ETS| TS 129 198-1 V5.5.0 (2004-04)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);

Part 1: Overview

(B3GPP TS 29.198-01 version 5.5.0 Release 5)

G

—

D

3GPP TS 29.198-01 version 5.5.0 Release 5 1 ETSITS 129 198-1 V5.5.0 (2004-04)

Reference
RTS/TSGN-0529198-01v550

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.org

3GPP TS 29.198-01 version 5.5.0 Release 5 2 ETSITS 129 198-1 V5.5.0 (2004-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETS! identities can be found under
http://webapp.etsi.org/key/queryform.asp .

ETSI

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

3GPP TS 29.198-01 version 5.5.0 Release 5 3 ETSITS 129 198-1 V5.5.0 (2004-04)

Contents

Intellectual Property RIGNES.........oo et 2
0 Yo (o SRS 2
0= 11 o OSSPSR 6
gLl [N o1 o] o [OOSR 6
1 o0 o< PSPPSR 9
2 REFEIBINCES ...ttt sttt b e e et et et e e e Rt e bt e bt e b e se e be st e se e st e benbesbeneenbeseneas 9
3 Definitions and @DDreVIELIONS...........ooueieieieieses ettt na e 9
31 D= T T (0] USSR 9
3.2 F Y o] 1= V7= 0] P 10
4 OPEN SEIVICE ACCESS APIS.....eieeee ettt bbbttt se bt eb e e bt e b en e b nnenn e 11
5 Structure of the OSA API (29.198) and Mapping (29.998) dOCUMENLS..........ccceeveevereerieseeeecieeee e 12
6 1YL= oo (o] o 1Y A SRS 14
6.1 TOOIS AN LANGUAGES. ... vttt sttt sttt sttt eb et sb e e st ebese st b e sb et eb e se e s e ebese et ek e s e e e eb e s b et ebesb e e et e sbe e ebesrennenens 14
6.2 PACKAGING ...ttt b bt h e h e bRt R h e R R £ R R R R R AR R Rt b et een e e ns 14
6.3 L0 o =PSRRI 14
6.4 INBIMING SCREITIEtttk ettt h ettt b et b et b e e e eb e e e eh e b ea s eb e b e e e bt eb e s e bbbt b e s e bt et e e ebe e e e ens 14
6.5 State Transition Diagram text and teXt SYMDOIS.........ccoiiriie e 15
6.6 Exception handling and Passing FESUITLS.c.eiueieeriee et s esee e e ee e sreesre et st e sreesre e teesseesteeseeneesneesnes 15
6.7 REFEIEINCES ...ttt bttt et bbbt h e e ae e st e e et se e e b e s Rt eh e e ne e e e b seeebesaeene e e ennenes 15
6.8 S o Y=o o= o) S 15
6.9 = D= 15
7. INErOUCTION T0 OSA APIS ...ttt b e bbb e st e et et seebenteabe st e neeneens 16
7.1 I IEEITACE TYPES. ..t ttiueetert ettt ettt ettt et h et b bt b et b et eb s e £ e e b b e e eb e b e e e b e bt e e n e e bt b e ne e bt b e e eb e e e ens 16
7.2 SEIVICE FACLOMY ...ttt ettt b et h b e h e b e h e E e bt E et e bt e b et e bt b e h e e b s e e neebesb et eb e s b et eb e b e e e 16
7.3 (LS S 0 =SS o RSN 16
74 INEEITACES BNO SESTIONS.......ceitiiteite ettt b bbbt et e st e s b e s b sh e e bt s aeeae e e e e e besreebesaeene e e enrenes 16
75 CallDBCK INEEITACES.....ceeieeceeeeee et s e bbbt h et se e b s ae b e e e e e s besbeeb e s neenne e ennas 16
7.6 S L o T o 7= o SRS 17
7.7 Synchronous versus ASynChronOUS MELNOUS...........coiiiiieii et nnees 17
7.8 OUL PAIGIMELENS ...ttt ettt ettt s et e sa e et eae e e h e e e Re e R e e Rt e s st e R e e s R e e sRe e eEe e she e nRe e st en s e enneennennnenrnennees 17
7.9 (o= o (0] o I 1= = o) 17
7.10 COMIMON EXCEPLIONS ...ttt sttt sttt sttt et b e et b e st b e s b e b s e bt b s e e bt b et e bt e b e e e ae b e ne et ebe s b et ebenn e e 18
7.11 USE OF INULL ..ttt ettt ettt et e s te e s he e s te e sbeeaseeaeeeaeaebe e beenbeesbeentesnsesnsesaeesaeesaeanreentenns 18
7.12 NOLfiCALETON HANAITNGttt bbb bbb et b bbbt 18
Annex A (normative): L@ 1Y N 1 | SRRSO 20
A.l TOOIS AN LANGUAGES. ... ettt sttt sttt sttt st et eb bt b e se e e eb e sb e e eb e sb e e eb e s b e e eb e e b e e ebeeb et eb e sb e e ebesbe e ebesrennenens 20
E N =011 7= o PSPPSR 20
A3 ODJECE REFEIENCES. ... o e ieeeie ettt ettt e st bt e testeeseenbesaeeneesseeneeseesseenseseeeneensesseensenneens 20
YNV F=To o T a0 o)l DT = 1Y - TS 20
A4l BaSIC DBIALYPES. ... ecveteneetert ettt ettt ettt a bt s bt e bbb a R R R R R R AR R e R R Rt bR ae bbb b 20
AA4d2 (00 = 10 | F SRR 20
A.43 L0011t 0] 1SR 20
Ad4 SEOUBICES. ...ttt ettt e e r et e e e e Rt s et e R e R e e bt e s e e s e Rt AR e AR e AR e SRt e e e e e e R e AR e R e Re R e e e n e E e Rt r et an e enns 21
A.45 L 00 = o] SRS 21
A.4.6 1011101013 PO U SO PP PRUSROTRP 21
y T U = X o N[SRS 22
E G (o= oo = P 22

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 4 ETSITS 129 198-1 V5.5.0 (2004-04)

A.7 Naming space across CORBA MOAUIES...........cceeiiiiieieeii et stee e e et te et ss e aesre e e besreenresne s 22
Annex B (informative): W3BC WSDL ettt 23
B.1 TOOIS AN LABNQUBOES.ecveeieeiieeieeiteeeteeesteestees e e e sstessaesseesseesseanseasseaseasseesseesseansesssesseesaeesseanseenseensessenssenssens 23
B.2 Proposed Namespaces fOr the OSA WSDLocuvvcieieiece et see st este et e st e st e e et snaessae e e sneesneenseenseens 23
B.3 (@ o1 ol = 1= =10 24
B.4 Mapping UML Data TypesSto XIML SCREMA.......ccceiieiieiiiie e see st este et e st e te e e e ssaesreesreenaeseeeseenneens 25
B.4.1 (D= = Y 0= PSSR STRPRTR 25
B.4.11 004 = >SS 25
B.4.1.2 SKNAMEV BIUBPAITSS ...ttt e et este s besaeebeeaeese e e e eeseestesbesneeneeneeneeneens 25
B.4.13 <<SegUENCEOTDAIAEIEIMENISS ..ot 25
B.4.14 G Y 0TS T SRRSO 26
B.4.15 <<KNUMbEredSetOfDAtAEI ©MENESS>ooiiiereie ettt snesne e eneeneens 26
B.4.1.6 <<TaggedChoiCEOfDAAEI EMENIS>>.........coiiee e s esreesreennees 27
B.5 Mapping Of UML SCF L0 WSDLcoiiiie ettt ste et et e s e s e te e e e e estesnaesnaesneesneesneensaensenns 27
B.5.1 Mapping of Operations to WSDL mMeSSage El€MENL.........ccueiieieeieeiee e ceesees et e e seeenee e 27
B.5.2 Mapping of Exception to WSDL meSsage €l @MENtcceeiieieriecee e se s 28
B.5.3 Mapping of CommonExceptionsto WSDL message elemMent..........ccvvcvvveereeneereee e see e seeesee e 28
B.5.4 Mapping of Interface Classto WSDL portType and binding elements..........ccccecvveeeeeinvceveeseese e 28
B.5.5 Mapping of UML SCF t0 WSDL SErViCe El@MENL........cccociriiiriirieeniesieesie ettt 30
Annex C (informative): Java Realisation AP ... 31
C.1l JavaREaAliSAION OVEIVIEW ..ottt sb e bbb et e et neebe e e s e nee e s 31
Cll1 S L SR RSPSRPRN 31
Clz2 12 A SRS 31
C13 = Y=o o P 31
C.2 TOOIS AN TANQUEATESceeiueeeeieeeiesiesteeiesteeseestesteeeesteseeseesseeseseeessensesseansessesseesesseensestesseensessesnsensensenn 32
C.3 Generic mappings (Elements common to J2SE and J2EE)cccceveviicececee e 32
C31 NBMEGPACE ... e s s s e e s e e e s e b e e b e b e e a e s e e e e sae e sne e re e neea 32
C3.2 Package Naming CONVENTIONS...........ciireiiirieirereert ettt bbb b et b et sbe et 32
C33 ODJECE REFEIEICES. ... ettt bt b e et b e et b e s et b e e e et b bt e b e e e st eb e s b et et e s b et eb e b e e 32
C34 ELEMENT INGIMINGttt bbb b bbb bbbt b et e b e bbb 33
C35 Element NamMiNG COllISIONS........c.oiiiiiriiieireiei bbbttt e et e et eb e b 33
C36 Dala TYPE DEFINITIONSc.eeeieece ettt s e et e e sre e s te e te e teeatesseessaesseenteensesneesneesneesseanseensenns 33
C36.1 S Lol = = R 1Y o= P 33
C36.2 L0001 = £ TP P PSPPSR 33
C.36.3 NumberedSetsOf DataEl ementS (COHIECLIONS)........ccuieieiieiie et eee et srae e sae e ee e e 34
C364 SequenceOf DataEl eMENES (SIFUCIUINES)eeiueeie ettt a e e e b e te e teeteeneeneeenes 34
C.365 NameValuePair (ENUMEIBLIONS)cccuiieeiieeieitieiesieseesee st e steeseessae e e saeesse e seestesseessaessaesteeseeseensesneesnes 35
C.3.6.6 TaggedChoiceOfDAtaEI emMENES (UNIONS)ovvieriieiriirieisies ettt bbb e 36
C.3.6.7 O ONS... ettt b et bbb e h e E R R e R b e AR Rt b e Rt b bt b b 38
C36.7.1 PLAtfONMEXCEPLION ..ottt et b e b b e bt b se b e s b e sb e e et e sbe e b e sbennenen 38
C36.7.2 P_XXX XXX EXCEPLIONS ...ttt ettt st ee s et eeeseestestesaesseeneensessenteseeseessesneenseneans 38
C.3.6.7.3 TPCOMMONEXCEPIONS.c.ecvetiieetestee ettt bbbttt bbbt b et b e et e 39
C36.74 TpCommonEXception's asSOCi aLed EXCEPLIONS.........oiveiririeirie e 40
C.36.75 Additional abStraCt EXCEPLIONScveeieeieceesee et e e e e esteeteseesaeesreesneenseensenns 40
C.36.7.6 INValidUni ONA CCESSOTEXCEPLION.ccueeetieieeeee ettt e s et e e e e e saesseesreesaeesneesseeseenseans 41
C36.7.7 INValidENUMY BIUEEXCEPLION ...ttt e st e e teetessaessaesneesneesseeseennenns 41
C.4 J2SE SPECITIC CONVENTIONSuerveriiitiriesiisiesie ettt st st be b e b e e be st e e e e beseesbenee e enes 41
c41 REMOVA OF TP PrEFIX ...ttt b et bbb et b et eb e b 42
c4z2 (00 = 0 | J OSSR USSR 42
C43 REMOVA OF 1" PIEFIX ...ecvieeeeee bbbt b et b et eb e e 42
C44 MaPPING OF TPINEEITACE. ..ottt b et b et sb e et 42
C45 MBPPING OF [PSEIVICE. ...ttt bbb et b e h e e b bt e b et b b e e st b et e st eb e et s 43
c4.6 MapPiNg Of UML OPEIELIONS.ccveiieiiieiieeeeiesteeseesteetestesaeseesseesseesseesseassesseesseesseessesssessesssessseesseesseensenns 43
ca7 MapPiNgG Of TPSESSIONIDooiieieie et te e e esae e e reeste e te e teestesntesneesseensesneesneesaeesseanseensenns 43
c4.8 Mapping of TpAssignmentID to the creation of an ACtiVity ODJECL.cecveceieresee e 44
C.4.9 L0 1 7= os 1 ST 47
LRt O o= ox (o] Y20 {1 = USSP 48

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 5 ETSITS 129 198-1 V5.5.0 (2004-04)

C.4.11 J2SE SPECITIC EXCEPLIONS.eiieietieieeteeesestestee st e ae e e st e s e e teesteestessaesseesse e teentesseesaeesaeesseenseansennsessanssensrens 49
C4.111 PeerUnavai | abl €EXCEPLION.........ei ettt e e et e et e e be e reeteeneeeneeenes 49
C4.11.2 RNTE ot RS e 0 (o= o]) o P 50
C.4.12 User Interaction SPECITIC RUIES.......ccuiiiiee ettt te e sae e sreesaeeteenteenteenaessaesreas 50
C4.121 Interfaces representing UML [pUl and [PUICEI] RUIEccoiiiiiie e 50
C4.12.2 Naming Collisions of GUI and CUI ACtIVItIES RUIEcccieeiiee e s 50
C.5 J2EE SPECITIC CONVENTIONS.....ccuiiuieieiiieiesieeieesieseeee st s ee e sseeseesteeseestesseetesseeneessesneeseesseensensessesneensensenn 50
Ch1 SEMTAIZATON UID......ceicie ettt et ettt et e et e e beeabesaeesaeesheesbeeaseeneesaeesaeenseenteentesssesseesaeesanas 50
Cbh2 Remote INterface DEfiNITIONSooueieeeee ettt ettt e be e re s e e s e e saeesae e beenreens 51
Cbh21 0] L =P 51
Cbh.22 Methods fOr REMOLE INLEITACES.coeeeeeeee e bbbt st sb e s b e e 51
C53 LOCal INtErfaCe DEFINITIONS.oiuiiieiieieieee ettt et b et ettt e e eesb e b sbesbe e e ennennens 51
Ch31 MethOdS FOr LOCEI INEEITACES........eiueieeieeeee bbb sa e s b e e 51
C54 Multi Party Call Control SPECITIC RUIES.........c.eciiieiece et esae e reenneens 51
Cb54.1 IpCallLeg and IpAppCallLeg method name CONFIICES.......c.ccuevieriecicceee e 51
Annex D (informative): ChangE hiStOrYc.eociiiicecce et 53
11 SRR 54

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 6 ETSITS 129 198-1 V5.5.0 (2004-04)

Foreword
This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

This specification has been defined jointly between ETSI TISPAN, 3GPP TSG CN WG5 and The Parlay Group
(http://www.parlay.org), in co-operation with a number of JAIN™ (http://www.java.sun.com/products/jain) member
companies.

