
ETSITS 125 133 V7.4.0 (2006-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Requirements for support of radio resource management (FDD)
(3GPP TS 25.133 version 7.4.0 Release 7)

Reference
RTS/TSGR-0425133v740

Keywords

UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006. All rights reserved.

DECTTM, **PLUGTESTS**TM and **UMTS**TM are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**TM and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intelle	ectual Property Rights	2
Forew	vord	2
Forew	vord	12
1	Scope	13
2	References	
3	Definitions, symbols and abbreviations	14
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
3.4	Test tolerances	
4	Idle Mode Tasks	16
4.1	Cell Selection	
4.1.1	Introduction.	
4.2	Cell Re-selection	
4.2.1	Introduction	
4.2.2	Requirements	
4.2.2.1	1	
4.2.2.2		17
4.2.2.3		
4.2.2.4	4 Measurements of inter-frequency TDD cells	17
4.2.2.5	5 Measurements of inter-RAT GSM cells	18
4.2.2.6		
4.2.2.7		
4.2.2.8		19
4.2.2.9	1 7	
	reception is active	19
5	UTRAN Connected mode mobility	20
5.1	FDD/FDD Soft Handover	
5.1.1	Introduction	20
5.1.2	Requirements	20
5.1.2.1	Active set dimension	20
5.1.2.2		
5.1.2.3	1	
5.2	FDD/FDD Hard Handover	
5.2.1	Introduction	
5.2.2	Requirements	
5.2.2.1	· · · · · · · · · · · · · · · · · · ·	
5.2.2.2	±	
5.3	FDD/TDD Handover	
5.3.1	Introduction	
5.3.2	Requirements	
5.3.2.1		
5.3.2.2	1	
5.4 5.4.1	FDD/GSM Handover	
5.4.1	Introduction	
5.4.2 5.4.2.1	Requirements	
5.4.2.1 5.4.2.2	•	
5.4.2.2 5.5	2 Interruption time Cell Re-selection in CELL_FACH	
5.5.1	Introduction	
5.5.2	Requirements	
5.5.2.1		
5.5.2.1	· · · · · · · · · · · · · · · · · · ·	

5.5.2.1.2	1 2	
5.5.2.1.3		26
5.5.2.1.4	4 UTRAN-GSM Cell Reselection	26
5.5.2.2	Interruption time	
5.5.2.2.		
5.5.2.2.2		
5.5.2.2.3		
5.5.2.3	Measurement and evaluation of cell selection criteria S of serving cell	
5.6	Cell Re-selection in CELL_PCH	
5.6.1	Introduction	
5.6.2	Requirements	
5.7	Cell Re-selection in URA_PCH	
5.7.1	Introduction	
5.7.2	Requirements	
5.8	RACH reporting	
5.8.1	Introduction	
5.8.2	Requirements	
5.9	Inter-RAT cell change order from UTRAN in CELL_DCH and CELL_FACH	
5.9.1	Introduction	
5.9.2	Requirements	
5.9.2.1	Delay	
5.9.2.2	Interruption time	30
5.10	Serving HS-DSCH cell change	
5.10.3	Introduction	31
5.10.2	Requirements	
5.10.2.1	Serving HS-DSCH cell change delay	31
5.10.2.2	Interruption time	31
6 I	RRC Connection Control	30
6.1	RRC Re-establishment	
6.1.1	Introduction	
6.1.1	Requirements	
6.1.2.1	UE Re-establishment delay requirement	
6.2	VoidVoid	
6.3	Random Access	
6.3.1	Introduction	
6.3.2	Requirements	
6.3.2.1	Correct behaviour when receiving an ACK	
6.3.2.2	Correct behaviour when receiving an NACK	
6.3.2.3	Correct behaviour at Time-out	
6.3.2.4	Correct behaviour when reaching maximum transmit power	
6.4	Transport format combination selection in UE	
6.4.1	Introduction.	
6.4.2	Requirements	
6.5	Maximum allowed UL TX Power	
6.6	Void	
7	Fiming and Signalling characteristics	37
7.1	UE Transmit Timing	37
7.1.1	Introduction	37
7.1.2	Requirements	38
7.2	UE Receive - Transmit Time Difference	38
7.2.1	Introduction	38
7.2.2	Requirements	38
7.3	UE timer accuracy	
7.3.1	Introduction	
7.3.2	Requirements	
7.4	PRACH Burst timing accuracy	
7.4.1	Introduction	
7.4.2	Requirements	39
0 *	-	
8 U	JE Measurements Procedures	
x ı	General Measurement Requirements in CHLL DEH State	310

8.1.1	Introduction	39
8.1.2	Requirements	
8.1.2.1	UE Measurement Capability	40
8.1.2.2	FDD intra frequency measurements	
8.1.2.2.1		
8.1.2.2.1	8 8 P	
8.1.2.2.2		
8.1.2.2.2	8 81	
8.1.2.2.3		
8.1.2.2.4		
8.1.2.2.5		
8.1.2.3	FDD inter frequency measurements	
8.1.2.3.1		
8.1.2.3.2	1 ,	
8.1.2.3.3	1 6	
8.1.2.3.4		
8.1.2.4	TDD measurements	
8.1.2.4.1		
8.1.2.4.2	1	
8.1.2.4.3	1 6	
8.1.2.4.4		
8.1.2.5 8.1.2.5.1	GSM measurements	
8.1.2.5.2		
8.1.2.5.3		
8.1.2.5.4		
8.2	Measurements in CELL_DCH State with special requirements	
8.2.1	Introduction	
8.2.2	Requirements	
8.3	Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH state	
8.3.1	Introduction	
8.3.2	Requirements	
8.4	Measurements in CELL_FACH State	53
8.4.1	Introduction	53
8.4.2	Requirements	53
8.4.2.1	UE Measurement Capability	
8.4.2.2	FDD intra frequency measurements	
8.4.2.2.1		
8.4.2.2.2		
8.4.2.2.2		
8.4.2.2.3	1 &	
8.4.2.3	FDD inter frequency measurements	
8.4.2.3.1		
8.4.2.3.2	± •	
8.4.2.4 8.4.2.4.1	TDD measurements I dentification of a new cell	
8.4.2.4.2		
8.4.2.5	P-CCPCH RSCP measurement period	
8.4.2.5.1		
8.4.2.5.2		
8.5	Capabilities for Support of Event Triggering and Reporting Criteria in CELL_FACH state	
8.5.1	Introduction	
8.5.2	Requirements	
	-	
	Measurements Performance Requirements	
9.1	Measurement Performance for UE	
9.1.1	CPICH RSCP	
9.1.1.1	Intra frequency measurements accuracy	
9.1.1.1.1 9.1.1.1.2		
9.1.1.1.2 9.1.1.2	Inter frequency measurement accuracy	
9.1.1.2 9.1.1.2.1		
7.1.1.4.l		

9.1.1.3	CPICH RSCP measurement report mapping	65
9.1.2	CPICH Ec/Io	65
9.1.2.1	Intra frequency measurements accuracy	65
9.1.2.1.1	Absolute accuracy requirement	
9.1.2.1.2	Relative accuracy requirement	66
9.1.2.2	Inter frequency measurement accuracy	66
9.1.2.2.1	Absolute accuracy requirement	66
9.1.2.2.2	Relative accuracy requirement	67
9.1.2.3	CPICH Ec/Io measurement report mapping	68
9.1.3	UTRA Carrier RSSI	
9.1.3.1	Absolute accuracy requirement	68
9.1.3.2	Relative accuracy requirement	68
9.1.3.3	UTRA Carrier RSSI measurement report mapping	69
9.1.4	GSM carrier RSSI	69
9.1.5	Transport channel BLER	70
9.1.5.1	BLER measurement requirement	70
9.1.5.2	Transport channel BLER measurement report mapping	70
9.1.6	UE transmitted power	
9.1.6.1	Accuracy requirement	70
9.1.6.2	UE transmitted power measurement report mapping	70
9.1.7	SFN-CFN observed time difference	
9.1.7.1	Intra frequency measurement requirement	
9.1.7.2	Inter frequency measurement requirement	72
9.1.7.3	SFN-CFN observed time difference measurement report mapping	
9.1.8	SFN-SFN observed time difference	73
9.1.8.1	SFN-SFN observed time difference type 1	
9.1.8.1.1	Measurement requirement	73
9.1.8.1.2	SFN-SFN observed time difference type 1 measurement report mapping	
9.1.8.2	SFN-SFN observed time difference type 2	
9.1.8.2.1	Intra frequency measurement requirement accuracy without IPDL period active	
9.1.8.2.2	Intra frequency measurement requirement accuracy with IPDL period active	
9.1.8.2.3	Inter frequency measurement requirement accuracy	
9.1.8.2.4	SFN-SFN observed time difference type 2 measurement report mapping	
9.1.9	UE Rx-Tx time difference	77
9.1.9.1	UE Rx-Tx time difference type 1	77
9.1.9.1.1	Measurement requirement	77
9.1.9.1.2	UE Rx-Tx time difference type 1 measurement report mapping	77
9.1.9.2	UE Rx-Tx time difference type 2	77
9.1.9.2.1	Measurement requirement	77
9.1.9.2.2	UE Rx-Tx time difference type 2 measurement report mapping	78
9.1.10	Void	78
9.1.11	P-CCPCH RSCP	78
9.1.11.1	Absolute accuracy requirements	78
9.1.11.1.1	3.84 Mcps TDD Option	78
9.1.11.1.2	1.28 Mcps TDD Option	79
9.1.11.2	P-CCPCH RSCP measurement report mapping	79
9.1.12	UE GPS Timing of Cell Frames for UE positioning	79
9.1.12.1	UE GPS timing of Cell Frames for UE positioning measurement report mapping	
9.1.13	UE transmission power headroom	
9.1.13.1	Delay requirement	80
9.1.13.2	Measurement period requirement	80
9.1.13.3	UE transmission power headroom measurement report mapping	
9.1.13.4	UE transmission power headroom measurement report accuracy	
9.2	Measurements Performance for UTRAN	
9.2.1	Received total wideband power	
9.2.1.1	Absolute accuracy requirement	
9.2.1.2	Relative accuracy requirement	
9.2.1.3	Received total wideband power measurement report mapping	
9.2.2	SIR	
9.2.2.1	Accuracy requirement	
9.2.2.2	SIR measurement report mapping	
923	SIR	8/

9.2.3.1	7 1	
9.2.3.2		
9.2.4	Transmitted carrier power	
9.2.4.1	√ 1	
9.2.4.2		
9.2.5	Transmitted code power	
9.2.5.1	V 1	
9.2.5.2		
9.2.5.3	1 11 6	
9.2.6	Void	
9.2.7	Physical channel BER	
9.2.7.1	√ 1	
9.2.7.2		
9.2.8	Round trip time	
9.2.8.1	√ 1	
9.2.8.2	1 11 6	
9.2.9	Transport Channel BER	
9.2.9.1		
9.2.9.2	1 11 6	
9.2.10		
9.2.10.	· · · · · · · · · · · · · · · · · · ·	
9.2.10.		
9.2.11	PRACH Propagation delay	
9.2.11.	J 1	
9.2.11.	T O	
9.2.11.		
9.2.11.		
9.2.12	Acknowledged PRACH preambles	
9.2.12.		
9.2.13	Void	
9.2.14	SFN-SFN observed time difference	
9.2.15		
9.2.15. 9.2.15.	, , , , , , , , , , , , , , , , , , ,	
9.2.15.		
9.2.15.		
9.2.16	Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or	90
7.2.10	E-HICH transmission.	91
9.2.16.		
9.2.16.	· · · · · · · · · · · · · · · · · · ·	
	HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission	91
9.2.17	DL Transmission Branch Load	
9.2.17.		
9.2.17.		
	x A (normative): Test Cases	
	Purpose of Annex	
	•	
A.2	Requirement classification for statistical testing.	
A.2.1	Types of requirements in TS 25.133	94
A.3	Reserved for Future Use	95
A.4	Idle Mode	95
A.4.1	Cell selection	
A.4.2	Cell Re-Selection.	
A.4.2.		
A.4.2.	The state of the s	
A.4.2.	1.2 Test Requirements	97
A.4.2.2	Scenario 2: Multi carrier case	97
A.4.2.2	1	
A.4.2.2	2.2 Test Requirements	98

A.4.3	UTRAN to GSM Cell Re-Selection	
A.4.3.1	Scenario 1	
A.4.3.1.1	Test Purpose and Environment	99
A.4.3.1.2	Test Requirements	100
A.4.3.2	Scenario 2	100
A.4.3.2.1	Test Purpose and Environment	100
A.4.3.2.2	Test Requirements	101
A.4.3.3	Scenario 3	102
A.4.3.3.1	Test Purpose and Environment	102
A.4.3.3.2	Test Requirements	103
A.4.3.4	Scenario 4	103
A.4.3.4.1	Test Purpose and Environment	103
A.4.3.4.2	Test Requirements	105
A.4.4	FDD/TDD Cell Re-selection	106
A.4.4.1	Test Purpose and Environment	106
A.4.4.1.1	3.84 Mcps TDD Option	106
A.4.4.1.2	1.28 Mcps TDD Option	107
A.4.4.2	Test Requirements	108
		100
	FRAN Connected Mode Mobility	
A.5.1	FDD/FDD Soft Handover	
A.5.1.1	Test Purpose and Environment	
A.5.1.1.1	Test procedure	
A.5.1.2	Test Requirements	
A.5.2	FDD/FDD Hard Handover	
A.5.2.1	Handover to intra-frequency cell	
A.5.2.1.1	Test Purpose and Environment	
A.5.2.1.2	Test Requirements	
A.5.2.2	Handover to inter-frequency cell	
A.5.2.2.1	Test Purpose and Environment	
A.5.2.2.2	Test Requirements	
A.5.3	Void	
A.5.4	Inter-system Handover from UTRAN FDD to GSM	
A.5.4.1	Test Purpose and Environment	
A.5.4.2	Test Requirements	
A.5.5	Cell Re-selection in CELL_FACH	
A.5.5.1	One frequency present in neighbour list	
A.5.5.1.1	Test Purpose and Environment	115
A.5.5.1.2	Test Requirements	116
A.5.5.2	Two frequencies present in the neighbour list	117
A.5.5.2.1	Test Purpose and Environment	117
A.5.5.2.2	Test Requirements	118
A.5.5.3	Cell Reselection to GSM	119
A.5.5.3.1	Test Purpose and Environment	119
A.5.5.3.2	Test Requirements	121
A.5.5.4	Cell Reselection during an MBMS session, one frequency present in neighbour list	121
A.5.5.4.1	Test Purpose and Environment	121
A.5.5.4.2	Test Requirements	124
A.5.6	Cell Re-selection in CELL_PCH	124
A.5.6.1	One frequency present in the neighbour list	124
A.5.6.1.1	Test Purpose and Environment	124
A.5.6.1.2	Test Requirements	
A.5.6.2	Two frequencies present in the neighbour list	
A.5.6.2.1	Test Purpose and Environment	
A.5.6.2.2	Test Requirements	
A.5.6.3	Cell re-selection during an MBMS session, one UTRAN inter-frequency and 4 GSM cells pres	
	the neighbour list	
A.5.6.3.1	Test Purpose and Environment	
A.5.6.3.2	Test Requirements	
A.5.7	Cell Re-selection in URA_PCH.	
A.5.7.1	One frequency present in the neighbour list	
A 5 7 1 1	Test Purpose and Environment	130

A.5.7.1.2	Test Requirements	
A.5.7.2	Two frequencies present in the neighbour list	
A.5.7.2.1	Test Purpose and Environment	
A.5.7.2.2	Test Requirements	132
A.5.8	Serving HS-DSCH cell change	133
A.5.8.1	Test Purpose and Environment	
A.5.8.1.1	Test procedure	134
A.5.8.2	Test Requirements	134
A.6 RI	RC Connection Control	13/
A.6.1	RRC Re-establishment delay	
A.6.1.1	Test Purpose and Environment	
A.6.1.1	<u>.</u>	
A.6.1.1.1 A.6.1.1.2	TEST 1 TEST 2	
A.6.1.2 A.6.1.2		
A.6.1.2.1	Test Requirements	
A.6.1.2.1 A.6.1.2.2	Test 2	
A.6.2	Random Access	
A.6.2.1	Test Purpose and Environment	
A.6.2.2	Test Requirements	
A.6.2.2.1	Correct behaviour when receiving an ACK	
A.6.2.2.2	Correct behaviour when receiving an NACK	
A.6.2.2.3	Correct behaviour at Time-out	
A.6.2.2.4	Correct behaviour when reaching maximum transmit power	
A.6.3	Void	
A.6.4	Transport format combination selection in UE	
A.6.4.1	Test Purpose and Environment	
A.6.4.1.1	Interactive or Background, PS, UL: 64 kbps	
A.6.4.2	Test Requirements	
A.6.4.2.1	Interactive or Background, PS, UL: 64 kbps	
A.6.5	Void	
A.6.6	E-TFC restriction in UE	
A.6.6.1	Test Purpose and Environment	
A.6.6.1.1	10mS TTI E-DCH E-TFC restriction testcase	
A.6.4.2	Test Requirements	143
A.7 Ti	ming and Signalling Characteristics	145
A.7.1	UE Transmit Timing	
A.7.1.1	Test Purpose and Environment	
A.7.1.2	Test Requirements	
Λ./.1.2	1 est requirements	14.
A.8 Ul	E Measurements Procedures	146
A.8.1	FDD intra frequency measurements	
A.8.1.1	Event triggered reporting in AWGN propagation conditions	146
A.8.1.1.1	Test Purpose and Environment	146
A.8.1.1.2	Test Requirements	147
A.8.1.2	Event triggered reporting of multiple neighbours in AWGN propagation condition	147
A.8.1.2.1	Test Purpose and Environment	147
A.8.1.2.2	Test Requirements	
A.8.1.3	Event triggered reporting of two detectable neighbours in AWGN propagation condition	
A.8.1.3.1	Test Purpose and Environment	
A.8.1.3.2	Test Requirements	
A.8.1.4	Correct reporting of neighbours in fading propagation condition	
A.8.1.4.1	Test Purpose and Environment	
A.8.1.4.2	Test Requirements	
A.8.1.5	Event triggered reporting of multiple neighbour cells in Case 1 fading condition	
A.8.1.5.1	Test Purpose and Environment	
A.8.1.5.2	Test Requirements	
A.8.1.6	Event triggered reporting of multiple neighbour cells in Case 3 fading condition	
A.8.1.6.1	Test Purpose and Environment	
A.8.1.6.2	Test Requirements	
A.8.2	FDD inter frequency measurements	
Δ 8 2 1	Correct reporting of neighbours in AWGN propagation condition	

A.8.2.1.1	Test Purpose and Environment	154
A.8.2.1.2	Test Requirements	155
A.8.2.2	Correct reporting of neighbours in Fading propagation condition	156
A.8.2.2.1	Test Purpose and Environment	156
A.8.2.2.2	Test Requirements	
A.8.2.3	Correct reporting of neighbours in fading propagation condition using TGL1=14	157
A.8.2.3.1	Test Purpose and Environment	157
A.8.2.3.2	Test Requirements	157
A.8.3	Void	158
A.8.4	GSM measurements	
A.8.4.1	Correct reporting of GSM neighbours in AWGN propagation condition	158
A.8.4.1.1	Test Purpose and Environment	158
A.8.4.1.1.1	Test 1. With BSIC verification required	159
A.8.4.1.1.2	Test 2: Without BSIC verification required	160
A.8.4.1.2	Test Requirements	161
A.8.4.1.2.1	TEST 1 With BSIC verification required	161
A.8.4.1.2.2	TEST 2 Without BSIC verification required	161
A.8.5	Combined Interfrequency and GSM measurements	162
A.8.5.1	Correct reporting of neighbours in AWGN propagation condition	162
A.8.5.1.1	Test Purpose and Environment	
A.8.5.1.2	Test Requirements	163
	-	
	asurement Performance Requirements	
	Measurement Performance for UE	
A.9.1.1	CPICH RSCP	
A.9.1.1.1	Test Purpose and Environment	
A.9.1.1.1.1	1 7 1	
A.9.1.1.1.2	1 2 1	
A.9.1.1.2	Test Requirements	
A.9.1.2	CPICH Ec/Io	
A.9.1.2.1	Test Purpose and Environment	
A.9.1.2.1.1	1 · · · J · · · · J · · · · · · · · · ·	
A.9.1.2.1.2	1 1 1	
A.9.1.2.2	Test Requirements	
A.9.1.3	UTRA Carrier RSSI	
A.9.1.3.1	Test Purpose and Environment	
A.9.1.3.2	Test Requirements	
A.9.1.3A	GSM Carrier RSSI	
A.9.1.3A.1		
A.9.1.3A.2	1	
A.9.1.3B	Transport channel BLER	
A.9.1.3C	UE transmitted power	
A.9.1.3C.1	•	
A.9.1.3C.1	1	
A.9.1.3C.2	1	
A.9.1.4	SFN-CFN observed time difference	
A.9.1.4.1	Test Purpose and Environment	
A.9.1.4.1.1	J J J J J J J J J J J J J	
A.9.1.4.1.2	1 2 1	
A.9.1.4.2	Test Requirements	
A.9.1.5	SFN-SFN observed time difference	
A.9.1.5.1	SFN-SFN observed time difference type 1	
A.9.1.5.1.1	r	
A.9.1.5.1.2	1	
A.9.1.5.2	SFN-SFN observed time difference type 2 without IPDL period active	
A.9.1.5.2.1	I .	
A.9.1.5.2.2	1	
A.9.1.5.3	SFN-SFN observed time difference type 2 with IPDL period active	
A.9.1.5.3.1	1	
A.9.1.5.3.2	1	
A.9.1.6 A 9 1 6 1	UE Rx-Tx time difference	
AYINI	UE KX-IX HIDE HILLERENCE IVDE I	177

A.9.1.6.1.1	Test Purp	177	
A.9.1.6.1.2	Test Requ	178	
A.9.1.6.2		178	
A.9.1.6.2.1		178	
A.9.1.6.2.2	*		179
A.9.1.7	Void		
A.9.1.8	Void		179
Annex B (i	nformative):	Change History	180
History			190

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

[19]

The present document specifies requirements for support of Radio Resource Management for FDD. These requirements include requirements on measurements in UTRAN and the UE as well as requirements on node dynamical behaviour and interaction, in terms of delay and response characteristics.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

[1]	3GPP TS 25.304: "UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode"
[2]	3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".
[3]	3GPP TS 25.101: "UE Radio transmission and reception (FDD)".
[4]	3GPP TS 25.104: "BTS Radio transmission and reception (FDD)".
[5]	3GPP TS 25.102: "UE Radio transmission and reception (TDD)".
[6]	3GPP TS 25.105: "BTS Radio transmission and reception (TDD)".
[7]	3GPP TS 25.212: 'Multiplexing and channel coding (FDD)'.
[8]	3GPP TS 25.141: "Base station conformance testing (FDD)".
[9]	3GPP TS 25.142: "Base station conformance testing (TDD)".
[10]	3GPP TS 25.113: "Base station EMC".
[11]	3GPP TR 25.942: "RF System scenarios".
[12]	3GPP TR 25.922: "RRM Strategies".
[13]	3GPP TS 25.215: "Physical Layer Measurements (FDD)".
[14]	3GPP TS 25.225: "Physical Layer Measurements (TDD)".
[15]	3GPP TS 25.302: "Services provided by Physical Layer".
[16]	3GPP TS 25.331: "RRC Protocol Specification".
[17]	ETSI ETR 273-1-2: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 1: Uncertainties in the measurement of mobile radio equipment characteristics; Sub-part 2: Examples and annexes"
[18]	3GPP TS 25.214: "Physical layer procedures (FDD)"
[10]	CODD TO 05 221 HAVE A THE STORY OF THE

3GPP TS 25.321: "MAC protocol specification"

[20]	3GPP TS 25.303: "Interlayer Procedures in Connected Mode"
[21]	3GPP TS 45.008: "Digital cellular telecommunications system (Phase 2+); Radio subsystem link control"
[22]	3GPP TS 45.005: "Digital cellular telecommunications system (Phase 2+); Radio transmission and reception"
[23]	3GPP TS 26.103: "Speech Codec List for GSM and UMTS"
[24]	3GPP TS 34.123-1: " User Equipment (UE) Conformance Specification; Part 1: Protocol Conformance Specification"

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply.

The main general definitions strictly related to the Transmission and Reception characteristics but important also for the present document can be found in [3] for UE FDD, in [4] for BS FDD, in [5] for UE TDD, in [6] for BS TDD.

Node B:A logical node responsible for radio transmission / reception in one or more cells to/from the User Equipment. Terminates the Iub interface towards the RNC

Power Spectral Density: The units of Power Spectral Density (PSD) are extensively used in this document. PSD is a function of power versus frequency and when integrated across a given bandwidth, the function represents the mean power in such a bandwidth. When the mean power is normalised to (divided by) the chip-rate it represents the mean energy per chip. Some signals are directly defined in terms of energy per chip, (DPCH_E_c, E_c, OCNS_E_c and S-CCPCH_E_c) and others defined in terms of PSD (I_o , I_{oc} , I_{or} and \hat{I}_{or}). There also exist quantities that are a ratio of energy per chip to PSD (DPCH_E_c/ I_{or} , E_c/ I_{or} etc.). This is the common practice of relating energy magnitudes in communication systems.

It can be seen that if both energy magnitudes in the ratio are divided by time, the ratio is converted from an energy ratio to a power ratio, which is more useful from a measurement point of view. It follows that an energy per chip of $X \, dBm/3.84 \, MHz$ can be expressed as a mean power per chip of $X \, dBm$. Similarly, a signal PSD of $Y \, dBm/3.84 \, MHz$ can be expressed as a signal power of $Y \, dBm$.

3.2 Symbols

For the purposes of the present document, the following symbol applies:

connector.

[]	Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken.
CPICH_Ec	Average energy per PN chip for the CPICH
CPICH_Ec/Ior	The ratio of the transmit energy per PN chip of the CPICH to the total transmit power spectral density at the Node B antenna connector.
CPICH_Ec/Io	The ratio of the received energy per PN chip for the CPICH to the total received power spectral density at the UE antenna connector.
DPCH_Ec/Ior	The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral density at the Node B antenna connector.
Ec	Average energy per PN chip.
Io	The total received power density, including signal and interference, as measured at the UE antenna connector.
Iob	The total received power density, including signal and interference, as measured at the BS antenna connector.
Ioc	The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized to the chip rate) of a band limited noise source (simulating interference from cells, which are not defined in a test procedure) as measured at the UE antenna

Ior The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the

chip rate and normalized to the chip rate) of the downlink signal at the Node B antenna

connector.

for The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip

rate and normalized to the chip rate) of the downlink signal as measured at the UE

antenna connector.

OCNS_Ec/Ior The ratio of the transmit energy per PN chip of the OCNS to the total transmit power

spectral density at the Node B antenna connector.

PCCPCH_Ec/Ior The ratio of the transmit energy per PN chip of the PCCPCH to the total transmit power

spectral density at the Node B antenna connector.

PENALTY_TIME Defined in TS 25.304, subclause 5.2.6.1.5

PICH_Ec/Ior The ratio of the transmit energy per PN chip of the PICH to the total transmit power

spectral density at the Node B antenna connector.

QhystDefined in TS 25.304, subclause 5.2.6.1.5Qoffset,nDefined in TS 25.304, subclause 5.2.6.1.5QqualminDefined in TS 25.304, subclause 5.2.6.1.5QrxlevminDefined in TS 25.304, subclause 5.2.6.1.5

SCH Ec/Ior The ratio of the transmit energy per PN chip of the SCH to the total transmit power

spectral density at the Node B antenna connector.

Sintersearch Defined in TS 25.304, subclause 5.2.6.1.5 Sintrasearch Defined in TS 25.304, subclause 5.2.6.1.5 SearchRAT Defined in TS 25.304, subclause 5.2.6.1.5

T1 Time period 1 T2 Time period 2

TEMP_OFFSET Defined in TS 25.304, subclause 5.2.6.1.5

The RRC Re-establishment delay requirement, the time between the moment when

erroneous CRCs are applied, to when the UE starts to send preambles on the PRACH.

Treselection Defined in TS 25.304, subclause 5.2.6.1.5 UE_TXPWR_MAX_RACH Defined in TS 25.304, subclause 5.2.3.1.2.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply

BER Bit Error Ratio
BLER Block Error Ratio
BS Base Station

CFN Connection Frame Number
CPICH Common Pilot Channel
DL Down link (forward link)
DPCH Dedicated Physical Channel
DRX Discontinuous Reception
FDD Frequency Division Duplex

F-DPCH Fractional Dedicated Physical Channel

OCNS Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on

the other orthogonal channels of a downlink.

PCCPCH Primary Common Control Physical Channel

PICH Paging Indicator Channel
PIN Personal Identification Number
PLMN Public Land Mobile Network
RSCP Received Signal Code Power
RRC Radio Resource Control
RRM Radio Resource Management
RSSI Received Signal Strength Indicator

SCH Synchronisation Channel, power of SCH shall be divided equally between Primary and Secondary

Synchronous channels.

SFN System Frame Number
SIR Signal to Interference ratio
TDD Time Division Duplex
TPC Transmit Power Control
UE User Equipment

UL Up link (reverse link)

USIM Universal Subscriber Identity Module UTRA Universal Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

3.4 Test tolerances

The requirements given in the present document make no allowance for measurement uncertainty. The test specification 34.121 and 25.141 define test tolerances. These test tolerances are individually calculated for each test. The test tolerances are then added to the limits in this specification to create test limits. The measurement results are compared against the test limits as defined by the shared risk principle.

Shared Risk is defined in ETR 273 Part 1 sub-part 2 section 6.5.

4 Idle Mode Tasks

4.1 Cell Selection

4.1.1 Introduction

After a UE has switched on and a PLMN has been selected, the Cell selection process takes place, as described in TS25.304. This process allows the UE to select a suitable cell where to camp on in order to access available services. In this process the UE can use stored information (*Stored information cell selection*) or not (*Initial cell selection*).

4.2 Cell Re-selection

4.2.1 Introduction

The cell reselection procedure allows the UE to select a more suitable cell and camp on it.

When the UE is in either *Camped Normally* state or *Camped on Any Cell* state on a FDD cell, the UE shall attempt to detect, synchronise, and monitor intra-frequency, inter-frequency and inter-RAT cells indicated in the measurement control system information of the serving cell. UE measurement activity is also controlled by measurement rules defined in TS25.304, allowing the UE to limit its measurement activity if certain conditions are fulfilled.

4.2.2 Requirements

4.2.2.1 Measurement and evaluation of cell selection criteria S of serving cell

The UE shall measure the CPICH Ec/Io and CPICH RSCP level of the serving cell and evaluate the cell selection criterion S defined in [1] for the serving cell at least every DRX cycle. The UE shall filter the CPICH Ec/Io and CPICH RSCP measurements of the serving cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by, at least $T_{measureFDD}/2$ (see table 4.1).

If the UE has evaluated in N_{serv} consecutive DRX cycles that the serving cell does not fulfil the cell selection criterion S, the UE shall initiate the measurements of all neighbour cells indicated in the measurement control system information, regardless of the measurement rules currently limiting UE measurement activities.

If the UE has not found any new suitable cell based on searches and measurements of the neighbour cells indicated in the measurement control system information for 12 s, the UE shall initiate cell selection procedures for the selected PLMN as defined in [1].

After this 12 s period a UE in Cell:PCH or URA_PCH is considered to be 'out of service area' and shall perform actions according to 25.331.

On transition from CELL_DCH to CELL_PCH/URA_PCH, if a UE cannot find a suitable UTRA cell, then it is considered to be 'out of service area' and shall perform actions according to [16].

If the S criterion of the serving cell is no longer fulfilled, the UE may suspend MBMS reception if necessary to improve the UE"s ability to find a suitable cell.

If the S criterion of the serving cell is fulfilled, the measurement requirements when a MBMS reception is active are specified in sections 4.2.2.2 and 4.2.2.9.

4.2.2.2 Measurements of intra-frequency cells

The UE shall measure CPICH Ec/Io and CPICH RSCP at least every $T_{measureFDD}$ (see table 4.1) for intra-frequency cells that are identified and measured according to the measurement rules. $T_{measureFDD}$ is defined in Table 4.1. The UE shall filter CPICH Ec/Io and CPICH RSCP measurements of each measured intra-frequency cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least $T_{measureFDD}/2$.

The filtering shall be such that the UE shall be capable of evaluating that an intra-frequency cell has become better ranked than the serving cell within $T_{\text{evaluateFDD}}$ (see table 4.1), from the moment the intra-frequency cell became at least 3 dB better ranked than the current serving cell, provided that Treselection timer is set to zero and either CPICH Ec/Io or CPICH RSCP is used as measurement quantity for cell reselection.

If Treselection timer has a non zero value and the intra-frequency cell is better ranked than the serving cell, the UE shall evaluate this intra-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

If the UE is receiving the MTCH, the UE shall to be able to identify new intra-frequency cells and take them into use for MTCH combining purposes as defined in section 8.4.2.2.1

4.2.2.3 Measurements of inter-frequency FDD cells

The UE shall measure CPICH Ec/Io and CPICH RSCP at least every $(N_{carrier}^{-1})$ * $T_{measureFDD}$ (see table 4.1) for interfrequency cells that are identified and measured according to the measurement rules. The parameter $N_{carrier}$ is the number of carriers used for FDD cells. The UE shall filter CPICH Ec/Io and CPICH RSCP measurements of each measured inter-frequency cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least $T_{measureFDD}/2$.

If CPICH Ec/Io is used as measurement quantity for cell reselection, the filtering shall be such that the UE shall be capable of evaluating that an already identified inter-frequency cell has become better ranked than the serving cell within $(N_{carrier}-1) * T_{evaluateFDD}$ (see table 4.1) from the moment the inter-frequency cell became at least 3 dB better than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 3 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If CPICH RSCP is used as measurement quantity for cell reselection, the filtering shall be such that the UE shall be capable of evaluating that an already identified inter-frequency cell has become better ranked than the serving cell within $(N_{carrier}^{-1}) * T_{evaluateFDD}$ from the moment the inter-frequency cell became at least 5 dB better than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency cells, the filtering shall be such that the UE shall be capable of evaluating that inter-frequency cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency cell became at least 5 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.4 Measurements of inter-frequency TDD cells

The requirements in this section shall apply to UE supporting FDD and TDD.

The UE shall measure P-CCPCH RSCP at least every $N_{carrierTDD} * T_{measureTDD}$ (see table 4.1) for inter-frequency TDD cells that are identified and measured according to the measurement rules. The parameter $N_{carrierTDD}$ is the number of carriers used for inter-frequency TDD cells. The UE shall filter P-CCPCH RSCP measurements of each measured inter-

frequency TDD cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least $T_{measureTDD}/2$.

The filtering of PCCPCH RSCP shall be such that the UE shall be capable of evaluating that an already identified interfrequency TDD cell has become better ranked than the serving cell within $N_{carrierTDD}^*$ $T_{evaluateTDD}$ from the moment the inter-frequency TDD cell became at least 5 dB better ranked than the current serving cell provided that Treselection timer is set to zero. For non-identified inter-frequency TDD cells, the filtering shall be such that the UE shall be capable of evaluating that an inter-frequency TDD cell has become better ranked than the serving cell within 30 s from the moment the inter-frequency TDD cell became at least 5 dB better ranked than the current serving cell provided that Treselection timer is set to zero.

If Treselection timer has a non zero value and the inter-frequency TDD cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency TDD cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.5 Measurements of inter-RAT GSM cells

The UE shall measure the signal level of the GSM BCCH carrier of each GSM neighbour cell indicated in the measurement control system information of the serving cell, according to the measurement rules defined in [1], at least every $T_{measureGSM}$ (see table 4.1). The UE shall maintain a running average of 4 measurements for each GSM BCCH carrier. The measurement samples for each cell shall be as far as possible uniformly distributed over the averaging period.

If GSM measurement are required by the measurement rules in [1], the UE shall attempt to verify the BSIC at least every 30 seconds for each of the 4 strongest GSM BCCH carriers and rank the verified GSM BCCH cells according to the cell reselection criteria defined in [1]. If a change of BSIC is detected for one GSM cell then that GSM BCCH carrier shall be treated as a new GSM neighbour cell.

If the UE detects a BSIC, which is not indicated in the measurement control system information, the UE shall not consider that GSM BCCH carrier in cell reselection. The UE also shall not consider the GSM BCCH carrier in cell reselection, if the UE cannot demodulate the BSIC of that GSM BCCH carrier.

If Treselection timer has a non zero value and the inter-RAT GSM cell is better ranked than the serving cell, the UE shall evaluate this inter-RAT GSM cell for the Treselection time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

4.2.2.6 Evaluation of cell re-selection criteria

The UE shall evaluate the cell re-selection criteria defined in TS 25.304 for the cells, which have new measurement results available, at least every DRX cycle.

UE shall perform cell reselection immediately after the UE has found a higher ranked suitable cell, unless less than 1 second has elapsed from the moment the UE started camping on the serving cell. The ranking of the cells shall be made according to the cell reselection criteria specified in TS25.304.

4.2.2.7 Maximum interruption in paging reception

UE shall perform the cell re-selection with minimum interruption in monitoring downlink channels for paging reception.

At intra-frequency cell re-selection, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable to start monitoring downlink channels of the target intra-frequency cell for paging reception. The interruption time shall not exceed 50 ms.

At inter-frequency and inter-RAT cell re-selection, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable to start monitoring downlink channels for paging reception of the target inter-frequency cell. For inter-frequency cell re-selection the interruption time must not exceed - T_{SI} + 50 ms. For inter-RAT cell re-selection the interruption time must not exceed T_{BCCH} + 50 ms.

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell.

 T_{BCCH} is the maximum time allowed to read BCCH data from a GSM cell [21].

These requirements assume sufficient radio conditions, so that decoding of system information can be made without errors and does not take into account cell re-selection failure.

DRX cycle length [s]	N _{serv} [number of DRX cycles]	T _{measureFDD} [s] (number of DRX cycles)	T _{evaluateFDD} [s] (number of DRX cycles)	T _{measureTDD} [s] (number of DRX cycles)	T _{evaluateTDD} [s] (number of DRX cycles)	T _{measureGSM} [s] (number of DRX cycles)
0.08	4	0.64 (8 DRX	2.56 (32 DRX	0.64 (8 DRX	2.56 (32 DRX	2.56 (32 DRX
		cycles)	cycles)	cycles)	cycles)	cycles)
0.16	4	0.64 (4)	2.56 (16)	0.64 (4)	2.56 (16)	2.56 (16)
0.32	4	1.28 (4)	5.12 (16)	1.28 (4)	5.12 (16)	5.12 (16)
0.64	4	1.28 (2)	5.12 (8)	1.28 (2)	5.12 (8)	5.12 (8)
1.28	2	1.28 (1)	6.4 (5)	1.28 (1)	6.4 (5)	6.4 (5)
2.56	2	2.56 (1)	7.68 (3)	2.56 (1)	7.68 (3)	7.68 (3)
5 12	1	5 12 (1)	10 24 (2)	5 12 (1)	10 24 (2)	10 24 (2)

Table 4.1: T_{measureFDD}, T_{evaluateFDD}, T_{measureTDD}, T_{evaluateTDD}, and T_{measureGSM}

In idle mode, UE shall support DRX cycles lengths 0.64, 1.28, 2.56 and 5.12 s, according to [16].

4.2.2.8 Number of cells in cell lists

For idle mode cell re-selection purposes, the UE shall be capable of monitoring:

- 32 intra-frequency cells (including serving cell), and
- 32 inter-frequency cells, including
 - FDD cells on maximum 2 additional carriers, and
 - Depending on UE capability, TDD cells distributed on up to 3 TDD carriers, and
- Depending on UE capability, 32 GSM cells distributed on up to 32 GSM carriers,

as indicated in cell information lists sent in system information (BCCH).

4.2.2.9 Additional requirements for measurement of inter-frequency and inter-RAT cells when MBMS reception is active

If an MBMS service is being received then the following requirements additionally apply:

When the UE is receiving MTCH and the UE evaluates that the cell re-selection measurement rules in 25.304 indicate that inter-frequency or inter-RAT GSM measurements are not required to be made, the UE shall not perform the corresponding inter-frequency or inter-RAT GSM measurements.

When the UE is receiving MTCH and the UE evaluates that the cell re-selection measurement rules in 25.304 indicate that inter-frequency or inter-RAT GSM measurements are required to be made, and the UE needs to interrupt MTCH reception to make inter-frequency or inter-RAT GSM measurements, an individual interruption of MTCH reception shall not exceed 12.5% of an MTCH TTI from a single arbitrary cell from which the MTCH is received.

The total interruption time to the MTCH reception due to inter-frequency measurements shall not exceed a total of

- 20 ms every Tmeasure, FDD for measuring known FDD inter-frequency neighbours, and
- 300 ms every 30 seconds for searching for new FDD inter-frequency cells for each inter-frequency carrier frequency

There are no corresponding limitations on the total interruption time to the MTCH reception due to inter-RAT GSM measurements

The UE shall ensure that inter-frequency measurement or inter-RAT GSM measurement interruptions do not overlap constantly with the periodic MCCH transmissions.

5 UTRAN Connected mode mobility

This section contains the requirements on the mobility procedures in UTRAN connected mode such as handover and cell re-selection.

Requirements related to the measurements in support of the execution of the UTRAN connected mode mobility procedures are specified, currently not necessarily for all UTRAN connected mode states, in section 8.

The radio links the UE shall use are controlled by UTRAN with RRC signalling.

UE behaviour in response to UTRAN RRC messages is described in TS25.331.

The purpose of Cell reselection in CELL_FACH, CELL_PCH and URA_PCH states is that the UE shall select a better cell according to the cell reselection criteria in TS 25.304. CELL_FACH, CELL_PCH and URA_PCH states are described in TS 25.331.

5.1 FDD/FDD Soft Handover

5.1.1 Introduction

Soft handover is a function in which the UE is connected to several UTRAN access points at the same time. Addition and/or release of radio links are controlled by the ACTIVE SET UPDATE procedure.

The soft handover function includes a measurement phase, a decision algorithm in UTRAN and the ACTIVE SET UPDATE procedure.

5.1.2 Requirements

5.1.2.1 Active set dimension

The UE shall be capable of supporting at least 6 radio links in the active set.

For E-DCH the UE shall be capable of supporting a sub-set of the 6 radio links in the active set. The subset shall consist of the Serving E-DCH radio link and up to 3 additional E-DCH radio links. The 3 additional radio links can either be from the Serving E-DCH radio link set or can be Non-Serving radio links. The Serving E-DCH radio link, the Serving E-DCH radio link set and Non-Serving E-DCH radio links are defined in [15].

5.1.2.2 Active set update delay

The active set update delay is defined as the time from when the UE has received the ACTIVE SET UPDATE message from UTRAN, or at the time stated through the activation time when to perform the active set update, to the time when the UE successfully uses the set of radio links stated in that message for power control.

The active set update delay is depending on the number of known cells referred to in the ACTIVE SET UPDATE message. A cell is known if it has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

And the phase reference is the primary CPICH.

The active set update delay shall be less than 50+10*KC+100*OC ms, where

KC is the number of known cells in the active set update message.

OC is the number of cells that are not known in the active set update message.

If the UE have radio links in the active set that it can not use for data detection (due to low signal level), the UE shall at least every 150 ms search for the radio link

5.1.2.3 Interruption Time

The UE shall not interrupt the data flow when adding, changing or removing radio links to the active set.

5.2 FDD/FDD Hard Handover

5.2.1 Introduction

The hard handover procedure is initiated from UTRAN with a RRC message that implies a hard handover, see TS 25.331 section 8.3.5.

5.2.2 Requirements

5.2.2.1 Hard handover delay

Procedure delay for all procedures, that can command a hard handover, are specified in TS25.331 section 13.5.2.

When the UE receives a RRC message implying hard handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH at the designated activation time + interruption time.

where

D_{handover} equals the RRC procedure delay defined in TS25.331 Section 13.5.2 plus the interruption time stated in section 5.2.2.2.

5.2.2.2 Interruption time

The interruption time, i.e. the time between the last TTI containing a transport block on the old DPDCH and the time the UE starts transmission of the new uplink DPCCH, is depending on whether the target cell is known for the UE or not.

If intra-frequency hard handover is commanded or inter-frequency hard handover is commanded when the UE does not need compressed mode to perform inter-frequency measurements, and if higher layers do not indicate that the UE shall not perform any synchronisation procedure for timing maintained intra- or inter-frequency hard handover, the interruption time shall be less than $T_{interrupt1}$

$$T_{interrupt1} = T_{IU} + T_{sync} + 20*KC + 150*OC + 10*F_{max} ms$$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

KC is the number of known target cells in the message, and

OC is the number of target cells that are not known in the message.

 F_{max} denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

 T_{sync} is the time required for measuring the downlink DPCCH channel as stated in TS 25.214 section 4.3.1.2. In case higher layers indicate the usage of a post-verification period T_{sync} =0 ms. Otherwise T_{sync} =40 ms.

In the interruption requirement $T_{interrupt1}$ a cell is known if it has been measured by the UE during the last 5 seconds and the SFN of the cell has been decoded by the UE.

If inter-frequency hard handover is commanded and the UE needs compressed mode to perform inter-frequency measurements and if higher layers do not indicate that the UE shall not perform any synchronisation procedure for timing maintained intra- or inter-frequency hard handover, the interruption time shall be less than $T_{interrupt2}$

$$T_{interrupt2} = T_{IU} + T_{sync} + 50*KC + 150*OC + 10*F_{max} ms$$

In the interruption requirement T_{interrupt2} a cell is known if:

- the cell has been measured by the UE during the last 5 seconds.

If intra-frequency hard handover is commanded or if inter-frequency hard handover is commanded when the UE does not need compressed mode to perform inter-frequency measurements, and if higher layers do indicate that the UE shall not perform any synchronisation procedure for timing maintained intra- or inter-frequency hard handover, the interruption time shall be less than $T_{interrupt3}$

$$T_{interrupt3}$$
=20*KC+150*OC +10*F_{max} ms

In the interruption requirement T_{interrupt3} a cell is known if:

- the cell has been measured by the UE during the last 5 seconds or the timing of the cell is signalled from higher layers by the signal 'Reference time difference to cell' in [16], with the signalled accuracy lower than or equal to 40 chips.

If inter-frequency hard handover is commanded and if higher layers do indicate that the UE shall not perform any synchronisation procedure for timing maintained intra- or inter-frequency hard handover, the interruption time shall be less than $T_{interrupt4}$

$$T_{interrupt4}$$
=50*KC+150*OC +10* F_{max} ms

In the interruption requirement T_{interrupt4} a cell is known if:

- the cell has been measured by the UE during the last 5 seconds or the timing of the cell is signalled from higher layers by the signal 'Reference time difference to cell' in [16], with the signalled accuracy lower than or equal to 40 chips.

The phase reference is the primary CPICH.

The requirements in this section assume that N312 has the smallest possible value i.e. only one insync is required.

5.3 FDD/TDD Handover

5.3.1 Introduction

The purpose of FDD/TDD handover is to change the radio access mode from FDD to TDD. The FDD/TDD handover procedure is initiated from UTRAN with a RRC message that implies a hard handover as described in [16].

5.3.2 Requirements

The requirements in this section shall apply to UE supporting FDD and TDD.

5.3.2.1 FDD/TDD handover delay

RRC procedure performance values for all RRC procedures, that can command a hard handover, are specified in [16].

When the UE receives a RRC message implying FDD/TDD handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH at the designated activation time + interruption time.

where:

 D_{handover} equals the RRC procedure performance value as defined in [16] plus the interruption time stated in section 5.3.2.2.

5.3.2.2 Interruption time

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old DPDCH and the time the UE starts transmission of the new uplink DPCH, is dependent on whether the target cell is known for the UE or not.

If FDD/TDD handover is commanded, the interruption time shall be less than,

$$T_{interrupt} = T_{offset} + T_{UL} + 30*F_{SFN} + 20*KC + 180*UC + 10*F_{max} ms$$

where,

T_{offset}	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the time that can elapse until the appearance of a Beacon channel
T_{UL}	Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the target cell
F_{SFN}	Equal to 1 if SFN decoding is required and equal to 0 otherwise
KC	Equal to 1 if a known target cell is indicated in the RRC message implying FDD/TDD handover and equal to 0 otherwise
UC	Equal to 1 if an unknown target cell is indicated in the RRC message implying FDD/TDD handover and equal to 0 otherwise
F_{max}	denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

An inter-frequency TDD target cell shall be considered known by the UE, if the target cell has been measured by the UE during the last 5 seconds.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

5.4 FDD/GSM Handover

5.4.1 Introduction

The purpose of inter-RAT handover from UTRAN FDD to GSM is to transfer a connection between the UE and UTRAN FDD to GSM. The handover procedure is initiated from UTRAN with a RRC message (HANDOVER FROM UTRAN COMMAND). The procedure is described in TS25.331 section 8.3.7.

Compressed mode according to the UE Capability may be used to be able to make measurements on GSM.

5.4.2 Requirements

The requirements in this section shall apply to UE supporting FDD and GSM.

The requirements given below in Tables 5.2 and 5.3 for the case where the UE has not synchronised to the GSM cell before receiving the HANDOVER FROM UTRAN COMMAND are valid when the signal quality of the GSM cell is sufficient for successful synchronisation with one attempt. If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the handover failure procedure specified in [16].

5.4.2.1 Handover delay

When the UE receives a RRC HANDOVER FROM UTRAN COMMAND with the activation time "now" or earlier than RRC procedure delay (see below) from the end of the last TTI containing the RRC command, the UE shall be ready to transmit (as specified in GSM 45.010) on the channel of the new RAT within the value in table 5.2 from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay from the end of the last TTI containing the RRC command, the UE shall be ready to transmit (as specified in GSM 45.010) on the channel of the new RAT at the designated activation time + interruption time.

The UE shall process the RRC procedures for the RRC HANDOVER FROM UTRAN COMMAND within 50 ms, which is noted as RRC procedure delay. If the activation time is used, it corresponds to the CFN of the UTRAN channel.

UE synchronisation status handover delay [ms]

The UE has synchronised to the GSM cell before the HANDOVER FROM UTRAN COMMAND is received

The UE has not synchronised to the GSM cell before the HANDOVER FROM UTRAN COMMAND is received

Table 5.2: FDD/GSM handover –handover delay

5.4.2.2 Interruption time

The interruption time, i.e. the time between the end of the last TTI containing a transport block on the old channel and the time the UE is ready to transmit on the new channel, shall be less than The value in table 5.3.

Table 5.3: FDD/GSM handover - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
HANDOVER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the HANDOVER FROM UTRAN COMMAND is received	

5.5 Cell Re-selection in CELL_FACH

5.5.1 Introduction

The UE shall evaluate the cell re-selection criteria specified in TS 25.304, based on radio measurements, and if a better cell is found that cell is selected.

5.5.2 Requirements

The Cell reselection delays specified below are applicable when the RRC parameter $T_{reselection}$ is set to 0. Otherwise the Cell reselection delay is increased $T_{reselection}$ s.

The measurements CPICH Ec/Io and CPICH RSCP shall be used for cell reselection in Cell-FACH state to another FDD cell, P-CCPCH RSCP shall be used for cell re-selection to a TDD cell and GSM carrier RSSI shall be used for cell re-selection to a GSM cell. The accuracies of the measurements used for a cell-reselection in an AWGN environment shall comply with the requirements in section 9. The measurements used for S-criteria and cell re-selection evaluation in CELL_FACH shall be performed according to section 8.4.

5.5.2.1 Cell re-selection delay

For UTRA FDD the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the the preambles on the PRACH for sending RRC CELL UPDATE message to the UTRAN.

For UTRA TDD, the cell re-selection delay is defined as the time between the occurrence of an event which will trigger the cell re-selection process and the moment in time when the UE starts sending the RRC CELL UPDATE message to the UTRAN on the RACH.

For GSM the cell re-selection delay is defined as the time between the occurrence of an event which will trigger Cell Reselection process and the moment in time when the UE starts sending the random access in the target cell of the new RAT.

5.5.2.1.1 Intra frequency cell reselection

The cell re-selection delay in CELL_FACH state to a cell in the same frequency shall be less than

$$T_{\text{reselection, intra}} = T_{\text{identify, intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

T_{identify, intra} is specified in 8.4.2.2.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} = The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell..

 T_{RA} = The additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify,intra}$, the cell reselection delay in CELL_FACH state to a cell in the same frequency shall be less than

$$T_{\text{reselection,intra}} = T_{\text{Measurement Period Intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

 $T_{Measurement,Period\ Intra}$ = Specified in 8.4.2.2.2.

