

ETSI TS 102 635-1 V1.1.1 (2009-08)

Technical Specification

Digital Audio Broadcasting (DAB);
Middleware;

Part 1: System aspects

European Broadcasting Union Union Européenne de Radio-Télévision

EBU·UER

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 2

Reference
DTS/JTC-DAB-54-1

Keywords
Broadcasting, DAB, digital

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.

© European Broadcasting Union 2009.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 3

Contents

Intellectual Property Rights ..7

Foreword...7

1 Scope ..8

2 References ..8
2.1 Normative references ...8
2.2 Informative references..9

3 Definitions, abbreviations and conventions ...10
3.1 Definitions..10
3.2 Abbreviations ...10
3.3 Conventions..10
3.3.1 Syntax of binary messages..10
3.3.2 BNF ..11

4 Introduction ..11

5 System architecture ..11
5.1 Introduction ..11
5.2 Receiver model...11
5.2.1 System resources ..12
5.2.2 System software..12
5.3 Application ...12

6 Basic data formats ..13
6.1 Image file formats ..13
6.1.1 JPEG ...13
6.1.2 PNG ..13
6.2 Font file formats ...13
6.3 Video file formats...13
6.4 Audio file formats ..13

7 Transport protocol ..13
7.1 Broadcast channel protocol ..14
7.1.1 File transport protocol...14
7.1.2 Packet streaming protocol...14
7.1.3 Trigger protocol ..14
7.2 Communication channel protocol...15
7.2.1 Transmission Control Protocol (TCP) ..15
7.2.2 User Datagram Protocol (UDP) ..15
7.2.3 Hyper Text Transfer Protocol (HTTP)..15
7.2.4 Domain Name Service (DNS) ..15

8 Locator model ..16
8.1 Introduction ..16
8.2 Format ..16
8.3 Use in APIs...16

9 Security model..16
9.1 Purpose...16
9.1.1 Guarantee of application integrity ..16
9.1.2 Verification of application provider..16
9.1.3 Control of application permissions ...17
9.1.4 Trace of tasks performed by applications ...17
9.1.5 Authority delegation among applications ...17
9.2 Application authentication..17
9.2.1 Application signing...17
9.2.2 Application authentication procedure ...18
9.2.3 X.509 profile...18

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 4

9.2.3.1 signatureAlgorithm ...18
9.2.3.2 tbsCertificate ...18
9.2.4 Root certificates and CRL management ...19
9.3 Application authorization ...20
9.3.1 Introduction...20
9.3.2 Notation for permissions...20
9.3.3 Permission request ..20
9.3.4 Receiver security policy..20
9.3.5 Authority delegation ...21
9.4 Formats of the relevant messages...21
9.4.1 Format of certificate message ...21
9.4.2 Signature format ...21
9.4.3 Credential format ..22

10 Graphic system model ..22
10.1 Introduction ..22
10.2 Video plane ..23
10.3 Graphics plane..23
10.4 Composing a screen..23

11 Application model ..24
11.1 Introduction ..24
11.2 Application storage and removal..24
11.2.1 Storage ..24
11.2.2 Receiver policy ...24
11.3 Application storage, update, and removal ..24
11.3.1 Application download...24
11.3.2 Application update..24
11.3.3 Application removal ...24
11.4.4 Lifecycle ...25
11.4.4.1 Loaded state ..25
11.4.4.2 Paused state ...25
11.4.4.3 Active state..25
11.4.4.4 Destroyed state ..26
11.5 MIDlet model ...26

12 Application signalling and transport ..26
12.1 Application module ..26
12.1.1 Definition and purpose of application module..26
12.1.2 Structure of application module..27
12.1.2.1 ZIP format ...27
12.1.2.2 Application-defined format ...27
12.1.3 Application module ID and version..27
12.1.4 Accessing contents of application module..28
12.1.4.1 Introduction...28
12.1.4.2 URL to an application module ..28
12.1.5 Compression of application module ...28
12.1.6 Transport of application module...28
12.1.7 Signing application module ..29
12.2 Application ID..29
12.3 Application signalling ..29
12.3.1 Signalling structure ...29
12.3.1.1 Application information message..30
12.3.1.2 Module information message ..30
12.3.1.3 Service binding message ...31
12.3.1.4 Application control message ...31
12.3.1.5 Certificate message ...31
12.3.2 Message transport ...31
12.3.3 Message monitoring..31
12.4 Application state control ..31
12.4.1 Application download...32
12.4.2 Application update..32
12.4.3 Application removal ...32

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 5

12.4.4 Application execution ...32
12.4.5 Application termination ..32
12.5 Application module and message formats..32
12.5.1 Relationship with platform standards ...32
12.5.2 Message version..33
12.5.3 Common data format ..33
12.5.3.1 UTF-8 string..33
12.5.3.2 Descriptor..33
12.5.3.3 Descriptor loop..34
12.5.3.4 Digital signature ..34
12.5.3.5 Credentials ..34
12.5.4 Application module format ...34
12.5.5 Format of application information message..35
12.5.6 Application related descriptors ...37
12.5.6.1 Module download descriptor...37
12.5.6.2 Application description descriptor ..38
12.5.6.3 Application icon descriptor ...38
12.5.6.4 Autodownload descriptor ..38
12.5.6.5 Signal bound descriptor...39
12.5.6.6 MIDlet descriptor ..39
12.5.6.7 Profile extension descriptor...40
12.5.6.8 Application expiration descriptor..40
12.5.7 Format of module information message ...41
12.5.8 Format of service binding message...42
12.5.9 Format of application control message ...43
12.5.10 Format of certificate message ...43

13 Java environment..43
13.1 Introduction ..43
13.2 Requirements on Java environment..43
13.3 DMB extensions ...43
13.3.1 Standard optional packages...44
13.3.2 Simultaneous execution of multiple applications ...44
13.3.3 Graphics extension..44
13.4 Simultaneous execution of multiple applications ...44
13.4.1 Requirements ..44
13.4.2 JVM implementation ..45
13.5 Standard properties...45
13.5.1 MIDlet properties..45
13.5.2 System properties..45
13.6 Basic APIs ..46
13.6.1 AsyncResult/AsyncRequestor pattern...46
13.6.2 AttributedObject pattern ...47
13.7 Graphic user interface API ...47
13.7.1 Screen management ..47
13.7.2 Processing alpha values ..48
13.7.3 User interface elements...49
13.7.4 Key mapping...49
13.7.5 Reserving keys for exclusive use ..49
13.7.6 Loading fonts dynamically ...50
13.8 Media control API ..50
13.8.1 A MMAPI 1.1 profile ...50
13.8.2 Player creation ..50
13.9 Broadcast data access API..50
13.9.1 File access API ...50
13.9.1.1 Creation of file objects ..50
13.9.1.2 Directory ...50
13.9.1.3 Metadata..51
13.9.1.4 File access ...51
13.9.1.5 File update...51
13.9.2 Packet access API ...51
13.9.3 Trigger API...51

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 6

13.10 Service information API...52
13.10.1 Introduction...52
13.10.2 Service information object..52
13.10.2.1 SI database ..52
13.10.3 SI query and view ...52
13.11 Tuning API...52
13.11.1 Tuner...52
13.11.2 TunerLock...52
13.12 Service selection API ...52
13.13 CAS API...53
13.13.1 Communication with CA module ...53
13.13.2 Purchasable entities...53
13.14 Application control API ...53
13.15 Inter-application communication API ..53
13.15.1 Messages...53
13.15.2 Port..54
13.15.3 Sending messages ...54
13.15.4 Receiving messages ..54
13.16 Resource manager API...54
13.16.1 Introduction...54
13.16.2 Resource objects ...54
13.16.3 Resource group and choice ...55
13.16.4 Resource group ...55
13.16.5 Resource choice ..55
13.16.6 Nesting resource groups and choices ..55
13.16.7 Rule for determining resource ownership ...55
13.17 Storage API ..56
13.17.1 Implementation requirements ...56
13.17.2 Per-application storage ...56
13.17.3 Permissions ...56
13.18 Communication channel API ...56

Annex A (informative): Automated test environment for receiver certification57

Annex B (informative): Delivery and processing of key events among embedded applications
and MATE..59

B.1 Introduction ..59

B.2 Key processing of embedded applications ...59

B.3 Key focus management of MATE applications ...59

Annex C (informative): Accessing location information from Java applications.............................60

Annex D (normative): API specification ..61

History ..251

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE 1: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about 60
countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

The Eureka Project 147 was established in 1987, with funding from the European Commission, to develop a system for
the broadcasting of audio and data to fixed, portable or mobile receivers. Their work resulted in the publication of
European Standard, EN 300 401 [23], for DAB (see note 2) which now has worldwide acceptance. The members of the
Eureka Project 147 are drawn from broadcasting organizations and telecommunication providers together with
companies from the professional and consumer electronics industry.

NOTE 2: DAB is a registered trademark owned by one of the Eureka Project 147 partners.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 8

1 Scope
The present document establishes a standard for a platform-independent environment, where executable applications
can be signalled and transferred to a receiver via a broadcasting network and executed on the receiver. It does not
suppose the exclusive use of a specific broadcast network but defines the commonly-required specifications among
diverse broadcast networks. It includes the definitions of basic data formats, protocols to deliver data, to signal
downloadable applications and to download them, ways to denote resources on broadcast networks, and detailed
interfaces among receiver platform, broadcast and communication networks, and the applications.

In order to apply the present document to a target broadcast network, it is required to map abstract interfaces to concrete
entities of the network and to add additional definitions specific to the network.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause-were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are indispensable for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] JSR 118: "Mobile Information Device Profile 2.0".

NOTE: See at (http://www.jcp.org/en/jsr/detail?id=118).

[2] JSR 217: "Personal Basis Profile 1.1".

NOTE: See at (http://www.jcp.org/en/jsr/detail?id=217).

[3] ISO/IEC 10918-1: 1994 "Information Technology –Digital compression and coding of
continuous-tone still images –Requirements and Guidelines".

NOTE: See at (http://www.w3.org/Graphics/JPEG/itu-t81.pdf).

[4] JPEG File Interchange Format, Eric Hamilton, C-Cube Microsystems.

NOTE: See at (http://www.w3.org/Graphics/JPEG/jfif3.pdf).

[5] PNG (Portable Network Graphics) Specification, Version 1.0. W3C Recommendation, October 1,
1996.

NOTE: See at (http://www.w3.org/TR/REC-png.html).

http://docbox.etsi.org/Reference
http://www.jcp.org/en/jsr/detail?id=118
http://www.jcp.org/en/jsr/detail?id=217
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.w3.org/TR/REC-png.html

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 9

[6] IETF RFC 793 (TCP): "Transmission Control Protocol", J. Postel.

[7] IETF RFC 768 (UDP): "User Datagram Protocol", J. Postel.

[8] IETF RFC 2616: "IETF Hypertext Transfer Protocol -- HTTP/1.1".

[9] IETF RFC 1034: "Domain Names - Concepts and facilities".

[10] IETF RFC 1035: "Domain Names - Implementation and specification".

[11] IETF RFC 1982: "Serial Number Arithmetic".

[12] IETF RFC 2181: "Clarifications to the DNS Specification".

[13] IETF RFC 3280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[14] IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax".

[15] IETF RFC 3066: "Tags for the Identification of Languages".

[16] JSR 135: "Mobile Media API 1.1".

NOTE: See at (http://www.jcp.org/en/jsr/detail?id=135).

[17] JSR 75: "PDA Optional Packages for the Java ME Platform".

NOTE: See at (http://www.jcp.org/en/jsr/detail?id=75).

[18] ITU-T Recommendation X.509: "Information technology - Open Systems Interconnection - The
Directory: Authentication framework".

[19] T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84, 253-259.

[20] Info-ZIP Application Note 970311.

NOTE: See at (ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip).

[21] ISO 10646-1: "Information technology - Universal multiple-octet coded character set (UCS), part
1: Architecture and Basic Multilingual Plane".

[22] JSR 172: "Location API for J2ME".

NOTE: See at (http://www.jcp.org/en/jsr/detail?id=172).

[23] ETSI EN 300 401: "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile,
portable and fixed receivers".

[24] ISO/IEC 13818-1: "Information technology -- Generic coding of moving pictures and associated
audio information: Systems."

[25] ISO 4217: "currency names and code elements".

2.2 Informative references
The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

Not applicable.

http://www.jcp.org/en/jsr/detail?id=135
http://www.jcp.org/en/jsr/detail?id=75
ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip
http://www.jcp.org/en/jsr/detail?id=172

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 10

3 Definitions, abbreviations and conventions

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

device driver: system software responsible for basic operation of hardware units

event: group of one or more media with specified start and end times

EXAMPLE: An event can be a soccer half time, a news flash, and so on.

platform standard: standard that is defined by the present document, and designates media-specifics, where media
means either terrestrial or satellite DMB

program: group of one or more events being transmitted under a single broadcaster's control

EXAMPLE: A program can be news or entertainment.

service: series of programs being transmitted under a single broadcaster's control

service binding: binding of applications with services

NOTE: An application bound to a service is executed automatically upon user's selection of the service. If the
user stops the service, the application is also destroyed.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
BNF Backus-Naur Form
CA Certificate Authority or Conditional Access
CAS Conditional Access System
CRC Cyclic Redundancy Check
CRL Certificate Revocation List
DMB Digital Multimedia Broadcasting
DNS Domaine Name Service
DSMCC Digital Storage Media Command and Control
EPG Electronic Programme Guide
HTTP Hyper Text Transfer Protocol
JAR Java ARchive
JVM Java Virtual Machine
MATE Multimedia Application Terminal Environment
MOT Multimedia Object Transfer
PIN Personal Identification Number
SI Service Information
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator

3.3 Conventions

3.3.1 Syntax of binary messages

The symbols, the abbreviations, and the methods for the description of syntaxes of binary messages in the present
document shall follow those defined in sections 5.2 and 5.3 of ISO/IEC 13818-1 [24].

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 11

3.3.2 BNF

Unless otherwise specified, the BNF notation in the present document shall follow the definitions of section 1.3 of RFC
2616 [8].

4 Introduction
MATE provides a definition of a platform-independent environment, where executable applications can be signalled,
transferred to receivers, and executed. The present document specifies abstract models for external entities which need
to be further defined by the MATE external environment specifications.

5 System architecture

5.1 Introduction
The present document defines standard interfaces between external environment shown in figure 1 and the receiver
implementing the MATE specification. There may be additional external entities other than those specified in figure 1,
but within the scope of the present document, they are irrelevant and never mentioned.

In defining such standard interfaces, the present document takes an approach of specifying abstract models for external
entities such as broadcast network to broaden the range of external environments to which the present document is
applicable. Thus, MATE is not a valid standard for any implementation by itself and the abstract models need to be
concreted according to the external environments.

DMB MATE
Terminal

User

Two-way
Communication

Network

Two-way communication channel protocol,

Formats of applications and data

Broadcast
Network

Application signaling,

broadcast channel protocol,

Formats of applications and data

Input
(Key, pointing devices)

Output
(Graphics, videos)

Figure 1: Environment external to MATE terminal

5.2 Receiver model
The basic purpose of MATE is to provide an environment for control of receivers and execution of applications
transmitted to the receivers via broadcasting and communication networks. MATE receivers can be described as
3 layers as shown in figure 2. Since the basic model of a receiver presented here is an abstract model for reference in the
present document, an actual receiver does not have to follow the structure of the model.

For instance, the present document can be implemented as a separate software module distinct from hardware and other
software modules such as device drivers and operating systems with a porting layer to facilitate porting of the
implementation across different receivers. On the other hand, some implementation may be interconnected with such
software modules and hardware devices in an inseparable way.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 12

Figure 2: Basic receiver model

5.2.1 System resources

System resources refer to every single hardware and software resources composing a receiver. The same system
resource can be implemented in hardware, software or hybrid manner depending on the receiver implementation. For
instance, a media decoder may be implemented as either software or hardware device.

Not regarding concrete implementation form, the present document defines system operations and APIs based on the
abstract model of resources shown in figure 2. Other than already mentioned resources, different kind of resources may
be supported by actual receivers. The present document, however, does not define anything about such resources.

5.2.2 System software

System software makes applications executable without any modification in different receiver implementation by taking
charge of management and control of system resources. It also provides applications high level functionalities using low
level system resources.

Besides the components depicted in figure 2, there are more system software constituents although the present
document does not deal with them.

Application manager: application manager receives, executes and manages applications. When there coexist types of
embedded or downloaded applications that the present document does not specify, receiver implementation should be
careful not to violate the present document.

Embedded EPG/Channel Navigator: EPG and channel navigator are the system software for basic TV watching. In
addition to appropriate user interfaces, they provide a means to change the current channel, control media and so on
depending on receivers. It can be implemented using APIs defined by the present document or in completely different
ways. Even if they are not implemented with the standard APIs defined in the present document, the receiver
implementation must be careful not to violate the present document.

5.3 Application
Application refers to software which operates using the APIs in the execution environment designated in the present
document. The present document defines only how applications are downloaded via broadcasting and/or
communication networks.

An application can be preinstalled in the receiver, or manually via interfaces (such as USB), other than broadcasting and
communication networks, by users. The present document does not limit other possibilities, as long as the application
conforms to it. However, such possibilities are not designated in details in the present document.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 13

In addition, types of applications not designated by the present document can coexist, but interfaces between system
software and those applications, and methods of embedding and downloading them are not standardized in the present
document. But there must not be any violations to the present document caused by them.

6 Basic data formats
This clause-defines data formats that receivers complying with the present document should support. Some data formats
designated in this clause-are mandatory meaning they must be supported in all the receivers in compliance with the
present document. On the other hand, some formats are optional, but when they are supported in an implementation, the
rules set in this clause-must be followed. Each platform standard may define additional data formats.

6.1 Image file formats
The following image formats should be supported by receivers complying with the present document.

6.1.1 JPEG

JPEG files must conform to ISO/IEC 10918-1 [3] and the file exchange format defined in JFIF [4], and the following
decoding methods must be supported:

• Sequential DCT-based mode.

• Progressive DCT-based mode.

6.1.2 PNG

PNG files must conform to PNG 1.0 [5], and the additional requirements designated in the documentation of
javax.microedition.lcdui.Image API in MIDP 2.0 [1].

6.2 Font file formats
The present document defines a method to download fonts but no format for font files is defined. In addition, font
download is optional.

6.3 Video file formats
The present document does not designate a specific video file format. Instead, each platform standard is supposed to
define some.

6.4 Audio file formats
The present document does not designate a specific audio file format. Instead, each platform standard is supposed to
define some.

7 Transport protocol
This clause-defines broadcast and communication channel protocols which receivers conforming to the present
document should support. The present document does not designate any specific broadcast channel protocol. Instead,
only the properties that such protocols should have are described. In a platform standard based on the present document,
concrete broadcast channel protocols should be defined according to the relevant network specification. In doing so,
more than one protocol may be designated for each protocol model defined in this clause.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 14

7.1 Broadcast channel protocol
For broadcast channel protocols, file transport protocol, packet streaming protocol, and trigger protocol for
synchronization of timed media such as AV must be supported.

7.1.1 File transport protocol

File transport protocol is for conveying a set of files via one-way broadcast network. A platform standard based on the
present document must support at least one file transport protocol. The properties of a file transport protocol
conforming to the present document are as follows:

• Reliable transport of a set of files via repetitive transmissions of the same files.

• Each file in a set of files must be distinguishable via its name represented as a string. This does not necessarily
mean that each file is distinguished by a unique string. For instance, since integers can be represented as a
string, it is legal to distinguish each file by an integer.

• For a file designated by a name, it should be possible to detect version changes.

Besides these mandatory properties, the following properties may be supported. The present document is designed to
accommodate the properties.

• A directory that can list all the files within it can be supported. Such directory structure may be either single
depth (that is, only top level directory exists), or multi-depth forming a tree-like structure.

• For each file, various metadata can be associated such as file type (e.g. MIME type).

MOT defined in DAB, object and data carousels defined in DSMCC are examples of such file transport protocols.

7.1.2 Packet streaming protocol

Packet streaming protocol is for continuous streaming of variable or fixed length packets via broadcast channel. A
platform standard based on the present document must support at least one packet streaming protocol. The properties of
a packet streaming protocol conforming to the present document are as follows:

• The integrity of each packet must be verifiable via a means such as CRC check. That is, each packet is either
correctly received or not received at all.

Besides the standard properties stated above, the following additional properties may be supported by each platform
standard. The present document is designed to accommodate such properties:

• Some packets may be repeatedly transmitted to a restricted degree to enhance packet reception.

• Additional information such as error correction codes may be attached to packets to enhance packet reception.

• Packets may have addresses for recipients to designate that they are delivered only to the designated recipients.

Packet mode TDC in DAB and sections in DSMCC, and IP packet transport protocol via IP tunneling are examples of
such protocols.

7.1.3 Trigger protocol

Trigger protocol is for sending information required to trigger receivers to do designated operations at specific times
based on a certain time base. A platform standard may decide not to support any trigger protocol, but if supported, the
following properties must be satisfied:

• The time at which a trigger should be activated must be specifiable. But in the present document, no
requirement is defined for time precision.

• Arbitrary data must be able to be conveyed together with a trigger.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 15

• For every action that a trigger designates, a unique ID must be assigned to distinguish between the actions. A
trigger with the same ID may be transmitted more than once. By doing so, it is possible to enhance reception
of triggers, and changes in the trigger time and associated data can be communicated to the receiver.

7.2 Communication channel protocol
Communication channel protocol in this clause-shall be supported only if communication interfaces exist. The present
document does not define network dependent protocols in figure 3. Only UDP, TCP and HTTP which are above the IP
layer and have direct effects on applications are defined and required to be implemented by the present document.

However, all the defined protocols do not need to be implemented solely within a receiver. For instance, there may be a
server-sided gateway and a specialized protocol may be used between a receiver and the gateway while TCP and UDP
are supported through the gateway. Service specific protocols are not defined in the present document.

IP

Network-Dependent Protocols

Network Connection

Service

Specific

Protocols

UDP

HTTP

TCP

Application

Figure 3: Communication channel protocol stack

7.2.1 Transmission Control Protocol (TCP)

Should support TCP protocol defined in RFC 793 [6].

7.2.2 User Datagram Protocol (UDP)

Should support UDP protocol defined in RFC 768 [7].

7.2.3 Hyper Text Transfer Protocol (HTTP)

Should support HTTP 1.1 protocol defined in RFC 2616 [8] with additional requirements set in the documentation on
javax.microedition.io package in MIDP 2.0 [1]. That is, HEAD, GET, and POST methods should be supported, and
absolute URIs should be supported as well as relative ones.

7.2.4 Domain Name Service (DNS)

May implement DNS that is defined in RFC 1034 [9] and RFC 1035 [10], and clarified in RFC 1982 [11] and
RFC 2181 [12]. But implementation of DNS is optional.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 16

8 Locator model

8.1 Introduction
Locator is a means to indicate an object on a broadcast network in MATE. A locator, for instance, can be used to
designate a broadcasting channel, or a file, a packet stream, a video stream, an audio stream, and so on within a
broadcast channel. A locator is represented as a string, and Java APIs that take locators as parameters actually accept
java.lang.String objects.

Most applications with a few exceptions like EPG can identify objects required during their execution when they are
written. For example, list of channels to tune to, files to read, and so on can be identified in advance. On the other hand,
specific locations of objects may change depending on the network on which the application is transmitted and the
configuration of the transmission scheme even in the same network. Thus, for most applications, locators should be
regarded as opaque pointers.

Although the present document does not preclude the possibility that an application recognizes the exact format of
locator strings and directly manipulates them accordingly, it is designed with general cases in mind, where locators are
simple opaque pointers. Therefore, for applications complying with the present document, knowledge on specific
format of locator strings is not required. This means that applications based on the present document can be executed
independent of concrete broadcast network specifications.

8.2 Format
The present document does not define a specific format of locator strings. Since the format of locator strings, in general,
depends on the logical structure of the underlying broadcast network complying with the present document, it is the
responsibility of each platform standard to define such a format.

8.3 Use in APIs
When a locator is specified in the context of an API, which object the locator designates should be designated. For
instance, locators designating a multiplex to be tuned to should be specified for tuning APIs, while locators locating
files be given to the APIs for reading files. If the actual locators given to APIs are not compliant with the requirement
set by the APIs, it is regarded as an error, and java.lang.IllegalArgumentException shall be thrown from the method that
took the wrong locator.

9 Security model

9.1 Purpose
The security model defined by the present document has a purpose of providing the following features.

9.1.1 Guarantee of application integrity

Since application modules composing an application can be installed on a receiver through various routes other than
broadcast networks, it is possible for application data and codes to be modified for a malicious purpose. Thereby, there
should be a way to guarantee that applications installed on receivers are not modified in a way unintended by the
original author.

9.1.2 Verification of application provider

In the following cases, identification of application provider is needed:

• When the set of permissions given to an application is decided based on the identity of its provider.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 17

• When it is required to attribute some operations performed by an application to its provider (e.g. when a user is
charged for use of a communication line by an application without one's confirmation).

• When an application provided by a provider needs to give other applications from other providers authorities
to access services or resources provided by it.

Identity of an application provider must not be forgeable and there must not be any chance the provider can deny its
responsibility for applications it provides.

9.1.3 Control of application permissions

Some operations should not be allowed to some applications. For instance, use of a charged communication line
generally requires user's prior confirmation. And depending on business models, moving to other channel
programmatically by an application should not be allowed if an advertisement is showing. The present document
designates a mechanism for granting permissions to an application based on the identity of its provider.

9.1.4 Trace of tasks performed by applications

In some cases, rather than restricting permissions granted to applications to prevent them from performing some
operations, the applications need to be allowed to do the operations, and when some problems happen, or there are some
reasons to do so, the records of the performed operations may be examined later to put it on a charge for the causes. For
example, an application that has passed the authentication process may take out private information that is stored within
the receiver. Later when such an activity is discovered, it is possible to blame the application for the illegal activity. For
this to be possible, application providers must not be able to deny the responsibility on their applications.

9.1.5 Authority delegation among applications

There may be occasions where applications may need to grant permissions to use resources or services provided by
them to other applications they designate to do so. The applications granting the permissions can specify exactly what
permissions other applications are granted based on the identities of the application providers.

9.2 Application authentication

9.2.1 Application signing

In the present document, digital signing is used to guarantee application data integrity and verify application provider as
described in clause-6.1. However, application signature may not be supported in platforms based on the present
document.

To digitally sign an application, the corresponding application definition containing module information and each
application module composing the application are signed. Signing an application definition, the following restrictions
are imposed on the application modules:

• Application modules containing executable codes must be signed. In other words, receivers must not read
codes from unsigned application modules.

• Application modules without executable codes may or may not be signed, but it is recommended to sign them
if applications referring to them may behave differently from their intended behaviours in case such modules
are forged.

Since an application provider takes charge of operations performed by its application, the provider should decide
carefully which modules are to be signed or which are not to prevent its applications from behaving unexpectedly.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 18

9.2.2 Application authentication procedure

Applications can optionally be signed. For a signed application, the corresponding application definition (refer to
clause-12.5.5) contains a signature part. The application authentication procedure is as follow:

1) A receiver verifies digital signatures contained in application_definition(). The certificate chains to verify can
be located within the certificate message (refer to clause-9.4.1) by keyIdentifiers in signatures.

2) If the verification fails in step 1, the designated application is treated as if it did not exist.

3) If "!" is prefixed to a module ID, the application module corresponding to the ID is verified when it is
completely downloaded. Here, again keyIdentifiers are used to locate certificate chains to verify within the
certificate message (refer to clause-9.4.1).

4) If the verification in step 3) fails, the designated module is marked as failed to pass the verification.

5) If any module constituting an application has failed to pass the verification in step 4, then the application itself
is regarded as failed to pass the authentication, and the application is considered non-existent.

9.2.3 X.509 profile

This clause-defines a subset of X.509 Internet Profile defined in RFC 3280 [13]. The subset is defined to satisfy the
minimum requirement set by the present document, and receivers complying with the present document only need to
support the subset. This clause-only describes parts different from RFC 3280 [13] or coming with additional
restrictions. The following is the X.509 certificate syntax in ASN.1. Refer to RFC 3280 [13] for more details on ASN.1.

Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

9.2.3.1 signatureAlgorithm

Only "SHA-1 with RSA" shall be supported.

9.2.3.2 tbsCertificate

Restrictions on the fields constituting TBSCertifcate type are as follows:

version: shall always be version 3.

signature: only "SHA-1 with RSA" shall be supported.

issuer

- CN (common name) and C (country) must exist in DN.

- When RDN is defined as a DirectoryString, utf8String shall be used.

- String comparison must be case-sensitive.

validity: shall always be GeneralizedTime.

subject

- If the subject is a CA (Certificate Authority), CN (common name) and C (country) must exist in its DN,
and if it is an end entry, it must be encoded as an empty sequence.

- If RDN is defined as a DirectoryString, utf8String shall be used.

- String comparison must be case-sensitive.

subjectPublicKeyInfo: Only RSA is allowed.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 19

issuerUniqueID and subjectUniqueID: Not used.

extensions: Refer to table 1.

Table 1: Profile for standard certificate extensions

Extension CA End Entity Semantic
Basic constraints C

M
NONE Must exist in a CA certificate, where cA

must be set to TRUE. In the case of an end
entity this extension shall not exist.

Authority key
identifier

NC
M (not self-

signed), O (self-
signed)

NC
M

Only keyIdentifier is used.

Subject key
identifier

NC
M

NC
M

Only uses values generated by the method
(2) in clause-5.1.2, RFC 3280 [13].

Key usage C
M

C
M

For CA certificates, only keyCertSign (5)
and cRLSign (6) shall be set. And for end
entities, only digitalSignature (0) shall be
set.

Subject alternative
name

NONE C
M

Shall be set only for end entities. Domain
name of the application provider shall be
capitalized and set in the form of
dNSName. The domain name must be
identical to the domain name that is a part
of the corresponding application ID.

Extended key
usage

NONE C
O

Shall be set only for end entities, and must
always be id-kp-codeSigning.

CRL distribution
point

NC
O

NC
O

Shall exist only when CRL is in use. Only a
URI on the Web shall be set to
distributionPoint. The reasons and the
cRLIssuer fields shall not be used.

Table 2: Meanings of acronyms used in CA and End Entity columns in table 1

Acronym Descriptions
C Critical. Refer to clause-5 in RFC 3280 [13].

NC Non Critical. Refer to clause-5 in RFC 3280 [13].
M Mandatory. Mandated in the context of the profile defined in the present document.
O Optional. Optional in the context of the profile defined in the present document.

NONE The corresponding extension shall not exist.

9.2.4 Root certificates and CRL management

The present document does not designate a mechanism for updating root certificates and CRLs. The rationales behind
the decision are as follows:

• In general, a root cerficate is valid for 10 years. More than one root certicates with overlapping valid durations
may be installed in the receiver. At least one root certificate would be valid during the whole lifespan of a
receiver.

• CAs (Certificate Authorities) who issue root certificates are likely to issue certificates to broadcasters and
application developers rather than to individuals. Therefore it is very unlikely that CRLs are published.

• If renewal of root certificates or CRLs is required, receivers may decide to do so in a way specific to their
implementation. For examples, the renewal can be done via a two-way communication channel if such a
channel is available in the receiver. Otherwise, it can be performed when a receiver is connected to a PC via
USB interface.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 20

9.3 Application authorization

9.3.1 Introduction

The following factors determine whether applications are authorized to do something or not:

• Application Requested Permissions: they are permissions specified in the application definition, and required
for the execution of the corresponding application.

• Receiver Security Policy: every receiver has a policy for determining which permissions are granted to an
application depending on the properties of the application such as the identity of the application provider.

The actual permissions granted to an application are the intersection of the permissions determined by the receiver
security policy and those requested by the application.

9.3.2 Notation for permissions

Permission is represented as a string, and such a representation is used to specify permissions requested by an
application in the corresponding application definition (refer to clause-9.3.3), and those granted to other applications in
credentials (refer to clause-9.3.5).

The detailed format for strings representing permissions may differ from an application type to another. In the case of
MIDlet, a format defined in MIDP 2.0 [1] is used with additional wildcard characters defined in the present document.
The permissions required to use APIs referenced or defined in the present document are specified in the documentation
for each API.

When specifying permissions, it is sometimes convenient to specify a pattern on more than one strings rather than
listing all of them. For this, "*" and "?" may be used to designate such a pattern. If it is required to treat the characters as
normal ones, "\" (backslash) may be used. That is, to represent "*", "?", and "\" as normal characters, "*", "\?" and "\\"
should be specified instead, respectively:

• *: matches a sequence of zero or more characters other than "/"s (slashes).

• **: matches a sequence of zero or more characters possibly including "/"s (slashes).

• ?: matches a character other than "/" (slash).

For example, "dmb.service.ServiceManager.select.default.*" represents permission to select arbitrary services. Here "/"
is treated special because of its use in URIs and file paths as the path separator.

9.3.3 Permission request

Applications should specify permissions required for their operation within their definitions. The reasons for verifying
permissions requested by an application prior to its execution are as follows:

• To execute applications, only when all the permissions mandated by them are granted.

• To prevent applications from performing unintended actions because of errors or codes inserted with a
malicious intent.

9.3.4 Receiver security policy

Security policy of a receiver is a rule for determining permissions granted to an application based on the properties of
the application. The present document does not designate how the security policy of receivers is implemented. Each
implementation can choose any approach. For example, requested permissions might be granted to all signed
applications, and in other cases, for a set of permissions, users might be asked whether to grant them.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 21

9.3.5 Authority delegation

Authority delegation means that an application allows other applications to access services and/or resources provided by
it. An application can delegate to other applications only the permissions it owns. To delegate permissions to other
applications, an application must create a credential and put it into the definitions of those applications. A credential
contains the following, and must be signed by the provider of the application delegating the permissions:

• List of permissions to delegate.

• Valid duration of the credential.

9.4 Formats of the relevant messages

9.4.1 Format of certificate message

A certificate message contains several certificate chains. Its format is described in table 3. Each chain includes all
certificates from the end entity up to the certificate right under the root certificate.

Table 3: Format of certificate message

Syntax No. of Bits Mnemonic
certificate_message(){

 certificate_chain_count 16 uimsbf
 for(i=0;i<certificate_chain_count;i++) {

 certificate_count 16 uimsbf
 for(j=0;j<certificate_count;j++) {

 certificate_length 24 uimsbf
 certificate()

 }

 }

}

certificate_chain_count: number of certificate chains in this message.

certificate_count: number of certificates within a chain (excluding the root certificate).

certificate_length: length of a certificate in bytes.

certificate(): Certificate data structure defined in ITU-T Recommendation X.509 [18].

9.4.2 Signature format

The signature structure referred to in clause-12.5 represents a digital signature, and follows the ASN.1 DER structure
shown below:

Signature ::= SEQUENCE {
 certificateIdentifier AuthorityKeyIdentifier,
 hashSignatureAlgorithm OBJECT IDENTIFIER,
 signatureValue BIT STRING }

certificateIdentifier: used to identify the certificate containing the public key for verifying the signature. Its structure is
as follows. Within the scope of the present document, it shall be enough for a receiver to use keyIdentifier when
identifying the key used for signature verification.

AuthorityKeyIdentifier ::= SEQUENCE {
 keyIdentifier [0] KeyIdentifier OPTIONAL,
 authorityCertIssuer [1] GeneralNames OPTIONAL,
 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 22

hashSignatureAlgorithm: represents the hash algorithm used for the signature. Within the scope of the present
document, only SHA-1 be allowed. Note that RSA, which is the encryption algorithm used for signature generation, is
specified in SubjectKeyInfo within the certificate. That is why only hash algorithm is specified here.

9.4.3 Credential format

The credential structure referred to in clause-12.5.3.5 represents a credential, and its structure is shown in table 4.

Table 4: Format of credential

Syntax No. of Bits Mnemonic
credential {

 grantor_id utf8
 expiration_date 64 uimsbf
 permission_count 16 uimsbf
 for(i=0;i<permission_count;i++) {

 permission utf8
 }

 signature signature
}

grantor_id: ID of an application granting permissions. The domain name part of the ID must coincide with the
capitalized domain name in dNSName field of "subject alternative name" of the relevant certificate.

expiration_date: the time when this credential expires. It is the milliseconds passed since January 1st, 1970 UTC.

permission_count: number of strings representing the permissions to grant (refer to clause-9.3.2).

permission: a string representing a permission to grant (refer to clause-9.3.2).

signature: signature obtained by signing all the values specified above in this structure (refer to clause-9.4.2).

10 Graphic system model

10.1 Introduction
MATE supports a means to control the size and the location of videos presented on the screen, and also provides a basic
mechanism for presenting graphics to and getting inputs from users. In the receiver implementations conforming to the
present document, display devices capable of presenting only graphics and those presenting both graphics and videos at
the same time can coexist.

Figure 4 depicts a display device capable of presenting videos. Both video and graphics planes are identical in their
sizes, and occupy the whole screen. On the other hand, in a display device that cannot present a video, it contains only a
graphics plane.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 23

Figure 4: Display model

10.2 Video plane
On a video plane, one or more videos may be presented, and there is a Z-order associated with each of them. Since each
video is fully opaque, one closer to the eyes will obscure another farther from the eyes when they overlap.

The present document is deliberately silent on the area on a video plane that lies outside video presentations when
videos are not covering the whole screen area. Therefore, to get a predictable result on the area outside those covered by
video presentations, the uncovered area in the graphics plane should be painted opaque with a colour of application's
choice.

10.3 Graphics plane
Graphics are always presented above video presentations, and a graphics plane is fully transparent. But if a display
device does not support video presentation, then the graphics plane in that device shall be opaque. The aspect ratio of a
pixel in a graphics plane is always assumed to be 1:1 meaning it is a square, even if it is physically not.

In the case of display devices capable of presenting videos, the levels of transparencies that can be designated within a
graphics plane against the corresponding video plane may differ depending on devices. All the receivers, conforming to
the present document, shall distinguish at least between fully-transparent and fully-opaque pixels.

More than one application can present graphics on a graphics plane at the same time, but it is not mandated. But, any
platform standard based on the present document may mandate the capability to present more than one application
simultaneously. When more than one application is presented on a graphics plane simultaneously, and there are
overlaps among graphics presented by those applications, the end result must be identical to the case where graphics
from the application that lies farther from the eyes are drawn first, and the rest in the same way to the top most
application, and at least, fully transparent pixels are treated as such (i.e. any non-transparent approximations are not
allowed) in composing graphics from multiple applications. But it is also permitted to draw graphics from an
application onto a separate buffer, and then move the final result at once to the graphics plane.

10.4 Composing a screen
A graphics plane is overlaid atop its corresponding video plane, where the source over rule defined in Porter-Duff [19]
shall be used. Depending on the levels of transparencies supported by the graphics plane, the end result of the plane
composition may differ.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 24

11 Application model

11.1 Introduction
An application can be executed only after all the constituting modules are stored. Once executed, it follows the
application lifecycle defined in this clause.

11.2 Application storage and removal

11.2.1 Storage

The present document does not designate properties of application storages in detail. For instance, it is even allowed to
store applications in a volatile memory. And the minimum amount of time for which a stored application should be
retained is also not specified. Therefore, it is even legal to remove an application as soon as it is fully stored. But when
an application is removed, receivers shall perform any cleanups designated in the present document such as reclaiming
resources used by the application.

11.2.2 Receiver policy

In the present document, no specifics on application storage, removal, and state changes in the lifecycle are designated
except for those defined in the application signalling part of the present document. So receivers may change state of
applications according to their own policies.

For example, receivers may define a rule to remove applications upon memory shortage, and can provide users with
appropriate interfaces for downloading, removing, launching, pausing, starting, and stopping applications.

As a part of the application signalling, the present document designates control information for application storage,
removal, and lifecycle management, and it is recommended that receivers follow the control information. However, it is
also permitted for receivers to deal with it differently from what is designated in the present document depending on
their policy.

11.3 Application storage, update, and removal

11.3.1 Application download

Download and storage of an application may be initiated via application signalling or by other policy specific to each
receiver (refer to clause-11.2.2). An application may be launched only when all the modules composing the application
are fully downloaded.

11.3.2 Application update

When a version change in an application is detected via application signalling, the application may be updated anytime.
Here if invalidate_previous_version field defined in clause-12.5.5 is 1, the current version of the application should be
terminated as soon as a new version of the application is detected, and should not be launched until the new version is
downloaded. Conversely, if invalidate_previous_version is 0, the current version can be run and launched.

In general, current versions of applications may not be used (that is, its invalidate_previous_version is set to 1) because
of changes in the application codes.

11.3.3 Application removal

An application may be removed at any time except when it is running, according to the receiver policy (refer to
clause-11.2.2). Besides when a receiver detects that application_definition() of an application disappeared and it
contained signal bound descriptor, then the corresponding application may be removed.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 25

11.4.4 Lifecycle

Upon completion of downloading modules constituting an application, the application may be launched in the following
cases:

• When a service is selected and associated with the application via a service binding message defined in
clause-12.3.1.3.

• When a service is selected, associated with the application via a service binding message defined in
clause-12.3.1.3 in a way that the association is specific to a certain period of time, and the execution of the
application is signalled via the application control message defined in clause-12.3.1.4.

• Designated to launch by a receiver-specific policy (refer to clause-11.2.2).

A running application goes through the following lifecycle depicted in figure 5.

Figure 5: Application lifecycle

11.4.4.1 Loaded state

The loaded state is a state in which codes and data required for execution of an application are loaded into memory after
launching of the application is requested. In this state, initialization of the application immediately begins. If the
initialization is successful, the application moves into the paused state. Otherwise, it moves directly to the destroyed
state.

11.4.4.2 Paused state

Applications that completed its initialization move to the paused state. Besides those that were already activated may
move to the paused state in the following cases:

• When applications are voluntarily moving to the paused state.

• When designated by receiver policy (refer to clause-11.2.2).

In this state, applications regardless of their types should follow the following basic rules:

• Graphics drawn to the screen, sounds, and so on should be minimized not to interfere with other applications.

• Should release any shared resources such as video decoders as much as possible.

