
# ETSI TS 133 110 V7.2.0 (2007-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS); Key establishment between a UICC and a terminal (3GPP TS 33.110 version 7.2.0 Release 7)



# Reference DTS/TSGS-0333110v720 Keywords SECURITY, UMTS

#### **ETSI**

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

<a href="http://portal.etsi.org/tb/status/status.asp">http://portal.etsi.org/tb/status/status.asp</a></a>

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI\_support.asp

#### **Copyright Notification**

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2007.
All rights reserved.

**DECT**<sup>TM</sup>, **PLUGTESTS**<sup>TM</sup> and **UMTS**<sup>TM</sup> are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**<sup>TM</sup> and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**<sup>TM</sup> is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

### Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

#### **Foreword**

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <a href="http://webapp.etsi.org/key/queryform.asp">http://webapp.etsi.org/key/queryform.asp</a>.

# Contents

| Intell   | llectual Property Rights                                                               | 2  |
|----------|----------------------------------------------------------------------------------------|----|
| Forev    | eword                                                                                  | 2  |
| Forev    | eword                                                                                  | 4  |
| Intro    | oduction                                                                               | 4  |
| 1        | Scope                                                                                  |    |
| 2        | References                                                                             |    |
|          | Definitions, symbols and abbreviations                                                 |    |
| 3<br>3.1 | ·                                                                                      |    |
| 3.2      | Definitions                                                                            |    |
| 3.3      | Symbols                                                                                |    |
| 3.3      |                                                                                        |    |
| 4        | Key Establishment between a UICC and a terminal                                        |    |
| 4.1      | Reference model                                                                        |    |
| 4.2      | Network elements                                                                       |    |
| 4.2.1    | - ·                                                                                    |    |
| 4.3      | Key establishment architecture and reference points                                    |    |
| 4.3.1    |                                                                                        |    |
| 4.3.2    | Reference point Ub                                                                     | 8  |
| 4.3.3    | · · · · · · · · · · · · · · · · · · ·                                                  |    |
| 4.4      | General requirements and principles for key establishment between a UICC and a Termina |    |
| 4.4.1    | General requirements                                                                   | 9  |
| 4.4.2    | 1                                                                                      |    |
| 4.4.3    | 7 · · · · · · · · · · · · · · · · · · ·                                                |    |
| 4.4.4    | 1··                                                                                    |    |
| 4.4.5    | 1                                                                                      |    |
| 4.4.6    |                                                                                        |    |
| 4.5      | Procedures                                                                             |    |
| 4.5.1    |                                                                                        | 10 |
| 4.5.2    | Key establishment procedure                                                            | 11 |
| Anne     | nex A (normative): Key Derivation Function definition                                  | 15 |
| A.1      | Ks_local key derivation in key establishment                                           | 15 |
| A.2      | Input parameters for Ks_local key derivation                                           | 15 |
| Anno     | nex B (normative): Key establishment UICC-Terminal interface                           | 16 |
| B.1      | Local Key Establishment: Key Derivation procedure                                      | 16 |
| B.2      | Local Key Establishment: Key Availability Check procedure                              |    |
|          |                                                                                        |    |
|          | nex C (informative): Change history                                                    |    |
| Histo    | ory                                                                                    | 19 |

#### **Foreword**

This Technical Specification has been produced by the 3<sup>rd</sup> Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
  - 1 presented to TSG for information;
  - 2 presented to TSG for approval;
  - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

#### Introduction

The smart card, tamper resistant device, has a primary role of storing credentials and performing sensitive cryptographic computations, it also provides portability of the user credentials. The smart card is rarely a stand-alone device; it usually interacts with a terminal. Sensitive applications are often split between a smart card and a terminal with sensitive data exchanged between the two. Therefore, the need to establish a secure channel between a UICC and a terminal that may host the UICC or be connected to the device hosting the UICC via a local interface has been identified by different standardization groups in order to protect the communication between the UICC and the terminal.

This document describes key establishment between a UICC and a terminal.

#### 1 Scope

The present document describes the security features and mechanisms to provision a shared key between a UICC and a terminal that may host the UICC or be connected to the device hosting the UICC via a local interface. Candidate applications to use this key establishment mechanism include but are not restricted to secure channel between a UICC and a terminal ETSI TS 102 484 [8].