These requirements assume radio conditions to be sufficient, so reading of system information can be done without errors.

5.5.2.1.2 Inter frequency cell reselection

The cell re-selection delay in CELL_FACH state to a FDD cell on a different frequency shall be less than

$$T_{\text{reselection, inter}} = T_{\text{identify, inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

.where

T_{identify, inter} is specified in 8.4.2.3.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} = The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell..

 T_{RA} = The additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify,inter}$, the cell reselection delay in CELL_FACH state to a FDD cell on a different frequency shall be less than

$$T_{reselection, inter} = T_{Measurement, inter} + T_{IU} + 20 + T_{SI} + T_{RA} ms$$

where

 $T_{\text{Measurement, inter}}$ = Specified in 8.4.2.3.2.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

5.5.2.1.3 FDD-TDD cell reselection

The requirements in this section shall apply to UE supporting FDD and TDD.

The cell re-selection delay in CELL_FACH state in FDD to an inter frequency TDD cell shall be less than

$$T_{\text{reselection, TDD}} = T_{\text{identify TDD inter}} + T_{\text{IU}} + 20 + T_{\text{SL}} + T_{\text{RA}}$$
 ms

where

T_{identify, TDD inter} is specified in 8.4.2.4.1.

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [16] for a UTRAN cell.

T_{RA} is the additional delay caused by the random access procedure.

If a cell has been detectable at least $T_{identify\ TDD\ inter}$, the cell re-selection delay in CELL_FACH state to an interfrequency TDD cell shall be less than,

$$T_{\text{reselection.TDD}} = T_{\text{Measurement TDD inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms}$$

where

T_{Measurement TDD inter} is specified in 8.4.2.4.1.

These requirements assume radio conditions to be sufficient, so that reading of system information can be done without errors.

5.5.2.1.4 UTRAN-GSM Cell Reselection

The cell re-selection delay in CELL_FACH state to a GSM cell shall be less than

$$T_{\text{reselection.GSM}} = T_{\text{identify.GSM}} + T_{\text{measurement.GSM}} + 40 + T_{\text{BCCH}} + T_{\text{RA}} \text{ ms}$$

 T_{BCCH} = the maximum time allowed to read BCCH data from GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure.

where

a) For UE requiring measurement occasions.

T_{identify, GSM} is specified in 8.4.2.5.2.1

$$T_{\text{measurement, GSM}} = Max \left\{ 8 \cdot \frac{N_{carriers}}{N_{GSM \ carrier RSSI}} \cdot T_{meas}, 4*T_{meas}, 480ms \right\}$$

where:

N_{carriers} is the number of GSM carriers in the Inter-RAT cell info list

N_{GSM carrier RSSI} is specified in 8.4.2.5.1.

b) For UE not requiring measurement occasions

 $T_{identify, GSM} = 150 \text{ ms}$

 $T_{\text{measurement. GSM}} = 480 \text{ ms}$

5.5.2.2 Interruption time

The requirements on interruption time below is valid when the signal quality of the serving cell is good enough to allow decoding of the FACH channel during the cell reselection.

5.5.2.2.1 FDD-FDD cell reselection

The interruption time, i.e. the time between the last TTI the UE monitors the FACH channel on the serving cell and the time the UE starts transmit the preambles on the PRACH for sending the RRC CELL UPDATE message in the target cell.

1) When intra-frequency cell reselection, or inter-frequency cell reselection when the UE does not need measurement occasion to perform inter-frequency measurements, occurs the interruption time shall be less than $T_{interrupt1}$

$$T_{interrupt1} = T_{IU} + 20 + T_{RA} \text{ ms}$$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{RA} = The additional delay caused by the random access procedure.

When inter-frequency cell reselection occurs and the UE needs measurement occasions to perform inter-frequency measurements, the interruption time shall be less than $T_{interrupt2}$

$$T_{interrupt2} = T_{IU} + 20 + T_{SI} + T_{RA} \text{ ms}$$

where

 T_{SI} = the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331.

5.5.2.2.2 FDD-TDD cell reselection

The requirements in this section shall apply to UE supporting FDD and TDD.

The interruption time, is defined as the time period between the last TTI the UE monitors the FACH on the serving cell and the time instant the UE starts to transmit the RRC CELL UPDATE message in the target inter-frequency TDD cell on the RACH.

In case of inter-frequency cell reselection to a TDD cell and when the UE needs measurement occasions to perform inter-frequency TDD measurements, the interruption time shall be less than

$$T_{interrupt1, TDD} = T_{IU} + 20 + T_{SI} + T_{RA} \text{ ms}$$

In case of inter-frequency cell reselection to a TDD cell and when the UE does not need measurement occasions to perform inter-frequency TDD measurements, the interruption time shall be less than

$$T_{interrupt2, TDD} = T_{IU} + 20 + T_{RA} ms$$

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one frame (10 ms).

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [16].

T_{RA} is the additional delay caused by the random access procedure.

5.5.2.2.3 FDD-GSM cell reselection

The interruption time, i.e. the time between the last TTI the UE monitors the FACH channel and the time the UE starts transmit a RACH in the target GSM cell.

When FDD-GSM cell reselection occurs the interruption time shall be less than T_{interrupt}, GSM

$$T_{interrupt,GSM} = 40 + T_{BCCH} + T_{RA} \text{ ms}$$

where

T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = The additional delay caused by the random access procedure.

5.5.2.3 Measurement and evaluation of cell selection criteria S of serving cell

The S-criteria detection delay is defined as the time between the occurrence of an event which leads to that the cell selection criteria S for serving cell is not fulfilled and the moment in time when the UE detects that the cell selection criteria S for serving cell is not fulfilled.

The UE shall filter the CPICH Ec/Io and CPICH RSCP measurements used for cell selection criteria S evaluation of the serving cell over at least 3 measurement periods $T_{Measurement_Period\ Intra}$.

The S-critera detection delay in CELL_FACH state shall be less than:

$$T_{S\text{-criteria}} = 5 \times T_{Measurement_Period\ Intra}\ ms$$

where

T_{Measurement Period Intra} = Specified in 8.4.2.2.2.

The UE is 'out of service area' if the UE has evaluated for 4 s that that the serving cell does not fulfil the cell selection criterion S and if the UE has not found any new suitable cell based on searches and measurements of the neighbour cells indicated in the measurement control system information during these 4 s. When the UE is 'out of service area' it shall initiate cell selection procedures for the selected PLMN as defined in [1].

On transition from CELL_DCH to CELL_FACH, if a UE cannot find a suitable UTRA cell, then it is considered to be 'out of service area' and shall perform actions according to [16].

If the S criterion of the serving cell is no longer fulfilled, the UE may suspend MBMS reception if necessary to improve the UE"s ability to find a suitable cell.

If the S criterion of the serving cell is fulfilled, the measurement requirements when a MBMS reception is active are specified in section 8.4.

5.6 Cell Re-selection in CELL PCH

5.6.1 Introduction

The UE shall evaluate the cell re-selection criteria specified in TS 25.304, based on radio measurements, and if a better cell is found that cell is selected.

5.6.2 Requirements

Requirements for cell re-selection in CELL_PCH are the same as for cell re-selection in idle mode, see section 4.2. UE shall support all DRX cycle lengths in table 4.1, according to [16].

5.7 Cell Re-selection in URA_PCH

5.7.1 Introduction

The UE shall evaluate the cell re-selection criteria specified in TS 25.304, based on radio measurements, and if a better cell is found that cell is selected.

5.7.2 Requirements

Requirements for cell re-selection in CELL_PCH are the same as for cell re-selection in idle mode, see section 4.2. UE shall support all DRX cycle lengths in table 4.1, according to [16].

5.8 RACH reporting

5.8.1 Introduction

The network may request the UE to report on RACH cell CPICH levels for the serving cell and up to 6 strongest monitored set cells and SFN-SFN observed time difference between the serving cell and up to 6 different monitored set cells.

5.8.2 Requirements

If all of the following conditions are true, the UE is allowed to have an additional delay of N_{RACH} *50 ms in RACH transmission compared to the normal RACH transmission delay.

- SFN-SFN observed time difference measurement results are required to be reported on RACH
- The set of cells on which the SFN-SFN observed time difference measurement is to be reported has changed since the previous RACH measurement report
- The UE has not measured the SFN-SFN observed time differences for the cells to be reported on RACH in the CELL_FACH state according to the requirements defined in Section 8.4.2.2

If at least one of the previous conditions is false, the UE shall be able to report the requested measurement results on RACH within a normal RACH transmission delay.

 N_{RACH} is the number of cells requiring SFN decoding prior to the reporting of SFN-SFN observed time difference measurement results on RACH.

5.9 Inter-RAT cell change order from UTRAN in CELL_DCH and CELL_FACH

5.9.1 Introduction

The purpose of inter-RAT cell change order from UTRAN FDD to GSM is to transfer a connection between the UE and UTRAN FDD to GSM. This procedure may be used in CELL_DCH and CELL_FACH state. The cell change order procedure is initiated from UTRAN with a RRC message (CELL CHANGE ORDER FROM UTRAN). The procedure is described in TS25.331 section 8.3.11.

5.9.2 Requirements

The requirements in this section shall apply to UE supporting FDD and GSM.

5.9.2.1 Delay

When the UE receives a RRC CELL CHANGE ORDER FROM UTRAN COMMAND with the activation time "now" or earlier than the value in table 5.4 from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT within the value in table 5.4 from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than the value in table 5.4 from the end of the last TTI containing the RRC command, the UE shall start transmit the random access in the target cell of the new RAT at the designated activation time.

The UE shall process the RRC procedures for the RRC CELL CHANGE ORDER FROM UTRAN COMMAND within 50 ms. If the activation time is used, it corresponds to the CFN of the UTRAN channel.

Table 5.4: Inter-RAT cell change order from UTRAN - delay

UE synchronisation status	delay [ms]
The UE has synchronised to the GSM cell before the CELL	$90 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	190 + T _{BCCH} +T _{RA}
CHANGE ORDER FROM UTRAN COMMAND is received	

where

 T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

5.9.2.2 Interruption time

The requirements on interruption time below is valid when the signal quality of the serving cell is good enough to allow decoding of the old channel during the inter-RAT cell change order from UTRAN delay.

The interruption time, i.e. the time between the end of the last TTI containing a transport block that the UE is able to receive on the old channel and the time the UE starts transmit the random access in the target cell, shall be less than the value in table 5.5. The requirement in table 5.5 for the case, that UE is not synchronised to the GSM cell before the CELL CHANGE ORDER FROM UTRAN COMMAND is received, is valid when the signal quality of the GSM cell is good enough for successful synchronisation with one attempt.

Table 5.5: Inter-RAT cell change order from UTRAN - interruption time

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the CELL	$40 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	
The UE has not synchronised to the GSM cell before the CELL	$140 + T_{BCCH} + T_{RA}$
CHANGE ORDER FROM UTRAN COMMAND is received	

where

T_{BCCH} = the maximum time allowed to read BCCH data from the GSM cell [21].

 T_{RA} = the additional delay caused by the random access procedure

5.10 Serving HS-DSCH cell change

5.10.3 Introduction

The serving HS-DSCH procedure is initiated from UTRAN with a RRC message that implies a change of the serving HS-DSCH cell, see TS 25.331 section 8.2.2

5.10.2 Requirements

5.10.2.1 Serving HS-DSCH cell change delay

Procedure delay for all procedures, that can command a HS-DSCH cell change are specified in TS25.331 section 13.5.2.

When the UE receives a RRC message implying HS-DSCH cell change with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to receive the HS-SCCH channel from the new cell within D_{cell_change} seconds from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink HS-DPCCH at the designated activation time + interruption time.

where:

 D_{cell_change} equals the RRC procedure delay defined in TS25.331 Section 13.5.2 plus the interruption time of receiving HS-DSCH data stated in section 5.10.2.2.

5.10.2.2 Interruption time

The HS-DSCH interruption time is the time between the last received TTI that can contain a transport block on the old HS-PDSCH and the time when the UE is ready to transmit CQI reports based on the quality of the new cell and the UE have started to receive the HS-SCCH of the new cell. The interruption time is depending on whether the target cell is known for the UE or not.

If serving HS-DSCH cell change is commanded to a cell in the active set the HS-DSCH interruption time shall be less than $T_{interrupt1}$

If an active set update, which includes a cell into the active set where the cell is known, and serving HS-DSCH cell change is simultaneously commanded to the same cell the HS-DSCH interruption time shall be less than T_{interrupt2}

where

 T_{IU} is the interruption uncertainty when changing the timing from the old to the new cell. T_{IU} can be up to one subframe (2 ms).

The phase reference is the primary CPICH.

6 RRC Connection Control

6.1 RRC Re-establishment

6.1.1 Introduction

RRC connection re-establishment is needed, when a UE in state CELL_DCH loses radio connection due to radio link failure. The procedure when a radio link failure occurs in CELL_DCH is specified in TS 25.331.

6.1.2 Requirements

The requirements in this section are applicable when the UE performs a RRC Re-establishment to a cell belonging to any of the frequencies present in the previous (old) monitored set.

When the UE is in CELL_DCH state, the UE shall be capable of sending a CELL UPDATE message using the cause 'radio link failure' within $T_{\text{RE-ESTABLISH}}$ seconds from when the radio link failure occurred.

 $T_{RE-ESTABLISH}$ equals the RRC procedure delay ($T_{RRC-RE-ESTABLISH}$) according to TS25.331 plus the UE Re-establishment delay ($T_{UE-RE-ESTABLISH-REQ}$), specified in 6.1.2.1.

 $T_{RE-ESTABLISH} = T_{RRC-RE-ESTABLISH} + T_{UE-RE-ESTABLISH-REO}$

6.1.2.1 UE Re-establishment delay requirement

The UE Re-establishment delay requirement ($T_{\text{UE-RE-ESTABLISH-REQ}}$) is defined as the time between the moment when radio link failure is considered by the UE, to when the UE starts to send preambles on the PRACH.

 $T_{UE-RE-ESTABLISH-REQ}$ is depending on whether the target cell is known by the UE or not. A cell is known if either or both of the following conditions are true:

- the UE has had radio links connected to the cell in the previous (old) active set
- the cell has been measured by the UE during the last 5 seconds.

And the phase reference is the primary CPICH.

The UE Re-establishment delay requirement T_{UE-RE-ESTABLISH-REQ} shall be less than

$$T_{UE\text{-}RE\text{-}ESTABLISH\text{-}REQ\text{-}KNOWN} = 50ms + T_{search} + T_{SI} + T_{RA}$$

in case that the target cell is known, and

$$T_{UE\text{-}RE\text{-}ESTABLISH\text{-}REQ\text{-}UNKNOWN} = 50ms + T_{search}*NF + T_{SI} + T_{RA}$$

in case that the target cell is not known by the UE.

where

T_{search} is the time it takes for the UE to search the cell.

T_{search} =100 ms if the target cell is known by the UE, and

 $T_{search} = 800$ ms if the target cell is not known by the UE.

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms).

 T_{RA} = The additional delay caused by the random access procedure.

NF is the number of different frequencies in the monitored set.

This requirement assumes radio conditions to be sufficient, so that reading of system information can be done without errors.

6.2 Void

6.3 Random Access

6.3.1 Introduction

The random access procedure is used when establishing the layer 1 communication between the UE and UTRAN. The random access shall provide a fast access but without disturbing ongoing connections. The random access is specified in section 6 of TS 25.214 and the control of the RACH transmission is specified in section 11.2 of TS 25.321. A random access transmit sequence is described in section 6.7.2 of TS 25.303.

6.3.2 Requirements

The UE shall have capability to calculate initial power according to the open loop algorithm and apply this power level at the first preamble and increase the power on additional preambles. The UE shall stop transmit preambles upon a ACK/NACK on the AICH has been received or if the maximum number of preambles within on cycle has been reached. Upon an ACK has been received the UE shall transmit a message otherwise the ramping procedure shall be repeated.

6.3.2.1 Correct behaviour when receiving an ACK

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message..

The absolute power applied to the first preamble shall have an accuracy as specified in table 6.3 of TS 25.101 [3]. The relative power applied to additional preambles shall have an accuracy as specified in section 6.5.2.1 of 25.101 [3].

6.3.2.2 Correct behaviour when receiving an NACK

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping procedure when the back off timer T_{B01} expires.

6.3.2.3 Correct behaviour at Time-out

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached.

6.3.2.4 Correct behaviour when reaching maximum transmit power

The UE shall not exceed the maximum allowed UL TX power configured by the UTRAN.

The absolute power of any preamble shall not exceed the maximum allowed UL TX power with more than specified in section 6.5.

6.4 Transport format combination selection in UE

6.4.1 Introduction

When the UE estimates that a certain TFC and E-TFC would require more power than the maximum transmit power, it shall limit the usage of transport format combinations for the assigned transport format set, according to the functionality specified in section 11.4 in TS25.321. This is in order to make it possible for the network operator to maximise the coverage. Transport format combination selection is described in section 11.4 of TS 25.321.

6.4.2 Requirements

The UE shall continuously evaluate based on the *Elimination, Recovery* and *Blocking* criteria defined below, how TFCs on an uplink DPDCH can be used for the purpose of TFC selection. The evaluation shall be performed for every TFC in the TFCS using the estimated UE transmit power.

The UE transmit power estimation for a given TFC, when HS-DPCCH is not transmitted during the measurement period, shall be calculated using the DPDCH and DPCCH gain factors of the corresponding TFC and reference transmit power. The reference transmit power is the transmit power of DPCCH and DPDCH of a given TFC during the measurement period for which UE transmit power estimation is made. If HS-DPCCH is transmitted either partially or totally within the given measurement period the UE transmit power estimation for a given TFC shall be calculated using DPDCH and DPCCH gain factors, the maximum value of the HS-DPCCH gain factor that is used during the measurement period, and the reference transmit power. The timing of the measurement period, which is defined in 9.1.6.1 as one slot, is the same as the timing of the DPCH slot..

E-TFC selection is allowed only in the CELL_DCH state. E-TFC selection is based on the estimated power leftover from TFC selection if the DPDCH is present and from the HS-DPCCH

The UE shall estimate the normalised remaining power margin available for E-TFC selection based on the following equation for E-TFC candidate j

NRPM_j= (PMax_j - P_{DPCCH}, target - P_{DPDCH} - P_{HS-DPCCH} - P_{E-DPCCH})/ P_{DPCCH}, target,

where

PMax_i = Maximum allowed uplink TX power for E-TFC-j as defined in section 6.5

 $P_{DPCCH}(t) \ represents \ an estimate \ of the \ current \ UE \ DPCCH \ power \ at \ time \ t. \ If \ at \ time \ t, \ the \ UE \ is \ transmitting \ a \ compressed \ mode \ frame \ then \ P_{DPCCH,comp}(t) = P_{DPCCH}(t) \times (N_{pilot,C}/N_{pilot,N}) \ else \ P_{DPCCH,comp}(t) = P_{DPCCH}(t). \ Samples \ of \ P_{DPCCH,comp}(t) \ shall \ be \ filtered \ using \ a \ filter \ period \ of \ one \ E-DCH \ TTI \ to \ give \ P_{DPCCH,filtered}. \ The \ accuracy \ of \ the \ P_{DPCCH} \ estimate \ shall \ be \ at \ least \ that \ specified \ in \ table \ 6.0A$

If the target E-DCH TTI for which $NRPM_j$ evaluated does not correspond to a compressed mode frame then $P_{DPCCH,target} = P_{DPCCH,filtered}$.

If the target E-DCH TTI for which $NRPM_j$ is being evaluated corresponds to a compressed mode frame then $P_{DPCCH,target} = P_{DPCCH,filtered} \times (N_{pilot,N}/N_{pilot,C})$. $N_{pilot,N}$ and $N_{pilot,C}$ are numbers of pilot symbols as defined in [18].

 P_{DPDCH} = estimated DPDCH transmit power, based on $P_{\text{DPCCH,target}}$ and the gain factors from the TFC selection that has already been made. If the target E-DCH TTI for for which $NRPM_j$ is being evaluated corresponds to a compressed mode frame then the modification to the gain factors which occur due to compressed mode shall be included in the estimate of P_{DPDCH}

 $P_{\text{HS-DPCCH}}$ = estimated HS-DPCCH transmit power based on the maximum HS-DPCCH gain factor based on $P_{\text{DPCCH,target}}$ and the most recent signalled values of Δ_{ACK} , Δ_{NACK} and Δ_{CQI} . If the target E-DCH TTI for for which NRPM $_{j}$ is being evaluated corresponds to a compressed mode frame then the modification to the gain factors which occur due to compressed mode shall be included in the estimate of $P_{\text{HS-DPCCH}}$

 $P_{\text{E-DPCCH}} = \text{estimated E-DPCCH}$ transmit power, based on $P_{\text{DPCCH,target}}$ and the E-DPCCH gain factor calculated using the most recent signalled value of $\Delta_{\text{E-DPCCH}}$. If the target E-DCH TTI for for which NRPM $_{j}$ is being evaluated corresponds to a compressed mode frame then the modification to the gain factors which occur due to compressed mode shall be included in the estimate of $P_{\text{E-DPCCH}}$

Note: $P_{DPCCH}(t)$, $PMax_j$, $P_{DPCCH,filt,target}$, P_{DPDCH} , $P_{HS-DPCCH}$, and $P_{E-DPCCH}$ are expressed in linear power units

The UE shall consider the *Elimination* criterion for a given TFC to be detected if the estimated UE transmit power needed for this TFC is greater than the Maximum UE transmitter power for at least X out of the last Y successive measurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Excess-Power state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Elimination* criterion was detected.

The UE shall consider the *Recovery* criterion for a given TFC to be detected if the estimated UE transmit power needed for this TFC has not been greater than the Maximum UE transmitter power for the last Z successive measurement periods immediately preceding evaluation. The MAC in the UE shall consider that the TFC is in Supported state for the purpose of TFC selection.

MAC in the UE shall indicate the available bitrate for each logical channel to upper layers within T_{notify} from the moment the *Recovery* criterion was detected.

The evaluation of the *Elimination* criterion and the *Recovery* criterion shall be performed at least once per radio frame.

The definitions of the parameters X,Y and Z which shall be used when evaluating the *Elimination* and the *Recovery* criteria when no compressed mode patterns are activated are given in Table 6.0.

Table 6.0: X, Y, Z parameters for TFC selection

X	Υ	Z
15	30	30

The UE shall consider the *Blocking* criterion for a given TFC to be fulfilled at the latest at the start of the longest uplink TTI after the moment at which the TFC will have been in Excess-Power state for a duration of:

$$(T_{notify} + T_{modify} + T_{L1 proc})$$

where:

T_{notify} equals 15 ms, and

 T_{modify} equals MAX(T_{adapt_max}, T_{TTI}), and

T_{L1 proc} equals 15 ms, and

 T_{adapt_max} equals MAX(T_{adapt_1} , T_{adapt_2} , ..., T_{adapt_N}), and

N equals the number of logical channels that need to change rate, and

 T_{adapt_n} equals the time it takes for higher layers to provide data to MAC in a new supported bitrate, for logical channel n. For services where no codec is used T_{adapt} shall be considered to be equal to 0 ms. For services where either UMTS_AMR2 or UMTS_AMR_WB is used, Tadapt shall be considered to be equal to the time required to switch from the current codec mode to a new supported codec mode. In that case Tadapt equals 20 ms + 40 ms per codec mode switch. E.g. Tadapt equals 60ms if one codec mode switch is necessary and Tadapt equals 140ms if 3 codec mode switches are necessary.

T_{TTI} equals the longest uplink TTI of the selected TFC (ms).

The UE shall be able to update the normalised remaining power estimate of each E-TFC at least every E-DCH TTI. The UE shall use the latest available estimate of NRPM_j at the time when all absolute and relative grants relating to the E-DCH TTI under consideration have been received. Using the estimates of NRPM_jthe UE shall evaluate for each E-TFC which configured MAC-d flows are supported and which are unsupported as follows:

In the case that the target E-DCH TTI for which E-TFC restriction is being considered does not belong to a compressed mode frame then if NRPM_i $\geq \sum (\beta_{ed,i}/\beta_c)^2$ then E-TFC_i can be supported, otherwise it cannot be supported

In the case that the target E-DCH TTI for which E-TFC restriction is being considered belongs to a compressed mode frame then if $NRPM_i \ge \sum (\beta_{ed,C,i}/\beta_{c,C})^2$ then E-TFC_i can be supported, otherwise it cannot be supported

 $\beta_{\rm ed,i}/\beta_c$ and $\beta_{\rm ed,C,i}/\beta_{\rm c,C}$ is the quantized amplitude ratio.

If the UE is allowed to reduce its maximum transmit power for certain TFCs and E-TFCs, the UE shall use the reduced maximum transmit power in the evaluation of the TFC and E-TFC selection criteria for those TFCs.

Table 6.0A: Accuracy requirements for the estimate of PDPCCH used in E-TFC restriction

Total UE output power value (dBm)	P _{DPCCH} accuracy(dB) (note 1)	
25<= total output power <34	note 2	
24<= total output power <25	±2.0	
23<= total output power <24	±2.0	
22<= total output power <23	±2.0	
21<= total output power <22	±2.0	
20<= total output power < 21	±2.5	
19<= total output power <20	±3.0	
18<= total output power <19	±3.5	
17<= total output power <18	±4.0	
16<= total output power <17	±4.0	
15<= total output power <16	±4.0	
14<= total output power <15	±4.0	
13<= total output power <14	±4.0 (power class 4) ±6.0 (power class 3)	
12<= total output power <13	±4.0 (power class 4) ±6.0 (power class 3)	
11<= total output power <12	±4.0 (power class 4) ±6.0 (power class 3)	
-50<= total output power <11 ±6.0		
Note 1: PDPCCH accuracy is the difference between the estimate of PDPCCH used by the UE for the purposes of E-TFC selection and the actual power of the DPCCH being transmitted		
Note 2: No tolerance is specified.		

6.5 Maximum allowed UL TX Power

The Maximum UE transmitter power is defined as follows

Maximum UE transmitter power = MIN {Maximum allowed UL TX Power, P_{MAX} }

Where

- Maximum allowed UL TX Power is set by UTRAN and defined in [16], and
- P_{MAX} is the UE nominal maximum transmit power is defined by the UE power class, and specified in table 6.1 of [3]

The UE shall not exceed the Maximum allowed UL TX Power, as set by the UTRANwith the tolerances as defined for the UE transmitted power (section 9.1.6). For UE output powers that are outside the range covered by the UE transmitted power measurement the UE output power shall not exceed the Maximum allowed UL TX Power with more than the tolerances specified for the Open loop power control in TS 25.101 section 6.4.1.

For TFC selection the UE is allowed to reduce P_{MAX} when HS-DPCCH is transmitted by the TFC-MPR values specified in table 6.1

Table 6.1: TFC-MPR used for TFC selection

For E-TFC selection the UE is allowed to reduce P_{MAX} by the realistic E-TFC MPR values specified in Table 6.2

Inputs for E-TFC selection E-TFC-MPR E-DPDCH Case (dB) βc β_{hs} β_{ec} β_{ed} SFmin Ncodes >0 0 0 >0 >0 0.25 1 1 ≥4 2 >0 ≥0 0 >0 >0 3 >0 >0 >0 0.75 >0 >4 4 >0 >0 1 1.50 >0 >0 >0 ≥4 5 2 >0 ≥0 0.75 >0 >0 >0 2 2 0.50 >0 ≥0 >0 >0 6 >0 For inputs $\{\beta_{c,}\,\beta_{hs,}\beta_{d,}\,\beta_{ec,}\beta_{ed,}\,$ SFmin, Ncodes $\}$ not specifed above the Note

Table 6.2: E-TFC-MPR used for E-TFC selection

6.6 Void

7 Timing and Signalling characteristics

7.1 UE Transmit Timing

7.1.1 Introduction

The UE shall have capability to follow the frame timing change of the connected Node B. The uplink DPCCH/DPDCH frame transmission takes place approximately T_0 chips after the reception of the first detected path (in time) of the corresponding downlink DPCCH/DPDCH or F-DPCH frame, from the reference cell. T_0 is defined in [2]. UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are defined in the following requirements.

7.1.2 Requirements

The UE initial transmission timing error shall be less than or equal to ± 1.5 Chips. This requirement applies at the first transmission on the DPCCH/DPDCH. The reference point for the UE initial transmit timing control requirement shall be the time when the first detected path (in time) of the corresponding downlink DPCCH/DPDCH or F-DPCH frame is received from the reference cell plus T_0 chips. T_0 is defined in [2].

When the UE is not in soft handover, the reference cell shall be the one the UE has in the active set. In case the UE is initially allocated in soft handover, the reference cell shall be the same cell as used for calculating the initial CFN as defined in [16].

The cell, which is selected as a reference cell, shall remain as a reference cell even if other cells are added to the active set. In case that the reference cell is removed from the active set the UE shall start adjusting its transmit timing no later than the time when the whole active set update message is available at the UE taking the RRC procedure delay into account.

When the UE has performed a timing-maintained intra- or inter-frequency hard handover and higher layers has indicated that the UE shall not perform any synchronisation procedure for timing maintained intra- or inter-frequency hard handover, or when the UE attempts to re establish all dedicated physical channel(s) after an inter-RAT, intra- or inter-frequency hard-handover failure [18], it shall resume UL transmission with the same transmit timing as used immediately before the handover attempt. After resuming transmission, transmit timing adjustment requirements defined in the remainder of this clause apply.

The UE shall be capable of changing the transmission timing according to the received downlink DPCCH/DPDCH or F-DPCH frame. When the transmission timing error between the UE and the reference cell exceeds ± 1.5 chips the UE is required to adjust its timing to within ± 1.5 chips.

All adjustments made to the UE timing shall follow these rules:

- 1) The maximum amount of the timing change in one adjustment shall be 1/4 Chip.
- 2) The minimum adjustment rate shall be 233ns per second.
- 3) The maximum adjustment rate shall be \(^1\)4 chip per 200ms.

In particular, within any given 800*d ms period, the UE transmit timing shall not change in excess of $\pm d$ chip from the timing at the beginning of this 800*d ms period, where $0 \le d \le 1/4$.

7.2 UE Receive - Transmit Time Difference

7.2.1 Introduction

The UE shall have the capability to be in soft handover with more than one cell. The downlink DPCH frame timing or the downlink F-DPCH frame timing shall take place approximately T_0 chips before the transmission of the uplink DPDCH/DPCCH. The adjustment requirements for the uplink DPDCH/DPCCH timing are specified in 7.1.1. The valid range of the Receive to Transmit time difference at the UE is defined in the following requirements.

7.2.2 Requirements

A UE shall support reception, demodulation and combining of signals of a downlink DPCH, or a downlink F-DPCH, when the receive timing is within a window of T_0 +/- 148 chip before the transmit timing where T_0 is defined in [2]. A UE is only required to react to TPC commands with a transmit power adjustment in the immediate next slot if the downlink receive timing of all cells in the active set is within a window of T_0 +/- 148 chip before the uplink transmit timing. If the downlink receive timing of one or more cells in the active set is outside the window of T_0 +/- 148 chip, the UE may also react with a power adjustment one slot later. The receive timing is defined as the first detected path in time.

7.3 UE timer accuracy

7.3.1 Introduction

UE timers are used in different protocol entities to control the UE behaviour.

7.3.2 Requirements

For UE timers T3xx, T_{barred} , Treselection, Penalty_time, T_{CRmax} , $T_{CrmaxHyst}$ [16], UE shall comply with the timer accuracies according to Table 7.1.

The requirements are only related to the actual timing measurements internally in the UE. They do not include the following:

- Inaccuracy in the start and stop conditions of a timer (e.g. UE reaction time to detect that start and stop conditions of a timer is fulfilled), or
- Inaccuracies due to restrictions in observability of start and stop conditions of a UE timer (e.g. TTI alignment when UE sends messages at timer expiry).

Table 7.1

Timer value [s]	Accuracy
timer value <4	± 0.1 s
timer value ≥4	± 2.5 %

7.4 PRACH Burst timing accuracy

7.4.1 Introduction

The UE shall have capability to transmit the PRACH burst according to the timing of the received access slot [18]. The PRACH burst timing accuracy is defined in the following requirement.

7.4.2 Requirements

The UE PRACH burst timing error shall be less than or equal to \pm 3.5 Chips. The reference point shall be the expected timing calculated from the UE"s reference detected path of the P-CCPCH.

8 UE Measurements Procedures

8.1 General Measurement Requirements in CELL_DCH State

8.1.1 Introduction

This section contains requirements on the UE regarding measurement reporting in CELL_DCH state. The requirements are split in FDD intra frequency, FDD inter frequency, TDD and GSM measurements. These measurements may be used by the UTRAN, e.g. for handover decisions. The measurements are defined in TS 25.215, the measurement model is defined in TS 25.302 and measurement accuracies are specified in section 9. Control of measurement reporting is specified in TS 25.331 and parallel measurements are specified in section 8.2. Compressed mode is specified in TS 25.215.

8.1.2 Requirements

8.1.2.1 UE Measurement Capability

In CELL_DCH state the UE shall be able to monitor up to

- 32 intra frequency FDD cells (including active set), and
- 32 inter frequency cells, including
 - FDD cells distributed on up to 2 additional FDD carriers and
 - Depending on UE Capability, TDD cells, distributed on up to 3 TDD carriers and
- Depending on UE capability, 32 GSM cells distributed on up to 32 GSM carriers.
- Depending on UE capability, the UE shall be able to monitor up to 16 intra frequency cells during IPDL gaps.

If the UE utilises compressed mode for inter-frequency and/or inter-RAT measurements, in order for the requirements in the following subsections to apply the UTRAN must:

- provide transmission gap pattern sequences with TGPL1 > 1, and
- ensure that with the activation of one or more transmission gap pattern sequences, no more than two frames contain a transmission gap within any window of three consecutive frames, and
- ensure that there is a minimum of 8 slots between the end of the first transmission gap and the beginning of the second transmission gap in case of two successive compressed frames.

Performance requirements for different types of transmission gap pattern sequences and different number of cells is defined in the following sections.

The requirements in section 9 are applicable for a UE performing measurements according to this section.

The received CPICH E_c/I_o is defined as

$$\left(\frac{CPICH _E_c}{I_o}\right)_{in\ dB} = \left(\frac{CPICH _E_c}{I_{or}}\right)_{in\ dB} - \frac{I_o}{(\hat{I}_{or})_{in\ dB}}$$

and the received SCH E_c/I_o is defined as

$$\left(\frac{SCH_{-}E_{c}}{I_{o}}\right)_{in\ dB} = \left(\frac{SCH_{-}E_{c}}{I_{or}}\right)_{in\ dB} - \frac{I_{o}}{\left(\hat{I}_{or}\right)_{in\ dB}}$$

8.1.2.2 FDD intra frequency measurements

During the CELL_DCH state the UE shall continuously measure identified intra frequency cells and search for new intra frequency cells in the monitoring set. In case the network requests the UE to report detected set cells, the UE shall also search for intra frequency cells outside the monitored and active set. Cells, which are neither included in the active set nor in the monitored set, and are identified by the UE belong to the detected set according to TS 25.331. If compressed mode pattern sequences are activated, intra frequency measurements can be performed between the transmission gaps simultaneously for data reception from the active set cell/s.

The performance of intra frequency measurements when IPDL is active has not been studied.

8.1.2.2.1 Identification of a new cell

The UE shall be able to identify and decode the SFN of a new detectable cell belonging to the monitored set within

$$T_{\text{identify intra}} = Max \left\{ 800, T_{\text{basic identify FDD, intra}} \cdot \frac{T_{\text{Measurement Period, Intra}}}{T_{\text{Intra}}} \right\} ms$$

A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -20 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

In case of conflict when a compressed gap sequence is activated the UE may choose to prioritise the SFN decoding

The UE shall be able to identify a new detectable cell not belonging to the monitored set within

$$T_{\text{identify detected set}} = 30s$$

when CPICH Ec/Io \geq -20 dB, SCH_Ec/Io \geq -17 dB and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

8.1.2.2.1.1 Identification of a new cell using IPDL gaps

When the UE is supporting IPDL measurements and when idle periods with a length of 1 slot are scheduled the UE physical layer shall be capable to identify a new cell and report SFN-SFN observed time difference type 2 measurement within

$$T_{identify,IPDL}$$
= $Max\{T_{Measerement_Period\ Intra},T_{IPDL}\}$ ms

where

 $T_{Measurement_Period\ Intra}$ = The measurement period for Intra frequency CPICH measurements defined in Section 8.1.2.2.2.

and

 T_{IPDL} depends on the Search Window Size given in UE positioning OTDOA neighbour cell info as given in Table 8.0

Table 8.0: T_{IPDL}

Search Window Size	T _{IPDL}
less than or equal to +/- 40 chips	Time over which 4 consecutive IPDL gaps occur
+/- 80 chips	Time over which 8 consecutive IPDL gaps occur

8.1.2.2.2 UE CPICH measurement capability

In the CELL_DCH state the measurement period for intra frequency measurements is 200 ms. When no transmission gap pattern sequence is activated, the UE shall be capable of performing CPICH measurements for 8 identified-intra-frequency cells of the monitored set and/or the active set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 200 ms. When one or more transmission gap pattern sequences are activated, the UE shall be capable of performing CPICH measurements for at least $Y_{\text{measurement intra}}$ cells , where $Y_{\text{measurement intra}}$ is defined in the following equation. The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.1 and 9.1.2. If the UE has identified more than $Y_{\text{measurement intra}}$ cells, the UE shall perform measurements of all identified cells but the reporting rate of CPICH measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = Floor \left\{ X_{\text{basic measurement FDD}} \cdot \frac{\mathbf{T}_{\text{Intra}}}{\mathbf{T}_{\text{Measurement Period, Intra}}} \right\} \text{ cells}$$

where

 $X_{basic\ measurement\ FDD} = 8$ (cells)

 $T_{Measurement_Period\ Intra} = 200$ ms. The measurement period for Intra frequency CPICH measurements.

 T_{Intra} : This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing.

 $T_{basic_identify_FDD, intra} = 800 \text{ ms.}$ This is the time period used in the intra frequency equation where the maximum allowed time for the UE to identify a new FDD cell is defined.

The UE shall furthermore be capable of performing CPICH measurements for at least 1 detected intra-frequency cell, in the detected set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 10 s. The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.1 and 9.1.2.

8.1.2.2.2.1 Capabilities for measurements during IPDL gaps

When idle periods with a length of 1 slot are scheduled, the UE physical layer shall be capable of reporting SFN-SFN observed time difference type 2 measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.8.2.2 with measurement period given by

$$T_{\text{measurement IPDL}} = Max \{ T_{\text{Measurement_Period Intra}}, T_{\text{4 IPDLs}} \} ms$$

where

 $T_{Measurement_Period\ Intra}$ = The measurement period for Intra frequency CPICH measurements defined in Section 8.1.2.2.2.

 $T_{4 \text{ IPDLs}}$ = Time period over which 4 consecutive idle periods occur.

8.1.2.2.3 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.2.4 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.3 Event Triggered Reporting.

8.1.2.2.5 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH.

The event triggered measurement reporting delay, on cells belonging to monitored set, measured without L3 filtering, shall be less than the above defined $T_{identify\ intra}$ defined in Section 8.1.2.2.1

If a cell, belonging to monitored set, which the UE has identified and measured at least once over the measurement period, becomes undetectable for a period ≤ 5 seconds and then the cell becomes detectable again and triggers an event, the measurement reporting delay shall be less than $T_{Measurement_Period\ Intra}$ ms provided the timing to that cell has not

changed more than +/-32 chips, the UE CPICH measurement capabilities of section 8.1.2.2.2 are valid and L3 filtering has not been used. When L3 filtering is used an additional delay can be expected.

If a cell belonging to monitored set has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period\ Intra}$ when the L3 filter has not been used and the UE CPICH measurement capabilities of Section 8.1.2.2.2 are valid.

The event triggered measurement reporting delay on cells not belonging to monitored set, measured without L3 filtering, shall be less than the above defined $T_{identify\ detected\ set}$ defined in Section 8.1.2.2.1.

8.1.2.3 FDD inter frequency measurements

In the CELL_DCH state when a transmission gap pattern sequence with the "FDD measurements" purpose is provided by the network the UE shall continuously measure identified inter frequency cells and search for new inter frequency cells indicated in the measurement control information.

In order for the requirements in the following subsections to apply the UTRAN must provide a transmission gap pattern sequence with measurement purpose FDD measurement using the following combinations for TGL1, TGL2, TGD and Max TGPL:

TGL2 [slots] TGD [slots] Max TGPL [frames] TGL1 [slots] undefined 14 undefined 10 undefined 24 7 7 15...269 18 + ceil(TGD/15) 14 14 36 + ceil(TGD/15) 45...269

Table 8.1

8.1.2.3.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, inter}} = T_{\text{basic identify FDD,inter}} \cdot \frac{T_{\text{Measurement Period, Inter}}}{T_{\text{total}}} \cdot N_{\textit{Freq}} \quad \textit{ms}$$

A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

8.1.2.3.2 UE CPICH measurement capability

When transmission gaps are scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.1 and 9.1.2 with measurement period given by

$$T_{\text{measurement inter}} = Max \left\{ T_{\text{Measurement_Period Inter}}, T_{\text{basic measurement FDD inter}} \cdot \frac{T_{\text{Measurement_Period Inter}}}{T_{\text{Inter}}} \cdot N_{\textit{Freq}} \right\} \textit{ms}$$

If the UE does not need compressed mode to perform inter-frequency measurements, the measurement period for inter-frequency measurements is 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{basic\ measurement\ FDD\ inter}$ inter-frequency cells per FDD frequency of the monitored set or the virtual active set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{Measurement_Inter.}$

 $X_{basic\ measurement\ FDDinter} = 6$

 $T_{Measurement_Period\ Inter} = 480\ ms.$ The period used for calculating the measurement period $T_{measurement_inter}$ for interfrequency CPICH measurements.

 $T_{\text{Inter::}}$ This is the minimum time that is available for inter frequency measurements, during the period $T_{\text{Measurement_Period inter}}$ with an arbitrarily chosen timing. The minimum time per transmission gap is calculated by using the actual idle length within the transmission gap as given in the table 11 of Annex B in TS 25.212 and by assuming 2*0.5 ms for implementation margin and after that taking only full slots into account in the calculation.

 $T_{basic_identify_FDD,inter} = 300$ ms. This is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new FDD cell is defined.

 $T_{basic_measurement_FDD\ inter} = 50$ ms. This is the time period used in the equation for defining the measurement period for inter frequency CPICH measurements.

N_{Freq}: Number of FDD frequencies indicated in the inter frequency measurement control information.

8.1.2.3.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify\ inter}$ defined in Section 8.1.2.3.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_inter}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period\ Inter}$ provided the timing to that cell has not changed more than +/-32 chips while transmission gap has not been available and the L3 filter has not been used.

8.1.2.4 TDD measurements

The requirements in this section shall apply to UE supporting FDD and TDD.

In the CELL_DCH state when a transmission gap pattern sequence with the 'TDD measurements' purpose is provided by the network, the UE shall continuously measure identified inter frequency TDD cells and search for new inter frequency TDD cells indicated in the measurement control information.

In order for the requirements in the following subsections to apply, the Beacon timeslots of the inter-frequency TDD cells indicated in the measurement control information shall either be synchronised or non-overlapping in time such that the UE can measure an inter-frequency TDD cell at least once in every transmission gap pattern as given in [7] for the slot allocation case in use in this cell and by assuming 2*0.5 ms implementation margin per transmission gap.

UTRAN shall provide a transmission gap pattern sequence with measurement purpose TDD measurement using the combinations for TGL1, TGL2 and TGD in Table 8.2:

Table 8.2

TGL1 [slots]	TGL2 [slots]	TGD [slots]
10	-	undefined
10	10	41269
14	7	37269

8.1.2.4.1 Identification of a new cell

8.1.2.4.1.1 3.84 Mcps TDD Option

When transmission gaps are scheduled for inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify TDD inter}} = Max \left\{ 5000, N_{\text{basic identify TDD inter}} \cdot \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not need compressed mode to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

An inter-frequency TDD cell shall be considered detectable when P-CCPCH Ec/Io ≥ -8 dB and SCH_Ec/Io ≥ -13 dB.

The received P-CCPCH_E_c/I_o is defined as

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in \ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}}\right)_{in \ dB} - \frac{I_o}{(\hat{I}_{or})_{in \ dB}}$$

and the received SCH_E_c/I_o is defined as

$$\left(\frac{SCH_{-}E_{c}}{I_{o}}\right)_{in\ dB} = \left(\frac{SCH_{-}E_{c}}{I_{or}}\right)_{in\ dB} - \frac{I_{o}}{(\hat{I}_{or})}_{in\ dB}$$

8.1.2.4.1.2 1.28 Mcps TDD Option

When transmission gaps are scheduled for inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify TDD inter}} = Max \left\{ 5000, N_{\text{basic identify TDD inter}} \cdot \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\textit{Freq}} \right\} ms$$

If the UE does not need compressed mode to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

A cell shall be considered detectable when P-CCPCH Ec/Io \geq -8 dB and DwPCH_Ec/Io \geq -5 dB. When L3 filtering is used an additional delay can be expected.

The received P-CCPCH E_c/I_o is defined as

$$\left. \left(\frac{P - CCPCH _E_c}{I_o} \right) \right|_{in \ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}} \right) \right|_{in \ dB} - \frac{I_o}{\left(\hat{I}_{or} \right)} \right|_{in \ dB}$$

The received DwPTS E_c/I_o is defined as

$$\left. \left(\frac{DwPCH _E_c}{I_o} \right) \right|_{in \ dB} = \left(\frac{DwPCH _E_c}{I_{or}} \right) \right|_{in \ dB} - \frac{I_o}{\left(\hat{I}_{or} \right)} \right|_{in \ dB}$$

8.1.2.4.2 P-CCPCH RSCP measurement period

When transmission gaps are scheduled for inter frequency TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.11 and with a measurement period as given by

$$T_{\text{measurement TDD inter}} = Max \left\{ T_{\text{Measurement Period TDD inter}}, N_{\text{basic measurement TDD inter}} \cdot \frac{T_{\text{Measurement Period TDD inter}}}{N_{\text{TDD inter}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not need compressed mode to perform inter-frequency TDD measurements, the measurement period for inter-frequency TDD measurements shall be 480 ms.

The UE shall be capable of performing P-CCPCH RSCP measurements for $X_{basic\ measurement\ TDD\ inter}$ inter-frequency TDD cells per TDD frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{measurement\ TDD\ inter}$.

$$X_{\text{basic measurement TDD inter}} = 6 \text{ (cells)}$$

 $T_{Measurement_Period\ TDD\ inter} = 480\ ms.$ The time period used for calculating the measurement period $T_{measurement_TDD\ inter}$ for inter frequency P-CCPCH RSCP measurements.

 $N_{TDD\ inter:}$ This is the smallest resulting integer number of transmission gap patterns in a transmission gap pattern sequence assigned to UE by UTRAN for inter frequency TDD measurements during the time period $T_{Measurement_Period\ TDD\ inter}$ with an arbitrarily chosen timing.

 $N_{basic_identify_TDD,inter}$ =80. This is the number of transmission gap patterns in a transmission gap pattern sequence for inter-frequency TDD measurements during the time period used in the inter frequency TDD equation where the maximum allowed time for the UE to identify a new inter frequency TDD cell is defined.

 $N_{basic_measurement_TDD\ inter} = 5$. This is the number of transmission gap patterns in a transmission gap pattern sequence for inter-frequency TDD measurements during the time period $T_{Measurement_Period\ TDD\ inter}$ with an arbitrarily chosen timing that is used in the inter-frequency TDD equation where the measurement period for inter-frequency P-CCPCH RSCP measurements is defined.

 N_{Freq} : This is the number of TDD frequencies indicated in the inter frequency measurement control information.

8.1.2.4.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.4.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report, until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH.. This measurement reporting delay excludes a delay uncertainty resulting when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify\ TDD\ inter}$ defined in Section 8.1.2.4.1 When L3 filtering is used an additional delay can be expected.

8.1.2.5 GSM measurements

The requirements in this section apply only to UE supporting FDD and GSM.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

- 1) In CELL_DCH state when a transmission gap pattern sequence is provided by the UTRAN the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.
- 2) If the UE does not need compressed mode to perform GSM measurements:
 - the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in TS 45.008 shall apply. This is further detailed in the following sub-sections.

8.1.2.5.1 GSM carrier RSSI

1) For a UE requiring compressed mode

A UE supporting GSM measurements using compressed mode shall meet the minimum number of GSM RSSI carrier measurements specified in table 8.4. This measurement shall be based on a transmission gap pattern sequence with purpose "GSM carrier RSSI measurements"

In order for the requirements in this subsection to apply the UTRAN must provide a transmission gap pattern sequence with measurement purpose GSM carrier RSSI measurements using the following combinations for TGL1, TGL2 and TGD:

Table 8.3

TGL1 [slots]	TGL2 [slots]	TGD [slots]
3	-	undefined
4	-	undefined
5	-	undefined
7	-	undefined
10	-	undefined
14	- undefined	
3	3 15269	
4	4	15269
5	5	15269
7	7 15269	
10	10	41269
14	14	45269

In the CELL_DCH state the measurement period, $T_{Measurement Period, GSM}$, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in TS45.008, when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Table 8.4

TGL	Number of GSM carrier RSSI samples in each gap.
3	1
4	2
5	3
7	6
10	10
14	15

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per

GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods. This means that, in this particular case, the L1 reporting period to higher layers of a GSM neighbour can be a multiple of the measurement period.

2) For a UE not requiring compressed mode

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per RSSI value. The measurement period is 480 ms.

8.1.2.5.2 BSIC verification

1) For a UE requiring compressed mode

In order for the requirements in the following subsections to apply the UTRAN must provide a transmission gap pattern sequence with measurement purpose GSM Initial BSIC identification or with measurement purpose GSM BSIC reconfirmation, using the following combinations for TGL1, TGL2 and TGD:

TGL1 [slots] TGL2 [slots] TGD [slots] 5 undefined 7 undefined 10 undefined undefined 14 _ 5 5 15...269 7 7 15...269 10 10 41...269 14 14 45...269

Table 8.5

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

Initial BSIC identification

Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the FDD and GSM cell. The UE shall trigger the initial BSIC identification within the available transmission gap pattern sequence with purpose "GSM Initial BSIC identification". The requirements for Initial BSIC identification can be found in 8.1.2.5.2.1.

BSIC re-confirmation

Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available transmission gap pattern sequence with purpose "GSM BSIC reconfirmation". The requirements for BSIC re-confirmation can be found in 8.1.2.5.2.2.

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

If the network requests measurements on a GSM cell with BSIC verified, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to Section 8.1.2.5.1 when ever a transmission gap pattern sequence with the purposes 'GSM carrier RSSI measurements' is provided and the UE shall perform measurement reporting as defined in Section 8.6.7.6 of [16].
- The UE shall perform BSIC identification according to Section 8.1.2.5.2.1 when a 'GSM Initial BSIC identification' transmission gap pattern sequence is activated. The UE shall use the last available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation according to Section 8.1.2.5.2.2 when a 'GSM BSIC re-confirmation' transmission gap pattern sequence is activated.

- If a 'GSM BSIC re-confirmation' transmission gap pattern sequence is not activated in parallel to a 'GSM Initial BSIC identification' transmission gap pattern sequence or within one frame from the deactivation of a 'GSM Initial BSIC identification' transmission gap pattern sequence, the BSIC shall be considered to be non-verified after 10s has elapsed after the UE identified the BSIC of the cell..

The UE shall perform event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the last available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting. Periodic reports shall be triggered according to Sections 8.6.7.5 and 8.6.7.6 of [16].

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) and from that moment the BSIC shall be re-confirmed at least once every $T_{\text{re-confirm_abort}}$ seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified". If a transmission gap pattern sequence with a purpose 'GSM BSIC re-confirmation ' is not activated by the network after BSIC identified or the 'GSM BSIC re-confirmation ' transmission gap pattern sequence is deactivated, the UE shall behave as described previously in this section.

The parameters $N_{identify_abort}$ and $T_{re\text{-confirm_abort}}$ are defined by higher layers and are signalled to the UE together with the transmission gap pattern sequence. $N_{identify_abort}$ indicates the maximum number of patterns that the UE shall use to attempt to decode the unknown BSIC of the GSM cell in the initial BSIC identification procedure. $T_{re\text{-confirm_abort}}$ indicates the maximum time allowed for the re-confirmation of the BSIC of one GSM cell in the BSIC re-confirmation procedure.