The present document is part 1 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";
Sub-part 1: "Call Control Common Definitions*; (new in 3GPP Release 5)
Sub-part 2: "Generic Call Control SCF"; (new in 3GPP Release 5)
Sub-part 3: "Multi-Party Call Control SCF"; (new in 3GPP Release 5)
Sub-part 4: "Multi-Media Call Control SCF"; (new in 3GPP Release 5)
Sub-part 5: "Conference Call Control SCF"; (not part of 3GPP Release 5)

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 5)

Part 10: "Connectivity Manager SCF"; (not part of 3GPP Release 5)

Part 11: " Account Management SCF";

Part 12: "Charging SCF".

Part 13: "Policy Management SCF"; (new in 3GPP Release 5)

Part 14: "Presence and Availability Management SCF"; (new in 3GPP Release 5)

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocolsis however not applicable for al Parts, but the numbering of Partsis kept.
Also in case aPart is not supported in a Release, the numbering of the partsis maintained.

ETSI

http://www.parlay.org/
http://www.java.sun.com/products/jain

3GPP TS 29.198-01 version 5.5.0 Release 5 7 ETSITS 129 198-1 V5.5.0 (2004-04)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
20.198-01 | Overview 29.998-01 Overview
29.198-02 | Common Data Definitions 29.998-02 Not Applicable
29.198-03 | Framework 29.998-03 Not Applicable
Cal 29.198- 29.198- | 29.198- 29.198- 29.998-04-1 Generic Call Control — CAP mapping
Control 04-1 04-2 04-3 04-4 29.998-04-2 Generic Call Control — INAP mapping
(CO) Common | Generic | Multi- Multi- 29.998-04-3 Generic Call Control — Megaco mapping
SCF CC data CC SCF | Paty CC | mediaCC | 29.998-04-4 Multiparty Call Control — SIP mapping

definitions SCF SCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping

29.998-05-2 User Interaction — INAP mapping

29.998-05-3 User Interaction — Megaco mapping

29.998-05-4 User Interaction — SM'S mapping

29.198-06 | Mobility SCF 29.998-06 User Status and User Location — MAP mapping
29.198-07 | Termina Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping
29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

The following table explains how the various releases of ETSI, Parlay and 3GPP OSA specifications correspond. Each
ETSI and 3GPP specification carries a version number and is updated independently. The frequency of 3GPP updates
may be up to every 3 months, which is greater than that of ETSI or Parlay, therefore, while there is a corresponding
version of 3GPP TS 29.198 for every version of ETS| ES 201 915 or ES 202 915, there is not necessarily a
corresponding version of the ETSI specification for each version of the 3GPP specification. For example, thereisno
ETSl/Parlay specification version which corresponds exactly to the 3GPP issue of TS 29.198 Release 4 from December
2001.

ETSI ES 201 915/ Parlay 3/ 3GPP TS 29.198 Release 4 (version 4.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version

- - Release 4, March 2001 Plenary

Release 4, June 2001 Plenary

ES 201 915 v.1.1.1 (complete release) Parlay 3.0 Release 4, September 2001 Plenary

- - Release 4, December 2001 Plenary
ES 201 915 v.1.2.1 (complete release) Parlay 3.1 Release 4, March 2002 Plenary
ES 201 915 v.1.3.1 (complete release) Parlay 3.2 Release 4, June 2002 Plenary

- - Release 4, September 2002 Plenary
ES 201 915 v.1.4.1 (complete release) Parlay 3.3 Release 4, March 2003 Plenary

- - Release 4, June 2003 Plenary

- - Release 4, December 2003 Plenary

ETSIES 202 915/ Parlay 4 / 3GPP TS 29.198 Release 5 (version 5.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
- - Release 5, March 2002 Plenary
ES 202 915 v.1.1.1 (complete release) Parlay 4.0 Release 5, September 2002 Plenary
ES 202 915 v.1.2.1 (not parts 9, 13, 14) Parlay 4.1 Release 5, March 2003 Plenary

- - Release 5, June 2003 Plenary

- - Release 5, September 2003 Plenary

- - Release 5, December 2003 Plenary

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5

ETSI TS 129 198-1 V5.5.0 (2004-04)

ETSI ES 203 915/ Parlay 5/ 3GPP TS 29.198 Release 6 (version 6.x.x)

ETSI OSA Specification Set

Parlay Phase

3GPP TS 29.198 version

Release 6, June 2003 Plenary

Release 6, December 2003 Plenary

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 9 ETSITS 129 198-1 V5.5.0 (2004-04)

1 Scope

The present document isthe first part of the 3GPP Specification defining the Application Programming Interface (API)
for Open Service Access (OSA), and provides an overview of the content and structure of the various parts of this
specification, and of the relation to other standards documents .

The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture
for the OSA are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

* References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

» For aspecific reference, subsequent revisions do not apply.
« For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including

aGSM document), a non-specific reference implicitly refersto the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications'.

2] 3GPP TS 22.127: " Service Requirement for the Open Services Access (OSA)".

[3] 3GPP TS 23.127: "Virtua Home Environment / Open Service Access (OSA)".

(4] Voaid.

[5] 3GPP TS 22.101: " Service Aspects, Service Principles'.

[6] Void.

[7] 3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[8] 3GPP TS 29.078: " Customised Applications for Mobile network Enhanced Logic (CAMEL);

CAMEL Application Part (CAP) specification”.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 22.101 [5] and the following
apply.

Applications. Services, which are designed using Service Capability Features (SCFs).

Gateway: Synonym for Service Capability Server (SCS). From the viewpoint of applications, an SCS can be seen asa
gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. ThisisaVASP that has an agreement with the Home
Environment to provide services.

Home Environment: responsible for overall provision of servicesto users.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 10 ETSI TS 129 198-1 V5.5.0 (2004-04)
Local Service: A service, which can be exclusively provided in the current serving network by a Value Added Service
Provider.

OSA Interface: Standardised Interface used by application to access service capability features.

Personal Service Environment (PSE): contains personalised information defining how subscribed services are
provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User
Profiles.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within
networks and under network control.

Service Capability Feature (SCF): Functionality offered by service capabilities that are accessible via the standardised
OSA interface.

Service Capability Server (SCS): Functional Entity providing OSA interfaces towards an application.
Service: term used as an aternative for Service Capability Feature in this specification.

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the
terminal and serving network.

User Profile: Thisisalabel identifying acombination of one user interface profile, and one user services profile.
User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and
between terminals.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.

AP Application Programming Interface

CAMEL Customised Application for Mobile network Enhanced Logic
CAP CAMEL Application Part

CSE CAMEL Service Environment

FW Framework

HE Home Environment

HE-VASP Home Environment - Value Added Service Provider
HLR Home L ocation Register

INAP Intelligent Networks Application Part

IDL Interface Description Language

JSR Java Specification Request

MAP Mobile Application Part

ME Mobile Equipment

MEXE Mobile Station (Application) Execution Environment
MS Mobile Station

MSC Mobile Switching Centre

OSA Open Service Access

PLMN Public Land Mobile Network

PSE Personal Service Environment

RMI Java Remote Method Invocation

SAT SIM Application Tool-Kit

SCF Service Capability Feature

SCP Service Control Point

SCS Service Capability Server

SIM Subscriber Identity Module

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 11
SOAP Simple Object Access Protocol
SPA Service Provider API
UE User Equipment
USIM Universal Subscriber Identity Module
VLR Visited Location Register
VASP Vaue Added Service Provider
VHE Virtual Home Environment
WAP Wireless Application Protocol
WGP Wireless Gateway Proxy
WPP Wireless Push Proxy
WSDL Web Services Definition Language
XML Extensible Markup Language

ETSI TS 129 198-1 V5.5.0 (2004-04)

4

Open Service Access APIs

The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features (SCFs) or Services. The OSA Framework is ageneral component in support of Services
(Service Capabilities) and Applications. The concepts and the functional architecture for the OSA are contained in
3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The OSA API is split into three types of interface classes, Service and Framework (FW).

- Interface classes between the Applications and the Framework (FW), that provide applications with basic
mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

- Interface classes between Applications and SCFs, which are individual servicesthat may be required by the
client to enable the running of third party applications over the interface e.g. Messaging type service.

- Interface classes between the Framework (FW) and the SCFs, that provide the mechanisms necessary for a
multi-vendor environment.

These interfaces represent interfaces 1, 2 and 3 in Figure 1 below. The other interfaces are not yet part of the scope of

the work.

Enterprise

Not in the scope
of the present API
version

Not in the scope
of the present API
version

Framework

oper ator
admin

operator
admin tool

Client
Application

Not in the scope
of the present API
version

Service
supplier
admin tool

g Telecom Network S

Figure 1:

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 12 ETSITS 129 198-1 V5.5.0 (2004-04)

Within the OSA concept a set of Service Capability Features (SCFs) has been specified. The OSA documentation is
structured in parts. The first Part (the present document) contains an overview, the second Part contains common data
definitions, the third Part the Framework interfaces and the following Parts contai n the description of the SCFs.

NOTE: Theterms"Service" and " Service Capability Feature" are used as alternatives for the same concept in the
present document. In the OSA API itself the SCFs as identified in the 3GPP reguirements and architecture
arereflected as "service", in termslike service instance lifecycle manager, service Discovery.

5 Structure of the OSA API (29.198) and Mapping
(29.998) documents

The Open Service Access (OSA) Application Programming Interface (API) specifications consist of two sets of
documents:

API specification (3GPP TS 29.198)

The Parts of 29.198 - apart from Part 1 (the present document) and Part 2 - define the interfaces, parameters and
state models that belong to the API specification. UML (Unified Modelling Language) is used to specify the
interface classes.

Assuch it provides a UML interface class description of the methods (API calls) supported by that interface and the
relevant parameters and types. The interfaces are specified both in IDL (Interface Description Language) and in
WSDL (Web Services Definition Language). Reference is made to the Java API specification of the interfaces.

M apping specification of the OSA APIsand network protocols (3GPP TR 29.998)

The Parts of 29.998 contain a possible mapping from the APIs defined in 29.198 to various network protocols (i.e.
MAP[7], CAP[8], etc.). It is an informative document, since this mapping is considered as implementation- /
vendor-dependent. On the other hand this mapping will provide potential service designers with a better
understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to
these interface classes.

The purpose of the OSA API isto shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes, a Service Capability Server
interacts with, in order to provide the SCFs to the application. The specific underlying network and its protocols are
transparent to the application.

The API specification (3GPP TS 29.198) is structured in the following Parts:

29.198-1 Part 1: Overview

29.198-2 Part 22 Common Data Definitions

29.198-3 Part 3: Framework

29.198-4 Part4: Call Control SCF

29.198-5 Part5: User Interaction SCF

29.198-6 Part 6: Mobility SCF

29.198-7 Part 7. Termina Capabilities SCF

29.198-8 Part 8: Data Session Control SCF

29.198-9 Part9: Generic Messaging SCF (not part of 3GPP Release 5)
29.198-10 Part 10: Connectivity Manager SCF (not part of 3GPP Release 5)
29.198-11 Part 11: Account Management SCF

290.198-12 Part 12: Charging SCF

29.198-13 Part 13: Policy Management SCF

20.198-14 Part 14: Presence & Availability Management SCF

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 13 ETSITS 129 198-1 V5.5.0 (2004-04)

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocolsis however not applicable for all Parts, but the numbering of Partsis kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Structure of the Parts of 29.198
The Parts with API specification themsel ves are structured as follows:
- The Sequence diagrams give the reader a practical idea of how each of the SCF isimplemented.
- The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.
- TheInterface specification clause describes in detail each of the interfaces shown within the Class diagram part.

