text{for } a = (j-1)Nr + i \text{ and } b = 2(j-1)Nr + i, & i = 1, \dots, Nr, j = 1, \dots, \lceil Nt / 2 \rceil \\ 1 & \text{for } a = (j-1)Nr + i \text{ and } b = 2(j-Nt / 2)Nr - Nr + i, & i = 1, \dots, Nr, j = \lceil Nt / 2 \rceil + 1, \dots, Nt \\ 0 & \text{otherwise} \end{cases}$$

where Nt and Nr is the number of TX and RX antennas respectively, and $\lceil \bullet \rceil$ is the ceiling operator.

The matrix P_{UL} is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in G.2.3.2.

G.2.3.2.2 Spatial Correlation Matrices at UE and gNB sides

G.2.3.2.2.1 Spatial Correlation Matrices at UE side

For 1-antenna transmitter, $R_{UE} = 1$.

For 2-antenna transmitter using one pair of cross-polarized antenna elements, $R_{UE} = 1$.

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$.

G.2.3.2.2.2 Spatial Correlation Matrices at gNB side

For 2-antenna receiver using one pair of cross-polarized antenna elements, $R_{gNB} = 1$.

For 4-antenna receiver using two pairs of cross-polarized antenna elements, $R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$.

For 8-antenna receiver using four pairs of cross-polarized antenna elements, $R_{gNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9^*} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9^*} & \alpha^{1/9^*} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9^*} & \alpha^{1/9^*} & 1 \end{pmatrix}.$

G.2.3.2.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters α , β and γ for low spatial correlation are given in Table G.2.3.2.3-1.

Table G.2.3.2.3-1: Values for parameters α , β and γ

Low spatial correlation						
	α	β	γ			
	0	0	0			
Note 1:	Note 1: Value of α applies when more than one pair of cross-polarized antenna elements at gNB side.					
Note 2:	Value of β applies when n	nore than one pair of cross-polarized an	tenna elements at UE side.			

The correlation matrices for low spatial correlation are defined in Table G.2.3.2.3-2 as below.

Table G.2.3.2.3-2: MIMO correlation matrices for low spatial correlation

1x8 case	$R_{low} = \mathbf{I}_8$
2x8 case	$R_{low} = \mathbf{I}_{16}$

In Table G.2.3.2.3-2, \mathbf{I}_d is a $d \times d$ identity matrix.

Annex H (informative): Change history

	Change history						
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New
							version
2017-05	RAN4#83	R4-				Specification skeleton	0.0.1
		1704619					
2017-05	RAN4#83	R4-				Specification skeleton (revised)	0.0.2
		1705332					
2017-05	RAN4#83	R4-				Specification skeleton (revised)	0.0.3
		1706228					
2017-07	RAN4-NR	R4-				Agreed Text Proposal in RAN4 NR AH #2:	0.1.0
	AH #2	1706983				R4-1706955, "TP to TS 38.104: BS classification for NR BS"	
2018-08	RAN4#84	R4-				Agreed Text Proposal in RAN4 #84:	0.2.0
		1709212				R4-1708872, "TP to TS 38.104 BS transmitter transient period"	