The UE shall be able to decode a BSIC within a transmission gap when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the effective transmission gap is within the limits specified in table 8.6.

The effective transmission gap is calculated by assuming both UL and DL compressed mode and applying the worst-case values for UL/DL timing offset and pilot field length of last DL gap slot.

Gap length [slots]	Maximum time difference [µs]
5	± 500
7	± 1200
10	± 2200
14	± 3500

Table 8.6: The gap length and maximum time difference for BSIC verification

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

2) For a UE not requiring compressed mode

If a BSIC is decoded and matches the expected value, it is considered as 'verified', else it is considered as 'non verified'.

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

8.1.2.5.2.1 Initial BSIC identification

This measurement shall be based on a transmission gap pattern sequence with the purpose "GSM Initial BSIC identification"

For GSM cells that are requested with BSIC verified the UE shall attempt to decode the SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the measurement control information. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BSIC carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value after layer 3 filtering. The GSM signal strength levels used in BSIC identification for arranging GSM cells in signal strength order shall be based on the latest GSM carrier RSSI measurement results available.

When the UE attempts to decode the BSIC of one GSM BCCH carrier with unknown BSIC, the UE shall use all available transmission gaps, within the transmission gap pattern sequence with the purpose "GSM Initial BSIC identification", to attempt to decode the BSIC from that GSM BCCH carrier.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $N_{identify_abort}$ successive patterns, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $N_{identify_abort}$ values are given for a set of reference patterns in table 8.7. $T_{identify_abort}$ is the elapsed time during $N_{identify_abort}$ transmission gap patterns (informative). The figures given in table 8.7 represent the number of patterns required to guarantee at least two attempts to decode the BSIC for one GSM BCCH carrier.

	TGL1 [slots]	TGL2 [slots]	TGD [slots]	TGPL1 [frames]	T _{identify abort}	N _{identify_abort} [patterns]
Pattern 1	7	-	undefined	3	1.56	52
Pattern 2	7	-	undefined	8	5.28	66
Pattern 3	7	7	47	8	2.88	36
Pattern 4	7	7	38	12	2.88	24
Pattern 5	14	-	undefined	8	1.84	23
Pattern 6	14	-	undefined	24	5.28	22
Pattern 7	14	14	45	12	1.44	12
Pattern 8	10	-	undefined	8	2.88	36
Pattern 9	10	10	75	12	2.88	24

Table 8.7: The worst-case time for identification of one previously not identified GSM cell

8.1.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of 8 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each transmission gap of a transmission gap pattern sequence with the measurement purpose "GSM BSIC reconfirmation", the UE shall attempt to decode the BSIC falling within the effective gap duration. If more than one BSIC can be decoded within the same gap, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM cell within $T_{re-confirm_abort}$ seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.1.2.5.2.1. The UE shall be able to make BSIC re-confirmation attempts for the 8 strongest GSM cells in the monitored list.

N_{re-confirm abort} is the number of transmission gap patterns executed during T_{re-confirm abort} (informative).

TGD TGPL1 TGL1 TGL2 Tre-confirm_abort Nre-confirm_abort [slots] [slots] [frames] [slots] [patterns] [s] Pattern 1 undefined 3 1.32 44 5.04 Pattern 2 undefined 8 63 Pattern 3 undefined 15 8.1 54 Pattern 4 69 23 10.12 44 Pattern 5 69 8 33 2.64 Pattern 6 14 undefined 8 1.6 20 14 Pattern 7 14 60 0.80 10 Pattern 8 10 undefined 33 8 2.64 Pattern 9 10 undefined 23 8.05 35 Pattern 10 7 7 47 8 2.64 33 Pattern 11 7 7 38 12 2.64 22 Pattern 12 14 undefined 24 5.04 21 Pattern 13 14 14 12 1.20 45 10 Pattern 14 10 undefined 13 4.94 38 Pattern 15 10 10 12 2.64 22 75

Table 8.8: The worst-case time for BSIC re-confirmation of one GSM cell

8.1.2.5.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.5.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is twice the TTI of the uplink DCCH.

The event triggered reporting delay requirement is valid when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period $T_{Measurement\ Period,\ GSM}$ (see section 8.1.2.5.1).

The event triggered measurement reporting delay for a GSM cell with verified BSIC, measured without L3 filtering shall be less than $2*T_{Measurement\ Period,\ GSM}$, where $T_{Measurement\ Period,\ GSM}$ is defined in Section 8.1.2.5.1. When L3 filtering is used an additional delay can be expected. For a GSM cell with non-verified BSIC an additional delay according to section 8.1.2.5.2.1 Initial BSIC identification can be expected.

8.2 Measurements in CELL_DCH State with special requirements

8.2.1 Introduction

This section contains specific requirements for certain measurements beyond those specified in section 8.1. The measurements are defined in TS 25.215, the measurement model is defined in TS 25.302 and measurement accuracies are specified in section 9. As long as the measurement configuration does not exceed the requirements stated in section 8.2.2, the UE shall meet the performance requirements defined in section 9.

Control of measurement reporting is specified in TS 25.331. Compressed mode is specified in TS 25.215.

8.2.2 Requirements

The UE shall be able to perform in parallel all physical layer measurements according to table 8.9. In this section one physical layer measurement corresponds to a measurement at the reference point B (i.e. measurement reported by layer 1 after layer 1 filtering) in the measurement model in TS 25.302 [15].

In addition to the requirements in table 8.9 the UE shall in parallel, in state CELL_DCH, also be able to measure and report the quantities according to section 8.1.

Measurement quantity

Number of parallel physical layer measurements possible to request from the UE

Transport channel BLER

1 per Transport Channel

UE transmitted power

1

UE Rx-Tx time difference

1 including timing to all radio links in active set

SFN-SFN observed time difference type 2

UE GPS Timing of Cell Frames for LCS

Table 8.9: Parallel physical layer measurement requirements

Editors Note: The presence of the measurements for location services needs to be revised.

8.3 Capabilities for Support of Event Triggering and Reporting Criteria in CELL_DCH state

8.3.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria. As long as the measurement configuration does not exceed the requirements stated in section 8.3.2, the UE shall meet the performance requirements defined in section 9.

The UE can be requested to make measurements under different Measurement Identities [11]. Each Measurement Identity corresponds to either event based reporting, periodic reporting or no reporting. In case of event based reporting, each Measurement Identity is associated with one or more events, each identified with an Event Identity. In case of periodic reporting, a Measurement Identity is associated with one periodic reporting criterion. In case of no reporting, a Measurement Identity is associated with one no reporting criterion.

The purpose of this section is to set some limits on the number of different event, periodic and no reporting criteria the UE may be requested to track in parallel.

8.3.2 Requirements

In this section a reporting criterion corresponds to either one event (in the case of event based reporting), or one periodic reporting criterion (in case of periodic reporting), or one no reporting criterion (in case of no reporting) For event based reporting, each instance of event, with the same or different Event Identities, is counted as separate reporting criterion in Table 8.10.

The UE shall be able to support in parallel per category up to E_{cat} reporting criteria according to Table 8.10. For the measurement categories: Intra-frequency, Inter frequency, Inter frequency (virtual active set), and Inter-RAT the UE need not support more than 18 reporting criteria in total. For the measurement categories Traffic volume and Quality measurements the UE need not support more than 16 reporting criteria in total.

Only applicable for UE with this

capability.

Measurement category Note Ecat Intra-frequency 8 Inter-frequency 6 Inter-frequency, virtual active set 4 Only applicable for UE with this Inter-RAT 4 capability UE internal measurements 8 2 + (2 per Transport Traffic volume measurements

Channel)
2 per Transport Channel

2

Table 8.10: Requirements for reporting criteria per measurement category

8.4 Measurements in CELL FACH State

8.4.1 Introduction

Quality measurements

UP measurements

This section contains requirements on the UE regarding cell reselection and measurement reporting in CELL_FACH state. The requirements for cell re-selection are split in FDD intra frequency, FDD inter frequency, TDD and GSM measurements. The measurements are defined in TS 25.215, the measurement model is defined in TS 25.302 and measurement accuracies are specified in section 9. Control of measurement reporting is specified in TS 25.331. Measurement occasions in CELL_FACH state are described in TS 25.331.

8.4.2 Requirements

8.4.2.1 UE Measurement Capability

In CELL_FACH state, the UE shall be able to monitor up to

- 32 intra frequency FDD cells and
- 32 inter frequency cells, including
 - FDD cells distributed on up to 2 additional FDD carriers and
 - Depending on UE Capability, TDD mode cells, distributed on up to 3 TDD carriers, and
- Depending on UE capability, 32 GSM cells distributed on up to 32 GSM carriers.
- Depending on UE capability, the UE shall be able to monitor up to 16 intra frequency cells during IPDL gaps.

The requirements in section 9 on CPICH Ec/Io and RSCP measurements are applicable for a UE performing measurements according to this section. For inter-frequency FDD, TDD and GSM cell re-selection, measurement occasions as specified in TS 25.331 are used to find and measure on other cells.

It is defined below how the measurements on different systems and modes are performed given the time allocated to that system. The requirements in this section are based on an assumption that the time during the measurement occasions that is allocated to each of the different modes and systems shall be equally shared by the modes which the UE has capability for and that are in the monitored set signalled by the network.

For this three parameters are defined:

 N_{FDD} is 0 or 1. If there are inter-frequency FDD cells in the neighbour list $N_{FDD}=1$, otherwise $N_{FDD}=0$.

 N_{TDD} is 0 or 1. If the UE is capable of TDD and there are TDD cells in the neighbour list $N_{TDD}=1$ otherwise $N_{TDD}=0$.

 N_{GSM} is 0 or 1. If the UE is capable of GSM and there are GSM cells in the neighbour list, $N_{GSM}=1$, otherwise $N_{GSM}=0$.

The measurement time T_{meas} is then defined as

$$T_{meas} = [(N_{FDD} + N_{TDD} + N_{GSM}) \cdot N_{TTI} \cdot M_{REP} \cdot 10] \text{ms}$$

where

- M_REP is the Measurement Occasion cycle length where K is given in Table 8.10A. K is the FACH measurement occasion length coefficient as specified in TS25.331
- The FACH Measurement Occasion of N_{TTI} frames will be repeated every N_{TTI} * M_REP frame.
- N_{TTI} is the number of frames in each measurement occasion, equal to the length of the largest TTI on the SCCPCH monitored by the UE. FACHs that only carry MBMS logical channels (MTCH, MSCH, or MCCH) are excluded from measurement occasion calculations.
- A UE receiving MTCH shall use only that part of the Measurement Occasion of NTTI frames which corresponds to 25% of the MTCH TTI length at the maximum.

For UEs receiving MTCH, the reduced measurement time, if applicable, needs to be considered when performance requirements are derived according to section 8. The repetition rate of NTTI * M_REP frames remains unaffected

Table 8.10A: K values for each N_{TTI} value

N _{TTI}	K
1	3,4,5,6
2	2,3,4,5
4	2,3,4
8	1,2,3

The UE is assumed to measure periodically once every time period T_{meas} on each of the modes and systems, FDD inter frequency cells, TDD inter frequency cells and GSM carriers for which the corresponding parameter N_{FDD} , N_{TDD} and N_{GSM} is set to 1.

8.4.2.2 FDD intra frequency measurements

During the CELL_FACH state the UE shall continuously measure identified intra frequency cells and search for new intra frequency cells in the monitoring set. If a measurement occasion is activated, intra frequency measurements can be performed between the measurement occasions.

The performance of intra frequency measurements when IPDL is active has not been studied.

8.4.2.2.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, intra}} = Max \left\{ 800, \text{Ceil} \left\{ \frac{T_{\text{basic identify FDD, intra}}}{N_{\text{TTI}} \cdot (M_{\text{REP}} - 1) \cdot 10} \right\} \cdot N_{\text{TTI}} \cdot M_{\text{REP}} \cdot 10 \right\} \text{ ms}$$

where

T_{basic identify FDD, intra} is specified in section 8.1.2.2.2,

N_{TTI} and M_REP is specified in section 8.4.2.1.

A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -20 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code.

In the case that MTCH is being received, the UE shall be able to take identified cells into use for MTCH combining purposes within one MTCH TTI after the completion of identification.

If more candidate cells are identified than the UE has combining capability, then the UE shall estimate MTCH reception quality of all candidate cells and determine a subset of the identified cells which best allow the UE to meet the required MTCH reception performance.

In case of conflict when a measurement occasion is activated the UE may choose to prioritise the SFN decoding

8.4.2.2.1.1 Identification of a new cell using IPDL gaps

When the UE is supporting IPDL measurements and when idle periods with a length of 1 slot are scheduled the UE physical layer shall be capable to identify a new cell and report SFN-SFN observed time difference type 2 measurement within

$$T_{identify,IPDL}$$
=Max{ $T_{Measerement\ Period\ Intra}$, T_{IPDL} } ms

where

 $T_{Measurement_Period\ Intra}$ = The measurement period for Intra frequency CPICH measurements defined in Section 8.1.2.2.2.

and

 T_{IPDL} depends on the Search Window Size given in UE positioning OTDOA neighbour cell info as given in Table 8.10B

Table 8.10B: T_{IPDI}

Search Window Size	T _{IPDL}
less than or equal to +/- 40 chips	Time over which 4 consecutive IPDL gaps occur
+/- 80 chips	Time over which 8 consecutive IPDL gaps occur

8.4.2.2.2 UE CPICH measurement capability

In the CELL_FACH state the measurement period for intra frequency measurements is 200 ms. When no measurement occasion cycle is activated, the UE shall be capable of performing CPICH measurements for 8 identified intrafrequency cells of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 200 ms. When a measurement occasion cycle is activated, the UE shall be capable of performing CPICH measurements for the $Y_{measurement\ intra}$ strongest cells , where $Y_{measurement\ intra}$ is defined in the following equation. The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.1 and 9.1.2. If the UE has identified more than $Y_{measurement\ intra}$ cells, the UE shall perform measurements of all identified cells but the reporting rate of CPICH measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = Floor \left\{ \boldsymbol{X}_{\text{basic measurement FDD}} \cdot \frac{\mathbf{T}_{\text{Measurement_Period Intra}} - Ceil \left\{ \frac{\mathbf{T}_{\text{Measurement_Period Intra}}}{N_{TTI} \cdot M - REP \cdot 10 \text{ ms}} \right\} \cdot N_{TTI} \cdot 10 \text{ ms}} \right\} \text{ cells}$$

$$\mathbf{T}_{\text{Measurement_Period Intra}}$$

where

X_{basic measurement FDD} is specified in section 8.1.2.2.2,

T_{Measurement Period Intra} is specified in section 8.1.2.2.2,

 M_{REP} and N_{TTI} is specified in section 8.4.2.1.

8.4.2.2.2.1 Capabilities for measurements during IPDL gaps.

When idle periods with a length of 1 slot are scheduled UE physical layer shall be capable of reporting SFN-SFN observed time difference type 2 measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.8.2.2 with measurement period given by

$$T_{\text{measurement IPDL}} = Max \{ T_{\text{Measurement_Period Intra}}, T_{\text{4 IPDLs}} \} ms$$

where

T_{Measurement_Period Intra} = The measurement period for Intra frequency CPICH measurements defined in Section 8.1.2.2.2.

and

 $T_{4 \text{ IPDLs}}$ = Time period over which 4 consecutive idle periods occur.

8.4.2.2.3 RACH reporting

Reporting measurements in the measurement reports sent on the RACH shall meet the requirements in section 9.

8.4.2.3 FDD inter frequency measurements

In the CELL_FACH state when a measurement occasion cycle is provided by the network the UE shall continuously measure identified inter frequency cells and search for new inter frequency cells indicated in the measurement control information.

8.4.2.3.1 Identification of a new cell

The UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, inter}} = Ceil \left\{ \frac{T_{\text{basic identify FDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,FDD}} \quad \textit{ms}$$

where

T_{basic identify FDD.inter} is specified in 8.1.2.3.2.

N_{Freq,FDD}: Number of FDD frequencies in the Inter-frequency cell info list

T_{Meas} and M_REP are specified in 8.4.2.1.

$$T_{\text{Inter FACH}} = (N_{\text{TTI}} * 10 - 2 * 0.5) \text{ ms}$$

A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code.

8.4.2.3.2 UE CPICH measurement capability

When a measurement occasion cycle is scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.2 with measurement period is given by

$$T_{\text{measurement inter}} = Max \left\{ T_{\text{Measurement_Period Inter}}, 2 \cdot T_{\text{meas}}, Ceil \left\{ \frac{T_{\text{basic measurement FDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,FDD}} \right\} \text{ ms}$$

where

 $T_{basic_measurement_FDD,inter} \ is \ specified \ in \ section \ 8.1.2.3.2.$

T_{Measurement_Period Inter} is specified in section 8.1.2.3.2.

T_{Meas} is specified in section 8.4.2.1.

N_{Freq,FDD} and T_{Inter FACH} are specified in section 8.4.2.3.1

If the UE does not need measurement occasions to perform inter-frequency measurements, the measurement period for inter frequency measurements is 480 ms.

The UE shall be capable of performing CPICH measurements for $X_{\text{basic measurement FDD inter}}$ inter-frequency cells per FDD frequency of the monitored set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{Measurement_Inter.}}$

X_{basic measurement FDDinter} is defined in section 8.1.2.3.2

8.4.2.4 TDD measurements

The requirements in this section shall apply to UE supporting FDD and TDD.

In the CELL_FACH state when a measurement occasion cycle is provided by the network the UE shall continuously measure identified inter frequency TDD cells and search for new inter-frequency TDD cells indicated in the measurement control information.

8.4.2.4.1 Identification of a new cell

8.4.2.4.1.1 3.84 Mcps TDD Option

The UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify, TDD}} = Max \left\{ 5000, Ceil \left\{ \frac{T_{\text{basic identify TDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,TDD}} \right\} \text{ ms} \right\}$$

where

 $T_{basic_identify_TDD,inter} = 800ms$

N_{Freq,TDD}: Number of TDD frequencies indicated in the Inter-frequency cell info list

T_{Meas} is specified in section 8.4.2.1.

T_{Inter FACH} is specified in section 8.4.2.3.1

If the UE does not need measurement occasions to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

An inter-frequency TDD cell shall be considered detectable when P-CCPCH Ec/Io ≥ -8 dB and SCH Ec/Io ≥ -13 dB.

The received P-CCPCH_E_c/I_o is defined as

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in \ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}}\right)_{in \ dB} - \frac{I_o}{(\hat{I}_{or})_{in \ dB}}$$

and the received SCH_E_c/I_o is defined as

$$\left(\frac{SCH _E_c}{I_o}\right)_{in\ dB} = \left(\frac{SCH _E_c}{I_{or}}\right)_{in\ dB} - \frac{I_o}{(\hat{I}_{or})}_{in\ dB}$$

8.4.2.4.1.2 1.28 Mcps TDD Option

The UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within

$$T_{\text{identify, TDD}} = Max \left\{ 5000, Ceil \left\{ \frac{T_{\text{basic identify TDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,TDD}} \right\} \text{ ms}$$

where

 $T_{basic_identify_TDD,inter} = 800ms$

N_{Freq,TDD}: Number of TDD frequencies indicated in the inter-frequency cell info list

 T_{Meas} is specified in section 8.4.2.1.

T_{Inter FACH} is specified in section 8.4.2.3.1

If the UE does not need measurement occasions to perform inter-frequency TDD measurements, the UE shall be able to identify a new detectable inter-frequency TDD cell belonging to the monitored set within 5000 ms.

When L3 filtering is used an additional delay can be expected.

A cell shall be considered detectable when P-CCPCH Ec/Io > -8 dB and DwPCH_Ec/Io > -5 dB.

The received P-CCPCH E_c/I_o is defined as

$$\left(\frac{P - CCPCH _E_c}{I_o}\right)_{in \ dB} = \left(\frac{P - CCPCH _E_c}{I_{or}}\right)_{in \ dB} - \frac{I_o}{(\hat{I}_{or})}_{in \ dB}$$

The received DwPTS E_c/I_o is defined as

$$\left(\frac{DwPCH _E_c}{I_o}\right)_{in \ dB} = \left(\frac{DwPCH _E_c}{I_{or}}\right)_{in \ dB} - \frac{I_o}{(\hat{I}_{or})_{in \ dB}}$$

8.4.2.4.2 P-CCPCH RSCP measurement period

When a measurement occasion cycle as previously described is scheduled for inter frequency TDD measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.11 and with a measurement period as given by

$$T_{\text{measurement TDD}} = Max \left\{ T_{\text{Measurement_Period TDD inter}}, 2 \cdot T_{\text{meas}}, Ceil \left\{ \frac{T_{\text{basic measurement TDD inter}}}{T_{\text{Inter FACH}}} \right\} \cdot T_{\text{meas}} \cdot N_{\textit{Freq,TDD}} \right\}$$

where

 $T_{basic_measurement_TDD inter} = 50 \text{ ms.}$

T_{Measurement Period TDD inter} is specified in section 8.1.2.4.2.

 T_{Meas} is specified in section 8.4.2.1.

 $T_{Inter\;FACH}$ is specified in section 8.4.2.3.1

N_{Freq,TDD:} This is the number of TDD frequencies indicated in the inter-frequency cell info list

If the UE does not need measurement occasions to perform inter-frequency TDD measurements, the measurement period for inter frequency TDD measurements is 480 ms.

The UE shall be capable of performing P-CCPCH RSCP measurements for $X_{\text{basic measurement TDD inter}}$ inter-frequency TDD cells per TDD frequency of the monitored set and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{Measurement TDD}}$.

X_{basic measurement TDD inter} is defined in section 8.1.2.4.2

8.4.2.5 GSM measurements

The requirements in this section apply only to UE supporting FDD and GSM.

To support cell reselection the UE shall always perform BSIC verification in Cell FACH state.

1) In CELL_FACH state when measurement occasions are provided by the UTRAN the UE shall continuously measure GSM cells and search for new GSM cells given in the monitored set.

In section 8.4.2.1 the split of measurements between different modes and systems is defined. Every second measurement occasion scheduled for GSM measurements, as given by 8.4.2.1 shall be allocated for GSM initial BSIC identification.

The remaining measurements occasions scheduled for GSM measurements shall be used as follows. 3 occasions out of 4 shall be allocated for GSM carrier RSSI measurements and 1 out of 4 shall be allocated for GSM BSIC reconfirmation. The scheduling of measurement occasions between GSM carrier RSSI measurements and GSM BSIC reconfirmation is up to the UE.

- 2) If the UE does not need measurement occasions to perform GSM measurements:
 - the UE shall measure all GSM cells present in the monitored set
 - the relevant requirements for GSM dedicated mode when a TCH channel is assigned in TS 45.008 shall apply. This is further detailed in the following sub-sections.

8.4.2.5.1 GSM carrier RSSI

1) For a UE requiring measurement occasions.

A UE supporting GSM measurements using measurement occasions shall meet the minimum number of GSM carrier RSSI measurements specified in Table 8.11. This measurement shall be based on measurement occasions allocated for GSM carrier RSSI measurements as described in 8.4.2.5. In the CELL_FACH state the measurement period for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in TS 45.008, when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

Length of measurement occasion (frames)

Number of GSM carrier RSSI samples in each measurement occasion, NGSM carrier RSSI.

1 16
2 32
4 64
8 128

Table 8.11

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

2) For a UE not requiring measurement occasions

The samples allocated to each carrier shall as far as possible be uniformly distributed over each measurement period. At least 3 received signal level measurement samples are required per RSSI value. The measurement period is 480 ms.

In case UTRA RACH procedure prevents the UE from acquiring the required number of samples per GSM carrier during one measurement period, the GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

8.4.2.5.2 BSIC verification

1) For a UE requiring measurement occasions.

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

Initial BSIC identification

Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the FDD and GSM cell. The UE shall trigger the initial BSIC identification within 50% of the available measurement occasions used for GSM measurements as specified in 8.4.2.1. The requirements for Initial BSIC identification can be found in 8.4.2.5.2.1.

BSIC re-confirmation

Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available measurement occasions used for GSM as specified in 8.4.2.1. The requirements for BSIC re-confirmation can be found in 8.4.2.5.2.2.

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification) and from that moment the BSIC shall be re-confirmed at least once every 6 times $T_{re-confirm_GSM}$ seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified".

 $T_{\text{re-confirm_GSM}}$ indicates the maximum time allowed for the re-confirmation of the BSIC of one GSM cell in the BSIC reconfirmation procedure according to section 8.4.2.5.2.2.

The UE shall be able to decode a BSIC within a measurement occasion when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the measurement occasion is within the limits specified in table 8.12.

Table 8.12: The measurement occasion length and maximum time difference for BSIC verification

Measurement occasion length [frames]	Maximum time difference [μs]	
1	± 4100	
2	± 9100	
4	± 19100	
8	± 39100	

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

2) For a UE not requiring measurement occasions

The UE shall attempt to check the BSIC for at least the 6 strongest GSM carriers at least every 10 seconds, to confirm that it is monitoring the same cell, as far as UTRA RACH procedure does not prevent UE from decoding BSIC.

If a BSIC is decoded and matches the expected value, it is considered as 'verified', else it is considered as 'non verified'.

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in TS 45.005.

8.4.2.5.2.1 Initial BSIC identification

This measurement shall be based on the measurement occasions allocated for Initial BSIC identification as described in 8.4.2.5.

The UE shall continuously attempt to decode the BSIC of SCH on the BCCH carrier of the 6 strongest BCCH carriers of the GSM cells indicated in the Inter-RAT cell info list. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BCCH carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

When the UE attempts to decode the BSIC of one GSM BCCH carrier with unknown BSIC, the UE shall use all available measurements occasions allocated for GSM initial BSIC identification according section 8.4.2.5 to attempt to decode the BSIC from that GSM BCCH carrier.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within $T_{identify,\,GSM}$ ms, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 6 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $T_{identify_GSM}$ is given for the combinations of T_{meas} and N_{TTI} that are given in table 8.13. The values given in table 8.13 represent the number of patterns required to guarantee at least two attempts to decode the BSIC for one GSM BCCH carrier.

Table 8.13: The worst-case time for identification of one previously not identified GSM cell

T_meas	N_TTI=1 frame	N_TTI=2 frames	N_TTI=4 frames	N_TTI=8 frames
(ms)	T _{identify,GSM} (ms)	T _{identify,GSM} (ms)	T _{identify,GSM} (ms)	T _{identify,GSM} (ms)
80	2880	1280		-
160	7680	2880	1280	640
240	29760	5280		-
320	14080	6400	2560	1280
480	34560	12480	2880	1920
640	34560	12800	5120	2560
960	*	24960	5760	3840
1280	*	20480	10240	5120
1920	*	34560	15360	7680

* Note: There are no performance requirements for these combinations of parameters because they result in long identification time.

8.4.2.5.2.2 BSIC re-confirmation

The requirements of this section are applicable for BSIC re-confirmation.

The UE shall maintain the timing information of 6 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each measurement occasion allocated for GSM BSIC reconfirmation as described in 8.4.2.5, the UE shall attempt to decode the BSIC falling within the measurement occasion duration according to table 8.12. When the UE has to select one out of several possible GSM cells to reconfirm within the possible allocation of measurement occasions, according to 8.4.2.5, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.4.2.5.2.1. The UE shall be able to make BSIC reconfirmation attempts for the 6 strongest GSM cells in the monitored list.

 $T_{\text{re-confirm_GSM}}$ is given for the combinations of T_{meas} and N_{TTI} that are given in table 8.14. The values given in table 8.14 represent the number of patterns required to guarantee at least two attempts to decode the BSIC for one GSM BCCH carrier. Different values for $T_{\text{re-confirm GSM}}$ might apply when more than one GSM cell is in the BSIC reconfirmation procedure at the same time.

Table 8.14: The worst-case time for reconfirmation of one previously identified GSM cell

T_meas	N_TTI=1 frame	N_TTI=2 frames	N_TTI=4 frames	N_TTI=8 frames		
(ms)	T _{re-confirm,GSM} (ms)	T _{re-confirm,GSM} (ms)	T _{re-confirm,GSM} (ms)	T _{re-confirm,GSM} (ms)		
80	2880	1600	-	-		
160	6400	3200	2240	1600		
240	17280	4800	-	-		
320	14080	6400	4480	3200		
480	22080	9600	6720	4800		
640	26880	12800	10240	6400		
960	*	17280	13440	9600		
1280	*	33280	17920	12800		
1920	*	*	26880	19200		
* Note: There are no performance requirements for these combinations of parameters						
because they we will be leave as a dimension time.						

because they result in long reconfirmation time.

8.5 Capabilities for Support of Event Triggering and Reporting Criteria in CELL FACH state

8.5.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria.

8.5.2 Requirements

In this section reporting criteria can be either event triggered reporting criteria or periodic reporting criteria.

Table 8.15: Requirements for reporting criteria per measurement category

Measurement category	E _{cat}	Note
Traffic volume measurements	2	

Measurements Performance Requirements 9

One of the key services provided by the physical layer is the measurement of various quantities which are used to trigger or perform a multitude of functions. Both the UE and the UTRAN are required to perform a variety of measurements. The physical layer measurement model and a complete list of measurements is specified in TS 25.302 "Services Provided by Physical Layer". The physical layer measurements for FDD are described and defined in TS25.215 "Physical layer - Measurements (FDD)". In this clause for each measurement the relevant requirements on the measurement period, reporting range, granularity and performance in terms of accuracy are specified.

Since the UE reference sensitivity requirements are different depending on supported band, this is noted in each case with definition of the range Io for each frequency band. Definitions of each frequency bands can be found in TS 25.101.

The accuracy requirements in this clause are applicable for AWGN radio propagation conditions.

9.1 Measurement Performance for UE

The requirements in this clause are applicable for a UE:

- in state CELL DCH and/or state CELL FACH.
- performing measurements according to section 8.
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in TS25.302.

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

Note: It needs to be clarified how the accuracy requirements shall be handled when the UE is measuring on

cells using IPDL.

Note: For the UE which supports both Band III and Band IX operating frequencies, the measurement

performance requirements for Band III shall apply to the multi-band UE.

9.1.1 CPICH RSCP

Note: This measurement is for handover evaluation, DL open loop power control, UL open loop power control

and for the calculation of pathloss.

9.1.1.1 Intra frequency measurements accuracy

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.2. The measurement period for CELL FACH state can be found in sub clause 8.4.2.2.

9.1.1.1.1 Absolute accuracy requirement

The accuracy requirements in table 9.1 are valid under the following conditions:

CPICH_RSCP1|_{dBm} ≥ -114 dBm for Bands I, IV and VI,

CPICH RSCP1|_{dBm} \geq -113 dBm for Band IX,

CPICH_RSCP1|_{dBm} ≥ -112 dBm for Bands II, V and VII,

 $CPICH_RSCP1|_{dBm} \ge -111 \ dBm$ for Band III and VIII.

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 9.1: CPICH_RSCP Intra frequency absolute accuracy

		Accuracy [dB]		Conditions				
Parameter	Unit	Normal	Extreme	Band I, IV and VI	Band II, V and VII	Band III and VIII	Band IX	
raiailletei	•	condition	condition	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	
CPICH_RSCP	dBm	± 6	± 9	-9470	-9270	-9170	-9370	
CFICH_RSCF	dBm	± 8	± 11	-7050	-7050	-7050	-7050	

9.1.1.1.2 Relative accuracy requirement

The relative accuracy of CPICH RSCP is defined as the CPICH RSCP measured from one cell compared to the CPICH RSCP measured from another cell on the same frequency

The accuracy requirements in table 9.2 are valid under the following conditions:

CPICH_RSCP1,2|_{dBm} ≥ -114 dBm for Bands I, IV and VI,

CPICH_RSCP1,2 $|_{dBm} \ge -113$ dBm for Band IX,

CPICH_RSCP1,2|_{dBm} ≥ -112 dBm for Bands II, V and VII,

CPICH_RSCP1,2 $|_{dBm} \ge -111$ dBm for Band III and VIII.

$$|CPICH RSCP1|_{in dBm} - CPICH RSCP2|_{in dBm}| \le 20dB$$

$$\left. \frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} \right|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}} \right)_{in\ dB} \le 20dB$$

Table 9.2: CPICH_RSCP Intra frequency relative accuracy

		Accura	acy [dB]	Conditions					
				Band I, IV and VI	Band II, V and VII	Band III and	Band IX		
Parameter	Unit	Normal	Extreme			VIII			
		condition	condition	lo [dBm/3.84	lo [dBm/3.84	lo [dBm/3.84	lo [dBm/3.84		
				MHz]	MHz]	MHz]	MHz]		
CPICH_RSCP	dBm	± 3	± 3	-9450	-9250	-9150	-9350		

9.1.1.2 Inter frequency measurement accuracy

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.3. The measurement period for CELL_FACH state can be found in sub clause 8.4.2.3.

9.1.1.2.1 Relative accuracy requirement

The relative accuracy of CPICH RSCP in inter frequency case is defined as the CPICH RSCP measured from one cell compared to the CPICH RSCP measured from another cell on a different frequency.

The accuracy requirements in table 9.3 are valid under the following conditions:

CPICH_RSCP1|_{dBm} ≥ -114 dBm if CPICH_RSCP1 is on Bands I, IV and VI,

CPICH RSCP1|dBm ≥ -113 dBm if CPICH RSCP1 is on Band IX,

CPICH_RSCP1|dBm ≥ -112 dBm if CPICH_RSCP1 is on Bands II, V and VII,

CPICH_RSCP1|_{dBm} ≥ -111 dBm if CPICH_RSCP1 is on Band III and VIII,

 $CPICH_RSCP2|_{dBm} \ge -114 dBm if CPICH_RSCP2$ is on Bands I, IV and VI,

CPICH_RSCP2|_{dBm} ≥ -113 dBm if CPICH_RSCP2 is on Band IX,

 $CPICH_RSCP2|_{dBm} \ge -112 \ dBm \ if \ CPICH_RSCP2 \ is \ on \ Bands \ II, \ V \ and \ VII,$

 $CPICH_RSCP2|_{dBm} \ge -111 dBm if CPICH_RSCP2 is on Band III and VIII.$

$$|CPICH RSCP1|_{in dBm} - CPICH RSCP2|_{in dBm}| \le 20dB$$

| Channel 1_ $Io|_{dBm/3.84 \text{ MHz}}$ -Channel 2_ $Io|_{dBm/3.84 \text{ MHz}}$ | $\leq 20 \text{ dB}$.

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in,dR}} - \left(\frac{CPICH _E_c}{I_{or}}\right)_{in,dR} \le 20dB$$

Table 9.3: CPICH_RSCP Inter frequency relative accuracy

			Accuracy [dB]		Conditions				
				CPICH_RSCP is on Band I. IV and	CPICH_RSCP is on Band II, V and	CPICH_RSCP is on Band III	CPICH_RSCP is on Band IX		
Parameter	Unit Normal condition		VI	VII	and VIII	is on Band ix			
	condi		Condition	lo [dBm/3.84 MHz1	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz1	lo [dBm/3.84 MHz]		
CPICH_RSCP	dBm	± 6	± 6	-9450	-9250	-9150	-9350		

9.1.1.3 CPICH RSCP measurement report mapping

The reporting range is for CPICH RSCP is from -120 dBm ...-25 dBm.

In table 9.4 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.4

Reported value	Measured quantity value	Unit
CPICH_RSCP_LEV05	CPICH RSCP <-120	dBm
CPICH_RSCP_LEV04	-120 ≤ CPICH RSCP < -119	dBm
CPICH_RSCP_LEV03	-119 ≤ CPICH RSCP < -118	dBm
CPICH_RSCP_LEV _89	-27 ≤ CPICH RSCP < -26	dBm
CPICH_RSCP_LEV _90	-26 ≤ CPICH RSCP < -25	dBm
CPICH_RSCP_LEV _91	-25 ≤ CPICH RSCP	dBm

9.1.2 CPICH Ec/lo

Note: This measurement is for Cell selection/re-selection and for handover evaluation.

9.1.2.1 Intra frequency measurements accuracy

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.2. The measurement period for CELL_FACH state can be found in sub clause 8.4.2.2.

9.1.2.1.1 Absolute accuracy requirement

The accuracy requirements in table 9.5 are valid under the following conditions:

 $CPICH_RSCP1|_{dBm} \ge -114 dBm$ for Bands I, IV and VI,

 $CPICH_RSCP1|_{dBm} \ge -113 dBm$ for Band IX,

CPICH_RSCP1|_{dBm} ≥ -112 dBm for Bands II, V and VII,

 $CPICH_RSCP1|_{dBm} \ge -111 \ dBm$ for Band III and VIII.

$$\left. \frac{I_{o}}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_{c}}{I_{or}} \right) \right|_{in\ dB} \le 20dB$$

Accuracy [dB] **Conditions** Band I, IV and Band II. V Band III and **Band IX Parameter** Unit **Extreme** and VII Normal condition lo [dBm/3.84 lo [dBm/3.84 lo [dBm/3.84 condition lo [dBm/3.84 MHz] MHz] MHz] MHz] \pm 1.5 for -14 \leq CPICH Ec/lo PICH_Ec/lo dB -94...-50 -92...-50 -91...-50 -93...-50 \pm 2 for -16 \leq CPICH Ec/lo < -14 ± 3 \pm 3 for -20 \leq CPICH Ec/lo < -16

Table 9.5: CPICH_Ec/lo Intra frequency absolute accuracy

9.1.2.1.2 Relative accuracy requirement

The relative accuracy of CPICH Ec/Io is defined as the maximum allowable error in the measured difference between the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on the same frequency.

The relative accuracy is defined using the lower CPICH_Ec/Io of cell 1 and cell 2.

The accuracy requirements in table 9.6 are valid under the following conditions:

CPICH_RSCP1,2|_{dBm} ≥ -114 dBm for Bands I, IV and VI

CPICH_RSCP1,2 $|_{dBm} \ge -113 dBm$ for Band IX

CPICH_RSCP1,2|_{dBm} ≥ -112 dBm for Bands II, V and VII,

CPICH_RSCP1,2|_{dBm} ≥ -111 dBm for Band III and VIII.

$$|CPICH _RSCP1|_{in dBm} - CPICH _RSCP2|_{in dBm}| \le 20dB$$

$$\frac{I_o}{\langle \hat{I}_{or} \rangle_{in\ dR}} - \left(\frac{CPICH_E_c}{I_{or}} \right)_{in\ dR} \le 20dB$$

Table 9.6: CPICH_Ec/lo Intra frequency relative accuracy

		Accuracy [dB]	Conditions					
Parameter	Unit		Extreme	Band I, IV and VI	Band II, V and VII	Band III and VIII	Band IX	
Parameter	Unit	Normal condition Extreme condition		lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	
The lower of the CPICH_Ec/lo from cell1 and cell2	dB	± 1.5 for -14 ≤ CPICH Ec/lo ± 2 for -16 ≤ CPICH Ec/lo < -14 ± 3 for -20 ≤ CPICH Ec/lo < -16	± 3	-9450	-9250	-9150	-9350	

9.1.2.2 Inter frequency measurement accuracy

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.3. The measurement period for CELL_FACH state can be found in sub clause 8.4.2.3.

9.1.2.2.1 Absolute accuracy requirement

The accuracy requirements in table 9.7 are valid under the following conditions:

 $CPICH_RSCP1|_{dBm} \ge -114 dBm$ for Bands I, IV and VI

CPICH RSCP1|_{dBm} \geq -113 dBm for Band IX,

CPICH_RSCP1|_{dBm} ≥ -112 dBm for Bands II, V and VII,

 $CPICH_RSCP1|_{dBm} \ge -111 dBm$ for Band III.

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 9.7: CPICH_Ec/lo Inter frequency absolute accuracy

		Accuracy [dB]	Conditions					
Parameter Unit				Band I, IV	Band II, V	Band III	Band IX	
	Unit		Extreme		and VII	and VIII		
		Normal condition	condition	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	
CPICH_Ec/lo	dB	\pm 1.5 for -14 \leq CPICH Ec/lo \pm 2 for -16 \leq CPICH Ec/lo $<$ -14 \pm 3 for -20 \leq CPICH Ec/lo $<$ -16	± 3	-9450	-9250	-9150	-9350	

9.1.2.2.2 Relative accuracy requirement

The relative accuracy of CPICH Ec/Io in the inter frequency case is defined as the maximum allowable error in the measured difference between the CPICH Ec/Io measured from one cell compared to the CPICH Ec/Io measured from another cell on a different frequency

The relative accuracy is defined using the lower CPICH_Ec/Io of cell 1 and cell 2.

The accuracy requirements in table 9.8 are valid under the following conditions:

CPICH_RSCP1|_{dBm} ≥ -114 dBm if CPICH_RSCP1 is on Bands I, IV and VI

 $CPICH_RSCP1|_{dBm} \ge -113 dBm if CPICH_RSCP1 is on Band IX,$

CPICH_RSCP1|_{dBm} ≥ -112 dBm if CPICH_RSCP1 is on Bands II, V and VII,

CPICH_RSCP1|_{dBm} ≥ -111 dBm if CPICH_RSCP1 is on Band III and VIII,

CPICH_RSCP2|_{dBm} ≥ -114 dBm if CPICH_RSCP2 is on Bands I, IV and VI,

 $CPICH_RSCP2|_{dBm} \ge -113 dBm if CPICH_RSCP2 is on Band IX,$

CPICH_RSCP2|_{dBm} ≥ -112 dBm if CPICH_RSCP2 is on Bands II, V and VII,

 $CPICH_RSCP2|_{dBm} \geq -111 \ dBm \ if \ CPICH_RSCP2 \ is \ on \ Band \ III \ and \ VIII.$

$$|CPICH _RSCP1|_{in \ dBm} - CPICH _RSCP2|_{in \ dBm}| \le 20dB$$

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Table 9.8: CPICH_Ec/lo Inter frequency relative accuracy

		Accuracy [dB] Conditions					
Parameter	Unit	Normal condition	Extreme condition	CPICH_Ec/ lo is on Band I, IV and VI	CPICH_Ec/ lo is on Band II, V and VII	CPICH_Ec/ lo is on Band III and VIII	CPICH_Ec /lo is on Band IX
				[dBm/3.84		[dBm/3.84 MHz]	[dBm/3.84 MHz]
The lower of the CPICH_Ec/lo from cell1 and cell2	dB	± 1.5 for -14 ≤ CPICH Ec/lo ± 2 for -16 ≤ CPICH Ec/lo < -14 ± 3 for -20 ≤ CPICH Ec/lo < -16	± 3	-9450	-9250	-9150	-9350

9.1.2.3 CPICH Ec/lo measurement report mapping

The reporting range is for *CPICH Ec/Io* is from -24 ...0 dB.

In table 9.9 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.9

Reported value	Measured quantity value	Unit
CPICH_Ec/No _00	CPICH Ec/lo < -24	dB
CPICH_Ec/No _01	-24 ≤ CPICH Ec/lo < -23.5	dB
CPICH_Ec/No _02	-23.5 ≤ CPICH Ec/lo < -23	dB
CPICH_Ec/No _47	-1 ≤ CPICH Ec/lo < -0.5	dB
CPICH_Ec/No _48	-0.5 ≤ CPICH Ec/lo < 0	dB
CPICH_Ec/No _49	0 ≤ CPICH Ec/lo	dB

9.1.3 UTRA Carrier RSSI

NOTE: This measurement is for Inter-frequency handover evaluation.

The measurement period is equal to the measurement period for UE CPICH measurements, For CELL_DCH state the measurement period can be found in sub clause 8.1.2.2 for intra frequency measurements and in sub clause 8.1.2.3 for inter frequency measurements.

9.1.3.1 Absolute accuracy requirement

Table 9.10: UTRA Carrier RSSI Inter frequency absolute accuracy

		Accura	Conditions				
Parameter	Unit	Normal	Extreme	Band I, IV and VI	Band II, V and VII	Band III and VIII	Band IX
rarameter	Oilit	condition	condition	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]
UTRA Carrier	dBm	± 4	± 7	-9470	-9270	-9170	-9370
RSSI	dBm	± 6	± 9	-7050	-7050	-7050	-7050

9.1.3.2 Relative accuracy requirement

The relative accuracy requirement is defined as the UTRA carrier RSSI measured from one frequency compared to the UTRA carrier RSSI measured from another frequency.

The accuracy requirements in table 9.11 are valid under the following condition:

| Channel 1_ $Io|_{dBm}$ -Channel 2_ $Io|_{dBm}$ | < 20 dB.

Table 9.11: UTRA Carrier RSSI Inter frequency relative accuracy

		Accura	cy [dB]		Conditions		
				UTRA	UTRA	UTRA	UTRA
				Carrier	Carrier	Carrier	Carrier
				RSSI is on	RSSI is on	RSSI is on	RSSI is on
Parameter	Unit	Normal	Extreme	Band I, IV	Band II, V	Band III and	Band IX
		condition	condition	and VI	and VII	VIII	
				lo	lo	lo	lo
				[dBm/3.84	[dBm/3.84	[dBm/3.84	[dBm/3.84
				MHz]	MHz]	MHz]	MHz]
UTRA Carrier RSSI	dBm	± 7	± 11	-9450	-9250	-9150	-9350

9.1.3.3 UTRA Carrier RSSI measurement report mapping

The reporting range for UTRA carrier RSSI is from -100 ...-25 dBm.

In table 9.12 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.12

Reported value	Measured quantity value	Unit
UTRA_carrier_RSSI_LEV _00	UTRA carrier RSSI < -100	dBm
UTRA_carrier_RSSI_LEV _01	-100 ≤ UTRA carrier RSSI < -99	dBm
UTRA_carrier_RSSI_LEV _02	-99 ≤ UTRA carrier RSSI < -98	dBm

UTRA_carrier_RSSI_LEV _74	-27 ≤ UTRA carrier RSSI < -26	dBm
UTRA_carrier_RSSI_LEV _75	-26 ≤ UTRA carrier RSSI < -25	dBm
UTRA_carrier_RSSI_LEV _76	-25 ≤ UTRA carrier RSSI	dBm

9.1.4 GSM carrier RSSI

NOTE: This measurement is for handover between UTRAN and GSM.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for CELL_DCH state can be found in section 8.1.2.5. The measurement period for CELL_FACH state can be found in section 8.4.2.5.

If the UE, in CELL_DCH state, does not need compressed mode to perform GSM measurements, the measurement accuracy requirements for RXLEV in TS 45.008 shall apply.

If the UE, in CELL_DCH state, needs compressed mode to perform GSM measurements, the GSM measurement procedure and measurement accuracy requirement is stated in section 8.1.2.5 shall apply.

If the UE, in CELL_FACH state, does not need measurement occasions to perform GSM measurements, the measurement accuracy requirements for RXLEV in TS 45.008 shall apply.

If the UE, in CELL_FACH state, needs measurement occasions to perform GSM measurements, the GSM measurement procedure and measurement accuracy requirement stated in section 8.4.2.5 shall apply.

The reporting range and mapping specified for RXLEV in TS 45.008 shall apply.

9.1.5 Transport channel BLER

9.1.5.1 BLER measurement requirement

Transport channel BLER value shall be calculated from a window with the size equal to the IE Reporting interval as specified in section 10.3.7.53 Periodical reporting criteria in TS 25.331.

9.1.5.2 Transport channel BLER measurement report mapping

The Transport channel BLER reporting range is from 0 to 1.

In table 9.13 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Measured quantity value Reported value Unit BLER_LOG_00 Transport channel BLER = 0 BLER_LOG_01 -∞ < Log10(Transport channel BLER) < -4.03 BLER_LOG_02 -4.03 ≤ Log10(Transport channel BLER) < -3.965 BLER_LOG_03 -3.965 ≤ Log10(Transport channel BLER) < -3.9 BLER LOG 61 -0.195 ≤ Log10(Transport channel BLER) < -0.13 BLER_LOG_62 -0.13 ≤ Log10(Transport channel BLER) < -0.065

-0.065 ≤ Log10(Transport channel BLER) ≤ 0

Table 9.13

9.1.6 UE transmitted power

BLER_LOG_63

9.1.6.1 Accuracy requirement

This requirement is applicable in CELL_DCH state. The measured quantity is the transmitted power averaged over the longest period (excluding a 25µs period either side of any expected composite power change) during which the nominal composite symbol power reaches the maximum during 1 DPCH slot interval. The UE measured quantity absolute accuracy is defined in Table 9.15.

Table 9.14: Void

9.1.6.2 UE transmitted power measurement report mapping

The reporting range for *UE transmitted power* is from -50 ...+33 dBm.

In table 9.15 the mapping of the measured quantity specified in Section 9.1.6.1 and the accuracy range are defined. The range in the signalling may be larger than the guaranteed accuracy range. For each empty slot created by compressed mode, no value shall be reported by the UE L1 for these slots.

Table 9.15

Reported value	Measured quantity value (dBm)	Accuracy (dB) note 1	
UE_TX_POWER _104	33<= to <34	note 2	
UE_TX_POWER _103	32<= to <33	note 2	
UE_TX_POWER _102	31<= to <32	note 2	
UE_TX_POWER _096	25<= to <26	note 2	
UE_TX_POWER _095	24<= to <25	2.0	-2.0
UE_TX_POWER _094	23<= to <24	2.0	-2.0
UE_TX_POWER _093	22<= to <23	2.0	-2.0
UE_TX_POWER _092	21<= to <22	2.0	-2.0
UE_TX_POWER _091	20<= to < 21	2.5	-2.5
UE_TX_POWER _090	19<= to <20	3.0	-3.0
UE_TX_POWER _089	18<= to <19	3.5	-3.5
UE_TX_POWER _088	17<= to <18	4.0	-4.0
UE_TX_POWER _087	16<= to <17	4.0	-4.0
UE_TX_POWER _086	15<= to <16	4.0	-4.0
UE_TX_POWER _085	14<= to <15	4.0	-4.0
UE_TX_POWER _084	13<= to <14	4.0*	-4.0*
UE_TX_POWER _083	12<= to <13	4.0*	-4.0*
UE_TX_POWER _082	11<= to <12	4.0*	-4.0*
UE_TX_POWER _081	10<= to <11	note 2	
UE_TX_POWER _023	-48<= to <-47	note 2	
UE_TX_POWER _022	-49<= to <-48	note 2	
UE_TX_POWER _021	-50<= to <-49	note 2	

Note 1: The tolerance is specified for the maximum and minimum measured quantity value (dBm), i.e.

MIN(Measured quantity value) + MIN(Accuracy)
<= UE transmitted Power <

Max (Measured quantity value) + MAX(Accuracy)

Note 2: No tolerance is specified. Note *: Applicable to power class 4

9.1.7 SFN-CFN observed time difference

Note: This measurement is for handover timing purposes to identify active cell and neighbour cell time difference.

9.1.7.1 Intra frequency measurement requirement

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.2.

The accuracy requirement in table 9.16 is valid under the following conditions:

 $CPICH_RSCP1,2|_{dBm} \ge -114 \ dBm \ for \ Bands \ I, \ IV \ and \ VI$

CPICH_RSCP1,2 $|_{dBm} \ge -113$ dBm for Band IX,

CPICH_RSCP1,2 $|_{dBm} \ge -112$ dBm for Bands II, V and VII,

CPICH_RSCP1,2|_{dBm} ≥ -111 dBm for Band III and VIII.

$$\left| CPICH _RSCP1 \right|_{in \ dBm} - CPICH _RSCP2 \Big|_{in \ dBm} \right| \le 20 dB$$

$$\left. \frac{I_o}{\left(\hat{I}_{or}\right)_{lin~dB}} \right|_{in~dB} - \left. \left(\frac{CPICH _E_c}{I_{or}} \right) \right|_{in~dB} \le 20dB$$

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} \quad - \quad \left(\frac{P - CCPCH \ _E_c}{I_{or}}\right)_{in\ dB} \ \text{is low enough to ensure successful SFN decoding}.$$

Table 9.16

			Conditions				
Parameter		Accuracy [chip]	Band I, IV	Band II, V	Band III	Band IX	
	Unit		and VI	and VII	and VIII		
			lo	lo	lo	lo	
			[dBm/3.84	[dBm/3.84	[dBm/3.84	[dBm/3.84	
			MHz]	MHz]	MHz]	MHz]	
SFN-CFN observed time difference	chip	± 1	-9450	-9250	-9150	-9350	

9.1.7.2 Inter frequency measurement requirement

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.3.