- The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

- The Data definitions clauses show a detailed expansion of each of the data types associated with the methods
within the classes. It isto be noted that some data types are used in other methods and classes and are therefore
defined within the Common Data types part of this specification.

The OSA AP isdefined using UML and as such is technology independent. OSA can be realised in a number of ways
and in addition to the UML defined OSA API, the OSA specification includes:

- A normative annex with the OSA API in IDL that specifiesthe CORBA distribution technology realisation

- Aninformative annex with the OSA API in WSDL that specifiesthe SOAP/HTTP distribution technology
realisation

- Aninformative annex that references the OSA API in Java (known as JAIN™ Service Provider API) that
specifies the Javalocal API technology realisation

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 14 ETSITS 129 198-1 V5.5.0 (2004-04)

6 Methodology

Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages

The Unified Modelling Language (UML) (http://www.omg.org/uml) is used as the means to specify class and state
transition diagrams.

6.2 Packaging
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

6.3 Colours

For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for al the
others.

6.4 Naming scheme

The following naming scheme is used for documentation.
packages
lowercase.
Using the domain-based naming (For example, org.csapi)
classes, structuresand types. Start with T
TpCapitalizedWithl nternal WordsAl soCapitalized
Exception class:
TpClassNameEndsWithException and P_UPPER_CASE_WITH_UNDERSCORES AND_START WITH_P
Interface. Start with Ip:
IpThislsAninterface
constants:
P_UPPER_CASE_WITH_UNDERSCORES AND_START WITH_P
methods:
firstWordL owerCaseButl nternal WordsCapitalized()
method" s parameters
firstWordL owerCaseButl nternal WordsCapitalized
collections (set, array or list types)
TpCollectionEndswWithSet

class/structure members

ETSI

http://www.omg.org/uml

3GPP TS 29.198-01 version 5.5.0 Release 5 15 ETSITS 129 198-1 V5.5.0 (2004-04)

FirstWordAndl nternal WordsCapitalized

Spaces in-between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitionsin the State Transition Diagrams follow the convention:
when_this event_is received [guard conditionistrue] /do_this action ~send_this message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Exception handling and passing results

OSA methods communicate errorsin the form of exceptions. OSA methods themselves aways use the return
parameter to pass results. If no results are to be returned avoid is used instead of the return parameter. In order to
support mapping to as many languages as possible, no method out parameters are allowed.

6.7 References
In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by
reference, and the "Ref" suffix is appended to their corresponding type (e.g. I pAninterfaceRef anlnterface), areference

can also be viewed as alogical indirection.

Table:

Original type IN parameter declaration
Ipinterface parm : IN IpinterfaceRef

6.8 Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string.

For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set

6.9 Prefixes

OSA constants and data types are defined in the global name space: org.csapi.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 16 ETSITS 129 198-1 V5.5.0 (2004-04)

7. Introduction to OSA APIs

This section contains the general rules that were followed by the design of the OSA APIs and advice for how to use
them. Note however that exceptions to these 'rules' may exist and that examples are not exhaustive.

7.1 Interface Types
In the OSA specifications different types of interfaces are distinguished:

e Application side (callback) interfaces. Thistype of interface needs to be implemented by an application (client)
and the name of such an interface is prefixed with 'IpApp'.

¢ Interfaces of an SCF that are used by the Framework. The name of thistype of server interface is prefixed with
'IpSvc'.

e Application side interfaces and SCF interfaces that are shared. The name of this type of interface is prefixed with
'IpClient’

* Interfaces of the Framework that are used by an SCF. The name of thistype of server interfaceis prefixed with
'IpFw'.

The name of all other interfaces of the Framework and SCFsthat are used by an application, is prefixed with 'Ip'.

7.2 Service Factory

For each application that uses an SCF, a separate object is created to handle all communication to the application. This
object isreferred to as the Service Manager. The pattern used is often referred to as the Factory Pattern. The Service
Manager creates any new objectsin the SCF. The Service Manager and all the objects created by it are referred to as
'service instance'.

Once an application is granted access to an SCF, the Framework requests the SCF to create a new Service Manager.
The reference to this Service Manager is provided to the application. From this moment onwards the application can
start using the SCF.

7.3 Use of Sessions

A session is a series of interactions between two communication end points that occur during the span of asingle
connection. An example is all operations to set-up, control, and tear down a (multi-party) call. A session isidentified by
aSession ID. This|D is unique within the scope of a service instance and can be related to session numbers used in the
network.

7.4 Interfaces and Sessions

Some interfaces have a one-to-one relation with a session. For every session there is a separate interface instance. In this
case, thisinstance of an interface represents the session. All methods invoked on such an interface operate on the same
session. These interfaces make no use of Session IDs.

Other interfaces can represent multiple sessions. The underlying implementation can then either create an instance per
session or it can handle multiple sessions per instance (e.g., to combat extensive resource usage). When a method on
such an interface isinvoked it requires a Session |D to uniquely identify the session to which it applies.

7.5 Callback Interfaces

Some OSA interfaces require an application to register a callback interface. Thisinterface resides on the client
(application) side and is used by the server (service) to report events, results, and errors. An application shall register its
callback interface as soon as the corresponding server side interface is created.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 17 ETSITS 129 198-1 V5.5.0 (2004-04)

7.6 Setting Callbacks

Two methods are available in every service interface that can be used for setting the callback interface: setCallback()
and setCallbackWithSessionl D(). Interfaces that do not use sessions shall (obvioudly) only implement setCallback(). An
invocation of setCallbackWithSessionlD() on such interfaces shall result in an exception (P_TASK_REFUSED).

Interfaces that use sessions shall only implement setCallbackWithSessionl D(). An invocation of setCallback() on such
interfaces shall result in an exception (P_TASK_REFUSED). This regardless of whether an interface instance actually
implements multiple sessions or not.

7.7 Synchronous versus Asynchronous Methods

Two types of methods exist in OSA interfaces. When a method does not reguire the SCS to contact other nodesin the
network it isimplemented as a synchronous method. When the method returns, the result (if applicable) of the operation
is provided to the application. When an error occurs, an exception is thrown. Examples of synchronous methods are
methods to retrieve datathat is available in the SCS and methods that create an object.

In other cases, a method requires the SCS to contact other nodesin the network. There can be a delay between the
moment a message is sent into the network and the moment that the result is received or an error is detected. To prevent
that the application is blocked or that an application has to 'guess whether there is a problem in the SCS, these types of
methods are made asynchronous.

An asynchronous method of an interface can be recognized by the fact that its name ends with 'Req’ (from request) and
that in the corresponding callback interface two methods are included with the same name but ending with 'Res' (from
result) and 'Err' (from error) instead. When no error has occurred, the 'Res' method will be invoked when the result is
available. In case an error has been detected, the 'Err' method isinvoked. Problems that can be detected by the SCS
itself (for instance illegal parameter values) will result in exceptions being thrown when the 'Req’ method is called.
After a'Req' method has returned, only errors shall be reported.

Because it is possible that multiple requests can be done in parallel (invoking multiple times a'Req’ method without
having received aresult or error) a mechanism is needed to link requests with responses. Therefore, the 'Req’ method
returns an Assignment 1D and the 'Res and 'Err' methods have this Assignment ID as input parameter. For session based
interfaces the Session ID can be used also.

Some 'Req’ methods can result in multiple 'Res methods being invoked. However, the corresponding 'Err' method will
never be invoked more than once.

Note that methods on client side interfaces shall never raise an exception unless thisis explicitly described in the
specification.

Some methods switch on/off reports (for instance triggered location reports). These methods are of a different kind and
do not follow the pattern that is described in this section.

A deadlock is a potential danger when using asynchronous methods, especially in single threaded systems. It can occur
that client and server are waiting for each other for atask to be completed. It is considered good practice to build in
mechanisms to prevent deadlock from occurring, for instance by using multiple threads or using time-outs on remote
method calls.

7.8 Out Parameters

Methods used in OSA interfaces only have input parameters. Any result can only be reported by areturn value. If
multiple values need to be returned, a datatype is required that consists of a sequence of values. A value of this datatype
isthen returned by a method. This approach has been chosen because not all middleware solutions are (or may be)
capable of dealing with (multiple) output parameters.

7.9 Exception Hierarchy

Exceptions are organized in an exception hierarchy. For the general exceptions and for each service type an abstract
exception classis defined. Advantage for an application programmer is that (s)he does not need to catch all the specific
exceptions, but may catch only the abstract exceptions.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 18 ETSITS 129 198-1 V5.5.0 (2004-04)

Note however that the exception hierarchy is only available when the applicable OSA realisation supports this. Java
does, but CORBA and WSDL/SOAP do not.

7.10 Common Exceptions

Exception TpCommonExceptions can be thrown by any method. It is an aggregate of a number of general problems. To
prevent that each method"s signature requires all these exceptions they are al included in a single exception class.

The following rules apply on when what type of general exception shall be thrown:

¢ P_RESOURCES UNAVAILABLE isthrown when a physical resource in the network is not available.

P_INVALID_STATE isthrown when a method is called that is not allowed in the state that the OSA state
machines arein.

e P_TASK_CANCELLED isthrown in case of atemporary problem.
e P_TASK_NO _CALLBACK_ADDRESS SET isthrown when no callback address has been set.

e P_METHOD_NOT_SUPPORTED isthrown when the application initiates methods that are either not according
to the Service Level Agreement or not supported in the SCS.

e P_TASK_REFUSED isthrown in case of a problem that is not temporary and when none of the other common
or dedicated exceptions apply.

Note that methods on application side callback interfaces shall never raise an exception unless explicitly stated in the
specification.

7.11 Use of NULL

The OSA specifications contain references to the NULL value to indicate the absence of a certain parameter. An
example where thisis used is for specifying NULL as a callback reference.

A parameter description for parameters of any datatype can indicate that NULL isa possible value. The realisation of
NULL can differ per technology. A NULL value for a sequencein CORBA means that all its members shall be NULL
while in Java the whole structure could be NULL.

Note that it always shall be stated in the specification when a NULL value can be expected.

7.12 Notification Handling

Several OSA SCFs provide a mechanism for creating and receiving notifications. A notification isthe reporting of an
event occurring in the network or SCS. Examples of notifications are answer, busy, and on hook events.

This section describes the general mechanism of notification handling. Note that it might not apply (exactly) to every
API.

There are two types of notifications. One that is created by an application and one that is controlled by the network. The
first type normally is used when an ASP is responsible for service provisioning and hasto create its own notificationsin
order to be able to serve subscribers. The second type is used when the network operator does service provisioning. The
network operator creates the notifications and an application only needs to handle them.

Note that normally both mechanisms will not be used by one application. However, the OSA interfaces do not prohibit
this.

Another way to distinguish notifications is by monitor mode. Notifications can be requested in either NOTIFY or
INTERRUPT mode. When requested in NOTIFY mode, the notifications is reported to the application but the SCS
continues processing. For notifications requested in INTERRUPT mode, processing in the SCSis suspended when the
notification is reported to the application. The application has to instruct the SCS explicitly (within a certain maximum
time) how to proceed the processing. Note that not all SCFs support notificationsin INTERRUPT mode.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 19 ETSITS 129 198-1 V5.5.0 (2004-04)

When a notification is created and when an application registers for network controlled notifications a callback interface
needs to be provided. This callback interface is used for reporting the notifications. There are however afew things that
are worth mentioning here:

Each time a (set of) notifications(s) is created, a callback is specified that is used for reporting the requested
notifications. This callback interface may be the same, but may also differ. The assignment ID can be used to
link a notification report to the creation of registration.

Registering a callback for network controlled notifications needs to be done only once. The callback interface
that is provided may be the same as the one used for creating a notification (note again that it is however not
recommended to used both mechanisms in the same application).

The callback specified when creating or registering for events overrules the callback set with setCallback() or
setCallbackWithSessionl D(). This means that this one will NOT be used for reporting notifications . It will
however be used for all other methods that require the callback interface.

Only if NULL is provided as callback interface reference, the callback interface that was set using setCallback()
or setCallbackWithSessionlD() is used for reporting notifications.

It is possible to recreate a (set of) notification(s) or re-register for notifications. Thisis only useful when
providing a different callback interface reference. In this case, the last provided interface is used for reporting
notifications. The earlier provided callback interface is used as 'backup' interface (this can be the one provided
with setCallback() or setCallbackWithSessionlD() if NULL was provided initially). Notifications are reported on
thisinterface when calls to the most recent provided callback interface fail (object providing the interfaceis
crashed or overloaded). When re-creating or re-registering, the same assignment 1D is returned.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 20 ETSITS 129 198-1 V5.5.0 (2004-04)

Annex A (normative):
OMG IDL

A.l Tools and Languages

The Object Management Group"s (OMG) (http://www.omg.org/) Interface Definition Language (IDL) isused asa
means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by
using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified
using a CORBAZ2 (orbog/97-02-25) compliant IDL compiler, e.g. (http://java.sun.com/products/jdk/idl/index.html).

A.2 Namespace

The used namespace in CORBA IDL isorg.csapi.

A.3 Object References

In CORBA IDL it isnot needed to explicitly indicate a reference to an object. Where the specifications explicitly
indicate areference to an object by adding 'Ref’ to the object type, this addition is removed when mapped to the IDL.

Example 1: struct TpMultiPartyCallldentifier {
IpMultiPartyCall CallReference;
TpSessionlD CallSessionID;

b

A.4 Mapping of Datatypes

A.4.1 Basic Datatypes

InIDL, the data type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitiveis
made up of alength and avariable array of byte.

