ETSITS 102 635-1 vi1.1.1 (2009-08)

Technical Specification

Digital Audio Broadcasting (DAB);
Middleware;
Part 1. System aspects

European Broadcasting Unor)J(Unon Européenne de Radio-Télévision

EBU-UER

D

2 ETSI TS 102 635-1 V1.1.1 (2009-08)

Reference
DTS/JTC-DAB-54-1

Keywords
Broadcasting, DAB, digital

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.
© European Broadcasting Union 2009.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM loao are Trade Marks reaistered and owned bv the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 635-1 V1.1.1 (2009-08)

Contents

INtellectual Property RIGNES.... ..ottt b e b b nenn e 7
0 Yo (o SRS 7
1 o010 SR 8
2 REFEIBINCES ...ttt b ettt e e et et et et e R e bt e bt et e se e be st e st e st ebesaeebeneenbete e 8
21 NOIMBLIVE FEFEIENCES ... eeeeeeeieeeie ettt ettt sttt et et e e e e s testesaeebeesees e e e eseeeseeebesaeeseeneenseneessesbesaeetesneeneeneens 8
22 INfOrMELIVE FEFEIENCES. ... ettt ettt e e ettt ae e et et e st e st e besteseeeneenseneeseesbesaeesesneeneeneens 9
3 Definitions, abbreviations and CONVENTIONSeiii it e s s e s s sbe e e e s s bee e e s sbeeeesans 10
31 D= T 0 T] (0] TSPV PRUSTORRP 10
3.2 ADDIEVIBLIONS ...ttt e e bt h e et et et e e e et b e eh e e heeh e e ae et e bt eh e e ae e b e b e b e ebeeneene e e ne e 10
3.3 (0000177 01 [0] =N TP UT U PP PRUSROTRP 10
331 SyntaX Of DINAIY MESSAGES.......c.eeiieiieieeieseesee st e rte e rte et e st e e e e e e e s eesaeesreesaeeseenseaseessaesseeseenseensesneesnes 10
3.32 N P RPPRN 11
4 1100 [Tox £ o o ST STRSSPR 11
5 SYSEEM @ICHITECTUIE ...ttt bt bt et e et b e st bt b e nr e nenn e 11
51 T goT0 W 1T o o BT PP PR USTORPP 11
52 RECEIVEN IMOGEL ...t h et e b e bbbt ae et e e et se e e bt s bt e h e e e e e et sheebeeaeene e e enrenes 11
521 SYSLEITI FESDUICTESeeuveteieteesite e sttt e sttt e sttt e stte e sateesaee e shbeesaeeeshbeesate e shbeesabeesa b e e sateeshbeeaabeesabeeeabeesabeeebeeenbaeenbenees 12
5.2.2 YL IS0 ATV = S 12
5.3 LY ol o] T 1 o] o [TSSOSO SR P O STUPTORSRPRPRTON 12
6 R F oo = it B 0 £ OSSR 13
6.1 IMBGE FIlE FOMMBLS ...ttt bbbt b bbbt e bbbt b b e bt s ens 13
6.1.1 O ST S 13
6.1.2 L SO STRSTS 13
6.2 FONE FITE FOMMELS.......eeeeeeeeee ettt bbbttt e b et bt ae e s e e e e e b sheebeeaeene e e enrees 13
6.3 VIOEO fIlE FOIMELS. ...ttt bbbttt e bt bbb e et e e b e ebenbeeaeese e e enne e 13
6.4 AUIO FITE TOMMEES ...ttt e b bbb st b e e e e sb e eh e e st e e e b e sb e et e ebeene e e e e es 13
7 LI 055 L0 o]0 oo | NSO 13
7.1 Broadcast ChanNEl PrOLOCOIooucuiiieeiiie e bbb bbb 14
711 Fil@ tranSPOIt PrOtOCOL.coveueiteieeeete sttt ettt b et b e et b et b e et b e sn et b et et b b 14
712 Packet Streaming PrOLOCOLoi ittt b et b e et b e et b 14
7.1.3 I (0T o] {010 o SRS 14
7.2 Communication ChanNEl ProtOCOL...........ocuiiiiie e e ae e et eesaesnaesreesreas 15
721 Transmission Control ProtOCOI (TCP)ecuicieiee ettt ettt see st teesaeeaesnaesne e enaesnaesseesnees 15
7.2.2 User Datagram ProtoCOl (UDP)oiiiiiiiiese sttt s e see e st sae e sas e e e b e e ense e seeteeneesnnesnes 15
723 Hyper Text Transfer ProtOCOI (HTTP)......coci ettt sttt e sttt teeae e e 15
724 Domain Name SErVICE (DINS)ccueiiieiieiiee et st rte e s este e ae et esaaesr e e te e be e seenseeneesneesnns 15
8 [0 o 0270 o = OO SSPR 16
8.1 g1 0o 1 1 o o S 16
8.2 0] 01 07 T O PP PT PP P UURTOPPPUTPTN 16
8.3 LU T N PSSP 16
9 S o1 3V 0700 (= S 16
9.1 U 0L PRSP ROPRRTR 16
911 Guarantee of appPliCatioN INTEGIITYc.eieiierieeee et b e e be e b sreseenen 16
912 Verification of appliCation PrOVIAENcociiiieirieee bbb 16
9.13 Control of appliCation PEMISSIONScciiiririeietereeeet ettt er et b e e bt sb e seebe b e ebesbeseebesreneenens 17
914 Trace of tasks performed Dy aPPliCaLIONScc.ceiirieiiiier bbb 17
9.15 Authority delegation among apPPliCaLIONScceeiiiiiirieier e e e 17
9.2 APPICALTON BULNENTICELION.eteeeeteieeeetere ettt b et b bbbt b s b e e bt s b e e ebesreneeneas 17
921 W o o] Loz o] 0 IE="T'o 1 oo SRS 17
9.2.2 Application authentiCation PrOCEAUNE...........cciiiieie ettt ee e s sre e sae e e eeeseeenaeereesreesnees 18
9.2.3 DTS o o= RPN 18

