
 

 

 

 

 

 

ETSI TS 103 544-6 V1.3.1 (2019-10) 

Publicly Available Specification (PAS); 
Intelligent Transport Systems (ITS); 

MirrorLink®; 
Part 6: Service Binary Protocol (SBP) 

 

  

CAUTION 

The present document has been submitted to ETSI as a PAS produced by CCC and  
approved by the ETSI Technical Committee Intelligent Transport Systems (ITS). 

CCC is owner of the copyright of the document CCC-TS-018 and/or had all relevant rights and had assigned said rights to  
ETSI on an "as is basis". Consequently, to the fullest extent permitted by law, ETSI disclaims all warranties whether express, 

implied, statutory or otherwise including but not limited to merchantability, non-infringement of any intellectual property rights of 
third parties. No warranty is given about the accuracy and the completeness of the content of the present document. 

 

TECHNICAL SPECIFICATION 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)2 

 

 

 

  

Reference 
RTS/ITS-98-6 

Keywords 
interface, ITS, PAS, smartphone 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

The present document can be downloaded from: 
http://www.etsi.org/standards-search 

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or 
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any 

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI 
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx 

If you find errors in the present document, please send your comment to one of the following services: 
https://portal.etsi.org/People/CommiteeSupportStaff.aspx 

Copyright Notification 

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm 
except as authorized by written permission of ETSI. 

The content of the PDF version shall not be modified without the written authorization of ETSI. 
The copyright and the foregoing restriction extend to reproduction in all media. 

©ETSI 2019. 
© Car Connectivity Consortium 2011-2019. 

All rights reserved. 
ETSI logo is a Trade Mark of ETSI registered for the benefit of its Members. 
MirrorLink® is a registered trademark of Car Connectivity Consortium LLC. 

RFB® and VNC® are registered trademarks of RealVNC Ltd. 
UPnP® is a registered trademark of Open Connectivity Foundation, Inc. 

Other names or abbreviations used in the present document may be trademarks of their respective owners. 
DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 

3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and 
of the 3GPP Organizational Partners. 

oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and  
of the oneM2M Partners. 

GSM® and the GSM logo are trademarks registered and owned by the GSM Association. 

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx


 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)3 

Contents 

Intellectual Property Rights ................................................................................................................................ 5 

Foreword ............................................................................................................................................................. 5 

Modal verbs terminology .................................................................................................................................... 5 

1 Scope ........................................................................................................................................................ 6 

2 References ................................................................................................................................................ 6 

2.1 Normative references ......................................................................................................................................... 6 

2.2 Informative references ........................................................................................................................................ 6 

3 Definition of terms, symbols and abbreviations ....................................................................................... 7 

3.1 Terms .................................................................................................................................................................. 7 

3.2 Symbols .............................................................................................................................................................. 7 

3.3 Abbreviations ..................................................................................................................................................... 7 

4 MirrorLink® Data Service Architecture ................................................................................................... 7 

4.1 Overall Architecture ........................................................................................................................................... 7 

4.2 Version convention............................................................................................................................................. 8 

4.3 Starting Data Service .......................................................................................................................................... 9 

4.4 Data Service Security with Device Attestation Protocol .................................................................................... 9 

5 Service Framework: Service BINARY Protocol (SBP) ........................................................................... 9 

5.1 Introduction ........................................................................................................................................................ 9 

5.2 Service Description Example ........................................................................................................................... 10 

5.3 Data representation ........................................................................................................................................... 11 

5.4 Command representation .................................................................................................................................. 13 

5.5 Command Sequences ....................................................................................................................................... 15 

5.5.1 General ........................................................................................................................................................ 15 

5.5.2 Get, [{Response-Continue}], Response ...................................................................................................... 15 

5.5.3 Set, [{Response-Continue}], Response ...................................................................................................... 17 

5.5.4 Subscribe, {Response-OK/NOK}, [{Response}] ....................................................................................... 19 

5.5.5 Cancel, Response ........................................................................................................................................ 21 

5.5.6 AuthenticationChallenge, AuthenticationResponse .................................................................................... 23 

5.5.7 AliveRequest, AliveResponse..................................................................................................................... 23 

5.6 Hash as UID ..................................................................................................................................................... 23 

5.7 Error handling .................................................................................................................................................. 24 

5.7.1 General ........................................................................................................................................................ 24 

5.7.2 Irrecoverable error ...................................................................................................................................... 24 

5.7.2.1 Introduction ........................................................................................................................................... 24 

5.7.2.2 Unknown data type ............................................................................................................................... 24 

5.7.2.3 Wrong END: END check failure for form 4, 5 or command ................................................................ 24 

5.7.3 Recoverable error ........................................................................................................................................ 25 

5.7.3.1 Introduction ........................................................................................................................................... 25 

5.7.3.2 Unknown Object UID ........................................................................................................................... 25 

5.7.3.3 Unknown command type ...................................................................................................................... 25 

5.7.3.4 Unsupported feature .............................................................................................................................. 25 

5.7.4 Error to ignore ............................................................................................................................................. 25 

5.7.4.1 General .................................................................................................................................................. 25 

5.7.4.2 Unknown UID for member variable ..................................................................................................... 25 

5.7.5 Error code definition ................................................................................................................................... 25 

5.8 Authentication mechanism ............................................................................................................................... 26 

5.9 Support of optional Objects .............................................................................................................................. 27 

5.10 Version listing and selection ............................................................................................................................ 27 

5.11 Initialization Sequence ..................................................................................................................................... 27 

5.12 Other topics ...................................................................................................................................................... 28 

5.12.1 Extending a service ..................................................................................................................................... 28 

5.12.2 Payload fragmentation ................................................................................................................................ 28 

5.12.3 Inheritance .................................................................................................................................................. 28 

5.12.4 Shutdown clean-up and reconnection ......................................................................................................... 28 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)4 

Annex A (informative): BINARY Representation (data_With_UID) Example................................ 29 

Annex B (informative): Data Service Grammar (EBNF) ................................................................... 32 

B.1 Introduction ............................................................................................................................................ 32 

B.2 Basic Definitions .................................................................................................................................... 32 

B.3 Numbers, Words, Names, and Text ....................................................................................................... 33 

B.4 Properties & Comments ......................................................................................................................... 33 

B.5 Data Element Type ................................................................................................................................. 34 

B.6 Data Element Instance ............................................................................................................................ 34 

B.7 Structure Element ................................................................................................................................... 34 

B.8 Object Element ....................................................................................................................................... 35 

B.9 Enumeration Definition .......................................................................................................................... 35 

B.10 Service Definition .................................................................................................................................. 35 

Annex C (informative): Authors and Contributors ............................................................................. 37 

History .............................................................................................................................................................. 38 

 

  



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)5 

Intellectual Property Rights 

Essential patents  

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Technical Specification (TS) has been produced by ETSI Technical Committee Intelligent Transport Systems 
(ITS). 

The present document is part 6 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.1]. 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx


 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)6 

1 Scope 
The present document is part of the MirrorLink® specification which specifies an interface for enabling remote user 
interaction of a mobile device via another device. The present document is written having a vehicle head-unit to interact 
with the mobile device in mind, but it will similarly apply for other devices, which provide a colour display, audio 
input/output and user input mechanisms. 

The Service Binary Protocol (SBP) is a simple, low-bandwidth data service framework, enabling a CDB data service 
provider and subscriber to utilize common functions like reading, writing or subscribing to objects of a data service. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long-term validity. 

The following referenced documents are necessary for the application of the present document. 

[1] Void. 

[2] ETSI TS 103 544-5 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport 
Systems (ITS); MirrorLink®; Part 5: Common Data Bus (CDB)". 

[3] ETSI TS 103 544-9 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport 
Systems (ITS); MirrorLink®; Part 9: UPnP Application Server Service". 

[4] ETSI TS 103 544-4 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport 
Systems (ITS); MirrorLink®; Part 4: Device Attestation Protocol (DAP)". 

[5] ETSI TS 103 544-15 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport 
Systems (ITS); MirrorLink®; Part 15: Application Programming Interface (API) Level 1 & 2". 

[6] IEEE Std 754-2019TM: IEEE Standard for Binary Floating-Point Arithmetic, 22 July 2019. 

NOTE: Available at https://standards.ieee.org/standard/754-2019.html. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long-term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI TS 103 544-1 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport 
Systems (ITS); MirrorLink®; Part 1: Connectivity". 

https://docbox.etsi.org/Reference
https://standards.ieee.org/standard/754-2019.html


 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)7 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
Void. 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

API Application Programming Interface 
BOM Byte Order Mark 
CDB Common Data Bus 
EBNF Extended Backus-Naur Form 
INT INTeger 
IP Internet Protocol 
LSB Least Significant Bit 
MSB Most Significant Bit 
SBP Service Binary Protocol 
TCP Transmission Control Protocol 
UID Unique IDentifier 
UPnP Universal Plug-and-Play 
USB Universal Serial Bus 
UTC Coordinated Universal Time 
WLAN Wireless Local Area Network 
XML eXtensible Markup Language 

4 MirrorLink® Data Service Architecture 

4.1 Overall Architecture 
MirrorLink Data service is composed of CDB, service framework and service provider/subscriber. CDB is the 
underlying multiplexing layer which also provides service discovery feature. On top of it, service framework layer 
allows implementing a new service in easier way by providing common abstraction for service provider/subscriber. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)8 

 

Figure 1: Top level architecture of MirrorLink data service 

Figure 1 shows the top level architecture of MirrorLink data service. Underlying connectivity can be a TCP/IP session 
on top of physical connectivity like USB, WLAN, and Bluetooth. Besides TCP/IP, it will be also possible to run 
MirrorLink data service on top of other protocol like Bluetooth RFCOMM, but how to discover and establish 
connection for such configuration is outside the scope of the present document. 