The accuracy requirement in table 9.17 is valid under the following conditions:

 $CPICH_RSCP1|_{dBm} \ge -114 dBm \text{ if } CPICH_RSCP1 \text{ is on Bands I, IV and VI,}$

 $CPICH_RSCP1|_{dBm} \ge -113 dBm if CPICH_RSCP1 is on Band IX,$

CPICH_RSCP1|_{dBm} ≥ -112 dBm if CPICH_RSCP1 is on Bands II, V and VII,

CPICH_RSCP1|_{dBm} ≥ -111 dBm if CPICH_RSCP1 is on Band III and VIII,

CPICH_RSCP2|_{dBm} ≥ -114 dBm if CPICH_RSCP2 is on Bands I, IV and VI,

CPICH_RSCP2|_{dBm} ≥ -113 dBm if CPICH_RSCP2 is on Band IX,

CPICH_RSCP2|_{dBm} ≥ -112 dBm if CPICH_RSCP2 is on Bands II, V and VII,

CPICH_RSCP2|_{dBm} ≥ -111 dBm if CPICH_RSCP2 is on Band III and VIII,

$$\left| CPICH RSCP1 \right|_{in\ dBm} - CPICH RSCP2 \Big|_{in\ dBm} \le 20dB$$
,

| Channel 1_Io $|_{dBm/3.84~MHz}$ -Channel 2_Io $|_{dBm/3.84~MHz}$ | \leq 20 dB,

$$\frac{I_{o}}{\left(\hat{I}_{or}\right)_{in,dB}} - \left(\frac{CPICH_{E_{c}}}{I_{or}}\right)_{in,dB} \leq 20dB.$$

Table 9.17

				Cond	litions	
Parameter	Unit	Accuracy [chip]	SFN-CFN observed time difference is on Band I, IV and VI	SFN-CFN observed time difference is on Band II, V and VII	SFN-CFN observed time difference is on Band III and VIII	SFN-CFN observed time difference is on Band IX
			lo [dBm/3.84	lo [dBm/3.84	lo [dBm/3.84	lo [dBm/3.84
			MHz1	MHz1	MHz1	MHz1
SFN-CFN observed time difference	chip	± 1	-9450	-9250	-9150	-9350

9.1.7.3 SFN-CFN observed time difference measurement report mapping

The reporting range is for CFN-SFN observed time difference is from 0 ... 9830400 chip.

In table 9.18 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Measured quantity value Unit Reported value SFN-CFN_TIME _0000000 0 ≤ SFN-CFN observed time difference < 1 chip SFN-CFN_TIME _0000001 1 ≤ SFN-CFN observed time difference < 2 chip SFN-CFN_TIME _0000002 2 ≤ SFN-CFN observed time difference < 3 chip SFN-CFN_TIME _9830397 9830397 ≤ SFN-CFN observed time chip difference < 9830398 SFN-CFN_TIME _9830398 9830398 ≤ SFN-CFN observed time chip difference < 980399 SFN-CFN_TIME _9830399 9830399 ≤ SFN-CFN observed time chip difference < 9830400

Table 9.18

9.1.8 SFN-SFN observed time difference

9.1.8.1 SFN-SFN observed time difference type 1

NOTE: This measurement is for identifying time difference between two cells.

9.1.8.1.1 Measurement requirement

The measurement period for CELL_FACH state can be found in sub clause 8.4.2.2.

The accuracy requirement in table 9.19 is valid under the following conditions:

CPICH_RSCP1|_{dBm} ≥ -114 dBm if CPICH_RSCP1 is on Bands I, IV and VI,

 $CPICH_RSCP1|_{dBm} \ge -113 dBm if CPICH_RSCP1 is on Band IX,$

CPICH_RSCP1|_{dBm} ≥ -112 dBm if CPICH_RSCP1 is on Band II, V and VII,

CPICH_RSCP1|_{dBm} ≥ -111 dBm if CPICH_RSCP1 is on Band III and VIII,

 $CPICH_RSCP2|_{dBm} \ge -114 dBm$ if $CPICH_RSCP2$ is on Bands I, IV and VI,

CPICH_RSCP2|_{dBm} ≥ -113 dBm if CPICH_RSCP2 is on Band IX,

CPICH_RSCP2|_{dBm} ≥ -112 dBm if CPICH_RSCP2 is on Band II, V and VII,

CPICH_RSCP2|_{dBm} ≥ -111 dBm if CPICH_RSCP2 is on Band III and VIII,

$$|CPICH _RSCP1|_{in dBm} - CPICH _RSCP2|_{in dBm}| \le 20dB$$
,

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dR}}$$
 - $\left(\frac{CPICH_E_c}{I_{or}}\right)_{in\ dR} \le 20dB$,

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} \quad - \quad \left(\frac{P - CCPCH _ E_c}{I_{or}}\right)_{in\ dB} \ \text{is low enough to ensure successful SFN decoding}.$$

Table 9.19

74

			Conditions					
Parameter	Unit Accuracy [chip]	SFN-SFN observed time difference type1 is on Band I, IV and VI	SFN-SFN observed time difference type1 is on Band II, V and VII	SFN-SFN observed time difference type1 is on Band III and VIII	SFN-SFN observed time difference type1 is on Band IX			
			lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]		
SFN-SFN observed time difference type1	chip	± 1	-9450	-9250	-9150	-9350		

9.1.8.1.2 SFN-SFN observed time difference type 1 measurement report mapping

The reporting range is for SFN-SFN observed time difference type 1 is from 0 ... 9830400 chip.

In table 9.20 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.20

Reported value	Measured quantity value	Unit
T1_SFN-SFN_TIME _0000000	0 ≤ SFN-SFN observed time difference type 1 < 1	chip
T1_SFN-SFN_TIME _0000001	1 ≤ SFN-SFN observed time difference type 1 < 2	chip
T1_SFN-SFN_TIME _0000002	2 ≤ SFN-SFN observed time difference type 1 < 3	chip
T1_SFN-SFN_TIME _9830397	9830397 ≤ SFN-SFN observed time difference type 1 < 9830398	chip
T1_SFN-SFN_TIME _9830398	9830398 ≤ SFN-SFN observed time difference type 1 < 980399	chip
T1_SFN-SFN_TIME _9830399	9830399 ≤ SFN-SFN observed time difference type 1 < 9830400	chip

9.1.8.2 SFN-SFN observed time difference type 2

NOTE: This measurement is for location service purposes to identify time difference between two cells.

It is optional for terminal to support the use of IPDL periods together with SFN-SFN observed time difference type 2. The support of IPDL depends on the supported UE positioning methods.

NOTE: Requirement on the UE shall be reconsidered when the state of the art technology progress.

9.1.8.2.1 Intra frequency measurement requirement accuracy without IPDL period active

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.2. The measurement period for CELL_FACH state can be found in sub clause 8.4.2.2.

The accuracy requirement in table 9.21 is valid under the following conditions:

CPICH_RSCP1,2|_{dBm} ≥ -114 dBm for Bands I, IV and VI

CPICH_RSCP1,2|_{dBm} ≥ -113 dBm for Band IX,

CPICH_RSCP1,2 $|_{dBm} \ge -112 dBm$ for Band II, V and VII,

CPICH_RSCP1,2 $|_{dBm} \ge -111$ dBm for Band III and VIII.

$$\left| \frac{I_o}{\hat{I}_{or}} \right|_{in\ dB} - \left| \frac{CPICH_E_c}{I_{or}} \right|_{in\ dB} \le 20dB$$

Table 9.21

			Conditions				
Parameter	Unit	Accuracy	Band I, IV and VI	Band II, V and VII	Band III and VIII	Band IX	
Parameter	Offic	[chip]	lo	lo	lo	lo	
			[dBm/3.84	[dBm/3.84	[dBm/3.84	[dBm/3.84	
			MHz]	MHz]	MHz]	MHz]	
SFN-SFN observed time difference type2	chip	± 0.5	-9450	-9250	-9150	-9350	

9.1.8.2.2 Intra frequency measurement requirement accuracy with IPDL period active

This requirement is valid only for UEs supporting IPDL measurements.

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.2. The measurement period for CELL_FACH state can be found in sub clause 8.4.2.2.

The accuracy requirement in table 9.22 is valid under the following conditions:

CPICH_RSCP1,2|_{dBm} ≥ -114 dBm for Bands I, IV and VI

CPICH_RSCP1,2 $|_{dBm} \ge -113$ dBm for Band IX.

CPICH_RSCP1,2|_{dBm} ≥ -112 dBm for Bands II, V and VII,

CPICH_RSCP1,2 $|_{dBm} \ge -111$ dBm for Band III and VIII.

$$\frac{I_o}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{CPICH _E_c}{I_{or}}\right)_{in\ dB} \le 20dB$$

Additionally the accuracy requirement in table 9.22 is also valid for neighbour cells for which the following conditions apply to during idle periods provided idle periods have a length of 1 slot:

CPICH_RSCPx,y $|_{dBm} \ge -114 dBm$.

$$\frac{I_{o_idle_period}}{\left(\hat{I}_{or}\right)}\bigg|_{in\ dB} - \left(\frac{CPICH_E_c}{I_{or}}\right)\bigg|_{in\ dB} \le 20dB,$$

where x and y represent cells measured using idle periods and $I_{o_idle-period}$ is the total received power during the idle period.

NOTE: Additional general conditions are needed for the requirements in table 9.22 to be valid.

Table 9.22

			Conditions			
Parameter	Unit	Accuracy [chip]	Band I, IV and VI	Band II, V and VII	Band III and VIII	Band IX
			lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]
SFN-SFN observed time difference type 2	chip	± 0.5	-9450	-9250	-9150	-9350

9.1.8.2.3 Inter frequency measurement requirement accuracy

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.3. The measurement period for CELL FACH state can be found in sub clause 8.4.2.3.

The accuracy requirement in table 9.23 is valid under the following conditions:

CPICH_RSCP1|_{dBm} ≥ -114 dBm if CPICH_RSCP1 is on Bands I, IV and VI,

 $CPICH_RSCP1|_{dBm} \ge -113 dBm if CPICH_RSCP1 is on Band IX,$

CPICH_RSCP1|_{dBm} ≥ -112 dBm if CPICH_RSCP1 is on Bands II, V and VII,

CPICH_RSCP1|_{dBm} ≥ -111 dBm if CPICH_RSCP1 is on Band III and VIII,

CPICH_RSCP2|_{dBm} ≥ -114 dBm if CPICH_RSCP2 is on Bands I, IV and VI,

CPICH_RSCP2|_{dBm} ≥ -113 dBm if CPICH_RSCP2 is on for Band IX,

CPICH_RSCP2|_{dBm} ≥ -112 dBm if CPICH_RSCP2 is on for Bands II, V and VII,

CPICH_RSCP2 $|_{dBm} \ge -111$ dBm if CPICH_RSCP2 is on for Band III and VIII,

| Channel 1_ $Io|_{dBm}$ -Channel 2_ $Io|_{dBm}$ | $\leq 20~dB$,

$$\frac{I_o}{\langle \hat{I}_{or} \rangle_{in,dR}} - \left(\frac{CPICH_E_c}{I_{or}} \right)_{in,dR} \le 20dB.$$

Table 9.23

			Conditions						
			SFN-SFN	SFN-SFN	SFN-SFN	SFN-SFN			
			observed time	observed time	observed time	observed time			
Parameter	Unit	Accuracy	difference type 2	difference type 2	difference type 2	difference type			
Farameter	Oilit	[chip]	is on Band I, IV	is on Band II, V	is on Band III	2 is on Band IX			
			and VI	and VII	and VIII				
			lo [dBm/3.84	lo [dBm/3.84	lo [dBm/3.84	lo [dBm/3.84			
			MHz]	MHz]	MHz]	MHz]			
SFN-SFN observed time difference type 2	chip	± 1	-9450	-9250	-9150	-9350			

9.1.8.2.4 SFN-SFN observed time difference type 2 measurement report mapping

The reporting range is for SFN-SFN observed time difference type 2 is from -1280 ... +1280 chip.

In table 9.24 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.24

Reported value	Measured quantity value	Unit
T2_SFN-SFN_TIME _00000	SFN-SFN observed time difference type 2 < -1280.0000	chip
T2_SFN-SFN_TIME _00001	-1280.0000 ≤ SFN-SFN observed time difference type 2 < -1279.9375	chip
T2_SFN-SFN_TIME _00002	-1279.9375 ≤ SFN-SFN observed time difference type 2 < -1279.8750	chip
T2_SFN-SFN_TIME _40959	1279.8750 ≤ SFN-SFN observed time difference type 2 < 1279.9375	chip
T2_SFN-SFN_TIME _40960	1279.9375 ≤ SFN-SFN observed time difference type 2 < 1280.0000	chip
T2 SFN-SFN TIME 40961	1280,0000 < SEN-SEN observed time difference type 2	chip

9.1.9 UE Rx-Tx time difference

9.1.9.1 UE Rx-Tx time difference type 1

NOTE: This measurement is used for call set up purposes to compensate propagation delay of DL and UL.

The measurement period in CELL_DCH state is 100 ms.

9.1.9.1.1 Measurement requirement

Table 9.25

				Con	ditions	
Parameter	Unit	Accuracy [chip]	Band I. IV and VI	Band II, V and VII	Band III and VIII	Band IX
Parameter	Onic		lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]	lo [dBm/3.84 MHz]
UE RX-TX time difference	chip	± 1.5	-9450	-9250	-9150	-9350

9.1.9.1.2 UE Rx-Tx time difference type 1 measurement report mapping

The reporting range is for *UE Rx-Tx time difference type 1* is from 768 ... 1280 chip.

In table 9.26 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.26

Reported value	Measured quantity value	Unit
RX-TX_TIME _768	UE Rx-Tx Time difference type 1< 768	chip
RX-TX_TIME _769	768 ≤ UE Rx-Tx Time difference type 1< 769	chip
RX-TX_TIME _770	769 ≤ UE Rx-Tx Time difference type 1< 770	chip
RX-TX_TIME _771	770 ≤ UE Rx-Tx Time difference type 1< 771	chip
RX-TX_TIME _1277	1276 ≤ UE Rx-Tx Time difference type 1< 1277	chip
RX-TX_TIME _1278	1277 ≤ UE Rx-Tx Time difference type 1< 1278	chip
RX-TX_TIME _1279	1278 ≤ UE Rx-Tx Time difference type 1< 1279	chip
RX-TX_TIME _1280	1279 ≤ UE Rx-Tx Time difference type 1	chip

9.1.9.2 UE Rx-Tx time difference type 2

NOTE: This measurement is used for UE positioning purposes.

It is optional for a terminal to support a subset of UE positioning methods. This measurement represents an instantaneous value that is time stamped as defined in the IE description in TS 25.331 [16].

9.1.9.2.1 Measurement requirement

Table 9.27

Parameter			Conditions				
			Band I, IV	Band II, V	Band III	Band IX	
	Unit	Accuracy [chip]	and VI	and VII	and VIII		
			lo	lo	lo	lo	
			[dBm/3.84	[dBm/3.84	[dBm/3.84	[dBm/3.84	
			MHz]	MHz]	MHz]	MHz]	
UE RX-TX time difference	chip	± 1.0	-9450	-9250	-9150	-9350	

9.1.9.2.2 UE Rx-Tx time difference type 2 measurement report mapping

The reporting range is for UE Rx-Tx time difference type2 is from 768 ... 1280 chip.

In table 9.28 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.28

Reported value	Measured quantity value	Unit
RX-TX_TIME _0000	UE Rx-Tx Time difference type 2 < 768.000	chip
RX-TX_TIME _0001	768.000 ≤ UE Rx-Tx Time difference type 2 < 768.0625	chip
RX-TX_TIME _0002	768.0625 ≤ UE Rx-Tx Time difference type 2 < 768.1250	chip
RX-TX_TIME _0003	768.1250 ≤ UE Rx-Tx Time difference type 2 < 768.1875	chip
RX-TX_TIME _8189	1279.7500 ≤ UE Rx-Tx Time difference type 2 < 1279.8125	chip
RX-TX_TIME _8190	1279.8125 ≤ UE Rx-Tx Time difference type 2 < 1279.8750	chip
RX-TX_TIME _8191	1279.8750 ≤ UE Rx-Tx Time difference type 2	chip

9.1.10 Void

Table 9.29 Void

Table 9.30 Void

9.1.11 P-CCPCH RSCP

NOTE: This measurement is used for handover between UTRA FDD and UTRA TDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for CELL_DCH state can be found in sub clause 8.1.2.4. The measurement period for CELL_FACH state can be found in sub clause 8.4.2.4.

9.1.11.1 Absolute accuracy requirements

9.1.11.1.1 3.84 Mcps TDD Option

The accuracy requirement in table 9.31is valid under the following conditions:

P-CCPCH_RSCP \geq -102 dBm.

$$\frac{I_{o}}{\left(\hat{I}_{or}\right)_{in\ dB}} - \left(\frac{P - CCPCH - E_{c}}{I_{or}}\right)_{in\ dB} \le 8dB$$

Table 9.31: P-CCPCH_RSCP Inter frequency absolute accuracy

		Accura	Conditions	
Parameter	Unit	Normal conditions	Extreme conditions	lo [dBm/3.84 MHz]
P-CCPCH RSCP	dBm	± 6	± 9	-9470
F-CCPCH_RSCP	dBm	± 8	± 11	-7050

9.1.11.1.2 1.28 Mcps TDD Option

The accuracy requirement in table 9.31A is valid under the following conditions:

P-CCPCH RSCP ≥ -102 dBm

P-CCPCH Ec/Io \geq -8 dB

Table 9.31A: P-CCPCH_RSCP Inter frequency absolute accuracy

		Accura	Conditions	
Parameter	Unit	Normal conditions	Extreme conditions	lo [dBm/1.28 MHz]
P-CCPCH_RSCP	dBm	± 6	± 9	-9470
F-CCFCII_K3CF	dBm	± 8	± 11	-7050

9.1.11.2 P-CCPCH RSCP measurement report mapping

The reporting range is for *P-CCPCH RSCP* is from -115 ... -25 dBm.

In table 9.32 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.32

Reported value	Measured quantity value	Unit
PCCPCH_RSCP_LEV _00	PCCPCH RSCP< -115	dBm
PCCPCH_RSCP_LEV _01	-115 ≤ PCCPCH RSCP< -114	dBm
PCCPCH_RSCP_LEV _02	-114 ≤ PCCPCH RSCP< -113	dBm
PCCPCH_RSCP_LEV _03	-113 ≤ PCCPCH RSCP< -112	dBm
PCCPCH_RSCP_LEV _89	-27 ≤ PCCPCH RSCP< -26	dBm
PCCPCH_RSCP_LEV _90	-26 ≤ PCCPCH RSCP< -25	dBm
PCCPCH_RSCP_LEV _91	-25 ≤ PCCPCH RSCP	dBm

9.1.12 UE GPS Timing of Cell Frames for UE positioning

The requirements in this section are valid for terminals supporting this capability:

Table 9.33

Parameter	Unit	Accuracy [chip]	Conditions
UE GPS Timing of Cell Frames for UE positioning	chip	[]	

9.1.12.1 UE GPS timing of Cell Frames for UE positioning measurement report mapping

The reporting range is for UE GPS timing of Cell Frames for UE positioning is from $0\dots2322432000000$ chip.

In table 9.34 the mapping of measured quantity is defined.

Table 9.34

Reported value	Measured quantity value	Unit
GPS_TIME_00000000000000	UE GPS timing of Cell Frames for UE positioning < 0.0625	chip
GPS_TIME_00000000000001	$0.0625 \le \text{UE GPS timing of Cell Frames for UE positioning} < 0.1250$	chip
GPS_TIME_000000000000000000000000000000000000	0.1250 ≤ UE GPS timing of Cell Frames for UE positioning < 0.1875	chip
GPS_TIME_3715891199997	2322431999999.8125 ≤ UE GPS timing of Cell Frames for UE positioning < 2322431999999.8750	chip
GPS_TIME_37158911999998	2322431999999.8750 ≤ UE GPS timing of Cell Frames for UE positioning < 2322431999999.9375	chip
GPS_TIME_37158911999999	2322431999999.9375 ≤ UE GPS timing of Cell Frames for UE positioning < 2322432000000.0000	chip

9.1.13 UE transmission power headroom

9.1.13.1 Delay requirement

The UE transmission power headroom measurement reporting delay is defined as the time between the end of the UE transmission power headroom measurement period and the time when the UE starts transmitting the measurement report over the Uu interface. The reporting delay of the UE transmission power headroom measurement result shall be not more than 10mS, which is applicable for all configured triggering mechanisms for UE transmission power headroom measurement.

9.1.13.2 Measurement period requirement

The reported UE transmission power headroom measurement result shall be an estimate of the average value of the UE transmission power headroom over a 100mS period. The UE transmission power headroom measurement shall exclude the empty slots created by the compressed mode.

9.1.13.3 UE transmission power headroom measurement report mapping

The UE transmission power headroom reporting range is from 0 ...+31 dB. Table 9.34A defines the mapping

Table 9.34A

Reported value	Measured quantity value (dB)
UE_POWER_HEADROOM_0	0 ≤ UPH < 1
UE_POWER_HEADROOM_1	1 ≤ UPH < 2
UE_POWER_HEADROOM_2	2 ≤ UPH < 3
UE_POWER_HEADROOM_3	3 ≤ UPH < 4
UE_POWER_HEADROOM_4	4 ≤ UPH < 5
UE_POWER_HEADROOM_5	5 ≤ UPH < 6
UE_POWER_HEADROOM_6	6 ≤ UPH < 7
UE_POWER_HEADROOM_7	7 ≤ UPH < 8
UE_POWER_HEADROOM_8	8 ≤ UPH < 9
UE_POWER_HEADROOM_9	9 ≤ UPH < 10
UE_POWER_HEADROOM_10	10 ≤ UPH < 11
UE_POWER_HEADROOM_11	11 ≤ UPH < 12
UE_POWER_HEADROOM_12	12 ≤ UPH < 13
UE_POWER_HEADROOM_13	13 ≤ UPH < 14
UE_POWER_HEADROOM_14	14 ≤ UPH < 15
UE_POWER_HEADROOM_15	15 ≤ UPH < 16
UE_POWER_HEADROOM_16	16 ≤ UPH < 17
UE_POWER_HEADROOM_17	17 ≤ UPH < 18
UE_POWER_HEADROOM_18	18 ≤ UPH < 19
UE_POWER_HEADROOM_19	19 ≤ UPH < 20
UE_POWER_HEADROOM_20	20 ≤ UPH < 21
UE_POWER_HEADROOM_21	21 ≤ UPH < 22
UE_POWER_HEADROOM_22	22 ≤ UPH < 23
UE_POWER_HEADROOM_23	23 ≤ UPH < 24
UE_POWER_HEADROOM_24	24 ≤ UPH < 25
UE_POWER_HEADROOM_25	25 ≤ UPH < 26
UE_POWER_HEADROOM_26	26 ≤ UPH < 27
UE_POWER_HEADROOM_27	27 ≤ UPH < 28
UE_POWER_HEADROOM_28	28 ≤ UPH < 29
UE_POWER_HEADROOM_29	29 ≤ UPH < 30
UE_POWER_HEADROOM_30	30 ≤ UPH < 31
UE_POWER_HEADROOM_31	UPH ≥ 31

9.1.13.4 UE transmission power headroom measurement report accuracy

The accuracy requirements for UE transmission power headroom depends on the total power transmitted by the UE. Table 9.34B defines the accuracy of the measured quantity.

Table 9.34B

Total UE output power value (dBm)	UPH reporting accuracy(dB) (note 1)
25<= total output power <34	note 2
24<= total output power <25	±2.0
23<= total output power <24	±2.0
22<= total output power <23	±2.0
21<= total output power <22	±2.0
20<= total output power < 21	±2.5
19<= total output power <20	±3.0
18<= total output power <19	±3.5
17<= total output power <18	±4.0
16<= total output power <17	±4.0
15<= total output power <16	±4.0
14<= total output power <15	±4.0
13<= total output power <14	±4.0 (power class 4) ±6.0 (power class 3)
12<= total output power <13	±4.0 (power class 4) ±6.0 (power class 3)
11<= total output power <12	±4.0 (power class 4) ±6.0 (power class 3)
-50<= total output power <11	±6.0
Note 1: UPH reporting accuracy is reported by the UE and the act. Note 2: No tolerance is specified.	

Measurements Performance for UTRAN 9.2

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in TS 25.302.

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

Test like descriptions of these measurements are located in the TS 25.141 as an informative Annex H. The Annex H specifies test specific parameters for some of the UTRAN requirements in this chapter. The tests provide additional information to how the requirements should be tested. Some requirements may lack a test.

9.2.1 Received total wideband power

The measurement period shall be 100 ms.

9.2.1.1 Absolute accuracy requirement

Table 9.35

Parameter	Unit	Accuracy	Conditions	BS class
		[dB]	lob [dBm/3.84 MHz]	
lob	dBm/3.84 MHz	± 4	-103 - 74	Wide area BS
lob	dBm/3.84 MHz	± 4	-9364	Medium Range BS
lob	dBm/3.84 MHz	± 4	-8960	Local area BS

9.2.1.2 Relative accuracy requirement

The relative accuracy is defined as the Received total wideband power measured at one frequency compared to the Received total wideband power measured from the same frequency at a different time.

Table 9.36

Parameter	Unit	Accuracy	Conditions	BS class
		[dB]	lob [dBm/3.84 MHz]	
lob	dBm/3.84 MHz	± 0.5	-10374	Wide area BS
			AND for changes ≤ ±9.0 dB	
lob	dBm/3.84 MHz	± 0.5	-9364	Medium Range BS
			AND for changes ≤ ±9.0 dB	
lob	dBm/3.84 MHz	± 0.5	- 8960	Local area BS
			AND for changes <= ±12.0 dB	

9.2.1.3 Received total wideband power measurement report mapping

The reporting range for Received total wideband power (RTWP) is from -112 ... -50 dBm.

In table 9.37 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.37

Reported value	Measured quantity value	Unit
RTWP_LEV _000	RTWP < -112.0	dBm
RTWP_LEV _001	-112.0 ≤ RTWP < -111.9	dBm
RTWP_LEV _002	-111.9 ≤ RTWP < -111.8	dBm
•••		
RTWP_LEV _619	-50.2 ≤ RTWP < -50.1	dBm
RTWP_LEV _620	-50.1 ≤ RTWP < -50.0	dBm
RTWP_LEV _621	-50.0 ≤ RTWP	dBm

9.2.2 SIR

The measurement period shall be 80 ms.

9.2.2.1 Accuracy requirement

Table 9.38

Parameter	Unit	Accuracy [dB]	Conditions
			Range
SIR	dB	± 3	For -7 <sir<20 db="" lob="" when=""> -105 dBm/3.84 MHz</sir<20>

9.2.2.2 SIR measurement report mapping

The reporting range for SIR is from -11 \dots 20 dB.

In table 9.39 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.39

Reported value	Measured quantity value	Unit
UTRAN_SIR_00	SIR < -11.0	dB
UTRAN_SIR_01	-11.0 ≤ SIR < -10.5	dB
UTRAN_SIR_02	-10.5 ≤ SIR < -10.0	dB
UTRAN_SIR_61	19.0 ≤ SIR < 19.5	dB
UTRAN_SIR_62	19.5 ≤ SIR < 20.0	dB
UTRAN_SIR_63	20.0 ≤ SIR	dB

9.2.3 SIR_{error}

The measurement period shall be 80 ms.

NOTE: The measurement period is the same as for the SIR measurement in section 9.2.2. SIR_{error} is calculated from SIR and SIR_{target} , see TS 25.215.

9.2.3.1 Accuracy requirement

Table 9.40

Parameter	Accuracy	Range
SIR _{error}	± 3 dB	The accuracy requirement for SIR _{error} is valid for SIR within the guaranteed accuarcy range specified in section 9.2.2.

NOTE: The accuracy requirement for SIR_{error} is the same as for the SIR measurement specified in section 9.2.2. SIR_{error} is calculated from SIR and SIR_{target} , see TS 25.215.

9.2.3.2 SIR_{error} measurement report mapping

The reporting range for SIR_{error} is from -31 ... 31 dB.

In table 9.41 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.41

Reported value	Measured quantity value	Unit
UTRAN_SIR_ERROR_000	SIR _{error} < -31.0	dB
UTRAN_SIR_ERROR_001	$-31.0 \le SIR_{error} < -30.5$	dB
UTRAN_SIR_ERROR_002	-30.5 ≤ SIR _{error} < -30.0	dB
UTRAN_SIR_ERROR_062	-0.5 ≤ SIR _{error} < 0.0	dB
UTRAN_SIR_ERROR_063	$0.0 \le SIR_{error} < 0.5$	dB
•••		
UTRAN_SIR_ERROR_123	$30.0 \le SIR_{error} < 30.5$	dB
UTRAN_SIR_ERROR_124	30.5 ≤ SIR _{error} < 31.0	dB
UTRAN_SIR_ERROR_125	31.0 ≤ SIR _{error}	dB

9.2.4 Transmitted carrier power

The measurement period shall be 100 ms.

9.2.4.1 Accuracy requirement

Table 9.42

Parameter	Unit	Accuracy [% units]	Conditions
			Range
Ptot	%	± 5	For 5% ≤ Transmitted carrier
			power ≤95%

9.2.4.2 Transmitted carrier power measurement report mapping

The reporting range for *Transmitted carrier power* is from 0 ... 100 %.

In table 9.43 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.43

Reported value	Measured quantity value	Unit
UTRAN_TX_POWER _000	Transmitted carrier power = 0	%
UTRAN_TX_POWER _001	0 < Transmitted carrier power ≤ 1	%
UTRAN_TX_POWER _002	1 < Transmitted carrier power ≤ 2	%
UTRAN_TX_POWER _003	2 < Transmitted carrier power ≤ 3	%
UTRAN_TX_POWER _098	97 < Transmitted carrier power ≤ 98	%
UTRAN_TX_POWER _099	98 < Transmitted carrier power ≤ 99	%
UTRAN_TX_POWER _100	99 < Transmitted carrier power ≤ 100	%

9.2.5 Transmitted code power

The measurement period shall be 100 ms.

9.2.5.1 Absolute accuracy requirement

Table 9.44

Parameter	Unit	Accuracy [dB]	Conditions
			Range
Pcode	dBm	± 3	Over the full range

9.2.5.2 Relative accuracy requirement

The relative accuracy of Transmitted code power is defined as the Transmitted code power measured at one dedicated radio link compared to the Transmitted code power measured from a different dedicated radio link in the same cell.

Table 9.45

Parameter	Unit	Accuracy [dB]	Conditions
			Range
Pcode	dBm	± 2	Over the full range

9.2.5.3 Transmitted code power measurement report mapping

The reporting range for Transmitted code power is from -10 ... 46 dBm.

In table 9.46 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.46

Reported value	Measured quantity value	Unit
UTRAN_CODE_POWER _010	-10.0 ≤ Transmitted code power < -9.5	dBm
UTRAN_CODE_POWER _011	-9.5 ≤ Transmitted code power < -9.0	dBm
UTRAN_CODE_POWER _012	-9.0 ≤ Transmitted code power < -8.5	dBm
	***	•••
UTRAN_CODE_POWER _120	45.0 ≤ Transmitted code power < 45.5	dBm
UTRAN_CODE_POWER _121	45.5 ≤ Transmitted code power < 46.0	dBm
UTRAN_CODE_POWER _122	46.0 ≤ Transmitted code power < 46.5	dBm

9.2.6 Void

9.2.7 Physical channel BER

The measurement period shall be equal to the TTI of the transport channel, to which the Physical channel BER is associated via the IE QE-Selector, see TS 25.433. Each reported Physical channel BER measurement shall be an estimate of the BER averaged over one measurement period only.

9.2.7.1 Accuracy requirement

The average of consecutive Physical channel BER measurements is required to fulfil the accuracy stated in table 9.47 if the total number of erroneous bits during these measurements is at least 500 and the absolute BER value for each of the measurements is within the range given in table 9.47.

Table 9.47

Parameter	Unit	Accuracy [% of	Conditions
		absolute BER value]	Range
PhyBER	-	+/- 10	for absolute BER
			value ≤ 30%

9.2.7.2 Physical channel BER measurement report mapping

The *Physical channel BER* reporting range is from 0 to 1.

In table 9.48 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.48

Reported value	Measured quantity value	Unit
PhCh_BER_LOG_000	Physical channel BER = 0	1
PhCh_BER_LOG_001	-∞ < Log10(Physical channel BER) < -2.06375	ı
PhCh_BER_LOG_002	-2.06375≤ Log10(Physical channel BER) < -2.055625	-
PhCh_BER_LOG_003	-2.055625 ≤ Log10(Physical channel BER) < -2.0475	
PhCh_BER_LOG_253	-0.024375 ≤ Log10(Physical channel BER) < -0.01625	ı
PhCh_BER_LOG_254	-0.01625 ≤ Log10(Physical channel BER) < -0.008125	
PhCh_BER_LOG_255	-0.008125 ≤ Log10(Physical channel BER) ≤ 0	-

9.2.8 Round trip time

The measurement period shall be 100 ms.

9.2.8.1 Absolute accuracy requirement

Table 9.49

Parameter	Unit	Accuracy [chip]	Conditions
			Range [chips]
RTT	chip	+/- 0.5	876,, 2923.50

9.2.8.2 Round trip time measurement report mapping

The Round trip time reporting range is from 876.0000 ... 2923.8750 chip.

In table 9.50 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.50

Reported value	Measured quantity value	Unit
RT_TIME_0000	Round trip time < 876.0000	chip
RT_TIME_0001	876.0000 ≤ Round trip time < 876.0625	chip
RT_TIME_0002	876.0625 ≤ Round trip time < 876.1250	chip
RT_TIME_0003	876.1250 ≤ Round trip time < 876.1875	chip
		•••
RT_TIME_32764	2922.6875 ≤ Round trip time < 2923.7500	chip
RT_TIME_32765	2923.7500 ≤ Round trip time < 2923.8125	chip
RT_TIME_32766	2923.8125 ≤ Round trip time < 2923.8750	chip
RT_TIME_32767	2923.8750 ≤ Round trip time chip	

9.2.9 Transport Channel BER

The measurement period shall be equal to the TTI of the transport channel. Each reported Transport channel BER measurement shall be an estimate of the BER averaged over one measurement period only.

9.2.9.1 Accuracy requirement

The average of consecutive Transport channel BER measurements is required to fulfil the accuracy stated in table 9.51 if the total number of erroneous bits during these measurements is at least 500 and the absolute BER value for each of the measurements is within the range given in table 9.51.

Table 9.51

Parameter	Unit	Accuracy [% of the	Conditions
		absolute BER value]	Range
TrpBER	-	+/- 10	Convolutional coding 1/3 rd with any amount of repetition or a maximum of 25% puncturing: for absolute BER value ≤ 15% Convolutional coding 1/2 with any amount of repetition or no puncturing: for absolute BER value ≤ 15% Turbo coding 1/3 rd with any amount of repetition or a maximum of 20% puncturing:
			Turbo coding 1/3 rd with any amount of repetition or a

9.2.9.2 Transport channel BER measurement report mapping

The *Transport channel BER* reporting range is from 0 to 1.

In table 9.52 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.52

Reported value	Measured quantity value	Unit
TrCh_BER_LOG_000	Transport channel BER = 0	-
TrCh_BER_LOG_001	-∞ < Log10(Transport channel BER) < -2.06375	-
TrCh_BER_LOG_002	-2.06375≤ Log10(Transport channel BER) < -2.055625	-
TrCh_BER_LOG_003	-2.055625 ≤ Log10(Transport channel BER) < -2.0475	-
TrCh_BER_LOG_253	-0.024375 ≤ Log10(Transport channel BER) < -0.01625	-
TrCh_BER_LOG_254	-0.01625 ≤ Log10(Transport channel BER) < -0.008125	-
TrCh_BER_LOG_255	-0.008125 ≤ Log10(Transport channel BER) ≤ 0	-

9.2.10 UTRAN GPS Timing of Cell Frames for UE positioning

NOTE: This measurement is used for UE positioning purposes.

The measurement period shall be [1] second.

9.2.10.1 Accuracy requirement

Three accuracy classes are defined for the UTRAN GPS Timing of Cell Frames for UE positioning measurement, i.e. accuracy class A, B and C. The implemented accuracy class depends on the UE positioning methods that are supported.

Table 9.53

Parameter	Unit	Accuracy [chip]	Conditions
UTRAN GPS Timing of Cell	chip	Accuracy Class A: +/- [20000] chip	Over the full
Frames for UE positioning		Accuracy Class B: +/- [20] chip	range
		Accuracy Class C: +/- [X] chip	

9.2.10.2 UTRAN GPS timing of Cell Frames for UE positioning measurement report mapping

The reporting range is for UTRAN GPS timing of Cell Frames for UE positioning is from 0 ... 2322432000000 chip. In table 9.54 the mapping of measured quantity is defined.

Table 9.54

Reported value	Measured quantity value	Unit
GPS_TIME_00000000000000	UTRAN GPS timing of Cell Frames for UE positioning < 0.0625	chip
GPS_TIME_00000000000001	0.0625 ≤ UTRAN GPS timing of Cell Frames for UE positioning < 0.1250	chip
GPS_TIME_000000000000000000000000000000000000	0.1250 ≤ UTRAN GPS timing of Cell Frames for UE positioning < 0.1875	chip
GPS_TIME_37158911999997	2322431999999.8125 ≤ UTRAN GPS timing of Cell Frames for UE positioning < 2322431999999.8750	chip
GPS_TIME_37158911999998	2322431999999.8750 ≤ UTRAN GPS timing of Cell Frames for UE positioning < 2322431999999.9375	chip
GPS_TIME_37158911999999	2322431999999.9375 ≤ UTRAN GPS timing of Cell Frames for UE positioning < 2322432000000.0000	chip

9.2.11 PRACH Propagation delay

9.2.11.1 Accuracy requirement

9.2.11.1.1 PRACH Propagation delay

The accuracy requirement in table 9.55 is valid under the following conditions:

- The radio conditions are according to 25.104 section 8.7.2.1 Minimum requirements for Static Propagation Condition for BLER=10⁻¹.
- Only RACH messages with correct CRC shall be considered

Table 9.55

Parameter	Unit	Accuracy [chip]	Conditions
			Range
PRACH PropDelay	chip	+/-2	Over the full range

9.2.11.1.2 Void

Table 9.55A Void

9.2.11.2 PRACH Propagation delay measurement report mapping

The PRACH Propagation delay reporting range is from 0 ... 765 chip.

In table 9.56 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.56

Reported value	Measured quantity value	Unit
PROP_DELAY_000	0 ≤ PRACH Propagation delay < 3	chip
PROP_DELAY_001	3 ≤ PRACH Propagation delay < 6	chip
PROP_DELAY_002	6 ≤ PRACH Propagation delay < 9	chip
PROP_DELAY_252	756 ≤ PRACH Propagation delay < 759	chip
PROP_DELAY_253	759 ≤ PRACH Propagation delay < 762	chip
PROP_DELAY_254	762 ≤ PRACH Propagation delay < 765	chip
PROP_DELAY_255	765 ≤ PRACH Propagation delay	chip

9.2.12 Acknowledged PRACH preambles

The measurement period shall be 20 ms.

9.2.12.1 Acknowledged PRACH preambles measurement report mapping

The Acknowledged PRACH preambles reporting range is from 0 ... 240 acknowledgements.

In table 9.57 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.57

Reported value	Measured quantity value	Unit
ACK_PRACH_PREAMPLE_000	Acknowledged PRACH preambles = 0	-
ACK_PRACH_PREAMPLE_001	Acknowledged PRACH preambles = 1	-
ACK_PRACH_PREAMPLE_002	Acknowledged PRACH preambles = 2	-
ACK_PRACH_PREAMPLE_237	Acknowledged PRACH preambles = 237	-
ACK_PRACH_PREAMPLE_238	Acknowledged PRACH preambles = 238	-
ACK_PRACH_PREAMPLE_239	Acknowledged PRACH preambles = 239	-
ACK_PRACH_PREAMPLE_240	Acknowledged PRACH preambles = 240	-

9.2.13 Void

Table 9.58 Void

9.2.14 Void

Table 9.59 Void

9.2.15 SFN-SFN observed time difference

This measurement is needed for RTD estimation in UTRAN.

9.2.15.1 Accuracy requirement

9.2.15.1.1 Accuracy requirement without IPDL

The measurement period shall be [100] ms.

Table 9.60

Parameter	Unit	Accuracy	Conditions
		[chip]	Range [chips]
SFN-SFN observed time	chip	+/- 0.5	-19200.0000 19200.0000
difference			

9.2.15.1.2 Accuracy requirement with IPDL

The measurement period shall be [TBD] ms.

IPDL pattern parameters [TBD].

Table 9.61

Parameter	Unit	Accuracy	Conditions
		[chip]	Range [chips]
SFN-SFN observed time	chip	+/- 0.5	-19200.0000 19200.0000
difference			

9.2.15.2 SFN-SFN observed time difference measurement report mapping

The SFN-SFN observed time difference reporting range is from -19200.0000 ... 19200.0000 chip.

In table 9.62 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.62

Reported value	Measured quantity value	Unit
SFN-SFN_TIME _00000	-19200.0000 ≤ SFN-SFN observed time difference < -19199.9375	chip
SFN-SFN_TIME _00001	-19199.9375 ≤ SFN-SFN observed time difference < -19199.8750	chip
SFN-SFN_TIME _614398	19199.8750 ≤ SFN-SFN observed time difference < 19199.9375	chip
SFN-SFN_TIME _614399	19199.9375 ≤ SFN-SFN observed time difference	chip
	≤ 19200.0000	

9.2.16 Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission

The measurement period shall be 100 ms.

9.2.16.1 Accuracy requirement

Table 9.63

Parameter	Unit	Accuracy	Conditions
		[% units]	Range
Ptot	%	± 5	For 5% ≤ Transmitted carrier power of all codes not used
			for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH
			transmission ≤95%

9.2.16.2 Measurement report mapping for transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission

The reporting range for *Transmitted carrier power of all codes not used for HS-PDSCH*, *HS-SCCH*, *E-AGCH*, *E-RGCH or E-HICH transmission* is from 0 ... 100 %.

In table 9.64 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.64

Reported value	Measured quantity value	Unit
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_000	Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E- AGCH, E-RGCH or E-HICH transmission = 0	%
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_001	0 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission ≤ 1	%
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_002	1 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission ≤ 2	%
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_003	2 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission ≤ 3	%
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_098	97 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission ≤ 98	%
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_099	98 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission ≤ 99	%
Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission_100	99 < Transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-AGCH, E-RGCH or E-HICH transmission ≤ 100	%

9.2.17 DL Transmission Branch Load

This measurement is applicable in case of TX diversity.

The measurement period shall be 100 ms.

9.2.17.1 Accuracy requirement

Table 9.65

Parameter	Unit	Accuracy [% units]	Conditions
			Range
Pbranchtot	%	± 5	For 5% ≤ DL Transmission Branch Load ≤95%

9.2.17.2 DL Transmission Branch Load measurement report mapping

The reporting range for *DL Transmission Branch Load measurement* is from 0 ... 100 %.

In table 9.66 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.66

Reported value	Measured quantity value	Unit
branch_load _000	DL Transmission Branch Load = 0	%
branch_load _001	0 < DL Transmission Branch Load ≤ 1	%
branch_load _002	1 < DL Transmission Branch Load ≤ 2	%
branch_load _003	2 < DL Transmission Branch Load ≤ 3	%

branch_load _098	97 < DL Transmission Branch Load ≤ 98	%
branch_load _099	98 < DL Transmission Branch Load ≤ 99	%
branch_load _100	99 < DL Transmission Branch Load ≤ 100	%
branch_load _101	DL Transmission Branch Load > 100	%

Annex A (normative): Test Cases

A.1 Purpose of Annex

This Annex specifies test specific parameters for some of the functional requirements in chapters 4 to 9. The tests provide additional information to how the requirements should be interpreted for the purpose of conformance testing. The tests in this Annex are described such that one functional requirement may be tested in one or several test and one test may verify several requirements. Some requirements may lack a test.

The conformance tests are specified in TS34.121. Statistical interpretation of the requirements is described in Annex A.2.

A.2 Requirement classification for statistical testing

Editors note: Each requirement in the annex have to be gone through and updated with which type it belongs to and in applicable cases, which success rate that defines the requirement. Tdoc R4 00 619 shall be used as a base for that work.

Requirements in this specification are either expressed as absolute requirements with a single value stating the requirement, or expressed as a success rate. There are no provisions for the statistical variations that will occur when the parameter is tested.

Annex A outlines the test in more detail and lists the test parameters needed. The test will result in an outcome of a test variable value for the DUT inside or outside the test limit. Overall, the probability of a "good" DUT being inside the test limit(s) and the probability of a "bad" DUT being outside the test limit(s) should be as high as possible. For this reason, when selecting the test variable and the test limit(s), the statistical nature of the test is accounted for.

The statistical nature depends on the type of requirement. Some have large statistical variations, while others are not statistical in nature at all. When testing a parameter with a statistical nature, a confidence level is set. This establishes the probability that a DUT passing the test actually meets the requirement and determines how many times a test has to be repeated and what the pass and fail criteria are. Those aspects are not covered by TS 25.133. The details of the tests, how many times to run it and how to establish confidence in the tests are described in TS 34.121. This Annex establishes what the test variable is and whether it can be viewed as statistical in nature or not.

A.2.1 Types of requirements in TS 25.133

Time and delay requirements on UE higher layer actions

A very large part of the RRM requirements are delay requirements:

- In idle mode (A.4) there is cell re-selection delay.
- In UTRAN Connected Mode Mobility (A.5) there is measurement reporting delay, handover delay and cell reselection delay.
- In RRC Connection Control (A.6) there is RRC re-establishment delay and TFC blocking delay.

All have in common that the UE is required to perform an action observable in higher layers (e.g. camp on the correct cell) within a certain time after a specific event (e.g. a new strong pilot arises). The delay time is statistical in nature for several reasons, among others that measurements required by the UE are performed in a fading radio environment.

The variations make a strict limit unsuitable for a test. Instead there is a condition set for a correct action by the UE, e.g. that the UE shall camp on the correct cell within X seconds. Then the rate of correct events is observed during repeated tests and a limit is set on the rate of correct events, usually 90% correct events are required. How the limit is applied in the test depends on the confidence required, further detailed are in TS 34.121.

Measurements of power levels, relative powers and time

A very large number of requirements are on measurements that the UE performs:

- In UTRAN Connected Mode Mobility (A.5) there are measurement reports.
- Measurement performance requirements (A.8) has requirements on all type of measurements.

The accuracy requirements on measurements are expressed in this specification as a fixed limit (e.g. \pm /-X dB), but the measurement error will have a distribution that is not easily confined in fixed limits. Assuming a Gaussian distribution of the error, the limits will have to be set at \pm /-3.29 σ if the probability of failing a "good DUT" in a single test is to be kept at 0.1%. It is more reasonable to set the limit tighter and test the DUT by counting the rate of measurements that are within he limits, in a way similar to the requirements on delay.

Implementation requirements

A few requirements are strict actions the UE should take or capabilities the UE should have, without any allowance for deviations. These requirements are absolute and should be tested as such. Examples are

- "Event triggered report rate" and "Active set dimension" in UTRAN Connected Mode Mobility (A.5)
- "Correct behaviour at time-out" in RRC connection control (A.6)

Physical layer timing requirements

All requirements on "Timing Characteristics" (A.7) are absolute limits on timing accuracy.

BER and BLER requirements

Some measurement report procedures in "UE Measurement procedures" (A.8) have requirements on DCH BLER. These are tested in the same way as BLER requirements in TS 25.101.

A.3 Reserved for Future Use

Editors Note: This section is included in order to make the following section numbering, match the sections in the beginning of this specification.

A.4 Idle Mode

A.4.1 Cell selection

(void)

A.4.2 Cell Re-Selection

Two scenarios are considered:

- Scenario 1: Single carrier case
- Scenario 2: Multi carrier case

For each of them a test is proposed.

NOTE: Existing scenarios cover only requirements in section 4.2.2.2 and 4.2.2.3. More scenarios, covering requirements in section 4.2.2.1, will be added later.

A.4.2.1 Scenario 1: Single carrier case

A.4.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the cell re-selection delay in the single carrier case reported in section 4.2.2.

This scenario implies the presence of 1 carrier and 6 cells as given in tables A.4.1 and A.4.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.1: General test parameters for Cell Re-selection single carrier multi-cell case

Parameter		Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell1	
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re-selection reaction time is taken into account.

Table A.4.2: Cell re-selection single carrier multi-cell case

Parameter	Unit	Се	II 1	Ce	II 2	Cell 3		Cel	I 4	Ce	ell 5	Ce	ell 6
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channe	el 1	Channe	el 1	Channel 1		Channe	l 1	Chann	el 1	Chann	el 1
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10	
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15	
OCNS_Ec/lor	dB	-0.941		-0.941		-0.941		-0.941		-0.941		-0.941	
\hat{I}_{or}/I_{oc}	dB	7.3	10.27	10.27	7.3	0.27		0.27		0.27		0.27	
I_{oc}	dBm / 3.84 MHz	-70	-70										
CPICH_Ec/lo	dB	-16	-13	-13	-16	-23		-23		-23		-23	
Propagation Condition							AV	VGN					
Cell_selection_and_ reselection_quality_m easure		CPICH	E _c /N ₀	СРІСН	E _c /N ₀	CPICH	E _c /N ₀	CPICH	E _c /N ₀	CPICH	I E₀/N₀	СРІСН	E _c /N ₀
Qqualmin	dB	-2	20	-2	0	-2	0	-2	0	-	20	-2	20
Qrxlevmin	dBm	-1	15	-1 ·	15	-11	15	-11	5	-1	115	-1	15
UE_TXPWR_MAX_ RACH	dB	2	1	2	1	2	1	2	I	2	21	2	21
Qoffset2 _{s, n}	dB	C1, 0 C1, 0 C1, 0	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, 0 C2, 0 C2, 0 C2, 0 C2, 0	C3: 0 C4: 0 C5: 0	C3, C C3, C C3, C C3, C	22: 0 24: 0 25: 0	C4, C C4, C C4, C C4, C	2: 0 3: 0 5: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, C6, C6,	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0
Qhyst2	dB	-)	Ć		Ć		0		-	0		0
Treselection	S	()	C)	C)	0			0	-	0
Sintrasearch	dB	not	sent	not	sent	not s	sent	not s	ent	not	sent	not	sent

A.4.2.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Location Registration on cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$,

where:

 $T_{evaluateFDD}$ See Table 4.1 in section 4.2.2.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.2.2 Scenario 2: Multi carrier case

A.4.2.2.1 Test Purpose and Environment

This test is to verify the requirement for the cell re-selection delay in the multi carrier case reported in section 4.2.2.

This scenario implies the presence of 2 carriers and 6 cells as given in tables A.4.3 and A.4.4. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.3: General test parameters for Cell Re-selection in Multi carrier case

Parameter		Unit	Value	Comment
Initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
Final condition	Active cell		Cell1	
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	30	T1 need to be defined so that cell re-selection reaction time is taken into account.
	T2	S	15	T2 need to be defined so that cell re-selection reaction time is taken into account.

