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Foreword 
This Technical Specification (TS) has been produced by ETSI Technical Committee Environmental Engineering (EE). 

The present document is part 2 of a multi-part deliverable covering Innovative energy storage technology for stationary 
use, as identified below: 

Part 1: "Overview"; 

Part 2: "Battery"; 

Part 3: "Supercapacitor". 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Executive summary 
The present document is a part (Part 2: Battery) of a series of standards (the other standards in the series being ETSI 
TS 103 553-1 [1] and ETSI TS 103 553-3 [i.19] on innovative energy storage systems for stationary power systems of 
telecom/Information and Communication Technology (ICT) equipment used in telecom networks, data centres and 
Customer Premises Equipment (CPE). The present document introduces technologies and methods for evaluating, 
selecting and testing battery systems for defined applications. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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Introduction 
Conventional Valve Regulated Lead Acid (VRLA) batteries are widely used for their low cost, mature technology and 
infrequent and easy maintenance. However, with the continuous development of broadband network technologies 
(wireless base stations or optical access sites) associated with higher energy density core network sites and data centres, 
traditional bulky batteries are gradually exposed to higher ambient temperatures and other stresses. 

As alternatives, new battery technologies may provide better performances in size, weight, temperature range, cycling, 
high-rate charging and discharging, environmental protection and many other advantages. 

Other applications of stationary rechargeable batteries are now observed for resilience of customer home or office 
telecom/ICT installations, that can be associated with renewable energy sources in countries with unstable AC grids. 
More recently new requirements for uninterrupted power for Internet of Things (IoT) and Machine to Machine (M2M) 
devices have also emerged using rechargeable batteries rather than primary batteries due to advantages in size, costs and 
issues of replacement frequency. 

However as discussed in IEEE Intelec2018 [i.23], the increasing demands on stationary batteries are driving innovation 
and many new battery technologies are being developed. Consequently there is a need for a method to discriminate the 
most appropriate technologies and products for one or several applications and for this purpose additional evaluations 
and tests are still required. 

The present document introduces basic requirements and tests methods for evaluating new batteries (lithium, nickel 
based, etc.) for stationary use in power supply systems of ICT equipment. The present document also complements 
existing general International Electrotechnical Commission (IEC) standards of electrochemical battery products. 

In each family of technologies, a typical chemistry is taken as a basis for improved description, e.g. lithium iron 
phosphate is in the lithium battery family, nickel-zinc is in the nickel based family, etc. 

The present document was developed jointly by ETSI TC EE and ITU-T Study Group 5 and is published respectively 
by ITU and ETSI as Recommendation ITU-T L.1221 [i.17] and the present document, which are technically equivalent. 
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1 Scope 
The present document contains the main requirements for evaluating appropriate innovative batteries for stationary use 
for powering ICT equipment in telecom sites, active network units and data centres or customer premises with 
standardized power interfaces in -48 V, up to 400 VDC or 12 V. 

Based on the general selection and evaluation method proposed in ETSI TS 103 553-1 [1], the present document 
introduces the main battery technologies, characteristics and the method to select, evaluate and test battery products 
adapted to a defined application.  

The present document describes the selection criteria and possible tests for making the appropriate or optimal choice of 
battery technology for an ICT stationary application. This includes mechanical performance, electrical performance, 
(voltage, current, power and capacity ratings, efficiency and self-discharge, etc.), environmental performance 
(temperature range), lifetime performance (cycling and calendar life, tolerance of partial charge and depth of discharge), 
installation, operation and maintenance complexity (parallel operation), safety (risk to and protection of humans and 
environment, error and fault tolerance), management/monitoring (including anti-theft solution) at battery and cell level 
and Total Cost Ownership (TCO) assessment. 

The present document specifies evaluation methods and tests which complement those of existing relevant standards 
requirements. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

[1] ETSI TS 103 553-1: "Environmental Engineering (EE); Innovative energy storage technology for 
stationary use; Part 1: Overview". 

[2] ETSI ES 202 336-11 (V1.1.1) (2014): "Environmental Engineering (EE); Monitoring and control 
interface for infrastructure equipment (Power, Cooling and environment systems used in 
telecommunication networks); Part 11: Battery system with integrated control and monitoring 
information model". 

[3] IEC 60896-21:2004: "Stationary lead-acid batteries - Part 21: Valve regulated types - Methods of 
test". 

[4] IEC 60896-22:2004: "Stationary lead-acid batteries - Part 22: Valve regulated types - 
Requirements". 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

https://docbox.etsi.org/Reference
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The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] Recommendation ITU-T L.1001 (2012): "External universal power adapter solutions for stationary 
information and communication technology devices". 

[i.2] Recommendation ITU-T L.1200 (2012): "Direct current power feeding interface up to 400 V at the 
input to telecommunication and ICT equipment". 

[i.3] Recommendation ITU-T L.1201 (2014): "Architecture of power feeding systems of up to 
400 VDC". 

[i.4] ETSI ES 203 474: "Environmental Engineering (EE); Interfacing of renewable energy or 
distributed power sources to 400 VDC distribution systems powering Information and 
Communication Technology (ICT) equipment". 

[i.5] ISO/IEC 17025 (2017): "General requirements for the competence of testing and calibration 
laboratories". 

[i.6] IEC 62619 (2017): "Secondary cells and batteries containing alkaline or other non-acid 
electrolytes - Safety requirements for secondary lithium cells and batteries, for use in industrial 
applications". 

[i.7] IEC 61960-3 (2017): "Secondary cells and batteries containing alkaline or other non-acid 
electrolytes - Secondary lithium cells and batteries for portable applications - Part 3: Prismatic and 
cylindrical lithium secondary cells and batteries made from them". 

[i.8] UN38.3 (ed.5 amendment 1): "Recommendations on the TRANSPORT OF DANGEROUS 
GOODS - Manual of Tests and Criteria". 

[i.9] Translated from Chinese Standard (GBT 2423.17-2008, GB/T2423.17-2008, GBT2423.17-2008): 
"Environmental Testing for Electric and Electronic Products - Part 2: Test Methods - Test Ka: Salt 
Mist". 

[i.10] IEC 60068-2-11 (1981): "Basic environmental testing procedures - Part 2-11: Tests - Test Ka: Salt 
mist". 

[i.11] ETSI EN 300 132-2: "Environmental Engineering (EE); Power supply interface at the input to 
telecommunications and datacom (ICT) equipment; Part 2: Operated by -48 V direct current (dc)". 

[i.12] ETSI EN 300 132-3-1 (2012): "Environmental Engineering (EE); Power supply interface at the 
input to telecommunications and datacom (ICT) equipment; Part 3: Operated by rectified current 
source, alternating current source or direct current source up to 400 V; Sub-part 1: Direct current 
source up to 400 V". 

[i.13] ETSI TR 103 229 (2014): "Environmental Engineering (EE) Safety Extra Low Voltage (SELV) 
DC power supply network for ICT devices with energy storage and grid or renewable energy 
sources options". 

[i.14] ETSI TR 102 532 (V1.1.1) (2009-06): "Environmental Engineering (EE) The use of alternative 
energy sources in telecommunication installations". 

[i.15] The European Association for Advanced Rechargeable Batteries Roadmap (2013): "E-mobility 
Roadmap for the EU battery industry". 

[i.16] IEC 60050-482 (2004): "International Electrotechnical Vocabulary - Part 482: Primary and 
secondary cells and batteries". 

[i.17] Recommendation ITU-T L.1221: "Innovative energy storage technology for stationary use; Part 2: 
Battery". 

[i.18] IEC 62620: "Secondary cells and batteries containing alkaline or other non-acid electrolytes - 
Secondary lithium cells and batteries for use in industrial applications". 

[i.19] ETSI TS 103 553-3: "Environmental Engineering (EE); Innovative energy storage technology for 
stationary use; Part 3: Supercapacitor". 
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[i.20] Recommendation ITU-T L.1205(2016): Interfacing of renewable energy or distributed power 
sources to up to 400 VDC power feeding systems. 

[i.21] SooGREEN European Project (2016-2018): "Service-oriented optimization of Green mobile 
networks", Invited paper, Rocha et alii.et alii Orange, Nokia, KTH, Royal Institute of Technology 
Netherland, Electrum Tele2 Sweden, Institut Mines Telecom, France, Eurico Ferreira Portugal, 
2017. 

NOTE: Available at http://opendl.ifip-tc6.org/db/conf/wiopt/wiopt2017/1570349026.pdf. 

[i.22] David Linden, Thomas B. Reddy: "Handbook of batteries-4th edition Library of Congress 
Cataloging-in-Publication Data". 

[i.23] D. Marquet et alii Orange, C. Campion (3C projects): "How to transform innovative battery 
opportunities in field operational solutions for Telecom/IT application IEEE Intelec 2018", Torino. 

[i.24] IEC 60896-11:2002: "Stationary lead-acid batteries - Part 11: Vented types - General requirements 
and methods of tests". 

[i.25] IEC 61427-1: "Secondary cells and batteries for renewable energy storage - General requirements 
and methods of test - Part 1: Photovoltaic off-grid application". 

[i.26] EUROBAT 2015. 

[i.27] IEC 62485-2: "Safety requirements for secondary batteries and battery installations - Part 2: 
Stationary batteries". 

[i.28] IEC 62259: "Secondary cells and batteries containing alkaline or other non-acid electrolytes - 
Nickel-cadmium prismatic secondary single cells with partial gas recombination". 

[i.29] IEC 61434: "Secondary cells and batteries containing alkaline or other non-acid electrolytes - 
Guide to designation of current in alkaline secondary cell and battery standards". 

[i.30] IEC 60623: "Secondary cells and batteries containing alkaline or other non-acid electrolytes - 
Vented nickel-cadmium prismatic rechargeable single cells". 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

Battery Management System or Unit (BMS, BMU): electronic system associated with a battery which monitors 
and/or manages its state, calculates secondary data, reports that data and/or controls its environment to influence the 
battery's performance and service life and has the functions to cut off in case of abnormal conditions (e.g. over 
charging, over current and over heating and charge balancing between cells or parallel cells blocks) 

NOTE 1: Depending on the application and its size, the function of the BMS/BMU can be assigned to the battery 
cell, module, string, pack or system and equipment using the battery. A common implementation is a 
BMS/BMU made of several electronic modules located at different levels of the system. 