On top of the connectivity layer, the CDB layer is located. CDB relies on the connectivity layer to provide TCP like 
connection oriented session, and all other layers above rely on the CDB to provide communication interface. 

Above the CDB can be the service framework layer or data source (service provider)/data sink (service subscriber) layer 
depending on the data service used. Service framework layer implements common features for individual data services 
to allow creating a new service easier. Some data service may decide not to use the service framework to re-use existing 
protocols or to reduce the additional overhead caused by the framework. It is highly recommended for any new data 
service to consider using the service framework first. If that approach does not work, accessing directly to CDB layer 
can be considered. Some data service may open its own TCP/IP session, but such use case is outside the scope of the 
present document. 

On top of data service framework can be service provider (data source) or service subscriber (data sink). Each data 
source can support up to one data sink: Zero data sink means the service is not used. As there can be only one data sink 
for each data source, it is up to each side of MirrorLink connection (MirrorLink Server and MirrorLink Client) to make 
sure that the service can be shared across multiple applications if necessary. Depending on the implementation, there 
can be one system component which can work as a data sink and can provide received data to all interested applications. 
Another implementation may allow only one application to get the data. How such access control is implemented is 
outside the scope of the present document, but it is recommended to allow multiple applications to access the data 
unless that data is meaningful only for selected applications.  

4.2 Version convention 
CDB and service framework layers are bound under the same version number provided from CDB. In other words, the 
service framework layer does not have separate version number. CDB version number will be updated when there is an 
update in CDB or service framework layer. This present document, goes together with the CDB version 1.1 
specification, defined in [2]. 

All version numbers in MirrorLink data service are composed of major version number and minor version number. A 
change in the major version number means incompatibility with the previous major version. A change in the minor 
version guarantees compatibility with the previous minor version. This policy should be maintained across all the layers 
of MirrorLink data service. 

MirrorLink Server MirrorLink Client 

Connectivity 

CDB 

Service 
Framework 

Data 
Sink 

Data 
Source 

Data 
Sink 

Data 
Source 

Connectivity 

CDB 

Service 
Framework 

Data 
Source 

Data 
Sink 

Data 
Source 

Data 
Sink 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)9 

4.3 Starting Data Service 
MirrorLink data service requires CDB as underlying layer. And to use data service, CDB should be launched by via 
UPnP application launch mechanism [3]. Note that there is no separate application for data service, and launching CDB 
is enough. More details on discovering CDB services can be found from clause 5.3 of CDB specification [2]. Note that 
MirrorLink Client needs to launch the CDB with right version number. 

Once CDB is started, all available services can be discovered by using CDB ServicesRequest and ServicesSupported 
messages. Then service client, either from MirrorLink Client or Server side, can ask service server to start the service 
via CDB StartService message. For details, check the CDB specification. 

4.4 Data Service Security with Device Attestation Protocol 
CDB can support payload encryption by using a pre-arranged session key. In the current MirrorLink architecture, the 
session key can be acquired after attestation of CDB in MirrorLink Server side by utilizing Device Attestation Protocol 
[4]. The application public key generated from the attestation of CDB is the session key used for encrypting CDB 
payload in MirrorLink Client side. MirrorLink Server will use matching private key to decrypt CDB payload. Note that 
this key can be generated per each MirrorLink connection, and MirrorLink Client shall not re-use the key from the 
previous connections. 

Future versions of the Common Data Bus may provide, additional mechanisms to exchange session keys for encrypting 
both directions, e.g. symmetric keys. 

5 Service Framework: Service BINARY Protocol (SBP) 

5.1 Introduction 
As a basic data representation mechanism in the service framework layer, we have preferred binary version compared to 
XML mainly for performance reason. Due to that, a new binary protocol for service framework, SBP (Service Binary 
Protocol) was defined. Even if the service framework is based on binary protocol, it is important to allow easy service 
definition and future extendibility. To allow future extension, the concept of identifying each member variable by 
unique ID is used. 

Big-endian is used for all data types. The protocol does not guarantee data alignment for compact data representation, 
and in most cases, data should be re-constructed from byte stream. Due to that, there is no big advantage of having 
little-endian instead of big-endian. 

SBP assumes lossless data delivery through CDB layer. Due to that, there is no separate data integrity check, but still 
there can be mal-formed SBP payloads due to implementation error. Such error will be checked inside SBP.  

Due to the time constraint for MirrorLink 1.1 specification, decision was made to focus on basic features in this version 
of specification. Following features will be addressed in this version: 

• Getting and setting data. 

• Subscribing to a data. 

Following features will be added in later revisions: 

• Remote Procedure Call feature. 

• Details about authentication. Command is defined, but specific details will be added later. 

• Meta-data description. 

• Interface Description Language: In this draft, style similar to C++ is used for convenience, but it is not 
formally defined. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)10 

5.2 Service Description Example 
Service description can be done by defining data objects including member variables. Mechanism for subscribing the 
data objects will be explained later. Let's assume an example service with the name of 
"com.mirrorlink.sensor_example". The name is used to uniquely identify the service in CDB layer. 

Figure 2 shows data objects defined in the service. 

/* com.mirrorlink.sensor_example, version 1.0 */ 

/** @UID: 0xD6804B4A @max_subscription_rate: 50Hz */ 

Object accelerometer {   

    STRUCTURE accel_data { 
        FLOAT x;   /// @unit: m/s^2 @mandatory @UID: 0x150A2CB3 
        FLOAT y;   /// @unit: m/s^2 @mandatory @UID: 0x150A2CB4 
        TIME time; /// @mandatory @UID: 0x00A0FDB2    
    }; 

    STRUCTURE_ARRAY<accel_data> data; /// @UID: 0x144A776F 
}; 

/** @UID: 0xD73DFF88 @writable @control: accelerometer */ 

Object accelerometer_control { 

    BOOLEAN filterEnabled; /// @UID: 0x2B230C64 @optional: false 

    INT samplingRate;      /// @UID: 5F2BF0EC 
}; 

/** @UID: 0x41F75401 @max_subscription_rate: 1Hz 

Object thermometer {  

    INT temperature; /// @UID: 0x9D28234F @unit: Celsius 
}; 

 
Figure 2: Example Service Description 

A service can be composed of one or more Objects. The example service is composed of three Objects: accelerometer, 
accelerometer_control and thermometer. Javadoc style is used to document each object. Each object can be individually 
accessed by using Get, Set or Subscribe command. Details of these commands will be presented in later clauses. 

The accelerometer object has one member variable: data. The "data" is an array of STRUCTURE accel_data which has 
three members: acceleration in x direction, acceleration in y direction, and time. Note that 
STRUCTURE_ARRAY<XYZ> means an array of STRUCTURE XYZ. Similarly, ARRAY<XYZ> represents an array 
of basic type (non-STRUCTURE, non-ARRAY) XYZ. The example subscription also shows that the accelerometer 
object allows the maximum subscription rate of 50 Hz with maximum sampling rate of 100Hz. Due to the difference in 
rates, one data notification can include multiple samples. Note that /** */ and /// is used for comments and additional 
information as in Javadoc. All objects allow reading data, but writing is allowed selectively. The accelerometer_control 
object allow writing as @writable tag shows. Member variables can be either mandatory or optional. Member variables 
are mandatory by default, and optional member can be specified with @optional tag which can also include the 
specification of default value when the member variable is not present. For example, in the accelerometer_control 
object, filterEnabled is optional with default value of false. 

Note that accelerometer_control object can be used to control the behaviour of accelerometer object. 

An Object can inherit other Objects or STRUCTUREs. Then all member variables defined in parents 
Objects/STRUCTURREs are available in the child Object. A STRUCTURE can also inherit other Objects or 
STRUCTUREs to re-use the already defined data layout. An example, an Object "A" inheriting a STRUCTURE "a" can 
be expressed as "Object A inherits STRUCTURE a {};". 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)11 

5.3 Data representation 
Data in SBP is represented as in Table 1 using Extended Backus-Naur Form (EBNF).  

Table 1: Binary representation of data in EBNF 

EBNF Form 
No 

Matching data_type 

data =  data_type, value | 1 BOOLEAN, BYTE, 
SHORT, INT, LONG, 
FLOAT, DOUBLE 

           data_type, no_elements, {value} | 2 BYTES, STRING 

           data_type, element_data_type, no_elements, {value} | 3 ARRAY 

           data_type, no_elements, { data_with_UID }, END | 4 STRUCTURE 

           data_type, no_elements, {data}, END;  5 STRUCTURE_ARRAY 

data_with_UID = UID, data; - - 
 

Each data within a STRUCTURE_ARRAY shall have the same STRUCTURE type, and thus only data with form 4 can 
be placed. 