			,		
2018-10	RAN4#84	R4-		Agreed Text Proposal in RAN4 #84bis:	0.3.0
	bis	1711970		R4-1710199 , "TP for TS 38.104: out of band blocking (10.4)" R4-1710587 , "TP for TS 38.104: Relationship with other core	
				specifications (4.1)"	
				R4-1710588 , "TP for TS 38.104: Relationship between minimum	
				requirements and test requirements (4.2)"	
				R4-1710589 , "TP for TS 38.104: Regional requirements (4.5)"	
				R4-1710591 , "TP for TS 38.104: Conducted transmitter	
				characteristics (general) (6.1)"	
				R4-1710593, "TP for TS 38.104: Operating band unwanted	
				emissions (conducted) (6.6.4)"	
				R4-1710594, "TP for TS 38.104: Conducted receiver characteristics	
				(General) (7.1)"	
				R4-1710595, "TP for TS 38.104: Radiated transmitter characteristics	
				(General) (9.1)"	
				R4-1710598 , "TP for TS 38.104: Radiated receiver characteristics	
				(General) (10.1)"	
				R4-1711325 , "TP to TS38.104: OTA Output power dynamics (9.4)"	
				R4-1711363 , "TP to TS 38.104 - Occupied bandwidth (6.6.2)"	
				R4-1711745 , "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)"	
				R4-1711746 , "TP for TS 38.104: Adding applicability table to	
				subclause 4.6"	
				R4-1711747 , "TP for TS 38.104: Operating bands and channel	
				arrangements. (5)"	
				R4-1711748, "TP to TS38.104: conducted NR BS output power	
				(6.2)"	
				R4-1711750, "TP for TS 38.104: Transmit ON/OFF power (6.4)"	
				R4-1711753, "TP for TS 38.104: Time alignment error requirements	
				(6.5)"	
				R4-1711754, "TP for TS 38.104: Unwanted emissions, General	
				(Conducted) (6.6.1)"	
				R4-1711755, "TP to TS 38.104: Occupied bandwidth for FR1 and	
				FR2 NR BS (9.7)"	
				R4-1711756 , "TP to TS 38.104: Transmitter spurious emissions	
				(conducted) (6.6.5)" R4-1711757, "TP for TS 38.104:Conducted BS transmitter	
				intermodulation for FR1 (section 6.7)"	
				R4-1711758 , "TP to TS 38.104: Reference Sensitivity (conducted)	
				(7.2)"	
				R4-1711759 , "TP to TS 38.104: NR BS conducted ACLR	
				requirement in FR1 (6.6.3)"	
				R4-1711760, "TP to TS38.104: conducted NR BS receiver spurious	
				emissions (7.6)"	
				R4-1711761, "TP to TS38.104: Radiated NR BS transmit power;	
				FR1 (9.2)"	
				R4-1711762 , "TP to TS38.104: OTA base station output power, FR1	
				(9.3)"	
				R4-1711763 , "TP for TS 38.104: OTA Transmit ON/OFF power (9.5)"	
				(9.5) R4-1711764 , "TP to TS 38.104 - OTA ACLR"	
				R4-1711764 , TP to 13 38.104 - OTA ACLK R4-1711765 , "TP for TS 38.104: OTA Operating band unwanted	
				emissions and Spectrum emissions mask (9.7.4)"	
				R4-1711766 , "TP for TS 38.104: OTA Spurious emission (9.7.5)"	
				R4-1711767, "TP for TS 38.104: Adding specification text for OTA	
				R4-1711767 , "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8"	
				R4-1711767, "TP for TS 38.104: Adding specification text for OTA	
				R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions,	
				R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions, FR1 (10.7)"	
				R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)"	
				 R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity 	
				 R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity and blocking requirements in FR1 (7.4)" 	
				 R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity and blocking requirements in FR1 (7.4)" R4-1711950, "TP to TS 38.104: Modulation Quality Skeleton (6.5)" 	
				 R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS 38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity and blocking requirements in FR1 (7.4)" R4-1711950, "TP to TS 38.104: Modulation Quality Skeleton (6.5)" R4-1711951, "TP to TS 38.104: frequency error for FR1 NR BS 	
				 R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS 38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity and blocking requirements in FR1 (7.4)" R4-1711950, "TP to TS 38.104: Modulation Quality Skeleton (6.5)" R4-1711951, "TP to TS 38.104: frequency error for FR1 NR BS (6.5&9.6)" 	
2017-11	RAN4#84	R4-		 R4-1711767, "TP for TS 38.104: Adding specification text for OTA TX IMD requirement in subclause 9.8" R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)" R4-1711771, "TP to TS 38.104: OTA receiver spurious emissions, FR1 (10.7)" R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity and blocking requirements in FR1 (7.4)" R4-1711950, "TP to TS 38.104: Modulation Quality Skeleton (6.5)" R4-1711951, "TP to TS 38.104: frequency error for FR1 NR BS 	0.4.0