Table A.4.4: Cell re-selection multi carrier multi cell case

Parameter	Unit	Cel	II 1	Ce	ell 2	Ce	Cell 3 Cell 4		Cell 5		Cell 6		
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Chan	Channel 1 Channel 2			Char	nel 1	Channel 1		Channel 2		Channel 2	
CPICH_Ec/lor	dB	-1	10	-	-10		10	-	10	-	10	-	10
PCCPCH_Ec/lor	dB		12	-	-12		12	-	12	-	12	-	12
SCH_Ec/lor	dB	-1	12	-	-12	-1	12		12	-	12	-	12
PICH_Ec/lor	dB		15	-	-15		15		15	-	15	-	15
OCNS_Ec/lor	dB	-0.9	941	-0.	.941	-0.9	941	-0.9	941	-0.	941	-0.9	941
\hat{I}_{or}/I_{oc}	dB	-3.4	2.2	2.2	-3.4	-7.4	-4.8	-7.4	-4.8	-4.8	-7.4	-4.8	-7.4
I_{oc}	dBm / 3.84 MHz	-70											
CPICH_Ec/lo	dB	-16	-13	-13	-16	-2	20	-2	20	-	20	-:	20
Propagation Condition							AW	/GN					
Cell_selection_and_ reselection_quality_m easure		CPICH	I E _c /N ₀	CPIC	H E₀/N₀	CPICH	I E₀/N₀	CPICH	HE₀/N₀	CPICI	H E _c /N ₀	CPICH	HE₀/N₀
Qqualmin	dB	-2	:0	-	20	-20		-2	20	-:	20	-2	20
Qrxlevmin	dBm	-1 <i>°</i>	15	-1	115	-1	15	-1	15	-1	15	-1	15
UE_TXPWR_MAX_ RACH	dB	2	1	2	21	2	1	2	1	2	21	2	:1
Qoffset2 _{s, n}	dB	C1, C C1, C C1, C C1, C	C3: 0 C4: 0 C5: 0	C2, C2, C2,	C1: 0 C3: 0 C4: 0 C5: 0 C6: 0	C3, 0 C3, 0 C3, 0	C4: 0	C4, 0 C4, 0 C4, 0	C1: 0 C2: 0 C3: 0 C5: 0 C6: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6, C6, C6, C6, C6, C6	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0
Qhyst2	dB	C)		0	()	()		0	()
Treselection	S	C)		0	()	()		0	()
Sintrasearch	dB	not s	sent	not	sent	not	sent	not	sent	not	sent	not	sent
Sintersearch	dB	not s	sent	not	sent	not	sent	not	sent	not	sent	not	sent

A.4.2.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Location Registration on cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$,

where:

T_{evaluateFDD} See Table 4.1 in section 4.2.2.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.4.3 UTRAN to GSM Cell Re-Selection

A.4.3.1 Scenario 1

A.4.3.1.1 Test Purpose and Environment

This test is to verify the requirement for the UTRAN to GSM cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Test parameters are given in Table, A.4.5, A.4.6, A.4.7. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.5: General test parameters for UTRAN to GSM Cell Re-selection

Parameter		Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final	Active cell		Cell2	
condition				
DRX cycle	length	S	1.28	
HCS				Not used
T1		S	45	
T2		S	35	

Table A.4.6: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (l	JTRA)
		T1	T2
UTRA RF Channel Number		Channel 1	
CPICH_Ec/lor	dB	-10	
PCCPCH_Ec/lor	dB	-12	
SCH_Ec/lor	dB	-12	
PICH_Ec/lor	dB	-15	
OCNS_Ec/lor	dB	-0.941	
\hat{I}_{or}/I_{oc}	dB	0	-5
I_{oc}	dBm/3.84 MHz	-70	
CPICH_Ec/lo	dB	-13	-16.2
CPICH_RSCP	dBm	-80	-85
Propagation Condition		AWGN	
Cell_selection_and_ reselection_quality_measure		CPICH E	N_0
Qqualmin	dB	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
Qoffset1 _{s, n}	dB	C1, C2: 0	
Qhyst1	dB	0	
Treselection	S	0	
Ssearch _{RAT}	dB	not sent	

Table A.4.7: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
Farameter	Offic	T1	T2	
Absolute RF Channel Number		ARFCN 1		
RXLEV	dBm	-90	-75	

RXLEV_ACCESS_MIN	dBm	-104
MS TXPWR MAX CCH	dBm	33

A.4.3.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $4*T_{measureGSM} + T_{BCCH}$, where:

T_{measureGSM} See Table 4.1 in section 4.2.2.

T_{BCCH} Maximum time allowed to read BCCH data from GSM cell [21].

According to [21], the maximum time allowed to read the BCCH data, when being synchronized

to a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

A.4.3.2 Scenario 2

A.4.3.2.1 Test Purpose and Environment

This test is to verify the requirement for the UTRAN to GSM cell re-selection delay reported in section 4.2.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Test parameters are given in Table, A.4.7A, A.4.7B, A.4.7C. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.7A: General test parameters for UTRAN to GSM Cell Re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final	Active cell		Cell2	
condition				
DRX cycle	length	S	1.28	
HCS				Not used
T1		S	45	
T2		S	12	

Table A.4.7B: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA)		
		T1	T2	
UTRA RF Channel Number		Channel 1		
CPICH_Ec/lor	dB	-10		
PCCPCH_Ec/lor	dB	-12		
SCH_Ec/lor	dB	-12		
PICH_Ec/lor	dB	-15		
OCNS_Ec/lor	dB	-0.941		
\hat{I}_{or}/I_{oc}	dB	20	-9	
I_{oc}	dBm/3.84 MHz	-81		
CPICH_Ec/lo	dB	-10.0	-19.5	
CPICH_RSCP	dBm	-70	-100	
Propagation Condition		AWGN		
Cell_selection_and_ reselection_quality_measure		CPICH Ec	$/N_0$	
Qqualmin	dB	-20		
Qrxlevmin	dBm	-115		
UE_TXPWR_MAX_RACH	dBm	21		
Qoffset1 _{s, n}	dB	C1, C2: 0	`	
Qhyst1	dB	0	`	
Treselection	S	0	`	
Ssearch _{RAT}	dB	not sent		

Table A.4.7C: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2	(GSM)
		T1	T2
Absolute RF Channel Number		ARFCN 1	
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-104	
MS_TXPWR_MAX_CCH	dBm	33	

A.4.3.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than 7.7 s + T_{BCCH} , where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $Max(3*T_{measureFDD}, T_{measureGSM} + DRX cycle length) + T_{BCCH},$ where:

T_{measureFDD} See Table 4.1 in section 4.2.2.

 $T_{\text{measureGSM}}$ See Table 4.1 in section 4.2.2.

DRX cycle length 1.28s see Table A.4.7.A

T_{BCCH} Maximum time allowed to read BCCH data from GSM cell [21].

According to [21], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.

to a BCCH carrier, is 1.9 s.

This gives a total of 7.68 s + T_{BCCH} , allow 7.7 s + T_{BCCH} in the test case.

A.4.3.3 Scenario 3

A.4.3.3.1 Test Purpose and Environment

This test is to verify the requirement for the UTRAN to GSM cell re-selection delay reported in section 4.2 when measurement rules according to HCS is used.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 12 GSM cells. Test parameters are given in Table, A.4.7D, A.4.7E, A.4.7F. Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.7D: General test parameters for UTRAN to GSM Cell Re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final	Active cell		Cell2	
condition				
DRX cycle	length	S	1.28	
HCS				Used
T1		S	45	
T2		S	45	

Table A.4.7E: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1	(UTRA)
		T1	T2
UTRA RF Channel Number		Channel 1	ĺ
CPICH_Ec/lor	dB	-10	
PCCPCH_Ec/lor	dB	-12	
SCH_Ec/lor	dB	-12	
PICH_Ec/lor	dB	-15	
OCNS_Ec/lor	dB	-0.941	
\hat{I}_{or}/I_{oc}	dB	30	10
I_{oc}	dBm/3.84 MHz	-100	
CPICH_Ec/lo	dB	-10.0	-10.4
CPICH_RSCP	dBm	-80	-100
Propagation Condition		AWGN	
Cell_selection_and_		CPICH E₀/N₀	
reselection_quality_measure		OI IOIT LOINO	
Qqualmin	dB	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
Qoffset1 _{s, n}	dB	C1, C2: 0	
Qhyst1	dB	0	
Treselection	S	0	
Ssearch _{RAT}	dB	0	
SHCS,RATm	dB	25	
S _{limit,SearchRAT}	dB	0	
Penalty_time	S	0 (default value)	
HCS_PRIO		0 (default	value)
Qhcs		0 (default value)	
T _{Crmax}	s	not used (default va	alue)

Table A.4.7F: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2	(GSM)
		T1	T2
Absolute RF Channel		ARFCN 1	
Number		ARECINI	
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-104	
MS_TXPWR_MAX_CCH	dBm	33	

A.4.3.3.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than 37.7 s + T_{BCCH} , where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to unidentified GSM cells can be expressed as: $30 \text{ s} + T_{\text{measureGSM}} + DRX$ cycle length $+ T_{\text{BCCH}}$, where:

T_{measureFDD} See Table 4.1 in section 4.2.2.

 $T_{measureGSM}$ See Table 4.1 in section 4.2.2.

DRX cycle length 1.28s see Table A.4.7D

T_{BCCH} Maximum time allowed to read BCCH data from GSM cell [21].

According to [21], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.

This gives a total of $37.68 \text{ s} + T_{\text{BCCH}}$, allow $37.7 \text{ s} + T_{\text{BCCH}}$ in the test case.

A.4.3.4 Scenario 4

A.4.3.4.1 Test Purpose and Environment

This test is to verify the requirement for the UTRAN to GSM cell re-selection delay reported in section 4.2 when System Information Block 18 is present. The UE shall then obtain knowledge of the PLMN identities of the neighbour cells to be considered for cell reselection.

This scenario implies the presence of 1 UTRAN serving cell, 1 GSM cell to be re-selected and 4 other GSM neighbour cells. The PLMN identities broadcasted in each of these cells are given in Table A.4.7G. The list of 'equivalent PLMNs' contains the PLMN codes PLMN 1 and PLMN 3. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 24 GSM cells, 12 each of PLMN 1 and PLMN 2. Test parameters are given in Table, A.4.7H, A.4.7I, A.4.7J, A.4.7K, A.4.7L, A.4.7M and A.4.7N. Cell 1 and Cell 2 shall belong to different Location Areas.

Table A.4.7G: PLMN identities of the cells

Cell	PLMN Identity
1	PLMN 3
2	PLMN 1
3	PLMN 2
4	PLMN 2
5	PLMN 2
6	PLMN 2

Table A.4.7H: General test parameters for UTRAN to GSM Cell Re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2,Cell3,	
			Cell4,Cell5,	
			Cell 6	
Final	Active cell		Cell2	
condition				
DRX cycle	length	S	1.28	
HCS				Not used
T1		S	45	
T2		S	12	

Table A.4.7I: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1	(UTRA)
		T1	T2
UTRA RF Channel Number		Channel 1	
CPICH_Ec/lor	dB	-10	
PCCPCH_Ec/lor	dB	-12	
SCH_Ec/lor	dB	-12	
PICH_Ec/lor	dB	-15	
OCNS_Ec/lor	dB	-0.941	
\hat{I}_{or}/I_{oc}	dB	20	-9
I_{oc}	dBm/3.84 MHz	-81	
CPICH_Ec/lo	dB	-10.0	-19.5
CPICH_RSCP	dBm	-70	-100
Propagation Condition		AWGN	
Cell_selection_and_		CPICH E₀/N₀	
reselection_quality_measure		CHICHE	71 N O
Qqualmin	dB	-20	
Qrxlevmin	dBm	-115	
UE_TXPWR_MAX_RACH	dBm	21	
		C1, C2: 0	
		C1, C3: 0	
Qoffset1 _{s, n}	dB	C1, C4: 0	
		C1, C5: 0	
		C1, C6: 0	
Qhyst1	dB	0	
Treselection	S	0	
Ssearch _{RAT}	dB	not sent	

Table A.4.7J: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2	(GSM)
		T1	T2
GSM/DCS Test Frequency		Test Chai	nnel 1
RXLEV	dBm	-90	-90
RXLEV_ACCESS_MIN	dBm	-102	
MS_TXPWR_MAX_CCH	dBm	30	

Table A.4.7K: Cell re-selection UTRAN to GSM cell case (cell 3)

Parameter	Unit	Cell 3	(GSM)
		T1	T2
GSM/DCS Test Frequency		Test Channel 2	
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-102	
MS_TXPWR_MAX_CCH	dBm	30	

Table A.4.7L: Cell re-selection UTRAN to GSM cell case (cell 4)

Parameter	Unit	Cell 4	(GSM)
		T1	T2
GSM/DCS Test Frequency		Test Cha	nnel 3
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-102	
MS_TXPWR_MAX_CCH	dBm	30	

Table A.4.7M: Cell re-selection UTRAN to GSM cell case (cell 5)

Parameter	Unit	Cell 5	(GSM)
		T1	T2
GSM/DCS Test Frequency		Test Channel 4	
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-102	
MS_TXPWR_MAX_CCH	dBm	30	

Table A.4.7N: Cell re-selection UTRAN to GSM cell case (cell 6)

Parameter	Unit	Cell 6 (GSM)	
		T1	T2
GSM/DCS Test Frequency		Test Cha	nnel 5
RXLEV	dBm	-80	-80
RXLEV_ACCESS_MIN	dBm	-102	
MS_TXPWR_MAX_CCH	dBm	30	

NOTE: The GSM test channels are those specified in [24], Clause 6, the ARFCN depends on the GSM/DCS band(s) supported by the terminal.

A.4.3.4.2 **Test Requirements**

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than 7.7 s + T_{BCCH} , where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

The cell re-selection delay can be expressed as: $Max(3*T_{measureFDD}, T_{measureGSM} + DRX$ cycle length) + T_{BCCH} , where:

See Table 4.1 in section 4.2.2. $T_{measureFDD}$

 $T_{\text{measureGSM}}$ See Table 4.1 in section 4.2.2.

DRX cycle length 1.28s see Table A.4.7H

Maximum time allowed to read BCCH data from GSM cell [21]. T_{BCCH}

According to [21], the maximum time allowed to read the BCCH data, when being synchronized

to a BCCH carrier, is 1.9 s.

This gives a total of 7.68 s + T_{BCCH} , allow 7.7 s + T_{BCCH} in the test case.

A.4.4 FDD/TDD Cell Re-selection

A.4.4.1 Test Purpose and Environment

A.4.4.1.1 3.84 Mcps TDD Option

This test is to verify the requirement for the FDD/TDD cell re-selection delay reported in section 4.2.2.

This scenario implies the presence of UTRA FDD and 1 UTRA TDD cell as given in Table A.4.8, A.4.9 and A.4.10. The maximum repetition period of the relevant system information blocks that need to be received by the UE to camp on a cell shall be 1280 ms.

Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.8: General test parameters for FDD/TDD Cell Re-selection

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell1	FDD cell
	Neighbour cells		Cell2	TDD cell
Final condition	Active cell		Cell2	TDD cell
UE_TXPW	/R_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Access Servi	Access Service Class (ASC#0)			Selected so that no additional delay is
- Persis	stence value		1	caused by the random access procedure.
				The value shall be used for all cells in the
				test.
	HCS			Not used
DRX o	DRX cycle length		1.28	The value shall be used for all cells in the test.
T1		S	15	
T2		s	15	

Table A.4.9: Cell 1 specific test parameters for FDD/TDD Cell Re-Selection

Parameter	Unit	Cell 1		
		T1	T2	
UTRA RF Channel Number		Char	Channel 1	
CPICH_Ec/lor	dB	-1	0	
P-CCPCH_Ec/lor	dB		2	
SCH_Ec/lor	dB		2	
PICH_Ec/lor	dB	-1	5	
OCNS_Ec/lor	dB	-0.9	941	
\hat{I}_{or}/I_{oc}	dB	9	3	
I_{oc}	dBm / 3.84 MHz	-70		
CPICH_RSCP	dBm	-71	-77	
Propagation Condition		AWGN		
Cell_selection_and_reselection_quality_ measure		CPICH_Ec/No		
Qrxlevmin	dBm	-115		
Qoffset1 _{s,n}	dB	0		
Qhyst1	dB	0		
PENALTY_TIME	S	0		
TEMPORARY_OFFSET	dB	0		
Treselection	S	0		
Sintrasearch	dB	not sent		
Sintersearch	dB	not	not sent	

Table A.4.10: Cell 2 specific test parameters for FDD/TDD Cell Re-Selection

Parameter	Unit	Cell 2				
DL timeslot number		0		8		
		T1	T2	T1	T2	
UTRA RF Channel Number			Channel 2			
P-CCPCH_Ec/lor	dB	-3		n.	n.a.	
PICH_Ec/lor	dB	n.a.		-	-3	
SCH_Ec/lor	dB	-9				
SCH_t _{offset}	dB		10			
OCNS_Ec/lor	dB		-3.12			
\hat{I}_{or}/I_{oc}	dB	-4	2	-4	2	
P-CCPCH RSCP	dBm	-77	-71	n.a.	n.a.	
I_{oc}	dBm/3,84 MHz	-70				
Propagation Condition		AWGN				
Qrxlevmin	dBm	-103				
Qoffset2 _{s,n}	dB	0				
Qhyst2	dB	0				
PENALTY_TIME	S	0				
TEMPORARY_OFFSET	dB	0				
Treselection	S	0				
Sintrasearch	dB	not sent				
Sintersearch	dB	not sent				
Note that the transmit energy per PN chip for the SCH is averaged over the 256 chip duration when the SCH is present in the time slot.						

A.4.4.1.2 1.28 Mcps TDD Option

This test is to verify the requirement for the FDD/TDD cell re-selection delay reported in section 4.2.2.

This scenario implies the presence of UTRA FDD and 1 UTRA TDD cell as given in Table A.4.11, A.4.12 and A4.13. The maximum repetition period of the relevant system information blocks that need to be received by the UE to camp on a cell shall be 1280 ms.

Cell 1 and cell 2 shall belong to different Location Areas.

Table A.4.11: General test parameters for FDD/TDD cell re-selection

Parameter		Unit	Value	Comment
Initial	Active cell		Cell1	FDD cell
condition	Neighbour cells		Cell2	TDD cell
Final condition	Active cell		Cell2	TDD cell
UE_	TXPWR_MAX_RACH	dBm	21	The value shall be used for all cells in the test.
Access Service Class (ASC#0) - Persistence value			1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
	HCS			Not used
DRX cycle length		S	1.28	The value shall be used for all cells in the test.
	T1		15	
T2		S	15	

Table A.4.12: FDD/TDD cell re-selection

Parameter	Unit	Се	II 1	
		T1	T2	
UTRA RF Channel Number		Chan	nel 1	
CPICH_Ec/lor	dB	-1	0	
P-CCPCH_Ec/lor	dB	-1	2	
SCH_Ec/lor	dB	-1	2	
PICH_Ec/lor	dB	-1	5	
OCNS_Ec/lor	dB	-0.941		
\hat{I}_{or}/I_{oc}	dB	9	3	
I_{oc}	dBm / 3.84 MHz	-70		
CPICH_RSCP	dBm	-71 -77		
Propagation Condition		AWGN		
Cell_selection_and_reselection_quality_mea		CPICH_Ec/No		
sure		_		
Qrxlevmin	dBm	-115		
Qoffset1 _{s,n}	dB	0		
Qhyst1	dB	0		
Treselection	S	0		
Sintrasearch	dB	not sent		
Sintersearch	dB	not :	sent	

Table A.4.13: Cell 2 specific test parameters for FDD/TDD Cell Re-Selection

Parameter	Unit	Cell 2				
DL timeslot number		0		DwPTs		
		T1	T2	T1	T2	
UTRA RF Channel Number			Cha	nnel 2		
P-CCPCH_Ec/lor	dB	ï	3			
DwPCH _Ec/lor	dB				0	
OCNS_Ec/lor	dB	T	3			
\hat{I}_{or}/I_{oc}	dB	-4	2	-4	2	
P-CCPCH RSCP	dBm	-77	-71			
I_{oc}	dBm/1.28 MHz	-70				
Propagation Condition		AWGN				
Qrxlevmin	dBm	-103				
Qoffset1 _{s,n}	dB	0				
Qhyst1	dB	0				
Treselection	S	0				
Sintrasearch	dB	not sent				
Sintersearch	dB		not	sent		

A.4.4.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RRC CONNECTION REQUEST message to perform a Location Registration on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:

 $T_{evaluateTDD} + T_{SI} \\$

where:

 $T_{evaluateTDD}$ See Table 4.1 in section 4.2.2.

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5 UTRAN Connected Mode Mobility

A.5.1 FDD/FDD Soft Handover

A.5.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the soft handover delay in CELL_DCH state specified in section 5.1.2.

The test parameters are given in Table A.5A and A.5B below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A shall be used, and that CPICH Ec/Io and SFN-CFN observed time difference shall be reported together with Event 1A. The test consists of six successive time periods, with a time duration of T1, T2, T3, T4, T5 and T6 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

Table A.5A: General test parameters for Soft handover

Para	meter	Unit	Value	Comment
DCH paramet	ers		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Contro			On	
Target quality DTCH	value on	BLER	0.01	
Initial	Active cell		Cell 1	
conditions	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
Reporting ran	ge	dB	3	Applicable for event 1A and 1B
Hysteresis		dB	0	
W			1	Applicable for event 1A and 1B
Reporting dea threshold	ctivation		0	Applicable for event 1A
Time to Trigge	er	ms	0	
Filter coefficie	nt		0	
T1		S	5	
T2		S	3	
T3		S	0.5	
T4		ms	60	This is the requirement on active set update delay, see section 5.1.2.2, where KC=1 and OC=0.
T5	_	ms	20	
T6		S	2	

Parameter Unit Cell 1 Cell 2 T1 T2 T3 T4 T5 T1 T4 T5 T6 T2 T3 CPICH_Ec/lor dB -10 -10 PCCPCH Ec/lor dB -12 -12 SCH_Ec/lor dΒ -12 -12 PICH_Ec/lor -15 -15 dB Note1 N/A N/A N/A Note1 DPCH_Ec/lor dB Note1 Note1 N/A Note3 Note1 Note2 Note2 Note2 -0.94 -0.94 -0.94 -0.94 Note2 **OCNS** Note2 Note2 dB 0 2.91 2.91 2.91 2.91 -Inf 2.91 2.91 2.91 2.91 I_{or}/I_{oc} dBm/ -70 I_{oc} 3.84 MHz -14 CPICH_Ec/lo dΒ -13 -14 -14 -14 -14 -14 -14 -14 -Inf Propagation AWGN Condition Relative delay of chips {-148 ... 148} paths received Note 4 from cell 2 with

Table A.5B: Cell specific test parameters for Soft handover

Note 1: The DPCH level is controlled by the power control loop

- Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to Ior
- Note 3: The DPCH level is controlled by the power control loop. The initial power shall be set equal to the DPCH_Ec/lor of Cell 1 at the end of T2.
- Note 4: The relative delay of the path from cell 2 with respect to cell 1 shall always be within ±148 chip.

A.5.1.1.1 Test procedure

respect to cell 1

- 1) The test is started at the beginning of T1.
- 2) During time period T2 an Event 1A triggered measurement report shall be sent by the UE containing the CFN-SFN observed time difference between cell 1 and cell 2.
- 3) At the beginning of T3 the downlink DPCH of cell 2 shall be activated.
- 4) UTRAN shall send a Active Set Update command with activation time now adding cell 2 to the active set. The Active Set Update message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4.
- 5) At the beginning of T5 the DPCH from cell 1 shall be switched off.

A.5.1.2 Test Requirements

The measured quality on the DTCH of the UE downlink during T6 shall be BLER=0.01±30%.

A.5.2 FDD/FDD Hard Handover

A.5.2.1 Handover to intra-frequency cell

A.5.2.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the hard handover delay in CELL_DCH state in the single carrier case reported in section 5.2.2.1.

The test parameters are given in Table A.5.0 and A.5.0A below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1B shall be used, and that CPICH Ec/Io and SFN-CFN observed timed difference shall be reported together with Event 1A. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration with activation time "now" with a new active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 1A. T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.0: General test parameters for Handover to intra-frequency cell

Par	ameter	Unit	Value	Comment
DCH parameter	S		DL and UL Reference	As specified in TS 25.101 section
			Measurement Channel 12.2 kbps	A.3.1 and A.2.1
Power Control			On	
Target quality va	alue on DTCH	BLER	0.001	
Initial	Active cell		Cell 1	
conditions	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
Reporting range)	dB	3	Applicable for event 1A and 1B
Hysteresis		dB	0	
W			1	Applicable for event 1A and 1B
Reporting deact	ivation threshold		0	Applicable for event 1A
Time to Trigger		ms	0	
Filter coefficient			0	
T1		S	5	
T2		S	≤5	
T3		S	1	

Table A.5.0A: Cell specific test parameters for Handover to intra-frequency cell

Parameter	Unit		Cell 1			Cell 2		
		T1	T2	T3	T1	T2	T3	
CPICH_Ec/lor	dB		-10			-10		
PCCPCH_Ec/lo	dB		-12			-12		
r								
SCH_Ec/lor	dB		-12			-12		
PICH_Ec/lor	dB		-15			-15		
DPCH_Ec/lor	dB	Note1	Note1	Note3	N/A	N/A	Note1	
OCNS		Note2	Note2	Note2	-0.941	-0.941	Note2	
\hat{I}_{or}/I_{oc}	dB	0	0 6.97			5.	97	
I_{oc}	dBm/3.84 MHz	-70						
CPICH_Ec/lo	dB	-13			-Infinity	-1	14	
Propagation Condition				AWGN				

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}

Note 3: The DPCH may not be power controlled by the power control loop.

A.5.2.1.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than 190 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.2.2 Handover to inter-frequency cell

A.5.2.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the inter frequency hard handover delay in CELL_DCH state as specified in section 5.2.2.1.

The test consists of three successive time periods, with a time duration T1, T2 and T3. The test parameters are given in tables A.5.0B and A.5.0C below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2C shall be used. The CPICH Ec/I0 of the best cell on the unused frequency shall be reported

together with Event 2C reporting. At the start of time duration T1, the UE may not have any timing information of cell 2.

UTRAN shall send a Physical Channel reconfiguration with activation time "now" with one active cell, cell 2. The Physical Channel reconfiguration message shall be sent to the UE during period T2, after the UE has reported event 2C T3 is defined as the end of the last TTI containing the physical channel reconfiguration message.

Table A.5.0B: General test parameters for Handover to inter-frequency cell

Para	meter	Unit	Value	Comment
DCH parameters			DL and UL Reference	As specified in TS 25.101 section
			Measurement Channel 12.2 kbps	A.3.1 and A.2.1
Power Control			On	
Target quality val	ue on DTCH	BLER	0.001	
Compressed mod	le		A.22 set 1	As specified in TS 25.101 section A.5.
Initial conditions	Active cell		Cell 1	
	Neighbour cell		Cell 2	
Final conditions	Active cell		Cell 2	
Threshold non us	ed frequency	dB	-18	Absolute Ec/I0 threshold for event 2C
Hysteresis		dB	0	
W non-used frequ	uency		1	Applicable for event 2C
Time to Trigger		ms	0	
Filter coefficient			0	
T1		s	5	
T2		S	≤5	
T3		S	1	

Table A.5.0C: Cell Specific parameters for Handover to inter-frequency cell

Parameter	Unit	Cell 1				Cell 2		
		T1	T2	T3	T1	T2	T3	
UTRA RF Channel Number		Channel 1				Channel 2		
CPICH_Ec/lor	dB		-10			-10		
PCCPCH_Ec/lor	dB		-12			-12		
SCH_Ec/lor	dB	-12			-12			
PICH_Ec/lor	dB		-15			-15		
DPCH_Ec/lor	dB	Note 1	Note 1	Note3	N/A	N/A	Note 1	
OCNS			Note 2		-0.941	-0.941	Note 2	
\hat{I}_{or}/I_{oc}	dB	0			-Infinity	-1.8	-1.8	
I_{oc}	dBm/3.84 MHz	-70			' 0			
CPICH_Ec/Io	dB	-13			-Infinity	-14	-14	
Propagation Condition		AWGN						

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}.

Note 3: The DPCH may not be power controlled by the power control loop.

A.5.2.2.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than 220 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.3 Void

Table A.5.0CA: Void

Table A.5.0CB: Void

Table A.5.0CC: Void

Table A.5.0CD: Void

Table A.5.0CE: Void

Table A.5.0CF: Void

A.5.4 Inter-system Handover from UTRAN FDD to GSM

A.5.4.1 Test Purpose and Environment

This test is to verify the requirement for the UTRAN to GSM cell handover delay reported in section 5.4.2.1.

The test parameters are given in Table A.5.0D, A.5.0E and A.5.0F below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3C shall be used.. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

The UTRAN shall send a Handover from UTRAN command with activation time "now" with a new active cell, cell 2. In the GSM Handover command contained in that message, the IE starting time shall not be included. The RRC HANDOVER FROM UTRAN COMMAND message shall be sent to the UE. The start of T3 is defined as the end of last TTI containing the HO command.

The requirements are also applicable for a UE not requiring compressed mode, in which case no compressed mode pattern should be sent for the parameters specified in table A5.0D

Table A.5.0D: General test parameters for Correct reporting of GSM neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Target quality value on DTCH	BLER	0.001	
Compressed mode patterns - GSM carrier RSSI			Only applicable for UE requiring compressed mode patterns
measurement		DL Compressed mode reference pattern 2 in Set 2	As specified in table A.22 TS 25.101 section A.5
- GSM Initial BSIC			
identification		Pattern 2	As specified in section 8.1.2.5.2.1 table 8.7.
- GSM BSIC re- confirmation		Pattern 2	As specified in section 8.1.2.5.2.2 table 8.8.
Active cell		Cell 1	
Inter-RAT		GSM Carrier RSSI	
measurement quantity			
BSIC verification required		Required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list		24 FDD neighbours on Channel 1	Measurement control information is
size		6 GSM neighbours including ARFCN 1	sent before the compressed mode patterns starts.
N Identify abort		66	Taken from table 8.7.
T Reconfirm abort		5.5	Based on table 8.8 and requirement specified in section 10.3.6.33 of TS 25.331.
T1	S	20	
T2	s	5	
T3	S	1	

Table A.5.0E: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 (UTRA)
		T1, T2, T3
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
PICH_Ec/lor	dB	-15
DCH_Ec/lor	dB	Note 1
OCNS_Ec/lor	dB	Note 2
\hat{I}_{or}/I_{oc}	dB	0
I_{oc}	dBm/3.84 MHz	-70
CPICH_Ec/lo	dB	-13
Propagation		AWGN
Condition		

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall

make the total power from the cell to be equal to I_{or}.

Table A.5.0F: Cell Specific Parameters for Handover UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
Parameter	Onit	T1	T2, T3	
Absolute RF Channel		ARFCN 1		
Number		AN	FON I	
RXLEV	dBm	-85	-75	

A.5.4.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 90 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.5 Cell Re-selection in CELL_FACH

A.5.5.1 One frequency present in neighbour list

A.5.5.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in the single carrier case reported in section 5.5.2.1.1.

The test parameters are given in Table A.5.1 and A.5.2. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms

Table A.5.1 General test parameters for Cell Re-selection in CELL_FACH

Para	meter	Unit	Value	Comment
initial condition	Active cell		Cell2	
	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
final condition	Active cell		Cell1	
Access Service Cla – Persistence value		-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
T1		S	15(initial), 5 (repetition)	
T2		S	5	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in Table A.5.1A and Table A.5.1B.

Table A.5.1A: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	kbps	120
Channel symbol rate	ksps	60
Slot Format #I	-	8
TFCI	•	ON
Power offsets of TFCI and Pilot fields relative to data field	dB	0

Note: Transport channel parameters for S-CCPCH are taken from TS34.108 clause 6.1.0b (Content of System Information Block type 5 (FDD))

Table A.5.2 Cell specific test parameters for Cell Re-selection in CELL_FACH

Parameter	Unit	Ce	ell 1	Cell 2		Cel	I 3	Ce	II 4	Ce	ell 5	Cell 6	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel		Channel 1 Channel 1		Chan	nol 1	Channel 1		Channel 1		Channel 1			
Number		Cital	11161 1	Chan	ilei i	Cilaii	iiei i	Citai	11161 1	Cila	Chamile		1161 1
CPICH_Ec/lor	dB		10	-1	_	-1		-	10		·10		10
PCCPCH_Ec/lor	dB		12	-1		-1			12		·12	<u> </u>	12
SCH_Ec/lor	dB		12	-1		-1			12		·12		12
PICH_Ec/lor	dB		15	-1		-1			15		·15		15
S-CCPCH_Ec/lor	dB		12	-1		-1			12		12	-1	
OCNS_Ec/lor	dB		295	-1.2		-1.2			295		.295	-1.2	
\hat{I}_{or}/I_{oc}	dB	7.3	10.27	10.27	7.3	0.2	27	0.	27	0	.27	0.2	27
I_{oc}	dBm/3.84 MHz		-70										
CPICH_Ec/lo	dB	-16	-13	-13	-16	-2	:3	-:	23	-	-23	-2	23
Propagation Condition							AW	GN					
Cell_selection_and_ reselection_quality_ measure		CPICH	CPICH E ₀ /N ₀ CPICH E ₀ /N ₀		CPI E₀/	-	CPICH	HE _c /N ₀	CPIC	H E ₀ /N ₀	CPI E./		
Qqualmin	dB	-2	20	-2	0	-2	0	-2	20	-	20	-2	:0
Qrxlevmin	dBm	-1	15	-11	15	-11	15	-1	15	-1	115	-1 ⁻	15
UE_TXPWR_ MAX_RACH	dBm	2	21	2	-	2	1	2	21	2	21	2	1
			C2: 0	C2, C		C3, C			C1: 0		C1: 0	C6, C	
Ooffoot 2	dB		C3: 0 C4: 0	C2, C		C3, C			C2: 0 C3: 0		C2: 0 C3: 0	C6, C	
Qoffset 2 _{s, n}	иь		C4. 0 C5: 0	C2, C		C3, C			C5: 0		C3. 0 C4: 0	C6, C	
			C6: 0			C3, C			C6: 0		C4: 0 C6: 0	C6, C	
Qhyst	dB		0	C2, C6: 0		03, 0		· · · · · · · ·	0		0	00, 0	
Treselection	S		0	0		0			0		0		
Sintrasearch	dB		not sent not sent		not s			sent		sent	not s		
IE 'FACH		not sent not sent			1.000					55110			
Measurement occasion info'		not	sent	not s	sent	not s	sent	not	sent	not	sent	not	sent

A.5.5.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the the CELL UPDATE message with cause value 'cell reselection' in Cell 1.

The cell re-selection delay shall be less than 1.6 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay in this case is expressed as:

$$T_{\text{reselection, intra}} = T_{\text{Measurement_Period Intra}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms,}$$

where:

T_{Measurement_Period Intra} is specified in 8.4.2.2.2 as 200 ms in this case.

 T_{SI} : The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell.1280 ms is assumed in this test case.

Note: Since 1280 ms is one of the typical values for repeating system information blocks, T_{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms

 T_{RA} : T_{RA} is a delay is caused by the physical random access procedure described in TS 25.214 section 6.1. A persistence value is assumed to be 1 in this test case and therefore T_{RA} in this test case is 40 ms.

This gives a total of 1.55 s, allow 1.6 s in the test case.

A.5.5.2 Two frequencies present in the neighbour list

A.5.5.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in section 5.5.2.1.2.

The test parameters are given in tables A5.3 and A5.4. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Table A.5.3: General test parameters for Cell Re-selection in CELL_FACH

	Parameter	Unit	Value	Comment
initial	Active cell		Cell2	
condition	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
final condition	Active cell		Cell1	
Access Sei – Persisten	rvice Class (ASC#0) ace value	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
T1		S	15(initial), 5 (repetition)	
T2	·	S	5	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in Table A.5.3A and Table A.5.3B.

Table A.5.3A: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	kbps	60
Channel symbol rate	ksps	30
Slot Format #I	-	4
TFCI	-	OFF
Power offsets of TFCI and Pilot fields relative to data field	dB	0

Table A.5.3B: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Table A.5.4: Cell specific test parameters for Cell re-selection in CELL_FACH state

Parameter	Unit	Ce	ell 1	Cell 2 Cell 3		Cell 4		Cell 5		Cell 6				
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number		Chan	nel 1	Chan	nel 2	Chann	el 1	Channel 1		Channel 2		Chann	nel 2	
CPICH_Ec/lor	dB	-10		-10				-10		-10		-10		
PCCPCH_Ec/lor	dB	-12		-12		-12	-12			-12		-12		
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15		
S-CCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12		
OCNS_Ec/lor	dB	-1.29	5	-1.29	5	-1.295		-1.295		-1.295		-1.295	5	
\hat{I}_{or}/I_{oc}	dB	-1.8	2.2	2.2	-1.8	-6.8	-4.8	-6.8	-4.8	-4.8	-6.8	-4.8	-6.8	
I_{oc}	dBm/3.8 4 MHz	-70												
CPICH_Ec/lo	dB	-15	-13	-13	-15	-20		-20		-20		-20		
Propagation Condition		AWG	N											
Cell_selection_ and_reselection_ quality_measure		CPIC E₀/N₀		CPIC E ₀ /N ₀		CPICH E ₀ /N ₀	ł	CPICH	I E₀/N₀	CPICH E	E _c /N ₀	CPICH	H E _c /N ₀	
Qqualmin	dB	-20		-20		-20		-20		-20		-20		
Qrxlevmin	dBm	-115		-115		-115		-115		-115		-115		
UE_TXPWR_ MAX_RACH	dBm	21		21		21		21		21		21		
Qoffset2 _{s, n}	dB	C1, C C1, C C1, C C1, C	3: 0 3: 0 5: 0	C2, C C2, C C2, C C2, C	3: 0 4: 0 5: 0	C3, C2 C3, C4 C3, C4 C3, C4	2: 0 4: 0 5: 0	C4, C2 C4, C3 C4, C5 C4, C5 C4, C6	2: 0 3: 0 5: 0	C5, C1: C5, C2: C5, C3: C5, C4: C5, C6:	0 0 0	C6, C2 C6, C2 C6, C4 C6, C4	2: 0 3: 0 4: 0	
Qhyst2	dB	0		0		0		0		0		0		
Treselection	S	0		0		0		0		0		0		
Sintrasearch	dB	not se	ent	not se	ent	not se	not sent		not sent		not sent		not sent	
Sintersearch	dB	not se	ent	not se	ent	not se	nt	not se	nt	not sent		not se	nt	
IE 'FACH Measurement occasion info'		sent		sent		sent		sent		sent		sent		
FACH Measurement occasion cycle length coefficient		3		3		3		3		3		3		
Inter-frequency FDD measurement indicator		TRUE	Ī	TRUE		TRUE		TRUE		TRUE		TRUE		
Inter-frequency TDD measurement indicator		FALS	SE .	FALS	E	FALS	Ξ	FALSE	=	FALSE		FALSI	≡	

A.5.5.2.2 Test Requirements

The cell re-reselection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the the CELL UPDATE message with cause value 'cell reselection' in Cell 1.

The cell re-selection delay shall be less than 1.9 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay in this case is expressed as:

$$T_{\text{reselection, inter}} = T_{\text{Measurement inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \ \text{ms},$$

where:

T_{measurement inter} is specified in 8.4.2.3.2 as 480 ms in this case.

 T_{SI} : The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell.1280 ms is assumed in this test case.

Note:

Since 1280 ms is one of the typical values for repeating system information blocks, T_{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms.

 T_{RA} : T_{RA} is a delay is caused by the physical random access procedure described in TS 25.214 section 6.1. A persistence value is assumed to be 1 in this test case and therefore T_{RA} in this test case is 40 ms.

This gives a total of 1.83 s, allow 1.9 s in the test case.

A.5.5.3 Cell Reselection to GSM

A.5.5.3.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_FACH state in section 5.5.2.1.4.

This scenario implies the presence of 1 UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 UMTS carrier and 6 GSM cells. Test parameters are given in Table, A.5.4A, A.5.4B, A.5.4C, A.5.4D, A.5.4E.

Table A.5.4A: General test parameters for UTRAN to GSM Cell Re-selection

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cell		Cell2	
Final condition	Active cell		Cell2	
HCS				Not used
Neighbour	cell list size		24 FDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	
T1		S	5	
T2		S	10	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in Table A.5.3A and Table A.5.3B.

Table A.5.4B: Physical channel parameters for S-CCPCH.

Parameter	Unit	Level
Channel bit rate	kbps	60
Channel symbol rate	ksps	30
Slot Format #I	-	4
TFCI	-	OFF
Power offsets of TFCI and Pilot fields relative to data field	dB	0

Table A.5.4C: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	240
Transport Block Set Size	240
Transmission Time Interval	10 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

Table A.5.4D: Cell re-selection UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1 ((UTRA)
UTRA RF Channel			
Number		Chan	inel 1
CPICH_Ec/lor	dB	-1	0
PCCPCH_Ec/lor	dB	-1	
SCH_Ec/lor	dB		2
PICH_Ec/lor	dB		5
S-CCPCH_Ec/lor	dB		2
OCNS_Ec/lor	dB	-1.2	
\hat{I}_{or}/I_{oc}	dB	0	-5
I_{oc}	dBm/3. 84 MHz	-	70
CPICH_Ec/lo	dB	-13	-16.2
CPICH_RSCP	dBm	-80	-85
Propagation Condition		AW	'GN
Cell_selection_and_			
reselection_quality_m		CPICL	l Ec/lo
easure		0, 101	0/10
Qqualmin	dB	-2	20
Qrxlevmin	dBm	-1	<u>.0</u> 15
UE_TXPWR_MAX_			
RACH	dBm	21	
Qoffset1 _{s, n}	dB	C1, (C2: 0
Qhyst1	dB)
Treselection	S	,)
Ssearch _{RAT}	dB	Not	sent
IE 'FACH			
Measurement		Se	ent
occasion info'			
FACH Measurement			
occasion cycle length		3	3
coefficient			
Inter-frequency FDD			05
measurement		FAL	_SE
indicator			
Inter-frequency TDD			C.E.
measurement		⊢Al	_SE
indicator	1		
Inter-RAT		الم ما	ıdad
measurement indicators		Inclu	ıded
>RAT type	1	^	SM
>KAT type	Ì	l GC	ΣIVI

Table A.5.4E: Cell re-selection UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2	(GSM)
		T1	T2
Absolute RF Channel Number		ARFCN	l 1
RXLEV	dBm	-90	-75
RXLEV_ACCESS_ MIN	dBm	-104	
MS_TXPWR_MAX_ CCH	dBm	33	

A.5.5.3.2 Test Requirements

The cell re-reselection delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to transmit the random access in Cell 2 (the GSM cell).

The cell re-selection delay shall be less than $5.5 + T_{RA}$ s.

The rate of correct reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed

$$T_{\text{reselection, GSM}} = T_{\text{identify,GSM}} + T_{\text{measurement, GSM}} + 40 + T_{\text{BCCH}} + T_{\text{RA}} \text{ ms}$$

where:

T_{identify,GSM} Specified in 8.4.2.5.2.1, here it is 2880 ms

T_{measurement, GSM} Specified in 5.5.2.1.4, here it is 640 ms

T_{BCCH} According to [21], the maximum time allowed to read the BCCH data, when being synchronized

to a BCCH carrier, is 1.9 s.

T_{RA} The additional delay caused by the random access procedure in the GSM cell. Shall be defined by

T1/RF when the test case is further detailed in TS 34.121.

This gives a total of $5.46 + T_{RA}$ s, allow $5.5 + T_{RA}$ s.

A.5.5.4 Cell Reselection during an MBMS session, one frequency present in neighbour list

A.5.5.4.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell identification for UEs in an MBMS PTM session and the required functionality on measurement occasions by use of a cell re-selection test case.

The test parameters are given in tables A.5.4F, A.5.4G, A.5.4H, A.5.4I, A.5.4J and A.5.4K. The UE is requested to receive the MBMS service and monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Table A.5.4F: General test parameters for Cell Re-selection in CELL_FACH

Parameter		Unit	Value	Comment
initial condition	Active cell		Cell2	
final condition	Active cell		Cell1	
Access Service Class	Access Service Class (ASC#0)		1	Selected so that no additional delay is
- Persistence value				caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
MBMS preferred freq	uency layer			Not used
T1		S	15(initial), 5 (repetition)	
T2		S	3	
T3		S	3	

The transport and physical parameters of the S-CCPCH carrying the FACH are defined in Table A.5.4G and Table A.5.4H.

Table A.5.4G: Physical channel parameters for S-CCPCH_1 carrying the FACH.

Parameter	Unit	Level
Channel bit rate	Kbps	60
Channel symbol rate	Ksps	30
Slot Format #I	-	4
TFCI	-	OFF
Power offsets of TFCI and Pilot fields relative to data field	dB	0

Table A.5.4H: Transport channel parameters for S-CCPCH_1

Parameter	FACH
Transport Channel Number	1
Transport Block Size	480
Transport Block Set Size	480
Transmission Time Interval	20 ms
Type of Error Protection	Convolution Coding
Coding Rate	1/2
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Fixed

The transport and physical parameters of the S-CCPCH carrying the MTCH are defined in Table A.5.4I and Table A.5.4J.

Table A.5.4I: Physical channel parameters for S-CCPCH_2 carrying the MTCH.

Parameter	Unit	Level
Channel bit rate	kbps	960
Channel symbol rate	ksps	480
Slot Format #I	-	14
TFCI	-	ON
Power offsets of TFCI and Pilot fields relative to data field	dB	0

Table A.5.4J: Transport channel parameters for S-CCPCH_2

Parameter	FACH
Transport Channel Number	1
Transport Block Size	2560
Transport Block Set Size	10240
Transmission Time Interval	40ms
Type of Error Protection	Turbo Coding
Coding Rate	1/3
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Flexible

Table A.5.4K: Cell specific test parameters for Cell re-selection in CELL_FACH state

PCCPCH_Ec/lor SCH_Ec/lor PICH_Ec/lor S-CCPCH_1_Ec/lor S-CCPCH_2_Ec/lor OCNS_Ec/lor \hat{I}_{or}/I_{oc} CPICH_Ec/lo Propagation	Unit		Cell 1		Cell 2			
Number CPICH_Ec/lor PCCPCH_Ec/lor SCH_Ec/lor PICH_Ec/lor S-CCPCH_1_Ec/lor S-CCPCH_2_Ec/lor OCNS_Ec/lor \hat{I}_{or}/I_{oc} CPICH_Ec/lo Propagation		T1	T2	Т3	T1	T2	T3	
PCCPCH_Ec/lor SCH_Ec/lor PICH_Ec/lor S-CCPCH_1_Ec/lor S-CCPCH_2_Ec/lor OCNS_Ec/lor \hat{I}_{or}/I_{oc} CPICH_Ec/lo Propagation		Channel 1			Channel 2			
$\begin{array}{c} \text{SCH_Ec/lor} \\ \text{PICH_Ec/lor} \\ \text{S-CCPCH_1_Ec/lor} \\ \text{S-CCPCH_2_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \\ I_{oc} \\ \hline \\ \text{CPICH_Ec/lo} \\ \\ \text{Propagation} \end{array}$	dB	-10			-10			
$\begin{array}{c} \text{PICH_Ec/lor} \\ \text{S-CCPCH_1_Ec/lor} \\ \text{S-CCPCH_2_Ec/lor} \\ \text{OCNS_Ec/lor} \\ \hline \hat{I}_{or}/I_{oc} \\ \hline I_{oc} \\ \hline \text{CPICH_Ec/lo} \\ \hline \text{Propagation} \end{array}$	dB	-12			-12			
S-CCPCH_1_Ec/lor S-CCPCH_2_Ec/lor OCNS_Ec/lor \hat{I}_{or}/I_{oc} I_{oc} CPICH_Ec/lo Propagation	dB	-12			-12			
S-CCPCH_1_Ec/lor S-CCPCH_2_Ec/lor OCNS_Ec/lor \hat{I}_{or}/I_{oc} I_{oc} CPICH_Ec/lo Propagation	dB	-15			-15			
S-CCPCH_2_Ec/lor OCNS_Ec/lor \hat{I}_{or}/I_{oc} I_{oc} CPICH_Ec/lo Propagation	dB	-12			-12			
\hat{I}_{or}/I_{oc} I_{oc} CPICH_Ec/lo Propagation	dB	n.a.			-6			
I _{oc} CPICH_Ec/lo Propagation	dB	Note 1			Note 1			
CPICH_Ec/lo Propagation	dB	-infinity	-3.37	0	0	0	-5	
Propagation	dBm/3.8 4 MHz	-70						
Propagation	dB	- infinity	-15	-13	-13	-13	-16.2	
Condition		AWGN						
Cell_selection_ and_reselection_ quality_measure		CPICH E√N	0		CPICH E₀/N₀			
	dB	-20			-20			
	dBm	-115			-115			
UE_TXPWR_ MAX_RACH	dBm	21			21			
Qoffset2 _{s, n}	dB	C1, C2: 0			C2, C1: 0			
Qhyst2	dB	0			0			
Treselection	S	0			0			
Sintrasearch	dB	not sent			not sent			
	dB	not sent			not sent			
IE 'FACH Measurement occasion info'		Sent			Sent			
FACH Measurement occasion cycle length coefficient		2			2			
Inter-frequency FDD measurement indicator		TRUE						
Inter-frequency TDD measurement indicator Note 1. The power of	the OCNS	FALSE	is added	shall ma	FALSE	ower from the	ne cell to	

Note 1. The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor.

A.5.5.4.2 Test Requirements

The cell re-reselection delay is defined as the time from the beginning of time period T3, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the CELL UPDATE message with cause value 'cell reselection' in Cell 1.

The cell re-selection delay shall be less than 1.9s.

During T1 and T2 the MTCH BLER shall not exceed 1.0%.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay in this case is expressed as:

$$T_{\text{reselection, inter}} = T_{\text{Measuremnt, inter}} + T_{\text{IU}} + 20 + T_{\text{SI}} + T_{\text{RA}} \text{ ms,}$$

where:

 T_{RA} :

Note:

T_{Measuremnt, inter} Specified in 8.4.2.3.2 as 480ms

 $T_{identify, inter}$ i Specified in 8.4.2.3.1 as 2.72 s in this case, thus 3sec for T2 is sufficient for identification of cell 1.

Note: The calculation based on the S-CCPCH carrying the FACH provides a measurement occasion of 20ms repeated every 80ms. As the MTCH TTI length is only 40ms this has to be shortened to a gap of 10ms every 80ms, the re-selection delay is based upon.

T_{SI}: The time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell.1280 ms is assumed in this test case.

Note: Since 1280 ms is one of the typical values for repeating system information blocks, T_{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms.

 T_{RA} is a delay is caused by the physical random access procedure described in TS 25.214 section 6.1. A persistence value is assumed to be 1 in this test case and therefore T_{RA} in this test case is 40 ms.

The maximum allowed time to be used to perform the measurements for a UE in an MBMS session may be smaller than the duration of the measurement occasion to fulfill the MBMS demodulation performance.

This gives a total of 1.83 s, allow 1,9s in the test case.

Note: MTCH BLER may not be tested in conformance tests.

A.5.6 Cell Re-selection in CELL_PCH

A.5.6.1 One frequency present in the neighbour list

A.5.6.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.6.2.

The test parameters are given in Table A5.5 and A5.6. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Table A.5.5: General test parameters for Cell Re-selection in CELL_PCH

	Parameter	Unit	Value	Comment
initial Active cell Cell2				
condition	condition Neighbour cells		Cell1, Cell3,Cell4,	
			Cell5, Cell6	
final	Active cell		Cell1	
condition				
Access Se	rvice Class (ASC#0)	-	1	Selected so that no additional delay is caused by the
- Persisten	ce value			random access procedure. The value shall be used for
				all cells in the test.
HCS				Not used
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re-selection reaction
				time is taken into account.
T2	T2		15	T2 need to be defined so that cell re-selection reaction
				time is taken into account.

Table A.5.6: Cell specific test parameters for Cell re-selection in CELL_PCH state

Parameter	Unit	Ce	ell 1	Ce	II 2	Cel	I 3	Ce	II 4	Ce	ell 5	Ce	II 6
Farameter	Offic	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Chann	el 1	Channe	Channel 1 Channel 1		Channel 1		Channel 1		Channel 1		
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10	
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15	
OCNS_Ec/lor	dB	-0.941		-0.941		-0.941		-0.941		-0.941		-0.941	
\hat{I}_{or}/I_{oc}	dB	7.3	10.27	10.27	7.3	0.27		0.27		0.27		0.27	
I_{oc}	dBm/ 3.84MHz	-70		1	•	•		•		•		-	
CPICH_Ec/lo	dB	-16	-13	-13	-16	-23		-23		-23		-23	
Propagation Condition							AW	GN					
Cell_selection_and_ reselection_quality_ measure		СРІСН	I E₀/N₀	СРІСН	E _c /N ₀	CPICH E₀/N₀	I	CPICH	I E₀/N₀	CPICH	HE _c /N ₀	CPICH E ₀ /N ₀	1
Qqualmin	dB	-2	20	-2	:0	-2	-20 -20		0	-	20	-2	20
Qrxlevmin	dBm	-1	15	-1 ⁻	15	-11	5	-1	15	-1	115	-1 ⁻	15
UE_TXPWR_ MAX_RACH	dBm	2	21	2	1	2	I	2	1	2	21	2	1
Qoffset2 _{s, n}	dB	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C C2, C C2, C	C2, C3: 0		C3, C2: 0 C3, C4: 0 C3, C5: 0		C1: 0 C2: 0 C3: 0 C5: 0 C6: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0	C6,	C2: 0 C3: 0 C4: 0
Qhyst2	dB		0	C)	0	0)		0	()
Treselection	S		0	C)	0		()		0	()
Sintrasearch	dB	not	sent	not s	sent	not s	ent	not	sent	not	sent	not	sent

A.5.6.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the CELL UPDATE message with cause value 'cell reselection' in Cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$,

where:

T_{evaluateFDD}: See section 5.6.2.