NOTE 2: A Battery Management System (BMS) is sometimes also referred to as a Battery Management Unit 
(BMU).  

NOTE 3: Definition adapted from IEC 60050-482 [i.16] and IEC 62620 [i.18]. 

battery module: group of cells or blocks connected together either in a series and/or parallel configuration with or 
without protective devices (e.g. fuse or PTC) and electronic circuitry 

NOTE 1: Typically, this is parallel/serial arrangement of small cylindrical e.g. Lithium-ion or Ni based cells often 
named mSnP module. 

NOTE 2: Definition adapted from IEC 60050-482 [i.16] and IEC 62620 [i.18]. 

http://opendl.ifip-tc6.org/db/conf/wiopt/wiopt2017/1570349026.pdf.
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battery pack: energy storage device, which is comprised one or more cells or modules electrically connected together 
inside a mechanical pack with electronics as required for safety and operation 

NOTE 1: The battery pack may incorporate a protective housing and be provided with terminals or other 
interconnection arrangement. It may include protective devices and control and monitoring required for 
safe and proper operation. A typical example of a battery pack may be built by using 6s2p Lithium-ion 
module. It may provide detailed information (e.g. cell voltage, temperature, capacity) to a higher level 
battery system management device. 

NOTE 2: Definition adapted from IEC 60050-482 [i.16] and IEC 62620 [i.18]. 

battery string: group of cells or battery modules of same technology and capacity connected in series to match the 
battery system voltage 

NOTE: Strings can work in parallel with or without protective device (e.g. fuse or PTC) depending on the 
technology and safety risk. 

battery system: system which incorporates one or more battery cells, modules, strings or battery packs and has one or 
more BMS or BMU 

NOTE 1: The battery system is generally defined for high power and capacity batteries made of several battery 
strings or packs of blocks or modules it may include cooling or heating units and gas exhaust 
arrangement. 

NOTE 2: Definition adapted from IEC 60050-482 [i.16] and IEC 62620 [i.18]. 

cell, accumulator cell: cell where electrical energy is accumulated by electrochemical reactions between the negative 
electrode and the positive electrode 

NOTE: Definition adapted from IEC 60050-482 [i.16] and IEC 62620 [i.18]. 

cells block: group of cells connected together in parallel configuration with or without protective devices (e.g. fuse or 
PTC) and electronic circuitry, generally not ready for use as battery system as not yet fitted with its final housing, 
terminals arrangement, etc. 

NOTE 1:  Typically, this is parallel arrangement of n small cells e.g. Lithium-ion or Ni based cells often named nP 
configuration. 

NOTE 2: Definition adapted from IEC 60050-482 [i.16] and IEC 62620 [i.18]. 

charge recovery: charge capacity (generally in Ah) that a cell or battery can deliver after the charge following the 
charge retention test 

NOTE: As defined in IEC 62620 [i.18]. 

charge retention: charge capacity (generally in Ah) that a cell or battery can deliver after storage, at a specific 
temperature, for a specific time without subsequent recharge as a percentage of the rated capacity 

NOTE: As defined in IEC 62620 [i.18]. 

cumulative discharging energy (kWh): discharging energy (kWh) in the whole cycle life ending at a defined 
remaining capacity e.g. 70 % of rated capacity under defined normal working condition (including the working 
temperature, charging and discharging rate, and DoD) 

end-of-discharge voltage: specified closed circuit voltage at which the discharge of a cell or battery is defined as 
terminated by the manufacturer 

NOTE: Definition adapted from IEC 60050-482] [i.16] and IEC 62620 [i.18]. 

genset: generator producing electricity by using fuel e.g. a diesel generator 

NOTE: When associated with a battery system in a Hybrid Genset Battery (HGB) system the system energy 
efficiency is optimized and thus the fuel consumption to produce the same electrical HGB system output 
is reduced.  
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nickel based battery: aqueous battery that uses nickel metal and hydroxide in electrodes such NiFe, NiCd, NiMH and 
NiZn batteries 

nominal voltage: suitable approximate value of the voltage used to designate or identify a cell or a battery 

NOTE 1: The cell or battery manufacturer may provide the nominal voltage. 

NOTE 2: The nominal voltage of a battery of n series connected cells is equal to n times the nominal voltage of a 
single cell. 

NOTE 3: As defined in IEC 62620 [i.18]. 

rated capacity: capacity value of a cell or battery determined under specified conditions and declared by the 
manufacturer 

NOTE 1: The rated capacity is the quantity of electricity Cn Ah (ampere-hours) declared by the manufacturer 
which a single cell or battery can deliver during a period of n hours when charging, storing and 
discharging under specified conditions by the manufacturer. 

NOTE 2: As defined in IEC 62620 [i.18]. 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

A ICT equipment power feeding interface of -48 VDC  
A3 ICT equipment power feeding interface of up to 400 VDC 

NOTE: As defined in Recommendation ITU-T L.1200 [i.2]. 

Cn Battery capacity in Ah in n hours discharge rate 
In Battery discharge current in n hours discharge rate 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AC Alternating Current 
AGM Absorbent Glass Mat 
Ah Ampere hour 
B Battery Block 
BMS Battery Management System 
BMU Battery Management Unit 
BMU (B) Battery Management Unit (Block) 
BMU (M) Battery Management Unit (Module) 
BMU (S) Battery Management Unit (String) 
BS Battery System 
CAPEX Capital Expenditure 
CPE Customer Premises Equipment 
DC Direct Current  
DoD Depth of Discharge 
E Evaluation 
EoL End of Life 
EUT Equipment Under Test 
HARB Hybrid Aqueous Rechargeable Battery  
HGB Hybrid Genset Battery system 
ICT Information and Communication Technology  
IoT Internet of Things 
LA Lead-Acid 
LCO Lithium Cobalt Oxide  
LFP  Lithium Iron Phosphate  
LMO Lithium Manganese Oxide  
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LTO Lithium Titanate Oxide 
M Module 
M2M Machine to Machine 
NCA Nickel Cobalt Aluminium  
NCM Nickel Cobalt Manganese 
NiCd Nickel Cadmium  
NiFe Nickel Fer (Nickel-Iron in English)  
NiMH Nickel Metal Hydride  
NiZn Nickel Zinc  
NMC Nickel Manganese Cobalt  
OPEX Operational Expenditure 
OPZS Ortsfest (stationary) PanZerplatte (tubular plate) Flüssig (flooded) 
OPZV Ortsfest (stationary) PanZerplatte (tubular plate) Verschlossen (closed) 
PbC Lead-Carbon  
PSoC Partial State of Charge 
PSU Power Supply Unit 
PTC Positive Temperature Coefficient resistor 
PV PhotoVoltaic 
RES Renewable Energy System 
S System 
SCPS SCPS laboratory 
SELV Safety Extra Low Voltage 
SoC State of Charge 
SoH State of Health 
T Test 
TCO Total Cost Ownership 
U Unit 
UPS Uninterrupted Power Supply 
VDC Volt Direct Current 
VRLA Valve Regulated Lead Acid 
Wh Watt hour 

4 Battery configurations and stationary applications 
A battery is an assembly of cells contained in a more or less sealed jar made of: 

• negative and positive electrodes having active material on electric collectors; 

• separator between the electrode making galvanic insulation and containing ionic electrolyte; 

• electrolyte allowing the movement of ions making the electric charge/discharge reactions (the electrolyte can 
change its nature or not during the change of charge of the cell); 

• electrical connection from interior to exterior of the jar from soldered set of negative and positive electrodes to 
external poles. 

Figure 1 shows some examples of battery cell structures. Some of these battery cells can be used both in stationary and 
in mobile applications. Many battery cell structures, such as the common cylindrical cells, can be found in Linden [i.22] 
and in Roadmap 2013 [i.15]. 
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Internal structure of Lithium-ion Battery 

 

Figure 1:Typical constitution of cylindrical and prismatic Lithium-ion cell  

The stationary batteries are used for stationary application of power supplies of ICT equipment in telecom sites or 
active network units, data centres or customer premises with standardized power interfaces in -48 V ETSI 
EN 300 132-2 [i.11], up to 400 VDC [i.2] or ETSI EN 300 132-3-1 [i.12], or other voltages such as 12 V as defined in 
Recommendation ITU-T L.1201 [i.3] for stationary use telecom termination devices. 

The use modes include: 

• back-up of electric grids of different quality;  

• cycling use on intermittent public grids or Renewable Energy Systems (RESs) or engine generator sets (HGB); 

• peak power shaving to reduce permanent power sizing of power supplies or remote lines.  

Typical applications are as follows: 

• telecom rectifier-battery DC systems; 

• AC Uninterrupted Power Supply (UPS); 

• renewable energy systems with charge-controller between generator, battery and load as presented in 
Recommendation ITU-T L.1205 [i.20], ETSI ES 203 474 [i.4] and also in ETSI TR 102 532 [i.14];  

• hybrid engine generator set with battery (HGB); 

• power supply with back-up for fixed terminals; 

• peak power shaving;  

• Customer Premises Equipment (CPE) back-up network in a Safety Extra Low Voltage (SELV) circuit as 
presented in ETSI TR 103 229 [i.13]. 

Typical implementation examples are given in Annex A. 
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5 Overview of battery technologies 

5.1 Types of technologies 
There are many types of battery technologies.  

The main ones are: 

• Aqueous ionic electrolyte: 

- Acid:  

 Lead: 

- Flooded or vented Lead-Acid (LA)  

- VRLA type 

- Lead-carbon (PbC) 

- Pure lead, bipolar LA 

 Other metal acid batteries. 

- Alkaline:  

 Nickel based:  

 NiFe 

 NiCd 

 NiZn 

 NiMH  

 (NiMn, NiNi in research state) 

- Neutral salt:  

 Flow battery (vanadium, iron-boron, iron-iron, etc.)  

 Sodium sulfate, etc. 

 Metal-air (zinc, aluminium, magnesium, calcium other alloys, etc.) 

• Non aqueous electrolyte (organic or low temperature solid) works by an insertion mechanism (change of solid 
oxide crystal charge with ion insertion or intercalation rather than aqueous reduction/oxidation of metal/ion 
couples): 

- Lithium-ion (LCO, LMO, NCA, NMC, LFP, LTO)  

- metal-air (lithium, sodium, potassium, other alloys, etc.) 