2017-12	RAN4#85	R4-			Agreed Text Proposal in RAN4 #85:	0.5.0
		1714544			R4-1712614 , "TP to TS 38.104 - OTA sensitivity (10.2)" R4-1712648 . "TP to TS 38.104: corrections for the applicability of	
					"BS type" and "requirement set" definitions"	
					R4-1712964 , "TP for TS 38.104: out of band blocking (7.5)"	
					R4-1713631 , "TP to 38.104 on introduction of n71"	
					R4-1713632, "TP to 38.104, clause 4.7 (Requirements for	
					contiguous and non-contiguous spectrum)"	
					R4-1713633 , "TP to 38.104, clause 4.8 (Requirements for BS	
					capable of multi-band operation)" R4-1713634, "TP to 38.104, clause 6.6.4.2.6 (basic limits for	
					additional requirements for operating band unwanted emissions)"	
					R4-1714116 , "TP to TS 38.104: Revision of the TRP definition"	
					R4-1714117 , "TP to TS 38.104: Radiated NR BS transmit power; 2-	
					O (9.2.3)"	
					R4-1714121, "TP to TS 38.104: OTA Output power dynamics (9.4)"	
					R4-1714125, "TP to TS 38.104 v0.4.0: OTA TDD Off power"	
					R4-1714127, "TP for TS 38.104: OTA frequency error (9.6.1)"	
					R4-1714129 , "TP to TS 38.104: NR BS conducted CACLR	
					requirements in FR1 (6.6.3)"	
					R4-1714134, "TP to TS 38.104v0.4.0: Absolute levels for FR2 ACLR absolute levels for NR BS"	
					R4-1714136 , "TP for TS 38.104: Update of OTA TX IM requirement	
		l			for sub-clause 4.9 and sub-clause 9.8"	
		l			R4-1714141 , "TP to TS 38.104: Reference Sensitivity (conducted)	
		l			(7.2)"	
		l			R4-1714142, "TP to TS 38.104: NR BS FRCs for receiver	
		l			requirements"	
		l			R4-1714150 , "TP to TS 38.104 - OTA out of band blocking FR1	
					(10.6)" R4-1714306 , "TP for TS 38.104: Adding of TRP in terminology in	
					clause 3"	
					R4-1714307 , "TP to TS 38.104 - Conducted and radiated	
					requirement reference points (4.3)"	
					R4-1714308, "TP for TS 38.104: Base station classes (4.4)"	
					R4-1714310, "TP to TS 38.104: Directional and TRP requirements	
					identification (directional vs. TRP)"	
					R4-1714312 , "TP for TS 38.104: Update of applicability table in sub-	
					clause 4.6" R4-1714313 , "TP to TS 38.104: Operating bands (5.1-5.3)"	
					R4-1714315, "TP to TS38.104: frequency error for NR BS (6.5&9.6)"	
					R4-1714316 , "TP for TS 38.104: Adding text for subclause 6.5.2	
					Modulation quality"	
					R4-1714317, "TP to TS 38.104: Dynamic Range for FR1	
					(conducted)"	
					R4-1714318 , "TP to TS38.104: ICS requirement (7.8&10.9)"	
					R4-1714319 , "TP for TS 38.104: Adding text for subclause 9.6.4	
					Modulation quality" R4-1714320 , "TP for TS 38.104: OTA Spurious emission (9.7.5)"	
		l			R4-1714320 , TP for TS 38.104. OTA Spundus emission (9.7.5) R4-1714321 , "TP for TS 38.104: OTA Dynamic range (10.4)"	
		l			R4-1714321 , TP to TS 38.104: FR2 RX IM OTA, 10.8.3"	
					R4-1714428 , "TP to TS 38.104 v0.4.0: Time alignment for CA"	
		l			R4-1714430, "TP to TS 38.104: Transmitter spurious emissions	
		l			(conducted) (6.6.5)"	
		l			R4-1714432, "TP to TS 38.104: Output Power Dynamics for FR1	
		l			(conducted)"	
		l			R4-1714433 , "TP to TS 38.104: OTA Rx spurious emissions for BS	
		l			type O 2 (10.7.3)" R4-1714435 , "TP to TS 38.104: FR2 REFSENS"	
		l			R4-1714435 , TP to TS 38.104. FR2 REFSENS R4-1714437 , "TP for TS 38.104: Conducted Adjacent Channel	
					Leakage Power Ratio (ACLR) (6.6.3)"	
					R4-1714439 , "TP for TS 38.104: Receiver spurious emission (7.6)"	
		l			R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)"	
		l			R4-1714493, "TP for TS 38.104: Operating band unwanted	
		l			emissions (6.6.4)"	
		l			R4-1714515 , "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)"	
		l			R4-1714517 , "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)"	
		l			(9.3.3) R4-1714518 , "TP to TS 38.104: ACS and blocking update"	
					R4-1714518 , "IP to TS 38.104. ACS and blocking update R4-1714520 , "Draft TP to TS 38.104: OTA In-band selectivity and	
					blocking (10.5)"	
					R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7"	
					R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2"	
2017-12	RAN#78	RP-172268			Presented to TSG RAN for approval.	1.0.0
2017-12	RAN#78		000.1		Approved by plenary – Rel-15 spec under change control	15.0.0
2018-03	RAN#79	RP-180264	0004	F	TS 38.104 Combined updates (NSA) from RAN4 #86 and AH-1801	15.1.0