ETSI

4 ETSI TS 102 635-1 V1.1.1 (2009-08)

9231 LS o gtz 00 =AY Lo o 11 o]0 18
9.232 EDSCEITITICALE ...ttt e 18
9.24 Root certificates and CRL MaNagEMENTc.cccuieiiiieeeeseesieee e see e saeesre e e e e s e te e be e teeaesneesneesnes 19
9.3 Ao ol Lo (o] g IF=TH 1 oo 1 £ o] o ISR 20
931 gLl 18 ot (oo USSP PR SRS 20
9.3.2 N o) = o g 0 g o= 1SS T 0] PR 20
9.33 PEIMISSION FEOUESE ...ttt et e b e et b e et b e et b e E et bt s et b e s e e bt e b e ne et b e ne et ebe s ne e 20
9.34 RECEIVES SECUNLY POIICYvtveueeteieeiete ettt sttt b et b e et b e e et b e et b e s e et bbb e b 20
9.35 AULNOTITY GEIEOBEION ...ttt bbbt bbbt a b e st bbb n e 21
9.4 FOrmats Of the relEVANT MESSAGES.coiriiirtireeeetere ettt e bt b et st sa e e ens 21
94.1 Format Of CErtifiCale MESSAGEe ettt et b et b et b e et n e 21
9.4.2 S o g (U= (0] 107 T U P TP ST PR ST PTS PPN 21
9.4.3 Credential TOMMELcc.ceirereeeeere e et rese et r e se et r e ne e e r e nre e erenreneerenrennenen 22
10 GraphiC SYStEM MOUEccooivieieieceee ettt s ee st e e et esaeeaesbeeae e besaeensesteensesresaeensenrenn 22
10.1 T 11T 13t (o o TSP 22
10.2 VOB PIANE ..ttt b b e h bt et b e s ek e bt s e e R e e bt s e et bt bt bt e et bt bt b b e ere s 23
10.3 GrAPNICS PLAMNE. ...ttt bbb bt bt bt b e bt b e e bt e b et e ae e b e e et b e e e et et e b et b b 23
104 COIMPOSING B SCIEEN. ...ttt rteseete st st ettt sttt st st ebe b e st e bt ebese e bt e b e s e e Rt eb e s e ebeeb e s e ehe e Ee e e e Rt eb e e e Rt e b e aeeaeebene e st ebene et nbe e eneeee 23
11 APPHCALTON MOUE ..ottt e et b e bt e et e e e e e st e b e naeabe e e nneneneas 24
111 T 11T 13t (o o TSP 24
11.2 Application StOrage and FEMOVEAcueeiiiiesie et se sttt et e st e e etessaesseesaeesseenseenseeneeeneenseesrens 24
11.21 RS (] =0 [T S SRR PRSPPSO 24
11.2.2 S0 AV oo oY 2 24
11.3 Application storage, update, and rEMOVEAcceeieiieiie i ee e s sre e sae e e eteenaesnaesseesneas 24
11.31 APPHCALTON OWNTOA.........cuiiieieitiet ettt b bbbt b et b et b e e 24
11.32 APPHCALTON UPAALE. ...ttt bbb bbbt b bbbt b bbb 24
11.33 APPHCALTON FEIMOVEAL ...ttt b bbbt b et b s be bbb e 24
1144 =0y = TSSOSO TSP PSPPSR PSR 25
11441 [0 "o (=0 [= SO SRTSTTRR 25
11442 IO c o S 1 TSRS RR 25
11443 AACHIVE SEBLE. ...ttt bbbt E b e R bR Rt b e nen s 25
11.44.4 DESIIOYEU SLALE.......cvveeeeieis ettt b et b R h et bRt n s 26
115 IMIIDIEE MNOTEL ...ttt b e b e bRt e bt e b e e sn bt n b r bt s 26
12 Application signalling and tranSPOItcciieeiiiieie e re e e e e be s e saesreeaaenresrean 26
121 APPHICALTON MOGUIE ...ttt h b e bt e bbbt b bt e bt e e bt bt s e s e bt b e e e s e nn e e ens 26
1211 Definition and purpose of application MOAUIE. ..o e 26
1212 Structure of appliCation MOUUIE.............ceiiiiie et b e bbb seenea 27
12121 A L (o0 7= | PP 27
12122 APPlicatioN-AefiNed FOIMELcoiiieee bbb et 27
12.1.3 Application MOAUIE ID @8N0 VEISION......ccuiiiieieeieiee e seesteeste e estesseessaesteesseesseeeesseesseesseessesnsesnsesseessenssens 27
12.1.4 Accessing contents of appliCation MOAUIE............ceeiieiieii et e e e sraesnees 28
12141 [F g 1170 (3 (oo FO PSPPSR PSSP 28
12.1.4.2 URL t0 an appliCation MOUUIEccueiiieiie ettt et te et e sseesseesaeenaeeneeennesnaesneesseesnnns 28
12.15 Compression of appliCation MOAUIEcueiie ittt nteeaeenee s 28
12.1.6 Transport of apPliCatioN MOGUIE...........oiiiiiie et 28
12.1.7 Signing appliCation MOTUIEc..ciiieiieei ettt b et b e sb e e bt b e e b sb e ebesrennenen 29
122 F Y o] o ITor= (1o o I | 5 TSP TUR PRSPPI 29
12.3 APPHCALTON SIGNAITING ..ttt bbbt b bbb bt e s bt b s e s e bt b e en b ens 29
1231 SIGNAITTNG SEIUCTUN ...ttt bttt e et b e et b e et b e s b et bt s b e e eb e sb e e ebesbe e ebenbennenen 29
12311 Application iINfOrMationN MESSAGE.cieiiirieieie ettt ettt b e et b e 30
12.3.1.2 Module iINfOrMaLlioN MESSAGE.ueiierieiie e st ete e e s e e e eete e sreesreesaeesaeeseeneeansessaesseesseessens 30
12.3.1.3 SErVICE DINCING MESSAGE......cveeveeeeeeteesteeseeseeesee st e steesteeteestesseeste e teenteessesseesaeesaeesseenseenseessessenssensses 31
12314 APPIICatioN CONIOl MESSAGEcueeeeeeeeetiesteesee e eeseeseeseesteesteeseaeesseesseeseesseestesseesseesaeesseesseenseensenns 31
12.3.15 (O g o= (= 1SS o TS 31
12.3.2 S S= o L = oo PSR RURPTR 31
12.3.3 V=SS To = 00 T o) oo TR 31
124 APPLICALTON SEALE COMIIOI ...ttt bbbt et b et b bbb e en e e ens 31
1241 APPHCALTON OWNTOA.........cuiiieieitiet ettt b bbbt b et b et b e e 32
1242 APPHICALTON UPAALE.......eeieeetieieeiert ettt bbbt bbbt b et b st b bbb 32
1243 APPHCALTION FEIMOVAL ...ttt bbbt bbbt bt b e st b et st b et 32