• Hybrid Aqueous Rechargeable Battery (HARB) that uses both mechanisms (aqueous oxydo-reduction and ion 
insertion). It may apply to aluminium-ion or zinc-ion solutions. 

• Hot temperature solid (metal electrodes and melted salt electrolytes): 

- hot temperature: nickel chloride-sodium, sodium-sulfur operating at much higher temperature than 
ambient temperature with some melted material inside (e.g. sodium or sulfur at higher temperatures than 
150 °C). 

• Solutions with other separation mechanisms (e.g. by gravity) such as liquid bi-metal medium temperature alloy 
battery are under research. 
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NOTE: The initial edition of the present document will not cover all the technologies emerging from recent 
intensive research related to electric vehicles and renewable energy storage, but many considerations and 
evaluation methods defined within, such as electrical characterization for an application, are applicable.  

5.2 Lithium ion battery cells 

5.2.1 Cell types 

There are two types of lithium ion battery cells, these are known as hard case and soft case types.  

The hard case types are typically of cylindrical or prismatic case type. The soft case type is a pouch.  

In terms of the cathode and anode material, several types exist:  

• For the cathode material: LCO, LMO, NCA, NMC, LFP, lithium-metal, etc.  

• For the anode material: Graphite and LTO type, etc. 

NOTE 1: Lithium metal cells have in general a solid electrolyte separator ensuring safety, but requiring operation at 
higher than ambient temperature for improving electrical conductivity and output power. Due to heating, 
energy efficiency is lower than on lithium-ion cell operating at ambient temperature. 

NOTE 2: New aluminium, sodium, magnesium and potassium ion cells could provide a low cost alternative to 
lithium-ion for stationary applications where the highest energy density is not required, if they prove to be 
safe, reliable and use very few rare materials. 

5.2.2 Characteristics of lithium ion battery cells 

The lithium ion battery cells have the following main characteristics: 

• High gravimetric and volumetric energy density 

• Higher voltage than aqueous technologies (> 2 V) 

• No memory effect and negative effect of Partial State of Charge (PSoC) 

• Moderate environmental impact depending on chemical composition and features (less cobalt, less toxic 
electrolyte, better recycling) 

• High rate discharge  

• Fast charge and long life cycle 

• Safety  

• Wide temperature ranges  

NOTE: For some lithium technologies, permanent high State of Charge (SoC) and high voltage can accelerate 
ageing effect compared to Partial State of Charge (PSoC). 

5.2.3 Nominal voltage of lithium ion battery cells 

Lithium-ion technologies used in portable devices can be used as a stationary battery and have a well-known high 
nominal voltage of 3,6 V. Annex C lists standard secondary lithium cells defined in IEC 61960-3 [i.7].  

Battery manufacturers are developing technologies to increase the nominal voltage to 3,7 V or 3,8 V in order to increase 
the energy density enabling market for mobility and portable devices. However the nominal voltage varies depending 
on the cathode and anode material chemical composition and some technologies that have a lower voltage are targeting 
high capacity for stationary energy storage applications requiring high safety, long lifetime and good TCO. Here weight 
and volume performances are less critical than for mobile applications.  

Table 1 shows the nominal voltages for different cathode or anode materials. 
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Table 1: Nominal voltage for cathode or anode materials 

Cathode/Anode material Nominal voltage (V) 
LCO 3,8 
LMO 3,8 
NMC 3,7 
NCA 3,6 

LFP (LiFePO4) 3,2 
LTO 2,2 

 

5.2.4 End-of-charge and end-of-discharge voltage 

Since lithium ion batteries present the possibility for violent fire in the case of over-charging or over-discharging, safety 
is a key consideration. For lithium iron phosphate batteries the nominal voltage is commonly 3,2 V, with end-of-charge 
and end-of-discharge voltage at ±0,5 V of the nominal value, i.e. 3,7 V and 2,7 V, respectively. 

Voltage range is also of high importance when using them directly with telecom/ICT equipment standardized interfaces. 
For example a -48 V interface ETSI EN 300 132-2 [i.11] specifies a voltage range of 40,5 V to 57 V at input of 
equipment. The voltage range of an output power plant is defined by the operator, e.g. 43 V to 57 V. 

This imposes the use of 24 lead-acid cells in a battery string, where each cell operates within a 1,8 V to 2,3 V voltage 
range. 

With lithium it is more complex as the battery voltage range has been historically defined for lead-acid batteries and 
because lithium cells have a lot of different chemical compositions leading to different cell voltage ranges.  

Some examples of configuration design are illustrated in the case of lithium iron phosphate (LFP) technology:  

• 16 cells and uses a wide cell voltage range 2,7 V to 3,7 V:  

- min voltage = 2,7 × 16 = 43,2 V 

- max voltage = 3,7 × 16 = 59,2 V. This is too high to comply with ETSI EN 300 132-2 [i.11] 

A solution for direct connection of 16 cells to the load is possible by working at PSoC below 100 % charge level as 
should accepted by lithium; in that case the maximum cell voltage is 3,55 V and max voltage is 56,8 V. 

• 15 cells and using wide cell voltage range 2,7 V to 3,7 V: 

- min voltage = 2,7 × 15 = 40,5 V. This is too low to comply with ETSI EN 300 132-2 [i.11] 

- max voltage =3,7 × 15 = 55,5 V 

One solution is to increase the end of discharge which reduces the useful Depth of Discharge (DoD) and thus capacity. 
Another solution is a step-up or boost converter inside the battery or outside the battery to reduce the voltage range and 
stay inside the -48 V voltage range as defined in ETSI EN 300 132-2 [i.11] at input of ICT equipment.  

NOTE 1: The step up converter provides a constant output voltage within the voltage range defined in ETSI 
EN 300 132-2 [i.11]. The higher voltage up to 57 V can reduce the power loss on the cable and achieve a 
longer autonomy when supplying power to telecom power load (e.g. 2 kW) over long distances 
(e.g. 50 - 100 metres). 

NOTE 2: The risk of unavailability due to failure of the boost converter is limited if it can be by-passed when using 
a battery with a voltage range partially matching the load voltage range input. The converter cost could be 
balanced by energy saving and using in ICT equipment Power Supply Unit (PSU) with narrow voltage 
ranges. 
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5.3 Some innovative aqueous Nickel based batteries with no 
heavy metals 

5.3.1 Cell types 

The nickel based NiMH and NiZn batteries exist in hard case cylindrical and prismatic cells and can work in valve 
regulated type as VRLA in the case of lead acid batteries.  

For NiZn, it is possible to remove the valve and exceptionally refill them with demineralized water to increase their life 
time. 

In terms of the material and mechanical type of cathode and anode, there exist several types depending on: 

• Additives in electrodes (cobalt, rare earths, etc.). 

• Mechanical electrode structure: conductive metallic foam collectors receiving active material, metallic 
pockets, fritted material on metallic plate collectors. 

5.3.2 Characteristics of NiMH or NiZn battery cells 

The NiMH and NiZn cells and batteries have the following main characteristics: 

• Higher gravimetric and volumetric energy density than lead-acid or NiCd sufficient for stationary telecom 
applications, relatively lower voltage than non-aqueous technologies (< 2 V). 

• Very safe solution with no highly reactive or toxic materials allowing easy manufacturing and recycling. As 
for lead-acid battery a simple aeration is sufficient to avoid any risky hydrogen accumulation in the case of 
overcharging. 

• Almost no memory effect and negative effect of Partial State of Charge (PSoC). 

• Very high power charge and discharge ratings. 

• Long life time and life cycle performance. 

• Wide temperature range. 

• Higher reliability and stress tolerance than lithium or lead-acid. 

• No need of accurate BMS at cell level for safety; a simple BMS improves charge balancing. 

NOTE 1: The 'green solution' factor and the low cost of materials and of manufacturing are often claimed for NiFe 
and zinc based solutions such as NiZn or zinc-air. 

NOTE 2: NiFe and NiCd have higher tolerance to stress than NiMH or NiZn. NiFe is often claimed as the more 
robust and of having a longer lifetime but NiFe consumes lot of water and has low energy density. NiCd 
has lower energy density than NiMH or NiZn and requires very strict procedures in manufacturing and 
end of life accurate management due to cadmium toxicity similar to other heavy metals such as lead. 

5.3.3 Nominal voltage and voltage range of Nickel based battery cells 

Table 2 gives the nominal voltage of nickel based batteries in industrial production and examples of battery 
configurations adapted to -48 V ETSI voltage range defined in ETSI EN 300 132-2 [i.11]. 

The voltage range corresponds to cells adapted for 1 hour discharge time.  
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Table 2: Nominal voltage for cathode or anode material 

Ni technology Nominal voltage (V) Number of serial cells for Telecom/ICT 
equipment range (V) 

Adapted voltage 
range 

NiFe 1,2 40 1,1 to 1,43 
NiCd 1,25 38 1,15 to 1,5 
NiMH 1,25 38 1,15 to 1,5 
NiZn 1,65 30 1,4 to 1,9 

NOTE: A boost converter could also be used with same comment on unavailability and cost as in note of 
clause 5.2.4. 

 

5.4 Typical configuration of a battery system 

5.4.1 General configuration of a battery system 

The basic structure of the battery system for a stationary telecom/ICT application with cells management uses a battery 
management system as shown in the example in Figure 2. 

The power source feeds energy to load and to charge the battery. The battery can also feed power when discharging and 
when the power source is not working. 

Different nominal battery voltages are possible for different feed voltages: 

• -48 V range for compliance with interface A defined in ETSI EN 300 132-2 [i.11]. 

• Up to 400 VDC for compliance with interface A3 defined in Recommendation ITU-T L.1200 [i.2] and ETSI 
EN 300 132-3-1 [i.12]. 

• UPS battery at different DC voltages. Generally it depends on the power, solution and can have nominal 
values in the range 12 V to 700 V. 

• Small batteries in a stationary device power supply ensuring compliance to 5 or 12 V outputs of 
Recommendation ITU-T L.1001 [i.1] are a specific small case of DC UPS. 

The battery system consists of two main parts: 

• battery cells or cells blocks arranged in modules composing strings or packs; 

• BMS or BMU electronic functions associated with electrochemical cells for safe and performance operation. 

The battery system shall have a control/monitoring interface with the minimum set of information defined in ETSI 
ES 202 336-11 [2] for interoperability of all the power, cooling, building infrastructure and equipment energy metering 
in telecom installations and data centres. 