• Should reduce resource consumption to its minimum.

• The application should be able to return to the active state promptly upon requests.

11.4.4.3 Active state

The active state represents a state in which an application is operating actively.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 26

11.4.4.4 Destroyed state

The destroyed state is a state in which an application is destroyed. Applications in this state no longer own the resources
they owned while running, and are removed from the memory. Applications are destroyed in the following cases:

• Upon a change of services where an application is associated with the previous service via application
signalling, but not with the next service.

• When termination of an application is requested via application signalling.

• When an application voluntarily requests self-termination.

• When other application requests termination of an application via an appropriate means (such as API calls).

• When designated to do so by receiver policy. (refer to clause-11.2.2).

11.5 MIDlet model
MIDlet is as defined in MIDP 2.0 [1]. This model is compatible with the model defined in figure 5. The original MIDlet
model has 3 states, seemingly different from the 4-state model specified in the present document. But within the scope
of the present document they are considered compatible for the following reason.

The loaded state corresponds to the state in MIDlet where bytecodes constituting a MIDlet are loaded into memory right
before the constructor of the MIDlet is invoked. Initialization occurs when the Java constructor is invoked, and
additionally, if an exception is thrown in the constructor, it is regarded as if the MIDlet immediately moved into the
destroyed state.

12 Application signalling and transport

12.1 Application module

12.1.1 Definition and purpose of application module

Application module is the basic unit for composing an application, and also the unit in the transport of an application.
An application consists of one or more application modules, and all codes and data constituting an application are
transmitted, received, and stored in the unit of an application module.

Application modules constituting applications are identified by their application module ID. Therefore, each application
module must be assigned a unique ID. Different from URLs, application module IDs are independent of the locations of
the corresponding modules on broadcast or communication networks. So the same application module may be received
via broadcast or communication network, and alternatively, installed manually by a user. As an effect, when more than
one application modules containing program codes share the same ID, and their implementations are different from one
another, they can be used interchangeably in an application as long as their interfaces are identical.

The concept of application module has the following benefits:

• Bandwidth and memory savings: codes and data shared among applications can be transferred only once, and
shared within the receiver.

• Easy updates of applications: an application may be decomposed into multiple modules depending on their
update characteristics, and some of the modules may be updated separately. As such, application management
becomes easy.

• Flexibility in application distribution: application modules constituting applications may be obtained via
various routes including broadcast and/or communication channels.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 27

12.1.2 Structure of application module

Each application module consists of metadata containing additional information on the module and a body. The body
may be in either ZIP format or an application-defined format. With the evolution of the present document, additional
formats for the body may be added.

12.1.2.1 ZIP format

The body in ZIP format follows the structure of the standard ZIP file format [20], and may contain multiple files
including Java class files and image files. In the present document, an API for reading files within application modules
in ZIP format is provided.

And if such an application module is used to constitute a Java application, it is added to the classpath of the application.
In that case, class files in the application module may be loaded from it, and contents of files in the application module
may be retrieved with getResourceAsStream(String) of java.lang.Class.

Note that Java defines JAR [21] format based on ZIP file format. JAR format is extended from ZIP format by adding
metadata in the META-INF directory created within ZIP files. For the present document, JAR format is not used in
favour of the efficiency in transporting and handling application modules. Instead, additional information and digital
signature related data are stored in the metadata portion of application modules mentioned before. Therefore, it is not
possible to digitally sign only a subset of files within a ZIP format application module, different from the standard JAR
file. If there are files not requiring digital signing such as large image files, they need to be separated into another
application module.

12.1.2.2 Application-defined format

This is a format defined by each application, and applications may be free to decide the format of their application
modules. The present document defines only APIs for retrieving binary data constituting the body of application
modules. If an application module in an application-defined format is used as part of a MIDlet, then JVM does nothing
for it.

12.1.3 Application module ID and version

Each application module is assigned an ID and a version.

Application modules are identified by IDs of the following format.

[!]<domain_name>/<module_specific_name>

!: If exists, it means that the corresponding application module is digitally signed.

domain_name: An internet domain name owned by the organization providing the application module. Due to this
scheme, unique IDs may be assigned to application modules without a separate registry for IDs.

module_specific_name: A name for identifying the application module within the organization creating it.

Since the IDs in this format may be used as a part of URLs, the IDs shall not contain characters violating
RFC 2396 [14]. The follows are examples of application module IDs. The former is an ID for an unsigned application
module, and the latter is for a signed application module.

xyz.com/images
!foo.com/library/ui/textentry

The version of an application module is a 32-bit unsigned integer. When two application modules have an identical ID,
the one with newer version must be backward compatible with the other with older version. When a new version of a
software product is not compatible with the previous version, or it is required to manage versions of an identical module
separately, different IDs should be assigned so that the modules are practically treated as if they were different.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 28

12.1.4 Accessing contents of application module

12.1.4.1 Introduction

The content of an application module can be read by the following two methods:

• getResourceAsStream(String) of java.lang.Class: Applicable only to the application modules in ZIP format.
Application modules in ZIP format are added to application's classpath when they are used as part of Java
applications. Therefore files in application modules can be read using this method in this case.

• Use of application module URL: By passing a URL to an application module or to a file within it to an open
method of javax.microedition.io.Connector as a parameter, a javax.microedition.io.InputConnection may be
obtained. In turn, a java.io.InputStream for reading the content of the application module or a file within it can
be obtained from the connection. But if the designated application module is not fully received, an
IOException is thrown from Connector.open. Here, available() method of the InputStream obtained as
described above shall return the total size in bytes of the application module or a file within it.

If an application module URL is used, it is possible to read the content of an application module that is not a part of the
application using the URL. When reading application modules belonging to other applications, the application reading
them must have the following permission:

dmb.module.read.<module_id>

where <module_id> is the ID of the application module to read.

12.1.4.2 URL to an application module

The format of a URL locating an application module is as follows:

module://<module_id>[!<path>]

module_id: application module ID.

path: in the case of an application module in ZIP format, this is the name of a file within the body of the application
module. Thus it points to a specific file within the ZIP file. If the name does not begin with "/", no "/" shall be prefixed.

An application module URL can be in one of the following two formats:

• When designating the body of an application module:

- Format: module://<module_id>

- Example: module://xyz.com

• When designating a file within the body of an application module, and the format of the body is ZIP:

- Format: module://<module_id>!<path>

- Example: module://xyz.com/moduleA!com/xyz/image.gif

12.1.5 Compression of application module

Basically compressions performed in the protocol level of the transport network (e.g. MOT in case of terrestrial DMB)
are not used, but when the body of an application module is in ZIP format, compressions can be performed on the files
within it as designated in the ZIP specification. On the other hand, no compression mechanism is defined in the present
document for application modules in application-defined formats.

12.1.6 Transport of application module

There is no restriction in the kind of networks and protocols that are used to transport application modules. The location
where an application module resides is designated with a URL as defined in clause-12.3.1.2. Each platform standard
should define the types of URLs that can be specified there.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 29

In addition to having URLs to an application module specified, the present document defines a mechanism to specify
time intervals during which an application module can be downloaded from an associated URL. Therefore it is made
possible to operate bandwidth in time divided manners by transmitting different modules in different time intervals.

12.1.7 Signing application module

An application module can selectively be signed. For details on the digital signing, refer to clause-9.2.1 "Application
Signing." If an application module is signed, the ID of the application module must begin with a "!" to indicate the fact.

12.2 Application ID
An application is identified by an ID of the following format:

<domain_name>/<application_specific_name>

domain_name: An internet domain name owned by the application provider. Due to this scheme, unique IDs may be
assigned to applications without a separate registry for IDs.

application_specific_name: A name identifying each application among those provided by the same application
provider.

An application ID shall not contain any character violating RFC 2396 [14]. The followings are examples of the
application ID:

foo.com/game/soccer (domain_name: foo.com, application_specific_name: game/soccer)
bar.com/epg

12.3 Application signalling
In this clause, a mechanism is defined for announcing presence of applications on broadcast networks so that receivers
can download and launch them via various networks including broadcast networks. The signalling defined in this
clause-is irrelevant to a specific application type, and may be applied to application types other than Java applications.
This clause-designates overall rules for the application signalling, and the detailed format of the messages is defined in
clause-12.5.

12.3.1 Signalling structure

Five kinds of signalling messages are defined for the application signalling in the present document. All five kinds of
messages can be associated with each other. A set of signalling messages in such association is called a signalling
message group. An ensemble may have one or more signalling message groups. Those messages must be transmitted
repeatedly with the cycle times designated in the present document, using appropriate mechanisms available in the
underlying network. Figure 6 shows the relationships among services, application modules, and the 5 signalling
messages.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 30

Figure 6: Signalling structure

12.3.1.1 Application information message

An application information message contains the following information on an application. Each application information
message may define multiple applications:

• The application ID, the version, and the type.

• The profile and its version for receivers capable of running the application.

• Dependencies on other applications.

• Application modules constituting the application.

• Other attributes associated with the application (e.g. whether it will launch automatically).

• Information intended to be shown to users including icons, names, descriptions, and so on.

• Signatures to prevent forgery of the above mentioned contents.

In addition to those listed above, additional information may be added per application type, and in the form of
descriptors.

12.3.1.2 Module information message

A module information message contains information on the modules referenced by applications defined in the
corresponding application information message. That is, an application module appeared in an application information
message must also appear in the associated module information message. A module information message contains the
following information for each module described there:

• The application module ID and the version.

• Size of the application module.

• URLs pointing to locations where the application module can be downloaded.

• Time intervals per URL during which the application module can be downloaded from the location
represented by the URL.

For each application module, more than one URL may be specified. In this case, it depends on the receiver's internal
policy which URL is used to download the application module. The present document does not designate any specific
rule on this matter.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 31

Also there is no restriction on the URLs that can be specified. An application module may be downloaded via a
communication channel using HTTP, or via the same broadcast channel as the one conveying the signalling messages
or via a different broadcast channel.

12.3.1.3 Service binding message

A service binding message associates each service with applications relevant to the service. An application may be
designated to launch when its associated service is selected, or additionally designated to do so via the corresponding
application control message.

By referencing a service binding message, applications associated with each service can be identified even when they
are not to launch immediately. Therefore when a user selects a service, the user can see the list of applications
associated with the service prior to their launch time, and designate applications to download.

As an example, if a user knows the presence of an application providing additional information on a show that is on-air
on Saturday afternoon and initiates its download in advance, the constituting application modules will be downloaded
during the whole week.

12.3.1.4 Application control message

An application control message conveys control signals to launch or terminate applications associated with a service by
its corresponding service binding message. Via the application control message, applications can be launched and
terminated upon a specific event within the service.

An application control message is very small in size because it refers to binding tags defined in the corresponding
service binding message.

12.3.1.5 Certificate message

A certificate message contains certificates for digital signatures in the corresponding application information message
and application modules. For the detail, refer to clause-9.4.1.

12.3.2 Message transport

The messages defined in clause-12.3.1 are transported via a network-specific mechanism. The application control
message shall be transmitted at least every 1 second. Other messages shall be transmitted at least every 10 seconds.

Within a single ensemble, more than one signalling message group may be transmitted. Additional restrictions may be
defined for each network type. For example, if an ensemble is fully controlled by an operator, only a single signalling
message group may be permitted, but if more than one independent service operator is managing an ensemble, a
signalling message group per service is designated to be transmitted.

12.3.3 Message monitoring

A receiver must monitor version changes in the signalling messages within the current ensemble it is tuned to as
described below:

• It is recommended that a receiver monitors all the signalling messages within the current ensemble.

• At least the signalling messages associated with the service that is currently selected shall be monitored.

• A receiver shall be able to detect a version change within a second.

12.4 Application state control
Application signalling messages affect storage, update, removal, and state transition of applications.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 32

12.4.1 Application download

Download of an application is, in principle, initiated by a user's request, and upon the completion of the download, the
application is installed in the receiver via an installation procedure. But if the autodownload descriptor (refer to
clause-12.6.5.4) is present in signed_descriptor_loop or unsigned_descriptor_loop of application_definition() within the
application information message, download of the corresponding application is automatically initiated. But receivers
may still ignore it depending on their policy or user settings.

12.4.2 Application update

Upon detection of a change in the version of an application, download of new application modules is immediately
initiated. When this is the case, the previous version may be designated to be either invalidated immediately or retained
for execution until the new version is downloaded completely.

If invalidate_previous_version field in application_definition() is set to 0, then the previous version can be executed
while the new version is being downloaded. On the other hand, if it is 1, the previous version cannot be executed until
the new version is downloaded completely, and the update is completed.

12.4.3 Application removal

In general, applications are removed on requests from a user. But if an application_definition() includes a signal bound
descriptor defined in clause-12.5.6.5, the application may automatically be removed when the application_definition()
disappears.

12.4.4 Application execution

An application can be launched by user's requests. Besides, it may be launched in the following cases when it is
associated with a service via a service binding message:

• If event_bound bit is set to 0, the application is automatically launched upon the selection of the associated
service.

• If event_bound bit is set to 1, the receiver launches the application associated with the user selected service
only when the binding_tag corresponding to the binding of (service, application) pair is present in the
corresponding application control message.

12.4.5 Application termination

An application may be terminated voluntarily or upon requests from user via appropriate user interfaces. Besides it may
be terminated in the following cases:

• An application automatically launched as a result of the selection of the current service is terminated when a
different service is selected and the application is not bound to the service switched to.

• With the event_bound bit set to 1, if a different service is selected, the application is bound to the service
switched to, and the binding_tag for the binding of (new service, existing application) pair is absent in the
corresponding application control message, the application is terminated.

If an application is a MIDlet, the destroyApp(boolean) method is invoked upon its termination. Here, if kill bit in the
service binding message is set to 1, a true is passed to the method, and if 0, a false is passed.

12.5 Application module and message formats

12.5.1 Relationship with platform standards

A platform standard based on the present document is recommended to follow the message formats defined in this
clause-as they are, and to define only protocols used to transport the messages. But modifications specific to a platform
is permitted.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 33

12.5.2 Message version

The version of each message is a 32-bit integer large enough to allow testing of the validity of the cached version of the
message by comparing the version of the cached message and that of the message being broadcast, even when the
message is not monitored for relatively long period of time. The version is incremented by 1 for every change, but
permitted to increase by more than 1 when it is required for managerial reasons.

A receiver repeatedly checks and receives new message. When a version of a message is received 720 hours (1 month)
ago, it is always considered invalid. Therefore, at any time interval of 720 hours, the same version must not be reused.

In general, merely a change in the version of a message is considered to signify the transmission of a new version. But
when it is important to know which one is newer as in the case of the service binding message, the following additional
rule is applied. That is, if the absolute value of the difference between two versions exceeds 0x7FFFFFFF, then a
version with a smaller value is considered newer than the other. Therefore within any 720-hour interval, any two
versions of a message must not differ by a half of 32-bit value range.

12.5.3 Common data format

This clause-defines common data types intended to be used in defining the formats of the application module and the
messages.

12.5.3.1 UTF-8 string

A string encoded in UTF-8 format as defined in ISO 10646-1 [21].

Table 5: Format of a UTF-8 string

Syntax No. of Bits Mnemonic
utf8 {

 Length 16

 for(i=0;i<length;i++) {

 char_byte 8 bslbf
 }

}

length: length of the string in bytes.

char_byte: a byte constituting the string.

12.5.3.2 Descriptor

A descriptor used to insert additional information to each message.

Table 6: Format of a descriptor

Syntax No. of Bits Mnemonic
descriptor(){

 tag 16 uimsbf
 length 16 uimsbf
 for(i=0;i<length;i++) {

 data_byte 8 bslbf
 }

}

tag: the identifier designating the type of the descriptor.

length: length of the content of the descriptor in bytes.

data_byte: a byte constituting the content of the descriptor.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 34

12.5.3.3 Descriptor loop

A descriptor loop is used where one or more descriptors can be inserted.

Table 7: Format of a descriptor loop

Syntax No. of Bits Mnemonic
descriptor_loop{

 descriptor_count 16 uimsbf
 for(i=0;i<descriptor_count;i++){

 descriptor()

 }

}

descriptor_count: number of descriptors.

12.5.3.4 Digital signature

A digital signature is represented as signature type. The signature type is defined in clause-9.4.2 of the present
document.

12.5.3.5 Credentials

A credential for delegating permissions to an application is represented as credential type. The credential type is defined
in clause-9.4.3 of the present document.

12.5.4 Application module format

The format of the application module is as follows. Additional information to an application module is always appended
at the end of the application module. This scheme has a benefit of being able to treat stored application modules, as they
are, as plain ZIP files. This additional information has to be treated as a comment from the view point of a ZIP file.
Therefore, "zipfile comment length" in the ZIP file must be set to regard this additional information as "zipfile
comment" in "End of central dir record" at the end of the ZIP file in accordance with the ZIP format [20].

Table 8: Format of an application module

Syntax No. of Bits Mnemonic
module(){

 module_payload N Bslbf
 id utf8
 version 32 Uimsbf
 type 8 Uimsbf
 module_descriptor_loop descriptor_loop
 signature_count 8 Uimsbf
 for(i=0;i<signature_count;i++){

 module_signature Signature
 }

 footer_length 16 Uimsbf
}

module_payload: the data constituting the body of the application module.

id: ID of the application module.

version: version of the application module. The larger is the newer.

type: type of the module_payload. Each constant defined per-type is shown in table 9.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 35

Table 9 - Types of the application module

Value Description
0x00 Unused
0x01 ZIP format
0x02~0xFE Reserved for future extensions
0xFF Application defined format

module_descriptor_loop: a descriptor loop for describing additional information on the application module.

signature_count: number of module_signatures.

module_signature: a digital signature for the application module. All the content above signature_count exclusive of the
signature_count is signed together with module_payload.

footer_length: size of the additional information on the application module. Number of bytes from right above
footer_length to right before module_payload.

12.5.5 Format of application information message

Table 10: Format of an application information message

Syntax No. of Bits Mnemonic
application_information_message(){

 message_version 32 Uimsbf
 application_count 16 Uimsbf
 for(i=0;i<application_count;i++){

 application_definition_length 16 uimsbf
 application_definition()

 }

 common_descriptor_loop descriptor_loop
}

message_version: version of the message.

application_count: number of applications described in the application information message.

application_definition_length: length of application_definition().

application_definition(): defines each application. The format is defined in table 11.

common_descriptor_loop: descriptors applied to all applications listed in the application information message.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 36

Table 11: Application definition

Syntax No. of Bits Mnemonic
application_definition(){

 application_id utf8
 application_version 32 uimsbf
 invalidate_previous_version 1 bslsf
 reserved 7 "1111111"
 application_type 8 uimsbf
 application_priority 8 uimsbf
 profile_count 8 uimsbf
 for(i=0;i<profile_count;i++){

 profile 8 uimsbf
 profile_version 24 uimsbf
 profile_descriptor_loop

 }

 visibility 8 uimsbf
 module_count 8 uimsbf
 for(i=0;i<module_count;i++){
 module_id utf8
 module_min_version 32 uimsbf
 }
 signed_descriptor_loop descriptor_loop
 signature_count 8 uimsbf
 for(i=0;i<signature_count;i++){
 application_signature signature
 }
 unsigned_descriptor_loop descriptor_loop
}

application_id: ID of the application being defined.

application_version: version of the application. The larger is the newer.

invalidate_previous_version: if this is set to 1, it means that the current version of the application should not be used
upon detection of a new version. If the current version is running, it should be terminated immediately. On the other
hand, if 0, the current version can be run while downloading the new version.

application_type: application type. Among the types of applications, a data-only application cannot be executed, and
such an application type is added to treat a set of data as a separate application to be able to reference by other
applications as a depending application. For data-only applications, it is possible to access the content of the modules
belonging to them with the application module URLs.

Table 12: Application types

Value Description
0x00 Unused
0x01 MIDlet
0x02~0xFF Reserved for future extensions

application_priority: priority of the application. It is to assist receivers in judging relative importance of the application.
Receivers may give priorities to some applications based on their priority when the remaining memory space is low, or
some other resources are insufficient to run all the applications. A larger value means a higher priority.

profile_count: number of platform profiles against which the application can run.

profile: platform profile ID on the platform of the profile the application can run. Specific values to be specified here
are supposed to be defined in platform standards. A profile corresponding to a receiver must be shown here to be able to
run the application on the receiver.

profile_version: a version of the profile. If the version of a receiver is greater than this, it can run the application.

profile_descriptor_loop: a descriptor loop containing additional information on the profile

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 37

visibility: visibility of the application from the viewpoint of both user interfaces and application control API. The list of
values eligible for this field is defined in table 13.

Table 13: Application visibility

Value Description
0x00 Unused
0x01 User visible
0x02 API visible
0x03~0xFE Reserved for future extensions
0xFF Hidden. Used when applications are transmitted for testing. Thus

normal receivers must treat it as non-existent

module_count: number of application modules constituting the application.

module_id: the ID of an application module constituting the application.

module_min_version: the minimum version of the application module.

signed_descriptor_loop: a descriptor loop containing additional information on the application. Since the content of
this loop is signed when this application definition is signed, descriptors that must not be forged must be listed here.

signature_count: number of digital signatures for this application definition. If one of them is successfully verified,
this application definition is considered as valid.

application_signature: a signature signing from application_id to signed_descriptor_loop inclusive. For details, refer
to the security model (clause-9.2).

unsigned_descriptor_loop: a descriptor loop containing additional information on the application. This loop is
excluded when the application definition is signed. Therefore, descriptors that need to be referred to before the
signature verification should be placed here.

12.5.6 Application related descriptors

This clause-defines descriptors that can be placed in descriptor_loops within the application information message.

12.5.6.1 Module download descriptor

A module download descriptor is used to designate application modules that contain icons or some other data
referenced by the application definition itself. If this descriptor is placed in common_descriptor_loop of an application
information message, then the application modules are automatically downloaded after receiving the application
information message. If an application module is removed from the application information message in the next
version, the corresponding application module is removed either.

Table 14: Module download descriptor

Syntax No. of Bits Mnemonic
module_download_descriptor(){
 tag 16 uimsbf
 length 16 uimsbf
 module_count 8 uimsbf
 for(i=0;i<module_count;i++){
 module_id utf8
 module_min_version 32 uimsbf
 }
}

tag: 0x0001

length: length of the content of the descriptor following this field in bytes.

module_count: number of application modules to download.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 38

module_id: ID for an application module to download.

module_min_version: the minimum version of the application module to download.

12.5.6.2 Application description descriptor

An application description descriptor contains the names and the descriptions of an application, which are intended to
be presented to end users. This descriptor can be placed in signed_descriptor_loop or unsigned_descriptor_loop of
application_definition(). For each application, more than one descriptor can be specified per each language.

Table 15: Application description descriptor

Syntax No. of Bits Mnemonic
application_description_descriptor(){
 Tag 16 uimsbf
 Length 16 uimsbf
 language_code n*8 bslbf
 Null 8 "00000000"
 Name utf8
 Description utf8
}

tag: 0x0002

length: length of this descriptor from right after this field to the end in bytes.

language_code: a language code defined in RFC 3066 [15].

null: a terminator to mark the end of the language_code field above.

name: name of the application in the language represented by language_code.

description: description of the application in the language represented by language_code.

12.5.6.3 Application icon descriptor

An application icon descriptor designates the location of an icon to be presented to end users. This descriptor may be
placed either signed_descriptor_loop or unsigned_descriptor_loop of application_definition(). The icon is assumed to be
inside an application module, must be encoded in PNG format and at least 16 by 16 pixels in size though there is no
designated limit on the size of the icon. Receivers may expand or shrink the size if necessary.

This descriptor may be listed more than once for an application, and in that case, any of them may be used. Therefore
each descriptor would be preferable to indicate a distinct location but the same icon.

Table 16: Application icon descriptor

Syntax No. of Bits Mnemonic
application_icon_descriptor(){
 Tag 16 uimsbf
 icon_locator utf8
}

tag: 0x0003

icon_locator: an application module URL (clause-12.1.4.2) excluding the "module://" part.

12.5.6.4 Autodownload descriptor

An autodownload descriptor designates the corresponding application to be downloaded without user request. This
descriptor is placed into signed_descriptor_loop or unsigned_descriptor_loop of application_definition(). If placed, the
application corresponding to the application_definition() is automatically downloaded. A receiver may ignore this
descriptor depending on its policy. This descriptor is valid once specified until detecting that it disappeared.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 39

Table 17: Autodownload descriptor

Syntax No. of Bits Mnemonic
autodownload_descriptor(){
 Tag 16 uimsbf
 Length 16 uimsbf
}

tag: 0x0004

length: length of the content in the descriptor following this field. For this descriptor, this is always 0.

12.5.6.5 Signal bound descriptor

A signal bound descriptor is for designating that an application should be removed when it is no longer present in the
signalling. This descriptor is placed in signed_descriptor_loop or unsigned_descriptor_loop of application_definition().

Table 18: Signal bound descriptor

Syntax No. of Bits Mnemonic
signal_bound_descriptor(){
 Tag 16 uimsbf
 Length 16 uimsbf
}

tag: 0x0005

length: length of the content in the descriptor following this field. For this descriptor, this is always 0.

12.5.6.6 MIDlet descriptor

A MIDlet descriptor describes additional information on a MIDlet. If the type of an application is MIDlet, this
descriptor must be present in signed_descriptor_loop of application_definition().

Table 19: MIDlet descriptor

Syntax No. of Bits Mnemonic
midlet_descriptor(){
 Tag 16 uimsbf
 Length 16 uimsbf
 initial_class utf8
 parameter_count 16 uimsbf
 for(i=0;i<parameter_count;i++){
 parameter_name utf8
 parameter_value utf8
 }
 permission_count 16 uimsbf
 required_permission_count 16 uimsbf
 for(i=0;i<permission_count;i++){
 Permission utf8
 }
 credential_count 8 uimsbf
 for(i=0;i<credential_count;i++){
 application_credential credential
 }
}

tag: 0x0006

length: length of the content of this descriptor following this field.

initial_class: name of the MIDlet class (fully qualified name).

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 40

parameter_count: number of parameters to be read with MIDlet.getAppProperty(String).

parameter_name: name of a parameter. It corresponds to a name passed to MIDlet.getAppProperty(String).

parameter_value: value of a parameter. It corresponds to a return value from MIDlet.getAppProperty(String).

permission_count: number of permissions the application requests.

required_permission_count: number of permissions that are required for the operation of the application from the
beginning of the whole list of permissions requested by the application. That is, those permissions designated by this
count must be granted for the application to execute.

permission: a permission the application requests for its operation. The format of this permission string is defined in
clause-9.3.2.

credential_count: number of credentials for the application.

application_credential: an application credential. For the details, refer to clause-9.4.3.

12.5.6.7 Profile extension descriptor

A profile extension descriptor describes a profile extension to designate additional characteristics of the receiver eligible
to running the corresponding application. It is placed in profile_descriptor_loop of application_definition().

Table 20: Profile extension descriptor

Syntax No. of Bits Mnemonic
profile_extension_descriptor(){
 Tag 16 Uimsbf
 Length 16 Uimsbf
 profile_extension_class_id 16 Uimsbf
 for(i=0;i<N;i++){
 profile_extension 8 Uimsbf
 }
}

tag: 0x0007

length: length of the content of this descriptor following this field.

profile_extension_class_id: an ID representing the class of information included in this descriptor.. The details meaning
of each ID is supposed to be defined in platform standards based on the present document.

profile_extension: a profile extension. The meaning of each profile extension is defined by each platform standard
based on the present document. The length of the profile_extension can be deduced by subtracting 2 bytes
corresponding to profile_extension_class_id from length.

12.5.6.8 Application expiration descriptor

An application expiration descriptor designates a time point from which an application becomes invalid because it is
expired. This descriptor is placed in unsigned_descriptor_loop of application_definition().

Table 21: Application expiration descriptor

Syntax No. of Bits Mnemonic
application_expiration_descriptor(){
 Tag 16 uimsbf
 Length 16 uimsbf
 Expiration 64 uimsbf
}

tag: 0x0008

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 41

length: length of the content of this descriptor following this field.

expiration: the time when the corresponding application expires represented with the difference between January 1st,
2000 UTC and the time in seconds. Passing this point of time, the corresponding application is no longer valid, meaning
it may be removed.

12.5.7 Format of module information message

The format of the module information message is defined in table 22.

Table 22: Format of module information message

Syntax No. of Bits Mnemonic
module_information_message(){

 message_version 32 uimsbf
 module_count 16 uimsbf
 for(I = 0;i<module_count;i++){

 module_locator()

 }

 common_descriptor_loop descriptor_loop
}

message_version: version of the message.

module_count: number of application modules listed in this message.

module_locator: represents a location and time interval, where and when an application module can be downloaded.
This structure is defined in table 23.

common_descriptor_loop: descriptors to be applied to all application modules in this message.

Table 23: Module locator

Syntax No. of Bits Mnemonic
module_locator(){

 module_id utf8
 module_version 32 uimsbf
 module_size 32 uimsbf
 locator_version 32 uimsbf
 url_count 8 uimsbf
 for(i=0;i<url_count;i++){

 url utf8
 schedule_count 8 uimsbf
 for(j = 0;j<schedule_count;j++){

 start_time 64 uimsbf
 Duration 32 uimsbf
 }

 url_descriptor_loop descriptor_loop
 }

 locator_descriptor_loop descriptor_loop
}

module_id: ID of the application module.

module_version: version of the application module. A larger value means a newer version.

module_size: size of the application module in bytes. This value must coincide with the size of the actual application
module.

locator_version: version of the whole module_locator.

url_count: number of URLs locating the application module.

url: a URL locating the application module. The types of URLs supported are different by the underlying network.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 42

schedule_count: number of time intervals during which the application module may be downloaded from the associated
URL. 0 in this filed means that the application module is always downloadable.

start_time: the start of the time interval where the application module can be downloaded from the corresponding URL.
It is the difference between the start time and January 1st, 2000 UTC in seconds.

duration: the length of the time interval in seconds from the start time during which the application module can be
downloaded from an associated URL.

url_descriptor_loop: descriptors for additional information on the URL.

locator_descriptor_loop: descriptors for additional information on this module_locator.

12.5.8 Format of service binding message

The format of the service binding message is defined in table 24.

Table 24: Format of service binding message

Syntax No. of Bits Mnemonic
service_binding_message(){

 message_version 32 uimsbf
 service_count 8 uimsbf
 for (i=0;i<service_count;i++){

 service_locator()

 bound_app_count 8 uimsbf
 for(j=0;j<bound_app_count;j++){

 binding_id 32 uimsbf
 Start 1

 Kill 1

 event_bound 1

 Reserved 5 "11111"
 if (event_bound=="1") {

 binding_tag 8 uimsbf
 }

 application_id utf8
 app_min_version 32 uimsbf
 binding_descriptor_loop descriptor_loop
 }

 service_descriptor_loop descriptor_loop
 }

 common_descriptor_loop descriptor_loop
}

message_version: version of this message.

service_count: number of services.

service_locator(): locator pointing to a service. The format of the locator is defined by each platform standard.

bound_app_count: number of applications bound to a service.

binding_id: an ID identifying an association between a service and an application. If there is any change in the specifics
of a binding, so must the ID, and it shall be unique within the context of a service binding message.

start: if set to 1, the corresponding application shall be started when the event_bound bit is set, and the corresponding
service is selected, or when the event_bound bit is cleared, the service is selected, and the corresponding binding_tag
appears in the application control message. If cleared to 0, the application shall not be started in any of the above
conditions. The reason for clearing this bit is mainly for cases where an application is not intended to be started from a
service, but it should not terminate when the service is selected after the application is started from another service.

kill: if set to 1, the corresponding application is terminated unconditionally. If cleared, the application is allowed to
terminate voluntarily. More specifically, in the case of MIDlet, if this bit is 1, destroyApp method is passed a true. If it
is 0, a false is passed to the method.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 43

event_bound: if this bit is set to 1, the corresponding application is launched, when the associated service is selected,
and at the same time, the binding_tag appears in the corresponding application control message. Once launched, it is
terminated when the binding_tag disappears in the application control message.

binding_tag: a tag for designating a specific binding in the corresponding application control message. Within a service
binding message, this tag shall be unique.

application_id: ID of an application to be associated with the associated service.

app_min_version: minimum version of the application bound to the service.

binding_descriptor_loop: descriptors describing additional information specific to each binding between a service and
an application.

service_descriptor_loop: descriptors describing additional information on each service.

common_descriptor_loop: descriptors to be applied to the whole service binding message.

12.5.9 Format of application control message

The content that must be conveyed within an application control message is as follows. The concrete format for the
application control message is supposed to be defined in each platform standard.

service_binding_message_version: designates the version of the service binding message, to which the application
control message refers for the binding_tags within it. Only when the version of the service binding message stored in
the receiver is equal to or newer than this version, the binding_tags within the application control message is valid with
respect to the stored service binding message.

binding_tag: an 8-bit unsigned integer which is a tag for a service-application binding. Within an application control
message, multiple binding_tags may be included. Applications with their corresponding tags present in the message are
automatically started, and they terminate when the tags disappear.

12.5.10 Format of certificate message

The format of the certificate message is defined in clause-9.4.1 of the present document.

13 Java environment

13.1 Introduction
The present document designates an environment consisting of a JVM and APIs, where Java applications may be
executed. This clause-defines the Java environment required by the present document.

13.2 Requirements on Java environment
The present document requires MIDP 2.0 [1] at a minimum. But the present document is allowed to be implemented on
Personal Basis Profile 1.1 [2], and therefore an implementation of the present document based on Java ME Personal
Basis Profile 1.1 is perfectly legal.

13.3 DMB extensions
MATE is based on MIDP 2.0, but requires extensions to it. This clause-summarizes, in one place, the extensions
required in addition to MIDP 2.0 or Java ME Personal Basis Profile to help understanding of the present document.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 44

13.3.1 Standard optional packages

Among the standard Java APIs, MATE requires the following optional packages:

• FileConnection API, a part of JSR 75 PDA optional package [17] is required.

• A profile of JSR 135 Mobile Media API 1.1 [16] as designated in clause-13.8.1 is required.

13.3.2 Simultaneous execution of multiple applications

CLDC 1.1 and MIDP 2.0 specifications do not explicitly set any restriction on simultaneous execution of more than one
application, but they are designed with an implicit assumption that an application at a time can be executed. Different
from such an assumption, MATE requires simultaneous application of multiple applications.

13.3.3 Graphics extension

The LCD UI API defined by MIDP 2.0 lacks in the following two areas, thus requiring extensions. The extensions are
defined in the dmb.ui package:

• A transparent graphics plane is overlaid atop a video plane and composed by the source over rule defined in
Porter-Duff [19]. Therefore, it should be possible to designate alpha values and a composition rule for graphics
operations. Composition rules of clear, source, and source over rules defined in Porter-Duff [19] should be
supported.

• More than one application needs to display graphics on a screen at the same time. The current MIDP 2.0
specification permits only one application to be shown up on the screen at a time, so an extension is required
to enable that functionality.

But the following options are available for the cases where strict conformance to the specification is too costly to
implement:

• For graphics operations performed in source over mode, it is permitted to perform them in source mode with
an exception of image drawing. Image drawing should always follow its original behaviour designated by
MIDP 2.0.

• In all cases where alpha channel is involved, the minimum requirement is to respect fully-transparent pixels as
they are.

13.4 Simultaneous execution of multiple applications

13.4.1 Requirements

It is recommended that MATE implementations are capable of simultaneously running as many applications as
possible, but it is not required.

When an implementation can run only one application at a time, an application with the highest priority set in its
application_definition (see clause-12.5.5) shall be chosen to run. But even when there is only one application running
at a time, it is still required to use resource management framework since the underlying implementation may use it to
arbitrate resources among it and other native entities such as native applications.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 45

13.4.2 JVM implementation

An application is considered to run within a logically isolated JVM. But depending on Java ME configurations, the
present document also permits an implementation running multiple applications at once in a JVM using class loaders.
As a consequence, MATE implementations and applications should follow the following rules:

1) 1A MATE implementation may choose not to invoke finalizers on classes defined by an application upon
termination of the application. JVM does not guarantee the execution of finalizers on exit. Therefore,
applications must also not rely on it.

2) System classes and other classes shared among more than one application may be physically identical in the
JVM level. This exception to the isolation among applications is to permit an implementation running more
than one application within a JVM using the class loader mechanism. In this case, applications must not
violate the following rules. And if they do, such applications may cause problems depending on MATE
implementations:

- Applications must not synchronize on system classes, other classes shared among applications, or objects
shared among applications via static members.

- Applications must not assume that any static member (variable or method) is shared with other
application. As an example, it is not permitted to exchange data between applications using a static field.

13.5 Standard properties
The present document defines standard properties that can be read by applications. Some of them have different values
per MIDlet, and some are receiver-wide. Such properties are used for applications to get information on themselves or
on the receiver they are running on.

13.5.1 MIDlet properties

A MIDlet property may be obtained by invoking MIDlet.getAppProperty(String), and is information specific to an
application. Property names beginning with "dmb." are reserved for use by the present document. Therefore, platform
standards may not use a name beginning with "dmb.".

Table 25: Standard MIDlet Properties

Value Description
dmb.app.id The application ID of the MIDlet
dmb.app.dir The path string representing the root directory of the file system the application

owns (clause-13.17.2)

13.5.2 System properties

System properties may be retrieved using java.lang.System.getProperty(String), and provide information on the
receiver. Property names beginning with "dmb." are reserved for use by the present document. Therefore, platform
standards may not use a name beginning with "dmb.".

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 46

Table 26: Standard system properties

Value Description
dmb.dev.id The unique ID for identifying the receiver. The format of the ID is as follows:

<domain_name>/<device_id>

The above ID shall not include any character that violates RFC 2396 [14]. The

meaning of each part of the ID is as follows:

domain_name: the internet domain name owned by the manufacturer of the

receiver. By using a domain name here, unique IDs may be assigned to
manufacturers without a central registry of ID.

device_id: ID for the receiver that is unique among the set of receivers from the
receiver manufacturer. As far as it does not violate the URI format, any
numeric and alphabetic character is allowed in this part.

13.6 Basic APIs
In MATE, to reduce the total size of the API set, and make it easily understandable, the following basic API and
patterns are used.

13.6.1 AsyncResult/AsyncRequestor pattern

On a broadcast network, it is very common that the latency required for getting data is long and irregular, since such
data are repeatedly retransmitted rather than directly accessible. Also, when controlling other applications from an
application, the time to complete a change in the state of other application may vary depending on the operations of the
controlled application.

Because of the nature of those operations, many APIs should be designed to work in an asynchronous way taking their
result via separate listeners or callbacks. But asynchronous APIs are difficult to use, and in some cases, it is better to
block threads invoking such APIs till they complete despite their long latency.

The pattern of AsyncResult/AsyncRequestor defined in dmb.util package enables an API to act in both asynchronous
and synchronous ways, and widely used throughout MATE APIs.

A method following the pattern has, in general, the following form:

AsyncResult doSomething(int arg1, int arg2, AsyncRequestor requestor);

Such a method just requests an operation, and returns immediately without waiting for its completion. The progress of
the operation triggered by the method call may be monitored using the returned AsyncResult object (polling), or a
certain method may be invoked on the AsyncResult to wait for the result (synchronous call). Also, if permitted, such an
operation may be cancelled.

In addition to polling or waiting for the completion, if the progress of the operation needs to be notified of via a
different thread, an AsyncRequestor should be designated. resultUpdated(AsyncResult) method of AsyncRequestor is
invoked every time there is some progress in the operation. If such notifications are not required, it is always possible to
pass a null to the method triggering an operation.

Regardless of how to get to know the completion of an operation, get() method of an AsyncResult may be invoked to
retrieve the result of the operation, and in case there is any exception thrown in the course of the operation, the
exception is re-thrown when the get() is invoked.

Depending on APIs, the progress of an operation is reported through AsyncResult.getProgress()method as an integer
between 0 and 100 inclusive. If there is no such information available, the method returns
AsyncResult.PROGRESS_UNKNOWN instead. Therefore, within AsyncRequestor.resultUpdated(AsyncResult),
AsyncResult.isDone() must be consulted to know whether the operation is completed or not.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 47

13.6.2 AttributedObject pattern

AttributedObject defined in dmb.util package is to publish named data of various types to applications. The information
conveyed via a broadcast network is of various types, and varying platform by platform. Instead of defining separate
classes to retrieve such information per platform, MATE utilizes a more generic interface of AttributedObject
throughout many parts of it.

An attribute is represented with a string, and its value may be of such types as java.lang.Object, java.lang.String,
boolean, int, long, java.util.Date, byte[], and java.lang.Object[]. An API based on the AttributeObject pattern may
define additional types as needed.

If an AttributedObject is asked to return a value of non-existing attribute, dmb.util.InvalidAttributeException is thrown.
isValid(String) method may be used to query if an attribute exists prior to trying to retrieve its value, and
getAttributes()method may be used to get a list of all attributes provided by an AttributedObject.

13.7 Graphic user interface API
The present document defines APIs in dmb.ui package by extending certain classes in javax.microedition.lcdui package
of MIDP 2.0. While it follows the basic framework of MIDP 2.0, additional rules and APIs for managing multiple
applications sharing a display are defined. DMBCanvas extends Canvas which is defined by MIDP 2.0, and is the basis
for user interfaces of DMB applications. DisplayControl augments Display to provide additional means to manage the
screen. AlphaAttribute is associated with each Graphics to provide functionalities such as specifying alpha values and
composite operations. An abstract class, DMBItem, is to aid implementation of user interfaces, and TextItem extending
DMBItem, is to provide an ability to get text inputs from users. FontLoader is for loading fonts dynamically into the
system, and KeyLock is used to reserve some keys for exclusive use by an application.

13.7.1 Screen management

Different from Canvas that exclusively occupies the whole screen, DMBCanvas may use a certain portion or the whole
area of a screen by designating a screen area to cover. By using DMBCanvases, more than one application may access
and draw on a display device at the same time, and screen areas used by applications may overlap with one another.
Each application is assigned a Z-order value, which represents how the application (or an active DMBCanvas) is close
to the user, and when a screen is updated, applications are painted in the order of increasing Z-order.