ETSI

5 ETSI TS 102 635-1 V1.1.1 (2009-08)

12.4.4 APPHICEION EXECULION ... eeiveeteeieeteeieseesee st e steesteseesseesseesseesteestesseesseesseesseeseessesseesneenseenseenseansessenssensses 32
1245 W o o] N Ter= 0] g = 81 011 0T (o] o U 32
125 Application module and MESSA0E FOINMALS.eiverieieieiiee et e e e e e ste e eeseesreesae e reenseesaeeneesseesreas 32
1251 Relationship with platform Standardsocv e e 32
125.2 =SSz o oYL o o T 33
1253 COMMON DBEATOMMELeeueeieeeee ettt et b e a e e bbbt e bt e st et e ne e e e besresbesaeene e e ennas 33
12531 UT -8 SITING ..ttt b e bbb et eb e e et eb e s b et e b e sb e e eb e sb e e ebesbe e et e nbennenens 33
12532 (D= S'o g o] (o] SO OO P TSP PP TP PSTPRTOUSRPRPRPRTON 33
12533 (D= S'wi g ol 0] g oo o FENUNUN OSSOSO P TP PSTPRTOUSRPPPRPRON 34
12534 DiIgItal SIGNALIUME.......ceeiteeeteete ettt ettt b e b b e eb e b se bt s b e se e bt b e e ebesb e e ebesbe e ebesbenneneas 34
12535 (O 0 1= S PRRRRRSN 34
1254 APPlCaioN MOAUIE FOMMIBL........ceiiieeiesiesees et e e e et e e tesaaesreesaeenseenseenseensesrenssnennens 34
1255 Format of application iNformation MESSAQE.uciuiererierie e reeseesteeee e s e e st e e aessaesraesreeteeeesneesnes 35
12.5.6 PN o NTers (o g g o =0 Mo [=-STor] o] o =SSR 37
1256.1 [\V/KoTo TN o (00T g1 a0 W [=STox 11 o] o SR 37
12.5.6.2 Application desCriptioN AESCIIPLONccveieereeieeieeeseeseeseeste e e eee e ee e esteeeessaesreesreesseenseesenns 38
12.5.6.3 PN o o] Lo i Lo g Yo] a0 === o] (] P 38
12564 AULOAOWNI 08U HESCIIPLONeevieeeeie sttt sttt sttt ettt eb et b e st b et b e b e bt et sb e et b e 38
125.6.5 SigNal DOUND AESCIIPLON.c.etieeiiitereeeet ettt b et b e bbb bbb s bbbt benn e 39
125.6.6 IVIIDIEE AESCIIILON ...ttt ettt ettt ettt b bbb e bt b e e b e b se bt e b e se et e se et et e sbe e ebesbe e enens 39
12.56.7 Profile eXteNSION GESCITPLON.c.eiveieterieiet ettt b et b e e bt b et et sa e b e e enen 40
125.6.8 Application eXPiration AESCHIPLON........u ettt b et b e e 40
1257 Format of module information MESSAgEcceiiueiririeee et 41
1258 Format of Service biNdiNg MESSAGE.ccveiieiieie e ee ettt e st te et e saesraesteeste e teeeeennesneeenes 42
12.5.9 Format of appliCation CONIOl MESSAOEceiieriieieeie e see s e te e rte e e e s e e teeteereessaestaeste e seenteeneenneesnes 43
12.5.10 FOrmat Of CErtifiCale MESSAGEcveiie e ceeeeeste ettt e e e st e st e e te et e eseessaeste e be e teeneeeneesneennes 43
TN = V7= < 01V 0] 07 | PSP 43
