
ETSI TS 132 111-2 V3.2.0 (2000-09)

Technical Specification

Universal Mobile Telecommunications System (UMTS); Telecommunication Management; Fault Management;

Part 2: Alarm Integration Reference Point: Information Service (3GPP TS 32.111-2 version 3.2.0 Release 1999)

Reference RTS/TSGS-0532111-2UR Keywords UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.

All rights reserved.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key.

Contents

Forev	reword4				
Introd	luction		4		
1	Scope		6		
2	References				
3		eviations			
3 3.1		viauons			
3.2	Abbreviations				
4	Basic aspects		8		
4.1					
4.2					
5	IRP Information Serv	rice	9		
5.1	Interfaces		9		
5.2		mIRPOperations Interface			
5.2.1		owledgeAlarms (M)			
5.2.2	1	knowledgeAlarms (0)			
5.2.3		larmList (M)			
5.2.4	<u> </u>	larmCount (O)			
5.2.5		larmIRPVersion (M)			
5.3 5.3.1		armIRPNotifications Interface			
5.3.2		zifyNewAlarm (M)			
5.3.3		FifyChangedAlarm (0)			
5.3.4		cifyAckStateChanged (M)			
5.3.5		cifyClearedAlarm (M)			
5.3.6		tifyAlarmListRebuilt (M)			
5.4					
5.4.1	Alarm List		14		
5.4.2		ce Name			
5.4.3		on Identification			
5.4.3.1		mInformationReference			
5.4.4 5.4.5		tion and recovery			
5.4.6		on			
6.1	•				
Anne	x A (normative):	Event Types and Extended Event Types	19		
Anne	x B (normative):	Probable Causes	20		
Anne	x C (informative):	Examples Use of notifyChangedAlarm	25		
Anne	x D (normative):	Mapping of Alarm Information Reference to its Solution Set Equivalents	25		
D.1	Matching-Criteria-A	Attributes			
	· ·				
Anne	x E (informative):	Change history	29		

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The present document is part 2 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Services and System Aspects, as identified below:

Part 1: "3G Fault Management Requirements";

Part 2: "Alarm Integration Reference Point: Information Service";

Part 3: "Alarm Integration Reference Point: CORBA Solution Set Version 1:1;

Part 4: "Alarm Integration Reference Point: CMIP Solution Set".

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part of a set of TSs which describe the requirements and information model necessary for the Telecommunication Management (TM) of 3G systems. The TM principles and TM architecture are specified in 3GPP TS 32.101 [12] and 3GPP TS 32.102 [13].

A 3G system is composed of a multitude of Network Elements (NE) of various types and, typically, different vendors inter-operate in a co-ordinated manner in order to satisfy the network users' communication requirements. The occurrence of failures in a NE may cause a deterioration of this NE's function and/or service quality and will, in severe cases, lead to the complete unavailability of the NE. In order to minimise the effects of such failures on the Quality Of Service (QOS) as perceived by the network users it is necessary to:

- detect failures in the network as soon as they occur and alert the operating personnel as fast as possible;
- isolate the failures (autonomously or through operator intervention), i.e. switch off faulty units and, if applicable, limit the effect of the failure as much as possible by reconfiguration of the faulty NE/adjacent NEs;
- if necessary, determine the cause of the failure using diagnosis and test routines; and,
- repair/eliminate failures in due time through the application of maintenance procedures.

This aspect of the management environment is termed "Fault Management" (FM). The purpose of FM is to detect failures as soon as they occur and to limit their effects on the network Quality of Service (QOS) as far as possible. The latter is achieved by bringing additional/redundant equipment into operation, reconfiguring existing equipment/NEs, or by repairing/eliminating the cause of the failure.

Fault Management (FM) encompasses all of the above functionalities except commissioning/decommissioning of NEs and potential operator triggered reconfiguration (these are a matter of Configuration Management (CM), cf. 3GPP TS 32.106 [1]).

FM also includes associated features in the Operations System (OS), such as the administration of a pending alarms list, the presentation of operational state information of physical and logical devices/resources/functions, and the provision and analysis of the alarm and state history of the network.

1 Scope

The present document (3GPP TS 32.111 Part-2) defines the Alarm Integration Reference Point (IRP) Information Service (IS), which addresses the alarm surveillance aspects of Fault Management (FM), applied to the N Interface between EM-NM and NE-NM.

The purpose of the Alarm IRP is to define an interface through which a "system" (typically a Network Element Manager or a Network Element) can communicate alarm information for its managed objects to one or several Manager Systems (typically Network Management Systems).

The Alarm IRP IS defines the semantics of alarms and the interactions visible across the reference point in a protocol neutral way. It defines the semantics of the operations and notifications visible in the IRP. It does not define the syntax or encoding of the operations, notifications and their parameters.

2 References

The following documents contain provisions, which through reference in this text constitute provisions of the present document. References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.

• For a non-sp	• For a non-specific reference, the latest version applies.			
[1]	ITU-T Recommendation Q821: "Stage 2 and Stage 3 description for the Q3 interface – Alarm surveillance".			
[2]	ITU-T Recommendation X.733 (02/92): "Information technology - Open Systems Interconnection - Systems management: Alarm Reporting Function".			
[3]	ITU-T Recommendation X.721: "Information Technology - Open Systems Interconnection - Structure Of Management Information: Definition Of Management Information".			
[4]	ITU-T Recommendation X.736: "Security Alarm Reporting Function".			
[5]	ITU-T Recommendation X.732: "Relationship Management Function".			
[6]	ITU-T Recommendation X.731: "State Management Function".			
[7]	ITU-T Recommendation X.730: "Object Management Function".			
[8]	ITU-T Recommendation X.720: "Management Information Model".			
[9]	ITU-T Recommendation M.3100 (07/95): "Generic network information model".			
[10]	GSM 12.11 version 6.2.0 Release 1997: "Fault management of the Base Station System (BSS)".			

[11] 3GPP TS 32.106-2: "Notification IRP: Information Service".

3GPP TS 32.101: "3G Telecom Management principles and high level requirements". [12]

3GPP TS 32.102: "3G Telecom Management architecture". [13]

3GPP TS 32.106-8: "Name Convention for Managed Objects". [14]

3GPP TS 32.111-1: "3G Fault Management". [15]

[16] 3GPP TS 32.111-3: "Alarm Integration Reference Point: CORBA Solution Set Version 1:1".

3GPP TS 32.111-4: "Alarm Integration Reference Point: CMIP Solution Set". [17]

3 Definitions and abbreviations

3.1 Definitions

In addition to the terms and definitions defined in 3GPP TS 32.111-1 [15], the following definitions apply to this document:

Acknowledge alarm: It is functionality provided to facilitate the management of alarms. The definition of the practical activity associated to the alarm acknowledgement is outside the scope of this IRP. The alarm acknowledgement process is summarised as follows:

IRPAgent, when first reports an alarm to IRPManager, will set the alarm's Acknowledgement State to unacknowledged. IRPManager, on behalf of the user (e.g. operator), can set the state to acknowledged by supplying (a) identifier of user acknowledging the alarm and (b) identifier of management system on which IRPManager runs. IRPAgent records the two pieces of information and the time of acknowledgement in Alarm Information of Alarm List. IRPManager representing a human operator can initiate acknowledge alarm request. IRPManager, representing an authorized management application, can initiate acknowledge alarm request as well.