5.4.2 Battery Management System and Unit (BMS/BMU) 

Regarding the BMS (sometimes called BMU) functions, in general global charge and discharge management is required 
for safe operation and maintenance in order to avoid over or under charge, by controlling voltage and current and 
temperature. Time control is also used in different charging modes when required (e.g. to avoid over-charge and 
over-heating). 

NOTE 1: The management at system level is usually called BMS and management at unit levels (cabinets, 
modules, blocks) is called BMU. 

Some battery technologies require additional accurate limitation of each cell voltage and cell temperature. The cell 
temperature does not need be detected on any single cell but just in certain area to ensure the integral safety of cell, 
blocks or pack. 

These are part of a BMS function and shall be of high reliability to avoid any internal cell failure resulting in toxic 
smoke or fire risk.  
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For aqueous technology, the risks are different and do not require individual cell electrical and thermal parameters 
monitoring (e.g. enough ventilation to avoid explosive hydrogen concentration, anti-projection cork avoiding corrosive 
electrolyte, etc.) 

Cell balancing is also required for some technologies. For lead-acid and some nickel based technologies or hot batteries 
such as sodium based batteries, the balance between cells is obtained at module or pack level, e.g. by boosting the 
whole battery string voltage.  

In general, for lithium and some other technologies it shall be done at cell or parallel cells block level. 

In practical implementations, the BMS/BMU when required for safe and performance operation can be obtained by 
electronic control units at different levels as shown in the example of Figure 2: 

• battery system BMS 

• battery string or pack BMU (S) 

• battery module BMU (M) 

• cell blocks BMU (B) 

 

NOTE: All BMS/BMU are in dotted lines as they depend on cell technology and manufacturing options. For 
example, the BMU(M) and BMU(B) functions can be all achieved by the BMU(S). 

 
Figure 2: Typical battery system structure used in a rectifier-battery DC power system 

When it exists the following parameters shall be monitored and/or controlled by the different BMS or BMU for safe and 
performance operation: 

• the voltage limits of each cell  

• the voltage and current limits of the whole battery 

• the temperature limit of the whole battery  

• the temperature of a certain number of points inside the battery 

NOTE 2: Depending on the arrangement of the system it can be possible to monitor/control the current inside each 
string, pack or module as it provides an indication of the current balance between them. In the case of 
Li-ion batteries, the BMS can manage the charge or voltage balancing of the cells in a string of cells in 
series e.g. inside a module.  
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NOTE 3: For example, a BMS can apply a balancing current of 200 mA, with a balancing time range of 10 to 
120 min in order to maintain the cell voltage difference at lower than 10 mV and the cell balancing 
function can balance 4 battery cells at the same time.  

NOTE 4: The higher the balancing current, the bigger the capacity dispersion it can compensate and the shorter the 
balancing time. The BMS Li-ion battery system can include other important engineering and operation 
features. 

Self-management 

As the Li-ion battery vendor can be different from the vendors' power systems, it should operate independently of the 
vendors' power system or require no complex battery parameter settings during capacity expansion. 

Parallel operation 

The connection of battery groups for power or autonomy expansion can be done with Li-ion batteries from different 
manufactures connected in parallel with a defined discharge power limit (e.g. 5 kW output power).  

The Li-ion battery should be with no output derating when used in parallel mode. 

NOTE 5: E.g. if one 48 V Li-ion battery module maximum discharge current is 50 A, when paralleled with other 
types of battery, the maximum discharge current of the Li-ion battery should be the same i.e. 50 A in this 
case. 

When all batteries are from the same vendor a sufficient backup time can be achieved simply by adding batteries for 
power expansion. The power expansion of Li-ion batteries in parallel should be with no output power derating. 

There is no need to deploy one set of power system batteries for every power unit to supply a large-power site or a site 
of a tower company. 

NOTE 6: For example, the maximum output power of Li-ion battery in parallel can reach 15 kW, as the macro site 
power consumption or tower company site grows to more than 10 kW. The quantity N of Li-ion battery 
groups can reach 32 groups connected in parallel to provide higher power. This simplifies capacity 
expansion and considerably reduces the Capital Expenditure (CAPEX) and Operational Expenditure 
(OPEX). 

The maximum output power of Li-ion battery groups (Pn) can be calculated as follows: 

 Pn=N × Ps  

Where:  

• N  is the quantity of Li-ion 48 V battery groups 

• Ps  is the maximum output power of single Li-ion battery group 

When at least one battery group in the N battery groups discharge to 100 % DoD, the other batteries should be able to 
provide the full power providing enough redundancy (e.g. with N+1 battery groups or some overload capacity.) 

Mixed hybrid battery technology use option 

The Li-ion battery can be used with any batteries of different types and ages connected in parallel. This feature may 
maximize the residual value of legacy batteries and reduce the system CAPEX and OPEX. 

Software lock option and antitheft function 

After disconnecting the Li-ion battery from the power system controller, the Li-ion battery is locked and cannot be 
charged or discharged after a defined time (e.g. 72 hours by default and configurable in the range of 8 hours to 
720 hours). In addition, an unlock function is needed when required. 

Annex H details some considerations on public key infrastructure development. 
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6 Technology evaluation and tests 
The evaluation methods and tests of batteries to be carried out shall be defined based on the ETSI TS 103 553-1 [1] 
method chart for preselection of battery products and tests for some defined applications. The approach is specified in 
the following steps: 

• Step 1: Define the user specifications i.e. based on Table 3, define the selection criteria for the applications 
under consideration and select those required for each application, including its weight. The rows in Table 3, 
which is referred to as the T_spec, list the selection criteria, and the columns list the applications. Table F.1 in 
Annex F shows an example of a completed (filled-in) specification table. 

NOTE 1: This specification table (T_spec) gives only a general review of criteria for typical selected applications 
but new columns and rows might be defined for other applications. The criteria is a feature with a severity 
level e.g. efficiency > 80 %, cycling performance at 50 % DoD at 35 °C > 4 000 cycles. 

NOTE 2: Examples of applications are a solar station, a grid back-up (with more or less cycling) and 
weight/volume constraints (floor, roof or mast top), a HGB system, smartgrid services, customer home, 
diesel starting system, street cabinet, UPS, etc. 

• Step 2: Preselect the presumed adapted battery technologies using knowledge bases from manufacturers and 
other users' information (standards, performances, environmental aspects, costs) regarding the criteria defined 
and selected in T_spec (Table 3) for each application. Based on this, create the matching table (T_match), 
shown in Table 4, for each application.  

NOTE 3: Criteria are reported in the rows and technologies in the columns. 

NOTE 4: The cost analysis should include a TCO approach. 

• Step 3: Complete the T_match table (Table 4) with available information and evaluation or test results and 
quote matching score of the preselected technologies for each defined criteria to get the global score for each 
battery technology.  

If a matching criteria is not considered sufficient, define which complementary evaluation and tests are required and the 
work plan for completing a reasonably fast evaluation as battery tests can be very heavy and long lasting. It is also 
possible to change a product or specification and requirement based on result analysis and difficulty in finding 
solutions.  

NOTE 5: When more than one application is considered, there will be one table per application and, if required, it is 
possible to try to find a common battery technology for several applications. 

In step 3 the work plan would consist in general of: 

• relatively short tests of some weeks or months (operation and stress tests at normal, extreme and abusive 
electrical and thermal conditions) as defined in ETSI TS 103 553-1 [1]; 

• long tests such as cycling, back-up, storage self-discharge, etc., over 1 or 2 years; 

• tests on cells and on battery modules, packs and battery systems including BMS; 

• eventual potential extended use after a specified application end of life in the same application or for different 
second life reuse applications. 

When additional tests and evaluation have been defined and done, their results may lead to: 

• modifications in the testing method in agreement with the manufacturer; 

• changes of the product by the manufacturer intended to obtain better results when redoing the tests when 
accepted by the user; 

• changes of the requirements if user considers it possible. 

As defined in ETSI TS 103 553-1 [1], method chart for preselection of battery products and tests for some defined 
applications, steps 1 to 3 can be run several times. 
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NOTE 6: The T_spec and T_match tables, shown as Table 3 and Table 4 respectively, are based on general 
applications and criteria as described in ETSI TS 103 553-1 [1] but other applications and criteria might 
be defined if required by the user. 

Table 3: (T_Spec) Typical battery specification table defining criteria and required evaluation and 
complementary tests for user applications 

 Application 1 
(e.g. solar station) 

Application 2 
(e.g. HGB) 

Application 3  
(other user defined 

application) 
Criteria for battery selection (severity level 

included) (note 1) 
Selected criteria and their weight for the considered application 

x 
when 

required 

Weight 
(in %) 

x 
when 

required 

Weight 
(in %) 

x 
when 

required 

weight 
(in %)  

C1 IEC battery standards checklist       
C2 Energy density (Wh/kg or Wh/l) 

e.g. > 25 Wh/kg 
      

C3 Efficiency level e.g. > 80 %       
C4 High power discharge rate capability 

e.g. ≤ 1 h 
      

C5 Medium power discharge rate capability 
e.g. 3 to 20 h 

      

C6 Low power discharge rate capability 
e.g. 100 h 

      

C7 life time at defined temperature 
e.g. > 7 years at 35 °C with EoL capacity > 
70 % 

      

C8 Cycling performance at defined conditions 
e.g. > 4 000 cycles at 50 % DoD, 35 °C 
and EoL capacity > 70 % 

      

C9 Ability to start a Genset at defined 
conditions e.g. 0 to 40 °C, load 
voltage/current profile 

      

C10 Partial charge acceptance e.g. no lifetime 
and SoH degradation without full charge at 
each cycle 

      

C11 Self-discharge (before commissioning and 
in service) e.g. < 10 % per month at 40 °C 

      

C12 Stress tolerance 
(defined behaviour in case of overcharge, 
over discharge, short circuit, etc.) 

      

C13 Operation with BMS off or no BMS for a 
defined period or a number of cycle 
e.g. < 100 h or < 10 cycles 

      

C14 Easy maintenance (note 2) e.g. no water 
refill, easy module or cell replacement, 
etc. 