131 g1 0o 1 1o o 43
13.2 Requirements 0N JAVA ENVITONIMENT..........oiue ittt bbbttt b e b et b et sb e e 43
133 DIMB EXEENSIONS.....c.titeeteeieeiieie e ettt st eaeeseeseesteseeetesaeesee e eneeseesseetesseeaeeneenseseeaseaeesseeseeneensesesseasesaeesesneeneensens 43
1331 Standard OptioNal PACKAGES..........ceiuirieieerieee et e b e b ene 44
13.3.2 Simultaneous execution of MUItiPle 8PPIICALTONSc..ciiirieiriere s 44
13.3.3 LCT =10 a0 = ra = T o) o 44
134 Simultaneous execution of Multiple aPPliCALTIONS..........cccv i 44
134.1 S0 LU= 101 1S 44
13.4.2 JVM IMPIEMENEALIONc.eeeeeeie et s e et sr et e e et eestesseesseesreesaeesseenseenseensensensnaesnens 45
135 e 10 o 0 0] 1= = SRS 45
135.1 A o] o= = 45
1352 SYSLEIM PrOPEITIES.ecveeteeet ettt ettt et et b e e st b e s e s e bt s e e st e b e se et eb e se e e eb e s b e e ebesbe e ebesbenneren 45
13.6 L2 ST o AN SRR 46
136.1 ASYNCRESUIT/ASYNCREGUESLON PELLEITL.........cueiteeeeiriirieeet ettt bbbttt bt sb e 46
13.6.2 ALFTDULEAOD] ECE PAITEIN ...t bbbt bbb et b 47
13.7 Graphic USEr INLEITACE AP ...t b et b e bbb n e 47
13.7.1 SCIEEN MANAGEIMIENTteetite ittt st ettt see et e st ee et e e sbee e bt e e sbee e be e e abeeeabee e beeeabeeebeesabeeeaseeebeeenbeeenbeeensenenes 47
13.7.2 Processing @lPha VaIUESccuiiieie ettt e e b e et e et e esaeste e be e teenteeneesneesnes 48
13.7.3 USEr INTEITACE BlEIMENLS...... .ottt bbbttt a bbb e s he e st e e e se e besbeeb e e e enneneen 49
13.74 L 1070 11 o 49
13.75 RESErVING KEYS fOr EXCIUSIVE USE......eoiieieeie ettt e e st ste et e e e st e te e be e teenteeneesneesnes 49
13.7.6 [Ior="o [FgTo I o] a1 60 |VZ 0= 0 01T = 1 P 50
13.8 V=0 = W wlo gL SRR 50
138.1 F Y N O oo 1 = SR 50
13.8.2 PLEYET CIEALION ...ttt et b et b e et b e bt b e e e bt b e s e st b e s e et eb et et eb e b 50
13.9 BroadCast data @CCESS APottt sttt ettt se e te s eeete e te et e nae et e ebeeaeereeneentennen 50
13.9.1 FIIE BECESS AP ... ettt et et e et e e et e et et e e aeeme e eese e beseeebeeneeneeeeaeeseesaeeseeneenseneens 50
13911 Creation Of filE ODJECLS. ..o bbbt n s 50
13.9.1.2 [= ox o Y SR 50
13.9.1.3 = o= - TSP 51
139.14 LB BECESS ...ttt ettt b bbb et b e R Rt eh e eh e Rt a e e e e b e bt ehe b e e enneneen 51
13.9.15 FIIE UDOELE. ...ttt sttt sttt st sttt s e e et e s b et et e see e ebesbe e ebenbeneesesbeneenens 51
139.2 PACKEL BCCESS AP ...ttt b e bt bt h bt e bRt b e eh e bt a e et e e e bt ehe b e e e nne e 51
13.9.3 LI 00 A USSR 51