Alarm List: It contains a list of Alarm Information whose severity level is not Cleared, or severity level is Cleared but is not yet Acknowledged. IRPAgent maintains the Alarm List.

Correlated Notifications: It contains a set of Notification identifiers. It may be present as a parameter of Notification. If present, the set of Notifications identified by Correlated Notifications and the subject Notification are related (correlated).

Event: It is an occurrence that is of significance to network operators, the NEs under surveillance and Network Management applications. Events do not have state.

IRPManager: defined in 3GPP TS 32.102 [13].

Notification: It refers to the transport of events from IRPAgent to IRPManager. In this IRP, notification is used to carry alarm information from IRPAgent to IRPManager.

Notification Identifier: It provides an identifier for the notification, which may be carried in the Correlated Notifications parameter (see below) of future notifications. Notification identifiers shall be chosen to be unique across all notifications of a particular managed object (representing the NE) throughout the time that correlation is significant. Notification carries this identifier in parameter called notificationId. The algorithm by which correlation is accomplished is outside the scope of this IRP.

IRPAgent: defined in 3GPP TS 32.102 [13].

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AIR Alarm Information Reference

CCITT The International Telegraph and Telephone Consultative Committee

CMIP Common Management Information Protocol

EM Element Manager

IRP Integration Reference Point

ITU-T International Telecommunication Union, Telecommunication Sector

M Mandatory
MO Managed Object
MOC Managed Object Class
MOI Managed Object Instance

NE Network Element NM Network Manager

NMC Network Management Centre

O Optional

OS Operations System

OSI Open System Interconnection

SS Solution Set

UML Unified Modeling Language

4 Basic aspects

4.1 Background

Integration Reference Points (IRPs) are the means within 3G Telecom Management (TM) for specifying interoperable points of information exchange between systems and applications.

3GPP TS 32.101 [12] and 32.102 [13] contain background and introductory information about IRP.

4.2 System Overview

The following figures identify system contexts of this IRP in terms of implementations called IRPAgent and IRPManager.

"IRPManager" depicts a process that interacts with IRPAgent for the purpose of receiving alarms via this IRP. Examples of IRPManagers can be Network Management Systems and Alarm viewing devices (such as a local craft terminal). IRPAgent implements and supports the Alarm IRP.

IRPAgent can be one Network Element (NE) (see figure 2) or it can be one Element Manager (EM) with one or more NEs (see figure 1). In the latter case, the interfaces (represented by a thick dotted line) between the EM and the NEs are not subject of this IRP. Whether EM and NE share the same hardware system is not relevant to this IRP either. By observing the interaction across the Alarm IRP, one cannot deduce if EM and NE are integrated in a single system or if they run in separate systems.

As indicated in figure 1 and figure 2, the subject IRP need to be complemented with the Notification IRP 3GPP TS 32.106-2 [11] (to allow IRPManager to subscribe to notifications issued by IRPAgent) and (optionally) product-specific resource models describing the MOs maintained by IRPAgent.

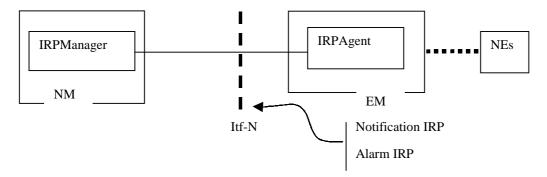


Figure 1: System Context A

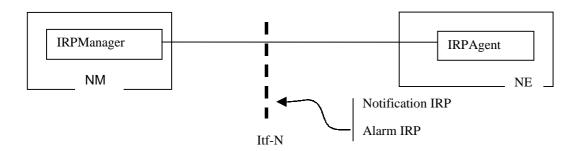


Figure 2: System Context B

5 IRP Information Service

5.1 Interfaces

Figure 3 illustrates the operations and notifications defined as interfaces implemented and used by IRPAgent and IRPManager. In this document the word "interface" is used to convey identical meaning as that defined within UML. Parameters and return status are not indicated.

Two interfaces are defined. One is called AlarmIRPOperations. This interface defines operations implemented by IRPAgent and used (or called by) IRPManager. The other is called AlarmIRPNotification. This interface defines notification implemented by IRPManager and used by IRPAgent.

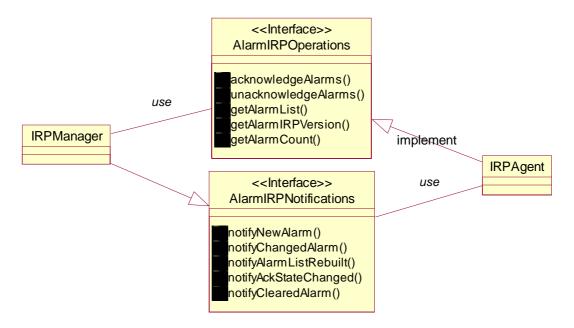


Figure 3: Operations and Notification

5.2 Operations of AlarmIRPOperations Interface

5.2.1 Operation acknowledgeAlarms (M)

IRPManager invokes this operation to acknowledge one or more alarms. IRPManager does not supply time of acknowledgement. If operation is successful, IRPAgent registers the time of operation in ackTime in Alarm Information in Alarm List. IRPAgent registers ackUserId and ackSystemId in Alarm Information. It sets ackState to "acknowledged" as well.

The ackTime, ackUserId, ackSystemId and ackState are collectively called Acknowledgement Information in the present document.

IRPAgent shall send notifications about Acknowledgement Information to all IRPManagers in subscriptions.

IRPAgent shall remove the Alarm Information whose perceivedSeverity is cleared and its Acknowledgement State is "acknowledged" from Alarm List.