 T_{SI} : Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.2 Two frequencies present in the neighbour list

A.5.6.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in CELL_PCH state in section 5.6.2. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

The test parameters are given in Table A.5.7 and A.5.8

Table A.5.7: General test parameters for Cell Re-selection in CELL_PCH

Pa	arameter	Unit	Value	Comment		
initial condition	Active cell		Cell2			
	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6			
final condition	Active cell		Cell1			
	Access Service Class (ASC#0) - Persistence value		1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.		
HCS				Not used		
DRX cycle length	1	S	1.28	The value shall be used for all cells in the test.		
T1		S	30	T1 need to be defined so that cell reselection reaction time is taken into account.		
T2	T2		⁻ 2		15	T2 need to be defined so that cell reselection reaction time is taken into account.

Table A.5.8: Cell specific test parameters for Cell re-selection in CELL_PCH state

Parameter	Unit	Ce	ell 1	Ce	Cell 2 Cell 3		Cell 4		Cell 5		Ce	Cell 6	
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Chan	nel 1	Chan	nel 2	Chann	Channel 1 Channel 1		Channel 2		Channel 2		
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10	
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15	
OCNS_Ec/lor	dB	-0.94	1	-0.94	1	-0.941		-0.941		-0.941		-0.941	
\hat{I}_{or}/I_{oc}	dB	-3.4	2.2	2.2	-3.4	-7.4	-4.8	-7.4	-4.8	-4.8	-7.4	-4.8	-7.4
I_{oc}	dBm/3.84 MHz	-70											
CPICH_Ec/Io	dB	-16	-13	-13	-16	-20		-20		-20		-20	
Propagation Condition							I	AWGN					
Cell_selection_ and_reselection_ quality_measure		CPIC E _c /N ₀		CPIC E _c /N ₀		CPICH E _c /N ₀		CPICH	HE _c /N ₀	CPICH E	E _c /N ₀	CPICI	H E _c /N ₀
Qqualmin	dB	-:	20	-	20	-2	0	-20		-20 -20		-7	20
Qrxlevmin	dBm	-1	15	-1	15	-11	5	-1	15	-115		-115	
UE_TXPWR_ MAX_RACH	dBm	2	21	2	21	2	21 21		21		2	21	
Qoffset2 _{s, n}	dB	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C2, C2,	C2, C3: 0 C3, 0 C2, C4: 0 C3, 0 C2, C5: 0 C3, 0		C3, C2: 0 C3, C4: 0 C3, C5: 0		C1: 0 C2: 0 C3: 0 C5: 0 C6: 0	C5, C C5, C C5, C C5, C C5, C	2: 0 3: 0 4: 0	C6, C6, C6,	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0
Qhyst2	dB		0		0	0	•	(0	0			0
Treselection	S		0		0	0		(0	0			0
Sintrasearch	dB	not	sent	not	sent	not s	ent	not	sent	not sent		not	sent
Sintersearch	dB	not	sent	not	sent	not s	ent	not	sent	not sent		not	sent

A.5.6.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the CELL UPDATE message with cause value 'cell reselection' in Cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$,

where:

 $T_{evaluateFDD}$: See section 5.6.2.

 T_{SI} : Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.6.3 Cell re-selection during an MBMS session, one UTRAN interfrequency and 4 GSM cells present in the neighbour list

A.5.6.3.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the inter-frequency cell identification and GSM BSIC identification for UEs in an MBMS PTM session according to section 4.2.2.3 and 4.2.2.5. Furthermore, the required

functionality on the limitation of measurements in dependence of the MBMS TTI as specified in section 4.2.2.9 are tested.

This scenario implies the presence of 1 UTRAN serving cell, 1 UTRAN inter-frequency cell and 4 GSM cells of which one is to be re-selected. The UE is requested to monitor neighbor cells on 1 UMTS carrier and 12 GSM cells. Test parameters are given in Table, A.5.8A, A.5.8B, A.5.8C, A.5.8D and A.5.8E.

Table A.5.8A: General test parameters for Cell Re-selection

Pa	arameter	Unit	Value	Comment
Initial	Active cell		Cell2	UMTS cell providing the MBMS session
condition	Neighbour cells		Cell1	UMTS inter-frequency neighbour cell
			Cell3, Cell4,	GSM cells
			Cell5, Cell6	
Final	Active cell		Cell3	
condition				
DRX cycle	length	ms	160	
HCS				Not used
MBMS pref	ferred frequency			Not used
layer				
T1		S	15 (initial), 5	
			repeated	
T2	T2		45	
T3		S	7	

The transport and physical channel parameters of the S-CCPCH carrying the MTCH are defined in Table A.5.8B and Table A.5.8C

Table A.5.8B: Physical channel parameters for S-CCPCH carrying the MTCH.

Parameter	Unit	Level
Channel bit rate	kbps	960
Channel symbol rate	ksps	480
Slot Format #I	-	14
TFCI	-	ON
Power offsets of TFCI and Pilot fields relative to data field	dB	0

Table A.5.8C: Transport channel parameters for S-CCPCH

Parameter	FACH
Transport Channel Number	1
Transport Block Size	2560
Transport Block Set Size	10240
Transmission Time Interval	40ms
Type of Error Protection	Turbo Coding
Coding Rate	1/3
Rate Matching attribute	256
Size of CRC	16
Position of TrCH in radio frame	Flexible

Table A.5.8D: Cell specific test parameters for serving Cell2 and inter-frequency neighbour Cell1

Parameter	Unit		Cell 1		Cell 2			
		T1	T2	Т3	T1	T2	T3	
UTRA RF Channel		Channel 1			Channel 2			
Number								
CPICH_Ec/lor	dB	-10			-10			
PCCPCH_Ec/lor	dB	-12			-12			
SCH_Ec/lor	dB	-12			-12			
PICH_Ec/lor	dB	-15			-15			
S-CCPCH_1_Ec/lor	dB	-12			-12			
S-CCPCH_2_Ec/lor	dB	n.a.			[-6,8]			
OCNS_Ec/lor	dB	Note 1	1	1	Note 1			
\hat{I}_{or}/I_{oc}	dB	-infinity	-4.75	- infinity	0	0	-15	
I_{oc}	dBm/3.8 4 MHz	-70						
CPICH_Ec/lo	dB	- infinity	-16	- infinity	-13	-13	-25.14	
CPICH_RSCP		- infinity	- 84,75	- infinity	-80	-80	-95	
Propagation Condition		AWGN						
Cell_selection_ and_reselection_ quality_measure		CPICH E₀/N	lo		CPICH E₀/N₀			
Qqualmin	dB	-20			-20			
Qrxlevmin	dBm	-115			-115			
UE_TXPWR_ MAX_RACH	dBm	21			21			
Qoffset2 _{s, n}	dB	C1, C2: 0			C2, C1: 0			
Qhyst2	dB	0			0			
Qoffset1 _{s, n}	dB				C2, C3: 0; C C2, C5: 0; C			
Qhyst1	dB	0			0	•		
Treselection	S	0			0			
Sintrasearch	dB	not sent			not sent			
Sintersearch	dB	not sent not sent						
Note 1. The power of	f the OCNS	channel that	is added	shall ma	ke the total po	ower from the	he cell to	
be equal to I	or.							

Table A.5.8E: Cell re-selection parameters for GSM cells case (cell 3 and cell4,cell5,cell6)

Parameter	Unit	Cell 3 (GSM)			Cell 4, Cell5, Cell 6 (GSM)		
		T1	T2	T3	T1	T2	T3
Absolute RF Channel Number		ARFCN 3			ARFCN 1, ARFCN2, ARFCN 4		
RXLEV	dBm	-infinity	-85	-85	-infinity	-85	-infinity
RXLEV_ACCESS_MIN	dBm	-104			-104		
MS_TXPWR_MAX_CCH	dBm	33			33		

A.5.6.3.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T3, to the moment when the UE camps on Cell 3, and starts to send the RR Channel Request message for location update to Cell 3.

The cell re-selection delay shall be less than $2.75~s + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [21].

During T1 and T2 the MTCH BLER shall not exceed 1.0%.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $Max(3*T_{measureFDD}, T_{measureGSM} + DRX cycle length) + T_{BCCH}$, where:

T_{measureFDD} See Table 4.1 in section 4.2.2.

T_{measureGSM} See Table 4.1 in section 4.2.2.

DRX cycle length 160mss see Table A.4.7.A

T_{BCCH} Maximum time allowed to read BCCH data from GSM cell [21].

According to [21], the maximum time allowed to read the BCCH data, when being synchronized

to a BCCH carrier, is 1.9 s.

This gives a total of $2.72 \text{ s} + T_{BCCH}$, allow $2.75 \text{ s} + T_{BCCH}$ in the test case.

Note: MTCH BLER may not be tested in conformance tests.

A.5.7 Cell Re-selection in URA_PCH

A.5.7.1 One frequency present in the neighbour list

A.5.7.1.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.7.2.

The test parameters are given in Table A.5.9 and A.5.10. The UE is requested to monitor neighbouring cells on 1 carrier. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Cells possible for re-selection shall belong to different UTRAN Registration Areas (URA).

Table A.5.9: General test parameters for Cell Re-selection in URA_PCH

Pa	Parameter		Value	Comment
initial condition	Active cell		Cell2	
	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
final condition	Active cell		Cell1	
Access Service (- Persistence val		-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle length	1	S	1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell reselection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re- selection reaction time is taken into account.

Table A.5.10: Cell specific test parameters for Cell re-selection in URA_PCH state

Parameter	Unit	Ce	ell 1	Cel	12	Cel	I 3	Ce	II 4	Ce	ell 5	Ce	II 6
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1 Channel 1		Chann	el 1	Channel 1		Channel 1		Chanr	Channel 1		
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10	
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15	
OCNS_Ec/lor	dB	-0.941		-0.941		-0.941		-0.941		-0.941		-0.941	i
\hat{I}_{or}/I_{oc}	dB	7.3	10.27	10.27	7.3	0.27		0.27		0.27		0.27	
I_{oc}	dBm/3.84 MHz	-70				•				•		•	
CPICH_Ec/lo	dB	-16	-13	-13	-16	-23		-23		-23		-23	
Propagation Condition							AW	GN					
Cell_selection_and_ reselection_quality_ measure		CPICH	I E₀/N₀	СРІСН	E _c /N ₀	CPICH E ₀ /N ₀	I	CPICH	I E _c /N ₀	CPICH	H E₀/N₀	CPICH E ₀ /N ₀	
Qqualmin	dB	-	20	-2	0	-2	0	-2	20	-	20	-2	20
Qrxlevmin	dBm	-1	15	-11	15	-11	5	-1	-115		115	-1 ⁻	15
UE_TXPWR_ MAX_RACH	dBm	2	21	2	1	21	I	2		:	21	2	:1
Qoffset2 _{s, n}	dB	C1, C1, C1,	C2: 0 C3: 0 C4: 0 C5: 0 C6: 0	C2, C C2, C C2, C C2, C C2, C	C3: 0 C4: 0 C5: 0	C3, C C3, C C3, C C3, C	2: 0 4: 0 5: 0	C4, 0 C4, 0 C4, 0 C4, 0 C4, 0	C2: 0 C3: 0 C5: 0	C5, C5, C5,	C1: 0 C2: 0 C3: 0 C4: 0 C6: 0		C4: 0
Qhyst2	dB		0	C		0		()		0	()
Treselection	S		0	C)	0		()		0	()
Sintrasearch	dB	not	sent	not s	sent	not s	ent	not :	sent	not	sent	not	sent

A.5.7.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the URA UPDATE message with cause value 'URA reselection' in Cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$,

where:

T_{evaluateFDD}: See section 5.7.2.

T_{SI}: Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.7.2 Two frequencies present in the neighbour list

A.5.7.2.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the cell re-selection delay in URA_PCH state in section 5.7.2.

The test parameters are given in Table A5.11 and A5.12. The UE is requested to monitor neighbouring cells on 2 carriers. The maximum repetition period of the relevant system info blocks that needs to be received by the UE to camp on a cell shall be 1280 ms.

Cells possible for re-selection shall belong to different UTRAN Registration Areas (URA).

Table A.5.11: General test parameters for Cell Re-selection in URA_PCH

P	Parameter		Value	Comment
initial condition	Active cell		Cell2	
	Neighbour cells		Cell1, Cell3,Cell4, Cell5, Cell6	
final condition	Active cell		Cell1	
Access Service - Persistence va	,	-	1	Selected so that no additional delay is caused by the random access procedure. The value shall be used for all cells in the test.
HCS				Not used
DRX cycle lengtl	h	S	1.28	The value shall be used for all cells in the test.
T1		S	30	T1 need to be defined so that cell reselection reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell reselection reaction time is taken into account.

Table A.5.12: Cell specific test parameters for Cell re-selection in URA_PCH state

Parameter	Unit	Се	Cell 1 Cell 2		Cell 3 Cell 4		Cell 5		Cell 6				
		T1	T2	T1	T2	T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1 Channel 2			Chann	Channel 1 Channel 1		Channel 2		Channel 2			
CPICH_Ec/lor	dB	-10		-10		-10		-10		-10		-10	
PCCPCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
SCH_Ec/lor	dB	-12		-12		-12		-12		-12		-12	
PICH_Ec/lor	dB	-15		-15		-15		-15		-15		-15	
OCNS_Ec/lor	dB	-0.941		-0.94	1	-0.941		-0.941		-0.941		-0.941	
\hat{I}_{or}/I_{oc}	dB	-3.4	2.2	2.2	-3.4	-7.4	-4.8	-7.4	-4.8	-4.8	-7.4	-4.8	-7.4
I_{oc}	dBm/3.84 MHz	-70											
CPICH_Ec/lo	dB	-16	-13	-13 -13 -16 -20 -20 -20 -20									
Propagation Condition		AWGN											
Cell_selection_ and_reselection_ quality_measure		CPICH E₀/N₀	1	CPIC E _c /N ₀		CPICH E₀/N₀	I	CPICH	H E _c /N ₀	CPICH E	E _c /N ₀	CPICH	H E _c /N ₀
Qqualmin	dB	-2	:0	-:	20	-2	0	-20		-20		-20	
Qrxlevmin	dBm	-1	15	-1	15	-11	5	-1	15	-11	5	-115	
UE_TXPWR_ MAX_RACH	dBm	2	1	2	21	2	I	21		2′	1	2	21
Qoffset2 _{s, n}	dB	C1, 0 C1, 0 C1, 0 C1, 0	C4: 0 C5: 0	C2, C2, C2,	C1: 0 C3: 0 C4: 0 C5: 0 C6: 0	C3, C C3, C C3, C C3, C	2: 0 4: 0 5: 0	C4, C4, C4,	C1: 0 C2: 0 C3: 0 C5: 0 C6: 0	C5, C C5, C C5, C C5, C C5, C	2: 0 3: 0 4: 0	C6, C6, C6,	C1: 0 C2: 0 C3: 0 C4: 0 C5: 0
Qhyst2	dB	()		0	0	•	(0	0			0
Treselection	S	()		0	0		(0	0			0
Sintrasearch	dB	not :	sent	not	sent	not s	ent	not	sent	not s	ent	not	sent
Sintersearch	dB	not :	sent	not	sent	not s	ent	not	sent	not s	ent	not	sent

A.5.7.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending URA UPDATE message with cause value 'URA reselection' in Cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD} + T_{SI}$,

where:

T_{evaluateFDD}: See section 5.7.2.

 T_{SI} : Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell. 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8s in the test case.

A.5.8 Serving HS-DSCH cell change

A.5.8.1 Test Purpose and Environment

The purpose of this test is to verify the requirement for the delay when performing the serving HS-DSCH cell change in CELL_DCH state specified in section 5.10.

The test parameters are given in Table A.5.13 and A.5.14 below. The test consists of 4 successive time periods, with a time duration of T1, T2, T3 and T4 respectively. At the start of time duration T1 the UE have cell 1 and cell 2 in active set and cell 1 as the serving HS-DSCH cell.

Data shall be transmitted continuously to the UE on the HS-DSCH channel.

Table A.5.13: General test parameters for serving HS-DSCH cell change

Para	Parameter		Value	Comment
DCH parameters			DL Reference Measurement Channel	As specified in TS 25.101 section A.3.
			12.2 kbps	
Power Control			On	
Target quality val	ue on DTCH	BLER	0.001	
HSDPA paramete	ers		Fixed Reference Channel Definition H-Set 1, with QPSK modulation only	As specified in TS 25.101 section A.7.
Initial conditions	Active cells		Cell 1 and Cell 2	
	Serving HS-DSCH cell		Cell 1	
Final condition	Active cell		Cell 1 and Cell 2	
	Serving HS-DSCH cell		Cell 2	
Hysteresis		dB	0	
Time to Trigger		ms	0	
Filter coefficient			0	
CQI Feedback cy	rcle, k	ms	2	
CQI repetition fac	ctor		1	
T1		S	5	
T2		s	3	
T3	·	S	0.5	
T4	_	ms	100	

Table A.5YY: Cell specific test parameters for serving HS-DSCH cell change

Parameter	Unit		C	ell 1			C	ell 2	
		T1	T2	Т3	T4	T1	T2	Т3	•
UTRA RF Channel Number		Channel	1			Channe	l 1		
CPICH_Ec/lor	dB	-10				-10			
PCCPCH_Ec/lor	dB	-12				-12			
SCH_Ec/lor	dB	-12				-12			
PICH_Ec/lor	dB	-15				-15			
DPCH_Ec/lor	dB	Note1	Note1	Note1	N/A	N/A	N/A	Note3	Note
HS-PDSCH_Ec/lor	dB	-10			-inf	-inf			-10
HS-SCCH-1_ Ec/lor	dB	-13			-inf	-inf			-13
OCNS		Note2	Note2	Note2	Note2	Note2	Note2	Note2	Note
\hat{I}_{or}/I_{oc}	dB	3.64	1.14			1.14	3.64		
I_{oc}	dBm/3.84 MHz	-70							
CPICH_Ec/lo	dB	-13	-15.5			-15.5	-13		
Propagation Condition		AWGN							
Relative delay of paths	Chips	{-148	148}						
received from cell 2 with		Note 4							

respect to cell 1

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lor

Note 3: The DPCH level is controlled by the power control loop. The initial power shall be set equal to the DPCH_Ec/lor of Cell 1 a the end of T2.

Note 4: The relative delay of the path from cell 2 with respect to cell 1 shall always be within ±148 chip.

A.5.8.1.1 Test procedure

- 1) The test is started at the beginning of T1.
- 2) During time period T2 an Event 1D triggered measurement report shall be sent by the UE.
- 3) During time period T3 UTRAN shall send a Physical Channel Configuration command with activation time now changing serving HS-DSCH from cell 1 to cell 2. The Physical Channel Configuration message shall be sent to the UE so that the whole message is available at the UE at the beginning of T4.

A.5.8.2 Test Requirements

The UE shall start to transmit the CQI to cell 2 less than 74 ms from the beginning of time period T4.

The UE shall also start to receive the first HS-SCCH message from cell 2 less than 74 ms from the beginning of time period T4 and transmit the ACK or NAK which corresponds to the HS-SCCH message.

NOTE: The delay D_{cell_change} equals the RRC procedure delay defined in TS25.331 Section 13.5.2 plus the interruption time of receiving HS-DSCH data stated in section 5.10.2.2. The RRC procedure delay is 50 ms and the interruption time is given by $T_{interrupt1} = T_{IU} + 22$ ms=24 ms.

The total delay $D_{cell_change} = 50 + 24 \text{ ms} = 74 \text{ ms}$

A.6 RRC Connection Control

A.6.1 RRC Re-establishment delay

A.6.1.1 Test Purpose and Environment

The purpose is to verify that the RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

A.6.1.1.1 TEST 1

The test parameters are given in table A.6.1 and table A.6.2 below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consist of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table A.6.1 General test parameters for RRC re-establishment delay, Test 1

Parameter	Unit	Value	Comment
DCH Parameters		DL Reference	As specified in TS 25.101, section A.3.1
		measurement	
		channel 12.2 kbps	
Power Control		On	
Active cell, initial condition		Cell 1	
Active cell, final condition		Cell 2	
N313		20	
N315		1	
T313	Seconds	0	
Tsı	ms	1280	Time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms). Note: Since 1280 ms is one of the typical values for repeating system information blocks, T _{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms.
Monitored cell list size		24	Monitored set shall only include intra frequency neighbours.
Cell 2			Included in the monitored set.
Reporting frequency	Seconds	4	
T1	S	10	
T2	S	6	

Table A.6.2 Cell specific parameters for RRC re-establishment delay test, Test 1

Parameter	Unit	Cell 1		Cel	12	
		T1	T2	T1	T2	
Cell Frequency	ChNr	•	1	1		
CPICH_Ec/lor	dB	-1	10	-10	0	
PCCPCH_Ec/lor	dB	-1	12	-12	2	
SCH_Ec/lor	dB	-1	12	-12	2	
PICH_Ec/lor	dB	-15		-15		
DCH_Ec/lor	dB	Note 1	-Infinity	Not applicable		
OCNS_Ec/lor	dB	Note 2	-0.941	-0.941		
\hat{I}_{or}/I_{oc}	dB	2,39	-Infinity	4,39	0,02	
I_{oc}	dBm/ 3.84 MHz	-70				
CPICH_Ec/lo	dB	-15 -Infinity -13				
Propagation Condition		AWGN				

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to

A.6.1.1.2 TEST 2

The test parameters are given in table A.6.3 and table A.6.4 below. In the measurement control information it is indicated to the UE that periodic reporting shall be used. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively. At the start of time period T2, the dedicated channel is removed.

Table A.6.3 General test parameters for RRC re-establishment delay, Test 2

Parameter	Unit	Value	Comment
DCH Parameters		DL Reference measurement channel 12.2 kbps	As specified in TS 25.101, section A.3.1
Power Control		On	
Active cell, initial condition		Cell 1	
Active cell, final condition		Cell 2	
N313		20	
N315		1	
T313	Seconds	0	
Tsı	ms	1280	Time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms). Note: Since 1280 ms is one of the typical values for repeating system information blocks, T _{SI} of 1280 ms could be increased by the RRC procedure delay in order to allow the SIB repetition period of 1280 ms.
Monitored cell list size		24	Monitored set shall include 2 additional frequencies.
Cell 2			Cell 2 is not included in the monitored set. Cell 2 is located on one of the 2 additional frequencies of the monitored set.
Reporting frequency	Seconds	4	
T1	S	10	
T2	S	6	

Table A.6.4 Cell specific parameters for RRC re-establishment delay test, Test 2

Parameter	Unit	Cell 1		Cel	12	
		T1	T2	T1	T2	
Cell Frequency	ChNr		1	2		
CPICH_Ec/lor	dB	-	10	-1	0	
PCCPCH_Ec/lor	dB	-	12	-1	2	
SCH_Ec/lor	dB	-	12	-1	2	
PICH_Ec/lor	dB	-15		-15		
DCH_Ec/lor	dB	Note 1	-Infinity	Not applicable		
OCNS_Ec/lor	dB	Note 2	-0.941	-0.941		
\hat{I}_{or}/I_{oc}	dB	-3,35	-Infinity	-Infinity	0,02	
I_{oc}	dBm/ 3.84 MHz	-70				
CPICH_Ec/lo	dB	-15	-Infinity	-Infinity	-13	
Propagation Condition		AWGN				

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to $I_{\rm or}$

A.6.1.2 Test Requirements

A.6.1.2.1 Test 1

The Re-establishment delay $T_{\text{RE-ESTABLISH}}$ to a known cell shall be less than 1.9s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The Re-establishment delay in this case can be expressed as

 $T_{\text{RE-ESTABLISH}} = T_{\text{RRC-RE-ESTABLISH}} + T_{\text{UE-RE-ESTABLISH-REQ-KNOWN}}$

where

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{\text{UE-RE-ESTABLISH_REQ-KNOWN}} = 50 \text{ms} + T_{\text{search}} + T_{\text{SI}} + T_{\text{RA}},$

 $N_{313}=20$

 $T_{313} = 0s$

 $T_{search}=100ms$

 T_{RA} = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms). 1280 ms is assumed in this test case.

This gives a total of 1820ms, allow 1.9s in the test case.

A.6.1.2.2 Test 2

The Re-establishment delay to an unknown cell shall be less than 4.2s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The Re-establishment delay in this case can be expressed as

T_{RE-ESTABLISH}= T_{RRC-RE-ESTABLISH}+ T_{UE-RE-ESTABLISH-REQ-UNKNOWN}.

where

 $T_{RRC-RE-ESTABLISH} = 160ms + (N_{313}-1)*10ms + T_{313}$

 $T_{\text{UE-RE-ESTABLISH-REQ-UNKNOWN}} \!\!=\!\! 50ms \!\!+\! T_{\text{search}} \!^*\! NF + T_{SI} + T_{RA},$

 $N_{313}=20$

 $T_{313} = 0s$

 $T_{search} = 800 ms$

NF is the number of different frequencies in the monitored set. 3 frequencies are assumed in this test case.

 T_{RA} = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

 T_{SI} is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in 25.331 for a UTRAN cell (ms).1280 ms is assumed in this test case.

This gives a total of 4120ms, allow 4.2s in the test case.

A.6.2 Random Access

A.6.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the behaviour of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This tests will verify the requirements in section 6.3.2 and section 7.4.2.

Table A.6.5: RF Parameters for Random Access test

Parameter	Unit	Cell 1
UTRA RF Channel Number		Channel 1
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
Number of other transmitted Acquisition Indicators	-	0
AICH_Ec/lor	dB	-10
PICH_Ec/lor	dB	-15
OCNS_Ec/lor when an AI is not transmitted	dB	-0.941
OCNS_Ec/lor when an AI is transmitted	dB	-1.516
\hat{I}_{or}/I_{oc}	dB	0
I_{oc}	dBm/3.84 MHz	-70
CPICH_Ec/lo	dB	-13
Propagation Condition		AWGN

The test parameters "System Information Block (SIB) type 5 (ASC #0)" defined in section 6.1 of TS34.108, shall be used in all random access tests. Crucial parameters for the test requirements are repeated in Table A.6.6 and A.6.7 and these overrule the parameters defined in SIB type 5.

Table A.6.6: UE parameters for Random Access test

Parameter	Unit	Value
Access Service Class		
(ASC#0)		
	01	1
- Persistence value		
Maximum number of preamble		2
ramping cycles (M _{max}).		
Maximum number of		12
preambles in one preamble		
ramping cycle		
(Preamble Retrans Max)		
The backoff time T _{B01}	ms	N/A
$N_{B01min}=N_{B01max}$	#TTI	10
		_
Power step when no	dB	3
acquisition indicator is		
received		
(Power offset P0)	in.	
Power offset between the last	dB	0
transmitted preamble and the		
control part of the message		
(Power offset P p-m)	in.	0.4
Maximum allowed UL TX	dBm	21
power		

Table A.6.7: UTRAN parameters for Random Access test

Parameter	Unit	Value
Primary CPICH DL TX power	dBm	-8
UL interference	dBm	-92
SIR in open loop power	dB	-10
control (Constant value)		
AICH Power Offset	dB	0

A.6.2.2 Test Requirements

A.6.2.2.1 Correct behaviour when receiving an ACK

The UE shall stop transmitting preambles upon a ACK on the AICH has been received and then transmit a message. An ACK shall be transmitted after 10 preambles have been received by the UTRAN.

The absolute power applied to the first preamble shall be -30 dBm with an accuracy as specified in section 6.4.1.1 of TS 25.101 [3]. The relative power applied to additional preambles shall have an accuracy as specified in section 6.5.2.1 of TS 25.101 [3].

The UE shall transmit 10 preambles and 1 message.

The transmit timing of all PRACH transmissions shall be within the accuracy specified in subclause 7.4.2.

A.6.2.2.2 Correct behaviour when receiving an NACK

The UE shall stop transmitting preambles upon a NACK on the AICH has been received and then repeat the ramping procedure when the back off timer T_{B01} expires. The NACK shall be transmitted after the 10 preambles have been received by the UTRAN.

The UE shall transmit 10 preambles in the first ramping cycle and no transmission shall be done by the UE within 100 ms after the NACK has been transmitted by the UTRAN. Then the UE shall start the second preamble ramping cycle.

A.6.2.2.3 Correct behaviour at Time-out

The UE shall stop transmit preambles when reaching the maximum number of preambles allowed in a cycle. The UE shall then repeat the ramping procedure until the maximum number of preamble ramping cycles are reached. No ACK/NACK shall be sent by UTRAN during this test.

The UE shall transmit 2 preambles cycles, consisting of 12 preambles in each preamble cycle.

A.6.2.2.4 Correct behaviour when reaching maximum transmit power

The UE shall not exceed the maximum allowed UL TX power configured by the UTRAN. No ACK/NACK shall be sent by UTRAN during this test.

The absolute power of any preambles belonging to the first or second preamble cycle shall not exceed 0 dBm with more than the tolerance given in section 6.5.

Table A.6.7A: Specific UE parameter for correct behaviour when reaching maximum transmit power

Parameter	Unit	Value
Maximum allowed UL TX power	dBm	0

A.6.3 Void

A.6.4 Transport format combination selection in UE

A.6.4.1 Test Purpose and Environment

The purpose is to verify the UE blocks (stops using) a currently used TFC when the UE output power is not sufficient to support that TFC. This test will verify the general requirement on TFC selection in section 6.4.

A.6.4.1.1 Interactive or Background, PS, UL: 64 kbps

The test will verify the general requirement on TFC selection in section 6.4 for a RAB intended for packet data services, i.e. Interactive or Background, PS, UL: 64kbps as defined in TS 34.108.

The test parameters are given in Table A.6.8, A.6.9 and Table A.6.10 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

Details on the UL reference RAB in table A.6.8 and A.6.9 can be found in TS 34.108 section 'Interactive or background / UL:64 DL: 64 kbps / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH'.

Table A.6.8: UL reference RAB, Interactive or Background

	TFI	64 kbps RAB (20ms TTI)	DCCH 3.4kbps (40ms TTI)
TFS	TF0, bits	0x336	0x148
	TF1, bits	1x336	1x148
	TF2, bits	2x336	N/A
	TF3, bits	3x336	N/A
	TF4, bits	4x336	N/A

Table A.6.9: UL TFCI

TFCI	(64 kbps RAB, DCCH)
UL_TFC0	(TF0, TF0)
UL_TFC1	(TF0, TF1)
UL_TFC2	(TF1, TF0)
UL_TFC3	(TF1, TF1)
UL_TFC4	(TF2, TF0)
UL_TFC5	(TF2, TF1)
UL_TFC6	(TF3, TF0)
UL_TFC7	(TF3, TF1)
UL_TFC8	(TF4, TF0)
UL_TFC9	(TF4, TF1)

Table A.6.10: General test parameters

Parameter	Unit	Value	Comment
TFCS size		10	
TFCS		UL_TFC0, UL_TFC1, UL_TFC2, UL_TFC3, UL_TFC4, UL_TFC5, UL_TFC6, UL_TFC7, UL_TFC8, UL_TFC9	
Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX power	dBm	21	
T1	S	30	
T2	S	2	
Propagation condition		AWGN	

The radio conditions in the test shall be sufficient, so that decoding of the TPC commands can be made without errors.

The amount of available user data shall be sufficient to allow uplink transmission at the highest bit rate (UL_TFC8 or UL_TFC9) during the entire test and it shall be ensured that the UE is using UL_TFC8 or UL_TFC9 at the end of T1.

The test shall be performed in the following way:

Before time period T1:

The allowed TFCS according to table A.6.10 shall be signalled to the UE.

During time period T1:

The system simulator shall ensure that the UE output power is commanded to be between 14 to 15 dB below the UE Maximum allowed UL TX power.

During time period T2:

The system simulator shall continously send TPC_cmd=1 to the UE from the beginning of T2 until the end of T2.

NOTE: This will emulate that UL_TFC8 to UL_TFC9 can not be supported beacuse the UE reaches the maximum UL Tx power and still UTRAN is sending power-up commands. The time from the beginning of T2 until the UE blocks (stops using) UL_TFC8 and UL_TFC9 shall be measured.

A.6.4.2 Test Requirements

A.6.4.2.1 Interactive or Background, PS, UL: 64 kbps

The UE shall have stopped using UL_TFC8 and UL_TFC9 within 140 ms from beginning of time period T2.

The rate of correct tests observed during repeated tests shall be at least 90%.

NOTE: The delay from the begining of T2 can be expressed as:

$$T_{ramp} + T_{detect_block} + T_{notify} + T_{modify} + T_{L1_proc} + T_{align_TTI}$$

where:

T_{ramp} Margin added for the increase of UE output power to the UE maximum power. A margin of 1 frame (10ms) is used, i.e. 15 TPC commands.

The time needed to detect that UL_TFC8 and UL_TFC9 can no longer be supported, i.e. defines the maximum time to detect that the *Elimination* criterion is fulfilled for UL_TFC8 and UL_TFC9.

According to X and Y values of 15 and 30 as defined in Section 6.4.2 and by assuming the maximum misalignment between the frame boundary, where the evaluation of the *Elimination* criterion is performed and the last slot needed for triggering the *Elimination* criterion on L1,

 T_{detect_block} becomes 15 slots +14 slots =19.33 ms.

 T_{notify} Equal to 15 ms, the time allowed for MAC to indicate to higher layers that UL_TFC8 and

UL_TFC9 can no longer be supported.

 $T_{modify} \qquad \qquad Equal \ to \ MAX(T_{adapt_max}, T_{TTI}) = MAX(0, \, 40) = 40ms$

 T_{adapt_max} Equals to 0ms for the case without codec.

 T_{L1_proc} Equals 15ms.

T_{align_TTI} Align with the longest uplink TTI where the new TFC can be selected. The worst case equals

40ms in this test case.

T_{TTI} See section 6.4.2. Equals 40 ms in the test case.

This gives a maximum delay of (10 + 19.33 + 15 + 40 + 15 + 40) ms= 139.33 ms from the beginning of T2, allow 140 ms in the test case.

A.6.5 Void

Table A.6.11: Void

Table A.6.12: Void

Table A.6.13: Void

A.6.6 E-TFC restriction in UE

A.6.6.1 Test Purpose and Environment

The purpose is to verify the UE stops using a currently used E-TFC when its remaining power margin is not sufficient to support that E-TFC. This test will verify the general requirement on E-TFC selection in section 6.4.

A.6.6.1.1 10mS TTI E-DCH E-TFC restriction testcase

The test will verify the general requirement on E-TFC restriction in section 6.4 for a 10ms TTI E-DCH Transport Block Size Table 0 [19]

The test parameters are given in Table A.6.14 below. The test consists of 2 successive time periods, with a time duration of T1 and T2 respectively.

The UE shall be configured to transmit UL DTCH data continuously on the DPCH. An HSDPA radio bearer shall be configured so that the UE transmits ACK and UL HS-DPCCH. An E-DCH radio bearer shall be configured, so that UE is transmitting E-DPCCH and E-DPDCH.

Table A.6.14: General test parameters

Parameter	Unit	Value	Comment
UL DPCH configuration		12.2kbps reference	
		measurement channel	
E-DCH Transport Block		10ms TTI E-DCH Transport	
Size Table		Block Size Table 0 according to	
		25.321 annex B.3	
UL Power Control		On	
Active cell		Cell 1	
Maximum allowed UL TX power	dBm	24	For a class 4 UE maximum allowed TX power can still be signalled as 24dBm however the UE only has capability to transmit 21dBm
Propagation condition		AWGN	
β₀/βс		9/15	Care needs to be taken to ensure that TFCS with β_d/β_C =9/15 is always used even during power limited part of the test in T2
A _{hs}		2	$\Delta_{ACK} = \Delta_{NACK} = \Delta_{CQI}$
A _{ec}		2	
$eta_{ ext{ed,ref}}/eta_{C}$		5/15	
L _{ref}		1	
K _{ref}		18	
Δ_{harq}	dB	0	
$PL_{non-max}$		0.5	

Parameter	Unit	Value	Comment
E-DCH minimum set E-TFI		0	Makes E-DCH transport
			block size with index 0
			unblockable even in
			power limited phase
Periodicity for Scheduling		Every TTI	Ensures that some data
Info			is sent on every TTI
			even in the power limited
			phase
T1	S	30	
T2	S	2	

The radio conditions in the test shall be sufficient, so that decoding of the TPC commands can be made without errors.

The amount of available user data shall be sufficient to allow E-DCH uplink transmission at the highest possible bit rate with E-DCH TB index 127. It shall also be ensured that sufficient data is made available on the DTCH so that the UE is continuously transmitting on the DPCH.

The test shall be performed in the following way:

Before time period T1:

Call is established with DCH, HSDPA and E-DCH radio bearers. 'UP' commands are sent on E-RGCH to give UE grants to make use of the maximum possible data rate.

During time period T1:

The system simulator shall ensure that the UE P_{DPCCH} power is commanded to be between 0dBm and 1dBm. Within 45mS from the start of T1, the UE shall be using E-TFC with index 127, or the E-TFC index which represents the maximum of the UE's capabilities.

During time period T2:

The system simulator shall continuously send TPC_cmd=1 to the UE from the beginning of T2 until the end of T2. Within 45mS of the start of T2, the UE shall be using E-TFC with index 0 only.

Time periods T1 and T2 shall be repeated until the necessary statistical confidence is achieved.

A.6.4.2 Test Requirements

During time period T1, uplink power control shall be adjusted so that the UE is able to make use of E-TFC index 127, or the maximum of its capabilities if this is lower.

Note: The required headroom to support E-TFC 127 can be calculated using the parameters L_{ref} =1, K_{ref} =18 and K_{127} =20000. This requires (20024)*3+12 = 60084 bits before rate matching/ARQ. This can be transmitted on 2xSF/2 codes, so needs equivalent of 4xSF/4 codes, giving L_{127} =4.

Substituting into the equation for $\beta_{ed,j,harq}$ from 25.214:

$$oldsymbol{eta_{ed,j,harq}} = oldsymbol{eta_{ed,ref}} \sqrt{rac{L_{e,ref}}{L_{e,j}}} \sqrt{rac{K_{e,j}}{K_{e,ref}}} \cdot 10^{\left(rac{\Delta_{harq}}{20}
ight)}$$

gives

$$\beta_{ed,j,harq}$$
= 5 * sqrt (1/4) * sqrt (20000 / 18) = 83.333

For the SF/2 case, the unquantised gain factor $\beta_{ed,k,j,uq}$ for each of these two codes is according to

$$m{eta}_{ed,k,j,uq} = m{eta}_{ed,k,j,uq} = \sqrt{2} \times m{eta}_{ed,j,harq}$$

$$\beta_{ed,k,j,uq} = \text{sqrt}(2) * 83.333 = 117.85$$

 $\beta_{ed,k}$ is set such that $\beta_{ed,k}/\beta_c$ is the largest quantized value of Table 1B.2 in [3] subclause 4.2.1.3, for which the condition $\beta_{ed,k} \leq \beta_{ed,k,j,uq}$ holds.

144

According to 25.213 Table 1B.2 in subclause 4.2.1.3, the corresponding quantised amplitude ratio has index 25, $A_{ed} = \beta_{ed}/\beta_{c} = 106/15$ for each of the two SF/2 E-DPDCH codes.

The E-TFC selection MPR for this case from 25.133 table 6.2 corresponds to case 6, or an E-TFC MPR of 0.5dB.

$$NRPM_{j} = \left(PMax_{j} - P_{DPCCH} - P_{DPDCH} - P_{HS-DPCCH} - P_{E-DPCCH}\right) / P_{DPCCH}$$

$$= \frac{PMax_{j}}{P_{DPCCH}} - \frac{\beta_{c}^{2} + \beta_{d}^{2} + \beta_{ec}^{2} + \beta_{hs}^{2}}{\beta_{c}^{2}}$$

$$= \frac{PMax_{j}}{P_{DPCCH}} - \left(1 + \frac{\beta_{d}^{2}}{\beta_{c}^{2}} + A_{ec}^{2} + A_{hs}^{2}\right)$$

For a power class 3 UE $PMax_i = 23.5dBm = 223.87mW$, or for a power class 4 UE, $PMax_i = 20.5dBm = 112.20mW$

The inequality for support of E-TFC with index 127 is

$$223.87/P_{DPCCH} - (1 + (9^2/15^2) + 2^2 + 2^2) \ge 106^2/15^2 + 106^2/15^2 \text{ (class 3)}$$

$$112.20/P_{DPCCH} - (1 + (9^2/15^2) + 2^2 + 2^2) \ge 106^2/15^2 + 106^2/15^2 \text{ (class 4)}$$

This is satisfied if $P_{DPCCH} \le (223.87/109.23) = 2.04 \text{mW} = 3.11 \text{dBm}$ for a class 3 UE or $P_{DPCCH} \le (112.20/109.23) = 1.03 \text{mW} = 0.12 \text{dBm}$ for a class 4 UE

From table 6.0A the accuracy of the Pdpcch estimate used for E-TFC selection in this scenario is $\pm 2dB$ for power class 3 or $\pm 2.5dB$ for power class 4. Therefore, for $P_{DPCCH} \le 1.11dBm$ (class 3) or -2.38dBm (class 4), the UE shall be able to support E-TFC index 127. Since power control granularity is 1dB, the UE output power should be maintained so that $0dBm \le P_{DPCCH} \le 1dBm$ throughout this phase for a class 3 UE, or so that $-3dBm \le P_{DPCCH} \le -2dBm$ throughout this phase for a class 4 UE.

Note: Test tolerance may need to be added to further reduce the UE DPCCH power further by RAN5, depending on how accurately tester can set and maintain UE DPCCH power.

Note: The required time to start using E-TFC index 127 or the maximum of the UEs cababilites at the beginning of T1, and to start using E-TFC with index 0 at the beginning of T2 can be calculated as follows

Since TPC commands are received error free by the UE, P_{DPCCH} shall reach the new power level power within 25 slots = 16.666mS.

The UE shall have evaluated and started to use the new restriction criteria with T_s = (Power level change time + Pdpcch filtering period + E-TFC estimation rate + Maximum time from RGCH reception to E-TFC transmission) from the start of the time period

= 16.66mS + 10mS + 10mS + 7.53mS

= 44.19mS, allow 45mS

The rate of correct tests observed during repeated tests shall be at least 90%.

A.7 Timing and Signalling Characteristics

A.7.1 UE Transmit Timing

A.7.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the specified limits. This test will verify the requirements in section 7.1.2.

For this test two cells on the same frequency are used. Table A.7.1 defines the transmitted signal strengths, the relative timing and the propagation condition used for the two cells.

Parameter	Unit	Level
DPCH_Ec/ lor, Cell 1 and Cell 2	dB	-13.5
CPICH_Ec/ lor, Cell 1 and Cell 2	dB	-10
PCCPH_Ec/ lor, Cell 1 and Cell 2	dB	-12
SCH_Ec/ lor, Cell 1 and Cell 2	dB	-12
PICH_Ec/ lor, Cell 1 and Cell 2	dB	-15
OCNS_Ec/ lor, Cell 1 and Cell 2	dB	-1.2
Î _{or,} Cell 1	dBm/3.84 MHz	-96
Î _{or,} Cell 2	dBm/3.84 MHz	-99
Information data rate	kbps	12.2
Relative delay of path received from cell 2 with respect to cell 1	μs	+/-2
Propagation condition	А	WGN

Table A.7.1: Test parameters for UE Transmit Timing requirement

A.7.1.2 Test Requirements

For parameters specified in Table A.7.1, the UE initial transmit timing accuracy, the maximum amount of timing change in one adjustment, the minimum and the maximum adjustment rate shall be within the limits defined in section 7.1.2.

The relevant soft handover parameters shall be set such that the UE enters soft handover with cell 1 and cell 2 when both cells are sending a signal. The following sequence of events shall be used to verify that the requirements are met.

- a) After a connection is set up with cell 1, the test system shall verify that the UE transmit timing offset is within T_0 +/- 1.5 chips with respect to the first detected received path (in time) of the downlink DPCCH/DPDCH of cell 1. T_0 is defined in TS 25.211[2].
- b) Test system introduces cell 2 into the test system at delay $+2 \mu s$ from cell 1.
- c) Test system verifies that cell 2 is added to the active set.
- d) Test system shall verify that the UE transmit timing offset is still within $T_0 + 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- e) Test system switches Tx timing of cell 2 to a delay of -2 µs with respect to cell 1.
- f) Test system verifies cell 2 remains in the active set.
- g) Test system shall verify that the UE transmit timing offset is still within $T_0 + 1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- h) Test system stops sending cell 1 signals.

- i) Test system verifies that UE transmit timing adjustment starts no later than the time when the whole active set update message is available at the UE taking the RRC procedure delay into account. The adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within $T_0 +/-1.5$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- j) Test system shall verify that the UE transmit timing offset stays within T_0 +/- 1.5 chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 2.
- k) Test system starts sending cell 1 signal again with its original timing.
- 1) Test system verifies that cell 1 is added to the active set.
- m) Test system verifies that the UE transmit timing is still within $T_0 + 1.5$ chips with respect to the first significant path of the downlink DPCCH/DPDCH of cell 2.
- n) Test system stops sending cell 2 signals.
- o) Test system verifies that UE transmit timing adjustment starts no later than the time when the whole active set update message is available at the UE taking the RRC procedure delay into account. The adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within $T_0 + \frac{1.5}{1.5}$ chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.
- p) Test system shall verify that the UE transmit timing offset stays within T_0 +/- 1.5 chips with respect to the first detected path (in time) of the downlink DPCCH/DPDCH of cell 1.

A.8 UE Measurements Procedures

A.8.1 FDD intra frequency measurements

A.8.1.1 Event triggered reporting in AWGN propagation conditions

A.8.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the requirements in section 8.1.2 and 9.1.

The test parameters are given in Table A.8.1 and A.8.2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1B shall be used. The test consists of three successive time periods, with a time duration of T1, T2 and T3 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.1: General test parameters for Event triggered reporting in AWGN propagation conditions

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in TS 25.101 section A.3.1
		Channel 12.2 kbps	
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	0	
W		1	Applicable for event 1A and 1B
Reporting deactivation		0	Applicable for event 1A
threshold			
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		24	
T1	S	5	
T2	S	5	
T3	S	5	

Table A.8.2: Cell specific test parameters for Event triggered reporting in AWGN propagation conditions

Parameter	Unit		Cell 1			Cell 2		
		T1	T2	T3	T1	T2	T3	
CPICH_Ec/lor	dB		-10			-10		
PCCPCH_Ec/lor	dB		-12			-12		
SCH_Ec/lor	dB		-12			-12		
PICH_Ec/lor	dB		-15			-15		
DPCH_Ec/lor	dB		Note 1		N/A			
OCNS			Note 2			-0.941		
\hat{I}_{or}/I_{oc}	dB	0	6.97	0	-Infinity	5.97	-Infinity	
I_{oc}	dBm/3.84 MHz	-70						
CPICH_Ec/lo	dB	-13	-13	-13	-Infinity	-14	-Infinity	
Propagation Condition		AWGN						

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}

A.8.1.1.2 Test Requirements

The UE shall send one Event 1A triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall send one Event 1B triggered measurement report, with a measurement reporting delay less than 200 ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to 2 x TTI_{UL DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in the UL DCCH.

A.8.1.2 Event triggered reporting of multiple neighbours in AWGN propagation condition

A.8.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of events. This test will partly verify the requirements in section 8.1.2 and 9.1.

The test parameters are given in Table A.8.3 and A.8.4. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A, 1C and 1B shall be used and the periodical reporting of the events is not applied. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. In the initial condition before the time T1 only Cell1 is active.

Table A.8.3: General test parameters for Event triggered reporting of multiple neighbours in AWGN propagation conditions

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	0	
W		1	Applicable for event 1A and 1B
Replacement activation threshold		0	Applicable for event 1C
Reporting deactivation threshold		0	Applicable for event 1A
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		32	
T1	S	10	
T2	S	10	
T3	S	5	
T4	S	10	

Table A.8.4: Cell specific test parameters for Event triggered reporting of multiple neighbours in AWGN propagation condition

Parameter	Unit		Ce	II 1			Ce	II 2			Ce	ell3	
		T1	T2	Т3	T4	T1	T2	T3	T4	T1	T2	Т3	T4
CPICH_Ec/lor	dB		-1	10			-1	0		-10			
PCCPCH_Ec/ lor	dB	-12				-12			-12				
SCH_Ec/lor	dB		-1	12			-1	2			-1	12	
PICH_Ec/lor	dB		-1	15			-1	5			-1	15	
DPCH_Ec/lor	dB		Note 1 N/A					N/A					
OCNS_Ec/lor	dB		No	te 2			-0.941			-0.941			
\hat{I}_{or}/I_{oc}	dB	6.97	6.93	5.97	6.12	-Inf	9.43	6.97	7.62	5.97	6.93	-Inf	5.62
I_{oc}	dBm/ 3.84 MHz		-85										
CPICH_Ec/lo	dB	-13	-16	-14	-15.5	-Inf	-13.5	-13	-14	-14	-16	-Inf	-16
Propagation Condition		AWGN											
	Note 1: The DPCH level is controlled by the power control loop												

A.8.1.2.2 Test Requirements

- a) The UE shall send one Event 1A triggered measurement report for Cell3, with a measurement reporting delay less than 800 ms from the beginning of time period T1.
- b) The UE may send one Event 1C triggered measurement report for Cell3 after the beginning of the time period T1.
- c) The UE shall send one Event 1C triggered measurement report for Cell2, with a measurement reporting delay less than 800 ms from the beginning of time period T2.
- d) The UE shall send one Event 1A triggered measurement report for Cell2, with a measurement reporting delay less than 800 ms from the beginning of time period T2.
- e) The UE shall send one Event 1B triggered measurement report for Cell3, with a measurement reporting delay less than 200 ms from the beginning of time period T3.

- f) The UE shall send one Event 1A triggered measurement report for Cell3, with a measurement reporting delay less than 200 ms from the beginning of time period T4.
- g) The UE may send one Event 1C triggered measurement report for Cell2 after the beginning of the time period T4.
- h) The UE may send one Event 1C triggered measurement report for Cell3 after the beginning of the time period T4.
- i) The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2 \times TTI_{UL\ DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in the UL DCCH.

A.8.1.3 Event triggered reporting of two detectable neighbours in AWGN propagation condition

A.8.1.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of events. This test will partly verify the requirements in section 8.1.2 and 9.1.

The test parameters are given in Table A.8.5 and A.8.6. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1B shall be used and the periodical reporting of the events is not applied. The test consists of four successive time periods, with a time duration of T1, T2, T3 and T4 respectively. In the initial condition before the time T1 only Cell1 is active.

Table A.8.5: General test parameters for Event triggered reporting of two detectable neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in TS 25.101 section A.3.1
		Channel 12.2 kbps	
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	3	Applicable for event 1A and 1B
Hysteresis	dB	0	
W		1	Applicable for event 1A and 1B
Reporting deactivation		0	Applicable for event 1A
threshold			
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		32	
T1	S	10	
T2	S	10	
T3	S	10	
T4	S	10	

Table A.8.6: Cell specific test parameters for Event triggered reporting of two detectable neighbours in AWGN propagation condition

Parameter	Unit	Cell 1			Ce	II 2			Ce	ell3			
		T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	T3	T4
CPICH_Ec/lor	dB			10			-1	0			-1	10	
PCCPCH_Ec/ lor	dB	-12				-12			-12				
SCH_Ec/lor	dB		-1	12			-1	12			-1	12	
PICH_Ec/lor	dB		-1	15			-1	15			-1	15	
DPCH_Ec/lor	dB		Note 1 N/A					N/A					
OCNS_Ec/lor	dB		No	te 2			-0.9	941		-0.941			
\hat{I}_{or}/I_{oc}	dB	14.55	28.51	14.45	28.51	-Inf	27.51	13.95	21.51	8.05	21.51	13.95	27.51
I_{oc}	dBm/ 3.84 MHz		-85										
CPICH_Ec/lo	dB	-11	-13	-14.5	-13	-Inf	-14.0	-15	-20	-17.5	-20	-15	-14
Propagation Condition		AWGN											
Note 1: The DPCH level is controlled by the power control loop Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to located to the power of the OCNS channel that is added shall make the total power from the cell to be equal to located to the power of the OCNS channel that is added shall make the total power from the cell to be equal to located to the power of the OCNS channel that is added shall make the total power from the cell to be equal to located to the power of the OCNS channel that is added shall make the total power from the cell to be equal to located to the occurrence of the OCNS channel that is added shall make the total power from the cell to be equal to located to the occurrence of the OCNS channel that is added shall make the total power from the cell to be equal to located to the occurrence of													

A.8.1.3.2 Test Requirements

- a) The UE shall send one Event 1A triggered measurement report for Cell2, with a measurement reporting delay less than 800 ms from the beginning of time period T2.
- b) The UE shall send one Event 1A triggered measurement report for Cell3, with a measurement reporting delay less than 200 ms from the beginning of time period T3.
- c) The UE shall send one Event 1B triggered measurement report for Cell2, with a measurement reporting delay less than 200 ms from the beginning of time period T4.
- d) The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to 2 x TTI_{UL DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in the UL DCCH.