Table 2 describes symbols used in EBNF description of data. 

Table 2: Description of symbols 

Category Size Description 

data_type U8 Tell the type of data.  

UID U32 Unique identifier of data. Hash value of 
data's name is used as UID. 

value 8, 16, 32, 
64 bits 

Raw data without any addition. Size 
depends on the data_type. 

no_elements U32 Number of elements contained in the array, 
array of structure, or structure. 

element_data_type U8 data_type of elements contained in the 
array. This data_type can be only 
BOOLEAN, SHORT, INT, LONG, FLOAT, or 
DOUBLE. Putting other data_type shall be 
treated as irrecoverable error. 

END U8 Special character (0x81) used for 
terminating STRUCTURE or 
STRUCTURE_ARRAY for checking data 
integrity. 

data_with_UID - UID, data pair binding UID with data.  
 

Table 3 shows all the data types with matching EBNF description to represent the data. 

Table 3: List of data_type 

Name  data_type Form Description 

BOOLEAN 0x82 1 U8, true (non-zero) or false (0). 

BYTE 0x83 1 8-bit, signed integer. 

SHORT 0x84 1 16-bit, signed integer. 

INT 0x85 1 32-bit signed integer. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)12 

Name  data_type Form Description 

LONG 0x86 1 64-bit signed integer. 

FLOAT 0x87 1 32-bit value, single-precision [6]. 

DOUBLE 0x88 1 64-bit value, double-precision [6]. 

BYTES 0x90 2 Array of BYTE 

STRING 0x91 2 Array of UTF16BE characters. Each character takes at 
least 2 bytes. 

A Byte Order Mark (BOM) shall not be included.  

A termination character is not needed. If included, it shall 
be counted within the no_elements. 

ARRAY 0xA0 3 Array of basic data types (BOOLEAN, SHORT, INT, 
LONG, FLOAT, and DOUBLE) 

STRUCTURE 0xA1 4 Generic container for heterogeneous data as in structure in 
C language. Note that STRUCTURE can nest another 
STRUCTURE inside, but creating too many depths can 
increase processing over-head. 

STRUCTURE
_ARRAY 

0xA2 5 Array for the STRUCTURE of the same type. Note that this 
data type is not necessarily efficient in the amount of data 
point of view as the same meta-data is repeated for all 
child elements. If reducing the amount of data is important, 
other data type should be considered. 

 

Form column shows how each data_type can be represented in binary format. For example, ARRAY has form 3, which 
corresponds to Form No 3 in Table 1. 

Besides what is listed above, in service description, pseudo data_type of TIME can be used. TIME is a 64-bit signed 
integer (LONG) with the meaning of time in milliseconds since 1970-01-01-00:00 in UTC or relative time in 
milliseconds depending on how it is defined in each service. Note that TIME is only used in service description level, 
and in SBP protocol level, TIME is always delivered as LONG. 

Usage of data_type not defined in Table 3 shall be treated as irrecoverable error. 

The sequence for the placement of child elements shall follow the service description. In the example service 
description of Figure 2, STRUCTURE accel_data has three data members: x, y, and time. When this STRUCTURE is 
transmitted under SBP, the order of data shall be x, y, and time as defined in the description. Table 4 shows how it will 
be in binary representation. 

Table 4: Example for the sequence of member variables in binary representation 

High-level STRUCTURE accel_data { 
    FLOAT x; /// @unit: m/s^2 @mandatory @UID: 0x150A2CB3 
    FLOAT y; /// @unit: m/s^2 @mandatory @UID: 0x150A2CB4 
    TIME time; /// @mandatory @UID: 0x00A0FDB2 
}; 
STRUCTURE accel_data data; /** @UID: 0x144A776F */ 

Binary  
Description 

UID: "data", data_type: 0xA1(STRUCTURE), no_elements: 3, 
UID: "x", data_type: 0x87(FLOAT), value: 0, UID: "y", 
data_type: 0x87(FLOAT), value: 0, UID: "time", data_type: 
0x86(LONG), value: 0, END 

Binary 
(data_with_
UID) 

0x144A776F, 0xA1, 0x00000003, 0x150A2CB3, 0x87, 
0x00000000, 0x150A2CB4, 0x87, 0x00000000, 0x00A0FDB2, 
0x86, 0x0000000000000000, 0x81 

 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)13 

If some data members are OPTIONAL, it is allowed to skip that member. But in that case, each service description 
should either define the default value or should provide a relevant mechanism for SBP Sink to know if some members 
are present or not. The latter can be done by providing an additional member variable or an Object containing such 
information. 

5.4 Command representation 
Compared to data representation, there is only one type of EBNF for command as shown in Table 5. 

Table 5: Binary representation of command in EBNF 

command =  command_type, payload_length, UID, packet_id, value, 
no_elements, {data_with_UID}, END_C; 

 

Table 6 describes symbols used in EBNF of command. 

Table 6: Description of symbols 

Category Size Description 

command_type U8 Tell the type of command.  

payload_length U32 Total length of command including END_C - 5 
(command_type + payload_length). 

UID U32 Unique identifier of object. Hash value of object's name is 
used as UID. 

packet_id U16 Unique identifier for each packet. Value of "0" means do not 
care. 

value U32 Command specific value. 

no_elements U32 Number of child data elements contained in this command. 

data_with_UID - UID, data pair as defined in Table 1. 

END_C U8 Special character (0xB0) used for terminating a command. 
 

Table 7 shows summary of defined commands. 

Table 7: List of commands 

Name  command_ 
type 

UID value Description 

Get 0xB1 Object 0 Reads an object once. Depending on the 
object, this operation can take time. 

Set 0xB2 Object 0 Write to the Object. Depending on the object, 
this operation can take time. 

Subscribe 0xB3 Object Subscription 
type and 
interval (ms) 

Get multiple notifications for the Object. 
Object data is sent later depending on 
subscription type and interval. Subscription 
type takes MSB 8 bits, and subscription 
interval takes remaining LSB 24 bits from 
32bits "value".  

Cancel 0xB4 Object command_ty
pe 

Cancels the currently active command (Get, 
Set, and Subscribe) with the given 
command_type.  

AliveRequest 0xB5 0 0 Request the SBP Source to send 
AliveResponse. 

AliveResponse 0xB6 0 0 Reply for AliveRequest. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)14 

Name  command_ 
type 

UID value Description 

AuthenticationChal
lenge 

0xB7 Object 
or 
Function 
UID 

authenticatio
n method 

Authentication challenge when an Object 
which requires authentication is accessed. 
Data passed are defined by each 
authentication method. In this version, only 
service specific authentication is allowed, 
and service specific authentication shall use 
the authentication method value of 
0x80000000. 

AuthenticationRes
ponse 

0xB8 Object 
or 
Function 
UID 

Error code Authentication response for the challenge. 
For the current version of the specification, 
AuthenticationResponse shall return Feature 
not supported error code except for service 
specific authentication. 

Response 0xB9 Object/F
unction 

Error code This is a response for Get, Subscribe, 
Cancel, and AuthenticationResponse. 

Reserved 
commands 

0xBA to 0xBF - - This range is reserved for next update for 
Call and other features. For the current 
version of specification, SBP Source shall 
return a Response with "Feature not 
supported" error code when command in 
these ranges is received. 

 

Table 8 shows the defined subscription types. 

Table 8: subscription_type in Subscribe command 

Subscription type Description 

0x0, regular interval Send update in regular interval with interval (ms) specified in 24bits 
subscription interval. When the interval is smaller than what SBP Source 
supports, SBP Source should return error. 

0x1, on change Send update when there is a change. When there is too frequent 
changes, SBP Source can decide to either drop some updates or 
combine multiple updates into single one if data structure allows it.  

0x2, automatic It is up to SBP Source to decide either to choose regular interval or on 
change. SBP Source can choose the optimal notification mechanism for 
the requested Object. 

 

The SBP Source shall support Get, Set, Subscribe, Cancel, and AliveRequest commands. Except for the AliveRequest 
command, when the current service does not support these commands for the given object, SBP Source shall return 
Response with "Feature not supported" error code. 

The SBP Sink shall support Response, and AuthenticationResponse commands. 

Note that each command can access one Object as a whole. Each Object can include member variable with different 
data types like STRUCTURE, but it cannot include another Object. STRUCTURE can also include member variable, 
but unlike Object, STRUCTURE cannot be individually accessed by command. A STRUCTURE can be only accessed 
as a member variable of an Object or Objects. 

Note that SBP Sink and SBP Source shall recognize all the commands defined. If a specific command is not supported 
by a specific Object, SBP Sink and SBP Source shall return proper error code like "Feature not supported" or "Write not 
allowed". It is up to each service to decide if specific command is supported for the specific Object, but Get and Cancel 
command shall be supported unless specified otherwise in the service specification. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)15 

5.5 Command Sequences 

5.5.1 General 

This clause shows how commands are related with each other by showing sequences and examples. Note that each 
command sequence shall share the same packet_id. Any AuthenticationChallenge-AuthenticationResponse phase, 
which is actually a sequence, following a Get/Set/Subscribe command, shall have the same packet_id as the first 
command.  