Figure 7: Management of z order

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 48

As in figure 7, an application with the largest z-order is drawn topmost, and as the foreground application, has the key
focus. Except for the cases of using KeyLock as described below, basically all the key events generated are delivered to
the DMBCanvas of the application owning the key focus. Pointer events, on the other hand, are delivered to a
DMBCanvas that contains the position where the pressed event is generated and has the largest z-order. And the
following drag and release events are delivered also to the same DMBCanvas. If a pressed event is generated at the
point where no DMBCanvas covers, the events following it shall not be delivered to any DMBCanvas, and just ignored.

When an application needs to change its z-order, setPriority(int priority) of the DisplayControl can be invoked to set a
priority. The possible priorities are HIGH, NORMAL, and LOW. An application with a higher priority shall be drawn
over the application with a lower priority.

Figure 8: Priority in z order

Figure 8 shows the priorities and the z-orders assigned to DMBCanvases each of which is activated in an application
owning it. When it is necessary to change z-orders of applications with a single priority, toFront()and toBack() methods
of DisplayControl may be invoked, respectively resulting in sending an application to the bottom and bringing it to the
front among those with the same priority.

To change the current owner of the key focus, an application may change its z-order resulting in getting the key focus or
yielding it to other application. For example, if an application needs to display an important warning and get some input
from the user, it may do so by setting its priority to HIGH, and calling toFront(). Then it may bring it to the topmost
position among those with the HIGH priority. If an application does not require any key input,
DisplayControl.setFocusable(false) may be invoked not to accept the key focus. Depending on implementations, a
separate manager coordinating z-orders may exist to set the z-order of applications from outside the applications. But
the present document only defines a means to change the z-order of an application from itself. Thus the operations of
such an external manager are not restricted, and may coexist with an implementation of this API.

13.7.2 Processing alpha values

MIDP 2.0 only applies the source over rule defined in Porter-Duff [19], and assumes that the drawing surfaces do not an
alpha channel. On the other hand, DMB applications require more advanced processing of alpha values to enable
composition among them and between the graphics and the video planes. AlphaAttribute class is to enable setting of an
alpha composite rule among CLEAR, SRC, and SRC_OVER when a drawing surface has an alpha channel. CLEAR
rule is to clear the colour and the alpha value of the destination to 0, SRC to set both the colour and the alpha value of
the destination as the current values, and SRC_OVER is to composite the source and the destination considering their
alpha values to determine the final value in the destination. setComposite(int compRule) method may be invoked to set
the composite rule. Once set, the rule is applied to all of drawing operations on the relevant Graphics object. Note that
the original alpha processing in MIDP 2.0 is identical to the case where the composite rule is set to SRC_OVER and the
current alpha value is set fully opaque.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 49

13.7.3 User interface elements

DMBItem is a user interface element that is similar to an Item managed by Form class, and may be added to a
DMBCanvas. A user interface element may be implemented by extending the class. A DMBItem, much like
DMBCanvas, designates a screen area it manages, and receives key, pointer, and paint events from the DMBCanvas
containing it. If more than one DMBItem is used within a DMBCanvas, it is assigned a z-order value as it is added to
the containing DMBCanvas, and one of the DMBItems owns the key focus resulting in receiving the key events from
the containing DMBCanvas. Each DMBItem has methods invoked when there are key/pointer/paint events, it has
gained or lost the key focus, and it has been added to or removed from the containing DMBCanvas. DMBCanvas
maintains methods for adding and removing DMBItems, and changing the focus.

Different from a Displayable in MIDP 2.0 that occupies the whole screen, DMBCanvases and DMBItems occupy a
certain portion of a screen by nature, and have a local coordinate, the origin of which is their top-left corner.

Figure 9: Coordinate systems of DMBCanvas and DMBItem

When key/pointer/paint events are delivered, any coordinate associated with them is described in the local coordinate.
On the other hand, when positioning a DMBCanvas within a display device, or DMBItem within its containing
DMBCanvas using setBounds(int,int,int,int), the local coordinate system of its parent entity is used.

13.7.4 Key mapping

DMB receivers may have certain keys dedicated to DMB watching and applications. To support such keys,
DMBCanvas defines DMBAction similar to GameAction in Canvas. Each key may be mapped to a DMBAction.
getDMBAction(int) method can be used to retrieve a DMBAction value corresponding a key, and
getDMBKeyCode(int) to get a key code mapped to a given DMBAction. As in the case of GameAction, more than one
key code can be mapped to a DMBAction, the following equation may not evaluate to true:

keyCode == getDMBKeyCode(getDMBAction(keyCode))

The present document defines DMBActions of VOLUME_UP, VOLUME_DOWN, MUTE, CHANNEL_UP,
CHANNEL_DOWN, RECORD, GUIDE, and INFO.

13.7.5 Reserving keys for exclusive use

Within a broadcast receiver, it is common that an application, without any GUI component being presented on the
screen, needs to get key inputs, or reserve certain hot keys for its exclusive use. For example, an EPG application may
reserve the EPG in the receiver for its exclusive use, and react to the key by showing up in the screen.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 50

To support this kind of scenarios, MATE provides KeyLock API. An application may create a KeyLock object, and
acquire its ownership via the resource manager (clause-13.16), to reserve the keys of the specified codes for exclusive
use by it. Key events corresponding to the key codes may directly be processed by subclassing KeyLock class, or may
be designated to be delivered to the application in the same way as in a focused application.

13.7.6 Loading fonts dynamically

FontLoader class can be used to load and create fonts, that were absent in the receiver, from the data either received
from a broadcast or return channel, or retrieved from the application resources. Dynamic creation of fonts is an optional
feature, and the present document does not designate any specific format for such fonts.

13.8 Media control API
MATE utilizes Java ME MMAPI 1.1 [16] for playback of audio and video clips, and controling presentation of
broadcast audio and video. This clause-defines parts of MMAPI elements that must be supported in MATE, and their
relationship with other APIs such as those for service selection.

13.8.1 A MMAPI 1.1 profile

MATE requires all the controls designated with "SHOULD" and "MUST" in the "Sampled Audio" and "Video" parts of
MMAPI 1.1 according to the rules defined in "Optionality and Implementation Requirements" section of the same
specification. But in the case of a broadcast stream, StopTimeControl and FramePositioningControl need not be
supported. And when presenting broadcast videos, dmb.media.BackgroundVideoControl must be supported in place of
VideoControl. Optionally, RecordControl may be supported for broadcast videos.

13.8.2 Player creation

Players cannot be created via javax.microedition.media.Manager for the playback of broadcast streams. Such Players
are created internally by dmb.service.ServiceManager, and accessible via getPlayer(String) and getPlayers() methods of
the ServiceManager. For audio and video clips stored in storage devices, Players may directly be created via Manager.

13.9 Broadcast data access API
As defined in clause-7.1, MATE supports three types of broadcast channel protocols. In this clause, APIs for accessing
files, packets, and triggers are defined respectively. Those APIs are defined in dmb.io package and utilizes the
GCF(Generic Connection Framework) defined in Java ME MIDP 2.0 [1].

13.9.1 File access API

13.9.1.1 Creation of file objects

A BroadcastFileConnection object is used to access a broadcast file. It may be obtained by passing an appropriate
locator to open(String) method of javax.microedition.io.Connector. Here, such a locator may locate a file within a
broadcast file system, or the file system itself. In the latter case, the returned BroadcastFileConnection is a directory
returning true from BroadcastFileConnection.isDirectory() method.

When a BroadcastFileConnection object is no longer required, it is a good practice to invoke close() on it. If so, any
resource associated with the BroadcastFileConnection may be reclaimed as soon as possible.

13.9.1.2 Directory

If a directory containing list of files is transported within a file system, a BroadcastFileConnection object corresponding
to it may be obtained. With the BroadcastFileConnection object, list of files within the directory can be obtained, and a
file or directory under the directory can be open by specifying a path relative to it.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 51

13.9.1.3 Metadata

In general, a file or directory may entail various metadata such as its MIME type. Since the BroadcastFileConnection is
a dmb.util.AttributedObject, such data may be attached to it as attributes. The types of metadata supported for files and
directories differ from a platform to another.

13.9.1.4 File access

To read the content of a file, a java.io.InputStream should be obtained by calling openInputStream() method. When
accessing a file system containing a file, the content of a file may already be loaded into memory, but otherwise, it may
take arbitrary time to read data from the InputStream. In such a case, BroadcastFileSystem.load(AsyncRequestor)
method may be used to get notified without waiting when the content of the corresponding file is fully loaded into
memory. If load(AsyncRequestor) is invoked on multiple files, and the files are processed when their loading is
completed, it is possible to increase the overall throughput by overlapping I/O and CPU-bound jobs.

13.9.1.5 File update

When a file is updated, an application can get notified of the fact by registering a BroadcastFileListener. Upon such a
notification, an application can invoke BroadcastFileConnection.flush() and read the content of the new version.

13.9.2 Packet access API

To receive packets, javax.microedition.io.DatagramConnection API is used as it is. But since the target stream is a
broadcast stream, packets can only be read from the stream.

Therefore among the methods of DatagramConnection, only getMaximumLength(), newDatagram(byte[], int),
newDatagram(int), and receive(Datagram) are supported. Among other methods, newDatagram(byte[], int, String),
newDatagram(int, String), and send(Datagram) result in an IOException, setAddress(Datagram), setAddress(String),
and setData(byte[], int, int) cause a RuntimeException, and getNominalLength() always returns 0.

13.9.3 Trigger API

To receiver triggers, the same javax.microedition.io.DatagramConnection is used as in the case of receiving packets.
The methods supported for receiving triggers are same as those supported for packet receiving. If a locator passed to
Connector locates a trigger stream, the returned DatagramConnection shall create dmb.io.Triggers instead of
Datagrams, and those trigger objects must be used to receive triggers.

Each trigger has an ID, and as far as there is no change in the content of a trigger assigned an ID, it is immediately
passed to an application only once. In that case, the getState() method of the received Trigger object returns
Trigger.RECEIVED, and the receiving application may prepare to perform an action designated by the trigger
responding to the trigger.

After receiving a trigger, the receiver tracks the current time to see when the time designated by the trigger comes. At
the designated time, the application is passed the same trigger, where the getState() method of the trigger returns
Trigger.TRIGGERED, meaning the application should perform the designated action immediately.

If there is any discontinuity or drift in the AV clock, a receiver may fail to detect the time designated in a trigger, and
needs to cancel the trigger. If this happens, the same trigger is delivered to the application once more, but this time,
Trigger.CANCELED is returned from getState().

Note that more than one trigger with the same ID may be delivered to an application if there was a change in the
designated time or the content of the trigger.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 52

13.10 Service information API

13.10.1 Introduction

The service information refers to the information on channel configurations and/or program schedules in Ensembles.
Applications like EPG require presenting such service information received by the receiver to the user. To provide a
level of compatibilities among various differing broadcast network specifications, the present document defines basic
elements available in the most of broadcast networks, and provides a means to query such information by specifying a
condition to meet by the target information. Additionally the service information API utilizes dmb.util.AttributedObject
pattern, to facilitate the addition of new concepts.

13.10.2 Service information object

MATE considers that the service information is composed of certain kinds of service information objects (hereafter,
referred to as SI objects). Those objects refer to various entities described by the service information. Each platform
standard defines SI objects in detail, and attributes are defined for each of them. The type of an SI object is represented
by the value of its SIAttribute.TYPE attribute. A set of objects supported by a platform, and their attributes are defined
in detail by a platform standard.

13.10.2.1 SI database

Though an SI database (dmb.si.SIDatabase) itself is not an SI object, it is an AttributedObject meaning it may also have
its own attributes. The attributes associated with an SI database are usually applicable to all of SI objects.

13.10.3 SI query and view

A query may be submitted against the values of attributes of SI objects, and the result may be retrieved as a list of SI
objects of the same type. Here, it is possible to get the result of the query as a view rather than a list of SI objects.
Different from the list, a view is updated automatically based on the query used to create it when there is any change in
the underlying SI information.

Once created, a view may be submitted another query, and a listener may be added to one to get notified of additions,
removals, or updates occurring in the view.

13.11 Tuning API
A tuner is a device to read the content of an ensemble by tuning to it. MATE provides two classes in dmb.tuning
package to control the tuner.

13.11.1 Tuner

dmb.tuning.Tuner object is for activating, deactivating, and getting the signal quality of a tuner in the receiver.

13.11.2 TunerLock

dmb.tuning.TunerLock is an abastract concept of sharing a Tuner. It permits applications tuning to an ensemble to share
a tuner. A TunerLock is a resource, and acquiring the ownership of it means that the associated tuner is tuned to an
ensemble designated by the TunerLock. Once acquired, the ownership to the TunerLock is retained unless another
application acquires a TunerLock for the same tuner by specifying a higher priority, the tuning fails, or the signal is too
weak to keep tuning to the ensemble.

13.12 Service selection API
For service selection MATE defines ServiceManager in dmb.service package. It provides a means to select a service,
and to add and remove service components from it. Since a ServiceManager is a resource, it must be acquired via the
resource manager (clause-13.16) before selecting a channel with it. For details, refer to the API documentation.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 53

13.13 CAS API
MATE defines a set of APIs for purchasing paid contents, and controlling the process in dmb.ca package.

13.13.1 Communication with CA module

There are occasions where it is required to directly exchange messages with a CA module. Reading the smartcard
number, or changing the PIN (Personal Identification Number) requires such a direct communication.

dmb.ca.CAModule provides a direct interface to a CA module. Once a CASession is created, with
CAModule.openSession method, an application may send requests in the form of CARequest to the CAModule. Events
or responses to CARequests from the CAModule are delivered to an application via CAEventReceiver that was passed
to the openSession method. In this case, general events are represented with CAEvent, and on the other hand, responses
to CARequest are represented with CAResponse, a subclass of CAEvent.

Each platform should define concrete subclasses of CARequest, CAEvent, and CAResponse for each CAS, since the
detailed protocol between an application and a CA module differs by CAS. Therefore the present document does not
define such concrete subclasses.

13.13.2 Purchasable entities

dmb.ca.Purchasable is intended to be implemented by an object representing a purchasable entity, and defines the
methods for retrieving information on the entity, and other ones to be implemented by such an object. Any type of
objects may implement this interface, but in most cases, SI objects representing services or program locations, which
are purchasable, implement this interface.

To purchase an entity implementing this interface, purchase or openPurchaseSession methods may be invoked. When
purchase method is invoked, the receiver implementation is responsible for managing the whole process of the
purchasing the entity providing appropriate user interfaces. Thus applications such as EPG, which directly use CA API,
do not need to do something while a purchase is in progress.

On the other hand, openPurchaseSession creates a CASession like CAModule.openSession. Thus it enables the direct
control over the purchase procedure by permitting direct communication between a CA module and an application. As
in the case of CAModule, concrete subclasses of CARequest, CAEvent, and CAResponse should be defined depending
on platform standards and/or CASes.

13.14 Application control API
To enable control of other applications from an application, MATE defines a set of APIs in dmb.app package. First of
all, AppControls for applications may be obtained via AppManager. An AppControl may be used to control the
lifecycle, and installation and removal of the associated application.

AppControl represents an application of any type, which conforms to the application signalling and transport
specification defined by the present document. A subclass called MIDletControl is defined to specifically support
MIDlets.

13.15 Inter-application communication API
The present document defines a means to communicate among MIDlet, which is based on message queue. Message
queue is easy to use, and may be used to synchronize multiple applications in various ways, in addition to allowing
exchange of data.

13.15.1 Messages

A datum to be exchanged among applications is represented by an object implementing dmb.messaging.Message
interface, and can be created with Port.newMessages. Similar to javax.microedition.io.Datagram object, this object
provides a similar means to read, write, send, and receive data.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 54

13.15.2 Port

For multiple applications to exchange messages, they must share a Port. Messages are sent to and received from a port.

Figure 10: Concept of port

13.15.3 Sending messages

If a message is sent to a port (via send or sendFirst method of dmb.messaging.Port), the message is immediately stored
in the port. Messages are processed by a port in a FIFO (First-In, First-Out) way, meaning that they are stored in their
order of sending, and retrieved by receivers in the same order. But if sendFirst of Port class is used, a message may be
put to the front of a port.

When creating a port, the maximum number of messages that can be stored within the port may be specified. It is also
possible to set the maximum to 0. When there is no free space within a port, a message can be sent. In that case,
depending on the setting of the blocking mode on the port, the sender may block until a space becomes available by
other applications' retrieval of messages from the port, or return immediately without sending it.

13.15.4 Receiving messages

Messages stored in a port may be retrieved with receive method. Upon reception of a message, it is removed from the
port, and copied to the buffer inside a message object of the receiving application.

If it is requested to receive a message when the port is empty, depending on the blocking mode setting, the application
either waits for a message is available in the port, or immediately returns without a message.

13.16 Resource manager API

13.16.1 Introduction

Resources within a receiver such as video decoders may be used by an application at a time, and tuners may be shared
among only applications that want to read the same ensemble. As such, there is a rule in sharing such resources of a
receiver among multiple applications.

Also, there should be priorities among applications requiring the same resource. Otherwise, an application, which is
important from user's standpoint, may stop its operation by losing its resources to other applications performing trivial
tasks.

The resource manager API is for representing such rules for sharing resources in an appropriate way, and trading
ownerships to the shared resources among the receiver implementation and applications, according to the priorities
specified by applications.

13.16.2 Resource objects

In MATE, the objects implementing dmb.resources.Resource interface are considered as resources. Such resource
objects include dmb.tuning.TunerLock and dmb.ui.KeyLock. A resource may be a hardware entity such as
dmb.ca.CAModule, but it may also represent an abstract concept like dmb.tuning.TunerLock.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 55

13.16.3 Resource group and choice

When an application needs resources, it is common to require more than one resource at the same time rather than a
single resource at a time. For instance, let's say that an application reads data from an ensemble, does playback of an
audio clip, and reserves a key for its exclusive use in a certain section of an application. In that case, it is of no use to
acquire only parts of the resources required to perform all of the intended actions. MATE provides a means to represent
and acquire the required resources as a unit. If any of the resources may not be acquired, the ownerships to all of the
resources are given up to let other applications make use of them. The benefits gained by such a policy are as follows:

• Increased utilization of resources within a receiver: There are occasions where multiple applications need to
acquire more than one resource to continue to proceed. In such cases, each application may acquire a resource
but not others, and therefore no application can proceed. Or an application may lose the ownership to a
resource that was already acquired while acquiring other resources. If these kinds of inefficiencies are avoided,
the overall utilization of the receiver resources can be increased.

• Simple implementation of applications and receivers: Since an application does not need to coordinate
multiple resources explicitly, requesting resources and coordinating their ownership become simple.
Applications may delegate to the receiver implementation all the chores involved in the coordination of the
resource acquisition, and as the result, their implementation is made simple. Also in the receiver side, the
coordination of the resource acquisition may be made simpler than when dealing with each resource
separately, by processing aggregated resources at once as a unit.

To group resources as a unit, two types of resource sets called resource group and resource choice are defined.

13.16.4 Resource group

A resource group represents a set of resources that must be acquired. If any resource within a resource group cannot be
acquired, all the resources within the group are given up together. And even if the ownership to all the resources within
a resource group was acquired, and later one of them becomes lost to other application, the ownership to all other
resources are also given up together.

A resource group is represented by a dmb.resources.ResourceGroup object, and can group a set of resources.

13.16.5 Resource choice

A resource choice is also a collection of more than one resource like a resource group. But rather than being a unit to be
acquired and given up together, a resource choice represents a requirement of acquiring any single resource among
those in the resource choice.

For instance, when a receiver has multiple tuners, and an application is to acquire one of them, all the tuners may be
grouped in a resource choice, and then acquired. Depending on the current condition of the receiver, the application can
acquire either the ownership to a tuner or nothing.

A resource choice is represented by a dmb.resources.ResourceChoice object, and can group a set of resources, only one
of which is required to be acquired.

13.16.6 Nesting resource groups and choices

Both resource group and choice are a set of resources, but they are also a resource themselves. Therefore, resource
groups or choices include other groups and/or choices. By nesting groups and choices in such a way, complex
requirements on the acquisition of resources can be specified.

13.16.7 Rule for determining resource ownership

To acquire ownership to a resource, acquire method of dmb.resources.ResourceManager should be invoked. And to
release the ownership of a resource when an application finishes with it, release method of ResourceOwnership should
be invoked.

Once a resource is requested, free resources are checked first, and if there is no free resource, resources owned by other
applications are checked. When the resource is in use by other application, whether it can be taken over from the
application or not should be determined. This decision is based on the priority set on each resource by each application.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 56

That is, if an application specifies a higher priority for a resource than that specified by the current owner, then the
resource can be taken over from the current owner. If there is more than one resource satisfying a request from an
application, then one with lowest priority among them is picked.

The priority can be set when acquiring a resource, and for the resources that are already acquired, it can be changed
with ResourceOwnership.setPriority(int). The method should frequently be invoked to reflect priorities varying
according to the state of an application.

After checking that all the resources can be acquired, the original owners are given an opportunity to do cleanups for the
resources. The opportunity is notified via ResourceOwner object specified when acquiring the resources.
prepareRelease(ResourceOwnership) method is invoked on the object, but when it was inevitable to release the
resources before invoking prepareRelease, or it took too much time within the method, then the resources may forcibly
be revoked, and notifyRelease(ResourceOwnership) method be invoked instead.

13.17 Storage API
MATE requires the FileConnection API of JSR 75 PDA Optional Package [17] to support I/O with FLASH memory,
disks, and other storage devices. The content stored in a storage device should persist even when there is no power
supplied to the device.

13.17.1 Implementation requirements

MATE does not require a general purpose file system for the implementation of FileConnection API. For each
application, only a directory must be accessible, and within the directory, only plain files shall be able to be created.
Support for nested directories is not required.

13.17.2 Per-application storage

When an application is granted appropriate permissions, a directory is created for the application, for which the
application has all the authorities. The root of the directory can be obtained by reading a MIDlet property named
"dmb.app.dir". The directory can be accessed via FileConnection API.

When an application is removed from the receiver, the corresponding directory is also removed. Therefore, to protect
application-specific data in such a case, it must be stored in a separate storage or server.

For an application to access a directory owned by other application, the owner needs to delegate appropriate
permissions to the application. For details on authority delegation, refer to clause-9.3.5.

13.17.3 Permissions

In MATE, MIDP 2.0 style permissions defined in FileConnection API cannot be used as they are. Therefore, the
following permissions are additionally defined:

• dmb.io.file.<operation>.<path>: a permission to perform the designated <operation> to the designated <path>.
Here, <operation> is one of read, write, create, and remove, and <path> represents a path where the designated
operation is permitted.

An application must request appropriate permissions to use storage. Also, the permission string defined above may be
used in credentials.

13.18 Communication channel API
MATE supports all the APIs defined in javax.microedition.io package of Java ME MIDP 2.0 [1] to support use of
communication channels. Note that all the APIs, defined in MIDP 2.0 [1] and relevant to communication channels, are
also supported by Personal Basis Profile 1.1 [2].

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 57

Annex A (informative):
Automated test environment for receiver certification
The purpose of this annex is to provide a recommended practice for the structure of an automated test environment, and
a testing method. Since MATE and its base platform, MIDP 2.0, define all the elements required for building an
automated test environment, no additional API is defined in the present document. And because an application
implementing a set of tests may be downloaded to receivers, no separate communication protocol is also defined.

To certify an implementation of MATE to conform to the present document, an automated test environment and a
receiver with the implementation should be connected, and the test cases for the certification should be run, where the
automated test environment and the receiver should be able to exchange appropriate control signals and messages
according to the progress of the test.

Figure A.1: A configuration of an automated test environment

Figure A.1 represents an automated test environment. Given a list of test cases, the automated test server performs each
test, and logs the result. The automated test server controls the stream generator to create test programs and test data
based on each test case, where the stream generator generates streams to be transmitted via broadcast interfaces.

The procedure by which each test is performed is as follows:

1) The automated test server reads a test case.

2) According to the test case, the followings are transferred to the stream generator: the test program to be run on
the receiver, the communication module to be used by the program to communicate with the automated test
server to proceed and log the test, and the associated test data. In this step, the test program is signaled to
automatically launch:

- The receiver runs the test program as soon as it is fully received.

- While the test program runs, it communicates with the automated test server via HTTP using the
communication module to get control commands, or sending out the test results. MATE is based on
MIDP 2.0, which requires HTTP. That is why HTTP is used here.

- Upon the completion of a test case, the automated test server logs the test result, and the test program on
the receiver terminates.

- Returns to 1) and repeats.

Figure A.2 depicts the interactions between a receiver and an automated test environment in more detail.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 58

Automated Test EnvironmentReceiver

DMB MATE Implementation

HTTP

Implementation

Test Application

(Part of a Test Case)

Test API and Protocol
Implementation

HttpConnection

Downloaded from the
broadcast stream

Stream Generator
Download

via broadcast network

Test Server

HTTP Server

HTTPHTTP Proxy

Non-HTTP

(Serial, WAP, …)

Optional

Test Case

Database

Figure A.2: Interactions within an automated test environment

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 59

Annex B (informative):
Delivery and processing of key events among embedded
applications and MATE

B.1 Introduction
All the types of applications defined in the present document (hereafter, referred to as MATE applications) can receive
key inputs, and if a Java API, dmb.ui.KeyLock, is used, the corresponding application can intercept key inputs going to
other applications.

But depending on receiver implementations, various applications may be embedded. For example, an application
dealing with basic channel zapping may be implemented in C language, and embedded within a receiver. Such
embedded applications need to get key inputs, and the issue of coordinating those applications with MATE applications
in terms of their key inputs is raised here.

The purpose of this clause-is to provide a recommended practice in distributing and processing key events among both
embedded and MATE applications, as a reference for the implementation of receivers conforming to the present
document.

B.2 Key processing of embedded applications
Embedded applications should follow the following basic rules in processing key events:

• The embedded applications may exclusively use certain keys if they are not designated to be delivered to
MATE applications by the platform standard. As an example, keys for activating receiver-specific menus or
resetting the receiver may present. In this case, those keys are not delivered to MATE applications no matter
whether one of the embedded applications has the key focus or not.

• The embedded applications may receive keys other than those mentioned in the right above, but if MATE
applications reserve some of them using KeyLock (clause-13.7.5), the keys should be delivered to the
corresponding MATE applications. A key to activate an EPG is a good example of such keys. But it is
recommended to minimize the number of keys corresponding to this case. Also if it is possible to restrict use
of the keys to the moments when one of the embedded applications has the key focus, then it is recommended
to do so.

• With the exception of the above two cases, the embedded applications may process any key when they have
the key focus.

B.3 Key focus management of MATE applications
When the embedded applications run simultaneously with MATE applications, the MATE applications are
recommended to obey the following rules to make users comfortable:

• From the user's point of view, unless a MATE application is activated and considered to exclusively interact
with the user, it should remove its dmb.ui.DMBCanvas by invoking removeDisplayable() of
dmb.ui.DisplayControl, or avoid gaining the key focus by passing a false to setFocusable(boolean) of the same
class. By doing so, the embedded applications may operate without unnecessary restrictions, when the MATE
applications are not interacting with the user.

• As an exception to the case above, when a MATE application is not interacting with the user, and still needs to
react to certain keys, such keys should be clearly specified using KeyLocks. By clearly specifying keys used
by MATE applications, the embedded applications may get key inputs without unnessary restrictions if
compared to the case when a MATE application has the key focus.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 60

Annex C (informative):
Accessing location information from Java applications
Information on the physical location of a receiver is quite useful enabling various location-based services. Though not
mandating, the present document recommends use of JSR 176 [22] when such functionality is available on a specific
receiver.

Presence of an implementation JSR 176 may be identified by examining a system property with a key
"microedition.location.version."

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 61

Annex D (normative):
API specification

Package Summary Page

dmb.app Defines classes and interfaces to get the list of applications known to receiver, and control
each of them. 59

dmb.ca Defines an interface to conditional access system in the receiver. 82

dmb.io Defines APIs for accessing data coming from the broadcast channel. 95

dmb.media As an extension to MMAPI, this package contains additional classes and interfaces. 103

dmb.messaging Defines an API for applications to communicate with one another. 109

dmb.resources Defines the basic framework to share resources among the receiver implementation and the
aplications. 118

dmb.service Defines APIs for service selection. 131

dmb.si Provides APIs for giving access to service information managed by the underlying receiver
implementation. 159

dmb.tuning Defines a set of APIs for controlling tuners available in the receiver. 183

dmb.ui This package provides a UI extension to javax.microedition.lcdui to handle the
peculiarities in DMB environment such as support for transparent graphics plane. 192

dmb.util Defines common interfaces and classes used in other packages. 233

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 62

Package dmb.app

Defines classes and interfaces to get the list of applications known to receiver, and control each of them.

See:

Description

Interface Summary Page

AppControl Represents an application known to the receiver. 59

AppListListener An interface to be implemented by an object that needs to listen to changes in the application
list maintained by AppManager. 72

AppStateListener An interface to be implemented by an object that needs to listen to changes in the state of
applications. 76

MIDletControl Provides a means to control an MIDlet associated with an instance of this interface. 79

Class Summary Page

AppManager Manages applications known to the receiver. 73

Package dmb.app Description

Defines classes and interfaces to get the list of applications known to receiver, and control each of them. The list and
each application may be monitored for changes. By using facilities defined in this package, an application may install,
remove, execute, and terminate any application programatically.

AppManager may be used to obtain AppControls for the applications of interest. In turn, AppControl provides a
mean to control download and run states of the corresponding application.AppControl is the common base interface
for all application models that are and will be designated in DMB MATE specification. So in the case of
javax.microedtion.midlet.MIDlet, MIDletControl is defined as an extension to dmb.app.Appcontrol to
deal with specifics of MIDlet. When there is another application model defined in the specification, then an additional
subinterface of AppControl may be introduced in the future.

Interface AppControl
dmb.app

All Known Subinterfaces:
MIDletControl

public interface AppControl

Represents an application known to the receiver. Through this interface other applications may initiate download and
control execution of the downloaded application. Later the application may be marked for removal through this
interface.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 63

Download States

Download of an application may be initiated by calling download(). It requests download of an application for either
its initial installation or its upgrade. It does not protect the application from being removed. Thus the download may be
canceled or, if it is not running, the application may be removed without prior notice.

The current download state may be obtained with getDownloadState(). Also changes in the download state are
reported via any registered AppStateListener with DOWNLOAD_STATE_CHANGED event. When the event is
delivered, the fourth argument to AppStateListener.stateChanged(AppControl,String,int,String) is set
to the reason of the state change. The reason codes are declared in AppStateListener, and they all have REASON_
prefix. This reason code is usually useful when the download state is changing from DOWNLOADING to NOT_STORED and
from UPDATING to STORED. Such changes is the result of some error occurred while trying to download an application.

Run States

An application can be executed when its download state is either STORED or {@linK #UPDATING}. Here, note that a
copy of an application is fully downloaded and ready when it is in UPDATING state. The update is in progress in the
background without affecting the current version. When an application is directed to run in a download state other than
those, an IllegalStateException is thrown. The current run state of an application may be queried with
getRunState() method. Initially an application is in NOT_RUNNING state. With init, start, and pause methods,
the run state of an application may be controlled. When a call to those methods implies multiple state transitions and the
whole transitions are not completed, then the call is considered canceled. Thus a call to AsyncResult.isCanceled()
returns true in that case.

When there is a change in the run state, a RUN_STATE_CHANGED event is delivered to the registered listeners. In
this case, a relevant reason code is passed to the listener as the fourth argument to
AppStateListener.stateChanged(AppControl,String,int,String). For reason codes, refer to constants
beginning with REASON_ in AppStateListener.

Montoring Download Progress

The download progress of an application may be obtained via getProgress(). It reports progress with an integer
ranging from 0 to 100, where 0 means nothing is downloaded and 100 fully downloaded. When there is some progress
it is reported to any registered listeners via AppStateListener with DOWNLOAD_PROGRESSED event.

When an Application is no longer signaled

The receiver implementation shall go through the following process, when it notices that an application is no longer
signaled:

• If the current download state is DOWNLOADING, the download is canceled automatically.

• If it is either the above mentioned case or one where the application's download state is in NOT_STORED state,
the AppControl instance for the application becomes INVALID and the registered listeners are notified. Once
it is in INVALID state, any method incurs a state change throws IllegalStateException. Normally an
application may be controlled with prior knowledge on the state of it. Thus in most cases, such
IllegalStateExceptions do not matter. But any general application manager application must process
IllegalStateException since it deals with any application it does not have any knowledge on. Other
methods in AppControl that are not marked to throw IllegalStateException must return their prior
value, since such behaviour simplifies implementation of applications displaying information on applications
in such a exceptional case.

Permissions

Permissions affecting operatons of AppControl are as follows:

• dmb.app.control.<app_id>: permission to control the download and the run states of an application
through methods in AppControl. This is required to invoke download(), remove(),

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 64

init(AsyncRequestor), start(AsyncRequestor), pause(AsyncRequestor), stop(boolean,
AsyncRequestor), and switchTo().

Field Summary Page
int DOWNLOADING

Represents a download state where an application is being downloaded, or updated while its
previous version is already invalidated.

63

int INVALID

Represents a download state where this AppControl instance is invalid, since the
corresponding application is disappeared while it is not stored.

63

int NOT_RUNNING

Represents a run state where an application is not running.
64

int NOT_STORED

Represents a download state where data constituting an application is not stored in the
receiver side.

63

int OUTDATED

Represents a download state where an application is fully downloaded, but a newer version is
known to be available.

64

int PAUSED

Represents a run state where an application is loaded and initialized.
64

int STARTED

Represents a run state where an application is activated and doing what it is designated to do.
64

int STORED

Represents a download state where an application is fully downloaded and ready to run.
64

int UPDATING

Represents a download state where an application is being updated while the current version
is still valid and can be run.

63

Method Summary Page
void addAppStateListener(AppStateListener listener)

Adds an AppStateListener to monitor changes in the state of this application.
69

void download()

Requests download of this application represented by this AppControl.
66

String getDescription()

Returns the description of this application.
71

String getDescription(String lang)

Returns the description of this application in the designated language.
72

String[] getDescriptions()

Returns all the descriptions of this application represented in different languages together
with the corresponding language code.

72

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 65

int getDownloadState()

Returns the current download state of this application.
65

AsyncResult getIcon(AsyncRequestor requestor)

Gets the icon associated with this application.
71

String getID()

Returns the ID of this application.
65

String getName()

Returns the name of this application.
70

String getName(String lang)

Returns the name of this application represented in the given language.
70

String[] getNames()

Returns a list of the application names in all languages available in the signalling message.
71

int getProgress()

Returns the current progress in downloading this application as an int ranging from 0 to
100.

66

int getRunState()

Returns the current run state of this application.
66

int getVersion()

Returns the version of this application.
65

AsyncResult init(AsyncRequestor r)

Initializes this application.
67

boolean isAutoDownload()

Returns whether this application represented by this AppControl is to be automatically
downloaded or not.

66

boolean isVisible()

Returns whether this application should be visible to users via UI or so.
70

AsyncResult pause(AsyncRequestor r)

Pauses this application.
68

void remove()

Designates this application should be removed.
67

void removeAppStateListener(AppStateListener listener)

Removes the designated AppStateListener from this application.
70

AsyncResult start(AsyncRequestor r)

Starts this application.
68

AsyncResult stop(boolean forced, AsyncRequestor r)

Stops this application.
69

void switchTo()

Switches the calling application to an application represented by this AppControl.
69

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 66

Field Detail

INVALID

public static final int INVALID = -1

Represents a download state where this AppControl instance is invalid, since the corresponding application is
disappeared while it is not stored. All the methods for changing the download and the run states throw
IllegalStateException when an AppControl is in this state.

NOT_STORED

public static final int NOT_STORED = 0

Represents a download state where data constituting an application is not stored in the receiver side. In this
state, the application is known to the receiver through the application signalling mechanism, but either its
download is not initiated or it was downloaded and stored, but later removed. If download of the application is
requested, then the download state changes to DOWNLOADING and the receiver begins to download data
constituting the application. In this state, getProgress() returns 0.

See Also:

getDownloadState()

DOWNLOADING

public static final int DOWNLOADING = 1

Represents a download state where an application is being downloaded, or updated while its previous version
is already invalidated. When the download completes, the download state is automatically changed to STORED
state. In this state, applications can be run, and getProgress() method returns the current download
progress.

See Also:

getDownloadState()

UPDATING

public static final int UPDATING = 2

Represents a download state where an application is being updated while the current version is still valid and
can be run. This state may be entered while an application is previously in OUTDATED state. Note that the
application can be run in this state, and getProgress() reflects the current progress of the update.

See Also:

getDownloadState()

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 67

STORED

public static final int STORED = 3

Represents a download state where an application is fully downloaded and ready to run. In this state,
getProgress() always returns 100.

See Also:

getDownloadState()

OUTDATED

public static final int OUTDATED = 4

Represents a download state where an application is fully downloaded, but a newer version is known to be
available. In this state, getProgress() always returns 100.

NOT_RUNNING

public static final int NOT_RUNNING = 0

Represents a run state where an application is not running.

See Also:

getRunState()

PAUSED

public static final int PAUSED = 1

Represents a run state where an application is loaded and initialized. When an application is started and then
paused, it also enters this state. In this state, an application should occupy receiver resources as less as
possible, but be ready to start quickly.

See Also:

getRunState()

STARTED

public static final int STARTED = 2

Represents a run state where an application is activated and doing what it is designated to do.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 68

See Also:

getRunState()

Method Detail

getID

public String getID()

Returns the ID of this application.

Returns:

application ID

getVersion

public int getVersion()

Returns the version of this application. The version is meaningful only when it is in STORED state. When it is
not yet stored, this returns -1.

Returns:

if this application is in STORED state, then returns its version. Otherwise, returns -1.

getDownloadState

public int getDownloadState()

Returns the current download state of this application.

Returns:

the current download state. One of the following:

• NOT_STORED

• DOWNLOADING

• UPDATING

• STORED

• OUTDATED

• INVALID

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 69

getRunState

public int getRunState()

Returns the current run state of this application.

Returns:

the current run state. One of the following:

• NOT_RUNNING

• PAUSED

• STARTED

getProgress

public int getProgress()

Returns the current progress in downloading this application as an int ranging from 0 to 100. Here, 0 means
nothing is downloaded yet, and 100 fully downloaded. Note that this returns a number between 0 and 100 only
when this application is in either DOWNLOADING or UPDATING state.

Returns:

the current progress in downloading this application

isAutoDownload

public boolean isAutoDownload()

Returns whether this application represented by this AppControl is to be automatically downloaded or not.

Returns:

true if it is to be automatically downloaded, false otherwise.

download

public void download()
 throws SecurityException,
 IllegalStateException

Requests download of this application represented by this AppControl. When this application is in the
NOT_STORED or OUTDATED state and this method is called, the application is entered to the DOWNLOADING or
UPDATING state, respectively. When the download is completed, it automatically moves into the STORED state.
Such state changes are reported through registered AppStateListeners.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 70

Throws:

SecurityException - When caller does not have a permission to control the state of this
application

IllegalStateException - When this application is in INVALID state

remove

public void remove()
 throws SecurityException,
 IllegalStateException

Designates this application should be removed. The call to this method changes the state of this application to
NOT_STORED. If the application is no longer signaled too, then its state is automatically changed to INVALID
state.

Throws:

SecurityException - When caller does not have a permission to control the state of this
application

IllegalStateException - When this application is in INVALID state

init

public AsyncResult init(AsyncRequestor r)
 throws SecurityException,
 IllegalStateException

Initializes this application. It enters PAUSED state after a sucessful initialization. Otherwise it remains in
NOT_RUNNING state. This method is invoked when this application is not in STORED or UPDATING state, an
IllegalStateException is thrown. Calling this method is meaningful only when it is in NOT_RUNNING
state, but it is legal to call it in other states and the call is silently ignored in that case. This method returns
immediately without blocking. The actual progress may be obtained via AsyncRequestor and
AsyncResult.

Parameters:

r - AsyncRequestor to get the progress. Specify null if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get() returns null if this
application was successfully initialized. Otherwise, it will throw an exception representing the cause
of the failure. In the case of MIDlet, it rethrows an exception thrown by MIDlet in the course of its
initialization

Throws:

SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - this application was in INVALID, NOT_STORED, or DOWNLOADING

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 71

start

public AsyncResult start(AsyncRequestor r)
 throws SecurityException,
 IllegalStateException

Starts this application. As the result, it enters STARTED state. If it is in NOT_RUNNING before calling this
method, the receiver behaves as if init(AsyncRequestor) was first called and completed. As in the case of
calling init, this method must be called in STORED or UPDATING state. Otherwise, an
IllegalStateException is thrown. In terms of the run state, this method is meaningful only in
NOT_RUNNING or PAUSED state. But it is legal to call this method in other states, and such attempt will silently
be ignored. If starting is not successful, it remains in PAUSED state. Note that this method returns immediately
without blocking, so AsyncRequestor and AsyncResult should be used to track the progress of the
operation.

Parameters:

r - AsyncRequestor to get the progress. Specify null if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get() returns null if this
application was successfully started. Otherwise, it will throw an exception representing the cause of
the failure. In the case of MIDlet, it rethrows an exception thrown by MIDlet while trying to start it

Throws:

SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - this application was in INVALID, NOT_STORED, or DOWNLOADING

pause

public AsyncResult pause(AsyncRequestor r)
 throws SecurityException,
 IllegalStateException

Pauses this application. As the result, the run state of this application is changed to PAUSED state upon success.
This method may be invoked only when this application is in STARTED state, but doing so in other state does
not incur any error and is silently ignored. Note that this method returns immediately without blocking. The
actual progress can be monitored with AsyncRequestor and AsyncResult.