      

C15 No derating power output up to 
temperature level e.g. 45 °C 

      

C16 Ability of regeneration procedure (note 3)       
C17 Environmental aspects       
C18 CAPEX/TCO       

 Total weight  100 %  100 %  100 % 
NOTE 1: Criteria in this table are given as common example but they have to be fully adapted to user and application 

specification. 
NOTE 2: Easy maintenance can be obtained by module replacement. Other solution such as cell or block replacement 

avoids a costly complex module replacement especially at beginning of lifetime of the battery depending on 
battery technology (e.g. in the case of lead-acid or nickel based technology). 

NOTE 3: Regeneration applies only on some technology e.g. nickel based that can recover capacity when reduced due to 
memory effects or to unbalanced cell charges. For lead-acid, equalization mode consists in a small overcharge 
at relatively high voltage (e.g. 2,4 V) following a slow charge at limited current of C/10 followed. This may be 
required after a defined number of cycles without enough time to fully recharge. 
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Table 4: Matching table (T_match) for preselection of battery technology/product 
for a defined application 

Considered 
application 
(e.g. solar 

station)  

Battery preselection results 
Evaluation information (E) or Tests(T) (see note) or both (E+T) 

Selection criteria 
(severity level 

included)  

Battery technology 
/Product 1 

Battery technology 
/Product 2 

Battery technology 
/Product 3 

Comment 

 weight  result 

Ok 
or 

further 
E or T 
or E+T 

If ok 
score= 
weight 
else 0 

result 

Ok 
or 

further 
E or T 
or E+T 

If ok 
score = 
weight 
else 0 

result 

Ok 
or 

further 
E or T or 

E+T 

If ok 
score = 
weight 
else 0 

C1            
C2            
C3            
C4            
C5            
C6            
C7            
C8            
C9            

C10            
C11            
C12            
C13            
C14            
C15            
C16            
C17            
C18            

Total 
score 

100 %   X %   Y %   Z %  

NOTE: Test would be done as much as possible in the defined evaluation time (e.g. 6 month self-discharge). It can be 
an ageing trend (loss of capacity in cycling, or at high temperature). Confidence would be higher on mature 
technologies. As tests may be long, in general they can be done in parallel on several battery samples. 

 

7 Laboratory evaluation and tests for cells and battery 
modules or packs  

7.1 Initial considerations 
For each test described in the following clauses, there should be a description of the initial condition, the laboratory test 
procedure and result reporting as defined in ISO/IEC 17025 [i.5]. 

The complementary evaluation of a battery technology proposed in the present document can be applied when 
evaluating the following battery types: 

• Lithium iron phosphate (LFP) family with possible chemistry differences due to additives such as yttrium or 
manganese. 

• Other clearly identified lithium chemical families (e.g. with cobalt, manganese, nickel, aluminium). 

• NiZn, NiMH families with different additives. 

NOTE 1: For lead-acid or NiCd, compliance to existing standards relative to a battery may be considered as this 
technology is sufficiently developed with long term experience and maturity and only a limited test would 
be required in general. 
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NOTE 2: For hot battery or metal-air technology as listed in clause 7.1, thermal tests or air pollution tests are very 
specific and would need further research before specification.  

NOTE 3: More details on technology are given in Annex G. There is no test defined on the chemical content of the 
battery cells. 

7.2 Initial checking (mechanical state, marking, interconnection 
quality) 

Mechanical state 

The battery pack surface should be clean, with no distortion or mechanical damage and no corrosion (rust, salt crystals, 
leakage, etc.) at the electrical contact interfaces and close to valves for pressure release or at the level of plastic solders; 
The jar shall not suffer from deformation due to internal pressure and high temperature which can be observed through 
the cycling tests. 

Marking 

The considered cell, battery module or pack shall have clear marking on pack surface labels or plastic engraving for: 

• nominal voltage of considered cell, module or pack; 

• positive and negative terminals marked with proximity clear symbols + and -. 

Additional clear indications should be given for:  

• voltage ranges as required if under or overvoltage affects the safety and lifetime; 

• rated capacity at defined discharge rate e.g. C1, C3, C5, C10, C24, C120; 

• on/off switch or protective device if any; 

• LEDs if any; 

• command buttons if any; 

• pipe connection of gas exhaust if any. 

NOTE: Clear marking means clear reading helped with contrasted colour of text and background and sufficient 
characters size to be read at a distance of 1 metre. They should be solvent and abrasion resistant. 

Interconnections 

External power terminal connection shall be only of the following type: 

• screw type for capacity higher or equal to 30 Ah or current > 10 A; 

• screw type or fasten for capacity lower than 30 Ah.  

Control/monitoring interface connection: 

• For control/ monitoring interconnection and interface should comply with ETSI ES 202 336-11 [2].  

7.3 Typical battery and voltage configurations 
The battery unit voltage and current range for use in charge and discharge shall be clearly specified by the vendor in 
order to make tests. 

Typical configurations of cell number should be defined for each of the considered technologies. 
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For example, in the case of LFP lithium and NiZn batteries the number of cells in series for a legacy voltage interface in 
major telecom/ICT is as follows:  

• For 12 V block, there is in general only one acceptable number of cells. 

• For -48 V, it could be a single 48 V module or several modules, packs or blocks of lower voltage in serial 
arrangement such as 6 V, 12 V, 16 V, 24 V. 

• For up to 400 VDC, it could be several modules of 48 V nominal voltage in serial configuration or another 
configuration based on other modules or packs or blocks voltage. 

7.4 Environmental and electrical characteristics measurement  
The following electrical measurement applies at laboratory temperatures between 20 and 25 °C, unless otherwise 
specified. 

When the battery technology uses a BMS/BMU, the target is to validate BMS/BMU accuracy but also battery behaviour 
by laboratory instrumentation when it is possible to make connections to the cells. 

Accuracy of laboratory measurement of cell or battery modules and packs using laboratory instruments shall be as 
follows: 

• cell voltage: ±5 mV (±10 mV is acceptable for the BMS/BMU) 

• battery module/pack/system voltage ±300 mV 

• current: ±1 % of maximum measured current 

• temperature: ±1 °C for ambient temperature and cell temperature measured by contact (±3 °C is acceptable for 
the BMS/BMU) 

Accuracy of integration should be as follows:  

• coulombic charge and discharge ±1 % in Ah (±2 % acceptable for the BMS) 

• energy of charge and discharge ±2 % in Wh 

7.5 Uniformity of battery cells voltage in open circuit 

7.5.0 General 

The uniformity of open cell voltages in the battery module or battery pack should be checked as it reflects State of 
Health (SoH) and equalized State of Charge (SoC) of the battery system before other testing. 

Cell voltage uniformity test should be done after more than 24 hours. 

When cells terminals are not accessible in a module or packs, the BMS/BMU should be able to operate and display 
these values on the different terminals.  

When cell voltage uniformity does not reach the requirement, the manufacturer should define a procedure to recover the 
correct cell state before any further testing. For example, it can be defined to make an initial charge. 

7.5.1 LFP 

In open-circuit voltage, when the battery is fully charged, the cell voltage difference between the maximum and 
minimum values should be less than 50 mV. 

Gap between cell voltage minimum and average value should not exceed 1 % of average value. 
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7.5.2 NiZn 

When the battery is in open circuit at full charge, after one hour, the voltage difference between cells should be in the 
range of ±10 mV. 

7.6 Charge and discharge tests and results 

7.6.1 Introduction 

Charge and discharge shall follow known values defined by the manufacturer to obtain safe and reproducible operation.  

The efficiency of charging and discharging cycle will also be calculated as it is an important performance indicator 
reflecting losses in the cell and risk of thermal issues. 

7.6.2 Discharging capacity requirement 

The discharge tests should be done at different temperatures and at different constant current discharge rates depending 
on the application to evaluate. 

The battery system shall be in fully charged state obtained following the charging method defined by the manufacturer 
and agreed by the user for the application. 

The battery is placed in the considered ambient temperature for at least 3 hours to get a stable temperature and then 
discharged at constant current. 

The discharge is stopped when the battery voltage reaches the end of discharge voltage (or termination voltage) defined 
by the manufacturer at this temperature or the low voltage limit defined by the user for the proper operation of its 
application. 

NOTE 1: The application low voltage limit can be higher than the end of discharge voltage of the battery. e.g. 
in -48 V system, it is common to define a low voltage level between of 43 V and 44 V to ensure 40,5 V 
minimum voltage at the equipment power interface in compliance with ETSI EN 300 132-2 [i.11].  

The following list gives an example of tests and value settings for the test: 

• ambient temperature of 25 °C ± 2 °C 

- discharge current defined for 1 h or 3 h discharge (I1 or I3); 

NOTE 2: In these tests the current corresponding to n hours discharge rate is In = Cn/n 

 termination voltage of 43,2 V; 

 discharge capacity of the battery module should be not be less than the 100 % of the rated capacity.  

NOTE 3:  For Li-ion technology, the capacity of Li-ion battery is usually defined with 0,2 I10. Below 10 °C 

temperature it may not provide 100 % rated capacity defined at higher temperature. 

 ambient temperature of -10 °C ± 2 °C:  

- discharge current of defined for 1 h or 3 h discharge; 

- termination voltage of 43,2 V; 

- discharge capacity of the module should be not less than 60 % of the rated capacity. 

 ambient temperature of 40 °C ± 2 °C: 

- current discharge of defined for 1 h or 3 h discharge;  

- termination voltage of 43,2 V; 

- discharge capacity of the module should be not less than 95 % of the rated capacity. 
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 ambient temperature of 55 °C ± 2 °C: 

- current discharge of defined for 1 h or 3 h discharge; 

- termination voltage of 43,2 V; 

- discharge capacity of the module should be not less than 90 % of the rated capacity. 

7.6.3 Cumulative discharging energy requirement 

The cumulative discharging energy in the whole cycle life should be no less than a defined energy under the given 
conditions of discharging current, DoD, temperature and EoL capacity (e.g. 70 % of initial value at a defined discharge 
rate). For example, 10 000 kWh cumulative discharging energy can be achievable for a 100 Ah 48 V Li-ion battery. 

7.6.4 Charge/discharge tests 

7.6.4.1 LFP 

The recharge can be completed in following steps:  

• Constant current charge up to a voltage limit. 

• Constant voltage charge completion at that voltage limit for limited time or down to a low current threshold 
value. 

• Constant voltage floating charge if acceptable for the considered battery module under test. 

The battery cell charging voltage should be in the range of 3,50 V to 3,60 V. 