NOTE: A typedef isatype definition declarationin IDL.

TpBoolean maps to a CORBA boolean, TpInt32 to a CORBA long, TpFloat to a CORBA float, and TpOctet to a
CORBA octet.

A.4.2 Constants

All constants are mapped to a CORBA const of type TpInt32.
Example 2 const Tpint32 P_TASK_REFUSED = 14;

A.4.3 Collections

In OMG IDL, collections (Numbered Set and Numbered List) map to a sequence of the datatype. A CORBA sequence
isimplicitly made of alength and avariable array of elements of the same type.

Example 3: typedef sequence<TpSessionl D> TpSessionl DSet;

ETSI

http://www.omg.org/
http://java.sun.com/products/jdk/idl/index.html

3GPP TS 29.198-01 version 5.5.0 Release 5 21 ETSITS 129 198-1 V5.5.0 (2004-04)

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example 4. The TpAddressSet data type may be defined in C++ as:

typedef struct {
short nunber ;
TpAddr ess address [];
} TpAddressSet;

The array "address' is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.4.4 Sequences
In OMG IDL sequences map to a CORBA Struct.

Example5: struct TpAddress {
TpAddressPlan Plan;
TpString AddrString;
TpString Name;
TpAddressPresentation Presentation,;
TpAddressScreening Screening;
TpString SubAddressString;

}

A.4.5 Enumerations

In OMG IDL enumerations map to a CORBA enum.

Example 6: enum TpAddressScreening {
P_ADDRESS SCREENING_UNDEFINED ,
P_ADDRESS SCREENING_USER_VERIFIED PASSED,
P_ADDRESS SCREENING_USER_NOT_VERIFIED,
P_ADDRESS SCREENING _USER_VERIFIED FAILED,
P_ADDRESS SCREENING_NETWORK

b

A.4.6 Choices

A choice mapsto a CORBA union. For entries that do not have a corresponding type (defined asNULL in the
specification) no union entry is generated. These entries are grouped in the default clause where NULL is replaced by
short and the entry name (Undefined) by the name Dummy. When there are no NULL entries, the default clause is not
generated.

Example 7: union TpCallAdditional Errorinfo switch (TpCallErrorType) {
case P CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorinvalidAddress,
default: short Dummy;

b

Example 8: union TpCallChargeOrder switch(TpCall ChargeOrderCategory) {
case P CALL_CHARGE_TRANSPARENT: TpOctetSet TransparentCharge;
case P CALL_CHARGE_PREDEFINED_SET: TpInt32 ChargePlan;

b

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 22 ETSITS 129 198-1 V5.5.0 (2004-04)

A.5 Use of NULL

CORBA alowsthe value NULL to be used for object references only. When the specification mentions NULL as
possible value of astruct, it means that each object reference in the struct shall be set to NULL. NULL does not apply to
other datatypes then object references.

A.6 Exceptions

The TpCommonExceptions is mapped to a CORBA exception containing a data item of type TpInt32 to indicate the
type of general exception and extrainformation of type TpString.

Example 9: exception TpCommonExceptions {
TpInt32 ExceptionType;
TpString Extralnformation;

b
All other exceptions are also mapped to CORBA exceptions but containing a data item of type TpString to indicate
additional information.

Example 10: exception P_INVALID_ASSIGNMENT _ID {
TpString Extralnformation;

b

A.7 Naming space across CORBA modules

The following shows the naming space used in this specification.

nodul e org {

nodul e csapi {

/* The fully qualified name of the followi ng constant is org::csapi::P_TH S IS AN OSA GLOBAL_CONST
*/

const long P TH S | S AN OSA GLOBAL_CONST= 1999;

/1 Add other OSA global constants and types here

nodul e fw {

/* no scoping required to access P_TH S IS AN OSA GLOBAL_CONST */

const long P_FWCONST= P_THI S | S AN OSA GLOBAL_CONST;

nodul e nm {

/] scoping required to access P_FW CONST
const |ong P_M CONST= fw : P_FW CONST;

}

}

b

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 23 ETSITS 129 198-1 V5.5.0 (2004-04)

Annex B (informative):
W3C WSDL

B.1 Tools and Languages

The W3C (http://www.w3c.org) WSDL (Web Services Definition Language) isan XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented
information. WSDL files are generated from the UML model using scripts. The generated WSDL files are verified
using WSDL compilers.. The WSDL is based on W3C WSDL 1.1

B.2 Proposed Namespaces for the OSA WSDL

Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML
element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The
Namespace Prefix and the Namespace are noted below.

xmins:wsdl = "http://schemas.xmlsoap.org/wsdl/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins.SOAP-ENC="http://schemas.xml soap.org/soap/encoding/"
xmlns:xsd:="http://www.w3c.org/2001/X M L Schema

There are also OSA specific namespaces which are used within the OSA WSDL documents. The OSA related
namespaces present within each WSDL document depends on the WSDL document and which WSDL documents it
imports. The guidelines used to derive these namespaces are;

¢ Theroot namespace for the OSA WSDL and XML schemasis http://www.csapi.org/

e Thereisone document generated for each component (Module) within the Analysis UML model. The document
will have the name of the UML component with the extension ".wsdl" For each wsdl document generated the
following additional namespaces will be included:

0 xmlns:<component name>="http://www.csapi.org/<component name>/wsdl"
0 xmlns.<component name>xsd="http://www.csapi.org/<component name>/schema’

0 For each OSA wsdl document which is referenced by an import statement within the current wsdl
document then the following additional namespaces will be included.

= xmins:<imported component name>="http://www.csapi.org/<imported component name>/wsdl"

= xmins.<imported component name>xsd="http://www.csapi.org/<imported component
name>/schema’

e Attributes which require a QName val ue shall use the appropriate Namespace Prefix (as defined in the definitions
element of the wsdl file) to qualify the element being referenced.

The namespaces are defined within the "definitions’ element of awsdl document. For example, the definitions element
of the am.wsdl document would look like:

<definitions
name="ani
t arget Nanespace="' htt p://ww. csapi . or g/ am wsdl '
xm ns=' http://schemas. xm soap. or g/ wsdl /'
xm ns:wsdl =" http://schemas. xm soap. org/ wsdl /'
xm ns: soap=" http://schemas. xm soap. or g/ wsdl / soap/'

ETSI

http://www.w3c.org/

3GPP TS 29.198-01 version 5.5.0 Release 5 24 ETSITS 129 198-1 V5.5.0 (2004-04)

xm ns: SOAP- ENC=' htt p: // schemas. xm soap. or g/ soap/ encodi ng/ '
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena'

xm ns:am=' http://ww. csapi . org/anf wsdl '

xm ns: amxsd=' http://ww. csapi . org/ am schena'

xm ns: osa=' http://ww. csapi.org/osa/ wsdl"'

xm ns: osaxsd=" http://ww. csapi . org/osa/ schem' >

<i nport nanespace='http://ww. csapi.org/osal wsdl'
| ocati on="osa.wsdl"' />

B.3 Object References

Object references are used to identify an particular remote object instance. Object references are used in two ways:

1. Passed as aparameter within a method to a remote object or passed as an attribute of a structured type parameter
within a method to the remote object.

2. Included within a message to identify the object for which the message isintended.

Within the context of SOAP, an object reference can be represented as a URL appended with a String. The String suffix
identifies the particular remote object instance in the context of the URL.

An object reference will be represented by the new type ObjectRef. The ObjectRef type is defined within osawsdl as:

<xsd: si npl eType nanme="Cbj ectref">
<xsd:restriction base="xsd:string" />
</ xsd: si npl eType>

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. When an
object reference is an attribute of a structured type, that attribute is defined as a reference to an interface. Each interface
will have a corresponding reference type associated with it. The interface reference will be defined as:

<xsd: si npl eType nanme="Int er f aceNaneRef " >
<xsd:restriction base="osaxsd: Obj ect Ref" />

</ xsd: si npl eType>

where InterfaceName is the name of the particular interface.

When an object reference is used to identify the intended recipient of a message, then the object referenceisincluded in
the SOAP Header element as an ObjectRefHeader. The ObjectRefHeader is defined in the osa.wsdl document as
follows:

<nessage nane=' bj ect Ref Header' >
<part name='header' el enent='osaxsd: ObjectRef' />
</ nessage>

Within each method, the ObjectRefHeader is bound to the message within the wsdl soap:header element of the input
message of the binding element. For example:

<bi ndi ng name='1pAccount Manager Bi ndi ng' type='am | pAccount Manager"' >
<soap: binding style="rpc' transport="http://schemas. xm soap. org/soap/ http' />
<operation name='createNotification'>
<soap: operati on
soapAction="http://ww. csapi .org/ am | pAccount Manager #createNotification' />

<i nput >
<soap: body
encodi ngStyl e=' htt p://schemas/ xm soap. or g/ soap/ encodi ng/'
namespace = 'http://ww. csapi.or g/ am wsdl

use='encoded' />
<soap: header

nmessage=' osaxsd: Obj ect Ref Header' part='header' />
</input >

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 25 ETSITS 129 198-1 V5.5.0 (2004-04)

B.4 Mapping UML Data Types to XML Schema

B.4.1 Data Types

B.4.1.1 <<Constant>>
The UML Constant data type contains the following attributes:
¢ Name

¢ Constant Value

This type would then map to the following XML Schema construct:
This mapping assumes that all constants are of type TpInt32
<xsd: si npl et ype nane=' Nane' >
<xsd:restriction base='osaxsd: Tpl nt 32' >
<xsd: m nl ncl usi ve val ue=' Constant Val ue' />
<xsd: maxl ncl usi ve val ue=' Constant Val ue' />
</xsd:restriction>
</ xs: si npl eType>
B.4.1.2 <<NameValuePair>>
The UML NameVauePair data type contains the following attributes:
* Name

* Attributes

¢ Name

This type would then map to the following XML Schema construct:

<xsd: si npl eType base=' xsd: string' nane=' Nane' >
<xsd:restriction base='xsd: String' >
<xsd: enumner ati on val ue="Attri bute-Name' />
<xsd: enuneration val ue="Attri bute-Nanme' />

<xsd: enuneration value="Attri bute-Nane' />
</ xsd:restriction>
</ xsd: si mpl eType>

B.4.1.3 <<SequenceOfDataElements>>
The UML SequenceOfDataEl ements data type contains the following attributes:
» Name
* Roles
» Name

e Type

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 26

This type would then map to the following XML Schema construct:

<xsd: conpl exType name=' Nane'
<xsd: sequence>
<xsd: el ement
Nanme=' Rol e- Nan®e'
type=' Rol e-Type' />
<xsd: el ement
Name=' Rol e- Nan®e'
type=' Rol e-Type' />

<xsd: el ement
Name=' Rol e- Nan®g'
type=' Rol e-Type' />
</ xsd: sequence>
</ xsd: conpl exType>
B.4.1.4 <<TypeDef>>
The UML TypeDef data type contains the following attributes:

* Name

¢ ImplementationType

ETSI TS 129 198-1 V5.5.0 (2004-04)

If the Implementation type is atechnology specific type, then the following mappings have been made:

TpBoolean — xsd:boolean
TpInt32 — xsd:float
TpFloat — xsd:float
TpLongString — xsd:string
TpString — xsd:string
TpOctet — xsd:hexBinary

This type would then map to the following XML Schema construct:

<conpl exType nane=' Nanme' base='1npl enent ati onType'

B.4.1.5 <<NumberedSetOfDataElements>>

The UML NumberedSetOf DataElements data type for sequences types contains the following attributes:

* Name

¢ ImplementationType

This type would then map to the following XML Schema construct:

<xsd: conpl exType name=' Nane' >
<xsd: sequence>
<xsd: el ement
nanme="' Nane'
type='1Inpl ement ati onType'
m nCccur s=' 0’
maxQccur s=' unbounded' />
</ xsd: sequence>

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 27 ETSITS 129 198-1 V5.5.0 (2004-04)

</ xsd: conpl exType>

B.4.1.6 <<TaggedChoiceOfDataElements>>
The UML TaggedChoiceOf DataElements data type contains the following attributes:
* Name
e SwitchType
* Roles
* Name

e Type

This type would then map to the following XML Schema construct:

<xsd: conpl exType name=' Nane' >
<xsd: sequence>
<xsd: el emrent name=' Swi t chNane' type='Swi tchType' />
<xsd: choi ce>
<xsd: el enent name=' Rol e- Nane' type=' Rol e-Type' />
<xsd: el enent name=' Rol e- Nane' type=' Rol e-Type' />

<xsd: el erent nane=' Rol e- Nane' type='Rol e-Type' />
</ xsd: choi ce>

</ xsd: sequence>
</ conpl exType>

B.5 Mapping of UML SCF to WSDL

B.5.1 Mapping of Operations to WSDL message element
A UML Operation contains the following attributes:
e Interface
+ Name
* Module Name
e Return Type
* Parameter
+ Name
» Type
This type would then map to the following XML Schema construct:

<message name="I|nterface_Nanme">
<part
nanme="Par anet er - Nane"
type="Par anet er - Type"/ >
<part
nanme="Par anet er - Nane"

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 28 ETSITS 129 198-1 V5.5.0 (2004-04)

type="Par anet er - Type"/ >
</ nessage>

<nessage nane="Interface_NanmeResponse">
<part name="return" type="ReturnType"/>
</ message>

Note: If the ReturnType isvoid, then no 'part’ element would be included in the Response message.
(i.e.<message nane='Interface_NaneResponse' />).