Parameters:

r - AsyncRequestor to get the progress. Specify null if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get() returns null if this
application was successfully paused. Otherwise, it will throw an exception representing the cause of
the failure. In the case of MIDlet, it rethrows an exception thrown by MIDlet while trying to pause it

Throws:

SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - this application was in INVALID, NOT_STORED, or DOWNLOADING

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 72

stop

public AsyncResult stop(boolean forced,
 AsyncRequestor r)
 throws SecurityException,
 IllegalStateException

Stops this application. Upon successful termination, this application is entered STARTED state. This method is
meaningful in STARTED or PAUSED state. But calling it in other states is legal and silently ignored without
throwing an exception. Note that this method returns immediately without blocking. To monitor the progress
of this operation, AsyncRequestor and AsyncResult should be used appropriately.

Parameters:

forced - if true, this application should be terminated unconditionally. Otherwise, this application
have a choice of vetoing the termination request

r - AsyncRequestor to get the progress. Specify null if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get() returns null if this
application was successfully stopped. Otherwise, it will throw an exception representing the cause of
the failure. In the case of MIDlet, it rethrows an exception thrown by MIDlet while trying to stop it

Throws:

SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - this application was in INVALID, NOT_STORED, or DOWNLOADING

switchTo

public void switchTo()

Switches the calling application to an application represented by this AppControl. This means that the calling
application is destroyed first, and then the designated application is launched. Note that failing to launch the
second application does not cause relaunching of the first application.

This method is useful in a resource constrainted environment, since the two applications are never active at the
same time.

Throws:

IllegalStateException - if an application represented by this AppControl is in the INVALID,
NOT_STORED, or DOWNLOADING state

SecurityException - the calling application does not have a proper permission to call this method

addAppStateListener

public void addAppStateListener(AppStateListener listener)

Adds an AppStateListener to monitor changes in the state of this application. If listener is null, the
call is silently ignored.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 73

Parameters:

listener - the listener

removeAppStateListener

public void removeAppStateListener(AppStateListener listener)

Removes the designated AppStateListener from this application. If listener is null or the listener was
not added previously, the call is silently ignored.

Parameters:

listener - listener to remove

isVisible

public boolean isVisible()

Returns whether this application should be visible to users via UI or so.

Returns:

true if this application should be presented to end users. false otherwise

getName

public String getName()

Returns the name of this application. If there is a default language of choice, then the returned name shall be in
the language. Otherwise, the underlying implementation should try its best to return an appropriate
representation. If there was no name signaled, then this method returns a String of zero-length (that is, an
empty string).

Returns:

the name of this application

getName

public String getName(String lang)

Returns the name of this application represented in the given language. If there is no representation in that
language, returns an empty string.

Parameters:

lang - a language code designated in RFC 3066

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 74

Returns:

the name of this application in the given language

getNames

public String[] getNames()

Returns a list of the application names in all languages available in the signalling message. When there is no
name signaled, this returns an array of zero-length.

Returns:

a list of the application names. A string at zero or even index is RFC 3066 [15] language code, and the
corresponding entry at odd index contains the name of this application represented in the language
designated with the language code

getIcon

public AsyncResult getIcon(AsyncRequestor requestor)

Gets the icon associated with this application. This method returns immediately without blocking, and the
download of the icon progresses in the background if it is not fully loaded. The progress and the actual icon
can be obtained via AsyncRequestor and AsyncResult interfacese. When completed,
AsyncResult.get() returns Image for the loaded icon. If no icon is designated for this application, it
returns null.

Parameters:

requestor - AsyncRequestor to get notified of the download progress. If such report is not
required, null may be specified

Returns:

AsyncResult to track the download of the icon, and get the result

getDescription

public String getDescription()

Returns the description of this application. When there are more than one description each of which is
represented in a different language, the name in the default language is returned. If no name represented in the
default language, this returns an empty string.

Returns:

the description of this application

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 75

getDescription

public String getDescription(String lang)

Returns the description of this application in the designated language. If there was no description represented
in the designated language, this method returns an empty string.

Parameters:

lang - a language code designated in RFC 3066

Returns:

the description of this application in the designated language if any. Otherwise, returns an empty
string

getDescriptions

public String[] getDescriptions()

Returns all the descriptions of this application represented in different languages together with the
corresponding language code. If there is no description signaled, returns an array of zero-length.

Returns:

descriptions of this application. 0 and even index contains a language code in RFC 3066 [15], and the
corresponding odd index contains the description of this application represented in the designated
language

Interface AppListListener
dmb.app

public interface AppListListener

An interface to be implemented by an object that needs to listen to changes in the application list maintained by
AppManager. An event is delivered to this listener when there is any application added and/or removved to/from the
list, and information on any application has been updated. Note that these changes do not include the download and the
run state changes. They are delivered through AppStateListener.

Method Summary Page
void appListUpdated()

Called when there is any change in the application list managed by AppManager and/or the
information associated with any application.

73

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 76

Method Detail

appListUpdated

public void appListUpdated()

Called when there is any change in the application list managed by AppManager and/or the information
associated with any application.

Class AppManager
dmb.app

java.lang.Object

 dmb.app.AppManager

final public class AppManager

extends Object

Manages applications known to the receiver. Applications are represented with AppControls, and they may be used to
control and get information on the applications.

The list of applications maintainaed by this class contains all the applications known to the receiver while surfing
channels and those being downloaded or stored in the receiver.

If there is any new application, or information on any of applications is changed, it is notified to the registered
AppListListeners. In addition to that, the current states of applications may be monitored through
AppStateListeners added directly to AppManager. It has the same effect as registering AppStateListeners with
all the applications separately.

Method Summary Page
static void addAppListListener(AppListListener listener)

Adds a listener to monitor changes in the list of applications.
75

static void addAppStateListener(AppStateListener listener)

Adds the given listener for monitoring state changes of any of applications known to the
receiver.

76

static
AppControl getAppControl(String id)

Returns an AppControl corresponding to an application of the given ID.
74

static
AppControl[] getAppControls()

Returns a list of all the applications known to the receiver.
74

static
AppControl[] getEventBoundApps(String service)

Returns a list of AppControls for the applications bound to one or more events in the
service represented by the given locator.

75

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 77

static
AppControl[] getServiceBoundApps(String service)

Returns a list of AppControls for the applications bound to the service represented by the
given locator.

74

static void removeAppListListener(AppListListener listener)

Removes the given listener from the list of registered listeners.
75

static void removeAppStateListener(AppStateListener listener)

Removes the given listener from this AppManager.
76

Method Detail

getAppControl

public static AppControl getAppControl(String id)

Returns an AppControl corresponding to an application of the given ID.

Parameters:

id - application ID

Returns:

an AppControl for the application with the given ID. If there is no application with the given ID,
then returns null

Throws:

NullPointerException - if the given ID is null.

getAppControls

public static AppControl[] getAppControls()

Returns a list of all the applications known to the receiver.

Returns:

a list of AppControls for all the applications known to the receiver

getServiceBoundApps

public static AppControl[] getServiceBoundApps(String service)

Returns a list of AppControls for the applications bound to the service represented by the given locator. The
list only includes AppControl only for service-bound applications with no ones for event-bound ones.

Parameters:

service - a service locator

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 78

Returns:

a list of AppControls for the applications bound the given service. If there is no application bound to
the given service, returns an array of zero-length

Throws:

NullPointerException - thrown if the given locator string is null

IllegalArgumentException - thrown if the given locator string is invalid. The locator may be
invalid in terms of its format, or since designating no valid service

getEventBoundApps

public static AppControl[] getEventBoundApps(String service)

Returns a list of AppControls for the applications bound to one or more events in the service represented by
the given locator. The list only includes AppControl only for event-bound applications with no ones for
service-bound ones.

Parameters:

service - a service locator

Returns:

a list of AppControls for the applications bound the given service. If there is no application bound to
the given service, returns an array of zero-length

Throws:

NullPointerException - thrown if the given locator string is null

IllegalArgumentException - thrown if the given locator string is invalid. The locator may be
invalid in terms of its format, or since designating no valid service

addAppListListener

public static void addAppListListener(AppListListener listener)

Adds a listener to monitor changes in the list of applications. If listener is null, the call is silently ignored.

Parameters:

listener - a listner to add

removeAppListListener

public static void removeAppListListener(AppListListener listener)

Removes the given listener from the list of registered listeners. If it was not added or listener is null, the
call is silently ignored.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 79

Parameters:

listener - the listner to remove

addAppStateListener

public static void addAppStateListener(AppStateListener listener)

Adds the given listener for monitoring state changes of any of applications known to the receiver. If listener
is null, no exception is thrown and the call is sliently ignored.

Parameters:

listener - a listener to add

removeAppStateListener

public static void removeAppStateListener(AppStateListener listener)

Removes the given listener from this AppManager. If it was not added or listener is null, the call is
silently ignored.

Parameters:

listener - the listener to remove

Interface AppStateListener
dmb.app

public interface AppStateListener

An interface to be implemented by an object that needs to listen to changes in the state of applications.

Field Summary Page
String DOWNLOAD_PROGRESSED

A constant string designating that there was a change in the progress reported by
AppControl.getProgress() when an application is in DOWNLOADING or
AppControl.UPDATING state.

77

String DOWNLOAD_STATE_CHANGED

A constant string designating that download state has been changed.
77

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 80

String REASON_APP_REQUESTED

Designates that the current state change is incurred by a request from an application.
78

String REASON_NETWORK_UNAVAILABLE

Designates that network status is bad or there is no network interface available in the device.
78

String REASON_OUT_OF_STORAGE

Designates that there is not enough storage for an application.
78

String REASON_UNKNOWN

Designates that the reason is unknown.
78

String REASON_VOLUNTEERED

Designates that the current state change is requested by the application itself.
78

String RUN_STATE_CHANGED

A constant string designating that run state has been changed.
77

Method Summary Page
void stateChanged(AppControl control, String event, int state, String reason)

Called when the run or download state of an application has been changed.
78

Field Detail

DOWNLOAD_STATE_CHANGED

public static final String DOWNLOAD_STATE_CHANGED = "downloadStateChanged"

A constant string designating that download state has been changed. Given to stateChanged(AppControl,
String, int, String) method as the second argument.

RUN_STATE_CHANGED

public static final String RUN_STATE_CHANGED = "runStateChanged"

A constant string designating that run state has been changed. Given to stateChanged(AppControl,
String, int, String) method as the second argument.

DOWNLOAD_PROGRESSED

public static final String DOWNLOAD_PROGRESSED = "downloadProgressed"

A constant string designating that there was a change in the progress reported by
AppControl.getProgress() when an application is in DOWNLOADING or AppControl.UPDATING
state. Given to stateChanged(AppControl, String, int, String) method as the second argument.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 81

REASON_OUT_OF_STORAGE

public static final String REASON_OUT_OF_STORAGE = "outOfStorage"

Designates that there is not enough storage for an application. This reason code is specified only when the
download state of an application is changed to NOT_STORED state.

REASON_NETWORK_UNAVAILABLE

public static final String REASON_NETWORK_UNAVAILABLE = "networkUnavailable"

Designates that network status is bad or there is no network interface available in the device. This reason code
is specified only when the download state of an application is changed to NOT_STORED state.

REASON_APP_REQUESTED

public static final String REASON_APP_REQUESTED = "appRequested"

Designates that the current state change is incurred by a request from an application.

REASON_VOLUNTEERED

public static final String REASON_VOLUNTEERED = "volunteered"

Designates that the current state change is requested by the application itself.

REASON_UNKNOWN

public static final String REASON_UNKNOWN = "unknown"

Designates that the reason is unknown.

Method Detail

stateChanged

public void stateChanged(AppControl control,
 String event,
 int state,
 String reason)

Called when the run or download state of an application has been changed.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 82

Parameters:

control - AppControl representing an application the state of which has been changed

event - kind of the event

state - the final state as the result of the change notified by this event. Depending on the kind of the
event, this is set to a constant designating either a run or download state. When event is
DOWNLOAD_PROGRESSED this should be AppControl.DOWNLOADING or AppControl.UPDATING.

reason - the reason of the state change. One of the constants defined in this interface prefixed with
REASON_. When event is DOWNLOAD_PROGRESSED, this is always set to null

Interface MIDletControl
dmb.app

All Superinterfaces:
AppControl

public interface MIDletControl

extends AppControl

Provides a means to control an MIDlet associated with an instance of this interface. This interface is an extension to
AppControl providing MIDlet specific features.

Fields inherited from interface dmb.app.AppControl
DOWNLOADING, INVALID, NOT_RUNNING, NOT_STORED, OUTDATED, PAUSED, STARTED, STORED,
UPDATING

Method Summary Page
String getProperty(String key)

Returns the same property value that may be retrieved by the application represented by this
control via MIDlet.getAppProperty(String).

80

AsyncResult init(String[] props, AsyncRequestor r)

Initializes this application with the given properties.
80

void switchTo(String[] props)

Switches the calling application to an application represented by this AppControl passing
the given properties.

80

Methods inherited from interface dmb.app.AppControl
addAppStateListener, download, getDescription, getDescription, getDescriptions,
getDownloadState, getIcon, getID, getName, getName, getNames, getProgress, getRunState,
getVersion, init, isAutoDownload, isVisible, pause, remove, removeAppStateListener,
start, stop, switchTo

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 83

Method Detail

init

public AsyncResult init(String[] props,
 AsyncRequestor r)
 throws SecurityException,
 IllegalStateException

Initializes this application with the given properties. By an invocation of this method, the corresponding
application should begin to move to PAUSED state.

Parameters:

props - List of properties, 0 and even index contains name of a property, and the corresponding value
of the property is stored at the next index.

Returns:

AsyncResult object to query the current progress. AsyncResult.get() returns null if this
application was successfully initialized. Otherwise, it will throw an exception representing the cause
of the failure. In the case of MIDlet, it rethrows an exception thrown by MIDlet in the course of its
initialization

Throws:

SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - this application was in INVALID, NOT_STORED, or DOWNLOADING

switchTo

public void switchTo(String[] props)

Switches the calling application to an application represented by this AppControl passing the given
properties. This method is identical to switchTo() except that this method allows for additional properties to
be passed to the application being switched to. The properties can be retrieved with
MIDlet.getAppProperty(String).

Parameters:

props - List of properties, 0 and even index contains name of a property, and the corresponding value
of the property is stored at the next index.

Throws:

IllegalStateException - if an application represented by this AppControl is in the INVALID,
NOT_STORED, and DOWNLOADING state.

SecurityException - the calling application does not have proper permission to call this method

getProperty

public String getProperty(String key)

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 84

Returns the same property value that may be retrieved by the application represented by this control via
MIDlet.getAppProperty(String). If there is no such property, then null is returned.

Parameters:

key - property key

Returns:

the value corresponding to the specified key. If no such property exists, returns null

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 85

Package dmb.ca

Defines an interface to conditional access system in the receiver.

See:

Description

Interface Summary Page

CAEventReceiver Receives CA events from a CA module. 83

CASession Represents a communication session between a CA module and an application. 88

Purchasable Represents an entity that can be purchased via CA system. 89

Class Summary Page

CAEvent Represents an event generated by a CA module. 82

CAModule Represents a CA module within the receiver. 84

CARequest Represents a request to a CA module. 87

CAResponse Represents an event generated by a CA module in response to a corresponding request sent to
the module via CASession.send(CARequest). 88

Exception Summary Page

CARefusalException An exception thrown when an operation is rejected by a CA system because an
application performing it does not have enough right to do so. 86

Package dmb.ca Description

Defines an interface to conditional access system in the receiver. Purchasable may be implemented by objects
representing products under control of the CA system. It provides a means to initiate a purchase procedure without
dealing with the details of the procedure, and a separate means to open a message session with a CA module to directly
control the purchase procedure by exchanging messages with the CA module and interacting with the user. Also
CAModule is defined to open a message session for exchaning messages not related to a purchase.

Class CAEvent
dmb.ca

java.lang.Object

 dmb.ca.CAEvent

Direct Known Subclasses:
CAResponse

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 86

abstract public class CAEvent

extends Object

Represents an event generated by a CA module. This is the base class of all of the classes representing CA events.

Constructor Summary Page
protected CAEvent()

Creates an instance of CAEvent.
83

Constructor Detail

CAEvent

protected CAEvent()

Creates an instance of CAEvent. This constructor is provided for implementation convenience, and evolution
of the specification. Therefore, applications are not supposed to use this constructor.

Interface CAEventReceiver
dmb.ca

public interface CAEventReceiver

Receives CA events from a CA module. An object interested in such events should implement this interface.

Method Summary Page
Void receive(CAEvent e)

Called when a CA event is sent from a CA module via a CA session.
83

Method Detail

receive

public void receive(CAEvent e)

Called when a CA event is sent from a CA module via a CA session.

Parameters:

e - the event object

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 87

Class CAModule
dmb.ca

java.lang.Object

 dmb.ca.CAModule

All Implemented Interfaces:
Resource

abstract public class CAModule

extends Object

implements Resource

Represents a CA module within the receiver. To exchange messages with a CA module, a CASession must be open,
and prior to doing so, the ownership of the r73CAModule must be acquired. Otherwise, a
ResourceNotOwnedException is thrown.

To open a session with a CA module, the application must have an appropriate permission as follows:

• dmb.ca.session.<ca_id>: required to open a session to a CA module with an ID designated in <ca_id>

Constructor Summary Page
protected CAModule()

Creates an instance of CAModule.
84

Method Summary Page
static

CAModule getDefault()

Returns the default CA module in the receiver.
85

int getModuleID()

Returns the ID for this CA module.
85

static
CAModule[] list()

Returns all CA modules in the receiver.
85

CASession openSession(CAEventReceiver r)

Opens a session to communicate with this CA module.
85

Constructor Detail

CAModule

protected CAModule()

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 88

Creates an instance of CAModule. This constructor is provided for implementation convenience, and evolution
of the specification. Therefore, applications are not supposed to use this constructor.

Method Detail

getDefault

public static CAModule getDefault()

Returns the default CA module in the receiver.

Returns:

the default CA module

list

public static CAModule[] list()

Returns all CA modules in the receiver.

Returns:

list of all CA modules

getModuleID

public int getModuleID()

Returns the ID for this CA module.

Returns:

the CA ID

openSession

public CASession openSession(CAEventReceiver r)
 throws ResourceNotOwnedException,
 SecurityException

Opens a session to communicate with this CA module.

Parameters:

r - a CAEventReceiver to receive events originating from this CA module

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 89

Returns:

a CASession object that provides a means to communicate with this CA module. If it is possible to
open a session for a reason not signaled with exceptions that may be thrown from this method, null
may be returned

Throws:

ResourceNotOwnedException - thrown when the ownership of this module is not owned by the
calling application

SecurityException - thrown when the calling application does not have permissions to call this
method

Class CARefusalException
dmb.ca

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 dmb.ca.CARefusalException

All Implemented Interfaces:
Serializable

public class CARefusalException

extends Exception

An exception thrown when an operation is rejected by a CA system because an application performing it does not have
enough right to do so.

Constructor Summary Page
CARefusalException()

Creates an instance of this exception with no detail message.
86

CARefusalException(String reason)

Creates an instance of this exception with the given detail message.
87

Constructor Detail

CARefusalException

public CARefusalException()

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 90

Creates an instance of this exception with no detail message.

CARefusalException

public CARefusalException(String reason)

Creates an instance of this exception with the given detail message.

Class CARequest
dmb.ca

java.lang.Object

 dmb.ca.CARequest

abstract public class CARequest

extends Object

Represents a request to a CA module. This is the base class for all the classes representing such requests.

Constructor Summary Page
protected CARequest()

Creates an instance of CARequest.
87

Constructor Detail

CARequest

protected CARequest()

Creates an instance of CARequest. This constructor is provided for implementation convenience, and
evolution of the specificiation. Therefore, applications are not supposed to use this constructor.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 91

Class CAResponse
dmb.ca

java.lang.Object

 dmb.ca.CAEvent

 dmb.ca.CAResponse

abstract public class CAResponse

extends CAEvent

Represents an event generated by a CA module in response to a corresponding request sent to the module via
CASession.send(CARequest). All the classes representing such responses are extended from this class.

Constructor Summary Page
protected CAResponse()

Creates an instance of CAResponse.
88

Constructor Detail

CAResponse

protected CAResponse()

Creates an instance of CAResponse. This constructor is provided for implementation convenience, and
evolution of the specification. Therefore, applications are not supposed to use this constructor.

Interface CASession
dmb.ca

public interface CASession

Represents a communication session between a CA module and an application.

Method Summary Page
void close()

Closes this session.
89

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 92

void send(CARequest r)

Sends a request to the CA module for which this session is established.
89

Method Detail

send

public void send(CARequest r)
 throws IOException

Sends a request to the CA module for which this session is established.

Parameters:

r - the CA request to send to the CA module

Throws:

IOException - thrown when this session is already closed

close

public void close()

Closes this session. Upon the termination of this session, the CAEventReceiver registered with the
corresponding CA module is automatically removed.

If the application that acquired the ownership of the associated CA module loses its ownership, then the
session established with the CA module is automatically closed.

Interface Purchasable
dmb.ca

public interface Purchasable

Represents an entity that can be purchased via CA system. This interface is implemented by objects representing such
entities. For example, some of SIObjects retrieved via dmb.si API may implement this interface if it is not free, and
should be purchased to consume. Also AppControl may do so if the application is not free.

For purchasing an entity, this interface provides two different ways of interacting with a CA module. First of all, an
application can initiate a purchase session, and let the receiver and the CA module implementations deal with the
remaining details. And an application can also open a purchase session and directly communicate with a CA module. In
that case, all the interaction with the user must be handled by the application.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 93

Field Summary Page
String CURRENCY_CODE

A currency code defined by ISO 4217 [25].
91

String DESC

The description on the product in a purchase information.
92

String LONG_DESC

The long description on the product in a purchase information.
92

String LONG_NAME

The long name of the product in a purchase information.
92

String NAME

The name of the product in a purchase information.
91

String PRICE_FRACTION

The fraction part of the price in a purchase information.
91

String PRICE_FRACTION_DIGITS

The number of digits in the fraction part of the price in a purchase information.
91

String PRICE_INT

The integer part of the price in a purchase information.
91

String PRICE_SYMBOL

The currency symbol in a purchase information.
91

String PURCHASE_WINDOW_END

The end time of the purchase window during which a relevant product can be purchased.
92

String PURCHASE_WINDOW_START

The start time of the purchase window during which a relevant product can be purchased.
92

Method Summary Page
AttributedObject getPurchaseInfo()

Returns an AttributedObject containing information on the product to be
purchased.

93

boolean isAvailable()

Returns whether the product represented by this object may be purchased or not.
93

boolean isPurchased()

Returns whether this product is in purchased state or not.
93

CASession openPurchaseSession(CAEventReceiver r)

Opens a CASession to purchase a product represented by this object.
93

AsyncResult purchase(AsyncRequestor r)

Purchases the product represented by this object.
92

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 94

Field Detail

PRICE_INT

public static final String PRICE_INT = "priceInt"

The integer part of the price in a purchase information. The type of its value is int.

PRICE_FRACTION

public static final String PRICE_FRACTION = "priceFraction"

The fraction part of the price in a purchase information. The type of its value is int.

PRICE_FRACTION_DIGITS

public static final String PRICE_FRACTION_DIGITS = "priceFractionDigits"

The number of digits in the fraction part of the price in a purchase information. The type of its value is int.

CURRENCY_CODE

public static final String CURRENCY_CODE = "currencyCode"

A currency code defined by ISO 4217 [25]. The type of its value is String.

PRICE_SYMBOL

public static final String PRICE_SYMBOL = "priceSymbol"

The currency symbol in a purchase information. The type of its value is String.

NAME

public static final String NAME = "name"

The name of the product in a purchase information. The type of its value is String.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 95

LONG_NAME

public static final String LONG_NAME = "longName"

The long name of the product in a purchase information. The type of its value is String.

DESC

public static final String DESC = "desc"

The description on the product in a purchase information. The type of its value is String.

LONG_DESC

public static final String LONG_DESC = "longDesc"

The long description on the product in a purchase information. The type of its value is String.

PURCHASE_WINDOW_START

public static final String PURCHASE_WINDOW_START = "purchaseWindowStart"

The start time of the purchase window during which a relevant product can be purchased. The type of its value
is Date.

PURCHASE_WINDOW_END

public static final String PURCHASE_WINDOW_END = "purchaseWindowEnd"

The end time of the purchase window during which a relevant product can be purchased. The type of its value
is Date.

Method Detail

purchase

public AsyncResult purchase(AsyncRequestor r)

Purchases the product represented by this object. This method returns immediately without blocking, and the
actual progress can be monitored and controlled with AsyncResult returned from this method. And whenever
possible, the purchase can be canceled by canceling the AsyncResult. If a purchase fails,
AsyncResult.complete() throws a CARefusalException.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 96

Parameters:

r - AsyncRequestor to be notified of the progress of the purchase. If such notification is not
anticipated, then null may be specified

Returns:

AsyncResult to monitor and control the purchase initiated by this method

openPurchaseSession

public CASession openPurchaseSession(CAEventReceiver r)

Opens a CASession to purchase a product represented by this object. Opening a session does not actually
begin the purchase procedure, but the application should exchange messages with the CA module to progress.
The application may need to present UIs to provide relevant information and/or get input from the user in
response to messages exchanged with the CA module.

Returns:

A CASession used to communicate with a CA module. If a session cannot be open for some reason,
this returns null

isPurchased

public boolean isPurchased()

Returns whether this product is in purchased state or not.

Returns:

if purchased, true. Otherwise, false

isAvailable

public boolean isAvailable()

Returns whether the product represented by this object may be purchased or not. If it is out of the purchase
window, then it may not be possible to purchase the product.

Returns:

if the product can be purchased, returns true. Otherwise, returns false

getPurchaseInfo

public AttributedObject getPurchaseInfo()

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 97

Returns an AttributedObject containing information on the product to be purchased. The standard set of
attributes is defined in this class. But since some of them may not be supported depending on implementations,
AttributedObject.isValid(String) must be consulted before getting attributes from the returned
object.

Returns:

an AttributedObject containing information on the product represented by this object

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 98

Package dmb.io

Defines APIs for accessing data coming from the broadcast channel.

See:

Description

Interface Summary Page

BroadcastFileConnection Represents a connection to a broadcast file. 95

BroadcastFileListener An interface to be implemented by an object to get notified of changes in broadcast
files. 99

Trigger Represents a datagram containing an associated timing when the data contained
within the datagram will be used for some action. 100

Package dmb.io Description

Defines APIs for accessing data coming from the broadcast channel. The APIs defined in this package are extensions to
"Generic Connection Framework" defined in javax.microedition.io package of Java ME CLDC 1.1.

This first provides an API to access broadcast files, which are repeatedly transmitted for reliable delivery. It also
notifies changes in the files via a listener mechanism. A BroadcastFileConnection can be open with
Connector.open(String) by specifying a locator to the file. Via the interface, the file system containing the file is
mounted, and the contents of the file can be loaded and accessed. If a BroadcastFileListener is added, it can get
notified of version changes of the file.

And DatagramConnection is used for receiving packets being broadcast, and for streams carrying triggers, the
DatagramConnection returns Trigger that is an extension of Datagram to provide additional timing information.

Interface BroadcastFileConnection
dmb.io

All Superinterfaces:
AttributedObject, Connection, InputConnection

public interface BroadcastFileConnection

extends InputConnection, AttributedObject

Represents a connection to a broadcast file. If a URL to a broadcast file is given to Connector, and the file actually
exists, a BroadcastFileConnection is returned. If the specified file does not exist, then an IOException is thrown.

Also to ease access to files within a broadcast file system, open(String) method is provided. Once a
r113BroadcastFileConnection is obtained for a directory, open(String) may be called on it with relative paths to files
to get another r113BroadcastFileConnections for files under the directory. If there is no such file corresponding to the
specified path, then an IOException is thrown.

For reading the content of the file, then the methods defined in InputConnection may be used to get InputStreams.
And other methods for getting size, name, and URL for the file are provided.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 99

Broadcast files may be updated in the transmission side, and those updates can be monitored by adding a listener with
addListener(BroadcastFileListener). Then the listener is notified when there is any change in the file.

Method Summary Page
void addListener(BroadcastFileListener listener)

Adds a listener to get notified of changes in the content of this file.
98

long fileSize()

Returns the size of this file.
96

void flush()

Removes the cached content of this file if any.
98

String getName()

Returns the name of this file.
97

String getPath()

Returns the path to this file within the broadcast file system containing this file.
97

boolean isDirectory()

Reports whether this connection represents a directory or not.
97

String[] list()

Lists all the files contained in this connection in case this is a diectory.
97

AsyncResult load(AsyncRequestor requestor)

Starts the loading of the content of this file.
98

BroadcastFileConnection open(String relPath)

Opens a r113BroadcastFileConnection located at the specified path relative to
this directory.

97

void removeListener(BroadcastFileListener listener)

Removes a BroadcastFileListener that was previously added to this file.
99

Methods inherited from interface dmb.util.AttributedObject
getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDateList, getInt,
getIntList, getLong, getLongList, getObject, getObjectList, getString, getStringList,
isValid

Method Detail

fileSize

public long fileSize()

Returns the size of this file.

Returns:

the size in bytes

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 100

getName

public String getName()

Returns the name of this file.

Returns:

the name of this file

getPath

public String getPath()

Returns the path to this file within the broadcast file system containing this file.

Returns:

the file path

isDirectory

public boolean isDirectory()

Reports whether this connection represents a directory or not.

Returns:

if this represents a directory, returns true. Otherwise returns false

list

public String[] list()

Lists all the files contained in this connection in case this is a diectory. This method is only meaningful when
isDirectory() returns true. If this is not a directory, then returns null. Note that this returns 0 if this
directory is empty.

Returns:

list of all the files and directories within this directory. If this is not a directory, then returns null

open

public BroadcastFileConnection open(String relPath)
 throws IOException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 101

Opens a r113BroadcastFileConnection located at the specified path relative to this directory.

Parameters:

relPath - the relative path to the file to open

Returns:

the connection object

Throws:

IOException - thrown when the file does not exist

flush

public void flush()

Removes the cached content of this file if any. After invoking this method, the receiver loads the content of
this file directly from broadcast stream, and all the load requests that were in progress are canceled. And if
there was an open InputStream obtained from this connection, then any attempt to retrieve data from the
stream will result in an IOException.

load

public AsyncResult load(AsyncRequestor requestor)

Starts the loading of the content of this file. This method returns immediately. And the actual progress can be
monitored and controlled via AsyncResult returned from this method.

Parameters:

requestor - AsyncRequestor to get notified of progresses of the loading. null may be specified
if such notification is not required

Returns:

An AsyncResult object for controlling the loading process. If the loading is failed,
AsyncResult.complete() throws an IOException. AsyncResult.get() returns null upon
successful loading

addListener

public void addListener(BroadcastFileListener listener)
 throws IOException

Adds a listener to get notified of changes in the content of this file. A notification is delivered only when this
file is fully loaded, and the version of this file in the broadcast stream is compared with the version of the
loaded content. Once a notification is delivered, additional version changes are simply ignored if a new version
is not loaded. Whether a file that is fully loaded is flush()"ed or not does not affect the monitoring of the
version.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 102

If the given listener parameter is null, it is silently ignored without throwing an exception.

Parameters:

listener - the listener to add

Throws:

IOException - thrown when there is not enough resource to monitor the underlying stream

removeListener

public void removeListener(BroadcastFileListener listener)

Removes a BroadcastFileListener that was previously added to this file. If the given listener is null,
or it was never added to this file, then the call is silently ignored without incurring an exception.

Parameters:

listener - the listener to remove

Interface BroadcastFileListener
dmb.io

public interface BroadcastFileListener

An interface to be implemented by an object to get notified of changes in broadcast files. Upon notification, the content
of the changed file is not automatically loaded. To load the new content, BroadcastFileConnection.flush() must
be called first to clear the cache, and then BroadcastFileConnection.load(AsyncRequestor) need to be called.

See Also:

BroadcastFileConnection

Method Summary Page
void fileUpdated(BroadcastFileConnection conn)

Called when a broadcast file has been updated.
99

Method Detail

fileUpdated

public void fileUpdated(BroadcastFileConnection conn)

Called when a broadcast file has been updated.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 103

Parameters:

conn - BroadcastFileConnection object for accessing the broadcast file

Interface Trigger
dmb.io

All Superinterfaces:
Datagram, DataInput, DataOutput

public interface Trigger

extends Datagram

Represents a datagram containing an associated timing when the data contained within the datagram will be used for
some action. This interface extends javax.microedition.Datagram to provide access to the timing information.
Trigger conveys the timing information to synchronize the action triggered by it with a specific point in the associated
A/V. Each Trigger has an associated trigger ID, and the timing to trigger an action associated with itself.

If more than one trigger is received, and their trigger IDs are identical, all of them are considered same, and reported to
the receiving application only once. The reason for sending more than one trigger with the same ID is to increase the
possibility of receiving a trigger. In addition to that, the trigger ID may be used to change the timing associated with a
trigger. If a trigger is processed, then its ID may be reused over time for other triggers.

If an application is blocked for receiving a trigger, and a trigger of a specific ID is successfully received, then the
Trigger object specified by the application is filled with the contents of the received trigger, and the calling thread
returns immediately. If the time associated with the trigger has not come, getState() of the Trigger returns
RECEIVED. If more than one trigger with the same ID is returned, then it means that the data associated with the trigger
has been changed. Otherwise, no trigger with the same ID shall be returned more than once before the time associated
with it passes. After the reception of a trigger, the receiver keeps track of the time associated with the trigger to notify a
receiving application when the time has come. At that time, the application receives the same trigger (even though the
corresponding trigger packet is not received again) with its state set to TRIGGERED. Responding to the reception, the
application should perform an action associated with the trigger. As an exception, if the receiver could not track the
time associated with the trigger, and it is sure that the time has passed already, then the trigger is simply canceled, and
the same trigger is returned to the application with its state set to CANCELED this time. Once a trigger of a specific ID is
delivered with either TRIGGERED or CANCELED state, then other triggers delivered after it with the same trigger ID are
different ones.

When a stream conveying triggers is open with Conector, a DatagramConnection is returned and its newDatagram
method shall return Trigger instead of Datagram.

See Also:

DatagramConnection

Field Summary Page
int CANCELED

Represents that this trigger has been received before, and the receiver has failed to track the
time associated with it.

101

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 104

int RECEIVED

Represents that this trigger is just received, and the time associated with it has not come yet.
101

int TRIGGERED

Represents that this trigger has been received before, and the time associated with it has just
come.

101

Method Summary Page
int getID()

Returns the ID for this trigger.
102

int getState()

Returns the state of this trigger.
102

long getTime()

Returns the time point associated with this trigger.
102

Field Detail

RECEIVED

public static final int RECEIVED = 0

Represents that this trigger is just received, and the time associated with it has not come yet. If there is more
than one trigger with the same ID, only the first one will actually be delivered to the application, and others
will be discared if it does not signal changes in the contents of the trigger.

See Also:

getState()

TRIGGERED

public static final int TRIGGERED = 1

Represents that this trigger has been received before, and the time associated with it has just come. The
application receiving this trigger is considered to perform some action associated with this trigger. Note that a
trigger in this state does not mean a new trigger packet is received. A trigger packet may be reported more than
once with different states.

See Also:

getState()

CANCELED

public static final int CANCELED = 2

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 105

Represents that this trigger has been received before, and the receiver has failed to track the time associated
with it.

See Also:

getState()

Method Detail

getState

public int getState()

Returns the state of this trigger. Once a trigger packet is received, it is delivered to an application in RECEIVED
state. And if the time associated with it has come, the same trigger is delivered again in TRIGGERED state. As
an exception, if the receiver has failed to track the time, and it is sure that the time has already passed, then the
trigger is delivered in CANCELED state instead of TRIGGERED state.

Returns:

the state of this trigger

getID

public int getID()

Returns the ID for this trigger.

Returns:

the trigger ID

getTime

public long getTime()

Returns the time point associated with this trigger. This time is not exact, so should be used just as a hint.
Especially, it is fairly difficult to estimate the exact time when there is a discontinuity in the media time of A/V
streams associated with this trigger.

Returns:

The trigger time. Elapsed time in milliseconds since midnight, January 1, 1970 UTC. If it is
impossible to estimate the time then returns -1

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 106

Package dmb.media

As an extension to MMAPI, this package contains additional classes and interfaces.

See:

Description

Interface Summary Page

BackgroundVideoControl A Control providing a means to control video presentation laid under the graphics
plane. 103

Package dmb.media Description

As an extension to MMAPI, this package contains additional classes and interfaces. BackgroundVideoControl may
be obtained from Players presenting a broadcast video, and can be used to control the size and the location of the area
where the video is displayed.

Interface BackgroundVideoControl
dmb.media

All Superinterfaces:
Control

public interface BackgroundVideoControl

extends Control

A Control providing a means to control video presentation laid under the graphics plane. Players obtained from a
ServiceManager and resposible for video presentation must return this control. And in the case of Players created
via Manager should also return this control if it supports presentation of video under the graphics plane. If both
javax.microedition.media.control.VideoControl and this control are returned from a Player, the
successful initialization of one of them must disable the other, resulting in the initialization failure of the disabled one.

Field Summary Page
String SIZE_CHANGED

An event fired when the display size of a background video has been changed.
104

Method Summary Page
int getDisplayHeight()

Returns the height of the area where the video is displayed.
107

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 107

int getDisplayWidth()

Returns the width of the area where the video is displayed.
107

int getDisplayX()

Returns the x coordinate of the top-left corner of the area where the video is displayed.
106

int getDisplayY()

Returns the y coordinate of the top-left corner of the area where the video is displayed.
107

int getSourceHeight()

Returns the height of the source video.
106

int getSourceWidth()

Returns the width of the source video.
106

int getZOrder()

Returns the z-order value of the video controlled by this control. 0 is top most, that is, closest
to the viewer, and as the value increases, it is farther from the viewer.

108

void init(Display display)

Initializes this control for the presentation of video on the given Display.
104

void setDisplayBounds(int x, int y, int width, int height)

Sets the bounds of the area where video will be displayed.
105

void setVisible(boolean visible)

Sets the video visible or invisible depending on the argument.
105

void setZOrder(int zOrder)

Sets the z-order of the video the presentation of which is controlled by this control.
107

AsyncResult takeSnapshot(String path, AsyncRequestor r)

Takes the snapshot of the current video frame, and stores it to the given file in JPEG format.
105

Field Detail

SIZE_CHANGED

public static final String SIZE_CHANGED = "backgroundVideoSizeChanged"

An event fired when the display size of a background video has been changed. When this event is delivered to
PlayerListener.playerUpdate(Player, String, Object), the third argument to the method shall be
a BackgroundVideoControl object associated with the background video.

Method Detail

init

public void init(Display display)
 throws IllegalStateException,
 NullPointerException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 108

Initializes this control for the presentation of video on the given Display. This method must be invoked
before presentation begins, and cannot be called more than once.

Parameters:

display - the Display to present video on

Throws:

IllegalStateException - thrown if called more than once

NullPointerException - thrown when the argument is null

setDisplayBounds

public void setDisplayBounds(int x,
 int y,
 int width,
 int height)

Sets the bounds of the area where video will be displayed. The bounds are specified in the screen's coordinate
system. If the specified size is smaller than that of the original video, then it is implementation dependent
whether the video is scaled or the portion outside the area is clipped out.

Parameters:

x - the x coodinate of the top-left corner of the video area

y - the y coodinate of the top-left corner of the video area

width - the width of the video area

height - the height of the video area

setVisible

public void setVisible(boolean visible)

Sets the video visible or invisible depending on the argument.

Parameters:

visible - if true, the video is visible. If false, set invisible

takeSnapshot

public AsyncResult takeSnapshot(String path,
 AsyncRequestor r)
 throws IOException

Takes the snapshot of the current video frame, and stores it to the given file in JPEG format. This method
returns immediately without blocking, and the progress may be monitored and controlled via AsyncResult

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 109

and AsyncRequestor associated with each call to this method. AsyncResult.get() returns null upon
completion of snapshot taking. If there was any problem in storing the file an IOException may be thrown.

Parameters:

path - a file (a path in a file system) to store the snapshot

r - AsyncRequestor to get notified of the progress of the snapshot taking. In case such notification
is not required, null may be specified

Returns:

AsyncResult to monitor and control the progress

Throws:

IOException - thrown when an error is immediately detected (for example, when the given path is
invalid)

getSourceWidth

public int getSourceWidth()

Returns the width of the source video.

Returns:

the width of the source video

getSourceHeight

public int getSourceHeight()

Returns the height of the source video.

Returns:

the height of the source video

getDisplayX

public int getDisplayX()

Returns the x coordinate of the top-left corner of the area where the video is displayed. The coordinate is in
Display's coordinate system.

Returns:

the x coordinate of the video

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 110

getDisplayY

public int getDisplayY()

Returns the y coordinate of the top-left corner of the area where the video is displayed. The coordinate is in
Display's coordinate system.

Returns:

the y coordinate of the video

getDisplayWidth

public int getDisplayWidth()

Returns the width of the area where the video is displayed.

Returns:

the width of the video

getDisplayHeight

public int getDisplayHeight()

Returns the height of the area where the video is displayed.

Returns:

the height of the video

setZOrder

public void setZOrder(int zOrder)
 throws IllegalArgumentException

Sets the z-order of the video the presentation of which is controlled by this control. The z-order value is
relative to each other, therefore there may be no video associated with a specific z-order value even though
there are for two z-order values respectively larger and smaller than the value. If there are more than one video
with the same z-order value, then the actual z-order is implementation dependent. Z-order of zero represents
top most video, that is, closest to the viewer, and as the value increases, the video is farther from the viewer.

Parameters:

zOrder - the z-order value for the video

Throws:

IllegalArgumentException - if z-order is negative

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 111

getZOrder

public int getZOrder()

Returns the z-order value of the video controlled by this control. 0 is top most, that is, closest to the viewer,
and as the value increases, it is farther from the viewer. When a Player is first created, the default value is set
to 0 meaning top-most.

Returns:

the z-order of the video

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 112

Package dmb.messaging

Defines an API for applications to communicate with one another.

See:

Description

Interface Summary Page

Message Represents a message that can be sent to or received from a Port. 109

Class Summary Page

Port Represents a port where more than one application can communicate with one another. 112

Package dmb.messaging Description

Defines an API for applications to communicate with one another. The communication model supported by the API
defined in this package is the message queue. With this messaging model, applications can synchronize their executions
with one another as well as exchaning data.