Table1: Parameters for acknowledgeAlarms

Name	Qualifier	Purpose
alarm	Input, M	It carries one or more identifiers identifying Alarm Information in Alarm List. Each
InformationR		identifier identifies at most one Alarm Information in Alarm List.
eferenceList		
AckUserId	Input, M	It identities the user acknowledging the alarm. It can be used to identify the human operator such as "John Smith" or it can identify a group, such as "Team Six". It may contain no information implying that IRPManager does not wish this information be kept in Alarm Information in Alarm List.
ackSystemId	Input, O	It identifies the processing system on which the subject IRPManager runs. It may contain no information implying that IRPManager does not wish this information be kept in Alarm Information in Alarm List.
badAlarmInfo	Output, M	It identifies the Alarm Information that are not present in Alarm List or that they are
rmationRefer		present, but Acknowledgement Information has not changed, in contrast to
enceList		IRPManager's request. Element of this list is a pair of Alarm Information Reference and reason. This parameter shall contain at least one element in case the output
		status indicates partial failure. Otherwise, it shall contain no information.
status	Output, M	(a) Operation succeeded. Acknowledgement State of all Alarm Information (in Alarm List) identified by alarmInformationReferenceList are "acknowledged" or
		(b) Operation failed. No change is made to Acknowledgement Information in any Alarm Information in Alarm List. Example of one such failure is when parameter
		alarmInformationReferenceList contains no identifier or no valid identifier or
		(c) Operation partially failed. It indicates that at least one but not all Alarm Information (in Alarm List) identified by parameter alarmInformationReferenceList has changed its Acknowledgement
		Information according to IRPManager's request. In this case, the output parameter, called badAlarmInformationReferenceList, shall contain a subset of the identifiers carried in parameter alarmInformationReferenceList.

5.2.2 Operation unacknowledgeAlarms (O)

IRPManager invokes this operation to unacknowledge one or more alarms.

If operation is successful, IRPAgent shall remove all Acknowledgement Information in Alarm Information in Alarm List. It shall send notifications carrying Acknowledgement Information to all IRPManagers (including the subject IRPManager) in subscriptions. The Acknowledgement Information carried shall contain ackUserId, ackTime and ackState. In addition it may contain ackSystemId.

Table 2: Parameters for unacknowledgeAlarms

Name	Qualifier	Purpose		
alarm	Input, M	It carries one or more identifiers identifying Alarm Information in Alarm List.		
InformationRefe		Each identifier identifies at most one Alarm Information in Alarm List.		
renceList				
ackUserId	Input, M	It identities the user un-acknowledging the alarm.		
ackSystemId	Input, O	It identifies the processing system on which the subject IRPManager runs.		
badAlarmInforma	Output, M	It identifies the Alarm Information that are not present in Alarm List or that they		
tionReferenceLi		are present, but Acknowledgement Information has not changed, in contrast to		
st		IRPManager's request. Element of this list is a pair of Alarm Information		
		Reference and reason. This parameter shall contain at least one element in case		
		the output status indicates partial failure. Otherwise, it shall contain no		
		information.		
status	Output, M	(a) Operation succeeded. Acknowledgement State of the Alarm		
		Information (in Alarm List) identified by		
		alarmInformationReferenceList is "unacknowledged" or		
		(b) Operation failed. No change is made to Acknowledgement Information in		
		any Alarm Information in Alarm List. Failure examples are (a) when parameter		
		alarmInformationReferenceList contains no identifier (b) it contains		

no valid identifier (c) its ackUserId and ackSystemId do not correspond
to ones used in previous acknowledgeAlarms operation.
(c) Operation partially failed. It indicates that at least one but not all Alarm
Information (in Alarm List) identified by parameter
alarmInformationReferenceList has changed its Acknowledgement
Information according to IRPManager's request. In this case, the output
parameter, called badAlarmInformationReferenceList, shall contain a
subset of the identifiers carried in parameter
alarmInformationReferenceList.

5.2.3 Operation getAlarmList (M)

IRPManager requests IRPAgent to provide a list of alarms in Alarm List. These alarms can be provided as a sequence of single alarm notifications (asynchronous alarm alignment) or in a unique message containing all the alarms (synchronous alarm alignment).

Table 3: Parameters of getAlarmList

Name	Qualifier	Purpose			
alarmInform	Output, M	It carries Alarm Information in Alarm List. Implementation of this parameter is SS			
ationList		dependent.			
alarmAckSta	Input, O	It has five values indicating a) all alarms b) all active alarms c) all active and			
te		acknowledged alarms d) all active and un-acknowledged alarms e) all cleared and un-			
		acknowledged alarms.			
		If present, IRPAgent shall use it to apply on Alarm Information in Alarm List when			
		constructing its output parameter alarmInformationList. If input parameter			
		filter is also present, the filter constraint carried in filter shall also be applied as			
		well.			
		If absent, IRPAgent shall return all Alarm Information in Alarm List subject to filter			
		constraint expressed in filter parameter.			
filter	Input, O	It carries a filter constraint. IRPAgent shall return Alarm Information that satisfies this			
		filter constraint only. Filter constraint grammar is SS dependent.			
		If parameter is absent and the alarm alignment is asynchronous, IRPAgent shall apply			
		the current filter constraint used towards the IRPManager.			
status	Output, M	(a) Operation succeeded in that alarmInformationList contains the required			
		Alarm Information			
		or			
		(b) Operation failed because of specified or unspecified reason.			

5.2.4 Operation getAlarmCount (O)

IRPManager wishes to know the amount of Alarm Information kept in IRPAgent. IRPManager requests IRPAgent to provide the counts via this operation. Possible usage is for IRPManager to find out the number of Alarm Information in Alarm List before invoking getAlarmList operation.

Table 4: Parameters for getAlarmCount

Name	Qualifier	Purpose
filter	Input, O	It carries a filter constraint. IRPAgent shall return Alarm Information that
		satisfies this filter constraint only. Filter constraint grammar is SS dependent.
alarmAckState	Input, O	It has five values indicating a) all alarms b) all active alarms c) all active and
		acknowledged alarms d) all active and un-acknowledged alarms e) all cleared
		and un-acknowledged alarms.
		If present, IRPAgent shall apply it for counting. If input parameter filter
		is also present, IRPAgent shall apply the filter constraint for counting as well.
		If absent, IRPAgent shall count all Alarm Information, subject to filter
		constraint expressed in filter parameter.
criticalCount,	Output, M	They specify the number of Alarm Information whose perceived
majorCount,		severity are critical, major, minor, warning,
minorCount,		indeterminate and Cleared respectively.
warningCount,		,

indeterminateCoun			
t, clearedCount			
status	Output, M	(a) Operation succeeded in that the counts returned are valid	
		or	
		(b) Operation failed because of specified or unspecified reason.	

5.2.5 Operation getAlarmIRPVersion (M)

IRPManager wishes to determine the IRP versions supported by the IRPAgent. IRPAgent shall return with a list of (one or more) version numbers currently supported.

Table 5: Parameters of getAlarmIRPVersion

Name	Qualifier	Purpose	
versionNumbe	Output, M	It indicates one or more SS version numbers supported by the IRPAgent.	
rList			
status		(a) Operation succeeded in that IRPAgent is able to provide the list of version	
		numbers.	
		(b) Operation failed in that the IRPAgent is not able to provide the list of supported	
		version numbers.	

5.3 Notifications of AlarmIRPNotifications Interface

5.3.1 General

Operations that IRPManager uses to manage subscription to receive notifications are specified in Notification IRP (3GPP TS 32.106-2 [11]). 3GPP TS 32.106-2 [11] also specifies a generic notification notify. 3GPP TS 32.106-2 [11] defines a number of parameter-attributes that are commonly carried in notifications as well.