The scope of this specification includes an architecture overview and the detailed procedure how to establish the shared key between the UICC and the terminal.

#### 2 References

[16]

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [1] [2] 3GPP TS 31.101: "UICC-terminal interface; Physical and logical characteristics". [3] 3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic bootstrapping architecture". [4] 3GPP TS 22.259: "Service requirements for Personal Network Management (PNM); Stage 1". [5] IETF RFC 2246 (1999): "The TLS Protocol Version 1". IETF RFC 3546 (2003): "Transport Layer Security (TLS) Extensions". [6] [7] 3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)". [8] ETSI TS 102 484: "Smart Cards; Secure Channel between a UICC and an end-point Terminal". Editor's Note: Reference [8] is not yet published. Publication is anticipated first quarter 2007. [9] 3GPP TS 24.008: "Mobile radio interface Layer 3 specification; Core network protocols; Stage 3". [10] NIST, FIPS PUB 180-2: "Secure Hash Standard (SHS)". IETF RFC 4634 (2006): US Secure Hash Algorithms (SHA and HMAC-SHA). [11] IETF RFC 2104 (1997): "HMAC: Keyed-Hashing for Message Authentication". [12] 3GPP TR 33.905: "Recommendations for Trusted Open Platforms". [13] TCG Mobile Phone Specifications, https://www.trustedcomputinggroup.org/specs/mobilephone. [14] TCG Trusted Network Connect (TNC) Specifications, [15]

3GPP TS 29.109: "Generic Authentication Architecture (GAA); Zh and Zn Interfaces based on the

https://www.trustedcomputinggroup.org/specs/TNC.

Diameter protocol; Stage 3".

# 3 Definitions, symbols and abbreviations

#### 3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

NAF Key Center: Dedicated NAF in charge of performing the key establishment between a UICC and a Terminal.

**UICC Hosting Device**: The entity, which is physically connected to the UICC. The UICC Hosting Device may be the MT or the ME.

**Terminal**: For the purposes of the present document, the term Terminal denotes a trusted device that can establish a shared key with a UICC. The Terminal is a generic term aiming to address either the scenario where it is part of the UICC Hosting Device or the scenario where it is a physically separated component (e.g. PNE as defined in TS 22.259 [4]).

**Remote Terminal:** A Terminal that is physically separated from the UICC Hosting Device.

NOTE: The definition of trusted devices is out of the scope of the specification. It is assumed that the home network can decide whether a terminal is trusted or not.

Editor's note: Some examples of trusted devices may be included.

**ICCID**: ICCID is the identifier of the smart card. ICCID is defined in ITU standard and is encoded as a 10 octet string.

**Terminal\_appli\_ID**: It identifies an application in a Terminal. Terminal\_appli\_ID is an octet string of maximum 32 octets. If an application has an identifier of longer than 32 octets, this should be hashed using SHA 256 [10] into a string of length 32 octets which will be used as Terminal appli ID.

**Terminal\_ID:** It identifies uniquely the Terminal and is 10 octets. The Terminal\_ID of a ME is the IMEI and shall be encoded using BCD coding as defined in clause 10.5.1.4 of TS 24.008 [9].

NOTE: In case that the Terminal is not a ME the definition of the type of Terminal\_IDs is out of the scope of the specification.

**UICC\_appli\_ID:** It uniquely identifies an application in the UICC. The UICC\_appli\_ID is an octet string of maximum 16 octets.

#### 3.2 Symbols

For the purposes of the present document, the following symbols apply:

Concatenation

#### 3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

B-TID Bootstrapping Transaction Identifier
BSF Bootstrapping Server Function
GBA Generic Bootstrapping Architecture

GBA ME ME-based GBA

GBA\_U GBA with UICC-based enhancements ICCID Integrated Circuit Card Identification

KDF Key Derivation Function Ks\_ext\_NAF Derived key in GBA\_U

Ks\_int\_NAF Derived key in GBA\_U, which remains on UICC

Ks\_local Derived key, which is shared between a Terminal and a UICC

NAF Network Application Function
MAC Message Authentication Code
PNE Personal Network Element
SLF Subscriber Locator Function
USS User Security Setting

## 4 Key Establishment between a UICC and a terminal

#### 4.1 Reference model

GBA\_U (TS 33.220 [3]) is used to provision a shared key between a UICC and a Terminal (i.e. Ks\_local). The GBA\_U key Ks\_int\_NAF is used by the UICC and the NAF to derive Ks\_local. The NAF securely delivers Ks\_local to the Terminal through a TLS tunnel, which is established between the NAF and the Terminal.