Applications may share a Port by specifying a common name agreed upon among them. And they may send and/or
receive messages via the shared port. The message is abstracted by Message object. It is a kind of buffer for copying
data in/out to ports.

Interface Message
dmb.messaging

All Superinterfaces:
DataInput, DataOutput

public interface Message

extends DataInput, DataOutput

Represents a message that can be sent to or received from a Port. It has a buffer inside, and can be configured either
read or write mode. Therefore once created, a message may be used repeatedly for sending and receiving data via
Ports.

Reading a message

To set a message for reading, readFrom(int) should be called. It sets the contents of the message to be read from the
designated byte-offset from the beginning of the message buffer. Since this class implements DataInput, the methods
defined in the interface may be used to read the contents. If read beyond the length of the data returned from
getLength(), an EOFException is thrown. And in the read mode, calling methods defined in DataOutput that is
also implemented by this class incurs an IOException. If called more than once, readFrom(int) can be used to read
the same message more than once from different positions.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 113

Writing to a message

As in reading, writeFrom(int) should be called to set the message for writing. Then the message is set for writing
from the specified byte-offset from the beginning of the message buffer. The methods defined in DataOutput can be
used to write data, and if data is written beyond the current length of the message, the length is increased automatically.
Once set for writing, the methods defined in DataInput cannot be called. If called, an IOException is thrown. If
writeFrom(int) is called more than once, part of the otherwise same message may be modified multiple times.

State of a message after sending or receiving data

A message is sent to or received from a Port. After sending a message, there is no change in the state of the message.
That is, the read/write mode previously set is retained as it was, and getPosition() and getLength() return the
same values as before sending its data.

In the case of receiving data, the original data contained in the message is deleted, and the newly received data is copied
to the message from the beginning of the internal buffer of the message. The length is set to that of data received from
the Port, and the message is automatically set for reading from the beginning of the message buffer. Thus
getPosition() returns 0.

Method Summary Page
void end()

Sets the current position returned by getPosition() to be the length of this message.
111

int getLength()

Returns the length of this message.
111

int getPosition()

Returns the next position to read or write data from.
111

void readFrom(int pos)

Sets this message for reading from the given byte-offset from the beginning of the internal
buffer.

110

void setCapacity(int capacity)

Sets the capacity of this message in bytes.
112

void writeFrom(int pos)

Sets this message for writing from the given byte-offset from the beginning of the internal
buffer.

111

Method Detail

readFrom

public void readFrom(int pos)

Sets this message for reading from the given byte-offset from the beginning of the internal buffer. Once called,
the methods defined in DataInput work as specified, and data can be read to the length of this message in the
internal buffer.

Parameters:

pos - the byte-offset from which to read data in the internal buffer of this message

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 114

Throws:

IllegalArgumentException - thrown when the given pos parameter is less than 0, or larger than
or equal to getLength()

writeFrom

public void writeFrom(int pos)

Sets this message for writing from the given byte-offset from the beginning of the internal buffer. Once called,
the methods defined in DataOutput work as specified, and data can be written to the internal buffer. If data is
written beyond the current length of the message, the length is increased automatically.

Parameters:

pos - the byte-offset from which to write data in the internal buffer of this message

Throws:

IllegalArgumentException - thrown when the given pos parameter is less than 0, or larger than
or equal to getLength()

getPosition

public int getPosition()

Returns the next position to read or write data from.

Returns:

the next position to read or write data. An byte-offset from the beginning of the internal buffer

end

public void end()

Sets the current position returned by getPosition() to be the length of this message.

getLength

public int getLength()

Returns the length of this message. When a message is created for the first time, this is set to 0.

Returns:

the length of the message

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 115

setCapacity

public void setCapacity(int capacity)

Sets the capacity of this message in bytes. This value is used as a hint of the preferred buffer space. By
respecing this value, the underlying implementation may keep the allocated space minimum, or reduce
reallocations of internal buffer. But the actual size of the internal buffer may differ from the value specified via
this method depending on implementations.

Parameters:

capacity - the preferred size of the buffer in bytes

Throws:

IllegalArgumentException - thrown when the given capacity parameter is negative or less
than the length of this message

Class Port
dmb.messaging

java.lang.Object

 dmb.messaging.Port

abstract public class Port

extends Object

Represents a port where more than one application can communicate with one another. To send data to other
applications, a Message should be filled with the data. On the other hand, for receiving data, a Message to copy the
data into should be specified.

A Port is implemented as a queue that is a FIFO (First In First Out) data structure, so the order of messages received
with receive(Message) is the same as that of messages sent with send(Message).

A Port can be configured either blocking or non-blocking mode. In the blocking mode, methods for sending or
receiving a message block if it cannot be sent or received immediately. Conversely in the non-blocking mode, such
methods return immediately returning false without performing the designated operation if it can be done
immediately. In the case of the blocking mode, setTimeout(long) may be used to specify the timeout for which
those methods will block without completing the designated operation. If the timeout expires without completing the
designated operation, the methods return false. Therefore return values must be checked in the non-blocking mode.

Permissions

Access to Ports by applications can be controlled with the following permission.

• dmb.messaging.Port.open.<name>: permission to open a port with the specified <name>

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 116

Constructor Summary Page
protected Port()

Creates an instance of Port.
113

Method Summary Page
abstract

void clear()

Removes all the Messages pending in this port.
117

abstract
void close()

Closes this Port.
114

abstract
void configureBlocking(boolean block)

Sets the blocking mode of this port.
114

abstract
long getTimeout()

Returns the timeout for sending or receiving a messsage when this port is set to the blocking
mode.

115

abstract
boolean isBlocking()

Checks if this port is set to the blocking mode or not.
115

abstract
Message newMessage(int size)

Creates a new Message instance for use with this Port that has a buffer of at least the given
size.

115

static
Port open(String name, int capacity, boolean createIfNecessary)

Returns a Port with the given name.
114

abstract
boolean receive(Message msg)

Receives a message from this port.
116

abstract
boolean send(Message msg)

Sends a message to this port.
116

abstract
boolean sendFirst(Message msg)

Puts the given message to the front of the queue within this port.
117

abstract
void setTimeout(long timeout)

Sets the timeout when sending or receiving a message in the blocking mode.
115

Constructor Detail

Port

protected Port()

Creates an instance of Port. This constructor is for implementation convenience and evolution of the
specification. Therefore, applications must not make use of this constructor.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 117

Method Detail

open

public static Port open(String name,
 int capacity,
 boolean createIfNecessary)
 throws IOException,
 SecurityException

Returns a Port with the given name. If there is already a Port with the given name, returns the instance. But
if it is not the case and the createIfNessary parameter is true, a new Port is created and then returned.

Parameters:

name - name of the port

capacity - the maximum number of messages that can be stored without blocking within this port.
This is meaningful only when a new port is created

createIfNecessary - if true, a new port is created when one with the given name is absent in the
receiver

Throws:

IOException - thrown when the createIfNcessary parameter is false and there is no Port
with the given name

SecurityException - thrown when the caller does not have a permission to call this method with
the given parameters

IllegalArgumentException - thrown when the capacity parameter is negative

NullPointerException - thrown when the name parameter is null

close

public abstract void close()

Closes this Port. If there is no application holding this port unclosed, this port is actually removed from the
receiver. Closed Ports should not be used, and no method should be invoked on them.

configureBlocking

public abstract void configureBlocking(boolean block)

Sets the blocking mode of this port.

Parameters:

block - if true, this port is set to the blocking mode. Otherwise set to the non-blocking mode

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 118

isBlocking

public abstract boolean isBlocking()

Checks if this port is set to the blocking mode or not. Newly created ports are set to the blocking mode. If this
method is called after close() is called, the return value is not defined.

Returns:

true if this port is in the blocking mode. false otherwise

setTimeout

public abstract void setTimeout(long timeout)

Sets the timeout when sending or receiving a message in the blocking mode. If the timeout is expired without
sending or receiving a message, the corresponding method returns returning false. If the timeout value is set
to 0, it means that those methods wait forever until sending or receiving a message. When a Port is created,
its timeout defaults to 0.

Parameters:

timeout - the timeout value in milliseconds

Throws:

IllegalArgumentException - thrown when the timeout parameter is negative

getTimeout

public abstract long getTimeout()

Returns the timeout for sending or receiving a messsage when this port is set to the blocking mode. The port
waits for this timeout until sending or receiving a message. After the timeout is expired, the methods for
sending or receiving a message returns false. If 0 is given, it means that those methods wait forever util
sending or receiving a message. When a Port is created, its timeout defaults to 0.

Returns:

the timeout value in milliseconds. If this Port is closed, then returns -1

newMessage

public abstract Message newMessage(int size)

Creates a new Message instance for use with this Port that has a buffer of at least the given size.

Parameters:

size - the minimum size of the internal buffer

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 119

Returns:

the created Message

Throws:

IllegalArgumentException - thrown when the size argument is negative

receive

public abstract boolean receive(Message msg)
 throws IOException

Receives a message from this port. If this port is empty, then the behaviour of this method differs depending on
the blocking mode set to this port. If this port is in the blocking mode, waits for a message for at most the
timeout set with setTimeout(long) or until this Port is closed. If a message is not obtained as the result,
this method returns false. On the other hand, if this port is in the non-blocking mode and there is no message
immediately available for receiving, this method returns immediately with false as the return value.

Parameters:

msg - a Message object to store the message data obtained from this port

Returns:

if received successfully, returns true. Otherwise false. Note that false is returned when timeout is
expired or this Port is closed without retrieving a message

Throws:

IOException - thrown when there was an error while receiving a message, or this Port is already
closed

InterruptedIOException - thrown when the calling thread has been interrupted while blocking on
this port

NullPointerException - thrown when the msg parameter is null

send

public abstract boolean send(Message msg)
 throws IOException

Sends a message to this port. If there is no available free slot in this port, the behaviour of this method is
different depending on the blocking mode set to this port. If this port is set to the blocking mode, the calling
thread blocks for at most the timeout set with setTimeout(long) or until this Port is closed. If the timeout
is expired or this Port is closed without sending the message, this method returns false. On the other hand,
in the non-blocking mode, this method returns immediately with false as the return value if it is not possible
to send the message without blocking.

Parameters:

msg - a Message object containing data sent to this port

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 120

Returns:

returns true if the message is sent. Otherwise false. Note that false is returned when timeout is
expired or this Port is closed without sending a message

Throws:

IOException - thrown when there was an error while receiving a message, or this Port is already
closed

InterruptedIOException - thrown when the calling thread has been interrupted while blocking on
this port successfully. Otherwise returns false

NullPointerException - thrown when the msg parameter is null

sendFirst

public abstract boolean sendFirst(Message msg)
 throws IOException

Puts the given message to the front of the queue within this port. That is, the message is sent prior to other
messages waiting to be taken in this port. If there is no free slot, then the behaviour of this method is different
depending on the blocking mode set to this port. In the blocking mode, the thread calling this method blocks
for at most the timeout set with setTimeout(long) or until this Port is closed. If it could not send the
message within the timeout or until this Port is closed, this method just returns false. On the other hand, in
the non-blocking mode, this method returns immediately with false as the return value if the message cannot
be sent without blocking.

Parameters:

msg - a Message object containing data sent to this port

Returns:

returns true if the message is sent. Otherwise false. Note that false is returned when timeout is
expired or this Port is closed without sending a message

Throws:

IOException - thrown when there was an error while receiving a message, or this Port is already
closed

InterruptedIOException - thrown when the calling thread has been interrupted while blocking on
this port successfully. Otherwise returns false

NullPointerException - thrown when the msg parameter is null

clear

public abstract void clear()

Removes all the Messages pending in this port.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 121

Package dmb.resources

Defines the basic framework to share resources among the receiver implementation and the aplications.

See:

Description

Interface Summary Page

Resource A marker interface to mark resources managed by ResourceManager. 120

ResourceOwner Represents the owner of the resource acquired via ResourceManager. 128

ResourceOwnership Represents an ownership of single or a set of resources acquired by a call to acquire or
tryAcquire methods of ResourceManager. 129

Class Summary Page

ResourceChoice Represents a set of choices for resources. 120

ResourceGroup Represents a group of resources to be acquired as a unit. 122

ResourceManager Represents the system-wide resource manager, which keeps track of ownerships of various
resources in the system. 123

Exception Summary Page

InsufficientResourceException An exception thrown when an operation cannot be performed because there is
not enough resource. 119

ResourceNotOwnedException An exception thrown when an application tries to call methods on a resource
object it does not have the ownership. 127

Package dmb.resources Description

Defines the basic framework to share resources among the receiver implementation and the aplications. All the objects
that are considered as resources are marked with Resource interface. Resources may be a hardware entity such as
Tuner, or some abstract permission such as KeyLock.

ResourceManager is used to acquire the ownership of resources. Each application may specify the priority associated
with each resource acquisition to express the priority of its operation using those resources. The receiver assigns
resources based on these priorities. Each application may set a higher priority to retain resources of their concern, and
may be notified when resources it owns are taken away by the receiver implementation or other applications.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 122

Class InsufficientResourceException
dmb.resources

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 dmb.resources.InsufficientResourceException

All Implemented Interfaces:
Serializable

public class InsufficientResourceException

extends RuntimeException

An exception thrown when an operation cannot be performed because there is not enough resource.

Constructor Summary Page
InsufficientResourceException()

Creates an instance of this exception without specifying the reason.
119

InsufficientResourceException(String desc)

Creates an instance of this exception with a string describing the reason.
119

Constructor Detail

InsufficientResourceException

public InsufficientResourceException()

Creates an instance of this exception without specifying the reason.

InsufficientResourceException

public InsufficientResourceException(String desc)

Creates an instance of this exception with a string describing the reason.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 123

Interface Resource
dmb.resources

All Known Implementing Classes:
CAModule, KeyLock, ResourceChoice, ResourceGroup, ServiceManager, Tuner, TunerLock

public interface Resource

A marker interface to mark resources managed by ResourceManager.

Class ResourceChoice
dmb.resources

java.lang.Object

 dmb.resources.ResourceChoice

All Implemented Interfaces:
Resource

public class ResourceChoice

extends Object

implements Resource

Represents a set of choices for resources. Acquiring a ResourceChoice means that only one of the resources
contained in it is required. Once a ResourceChoice is acquired, getAcquired() may be consulted to get the
resource that is actually acquired among those within this ResourceChoice.

Note that this class is different from other Resources, in that an instance of it cannot be specified in a request for
resource acquisition if it is already acquired in the context of other request. If it is specified in such a case, then an
IllegalArgumentException is raised.

See Also:

ResourceGroup

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 124

Constructor Summary Page
ResourceChoice(Resource[] res)

Creates a ResourceChoice from the given resources.
121

Method Summary Page
Resource getAcquired()

Returns the resource that is actually acquired.
121

Resource[] getResources()

Returns an array containing resources consisting of this ResourceChoice.
121

Constructor Detail

ResourceChoice

public ResourceChoice(Resource[] res)

Creates a ResourceChoice from the given resources. The specified array is copied, so changing it does not
affect the created ResourceChoice.

Throws:

IllegalArgumentException

Method Detail

getResources

public Resource[] getResources()

Returns an array containing resources consisting of this ResourceChoice.

Returns:

an array containing the resources. It is a copy of the array kept in this object

getAcquired

public Resource getAcquired()

Returns the resource that is actually acquired. If this ResourceChoice is not acquired, then returns null.

Returns:

the resource that is actually acquired. If this choice is not acquired, then returns null

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 125

Class ResourceGroup
dmb.resources

java.lang.Object

 dmb.resources.ResourceGroup

All Implemented Interfaces:
Resource

public class ResourceGroup

extends Object

implements Resource

Represents a group of resources to be acquired as a unit. If a ResourceGroup is submitted to ResourceManager for
acquisition, the acquisition succeeds only when all the resources contained in it may be obtained at the same time.
Otherwise, it is not acquired.

ResourceGroup may recursively contain ResourceChoices. But r173ResourceGroup may not be nested directly or
indirectly within another r173ResourceGroup. If used together with ResourceChoice, ResourceGroup may be used
to specify various resource requirements.

See Also:

ResourceChoice

Constructor Summary Page
ResourceGroup(Resource[] res)

Creates an instance of ResourceGroup consisting of the given resources.
122

Method Summary Page
Resource[] getResources()

Returns the resource consisting of this group as an array.
123

Constructor Detail

ResourceGroup

public ResourceGroup(Resource[] res)

Creates an instance of ResourceGroup consisting of the given resources.

Throws:

IllegalArgumentException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 126

Method Detail

getResources

public Resource[] getResources()

Returns the resource consisting of this group as an array. This array is a copy of the array kept within this
group.

Returns:

the resource array

Class ResourceManager
dmb.resources

java.lang.Object

 dmb.resources.ResourceManager

abstract public class ResourceManager

extends Object

Represents the system-wide resource manager, which keeps track of ownerships of various resources in the system.
Application may acquire a resource by calling acquire(Resource,int,ResourceOwner, AsyncRequestor), and
releases an acquired resource by calling ResourceOwnership.release() on the ResourceOwnership object
obtained as the result of successfully gaining the ownership of the resource.

A resource may be single entity such as Tuner, but ResourceGroup may be used to acquire more than one resource at
once. In this case, all of the resources represented by ResourceGroup must be able to be acquired as a whole,
otherwise the request is failed. In addition to requesting a set of resources at once, ResourceChoice may be used to
list a set of resources, only one of which should be acquired. ResourceGroup and ResourceChoice may be used
together to specify complex requirements on resources.

The ResourceOwner given to acquire(Resource,int, ResourceOwner,AsyncRequestor) provides a means
for this resource manager to communicate with the owner of the resource. That is, when other application or the
underlying receiver implementation may need to take resources that are already owned by an application, the resource
manager may communicate with the application via the methods defined in ResourceOwner. For details, refer to
ResourceOwner.

Resources in the receiver must be acquired before using via ResourceManager. Otherwise some methods of
Resources will throw ResourceNotOwnedException.

Permissions

Each application can specify a priority for the resources it acquires. But if any application can specify a priority as high
as it wants, then any malfunctioning application may hamper proper operation of the receiver. So applications require
the following permission to set an appropriate priority.

• dmb.resources.priority.<priorityCeiling>: A permission to set the priority to <priorityCeiling>. In
other words, an application cannot specify a priority larger than <priorityCeiling>. When this permission is not
specified at all, the corresponding application cannot specify a priority larger than NORMAL.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 127

Field Summary Page
static

final int HIGH

A priority value meaning an application requires high prority in using the resources of its
concern.

124

static
final int LOW

A priority value meaning an application requires low prority in using the resources of its
concern.

125

static
final int NORMAL

A priority value meaning an application requires normal prority in using the resources of its
concern.

125

static
final int PRIVILEGED

A priority value meaning an application requires privileged right to the resources of its
concern.

124

Constructor Summary Page
protected ResourceManager()

Creates an instance of ResourceManager.
125

Method Summary Page
abstract

AsyncResult acquire(Resource r, int priority, ResourceOwner owner, AsyncRequestor requestor)

Definitely acquires the given resource by retrying until it is possible.
126

static
ResourceManager getInstance()

Returns an instance of ResourceManager.
125

abstract
AsyncResult tryAcquire(Resource r, int priority, ResourceOwner owner, AsyncRequestor requestor)

Tries to acquire the given resource only if it is possible.
125

Field Detail

PRIVILEGED

public static final int PRIVILEGED = 268435456

A priority value meaning an application requires privileged right to the resources of its concern. This value is
usually specified by privileged applications such as EPG.

HIGH

public static final int HIGH = 536870912

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 128

A priority value meaning an application requires high prority in using the resources of its concern.

NORMAL

public static final int NORMAL = 805306368

A priority value meaning an application requires normal prority in using the resources of its concern.

LOW

public static final int LOW = 1073741824

A priority value meaning an application requires low prority in using the resources of its concern.

Constructor Detail

ResourceManager

protected ResourceManager()

Creates an instance of ResourceManager. This constructor is added for implementation convenience and
easy evolution of the specification. Therefore applications are not supposed to use this constructor.

Method Detail

getInstance

public static ResourceManager getInstance()

Returns an instance of ResourceManager.

Returns:

ResourceManager instance

tryAcquire

public abstract AsyncResult tryAcquire(Resource r,
 int priority,
 ResourceOwner owner,
 AsyncRequestor requestor)
 throws IllegalArgumentException,
 InsufficientResourceException,
 SecurityException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 129

Tries to acquire the given resource only if it is possible. If it is possible to acquire the given resource, this
method returns AsyncResult, otherwise null. This method returns immediately, and the returned
AsyncResult may be used to monitor the progress of the acquisition process. When the ownership is
acquired, then AsyncResult.get() returns a ResourceOwnership object representing the acquired
ownership. When AsyncRequestor gets notified, it means that the resource is acquired. So a call to
AsyncRequestor.resultUpdated(AsyncResult) may be considered as the completion of the resource
acquisition without checking AsyncResult.get() and/or AsyncResult.getProgress().

Parameters:

r - the resource to try to acquire

priority - the priority associated with this acquisition of the resource. This priority is used to decide
which application will own the resource. An application specifying the highest priority owns the
resource

owner - the owner of the resource. If notification via ResourceOwner is not required, null may be
specified

requestor - AsyncRequestor to get notified when the resource is actually acquired. If no
notification is required, null may be specified

Returns:

if the resource cannot be acquired, returns null. Otherwise returns an AsyncResult object. When
the resource is successfully acuiqred, AsyncResult.get() returns a ResourceOwnership object
representing the ownership of the resource

Throws:

IllegalArgumentException - thrown when the specified resource represents or contains a
resource unknown to the receiver or a ResourceChoice that is already acquired

InsufficientResourceException - thrown when this request cannot be satisfied, because there
is not enough resource within the receiver regardless of the current ownership of them. For instance, it
is impossible to prepare 3 tuners when there is only one in the receiver

SecurityException

Securityexception - thrown when the given priority is higher than the ceiling granted for the
caller

acquire

public abstract AsyncResult acquire(Resource r,
 int priority,
 ResourceOwner owner,
 AsyncRequestor requestor)
 throws IllegalArgumentException,
 InsufficientResourceException,
 SecurityException

Definitely acquires the given resource by retrying until it is possible. This method returns immediately, but the
resource manager does the acquisition in the background. When the returned AsyncResult is done, it means
that the resource is actually acquired (more specifically, AsyncResult.isDone() returns true,
AsyncResult.isCanceled() false). When the ownership is acquired, AsyncResult.get() returns a
ResouceOwnership object representing the acquired ownership of the resource.

Parameters:

r - the resource to acquire

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 130

priority - the priority associated with this acquisition of the resource. This priority is used to decide
which application will own the resource. An application specifying the highest priority owns the
resource

owner - the owner of the resource. If notification via ResourceOwner is not required, null may be
specified

requestor - AsyncRequestor to get notified when the resource is actually acquired. If no
notification is required, null may be specified

Returns:

returns an AsyncResult for tracking the acquisition. When the resource is acquired,
AsyncResult.get() returns the ResourceOwnership representing the acquired ownership

Throws:

IllegalArgumentException - thrown when the specified resource represents or contains a
resource unknown to the receiver or a ResourceChoice that is already acquired

InsufficientResourceException - thrown when this request cannot be satisfied, because there
is not enough resource within the receiver regardless of the current ownership of them. For instance, it
is impossible to prepare 3 tuners when there is only one in the receiver

SecurityException

Securityexception - thrown when the given priority is higher than the ceiling granted for the
caller

Class ResourceNotOwnedException
dmb.resources

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 dmb.resources.ResourceNotOwnedException

All Implemented Interfaces:
Serializable

public class ResourceNotOwnedException

extends RuntimeException

An exception thrown when an application tries to call methods on a resource object it does not have the ownership. If it
acquired a resource, and ResourceOwner.notifyRelease(ResourceOwnership) is called later, it means that the
resource is already released, and this exception is thrown if methods on the resource object are called.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 131

Constructor Summary Page
ResourceNotOwnedException()

Creates an instance of this exception with no detailed description on the reason.
128

ResourceNotOwnedException(String desc)

Creates an instance of this exception with a string describing the reason.
128

Constructor Detail

ResourceNotOwnedException

public ResourceNotOwnedException()

Creates an instance of this exception with no detailed description on the reason.

ResourceNotOwnedException

public ResourceNotOwnedException(String desc)

Creates an instance of this exception with a string describing the reason.

Interface ResourceOwner
dmb.resources

public interface ResourceOwner

Represents the owner of the resource acquired via ResourceManager. For each acquisition of a resource, a separate
ResourceOwner may be associated.

While an application owns a resource, and another application requests the same resource, then the resource manager
compares the priority specified by the current resource owner with the new priority specified by the second application.
If the second one specifies a higher priority, then it can take the ownership of the resource from the current owner.

When the current owner should release the ownership, prepareRelease(ResourceOwnership) of the
ResourceOwner associated with the resource is called to give the application a chance to do some cleanup. Once the
method returns, the ownership is actually transferred to the new owner. This method must return as soon as possible. If
it takes too long before returning from this method, the ownership may be reclaimed forcibly. The amount of the time
before forcing the reclamation is implementation-dependent.

If prepareRelease(ResourceOwnership) does not return too long, or the receiver need to reclaim the resource
immediately without first notifying the resource manager, the resource may be reclaimed first and then
notifyRelease(ResourceOwnership) may be called to notify the fact.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 132

Method Summary Page
void notifyRelease(ResourceOwnership ownership)

Called when the resource owned by this application has been reclaimed forcibly.
129

void prepareRelease(ResourceOwnership ownership)

Called when the resource manager requests the current owner of the resource to prepare for the
release of the resource.

129

Method Detail

prepareRelease

public void prepareRelease(ResourceOwnership ownership)

Called when the resource manager requests the current owner of the resource to prepare for the release of the
resource. Before this method returns, it must do anything required. This method must return as soon as
possible, otherwise the receiver may reclaim the resource forcibly, and notify it with a call to
notifyRelease(ResourceOwnership).

Parameters:

ownership - the ownership of the resource about to be relelased

notifyRelease

public void notifyRelease(ResourceOwnership ownership)

Called when the resource owned by this application has been reclaimed forcibly. Such cases include when
prepareRelease(ResourceOwnership) does not return for a long time, or the receiver needs to reclaim
the resource forcibly for some reasons.

Parameters:

ownership - the ownership of the resource that has been reclaimed

Interface ResourceOwnership
dmb.resources

public interface ResourceOwnership

Represents an ownership of single or a set of resources acquired by a call to acquire or tryAcquire methods of
ResourceManager.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 133

Method Summary Page
void release()

Releases this ownership.
130

void setPriority(int priority)

Sets the priority associated with this ownership.
130

Method Detail

setPriority

public void setPriority(int priority)

Sets the priority associated with this ownership. If the previous priority and the new priority are identical,
nothing happens. If there is a change in the priority, it works as if the ownership is first released, and then the
resource is re-acquired with the new priority. But the process is atomic in the case of this method.

Parameters:

priority - the new priority

release

public void release()

Releases this ownership.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 134

Package dmb.service

Defines APIs for service selection.

See:

Description

Interface Summary Page

ServiceComponent Represents a component within a service. 131

ServiceManagerListener An interface to be implemented by an object to be notified of changes in
ServiceManager. 152

Class Summary Page

ServiceManager
Represents an entity managing the process of selecting a service at time, and monitoring the
current selection for proper reaction to the changes in the environment related to the
presentation of the current service.

132

Package dmb.service Description

Defines APIs for service selection. Service selection and control of components to be presented are done via
ServiceManager. dmb.service.ServiceManage maintains the current service, and does all the complex tasks
required for presentation of a service including control of tuner, CAS, A/V decoder, and so on.

Interface ServiceComponent
dmb.service

All Superinterfaces:
AttributedObject

public interface ServiceComponent

extends AttributedObject

Represents a component within a service. This may be an audio, video, or any other.

Field Summary Page
String LANGUAGE

The language associated with this component.
132

String LOCATOR

The locator representing this component.
132

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 135

String MIME_TYPE

MIME type of this component.
132

Methods inherited from interface dmb.util.AttributedObject
getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDateList, getInt,
getIntList, getLong, getLongList, getObject, getObjectList, getString, getStringList,
isValid

Field Detail

MIME_TYPE

public static final String MIME_TYPE = "mimeType"

MIME type of this component. A String value.

LANGUAGE

public static final String LANGUAGE = "language"

The language associated with this component. A language code designated in RFC 3066 [15]. A String
value.

LOCATOR

public static final String LOCATOR = "locator"

The locator representing this component. A String value.

Class ServiceManager
dmb.service

java.lang.Object

 dmb.service.ServiceManager

All Implemented Interfaces:
Resource

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 136

abstract public class ServiceManager

extends Object

implements Resource

Represents an entity managing the process of selecting a service at time, and monitoring the current selection for proper
reaction to the changes in the environment related to the presentation of the current service. ServiceManager does all
the tasks required to present a selected service, that is, including retrieval of the list of components in the service,
selecting the default components to be presented, acquiring resources required for the presentation, and beginning the
presentation. In addition to those, ServiceManager monitors the current presentation and reacts to the various changes
in the surrounding environment.

Besides selection of a service, ServiceManager provides a means to control presentation of a service component-by-
component. It is possible to perform operations such as adding and removing components to/from the list of
components being presented.

ServiceManager may be used by one application at a time, so it is considered as a resource. For applications to use a
ServiceManager it should obtain the ownership for the ServiceManager. Otherwise, some methods in
ServiceManager throw ResourceNotOwnedException.

State Model

ServiceManager can be in one of the six states - STOPPED, ACQUIRING_SERVICE, SERVICE_ACQUIRED,
PREPARING_MEDIA, PRESENTING, DISPOSED. State transition among them is depicted in the following diagram.

Click the image to enlarge

In the diagram above, states are represented as rounded rectanges, transitions among them are as solid lines connecting
the states where conditions for each transition are specified on the lines. Ovals are events that may be fired in the state
to which it is connected via dotted lines. Shadows under some of the ovals represent that the corresponding events are
intended to be delivered fully to the registered listeners before a transition to other state occurs. By "fully delivered", it
means that all the listeners are notified of the events their event methods being called, and all those calls return to the
caller.

STOPPED State

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 137

The initial state is STOPPED state. In this state, ServiceManager does not have a selected service, and therefore
presents nothing. If there was a service being presented, the presentation is stopped, and all the Players used for the
presentation of the service are closed with Player.close(). The following methods are worth noting in STOPPED
state.

• getService(): returns null.

• getAllComponents(): returns an array of zero-length.

• getSelectedComponents(): returns an array of zero-length.

• getPlayer(ServiceComponent): Always throws IllegalArgumentException.

• getPlayers(): returns an array of zero-length.

• setComponents(ServiceComponent[], AsyncRequestor): Throws IllegalArgumentException. In
this state, there is no selected service, so is no component to select.

ACQUIRING_SERVICE State

This state is entered when a service is selected by either a call to select(String,AsyncRequestor) or for some
reason, a request from the underlying receiver implementation (e.g. when a preview period terminated). In this state, the
receiver performs tasks required to access the service, and tries to obtain configuration of the service, that is, list of
components with the service. If there was a service being presented, the presentation is stopped at some point in this
state. If the acquisition fails, ServiceManager automatically moves into STOPPED state. The following methods are
worth noting in this state.

• getService(): returns the selected service.

• getAllComponents(): returns an array of zero-length.

• getSelectedComponents(): returns an array of zero-length.

• getPlayer(ServiceComponent): always throws IllegalArgumentException.

• getPlayers(): returns an array of Players used for the presentation of the previous service but not closed
yet. Those are in PREFETCHED or STARTED.

• setComponents(ServiceComponent[], AsyncRequestor): throws IllegalStateException. No
service component exists for selection since the configuration of the selected service is not known yet in this
state.

SERVICE_ACQUIRED State

When ServiceManager is ready to access a selected service and the configuration of the service is fully known, this
state is entered. Upon entering this state, COMPONENTS_IDENTIFIED event is delivered to the registered listeners
with a list of ServiceComponents selected for presentation by default. In case of no ServiceComponent to select,
COMPONENTS_IDENTIFIED event is not delivered to the listeners and ServiceManager is changed to the STOPPED
state. Any of the listeners may invoke setComponents(ServiceComponent[], AsyncRequestor) to change the
default selection, and it will affect list of the initial components to be presented. But invoking setComponents in a
listener will not affect the list of the default components passed to the other listeners. Only one of the listeners calling
setComponents will affect the final list of components. But which one actually affects the selection of the initial
components is implementation-dependent. After a call to setComponents, the result will immediately be effective
making getSelectedComponents() returning the new list. When all the listeners are notified of the event, and
returned from the event notification method, ServiceManager automatically enters PREPARING_MEDIA state. The
following methods are worth noting in this state.

• getService(): returns the selected service.

• getAllComponents(): returns all the service components available in the service.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 138

• getSelectedComponents(): returns the list of the components selected for presentation. Initially it returns
the default selection passed to listeners, and reflects the components selected by any of listeners via
setComponents method.

• getPlayer(ServiceComponent): throws IllegalArgumentException because no Player is allocated
to ServiceComponents yet.

• getPlayers(): returns an array of Players used for the presentation of the previous service but not closed
yet. Those are in PREFETCHED or STARTED.

PREPARING_MEDIA State

To control the presentation of the selected components, MMAPI is used. In this state, the receiver prepares Players to
present selected service components. Players are newly created if required, and if some of Players used for the
presentation of the previous service may be reconfigured and reused, then they are used.

Upon entering this state, COMPONENTS_SET event is delivered to registered listeners with a relevant reason code.

ServiceManager reuses Players if possible. Therefore, Players that are not closed are checked first to see if they
may be reconfigured for the representation of new components. That is, Players used for rendering of audios may be
reused only for audios, and those for videos may be only for videos. Remaining Players not selected for reuse are all
closed. And for service components that are not allocated existing Players, new ones are created. If there is any newly
created Player, then the application owning the ServiceManager via ResourceManager will receive
PLAYERS_REALIZED event. The list of the newly created Players is passed to registered listeners with the event.
All the Players are in REALIZED state. One of listeners receiving PLAYERS_REALIZED should initialize them
appropriately. Especially those for presenting videos should be initialized by obtaining BackgroundVideoControl and
calling init method on it. After all the listeners fully process PLAYERS_REALIZED event and return from the event
notification method, the Players are automatically started, and the ServiceManager is moved into PRESENTING
state.

If there is not enough resource for presenting the selected components, ServiceManager moves into STOPPED state.

The following methods are worth nothing in this state.

• getService(): returns the selected service.

• getAllComponents(): returns all the service components within the selected service.

• getSelectedComponents(): returns the list of components selected for presentation.

• getPlayer(ServiceComponent): returns a Player instance corresponding to the given component.

• getPlayers(): returns Players in REALIZED, PREFETCHED, or STARTED state that are allocated to
service components to be presented.

PRESENTING State

This state is entered from PREPARING_MEDIA state after Players for presenting the selected components are properly
created and initialized. Upon entering this state, PRESENTATION_STARTED event is delivered to registered listeners.
In this state, all of methods defined in ServiceManager work as designated in the present document.

Even when a service is presented successfully, the presentation may stop automatically for some reasons. For instance,
one of the resources used for the presentation may be revoked by the receiver implementation for some reason.

The following methods are worth nothing in this state.

• getService(): returns the selected service.

• getAllComponents(): returns all the service components within the selected service.

• getSelectedComponents(): returns the list of components selected for presentation.

http://www.jcp.org/en/jsr/detail?id=135

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 139

• getPlayer(ServiceComponent): returns a Player instance corresponding to the given component.

• getPlayers(): returns Players in REALIZED, PREFETCHED, or STARTED state that are allocated to
service components to be presented.

• getServiceBoundApps(): returns the list of AppControl for applications bound to the current service
being presented.

• getEventBoundApps(): returns the list of AppControl for applications bound to one or more events in the
current service being presented.

DISPOSED State

This state is entered when an application calls dispose(). Any method invoked in this state throws an
IllegalStateException. Different from STOPPED state, this state guarantees that ServiceManager releases all the
resources it held before.

Resource Acquisition

Depending on platforms, resources such as tuners are required for the presentation of a service. ServiceManager
acquires appropriate service when selecting a service. The entity requesting and owning a resource at this time is not the
application selecting a service but the ServiceManager itself. It obtains resources based on the priority set by
setPriority(int). The priority affects the resource acquisition as if it was specified to ResourceManager when
acquiring a resource. When created, a ServiceManager has NORMAL priority.

Default Instance

There is one ServiceManager instance that is automatically created by the underlying receiver implementation. It is
the default instance, and shared among all the applications running on the receiver. The default instance reflects the
current selection of service from the view point of the user. Therefore, EPG and channel navigator applications either
select a service via the default instance or effectively behave as if they do so. The name of the default instance is
DEFAULT. Besides the default instance, applications may create instances of ServiceManager and share them with
other applications via export mechanism. For further details, see export(String).

A/V Presentation

If a selected service contains are A/V components, corresponding Players are created and set to REALIZED state.
When the PLAYERS_REALIZED event is delivered, those Players are passed to registered listeners. Any of the
listeners may fetch appropriate Controls from the Players, and set up them appropriately before presentation begins.
For example, in the case of video components, BackgroundVideoControl may be fetched and used to control the
size and position of the video presentation. Components sharing the same timeline shares the same Player.

If an application owning a ServiceManager has access to Players associated with the ServiceManager, all the
Players are closed when the application loses the ownership of the ServiceManager.

Each Player is reused if possible. When selecting a service or changing components, unclosed Players are first
checked if they are reusable. For new components are to be associated with a specific Player, the Controls
obtainable from the Player must be identical to those required by the new components. If some of them are not
reusable, new Players are created. Players that are not reusable will be closed with Player.close().

Preference Setting

Preferences may be specified that will affect service selection and selection of default components to be presented. For
example, LANGUAGE preference may be specified to express the preference in the language associated with service
cmponents. When selecting an audio component among multiple choices, the language preference will be respected.
Preferences may be set with setPreference(String, Object).

Permissions

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 140

To invoke some methods on ServiceManager, the invoking application must have appropriate permissions.
Otherwise, a SecurityException may be thrown. The followings are list of permissions relevant to
ServiceManager.

• dmb.service.ServiceManager.setPriority.<name>: Permission to set the priority for resource
acquisition on ServiceManager of the given name. Note that the maximum priority that can be set to
ServiceManager is the priorityCeiling specified with another permission,
dmb.resources.priority.<priorityCeiling>

• dmb.service.ServiceManager.createInstance: Permission to create an instance of ServiceManager
(createInstance())

• dmb.service.ServiceManager.getManagingInstance: Permission to get the managing instance for the
calling application (getManagingInstance())

• dmb.service.ServiceManager.getInstance.<name>: Permission to get an instance of
ServiceManager with the given name (getInstance(String))

• dmb.service.ServiceManager.export.<name>: Permission to share a ServiceManager instance with
other applications (export(String))

• dmb.service.ServiceManager.dispose.<name>: Permission to dispose a ServiceManager instance of
the given name (dispose())

• dmb.service.ServiceManager.getPlayers.<name>: Permission to get Player for controlling the
presentation of the current service selected to a ServiceManager of the given name
(getPlayer(ServiceComponent), getPlayers())

• dmb.service.ServiceManager.stop.<name>: Permission to stop service presentation of a
ServiceManager with the given name (stop(AsyncRequestor))

• dmb.service.ServiceManager.select.<name>.<locator>: Permission to select a service specified by
the given locator to a ServiceManager with the given name (select(String,AsyncRequestor))

Field Summary Page
static

final int ACQUIRING_SERVICE

A constant indicating that this ServiceManager is in the acquiring service state.
140

static
final

String
DEFAULT

Name of the default instance.
139

static
final int DISPOSED

A constant indicating this ServiceManager is in disposed state.
140

static
final

String
LANGUAGE

Represents preference on a language.
139

static
final

String
MASK_APP

Represents whether service or event bound applications shall be launched or not when a
service is selected.

140

static
final int PREPARING_MEDIA

A constant indicating that this ServiceManager is in the media prepared state.
141

static
final int PRESENTING

A constant indicating that this ServiceManager is in the presenting state.
141

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 141

static
final int SERVICE_ACQUIRED

A constant indicating that this ServiceManager is in the service acquired state.
141

static
final int STOPPED

A constant indicating this ServiceManager is in the stopped state.
140

Constructor Summary Page
protected ServiceManager()

Creates an instance of ServiceManager.
141

Method Summary Page
abstract void addListener(ServiceManagerListener l)

Adds a listener to be notified of changes in this ServiceManager.
150

static
ServiceManager createInstance()

Creates a new instance.
142

abstract void dispose()

Disposes of this instance.
143

abstract void export(String name)

Exports this ServiceManager with the given name.
143

abstract
ServiceComponent[] getAllComponents()

Returns all the components constituting the current service.
145

abstract
ServiceComponent[] getComponents(Player player)

Returns ServiceComponents presented by the given Player.
146

abstract
AppControl[] getEventBoundApps()

Returns the list of AppControls denoting applications which are bound to one or
more events in the service being presented.

147

static
ServiceManager getInstance(String name)

Returns a shared ServiceManager instance with the given name.
142

static
ServiceManager getManagingInstance()

Returns the ServiceManager managing the calling application.
142

abstract Player getPlayer(ServiceComponent component)

Returns a Player responsible for the presentation of the given service component.
145

abstract Player[] getPlayers()

Returns all the Players created but not closed by this ServiceManager.
144

abstract Object getPreference(String key)

Returns the preference value associated with the given key.
151

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 142

abstract int getPriority()

Returns the priority this ServiceMananger uses when acquiring resources required
for presentation of a selected service.

144

abstract
ServiceComponent[] getSelectedComponents()

Returns the components current being presented among those constituting the current
service.

146

abstract String getService()

Returns the locator of the service currently selected to this ServiceManager.
148

abstract
AppControl[] getServiceBoundApps()

Returns the list of AppControls denoting applications which are bound to the service
being presented.