The commonly carried parameter-attributes are collectively called notificationHeader in the present document. The parameter-attribute names and their qualifiers are listed in table 6.

Table 6: Notification Header

Parameter-Attributes defined in 3GPP TS 32.106-2 [11]	Qualifier for use in this IS
managedObjectClass	M
managedObjectInstance	M
notificationId	M
eventTime	M
systemDN	С
eventType	M
extendedEventType	M

The following subclauses define specific notifications relevant for Alarm IRP by extending notify in 3GPP TS 32.106-2 [11].

5.3.2 Notification notifyNewAlarm (M)

IRPAgent notifies the subscribed IRPManager that a new alarm has been added into the 5.4.1 Alarm List and that the added alarm satisfies the current filter constraint of the subscription.

Table 7: Parameters of notifyNewAlarm

Name	Qualifier	Comment
notificationHeader	Input, M	See Table 6: Notification Header,
alarmInformationBody	Input, M	It contains information about the new alarm.
		See subclause 5.4.6 Alarm Information.

5.3.3 Notification notifyChangedAlarm (O)

IRPAgent notifies subscribed IRPManager regarding changes in e.g. perceived severity level in Alarm Information in Alarm List. The Alarm Information carried in the notification shall satisfy the current filter constraint of the subscription.

The information carried in this notification contains all attributes that are filterable and are present in the original notifyNewAlarm.

Table 8: Parameters of notifyChangedAlarm

Name	Qualifier	Purpose
notificationHeader	Input, M	See Table 6: Notification Header
alarmInformationBody	Input, M	It contains information of the changed Alarm
		Information. See subclause 5.4.6 Alarm Information.

5.3.4 Notification notifyAckStateChanged (M)

IRPAgent notifies the subscribed IRPManager regarding changes in alarm Acknowledgement State in Alarm Information in Alarm List. The Alarm Information carried in the notification shall satisfy the current filter constraint of the subscription.

If the alarm Acknowledgement State is changed to acknowledged, the Acknowledgement Information of the Alarm Information in Alarm List shall contain ackTime and ackState indicating "acknowledged". It may contain ackUserId and ackSystemId. The Alarm Information carried in the notification shall contain identical set of parameters as well.

If the Acknowledgement State is changed to "unacknowledged", the Acknowledgement Information of the Alarm Information in the Alarm List shall be absent or shall contain no information. The Alarm Information carried in the notification shall have the Acknowledgement Information. It shall contain ackUserId, ackTime and ackState indicating unacknowledged. It may contain ackSystemId.

The information carried in this notification contains all attributes that are filterable and are present in the original notifyNewAlarm.

Table 9: Parameters of notifyAckStateChanged

Name	Qualifier	Purpose
notificationHeader	Input, M	See Table 6: Notification Header
alarmInformationBody	Input, M	It contains the Alarm Information whose
		Acknowledgement State has changed.
		See subclause 5.4.6 Alarm Information.

Subclause 6.1 specifies the Alarm States and some of these states relate to Acknowledgement State.

5.3.5 Notification notifyClearedAlarm (M)

IRPAgent notifies the subscribed IRPManager of alarm clearing if the subject Alarm Information satisfies the optional filter constraint expressed in the subscribe operation.

IRPAgent shall remove the Alarm Information whose perceivedSeverity is cleared and its Acknowledgement State is "acknowledged" from Alarm List.

The information carried in this notification contains all attributes that are filterable and are present in the original notifyNewAlarm.

Name Qualifier **Purpose** notification Input, M See Table 6: Notification Header Header It contains Alarm Information whose perceivedSeverity is alarmInformatio Input, M nBody cleared. Additionally, the Alarm Information may contain correlatedNotification (defined in 3GPP TS 32.106-2 [11]) that contains references to other Alarm Information whose perceivedSeverity levels are cleared as well. Alternatively, it contains an Alarm Information containing a correlatedNotification (defined in 3GPP TS 32.106-2[11]) that contains references to other Alarm Information whose perceivedSeverity levels are cleared.

See subclause 5.4.6 Alarm Information

Table 10: Parameters for notifyClearedAlarm

5.3.6 Notification notifyAlarmListRebuilt (M)

IRPAgent maintains an Alarm List. If IRPAgent rebuilds this list for any reason, the IRPAgent shall notify IRPManager after the Alarm List is rebuilt. The conditions under which IRPAgent shall rebuild and the means by which IRPAgent shall rebuild its Alarm List are outside the scope of this IRP.

NameQualifierPurposenotification
HeaderInput, MSee Table 6: Notification HeaderreasonInput, MIt provides Alarm List rebuilt reason. One valid reason is "indeterminate".

Table 11: Parameters for notifyAlarmListRebuilt

5.4 Behaviour

5.4.1 Alarm List

IRPAgent maintains an Alarm List. It contains all currently active alarms (i.e. Alarm Information whose perceivedSeverity is not Cleared) and alarms that are Cleared but not yet acknowledged. When an alarm is Cleared and is acknowledged, its corresponding Alarm Information in this Alarm List is removed. The removed Alarm Information shall no longer be accessible via this IRP.

IRPAgent shall create a new Alarm Information in Alarm List whenever an alarm is emitted (internally within IRPAgent) that does not match with any alarm in the Alarm List. In this case, after the creation of the new Alarm Information, IRPAgent invokes notifyNewAlarm operation.

IRPAgent shall not create a new Alarm Information in Alarm List when an alarm is emitted (internally within IRPAgent) that matches with an alarm in the Alarm List. In this case, IRPAgent shall invoke either (1) notifyChangedAlarm or (2) notifyClearedAlarm followed by notifyNewAlarm operation.

See Annex D for specification of alarm matching criterion.

In the case of a matched Alarm Information and the change is the perceived Severity value, the following additional rule shall apply.

IRPAgent shall remove all information in Acknowledgement Information of the subject Alarm Information. The Acknowledgement State shall be "unacknowledged". IRPAgent updates the eventTime and perceivedSeverity of the matched Alarm Information. IRPAgent invokes notifyChangedAlarm notification to all subscribed IRPManagers.

5.4.2 Network Resource Name

An alarm provides the alarm information of a specific network resource. Alarms use one parameter-attribute, Managed Object Instance (MOI), to identify the network resource. The semantics of MOI is defined in ITU-T Recommendation

X.720 [8]. The MOI shall be unique within a certain context, such as a transmission network or a switching network. This IRP does not specify the context.

The encoding of MOI parameter-attribute value is SS dependent and is specified in ITU-T Recommendation X.720 [8] and 3GPP TS 32.106-8 [14].

5.4.3 Alarm Information Identification

Since IRPManager can acknowledge and unacknowledge Alarm Informations currently kept in Alarm List of IRPAgent, there is a need to establish a convention so IRPManager and IRPAgent can unambiguously identify Alarm Informations in Alarm List.