Figure 4.1 and figure 4.2 show a network model of the entities that utilize the bootstrapped secrets, and the reference points used between them. In figure 4.1 the Terminal is part of the UICC Hosting Device whereas in figure 4.2 the Terminal is connected to the UICC Hosting Device via a local interface.

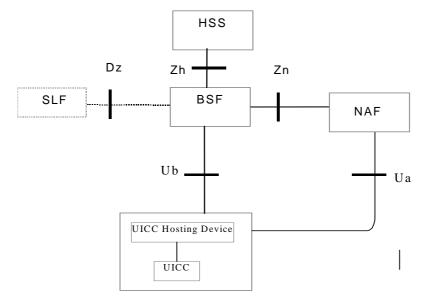



Figure 4.1: High level reference mode (the Terminal is part of the UICC Hosting Device)

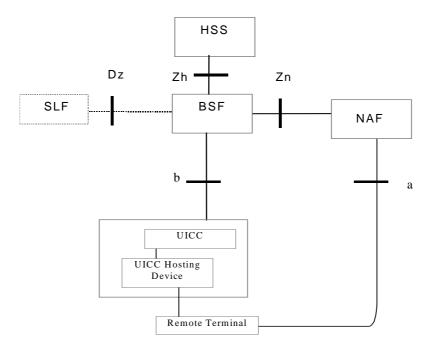



Figure 4.2: High level reference mode (the Remote Terminal is connected to the UICC Hosting Device)

Editor's note: It has to be confirmed if the reference point Ua shown in figure 4.2 is the same as defined in TS 33.220 [3].

#### 4.2 Network elements

#### 4.2.1 NAF Key Center

The NAF Key Center is the NAF in charge of performing the Key Establishment between a UICC and a Terminal.

#### 4.3 Key establishment architecture and reference points

#### 4.3.1 Reference points

This document is based on the architecture specified in TS 33.220 [3]. The Reference Points that are not explained in this section can be found in TS 33.220 [3] and TS 29.109 [16] (including GAA Service Type Code for this specification).

#### 4.3.2 Reference point Ub

The reference point Ub is implemented between the UICC Hosting Device and the BSF as described in TS 33.220 [3]. The UICC Hosting Device runs the HTTP Digest AKA protocol with BSF. This allows the UICC and the BSF to generate the bootstrapping key Ks.

#### 4.3.3 Reference point Ua

The reference point Ua is used to deliver Ks\_local and the associated parameters to the Terminal.

#### 4.4 General requirements and principles for key establishment between a UICC and a Terminal

#### 4.4.1 General requirements

The following requirements and principles are applicable to the procedure for key establishment between a UICC and a Terminal:

- The Terminal and the UICC shall be able to establish a shared key;
- The Terminal shall be trusted:

NOTE: The definition of trusted terminal is out of scope of the specification. The terminal may be compliant to requirements defined in TCG Mobile Phone specifications [14] or TR 33.905 [13] "Recommendations for Trusted Open Platforms".

- The shared key to establish between the UICC and the Terminal (i.e. Ks\_local) shall not be exchanged unencrypted on the interface between the UICC and the Terminal;
- The Terminal and the network shall be able to authenticate each other;
- The server implementing the key establishment function (i.e. the NAF Key Center) needs to be trusted by the home operator to handle the authentication parameters and the shared key;
- The home network shall be able to control whether this Terminal is authorized to establish a shared key with the UICC;
- The procedure for the key establishment between a UICC and a Terminal shall be access independent;
- To the extent possible, existing protocols and infrastructure should be reused;

#### 4.4.2 Requirements on the terminal

The Terminal shall support certificate-based mutual authentication as defined in clause 5.5 of TS 33.222 [7] and IETF RFC 2246 [5] and IETF RFC 3546 [6]. Furthermore, the Terminal shall be equipped with a valid Client Certificate.