A Cancel command sequence for a pending Get/Set/Subscribe command shall have a different packet_id as the pending 
command.  

A command sequence with wrong packet_id shall be ignored by both SBP Sink and SBP Source. 

All command sequences are initiated by the SBP Sink. Upon receiving the initial command, the SBP Source should 
send reply within 5 seconds. If the SBP Source fails to send a reply within 5 seconds, the SBP Sink should treat that 
request as an error, like notifying the upper layer with time-out error, and following responses from the SBP Source, 
which arrive later, can be ignored. Depending on the command, some operation like Get and Set can take more time and 
need not be completed within 5 seconds. In that case, SBP Source should send Response message with error code of 
"continue" (Response-Continue from now on). Then SBP Source can spend more time. Note that the SBP Source can 
send multiple of Response-Continue in some regular interval until the requested operation is completed. For example, if 
a Set request for an object takes 11 seconds, SBP Source can send two Response-Continue at 4 seconds and 8 seconds 
later. Then at 11 seconds, SBP Source will send the final reply. In this example, SBP Source is sending 
Response-Continue earlier than the 5 seconds time-out as it can take time for the message to arrive to the SBP Sink. 

SBP Sink should not send the same command to the same object until the currently active command sequence is 
completed. SBP Source shall return "Command already pending" error code upon detecting such situation. 

As all commands are processed in asynchronous way, SBP Source needs to guarantee that the certain number of 
command sequences can be processed at a time. It is up to each service to define the maximum number of active 
commands that shall be supported, and SBP Source should guarantee at least that number of active commands. In the 
case when SBP Source cannot process a new command due to resource limitation, SBP Source shall return an error 
code, "no more session". Note that cancelling existing active command should work always as it is not adding a new 
active command. 

Note that, in all the examples in this clause, original name is shown as UID, but actual data carried is hash value of the 
name rather than the name itself. 

5.5.2 Get, [{Response-Continue}], Response 
Get is used to fetch an Object data once. For protected object, optionally, authentication can be requested in the middle. 
When the authentication stage is included, service SBP Source will send AuthenticationChallenge message and SBP 
Sink shall respond with AuthenticationResponse. After the OPTIONAL authentication, Response comes from SBP 
Source. There can be multiple Response-Continue message in the middle if it takes time to get the requested data. 

Table 9 shows example of the data exchange for the example service. 

Table 9: Example of Get command sequences 

1. SBP Sink: command_type: Get, payload_length, UID: "accelerometer", 
packet_id: 1, 0, 0, END_C 

2. SBP Source: command_type: Response, payload_length, UID: 
"accelerometer", packet_id: 1, value 0 (OK), …, END_C 

 

Get command can be sent without first subscribing the object. Note that the SBP Sink can send Get, Set, and Subscribe 
commands without having dependency on any other commands. For example, SBP Sink can send Set command without 
sending Subscribe or Get command beforehand. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)16 

For data services provided from the MirrorLink Server as a source, the MirrorLink application shall provide an initial 
value for any readable object, to which the MirrorLink Client cannot subscribe to, immediately after completing 
registration for the service as a data source. Those objects are treated as quasi-static objects, i.e. the MirrorLink Server 
need not use the MirrorLink API call 0x0A0D (Request to Update an Object Callback) to request the latest object's 
value from the MirrorLink application. Therefore, the MirrorLink application shall use the MirrorLink API call 0x0A09 
(Set an Object), in case the object's value changes.  

For data services provided from the MirrorLink Server as a source, the MirrorLink Client shall not read the value of any 
writable object, before having written to it first. 

Command specific Error Handling: 

• The SBP Source on a MirrorLink Client shall send an SBP Response message with Error Code 0x10000006 
(Not available) in case the requested data is not available. 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000006 
(Not available) in case the MirrorLink application has not yet provided its first update via the MirrorLink API 
call 0x0A09 (Set an Object) [5] for a readable object, and the MirrorLink Server has not actively retrieved it. 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000006 
(Not available) in case it has not received a successful SBP Set command from the Data Service Sink for a 
writable object. 

Figure 3 shows example SBP Get operations, in case the SBP Source is a MirrorLink application, interacting via the 
MirrorLink API. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)17 

SBP Sink 

Endpoint

MirrorLink 

API

SBP Source 

Endpoint

0x0A03:: Register Service

0x0A03:: Register to 

Service Callback ( true )

alt GET Operation

[ Success:

   Value set by 

   MirrorLink Application

   (readable object) ]

SBP::Get ( UID )

SBP::Response 

( UID, Data )

[ Success:

   Value set by

   MirrorLink Client

   (writable object) ]

0x0A03:: Register Service

0x0A03:: Register to 

Service Callback ( true )

SBP::Get ( UID )

[ Error:

   Unknown Initial Value ]

SBP::Response 

( UID, 0x10000006 )

SBP::Get ( UID )

0x0A09:: Set an Object ( UID, Data )

SBP::Response 

( UID, Ok )

0x0A0E::Set Data Object Response

( Ok )

SBP::Set ( UID, Data )
0x0A0C::Received Object Callback

( UID, Data )

SBP::Response 

( UID, Data )

0x0A03::Register to 

Service Callback ( true )

0x0A03:: Register Service

opt 

[ Active Read ]
0x0A09::Set an Object 

( UID, Data )

0x0A0D::Requst to Update an 

Object Callback ( UID, false )

opt 

[ Active Read ]
0x0A09::Set an Object 

( UID, Data )

0x0A0D::Requst to Update an 

Object Callback ( UID, false )

 

Figure 3: SBP Get Operation Examples 

For data services provided from the MirrorLink Server as a source, the MirrorLink Client should not use SBP Get for 
any readable object, to which the MirrorLink Client can subscribe to, outside an active Subscription, as the MirrorLink 
Server need not request the latest object's value from the MirrorLink application, as defined in this clause (5.5.2). 

5.5.3 Set, [{Response-Continue}], Response 
Set is used to set an object to the desired state. Set operation is similar to writing to hardware registers which will trigger 
some action. As it is the case with hardware register, successful write does not necessarily mean that the object, when 
read back, will have the same value as requested via Set. 

The example below (Table 10) shows the case where SBP Source is sending Response-Continue message once as the 
process took some time. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)18 

Table 10: Example of Set command sequence 

1. SBP Sink: command_type: Set, payload_length, UID: 
"accelerometer_control", packet_id: 2, 0, 2, member data, END_C 

2. SBP Source: command_type: Response, payload_length, UID: 
"accelerometer_control", packet_id:2, value: continue error, 0, END_C 

3. SBP Source: command_type: Response, payload_length, UID: 
"accelerometer_control", packet_id: 2, value 0 (OK), 0, END_C 

 

For data services provided from the MirrorLink Server as a source, the MirrorLink application shall respond within 3 
min to the set operation from the MirrorLink Client, either with an Ok or an Error response via the MirrorLink API call 
0x0A0E (Set Data Object Response). The MirrorLink Server shall use SBP Response-Continue mechanism, to provide 
a timely response to the data sink, while waiting for the application to respond. 

Command specific Error Handling:  

• The SBP Source on a MirrorLink Client shall send an SBP Response message with Error Code 0x1000000C 
(Write not allowed) in case the referenced data object is not writable. 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with the Response code set by 
the MirrorLink Application for the write operation to the referenced data object via the MirrorLink API call 
0x0A0E (Set Data Object Response). In case the MirrorLink application fails to respond in time via the 
MirrorLink API call 0x0A0E (Set Data Object Response) [5] the SBP Source shall send an SBP Response 
message with Error Code set to 0x1000000E (Object currently not available for writing). 

Figure 4 shows example SBP Set operations, in case the SBP Source is a MirrorLink application, interacting via the 
MirrorLink API. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)19 

SBP Sink 

Endpoint

MirrorLink 

API

SBP Source 

Endpoint

0x0A03:: Register Service

0x0A04:: Register to 

Service Callback ( true )

alt SET Operation

[ Success:

   MirrorLink Application

   immediate response ]

SBP::Response Continue

( UID, 0x10000000 )

[ Success:

   MirrorLink Application

   delayed response ]

[ Error:

   MirrorLink Application

   timeout ]

0x0A03:: Register Service

0x0A04:: Register to 

Service Callback ( true )

SBP::Set ( UID, Data )
0x0A0C::Received Object Callback

( UID, Data )

SBP::Response 

( UID, Ok )

0x0A0E::Set Data Object Response

( Ok )

SBP::Response Continue

( UID, 0x10000000 )

SBP::Response Continue

( UID, 0x10000000 )

SBP::Response 

( UID, 0x1000000E )

SBP::Set ( UID, Data )

0x0A03:: Register Service

0x0A04:: Register to 

Service Callback ( true )

SBP::Response 

( UID, 0x0 )

0x0A0E::Set Data Object Response

( Ok )

SBP::Set ( UID, Data )

SBP::Response Continue

( UID, 0x10000000 )

SBP::Response Continue

( UID, 0x10000000  )

0x0A0C::Received Object Callback

( UID, Data )

0x0A0C::Received Object Callback

( UID, Data )

Timeout

 

Figure 4: SBP Set Operation Examples 

5.5.4 Subscribe, {Response-OK/NOK}, [{Response}] 
Subscribe command is used to request asynchronous notification for the object. Notification can be requested either in 
regular interval or on change of data. Depending on the service, sending data in regular interval or on change need not 
make sense, and in that case, only one mechanism will be supported. SBP Source should answer to the Subscribe 
request from SBP Sink within 5 seconds by sending Response command, which just tells if the subscription request is 
successfully accepted or not. If SBP Source fails to send initial Response within 5 seconds, SBP Sink should treat it as 
recoverable error. If SBP Sink treat it as an error, SBP Sink shall send Cancel command to cancel the current 
subscription. Between Subscribe and first Response, optionally, there can be an authentication stage. Once the 
subscription request is successfully accepted, there can be multiple Response command from SBP Source which 
delivers the requested data. Note that the 2nd Response with data can take time depending on the data, and there is no 
5 seconds limitation for the Response. 