A.8.1.4 Correct reporting of neighbours in fading propagation condition

A.8.1.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs sufficient layer 1 filtering of the measurements, see section 9.1, which are the base for the event evaluation. The test is performed in fading propagation conditions. This test will partly verify the requirements in section 8.1.2.

The test parameters are given in Table A.8.7 and A.8.8.In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and Event 1B shall be used. The test consists of two successive time periods, each with a time duration of T1 and T2 respectively.

The TTI of the uplink DCCH shall be 20ms.

Table A.8.7: General test parameters for correct reporting of neighbours in fading propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Active cell		Cell 1	
Reporting range	dB	0	Applicable for event 1A and 1B
Hysteresis	dB	0	
W		1	Applicable for event 1A and 1B
Reporting deactivation threshold		0	Applicable for event 1A
Time to Trigger	ms	120	
Filter coefficient		0	
Monitored cell list size		24	Signalled before time T1.
T1	S	200	
T2	S	201	

Table A.8.8: Cell specific test parameters for correct reporting of neighbours in fading propagation condition

Parameter	Unit		Cell 1		Cell 2				
		T1	T2	T1	T2				
CPICH_Ec/lor	dB	-10		-10					
PCCPCH_Ec/lor	dB	-12		-12					
SCH_Ec/lor	dB	-12		-12					
PICH_Ec/lor	dB	-15	•	-15	-15				
DPCH_Ec/lor	dB	Note 1	•	N/A	N/A				
OCNS		Note 2		-0.941	-0.941				
\hat{I}_{or}/I_{oc}	dB	7.29	3.29	3.29	7.29				
I_{oc}	dBm/3.84 MHz	-70							
CPICH_Ec/lo	dB	-12	-16	-16	-12				
Propagation Condition	Case 5 as sp	Case 5 as specified in Annex B of TS25.101							

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}

A.8.1.4.2 Test Requirements

- a) The number of received event 1A reports for Cell 2 during time period T1 shall be less than 60.
- b) During the first 1 s of time period T2 no event reports shall be counted.
- c) The number of received event 1B reports counted from 1s after the beginning of time period T2 until the end of time period T2 shall be less than 60.

A.8.1.5 Event triggered reporting of multiple neighbour cells in Case 1 fading condition

A.8.1.5.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event in Case1 fading propagation condition. This test will partly verify the requirements in section 8.1.2.

The test parameters are given in Table A.8.8A and A.8.8B below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A shall be used and 'CFN-SFN-Observed Time Difference' shall be

reported. The test consists of two successive time periods, with time duration of T1 and T2, respectively. During time duration T1, the UE shall not have any timing information of invisible cells.

Table A.8.8A: General test parameters for event triggered reporting in multi-cell pedestrian environment

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in TS 25.101
		Channel 12.2 kbps	section A.3.1
Power Control		On	
Active cells		Cell2, Cell3, Cell4	
Hysteresis	dB	0	Applicable for event 1A
Time to Trigger	ms	0	Applicable for event 1A
Filter coefficient		0	Applicable for event 1A
Reporting range R _{1a}	dB	9	Applicable for event 1A
W		0	Applicable for event 1A
TriggeringCondition		activeSetAndMonitoredSetCells	Applicable for event 1A
Monitored cell list size		32	
T1	S	5	
T2	S	5	

Table 8.8B: Cell specific test parameters for event triggered reporting in multi-cell pedestrian environment

Parameter	Unit	Cel	II 1	Ce	II 2	Ce	II 3	Cell 4	
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Chan	nel 1	Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	dB	-1	0		10	-	10	-1	10
PCCPCH_Ec/lor	dB	-1	2		12	-	12		12
SCH_Ec/lor	dB	-1	2		12		12		12
PICH_Ec/lor	dB	-1	5		15		15	^	15
DPCH_Ec/lor	dB	n.a	a.	Note 1		Note 1		Note 1	
OCNS_Ec/lor	dB	-0.9	941	Note 2		Note 2		Note 2	
\hat{I}_{or}/I_{oc}	dB		1.3	4.3	1.3	4.3	1.3	1.3	4.3
I_{oc}	dBm/3.84 MHz				=	70			
Propagation Condition					Case 1	(3km/h)			
CPICH_Ec/lo	dB	-8	-17.6	-14.6	-17.6	-14.6	-17.6	-17.6	-14.6
$\frac{\textit{SCH}_\hat{E}_{c,\text{maxpath}}}{I_o}$	dB	-80	-20.0	-17.0	-20.0	-17.0	-20.0	-20.0	-17.0

NOTE 1: The DPCH level is controlled by the power control loop.

NOTE 2: The power of the OCNS channel that is added shall make the total power equal to Ior.

NOTE 3: CPICH_Ec/lo and SCH_Ec_maxpath/lo levels have been calculated from other parameters for information purposes. They are not settable themselves.

A.8.1.5.2 Test Requirements

The UE shall send one Event 1A triggered measurement report for Cell 1 with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to 2 x TTI_{UL DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in the UL DCCH.

A.8.1.6 Event triggered reporting of multiple neighbour cells in Case 3 fading condition

A.8.1.6.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event in Case3 fading propagation condition. This test will partly verify the requirements in section 8.1.2.

The test parameters are given in Table A.8.8C and A.8.8D below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 1F shall be used and 'CFN-SFN-Observed Time Difference' shall be reported. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of invisible cells.

Table A.8.8C: General test parameters for event triggered reporting in multi-cell vehicular environment

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement	As specified in TS 25.101 section
-		Channel 12.2 kbps	A.3.1
Power Control		On	
Active cells		Cell2, Cell3, Cell4	
Hysteresis	dB	0	Applicable for event 1A
Time to Trigger	ms	0	Applicable for event 1A
Filter coefficient		0	Applicable for event 1A and event
			1F
Reporting range R _{1a}	dB	8	Applicable for event 1A
W		0	Applicable for event 1A
TriggeringCondition		activeSetAndMonitoredSetCells	Applicable for event 1A
Absolute threshold T_{1f}	dB	-20	Applicable for event 1F
Time to Trigger	ms	0	Applicable for event 1F
TriggeringCondition		activeSet	Applicable for event 1F
Monitored cell list size		32	
T1	S	5	
T2	s	5	

Table 8.8D: Cell specific test parameters for event triggered reporting in multi-cell vehicular environment

Parameter	Unit	Cell 1		Cell 2		Cell 3		Cell 4	
		T1	T2	T1	T2	T1	T2	T1	T2
UTRA RF Channel Number		Channel 1		Channel 1		Channel 1		Channel 1	
CPICH_Ec/lor	dB	-	10	-1	0	-	10	-	10
PCCPCH_Ec/lor	dB	-	12	-1	2		12	-	12
SCH_Ec/lor	dB	-6	9.3	-9.	.3	-9	.3	-9	.3
PICH_Ec/lor	dB	-	15	-1	5	-15		-15	
DPCH_Ec/lor	dB	n	.a.	Note 1		Note 1		Note 1	
OCNS_Ec/lor	dB	No	te 2	Note 2		Note 2		Note 2	
\hat{I}_{or}/I_{oc}	dB	-∞	1.1	3.6	4.6	3.6	4.6	6.6	-∞
I_{oc}	dBm/3.84 MHz	-70							
Propagation Condition		Case 3 (120km/h)							
CPICH_Ec/lo	dB	-8	-18.0	-16.5	-14.5	-16.5	-14.5	-13.5	-∞
$egin{aligned} rac{SCH_\hat{E}_{c, ext{maxpath}}}{I_o} \end{aligned}$	dB	-∞	-20.0	-18.5	-16.5	18.5	-16.5	-15.5	-8

NOTE 1: The DPCH level is controlled by the power control loop.

NOTE 2: The power of the OCNS channel that is added shall make the total power equal to I_{or}.

NOTE 3: CPICH_Ec/lo, SCH_Ec_maxpath/lo, and I_o levels have been calculated from other

parameters for information purposes. They are not settable themselves.

A.8.1.6.2 Test Requirements

The UE shall send an Event 1A triggered measurement report for Cell 1, with a measurement reporting delay less than 800 ms from the beginning of time period T2. The UE shall send an Event 1F triggered measurement report for Cell 4, with a measurement reporting delay less than 200 ms from the beginning of time period T2.

The rate of correct events 1A for Cell1 observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to 2 x TTI_{UL DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in the UL DCCH.

A.8.2 FDD inter frequency measurements

A.8.2.1 Correct reporting of neighbours in AWGN propagation condition

A.8.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements. The test will partly verify the requirements in section 8.1.2.3.

The test consists of two successive time periods, with a time duration T1 and T2. The test parameters are given in tables A.8.9 and A.8.10 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 1A and 2C shall be used. The CPICH Ec/I0 of the best cell on the unused frequency shall be reported together with Event 2C reporting.

Table A.8.9: General test parameters for Correct reporting of neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.101 section A.3.1
		12.2 kbps	
Power Control		On	
Compressed mode		A.22 set 1	As specified in TS 25.101 section A.5.
Active cell		Cell 1	
Threshold non used	dB	-18	Absolute Ec/I0 threshold for event 2C
frequency			
Reporting range	dB	4	Applicable for event 1A
Hysteresis	dB	0	
W		1	Applicable for event 1A
W non-used frequency		1	Applicable for event 2C
Reporting deactivation threshold		0	Applicable for event 1A
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		24 on channel 1	Measurement control information is
		16 on channel 2	sent before the compressed mode pattern starts.
T1	S	5	
T2	S	5	

TableA.8.10: Cell Specific parameters for Correct reporting of neighbours in AWGN propagation condition

Parameter	Unit	Ce	II 1	Cel	Cell 2		Cell 3	
		T1	T2	T1	T2	T1	T2	
UTRA RF Channel Number		Char	nnel 1	Chan	nel 1	Char	nnel 2	
CPICH_Ec/lor	dB	-10		-10		-10		
PCCPCH_Ec/lor	dB	-12		-12		-12		
SCH_Ec/lor	dB	-12		-12		-12		
PICH_Ec/lor	dB	-15		-15		-15		
DPCH_Ec/lor	dB	Note 1		N/A		N/A		
OCNS		Note 2		-0.941		-0.941		
\hat{I}_{or}/I_{oc}	dB	0	5.42	-Infinity	3.92	-1.8	-1.8	
I_{oc}	dBm/3.84 MHz	-70				-70		
CPICH_Ec/lo	dB	-13	-13	-Infinity	-14.5	-14	-14	
Propagation Condition	AWGN							
Note 1: The DPCH level is controlled by the power control loop								

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}

A.8.2.1.2 Test Requirements

- a) The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 3.4 seconds from the beginning of time period T1.
- b) The UE shall send one Event 1A triggered measurement report, with a measurement reporting delay less than 956.2 ms from the beginning of time period T2. The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to 2 x TTI_{UL DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in the UL DCCH.

A.8.2.2 Correct reporting of neighbours in Fading propagation condition

A.8.2.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements. The test will partly verify the requirements in section 8.1.2.3. The test parameters are given in Table A.8.11 and A.8.12. In the measurement control information it is indicated to the UE that event-triggered reporting 2C shall be used. The test consists of two successive time periods, each with a time duration of T1 and T2 respectively.

Table A.8.11: General test parameters for Correct reporting of neighbours in Fading propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Compressed mode		A.22 set 2 (TGPL1=12)	As specified in TS 25.101 section A.5.
Active cell		Cell 1	
Absolute Threshold (Ec/N0) for Event 2c	dB	-18	
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		Total 24 8 on frequency Channel 2	Measurement control information is sent before the compressed mode pattern starts.
Propagation Condition		Case 5	As specified in Annex B of TS 25.101.
Frequency offset	ppm	+/- 0.1	Frequency offset between Cell 1 and Cell 2.
T1	S	2	
T2	S	15	

Table A.8.12: Test parameters for Correct reporting of neighbours in Fading propagation condition

Parameter	Unit	Cel	II 1	Ce	ell 2
		T1	T2	T1	T2
UTRA RF Channel Number		Channel 1		Channel 2	
CPICH_Ec/lor	dB	-10		-10	
PCCPCH_Ec/lor	dB	-12		-12	
SCH_Ec/lor	dB	-12		-12	
PICH_Ec/lor	dB	-15		-15	
DPCH_Ec/lor	dB	Note 1		N/A	
OCNS		Note 2		-0.941	
\hat{I}_{or}/I_{oc}	dB	0		-Infinity	-1.8
I_{oc}	dBm/3.84 MHz	-70		-70	
CPICH_Ec/lo	dB	-13	•	-Infinity	-14
Propagation Condition	Case 5 as specifi	ed in Annex B	of TS25.10	1	

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}.

A.8.2.2.2 Test Requirements

- a) The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 13.5 seconds from the beginning of time period T2.
- b) The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.2.3 Correct reporting of neighbours in fading propagation condition using TGL1=14

A.8.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements. The test will partly verify the requirements in section 8.1.2.3. The test parameters are given in Table A.8.12A and A.8.12B. In the measurement control information it is indicated to the UE that event-triggered reporting 2C shall be used. The test consists of two successive time periods, each with time duration of T1 and T2 respectively.

Table A.8.12A: General test parameters for correct reporting of neighbours in Fading propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Compressed mode		A.22 set 4	As specified in TS 25.101 section A.5.
Active cell		Cell 1	
Absolute Threshold (Ec/N0) for Event 2c	dB	-18	
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		Total 24 8 on frequency Channel 2	Measurement control information is sent before the compressed mode pattern starts.
Propagation Condition		Case 5	As specified in Annex B of TS 25.101.
Frequency offset	ppm	+/- 0.1	Frequency offset between Cell 1 and Cell 2.
T1	S	2	
T2	S	2	

Table A.8.12B: Test parameters for correct reporting of neighbours in Fading propagation condition

Parameter	Unit	Cell	1	С	ell 2
		T1	T2	T1	T2
UTRA RF Channel Number		Channel 1		Channel 2	
CPICH_Ec/lor	dB	-10		-10	
PCCPCH_Ec/lor	dB	-12		-12	
SCH_Ec/lor	dB	-12		-12	
PICH_Ec/lor	dB	-15		-15	
DPCH_Ec/lor	dB	Note 1		N/A	
OCNS		Note 2		-0.941	
\hat{I}_{or}/I_{oc}	dB	0		-Infinity	-1.8
I_{oc}	dBm/3.84 MHz	-70		-70	
CPICH_Ec/lo	dB	-13		-Infinity	-14
Propagation Condition	Case 5 as specifi	ied in Annex B	of TS25.10	1	

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_{or}

A.8.2.3.2 Test Requirements

- a) The UE shall send one Event 2C triggered measurement report, with a measurement reporting delay less than 1.7 seconds from the beginning of time period T2.
- b) The UE shall not send any measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.3 Void

Table A.8.13: Void

Table A.8.14: Void

Table A.5.14A: Void

Table A.8.14B: Void

Table A.8.14C: Void

Table A.8.14D: Void

A.8.4 GSM measurements

A.8.4.1 Correct reporting of GSM neighbours in AWGN propagation condition

A.8.4.1.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event when doing inter-RAT GSM measurements. The test will partly verify the requirements in section 8.1.2.5. The requirements are also applicable for a UE not requiring compressed mode, in which case no compressed mode pattern should be sent for the parameters specified in table A8.15.

The test consists of three successive time periods, with a time duration T1, T2 and T3. The test parameters are given in tables A.8.15, A.8.16 and A.8.17 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 3B and 3C shall be used.

A.8.4.1.1.1 Test 1. With BSIC verification required

Table A.8.15: General test parameters for Correct reporting of GSM neighbours in AWGN propagation condition, Test 1

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Compressed mode patterns			Only applicable for UE requiring compressed mode patterns
- GSM carrier RSSI measurement		DL Compressed mode reference pattern 2 in Set 2	As specified in table A.22 TS 25.101 section A.5
- GSM Initial BSIC identification		Pattern 2	As specified in section 8.1.2.5.2.1 table 8.7.
Active cell		Cell 1	
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		24 FDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before the compressed mode patterns starts.
N Identify abort		66	Taken from table 8.7.
T1	S	5	
T2	S	7	
T3	S	5	

Table A.8.16: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 1)

Parameter	Unit	Cell 1		
		T1, T2, T3		
UTRA RF Channel		Channel 1		
Number				
CPICH_Ec/lor	dB	-10		
PCCPCH_Ec/lor	dB	-12		
SCH_Ec/lor	dB	-12		
PICH_Ec/lor	dB	-15		
DPCH_Ec/lor	dB	Note 1		
OCNS		Note 2		
\hat{I}_{or}/I_{oc}	dB	0		
I_{oc}	dBm/	-85		
OC.	3.84			
	MHz			
CPICH_Ec/lo	dB	-13		
Propagation Condition		AWGN		
	Note 1: The DPCH level is controlled by the power control loop.			
Note 2: The power of the OCNS channel that is added shall make the total				
power from the	power from the cell to be equal to $I_{ m or}$.			

Table A.8.17: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 2)

Parameter	Unit	Cell 2			
Farameter	Oilit	T1	T2	Т3	
Absolute RF Channel		ARFCN 1			
Number		,			
RXLEV	dBm	-Infinity	-75	-85	

A.8.4.1.1.2 Test 2: Without BSIC verification required

Table A.8.18: General test parameters for Correct reporting of GSM neighbours in AWGN propagation condition, Test 2

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel	As specified in TS 25.101 section A.3.1
•		12.2 kbps	·
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Compressed mode patterns - GSM carrier RSSI			Only applicable for UE requiring compressed mode patterns
measurement		DL Compressed mode reference pattern 2 in Set 2	As specified in table A.22 TS 25.101 section A.5
Active cell		Cell 1	
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		not required	
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3B and 3C.
Hysteresis	dB	0	
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		24 FDD neighbours on Channel 1 6 GSM neighbours including ARFCN 1	Measurement control information is sent before the compressed mode patterns starts.
T1	S	5	
T2	S	2	
T3	S	5	

Table A.8.19: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 1)

Parameter	Unit	Cell 1
		T1, T2, T3
UTRA RF Channel		Channel 1
Number		
CPICH_Ec/lor	dB	-10
PCCPCH_Ec/lor	dB	-12
SCH_Ec/lor	dB	-12
PICH_Ec/lor	dB	-15
DPCH_Ec/lor	dB	Note 1
OCNS		Note 2
\hat{I}_{or}/I_{oc}	dB	0
I_{oc}	dBm/ 3.84	-85
00	MHz	
CPICH_Ec/lo	dB	-13
Propagation		AWGN
Condition		
Note 1: The DPCH	evel is control	led by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total

power from the cell to be equal to I_{or}.

Table A.8.20: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 2)

Parameter	Unit	Cell 2				
Parameter	Onit	T1	T2	T3		
Absolute RF Channel		ARFCN 1				
Number						
RXLEV	dBm	-Infinity	-75	-85		

A.8.4.1.2 Test Requirements

A.8.4.1.2.1 TEST 1 With BSIC verification required

The UE shall send one Event 3C triggered measurement report for Cell2, with a measurement reporting delay less than 6.24 s from the beginning of time period T2.

The UE shall send one Event 3B triggered measurement report for Cell2, with a measurement reporting delay less than 960 ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.4.1.2.2 TEST 2 Without BSIC verification required

The UE shall send one Event 3C triggered measurement report for Cell2, with a measurement reporting delay less than 960 ms from the beginning of time period T2.

The UE shall send one Event 3B triggered measurement report for Cell2, with a measurement reporting delay less than 960 ms from the beginning of time period T3.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8.5 Combined Interfrequency and GSM measurements

A.8.5.1 Correct reporting of neighbours in AWGN propagation condition

A.8.5.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency and GSM measurements. The test will partly verify the requirements in section 8.1.2.3 and 8.1.2.5. The requirements are also applicable for a UE not requiring compressed mode for inter-frequency or inter-RAT GSM measurements. In case a UE is not requiring compressed mode for inter-frequency measurements no compressed mode pattern with measurement purpose 'FDD measurement' should be sent and in case a UE is not requiring compressed mode for inter-RAT GSM measurements no compressed mode pattern with measurement purpose 'GSM carrier RSSI measurements', 'GSM Initial BSIC identification' and 'GSM BSIC re-confirmation' should be sent for the parameters specified in table A8.21.

The test consists of five successive time periods, with a time duration T1, T2, T3, T4 and T5. The test parameters are given in tables A.8.21, A.8.22 and A.8.23 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event 2B and 3A shall be used as well as periodic reporting with period 4s.

Table A.8.21: General test parameters for Correct reporting of neighbours in AWGN propagation condition

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Compressed mode Interfrequency measurements		DL compressed mode reference pattern 3, set 1	Only applicable for UE requiring compressed mode patterns. As specified in table A.22A TS 25.101 section A.5
- GSM carrier RSSI measurement		DL compressed mode reference pattern 3, set 2	As specified in table A.22A TS 25.101 section A.5
- GSM Initial BSIC identification		DL compressed mode reference pattern 3, set 3	As specified in table A.22A TS 25.101 section A.5
- GSM BSIC reconfirmation		DL compressed mode reference pattern 3, set 4	As specified in table A.22A TS 25.101 section A.5
Active cell		Cell 1	
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		required	
Absolute Threshold (Ec/N0) used frequency	dB	-15	Ec/lo threshold for Event 2B and 3A
Absolute Threshold (Ec/N0) used for a not used frequency	dB	-15	Ec/lo threshold for Event 2B
Threshold other system	dBm	-80	Absolute GSM carrier RSSI threshold for event 3A.
Time to Trigger	ms	0	
Filter coefficient		0	
Monitored cell list size		Total 24 FDD neighbours 8 on frequency Channel 2 6 GSM neighbours including ARFCN 1	Measurement control information is sent before the compressed mode pattern starts.
Propagation Condition		AWGN	
T1	S	1	
T2	S	5	
T3		8	
T4		15	

Table A.8.22: Cell Specific parameters for Correct reporting of neighbours in AWGN propagation condition

Parameter	Unit			Cell 1					Cell 2	2	
		T1	T2	T3	T4	T5	T1	T2	T3	T4	T5
UTRA RF Channel Number				Channe	l 1		Channel 2				
CPICH_Ec/lor	dB	-10					-10				
PCCPCH_Ec/lor	dB	-12					-12				
SCH_Ec/lor	dB	-12	-12								
PICH_Ec/lor	dB	-15					-15				
DPCH_Ec/lor	dB	Note 1			N/A		N/A Note 1				
OCNS		Note 2			-0.941		-0.941		Note	2	
\hat{I}_{or}/I_{oc}	dB	0	-8				-Infinity	0	0	-8	-8
I_{oc}	dBm/3.84 MHz		-60								
CPICH_Ec/lo	dB	-13 -18.6 -Infinity -13 -13 -18.6 -18						-18.6			
Note 1: The DPCH	I level is contro	olled by th	ne powe	er contro	l loop						

The power of the OCNS channel that is added shall make the total power from the cell to be equal to I_o Note 2:

Table A.8.23: Cell specific test parameters for Correct reporting of GSM neighbours in AWGN propagation condition (cell 3)

Parameter	Unit	Cell 3							
Farameter	Oilit	T1	T2	T3	T4	T5			
Absolute RF Channel Number		ARFCN 1							
RXLEV	dBm	-Infinity			-75				
GSM BSIC			N/A		Valid	Not valid			

A.8.5.1.2 **Test Requirements**

The UE shall send one Event 2B triggered measurement report for Cell2, with a measurement reporting delay less than 3.5 s from the beginning of time period T2.

A handover to cell 2 is signalled to the UE well before end of time period T3.

The UE shall send one Event 3A triggered measurement report for Cell3, with a measurement reporting delay less than 6.24 s from the beginning of time period T4.

The UE shall indicate that the BSIC of the GSM carrier is not verified in a periodic report sent before 9.04 seconds have passed since the start of time period T5.

NOTE: The delay for interfrequency cell detection is equal to:

$$T_{\text{identify, inter}} = T_{\text{basic identify FDD,inter}} \cdot \frac{T_{\text{Measurement Period, Inter}}}{T_{\text{Inter}}} \cdot N_{\textit{Freq}} \text{ ms} = 3.3 \text{ s}$$

where:

 $T_{\text{basic identify FDD,inter}}$ is specified in 8.1.2.3.2 as 300 ms

 $T_{\mbox{\scriptsize Measurement Period, Inter}}$ is specified in 8.1.2.3.2 as 480 ms

and

 T_{Inter} is specified in 8.1.2.3.2 as 6 gaps of length 11 slots each, 44 ms

The delay for interRAT cell detection is equal to 6.24 s.

The event triggered measurement reporting delay: $2*T_{Measurement\ Period,\ GSM} = 2*480ms = 960ms$.

BSIC verification: T_{identify abort} 5.28 s.

A.9 Measurement Performance Requirements

Unless explicitly stated:

- Reported measurements shall be within defined range in 90 % of the cases.
- Measurement channel is 12.2 kbps as defined in TS 25.101 annex A, sub-clause A.3.1. This measurement channel is used both in active cell and cells to be measured.
- Physical channels used as defined in TS 25.101 annex C.
- Cell 1 is the active cell when in CELL_DCH state.
- Single task reporting.
- Power control is active.

A.9.1 Measurement Performance for UE

A.9.1.1 CPICH RSCP

A.9.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.1.

A.9.1.1.1 Intra frequency test parameters

In this case all cells are on the same frequency. Both CPICH RSCP intra frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.1.

Table A.9.1: CPICH RSCP Intra frequency test parameters

Por	ameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
Fai	ameter	Offic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF Char	nnel number		Char	nel 1	Char	nel 1	Chan	nel 1
CPICH_Ec/lor		dB	-1	0	-1	0	-1	0
PCCPCH_Ec/ld	or	dB	-1	2	-12		-1	2
SCH_Ec/lor		dB	-1	2	-1	2	-12	
PICH_Ec/lor		dB	-1	5	-1	5	-15	
DPCH_Ec/lor		dB	-15	-	-15	-	-15	-
OCNS_Ec/lor		dB	-1.11	-0.94	-1.11	-0.94	-1.11	-0.94
Band I, IV, VI							-97.47	
loc	Band II, V, VII	dBm/3.84 MHz	-77.54		F.0	-59.98		.47
100	Band III, VIII	UDIII/3.04 IVITIZ			-59.90		-94.47	
	Band IX (Note 2)						-96.47	
Îor/loc		dB	4	0	9	0	0	-6.53
	Band I, IV, VI						-107.47	-114.0
CPICH	Band II, V, VII	dBm	-83.5	-87.5	-60.98	-69.88	-105.47	-112
RSCP, Note 1	Band III, VIII	UDIII	-03.5	-07.5	-00.90	-09.00	-104.47	-111
	Band IX (Note 2)						-106.47	-113
	Band I, IV, VI						-6)4
Io, Note 1	Band II, V, VII	dBm/3.84 MHz	-7	71		50	-6)2
IO, INOLE I	Band III, VIII	UDITI/O.O4 IVII IZ	-7	1		,0	-91	
	Band IX (Note 2)						-93	
Propagation co	ndition	-	AW	GN	AW	'GN	AW	GN

Note 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

A.9.1.1.1.2 Inter frequency test parameters

In this case both cells are on different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in TS 25.101 annex A.5, Set 1 of Table A.22. CPICH RSCP inter frequency relative accuracy requirements are tested by using test parameters in Table A.9.2.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Table A.9.2: CPICH RSCP Inter frequency tests parameters

D.	arameter	Unit	Tes	st 1	Test	2
	arameter	Offic	Cell 1	Cell 2	Cell 1	Cell 2
UTRA RF C	Channel number		Channel 1	Channel 2	Channel 1	Channel 2
CPICH_Ec/	/lor	dB	-10		-10)
PCCPCH_E	Ec/lor	dB	-1	12	-12	2
SCH_Ec/lo	r	dB	-1	12	-12	
PICH_Ec/Id	or	dB	-1	-15 -15)
DPCH_Ec/I	lor	dB	-15	-	-15	-
OCNS_Ec/lor		dB	-1.11	-0.94	-1.11	-0.94
	Band I, IV, VI		-60.00		-84.00	-94.46
loc	Band II, V, VII	dBm/3.84		-60.00	-82.00	-92.46
100	Band III, VIII	MHz		-00.00	-81.00	-91.46
	Band IX (Note 2)				-83.00	-93.46
Îor/loc		dB	9.54	9.54 9.54		-9.54
CPICH	Band I, IV, VI				-94.0	-114.0
RSCP,	Band II, V, VII	dBm	-60.46	-60.46	-92.0	-112.0
Note 1	Band III, VIII	abili	-00.40	-00.40	-91.0	-111.0
14010 1	Band IX (Note 2)				-93.0	-113.0
	Band I, IV, VI				-81.0	-94.0
Io, Note 1	Band II, V, VII	dBm/3.84	-50.00	-50.00	-79.0	-92.0
io, inole i	Band III, VIII	MHz	-30.00	-30.00	-78.0	-91.0
	Band IX (Note 2)				-80.0	-93.0
Propagation	n condition	-		'GN	AWG	SN .

Note 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

A.9.1.1.2 Test Requirements

The CPICH RSCP measurement accuracy shall meet the requirements in section 9.1.1.

A.9.1.2 CPICH Ec/lo

A.9.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH Ec/Io measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.2.

A.9.1.2.1.1 Intra frequency test parameters

In this case all cells are in the same frequency. Both CPICH Ec/Io absolute and relative accuracy requirements are tested by using test parameters in Table A.9.3

Table A.9.3: CPICH Ec/lo Intra frequency test parameters

Unit	Tes	st 1	Tes	st 2	Test 3	
Offic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
	Char	nel 1	Char	nel 1	Chan	nel 1
dB	-1	10	-10		-1	0
dB	-1	12	-1	12	-1	2
dB	-1	12	-1	12	-1	2
dB	-1	15	-1	15	-1	5
dB	-15	-	-15	-	-6 -	
dB	-1.11	-0.94	-1.11	-0.94	.2.56 -0.94	
	-56.98				-94.98	
dBm/ 3.84			90	-80.07		.98
MHz			-09.07		-91.98	
					-93.98	
dB	3.0	3.0	-2.9	-2.9	-9.0	-9.0
dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
					-6)4
dDm/2 04 MUz		-0		06	-6)2
UDIII/3.04 IVIAZ	-:	JU	-	00	-6)1
					-93	
-	AW	'GN	AWGN		AWGN	
	dB dB dB dB dB dB dB dB dB dBm/3.84 MHz dB dBm	Cell 1 Char dB	Cell 1 Cell 2 Channel 1 dB -10 dB -12 dB -15 dB -15 dB -1.11 -0.94 dB -1.11 -0.94 dB 3.0 3.0 dBm -14.0 -	Cell 1 Cell 2 Cell 1 Channel 1 Char dB -10 -7 dB -12 -7 dB -15 -7 dB -15 - dB -15 - dB -1.11 -0.94 -1.11 dBm/ 3.84 MHz -56.98 -89 dBm/ 3.84 MHz -14.0 -14.0 -16.0 dBm/3.84 MHz -50 -8 - AWGN AWGN AWGN	Cell 1 Cell 2 Cell 1 Cell 2 Channel 1 Channel 1 Channel 1 dB -10 -10 dB -12 -12 dB -15 -15 dB -15 - dB -15 - dB -1.11 -0.94 dBm/ 3.84 MHz -56.98 -89.07 dBm/ 3.84 MHz -14.0 -14.0 -16.0 dBm/3.84 MHz -50 -86 - AWGN AWGN	Cell 1 Cell 2 Cell 1 Cell 2 Cell 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1 Cha

Note 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

A.9.1.2.1.2 Inter frequency test parameters

In this case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in TS 25.101 annex A.5, Set 1 of Table A.22. CPICH Ec/Io inter frequency relative accuracy requirements are tested by using test parameters in Table A.9.4.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Table A.9.4: CPICH Ec/lo Inter frequency tests parameters

	Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
	Parameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UT	RA RF Channel number		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
CPIC	H_Ec/lor	dB	-1	0	-1	0	-1	0
PCCF	PCH_Ec/lor	dB	-1	2	-1	2	-1	2
SCH	_Ec/lor	dB	-1	2	-1	2	-1	2
PICH	_Ec/lor	dB	-1	5	-1	5	-15	
DPCF	H_Ec/lor	dB	-15	-	-6	-	-6	-
OCNS	S_Ec/lor	dB	-1.11	-0.94	-2.56	-0.94	-2.56	-0.94
	Band I, IV, VI						-94.46	-94.46
loc	Band II, V, VII	dBm/	-52.22	-52.22	-87.27	-87.27	-92.46	-92.46
100	Band III, VIII	3.84 MHz				-01.21	-91.46	-91.46
	Band IX (Note 2)						-93.46	-93.46
Îor/lo	С	dB	-1.75	-1.75	-4.7	-4.7	-9.54	-9.54
CPIC	H Ec/Io, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
	Band I, IV, VI						-94	-94
lo, Note	Band II, V, VII	dBm/3.84	-50	-50	-86	-86	-92.0	-92.0
1	Band III, VIII	MHz	-50	-50	-00	-00	-91.0	-91.0
'	Band IX (Note 2)						-93	-93
Propa	agation condition	-	AW	GN	AW	'GN	AW	GN

Note 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

A.9.1.2.2 Test Requirements

The CPICH Ec/Io measurement accuracy shall meet the requirements in section 9.1.2. In case of the absolute intra-frequency CPICH_Ec/Io measurement and relative inter-frequency CPICH_Ec/Io measurement accuracy test cases the effect of assumed thermal noise and noise generated in the receiver (–99 dBm for frequency bands I, IV and VI; -98 dBm for frequency band IX, -97dBm for frequency bands II, V and VII; and –96dBm for frequency band III) shall be added into the required accuracy. The test requirements for the absolute intra -frequency CPICH_Ec/Io measurement are defined in Section 9.1.2 as shown in Table A.9.4A. The test requirements for the relative inter-frequency CPICH_Ec/Io measurement are defined in Section 9.1.2 as shown in Table A.9.4B.

Table A.9.4A: CPICH Ec/lo Intra-frequency absolute accuracy

		Accuracy [dB]		Conditions
Parameter Unit		Normal condition	Extreme condition	lo [dBm/3.84 MHz]
CPICH Ec/lo	dB	-2.71.5 for -14 ≤ CPICH Ec/lo -3.22 for -16 ≤ CPICH Ec/lo < -14 -4.23 for -20 ≤ CPICH Ec/lo < -16	-4.23	-9487(Band I, IV, VI) -9285 (Band II, V, VII) -9184 (Band III, VIII) 9386 (Band IX (Note 1))
CPICH_EC/IO	ив	± 1.5 for -14 ≤ CPICH Ec/lo ± 2 for -16 ≤ CPICH Ec/lo < -14 ± 3 for -20 ≤ CPICH Ec/lo < -16	± 3	-8750(Band I, IV, VI) -8550 (Band II, V, VII) -8450 (Band III, VIII) -8650 (Band IX (Note 1))

Note 1: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Table A.9.4B: CPICH_Ec/lo Inter frequency relative accuracy

		Accuracy [dB]		Conditions
Parameter	Unit	Normal condition	Extreme condition	lo [dBm]
CDICH Fo/lo	dB	± 2.7 for -14 \leq CPICH Ec/lo ± 3.2 for -16 \leq CPICH Ec/lo $<$ -14 ± 4.2 for -20 \leq CPICH Ec/lo $<$ -16	± 4.2	-9487(Band I, IV, VI) -9285 (Band II, V, VII) -9184 (Band III, VIII) -9386 (Band IX (Note 1))
CPICH_Ec/lo	αв	\pm 1.5 for -14 \leq CPICH Ec/lo \pm 2 for -16 \leq CPICH Ec/lo $<$ -14 \pm 3 for -20 \leq CPICH Ec/lo $<$ -16	± 3	-8750 (Band I, IV, VI) -8550 (Band II, V, VII) -8450 (Band III, VIII) -8650 (Band IX (Note 1))

Note 1: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.3 UTRA Carrier RSSI

A.9.1.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UTRA Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.3. In this case all cells are in different frequencies and compressed mode is applied. The gap length is 7, detailed definition is in TS 25.101 annex A.5, Set 1 of Table A.22. UTRA Carrier RSSI accuracy requirements are tested by using test parameters in Table A.9.5 for absolute accuracy and Table A.9.5.1 for relative accuracy. In the relative accuracy test, UTRA carrier RSSI measurements of neighbour cell 2 and neighbour cell 3 are reported to serving cell 1.

Table A.9.5: UTRA Carrier RSSI Inter frequency absolute accuracy test parameters

	Parameter	Unit	Tes	st 1	Tes	st 2	Tes	st 3
	rafaffieter	o ii	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
UTRA F	RF Channel r		Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
CPICH	_Ec/lor	dB	-1	10	-1	0	-10	
PCCPC	CH_Ec/lor	dB	-1	12	-1	2	-1	2
SCH_E	c/lor	dB	-1	12	-1	2	-1	2
PICH_E	Ec/lor	dB	-1	15	-1	5	-15	
DPCH_	_Ec/lor	dB	-15	-	-6	1	-6	-
OCNS_	OCNS_Ec/lor		-1.11	-0.94	-2.56	-0.94	-2.56	-0.94
loc	Band I, IV,VI Band II, V, VII Band III, VIII Band IX (Note 2)	dBm/ 3.84 MHz	-52.22	-52.22	-70.27	-70.27	-94.46 -92.46 -91.46 -93.46	-94.46 -92.46 -91.46 -93.46
Îor/loc		dB	-1.75	-1.75	-4.7	-4.7	-9.54	-9.54
CPICH	Ec/Io, Note 1	dBm	-14.0	-14.0	-16.0	-16.0	-20.0	-20.0
Io, Note 1	Band I, IV,VI Band II, V, VII Band III, VIII Band IX (Note 2)	dBm/ 3.84 MHz	-50	-50	-69	-69	-94 -92 -91 -93	-94 -92 -91 -93
	ation condition	-		GN		GN		GN

Note 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

Table A.9.5.1: UTRA Carrier RSSI Inter frequency relative accuracy test parameters

· amatar	I Imit		Test 1			Test 2		Test 3		
ameter	Unit	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Cell 1	Cell 2	Cell 3
RF Channel		Channel		Channel	Channel		Channel	Channel	Channel	Channel
		1	Charmer 2	3	1	Charmer 2	3	1	2	3
_Ec/lor	dB	-10 -10							-10	
H_Ec/lor			-12			-12			-12	
			-15			-15			-15	
Ec/lor			-	-		-	-		-	-
Ec/lor	dB	-1.11	-0.94	-0.94	-2.56	-0.94	-0.94	-2.56	-0.94	-0.94
Band I, IV,VI								-94.45	-94.45	-75.45
loc VII 3	dBm/	50.00	50.00	74.00	04.07	04.07	1.27 -81.27	-92.45	-92.45	-73.45
	MHz -52.23	-52.23	23 -52.23	-71.23	-91.27	-91.27		-91.45	-91.45	-72.45
Band IX (Note 3)								-93.45	-93.45	-74.45
	dB	-1.75	-1.75	-1.75	-4.7	-4.7	-4.7	-9.54	-9.54	-9.54
Ec/lo, Note	dBm	-14.0	-14.0	-14.0	-16.0	-16.0	-16.0	-20.0	-20.0	-20.0
Band I, IV,VI								-94 (Note 2)	-94	-75
Band II, V, VII	dBm/	-50	50	60	-90 (Note	00	80	-92 (Note 2)	-92	-73
Band III, VIII	MHz	(Note 2)	-50	-09	2)	-90	-80	-91 (Note 2)	-91	-72
Band IX (Note 3)					-93 (Note 2)	-93	-74			
	Ec/lor H_Ec/lor C/lor C/lor Ec/lor Ec/lor Ec/lor Band I, IV,VI Band III, VIII Band IX (Note 3) Ec/lo, Note Band II, IV,VI Band III, VIII Band IX IV,VI Band II, IV,VI Band II, IV,VI Band II, IV,VI Band III, VIII Band III, VIII Band III, VIII	Ec/lor dB H_Ec/lor dB c/lor dB c/lor dB Ec/lor dB Band II, V, VII Band III, V, VIII Band IX (Note 3) Ec/lo, Note dBm Band I, IV,VI Band II, V, VII Band II, V, VII Band III, V, VIII	Cell 1 Channel 1 Ec/lor dB H_Ec/lor dB Chor dB	Cell 1 Cell 2 F Channel	Cell 1 Cell 2 Cell 3 F Channel	Cell 1 Cell 2 Cell 3 Cell 1	Cell 1 Cell 2 Cell 3 Cell 1 Channel 2 Channel 3 Channel 1 Channel 2 Channel 3 Channel 2 Channel 2 Channel 3 Channel 2 Channel 2 Channel 3 Channel 2 Chan	Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Channel 2 Channel 2 Channel 3 Channel 2 Channel 2 Channel 3 Channel 2 Channel 2	Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Channel 2 Channel 3 Channel 3	Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 3 Cell 3 Cell 3 Cell 4 Cell 2 Cell 3 Cell 3 Cell 4 Cell 2 Cell 3 Cell 4 Cell 2 Cell 3 Cell 6 Cell 8 Cell 1 Cell 2 Cell 8 Cell 1 Cell 2 Cell 3 Cell 4 Cell 2 Cell 3 Cell 4 Cell 2 Cell 3 Cell 4 Cell 2 Cell 4 C

Propagation condition AWGN

Note 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: lo levels are not reported by the UE on cell 1.

Note 3: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose Cell 2 or Cell 3 in between the tests.

A.9.1.3.2 **Test Requirements**

The UTRA Carrier RSSI measurement accuracy shall meet the requirements in section 9.1.3. The effect of assumed thermal noise and noise generated in the receiver (-99 dBm for frequency bands I, IV,VI; -98 dBm for frequency band IX; -97dBm for frequency bands II,V, VII; and -96dBm for frequency band III, VIII) shall be added into the required accuracy defined in Section 9.1.3 as shown in Table A.9.5A and in Table A.9.5A1.

Table A.9.5A: UTRA Carrier RSSI absolute accuracy

		Accuracy [dB]		Conditions	
Parameter	Unit	Normal condition	Extreme condition	lo [dBm/3.84 MHz]	
UTRA Carrier RSSI	dBm	±4 (Note 1)	±7 (Note 1)	-9470 (Band I, IV, VI) -9270 (Band II, V, VII) -9170 (Band III, VIII) -9370 (Band IX (Note 2))	
	dBm	± 6	± 9	-7050	
Note 1: Impact from RF noise floor is test case dependent and has not been considered. Noise floor shall be considered in RAN WG5 test case.					

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Table A.9.5A1: UTRA Carrier RSSI relative accuracy

			cy [dB]	Conditions
Parameter Unit		Normal condition	Extreme condition	lo [dBm/3.84 MHz]
UTRA Carrier RSSI	dBm	± 7 (Note 1)	± 11(Note 1)	-9450 (Band I, IV, VI) -9250 (Band II, V, VII) -9150 (Band III, VIII) -9350 (Band IX (Note 2))

Note 1: Impact from RF noise floor is test case dependent and has not been considered. Noise floor shall be considered in RAN WG5 test case.

For the UE which supports both Band III and Band IX operating frequencies, the measurement Note 2: performance requirements for Band III shall apply to the multi-band UE.

A.9.1.3A GSM Carrier RSSI

A.9.1.3A.1 Test Purpose and Environment

The purpose of this test is to verify that the GSM Carrier RSSI measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.4.

In the test in Cell_DCH state compressed mode with purpose 'GSM Carrier RSSI Measurement' is applied to measure on GSM. The gap length is 7, detailed definition is in TS 25.101 annex A.5. Table A.9.5AA defines the limits of signal strengths and code powers on the UMTS FDD cell, where the requirement is applicable. In the measurement control information it is indicated to the UE that periodic reporting of the GSM RSSI measurement.

The limits of the GSM test parameters are defined in [21].

Table A.9.5AA: General GSM Carrier RSSI test parameters

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		On	
Target quality value on DTCH	BLER	0.01	
Compressed mode patterns - GSM carrier RSSI measurement		Compressed mode reference pattern 2 Set 2	As specified in table A.22 TS 25.101 section A.5
Inter-RAT measurement quantity		GSM Carrier RSSI	
BSIC verification required		Not required	
Monitored cell list size		6 GSM neighbours including ARFCN 1	Measurement control information is sent before the compressed mode patterns starts.

Table A.9.5B: Cell specific GSM Carrier RSSI test parameters

Parameter	Unit	Cell 1
UTRA RF Channel number	-	Channel 1
Îor/loc	dB	-1
loc	dBm/ 3.84 MHz	-70
Propagation condition	-	AWGN

A.9.1.3A.2 Test Requirements

The GSM Carrier RSSI measurement accuracy shall meet the requirements in section 9.1.4.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.3B Transport channel BLER

NOTE: This section is included for consistency with numbering in section 9, currently no test covering requirements in sections 9.1.5 exists.

A.9.1.3CUE transmitted power

A.9.1.3C.1 Test Purpose and Environment

The purpose of this test is to verify that the UE transmitted power measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.6.

The test parameters are given in Table A.9.5C and A.9.5D below. In the measurement control information it shall be indicated to the UE that periodic reporting of the UE transmitted power measurement shall be used.

Table A.9.5C: General test parameters for UE transmitted power

Parameter	Unit	Value	Comment
DCH parameters		DL Reference Measurement Channel 12.2 kbps	As specified in TS 25.101 section A.3.1
Power Control		Off	

Parameter Unit Cell 1 CPICH_Ec/lor -10 dΒ PCCPCH_Ec/lor dB -12 dB SCH_Ec/lor -12 PICH_Ec/lor dB -15 DPCH_Ec/lor dB OCNS dΒ -5.2 I_{or}/I_{oc} dB 0 dBm/3.84 I_{oc} -70 MHz CPICH_Ec/lo -13 dΒ Propagation **AWGN**

Table A.9.5D: Cell Specific parameters for UE transmitted power

A.9.1.3C.1.1 Test procedure

Condition

- 1) Set the UE power and Maximum allowed UL TX power to the maximum power for that UE power class.
- 2) Send continuously during the entire test Up power control commands to the UE.
- 3) Check the UE reported value
- 4) Map the UE reported value to accuracy requirement and define the test limits
- 5) Measure the output power of the UE. The output power shall be averaged over one timeslot.
- 6) Check that measured power is within the defined limits.
- 7) Decrease the Maximum allowed UL TX power with 1 dB and signal the new value to the UE.
- 8) Repeat from step 3) until the entire specified range for the UE transmitted power measurement has been tested, i.e. the accuracy requirement for the UE transmitted power measurement is specified 10dB below the maximum power for the UE power class.

A.9.1.3C.2 Test Requirements

The UE transmitted power measurement accuracy shall meet the requirements in section 9.1.6.

The rate of correct measurements observed during repeated tests shall be at least 90%.

A.9.1.4 SFN-CFN observed time difference

A.9.1.4.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-CFN observed time difference measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.7.

A.9.1.4.1.1 Intra frequency test parameters

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

In this case all cells are in the same frequency. Table A.9.6 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table A.9.6: SFN-CFN observed time difference Intra frequency test parameters

Parameter		Unit	Cell 1	Cell 2
UTRA RF Channel number			Channel 1	Channel 1
CPICH_Ec/lor		dB	-10	-10
PCCPCH_Ec/lo	r	dB	-12	-12
SCH_Ec/lor		dB	-12	-12
PICH_Ec/lor		dB	-15	-15
DPCH_Ec/lor		dB	-15	-15
OCNS		dB	-1.11	-1.11
Îor/loc	Îor/loc		10.5	10.5
loc		dBm/ 3.84 MHz	<i>Io -13.7 dB = loc,</i> Note 1	<i>Io -13.7 dB = loc,</i> Note 1
			-9470 (Band I, IV, VI)	-9470(Band I, IV, VI)
Range 1			-9270 (Band II, V, VII)	-9270 (Band II, V, VII)
Range i			-9170 (Band III, VIII)	-9170 (Band III, VIII)
	lo	dBm/3.84 MHz	-9370 (Band IX (Note 2))	-9370 (Band IX (Note 2))
	10	UDIII/3.04 IVITZ	-9450 (Band I, IV, VI)	-9450 (Band I, IV, VI)
Pango 2			-9250 (Band II, V, VII)	-9250 (Band II, V, VII)
Range 2			-9150 (Band III, VIII)	-9150 (Band III, VIII)
			-9350 (Band IX (Note 2))	-9350 (Band IX (Note 2))
Propagation cor	ndition	-	ÁWGN	

Note 1: *loc* level shall be adjusted according the total signal power spectral density *lo* at receiver input and the geometry factor *lor/loc*.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.4.1.2 Inter frequency test parameters

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

In this test case both cells are in different frequency and compressed mode is applied. The gap length is 7, detailed definition is in TS 25.101 annex A.5, Set 1 of Table A.22. Table A.9.7 defines the limits of signal strengths and code powers, where the requirement is applicable.

Table A.9.7: SFN-CFN observed time difference Inter frequency tests parameters

Pa	rameter	Unit	Cell 1	Cell 2
UTRA RF Channel number			Channel 1	Channel 2
CPICH_Ec/lo	r	dB	-10	-10
PCCPCH_Ec	/lor	dB	-12	-12
SCH_Ec/lor		dB	-12	-12
PICH_Ec/lor		dB	-15	-15
DPCH_Ec/lor	•	dB	-15	-15
OCNS		dB	-1.11	-1.11
Îor/loc		dB	10.1	10.1
loc		dBm/ 3.84 MHz	<i>Io -10.6 dB = loc,</i> Note 1	<i>Io -10.6 dB = loc,</i> Note 1
			-9470 (Band I, IV, VI)	-9470 (Band I, IV, VI)
Range 1			-9270 (Band II, V, VII)	-9270 (Band II, V, VII)
rango i			-9170 (Band III, VIII)	-9170 (Band III, VIII)
	lo	dBm/3.84 MHz	-9370 (Band IX (Note 2))	-9370 (Band IX (Note 2))
	10	UDITI/3.04 IVITIZ	-9450 (Band I, IV, VI)	-9450 (Band I, IV, VI)
Pango 2			-9250 (Band II, V, VII)	-9250 (Band II, V, VII)
Range 2			-9150 (Band III, VIII)	-9150 (Band III, VIII)
			-9350 (Band IX (Note 2))	-9350 (Band IX (Note 2))
Propagation of	condition	-	AWGN	

Note 1: *loc* level shall be adjusted in each carrier frequency according the total signal power spectral density *lo* at receiver input and the geometry factor *lor/loc*.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.4.2 Test Requirements

The SFN-CFN observed time difference measurement accuracy shall meet the requirements in section 9.1.7.

A.9.1.5 SFN-SFN observed time difference

A.9.1.5.1 SFN-SFN observed time difference type 1

A.9.1.5.1.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 1 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.8.1.

During the test the timing difference between Cell 1 and 2 can be set to value from 0...9830399 chips.

In this case all cells are in the same frequency. Table A.9.8 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table A.9.8: SFN-SFN observed time difference type 1 Intra frequency test parameters

Parameter		Unit	Cell 1	Cell 2
UTRA RF Ch	nannel number		Channel 1	Channel 1
CPICH_Ec/Id	or	dB	-10	-10
PCCPCH_E	c/lor	dB	-12	-12
SCH_Ec/lor		dB	-12	-12
PICH_Ec/lor		dB	-15	-15
S-CCPCH_E	c/lor	dB	-12	-12
OCNS		dB	-1.29	-1.29
Îor/loc		dB	10.5	10.5
loc		dBm/ 3.84 MHz	<i>Io -13.7 dB = loc,</i> Note 1	<i>Io -13.7 dB = loc,</i> Note 1
Range 1		ID (O O A MILL	-9470 (Band I, IV, VI) -9270 (Band II, V, VII) -9170 (Band III, VIII) -9370 (Band IX (Note 2))	-9470 (Band I, IV, VI) -9270 (Band II, V, VII) -9170 (Band III, VIII) -9370 (Band IX (Note 2))
Range 2		dBm/3.84 MHz	-9450 (Band I, IV, VI) -9250 (Band II, V, VII) -9150 (Band III, VIII) -9350 (Band IX (Note 2))	-9450 (Band I, IV, VI) -9250 (Band II, V, VII) -9150 (Band III, VIII) -9350 (Band IX (Note 2))
Propagation	condition	-	AWGN	

NOTE 1: loc level shall be adjusted according the total signal power spectral density lo at receiver input and the geometry factor loc/loc.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.5.1.2 Test Requirements

The SFN-SFN observed time difference type 1 measurement accuracy shall meet the requirements in section 9.1.8.1

A.9.1.5.2 SFN-SFN observed time difference type 2 without IPDL period active

A.9.1.5.2.1 Test Purpose and Environment

The purpose of this test is to verify that the SFN-SFN observed time difference type 2 measurement accuracy without IPDL period active is within the specified limits. This test will verify the requirements in section 9.1.8.2.