ETSI

6 ETSI TS 102 635-1 V1.1.1 (2009-08)

13.10 SErVICE INTOIMEALTON AP ... bt e bbbt b et e s e e e e b et e sb e e b e eneesee e eneas 52
13.10.1 1100 [0 1ol OO OTUPR P OU O PRURURURPRURI 52
13.10.2 Service iNfOrMation ODJECL.........ciie et et e et e s s e e s reesteeteeneesseesneesreenseensenns 52
13.10.2.1 LS 0 0 = TR 52
13.10.3 I 0 0T V=00 N R 52
13.11 I T o N e TSR 52
13111 LIS L0 TP OO PP PP P UPPUPRP 52
13.11.2 LI 101 1 oo SRS 52
13.12 SEIVICE SEIECHION AP ...ttt sttt et e st et et e e seesbesaeene et e teeeeeeeereeneenee e eneas 52
13.13 L7 S SR 53
13.131 Communication With CA MOAUIE........cc.e ittt sre st s enee e eneas 53
13.13.2 PUIChESaDI € ENTITIES. ... bttt et et b et e e e b e be b eb e e e enneneea 53
13.14 WA o o] o= o] g oo 011 o) AN . 53
13.15 Inter-application COMMUNICALION APooiiie et e e e e besaeste e be e teeneeaneesnes 53
13.15.1 IMIESSAGES. ... evveveeeseeteseseetesesaeseseseeseseseeteseseeseseste s e e seeseseete s e e s aese e e bes e seteseae b e s e ae s e Rt neebese et eRe e naenenensenenenteneneas 53
13.15.2 0 RPN 54
13.15.3 S 10 (Lo T 0SS o TSP 54
13.154 RECEIVING MESSAGES ...ttt ettt b ettt b et b e s bt bt bbb e bt e b e e e bt ee e st e bese et eb e s e e ne et e s ee 54
13.16 RESOUrCE MEANAGET AP ... et a e s s e e e e e neenea 54
13.16.1 11 0o 1 o TP RRS 54
13.16.2 RESOUICE ODJECLSttt ettt b et b e et b e et b e e et b e b et b e e e st b e e et b e s b et et e s e 54
13.16.3 ReSOUICE group and CROICE........cceuiiiiieeieite ettt bbbt b e et se et b e bbb 55
13.16.4 RESOUICE GIOUD ...t s e s e e e e e e s a e e s b e e s b e e b e n e s e s e e sae e 55
13.16.5 RESOUICE CROICE......c. ettt et b bt h et e et se e bt st e ae e e e ne e besbeebe e e enneneea 55
13.16.6 Nesting resource groups and CROICES..........cvicuiieieeeseesees e ee e see e saeesteeaeeaeeseessaesteesse e seeseensesnsesnes 55
13.16.7 Rule for determining reSOUrCE OWNEISNIDccvicuieieciesees e sie e e see e seesaeesre e ae et e e sraeste e seeseetesneesneesnes 55
13.17 RS 0= [o P RPRSTPPPRP 56
13.17.1 IMPlementation FEQUITEIMENTSeicui e ceesieste et ete e ee s te et eete s e e e e saeesse e seesteeseessaesse e seenseenseeneesnnesnns 56
13.17.2 e 0] o L= o T o] =[S 56
13.17.3 S 0 TS o 0 P RSRS 56
13.18 CommUNiCatioN ChANMNEL AP ...ttt s e et e e e ae e e e s e eeseeeeeeneeneeneeneas 56
Annex A (informative): Automated test environment for receiver certificationcccceeveeuenee. 57
Annex B (informative): Delivery and processing of key events among embedded applications

AN MATE ot 59
2 30 R [g1 0o 1o o PSS 59
B.2 Key processing of embedded appliCatioNS...........ccouriiiririrerieeeieiee e 59
B.3 Key focus management of MATE @pPliCaLIONScccvvirirerieieeeisene s 59
Annex C (informative): Accessing location information from Java applications..........ccccccceeevenee. 60
Annex D (nor mative): AP SPECITICALION ...ttt 61
115 SRR 251

ETSI

7 ETSI TS 102 635-1 V1.1.1 (2009-08)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE 1: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standardsin the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became atripartite body
by including in the Memorandum of Understanding also CENELEC, which isresponsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active membersin about 60
countries in the European broadcasting areg; its headquartersisin Geneva.