The battery string equalizing voltage should be in the range of 56,0 V to 57,6 V (e.g. for 16 cells configuration). 

Continuous charging current should be currently limited to one hour discharge current rate as declared by the 
manufacturer. 

An example can be found in Annex E. 

7.6.4.2 NiZn 

The recharge can be completed in following steps: 

• constant current charge up to a voltage limit constant voltage charge completion at that voltage limit for a 
limited time or down to a low current threshold value; 

• constant voltage floating charge if acceptable for the considered battery module under test. 

Battery cell charging voltage should be in the range of 1,9 V to 2 V. 48 V battery string voltage for 30 cells 
configuration: 

• charging voltage should be in the range of 56,0 V to 57,6 V; 

• if it is possible, floating charging voltage of about 53,5 V to 54,4 V. 

Continuous charging current should be currently limited to one hour discharge current rate as declared by the 
manufacturer. 

7.7 Cycling test and results 
The battery should be tested at different rates of charge and discharge current at different temperatures. 

There are settings to avoid undercharge and overcharge.  
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NOTE 1: For LFP it is observed that when end of recharge voltage is too high or end of discharge voltage is too 
low, it will increase the capacity of the battery, but cycling lifetime will be reduced. For water electrolyte 
technology it is important to maintain a correct charge efficiency avoiding consuming too much water. 
The calculated charge efficiency has to be followed at each cycle and the average value over several 
cycles as the value changes is based on slight changes in voltage, current, charge and discharge rate and 
time and temperature.  

NOTE 2: A higher value than 100 % efficiency or too low a value can be seen on individual tests as the efficiency 
is very sensitive to temperature. A correct value is an average obtained over several similar cycles made 
in the conditions of voltage, current, charge and discharge rate and time and temperature. In the case of 
lead-acid it should comply with IEC 60896-21 [3] and IEC 60896-22 [4] to make a reconditioning charge 
at slow rate followed by a long boost charge period to fully charge all cells by slight overcharge 
balancing. Then the capacity is also measured at slow rate e.g. 10 h to check for the maximum available 
capacity compared to high rate of discharge.  

NOTE 3: This does not have to be done unless clearly required by the manufacturer for other technologies under 
test of the present document. For lithium, it can induce too much overcharge and be worse. For nickel 
based technology, this can be applied essentially to balance the cells in a battery and to regenerate the 
nickel oxides on the positive electrode. 

7.8 Back-up test 
The back-up test is equivalent to a cycling test but with a long rest time at full charge level between charge and 
discharge. 

It can be made at different temperatures and at different constant current discharge rates depending on different 
applications. 

When in rest time, the battery shall be in fully charged state obtained following the charging method defined by the 
manufacturer and agreed by the user for the application.  

NOTE: In the case of lead-acid or NiCd batteries, the full state of charge is maintained by floating mode but this 
may be not applicable for safety or shortened lifetime on other technologies. 

The battery is placed in the considered ambient temperature for at least 3 hours to get a stable temperature.  

The battery is then discharged at constant current over the defined period. 

The discharge is stopped when the battery voltage reaches the end of discharge voltage (or termination voltage) defined 
by the manufacturer at this temperature or the low voltage value defined by the user for the proper operation of its 
application. 

7.9 Self discharge or charge retention test 
Self-discharge tests are more important, if the technology is known to have fast self-discharge and it may cause over 
discharge which reduces lifetime as it can occur during a long storage period. 

In general, high temperature increases the self-discharge, so it is recommended to start with high temperature when 
required. 

Simple tests can be done on cells at laboratory temperature or in a controlled temperature. The capacity is measured on 
the new cell just after a charge, then the charge is measured after some weeks or months of storage. 

Another common test is the same test applied to a battery pack to take into account the electronic losses. 
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7.10 Stress tests, protection and alarm 

7.10.1 Introduction to safety and accelerated ageing risks 

Battery technologies can show very different behaviour when faults or abuse situations occur. It is important to check 
these risks and the efficiency of protections. 

Nickel based battery risks are as follows: 

• Internal and external short circuit creating overheating and possible metal melting and projection. The risk can 
be limited for external short circuits by a protective device close to the battery terminal and good cabling. 
Internally the risk is limited due to non-flammable aqueous electrolyte and electrodes and by using self-
extinguishable plastics. 

Overcharge creates gas electrolyse and pressure increases leading to valve opening. The risk is then easy to limit with 
air renewal in the room to avoid hydrogen explosions and prevent hydrogen over-production by controlling the battery 
charger voltage, current and time of charge at boost voltage if any. 

Lithium based battery risks are: 

• External short circuit leading to high current, overheating and possibly internal fire combustion above a 
threshold temperature depending on the technology. Ignition temperature is between 80 °C to 200 °C for 
organic electrolyte and electrode compositions. The primary solution is an external protection circuit. Ultimate 
protections also exist inside some lithium battery cells but are irreversible, such as internal electric thermal 
switch and electrochemical fuse-like protection. 

• Internal lithium dendrites in the separator generally appear after over charge or discharge and create short 
circuits that increase temperature. It can then free oxygen of unstable materials for chemical reactions inside 
the cell which lead to ignition of lithium, additives and organic electrolyte. The risk of free oxygen is limited 
or lowered by BMS control and more stable chemical elements are used. 

• Other internal short circuits caused by a metal piece will create the same risk which corresponds to the nail 
penetration test. 

Some stress tests results are presented in Annex D. 

7.10.2 Overcharge protection 

When the lithium battery is put in the overcharge state e.g. by over voltage, the BMS (or BMU) shall detect it and the 
internal charging circuit shall be cut-off inside the battery system. In the case of failure of the BMS (or BMU) 
protection, an ultimate protection shall operate at least based on overheating of cells. 

7.10.3 Over-discharge protection 

When the lithium battery voltage reaches the termination voltage limit, the BMS (or BMU) should be able to disconnect 
the battery system. 

7.10.4 Short-circuit protection 

When a short-circuit happens on battery outputs, the battery circuit shall be disconnected immediately from the short 
circuit by an appropriate primary protective device in the battery system and the BMS/BMU shall limit and reduce 
circuit current to avoid the risk battery fire.  

Moreover, an ultimate independent protection (e.g. thermal fuse or other) can also continue protecting the battery 
against fire risk in the case of failure of these primary protections. 

NOTE: These redundant fast short-circuit protections are essential not only for the battery safety when the 
BMS/BMU becomes insufficient to protect the battery system but also for powering the electronics of the 
BMS/BMU itself that can be destroyed and so contribute to the short-circuit failure mode. 
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7.10.5 Overload protection 

When battery discharge current is higher than the defined overload current limit, the battery system shall be 
disconnected from the load. In the case of failure of the previous protection, a second ultimate protection shall operate 
at least based on overheating of cells. 

7.10.6 Over temperature protection 

When the value of a measurement point of the cells temperature gets higher than the over temperature protection value 
or lower than low temperature protection value shown in Table 5, the battery pack shall be cut off from the circuit. If 
temperature returns the in the normal state, it should be automatically recovered.  

Table 5: Temperature protection 

Test Charge protection 
temperature 

Discharge protection 
temperature 

Recovery temperature 

Environmental temperature protection 60 °C ± 2 °C 65 °C ± 2 °C 45 °C ± 2 °C 
Environmental protection  0 °C ± 2 °C -20 °C ± 2 °C 0 °C ± 2 °C 
 

NOTE: The temperature protection point and recovery point can also be set by the user or manufacturer. In all 
protection and alarm tests above, the battery pack and battery module should experience no leakage, 
smoke, fire or explosion. 

7.11 BMS/BMU requirements  
Parameters such as battery capacity, SoC, voltage, temperature, charging and discharging current, internal resistance 
(optional), SoH (optional) and cumulative discharging energy should be locally and remotely monitored by BMS/BMU 
as defined in clause 7.4. 

The main parameters which should be remotely monitored are the following:  

• Status of charging/discharging/test result:  

- battery system voltage and current; 

- battery string current; 

- battery module internal temperature;  

- battery system, string and module state of charge;  

- battery cells voltage (optional); 

- battery system or string capacity test result; 

- battery module or string state of health (optional); 

- cumulative discharging energy of a module or string (optional). 

• Alarms including: 

- battery module, string over-current alarm; 

- battery module, string charging over voltage alarm; 

- discharging module, string low voltage or SoC alarm;  

- reverse polarity alarm;  

- module high temperature alarm;  

- system low temperature alarm; 
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- system, module loss of capacity alarm (optional SoH alarm); 

- temperature/voltage/current sensor failure alarm; 

- failure alarm (e.g. board hardware fault);  

- communication failure. 

The following parameters should only be set locally: 

• charging methods such as intermittent charging or continuous charging; 

• charging current and voltage thresholds. 
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Annex A (informative): 
Implementation examples of stationary batteries in 
telecom/ICT sites 
Figure A.1 shows a typical big backup multistring 48 V battery of thousands of Ah on shelves. Each string is made of 
24 cells of 2 V of gel types in series offering more than a thousand deep cycles of 80 % DoD. They are designed for 
autonomy of 3 hours or more. Lifetime can reach 12 years at 25 °C and 6 years at 35 °C with limited DoD cycling. 

 

Figure A.1: 48 V multistring lead-acid battery in a telecom centre 

Figure A.2 (left side) shows a typical two strings 48 V back-up battery in a telecom power cabinet with modular 
rectifiers and power distribution. Each 48 V battery string is made of four 12 V Absorbent Glass Mat (AGM) VRLA 
modules in series on a shelf. These are designed for medium lifetime in back-up use generally in floating mode and can 
ensure a limited number of cycles each year. Lifetime can reach 8 years at 25 °C and 4 years at 35 °C. With pure lead 
technology, the cycling life is not affected with temperature while it is affected with lead alloys with calcium, tin, 
antimony, etc. But these alloys can have other benefits for low charge rate operation in solar applications or mechanical 
resistance. 

Figure A.2 (right side) also shows an example of a 48 V small battery on shelves external to a telecom power cabinet. 

 

Figure A.2: Typical 48 V batteries inside or outside a telecom power cabinet 

Figure A.3 shows a typical UPS high voltage multi-string back-up battery of hundreds of Ah. Each string is made of 
12 V lead-acid VRLA modules in series. The design is the same as for a telecom back-up battery except that their thin 
plates allow high rate current enabling short autonomy of 5 to 30 minutes and few cycles. 
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Figure A.3: UPS multi-string batteries on shelves or in cabinets 

A typical lithium 48 V battery pack or module can be used for a broad band network street cabinet or radio base station 
back-up. 