147

abstract int getState()

Returns the current state of this ServiceManager.
143

abstract void removeListener(ServiceManagerListener l)

Removes the given listener registered previous.
151

abstract
AsyncResult select(String locator, AsyncRequestor r)

Selects a service represented by the given locator.
148

abstract
AsyncResult setComponents(ServiceComponent[] components, AsyncRequestor r)

Sets the components to be presented within the current service.
149

abstract Object setPreference(String key, Object value)

Sets a preference.
151

abstract void setPriority(int priority)

Sets the priority used when this ServiceManager acquires resources required for
presentation of a selected service.

144

abstract
AsyncResult stop(AsyncRequestor r)

Stops the presentation of the current service.
150

Field Detail

DEFAULT

public static final String DEFAULT = "default"

Name of the default instance.

See Also:

getInstance(String)

LANGUAGE

public static final String LANGUAGE = "language"

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 143

Represents preference on a language. This preference affects selection of service components presented to
users by default. For example, if there are more than one audio streams in different languages, this preference
is considered to select an audio track in the specified language. The value should be a language code defined in
RFC 3066 [15].

See Also:

setPreference(String,Object)

MASK_APP

public static final String MASK_APP = "maskApp"

Represents whether service or event bound applications shall be launched or not when a service is selected.
The value must be one of Boolean.TRUE and Boolean.FALSE. The former means that bound applications
must not be launched, and the latter must be launched. The default value for this preference is
Boolean.FALSE meaning applications must automatically launched.

See Also:

setPreference(String,Object)

DISPOSED

public static final int DISPOSED = 0

A constant indicating this ServiceManager is in disposed state.

See Also:

getState()

STOPPED

public static final int STOPPED = 1

A constant indicating this ServiceManager is in the stopped state.

See Also:

getState()

ACQUIRING_SERVICE

public static final int ACQUIRING_SERVICE = 2

A constant indicating that this ServiceManager is in the acquiring service state.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 144

See Also:

getState()

SERVICE_ACQUIRED

public static final int SERVICE_ACQUIRED = 3

A constant indicating that this ServiceManager is in the service acquired state.

See Also:

getState()

PREPARING_MEDIA

public static final int PREPARING_MEDIA = 4

A constant indicating that this ServiceManager is in the media prepared state.

See Also:

getState()

PRESENTING

public static final int PRESENTING = 5

A constant indicating that this ServiceManager is in the presenting state.

See Also:

getState()

Constructor Detail

ServiceManager

protected ServiceManager()

Creates an instance of ServiceManager. This constructor is for implementation convenience and evolution of
the specification. Therefore, applications must not make use of this constructor.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 145

Method Detail

getManagingInstance

public static ServiceManager getManagingInstance()
 throws SecurityException

Returns the ServiceManager managing the calling application. The managing instance is the
ServiceManager that launched the calling application in the context of a service which the application is
bound to.

Returns:

the managing instance if there is one. If the calling application does not have a managing instance,
returns null

Throws:

SecurityException - thrown when the caller does not have proper permission to call this method

getInstance

public static ServiceManager getInstance(String name)
 throws SecurityException,
 NullPointerException

Returns a shared ServiceManager instance with the given name.

Parameters:

name - the name of the instance to retrieve

Returns:

the instance with the given name. If there is no such instance, then returns null

Throws:

SecurityException - thrown when the calling application does not have proper permission to call
this method

NullPointerException - thrown when name argument is null

createInstance

public static ServiceManager createInstance()
 throws SecurityException

Creates a new instance.

Returns:

the created instance

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 146

Throws:

SecurityException - thrown when the caller does not have a permission to create an instance

getState

public abstract int getState()

Returns the current state of this ServiceManager.

Returns:

a constant indicating the current state. One of DISPOSED, STOPPED, ACQUIRING_SERVICE,
SERVICE_ACQUIRED, PRESENTING

export

public abstract void export(String name)
 throws IllegalArgumentException,
 IllegalStateException,
 SecurityException,
 NullPointerException

Exports this ServiceManager with the given name. An exported instance may be shared with other
applications by allowing them to obtain the instance by specifying the given name to
getInstance(String). Note that if this instance is the managing instance of this application, it is
impossible to export it even when it is not already exported. If tried, this method will throw
SecurityException.

Parameters:

name - the name of this instance

Throws:

IllegalArgumentException - thrown when there is an instance exported with the same name as
name

IllegalStateException - thrown when this instance is already exported, or it is in DISPOSED
state

SecurityException - thrown when the caller does not have permission to call this method, or
when the caller tries to export its managing instance

NullPointerException - thrown when the given name parameter is null

dispose

public abstract void dispose()
 throws SecurityException

Disposes of this instance. Once diposed, applications can not make a call on this ServiceManager. If tried, it
will result in an IllegalArgumentException thrown. And if this instance was exported, then the exported

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 147

instance will no longer be accessible with getInstance(String). Applications can dispose of instances
they created without any special permission. If this method is called more than once, it will be siliently ignored
without an exception thrown.

Throws:

SecurityException - thrown when the calling application does not have permission to dispose of
this instance

setPriority

public abstract void setPriority(int priority)
 throws SecurityException,
 IllegalStateException

Sets the priority used when this ServiceManager acquires resources required for presentation of a selected
service.

Parameters:

priority - the priority. This is the priority given to ResourceManager when acquiring resources

Throws:

SecurityException - thrown when the calling application does not have proper permission to call
this method

IllegalStateException - thrown when this instance is in DISPOSED state

getPriority

public abstract int getPriority()

Returns the priority this ServiceMananger uses when acquiring resources required for presentation of a
selected service. The default value is ResourceManager.NORMAL.

Returns:

the current priority to be specified when acquiring required resources

Throws:

IllegalStateException - thrown when this ServiceManager has been disposed

getPlayers

public abstract Player[] getPlayers()
 throws SecurityException,
 IllegalStateException

Returns all the Players created but not closed by this ServiceManager. When this ServiceManager is in
STOPPED state, returns an array of zero-length.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 148

Returns:

an array containing Players created for the presentation of the current service but not closed yet

Throws:

SecurityException - thrown when the calling application does not have permission to obtain
Players

IllegalStateException - thrown when this ServiceManager has been disposed

getPlayer

public abstract Player getPlayer(ServiceComponent component)
 throws SecurityException,
 IllegalArgumentException,
 IllegalStateException,
 NullPointerException

Returns a Player responsible for the presentation of the given service component.

Parameters:

component - the service component

Returns:

the Player responsible for the presentation of the given service component. If the component is not
being presented, returns null

Throws:

SecurityException - thrown when the calling application does not have permission to call this
method

IllegalArgumentException - thrown when the given component does not belong to the current
service

IllegalStateException - thrown when this ServiceManager is in DISPOSED state

NullPointerException - thrown when the given argument, component is null

getAllComponents

public abstract ServiceComponent[] getAllComponents()
 throws IllegalStateException

Returns all the components constituting the current service. Returns an array of zero-length in the following
cases.

1. ServiceManager is in STOPPED state

2. ServiceManager is in ACQUIRING_SERVICE state

Returns:

an array containing all the ServiceComponents constituting the current service

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 149

Throws:

IllegalStateException - thrown when this ServiceManager is in DISPOSED state

getSelectedComponents

public abstract ServiceComponent[] getSelectedComponents()
 throws IllegalStateException

Returns the components current being presented among those constituting the current service. This method
returns an array of zero-length in the following conditions.

1. ServiceManager is in STOPPED state

2. ServiceManager is in ACQUIRING_SERVICE state

3. ServiceManager is in SERVICE_ACQUIRED state

Returns:

an array containing service components being presented

Throws:

IllegalStateException - thrown if this ServiceManager is in DISPOSED state

getComponents

public abstract ServiceComponent[] getComponents(Player player)
 throws IllegalArgumentException,
 NullPointerException,
 IllegalStateException

Returns ServiceComponents presented by the given Player.

Parameters:

player - one of Players returned from getPlayers()

Returns:

an array of ServiceComponents for the presentation of which the given Player is resposible

Throws:

IllegalArgumentException - thrown if the given player is not related to this ServiceManager

NullPointerException - thrown when the given player parameter is null

IllegalStateException

IllegalStatetException - thrown when this ServiceManager is in DISPOSED state

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 150

getServiceBoundApps

public abstract AppControl[] getServiceBoundApps()
 throws IllegalStateException

Returns the list of AppControls denoting applications which are bound to the service being presented. The list
only includes AppControl only for service-bound applications with no ones for event-bound ones. This
method returns an array of zero-length in the following conditions.

1. ServiceManager is in STOPPED state

2. ServiceManager is in ACQUIRING_SERVICE state

3. ServiceManager is in SERVICE_ACQUIRED state

4. ServiceManager is in PRESENTING state and the first
ServiceManagerListener.APP_LIST_CHANGED event is not yet delivered

5. ServiceManager is in PRESENTING state and no service-bound applications are found

Returns:

an array of AppControls for applications bound to the service being currently presented.

Throws:

IllegalStateException

IllegalStatetException - thrown when this ServiceManager is in DISPOSED state

getEventBoundApps

public abstract AppControl[] getEventBoundApps()
 throws IllegalStateException

Returns the list of AppControls denoting applications which are bound to one or more events in the service
being presented. The list only includes AppControl only for event-bound applications with no ones for
service-bound ones. This method returns an array of zero-length in the following conditions.

1. ServiceManager is in STOPPED state

2. ServiceManager is in ACQUIRING_SERVICE state

3. ServiceManager is in SERVICE_ACQUIRED state

4. ServiceManager is in PRESENTING state and the first
ServiceManagerListener.APP_LIST_CHANGED event is not yet delivered

5. ServiceManager is in PRESENTING state and no event-bound applications are found

Returns:

an array of AppControls for applications bound to one or more events in the service being currently
presented.

Throws:

IllegalStateException

IllegalStatetException - thrown when this ServiceManager is in DISPOSED state

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 151

getService

public abstract String getService()
 throws IllegalStateException

Returns the locator of the service currently selected to this ServiceManager.

Returns:

the locator for the current service. Returns null when this ServiceManager is in STOPPED state

Throws:

IllegalStateException - thrown when this ServiceManager is in DISPOSED state

select

public abstract AsyncResult select(String locator,
 AsyncRequestor r)
 throws ResourceNotOwnedException,
 IllegalArgumentException,
 SecurityException,
 NullPointerException,
 IllegalStateException

Selects a service represented by the given locator. This method returns immediately, and the exact progress of
the selection process may be monitored with AsyncResult and AsycnRequestor associated with this
method. When the selection completes, AsyncResult.get() returns the locator specified in this method.
Otherwise, it throws the following exceptions depending on the cause of the failure. As a special case, if a
selection is canceled by another selection, then the first selection is treated as if it were canceled, and
AsyncResult.isCanceled() returns true.

1. TuningFailedException: when tuning failed

2. InsufficientResourceException: when some of the required resources could not be acquired

3. CARefusalException: when it is refused by CAS

4. MediaException: when there is no such service, or there is some problem with components within
the selected service

Parameters:

locator - the locator representing the service to select

r - AsyncRequestor to get notified of the progress of the service selection. null may be given
when no notification is required

Returns:

an AsyncResult to monitor the progress of the service selection

Throws:

ResourceNotOwnedException - thrown when the calling application does not have the ownership
of this ServiceManager

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 152

IllegalArgumentException - thrown when the locator is in a wrong format, or does not designate
a valid service

SecurityException - thrown when the calling application does not have permission to select the
given service

NullPointerException - thrown when the locator argument is null

IllegalStateException - thrown when this ServiceManager is in DISPOSED state

setComponents

public abstract AsyncResult setComponents(ServiceComponent[] components,
 AsyncRequestor r)
 throws ResourceNotOwnedException,
 InsufficientResourceException,
 SecurityException,
 NullPointerException,
 IllegalStateException

Sets the components to be presented within the current service. When there is any change in the list of
components to be presented, those being presented are kept as they are as much as possible. Thus the
presentation of those remaining in the list is not affected, if possible.

This method returns immediately, and the compnoent setting is performed asynchronously. The actual progress
can be monitored and controlled with AsyncResult returned from this method. Upon the completion of the
component setting, that is, when the components are successfully displayed generating
PRESENTATION_STARTED, AsyncResult.get() returns null. If there is not enough resource to present
the selected components, and it can be detected immediately, InsufficientResourceException is
thrown. Otherwise, AsyncResult.get() will throw one of the following exceptions depending on the cause
of the failure.

1. InsufficientResourceException: when it was not possible to acquire all of the resources
required for the presentation

2. CARefusalException: when CAS refused to present some of the selected components

3. MediaException: when there is any problem with the components set for presentation

When the component setting was failed, ServiceManager moves into STOPPED state.

If there is any update in the list of components in the current service, the component setting is canceled and
COMPONENTS_IDENTIFIED event is delivered, whether the setting would be successful or not.

Parameters:

components - components to be presented

r - AsyncRequestor to be notified of the progress of the component setting. If no notification is
required, null may be specified

Returns:

AsyncResult to track and control the progress of the component setting

Throws:

ResourceNotOwnedException - thrown when the calling application does not have the ownership
of this ServiceManager

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 153

InsufficientResourceException - thrown when there is not enough resource for the compnoent
setting

SecurityException - thrown when the calling application does not have permission to call this
method

NullPointerException - thrown when the components given is null

IllegalStateException - thrown when this ServiceManager is in one of SERVICE_ACQUIRED,
PREPARING_MEDIA, and PRESENTING states

stop

public abstract AsyncResult stop(AsyncRequestor r)
 throws ResourceNotOwnedException,
 SecurityException,
 IllegalStateException

Stops the presentation of the current service. This method returns immediately, and the progress can be
monitored and controlled with AsyncResult and AsyncRequestor associated with each call to this method.
When completed, AsyncResult.get() returns null.

Parameters:

r - AsyncRequestor to be notified of the progress of the operation of this method. null may be
specified if no notification is required

Throws:

ResourceNotOwnedException - thrown when the calling application does not have the ownership
of this ServiceManager

SecurityException - thrown when the calling application does not have permission to stop the
presentation of the current service

IllegalStateException - thrown when this ServiceManager has been disposed

addListener

public abstract void addListener(ServiceManagerListener l)
 throws IllegalStateException

Adds a listener to be notified of changes in this ServiceManager. If null is given, it is silently ignored
without throwing any exception.

Parameters:

l - the listener to add

Throws:

IllegalStateException - thrown when this ServiceManager has been disposed

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 154

removeListener

public abstract void removeListener(ServiceManagerListener l)
 throws IllegalStateException

Removes the given listener registered previous. If null is specified or the listener was not added to this
ServiceManager, it will be ignored silently without throwing any exception.

Parameters:

l - the listener to remove

Throws:

IllegalStateException - thrown when this ServiceManager has been disposed

setPreference

public abstract Object setPreference(String key,
 Object value)
 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Sets a preference.

Parameters:

key - preference key

value - preference value

Returns:

returns the previous value for the preference if there was one

Throws:

NullPointerException - thrown when key is null

IllegalArgumentException - thrown the key parameter is not supported by this
ServiceManager

IllegalStateException - thrown when this ServiceManager has been disposed

getPreference

public abstract Object getPreference(String key)
 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Returns the preference value associated with the given key.

Parameters:

key - preference key

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 155

Returns:

the value associated with the given key

Throws:

NullPointerException - thrown when key is null

IllegalArgumentException - thrown the key parameter is not supported by this
ServiceManager

IllegalStateException - thrown when this ServiceManager has been disposed

Interface ServiceManagerListener
dmb.service

public interface ServiceManagerListener

An interface to be implemented by an object to be notified of changes in ServiceManager.

Field Summary Page
String APP_LIST_CHANGED

An event indicating that the list of service- or event-bound applications bound to the current
service being presented.

155

String COMPONENTS_IDENTIFIED

An event indicating that list of components in the current service is either first obtained or
updated.

154

String COMPONENTS_SET

An event indicating that the list of components to be presented is determined.
154

String MANAGER_DISPOSED

An event indicating that SerivceManager has been disposed.
153

String MANAGER_STOPPED

An event indicating that the presentation of the previous service has been stopped.
155

String PLAYERS_REALIZED

An event indicating that all the Players are prepared for the presentation of the current set of
components in the current service.

154

String PRESENTATION_STARTED

An event indicating that the presentation of the selected components just began.
155

String REASON_ALTERNATIVE_CONTENT

The current service is to be replaced with an alternative content for some reason (a reason
 code).

156

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 156

String REASON_APPLICATION_REQUESTED

Application has requested and resulted in the corresponding event (a reason code).
155

String REASON_EQUIVALENT_SERVICE

Transition to an equivalent service has begun (a reason code).
156

String REASON_NO_RIGHT

No proper right is obtained for the presentation of the current service (a reason code).
157

String REASON_NORMAL_CONTENT

Selection of the original content has begun (a reason code).
156

String REASON_OTHER

Unknown reason (a reason code).
157

String REASON_PREVIOUS_SELECTION_FAILED

Selection of the previous service has been failed (a reason code).
155

String REASON_RESOURCE_UNAVAILABLE

Some of resources required for the presentation of the current service are no longer available
 (a reason code).

157

String REASON_SERVICE_UNAVAILABLE

The current service is no longer available for some reasons (a reason code).
157

String REASON_SWITCH_FORCED

For some reasons such as emergency broadcasting, automatic transition to another service has
begun (a reason code).

156

String SELECTION_INITIATED

An event indicating that a selection of a new service has begun.
153

Method Summary Page
void managerUpdate(ServiceManager s, String eventType, Object data)

Called when there is a change in ServiceManager to which this listener has been added.
158

Field Detail

MANAGER_DISPOSED

public static final String MANAGER_DISPOSED = "managerDisposed"

An event indicating that SerivceManager has been disposed. The corresponding event data is always null.

SELECTION_INITIATED

public static final String SELECTION_INITIATED = "selectionInitiated"

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 157

An event indicating that a selection of a new service has begun. This event is generated, in most cases, as a
result of a call to ServiceManager.select(String,AsyncRequestor). But in some cases, this may be
delivered automatically. For instance, when a preview period ends, the receiver may select a promotional
service.

When this event is delivered to a listener, ServiceMananger.getService() returns the service being
selected. This event entails an appropriate reason code relevant to the event. So the last argument to
managerUpdate(ServiceManager,String,Object) may be compared to reason codes defined in this
interface.

COMPONENTS_IDENTIFIED

public static final String COMPONENTS_IDENTIFIED = "componentsIdentified"

An event indicating that list of components in the current service is either first obtained or updated. This event
is only delivered to an application owning the corresponding ServiceManager, and may be generated at any
time, more than once after a delivery of SELECTION_INITIATED event.
ServiceManager.getAllComponents() returns all the components in the current service upon delivery of
this event.

If this event is generated while selecting a service, the presentation of the previous service shall be stopped.
And if a service was being presented, then the receiver tries its best to maintain the presentation of the service.
It is guaranteed that there is no change in the presentation of the current service util all the listener methods
return. So within listener methods, setComponents may be called to set the list of components to be presented.
If listeners do not set components to present, the default selection will be used, and the default selection is
passed to listeners as the third argument to managerUpdate(ServiceManager,String,Object). It is an
array of ServiceComponents. If no listener calls setComponents, then the default selection of components
will be set for presentation by the underlying receiver implementation.

COMPONENTS_SET

public static final String COMPONENTS_SET = "componentsSet"

An event indicating that the list of components to be presented is determined. The third argument to
managerUpdate(ServiceManager,String,Object) carries a relevant reason code, and the final list of
components can be obtained with ServiceManager.getSelectedComponents().

PLAYERS_REALIZED

public static final String PLAYERS_REALIZED = "playersRealized"

An event indicating that all the Players are prepared for the presentation of the current set of components in
the current service. This event is delivered only to an application owning the corresponding ServiceManager
only when there is at least one Player newly created. An array of the Players are passed as the third
argument to managerUpdate(ServiceManager,String,Object), and they are all in REALIZED state.
Listeners may obtain controls such as BackgroundVideoControl to initialize and set up the Players. The
Players are started automatically when all the listener methods are called and returned. If an application are
to set bounds of video presentation, then it should respond to this method.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 158

PRESENTATION_STARTED

public static final String PRESENTATION_STARTED = "presentationStarted"

An event indicating that the presentation of the selected components just began. There is no data associated
with this event, so the third argument to managerUpdate(ServiceManager,String,Object) is always
null.

APP_LIST_CHANGED

public static final String APP_LIST_CHANGED = "appListChanged"

An event indicating that the list of service- or event-bound applications bound to the current service being
presented. The corresponding event data is always null. If this event received,
ServiceManager.getServiceBoundApps() and ServiceManager.getEventBoundApps() have to be
called again to get new list of applications, whether the list was previously retrieved or not.

MANAGER_STOPPED

public static final String MANAGER_STOPPED = "managerStopped"

An event indicating that the presentation of the previous service has been stopped. This event entails an
appropriate reason code describing the cause of this event. The third argument to
managerUpdate(ServiceManager,String,Object) may be compared with appropriate reason codes
defined in this interface.

REASON_PREVIOUS_SELECTION_FAILED

public static final String REASON_PREVIOUS_SELECTION_FAILED = "previousSelectionFailed"

Selection of the previous service has been failed (a reason code).

See Also:

MANAGER_STOPPED

REASON_APPLICATION_REQUESTED

public static final String REASON_APPLICATION_REQUESTED = "applicationRequested"

Application has requested and resulted in the corresponding event (a reason code).

See Also:

SELECTION_INITIATED, COMPONENTS_SET, MANAGER_STOPPED

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 159

REASON_ALTERNATIVE_CONTENT

public static final String REASON_ALTERNATIVE_CONTENT = "alternativeContent"

The current service is to be replaced with an alternative content for some reason (a reason code). This reason
code is specified in the following conditions:

• The previous selection incurred selection of an alternative content, where the alternative content may
be another service, components that is not being presented, a purchase dialogue, or a promotional
material.

• The current components being presented have been replaced with other alternative content, for
example, when a preview period ends.

See Also:

SELECTION_INITIATED, COMPONENTS_SET

REASON_NORMAL_CONTENT

public static final String REASON_NORMAL_CONTENT = "normalContent"

Selection of the original content has begun (a reason code). This reason code may be specified in the following
condition.

While presenting an alternative content, transition to the original content has been triggered. For example, as
an alternative content, a promotional material and a purchase dialogue may have been presented. But when the
user completes the purchase, transition to the original content should be started automatically.

See Also:

SELECTION_INITIATED, COMPONENTS_SET

REASON_EQUIVALENT_SERVICE

public static final String REASON_EQUIVALENT_SERVICE = "equivalentService"

Transition to an equivalent service has begun (a reason code). As a example, the current service may not keep
presented because of weak signal. In that case, the receiver may trigger selection of another service the signal
of which is strong enough and carries the same programs.

See Also:

SELECTION_INITIATED

REASON_SWITCH_FORCED

public static final String REASON_SWITCH_FORCED = "switchForced"

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 160

For some reasons such as emergency broadcasting, automatic transition to another service has begun (a reason
code).

See Also:

SELECTION_INITIATED

REASON_SERVICE_UNAVAILABLE

public static final String REASON_SERVICE_UNAVAILABLE = "serviceUnavailable"

The current service is no longer available for some reasons (a reason code). It may be no longer transmitted, or
the signal is lost.

See Also:

MANAGER_STOPPED

REASON_RESOURCE_UNAVAILABLE

public static final String REASON_RESOURCE_UNAVAILABLE = "resourcesUnavailable"

Some of resources required for the presentation of the current service are no longer available (a reason code).
For example, a tuner used for the presentation of the current service may be tuned away by a cause other than
the service selection.

See Also:

MANAGER_STOPPED

REASON_NO_RIGHT

public static final String REASON_NO_RIGHT = "noRight"

No proper right is obtained for the presentation of the current service (a reason code).

See Also:

MANAGER_STOPPED

REASON_OTHER

public static final String REASON_OTHER = "other"

Unknown reason (a reason code).

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 161

Method Detail

managerUpdate

public void managerUpdate(ServiceManager s,
 String eventType,
 Object data)

Called when there is a change in ServiceManager to which this listener has been added.

Parameters:

s - ServiceManager from which the event is originated

eventType - the event type. One of the events defined in this interface

data - data associated with each event. It is different from event to event. Refer to the description on
each event

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 162

Package dmb.si

Provides APIs for giving access to service information managed by the underlying receiver implementation.

See:

Description

Interface Summary Page

SIAttribute Represents an attribute belonging to a specific type of SIObject. 160

SIAttributeSet Represents the set of attributes for a type of SIObject. 168

SIChangeListener A listener interface to be implemented by listeners that need to get notified of changes in
SIViews. 169

SIObject Represents an object in the SI database. 175

SIQuery Represents a query to be submitted against SIViews. 177

SIView Represents a set of objects satisfying a specific condition. 178

Class Summary Page

SIDatabase Represents a database of service information. 171

Exception Summary Page

InvalidQueryException An exception thrown when a query can not be created or executed. 159

Package dmb.si Description

Provides APIs for giving access to service information managed by the underlying receiver implementation. The APIs
defined in this package provide a database consisting of SIObjects, which extends AttributedObject. Applications
such as EPG may submit queries to retrieve a set of SIObjects of their interest. This API is largely independent of the
underlying schema supported by each system, and aiming to provide a generic framework for representing and easily
retrieving service informations obeying various schema. New additional objects or totally new schema may be used
within the framework without changing the API design.

Class InvalidQueryException
dmb.si

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 dmb.si.InvalidQueryException

All Implemented Interfaces:
Serializable

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 163

public class InvalidQueryException

extends Exception

An exception thrown when a query can not be created or executed.

Constructor Summary Page
InvalidQueryException()

Creates an instance of this exeption without the reason for this exception.
160

InvalidQueryException(String reason)

Creates an instance of this exception with the reason that caused this exception to be thrown.
160

Constructor Detail

InvalidQueryException

public InvalidQueryException()

Creates an instance of this exeption without the reason for this exception.

InvalidQueryException

public InvalidQueryException(String reason)

Creates an instance of this exception with the reason that caused this exception to be thrown.

Interface SIAttribute
dmb.si

public interface SIAttribute

Represents an attribute belonging to a specific type of SIObject. This is used in SIQuerys for representing the value
of an attribute.

Field Summary Page
String TYPE

An attribute representing the type of an SIObject.
162

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 164

Method Summary Page
SIQuery after(Date d)

Creates an SIQuery that is satisfied when the value of this Date type attribute represents a
Date after the given Date.

166

SIQuery before(Date d)

Creates an SIQuery that is satisfied when the value of this Date type attribute represents a
Date before the given Date.

166

SIQuery contains(Object o)

Creates an SIQuery that is satisfied when an element of this attribute contains the given object.
168

SIQuery equalTo(int v)

Creates an SIQuery that is satisfied when the value of this int type attribute is equal to the
specified value.

164

SIQuery equalTo(Object o)

Creates an SIQuery that is satisfied when the value of this attribute is equal to the given object.
166

SIQuery equalTo(long v)

Creates an SIQuery that is satisfied when the value of this long type attribute is equal to the
specified value.

165

SIQuery greaterThan(int v)

Creates an SIQuery that is satisfied when the value of this int type attribute is greater than the
specified value.

162

SIQuery greaterThan(long v)

Creates an SIQuery that is satisfied when the value of this long type attribute is greater than
the specified value.

164

SIQuery greaterThanOrEqualTo(int v)

Creates an SIQuery that is satisfied when the value of this int type attribute is greater than or
equal to the specified value.

163

SIQuery greaterThanOrEqualTo(long v)

Creates an SIQuery that is satisfied when the value of this long type attribute is greater than or
equal to the specified value.

165

SIQuery isFalse()

Creates an SIQuery that is satisfied when the value of this boolean attribute is false.
167

SIQuery isTrue()

Creates an SIQuery that is satisfied when the value of this boolean attribute is true.
167

SIQuery lessThan(int v)

Creates an SIQuery that is satisfied when the value of this int type attribute is less than the
specified value.

162

SIQuery lessThan(long v)

Creates an SIQuery that is satisfied when the value of this long type attribute is less than the
specified value.

164

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 165

SIQuery lessThanOrEqualTo(int v)

Creates an SIQuery that is satisfied when the value of this int type attribute is less than or
equal to the specified value.

163

SIQuery lessThanOrEqualTo(long v)

Creates an SIQuery that is satisfied when the value of this long type attribute is less than or
equal to the specified value.

165

SIQuery notEqualTo(Object o)

Creates an SIQuery that is satisfied when the value of this attribute is not equal to the given
object.

167

SIQuery startsWith(String o)

Creates an SIQuery that is satisfied when the value of this String attribute starts with the
given string.

168

Field Detail

TYPE

public static final String TYPE = "type"

An attribute representing the type of an SIObject. The type of values of this attribute is Object, each of
which represents a specific type.

Method Detail

lessThan

public SIQuery lessThan(int v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this int type attribute is less than the specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an int one

greaterThan

public SIQuery greaterThan(int v)
 throws InvalidQueryException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 166

Creates an SIQuery that is satisfied when the value of this int type attribute is greater than the specified
value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an int one

lessThanOrEqualTo

public SIQuery lessThanOrEqualTo(int v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this int type attribute is less than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an int one

greaterThanOrEqualTo

public SIQuery greaterThanOrEqualTo(int v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this int type attribute is greater than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an int one

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 167

equalTo

public SIQuery equalTo(int v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this int type attribute is equal to the specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an int one

lessThan

public SIQuery lessThan(long v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this long type attribute is less than the specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an long one

greaterThan

public SIQuery greaterThan(long v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this long type attribute is greater than the specified
value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an long one

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 168

lessThanOrEqualTo

public SIQuery lessThanOrEqualTo(long v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this long type attribute is less than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an long one

greaterThanOrEqualTo

public SIQuery greaterThanOrEqualTo(long v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this long type attribute is greater than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

Throws:

InvalidQueryException - thrown when this attribute is not an long one

equalTo

public SIQuery equalTo(long v)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this long type attribute is equal to the specified value.

Parameters:

v - the value to compare with that of this attribute

Returns:

the created SIQuery object

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 169

Throws:

InvalidQueryException - thrown when this attribute is not an long one

before

public SIQuery before(Date d)
 throws InvalidQueryException,
 NullPointerException

Creates an SIQuery that is satisfied when the value of this Date type attribute represents a Date before the
given Date.

Parameters:

d - the Date to compare

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of this attribute is not Date

NullPointerException - thrown when the given d parameter is null

after

public SIQuery after(Date d)
 throws InvalidQueryException,
 NullPointerException

Creates an SIQuery that is satisfied when the value of this Date type attribute represents a Date after the
given Date.

Parameters:

d - the Date to compare

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of this attribute is not Date

NullPointerException - thrown when the given d parameter is null

equalTo

public SIQuery equalTo(Object o)
 throws InvalidQueryException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 170

Creates an SIQuery that is satisfied when the value of this attribute is equal to the given object.

Parameters:

o - an object to compare

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of values of this attribute is not an Object

notEqualTo

public SIQuery notEqualTo(Object o)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this attribute is not equal to the given object.

Parameters:

o - an object to compare

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of values of this attribute is not an Object

isTrue

public SIQuery isTrue()
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this boolean attribute is true.

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of this attribute is not boolean

isFalse

public SIQuery isFalse()
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this boolean attribute is false.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 171

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of this attribute is not boolean

startsWith

public SIQuery startsWith(String o)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when the value of this String attribute starts with the given string.

Parameters:

o - the prefix string

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of this attribute is not String

contains

public SIQuery contains(Object o)
 throws InvalidQueryException

Creates an SIQuery that is satisfied when an element of this attribute contains the given object.

Parameters:

o - the object to check in the array that is a value of this attribute

Returns:

the created SIQuery

Throws:

InvalidQueryException - thrown when the type of this attribute is not an array of Object

Interface SIAttributeSet
dmb.si

public interface SIAttributeSet

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 172

Represents the set of attributes for a type of SIObject. An instance of this interface is used to create SIAttribute
objects, and they are used when constructing SIQuerys. There is a specific SIAttributeSet object per each type of
SIObjects. For a SIQuery, all the SIAttribute used in it must be from the same SIAttributeSet.

Method Summary Page
SIAttribute get(String a)

Returns an SIAttribute representing an attribute of the given name.
169

Method Detail

get

public SIAttribute get(String a)
 throws InvalidAttributeException

Returns an SIAttribute representing an attribute of the given name.

Parameters:

a - name of the attribute

Returns:

an SIAttribute object corresponding to the given attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute

NullPointerException - thrown when the given a parameter is null

Interface SIChangeListener
dmb.si

public interface SIChangeListener

A listener interface to be implemented by listeners that need to get notified of changes in SIViews. Receiver
implementations are supposed to detect changes in SIViews, but may not find out the exact kinds of changes (addition,
removal, and change). In this case, an implementation shall generate a BULK_UPDATE event.

Field Summary Page
String BULK_UPDATE

An event generated when there was a radical change in an SIView.
170

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 173

String OBJECTS_ADDED

An event generated when SI objects are added to an SIView.
170

String OBJECTS_CHANGED

An event generated when there is any change in the objects within an SIView.
171

String OBJECTS_REMOVED

An event generated when SI objects are removed from an SIView.
170

Method Summary Page
void siUpdate(SIView source, String type, SIObject[] data)

Called when there is any change in an SIView.
171

Field Detail

BULK_UPDATE

public static final String BULK_UPDATE = "bulkUpdate"

An event generated when there was a radical change in an SIView. Upon receiving this event, the application
must re-execute queries to retrieve SI objects used for displaying SI. Once an event of this type is generated,
no separate OBJECTS_ADDED, OBJECTS_REMOVED, and/or OBJECTS_CHANGED events are generated for the
change reported by the event. The last argument to siUpdate(SIView,String,SIObject[]) is null for
this type of events.

OBJECTS_ADDED

public static final String OBJECTS_ADDED = "objectsAdded"

An event generated when SI objects are added to an SIView. The added objects are passed to
siUpdate(SIView,String,SIObject[]) as the last argument.

OBJECTS_REMOVED

public static final String OBJECTS_REMOVED = "objectsRemoved"

An event generated when SI objects are removed from an SIView. When programs end, rather than having a
change in the underlying SI database, then this event is not generated. The last argument to
siUpdate(SIView,String,SIObject[]) is list of the removed objects. Note that the returned objects are
already removed from the underlying data when they are passed to registered listeners. Therefore it may not
possible to get the values of attributes the type of which is SIView.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 174

OBJECTS_CHANGED

public static final String OBJECTS_CHANGED = "objectsChanged"

An event generated when there is any change in the objects within an SIView. List of the changed objects is
passed as the last argument to siUpdate(SIView,String,SIObject[]).

Method Detail

siUpdate

public void siUpdate(SIView source,
 String type,
 SIObject[] data)

Called when there is any change in an SIView. But a call to this method does not guarantee that there really is
any change in an SIView. That is, this method is guaranteed to be called, when there is any change in an
SIView, but there may be false alarms. Depending on implementations, they may try to reduce or eliminate
such false alarms.

Parameters:

source - the SIView containing possible changes

type - the type of the event. One of BULK_UPDATE, OBJECTS_ADDED, OBJECTS_REMOVED, and
OBJECTS_CHANGED

data - list of SIObjects related to the event

Class SIDatabase
dmb.si

java.lang.Object

 dmb.si.SIDatabase

All Implemented Interfaces:
AttributedObject

abstract public class SIDatabase

extends Object

implements AttributedObject

Represents a database of service information. Each database may be constructed from single source or merged from
multiple sources. As such, each database may describe completely different set of services and events, or in some cases,
there may be more than one databases describing the same set of services and events.

SIDatabase implements AttributedObject. This is for retrieving database-wide attributes such as list of genres.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 175

Constructor Summary Page
protected SIDatabase()

Creates a SIDatabase object.
172

Method Summary Page
abstract

AsyncResult forceUpdate(AsyncRequestor r)

Invalidates all the previously-cached service information and starts re-caching the
information from the beginning.

175

abstract
SIAttributeSet getAttributeSet(Object type)

Returns an SIAttributeSet object representing all the attributes associated with
SIObjects of the given type.

175

static
SIDatabase[] getDatabases()

Returns all the SIDatabase available in the device.
173

static
SIDatabase getDefault()

Returns the system-default SIDatabase instance.
173

abstract
SIObject getLocatedObject(String locator)

Returns an SIObject represented by the given locator.
174

abstract
String getPreferredLanguage()

Returns the preferred language for the information retrieved from this SIDatabase.
174

abstract
String getProvider()

Returns the ID of the supplier of this SIDatabase.
173

abstract
SIView getView(Object type)

Returns an SIView representing all the SIObjects of the given type in this
SIDatabase.

174

abstract void setPreferredLanguage(String lang)

Sets the preferred language used for values retrieved from this SIDatabase.
173

Methods inherited from interface dmb.util.AttributedObject
getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDateList, getInt,
getIntList, getLong, getLongList, getObject, getObjectList, getString, getStringList,
isValid

Constructor Detail

SIDatabase

protected SIDatabase()

Creates a SIDatabase object. This constructor is added for implementation convenience and evalution of the
specification. Therefore, applications are not supposed to use this constructor.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 176

Method Detail

getDatabases

public static SIDatabase[] getDatabases()

Returns all the SIDatabase available in the device.

Returns:

an array containing all the database instances

getDefault

public static SIDatabase getDefault()

Returns the system-default SIDatabase instance.

Returns:

the default database

getProvider

public abstract String getProvider()

Returns the ID of the supplier of this SIDatabase.

Returns:

the supplier ID

setPreferredLanguage

public abstract void setPreferredLanguage(String lang)

Sets the preferred language used for values retrieved from this SIDatabase. A language code defined in
RFC 3066 [15] must be specified. If this method is called, even SIObjects created before the call are
affected.

Parameters:

lang - the language code

Throws:

NullPointerException - thrown when the given lang parameter is null

IllegalArgumentException - thrown when the given lang parameter is not a valid langauge
code or the corresponding language is not supported by the device

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 177

getPreferredLanguage

public abstract String getPreferredLanguage()

Returns the preferred language for the information retrieved from this SIDatabase. Returns one of the
language codes defined in RFC 3066 [15].

getView

public abstract SIView getView(Object type)

Returns an SIView representing all the SIObjects of the given type in this SIDatabase. Since the returned
object is an SIView, any change in the underlying database will be reflected to it automatically. Additional
queries may be given to the SIView to narrow down the set of SIObjects. And when done, the current
snapshot of the set of SIObjects represented by the SIView may be retrieved.

Parameters:

type - the type of the SIView

Returns:

an SIView containing all the SIObjects of the specified type

Throws:

IllegalArgumentException - thrown when there is no such type

NullPointerException - thrown when the type parameter is null

getLocatedObject

public abstract SIObject getLocatedObject(String locator)

Returns an SIObject represented by the given locator.

Parameters:

locator - the locator for the SIObject to retrieve

Returns:

an SIObject pointed to by the locator

Throws:

NullPointerException - thrown when the locator parameter is null

IllegalArgumentException - thrown when the locator parameter is not a valid locator, or there
is no SIObject corresponding to the given locator

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 178

getAttributeSet

public abstract SIAttributeSet getAttributeSet(Object type)

Returns an SIAttributeSet object representing all the attributes associated with SIObjects of the given
type. The returned SIAttributeSet is used to construct queries.

Parameters:

type - the type of the SIObject for which to retrieve an SIAttributeSet

Returns:

the requested SIAttributeSet

Throws:

NullPointerException - thrown when the given type parameter is null

IllegalArgumentException - thrown when the given type parameter does not represent a valid
type known to this SIDatabase

forceUpdate

public abstract AsyncResult forceUpdate(AsyncRequestor r)

Invalidates all the previously-cached service information and starts re-caching the information from the
beginning.

Parameters:

r - AsyncRequestor to get notified of the progress of the caching. null may be given when no
notification is required.

Returns:

an AsyncResult to monitor the progress of the caching. AsyncResult.get() returns null if the
service information was successfully cached. Otherwise, it will throw an exception representing the
cause of the failure.

Interface SIObject
dmb.si

All Superinterfaces:
AttributedObject

public interface SIObject

extends AttributedObject

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 179

Represents an object in the SI database. All types of SI objects are represented by this object. The type of each object
may be identified with value of the SIAttribute.TYPE attribute. Each object has a set of attributes defined by the
underlying platform depending on its type. Those attributes may be retrieved with get methods defined in this
interface.

An SIObject represents a specific version of SI data. Thus, once obtained, it will return any attribute value cached in
the object, regardless of changes in the underlying SI database. And if some attributes are not cached and there was any
change in the object, then any attempt to retrieve their values shall result in an IllegalStateException. This
behaviour is a safeguard in order not to return different versions of data from a single SIObject causing
inconsistencies.

When r297SIObjects representing the same object are retrieved, they may be distinct instances.

Method Summary Page
SIView getView(String a)

Returns value of the given attribute the type of which is SIView.
176

Methods inherited from interface dmb.util.AttributedObject
getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDateList, getInt,
getIntList, getLong, getLongList, getObject, getObjectList, getString, getStringList,
isValid

Method Detail

getView

public SIView getView(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns value of the given attribute the type of which is SIView.

Parameters:

a - name of the attribute

Returns:

an SIView that is the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not SIView

NullPointerException - thrown when the given name is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 180

Interface SIQuery
dmb.si

public interface SIQuery

Represents a query to be submitted against SIViews. A query may specify conditions to meet only on one type of
SIObjects. A query can be constructed first by obtaining an SIAttributeSet from an SIDatabase.

 SIAttributeSet s = SIDatabase.getDefault()
 .getAttributeSet(Program.TYPE);
 // Genre: OriginationCS and L1 are 5 and 7, respectively (Cinema)
 SIQuery q1 = s.get(Program.GENRE).startsWith("005.007");
 SIQuery q2 = s.get(Program.FREE).isTrue();
 SIQuery q = q1.and(q2);

 SIView programs = SIDatabase.getDefault().getView(Program.TYPE);
 SIObject[] result = programs.createView(q).getSnapshot();

Method Summary Page
SIQuery and(SIQuery q)

Creates a query that is satisfied if and only if both this and the given queries are satisfied at the
same time.