European Broadcasting Union

CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41227172111

Fax: +4122717 2481

The Eureka Project 147 was established in 1987, with funding from the European Commission, to develop a system for
the broadcasting of audio and data to fixed, portable or mobile receivers. Their work resulted in the publication of
European Standard, EN 300 401 [23], for DAB (see note 2) which now has worldwide acceptance. The members of the
Eureka Project 147 are drawn from broadcasting organizations and telecommunication providers together with
companies from the professiona and consumer electronicsindustry.

NOTE 2: DAB isaregistered trademark owned by one of the Eureka Project 147 partners.

ETSI

http://webapp.etsi.org/IPR/home.asp

8 ETSI TS 102 635-1 V1.1.1 (2009-08)

1 Scope

The present document establishes a standard for a platform-independent environment, where executable applications
can be signalled and transferred to a receiver via a broadcasting network and executed on the receiver. It does not
suppose the exclusive use of a specific broadcast network but defines the commonly-required specifications among
diverse broadcast networks. It includes the definitions of basic data formats, protocolsto deliver data, to signal
downloadable applications and to download them, ways to denote resources on broadcast networks, and detailed
interfaces among receiver platform, broadcast and communication networks, and the applications.

In order to apply the present document to atarget broadcast network, it is required to map abstract interfaces to concrete
entities of the network and to add additional definitions specific to the network.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.

. Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases.

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause-were valid at the time of publication ETS| cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are indispensable for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] JSR 118: "Mobile Information Device Profile 2.0".
NOTE: Seeat (http://www.jcp.org/en/jsr/detail 21d=118).

[2] JSR 217: "Personal Basis Profile 1.1".
NOTE: Seeat (http://www.jcp.org/en/jsr/detail 2id=217).

[3] ISO/IEC 10918-1: 1994 "Information Technology —Digital compression and coding of
continuous-tone still images —Requirements and Guidelines".

NOTE: Seeat (http://www.w3.org/Graphics/JPEG/itu-t81.pdf).

[4] JPEG File Interchange Format, Eric Hamilton, C-Cube Microsystems.
NOTE: Seeat (http://www.w3.org/Graphics/JPEG/[fif3.pdf).

[5] PNG (Portable Network Graphics) Specification, Version 1.0. W3C Recommendation, October 1,
1996.

NOTE: Seeat (http://www.w3.org/TR/REC-png.html).

ETSI

http://docbox.etsi.org/Reference
http://www.jcp.org/en/jsr/detail?id=118
http://www.jcp.org/en/jsr/detail?id=217
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.w3.org/TR/REC-png.html

9 ETSI TS 102 635-1 V1.1.1 (2009-08)

[6] IETF RFC 793 (TCP): "Transmission Control Protocol”, J. Postel.

[7] IETF RFC 768 (UDP): "User Datagram Protocol”, J. Postel.

(8] IETF RFC 2616: "IETF Hypertext Transfer Protocol -- HTTP/1.1".

[9] IETF RFC 1034: "Domain Names - Concepts and facilities'.

[10] IETF RFC 1035: "Domain Names - | mplementation and specification™.

[11] IETF RFC 1982: "Serial Number Arithmetic".

[12] IETF RFC 2181: "Clarifications to the DNS Specification”.

[13] IETF RFC 3280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[14] IETF RFC 2396: "Uniform Resource |dentifiers (URI): Generic Syntax".

[15] IETF RFC 3066: "Tags for the Identification of Languages’.

[16] JSR 135: "Mobile MediaAPI 1.1".

NOTE: Seeat (http://www.jcp.org/en/jsr/detail 21d=135).

[17] JSR 75: "PDA Optional Packages for the Java ME Platform”.
NOTE: Seeat (http://www.jcp.org/en/jsr/detail 2id=75).

[18] ITU-T Recommendation X.509: "Information technology - Open Systems Interconnection - The
Directory: Authentication framework™.

[19] T. Porter and T. Duff, "Compositing Digital Images’, SIGGRAPH 84, 253-259.

[20] Info-ZIP Application Note 970311.

NOTE: Seeat (ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip).

[21] SO 10646-1: "Information technology - Universal multiple-octet coded character set (UCS), part
1: Architecture and Basic Multilingual Plane".

[22] JSR 172: "Location API for 2ME".
NOTE: Seeat (http://www.jcp.org/en/jsr/detail 2id=172).