During the test the time difference between Cell 1 and 2 can be set to value from -1279.75 to 1280 chips.

In this case all cells are in the same frequency. Table A.9.9 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table A.9.9: SFN-SFN observed time difference type 2 Intra frequency test parameters

Parameter		Unit	Cell 1	Cell 2
UTRA RF Channel number			Channel 1	Channel 1
CPICH_Ec/lor		dB	-10	-10
PCCPCH_Ec/lor		dB	-12	-12
SCH_Ec/lor		dB	-12	-12
PICH_Ec/lor		dB	-15	-15
DPCH_Ec/lor		dB	-15	-15
OCNS		dB	-1.11	-1.11
Îor/loc		dB	10.5	10.5
loc	loc		lo -13.7 dB = loc, Note 1	lo -13.7 dB = loc, Note 1
CPICH_Ec/lo, No	te 2	dB	-13.2	-13.2
Range 1	· lo	dBm/3.84 MHz	-9470 (Band I, IV, VI) -9270 (Band II, V, VII) -9170 (Band III, VIII) -9370 (Band IX (Note 3))	-9470 (Band I, IV, VI) -9270 (Band II, V, VII) -9170 (Band III, VIII) -9370 (Band IX (Note 3))
Range 2		GDITI/3.04 IVII IZ	-9450 (Band I, IV, VI) -9250 (Band II, V, VII) -9150 (Band III, VIII) -9350 (Band IX (Note 3))	-9450 (Band I, IV, VI) -9250 (Band II, V, VII) -9150 (Band III, VIII) -9350 (Band IX (Note 3))
Propagation cond	ition	-	AW	GN

Note 1: *loc* level shall be adjusted according the total signal power spectral density *lo* at receiver input and the geometry factor *lor/loc*.

Note 2: Io and CPICH Ec/lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 3: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.5.2.2 Test Requirements

The SFN-SFN observed time difference type 2 measurement accuracy shall meet the requirements in section 9.1.8.2

A.9.1.5.3 SFN-SFN observed time difference type 2 with IPDL period active

A.9.1.5.3.1 Test Purpose and Environment

This requirement is valid only for UEs supporting IPDL measurements.

The purpose of this test is to verify that the SFN-SFN observed time difference type 2 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.8.2.

During the test the time difference between Cell 1 and 2 shall be set according to the assistance data defined in table A.9.10A.

In this case all cells are in the same frequency. Table A.9.10 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table A.9.10: SFN-SFN observed time difference type 2 Intra frequency test parameters

Parameter	Unit	Ce	II 1	Ce	II 2
Time		No idle	Idle period	No idle	Idle period
		period	in Cell 1	period	in Cell 1
UTRA RF Channel number		Channel 1	Channel 1	Channel 1	Channel 1
CPICH_Ec/lor	dB	-10	-10	-10	-10
PCCPCH_Ec/lor	dB	-12	-12	-12	-12
SCH_Ec/lor	dB	-12	-12	-12	-12
PICH_Ec/lor	dB	-15	-15	-15	-15
DPCH_Ec/lor	dB	-15	-15	-	-
OCNS	dB	-1.11	-1.11	-0.94	-0.94
Îor/loc	dB	10.5	-24.5	-6	-6
loc	dBm/ 3.84 MHz		-8	30	
Io, Note 1	dBm/3.84 MHz	-69.04	-79.01	-69.04	-79.01
CPICH_Ec/lo, Note 1	dB	-10.46	-35.49	-26.96	-16.99
Propagation condition	-	AWGN			

NOTE 1: Io and CPICH Ec/lo levels have been calculated from other parameters for information purposes. They are is not settable parameters themselves.

When verifying the SFN-SFN observed time difference type 2 intra frequency measurement accuracy with IPDL period active the idle period parameters in table A.9.10A shall be used.

Table A.9.10A: SFN-SFN observed time difference type 2 assistance data test parameters

Parameter	Unit	Cell 1
Search Window Size	Chips	80
IP_Status	-	Continuous
IP_Spacing	Frames	10
IP_Lenght	Symbols	10
IP_Offset	frame	NA
Seed	integer	13
Burst_Start		NA
Burst_Length		NA
Burst_Freq		NA

NOTE: The total signal power spectral density *Io* will change only downwards during BS transmission gap.

A.9.1.5.3.2 Test Requirements

The SFN-SFN observed time difference type 2 measurement accuracy shall meet the requirements in section 9.1.8.2

A.9.1.6 UE Rx-Tx time difference

A.9.1.6.1 UE Rx-Tx time difference type 1

A.9.1.6.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE Rx-Tx time difference type 1 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.9.1

The connection is started using cell 1, then cell 2 is added to the active set so that cell 1 is the timing reference. During the test the downlink DPCH time difference between Cell 1 and 2 can be set to any value from -148 to 148 chips.

Table A.9.11 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table A.9.11: UE Rx-Tx time difference type 1 intra frequency test parameters

Parameter	Unit	Cell 1 Cell 2		
UTRA RF Channel number		Channel 1	Channel 1	
Downlink DPCH timing	Chips	Timing reference	From reference timing –148	
			to reference timing+148	
CPICH_Ec/lor	dB	-10	-10	
PCCPCH_Ec/lor	dB	-12	-12	
SCH_Ec/lor	dB	-12	-12	
PICH_Ec/lor	dB	-15	-15	
DPCH_Ec/lor	dB	-15	-15	
OCNS	dB	-1.11	-1.11	
Îor/loc	dB	10.5	10.5	
loc	dBm/3.84 MHz	lo −13.7 dB = loc, Note 1	Io-13.7 dB = Ioc, Note 1	
		-9450 (Band I, IV, VI)	-9450 (Band I, IV, VI)	
lo	dBm/3.84	-9250 (Band II, V, VII)	-9150 (Band III, VIII)	
10	MHz	-9150 (Band III, VIII)	-9250 (Band II, V, VII)	
		-9350 (Band IX (Note 2))	-9350 (Band IX (Note 2))	
Propagation condition	-	AWGN		

Note 1: *loc* level shall be adjusted according the total signal power spectral density *lo* at receiver input and the geometry factor *lor/loc*.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.6.1.2 Test Requirements

The UE Rx-Tx time difference type 1 measurement accuracy measured for cell 2 shall meet the requirements in section 9.1.9.1.

A.9.1.6.2 UE Rx-Tx time difference type 2

A.9.1.6.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE Rx-Tx time difference type 2 measurement accuracy is within the specified limits. This test will verify the requirements in section 9.1.9.2.

The connection is started using cell 1, then cell 2 is added to the active set so that cell 1 is the timing reference. During the test the downlink DPCH time difference between Cell 1 and 2 can be set to any value from -148 to 148 chips.

Table A.9.12 defines the limits of signal strengths and code powers, where the requirements are applicable.

Table A.9.12: UE Rx-Tx time difference type 2 intra frequency test parameters

Parameter	Unit	Cell 1	Cell 2	
UTRA RF Channel number		Channel 1	Channel 1	
Downlink DPCH timing	Chips	Timing reference	From reference timing –148	
		-	to reference timing+148	
CPICH_Ec/lor	dB	-10	-10	
PCCPCH_Ec/lor	dB	-12	-12	
SCH_Ec/lor	dB	-12	-12	
PICH_Ec/lor	dB	-15	-15	
DPCH_Ec/lor	dB	-15	-15	
OCNS	dB	-1.11	-1.11	
Îor/loc	dB	10.5	10.5	
loc	dBm/ 3.84 MHz	lo -10.9 dB = loc, Note 1	Io-13.7 dB = Ioc, Note 1	
		-9450 (Band I, IV, VI)	-9450 (Band I, IV, VI)	
lo	dBm/ 3.84	-9250 (Band II, V, VII)	-9250 (Band II, V, VII)	
10	MHz	-9150 (Band III, VIII)	-9150 (Band III, VIII)	
		-9350 (Band IX (Note 2))	-9350 (Band IX (Note 2))	
Propagation condition	- AWGN			

Note 1: loc level shall be adjusted according the total signal power spectral density lo at receiver input and the geometry factor lor/loc.

Note 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

A.9.1.6.2.2 Test Requirements

The UE Rx-Tx time difference type 2 measurement accuracy measured for cell 2 shall meet the requirements in section 9.1.9.2.

A.9.1.7 Void

A.9.1.8 Void

Table A.9.13: Void

Table A.9.14: Void

Annex B (informative): Change History

Initial version at TSG-RAN#6 (December 1999): 3.0.0

Table B.1: CRs approved by TSG-RAN#7.

RAN Doc	Spec	CR	R	Ph	Subject	Cat	Curr	New
RP-000021	25.133	001		R99	Modification of RL Failure Requirement	F	3.0.0	3.1.0
RP-000021	25.133	002		R99	Idle Mode Tasks	С	3.0.0	3.1.0
RP-000021	25.133	003		R99	Revised UE handover requirements	F	3.0.0	3.1.0
RP-000021	25.133	004		R99	Editorial corrections	D	3.0.0	3.1.0
RP-000021	25.133	005		R99	UE measurement requirement update	F	3.0.0	3.1.0
RP-000021	25.133	006		R99	TDD Measurements Performance Requirements for TS25.133 (FDD)	В	3.0.0	3.1.0
RP-000021	25.133	007		R99	UTRAN measurement requirement update	F	3.0.0	3.1.0
RP-000021	25.133	800		R99	Requirements on parallel measurements	F	3.0.0	3.1.0
RP-000021	25.133	009		R99	Inclusion on transport channel BER.	F	3.0.0	3.1.0

NOTE On implementation of CR 25.133-003. On page 16 there is a dotted line above title 5.1.2.1.4 ACTIVE SET DIMENSION. The text following is a duplication of version 3.0.0 to the point of sub-clause 5.1.2.2.1.3. HARD HANDOVER DELAY. Therefore all text from page 16 starting from 5.1.2.1.4 ACTIVE SET DIMENSION is moved to sub-clause 5.1.2.2.1.3 HARD HANDOVER DELAY on page 19.

Table B.2: CRs approved by TSG-RAN#8.

RAN Doc	Spec	CR	R	Ph	Subject	Cat	Curr	New
RP-000210	25.133	010		R99	Measurement period for UTRAN SIR	F	3.1.0	3.2.0
RP-000210	25.133	011		R99	Measurement period for UE BLER	F	3.1.0	3.2.0
RP-000210	25.133	013		R99	Measurement delay reporting	F	3.1.0	3.2.0
RP-000210	25.133	015		R99	Correction - Propagation conditions	F	3.1.0	3.2.0
RP-000210	25.133	016		R99	Remove requirements on SSDT from 5.1.1.8.	D	3.1.0	3.2.0
RP-000210	25.133	017		R99	Update of test parameters to P-CCPCH Measurements performance requirements	F	3.1.0	3.2.0
RP-000210	25.133	018		R99	Repetition Period of System Information	F	3.1.0	3.2.0
RP-000210	25.133	019		R99	Alignment of Cell Selection/reselection test scenario parameters	F	3.1.0	3.2.0
RP-000210	25.133	020		R99	Editorial corrections for TS25.133	F	3.1.0	3.2.0
RP-000210	25.133	021		R99	Removal of Annex A	F	3.1.0	3.2.0
RP-000210	25.133	022		R99	Requirement for UE Tx Power Measurement	F	3.1.0	3.2.0
RP-000210	25.133	023		R99	Insertion of Range/Mapping from TS 25.215 revised	F	3.1.0	3.2.0
RP-000210	25.133	024		R99	Signalling response delay	F	3.1.0	3.2.0
RP-000210	25.133	025		R99	Missing measurement periods	F	3.1.0	3.2.0
RP-000210	25.133	026		R99	RRC Connection mobility in CELL_FACH, CELL_PCH and URA_PCH	F	3.1.0	3.2.0
RP-000210	25.133	027		R99	Switching delay requirement for inter-system handover	F	3.1.0	3.2.0
RP-000210	25.133	028		R99	UE Chip time measurements	F	3.1.0	3.2.0
RP-000210	25.133	029		R99	UE Transmit Timing Adjustment	F	3.1.0	3.2.0
RP-000210	25.133	030		R99	Add GPS timing measurements to TS 25.133	F	3.1.0	3.2.0
RP-000210	25.133	031		R99	Test scenario for UTRAN to GSM cell re-selection	F	3.1.0	3.2.0
RP-000210	25.133	032		R99	Proposed test case for random access procedure (FDD)	F	3.1.0	3.2.0
RP-000210	25.133	033		R99	Inclusion of measurement granularities and ranges	F	3.1.0	3.2.0
RP-000210	25.133	034		R99	Parallel measurement requirements	F	3.1.0	3.2.0
RP-000210	25.133	035		R99	UE Hard handover switching time	F	3.1.0	3.2.0

Table B.3: CRs approved by TSG-RAN#9

RAN Doc	Spec	CR	R	Ph	Subject	Cat	Curr	New
RP-000400	25.133	036		R99	Corrections to definitions, symbols and abbreviations	F	3.2.0	3.3.0
RP-000400	25.133	037		R99	Handling of measurement uncertainties in Base station	F	3.2.0	3.3.0
					conformance testing (FDD) for RRM measurements			
RP-000400	25.133	038		R99	Proposal for section 4	F	3.2.0	3.3.0
RP-000400	25.133	039			Proposal for section 5	F	3.2.0	3.3.0
RP-000400	25.133	040		R99	Proposal for section 8	F	3.2.0	3.3.0
RP-000400	25.133	041		R99	Proposal for section 9	F	3.2.0	3.3.0
RP-000497	25.133	042	1	R99	Revision of requirement and range of measurement for CPCH	F	3.2.0	3.3.0
RP-000497	25.133	043	1	R99	Inclusion of UTRAN measurements in 25.133	F	3.2.0	3.3.0
RP-000400	25.133	044		R99	Proposal for section 7 and A.7	F	3.2.0	3.3.0
RP-000400	25.133	045		R99	Text proposal for section A.1, A.2 and A.3	F	3.2.0	3.3.0
RP-000400	25.133	046		R99	Proposal for section 6	F	3.2.0	3.3.0

Table B.4: CRs approved by TSG RAN#10

RAN Doc	Spec	CR	R	Ph	Subject	Cat	Curr	New
RP-000591	25.133	47		R99	Received total wideband power	F	3.3.0	3.4.0
RP-000591	25.133	48		R99	Removal of cell selection delay requirements	F	3.3.0	3.4.0
RP-000591	25.133	49		R99	Clarification of the random access requirements	F	3.3.0	3.4.0
RP-000591	25.133	50		R99	Correction of RRC re-establishment requirements	F	3.3.0	3.4.0
RP-000591	25.133	51		R99	Event triggered reporting in AWGN conditions	F	3.3.0	3.4.0
RP-000591	25.133	52		R99	Inter frequency measurements in AWGN	F	3.3.0	3.4.0
RP-000591	25.133	53	1	R99	Physical channel BER accuracy	F	3.3.0	3.4.0
RP-000591	25.133	54	1	R99	Event triggered reporting in fading conditions	F	3.3.0	3.4.0
RP-000591	25.133	55		R99	Periodic reporting in AWGN	F	3.3.0	3.4.0
RP-000591	25.133	56		R99	Introduction of UE Rx-Tx time difference type 1 & 2	F	3.3.0	3.4.0
RP-000591	25.133	57		R99	Correction of UE Tx timing adjustment	F	3.3.0	3.4.0
RP-000591	25.133	58		R99	Alignment of intra frequency CPICH Ec/lo measurement requirements in TS25.133	F	3.3.0	3.4.0
RP-000591	25.133	59		R99	Multiple neighbour test cases	F	3.3.0	3.4.0
RP-000591	25.133	60		R99	Correction of intra- and inter frequency measurement requirement.	F	3.3.0	3.4.0
RP-000591	25.133	61		R99	Correction of TDD measurement requirements.	F	3.3.0	3.4.0
RP-000591	25.133	62		R99	General cell re-selection requirements	F	3.3.0	3.4.0
RP-000591	25.133	63		R99	BSIC verification requirements in TS25.133	F	3.3.0	3.4.0
RP-000591	25.133	64		R99	GSM RSSI measurement	F	3.3.0	3.4.0
RP-000591	25.133	65		R99	Clarification of parallel measurement section	F	3.3.0	3.4.0

Table B.5: CRs approved by TSG RAN#11

RAN Doc	Spec	CR	R	Ph	Subject	Cat	Curr	New
RP-010091	25.133	66		R99	General idle mode requirements	F	3.4.0	3.5.0
RP-010091	25.133	67		R99	Removal of Signalling Delay Requirements	F	3.4.0	3.5.0
RP-010091	25.133	68		R99	FDD/GSM handover		3.4.0	3.5.0
RP-010091	25.133	69		R99	Revised Correction of hard handover delay requirements	F	3.4.0	3.5.0
RP-010091	25.133	70		R99	Cell-Reselection, Measurements of inter-frequency TDD cells	F	3.4.0	3.5.0
RP-010091	25.133	71		R99	Correction of number of events that should be handled by the UE	F	3.4.0	3.5.0
RP-010091	25.133	72		R99	Revised limitations to the usage of compressed mode patterns	F	3.4.0	3.5.0
RP-010091	25.133	73		R99	Measurements on FDD and TDD in Cell-FACH state	F	3.4.0	3.5.0
RP-010091	25.133	74		R99	Measurements on GSM in Cell-FACH state	F	3.4.0	3.5.0
RP-010091	25.133	75		R99	Cell re-selection in Cell-FACH state	F	3.4.0	3.5.0
RP-010091	25.133	76		R99	General Measurement Requirements in CELL_DCH State	F	3.4.0	3.5.0
RP-010091	25.133	77		R99	GSM Measurements	F	3.4.0	3.5.0
RP-010091	25.133	78		R99	Cell reselection performance	F	3.4.0	3.5.0
RP-010091	25.133	79		R99	CPICH Ec/lo mapping	F	3.4.0	3.5.0
RP-010091	25.133	80		R99	UTRAN transport channel BLER measurement	F	3.4.0	3.5.0
RP-010091	25.133	81		R99	UTRAN physical channel BER measurement	F	3.4.0	3.5.0
RP-010091	25.133	82		R99	Test case for FDD/TDD cell re-selection .	F	3.4.0	3.5.0
RP-010091	25.133	83		R99	Requirements for event triggered reporting in fading conditions	F	3.4.0	3.5.0
RP-010091	25.133	84		R99	Modification of soft handover requirements	F	3.4.0	3.5.0
RP-010091	25.133	85		R99	Clarifications of TDD measurements and the use of compressed mode pattern for TDD measurements.	F	3.4.0	3.5.0
RP-010091	25.133	86		R99	9 UE transmit Timing		3.4.0	3.5.0
RP-010091	25.133	87		R99	Correction of the FDD/TDD handover requirement in connected mode.		3.4.0	3.5.0

Table B.6: Release 4 CR approved by TSG RAN#11

RAN Doc	Spec	CR	R	Ph	Subject	Cat	Curr	New
RP-	25.133	88		R4	UE/UTRAN GPS Timing of Cell Frames for LCS	В	3.5.0	4.0.0
010099								

Table B.7: Release 4 CRs approved by TSG RAN#12

RAN Doc	Spec	CR	R	Ph	Title	Cat	Curr	New
RP-010353	25.133	90		Rel-4	Correction of FDD/TDD handover requirement.	Α	4.0.0	4.1.0
RP-010353	25.133	92		Rel-4	Extraction of TGSN_proposed	Α	4.0.0	4.1.0
RP-010353	25.133	94		Rel-4	Corrections to cell re-selection requirements	Α	4.0.0	4.1.0
RP-010353	25.133	96		Rel-4	UTRAN to GSM cell reselection delay in CELL_FACH state	Α	4.0.0	4.1.0
RP-010353	25.133	98		Rel-4	Corrections for idle mode section	Α	4.0.0	4.1.0
RP-010353	25.133	100		Rel-4	Cell-reselection test cases in CELL_PCH and URA_PCH	Α	4.0.0	4.1.0
RP-010353	25.133	102		Rel-4	Idle mode cell-reselection test cases	Α	4.0.0	4.1.0
RP-010353	25.133	104		Rel-4	Measurements in CELL_FACH State	Α	4.0.0	4.1.0
RP-010353	25.133	106		Rel-4	Cell-reselection test cases in CELL_FACH	Α	4.0.0	4.1.0
RP-010353	25.133	108		Rel-4	GSM measurements in CELL_DCH state	Α	4.0.0	4.1.0
RP-010354	25.133	112		Rel-4	Corrections for multiple neighbour test cases	Α	4.0.0	4.1.0
RP-010354	25.133	114		Rel-4	Corrections for Section 5	Α	4.0.0	4.1.0
RP-010354	25.133	116		Rel-4	RRC Connection re-establishment	Α	4.0.0	4.1.0
RP-010354	25.133	118		Rel-4	Corrections for Section 9	Α	4.0.0	4.1.0
RP-010354	25.133	120		Rel-4	Correction for a CPICH_Ec/lo definition	Α	4.0.0	4.1.0
RP-010354	25.133	122		Rel-4	Detection and measurements of new cells not belonging to monitored set	Α	4.0.0	4.1.0
RP-010364	25.133	123		Rel-4	Detection and measurements of new cells not belonging to monitored set	F	4.0.0	4.1.0
RP-010495	25.133	125	2	Rel-4	Requirements for TFC selection at the maximum power	Α	4.0.0	4.1.0

Table B.8: Release 4 CRs approved by TSG RAN#13

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New
RP-010619	25.133	127		Rel-4	Clarifications on TDD measurements and related accuracy	Α	4.1.0	4.2.0
					requirements			
RP-010619	25.133	129		Rel-4	Handover delay correction	Α	4.1.0	4.2.0
RP-010619	25.133	131		Rel-4	Corrections to intra-frequency test case A.8.1.1	Α	4.1.0	4.2.0
RP-010619	25.133	133		Rel-4	Cell Re-selection - requirement for Camped on Any Cell state	Α	4.1.0	4.2.0
RP-010619	25.133	135		Rel-4	FDD/FDD Hard Handover Testcase	Α	4.1.0	4.2.0
RP-010619	25.133	137		Rel-4	Success rates in test cases	Α	4.1.0	4.2.0
RP-010619	25.133	139		Rel-4	FDD/GSM Handover test case	Α	4.1.0	4.2.0
RP-010619	25.133	143		Rel-4	TFC selection in the UE	Α	4.1.0	4.2.0
RP-010619	25.133	145		Rel-4		Α	4.1.0	4.2.0
					CELL_DCH			
RP-010620		147			Test conditions for GSM Carrier RSSI	A	4.1.0	4.2.0
RP-010620		149			Transport Channel BER accuracy requirement	Α	4.1.0	4.2.0
RP-010620		151			Clarification to Requirement classification for statistical testing	Α	4.1.0	4.2.0
RP-010620	25.133	153		Rel-4	Correction to FDD/TDD cell re-selection test case	Α	4.1.0	4.2.0
RP-010620		155			Editorial corrections to UTRAN measurements in section 9.2	Α	4.1.0	4.2.0
RP-010620	25.133	157		Rel-4	RACH reporting	Α	4.1.0	4.2.0
RP-010620	25.133	159		Rel-4	Correction for Test Case A.8.1.3	Α	4.1.0	4.2.0
RP-010620	25.133	161		Rel-4	UTRAN to GSM cell re-selection test cases	Α	4.1.0	4.2.0
RP-010620	25.133	163		Rel-4	Requirement for the monitor list	Α	4.1.0	4.2.0
RP-010620	25.133	165		Rel-4	Correction for event triggered report	Α	4.1.0	4.2.0
RP-010621	25.133	167		Rel-4	Cell Re-selection in CELL_FACH test case	Α	4.1.0	4.2.0
RP-010621	25.133	169		Rel-4	Correction for RRC re-establishment delay	Α	4.1.0	4.2.0
RP-010621	25.133	171		Rel-4	Correction for section 5	Α	4.1.0	4.2.0
RP-010621	25.133	173		Rel-4	Section 4	Α	4.1.0	4.2.0
RP-010621	25.133	175		Rel-4	Section 8	Α	4.1.0	4.2.0
RP-010621	25.133	177		Rel-4	Cell reselection test cases in CELL_FACH state	Α	4.1.0	4.2.0
RP-010621	25.133	179		Rel-4	Correction for FDD to TDD HO requirement	Α	4.1.0	4.2.0
RP-010631	25.133	181		Rel-4	UTRAN SFN-SFN observed time difference	В	4.1.0	4.2.0
RP-010631	25.133	182		Rel-4	Correction of UE positioning measurements	F	4.1.0	4.2.0
RP-010631	25.133	183		Rel-4	RACH Propagation delay accuracy	F	4.1.0	4.2.0
RP-010621	25.133	186			TFC state change description	Α	4.1.0	4.2.0

Table B.9: Release 5 CR approved by TSG RAN#13

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-010636	25.133	184		Rel-5	Addition of Requirements and Test Case for CPCH	В	4.1.0	5.0.0	TEI5

Table B.10: Release 5 CRs approved by TSG RAN#14

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-010782	25.133	189		Rel-5	S-criteria evaluation in CELL_FACH state	Α	5.0.0	5.1.0	TEI
RP-010782	25.133	192		Rel-5	Correction of random access requirements and test case	Α	5.0.0	5.1.0	TEI
RP-010782	25.133	195		Rel-5	Correction of RRC connection re-establishment test case	Α	5.0.0	5.1.0	TEI
RP-010782	25.133	198		Rel-5	Correction of reference for UTRAN SIRerror measurement	Α	5.0.0	5.1.0	TEI
RP-010782	25.133	201		Rel-5	FDD/FDD hard handover test cases	Α	5.0.0	5.1.0	TEI
RP-010782	25.133	204		Rel-5	UTRAN GSM reselection	Α	5.0.0	5.1.0	TEI
RP-010791	25.133	207		Rel-5	Test conditions for UE Tx power measurement	Α	5.0.0	5.1.0	TEI
RP-010791	25.133	210		Rel-5	Correction to general requirements for support of compressed mode	Α	5.0.0	5.1.0	TEI
RP-010791	25.133	213		Rel-5	UE Tx Timing rate	Α	5.0.0	5.1.0	TEI
RP-010791	25.133	216		Rel-5	Requirements and test parameters for UE measurements	Α	5.0.0	5.1.0	TEI
RP-010791	25.133	219		Rel-5	Clarifications on requirements for reporting criteria per measurement category	Α	5.0.0	5.1.0	TEI
RP-010791	25.133	222		Rel-5	"Inconsistent use of ""sets of cells"" with respect to definition of RRC specs."	Α	5.0.0	5.1.0	TEI
RP-010792	25.133	225		Rel-5	UE CPICH measurement capability for inter- frequency FDD.	Α	5.0.0	5.1.0	TEI
RP-010792	25.133	228		Rel-5	Definition of identification of a cell and SFN decoding	Α	5.0.0	5.1.0	TEI
RP-010792	25.133	231		Rel-5	CELL_FACH measurements for GSM	Α	5.0.0	5.1.0	TEI
RP-010792	25.133	234		Rel-5	CELL_DCH measurements for GSM	Α	5.0.0	5.1.0	TEI
RP-010787	25.133	238		Rel-5	SFN-SFN observed time difference measurement	Α	5.0.0	5.1.0	TEI
RP-010789	25.133	239		Rel-5	UMTS 1800 band addition to TS 25.133v500	В	5.0.0	5.1.0	Rlmlmp18, Rlnlmp19
RP-010790	25.133	240		Rel-5	Active set size limitation for dedicated pilot	В	5.0.0	5.1.0	RANimp-BeamF
RP-010913	25.133	243		Rel-5	Correction to the mapping of UE Rx-Tx time difference type 2	А	5.0.0	5.1.0	TEI

Table B.11: Release 5 CRs approved by TSG RAN#15

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-020039	25.133	246	1	Rel-5	Test description addition to chapter 9.2	F	5.1.0	5.2.0	TEI5
RP-020021	25.133	252	1	Rel-5	FDD/FDD Soft Handover delay test case	Α	5.1.0	5.2.0	TEI
RP-020021	25.133	255	1	Rel-5	Inter-frequency hard handover test case	Α	5.1.0	5.2.0	TEI
RP-020020	25.133	258		Rel-5	Clarification of measurement period for UTRA Carrier RSSI	Α	5.1.0	5.2.0	TEI
RP-020020	25.133	261	1	Rel-5	Mapping of UE Rx-Tx time difference type 1	Α	5.1.0	5.2.0	TEI
RP-020021	25.133	264	1	Rel-5	Inter-frequency measurements in CELL_FACH	Α	5.1.0	5.2.0	TEI
RP-020022	25.133	270	1	Rel-5	Correction of Cell reselection in CELL FACH	Α	5.1.0	5.2.0	TEI
RP-020021	25.133	279	1	Rel-5	Corrections to RRC connection re-establishment requirement	Α	5.1.0	5.2.0	TEI
RP-020021	25.133	282	1	Rel-5	Corrections to RRC connection re-establishment test cases	Α	5.1.0	5.2.0	TEI
RP-020021	25.133	285	1	Rel-5	Correction of hard handover test cases	Α	5.1.0	5.2.0	TEI
RP-020020	25.133	295	1	Rel-5	FDD inter frequency measurements and test cases	Α	5.1.0	5.2.0	TEI
RP-020022	25.133	297	1	Rel-5	UE Tx Timing in soft handover	Α	5.1.0	5.2.0	TEI
RP-020022	25.133	302	1	Rel-5	SFN decoding for identification of a new cell	Α	5.1.0	5.2.0	TEI
RP-020020	25.133	305		Rel-5	UTRAN GSM Cell Reselection	Α	5.1.0	5.2.0	TEI
RP-020022	25.133	311		Rel-5	Correction of power spectral density	Α	5.1.0	5.2.0	TEI
RP-020020	25.133	314	1	Rel-5	Inclusion of AMR 2 requirement (Rel-5)	Α	5.1.0	5.2.0	TEI
RP-020020	25.133	317		Rel-5	Requirement for Blind HO from UTRAN to GSM (Rel-5)	Α	5.1.0	5.2.0	TEI
RP-020022	25.133	327		Rel-5	Corrections to section 9	Α	5.1.0	5.2.0	TEI
RP-020022	25.133	330		Rel-5	Correction of Cell Reselection in idle mode test case	Α	5.1.0	5.2.0	TEI

Table B.12: Release 5 CRs approved by TSG RAN#16

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-020284	25.133	342	1	Rel-5	GSM measurement test cases	Α	5.2.0	5.3.0	TEI
RP-020284	25.133	360		Rel-5	Corrections to FDD-GSM cell re-selection test case	Α	5.2.0	5.3.0	TEI
RP-020284	25.133	363	1	Rel-5	Corrections to UTRAN carrier RSSI measurement	Α	5.2.0	5.3.0	TEI
					accuracy requirement				
RP-020284	25.133	366		Rel-5	Corrections to cell re-selection test cases	Α	5.2.0	5.3.0	TEI
RP-020285	25.133	369		Rel-5	FDD-GSM cell reselection test correction - scenario 1	Α	5.2.0	5.3.0	TEI
RP-020303	25.133	376		Rel-5	Wording correction to UTRAN measurements	F	5.2.0	5.3.0	TEI5
RP-020303	25.133	388		Rel-5	Correction to cell re-selection requirements in Cell-FACH state	F	5.2.0	5.3.0	TEI5
RP-020285	25.133	391	1	Rel-5	TFC selection	Α	5.2.0	5.3.0	TEI
RP-020285	25.133	394		Rel-5	GSM re-selection	Α	5.2.0	5.3.0	TEI
RP-020303	25.133	410	1	Rel-5	Correction of the definition of known cell	F	5.2.0	5.3.0	TEI5
RP-020285	25.133	415		Rel-5	Corrections to FDD-TDD requirements and test cases	Α	5.2.0	5.3.0	TEI
RP-020285	25.133	424	1	Rel-5	Definition of out of service	Α	5.2.0	5.3.0	TEI

Table B.13: Release 5 CRs approved by TSG RAN#17

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-020487	25.133	430	1	Rel-5	Inclusion of TTI uncertainty in event reporting delays for FDD measurement test cases.	F	5.3.0	5.4.0	TEI5
RP-020475	25.133	436	1	Rel-5	Correction of Identification times in CELL_FACH state for BSIC identification	Α	5.3.0	5.4.0	TEI
RP-020475	25.133	448	1	Rel-5	Accuracy requirement of UE Rx-Tx time difference type 2	Α	5.3.0	5.4.0	TEI
RP-020475	25.133	451		Rel-5	Correction of CELL_FACH test case	Α	5.3.0	5.4.0	TEI
RP-020487	25.133	457	1	Rel-5	Corrections of the tables of valid compressed mode parameters	F	5.3.0	5.4.0	TEI5
RP-020475	25.133	460	1	Rel-5	Correction of SCH side conditions and corrections of test cases	Α	5.3.0	5.4.0	TEI
RP-020487	25.133	465	2	Rel-5	Inclusion of AMR WB speech codec requirements	F	5.3.0	5.4.0	TEI5
RP-020481	25.133	467		Rel-5	Completion of FDD-1.28 Mcps TDD	Α	5.3.0	5.4.0	LCRTDD-RF
RP-020481	25.133	468		Rel-5	Removal of AMR speech codec requirement	Α	5.3.0	5.4.0	TEI4
RP-020529	25.133	471	1	Rel-5	Definition of valid range for Rx-Tx time difference	Α	5.3.0	5.4.0	TEI

Table B.14: Release 5 CRs approved by TSG RAN#18

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-020780	25.133	439	1	Rel-5	Correction of interruption time in FDD/FDD Hard Handover	Α	5.4.0	5.5.0	TEI
RP-020780	25.133	477		Rel-5	Correction of UE Transmitted Power requirements in case of Compressed Mode gaps	Α	5.4.0	5.5.0	TEI
RP-020780	25.133	479	1	Rel-5	Correcction of Measurement Occasion Patterns for BSIC Reconfirmation	Α	5.4.0	5.5.0	TEI
RP-020780	25.133	481	2	Rel-5	Required Window size for measurements using IPDL	Α	5.4.0	5.5.0	TEI
RP-020780	25.133	483	1	Rel-5	UE Timer accuracy	Α	5.4.0	5.5.0	TEI
RP-020787	25.133	498	1	Rel-5	Total received power density definition for the BS	Α	5.4.0	5.5.0	TEI4
RP-020798	25.133	502	1	Rel-5	CPICH RSCP report mapping	F	5.4.0	5.5.0	TEI5
RP-020780	25.133	506		Rel-5	Correction of UE parameters for Random Access Test	Α	5.4.0	5.5.0	TEI

Table B.15: Release 6 CRs approved by TSG RAN#19

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-020802	25.133	474		Rel-6	RRM requirement changes for FDD Base Station	В	5.4.0	6.0.0	RInImp-BSClass-
					Classification				FDD
RP-020802	25.133	497		Rel-6	Changes in TS25.133 according to FDD Local area	В	5.4.0	6.0.0	RInImp-BSClass-
					BS				FDD

Table B.16: Release 6 CRs approved by TSG RAN#19

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-030027	25.133	513		Rel-6	Correction of interruption time in FDD/TDD Hard Handover	Α	6.0.0	6.1.0	TEI
RP-030027	25.133	517		Rel-6	Applicability of Timer T-reselection for 2G cell reselection.	Α	6.0.0	6.1.0	TEI
RP-030040	25.133	520		Rel-6	Correction of measurement and reporting capability requirements in CELL_DCH state in case of parallel measurements	Α	6.0.0	6.1.0	TEI5
RP-030027	25.133	522		Rel-6	Correction of Hard HO test case	Α	6.0.0	6.1.0	TEI
RP-030034	25.133	527		Rel-6	UE rx-tx time difference type 1	Α	6.0.0	6.1.0	TEI4
RP-030040	25.133	533		Rel-6	Changes to TFC selection requirements for codec mode switch	Α	6.0.0	6.1.0	TEI5
RP-030027	25.133	547		Rel-6	Constant Value in Random Access Test requirements	Α	6.0.0	6.1.0	TEI
RP-030031	25.133	551		Rel-6	Correction of UE parameters for Random Access test	Α	6.0.0	6.1.0	TEI
RP-030048	25.133	553		Rel-6	Corrections of CPICH_Ec/lo relative measurement accuracy requirement	F	6.0.0	6.1.0	TEI6

Table B.17: Release 6 CRs approved by TSG RAN#20

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-030209	25.133	567	2	Rel-6	UE soft handover delay requirements	Α	6.1.0	6.2.0	TEI
RP-030209	25.133	573	1	Rel-6	Correction to CPICH Ec/lo in correct reporting of neighbours in AWGN propagation condition test case	А	6.1.0	6.2.0	TEI
RP-030209	25.133	580		Rel-6	Correction to CPCH RSCP Test case A.9.1.1	Α	6.1.0	6.2.0	TEI
RP-030219	25.133	584		Rel-6	Correction to Observed time difference to GSM cell requirement	Α	6.1.0	6.2.0	TEI5
RP-030210	25.133	588		Rel-6	Correction to RRC Re-establishment delay test case in Section A.6.1	Α	6.1.0	6.2.0	TEI
RP-030210	25.133	592	1	Rel-6	TGPL limitations for inter-frequency measurements	Α	6.1.0	6.2.0	TEI
RP-030220	25.133	596	1	Rel-6	Correction to CPICH_RSCP test case A.9.1.1.1	F	6.1.0	6.2.0	TEI6
RP-030209	25.133	597		Rel-6	SFN-SFN observed time difference type 1	Α	6.1.0	6.2.0	TEI
RP-030210	25.133	602		Rel-6	Correction to SFN-CFN observed time difference	Α	6.1.0	6.2.0	TEI

Table B.18: Release 6 CRs approved by TSG RAN#21

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-030423	25.133	604		Rel-6	Correction of the RACH reporting delay	F	6.2.0	6.3.0	TEI6
RP-030420	25.133	606		Rel-6	Accuracy requirement of non-HSDPA transmit carrier power measurement	Α	6.2.0	6.3.0	TEI5
RP-030423	25.133	608		Rel-6	Test time reduction for Cell Re-selection in CELL_FACH	F	6.2.0	6.3.0	TEI6
RP-030420	25.133	612	1	Rel-6	FDD inter-frequency cell identification	Α	6.2.0	6.3.0	TEI5
RP-030540	25.133	616		Rel-6	CELL_DCH to CELL_FACH/CELL_PCH/URA_PCH transition when suitable UTRA cell is not found	Α	6.2.0	6.3.0	TEI

Table B.19: Release 6 CRs approved by TSG RAN#22

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Workitem
RP-030602	25.133	618		Rel-6	Clarification on filtering requirements	Α	6.3.0	6.4.0	TEI5
RP-030592	25.133	622	1	Rel-6	GSM test case on correct reporting of GSM neighbors	Α	6.3.0	6.4.0	TEI
RP-030720	25.133	626	1	Rel-6	FDD Inter Frequency Fading Test Case	F	6.3.0	6.4.0	TEI6
RP-030607	25.133	627		Rel-6	Correction to CPICH RSCP measurement report mapping	F	6.3.0	6.4.0	TEI6
RP-030607	25.133	628		Rel-6	Correction to correct reporting of neighbours in AWGN propagation condition	F	6.3.0	6.4.0	TEI6
RP-030607	25.133	629		Rel-6	Correction to correct reporting of neighbours in fading propagation condition	F	6.3.0	6.4.0	TEI6
RP-030592	25.133	635		Rel-6	Correction to Random Access test case	Α	6.3.0	6.4.0	TEI
RP-030607	25.133	636		Rel-6	Test time reduction for RRM delay tests	F	6.3.0	6.4.0	TEI6
RP-030592	25.133	640	1	Rel-6	CPICH Ec/lo relative accuracy	Α	6.3.0	6.4.0	TEI

Table B.20: Release 6 CRs approved by TSG RAN#23

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-040042	25.133	647	1	Rel-6	Clarify measurement control for FDD/FDD Inter- frequency Hard Handover test case	F	6.4.0	6.5.0	TEI6
RP-040037	25.133	649	1	Rel-6	Test case for multipath fading intra-frequency cell identification	Α	6.4.0	6.5.0	TEI5
RP-040039	25.133	650	1	Rel-6	Introduction of band IV, V and VI requirements	F	6.4.0	6.5.0	RInImp-UMTS850; UMTS800; UMTS1721
RP-040034	25.133	654	1	Rel-6	Inter system HO from UTRAN FDD to GSM	Α	6.4.0	6.5.0	TEI

Table B.21: Release 6 CRs approved by TSG RAN#24

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-040228	25.133	659	1		Removal of the 5s limitation of the identification time in interfrequency handovers	F	6.5.0	6.6.0	TEI6
RP-040194	25.133	663	1		Correction to UTRA Carrier RSSI measurement tables in test cases	F	6.5.0	6.6.0	TEI6
RP-040194	25.133	665	1	Rel-6	Corrections to Io, Ioc and RSCP levels for testing different frequency bands	F	6.5.0	6.6.0	TEI6
RP-040194	25.133	667	1	Rel-6	Removal of square brackets and other corrections to support T1	Α	6.5.0	6.6.0	TEI5
RP-040228	25.133	668	1		Clarification to BSIC verification	F	6.5.0	6.6.0	TEI6
RP-040253	25.133	675		Rel-6	Clarification of UE procedure in case of HHO failure	F	6.5.0	6.6.0	TEI6

Table B.22: Release 6 CRs approved at TSG RAN#25

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-040291	25.133	661	3	Rel-6	Clarification of HS-DPCCH in Transport format combination selection requirements	А	6.6.0	6.7.0	HSDPA-RF
RP-040283	25.133	679		Rel-6	Redrafting of alignment of the activation time definition between TS 25.133 and TS 25.331	Α	6.6.0	6.7.0	TEI
RP-040288	25.133	680		Rel-6	Correction to FDD inter frequency fading test case	F	6.6.0	6.7.0	TEI6
RP-040288	25.133	681	1	Rel-6	Additional scenarios for cell reselection test requirements	F	6.6.0	6.7.0	TEI6
RP-040283	25.133	685		Rel-6	Removal of Cell_FACH requirements for GSM observed time difference measurement	Α	6.6.0	6.7.0	TEI
RP-040288	25.133	687	2	Rel-6	RX-TX timing test modified to use soft handover, delay range for RX-TX timing test specified	F	6.6.0	6.7.0	TEI6
RP-040286	25.133	689	1	Rel-6	Removal of square brackets from requirements for number of reporting criteria for traffic volume measurements in cell_FACH state	A	6.6.0	6.7.0	TEI5
RP-040286	25.133	692	1	Rel-6	FDD/FDD Hard Handover test case clarification	Α	6.6.0	6.7.0	TEI5

Table B.23: Release 6 CRs approved at TSG RAN#26

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-040412	25.133	698		Rel-6	Clarification of Inter-RAT hand over test parameters.	F	6.7.0	6.8.0	TEI6
RP-040412	25.133	702		Rel-6	Correction to UE transmitted power measurement	F	6.7.0	6.8.0	TEI6
RP-040408	25.133	704		Rel-6	Target Quality on DTCH	Α	6.7.0	6.8.0	TEI5
RP-040408	25.133	706		Rel-6	Harmonisation of TS25.133 and TS34.108	Α	6.7.0	6.8.0	TEI5

Table B.24: Release 6 CRs approved at TSG RAN#27

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050050	25.133	707	1	Rel-6	Introduction of DL Transmission Branch Load	В	6.8.0	6.9.0	TEI6
					Measurement				
RP-050038	25.133	715		Rel-6	Removal of TGPL2	С	6.8.0	6.9.0	TEI5
RP-050041	25.133	719		Rel-6	GSM BSIC reconfirmation	F	6.8.0	6.9.0	TEI6
RP-050041	25.133	720		Rel-6	Cell Search Requirement	F	6.8.0	6.9.0	TEI6
RP-050041	25.133	721		Rel-6	Correction of error in the implementation of CR502	F	6.8.0	6.9.0	TEI6
RP-050037	25.133	727	2	Rel-6	Correction to DPCH_Ec/lor level in A.7.1 UE Transmit	Α	6.8.0	6.9.0	TEI
					Timing				

Table B.25: Release 6 CRs approved at TSG RAN#28

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050253	25.133	734	1	Rel-6	New requirements Fast L1 Sync	F	6.9.0	6.10.0	TEI6
RP-050254	25.133	735	2	Rel-6	New requirements Timing-maintained hard handover	F	6.9.0	6.10.0	TEI6
RP-050207	25.133	736	1	Rel-6	E-TFC selection in the UE	F	6.9.0	6.10.0	EDCH-RF
RP-050209	25.133	738		Rel-6	Introduction of Fractional DPCH	В	6.9.0	6.10.0	RANimp-RABSE- CodeOptFDD
RP-050208	25.133	739		Rel-6	Definition of the Reference Cell in case of initial Macro Diversity allocation	F	6.9.0	6.10.0	TEI6
RP-050208	25.133	740		Rel-6	Alignment of Requirements for Inter Frequency Cell Identification Test Case	F	6.9.0	6.10.0	TEI6
RP-050208	25.133	742		Rel-6	Correction of CPICH RSCP absolute accuracy condition	F	6.9.0	6.10.0	TEI6
RP-050212	25.133	749		Rel-6	Feature Clean Up: Removal of Observed time difference to GSM cell	С	6.9.0	6.10.0	TEI6
RP-050215	25.133	751		Rel-6	Feature Clean Up: Removal of Compressed mode by puncturing	С	6.9.0	6.10.0	TEI6
RP-050216	25.133	753		Rel-6	Feature Clean Up: Removal of CPCH	С	6.9.0	6.10.0	TEI6
RP-050213	25.133	755		Rel-6	Feature Clean Up: Removal of dedicated pilot as sole phase reference	С	6.9.0	6.10.0	TEI6
RP-050208	25.133	756	1	Rel-6	PRACH Burst timing Accuracy	F	6.9.0	6.10.0	TEI6
RP-050204	25.133	758	2	Rel-6	UE transmitted power measurement report mapping.	Α	6.9.0	6.10.0	TEI5
RP-050208	25.133	759	1	Rel-6	Clarification of Test requirements on FDD/FDD Soft Handover test	F	6.9.0	6.10.0	TEI6
RP-050208	25.133	760		Rel-6	Correction of CPICH_RSCP Intra frequency absolute measurement accuracy side conditions for Band III	F	6.9.0	6.10.0	TEI6

Table B.26: Release 7 CR approved at TSG RAN#28

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050206	25.133	741		Rel-7	Introduction of UMTS2600 requirements	В	6.9.0	7.0.0	RInImp-UMTS2600

Table B.27: Release 7 CRs approved at TSG RAN#29

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050495	25.133	0763		Rel-7	Correction of Compressed Mode Patterns for BSIC identification	Α	7.0.0	7.1.0	TEI5
RP-050506	25.133	0765	1	Rel-7	CR for 25.133 on RTWP requirements	Α	7.0.0	7.1.0	EDCH-RF
RP-050440	25.133	0767	1	Rel-7	CR for requirements for non-HSDPA and non-EDCH transmitter carrier power	Α	7.0.0	7.1.0	EDCH-RF
RP-050507	25.133	0769		Rel-7	Revision of "New requirements Timing-maintained hard handover"	Α	7.0.0	7.1.0	TEI6
RP-050507	25.133	0774	1	Rel-7	Modification of DTCH BLER target in RRM hard handover test cases	Α	7.0.0	7.1.0	TEI6
RP-050491	25.133	0784	1	Rel-7	UTRA Carrier RSSI relative accuracy	Α	7.0.0	7.1.0	TEI6
RP-050506	25.133	0787	1	Rel-7	E-TFC selection in the UE	Α	7.0.0	7.1.0	EDCH-RF
RP-050506	25.133	0789		Rel-7	Maximum size of active set for HSUPA	Α	7.0.0	7.1.0	EDCH-RF

Table B.28: Release 7 CRs approved at TSG RAN#30

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-050733	25.133	0802		Rel-7	Feature Clean Up: Removal of CPCH	С	7.1.0	7.2.0	TEI5
RP-050841	25.133	0804	2	Rel-7	RRM combined compressed mode test case	Α	7.1.0	7.2.0	TEI6
RP-050743	25.133	0812	2	Rel-7	MBMS requirements in 25.133	Α	7.1.0	7.2.0	MBMS-RAN-RF
RP-050744	25.133	0816		Rel-7	Frequency Band VII corrections	F	7.1.0	7.2.0	RInImp-UMTS2600
RP-050742	25.133	0819		Rel-7	Introduction of UMTS1700 requirements	В	7.1.0	7.2.0	RInImp-UMTS1700
RP-050735	25.133	0825	3	Rel-7	TFC and E-TFC selection requirements	Α	7.1.0	7.2.0	EDCH-RF
RP-050841	25.133	0829	2	Rel-7	Introduction of PRACH timing test	Α	7.1.0	7.2.0	TEI6
RP-050741	25.133	0830		Rel-7	Introduction of Band VIII (900 MHz) in UTRA FDD	В	7.1.0	7.2.0	RInImp-UMTS900
					specification TS 25.133				

Table B.29: Release 7 CRs approved at TSG RAN#31

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-060111	25.133	0832		Rel-7	Introduction of measurement performance requirements for Band III/IX UE	В	7.2.0	7.3.0	RInImp-UMTS1700
RP-060101	25.133	0834	1	Rel-7	Test case for MTCH reception and mobility requirements in Cell-PCH state	Α	7.2.0	7.3.0	MBMS-RAN-RF
RP-060114	25.133	0835		Rel-7	Requirements for cross-band measurements	F	7.2.0	7.3.0	TEI7
RP-060109	25.133	0843	2	Rel-7	Requirement for HS-DSCH cell change	Α	7.2.0	7.3.0	TEI6
RP-060109	25.133	0845	1	Rel-7	Testcase for HS-DSCH cell change	Α	7.2.0	7.3.0	TEI6
RP-060103	25.133	0847		Rel-7	Correction of a reference to Table A.22.A in 25.101.	Α	7.2.0	7.3.0	TEI6
RP-060103	25.133	0850	3	Rel-7	Correction of test requirement in the Combined Interfrequency and GSM measurements testcase	Α	7.2.0	7.3.0	TEI6
RP-060102	25.133	0852	1	Rel-7	Changes to E-TFC restriction requirements	Α	7.2.0	7.3.0	EDCH-RF
RP-060114	25.133	0855		Rel-7	Clarification of UE TX timing requirements	F	7.2.0	7.3.0	TEI7
RP-060103	25.133	0856		Rel-7	New test scenario: UTRAN to GSM reselection in Idle mode with SIB18 present	Α	7.2.0	7.3.0	TEI6
RP-060102	25.133	0858	2	Rel-7	UPH measurement requirements	Α	7.2.0	7.3.0	EDCH-RF
RP-060114	25.133	0860		Rel-7	Correction of CPICH intra-frequency test parameter for band VIII	F	7.2.0	7.3.0	TEI7

Table B.30: Release 7 CRs approved at TSG RAN#32

RAN Tdoc	Spec	CR	R	Ph	Title	Cat	Curr	New	Work Item
RP-060304	25.133	0862		Rel-7	Correction for the test requirement in the Combined Inter frequency and GSM measurements test case in section A.8.5.1.2	А	7.3.0	7.4.0	TEI6
RP-060314	25.133	0867		Rel-7	Correction of RTWP relative accuracy requirement	F	7.3.0	7.4.0	TEI7
RP-060306	25.133	0869		Rel-7	Addition of Pdpcch accuracy requirements to E-TFC restriction requirements	Α	7.3.0	7.4.0	EDCH-RF
RP-060306	25.133	0871	1	Rel-7	E-TFC restriction test case	Α	7.3.0	7.4.0	EDCH-RF
RP-060304	25.133	0877	1	Rel-7	Correction of testcase for HS-DSCH cell change	Α	7.3.0	7.4.0	TEI6

History

	Document history							
V7.2.0	December 2005	Publication						
V7.3.0	March 2006	Publication						
V7.4.0	June 2006	Publication						