#### 4.4.3 Requirements on the UICC hosting device

The UICC Hosting Device shall implement GBA\_U as defined in TS 33.220 [3].

#### 4.4.4 Requirements on the UICC

The UICC shall implement GBA\_U as defined in TS 33.220 [3].

The UICC shall be capable of deriving Ks\_local from Ks\_int\_NAF.

The NAF\_ID of the NAF Key Center shall be stored on the UICC.

NOTE: The home operator can update the NAF\_ID of the NAF Key Center by means of OTA commands.

It shall be possible that the UICC implements local policies to restrict the key establishment based on targeted UICC and Terminal applications (i.e. based on Terminal\_appli\_ID / UICC\_appli\_ID pair value), or based on Terminal\_ID, or based on both targeted applications and Terminal\_ID.

#### 4.4.5 Requirements on the NAF Key Center

The NAF Key Center shall support certificate-based mutual authentication as defined in clause 5.5 of TS 33.222 [7] and IETF RFC 2246 [5] and IETF RFC 3546 [6].

Editor's note: In addition to certificate-based authentication, another option might be defined

The NAF Key Center shall be capable of determining whether a Terminal is trusted or not.

The NAF Key Center shall implement GBA U as defined in TS 33.220 [3].

The NAF Key Center dedicated to the Key Establishment Mechanism shall be located in the operator's Home Network.

The NAF Key Center shall be capable of deriving Ks\_local from Ks\_int\_NAF.It shall be possible to configure the NAF Key Center to restrict the key establishment based on the targeted UICC and Terminal applications (i.e. based on Terminal\_appli\_ID / UICC\_appli\_ID pair value), or based on Terminal\_ID and/or ICCID, or based on both targeted applications and device identifiers (Terminal\_ID and/or ICCID).

#### 4.4.6 Requirements on Ks\_local key and associated parameters handling

The established key Ks\_local may be either a key shared between the UICC and the Terminal as monolithic devices or between a specific application on the UICC and a corresponding specific application on the Terminal. Ks\_local "per platform" refers to Ks\_local shared between the UICC and the Terminal as monolithic devices, whereas Ks\_local "per application" refers to Ks\_local shared between a specific application on the UICC and a specific application on the Terminal.

Each Ks\_local is associated with a Key Lifetime for use in the terminal and a 16 octet Counter Limit value for use in the UICC. The NAF Key Center shall generate these values and deliver them to the terminal. The terminal shall forward the Counter Limit to the UICC when requesting the Ks\_local derivation. The Ks\_local derivation shall include the Counter Limit value from the NAF Key Center so that the UICC can be sure that the Counter Limit value was generated by the NAF Key Center and was not modified by the terminal. Details of how the UICC shall interpret the Counter Limit can be found in ETSI TS 102 484 [8].

The home operator may update the Ks\_local Counter Limit value by means of OTA commands. The description of the OTA mechanism is out of the scope of this TS.

The Terminal shall delete Ks\_local and the corresponding parameters (e.g.ICCID, Terminal\_appli\_ID, UICC\_appli\_ID) when at least one of the conditions below is met:

- 1- The key lifetime of Ks\_local expires;
- 2- The Terminal detects that another UICC has been inserted. In order to make this condition possible, the Terminal needs to store in non-volatile memory the last inserted UICC-identity to be able to compare that with the used UICC-identity during the initialisation procedures;

Ks\_local should not be deleted from the Terminal when the Terminal is powered down. If the Terminal does not delete Ks\_local at power down then Ks\_local together with the associated parameters (e.g. key lifetime and B-TID) shall be stored in trusted non-volatile memory.

Editor's note: One way to have trusted non-volatile memory may be achieved by tamper-resistant hardware.

#### 4.5 Procedures

#### 4.5.1 Initiation of key establishment between a UICC and a Terminal

Before a Ks\_local-based application can start, the UICC and the Terminal first have to share the same key Ks\_local associated to the selected application. The Terminal shall check if it stores the key Ks\_local associated to the targeted application and if this key Ks\_local is also available on the UICC.