Since IRPAgent can generate notifications about the state change (e.g. perceivedSeverity level changes or Acknowledgement State changes) of an Alarm Information in Alarm List, there is a need to establish a convention so IRPManager and IRPAgent can unambiguously identify the Alarm Information whose state has changed.

The convention, to identify Alarm Information, is the subject of this subclause.

5.4.3.1 Use of alarmInformationReference

An alarmInformationReference (AIR) unambiguously identifies one Alarm Information in IRPAgent's Alarm List. One IRPAgent has one Alarm List. The IRPAgent assigns AIR for the Alarm Informations in its own Alarm List.

IRPAgent includes AIR in all notifications it emits.

IRPManager shall include AIR(s) in acknowledgeAlarms and unacknowledgeAlarms.

The mapping of AIR into its equivalents in respectively SS are done in Annex D.

5.4.4 Alarm loss detection and recovery

This IRP does not specify methods for IRPManager to detect alarm loss. The use of alarmId (see subclause 4.4.3.1) to detect alarm loss is an arrangement made between IRPAgent and IRPManager. This arrangement is outside the scope of this IRP. For example, IRPAgent may use integer sequence (e.g. 1, 2, 3, 4, 5...) as alarmIds for its alarms. Based on this knowledge, IRPManager can detect alarm loss. This kind of arrangement may not be possible for all SS.

This IRP does not specify if IRPAgent can determine if IRPManager has received alarms correctly. Not all SSs provide such capability.

This IRP does not specify methods for IRPManager and IRPAgent to recover alarm loss. The only mechanism recommended to deal with alarm loss is the use of getAlarmList operation. This IRP does not specify conditions under which IRPManager should invoke this operation.

5.4.5 Alarm List loss

IRPAgent can lose confidence in the integrity of its Alarm List. Under this condition, IRPAgent shall invoke notifyAlarmListRebuilt notification after it has successfully rebuilt the Alarm List.

5.4.6 Alarm Information

This subclause specifies the information contained in Alarm Information.

Alarm Information(s) are stored in Alarm List. They are carried in notifyNewAlarm, notifyChangedAlarm, notifyAckStateChanged, notifyClearedAlarm. They are also carried in the response to getAlarmList operation.

When it is carried in notifyChangedAlarm notification, it indicates that one or more parameter-attribute values of the Alarm Information have changed since the most recent notifyNewAlarm or notifyChangedAlarm notification on the subject alarm. The following table identifies, using the symbol [Y] under "Qualifier" column, those

parameters-attributes whose value changes would trigger IRPAgent to invoke notifyChangedAlarm or notifyAckStateChanged notification.

When the alarm is carried in notifyChangedAlarm or notifyAckStateChanged notification, the following rule shall apply:

• At least the value of one parameter-attribute marked with [Y] shall be different than that carried in the most recent notifyNewAlarm or notifyChangedAlarm of the subject alarm.

Alarm Information, carried in notifications, always contain the AIR. In notifyNewAlarm, the AIR is used to identify the active Alarm Information carried in the notification. In notifyChangedAlarm and notifyClearedAlarm, the AIR is used to identify the active Alarm Information whose state has changed. In notifyAckStateChangedAlarm, the AIR is used to identify the Alarm Information (active or inactive) in the Alarm List whose acknowledgement state has changed.

Alarm Information contains the notificationHeader and alarmInformationBody. Table 6 defines parameter-attributes of notificationHeader. Table 13 defines the parameter-attributes of alarmInformationBody.

Letter M and O stands for Mandatory and Optional respectively. Letter Y identifies the parameter-attribute whose value changes would trigger IRPAgent to invoke notifyChangedAlarm or notifyAckStateChanged.

Table 13: Parameter-Attributes of alarmInformationBody

Name	Qualifier	Comment
probable	M	It qualifies alarm and provides further information than eventType. See Annex B
Cause		for a complete listing. This list is extensive. It is recommended that IRPAgent
		should use the list as is and not to extend it. It is noted that IRPAgent can privately
		(outside the scope of this IRP) define values for specificProblem that provides
		semantics not conveyed by probableCause. A special probable cause value (SS
		specific, e.g. –1) indicates that this alternative is valid. This parameter-attribute
		value shall be single-value and of simple type such as integer or string. See
		definition in ITU-T Recommendation X.733 [2] subclause 8.1.2.1.
perceived	M, Y	It indicates the relative level of urgency for operator attention Legal values are
Severity		Critical, Major, Minor, Warning, Indeterminate and
		Cleared, according to ITU-T Recommendation X.733 [2]. This IRP does not
		recommend the use of indeterminate.
specific	O	It provides further qualification on the alarm than probableCause. This
Problem		parameter-attribute value shall be single-value and of simple type such as integer or
		string. See definition in ITU-T Recommendation X.733 [2] subclause 8.1.2.2.
correlated	O	It identifies a set of notifications to which this notification is considered to be
Notifications		correlated. See definition in ITU-T Recommendation X.733 [2] subclause 8.1.2.9.
backedUpStatu	O, Y	It indicates if an object has a back up. See definition in ITU-T Recommendation
s		X.733 [2] subclause 8.1.2.4.
backUpObject	O, Y	It carries the DN of the back up object. It shall be absent if backUpStatus is absent
		or its value indicates false. See definition in ITU-T Recommendation X.733 [2]
		subclause 8.1.2.5.
trend	O, Y	It indicates if some observed condition is getting better, worse, or not changing.
Indication		Legal values are "less severe", "no change" and "more severe". See definition in
		ITU-T Recommendation X.733 [2] subclause 8.1.2.6.
threshold	O, Y	It indicates if the threshold crossed was in the up or down direction. See definition
Info		in ITU-T Recommendation X.733 [2] subclause 8.1.2.7.
stateChange	O, Y	It indicates MO attribute value changes. See definition in ITU-T Recommendation
Definition		X.733 [2] subclause 8.1.2.10.
monitored	O, Y	It indicates MO attributes whose value changes are being monitored. See definition
Attributes		in ITU-T Recommendation X.733 [2] subclause 8.1.2.11.
proposed	O, Y	It indicates proposed repair actions. See definition in ITU-T Recommendation
Repair		X.733 [2] subclause 8.1.2.12.
Actions		

Name	Qualifier	Comment			
additional	O,	It provides the identity of the NE (e.g. RNC, Node-B) from which the alarm has			
Text		been originated. It corresponds to the "user label" attribute of the MOC representing			
		the NE in the Basic CM IRP Information Model.			
		It can contain further information on the alarm.			
additional	(see next	It carries additional information related to the subject Alarm Information. It may			
Information	column)	contain the following parameter-attributes.			
		AlarmId [Y]: It identifies at most one Alarm Information in the Alarm List. See			
		subclause 5.4.3.1. Use of this parameter-attribute is SS dependent.			
		ackTime [Y]: It identifies the time of last operation acknowledgeAlarms or			
		unacknowledgeAlarms. It is mandatory for notifyAckStateChanged, it			
		is optional for other notifications.			
		ackUserId [Y]: It identifies the last user who has change the			
		Acknowledgement State via operation acknowledgeAlarms or			
		unacknowledgeAlarms. It is mandatory for notifyAckStateChanged, it			
		is optional for other notifications.			
		ackSystemId [Y]: It identifies the system in which IRPManager, that invokes the			
		acknowledgeAlarms or unacknowledgeAlarms operation, runs. It is			
		optional for all notifications.			
		ackState [Y]: It identifies the Acknowledgement State of the alarm. Its			
		valid values are "acknowledged" and "unacknowledged". It is mandatory for			
		notifyAckStateChanged, it is optional for other notifications.			