B.5.2 Mapping of Exception to WSDL message element
A UML Exception has the following attributes:
* Name
All exceptions (except for CommonException), contain a parameter called Extralnformation which is of type TpString.
This type would then map to the following XML Schema Construct:

<message nane=' Nane' >
<part
nane=' Ext ral nf or mati on'
type=' osaxsd: TpString' />
</ nessage>

B.5.3 Mapping of CommonExceptions to WSDL message element
The UML CommonExceptions type has the following attributes:

¢ Name (‘CommonExceptions)

The UML CommonException contains two parameters; ExceptionType which is of type osaxsd: Tplnt32 and
Extral nformation which is of type osaxsd: TpString.

This type would then map to the following XML Schema Construct:
<nessage nane=' CommbnExceptions' >
<part
nane=' Excepti onType'
type=' osaxsd: Tpl nt 32" />
<part
nane=' Extral nf or mati on’
type=' osaxsd: TpString' />
</ nessage>

B.5.4 Mapping of Interface Class to WSDL portType and binding elements
A UML Interface Class contains the following attributes:
* Name
e Associated module (i.e. component)
¢ Operations
+ Name

e Parameters

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 29 ETSITS 129 198-1 V5.5.0 (2004-04)

* Name
e Exceptions
* Name
This type would then map to the following WSDL portType element:

<port Type nanme="Nane">
<operation
name=" Qper at i on- Nane"
<i nput nessage="Cperati on- Nane"/ >
<out put nessage="Oper ati on- NaneResponse"/ >
<fault nessage=' Operati on—Excepti on— Nane' />

<fault nessage=' Operati on—Excepti on—-Nane' />
</ operati on>

<operation
name=" Qper at i on- Nane"
<i nput nessage="0perati on- Nane"/ >
<out put message="Oper ati on- NaneResponse"/ >
<fault nane=' Qperation-Exception-Nane' nessage=' Operati on—Excepti on—Naneg'
/>

<fault nessage=' Operati on—Excepti on—-Nane' />
</ operati on>
</ port Type>

This type would aso then map into the following WSDL binding element:

<bi ndi ng
nanme="1nt er f ace- NaneBi ndi ng"
type="Interface- Name" >
<soap: bi ndi ng style="rpc" transport="http://schemas. xm soap. org/ soap/ http"/>

<operati on name="Cperati on- Nanme" >
<soap: operati on soapAction="http://ww. csapi.org/ am Nanme#Qper ati on- Nane"/ >
<i nput >
<soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://wwm. csapi . or g/ Modul e- Nane/ wsdl "
use="encoded"/ >
<soap: header nessage=' osaxsd: Obj Ref Header' part='header' />
</i nput >
<out put >
<soap: body

encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/
nanmespace=" http://ww. csapi.org/ Mdul e- Nane/ wsdl "
use="encoded"/ >

</ out put >

<faul t>
<soap: fault nanme=' Operati on- Excepti on- Nane'
encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/
nanespace="htt p://wwm. csapi . or g/ Modul e- Nane/ wsdl "
use="encoded"/ >
</faul t>

...additional fault elenents

</ operati on>

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 30 ETSITS 129 198-1 V5.5.0 (2004-04)

...additional operation elenents

</ bi ndi ng>

B.5.5 Mapping of UML SCF to WSDL service element
A UML Module contains the following attributes:
« Name
* Interfaces
* Name

This type would then map to the following WSDL service element:

<servi ce name="Nane">
<port binding="1nterface-NanmeBi ndi ng" name="Interface-Nane">
<soap: address | ocation="http://{Service Address}"/>
</ port>

...additional port elenents
</ service>

</definitions>

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 31 ETSITS 129 198-1 V5.5.0 (2004-04)

Annex C (informative):
Java Realisation API

C.1 Java Realisation Overview

The Parlay/OSA UML specifications are defined in a technology neutral manner. This annex aimsto deliver for Java, a
developer AP, provided as arealisation, supporting a Java API that represents the UML specifications.

C.1.1 J2SE API

The J2SE API supports a J2SE development environment that
e provides an abstraction of the Parlay/OSA APIsthat provides alocal API for J2SE developers
e supports alistener based API for SCFs and a callback API for the Framework
e useslocal object references as correlation mechanisms as Java devel opers are familiar with object correlation

¢ isaloca API without visibility to the underlying transport

C.1.2 J2EE API

The J2EE API supports a development environment which allows the creation of J2EE and Java RMI interfaces for
both the server and client, ensuring consistent interfaces for interoperability. These interfaces may be used for Java
RMI on either JRMP or 11OP (RMI/I1OP), allowing use in J2EE environments. The interfaces may also be used asa
thin layer on other transports, similar to other Java technologies that provide a RMI programming interface.

The J2EE API is a suitable base for Java across Java platforms, allowing creation of implementations that:
* may be athin layer on transport protocols
e may support J2EE remote interfaces
e may support J2EE local interfaces
The Javafiles created with the realisation will be made available with the Parlay/OSA specifications.
The remaining sections of this annex deal with the following areas:
¢ section C.2 covers the tools and languages used to produce and define the Java Realisation
¢ section C.3 covers the mappings that are common across both Java Realisation APIs
« section C.4 covers the mappings specific to the J2SE API

¢ section C.5 covers the mappings specific to the J2EE API

C 1.3 Javadoc

The Javadoc that accompanies the J2SE realisation of the Parlay/OSA API specification is provided as archive
2919801V 550J2SE.ZIP that accompanies the present document.

The Javadoc that accompanies the J2EE realisation of the Parlay/OSA API specification is provided as archive
2919801J2EE.ZIP that accompanies the present document.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 32 ETSITS 129 198-1 V5.5.0 (2004-04)

C.2 Tools and languages

The Javalanguage is used as a means to programmatically define the interfaces. Java source files are generated
automatically from UML. The Java source files are created in accordance with the mappings defined within this annex.

The generated Java source files are verified syntactically using Java compilers such asjavac. The Java APl comprises

e J2SE API designed to be compatible with the Java 2 SDK, Standard Edition, version 1.3
(http://java.sun.com/j2se/1.3/) or later and a

e J2EE API compatible with the Java 2 Enterprise Edition (http://java.sun.con/j2ee/).

The J2SE API, developed in accordance to the conventions defined in section C.3 and C.4 will enable;
e portable Java applications, as far as the Java API is concerned

¢ independence of distribution mechanism technology (e.g. CORBA,SOAP,RMI)

C.3 Generic mappings (Elements common to J2SE and
J2EE)

NOTE: All Java code examples given in this section are taken from the J2SE Java Realisation API. See the
appropriate Javafiles for examples for J2EE classes.

C.3.1 Namespace
The UML namespace org.csapi is represented by the Java package org.csapi.jr.

Packages under the org.csapi.jr package will contain "se" packages for J2SE specific Java artefacts and "e€" and
‘eelocal’ packages for J2EE specific Java artefacts.

For example, the User Location Camel Service package structure would appear as follows:
org.csapi.jr.se.mm.ulc containing J2SE API Java artefacts
org.csapi.jr.eelocal.mm.ulc containing J2EE local APl Java artefacts

org.csapi.jr.ee.mm.ulc containing the J2EE remote/RMI APl Java artefacts

C.3.2 Package Naming Conventions

UML packages will be represented by Java packages. The sub-namespaces below the root namespaces described above
will follow the naming used for the UML namespaces.

C.3.3 Object References

In Javathereis no need to explicitly indicate a reference to an object as in Java objects are passed by value and not by
reference. Where the specifications explicitly indicate a reference to an object by adding 'Ref’ to the object type, this
addition is removed in the Java realisation.

Example 1:
UML Java Realisation
IpUserLocationCamelRef UserLocationCamel
IpCallRef Call

ETSI

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2ee/

3GPP TS 29.198-01 version 5.5.0 Release 5

C.3.4 Element Naming

The UML element names that begin with an uppercase will follow the Java naming conventions of with aleading lower

33

case |etter and mixed case names. The UML elements are equivalent to Java field names.

Example 2:

UML

Java Realisation

AddressPlan

addressPlan

C.3.5 Element Naming Collisions

If an element name collides with a Java keyword, the element name will be prefixed with an underscore.

Example 3:

UML

Java Realisation

Final

_final

C.3.6 Data Type Definitions

C.3.6.1 Basic Data Types

Java does not support type definitions (typedefs); therefore types are unwound to their basic data types e.qg.:

Example 4:
UML Java Realisation
TpCallAlertingMechanism int
TpAccessType java.lang.String

The following mappings apply to the basic data types:

UML Java Realisation
TpBoolean boolean
TpInt32 int
TpInt64 long
TpFloat float
TpOctet byte
TpString java.lang.String
TpLongString java.lang.String
TpAny java.lang.Object

C.3.6.2 Constants

ETSI TS 129 198-1 V5.5.0 (2004-04)

Constants are associated with a type definition or as a standalone entity. In both cases, the constant itself will be defined
asa"public final static"fiedusingitsnameand value.

When defined associated with a type definition, an interface using the name of the type definition will be defined
enclosing al constants associated with the type definition.

Standal one constants within a package are defined within a Java interface with the name " Constants' within that
package.

Example 5:

package org.csapi.jr.se;
public interface Constants {

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 34 ETSITS 129 198-1 V5.5.0 (2004-04)

nt METHOD NOT_SUPPORTED = 22;

nt NO_CALLBACK ADDRESS_SET = 17;
nt RESOURCES UNAVAI LABLE = 13;
nt TASK_CANCELLED = 15;

nt TASK_REFUSED = 14;

nt | NVALI D_STATE = 744;

public static final
public static final
public static final
public static final
public static final
public static final

Example 6:
package org.csapi.jr.se.cc;
public interface Call Supervi seReport {
public static final int CALL_SUPERVI SE TI MEQUT = 1;

public static final int CALL_SUPERVI SE CALL_ENDED = 2;
public static final int CALL_SUPERVI SE_ TONE _APPLI ED = 4;

C.3.6.3 NumberedSetsOfDataElements (Collections)

In Java, Numbered Set and Numbered List are realised as an array of the data type.

Example 7:

UML Java Realisation
TpAddressSet Address|]

C.3.6.4 SequenceOfDataElements (Structures)
Struct data types are represented in Java as public final classes that implement java.io.Seriaizable, and have:
¢ each data element made available as a private variable in the class
e adefault constructor and a constructor for al values are provided
e accessor and mutator methods are given for each variable
e thefirst letter of each sequence element name is changed to lower case
« an equals method is provided determining the equality of objects by their content
» ahashCode method is provided supporting the rules for hashCode relative to equals

Example 8:

package org.csapi.jr.se;
public final class Address inplenents java.io.Serializable {
private AddressPl an plan;
private String addrString = "'";
private String name = '';
private AddressPresentati on presentation;
private AddressScreeni ng screening;
private String subAddressString = "'";

public Address () {
}

public Address (AddressPlan plan, String addrString,
String nanme, AddressPresentation presentation,
Addr essScreeni ng screening, String subAddressString) {
this.plan = plan;
this.addrString = addrString;
this. nare = nane;
this.presentation = presentation;
this. screening = screening;
t hi s. subAddressString = subAddressString;
}

publ i c TpAddressPlan getPlan () {

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 35 ETSITS 129 198-1 V5.5.0 (2004-04)

return (plan);

}

public void setPlan (TpAddressPl an plan) {
this.plan = plan;
}

public String getAddrString () {
return (addrString);
}

public void setAddrString (String addrString) {
this.addrString = addrString;

}

...other get and set methods ...

publ i c bool ean equal s (Object object) {

/1 equality logic
}

public int hashcode () {
/'l hash code cal cul ation

}

C.3.6.5 NameValuePair (Enumerations)
NameValuePair data types are represented in Java as public final classes that implement java.io.Serializable, and have:
e two static final data members per name-value pair
e avalue returning method, named getV alue()
¢ aname returning method, named getValueT ext()
e aninteger conversion method, named getObject()
e aprivate constructor
¢ hashCode and equal s implementations

No default constructor is provided. One of the data members per name-value pair has the same name as the name-value
pair name. The other has an underscore ' ' prepended and is intended for use in switch statements. Values are assigned
sequentially, starting with 0.