- 1- The Terminal checks if it already stores a valid key Ks\_local required for the application communicating with the UICC. If a valid key Ks\_local is not available on the Terminal then the Terminal initiates a Key Establishment procedure, else step 2 applies.
- 2- The Terminal sends a request to the UICC to check that the required key Ks\_local is available on the UICC. The UICC reply indicates the Terminal if the required key Ks\_local is available on the UICC. If the required key Ks\_local is not available on the UICC, the Terminal initiates a key establishment procedure, else a valid Ks\_local key is shared between the UICC and the Terminal.

#### 4.5.2 Key establishment procedure

If a key establishment procedure is needed, it has to be performed as follows:

- 1- The Terminal checks whether there is a valid Ks key in the UICC, by fetching the current B-TID and its corresponding lifetime from the UICC. If no valid key Ks is available in the UICC, the Terminal requests a GBA bootstrapping procedure run to derive a new Ks key in the UICC and the BSF.
- 2- In order to check whether there is a valid Ks\_int\_NAF, the Terminal sends a request to the UICC to retrieve B-TID value associated to the NAF\_ID of the NAF Key Center. In case that the Terminal does not know the NAF\_ID of the NAF Key Center, the Terminal sends a request to the UICC to retrieve the NAF\_ID of the NAF Key Center.
- 3- The UICC returns the NAF\_ID and associated B-TID to the Terminal. If there is no Ks\_int\_NAF available in the UICC, a GBA\_U NAF Derivation procedure associated to the NAF Key Center is performed and then the UICC returns the NAF\_ID and associated B-TID to the Terminal.
- 4- The Terminal and the NAF Key Center establish a HTTPS tunnel with certificate based mutual authentication between the Terminal and the application server as defined in clause 5.5 of TS 33.222 [7].
- NOTE 1: One potential way to reach a trusted state is if the Terminal is compliant with the requirements defined in TCG (Trusted Computing Group) MPWG (Mobile Phone Working Group) Mobile Phone Specifications [14]. In PC-based TCG technology [15], HTTPS tunnel establishment can be bound to the trust status of the Terminal, through the attestations of relevant trusted engine of the Terminal. Similar Mobile functionality will be included in the TCG Mobile Phone specifications [14]. Thus, HTTPS tunnel establishment may in future be possible only if the Terminal is in a trusted state.

#### Editor's note: In addition to certificate-based authentication, another option might be defined

5- In order to retrieve Ks\_local from the NAF Key Center, the Terminal sends a "service request" message to the NAF Key Center node in the mobile operator network. The message is sent within HTTPS tunnel.

The request may contain the following payload: the identity (B-TID), the Terminal identifier (Terminal\_ID), the smart card identifier (ICCID), the application identifier of UICC application (UICC\_appli\_ID) and the application identifier of the Terminal application (Terminal\_appli\_ID) requiring the establishment of key Ks\_local, and a variable value RANDx.

NOTE 2: The variable value can be a random value or timestamp produced by the Terminal.

In case that Ks\_local has to be established per platform, the UICC\_appli\_ID and the Terminal\_appli\_ID octet strings equal to static ASCII-encoded string "platform".

- 6- The NAF Key Center shall behave as follows:
  - a) If the key establishment procedure is not allowed for the targeted applications or for the Terminal\_ID/ICCID (e.g. if the Terminal ID is blocked (blacklisted)), according to the local administration then the NAF Key Center shall respond with appropriate error code and terminate the TLS connection with the Terminal.
  - b) The NAF Key Center contacts the BSF and sends the identity (B-TID) and its own NAF\_ID in a credential request.

7- The BSF derives Ks\_int\_NAF, Ks\_ext\_NAF and supplies to the NAF Key Center the requested keys Ks\_int/ext\_NAF keys, as well as the bootstrapping time and the key lifetime of Ks\_int/ext\_NAF keys.