6 Dynamic Model

6.1 Alarm states

Alarms have states. Figure 4 illustrates the alarm states.

The triggers "MO emits..." are internal within IRPAgent and are not observable via the Alarm IRP. Other triggers, e.g. "acknowledgeAlarms", are observable via the Alarm IRP.

The solid circle icon represents the Start State. The double circle icon represents the End State. In this state, the alarm is cleared and acknowledged. The alarm shall not be accessible via the IRP and is removed from the Alarm Liet.

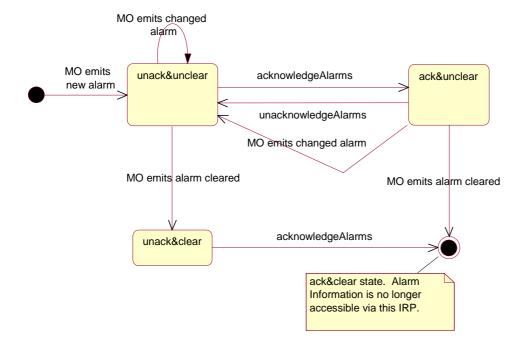


Figure 4: Alarm States

Annex A (normative): Event Types and Extended Event Types

This appendix lists and explains event types and extended event types used by Alarm IRP.

Event type is carried by a parameter called eventType defined in 3GPP TS 32.106-2 [11].

Extended event types is acrried by a parameter called extendedEventType 3GPP TS 32.106-2 [11].

Encoding of eventType and extendedEventType is SS dependent. For example, the value of eventType can be encoded as Object Identifier in CMIP SS and as numeric string in CORBA SS.

Table 14 and table 15 may be extended in the future.

TableA.1: Event Types

Event Types	Explanation
Communications Alarm	An alarm of this type is associated with the procedure and/or process required conveying information from
	one point to another (ITU-T Recommendation X.733 [2]).
Processing Error Alarm	An alarm of this type is associated with a software or processing fault (ITU-T Recommendation X.733 [2]).
Environmental Alarm	An alarm of this type is associated with a condition related to an enclosure in which the equipment resides
	(ITU-T Recommendation X.733 [2]).
Quality of Service Alarm	An alarm of this type is associated with degradation in the quality of a service (ITU-T Recommendation
	X.733 [2]).
Equipment Alarm	An alarm of this type is associated with an equipment fault (ITU-T Recommendation X.733 [2]).

Table A.2: Extended Event Types

Extended Event Types	Explanation		
New Alarm	A notification of this type indicates that a new alarm has occurred.		
Changed Alarm	A notification of this type indicates that one or more attributes, excepting those related to		
	acknowledgement state, of an active alarm have changed.		
Acknowledgement State Changed	A notification of this type indicates that the acnowledgement state of an alarm has changed.		
Cleared Alarm	A notification of this type indicates that an alarm has been cleared and is no longer active.		
Alarm List Rebuilt	A notification of this type indicates that the Alarm List has been succesfully rebuilt.		

Annex B (normative): Probable Causes

This appendix lists probable causes and their corresponding event types.

Sources of these probable causes are ITU-T Recommendation M.3100 [9], ITU-T Recommendation X.721 [3], ITU-T Recommendation X.733 [2], ITU-T Recommendation X.736 [4] and GSM 12.11 [10].

The list may be extended in the future, e.g. with UMTS-specific probable causes.

Table B.1: Probable Causes from ITU-T Recommendation M.3100 [9]

M.3100 Probable cause	Event type	
Indeterminate	Unknown	
Alarm Indication Signal (AIS)	Communications	
Call Setup Failure	Communications	
Degraded Signal	Communications	
Far End Receiver Failure (FERF)	Communications	
Framing Error	Communications	
Loss Of Frame (LOF)	Communications	
Loss Of Pointer (LOP)	 	
Loss Of Signal (LOS)	Communications Communications	
C ,	Communications	
Payload Type Mismatch Transmission Error		
	Communications	
Remote Alarm Interface	Communications	
Excessive Bit Error Rate (EBER)	Communications	
Path Trace Mismatch	Communications	
Unavailable	Communications	
Signal Label Mismatch	Communications	
Loss Of Multi Frame	Communications	
Back Plane Failure	Equipment	
Data Set Problem	Equipment	
Equipment Identifier Duplication	Equipment	
External IF Device Problem	Equipment	
Line Card Problem	Equipment	
Multiplexer Problem	Equipment	
NE Identifier Duplication	Equipment	
Power Problem	Equipment	
Processor Problem	Equipment	
Protection Path Failure	Equipment	
Receiver Failure	Equipment	
Replaceable Unit Missing	Equipment	
Replaceable Unit Type Mismatch	Equipment	
Synchronisation Source Mismatch	Equipment	
Terminal Problem	Equipment	
Timing Problem	Equipment	
Transmitter Failure	Equipment	
Trunk Card Problem	Equipment	
Replaceable Unit Problem	Equipment	
Air Compressor Failure	Environmental	
Air Conditioning Failure	Environmental	
Air Dryer Failure	Environmental	
Battery Discharging	Environmental	
Battery Failure	Environmental	
Commercial Power Failure	Environmental	
Cooling Fan Failure	Environmental	
Engine Failure	Environmental	
Fire Detector Failure	Environmental	
Fuse Failure	Environmental	
Generator Failure	Environmental Environmental	
Low Battery Threshold	Environmental	
Pump Failure	Environmental	
ı ump ı anure	Environmental	

M.3100 Probable cause	Event type
Rectifier Failure	Environmental
Rectifier High Voltage	Environmental
Rectifier Low F Voltage	Environmental
Ventilation System Failure	Environmental
Enclosure Door Open	Environmental
Explosive Gas	Environmental
Fire	Environmental
Flood	Environmental
High Humidity	Environmental
High Temperature	Environmental
High Wind	Environmental
Ice Build Up	Environmental
Intrusion Detection	Environmental
Low Fuel	Environmental
Low Humidity	Environmental
Low Cable Pressure	Environmental
Low Temperature	Environmental
Low Water	Environmental
Smoke	Environmental
Toxic Gas	Environmental
Storage Capacity Problem	Processing error
Memory Mismatch	Processing error
Corrupt Data	Processing error
Out Of CPU Cycles	Processing error
Software Environment Problem	Processing error
Software Download Failure	Processing error