An example of the Subscribe sequence is presented in Table 11. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)20 

Table 11: Example of Subscribe command sequences 

1. SBP Sink: command_type: Subscribe, payload_length, UID: 
"thermometer", packet_id: 3, type: 0, interval: 1000 (1Hz), 0, END_C 

2. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0 (OK), 0, END_C 

3. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0, 1, UID: "temperature", 
data_type: INT, value: 0, END_C 

4. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value: error, 0, END_C 

 

In the last part of the sequence, the SBP Source is sending Response with an error message, other than 0x10000006 
(Not available). Such error message stops the currently active subscription and the SBP Sink needs to send Subscribe 
command again to get notification if the problem is temporary. 

For data services provided from the MirrorLink Server as a source, the MirrorLink application may provide an initial 
value for any readable object, to which the MirrorLink Client can subscribe to, immediately after completing 
registration for the service as a data source. 

Command specific Error Handling, when setting up the subscription: 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000002 
(Feature not supported), if SBP Subscribe is not supported for the object. 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000003 
(Wrong subscription interval), if SBP Subscribe is done with non-supported subscription interval. 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000004 
(Wrong subscription type), if SBP Subscribe is done with non-supported subscription type. 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000006 
(Not available), if the MirrorLink application either provides no initial value or indicates the object is not 
available via the MirrorLink API call 0x0A09 (Set an Object) [5]. 

Command specific Error Handling, after subscription has been setup: 

• The SBP Source on a MirrorLink Server shall send one or regular SBP Response messages with Error Code 
0x10000006 (Not available), as applicable for the subscription type, in case the MirrorLink application has 
indicated the object is not available via the MirrorLink API call 0x0A09 (Set an Object) [5]. 

Figure 5 shows example SBP Subscribe operations, in case the SBP Source is a MirrorLink application, interacting via 
the MirrorLink API. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)21 

SBP Sink 

Endpoint

SBP Source 

Endpoint

SBP::SUBSCRIBE 

( UID, Type, Intervall )

SBP Source 

Endpoint

SBP::ServiceResponse 

( UID, Data 2 )

0x0A03::Register Service

0x0A0D::Request to U pdate 

an Object Callback ( true )

0x0A09::Set an Object

( UID, Data 1 )

SBP::ServiceResponse 

( UID, Data 1 )

0x0A09::Set an Object

( UID, Data 2 )

SBP::ServiceResponse ( OK )

SBP::ServiceResponse 

( UID, Data 0 )

0x0A04::Register to 

Service Callback ( true )

MirrorLink 

API

alt SUBSCRIBE Operation

[ Sucess:

   MirrorLink Application

   (initial value provided) ]

[ Success:

   MirrorLink Application

   (no initial value) ]
0x0A04::Register to 

Service Callback ( true )

SBP::SUBSCRIBE 

( UID, Type, Intervall )

0x0A0D::Request to U pdate 

an Object Callback ( true )

SBP::ServiceResponse ( OK )
0x0A09::Set an Object

( UID, Data 0 )

0x0A09::Set an Object

( UID, Data 1 )

SBP::ServiceResponse 

( UID, Data 0 )

SBP::ServiceRespo nse 

( UID, Data 1 )

[ Error:

   Feature Not supported ]

0x0A03::Register Service

0x0A04::Register to 

Service Callback ( tru e )

0x0A03::Register Service

SBP::SUBSCRIBE 

( UID, Type, Intervall )

SBP::ServiceRespo nse 

( 0x10000002 )

0x0A09::Set an Object ( UID, Data 0 )

[ Error:

   Not Available

   (during setup) ]
0x0A04::Register to 

Service Callback ( true )

SBP::SUBSCRIBE 

( UID, Type, Intervall )

0x0A0D::Request to U pdate 

an Object Callback ( true )

SBP::ServiceResponse 

( 0x10000006 )

0x0A09::Set an Object

( UID, NULL )

0x0A03:: Register Service

[ Error:

   Not Available 

   (after setup,

    with on-change

    subscription) ] SBP::SUBSCRIBE 

( UID, Type, Intervall )

SBP::ServiceResponse 

( 0x10000006 )

0x0A03:: Register Service

0x0A0D::Request to U pdate 

an Object Callback ( true )

0x0A09::Set an Object

( UID, Data 1 )

SBP::ServiceResponse 

( UID, Data 1 )

0x0A09::Set an Object

( UID, NULL )

SBP::ServiceRespo nse ( OK )

SBP::ServiceResponse 

( UID, Data 0 )

0x0A04::Register to 

Service Callback ( true )

0x0A09::Set an Object ( UID, Data 0 )

0x0A09::Set an Object

( UID, Data 2 )

SBP::ServiceResponse 

( UID, Data 2 )

 

Figure 5: SBP Subscribe Operation Examples 

5.5.5 Cancel, Response 
Cancel command stops the currently active Get, Set, or Subscribe command. Upon receiving this command, SBP 
Source should cancel the processing for the requested command. The example in Table 12 shows how the thermometer 
object, subscribed before, can be cancelled. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)22 

Table 12: Example of Cancel command sequences (Subscribe) 

1. SBP Sink: command_type: Subscribe, payload_length, UID: 
"thermometer", packet_id: 3, type: 0, interval: 1000 (1Hz), 0, END_C 

2. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0 (OK), 0, END_C 

3. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0, 1, UID: "temperature", 
data_type: INT, value: 0, END_C 

4. SBP Sink: command_type: Cancel, payload_length, UID: "thermometer", 
packet_id: 4, value: Subscribe, 0, END_C 

5. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 4, value 0 (OK), 0, END_C 

6. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0x1000000B (Successfully 
cancelled), 0, END_C 

 

The following example (Table 13) shows how a get request to the thermometer object is cancelled. 

Table 13: Example of Cancel command sequences (Get) 

1. SBP Sink: command_type: Get, payload_length, UID: "thermometer", 
packet_id: 3, 0, 0, END_C 

2. SBP Sink: command_type: Cancel, payload_length, UID: "thermometer", 
packet_id: 4, value: Get, 0, END_C 

3. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 4, value 0 (OK), 0, END_C 

4. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0x1000000B (Successfully 
cancelled), 0, END_C 

 

The following example (Table 14) shows, how a set request to the thermometer object is cancelled. 

Table 14: Example of Cancel command sequences (Set) 

1. SBP Sink: command_type: Set, payload_length, UID: 
"accelerometer_control", packet_id: 3, 0, 2, member data, END_C 

2. SBP Source: command_type: Response, payload_length, UID: 
"accelerometer_control", packet_id:3, value: continue error, 0, END_C 

3. SBP Sink: command_type: Cancel, payload_length, UID: "thermometer", 
packet_id: 4, value: Set, 0, END_C 

4. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 4, value 0 (OK), 0, END_C 

5. SBP Source: command_type: Response, payload_length, UID: 
"thermometer", packet_id: 3, value 0x1000000B (Successfully 
cancelled), 0, END_C 

 

Note that the SBP Source will be able to detect, whether the SBP Sink has cancelled a Get, Set or a Subscribe 
command, from the value entry in the Cancel command. 

After sending the Response for the Cancel command, SBP Source should not send Response messages with data for the 
requested command any more. SBP Sink shall treat such situation as recoverable error and shall ignore such response as 
sending a response for cancelled command can happen due to the asynchronous nature of command-response. 

Command specific Error Handling, when cancelling a subscription:  

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000002 
(Feature not supported) or 0x10000009 (Command not pending), if SBP Subscribe, is not supported for the 
object. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)23 

• The SBP Source on a MirrorLink Server shall send an SBP Response message with Error Code 0x10000009 
(Command not pending), if there is no active subscription for the object. 

Figure 6 shows example SBP Unsubscribe operations, in case the SBP Source is a MirrorLink application, interacting 
via the MirrorLink API. 