177

SIQuery negate()

Creates a query that is satisfied if and only if this query is not satisified.
178

SIQuery or(SIQuery q)

Creates a query that is satisfied if and only if this or the given query is satisfied.
178

Method Detail

and

public SIQuery and(SIQuery q)
 throws InvalidQueryException,
 NullPointerException

Creates a query that is satisfied if and only if both this and the given queries are satisfied at the same time.

Parameters:

q - a query to combine

Returns:

created query

Throws:

InvalidQueryException - thrown when the type of objects for the given query is different from
that of this SIQuery object

NullPointerException - thrown when the q parameter is null

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 181

or

public SIQuery or(SIQuery q)
 throws InvalidQueryException,
 NullPointerException

Creates a query that is satisfied if and only if this or the given query is satisfied.

Parameters:

q - a query to combine

Returns:

created query

Throws:

InvalidQueryException - thrown when the type of objects for the given query is different from
that of this SIQuery object

NullPointerException - thrown when the q parameter is null

negate

public SIQuery negate()

Creates a query that is satisfied if and only if this query is not satisified.

Returns:

created query

Interface SIView
dmb.si

public interface SIView

Represents a set of objects satisfying a specific condition. A view may be created from another view by calling
createView(SIQuery) or createAttributeView(String). Also one may be obtained from
SIDatabase.getView(Object) or SIObject.getView(String) methods. Once created, a view reflects the
current state of the underlying SI database regardless of updates occurred after its creation.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 182

Method Summary Page
void addSIChangeListener(SIChangeListener l)

Adds the given listener to monitor changes in this view such as additions, removals, and
updates to the view contents.

182

SIView createAttributeView(String a)

Creates a view representing objects that are values of the given attribute of the objects in this
view.

180

SIView createView(SIQuery query)

Creates a view representing a set of objects satisfying the given query.
179

SIObject getObject()

Returns an SIObject contained in this view.
181

int getSize()

Returns the number of SIObjects contained in this view.
180

SIObject[] getSnapshot()

Returns all the SIObjects represented by this view at the time of calling this method.
180

SIObject[] getSnapshot(int startIndex, int count)

Returns a subset of SIObjects contained in this view by specifying the start index in the list
of SIObjects and the number of SIObjects to retrieve.

180

void removeSIChangeListener(SIChangeListener l)

Removes the given listener from this view.
182

void sort(String[] sortBy, boolean[] isDescending)

Sorts a list of objects represented by this view by the specified order.
181

Method Detail

createView

public SIView createView(SIQuery query)
 throws InvalidQueryException,
 NullPointerException

Creates a view representing a set of objects satisfying the given query.

Parameters:

query - the query. This must be one created for objects of the type of this view

Returns:

the created view

Throws:

InvalidQueryException - thrown when the type the given query is created for and the type of this
view are different

NullPointerException - thrown when the given query parameter is null

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 183

createAttributeView

public SIView createAttributeView(String a)
 throws InvalidAttributeException,
 NullPointerException

Creates a view representing objects that are values of the given attribute of the objects in this view.

Parameters:

a - name of the attribute

Returns:

the created view

Throws:

InvalidAttributeException - thrown when type of the given attribute is not SIObject or
r311SIView

NullPointerException - thrown when the given a parameter is null

getSize

public int getSize()

Returns the number of SIObjects contained in this view.

Returns:

the number of SIObjects. If it is impossible to get a snapshot of this view, returns -1

getSnapshot

public SIObject[] getSnapshot()

Returns all the SIObjects represented by this view at the time of calling this method.

Returns:

list of SIObjects this view contains. In case where the list ca not be retrieved for some reason,
returns null. This should be distinguished from the case where this view does not contain any object,
thus returning 0

getSnapshot

public SIObject[] getSnapshot(int startIndex,
 int count)

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 184

Returns a subset of SIObjects contained in this view by specifying the start index in the list of SIObjects
and the number of SIObjects to retrieve.

Parameters:

startIndex - the start index in the list of SIObjects in this view, from which SIObjects will be
retrieved

count - the number of SIObjects to retrieve. If the number of SIObjects is less than the number of
SIObjects from the given start index to the end of the list, then all of the available SIObjects are
returned

Returns:

An array containing retrieved SIObjects. If there is no object to return, then returns an array of zero-
length. If it is impossible to retrieve the designated SIObjects, then returns null.

getObject

public SIObject getObject()

Returns an SIObject contained in this view. This method is a convenience method used when it is obvious
that this view contains only one object. When there is more than one object within this view, it depends on the
implementation what to return from this method.

Returns:

an SIObject this view contains. If there is no object within this view or it is impossible to retrieve
objects within this view, returns null. Note that this method cannot distinguish between the above
mentioned two cases. If such distinction is required, getSnapshot() must be used instead

sort

public void sort(String[] sortBy,
 boolean[] isDescending)

Sorts a list of objects represented by this view by the specified order. The relative ordering of attribute values
is defined for the following types: boolean (false is followed by true in ascending order), int, long,
String (the order defined by String.compareTo(String)), Date(the order of Date.getTime()s). In
other cases, an exception is thrown since there is no defined order between values. And if values are references
(that is, objects), and null values are retrieved, null is considered to come later in ascending order.

Parameters:

sortBy - list of attributes in the objects in this view. The first one in the list is considered first when
sorting out the result, ties are broken by the next attribute, and the same repeated

isDescending - each entry in this array corresponds to an entry in the sortBy array at the same
index. If an entry in this array is false it means the corresponding attribute is consulted and the sort
is done in ascending order with respect to the attribute. If true, the atttribute is considered in
descending order. This array may be shorter than sortBy. In that case, missing entries are considered
to have false meaning those attributes are consulted for sorting in ascending order

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 185

Returns:

the list of SIObjects this view contains after sorting them as specified by sortBy and
isDescending parameters. If it is impossible to retrieve objects, the returns null rather than 0

Throws:

InvalidAttributeException - thrown when the sortBy parameter contains non-existing
attribute, or there is no order defined for values of any attribute

NullPointerException - thrown when the sortBy parameter or its elements are null, and also
when the isDescending paraemeter is null

addSIChangeListener

public void addSIChangeListener(SIChangeListener l)

Adds the given listener to monitor changes in this view such as additions, removals, and updates to the view
contents. If the given listener is null, it is ignored silently without throwing an exception.

Parameters:

l - the listener to add

removeSIChangeListener

public void removeSIChangeListener(SIChangeListener l)

Removes the given listener from this view. If the listener was not added to this view before, or is null, then it
is simply ignored without incurring any exception.

Parameters:

l - the listener to remove

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 186

Package dmb.tuning

Defines a set of APIs for controlling tuners available in the receiver.

See:

Description

Interface Summary Page

TunerListener An interface to be implemented by an object that needs to get notified of changes in a
Tuner. 187

Class Summary Page

Tuner Represents a tuner in the receiver. 184

TunerLock Represents a state where a tuner is locked on an ensemble. 188

Exception Summary Page

ScanningFailedException An exception thrown when frequency scanning has been failed for some reason. 183

TuningFailedException An exception thrown when tuning has been failed for some reason. 190

Package dmb.tuning Description

Defines a set of APIs for controlling tuners available in the receiver. Tuning is performed via creating a TunerLock,
and acquiring it with ResourceManager. And a separate abstraction called Tuner is provided to monitor the state of a
tuner, and to do tasks such as service scanning. The reason why there is another abstraction TunerLock in addition to
Tuner is that it enables sharing of a tuner among multiple applications if they are required to tune to a single ensemble.

Class ScanningFailedException
dmb.tuning

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 dmb.tuning.ScanningFailedException

All Implemented Interfaces:
Serializable

public class ScanningFailedException

extends Exception

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 187

An exception thrown when frequency scanning has been failed for some reason.

Constructor Summary Page
ScanningFailedException()

Creates an instance of this exception without the detailed message.
184

ScanningFailedException(String reason)

Creates an instance of this exception with the given detailed message.
184

Constructor Detail

ScanningFailedException

public ScanningFailedException()

Creates an instance of this exception without the detailed message.

ScanningFailedException

public ScanningFailedException(String reason)

Creates an instance of this exception with the given detailed message.

Class Tuner
dmb.tuning

java.lang.Object

 dmb.tuning.Tuner

All Implemented Interfaces:
Resource

public class Tuner

extends Object

implements Resource

Represents a tuner in the receiver. The tuner may be temporarily deactivated if there has been no TunerLock owned by
applications for some time that is implementation dependent, or for some other reasons such as battery shortage. Once
deactivated, the tuner may be activated again by a call to scan(int[], boolean, AsyncRequestor) or owning a
TunerLock.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 188

Constructor Summary Page
protected Tuner()

Creates an instance of Tuner.
185

Method Summary Page
void addTunerListener(TunerListener l)

Adds a listener to monitor changes in the state of this tuner.
187

static
Tuner getDefault()

Returns the default tuner in the receiver.
186

String getLocator()

Returns the locator representing the broadcast channel this tuner is locked to.
186

int getSignalQuality()

Returns the quality of the signal recevied by this tuner.
187

static
Tuner[] list()

Returns all the tuners available in the receiver.
185

void removeTunerListener(TunerListener l)

Removes a listener that was previously added to this tuner for monitoring changes in the
state of this tuner.

187

AsyncResult scan(int[] freqs, boolean resetSI, AsyncRequestor r)

Scans the specified frequencies for services.
186

Constructor Detail

Tuner

protected Tuner()

Creates an instance of Tuner. This constructor is for implementation convenience and evolution of the
specification. Therefore, applications must not make use of this constructor.

Method Detail

list

public static Tuner[] list()

Returns all the tuners available in the receiver.

Returns:

list of tuners

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 189

getDefault

public static Tuner getDefault()

Returns the default tuner in the receiver.

Returns:

the default tuner

scan

public AsyncResult scan(int[] freqs,
 boolean resetSI,
 AsyncRequestor r)
 throws ResourceNotOwnedException,
 SecurityException

Scans the specified frequencies for services. If this tuner is not active, it is automatically activated. Prior to
calling this method, this tuner must be owned by the calling application, and the application must have
appropriate permissions. The relevant permission to be owned for calling this method is dmb.tuning.scan.

Parameters:

freqs - list of frequencies in Hz

resetSI - if true, clears SI data including the list of services. If false, only information obtained
by scaning is updated, and other information is retained as it is

r - AsyncRequestor to get notified of progresses in the scanning. If no notification is anticipated,
then null may be specified

Returns:

AsyncResult object to query and control the scanning process. Once completed,
AsyncResult.get() returns null. If the scanning fails, a ScanningFailedException is thrown

Throws:

ResourceNotOwnedException - thrown when this method is called without owning this tuner via
ResourceManager

SecurityException - thrown when the calling application does not have the required permission

getLocator

public String getLocator()

Returns the locator representing the broadcast channel this tuner is locked to. If this tuner is not locked to a
channel, this returns null.

Returns:

the locator for the channel this tuner is locked to. If this tuner is turned off or not in the locked state,
then returns null

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 190

getSignalQuality

public int getSignalQuality()

Returns the quality of the signal recevied by this tuner. The quality is an integer in the range of 0 to 100
inclusive, where 0 means no signal at all, and 100 means the signal is strongest possible. Note that there is no
guarantee that all the values between 0 and 100 inclusive are returned from this method. Depending on the
underlying hardware, only a subset of the values may be returned. This returns 0 when this tuner is currently
turned off, or not in the locked state.

Returns:

the signal quality

addTunerListener

public void addTunerListener(TunerListener l)

Adds a listener to monitor changes in the state of this tuner. If the given l parameter is null, it is silently
ignored without causing an exception thrown.

Parameters:

l - the listener to add

removeTunerListener

public void removeTunerListener(TunerListener l)

Removes a listener that was previously added to this tuner for monitoring changes in the state of this tuner. If
the given listener was not added to this tuner, or the l parameter is null, it is silently ignored without
throwing an exception.

Parameters:

l - the listener to remove

Interface TunerListener
dmb.tuning

public interface TunerListener

An interface to be implemented by an object that needs to get notified of changes in a Tuner. Such change includes that
of signal quality received by a Tuner.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 191

Method Summary Page
void signalQualityChanged(Tuner tuner, int quality)

Called when there is change in the quality of signal received from the given Tuner.
188

void tunedTo(Tuner tuner, String locator)

Called when the given Tuner is tuned to an ensemble represented by the given locator.
188

Method Detail

tunedTo

public void tunedTo(Tuner tuner,
 String locator)

Called when the given Tuner is tuned to an ensemble represented by the given locator.

Parameters:

tuner - the Tuner tuned to other ensemble

locator - the locator pointing to the ensemble. null is specified when the Tuner is turned off

signalQualityChanged

public void signalQualityChanged(Tuner tuner,
 int quality)

Called when there is change in the quality of signal received from the given Tuner. Note that this is not called
when a Tuner is turned off.

Parameters:

tuner - the Tuner

quality - new quality indicator (from 0 to 100 inclusive).

Class TunerLock
dmb.tuning

java.lang.Object

 dmb.tuning.TunerLock

All Implemented Interfaces:
Resource

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 192

final public class TunerLock

extends Object

implements Resource

Represents a state where a tuner is locked on an ensemble. If acquisition of a TunerLock is requested by an application
via ResourceManager, then a Tuner is allocated, and tuning begins. If the tuning succeeds, the TunerLock is
successfully acquired. If not, AsyncResult.get() throws a TuningFailedException. Once acquired, the Tuner is
guaranteed to be locked on the current ensemble as long as the ownership of TunerLock is retained. The Tuner used
for a TunerLock is not specified explicitly. Instead, the receiver implmentation picks appropriate one. If there is no
Tuner that can satisfy the requirement set by a TunerLock, then a Tuner associated with TunerLock(s), all of which
are held by applications with lower priorities than that of the TunerLock being acquired. If none has a lower priority,
then acquisition of the TunerLock fails.

For tuning, applications must have appropriate permissions. The permissions relevant to tuning are as follows:

• dmb.tuning.tune.<locator>: Here <locator> represents a set of ensembles an application can tune to.
Within <locator> string, wildcards specified in the main body of the present document can be used to designate
a set of ensembles

If more than one application requests tuning to a single ensemble, then regardless of the number of TunerLocks, they
may share the same Tuner.

Constructor Summary Page
TunerLock(String locator)

Creates a TunerLock that requests tuning to an ensemble represented by the given locator.
189

Method Summary Page
String getLocator()

Returns the locator representing the ensemble to tune to.
190

Tuner getTuner()

Returns the Tuner that is allocated to meet the requirement set by this TunerLock.
190

Constructor Detail

TunerLock

public TunerLock(String locator)
 throws IllegalArgumentException,
 SecurityException,
 NullPointerException

Creates a TunerLock that requests tuning to an ensemble represented by the given locator. If it is acquired by
the application via ResourceManager, a Tuner is allocated, and the tuning completes. If tuning fails while a
TunerLock is being acquired, a TuningFailedException is thrown from AsyncResult.get() or
AsyncResult.complete().

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 193

Throws:

IllegalArgumentException

SecurityException

NullPointerException

Method Detail

getTuner

public Tuner getTuner()

Returns the Tuner that is allocated to meet the requirement set by this TunerLock.

Returns:

the Tuner. If this TunerLock is not in the acquired state, the returns null

getLocator

public String getLocator()

Returns the locator representing the ensemble to tune to.

Returns:

the locator pointing to an ensemble

Class TuningFailedException
dmb.tuning

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 dmb.tuning.TuningFailedException

All Implemented Interfaces:
Serializable

public class TuningFailedException

extends Exception

An exception thrown when tuning has been failed for some reason.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 194

Constructor Summary Page
TuningFailedException()

Creates an instance of this exception without the detailed message.
191

TuningFailedException(String reason)

Creates an instance of this exception with the given detailed message.
191

Constructor Detail

TuningFailedException

public TuningFailedException()

Creates an instance of this exception without the detailed message.

TuningFailedException

public TuningFailedException(String reason)

Creates an instance of this exception with the given detailed message.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 195

Package dmb.ui

This package provides a UI extension to javax.microedition.lcdui to handle the peculiarities in DMB
environment such as support for transparent graphics plane.

See:

Description

Class Summary Page

AlphaAttribute Represents the attributes of the graphic context, which are relevant to the alpha component
and the composite mode of an associated Graphics object. 192

DisplayControl Controls the z-order of the Display and the key focus associated with an application. 196

DMBCanvas Represents the basic drawing surface which is laid over the video presentation. 200

DMBItem The base class for UI components that can be added to a DMBCanvas. 214

FontLoader Loads new fonts from an InputStream or application resource. 217

KeyLock Represents the right to exclusively receive events generated by the associated set of keys. 218

TextItem A DMBItem subclass providing text editing capability. 221

UserItem A DMBItem subclass that may be subclassed and customized. 228

Package dmb.ui Description

This package provides a UI extension to javax.microedition.lcdui to handle the peculiarities in DMB
environment such as support for transparent graphics plane. In DMB environment, more than one application may be
running simultaneously. The UI system designates one application as the foreground application, and others are treated
as background ones. The foreground application obtains the key focus.

In DMB environment, more than one application represent themselves on the display at the same time, and may need to
receive key events associated with the keys of their interest even if it does not have the key focus, or in some cases, it
does not have a UI component at all. The extension defined in this package deals with these peculiarities.

Class AlphaAttribute
dmb.ui

java.lang.Object

 dmb.ui.AlphaAttribute

public class AlphaAttribute

extends Object

Represents the attributes of the graphic context, which are relevant to the alpha component and the composite mode of
an associated Graphics object.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 196

The drawing surface represented by a Graphics object does not have an alpha component. The purpose of this object is
to provide the control over the alpha component of the drawing surface used in DMB environment. With this object, the
current alpha value and the current composite mode may be specified to affect the rendering methods in the associated
Graphics object.

Alpha Value

AlphaAttribute allows for the specification of an alpha value ranging from 0 to 255 inclusive, in addition to RGB
values that may be specified with Graphics object. The alpha value specified with setAlphaValue(int) is applied
to most of drawing methods of the corresponding Graphics object. But, methods such as drawImage, drawRegion,
and drawRGB, which may entail separate alpha values in the source, are not affected by the current alpha value set with
setAlphaValue(int). In case the source of the methoes does not have an alpha channel, then they are assumed to be
fully opaque, that is, an alpha value of 255.

Alpha Composite Modes

AlphaAttribute object allows for setting of the alpha composite mode. The mode is applied to most of operations
performed on the associated Graphics object. Among the Porter-Duff rules, CLEAR, SRC, and SRCOVER rules are
supported. CLEAR sets all of the components in the destination pixels to zero, thus making the destination fully
transparent, and SRC copies all the components of the source pixels including the alpha component to the destination.
SRCOVER is the default rule, and works exactly as the way Graphics does in LCD UI. But it considers the alpha
channel of the destination surface different from the case of usual MIDP environment where the destination does not
have an alpha channel. For the details on the alpha composite modes specified here, refer to the documentation for
java.awt.AlphaComposite, which is a part of Java Standard Edition.

Lifecycle

An AlphaAttribute instance may be obtained by calling getAlphaAttribute(Graphics) method with a
Graphics object. Once created, it will be valid exactly while the corresponding Graphics object is valid. If
getAlphaAttribute(Graphics) is invoked more than once with the same Graphics object, the returned
AlphaAttribute object will be identical between the calls. And if it is created from a Graphics object passed into
various paint(Graphics) methods, then the AlphaAttribute object will last for the duration of executing
paint(Graphics). If a rendering surface associated with a Graphics object is an opaque surface without an alpha
channel, a new alpha channel is created when the associated AlphaAttribute is created, and the surface is initialized
to be fully transparent. The default alpha value for the newly obtained AlphaAttribute is 255, meaning fully opaque,
and the default composite mode is SRCOVER.

Field Summary Page
static

final int CLEAR

A composite rule setting all of the compomponents in the destination to zero (Porter-Duff
Clear rule).

194

static
final int SRC

A composite rule copying the components in the source pixels to the destination pixels
(Porter-Duff Source rule).

194

static
final int SRCOVER

A composite rule determining the values of the destination pixels based on both the values of
the source and the destination pixels (Porter-Duff Source Over Destination rule).

194

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 197

Method Summary Page
static

AlphaAttribute getAlphaAttribute(Graphics g)

Returns an AlphaAttribute object associated with the given Graphics object.
195

int getAlphaValue()

Returns the current alpha value for the associated Graphics object.
196

int getComposite()

Returns the current alpha composite mode.
195

void setAlphaValue(int alpha)

Sets the alpha value that will affect graphics operations performed with the associated
Graphics object.

196

void setComposite(int compRule)

Sets the alpha composite mode for the Graphics object associated with this
AlphaAttribute object.

195

Field Detail

CLEAR

public static final int CLEAR = 1

A composite rule setting all of the compomponents in the destination to zero (Porter-Duff Clear rule). This
composite mode does not use both source and destination values.

SRC

public static final int SRC = 2

A composite rule copying the components in the source pixels to the destination pixels (Porter-Duff Source
rule). The desitination value is not used when drawing is performed.

SRCOVER

public static final int SRCOVER = 0

A composite rule determining the values of the destination pixels based on both the values of the source and
the destination pixels (Porter-Duff Source Over Destination rule). Refer to java.awt.AlphaComposite in
Java Standard Edition for details on this composite mode. The implementation of this mode is permitted not be
exact, since the exact implementation requires significant computing power.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 198

Method Detail

getAlphaAttribute

public static AlphaAttribute getAlphaAttribute(Graphics g)

Returns an AlphaAttribute object associated with the given Graphics object. There is only one
AlphaAttribute object per Graphics object, All the settings done to an AlphaAttribute object are valid
while the corresponding Graphics object is valid.

If there is no alpha channel in the drawing surface associated with the given Graphics object, then an alpha
channel is created for the surface upon the creation of an AlphaAttribute, and the alpha values for the
surface are set to zero, thus making it fully transparent.

When first created, the default alpha value is set to 255, and the default composite mode to SRCOVER.

Parameters:

g - the Graphics object

Throws:

NullPointerException - if the g parameter is null

setComposite

public void setComposite(int compRule)

Sets the alpha composite mode for the Graphics object associated with this AlphaAttribute object. The
valid set of modes includes SRC, SRCOVER, and CLEAR. Once set, the mode affects all the following operations
performed on the associated Graphics object with a few exceptions such as drawImage as specified in the
class documentation for this class.

Parameters:

compRule - the alpha composite mode to set

Throws:

IllegalArgumentException - thrown when the compRule is invalid

getComposite

public int getComposite()

Returns the current alpha composite mode.

Returns:

the current composite mode. The default value is SRCOVER. One of SRC, SRCOVER, and CLEAR may
be specified

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 199

setAlphaValue

public void setAlphaValue(int alpha)

Sets the alpha value that will affect graphics operations performed with the associated Graphics object. This
value affects most of methods called on the associated Graphics object. The default value is 255.

Parameters:

alpha - an alpha value ranging from 0 to 255 inclusive

Throws:

IllegalArgumentException - thrown when the given alpha is out of the valid range

getAlphaValue

public int getAlphaValue()

Returns the current alpha value for the associated Graphics object.

Returns:

the current alpha value

Class DisplayControl
dmb.ui

java.lang.Object

 dmb.ui.DisplayControl

public class DisplayControl

extends Object

Controls the z-order of the Display and the key focus associated with an application.

Z-Order Control

When more than one applications share the display, this class provides a means to set the z-order of the display of each
application. In addition to the z-order, this class classifies applications into three classes of HIGH, NORMAL, and LOW.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 200

As shown in the above picture, each application is assigned a priority that is one of HIGH, NORMAL, and LOW. An
application with a higher priority than others is always displayed closer to the viewer. To set the priority of an
application, setPriority(int) may be invoked. Among applications with identical priority, their relative z-order
may be changed by toFront() and toBack() methods. For instance, if an application should be displayed on the top
of other applications, first its priority should be set to HIGH, and toFront() should be called to bring it to the front
among those assigned HIGH priority.

Key Focus Management

In some cases, an application may not want to receive keys even when it is topmost. By calling
setFocusable(boolean), an application may be set if it wishes to receive key events or not.

Field Summary Page
static

final int HIGH

Means the corresponding application has the high priority in terms of the display device.
198

static
final int LOW

Means the corresponding application has the low priority in terms of the display device.
198

static
final int NORMAL

Means the corresponding application has the normal priority in terms of the display device.
198

Method Summary Page
static

DisplayControl getDisplayControl(MIDlet m)

Returns a DisplayControl object for the given MIDlet.
198

int getPriority()

Returns the current priority of the application associated with this DisplayControl.
200

boolean isFocusable()

Returns if the associated application will receive the key focus or not.
200

void removeDisplayable()

Removes the current Displayable (including DMBCanvas) set to the Display
associated with the application, in turn, associated with this DisplayControl.

199

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 201

void setFocusable(boolean focusable)

Sets whether the associated application will receive key events.
200

void setPriority(int priority)

Sets the display priority for the application associated with this DisplayControl.
199

void toBack()

Moves the Displayable of the corresponding application to the bottom among the
applications with the same priority.

199

void toFront()

Brings the Displayable of the corresponding application to the front among the
applications with the same priority.

199

Field Detail

HIGH

public static final int HIGH = 268435456

Means the corresponding application has the high priority in terms of the display device. Applications with this
priority are displayed closest to the viewer, and guaranteed atop other applications with a lower priority.

NORMAL

public static final int NORMAL = 536870912

Means the corresponding application has the normal priority in terms of the display device. Applications with
this priority are displayed under those with HIGH priority, and above those with LOW priority.

LOW

public static final int LOW = 805306368

Means the corresponding application has the low priority in terms of the display device. Applications with this
priority are displayed under applications with a higher priority.

Method Detail

getDisplayControl

public static DisplayControl getDisplayControl(MIDlet m)

Returns a DisplayControl object for the given MIDlet.

Parameters:

m - the MIDlet instance

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 202

Throws:

NullPointerException - thrown when the m parameter is null

removeDisplayable

public void removeDisplayable()

Removes the current Displayable (including DMBCanvas) set to the Display associated with the
application, in turn, associated with this DisplayControl. After a call to this method,
Display.getCurrent() returns null. Note that calling Display.setCurrent(Displayable) with
null does not remove the current Displayable.

toFront

public void toFront()

Brings the Displayable of the corresponding application to the front among the applications with the same
priority.

toBack

public void toBack()

Moves the Displayable of the corresponding application to the bottom among the applications with the same
priority.

setPriority

public void setPriority(int priority)

Sets the display priority for the application associated with this DisplayControl. The priority must be one of
HIGH, NORMAL, and LOW. And the higher the priority is, the closer the display is to the viewer.

Parameters:

priority - the priority

Throws:

IllegalArgumentException - thrown when the priority is not one of HIGH, NORMAL, and LOW

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 203

getPriority

public int getPriority()

Returns the current priority of the application associated with this DisplayControl. The default value is
NORMAL.

Returns:

the current priority

setFocusable

public void setFocusable(boolean focusable)

Sets whether the associated application will receive key events. If true, the application gets the key focus
when it is topmost in the display device. Otherwise, it yields the key focus to the application next to itself in
the z-order. And the same rule is applied to the next one. This process is repeated until an application to get the
key focus is found. If no application is eligible for owning the key focus, the key focus is set to no application,
and key events are just discarded. The default value for this property is true.

Parameters:

focusable - whether the associated application hopes to receive the key focus or not

isFocusable

public boolean isFocusable()

Returns if the associated application will receive the key focus or not.

Returns:

true if it will get the key focus, false, otherwise

Class DMBCanvas
dmb.ui

java.lang.Object

 javax.microedition.lcdui.Displayable

 javax.microedition.lcdui.Canvas

 dmb.ui.DMBCanvas

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 204

abstract public class DMBCanvas

extends Canvas

Represents the basic drawing surface which is laid over the video presentation. This is a subclass of Canvas and
provides additional key mappings, which are unique to DMB environment. Besides the above mentioned facilities,
DMBCanvas provides a simple framework for implementing custom UI components by allowing DMBItems to be added
to it.

Screen Management

When a Canvas in MIDP LCD UI is set to the Display, the current Canvas of the foreground application occupies the
whole display area, and consumes all the input events generated by the user. Different from its superclass Canvas,
DMBCanvas shares the display area with other DMBCanvases set to Display by other applications. Therefore, the
bounds of DMBCanvas must be specified. Graphics generated by a DMBCanvas will not be drawn outside its bounds,
and pointer events are delivered to a DMBCanvas only when the pointer is inside the bounds of the DMBCanvas.:

As shown in the above picture, a display is shared among more than one DMBCanvas, and they are placed along the line
of sight depending on the z-order value assigned for them. When a display is updated, a DMBCanvas with the smallest
z-order value is drawn first, one with the next smallest value drawn next, and so on. So a DMBCavnas with the largest
z-order value is drawn closest to the viewer (in the picture, the one with Z=2), and it is the foreground application.

Local Coordinate System

DMBCanvas and DMBItem have a local coordinate system of their own. In the left picture above, the display coordinate
system is used when specifying the bounds of a DMBCanvas via its constructor or setBounds(int,int,int,int).
But the methods on Graphics, and other methods like pointerPressed(int,int), pointerDragged(int,int),
and pointerReleased(int,int) use the local coordinate system of the corresponding DMBCanvas, where the origin
in the coordinate system is the top-left corner of the DMBCanvas. As such, DMBItem uses the local coordinate system of
its parent DMBCanvas when specifying its bounds within the parent, but when specifying coordinates for generating
graphics and processing events, all the coordinates are in the local coordinate of the DMBItem.

DMB Action

To map actions unique in DMB environment, DMBCanvas provides the concept of DMB action. It is much like "game
action" in Canvas, but defines a different set of actions which are unique to DMB. Instead of mapping arbitrary key
codes to some actions, key codes should be checked if they correspond to any of DMB actions defined in this class,
such as VOLUME_UP, VOLUME_DOWN, MUTE, CHANNEL_UP, CHANNEL_DOWN, RECORD, GUIDE, INFO, and so on. Each key
code may be mapped to only one DMB action.

Key and Focus Events

Key events are delivered to a DMBCavnas that has the key focus. Among DMBCanvases set to Display by focusable
applications (refer to DisplayControl.setFocusable(boolean)), the one that is closest to the viewer receives the

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 205

key focus, and so does key events. If a MIDlet placed at the top of Display does not want to have the key focus, then
it can call DisplayControl.setFocusable(boolean) with false.

In some cases, an application needs to exclusively receive events generated by acting on a set of keys, even when the
application does not have a DMBCanvas. It may use KeyLock and reserve it with ResourceManager. Then the events
for the designated set of keys will be delivered to the application owning the KeyLock whether it has UI and the key
focus or not.

For some reasons, the key focus may be transferred among applications. In that case, the one losing the focus will be
notified via a call to focusLost(), and another gaining the focus will be notified via a call to focusGained().

Pointer Events

When the pointer is pressed on the display, the corresponding event is delivered to a DMBCanvas which is closest to the
viewer among those containing the point where the pointer is pressed. Drag and release events following a press event
are delivered to the DMBCanvas to which the press event was delivered. If the pointer is pressed at a point not belonging
to a DMBCanvas, then all the pointer events generated until another press event is generated will be delivered to no
DMBCanvas, and silently ignored.

Paint Events

Different from Canvas to which paint events are delivered only when the Canvas is set by the foreground application,
DMBCanvas may receive paint events. All the graphic operations performed in paint(Graphics) take effect on the
display if they are not obscured by graphics generated by another DMBCanvas.

When more than one DMBCanvas display graphics on the display, it is drawn in the order imposed by their z-order
values. But depending on implementations, if an area within a DMBCanvas is updated, other DMBCanvases covering a
portion of the updated area need to recover the portion. In that case, the update performance may degrade significantly.
This needs to be considered when planning applications coexisting at the same time sharing the display.

DMBItem

In a much similar way to Form, DMBCanvas may contain a set of DMBItems, provides methods for adding/removing
and controlling DMBItems within it, and manages the contained DMBItems.

When a key event is generated, it is delivered to a DMBItem which has the key focus if the containing DMBCanvas has
the key focus. Key events are first delivered to DMBCanvas, and then to a focused DMBItem. Note that the dispatch is
done by the default implementation of the relevant event handling methods defined in DMBCanvas such as
keyPressed(int).

In the case of pointer events, once they are to be delivered to a DMBCanvas according to the rule described above, they
are delivered to a DMBItem within the DMBCanvas that contains the point asssociated with pointer events, and is closest
to the viewer. Pointer events are also delivered to a DMBItem first through DMBCanvas. The dispatch mechanism is
implemented within the relevant event handling methods defined in DMBCanvas. Once a pressed event is delivered to a
DMBItem, then the corresponding dragged and released events are delivered to the same DMBItem whether the events
are generated within the DMBItem or not. On the other hand, the pointer is pressed on no DMBItem, then any other
pointer events generated till another pressed event is generated shall be ignored silently. Thus they are delivered to no
DMBItem.

DMBItems are assigned an index. One with smaller index is drawn below one with larger index. The drawing is
performed in paintItems(Graphics) method.

Field Summary Page
static

final int BACK

The action of going back in the user interface.
206

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 206

static
final int CHANNEL_DOWN

The channel down action.
205

static
final int CHANNEL_UP

The channel up action.
205

static
final int EXIT

The action of exiting a context.
206

static
final int GUIDE

The action of activating the guide program.
206

static
final int INFO

The action of requesting more information.
206

static
final int MUTE

The audio muting action.
205

static
final int RECORD

The action of initiating recording of media.
205

static
final int VOLUME_DOWN

The volume down action.
205

static
final int VOLUME_UP

The volume up action.
205

Constructor Summary Page
protected DMBCanvas(int x, int y, int width, int height)

Creates a new DMBCanvas to occupy the given area in the display.
206

Method Summary Page
int appendItem(DMBItem item)

Adds the given DMBItem to this DMBCanvas.
208

protected
void focusGained()

Called when this DMBCanvas gained the key focus.
208

protected
void focusLost()

Called when this DMBCanvas lost the key focus.
208

int getDMBAction(int keyCode)

Returns the DMB action corresponding to the given key code in the device.
207

int getDMBKeyCode(int dmbAction)

Returns a key code corresponding to the given DMB action in the device.
207

DMBItem getFocusedItem()

Returns the DMBItem that has the key focus within this DMBCanvas.
211

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 207

DMBItem getItem(int itemNum)

Returns a DMBItem at the given index in the list of DMBItems contained in this DMBCanvas.
209

int getItemNum()

Returns the number of DMBItems contained in this DMBCanvas.
210

int getX()

Returns the x cooridnate of the top-left corner of this DMBCanvas in the display's coordinate
system.

211

int getY()

Returns the y cooridnate of the top-left corner of this DMBCanvas in the display's coordinate
system.

211

final
boolean hasFocus()

Returns whether this DMBCanvas has the key focus.
208

void insertItem(DMBItem item, int itemNum)

Inserts the given DMBItem at the given index in the list of DMBItems in this DMBCanvas.
209

protected
void keyPressed(int keyCode)

Called when this DMBCanvas has the key focus and a key is pressed.
212

protected
void keyReleased(int keyCode)

Called when a key that was previously pressed is released.
212

protected
void keyRepeated(int keyCode)

Called when a key is repeated (held down).
213

protected
void paint(Graphics g)

Paints the content of this DMBCanvas.
211

void paintItems(Graphics g)

Paints all the DMBItems in this DMBCanvas from the one with the smallest index.
211

protected
void pointerDragged(int x, int y)

Called when the pointer is dragged after the corresponding pressed event is delivered to this
DMBCanvas.

214

protected
void pointerPressed(int x, int y)

Called when the pointer is pressed on a point this DMBCanvas contains.
213

protected
void pointerReleased(int x, int y)

Called when the pointer was pressed in this DMBCanvas and is then released.
213

void removeAllItems()

Removes all the DMBItems contained in this DMBCanvas.
210

void removeItem(DMBItem item)

Removes the given DMBItem from the list of DMBItems contained in this DMBCanvas.
210

void removeItem(int itemNum)

Removes a DMBItem at the given index in the list of DMBItems contained in this DMBCanvas.
210

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 208

void setBounds(int x, int y, int width, int height)

Sets the bounds of this DMBCanvas.
207

Field Detail

VOLUME_UP

public static final int VOLUME_UP = 1

The volume up action.

VOLUME_DOWN

public static final int VOLUME_DOWN = 2

The volume down action.

MUTE

public static final int MUTE = 3

The audio muting action.

CHANNEL_UP

public static final int CHANNEL_UP = 4

The channel up action.

CHANNEL_DOWN

public static final int CHANNEL_DOWN = 5

The channel down action.

RECORD

public static final int RECORD = 6

The action of initiating recording of media.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 209

GUIDE

public static final int GUIDE = 7

The action of activating the guide program.

INFO

public static final int INFO = 8

The action of requesting more information.

BACK

public static final int BACK = 9

The action of going back in the user interface.

EXIT

public static final int EXIT = 10

The action of exiting a context.

Constructor Detail

DMBCanvas

protected DMBCanvas(int x,
 int y,
 int width,
 int height)

Creates a new DMBCanvas to occupy the given area in the display. The coordinates are specified in the
coordinate system of the display.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 210

Method Detail

setBounds

public void setBounds(int x,
 int y,
 int width,
 int height)

Sets the bounds of this DMBCanvas. The coordinates are in the display coordinate system.

Parameters:

x - the x coordinate of the top-left corner of this DMBCanvas

y - the y coordinate of the top-left corner of this DMBCanvas

width - the width of this DMBCanvas in pixels

height - the height of this DMBCanvas in pixels

getDMBAction

public int getDMBAction(int keyCode)

Returns the DMB action corresponding to the given key code in the device.

Parameters:

keyCode - a key code

Returns:

the DMB action associated with the given key code. If there is no corresponding action, then returns 0

getDMBKeyCode

public int getDMBKeyCode(int dmbAction)
 throws IllegalArgumentException

Returns a key code corresponding to the given DMB action in the device.

Parameters:

dmbAction - a DMB action

Returns:

a key code corresponding to the given DMB action

Throws:

IllegalArgumentException - thrown when the given action is invalid

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 211

focusGained

protected void focusGained()

Called when this DMBCanvas gained the key focus. More specifically, this is called in the following cases.

• When this DMBCanvas gained the key focus, and it did not have it before

• When this DMBCanvas set to Display, and the application has already fulfilled the condition to get
the key focus. In this case, the key focus is immediately transferred to the newly set DMBCanvas.

The default implementation of this method dispatches this event by invoking UserItem.focusGained() to
the UserItem having the key focus within the focused DMBCanvas.

Note that when a DMBItem that is not a UserItem has the key focus, the default implementation of this
method may have the responsibility of notifying the DMBItem of its gaining the key focus. Thus the default
implementation of this method must be called at an appropriate timing when overriding this method in any of
subclasses.

focusLost

protected void focusLost()

Called when this DMBCanvas lost the key focus. But this method is not called if this DMBCanvas had once the
key focus, and is removed from Display by calling DisplayControl.removeDisplayable().

The default implementation of this method dispatches this event to the UserItem owning the key focus within
this DMBCanvas by calling UserItem.focusLost().

Note that even when the focused DMBItem is not a UserItem, the underlyiing implementation may rely on the
default implementation of this method to get notified of the fact that the key focus has been moved to the
DMBItem. Thus the default implementation of this method must be called in any of descendants of this class
when overriding the default implementation.

hasFocus

public final boolean hasFocus()

Returns whether this DMBCanvas has the key focus. When a DMBCanvas has the key focus, it is eligible for
receiving forthcoming key events.

Returns:

if owning the key focus, true. Otherwise false

appendItem

public int appendItem(DMBItem item)

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 212

Adds the given DMBItem to this DMBCanvas. It is placed at the end of the list of DMBItems managed by this
DMBCanvas. It means that the DMBItem placed closest to the viewer.

Parameters:

item - DMBItem to add

Returns:

the index of the added DMBItem in the list DMBItem

Throws:

NullPointerException - thrown when the argument, item is null

IllegalStateException - thrown when the given item is already added to DMBCanvas

insertItem

public void insertItem(DMBItem item,
 int itemNum)

Inserts the given DMBItem at the given index in the list of DMBItems in this DMBCanvas. itemNum must be in
a range from 0 to getItemNum() including 0 and the getItemNum(), and if itemNum is equal to
getItemNum(), then the DMBItem is added to the end of this list.

Parameters:

item - the DMBItem to insert

itemNum - the index at which the item will be inserted

Throws:

NullPointerException - thrown if item is null

IllegalStateException - thrown when the given item is already contained in this DMBCanvas

IndexOutOfBoundsException - thrown when the given itemNum is out of the valid range

getItem

public DMBItem getItem(int itemNum)

Returns a DMBItem at the given index in the list of DMBItems contained in this DMBCanvas. The given
itemNum should be in the range from 0 to getItemNum()-1 inclusive.

Parameters:

itemNum - the index of the DMBItem to retrieve

Returns:

the designated DMBItem

Throws:

IndexOutOfBoundsException - thrown when the given itemNum is not in the valid range

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 213

removeItem

public void removeItem(int itemNum)

Removes a DMBItem at the given index in the list of DMBItems contained in this DMBCanvas. The given index,
itemNum, should be in the range from 0 to getItemNum()-1 inclusive. If the DMBItem that is removed, had
the key focus, then after removal, getFocusedItem() returns null. But in this case, even though the
removed DMBItem is a UserItem, UserItem.focusLost() will not be called.

Parameters:

itemNum - the index of a DMBItem to remove

Throws:

IndexOutOfBoundsException - thrown when the given itemNum is outside the valid range

removeItem

public void removeItem(DMBItem item)

Removes the given DMBItem from the list of DMBItems contained in this DMBCanvas. If there is no such
DMBItem in this DMBCanvas, it is silently ignored without throwing an exception. If the removed DMBItem
had the key focus within this DMBCanvas, after removal, getFocusedItem() will return null.

Parameters:

item - the DMBItem to remove

Throws:

NullPointerException - thrown if the given item is null

removeAllItems

public void removeAllItems()

Removes all the DMBItems contained in this DMBCanvas.

getItemNum

public int getItemNum()

Returns the number of DMBItems contained in this DMBCanvas.