Table B.2: Probable Causes from ITU-T Recommendation X.721 [3] / ITU-T Recommendation X.733 [2]

X.733 Probable Cause	Event type		
Adapter Error	Equipment		
Application Subsystem Failure	Processing error		
Bandwidth Reduction	Quality of service		
Call Establishment Error	Communications		
Communication Protocol Error	Communications		
Communication Subsystem Failure	Communications		
Configuration or Customizing Error	Processing error		
Congestion	Quality of service		
Corrupt Data	Processing error		
CPU Cycles Limit Exceeded	Processing error		
Data Set or Modem Error	Equipment		
Degraded Signal	Communications		
DTE-DCE Interface Error	Communications		
Enclosure Door Open	Environmental		
Equipment Malfunction	Equipment		
Excessive Vibration	Environmental		
File Error	Processing error		
Fire Detected	Environmental		
Flood Detected	Environmental		
Framing Error	Communications		
Heating or Ventilation or Cooling System Problem	Environmental		
Humidity Unacceptable	Environmental		
Input/Output Device Error	Equipment		
Input Device Error	Equipment		
LAN Error	Communications		
Leak Detection	Environmental		
Local Node Transmission Error	Communications		
Loss of Frame	Communications		
Loss of Signal	Communications		
Material Supply Exhausted	Environmental		
Multiplexer Problem	Equipment		
Out of Memory Processing error			
Output Device Error	Equipment		
Performance Degraded	Quality of service		

X.733 Probable Cause	Event type
Power Problem	Equipment
Pressure Unacceptable	Environmental
Processor Problem	Equipment
Pump Failure	Environmental
Queue Size Exceeded	Quality of service
Receive Failure	Equipment
Receiver Failure	Equipment
Remote Node Transmission Error	Communications
Resource at or Nearing Capacity	Quality of service
Response Time Excessive	Quality of service
Re-transmission Rate Excessive	Quality of service
Software Error	Processing error
Software Program Abnormally Terminated	Processing error
Software Program Error	Processing error
Storage Capacity Problem	Processing error
Temperature Unacceptable	Environmental
Threshold Crossed	Quality of service
Timing Problem	Equipment
Toxic Leak Detected	Environmental
Transmit Failure	Equipment
Transmitter Failure	Equipment
Underlying Resource Unavailable	Processing error
Version Mismatch	Processing error

Table B.3: Probable Causes from GSM 12.11 [10]

GSM 12.11 Probable Cause	Event Type	
A-bis to BTS interface failure	Equipment	
A-bis to TRX interface failure	Equipment	
Antenna problem	Equipment	
Battery breakdown	Equipment	
Battery charging fault	Equipment	
Clock synchronisation problem	Equipment	
Combiner problem	Equipment	
Disk problem	Equipment	
Equipment failure	Equipment	
Excessive receiver temperature	Equipment	
Excessive transmitter output power	Equipment	
Excessive transmitter temperature	Equipment	
Frequency hopping degraded	Equipment	
Frequency hopping failure	Equipment	
Frequency redefinition failed	Equipment	
Line interface failure	Equipment	
Link failure	Equipment	
Loss of synchronisation	Equipment	
Lost redundancy	Equipment	
Mains breakdown with battery back-up	Equipment	
Mains breakdown without battery back-up	Equipment	
Power supply failure	Equipment	
Receiver antenna fault	Equipment	
Receiver Failure	Equipment	
Receiver multicoupler failure	Equipment	
Reduced transmitter output power	Equipment	
Signal quality evaluation fault	Equipment	
Timeslot hardware failure	Equipment	
Transceiver problem	Equipment	
ranscoder problem Equipment		
Transcoder or rate adapter problem	Equipment	
Transmitter antenna failure	Equipment	
Transmitter antenna not adjusted	Equipment	
Transmitter failure	Equipment	
Transmitter low voltage or current	Equipment	
Transmitter off frequency	Equipment	

GSM 12.11 Probable Cause	Event Type	
Database inconsistency	Processing error	
File system call unsuccessful	Processing error	
Input parameter out of range	Processing error	
Invalid parameter	Processing error	
Invalid pointer	Processing error	
Message not expected	Processing error	
Message not initialised	Processing error	
Message out of sequence	Processing error	
System call unsuccessful	Processing error	
Timeout expired	Processing error	
Variable out of range	Processing error	
Watch dog timer expired	Processing error	
Cooling system failure	Environmental	
External equipment failure	Environmental	
External power supply failure	Environmental	
External transmission device failure	Environmental	
Fan failure	Environmental	
High humidity	Environmental	
High temperature	Environmental	
Intrusion detected	Environmental	
Low humidity	Environmental	
Low temperature	Environmental	
Smoke detected	Environmental	
Excessive Error Rate	Quality of service	
Reduced alarm reporting	Quality of service	
Reduced event reporting	Quality of service	
Reduced logging capability	Quality of service	
System resources overload	Quality of service	
Broadcast channel failure	Communications	
Connection establishment error	Communications	
Invalid message received	Communications	
Invalid MSU received	Communications	
LAPD link protocol failure	Communications	
Local alarm indication	Communications	
Remote alarm indication	Communications	
Routing failure	Communications	
SS7 protocol failure	Communications	
Transmission error	Communications	

Table 20 identifies probable causes that are defined by more than one standard. This is for information only.

Table B.4: Duplicated Probable Causes

Duplicated Probable Cause	GSM 12.11	X.721 X.733	M.3100	Event Type
Call Establishment Failure (X.721/X.733)		X	X	Communications
Call Setup Failure (M.3100)				
Degraded Signal		X	X	Communications
Framing Error		X	X	Communications
Loss of Frame		X	X	Communications
Loss of Signal		X	X	Communications
Equipment Failure (GSM 12.11)	X	X		Equipment
Equipment Malfunction (X.721/X.733)				
Multiplexer Problem		X	X	Equipment
Power Problem		X	X	Equipment
Processor Problem		X	X	Equipment
Receiver Failure	X	X	X	Equipment
Timing Problem		X	X	Equipment
Transmitter Failure	X	X	X	Equipment
Enclosure Door Open		X	X	Environmental
Fan Failure (GSM 12.11)	X		X	Environmental
Cooling Fan Failure (M.3100)				
Fire Detected (X.721/X.733)		X	X	Environmental
Fire (M.3100)				
Flood Detected (X.721/X.733)		X	X	Environmental
Flood (M.3100)				
High Humidity	X		X	Environmental
High Temperature	X		X	Environmental
Intrusion Detected (GSM 12.11)	X		X	Environmental
Intrusion Detection (X.736/M.3100)				
Low Humidity	X		X	Environmental
Low Temperature	X		X	Environmental
Pump Failure		X	X	Environmental
Smoke Detected (GSM 12.11)	X		X	Environmental
Smoke (M.3100)				
Storage Capacity Problem		X	X	Processing Error
Excessive Bit Error Rate (M.3100)	X		X	
Excessive Error Rate (GSM12.11)				
Corrupt Data		X	X	Processing Error

Annex C (informative): Examples Use of notifyChangedAlarm

This appendix describes a number of valid and invalid interactions governing the case when IRPAgent is reporting a specific fault of a particular network resource whose alarm severity level changes from, say critical to minor and then to Cleared.