SBP Sink 

Endpoint

SBP Source 

Endpoint

SBP::SUBSCRIBE 

( UID, Type, Intervall )

SBP Source 

Endpoint

0x0A03::Register Service

0x0A0D::Request to Update 

an Object Callback ( true )

0x0A09::Set an Object

( UID, Data 1 )

SBP::ServiceResponse 

( UID, Data 1 )

SBP::ServiceResponse ( OK )

0x0A09::Set an Object

( UID, Data 0 )

SBP::ServiceResponse 

( UID, Data 0 )

0x0A04::Register to 

Service Callback ( true )

MirrorLink 

API

SBP::Cancel 

( UID, Subscription )

0x0A0D::Request to Update 

an Object Callback ( false )

SBP::ServiceResponse ( OK )

SBP::ServiceResponse 

( 0x1000000B )

SBP::ServiceResponse 

( UID, 0x10000006 )

 

Figure 6: SBP Cancel Subscription Operation Example 

5.5.6 AuthenticationChallenge, AuthenticationResponse 
SBP Source can send AuthenticationChallenge after receiving Get/Set/Subscribe command for an object which requires 
authentication. The current specification does not define any authentication mechanism, and version 1.0 service SBP 
Source should not use this command unless service specific authentication is defined. But it can happen that a SBP 
Source with newer SBP version sends the AuthenticationChallenge command to the version 1.0 SBP Sink. In that case, 
the SBP Sink shall reply with AuthenticationResponse with the "Feature not supported" error code. Then the SBP 
Source should send Response message to the original command with authentication failed error code. Note that upon 
receiving AuthenticationChallenge command, SBP Sink should send AuthenticationResponse within 5 seconds. If SBP 
Sink fails to send the AuthenticationResponse within 5 seconds, the SBP Source shall send Response with 
"Authentication failed" error code. Some SBP Source may terminate the CDB session after sending the Response for 
failed authentication, but it is up to each service to define such behaviour. 

5.5.7 AliveRequest, AliveResponse 
AliveRequest is used by SBP Sink to check if the SBP Source is alive or not. As it is the case with other commands, 
upon receiving this command, SBP Source should reply with AliveResponse within 5 seconds. Failure to do that shall be 
interpreted as an irrecoverable error by SBP Sink. 

5.6 Hash as UID 
In SBP, hash value of object name or member variable name is used as a UID. Due to this, each service description 
should make sure that there is no conflict in hash value: 

• All object names shall have unique hash value inside the service. Hash conflict across different services does 
not matter. 

• Each member variable inside an object with the same depth shall have unique UID inside that object. UID 
conflict with member variable of other object does not matter. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)24 

If there is a conflict in hash value, either name should be changed into something else or character like "_" should be 
appended. To avoid conflict in UID, it is recommended to include UID value in the specification of each service. 

Following pseudo-code shows the algorithm to calculate hash value for a name given as an 8-bits character string: 

Table 15: Pseudo Code for Calculating Hash 

int hash(char array name) /* name is an array of U8 character */ 

    int hash = 5381; /* int is 32 bit signed */ 

    foreach char c in name 

        h6 = hash<<6; 

        hash = (h6<<10) + h6 - hash + c; 

    return hash; 

 

5.7 Error handling 

5.7.1 General 

This clause describes how error should be handled. Error can be classified into irrecoverable error and recoverable 
error. Additionally, there are errors which should be just ignored. 

5.7.2 Irrecoverable error 

5.7.2.1 Introduction 

Irrecoverable error is an error when integrity of the other side cannot be trusted any more. Both SBP Sink and SBP 
Source, upon receiving this kind of error shall terminate the current session of the service in CDB level either by 
sending CDB StopService message or by sending CDB ServiceResponse message with error code of "service reset" as 
defined in the CDB specification. 

5.7.2.2 Unknown data type 
Adding new data type breaks compatibility with old version of service framework as the size of data cannot be 
determined. This situation should have been avoided by checking version number in UPnP stage or CDB stage, but if 
this case happens due to other reason like lost synchronization, it shall be treated as an irrecoverable error. Another case 
when this error can happen is the wrong element_data_type in ARRAY data type. Array data type can have 
element_data_type of BOOLEAN, SHORT, INT, LONG, FLOAT, and DOUBLE. Setting other data type shall be 
treated as irrecoverable error.  

If SBP Source detects this error for the command received from SBP Sink, SBP Source should send Response 
command with error code to notify the SBP Sink about the error, if sending Response is allowed in the current 
command sequence. In case of SBP Sink, when unknown data type is detected for the command received from SBP 
Source, the SBP Sink shall terminate the current session immediately. 

5.7.2.3 Wrong END: END check failure for form 4, 5 or command 
STRUCTURE, STRUCTURE_ARRAY, or command does not terminate with END/END_C after receiving the 
expected number of elements. END and END_C are used to check the integrity of data payload, and when 
END/ENC_C are not discovered in the expected location, it shall be treated as critical error. This case is treated as 
irrecoverable error as the data included cannot be trusted any more. As it is the case for unknown data type, upon 
detecting this error, SBP Source should send Response command with error code before terminating the session. This 
error is different from the case when either side sends more child elements than what was specified. In that case, 
no_child_elements will still match with total number of child elements, and it is not an irrecoverable error.  



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)25 

5.7.3 Recoverable error 

5.7.3.1 Introduction 

Recoverable error is an error which should be replied with error code if sending reply is possible in the command 
sequence. If command sequence does not allow sending reply, this error should be ignored. All error code not marked 
as irrecoverable can be considered as a recoverable error.  Complete list of recoverable errors is presented in Table 16. 

5.7.3.2 Unknown Object UID 
This error happens when UID for the command sent from either side is unknown. SBP Source shall reply with error 
code, "unknown UID". When the SBP Sink receives unknown UID as part of response to a command, the SBP Sink 
should ignore it. 

5.7.3.3 Unknown command type 
When SBP Sink sends an unknown command, SBP Source shall reply with a Response with the error code of 
"Unknown Command". When SBP Source sends a command with unknown type, the SBP Sink should ignore it. 

5.7.3.4 Unsupported feature 
When any SBP endpoint sends a command of an unsupported feature, the other SBP endpoint shall reply with a 
Response with the error code of "Feature not supported". 

5.7.4 Error to ignore 

5.7.4.1 General 

Some errors are to be ignored as ignoring such case allows future extension without breaking compatibility. 

5.7.4.2 Unknown UID for member variable 
This situation can happen when a new member variable is added to a service. Even if one side does not support the 
latest version with the new member variable, the other side can still send the object data with new member variable. 
Upon receiving such member variable with unknown UID, either side shall just ignore the child element and should 
proceed to the next element in the received object data. This alleviates the need to send different versions of objects 
depending on the service version. 

5.7.5 Error code definition 
Table 16 gives the list of error code defined. Error code in the range of 0x1 to 0x0fffffff is allocated for 
irrecoverable error. Error code from 0x10000000 to 0x3fffffff is allocated for recoverable error. As new error 
code can be added in the future, range of the error code should be checked first rather than checking individual error 
code. 

Table 16: List of error code 

Error code Description 

0 OK, no error 

0x1 Unknown data_type: data_type is unknown. This error is irrecoverable. 

0x2 Wrong END: BYTES, STRING, ARRAY, STRUCTURE, STRUCTURE_ARRAY, or 
command does not terminate with END/END_C after receiving the expected number of 
children. Or END/END_C is found in wrong place. This error is irrecoverable. 

0x3 Wrong element_data_type. This is the case when SBP Source has set wrong data type 
as element_data_type of array. As the size of child data cannot be predicted, this error 
is irrecoverable. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)26 

Error code Description 

0x4 UID and type does not match. The type bound with UID does not match with the type 
actually transferred. 

0x01000000 Irrecoverable error in either in SBP Source or SBP Sink side due to implementation 
specific reason like no memory. 

0x10000000 Continue. SBP Source needs more time to process the request. This is error code for 
Response-Continue message. 

0x10000001 Unknown UID: unrecognized object UID for the service. 

0x10000002 Feature not supported. 

0x10000003 Wrong subscription interval. Error code for Subscribe command. 

0x10000004 Wrong subscription type. The type is not supported by the service. 

0x10000005 Missing mandatory data. Mandatory member variable is missing.  

0x10000006 Not available. The requested data is currently unavailable. 

0x10000007 Authentication failed. 

0x10000008 Command already pending. Error code when the same command is sent again before 
the previous one is completed. 

0x10000009 Command not pending. Error code for Cancel command when the command is not 
pending. 

0x1000000A No more session. SBP Source cannot support new commands until currently active 
commands are completed. 

0x1000000B Command successfully cancelled. When a cancel request is successful, this error code 
should be returned. Note that sending OK response for cancel command will mean 
successful completion of the command, not the cancellation. 

Packet_id shall be the same as the original Get, Set or Subscribe command. 

0x1000000C Write not allowed. The Object does not allow writing. This is the error SBP Source shall 
return when Set command is sent to an Object which does not support writing. 

0x1000000D Unknown command. This is the error code to respond when a command not defined in 
Table 7 is received. 

0x1000000E Object currently not available for writing. 

0x11000000 Recoverable error in SBP Sink or SBP Source side due to implementation specific 
reason. 

0x40000000 
to 0x4fffffff 

Reserved for service specific error code. Each service can define a new error code in 
this range. 