[23] ETSI EN 300 401: "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to maobile,
portable and fixed receivers'.
[24] ISO/IEC 13818-1: "Information technology -- Generic coding of moving pictures and associated
audio information: Systems.”
[25] SO 4217: "currency names and code elements”.
2.2 Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

Not applicable.

ETSI

http://www.jcp.org/en/jsr/detail?id=135
http://www.jcp.org/en/jsr/detail?id=75
ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip
http://www.jcp.org/en/jsr/detail?id=172

10 ETSI TS 102 635-1 V1.1.1 (2009-08)

3 Definitions, abbreviations and conventions

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
devicedriver: system software responsible for basic operation of hardware units
event: group of one or more media with specified start and end times

EXAMPLE: An event can be a soccer half time, a news flash, and so on.

platform standard: standard that is defined by the present document, and designates media-specifics, where media
means either terrestrial or satellite DMB

program: group of one or more events being transmitted under a single broadcaster's control
EXAMPLE: A program can be news or entertainment.

service: series of programs being transmitted under a single broadcaster's control

service binding: binding of applications with services

NOTE: An application bound to a service is executed automatically upon user's selection of the service. If the
user stops the service, the application is also destroyed.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface

BNF Backus-Naur Form

CA Certificate Authority or Conditional Access
CAS Conditional Access System

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

DMB Digital Multimedia Broadcasting

DNS Domaine Name Service

DSMCC Digital Storage Media Command and Control
EPG Electronic Programme Guide

HTTP Hyper Text Transfer Protocol

JAR Java ARchive

JVM Java Virtual Machine

MATE Multimedia Application Terminal Environment
MOT Multimedia Object Transfer

PIN Personal Identification Number

Sl Service Information

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource L ocator

3.3 Conventions
3.3.1 Syntax of binary messages

The symbols, the abbreviations, and the methods for the description of syntaxes of binary messages in the present
document shall follow those defined in sections 5.2 and 5.3 of 1SO/IEC 13818-1 [24].

ETSI

11 ETSITS 102 635-1 V1.1.1 (2009-08)

3.3.2 BNF

Unless otherwise specified, the BNF notation in the present document shall follow the definitions of section 1.3 of RFC
2616 [8].

4 Introduction

MATE provides a definition of a platform-independent environment, where executable applications can be signalled,
transferred to receivers, and executed. The present document specifies abstract models for external entities which need
to be further defined by the MATE external environment specifications.

5 System architecture

5.1 Introduction

The present document defines standard interfaces between external environment shown in figure 1 and the receiver
implementing the MATE specification. There may be additional external entities other than those specified in figure 1,
but within the scope of the present document, they are irrelevant and never mentioned.

In defining such standard interfaces, the present document takes an approach of specifying abstract models for external
entities such as broadcast network to broaden the range of external environments to which the present document is
applicable. Thus, MATE is not avalid standard for any implementation by itself and the abstract models need to be
concreted according to the external environments.

Input
(Key, pointing devices)

Broadcast
Network

Output

(Graphics, videos)
User Q 0 T,
0
A‘Way Co,
DMB MATE "oy, my,,
Terminal * 0pon oy
at/o"s a,’;”e/ Prog
dd% Ocg;
Two-way
Communication

Network

Figure 1: Environment external to MATE terminal

5.2 Receiver model

The basic purpose of MATE isto provide an environment for control of receivers and execution of applications
transmitted to the receivers via broadcasting and communication networks. MATE receivers can be described as

3 layers as shown in figure 2. Since the basic model of areceiver presented here is an abstract model for reference in the
present document, an actual receiver does not have to follow the structure of the model.

For instance, the present document can be implemented as a separate software module distinct from hardware and other
software modules such as device drivers and operating systems with a porting layer to facilitate porting of the
implementation across different receivers. On the other hand, some implementation may be interconnected with such
software modules and hardware devices in an inseparable way.

ETSI

12 ETSI TS 102 635-1 V1.1.1 (2009-08)

Application

Embedded Downloaded
NXn-SIit:ant(ijoar:d o= DMBMATE [#eeececee| DMBMATE [lececccccccccces
PP Application Applicatoin

~ Non-standard
= Interface — Standard

System Software

Embedded
EPG/Channel
Navigator

Application

Manager

System Resources

Communication
Interfaces

Media
Decoders

User Input
Devices

Graphics
Devices

Tuners Storages

Figure 2: Basic receiver model

5.2.1 System resources

System resources refer to every single hardware and software resources composing areceiver. The same system
resource can be implemented in hardware, software or hybrid manner depending on the receiver implementation. For
instance, a media decoder may be implemented as either software or hardware device.

Not regarding concrete implementation form, the present document defines system operations and APIs based on the
abstract model of resources shown in figure 2. Other than already mentioned resources, different kind of resources may
be supported by actual receivers. The present document, however, does not define anything about such resources.