The getObject() method returns the name-value pair class with the specified value if the specified value corresponds to
an element of the name-value pair datatype. If the specified valueisout of range, an InvalidEnumV a ueException
exception israised

Example 9:

package org.csapi.jr.se;
public final class AddressScreening inplenents java.io.Serializable {
private int _val ue;
private static int _size = 5;
private static AddressScreening[] _array = new AddressScreeni ng[_si ze];

public static final int _ADDRESS SCREEN NG _UNDEFI NED = O0;
public static final AddressScreeni ng ADDRESS SCREENI NG UNDEFI NED = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_UNDEFI NED) ;

public static final int _ADDRESS SCREENI NG USER VERI FI ED PASSED = 1;
public static final AddressScreeni ng ADDRESS SCREENI NG USER VERI FI ED_PASSED = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_USER_VERI FI ED_PASSED) ;

public static final int _ADDRESS SCREENI NG USER NOT_VERI FIED = 2;

public static final AddressScreeni ng ADDRESS SCREENI NG USER NOT_VERI Fl ED = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_USER _NOT_VERI FI ED) ;

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 36

ETSI TS 129 198-1 V5.5.0 (2004-04)

public static final int _ADDRESS SCREEN NG USER VERI Fl ED FAI LED = 3;
public static final AddressScreeni ng ADDRESS SCREENI NG USER VERI FI ED FAI LED = new

Addr essScr eeni ng(_ADDRESS_SCREENI NG USER VER! FI ED_FAI LED) ;

public static final int _ADDRESS SCREENI NG NETWORK = 4;
public static final AddressScreeni ng ADDRESS SCREENI NG NETWORK = new

Addr essScr eeni ng(_ADDRESS_SCREENI NG_NETWORK) ;

private AddressScreening(int value) {
this._val ue = val ue;
this. _array[this._value] = this;

public int getValue() {
return _val ue;
}

public String getVal ueText () {
switch (_value) {
case _ADDRESS_SCREEN NG_UNDEFI NED:
return " ADDRESS_SCREENI NG_UNDEFI NED" ;
case _ADDRESS_SCREEN NG USER VERI Fl| ED_PASSED:
return "ADDRESS_SCREEN NG _USER_VERI FI ED_PASSED';
case _ADDRESS_SCREEN NG _USER _NOT_VERI Fl ED:
return "ADDRESS SCREENI NG USER NOT_VERI Fl ED";
case _ADDRESS_SCREEN NG USER VERI Fl ED_FAI LED:
return "ADDRESS_SCREEN NG _USER_VERI FI ED_FAI LED";
case _ADDRESS SCREENI NG _NETWORK:
return "ADDRESS_SCREEN NG _NETWORK";
defaul t:
return "ERROR';
}

}

public static AddressScreeni ng getObject(int value) throws

org.csapi.jr.se.lnvalidEnunVval ueException {

if(value >= 0 & value < _size) {

return _array[val ue];
} else {

throw new org. csapi.jr.se.lnvalidEnunVal ueException();
}

}

publ i c bool ean equal s(Cbject 0) {
/lequality |ogic

public int hashCode() ({
/I hash code cal cul ation

}

C.3.6.6 TaggedChoiceOfDataElements (Unions)

Union data types are represented in Java as public final classes that implement java.io.Serializable, and have:

¢ adefault constructor

* adiscriminator field

e adiscriminator accessor method, named getDiscriminator()

¢ anaccessor and modifier method for each data element, the names of which are derived from choice element

name

¢ hashCode and equal s implementations

Conflicting names should be resolved by prefixing the field name with an underscore for getDiscriminator if thereisa
name clash with the mapped data type name or any of the data element names.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 37 ETSITS 129 198-1 V5.5.0 (2004-04)

Where choice element type and choice element name are 'NUL L' and ‘Undefined’, respectively, a Java Object set as null
replacesthe NULL. If multiple NULL/Undefined combinations occur in the tagged choice of data elements, the
method, setUndefined, will receive the discriminator as a parameter and set _object to null.

Accessor methods shall raise an InvalidUnionAccessorException exception if the expected data element has not been
Set.

Example 10:

package org.csapi.jr.se;

public final class AoCOrder inplenents java.io.Serializable {
private Cal | AoCOrder Category _discrimnator = null;
private java.lang. Obj ect _object;

public AoCOrder() {
}

public Cal | AoCOrder Category getDiscrimnator() throws
org. csapi.jr.se.lnvalidUni onAccessor Exception {
if(_discrimnator == null) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return _discrimnator;

}

public org.csapi.jr.se.ChargeAdvi cel nfo get ChargeAdvi cel nfo() throws
org. csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOr der Cat egory. CHARGE_ADVI CE_| NFO) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((org.csapi.jr.se.ChargeAdvi celnfo) _object);

public void set ChargeAdvi cel nfo(org. csapi.jr.se.ChargeAdvicel nfo value) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_ADVI CE_| NFQ,
_obj ect = val ue;

}

public org.csapi.jr.se.ChargePerTi ne get ChargePerTinme() throws
org.csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOrder Cat egory. CHARGE_PER Tl ME) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((org.csapi.jr.se.ChargePerTime) _object);

public void set ChargePerTi ne(org. csapi.jr.se. ChargePerTi ne val ue) {
_discrimnator = Call AoCOrder Cat egory. CHARGE_PER Tl ME;
_object = val ue;

}

public java.lang. String get NetworkCharge() throws
org.csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOr der Cat egory. CHARGE_NETWORK) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((java.lang.String) _object);

public void set NetworkCharge(java.lang. String val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_NETWORK;
_object = val ue;

}

public void setUndefined(Call AocOrderCategory discrimnator) {
__discrimnator = discrinmnator;
__object = null;

}

publ i c bool ean equal s(bject 0) {
/lequality |ogic
}

public int hashCode() {
/' hash code cal cul ation

}

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 38 ETSITS 129 198-1 V5.5.0 (2004-04)

C.3.6.7 Exceptions

An exception maps to a constructed exception, providing appropriate constructors and accessor methods for the data
contained within the exception. Each exception is defined as a public class extending java.lang.Exception, and
containing a private field for each information element contained within the exception.

A default constructor is provided, along with a constructor containing only an embedded exception, a constructor
containing alist of the fields in the exception and a constructor that contains the fields plus an embedded exception.

An accessor method is provided for each field, and for the embedded exception.

The following Java Realisations apply to mapping of exceptions:

PlatformException

e P_XXX_XXX Exceptions

¢ TpCommonExceptions

« TpCommonExceptions' associated exceptions
e Additiona abstract exceptions

¢ InvaidUnionAccessorException

¢ InvalidEnumV aueException

C.3.6.7.1 PlatformException
PlatformException exception handles local platform and communication problem exceptions.

Example 11

package org.csapi.jr. se;
public class PlatfornException extends java.lang. Runti neException {
private Throwabl e _cause = null;

public Pl atfornException () {

super () ;

public Pl atfornException (String nessage) {
super (nmessage) ;

public PlatfornmException (String nmessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

public Pl atfornException (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

C.3.6.7.2 P_XXX_XXX Exceptions

P_XXX_XXX exceptions follow the XxxXxxException naming pattern, and inherit from java.lang.Exception.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 39 ETSITS 129 198-1 V5.5.0 (2004-04)

Example 12:

package org.csapi.jr.se;
public class InvalidlnterfaceTypeException extends java.lang. Exception {
private Throwabl e _cause = null;

public InvalidlnterfaceTypeException() {
super ();

public InvalidlnterfaceTypeException(String nessage) {
super (nmessage) ;

public InvalidlnterfaceTypeException(String nessage, Throwabl e cause) ({
super (nessage) ;
_cause = cause;

}

public InvalidlnterfaceTypeExcepti on(Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

C.3.6.7.3 TpCommonExceptions

The name for TpCommonExceptions exception is made singular, i.e. CommonException, and inherits from
java.lang.Exception.

Example 13:

package org.csapi.jr.se;

public class CommpnException extends java.lang. Exception {
private Throwabl e _cause = null;
private int _exceptionType;
private String _extral nformation;

publ i ¢ CommopnException () {
super () ;

publ i ¢ CommpnException (String nessage) {
super (nmessage) ;

publ i ¢ CormmonException (String nessage, Throwabl e cause) ({
super (message) ;
_cause = cause;

}

publ i ¢ CommobnException (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

public int getExceptionType() {
return _exceptionType;
}

public void set ExceptionType(int exceptionType) {
_exceptionType = exceptionType;
}

public String getExtralnformation() {
return _extral nformation;
}

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 40 ETSITS 129 198-1 V5.5.0 (2004-04)

public void setExtralnformation(String extralnformation) {
_extralnformati on = extral nformation;
}

C.3.6.7.4 TpCommonException's associated exceptions

P_XXX_XXX exception types (constants) associated with TpCommonExceptions follow the XxxXxxException
naming pattern and inherit from CommonException.

Example 14:

package org.csapi.jr.se;
public class ResourcesUnavai |l abl eExcepti on extends org.csapi.jr.se. CoombnException {
private Throwabl e _cause = null;

publ i ¢ ResourcesUnavai | abl eException () {
super () ;

publ i ¢ ResourcesUnavai |l abl eException (String nessage) {
super (nmessage) ;

publ i ¢ Resour cesUnavai |l abl eException (String message, Throwabl e cause) {
super (nmessage, cause);

publ i ¢ Resour cesUnavai |l abl eException (Throwabl e cause) {
_cause = cause;
}

C.3.6.7.5 Additional abstract exceptions

Additional abstract exceptions (See ETSI ES 202 915-2, Annex D) have been defined which are
TplnvalidArgumentException, TpFrameworkException, TpMobilityException, TpDataSessionException,

TpM essagingException, TpConnectivityException, TpAccountException, TpPAM Exception and TpPolicyException
and are mapped as follows:

Example 15:

package org.csapi.jr.se;
public class |nvalidArgunent Exception extends java.lang. Exception {
private Throwabl e _cause = null;

public InvalidArgunent Exception () {
super () ;

public I|nvalidArgunent Exception (String nessage) {
super (message) ;

public I nvalidArgunent Exception (String nessage, Throwabl e cause) {
super (nmessage) ;
_Ccause = cause;

}

public I nvalidArgunent Exception (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 41 ETSITS 129 198-1 V5.5.0 (2004-04)

C.3.6.7.6 InvalidUnionAccessorException

An additional exception, InvalidUnionAccessorException, is defined which indicates that the expected data element has
not been set.

Example 16:
package org.csapi.jr.se;
public class I|nvalidUni onAccessor Exception extends org.csapi.jr.se.lnvalidArgunent Exception {
private Throwabl e _cause = null
public I nvalidUni onAccessor Exception (){
super ();

public I nvalidUni onAccessor Exception (String nessage) {
super (message);

public InvalidUni onAccessor Exception (String nessage, Throwabl e cause){
super (message, cause);

public I nvalidUni onAccessor Excepti on (Throwabl e cause) {
_cause = cause;
}

C.3.6.7.7 InvalidEnumValueException

An additional exception, InvalidEnumV alueException, is defined which indicates that an enum data type was accessed
with aninvalid request value.

Example 17:

package org.csapi.jr.se;
public class |nvalidEnunVal ueExcepti on extends org.csapi.jr.se.|nvalidArgunent Exception {
private Throwabl e _cause = null

public I nval i dEnunVal ueException () {

super ()

public | nval i dEnunVal ueExceptions (String nessage) {
super (nessage);

public I nval i dEnunVal ueException (String nessage, Throwabl e cause) {
super (message, cause);

public | nval i dEnunVal ueExcepti on (Throwabl e cause) {
_cause = cause;
}

C.4 J2SE Specific Conventions

The UML interfaces are represented by Java public interfaces; those interfaces that inherit from other interfaces are
represented in Java as extending that interface. The Java realisations of OSA/Parlay SCFs use an Event Listener design
pattern while the Framework uses the Callback pattern.

This annex provides the information on realisation of the Java developer API including:

e How Java APIs arerealised from Parlay UML

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 42 ETSITS 129 198-1 V5.5.0 (2004-04)

¢ Where the listener pattern is used, new classes to be generated from the UML
¢ Changesrequired to data types and methods to support correlation using object references

e Useof hierarchical exceptions

C.4.1 Removal of "Tp" Prefix

The UML data types labelled with the prefix 'Tp' are represented in Java without this prefix.

Example 18:

UML Java Realisation
TpCallAppinfo CallAppInfo

In the case of name collisions between data types and interfaces as with IpTerminal Capabilities and IpService the UML
data types labelled with the prefix Tp' are represented in Java with an alternative prefix Type'.

Example 19:
UML Java Realisation
IpTerminalCapabilities TerminalCapabilities
TpTerminalCapabilities TypeTerminalCapabilities

The above example is based in conjunction with C.4.3 Removal of "Ip" Prefix.

C.4.2 Constants

The UML constants labelled with the prefix 'P_" are represented in Java without this prefix.

Example 20:

UML Constant Java Constant

P_NO_CALLBACK_ADDRESS_SET NO_CALLBACK_ADDRESS_SET

C.4.3 Removal of "Ip" prefix
The"Ip" prefix isremoved in the Javarealisation of UML interfaces.

Example 21.

UML Java

IpCallControlManager CallControlManager

C.4.4 Mapping of IpInterface

IpInterface interface is represented by the Csapilnterface interface. Thisisa"marker" interface, in that it contains no
methods, but provides a common interface for related interfaces to inherit from. All interfaces to be seriaizable; this
can be done by Csapilnterface extending Serializable.

Example 22:
package org.csapi.jr.se;

public interface Csapilnterface extends Serializabl e{

}

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 43 ETSITS 129 198-1 V5.5.0 (2004-04)

C.4.5 Mapping of IpService

IpService interface is represented by the Java Service interface. This provides acommon interface for related interfaces
to inherit from.

Example 23:

Service Interface:
package org.csapi.jr.se;
public interface Service extends Csapilnterface {
public final static int | N _SERVI CE_STATE=0 ;
public final static int OUT_OF SERVI CE_STATE=1,
voi d addServi ceSt at eChangelLi st ener (Servi ceSt at eChangelLi st ener |i stener)

int getServiceState();
voi d renoveServi ceSt at eChangelLi st ener (Servi ceSt at eChangelLi stener |istener) ;

Listener interface:
package org.csapi.jr.se;

public interface ServiceStateChangeli stener extends java.util.EventListener {
voi d onQut O Servi ce(Qut O Servi ceEvent event);
}

Event class:
package org.csapi.jr.se;
public class QutOf ServiceEvent extends jav.util.EventObject {

publ i c Qut Of Servi ceEvent (j ava. | ang. Obj ect source){
super (sour ce)

C.4.6 Mapping of UML Operations

The UML operations are represented in Java as methods.