The BMS and thermal management are integral to the pack. 

Lifetime can reach 10 years at 40 °C, monitoring is natively integral, the battery can accept some thousands of deep 
cycles of up to 80 % DoD. 100 % cycling is possible. PSoC is not an issue on the lithium battery.  

Figure A.4 shows another lithium LFP 48 V common 19" module for back-up use in a radio telecom site power cabinet 
e.g. in a radio base station connected on a poor electric grid adapted to hot deep cycling. 

 

Figure A.4: Typical LFP 19" module for telecom application  

Figure A.5 shows a typical solar PV system with 48 V cycling lead-acid flooded tubular battery for a telecom radio base 
station.  

Figure A.6 shows the case of a NiCd battery that can have very long lifetime of more than 15 years with 80 % initial 
capacity at high temperature of 40 - 50 °C without consuming too much water, enabling water refilling only every 18 to 
24 months. In comparison a tubular flooded lead acid battery requires refilling every 3 months and lasts 10 to 12 years. 
But the cost of NiCd is 3 to 4 times higher. 
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Figure A.5: Example of a solar power system for a radio mobile base station equipped with solar 
system equipped with flooded tubular lead-acid battery referred to as OPZS  

 

Figure A.6: Example of a NiCd battery in an African country  
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Annex B (informative): 
SooGREEN European project 
In SooGREEN paper [i.21], Figure 6 reports of the energy density classification showing the relationship between 
volume and weight and giving information on mechanical casing (cylindrical or prismatic type). Lithium or other pouch 
types are not indicated. Metal-air would probably be prismatic. NiFe, salt battery, NiZn, and hot sodium batteries. 

NOTE: In the same paper, Figure 7 shows a lithium battery selection for a stationary telecom application based 
on safety and energy density. Figure 8 of SooGREEN shows cycling tests results of LFP cells and some 
effects of voltage charge and discharge voltage on capacity ageing. Ageing is reduced if wide voltage 
ranges (2,7 V to 3,7 V) corresponding to 100 % re-charge and maximum DoD are avoided. Working in a 
narrow range 3 V to 3,6 V reduces the capacity by 10 % but greatly increases the lifetime and cycling 
ability. 

Figure B.1 shows an example of a laboratory test bank where cells and batteries measurements are done. 

 

Figure B.1: Example of a test bank in a lab 
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Annex C (informative): 
Standard lithium cells commonly used in small battery 
modules and packs 
Table C.1 shows which 3,6 V secondary lithium cells are standardized in IEC 61960-3 [i.7] and used in assembling 
battery modules and packs that may be used in stationary batteries. 

Table C.2 gives an example of size of prismatic LFP cells. 

Table C.1: Standard 3,6 V secondary lithium cells 

Characteristics 1 2 3 
Secondary lithium cell denomination ICR19/66 ICP9/35/48 ICR18/68 
Height (mm) 64,0/65,2 47,2/48,0 65,9/67,2 
Diameter (mm) 17,8/18,5 NA 16,2/17,1 
Width (mm) NA 33,4/34,2 NA 
Thickness (mm) NA 7,6/8,8 NA 
Nominal voltage (V) 3,6 3,6 3,6 
End-of-discharge voltage (V) 2,50 2,50 2,50 
End-of-discharge voltage (V) 
for endurance (cycle life) 2,75 2,75 2,75 

 
NOTE: The end-of-discharge voltage of a battery of n series connected cells is equal to n times the end-of-

discharge voltage of a single cell as listed in Table C.1. 

Table C.2: Standard 3,2 V LFP prismatic lithium cells 

Characteristics ESM-4850A2 
Secondary lithium cell denomination IFpP 
Height (mm) 120 
Diameter (mm) NA 
Width (mm) 174 
Thickness (mm) 47 
Nominal voltage (V) 3,20 
End-of-discharge voltage (V) 2,93 
End-of-discharge voltage (V) for endurance (cycle life) 2,93 

 

  



 

ETSI 

ETSI TS 103 553-2 V1.1.1 (2021-11)37 

Annex D (informative): 
Complementary information on possible stress tests and 
results 
Table D.1 provides information on abuse or stress tests, with standard references when available, images, test 
procedures and passed tests conditions. 

Table D.1: Information on battery stress tests 

Test and information on 
standard 

Test view example Example of cell or battery module 
test procedure and passed tests conditions 

 
 
 
short-circuit test 
UN38.3 [i.8] 

 
 

 

Test procedure: 
EUT external casing is maintained at stabilized temperature of 
55 °C ± 2 °C. 
The short circuit is applied on the EUT with a total external 
resistance of less than 0,1 ohm at 55 °C ± 2 °C and for at 
least one hour back at this temperature. 
Passed test conditions: 
External casing should stay at temperature lower than 170 °C 
and no disassembly, rupture or fire should be observed during 
the test and within six hours after the test. 

 
 
 
 
salt spray test 
GB/T 2423.17 [i.9] 
or  
IEC 60068-2-11 [i.10] 

 Test procedure: 
EUT is put in a salt spray chamber maintained at 35 ± 2 °C 

and a salt mist of 1~2 mL/h/80 cm2 is sprayed continuously for 
72 h at this temperature.  
The salt mist is made of a solution of concentration of 5 ± 1 % 
by weight prepared by dissolving 5 ± 1 parts by weight of 
sodium chloride (NaCl) in 95 parts by weight of demineralized 
water and the PH value of the solution is between 6,5 and 7,2. 
Passed test conditions: 
The percentage of total area which shows base metal 
corrosion is less than 0,25 %, the diameter of the area which 
shows base metal corrosion is less than 3 mm. 

 
 
 
moisture dust test 

  
 
 
Under definition 
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Test and information on 
standard 

Test view example Example of cell or battery module 
test procedure and passed tests conditions 

 
 
 
 
 
 
shock test 
UN38.3 [i.8] 

  Test procedure: 
EUT should be secured to the testing machine by means of a 
rigid mount supporting all its mounting surfaces.  
EUT is submitted to half-sine shock pulse of peak 
acceleration (6 ms duration at peak acceleration of 150 earth 
gravity (g) for small EUT and 11 ms at 50 g for large EUT. 
A total of 18 shocks are applied to the EUT (3 shocks in 
positive direction followed by 3 shocks in the negative 
direction of 3 mutually perpendicular mounting positions of the 
EUT). 
Voltage is tested before and after shock test so EUT should 
not be in fully discharged SoC for this test. 
Passed test conditions: 
No leakage, venting, disassembly, rupture or fire are 
observed and the open circuit voltage of EUT after testing is 
not less than 90 % of its voltage immediately prior to this 
procedure. 

 
 
liquid test 

 

 
 
Under definition 

 
 
130 °C thermal shock 

 

Test procedure: 
The EUT is placed in a high temperature chamber, and the 
temperature inside the chamber is raised to 130 °C ± 2 °C 
with a slope of 5 °C ± 2 °C/min and kept there for 30 min. 
Passed test conditions: 
No fire, no explosion. 
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Annex E (informative): 
Example of charge, discharging test curve and cycling result 
For LFP technology, Figure E.1 gives examples of typical constant current/constant voltage (IU mode) recharge curves 
of an LFP cell (part E.1a) and typical constant current charging and discharge curves of a 48 V LFP battery module 
(part E.1b). 

NOTE 1: Constant current charge mode is called I charge and constant voltage charge mode is called U charge. 
When both are applied in sequence, it is called IU charge mode.  

NOTE 2: Voltage can be slightly different with LFP batteries coming from manufacturers using different internal 
active materials in electrodes, separators and electrolytes. 
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a) 

 

 

 

b)  

 

Figure E.1: a) Typical curves of constant current/constant voltage (IU mode) charge and of recharged 
capacity for a 60 Ah LFP cell and  

     b) Typical curves of constant current (I mode) at 5 h charge and 5 h discharge rate 
and 35 °C for a 100 Ah 48 V LFP battery module 

For NiZn technology, Figure E.2 gives an example of a typical IU mode recharge curve of a NiZn cell. 
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Figure E.2: Typical laboratory test result curves of charge and discharge voltage  
and current for a 10 Ah NiZn (voltage in red, current in blue) 

The following typical cycling tests results in Figures E.3, E.4 and E.5 are presented for illustration purposes: 

• Figure E.3a: a single LFP cell of nominal capacity of 90 Ah tested at 22 A charge/22 A discharge cycling 
period without rest time in about 8 h per cycle (3 cycles per day) in ambient temperature 25 °C - 35 °C. 

• Figure E.3b: a 48 V battery module of 100 Ah.  

• Figure E.4: a single NiZn of nominal capacity of 10 Ah tested at 10 A charge/10 A discharge in about a 
2 hours cycling period without rest time (12 cycles per day) at cell temperature 35 °C. 

• Figure E.5: a 12 V NiZn battery of nominal capacity of 10 Ah made of 8 cells in series tested at 3 A charge/5 
A discharge with a short rest time for about 8 hours cycling period (3 cycles per day) at ambient temperature 
of 35 °C. 

NOTE 3: As can be seen in the examples, there can be aberration in the result due to issues in real life laboratory 
tests. 

NOTE 4: All values should only be considered as illustrative. 
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Figure E.3a: 90 Ah LFP cell cycling and efficiency test results at  
C/4 discharge rate, 100 % DoD at 25 °C - 35 °C 
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Figure E.3b: 48 V battery pack cycling test result at 35 °C, 0,5 C discharge cycles  
at 85 % DoD (6 000 cycles obtained at EOL capacity of 60 %) 

 

Figure E.4: 100 % DoD 1,65 V NiZn 10 Ah cell cycling test result and efficiency calculation for single 
at 35 °C (part 1 cycling tests in Ah versus time, part 2 in mAh versus cycle No.) 
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Figure E.5: 12 V NiZn 10 Ah battery cycling test results and efficiency calculation at 35 °C 
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Annex F (informative): 
Example of tables of criteria for preselection of technologies 
adapted to a use case and additional tests definition 
This annex provides examples of completed T_Spec and T_match tables corresponding respectively to Table 3 and 
Table 4 defined in clause 6 for the application of Hybrid Genset Batteries (HGBs). Table F.1 presents an example of a 
completed specification table and Table F.2 presents an example of a matching table for preselection of battery 
technologies. 