The BSF may also send requested USSs to NAF Key Center according to the BSF's policy

- 8- The NAF Key Center shall behave as follows
  - a) If the NAF Key Center has requested a USS, and the USS indicates to the NAF Key Center that the key establishment procedure is not allowed for the user, then the NAF Key Center shall respond with appropriate error code and terminate the TLS connection with the Terminal.
  - b) The NAF Key Center generates a suitable 16 octet Counter Limit for use in the UICC. The NAF Key Center associates a key lifetime to the derived key Ks\_local for use in the Terminal.
  - c) The NAF Key Center derives Ks\_local from Ks\_int\_NAF. Ks\_local is computed as Ks\_local = KDF (Ks\_int\_NAF, B-TID, Terminal\_ID, ICCID, Terminal\_appli\_ID, UICC\_appli\_ID, RANDx, Counter Limit), where KDF is the key derivation function as specified in Annex A.
- NOTE 3: If two applications on the UICC or on the Terminal have the same application identifier and RANDx is not renewed for each Ks local derivation, then Ks local will be the same for the two applications.

- 9- The NAF Key Center sends within HTTPS tunnel a response message to the Terminal with the following payload: B-TID, Ks\_local, Key Lifetime, and Counter Limit.
- 10-The Terminal stores Ks\_local and associated parameters Key Lifetime, ICCID, Terminal\_appli\_ID, UICC\_appli\_ID
- 11-The Terminal sends a command to perform Ks\_local derivation on the UICC. The Terminal sends the NAF\_ID corresponding to the NAF Key Center, the Terminal\_ID, the Terminal\_appli\_ID, the UICC\_appli\_ID, RANDx and the Counter Limit value. The terminal also includes a MAC which is computed as MAC = HMAC-SHA-256(Ks\_local, NAF\_ID || Terminal\_ID || ICCID || Term\_appli\_ID || UICC\_appli\_ID || RANDx || Counter Limit) truncated to 16 octets, where HMAC-SHA-256 with truncation is defined in NIST, FIPS PUB 180-2 [10], IETF RFC 4634 [11] and IETF RFC 2104 [12].
  - Terminal\_appli\_ID and UICC\_appli\_ID correspond to identifiers of applications that aim at sharing a key Ks\_local. In case that Ks\_local has to be established per platform, the UICC\_appli\_ID and the Terminal\_appli\_ID octet strings are set equal to the static ASCII-encoded string "platform".
- 12-The UICC retrieves the Ks\_int\_NAF and B-TID associated with the received NAF\_ID. The UICC may store a local policy to determine the associations between a Terminal\_appli\_ID and a UICC\_appli\_ID which are authorized. If the Terminal requested a Terminal\_appli\_ID/UICC\_appli\_ID association not authorized by the UICC policy, then the UICC stops the key establishment procedure and returns a "not authorized" error message. The local policy may also not authorize the key establishment procedure based on the Terminal\_ID value.

If the requested association is authorised, then the UICC derives Ks\_local. Ks\_local is computed in the UICC as Ks\_local = KDF (Ks\_int\_NAF, B-TID, Terminal\_ID, ICCID, Terminal\_appli\_ID, UICC\_appli\_ID, RANDx, Counter Limit), where KDF is the key derivation function specified in Annex A.

The UICC verifies the MAC value received from the Terminal by computing MAC' = HMAC-SHA-  $256(Ks\_local, NAF\_ID \parallel Terminal\_ID \parallel ICCID \parallel Term\_appli\_ID \parallel UICC\_appli\_ID \parallel RANDx \parallel Counter$  Limit) truncated to 16 octets. If the MAC' does not equal MAC, then the UICC terminates the key agreement procedure and returns a MAC verification failure message in response to the Ks\\_local derivation request.

13-If MAC'=MAC then the UICC stores Ks\_local and associated parameters Terminal\_ID, Terminal\_appli\_ID, UICC\_appli\_ID and the Ks\_local Counter Limit. The UICC then sends a Ks\_local derivation response containing a MAC of the ASCII-encoded string "verification successful" using the key Ks\_local and the MAC algorithm HMAC-SHA-256 [11] truncated to 16 octets IETF RFC 2104 [12].