Exceptions that can be raised by UML operations are represented in Java with the throws clause and the Java
Redlisation of the UML Exceptions.

UML 'in' parameters, represented by 'in ' preceding the parameter type are represented in Java without this clause.

Example 24:
public void nanager Resurmed ();

public Csapilnterface obtainlnterface (InterfaceNane interfaceNane) throws
I nval i dl nt er f aceNaneExcepti on;

public Service createServi ceManager (CientApplD application, ServicePropertylist serviceProperties,
Servi cel nstancel D servi cel nstancel D);

The above example method signatures are based on generic mapping of interfaces, exceptions and data types.

C.4.7 Mapping of TpSessionID

The UML TpSessionlD datatypes will be hidden in the J2SE APIs (and optionally supported by the underlying Java
implementation). Consequently, the TpSessionl DSet data type and | pService.setCallbackWithSessionl D() method are
superfluous. Also, structures with only TpSessionlD and interface references (e.g. TpCallldentifier) are no longer
necessary and references to these structures should be replaced by just the reference to the interface. For data types that
contain TpSessionl D the Java APl Realisation object replaces theTpSessioni D.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 44 ETSITS 129 198-1 V5.5.0 (2004-04)

The following figure shows how Java APl Realisation objects relate to Parlay UML objects and sessions. How thisis
realised in the adaptors is implementation dependent.

Java APl Realisation Objects

: Relationships |

Parlay UML Object

Parlay UML Sessions

C.4.8 Mapping of TpAssignmentID to the creation of an Activity
object.

The UML TpAssignmentI D data types, which differentiate between multiple parallel asynchronous method invocations
(activities) on the same (‘parent’) interface, are deleted and replaced with createXxx methods (one for each parallel
asynchronous activity) that create (‘child’) activity interfaces. Where this would result in method names of the pattern
createCreateXxx, this should be changed to method names with the pattern createXxx. Associated listeners would then
remove the Create prefix from their name. These activity interfaces, in addition to possibly supporting other methods,
will support one of the previously mentioned multiple parallel asynchronous method invocations. Hence, the Java API
realisation creates multiple (activity) objects and invokes a single request per object rather than creating a single object
and invoking multiple requests on that object, each request being differentiated using the TpAssignmentID value. The
results of the asynchronous method invocation will be handled by the activity interface”s listener interface. To create
the activity interface, the original 1pXxx interface (to be named Xxx) will replace its parallel supporting asynchronous
method invocations, yyyY yyReq, with createY yyYyy methods that take no parameters but returns the activity interface,
YyyYyy. Where this would result in method names of the pattern createCreateXxx, this should be changed to method
names with the pattern createXxx. Associated listeners would then remove the Create prefix from their name. The
activity interface will extend Activity interface (see next rule), have asimple FSM, the addY yyY yyListener,
removeYyyY yyListener and the asynchronous method that previously supported a parallel capability (typically named

yyyYyyReq, but aso yyyYyyStop).

An Activity interface, packaged in org.csapi.jr.se, is added as a parent to all activity interfaces. An application may add
listeners of type ActivityStateChangeL istener to an Activity if it wishes be explicitly informed when the activity
becomesinvalid.

The YyyYyyListener activity listener interfaces will extend java.util.EventListener. The asynchronous methods of
previously named IpAppXxx, typically labelled yyyY yyRes and yyyY yyErr but also yyyYyy, will be renamed
onYyyYyyRes and onYyyYyyErr but also onYyyYyy. Each method will have an event parameter, typically labelled
YyyYyyResEvent and YyyY yyErrEvent, but aso YyyYyyEvent. Events will be classes that extend
java.util.EventObject and contain a public constructor (with multiple parameters — one per class carried by the event)
and a number of public getter methods (one per 'gettable’ class carried by the event). Asaresult of adding activity
listener interfaces, this may cause the requirement for the original 1pAppXxx to disappear, since the yyyY yyRes and
yyyY yyErr methods will effectively be ported to the activity listener interfaces.

For data types that contain TpAssignmentl D the activity object replaces the TpAssignmentID.
Example 25:

Activity Interface:

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 45 ETSITS 129 198-1 V5.5.0 (2004-04)

package org.csapi.jr.se;
public interface Activity extends Csapilnterface {
public final static int |DLE STATE = 0;
public final static int ACTIVE_STATE = 1;
public final static int |INVALID STATE = 2;
public int getState();
public void addActivityStateChangeli stener (ActivityStateChangeli stener |istener);
public void renpveActivityStateChageli stener(ActivityStateChangelistener |istener);

Activity Listener Interface and Event class:

package org.csapi.jr. se;
public interface ActivityStateChangeli stener {

onlnval i dSt at eEvent (I nvalidActivityEvent event)
}

public class InvalidActivityEvent extends java.util.Event Cbject {
public InvalidActivityEvent(java.lang. Object source){
super (source)

Parent interface:

package org.csapi.jr.se.mmul;

public interface UserlLocation extends org.csapi.jr.se.Service {
public LocationReport createlLocationReport();
publ i ¢ ExtendedLocati onReport creat eExt endedLocati onReport ();
public PeriodicLocati onReporting createPeriodi cLocati onReporting();

Child Interface:

package org.csapi.jr.se.mmul;

public interface Locati onReport extends org.csapi.jr.se.Activity {
public void addLocati onReportLi stener(Locati onReportlListener |istener)
public void renmovelLocati onReportListener(Locati onReportListener |istener)
public void | ocationReportReq(Address[] users) throws ...

Listener Interface:

package org.csapi.jr.se.mmul;
public interface LocationReportListener extends java.util.EventListener {

public void onLocati onReport ResEvent (Locati onReport ResEvent event);
public void onLocati onReportErrEvent (Locati onReportErr Event event);

Event classes.

package org.csapi.jr.se.mmul;

public class Locati onReportResEvent extends java.util.Event Object {
/1 with a public UserLocation[] constructor and a public getter
/1 method for the paraneter of the event

}

public classLocati onReport Err Event extends java.util.Event Object {
/1 with a public MbilityError and MobilityD agnostic constructor
/1 and two public getter nmethods, one for each of the paraneters
/1 of the event

The Finite State Model for the Activity interface is given below:

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 46 ETSITS 129 198-1 V5.5.0 (2004-04)

e

a‘ Invalid

Thisinterface specifies an activity, which might be provided by a service. An activity has three states: "idle", "active"
and "invalid". Theinitial stateis"idle" and here the listeners should be registered. It performsin the "active" state. It

entersthe "invalid" state when it has fulfilled its task or afatal error occurred. In special cases state transition from
"idle" to "invalid" is possible.

An example activity interface FSM is given below for a single activity request with a single response:

addL ocationReportListener()
Idle removel ocationReportListener()

locationReportReq|()

A Ctl ve removel ocationReportListener()

"L ocationReportResEvent
"L ocationReportErrEvent

locationReportReq() exception

An example activity interface FSM is given below for asingle activity request with repeating responses:

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 a7 ETSITS 129 198-1 V5.5.0 (2004-04)

addPeriodicL ocationReportingListener()
| dl e removePeriodicLocationReportingListener()

periodocL ocationReportingStartReq()

) removePeriodicL ocationReportingListener()
Active "PeriodicL ocationReportEvent
periodicL ocationReportingStop(“ selected users’)

periodicLocationReportingStop(“all users’)
"PeriodicL ocationReportErrEvent

Invalid

periodicLocationReportingStartReq() exceptjon

C.4.9 Callback Rule

The UML calback design pattern for non client-to-service interfaces (Parlay interface numbers 1, 3, 4, 5 and 6 [Fig 1])
is represented in Java with the callback design pattern. The UML callback design pattern for client-to-service interfaces
(Parlay interface number 2 [Fig 1]) is represented in Java with the event listener design pattern.

The UML client-to-service interfaces (Parlay interface number 2) with the IpAppXxxx naming convention are
represented in Java with the XxxxListener naming convention.

The IpService.setCallback method can be deleted; the interfaces that inherited the setCallback method now have
associated addX xxxListener and removeXxxxListener methods. According to the TpSessionlD mapping,
| pService.setCallbackWithSessionl D() method is deleted.

The XxxxListener listener interfaces will extend java.util.EventListener. The asynchronous methods of previously
named | pAppXxxx, typically labelled yyyyYyyyRes and yyyyY yyyyErr but also yyyyYyyy, will be renamed
onYyyyYyyyRes and onYyyyY yyyErr but also onYyyyYyyy. Each method will have an event parameter, typically
labelled YyyyYyyyResEvent and YyyyY yyyErrEvent, but also YyyyYyyyEvent. Eventswill be classes that extend
java.util.EventObject and contain a private constructor (with multiple parameters — one per class carried by the event)
and a number of public getter methods (one per 'gettable’ class carried by the event). Events are read-only and
serializable.

Example 26:

Listener Interface:
package org.csapi.jr.se.cc. npccs;
Mul ti PartyCal | Li stener extends java.util.EventListener{
public void onGetl nfoResEvent (Get | nf oResEvent event)
public void onGetlnfoErrEvent (GetlnfoErrEvent event)
public void onSupervi seResEvent (Supervi seResEvent event)
public void onSupervi seErrEvent (Supervi seErr Event event)

public void onCal | EndedEvent (Cal | EndedEvent event)
public void onCreat eAndRout eCal | LegEr r Event (Cr eat eAndRout eCal | LegErr Event event)

}

M uliPartyCall Interface additional methods:

public void addMul ti PartyCal | Li stener (Ml ti PartyCallLi stener multiPartyCallListener);

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 48 ETSITS 129 198-1 V5.5.0 (2004-04)

public void renoveMil ti PartyCal |l Li stener(MiltiPartyCallListener nmultiPartyCallListener);

C.4.10 Factory Rule

The following Factory class allows applications to obtain proprietary peer API objects. The term "peer” is Java
nomenclature for a particular platform-specific implementation of a Java interface.

Example 27:
jr.se.fw

. se. Peer Unavai | abl eExcepti on;

.se. I nval i dAr gunent Excepti on;

. se. Resour cesUnavai | abl eExcepti on;
.se.fw access.tsmlnitial;

package org. csapi .
i mport org.csapi.j
i nport org.csapi.
i nport org.csapi.
i nport org.csapi.
import java.util.

e
—_ = = = —

public class Initial Factory {
private static Initial Factory nyFactory;
private static String classNanme = null;

private static String |ang = "en";
private static String cntry = "US";
private Initial Factory() {
}
public synchronized Initial createlnitial (String initial PeerReference) throws
Peer Unavai | abl eExcepti on, ResourcesUnavai |l abl eException , |nvalidArgunent Exception {
Local e currentLocal e;
Resour ceBundl e nessages;
String tryMessage;
try {
current Local e = new Local e(l ang, cntry);
nmessages = ResourceBundl e. get Bundl e("Initial FactoryBundl e", currentlLocal e);
/1 Validate all used val ues before using themlater
/1 avoiding error text exception to hide the real exception
tryMessage = nessages. getString("Initial Peer ReferenceNull");
tryMessage = nessages.getString("InitiallnstFailure");
tryMessage = nessage.getString("Destroylnitial Failure");
}
catch (Exception e) {
t hr ow new Resour cesUnavai | abl eException ("Localisation failed to be initialized");
}
if (initial PeerReference == null) {
String errnsg = nessages.getString("Initial PeerReferenceNull");
t hrow new | nval i dAr gunent Excepti on (errnsg);
}
try {
Class ¢ = G ass.forNanme (getlnplementati ond assNarme ());
if(initial PeerReference.equals('')){
/] Creates a new instance of the Object class
/1 using default constructor
return (Initial)c.new nstance ();
}
Cl ass[] paranfTypes = {initial PeerReference. getC ass()};
java.lang.refl ect. Constructor ctor =
c. get Construct or (par aniTypes) ;
Ooj ect[] parans = {initial Peer Ref erence};
return (Initial) ctor.new nstance(parans);
} catch (Exception e) {
String errnsg = nessages.getString("InitiallnstFailure");
t hrow new Peer Unavai | abl eException (errnsg);
}
}

public synchronized static Initial Factory getlnstance() {
if (nyFactory == null) {
nyFactory = new Initial Factory ();
}

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 49 ETSITS 129 198-1 V5.5.0 (2004-04)

return nyFactory;

}

public String getlnplementati ond assNane () {
return cl assNane;
}

public static void setlnplenmentati onC assNane (String cl assNane) {
this.classNane = cl assNang;

}
public synchroni zed static void setlLocal e(String | anguage, String country) {
if (langauage == null) {
lang = "en";
el se {
I ang = | anguage;
}
if (country == null) {
cntry = "US";
el se {
cntry = country;
}
}
public void destroylnitial (Initial initiallnstance) {
if (initiallnstance == null) {
return;
}
try {
delete initiallnstance;
} catch (Exception e) {
String errnmsg = nessages. getString("Destroylnitial Failure");
t hrow new Runti meExcepti on(errmsg);
}
}

C.4.11 J2SE Specific Exceptions

Exceptionsin this section are only applicable within a J2SE environment.