In the examples, ni is notificationId, moc is managedObjectClass, moi is managedObjectInstance, et is eventType, pc is probableCause, sp is specificProblem, ps is perceivedSeverity and ai is AlarmId.

Valid sequence 1 to support the hypothetical case:

```
(1) NotifyNewAlarm
```

```
(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)
```

(2) NotifyChangedAlarm

```
(ni=2, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

(3) NotifyClearedAlarm

```
(ni=3, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

Valid sequence 2 to support the hypothetical case:

(1) NotifyNewAlarm

```
(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)
```

(2) NotifyClearedAlarm

```
(ni=2, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)
```

(3) NotifyNewAlarm

```
(ni=3, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

(4) NotifyClearedAlarm

```
(ni=4, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

Invalid sequence 1 to support the hypothetical case:

(1) NotifyNewAlarm

```
(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)
```

(2) NotifyChangedAlarm

```
(ni=2, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

(3) NotifyClearedAlarm

```
(ni=3, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

Interaction (2) is illegal since it uses a different ai for the same alarm. It should use ai=X as in interaction (1).

Invalid sequence 2 to support the hypothetical case:

(1) NotifyNewAlarm

```
(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)
```

(2) NotifyNewAlarm

```
(ni=2, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)
```

Interaction (2) is illegal since it invokes notifyNewAlarm using same ai value. It should use notifyChangedAlarm with the same ai value.

Annex D (normative): Mapping of Alarm Information Reference to its Solution Set Equivalents

This appendix specifies the mapping of AIR into its SS equivalents. It also specifies the conditions under which these attributes shall be used in the mapping process.

Currently, there are two methods to map AIR into SS equivalents. One method is the use of managedObjectInstance and notificationId whose semantics are defined by ITU-T. The other method is the use of alarmId whose semantics is identical to AIR.

Table 21 specifies how identification of Alarm Information is achieved, with and without the use of alarmId.

Table D.1: AIR Mapping Process

	AlarmId is used	AlarmId is not used
Acknowledg	IRPManager places value of alarmId of	IRPManager places values of
eAlarm,	the received notifyNewAlarm or	managedObjectInstance and
unacknowle	related notifyChangedAlarm or	notificationId of the received
dgeAlarm	related notifyClearedAlarm (they	notifyNewAlarm notification in AIRs of
	shall have the same value) in AIRs of	alarmInformationReferenceList of this
	alarmInformationReferenceList	operation.
	of this operation.	TDD16
	IRPManager can place multiple values.	IRPManager can place multiple pairs of values.
notifyNewA larm	IRPAgent assignes a new alarmId for this	IRPAgent assignes a new notificationId to this
Tariii	notification.	notification.
	AIR is mapped to this alarmId.	AIR is mapped to the managedObjectInstance
	That is mapped to this dead in a	and the notificationId of this notification.
	IRPAgent creates a new Alarm Information.	
	This new Alarm Information is classified as	IRPAgent creates a new Alarm Information. This new
	active.	Alarm Information is classified as active.
notifyChan	IRPAgent uses the same alarmId of the	IRPAgent assignes a new notificationId to this
gedAlarm	related notifyNewAlarm for the	notification.
	alarmId of this notification.	
		AIR is mapped to the matching-criteria-attributes
	AIR is mapped to this alarmId.	(defined below) of this notification. The value of this
		set of attributes shall be identical to that of one active
	IRPAgent shall not create a new Alarm	Alarm Information in the Alarm List.
	Information.	IRPAgent shall not create a new Alarm Information.
notifyClea	IRPAgent uses the same alarmId of the	IRPAgent assignes a new notificationId to this
redAlarm	related notifyNewAlarm for the	notification.
	alarmId of this notification.	
		IRPAgent shall not create a new Alarm Information
	AIR is mapped to this alarmId.	
		AIR is mapped to the matching-criteria-attributes of
	The IRPAgent shall not create a new Alarm	this notification. The value of this set of attributes
	Information.	shall be identical to that of one active Alarm
		Information in the Alarm List. Additionally (in the same notification), IRPAgent may use
	IRPAgent cannot indicate alarm clearing of more than one Alarm Information.	correlatedNotifications to carry AIRs of
	more man one Ararm Information.	other active Alarm Informations whose
		perceivedSeverity is now set to Cleared as well.
		(in accordance to ITU-T Recommendation X.733 [2])
		or

		IRPAgent shall use correlatedNotifications exclusively to carry AIRs of active Alarm Informations whose perceivedSeverity is now set to Cleared. (in accordance with ITU-T Recommendation Q821 [1]).
notifyAckS tateChange d	IRPAgent uses the same alarmId of the related notifyNewAlarm for the alarmId of this notification.	IRPAgent assignes a new notificationId to this notification. IRPAgent shall not create a new Alarm Information.
	AIR is mapped to this alarmId. The IRPAgent shall not create a new Alarm Information. IRPAgent cannot indicate Acknowledgement State change of more than one Alarm Information.	AIR is mapped to the matching-criteria-attributes of this notification. The value of this set of attributes shall be identical to that of the active Alarm Information in the Alarm List. Additionally (in the same notification), IRPAgent may use correlatedNotifications to carry AIRs of other Alarm Informations whose Acknowledgement State has changed as well. (in accordance to ITU-T Recommendation X.733 [2]) or
		IRPAgent shall use correlatedNotifications exclusively to carry AIRs of Alarm Informations whose Acknowledgement State has changed. (in accordance to ITU-T Recommendation Q821 [1]).

D.1 Matching-Criteria-Attributes

This subclause identifies attributes that are defined in ITU-T Recommendation X.733 [2] as the matching-criteria-attributes. The attributes are:

- managedObjectInstance
- eventType
- probableCause
- specificProblem, if present

Annex E (informative): Change history

Change history					
TSG SA#	Version	CR	Tdoc SA	New Version	Subject/Comment
S_07	2.0.0	-	SP-000012	3.0.0	Approved at TSG SA #7 and placed under Change Control
Mar 2000	3.0.0			3.0.1	Cosmetic
S_08	3.0.1	004	SP-000250	3.1.0	Split of TS - Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)
Sep 2000	3.1.0			3.1.1	Cosmetic
S_09	3.1.1	001	SP-000438	3.2.0	Correction of qualifier for SystemDN
S_09	3.1.1	002	SP-000438	3.2.0	Addition of a missing constraint in acknowledgeAlarm operation

History

Document history					
V3.1.0	July 2000	Publication			
V3.2.0	September 2000	Publication			