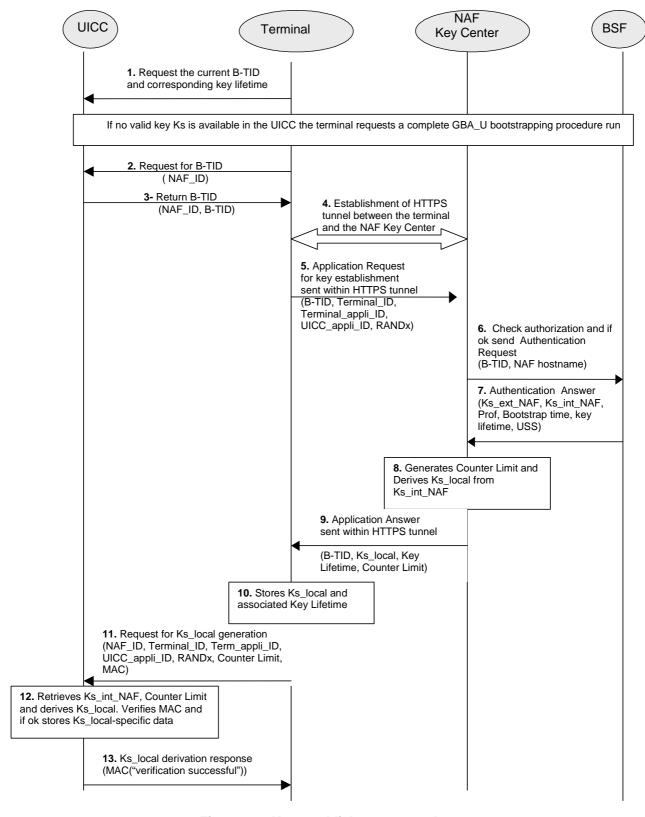



Figure 4-3: Key establishment procedure

# Annex A (normative): Key Derivation Function definition

#### A.1 Ks\_local key derivation in key establishment

The description of key derivation function KDF can be found in TS 33.220 [3]. The generic key derivation function and input parameter encoding in this document shall be implemented as defined in TS 33.220 [3].

# A.2 Input parameters for Ks\_local key derivation

In the key establishment between a UICC and a terminal, the input parameters for the key derivation function shall be the following:

- FC = 0x01,
- P0 = B-TID,
- L0 = length of B-TID is variable (not greater than 65535),
- P1 = Terminal ID,
- L1 = length of Terminal ID is variable (not greater than 10 octets),
- P2 = ICCID,
- L2 = length of ICCID is variable (not greater than 10 octets),
- P3 = Terminal\_appli\_ID,
- L3 = length of Terminal\_appli\_ID is variable (not greater than 32 octets),
- P4 = UICC\_appli\_ID,
- L4 = length of UICC\_appli\_ID is variable (not greater than 16 octets),
- P5 = RANDx,
- L5 = length of RANDx is variable (not greater than 16 octets).
- P6 = Counter Limit.
- L6 = length of Counter Limit is 16 octets.

In case that derived key Ks\_local has to be established per platform, the UICC\_appli\_ID and the Terminal\_appli\_ID octet strings equal to static ASCII-encoded string "platform".

# Annex B (normative): Key establishment UICC-Terminal interface

This annex describes the UICC-Terminal interface to be used to derive Ks\_local key in the UICC when there is the establishement of a shared key Ks\_local between a UICC and a Terminal.

# B.1 Local Key Establishment: Key Derivation procedure

This procedure is part of the key establishment to share Ks\_local key between a UICC and a Terminal.

The Terminal has previously performed a GBA\_U bootstrapping procedure and subsequent GBA\_U NAF Derivation procedure, as described in TS 33.220 [3], with the NAF Key Center. The UICC stores the corresponding Ks\_int\_NAF and associated B-TID together with the NAF\_ID of the NAF Key Center.

The NAF\_ID of the NAF Key Center is stored on the UICC. This value shall be accessible by the Terminal.

The Terminal sends to the UICC the list of parameters described in the Terminal request for Ks\_local generation in clause 4.5.2.

The UICC uses the NAF\_ID to retrieve Ks\_int\_NAF associated to the NAF Key Center. The UICC derives Ks\_local from Ks\_int\_NAF as described in clause 4.5.2.

After successful Ks\_local key derivation, the UICC stores Ks\_local and associated parameters as described in clause 4.5.2.