C.4.11.1 PeerUnavailableException
PeerUnavailableException indicates failure to access an implementation of the Initial interface.

Example 28:

public class PeerUnavail abl eExcepti on extends java.lang. Exception {
private Throwabl e _cause = null;
publ i ¢ Peer Unavai |l abl eException () {
super () ;

publ i ¢ Peer Unavai | abl eException (String nessage) {
super (message) ;

publ i ¢ Peer Unavai | abl eException (String nessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

publ i ¢ Peer Unavai | abl eExcepti on (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() ({
return _cause;
}

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 50 ETSITS 129 198-1 V5.5.0 (2004-04)

C.4.11.2 lllegalStateException
I1legal StateException exception signals that a method has been invoked at anillegal or inappropriate time.
Example 29:

package org.csapi.jr.se;
public class |llegal StateException extends java.lang. Exception {

private int _state;
private java.lang.Object _object;

public |11 egal StateException(Cbject object, int state) {

super ();
_obj ect = object;
_state = state;

}

public Illegal StateException(Cbject object, int state, String s) {

super (s);
_object = object;
_state = state;

}

public Object getObject() {
return _object;
}

public int getState() {
return _state;
}

C.4.12 User Interaction Specific Rules

C.4.12.1 Interfaces representing UML IpUl and IpUICall Rule

The following mappings take account of the fact that when the TpAssignmentlID rule is applied the Java interfaces
representing UML IpUICall does not extend the Java interfaces representing UML IpUI.

Java Ul Generic replaces the UML IpUl. Methods common to both the Java UlGeneric and Java UICall are pulled up
into a super-interface called Ul. UML IpAppUI and IpAppUiCall interfaces are replaced by a Ul Listener interface.

C.4.12.2 Naming Collisions of GUI and CUI Activities Rule

Naming collisions that arise through GUI and CUI activities e.g. XXX, having the same name will be dealt with by
prefixing the Call Related Ul activity by 'CallRelated’. Methods to create the activity will become
createCallRelatedX X X ().

C.5 J2EE Specific Conventions

J2EE supports both remote and local interfaces.

C.5.1 Serialization UID

All data types will have a serialVersionUID defined within its definition, as a static final long value.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 51 ETSITS 129 198-1 V5.5.0 (2004-04)

Example 30:

package org.csapi.jr.ee;
public final class TpAddress inplenents java.io.Serializable {
static final |ong serial VersionU D = 989898989898L;

private TpAddressPl an pl an;
...remai nder of class ...

C.5.2 Remote Interface Definitions

C.5.2.1 IpInterface

Thisinterface implements java.io.Serializable. Sinceit isthe root interface for all other interfaces, this makes all
defined interfaces seriadizable.

Example 31:

public interface Iplnterface extends javaio.Seriaizable

C.5.2.2 Methods for Remote Interfaces

A public method is defined within a remote interface for each method defined in the specification, with zero or one
output specified as the return value, and all other parameters listed without any input marker. Each method will return
java.rmi.RemoteException in addition to other exceptions, if any.

Example 32:

public void deassignCall (int callSessionlD) throws java.rmn .RenoteException,
org.csapi.jr.ee. TpCommonException, org.csapi.jr.ee.lnvalidSessionl dException;

C.5.3 Local Interface Definitions

C.5.3.1 Methods for Local Interfaces

A public method is defined within alocal interface for each method defined in the specification, with zero or one output
specified asthe return value, and all other parameters listed without any input marker.

Example 33:

public void deassignCall (int callSessionlD) throws org.csapi.jr.ee. TpCormonExcepti ons,
org.csapi.jr.ee.lnvalidSessionl dExcepti on;

C.5.4 Multi Party Call Control Specific Rules

The Multi Party Call Control Manager interface has specific Java Realisation considerations.

C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts
Some method names within the IpAppCallLeg interface have the same names as methods in the IpAppMultiPartyCall

interface. These method names conflict when both interfaces are implemented on the same object within an RM1/I10P
or CORBA environment.

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 52 ETSITS 129 198-1 V5.5.0 (2004-04)

For the method names that are the same in both IpMultiPartyCall and IpCallLeg interfaces or IpAppMultiPartyCall and
IpAppCallLeg, the call leg related method names are modified to include 'CallLeg’ as part of the method name to avoid
name conflicts. The following method names resullt:

IpCallLeg Method Name Realisation Method Name
getinfoReq getCallLegInfoReq
superviseReq superviseCallLegReq

Table 1: IpCallLeg method name modifications

IpAppCallLeg Method Name Realisation Method Name
getinfoRes getCallLegInfoRes
getinfoErr getCallLeglnfoErr
superviseRes superviseCallLegRes
superviseErr superviseCallLegErr

Table 2: IpAppCallLeg method name modifications

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 53 ETSITS 129 198-1 V5.5.0 (2004-04)

Annex D (informative):
Change history

Change history

Date TSG # TSG Doc. |CR |Rev [Subject/Comment Old New
Mar 2001 CN 11 NP-010134 |047 |-- CR 29.198: for moving TS 29.198 from R99 to Rel-4 (N5-010158) 3.2.0 [4.0.0
Jun 2001 CN_12 NP-010330 |001 |-- Corrections to OSA API Rel4 (Correction to IDL namespace to align |4.0.0 [4.1.0
with that of ETSI and Parlay equivalent APIs: Change
org.open_service_access root namespace to org.csapi) (N5-010267)
Sep 2001 CN_13 |NP-010464 (002 |-- Changing references to JAIN 4.1.0 |4.2.0
Dec 2001 CN_14 NP-010594 (003 |-- Replace Out Parameters with Return Types 4.2.0 14.3.0
Dec 2001 CN_14 |NP-010594 (004 |-- Remove the perception that the OSA API only uses CORBA for its 42.0 |4.3.0
transport mechanism
Mar 2002 - -- - -- Editorial update (no CR) following Hong Kong CN5#16 4.3.0 |4.3.1
Jun 2002 CN_16 NP-020181 |005 |-- Addition of support for Java API technology realisation 4.3.1]5.0.0
Jun 2002 CN_16 |NP-020182 (006 |-- Addition of support for WSDL realisation 4.3.1 |5.0.0
Jun 2002 CN_16 NP-020184 (007 [-- Adding the full naming convention for exceptions 4.3.1 |5.0.0
Jun 2002 CN_16 |NP-020184 (008 |-- Correction of References in OSA specifications 4.3.1]5.0.0
Jun 2002 CN_16 |[NP-020184 (009 |-- Addition of text describing the technology realisations of the 431 |5.0.0
Parlay/OSA specification
Sep 2002 CN_17 NP-020427 |010 |-- Addition to ObjectRef description in WSDL Mapping Rules 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 |011 |-- Addition of sequence tag to Choice types 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 |012 |-- Replace all occurrences of the xsd:anyURI type to xsd:string 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 (013 [-- Correction to Namespace mapping in WSDL Mapping Rules 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 |014 |-- Correction to xmlIns:wsdl Namespace 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 (015 |-- Prepend class name to <message> name. 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 (016 |-- Correction to void return types in WSDL Mapping Rules 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 |017 |-- Add missing CORBA realization rules in Part 1 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020427 |018 |-- Add general introduction to the OSA APIs in Part 1 5.0.0 [5.1.0
Sep 2002 CN_17 NP-020395 |020 |-- Add text to clarify relationship between 3GPP and ETSI/Parlay OSA |5.0.0 (5.1.0
specifications
Mar 2003 CN_19 |- - - Editorial update (no CR) following Bangkok CN5#22 (Introduction, 5.1.0 [5.11
Reference Titles)
Jun 2003 CN_20 NP-030298 (022 (1 Removal of un-used references 5.1.1 [5.2.0
Jun 2003 CN_20 NP-030239 (023 |-- Correction to Java Realisation Annex 5.1.1 [5.2.0
Sep 2003 CN 21 NP-030352 |024 |-- Correction to Java Realisation Annex 5.2.0 [5.3.0
Dec 2003 CN_22 NP-030547 (025 |-- Add Java Realization rules to solve MPCC name conflicts 5.3.0 [5.4.0
Dec 2003 CN_22 NP-030547 (026 |-- Correction to Java Realisation Rulebook 5.3.0 [5.4.0
Apr 2004 CN_23bis[NP-040154 (028 |-- Correct Java Code to conform with Java Rulebook in TS 29.198-01 |5.4.0 |5.5.0
and to remove errors

ETSI

3GPP TS 29.198-01 version 5.5.0 Release 5 54

ETSI TS 129 198-1 V5.5.0 (2004-04)

History
Document history

Vv5.0.0 June 2002 Publication

V5.1.0 September 2002 | Publication (Withdrawn)

V511 March 2003 Publication

Vv5.2.0 June 2003 Publication

V5.3.0 September 2003 | Publication

Vv5.4.0 December 2003 | Publication

V5.5.0 April 2004 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Open Service Access APIs
	5 Structure of the OSA API (29.198) and Mapping (29.998) documents
	6 Methodology
	6.1 Tools and Languages
	6.2 Packaging
	6.3 Colours
	6.4 Naming scheme
	6.5 State Transition Diagram text and text symbols
	6.6 Exception handling and passing results
	6.7 References
	6.8 Strings and Collections
	6.9 Prefixes

	7. Introduction to OSA APIs
	7.1 Interface Types
	7.2 Service Factory
	7.3 Use of Sessions
	7.4 Interfaces and Sessions
	7.5 Callback Interfaces
	7.6 Setting Callbacks
	7.7 Synchronous versus Asynchronous Methods
	7.8 Out Parameters
	7.9 Exception Hierarchy
	7.10 Common Exceptions
	7.11 Use of NULL
	7.12 Notification Handling

	Annex A (normative): OMG IDL
	A.1 Tools and Languages
	A.2 Namespace
	A.3 Object References
	A.4 Mapping of Datatypes
	A.4.1 Basic Datatypes
	A.4.2 Constants
	A.4.3 Collections
	A.4.4 Sequences
	A.4.5 Enumerations
	A.4.6 Choices

	A.5 Use of NULL
	A.6 Exceptions
	A.7 Naming space across CORBA modules

	Annex B (informative): W3C WSDL
	B.1 Tools and Languages
	B.2 Proposed Namespaces for the OSA WSDL
	B.3 Object References
	B.4 Mapping UML Data Types to XML Schema
	B.4.1 Data Types
	B.4.1.1 <<Constant>>
	B.4.1.2 <<NameValuePair>>
	B.4.1.3 <<SequenceOfDataElements>>
	B.4.1.4 <<TypeDef>>
	B.4.1.5 <<NumberedSetOfDataElements>>
	B.4.1.6 <<TaggedChoiceOfDataElements>>

	B.5 Mapping of UML SCF to WSDL
	B.5.1 Mapping of Operations to WSDL message element
	B.5.2 Mapping of Exception to WSDL message element
	B.5.3 Mapping of CommonExceptions to WSDL message element
	B.5.4 Mapping of Interface Class to WSDL portType and binding elements
	B.5.5 Mapping of UML SCF to WSDL service element

	Annex C (informative): Java Realisation API
	C.1 Java Realisation Overview
	C.1.1 J2SE API
	C.1.2 J2EE API
	C 1.3 Javadoc

	C.2 Tools and languages
	C.3 Generic mappings (Elements common to J2SE and J2EE)
	C.3.1 Namespace
	C.3.2 Package Naming Conventions
	C.3.3 Object References
	C.3.4 Element Naming
	C.3.5 Element Naming Collisions
	C.3.6 Data Type Definitions
	C.3.6.1 Basic Data Types
	C.3.6.2 Constants
	C.3.6.3 NumberedSetsOfDataElements (Collections)
	C.3.6.4 SequenceOfDataElements (Structures)
	C.3.6.5 NameValuePair (Enumerations)
	C.3.6.6 TaggedChoiceOfDataElements (Unions)
	C.3.6.7 Exceptions
	C.3.6.7.1 PlatformException
	C.3.6.7.2 P_XXX_XXX Exceptions
	C.3.6.7.3 TpCommonExceptions
	C.3.6.7.4 TpCommonException's associated exceptions
	C.3.6.7.5 Additional abstract exceptions
	C.3.6.7.6 InvalidUnionAccessorException
	C.3.6.7.7 InvalidEnumValueException

	C.4 J2SE Specific Conventions
	C.4.1 Removal of "Tp" Prefix
	C.4.2 Constants
	C.4.3 Removal of "Ip" prefix
	C.4.4 Mapping of IpInterface
	C.4.5 Mapping of IpService
	C.4.6 Mapping of UML Operations
	C.4.7 Mapping of TpSessionID
	C.4.8 Mapping of TpAssignmentID to the creation of an Activity object.
	C.4.9 Callback Rule
	C.4.10 Factory Rule
	C.4.11 J2SE Specific Exceptions
	C.4.11.1 PeerUnavailableException
	C.4.11.2 IllegalStateException

	C.4.12 User Interaction Specific Rules
	C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule
	C.4.12.2 Naming Collisions of GUI and CUI Activities Rule

	C.5 J2EE Specific Conventions
	C.5.1 Serialization UID
	C.5.2 Remote Interface Definitions
	C.5.2.1 IpInterface
	C.5.2.2 Methods for Remote Interfaces

	C.5.3 Local Interface Definitions
	C.5.3.1 Methods for Local Interfaces

	C.5.4 Multi Party Call Control Specific Rules
	C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

	Annex D (informative): Change history
	History