 

5.8 Authentication mechanism 
The purpose of authentication is for SBP Source to verify if SBP Sink has valid permission to access the resource. 
MirrorLink CDB already has mechanism to restrict access to selected applications. But there may be service specific 
needs to have additional authentication. 

Also note that authentication does not protect the data from eavesdropping. To protect against the eavesdropping, the 
whole service can be encrypted using CDB's payload encryption mechanism. 

The current version of specification does not have any built-in mechanism for authentication. Details on how service 
specific authentication should be done will be defined later. If necessary, each service can define its own authentication 
mechanism. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)27 

5.9 Support of optional Objects 
The current version of SBP does not have mechanism to list available Objects or to retrieve meta-data. It is up to each 
service to pass necessary meta-data information. SBP Sink can check if an optional Object is supported or not by trying 
to Get or Subscribe the Object. If the Object is not supported, SBP Source shall return "unknown UID" error.   

5.10 Version listing and selection 
This is supported in CDB level. Once CDB StartService message, which includes version selection, is received, the 
version is maintained while the session is maintained. 

5.11 Initialization Sequence 

  

Figure 7: Example starting sequence of CDB/SBP 

The figure 3 shows initialization sequence of SBP with CDB. 

1) CDB Endpoint in the SBP Sink side requests the list of supported services by sending ServicesRequest 
message. Before the step, SBP Source may register itself to CDB endpoint, but that step is not shown. 

2) The message is replied with ServicesSupported message which shows the example service, 
com.mirrorlink.sensor_example. 

3) The availability of the service is discovered by/informed to SBP Sink in platform specific mechanism. SBP 
Sink requests the start of the service to SBP Source via CDB StartService message with preferred version of 
1.0. 

4) The request succeeds and ServiceOkResponse is received in CDB layer. All subsequent messages are SBP 
messages which are delivered via CDB ServicePayload message. 

5) The SBP Sink requests the subscription of accelerometer object via Subscribe command. 

6) The SBP Source returns OK with Response command to notify that the subscription is successful. 

7) Later, when a data is available, the SBP Source sends the accelerometer data via Response command. 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)28 

5.12 Other topics 

5.12.1 Extending a service 
Adding a new data member to existing object is an easy way to extend existing service without breaking compatibility 
with already deployed counter-parts.  

Compatibility can break when the data type of an existing member variable is changed. In such case, there should be a 
change in major version number.  

5.12.2 Payload fragmentation 
Each SBP command shall be delivered by one or more than one CDB ServicePayload messages. CDB layer can do the 
optimization of combining multiple ServicePayload into one TCP packet, but such concatenation should not happen in 
service framework level. If a command is too big to fit into single CDB Payload message, it shall be fragmented into 
multiple CDB ServicePayload message. Even in that case, data of two different commands shall not be mixed in one 
CDB ServicePayload message. Either side, upon detecting such payload, shall handle it as irrecoverable error. Support 
of the fragmentation allows data services to exchange bigger data than 8KB. Fragmented payload can have arbitrary 
size, but the first payload shall include command_type, payload_length, UID, packet_id, value, and no_elements. As a 
result, fragmentation can happen only right before data, right after data, or in data. 

5.12.3 Inheritance 
In the service description, inheritance can be used to avoid defining the same type again and again. Each service 
description using inheritance needs to make sure that the final data generated can be bounded. For example, a loop in 
inheritance relationship will create a data with infinite length which cannot be used. Each service description also needs 
to make sure that all member variables, whether it is from inheritance or not, have unique UID. 

5.12.4 Shutdown clean-up and reconnection 
When a SBP session is closed due to normal shut-down or shut-down caused by irrecoverable error, SBP Source should 
close all active commands by itself. If the service is still available in CDB service list, and the SBP Sink requests the 
service again, SBP Source shall guarantee that the previous shut-down does not prevent the current session's normal 
operation.  

  



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)29 

Annex A (informative): 
BINARY Representation (data_With_UID) Example 
Tables A.1 to A.6 show some examples of various data and command representation in binary forms. 

Table A.1: Binary representation of INT 

High-level INT aaa = 1; /* 32bit signed integer */ 

Binary 
Description 

UID:       "aaa",  
data_type: 0x85(INT),  
value:     1 (0x00000001) 

Binary 0x27E6B6DC, 0x85, 0x0000001 

 

Table A.2: Binary representation of BYTES 

High-level BYTES bbb = {1, 2, 3, 4}; /* byte array of 4 bytes */ 

Binary 
Description 

UID:         "bbb",  
data_type:   0x90(BYTES),  
no_elements: 4, value: 1 2 3 4 

Binary 0x2865C69D, 0x90, 0x00000004, 0x1, 0x2, 0x3, 0x4 

 

Table A.3: Binary representation of INT ARRAY 

High-level ARRAY<INT> ccc = {1, 2, 3, 4}; /* Array of 32bit signed 
integer, 4 elements */ 

Binary 
Description 

UID:               "ccc",  
data_type:         0xA0(ARRAY),  
element_data_type: 0x85(INT),  
no_elements:       4,  
value:             0x00000001 0x00000002 0x00000003 
0x00000004 

Binary 0x28E4D65E, 0xA0, 0x85, 0x00000004, 0x00000001, 0x00000002, 
0x00000003, 0x00000004 

 

Table A.4: Binary representation of STRUCTURE 

High-level STRUCTURE str{ 

    INT a; 

    INT b; 

}; 

STRUCTURE str s = {1, 2}; /* a = 1, b = 2 */ 

Binary 
Description 

UID:         "s",  
data_type:   0xA1(STRUCTURE),  
no_elements: 2,  
    UID:        "a",  
    data_type:  0x85(INT),  
    value:      1,  
    UID:        "b",  
    data_type:  0x85(INT),  
    value:      2,  
    END 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)30 

Binary 0x150A2CAE, 0xA1, 0x00000002, 0x150A2C9C, 0x85, 0x00000001, 
0x150A2C9D, 0x85, 0x00000002, 0x81 

 

Table A.5:  Binary representation of STRUCTURE_ARRAY 

High-level STRUCTURE str{ 

    INT a; 

    INT b; 

}; 

STRUCTURE_ARRAY<str> s_array = {{1, 2}, {3,4}};  

/* 1st STRUCTURE: a = 1, b = 2  

   2nd STRUCTURE: a = 3, b = 4 */ 

Binary 
Description 

UID:         "s_array",  
data_type:   0xA2(STRUCTURE_ARRAY),  
no_elements: 2,  
data_type:   0xA1(STRUCTURE),  
no_elements: 2,  
    UID:        "a",  
    data_type:  0x85(INT),  
    value:      1,  
    UID:        "b",  
    data_type:  0x85(INT),   
    value:      2,  
    END,  
data_type:   0xA1(STRUCTURE),  
no_elements: 2,  
    UID:        "a",  
    data_type:  0x85(INT),  
    value:      3,  
    UID:        "b",  
    data_type:  0x85(INT),   
    value:      4,  
    END,  
END 

Binary 0xBFCB5248, 0xA2, 0x00000002, 0xA1, 0x00000002, 0x150A2C9C, 
0x85, 0x00000001, 0x150A2C9D, 0x85, 0x00000002, 0x81, 0xA1, 
0x00000002, 0x150A2C9C, 0x85, 0x00000003, 0x150A2C9D, 0x85, 
0x00000004, 0x81, 0x81 

 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)31 

Table A.6: Binary representation of Call command 

High-level Object Obj1{ 

    STRUCTURE str member; 

}; 

Obj1.member = {1, 2}; /* a = 1, b = 2 */ 

Set Obj1 

Binary 
Description 

command_type:    0xB2(Set),  
payload_length:  39,  
UID:             "Obj1",  
packet_id:       1,  
value:           0,  
no_elements:     1,  
    UID:         "member",  
    data_type:   0xA1(STRUCTURE),  
    no_elements: 2,  
        UID:        "a",  
        data_type:  0x85(INT),  
        value:      1,  
        UID:        "b",  
        data_type:  0x85(INT),  
        value:      2,  
        END,  
    END_C 

Binary 0xB2, 0x0000002B, 0x43AF649F, 0x0001, 0x00000000, 
0x00000001, 0xF19C0ABF, 0xA1, 0x00000002, 0x150A2C9C, 0x85, 
0x00000001, 0x150A2C9D, 0x85, 0x00000002, 0x81, 0xB0 

 

  



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)32 

Annex B (informative): 
Data Service Grammar (EBNF) 

B.1 Introduction 
CDB/SBP data service specifications mainly consist of a C language type definition of objects and structures. Properties 
are attached to objects and data elements within these objects, providing information on obligation, access control, and 
others. To simplify and streamline the specification of these data services, a language and grammar is defined in this 
clause. This grammar should be used, when defining new data services. 

The grammar will also enable possible post-processing for e.g. documentation or code-generation purposes. 

The Extended Backus Naur Form (EBNF) is used to define the Data Service language and grammar. Information about 
EBNF can be found in the following Wikipedia entry 
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form. But there are many other good resources 
available as well. EBNF is used in many IETF RFCs. 