2018-06	RAN#80	RP-181076	0005		F	TS 38.104 Combined updates (NSA) from RAN4 #86bis and RAN4 #87	15.2.0
2018-09	RAN#81	RP-181896	8000		F	TS 38.104 Combined updates from RAN4 #88	15.3.0
2018-12	RAN#82	RP-182837	0016	1	F	CR to TS 38.104 on Combined updates from RAN4 #88bis and #89 (including 7.5 kHz carrier shift in UL for remaining bands)	15.4.0
2018-12	RAN#82	RP-182362	0017		В	CR to 38.104 on Combined CRs for BS Demodulation performance	15.4.0
2019-03	RAN#83	RP-190403	0019		F	CR to TS 38.104 on Combined updates from RAN4 #90	15.5.0
						This document combines the proposed changes in the following Draft CRs from RAN4 #90:	
						- R4-1900284, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104"	
						- R4-1900763, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH"	
						- R4-1900876, "Draft CR to TS 38.104: On RX spurious emissions	
						requirement" - R4-1900968, "Draft CR for 38.104: Performance requirements	
						for NR PUCCH format 1" - R4-1901329, "Draft CR to 38.104: Annex C.6 correction"	
						- R4-1901330, "Draft CR to 38.104: Abbreviations addition"	
						- R4-1901387, "Draft CR to TS 38.104 BS demodulation PUCCH	
						format 0 requirements"	
						- R4-1901474, "Draft CR to TS 38.104: Corrections on transmitter	
						co-existence and co-location requirements"	
						- R4-1901483, "Draft CR to TS 38.104: Corrections on general intermodulation requirement"	
						- R4-1902239, "Draft CR to TS 38.104: Addition of missing	
						EIRP/EIS definitions in terminology in subclause 3.1"	
						- R4-1902241, "Draft CR to 38.104; clarification of BS power	
						limits"	
						- R4-1902245, "Draft CR to 38.104: Correction to FR2 OTA	
						Interfering signal mean power units" - R4-1902246, "Draft CR to 38.104; Correction to definition of	
						OTA reference sensitivity"	
						- R4-1902260, "draft CR to TS 38.104 - update emissions scaling"	
						- R4-1902338, "Draft CR: Update on FR1 range extension for	
						TS38.104"	
						- R4-1902389, "draftCR for 38.104 on PUSCH requirements with CP-OFDM and FR1"	
						- R4-1902394, "Draft CR to TS 38.104 – PUSCH requirements with CP-OFDM for FR2"	
						- R4-1902396, "CR: Updates to PUCCH formats 3 and 4	
						performance requirements in TS 38.104"	
						- R4-1902444, "Draft CR to TS 38.104: Editorial CR for BS	
						demodulation requirements"	
						- R4-1902561, "Draft CR for updating PRACH performance	
						requirements in TS38.104"	
						- R4-1902571, "Corrections to 38.104 Delay profile calculation"	
						- R4-1902642, "Draft CR to TS 38.104: Correction on multi-band	
						operation related requirements"	

History

	Document history					
V15.2.0	July 2018	Publication				
V15.3.0	October 2018	Publication				
V15.4.0	April 2019	Publication				
V15.5.0	May 2019	Publication				