Table F.1: Example of battery specification table (T_Spec) defining criteria and required evaluation 
and complementary tests for user applications 

Criteria for battery selection (severity 
level included) 

Solar station HGB Pole short back-up of 
BS on good grid 

Selected criteria and its weight for the considered application  
x 

if required Weight  x 
if required Weight  x 

if required Weight  

C1 IEC battery standards checklist x 5 % x 5 % x 5 % 
C2 Energy density (Wh/kg or Wh/l) 

e.g. > 25 Wh/kg 
    x 10 % 

C3 Efficiency level e.g. > 80 % x 5 % x 7,5 %   
C4 High power discharge rate capability 

e.g. ≤ 1 h 
    x 5 % 

C5 Medium power discharge rate 
capability e.g. 3 to 20 h 

x 5 % x 5 %   

C6 Low power discharge rate capability 
e.g. 100 h 

x 5 %     

C7 Calendar life at defined temperature 
e.g. > 7 years at 35 °C with EoL 
capacity > 70 % 

x 10 % x 5 % x 30 % 

C8 Cycling performance at defined 
conditions e.g. > 4 000 cycles at 
50 % DoD, 35 °C and EoL capacity 
> 70 % 

x 20 % x 20 %   

C9 Ability to start a Genset at defined 
conditions e.g. 0 to 40 °C, load 
voltage/current profile 

  x 5 %   

C10 Partial charge acceptance e.g. no 
lifetime and SoH degradation 
without full charge at each cycle 

x 5 % x 7,5 %   

C11 Self-discharge (before 
commissioning and in service) 
e.g. < 10 % per month at 40 °C 

x 5 % x 5 % x 5 % 

C12 Stress tolerance 
(defined behaviour in case of 
overcharge, over discharge, short 
circuit, etc.) 

x 5 % x 5 % x 5 % 

C13 Operation with BMS off or no BMS 
for a defined period or a number of 
cycle e.g. < 100 h or < 10 cycles 

    x 5 % 

C14 Easy maintenance (note 2) e.g. no 
water refill, easy module or cell 
replacement, etc. 

x 5 % x 5 % x 5 % 

C15 No derating power output up to 
temperature level e.g. 45 °C 

  x 5 % x 5 % 
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Criteria for battery selection (severity 
level included) 

Solar station HGB Pole short back-up of 
BS on good grid 

Selected criteria and its weight for the considered application  
x 

if required Weight  x 
if required Weight  x 

if required Weight  

C16 Ability of regeneration procedure 
(note 3) 

x 5 %     

C17 Environmental aspects x 10 % x 10 % x 10 % 
C18 TCO < 300 €/kWh on 15 years x 15 % x 15 %  15 % 

 Total weight  100 %  100 %  100 % 
NOTE 1: Test would be done as much as possible in the defined evaluation time (e.g. 6 month self-discharge). It can 

be ageing trend (loss of capacity in cycling, or at high temperature). Confidence would be higher on mature 
technologies. As tests may be long, in general they can be done in parallel on several battery samples. 

NOTE 2: Easy maintenance can be obtained by module replacement. Other solutions such as cell or block 
replacement avoids a costly complex module replacement especially at beginning of lifetime of the battery 
depending on battery technology (e.g. in the case of lead-acid or nickel based technology). 

NOTE 3: Regeneration applies only on some technology e.g. nickel based that can recover capacity when reduced 
due to memory effects or to unbalanced cell charges. For lead-acid, equalization mode consists in a small 
overcharge at relatively high voltage (e.g. 2,4 V) following a slow charge at limited current of C/10 followed. 
This may be required after a defined number of cycles without enough time to fully recharge. 
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Table F.2: Matching table (T_match) for preselection of battery products  
or technology for an application and for deciding and defining  

of required complementary evaluations and tests 

Considered use case: 
Solar station  

Considered technologies in the preselection step  Preselection 
result 
and 

additional 
evaluations or 

test requirements 

Relevant criteria 
for battery 

system 
selection 

Requirement 
level:  

Evaluation 
(E) 

Tests 
(T) 

OPZV S and V lead acid NiCd LFP Other Li NiZn 

Energy storage 
specific 
standards 
checklist (note 1) 

E IEC 60896-11 [i.24] 
IEC 61427-1 [i.25] 
IEC 60896-21 [3] and 22 [4] 
EUROBAT 2015 [i.26] 
IEC 62485-2 [i.27]  

IEC 62259 [i.28] 
IEC 61434 [i.29] 
IEC 60623 [i.30] 
 

IEC 62619 [i.6] 
IEC 62620 [i.18] 

IEC 62619 [i.6] 
IEC 62620 [i.18]  

IEC 61434 
[i.29] 

Ok for lead and 
NiCd need 
complementary 
tests for others 

Energy density 
Wh/kg 

 30 40 60 (note 2) 50 (LTO) other > 100 70, need tests known but not 
essential 

Energy efficiency 
> 70 % 

T > 75 % > 70 % > 85 % need tests > 80 %  can be ok 

High power 
(≤ C1) 

       

Medium power 
(C3 - C20) 

T (recharge) ok ok need test for 
solar cycling 

need test for solar 
cycling 

ok need more tests if 
lithium 

Low power 
(> C20) 

T (discharge) ok ok ok ok ok ok 

Calendar life at 
defined 
temperature 

E+T 
 

ok depending on water 
refilling 

better with less 
refilling 

No water 
need tests to 
confirm 

No water 
need tests to confirm 

few water refill, 
need test 

issue is length of 
calendar life tests 

Cycles 
at defined 
temperature 

E+T ok if oversized for low 15 - 
25 % DoD 

slightly better than 
lead, no test 
required 

ok at 
50 - 85 % DoD 

LTO is the best need test at 
50 - 70 % DoD 

need accelerated 
tests when possible 

Starting power at 
defined 
temperature 

       

Partial charge 
acceptance 

E+T very limited yes yes yes yes ok except lead 

Self-discharge 
(before 
commissioning) 

T can be an issue no issue can be an issue 
of locked BMS 

can be an issue of 
locked BMS 

no issue need more tests for 
lithium 
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Considered use case: 
Solar station  

Considered technologies in the preselection step  Preselection 
result 
and 

additional 
evaluations or 

test requirements 

Relevant criteria 
for battery 

system 
selection 

Requirement 
level:  

Evaluation 
(E) 

Tests 
(T) 

OPZV S and V lead acid NiCd LFP Other Li NiZn 

Abuse tolerance 
(overcharge, 
discharge no 
water refill, etc.) 

T limited high low low medium need more tests for 
lithium 

Operation with 
BMS off 

E+T no BMS no BMS small acceptance no acceptance no issue need more tests for 
Lithium 

Easy 
maintenance  

E+T ok ok possible no, except LTO ok need more tests for 
LFP 

Regeneration 
procedure 

T small electrolyte 
replacement 

no no possible, need 
tests 

need more tests for 
NiZn 

CAPEX/TCO E good medium medium need investigate need 
investigate 

need more 
information 

NOTE 1: For example ISO 9001 or ISO 14001 may be requested as for many other equipment items but are not specific to battery. 
NOTE 2: To have a robust (mechanical shape) the lithium battery density is much lower than cell density. 
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Annex G (informative): 
Technology and chemistry identification  
The chemical composition of metallic blends in cathodes and anodes is an essential indicator for choosing a lithium 
battery adapted to use and there are more and more solutions.  

This is less obvious for other technologies (NiMH, NiZn) that always use the same main components and only additives 
not clearly indicated in the battery name influence properties such as for example in the case of lead-acid (e.g. batteries 
with pure lead or with added calcium have low self-discharge and good recombination, antimony helps for cycling and 
mechanical resistance, etc.). 

Lithium battery cathode 

The following lists give the common chemical compositions of cathode active materials (positive electrodes) and their 
main characteristics: 

LCO: Lithium Cobalt Oxide  

• Older technology (consumer batteries) 

• Good energy density 

• Poor safety/ thermal properties 

LMO: Lithium Manganese Oxide 

• Current technology 

• Good safety/thermal properties 

• No expensive cobalt 

• Low energy density 

LFP: Lithium Iron Phosphate 

• Current technology 

• Good safety/thermal properties 

• No expensive cobalt 

NCM blend of three lithium oxides: Nickel/Cobalt/Manganese 

• Current technology 

• Good energy density 

• Moderate safety (not as stable as LFP) 

• No expensive cobalt 

• Lower energy density 

• Less cobalt gives lower cost, better safety/thermal properties, medium performance 

• More nickel increases energy density 

• More manganese gives potentially much higher energy density and lower cost but needs better electrolytes and 
anode 
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Lithium battery anode 

There are also possible disruptive evolutions of the negative electrode (anode) from carbon to silicon, as silicon 
theoretically absorbs 10 times as many Li ions as graphite, allowing a much higher energy density. But the silicon 
structures suffer from fatigue/pulverisation after a few cycles due to an approximate quadruple change in volume due to 
the insertion mechanism. Nanostructures/nanowires could to some extent solve this and small volumes on small cells 
are becoming commercially available. 

As can be seen in these few examples in battery evolution, when mature technology with long term field experience is 
required, it is essential to know enough about the internal chemistry of the cell. 
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Annex H (informative): 
Public key infrastructure 
The use of public key infrastructure, for unlocking recovered stolen batteries by the owner, could be developed as 
shown in Figure H.1. 

 

NOTE 1: Read public key could be done using passive NFC tags on the batteries and NFV compatible battery 
owner UEs. Although not a panacea for security, use on NFC is OK here since it is to read a public key 
and these within a confined environment (e.g. ICT cabinet). 

NOTE 2: Timestamp should use a 64 bit value in order to avoid the trap of "year 2038" bug tied to the 32-bit time 
values in legacy systems. 

NOTE 3: The unlock interface between the owners US and battery is to be agreed upon between owner (typically 
MNO) and battery manufacturer; without a better agreement upon solution, use of NFC is suggested by 
default. 

NOTE 4: Cryptographic primitives to use are out of scope for the present document. Nevertheless following trends 
in PQ crypto standardization is recommended. 

 

Figure H.1: Example of public key infrastructure, for unlocking recovered stolen batteries 
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