The following EBNF Symbols are used: 

• Definition       = 

• Concatenation    , 

• Termination      ; 

• Optional         [ ... ]  (* None or One *) 

• Repetition       { ... }  (* None, One or more *) 

• Comment          (* ... *) 

• Terminal String  " ... " 

The data service specification is self-contained with the description of each structure, object and data element. If 
required, references can be made to outside documentation. Documentation is following Doxygen/JavaDoc style.  

Data Service specifications are documented using the following fonts: 

• Courier New. 

• Font size of 10 pt. 

Definition of the language and grammar is given in below clauses. The grammar does not include optional formatting 
elements, like adding indentation (with white spaces and/or tabs) to the beginning of a line, or adding a white space into 
a comma-separated list.  

B.2 Basic Definitions 
The following basic definitions are made: 

• ws         = " ", { " " };      (* white space(s) *) 

• lf         = "\n";              (* line feed *) 

• dec_19     = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"; 

• dec        = "0" | dec_19; 

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form


 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)33 

• hex        = dec | "a" | "b" | "c" | "d" | "e" | "f" | "A" | "B" |  
             "C" | "D" | "E" | "F"; 

• upper_case = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |  
             "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |  
             "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"; 

• lower_case = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |  
             "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |  
             "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" ; 

• letter     = lower_case | upper_case; 

• symbol     = "[" | "]" | "{" | "}" | "(" | ")" | "<" | ">" | "'" |  
             """ | "=" | "|" | "." | "," | ";" | "_"; 

• character  = letter | dec | symbol; 

B.3 Numbers, Words, Names, and Text 
Decimal and hexadecimal integer numbers, words, names, and text are defined as below: 

• pos_number = dec_19, { dec }; 

• int_number = "0" | [ "-" ], pos_number; 

• hex_number = "0x", hex, { hex }; 

• upper_word = upper_case, { lower_case }; 

• lower_word = lower_case, { lower_case }; 

• type_name  = upper_word, { upper_word }; 

• instance   = lower_word, { upper_word }; 

• text       = character, { character }; 

B.4 Properties & Comments 
The following comment structures are defined: 

• comment_begin = "/** ", text, lf, { comment_mid, text, lf }; 

• comment_mid   = " * "; 

• comment_end   = " */", lf; 

The following properties are defined, which can be attached to objects and object elements: 

• obligation = "@optional" |           (* Object/element is optional *) 
             "@mandatory"|           (* Object/element is mandatory *) 
             "@conditional";         (* Object/element is conditional *) 

• access     = "@readable" |           (* Object is read-only *) 
             "@writable" |           (* Object is readable & writable *) 
             "@configurable";        (* Object is writable by only 1 
service *) 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)34 

• default    = "@default", ws, text;   (* Default value of optional element 
*) 

• unit       = "@unit", ws, text;      (* Unit of element, if applicable *) 

• range      = "@range", ws, text;     (*  Element value range, if 
applicable *) 

• uid        = "@uid", ws, hex_number; (* UID value of the object/element *) 

The version information, defines the minimum service version, supporting this object: 

• version    = "@version", dec, ".", dec;  

B.5 Data Element Type 
The following defines the available data types: 

• simple_data_type       = "BOOLEAN" | "BYTE"  | "SHORT"  | "INT"  |  
                         "LONG"    | "FLOAT" | "DOULBE" | "TIME" |  
                         "BYTES"   | "STRING"; 

• struct_data_type       = "STRUCTURE", "<", type_name, ">"; 

• simple_array_data_type = "ARRAY", "<", simple_data_type, ">"; 

• struct_array_data_type = "STRUCTURE_ARRAY", "<", type_name, ">"; 

• enum_data_type         = "ENUM", "<", type_name, ">"; 

• data_element_type      = simple_data_type  |  
                         simple_array_data_type |  
                         enum_data_type 
                         struct_data_type  |  
                         struct_array_element_type; 

B.6 Data Element Instance 
Each object and structure can consist of one or more basic data elements, which are defined in the following: 

• data_prop         = obligation, [ ",", default ], [ ",", unit ],  
                    [ ",", range ], ",", uid; 

• data_element_desc = comment_begin, comment_mid, data_prop, lf,  
                    comment_end; 

• data_element_def  = data_element_type, ws, instance; 

• data_element      = data_element_desc, lf, data_element_def; 

B.7 Structure Element 
The definition of the structure element is given below. Nesting of structure elements is allowed: 

• structure_desc = comment_begin, comment_end; 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)35 

• structure_def  = "STRUCTURE", ws, type_name, "{", lf, 
                   data_element, ";", lf, 
                 { data_element, ";", lf }, 
                 "};", lf; 

• structure      = structure_desc, structure_def; 

B.8 Object Element 
The definition of the object element is given below. Object elements the entities within a data service, which are 
specifically accessed, either read, write or subscribe: 

• object_prop  = obligation, ",", access, ",", version, ",", uid; 

• object_desc  = comment_begin, comment_mid, object_prop, lf,  
               comment_end; 

• object_def   = "OBJECT", ws, type_name, "{", lf,  
                 data_element, ";", lf,  
               { data_element, ";", lf }, 
               "};", lf; 

• object       = object_desc, object_def; 

B.9 Enumeration Definition 
The enumeration element is defined below. Enumerations are restricted to integer numbers, in decimal or hexadecimal 
format. Enumerations do not have a UID as they are placeholder for a collection of data: 

• enum_desc    = comment_begin, comment_end;  

• enum_element = name, "=", int_number | hex_number; 

• enum_type    = "BYTE" | "SHORT" | "INT" | "LONG"; 

• enum_def     = "ENUM", "<", enum_type, ">", ws, instance, "{", lf, 
               { enum_desc, enum_element, ",", lf }, 
                 enum_desc, enum_element, lf,  
               "}", lf; 

• enum         =   enum_desc, enum_def; 

B.10 Service Definition 
The top-level service is defined as below: 

• service_prop     = version, ",", uid; 

• service_desc     = comment_begin, comment_mid, service_prop, lf,  
                   comment_end; 

• service_url      = "com.", "mirrorlink" | word, [ ".", word }; 

• service_inherit  = ":", version; 



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)36 

• service_def      = "SERVICE", ws, service_url,  
                   [ ":", [ service_url ] version ], lf, 
                   { object | structure | enum, lf }, 
                     object, lf, 
                   { object | structure | enum, lf }, 
                   "};", lf, 

• service          = service_desc, service_def; 

  



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)37 

Annex C (informative): 
Authors and Contributors 
The following people have contributed to the present document: 

Rapporteur: Dr. Jörg Brakensiek, E-Qualus (for Car Connectivity Consortium LLC) 

Other contributors: Keun-Young Park, Nokia Corporation 

Matthias Benesch, Daimler 

Dennis Fernahl, Carmeq (for Volkswagen AG) 

Robert Hrabak, General Motors 

Jungwoo Kim, LG Electronics 

Mingoo Kim, LG Electronics 

Alfred Tom, General Motors 

  



 

ETSI 

ETSI TS 103 544-6 V1.3.1 (2019-10)38 

History 

Document history 

V1.3.0 October 2017 Publication 

V1.3.1 October 2019 Publication 

   

   

   

 


	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 MirrorLink® Data Service Architecture
	4.1 Overall Architecture
	4.2 Version convention
	4.3 Starting Data Service
	4.4 Data Service Security with Device Attestation Protocol

	5 Service Framework: Service BINARY Protocol (SBP)
	5.1 Introduction
	5.2 Service Description Example
	5.3 Data representation
	5.4 Command representation
	5.5 Command Sequences
	5.5.1 General
	5.5.2 Get, [{Response-Continue}], Response
	5.5.3 Set, [{Response-Continue}], Response
	5.5.4 Subscribe, {Response-OK/NOK}, [{Response}]
	5.5.5 Cancel, Response
	5.5.6 AuthenticationChallenge, AuthenticationResponse
	5.5.7 AliveRequest, AliveResponse

	5.6 Hash as UID
	5.7 Error handling
	5.7.1 General
	5.7.2 Irrecoverable error
	5.7.2.1 Introduction
	5.7.2.2 Unknown data type
	5.7.2.3 Wrong END: END check failure for form 4, 5 or command

	5.7.3 Recoverable error
	5.7.3.1 Introduction
	5.7.3.2 Unknown Object UID
	5.7.3.3 Unknown command type
	5.7.3.4 Unsupported feature

	5.7.4 Error to ignore
	5.7.4.1 General
	5.7.4.2 Unknown UID for member variable

	5.7.5 Error code definition

	5.8 Authentication mechanism
	5.9 Support of optional Objects
	5.10 Version listing and selection
	5.11 Initialization Sequence
	5.12 Other topics
	5.12.1 Extending a service
	5.12.2 Payload fragmentation
	5.12.3 Inheritance
	5.12.4 Shutdown clean-up and reconnection


	Annex A (informative): BINARY Representation (data_With_UID) Example
	Annex B (informative): Data Service Grammar (EBNF)
	B.1 Introduction
	B.2 Basic Definitions
	B.3 Numbers, Words, Names, and Text
	B.4 Properties & Comments
	B.5 Data Element Type
	B.6 Data Element Instance
	B.7 Structure Element
	B.8 Object Element
	B.9 Enumeration Definition
	B.10 Service Definition

	Annex C (informative): Authors and Contributors
	History