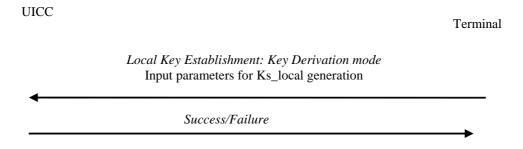



Figure B.1

# B.2 Local Key Establishment: Key Availability Check procedure

This procedure takes place during the initiation of the key establishment procedure where the Terminal checks if the UICC already stores a valid key Ks\_local required for the application communicating with the UICC.

The UICC has previously performed a Key Derivation procedure for the local key establishment.

The Terminal sends either a Key Identifier of Ks\_local or no parameter.

If the UICC received a Key Identifier of Ks\_local as input data then the UICC returns success/failure message, else the UICC returns the list of available Ks\_local key identifiers.

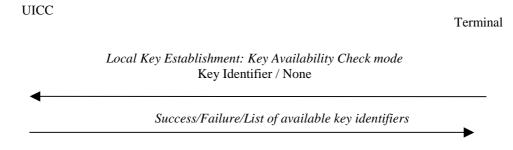



Figure B.2

# Annex C (informative): Change history

|         | Change history |           |      |     |     |                                                                                                                                  |       |       |             |
|---------|----------------|-----------|------|-----|-----|----------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------------|
| Date    | TSG#           | TSG Doc.  | CR   | Rev | Cat | Subject/Comment                                                                                                                  | Old   | New   | WI          |
| 2006-01 |                |           |      |     |     | Creation of document                                                                                                             |       | 0.0.0 |             |
| 2006-05 |                |           |      |     |     | Integration of pseudo-CRs S3-060265, S3-060280, S3-060282, and creation of annex based on contributions S3-060258 and S3-060309. | 0.0.0 | 0.1.0 | KeyEstUTerm |
| 2006-07 | SP-33          |           |      |     |     | Integration of pseudo-CRs S3-060432, S3-060468, S3-060469 and S3-060569                                                          | 0.1.0 | 1.0.0 | KeyEstUTerm |
| 2006-11 | SP-34          |           |      |     |     | Integration of pseudo-CRs S3-060669,<br>S3-060672, S3-060673, S3-060674,<br>S3-060754.                                           | 1.0.0 | 2.0.0 | KeyEstUTerm |
| 2006-12 | SP-34          | SP-060807 | -    | -   | -   | Approved at SA #34                                                                                                               | 2.0.0 | 7.0.0 | KeyEstUTerm |
| 2007-03 | SP-35          | SP-070155 | 0001 | -   | С   | NAF Key Center shall<br>authorize/administrate<br>Terminal_appl_ID and UICC_appl_ID                                              | 7.0.0 | 7.1.0 | KeyEstUTerm |
| 2007-03 | SP-35          | SP-070155 | 0003 | -   | F   | Figure 4-3 misleadingly lists Ks_NAF in message 9                                                                                | 7.0.0 | 7.1.0 | KeyEstUTerm |
| 2007-03 | SP-35          | SP-070155 | 0004 | 1   | F   | Keep annex alignment with the specification text                                                                                 | 7.0.0 | 7.1.0 | KeyEstUTerm |
| 2007-06 | SP-36          | SP-070330 | 0006 | -   | F   | Addition of reference to GAA Service Type Code                                                                                   | 7.1.0 | 7.2.0 | KeyEstUTerm |
| 2007-06 | SP-36          | SP-070330 | 0007 | 1   | F   | Addition of annex on key establishment UICC-Terminal interface                                                                   | 7.1.0 | 7.2.0 | KeyEstUTerm |
| 2007-06 | SP-36          | SP-070330 | 0009 | 1   | С   | Addition of key confirmation and various other changes                                                                           | 7.1.0 | 7.2.0 | KeyEstUTerm |

# History

| Document history |           |             |  |  |  |  |  |
|------------------|-----------|-------------|--|--|--|--|--|
| V7.2.0           | June 2007 | Publication |  |  |  |  |  |
|                  |           |             |  |  |  |  |  |
|                  |           |             |  |  |  |  |  |
|                  |           |             |  |  |  |  |  |
|                  |           |             |  |  |  |  |  |