Returns:

the number of DMBItems in this DMBCanvas

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 214

paintItems

public void paintItems(Graphics g)

Paints all the DMBItems in this DMBCanvas from the one with the smallest index.

Parameters:

g - a Graphics object to be used to paint DMBItems

getFocusedItem

public DMBItem getFocusedItem()

Returns the DMBItem that has the key focus within this DMBCanvas. A newly created r394DMBCanvas does
not have a DMBItem. If the first DMBItem is inserted, and DMBItem.setFocus() is not invoked on it, then
getFocusedItem() shall return null meaning there is no DMBItem owning the key focus. An explicit call to
DMBItem.setFocus() is required to set a DMBItem focused.

Returns:

a DMBItem that owns the key focus. If there is no DMBItem owning the key focus, then returns null

getX

public int getX()

Returns the x cooridnate of the top-left corner of this DMBCanvas in the display's coordinate system.

Returns:

the x coordinate of this DMBCanvas

getY

public int getY()

Returns the y cooridnate of the top-left corner of this DMBCanvas in the display's coordinate system.

Returns:

the y coordinate of this DMBCanvas

paint

protected void paint(Graphics g)

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 215

Paints the content of this DMBCanvas. The default implementation of this method calls
paintItems(Graphics) to paint DMBItems contained in this DMBCanvas. If any graphics need to be painted
in the background of the DMBItems, then this method should be overriden. The overriden method may paint
something first in the background, and then invoke the default implementation of this method or
paintItems(Graphics). Conversely if this method is overriden and the default implementation is not
called, then no DMBItems will be painted automatically.

Overrides:

paint in class Canvas

Parameters:

g - the Graphics object to be used for painting the content of this DMBCanvas

keyPressed

protected void keyPressed(int keyCode)

Called when this DMBCanvas has the key focus and a key is pressed. The implementation of this method in
r394DMBCanvas tries to dispatch the event to the DMBItem currently owning the key focus within this
DMBCanvas. If the DMBItem owning the key focus is a UserItemUserItem.keyPressed(int) is called on
the UserItem.

Note that a DMBItem other than UserItem may rely on the implementation of this method to obtain key
events. Thus if this method is overriden, and all the DMBItems need to work properly, then the original
implementation of this method must be called at an appropriate location within the overriden method.

Overrides:

keyPressed in class Canvas

Parameters:

keyCode - code for the key that is pressed

keyReleased

protected void keyReleased(int keyCode)

Called when a key that was previously pressed is released. The implementation of this method in DMBCanvas
tries to dispatch the event to a DMBItem owning the key focus. If the focused DMBItem is a UserItem, then
UserItem.keyReleased(int) is called.

Note that DMBItems other than a UserItem may rely on the implementation of this method to get key events.
So if this method is overriden, and all the DMBItems within this DMBCanvas need to respond to key events
properly, the original implementation must be called appropriately.

Overrides:

keyReleased in class Canvas

Parameters:

keyCode - code for the key that is released

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 216

keyRepeated

protected void keyRepeated(int keyCode)

Called when a key is repeated (held down). The implementation of this method in DMBCanvas tries to dispatch
the event to a DMBItem in this DMBCanvas, which has the key focus. If the DMBItem is a UserItem, then
UserItem.keyRepeated(int) is called on it.

Even in the case of other DMBItems than UserItems, they may rely on the implementation of this method to
get key events of their interest. So if this method is overriden, and such DMBItems need to work properly, then
this original implementation must be called at an appropriate time.

Overrides:

keyRepeated in class Canvas

Parameters:

keyCode - code for the key that is repeated

pointerPressed

protected void pointerPressed(int x,
 int y)

Called when the pointer is pressed on a point this DMBCanvas contains. The implementation of this method in
DMBCanvas tries to dispatch the event to a DMBItem which is closest to the viewer among those containing the
point. If it is a UserItem, UserItem.pointerPressed(int,int) shall be called, where x and y
coodinates are in the local coordinate system of the UserItem.

Note that DMBItems other than UserItems may rely on the implementation of this method to get pointer
events of their interest. So if this method is overriden, and such DMBItems need to work properly, the original
implementation of this method must be called at an appropriate time.

Overrides:

pointerPressed in class Canvas

Parameters:

x - the x coordinate of the point where the pointer is pressed in the local coordinate system of this
DMBCanvas

y - the y coordinate of the point where the pointer is pressed in the local coordinate system of this
DMBCanvas

pointerReleased

protected void pointerReleased(int x,
 int y)

Called when the pointer was pressed in this DMBCanvas and is then released. The implementation of this
method in DMBCanvas tries to dispatch the event to a DMBItem the corresponding pressed event was delivered

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 217

to. If it is a UserItem, UserItem.pointerReleased(int,int) shall be called on it. The x and y
coordinates are in the local coordinate system of the UserItem.

Note that DMBItems other than UserItems may rely on the implementation of this method to get pointer
events of their interest. If this method is overriden and DMBItems need to work properly, then the original
implementation must be called at an appropriate time.

Overrides:

pointerReleased in class Canvas

Parameters:

x - the x coordinate of the point where the pointer is released

y - the y coordinate of the point where the pointer is released

pointerDragged

protected void pointerDragged(int x,
 int y)

Called when the pointer is dragged after the corresponding pressed event is delivered to this DMBCanvas. The
implementation of this method in this class tries to dispatch the event to an appropriate DMBItem within this
DMBCanvas. The event is delivered to a DMBItem where the corresponding pressed event was delivered. If the
DMBItem is a UserItem, then UserItem.pointerDragged(int,int) is invoked, where x and y
coordinates are in the local cooridnate system of the UserItem.

Note that even if the DMBItem is not a UserItem, the underlying implementation of the DMBItem may rely on
the implementation of this method to get the relevant events. Thus if this method is overriden in a subclass of
this class, then the original implementation must be invoked, or DMBItems within instances of the subclass
may not work properly.

Overrides:

pointerDragged in class Canvas

Parameters:

x - the x coordinate of the pointer when this event is generated in the local coordinate system of this
DMBCanvas

y - the y coordinate of the pointer when this event is generated in the local coordinate system of this
DMBCanvas

Class DMBItem
dmb.ui

java.lang.Object

 dmb.ui.DMBItem

Direct Known Subclasses:
TextItem, UserItem

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 218

abstract public class DMBItem

extends Object

The base class for UI components that can be added to a DMBCanvas. When specifying the bounds of this DMBItem, the
local coordinate system of the parent DMBCanvas is used. But in the case of painting and pointer events, relevant
coordinates are in the local coordinate system of this DMBItem.

Method Summary Page
int getHeight()

Returns the height of this DMBItem in pixels.
216

int getWidth()

Returns the width of this DMBItem in pixels.
216

int getX()

Returns the x coordinate of the top-left corner of this DMBItem in the local coordinate system of
the enclosing DMBCanvas.

216

int getY()

Returns the y coordinate of the top-left corner of this DMBItem in the local coordinate system of
the enclosing DMBCanvas.

216

final
boolean hasFocus()

Returns whether this DMBItem has the key focus.
216

void setBounds(int x, int y, int width, int height)

Sets the bounds of this DMBItem in the local coordinate system of the enclosing DMBCanvas.
215

void setFocus()

Sets this DMBItem to be the key focus owner within its parent DMBCanvas.
217

Method Detail

setBounds

public void setBounds(int x,
 int y,
 int width,
 int height)

Sets the bounds of this DMBItem in the local coordinate system of the enclosing DMBCanvas.

Parameters:

x - the x cooridnate of this DMBItem

y - the y cooridnate of this DMBItem

width - the width of this DMBItem in pixels

height - the height of this DMBItem in pixels

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 219

getX

public int getX()

Returns the x coordinate of the top-left corner of this DMBItem in the local coordinate system of the enclosing
DMBCanvas.

Returns:

the x coordinate

getY

public int getY()

Returns the y coordinate of the top-left corner of this DMBItem in the local coordinate system of the enclosing
DMBCanvas.

Returns:

the y coordinate

getWidth

public int getWidth()

Returns the width of this DMBItem in pixels.

Returns:

the width

getHeight

public int getHeight()

Returns the height of this DMBItem in pixels.

Returns:

the height

hasFocus

public final boolean hasFocus()

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 220

Returns whether this DMBItem has the key focus. More specifically, for this method to return true, the parent
DMBCanvas of this DMBItem must have the key focus, and this must be designated as a DMBItem owning the
key focus within the DMBCanvas.

Returns:

true if this DMBItem has the key focus. Otherwise, false

setFocus

public void setFocus()

Sets this DMBItem to be the key focus owner within its parent DMBCanvas. If this DMBItem is not added to a
DMBCanvas, this request is silently ignored.

If this method is invoked, the DMBItem owning the key focus is changed, but this does not mean that its parent
DMBCanvas will be the key focus owner. Thus hasFocus() must return true, and actual key events will be
delivered to the focused DMBItem.

Class FontLoader
dmb.ui

java.lang.Object

 dmb.ui.FontLoader

public class FontLoader

extends Object

Loads new fonts from an InputStream or application resource. This class is for introducing new fonts that were not
installed in the device. Font data may be transferred as a part of an application, or obtained in any other means. The
created font will be valid only during the lifespan of the application loading the font. Thus, when a MIDlet is
shutdown, all the fonts loaded by it shall be unloaded accordingly.

Method Summary Page
static

Font loadFont(InputStream i)

Creates a Font fron the given InputStream.
218

static
Font loadFont(String resourceName)

Creates a Font from the specified application resource.
218

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 221

Method Detail

loadFont

public static Font loadFont(InputStream i)

Creates a Font fron the given InputStream.

Parameters:

i - an InputStream containing the raw font data

Returns:

the created Font

Throws:

IllegalArgumentException - thrown when the given InputStream does not convey a valid font
data

loadFont

public static Font loadFont(String resourceName)

Creates a Font from the specified application resource.

Parameters:

resourceName - name of the resource containing the font data

Returns:

the created Font

Throws:

IllegalArgumentException - thrown when a Font can not be created from the specified resource

Class KeyLock
dmb.ui

java.lang.Object

 dmb.ui.KeyLock

All Implemented Interfaces:
Resource

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 222

public class KeyLock

extends Object

implements Resource

Represents the right to exclusively receive events generated by the associated set of keys. To exclusively receive events
for a set of keys no matter whether an application has UI or not, the application should acquire an instance of this class
that is created in association with the keys of interest. Then the key events will exclusively be delivered to the owning
application.

Constructor Summary Page
KeyLock(int[] keyCodes)

Creates a KeyLock instance to get the exclusive right to receive key events generated by the specified
keys.

219

Method Summary Page
int[] getKeyCodes()

Returns the key codes associated with this KeyLock object.
219

protected
boolean keyPressed(int keyCode)

Called when one of the associated keys is pressed.
220

protected
boolean keyReleased(int keyCode)

Called when one of the associated keys is released.
220

protected
boolean keyRepeated(int keyCode)

Called when one of the associated keys is repeated.
220

Constructor Detail

KeyLock

public KeyLock(int[] keyCodes)

Creates a KeyLock instance to get the exclusive right to receive key events generated by the specified keys.

Method Detail

getKeyCodes

public int[] getKeyCodes()

Returns the key codes associated with this KeyLock object. The array returned is a copy of the array given to
the constructor of KeyLock.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 223

Returns:

the list of key codes associated with this object

keyPressed

protected boolean keyPressed(int keyCode)

Called when one of the associated keys is pressed. Depending on the return value of this method, the event is
further dispatched to the Displayable. If true is returned, it means that the key event is fully processed
within this method, so the event is not propagated further. But if false is returned, it signifies that the event
should be processed further by a UI component that has the key focus within the context of the application
receiving the key event. The default implementation of this method returns false. Thus in case an application
wants to process key events it exclusively reserved, KeyLock need not be subclassed.

Parameters:

keyCode - the code of the pressed key

Returns:

true, if the key event should not be dispatched to a UI component. false otherwise

keyReleased

protected boolean keyReleased(int keyCode)

Called when one of the associated keys is released. Depending on the return value of this method, the event is
further dispatched to the Displayable. If true is returned, it means that the key event is fully processed
within this method, so the event is not propagated further. But if false is returned, it signifies that the event
should be processed further by a UI component that has the key focus within the context of the application
receiving the key event. The default implementation of this method returns false. Thus in case an application
wants to process key events it exclusively reserved, KeyLock need not be subclassed.

Parameters:

keyCode - the code of the released key

Returns:

true, if the key event should not be dispatched to a UI component. false otherwise

keyRepeated

protected boolean keyRepeated(int keyCode)

Called when one of the associated keys is repeated. Depending on the return value of this method, the event is
further dispatched to the Displayable. If true is returned, it means that the key event is fully processed
within this method, so the event is not propagated further. But if false is returned, it signifies that the event
should be processed further by a UI component that has the key focus within the context of the application
receiving the key event. The default implementation of this method returns false. Thus in case an application
wants to process key events it exclusively reserved, KeyLock need not be subclassed.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 224

Parameters:

keyCode - the code of the repeated key

Returns:

true, if the key event should not be dispatched to a UI component. false otherwise

Class TextItem
dmb.ui

java.lang.Object

 dmb.ui.DMBItem

 dmb.ui.TextItem

public class TextItem

extends DMBItem

A DMBItem subclass providing text editing capability. This class has almost the same set of methods as TextField,
and input constraints and mode setting are identical to it. Instead, this DMBItem does not have any decoration around it,
thus may be used in the context of custom user interfaces without any inconsistency with the look of the surrounding
user interfaces.

Constructor Summary Page
TextItem(String text, int maxSize, int constraints)

Creates a new TextItem with the given initial text, the maximum number of characters, and a
constraints.

222

Method Summary Page
void delete(int offset, int length)

Deletes characters from this TextItem.
227

int getCaretPosition()

Returns the current position of the caret where the next character will be inserted.
223

void getChars(char[] data)

Copies the current contents of this TextItem into the given character array starting at index
zero.

226

int getConstraints()

Returns the current input constraints of this TextItem.
224

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 225

int getMaxSize()

Returns the maximum size (number of characters) that can be stored in this TextItem.
224

String getString()

Returns the contents of this TextItem as a string value.
225

void insert(char[] data, int offset, int length, int position)

Inserts a subrange of the given array of characters into the contents of this TextItem.
226

void insert(String str, int position)

Inserts a string into the contents of this TextItem.
227

void setChars(char[] data, int offset, int length)

Sets the contents of this TextItem from a character array, replacing the previous contents.
225

void setConstraints(int constraints)

Sets the input constraints of this TextItem.
224

void setInitialInputMode(String characterSubset)

Sets a hint to the implementation as to the input mode that should be used when the user
initiates editing of this TextItem.

223

void setMaxSize(int maxSize)

Sets the maximum size (number of characters) that can be contained in this Textitem.
223

void setString(String text)

Sets the contents of this TextItem as a string value, replacing the previous contents.
224

int size()

Returns the number of characters that are current stored in this TextItem.
223

Methods inherited from class dmb.ui.DMBItem
getHeight, getWidth, getX, getY, hasFocus, setBounds, setFocus

Constructor Detail

TextItem

public TextItem(String text,
 int maxSize,
 int constraints)

Creates a new TextItem with the given initial text, the maximum number of characters, and a constraints.

Throws:

IllegalArgumentException

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 226

Method Detail

getCaretPosition

public int getCaretPosition()

Returns the current position of the caret where the next character will be inserted.

Returns:

The current input position, where 0 means the beginning of the text

setInitialInputMode

public void setInitialInputMode(String characterSubset)

Sets a hint to the implementation as to the input mode that should be used when the user initiates editing of this
TextItem. The characterSubset parameter names a subset of Unicode characters that is used by the
implementation to choose an initial input mode. If null is passed, the implementation should choose a default
input modes. The concept of input modes is same as that of TextField. Please refer to the description on the
class for further details on input modes.

Parameters:

characterSubset - a string naming a Unicode character subset, or null

size

public int size()

Returns the number of characters that are current stored in this TextItem.

Returns:

number of characters in this TextItem

setMaxSize

public void setMaxSize(int maxSize)

Sets the maximum size (number of characters) that can be contained in this Textitem. If the current contents
of the TextItem are larger than maxSize, the contents are truncated to fit.

Parameters:

maxSize - the new maximum size

Throws:

IllegalArgumentException - thrown when any of the followings is true.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 227

• when maxSize is non-positive

• when the contents after truncation would be illegal for the current input constraints

getMaxSize

public int getMaxSize()

Returns the maximum size (number of characters) that can be stored in this TextItem.

Returns:

the maximum size in characters

setConstraints

public void setConstraints(int constraints)

Sets the input constraints of this TextItem. If the curent contents of this TextItem do not match the new
constraints, the contents are set to empty.

Parameters:

constraints - the input constraints. See TextField for the details of input constraints

Throws:

IllegalArgumentException - thrown when the constraints is not one of those specified in
TextField

getConstraints

public int getConstraints()

Returns the current input constraints of this TextItem.

Returns:

the current input constraints value

See Also:

setConstraints(int)

setString

public void setString(String text)

Sets the contents of this TextItem as a string value, replacing the previous contents.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 228

Parameters:

text - the new value of this TextItem, or null if this TextItem is to be made empty

Throws:

IllegalArgumentException - thrown in the following cases.

• when the given text is illegal for the current input constraints(see setConstraints(int)

• when the given text would exceed the current maximum capacity

setChars

public void setChars(char[] data,
 int offset,
 int length)

Sets the contents of this TextItem from a character array, replacing the previous contents. Characters are
copied from the region of the given data array starting at the given index, offset, and running for the given
length characters. If the data is null, this TextItem is set to be empty and the other parameters are
ignored.

The offset and the length parameters must specify a valid range of characters within the character array,
data. The offset parameter must be within the range [0..(data.length)], inclusive. The length parameter
must be a non-negative integer such that (offset + length) <= data.length.

Parameters:

data - the source of the character data

offset - the beginning index of the region to copy in data

length - the number of characters to copy

Throws:

ArrayIndexOutOfBoundsException - thrown when offset and length do not specify a valid
range within the data array

IllegalArgumentException - thrown when either the given data array is illegal for the current
input constraints, or the specified text would exceed the current maximum capacity

getString

public String getString()

Returns the contents of this TextItem as a string value.

Returns:

the current contents as a string

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 229

getChars

public void getChars(char[] data)

Copies the current contents of this TextItem into the given character array starting at index zero. Array
elements beyond the characters copied are left unchanged.

Parameters:

data - the character array into which the contents will be copied

Returns:

the number of characters to be copied

Throws:

ArrayIndexOutOfBoundsException - thrown when the length of the given array is smaller than
the number of characters to copy

NullPointerException - thrown when the given data is null

insert

public void insert(char[] data,
 int offset,
 int length,
 int position)

Inserts a subrange of the given array of characters into the contents of this TextItem. The given offset and
the length parameters indicate the subrange of the data array to be used for insertion. Behaviour is otherwise
identical to that of insert(String, int).

The offset and the length parameters must specify a valid range of characters within the given character
array, data. The offset parameter must be within the range [0..(data.length)], inclusive. The length
parameter must be a non-negative integer such that (offset + length) <= data.length.

Parameters:

data - the source of the character data

offset - the beginning index of start of the region to copy

length - the number of characters to copy

position - the position at which the given data will be inserted

Throws:

ArrayIndexOutOfBoundsException - thrown when the given offset and the length do not
specify a valid range within the given data array

IllegalArgumentException - thrown when the resulting contents would be illegal for the current
input constraints, or exceed the current maximum capacity

NullPointerException - thrown when the given data is null

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 230

insert

public void insert(String str,
 int position)

Inserts a string into the contents of this TextItem. The string is inserted just before the character indicated by
the position parameter, where zero specifies the first character in the contents of this TextItem. If
position is less than or equal to zero, the insertion occurs at the beginning of the contents, thus effecting a
prepend operation. If position is greater than or equal to the current size of the contents, the insertion occurs
immediately after the end of the contents, thus effecting an append operation. For example, text.insert(s,
text.size()) always appends the string s to the current contents.

The current size of the contents is increased by the number of inserted characters. The resulting string must fit
within the current maximum capacity.

If the application needs to simulate typing of characters, it can determine the location of the current insertion
point("caret") using getCaretPosition(). For example, text.insert(s,
text.getCaretPosition()) inserts the string s at the current caret position.

Parameters:

str - the string to be inserted

position - the position at which the str will be inserted

Throws:

IllegalArgumentException - thrown when the resulting contents would be illegal for the current
input constraints, or exceed the current maximum capacity

NullPointerException - thrown when the given str is null

delete

public void delete(int offset,
 int length)

Deletes characters from this TextItem.

The given offset and length parameters must specify a valid range of characters within the contents of this
TextItem. The offset parameter must be in the range of [0..(size())], inclusive. And the length parameter
must be a non-negative integer such that (offset + length) <= size.

Parameters:

offset - the beginningof the region to delete

length - the number of characters to delete

Throws:

IllegalArgumentException - thrown when the resulting contents would be illegal for the current
input constraints

StringIndexOutOfBoundsException - thrown when the given offset and the length do not
specify a valid range within the contents of this TextItem

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 231

Class UserItem
dmb.ui

java.lang.Object

 dmb.ui.DMBItem

 dmb.ui.UserItem

abstract public class UserItem

extends DMBItem

A DMBItem subclass that may be subclassed and customized. In this class, methods for setting and getting various
properties affecting the behaviour and the look are provided. In addition to them, this class defines a set of methods to
get notified of UI events delivered to UserItem.

Constructor Summary Page
protected UserItem()

Creates a new UserItem.
229

Method Summary Page
protected

void added(DMBCanvas canvas)

Called when this UserItem is added to a DMBCanvas.
229

protected
void focusGained()

Called when this UserItem gained the key focus.
231

protected
void focusLost()

Called when the key focus is lost.
232

protected
void keyPressed(int keyCode)

Called when a key is pressed while this UserItem owns the key focus (that is, hasFocus()
returns true).

230

protected
void keyReleased(int keyCode)

Called when a key is released while this UserItem owns the key focus (that is, hasFocus()
returns true).

230

protected
void keyRepeated(int keyCode)

Called when a key is repeated while this UserItem owns the key focus (that is, hasFocus()
returns true).

230

protected
abstract

void
paint(Graphics g)

Paints the contents of this UserItem using the given Graphics object.
229

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 232

protected
void pointerDragged(int x, int y)

Called when the pointer is first pressed within this UserItem and dragged.
231

protected
void pointerPressed(int x, int y)

Called when the pointer is pressed within this UserItem.
231

protected
void pointerReleased(int x, int y)

Called when the pointer is pressed within this UserItem and released.
231

protected
void removed(DMBCanvas canvas)

Called when this UserItem is removed from the parent DMBCanvas.
230

Methods inherited from class dmb.ui.DMBItem
getHeight, getWidth, getX, getY, hasFocus, setBounds, setFocus

Constructor Detail

UserItem

protected UserItem()

Creates a new UserItem.

Method Detail

paint

protected abstract void paint(Graphics g)

Paints the contents of this UserItem using the given Graphics object. The Graphics object uses the local
coordinate system of this UserItem.

Parameters:

g - a Graphics to paint the contents with

added

protected void added(DMBCanvas canvas)

Called when this UserItem is added to a DMBCanvas.

As with methods described in Event Handling section of the package description of
javax.microedition.lcdui, this method is not called at the same time as those methods.

Parameters:

canvas - DMBCanvas where this UserItem is added

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 233

removed

protected void removed(DMBCanvas canvas)

Called when this UserItem is removed from the parent DMBCanvas.

As with methods described in Event Handling section of the package description of
javax.microedition.lcdui, this method is not called at the same time as those methods.

Parameters:

canvas - DMBCanvas from which this UserItem is removed

keyPressed

protected void keyPressed(int keyCode)

Called when a key is pressed while this UserItem owns the key focus (that is, hasFocus() returns true).

Parameters:

keyCode - the key code

keyReleased

protected void keyReleased(int keyCode)

Called when a key is released while this UserItem owns the key focus (that is, hasFocus() returns true).

Parameters:

keyCode - the key code

keyRepeated

protected void keyRepeated(int keyCode)

Called when a key is repeated while this UserItem owns the key focus (that is, hasFocus() returns true).

Parameters:

keyCode - the key code

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 234

pointerDragged

protected void pointerDragged(int x,
 int y)

Called when the pointer is first pressed within this UserItem and dragged.

Parameters:

x - the x coordinate of the pointer when it is dragged

y - the y coordinate of the pointer when it is dragged

pointerPressed

protected void pointerPressed(int x,
 int y)

Called when the pointer is pressed within this UserItem.

Parameters:

x - the x coordinate of the pointer when it is pressed

y - the y coordinate of the pointer when it is pressed

pointerReleased

protected void pointerReleased(int x,
 int y)

Called when the pointer is pressed within this UserItem and released.

Parameters:

x - the x coordinate of the pointer when it is released

y - the y coordinate of the pointer when it is released

focusGained

protected void focusGained()

Called when this UserItem gained the key focus. To gain the key focus, this UserItem must be added to a
DMBCanvas, set to get the key focus within the DMBCanvas, and the DMBCanvas must gain the key focus.

As with methods described in Event Handling section of the package description of
javax.microedition.lcdui, this method is not called at the same time as those methods.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 235

focusLost

protected void focusLost()

Called when the key focus is lost. More specifically, another DMBItem may gain the key focus, or DMBCanvas
may lost the key focus.

As with methods described in Event Handling section of the package description of
javax.microedition.lcdui, this method is not called at the same time as those methods.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 236

Package dmb.util

Defines common interfaces and classes used in other packages.

See:

Description

Interface Summary Page

AsyncRequestor An interface to be implemented by an object that needs to get notified of progresses of an
asynchronous operation. 233

AsyncResult Represents an asynchronous operation that will be completed in the future. 234

AttributedObject Represents an object having an associated set of attributes. 238

Exception Summary Page

InvalidAttributeException An exception thrown when a non-existing attribute is specified for an
AttributedObject. 247

Package dmb.util Description

Defines common interfaces and classes used in other packages.

Interface AsyncRequestor
dmb.util

public interface AsyncRequestor

An interface to be implemented by an object that needs to get notified of progresses of an asynchronous operation. A
method supporting asynchronous operation usually takes an instance of this interface as a parameter.

See Also:

AsyncResult

Method Summary Page
void resultUpdated(AsyncResult result)

Called when an associated asynchronous operation has progressed.
234

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 237

Method Detail

resultUpdated

public void resultUpdated(AsyncResult result)

Called when an associated asynchronous operation has progressed. If the operation reports progresses besides
its completion, then AsyncResult.getProgress() may be consulted. In that case, for an AsyncResult,
this method may be called more than once. So AsyncResult.isDone() must be consulted to know if the
operation has been completed.

Parameters:

result - the AsyncResult associated with the operation that has been progressed

Interface AsyncResult
dmb.util

public interface AsyncResult

Represents an asynchronous operation that will be completed in the future. APIs supporting asynchronous operation
return an instance of this interface. With this interface, the operation may be tracked and controlled.

AsyncResult and AsyncRequestor are elements of an API pattern supporting monitoring and control of
asynchronous operations. A method initiating an asynchronous operation should return an instance of AsyncResult.
And if it is to provide notification of progresses of the operation, AsyncRequestor should also be taken as a parameter
to the method. The following code snippets are examples of using APIs supporting the pattern consisting of
AsyncResult and AsyncRequestor.

 public class Loader {
 ...
 AsyncResult loadAsynchronously(String url, AsyncRequestor requestor);
 ...
 }
 ...

 Loader l = new Loader();

 // Getting notified when the operation is completed
 l.loadAsynchronously("http://image.location/icon.png",
 new AsyncRequestor() {
 public void resultUpdated(AsyncResult result) {
 if (!result.isDone()) {
 System.out.println("Progress (%): "
 + result.getProgress());
 return;
 }
 try {
 ui.setIcon((Image) result.get());
 ui.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 };
 ...

 // After performing some other tasks, and then waiting for the result
 // of an asynchronous operation
 AsyncResult r = l.loadAsynchronously("http://image.location/icon.png",

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 238

 null);
 ... Do something else ...

 try {
 ui.setIcon((Image) r.get());
 ui.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }

 ...
 // Polling the result in-between performing other tasks
 AsyncResult r = l.loadAsynchronously("http://image.location/icon.png",
 null);
 try {
 while (!r.isDone()) {
 Thread.sleep(1000);
 }
 ui.setIcon((Image) r.get());
 ui.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }

 ...

Field Summary Page
int PROGRESS_UNKNOWN

Returned from getProgress() when there is no information on the current progress, or the
operation is canceled or failed.

236

Method Summary Page
boolean cancel()

Cancels the operation.
238

void complete()

Waits for the completion of the operation.
237

void complete(int timeout)

Waits for the operation completes or the given timeout is expired.
237

Object get()

Returns the result of the operation.
236

Object get(int timeout)

Returns the result of this operation if it is completed before the given timeout.
237

int getProgress()

Returns the current progress of the operation in percents. 0 means there is no progress at all, and
100 means it is completed.

238

boolean isCanceled()

Reports whether the operation has been canceled or not.
236

boolean isDone()

Reports whether the operation is done.
236

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 239

Field Detail

PROGRESS_UNKNOWN

public static final int PROGRESS_UNKNOWN = -1

Returned from getProgress() when there is no information on the current progress, or the operation is
canceled or failed.

Method Detail

isDone

public boolean isDone()

Reports whether the operation is done.

Returns:

if the operation is done, returns true. Otherwise, false. Note that this method returns true,
whether the operation has been completed normally, canceled by cancel(), or failed for some
reason

isCanceled

public boolean isCanceled()

Reports whether the operation has been canceled or not.

Returns:

if canceled, true. Otherwise, false

get

public Object get()
 throws InterruptedException,
 Exception

Returns the result of the operation. If it is not complete yet, this method blocks until it is completed.

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt(), or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 240

complete

public void complete()
 throws InterruptedException,
 Exception

Waits for the completion of the operation. Except that this method does not return a result, this is identical to
get().

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt(), or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

get

public Object get(int timeout)
 throws InterruptedException,
 Exception

Returns the result of this operation if it is completed before the given timeout. This method blocks until the
operation completes, or the given timeout is expired. When this method returns because of the timeout, returns
null. But null may be returned when the result value itself is null. Therefore isDone() must be consulted
to check whether the operation actually completed.

Parameters:

timeout - the timeout in milliseconds. 0 means there is no timeout

Returns:

the result of the operation. If this method returns because of the timeout, returns null

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt(), or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

complete

public void complete(int timeout)
 throws InterruptedException,
 Exception

Waits for the operation completes or the given timeout is expired. Except that this method does not return the
result, this is identical to get(int).

Parameters:

timeout - the timeout in milliseconds. 0 means there is no timeout

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 241

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt(), or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

cancel

public boolean cancel()

Cancels the opeation.

Returns:

if the operation is successfully canceled, returns true. Otherwise false. Usually an asynchronous
operation can not be canceled because it is already completed, or API implementation does not
support cancelation

getProgress

public int getProgress()

Returns the current progress of the operation in percents. 0 means there is no progress at all, and 100 means it
is completed. But 100 does not ensure that isDone() returns true. So to check if the operation is completed,
isDone() must be consulted instead of this method.

Returns:

an integer representing the current progress. It is from 0 to 100, inclusive. For some reasons, the
current progress is unknown, returns PROGRESS_UNKNOWN

Interface AttributedObject
dmb.util

All Known Subinterfaces:
BroadcastFileConnection, ServiceComponent, SIObject

All Known Implementing Classes:
SIDatabase

public interface AttributedObject

Represents an object having an associated set of attributes.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 242

Method Summary Page
String[] getAttributes()

Returns a list of the attributes associated with this object.
239

boolean getBoolean(String a)

Returns a boolean value that is the value of the given attribute.
241

boolean[] getBooleanList(String a)

Returns an array of booleans that is the value of the given attribute.
242

byte[] getBytes(String a)

Returns a byte array that is the value of the given attribute.
246

Date getDate(String a)

Returns a Date value that is the value of the given attribute.
245

Date[] getDateList(String a)

Returns an array of Dates that is the value of the given attribute.
246

int getInt(String a)

Returns an int value that is the value of the given attribute.
242

int[] getIntList(String a)

Returns an array of ints that is the value of the given attribute.
243

long getLong(String a)

Returns a long value that is the value of the given attribute.
243

long[] getLongList(String a)

Returns an array of longs that is the value of the given attribute.
244

Object getObject(String a)

Returns an Object that is the value of the given attribute.
240

Object[] getObjectList(String a)

Returns the value of the given attribute that is an array of objects.
241

String getString(String a)

Returns a String value that is the value of the given attribute.
244

String[] getStringList(String a)

Returns an array of Strings that is the value of the given attribute.
245

boolean isValid(String a)

Checks if there is an attribute of the given name in this object.
240

Method Detail

getAttributes

public String[] getAttributes()

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 243

Returns a list of the attributes associated with this object.

Returns:

an array containing names of all the attributes associated with this object

isValid

public boolean isValid(String a)
 throws NullPointerException

Checks if there is an attribute of the given name in this object.

Parameters:

a - name of the attribute to check

Returns:

true if there is an attribute of the given name. Otherwise, false

Throws:

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getObject

public Object getObject(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an Object that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the object value

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 244

getObjectList

public Object[] getObjectList(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns the value of the given attribute that is an array of objects.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute or its type is not an array of
object

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getBoolean

public boolean getBoolean(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns a boolean value that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not boolean

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 245

getBooleanList

public boolean[] getBooleanList(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an array of booleans that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not an array of booleans

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getInt

public int getInt(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an int value that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not int

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 246

getIntList

public int[] getIntList(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an array of ints that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not an array of ints

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getLong

public long getLong(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns a long value that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not long

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 247

getLongList

public long[] getLongList(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an array of longs that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not an array of longs

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getString

public String getString(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns a String value that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not String

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 248

getStringList

public String[] getStringList(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an array of Strings that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not an array of Strings

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getDate

public Date getDate(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns a Date value that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not Date

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 249

getDateList

public Date[] getDateList(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns an array of Dates that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not an array of Dates

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

getBytes

public byte[] getBytes(String a)
 throws InvalidAttributeException,
 NullPointerException,
 IllegalStateException

Returns a byte array that is the value of the given attribute.

Parameters:

a - name of the attribute

Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when there is no such attribute in this object, or its type is
not an array of bytes

NullPointerException - thrown when the given a parameter is null

IllegalStateException - thrown when it is impossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 250

Class InvalidAttributeException
dmb.util

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 dmb.util.InvalidAttributeException

All Implemented Interfaces:
Serializable

public class InvalidAttributeException

extends RuntimeException

An exception thrown when a non-existing attribute is specified for an AttributedObject.

Constructor Summary Page
InvalidAttributeException()

Creates an instance of this exception without specifying the reason.
247

InvalidAttributeException(String reason)

Creates an instance of this exception with a string describing the reason of the exception.
247

Constructor Detail

InvalidAttributeException

public InvalidAttributeException()

Creates an instance of this exception without specifying the reason.

InvalidAttributeException

public InvalidAttributeException(String reason)

Creates an instance of this exception with a string describing the reason of the exception.

ETSI

ETSI TS 102 635-1 V1.1.1 (2009-08) 251

History

Document history

V1.1.1 August 2009 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions, abbreviations and conventions
	3.1 Definitions
	3.2 Abbreviations
	3.3 Conventions
	3.3.1 Syntax of binary messages
	3.3.2 BNF

	4 Introduction
	5 System architecture
	5.1 Introduction
	5.2 Receiver model
	5.2.1 System resources
	5.2.2 System software

	5.3 Application

	6 Basic data formats
	6.1 Image file formats
	6.1.1 JPEG
	6.1.2 PNG

	6.2 Font file formats
	6.3 Video file formats
	6.4 Audio file formats

	7 Transport protocol
	7.1 Broadcast channel protocol
	7.1.1 File transport protocol
	7.1.2 Packet streaming protocol
	7.1.3 Trigger protocol

	7.2 Communication channel protocol
	7.2.1 Transmission Control Protocol (TCP)
	7.2.2 User Datagram Protocol (UDP)
	7.2.3 Hyper Text Transfer Protocol (HTTP)
	7.2.4 Domain Name Service (DNS)

	8 Locator model
	8.1 Introduction
	8.2 Format
	8.3 Use in APIs

	9 Security model
	9.1 Purpose
	9.1.1 Guarantee of application integrity
	9.1.2 Verification of application provider
	9.1.3 Control of application permissions
	9.1.4 Trace of tasks performed by applications
	9.1.5 Authority delegation among applications

	9.2 Application authentication
	9.2.1 Application signing
	9.2.2 Application authentication procedure
	9.2.3 X.509 profile
	9.2.3.1 signatureAlgorithm
	9.2.3.2 tbsCertificate

	9.2.4 Root certificates and CRL management

	9.3 Application authorization
	9.3.1 Introduction
	9.3.2 Notation for permissions
	9.3.3 Permission request
	9.3.4 Receiver security policy
	9.3.5 Authority delegation

	9.4 Formats of the relevant messages
	9.4.1 Format of certificate message
	9.4.2 Signature format
	9.4.3 Credential format

	10 Graphic system model
	10.1 Introduction
	10.2 Video plane
	10.3 Graphics plane
	10.4 Composing a screen

	11 Application model
	11.1 Introduction
	11.2 Application storage and removal
	11.2.1 Storage
	11.2.2 Receiver policy

	11.3 Application storage, update, and removal
	11.3.1 Application download
	11.3.2 Application update
	11.3.3 Application removal
	11.4.4 Lifecycle
	11.4.4.1 Loaded state
	11.4.4.2 Paused state
	11.4.4.3 Active state
	11.4.4.4 Destroyed state

	11.5 MIDlet model

	12 Application signalling and transport
	12.1 Application module
	12.1.1 Definition and purpose of application module
	12.1.2 Structure of application module
	12.1.2.1 ZIP format
	12.1.2.2 Application-defined format

	12.1.3 Application module ID and version
	12.1.4 Accessing contents of application module
	12.1.4.1 Introduction
	12.1.4.2 URL to an application module

	12.1.5 Compression of application module
	12.1.6 Transport of application module
	12.1.7 Signing application module

	12.2 Application ID
	12.3 Application signalling
	12.3.1 Signalling structure
	12.3.1.1 Application information message
	12.3.1.2 Module information message
	12.3.1.3 Service binding message
	12.3.1.4 Application control message
	12.3.1.5 Certificate message

	12.3.2 Message transport
	12.3.3 Message monitoring

	12.4 Application state control
	12.4.1 Application download
	12.4.2 Application update
	12.4.3 Application removal
	12.4.4 Application execution
	12.4.5 Application termination

	12.5 Application module and message formats
	12.5.1 Relationship with platform standards
	12.5.2 Message version
	12.5.3 Common data format
	12.5.3.1 UTF-8 string
	12.5.3.2 Descriptor
	12.5.3.3 Descriptor loop
	12.5.3.4 Digital signature
	12.5.3.5 Credentials

	12.5.4 Application module format
	12.5.5 Format of application information message
	12.5.6 Application related descriptors
	12.5.6.1 Module download descriptor
	12.5.6.2 Application description descriptor
	12.5.6.3 Application icon descriptor
	12.5.6.4 Autodownload descriptor
	12.5.6.5 Signal bound descriptor
	12.5.6.6 MIDlet descriptor
	12.5.6.7 Profile extension descriptor
	12.5.6.8 Application expiration descriptor

	12.5.7 Format of module information message
	12.5.8 Format of service binding message
	12.5.9 Format of application control message
	12.5.10 Format of certificate message

	13 Java environment
	13.1 Introduction
	13.2 Requirements on Java environment
	13.3 DMB extensions
	13.3.1 Standard optional packages
	13.3.2 Simultaneous execution of multiple applications
	13.3.3 Graphics extension

	13.4 Simultaneous execution of multiple applications
	13.4.1 Requirements
	13.4.2 JVM implementation

	13.5 Standard properties
	13.5.1 MIDlet properties
	13.5.2 System properties

	13.6 Basic APIs
	13.6.1 AsyncResult/AsyncRequestor pattern
	13.6.2 AttributedObject pattern

	13.7 Graphic user interface API
	13.7.1 Screen management
	13.7.2 Processing alpha values
	13.7.3 User interface elements
	13.7.4 Key mapping
	13.7.5 Reserving keys for exclusive use
	13.7.6 Loading fonts dynamically

	13.8 Media control API
	13.8.1 A MMAPI 1.1 profile
	13.8.2 Player creation

	13.9 Broadcast data access API
	13.9.1 File access API
	13.9.1.1 Creation of file objects
	13.9.1.2 Directory
	13.9.1.3 Metadata
	13.9.1.4 File access
	13.9.1.5 File update

	13.9.2 Packet access API
	13.9.3 Trigger API

	13.10 Service information API
	13.10.1 Introduction
	13.10.2 Service information object
	13.10.2.1 SI database

	13.10.3 SI query and view

	13.11 Tuning API
	13.11.1 Tuner
	13.11.2 TunerLock

	13.12 Service selection API
	13.13 CAS API
	13.13.1 Communication with CA module
	13.13.2 Purchasable entities

	13.14 Application control API
	13.15 Inter-application communication API
	13.15.1 Messages
	13.15.2 Port
	13.15.3 Sending messages
	13.15.4 Receiving messages

	13.16 Resource manager API
	13.16.1 Introduction
	13.16.2 Resource objects
	13.16.3 Resource group and choice
	13.16.4 Resource group
	13.16.5 Resource choice
	13.16.6 Nesting resource groups and choices
	13.16.7 Rule for determining resource ownership

	13.17 Storage API
	13.17.1 Implementation requirements
	13.17.2 Per-application storage
	13.17.3 Permissions

	13.18 Communication channel API

	Annex A (informative): Automated test environment for receiver certification
	Annex B (informative): Delivery and processing of key events among embedded applications and MATE
	B.1 Introduction
	B.2 Key processing of embedded applications
	B.3 Key focus management of MATE applications

	Annex C (informative): Accessing location information from Java applications
	Annex D (normative): API specification
	History