5.2.2 System software

System software makes applications executable without any modification in different receiver implementation by taking
charge of management and control of system resources. It also provides applications high level functionalities using low
level system resources.

Besides the components depicted in figure 2, there are more system software constituents although the present
document does not deal with them.

Application manager: application manager receives, executes and manages applications. When there coexist types of
embedded or downloaded applications that the present document does not specify, receiver implementation should be
careful not to violate the present document.

Embedded EPG/Channel Navigator: EPG and channel navigator are the system software for basic TV watching. In
addition to appropriate user interfaces, they provide a means to change the current channel, control media and so on
depending on receivers. It can be implemented using APIs defined by the present document or in completely different
ways. Even if they are not implemented with the standard APIs defined in the present document, the receiver
implementation must be careful not to violate the present document.

5.3 Application

Application refers to software which operates using the APIs in the execution environment designated in the present
document. The present document defines only how applications are downloaded via broadcasting and/or
communication networks.

An application can be preinstalled in the receiver, or manually viainterfaces (such as USB), other than broadcasting and
communication networks, by users. The present document does not limit other possibilities, aslong as the application
conformsto it. However, such possibilities are not designated in details in the present document.

ETSI

13 ETSI TS 102 635-1 V1.1.1 (2009-08)

In addition, types of applications not designated by the present document can coexist, but interfaces between system
software and those applications, and methods of embedding and downloading them are not standardized in the present
document. But there must not be any violations to the present document caused by them.

6 Basic data formats

This clause-defines data formats that receivers complying with the present document should support. Some data formats
designated in this clause-are mandatory meaning they must be supported in all the receiversin compliance with the
present document. On the other hand, some formats are optional, but when they are supported in an implementation, the
rules set in this clause-must be followed. Each platform standard may define additional data formats.

6.1 Image file formats

The following image formats should be supported by receivers complying with the present document.

6.1.1 JPEG

JPEG files must conform to |SO/IEC 10918-1 [3] and the file exchange format defined in JFIF [4], and the following
decoding methods must be supported:

. Sequential DCT-based mode.

. Progressive DCT-based mode.

6.1.2 PNG

PNG files must conform to PNG 1.0 [5], and the additional requirements designated in the documentation of
javax.microedition.lcdui.lmage APl in MIDP 2.0 [1].

6.2 Font file formats

The present document defines a method to download fonts but no format for font filesis defined. In addition, font
download is optional.

6.3 Video file formats

The present document does not designate a specific video file format. Instead, each platform standard is supposed to
define some.

6.4 Audio file formats

The present document does not designate a specific audio file format. Instead, each platform standard is supposed to
define some.

7 Transport protocol

This clause-defines broadcast and communication channel protocols which receivers conforming to the present
document should support. The present document does not designate any specific broadcast channel protocol. Instead,
only the properties that such protocols should have are described. In a platform standard based on the present document,
concrete broadcast channel protocols should be defined according to the relevant network specification. In doing so,
more than one protocol may be designated for each protocol model defined in this clause.

ETSI

14 ETSITS 102 635-1 V1.1.1 (2009-08)

7.1 Broadcast channel protocol

For broadcast channel protocoals, file transport protocol, packet streaming protocol, and trigger protocol for
synchronization of timed media such as AV must be supported.

7.1.1 File transport protocol

File transport protocol isfor conveying a set of files via one-way broadcast network. A platform standard based on the
present document must support at least one file transport protocol. The properties of afile transport protocol
conforming to the present document are as follows:

. Reliable transport of a set of files via repetitive transmissions of the same files.

. Each file in a set of files must be distinguishable viaits name represented as a string. This does not necessarily
mean that each file is distinguished by a unique string. For instance, since integers can be represented as a
string, it islegal to distinguish each file by an integer.

. For afile designated by a name, it should be possible to detect version changes.

Besides these mandatory properties, the following properties may be supported. The present document is designed to
accommodate the properties.

. A directory that can list al the files within it can be supported. Such directory structure may be either single
depth (that is, only top level directory exists), or multi-depth forming atree-like structure.

. For each file, various metadata can be associated such asfile type (e.g. MIME type).

MOT defined in DAB, object and data carousels defined in DSMCC are examples of such file transport protocols.

7.1.2 Packet streaming protocol

Packet streaming protocol is for continuous streaming of variable or fixed length packets via broadcast channel. A
platform standard based on the present document must support at least one packet streaming protocol. The properties of
a packet streaming protocol conforming to the present document are as follows:

. The integrity of each packet must be verifiable viaa means such as CRC check. That is, each packet is either
correctly received or not received at all.

Besides the standard properties stated above, the following additional properties may be supported by each platform
standard. The present document is designed to accommodate such properties:

. Some packets may be repeatedly transmitted to a restricted degree to enhance packet reception.

. Additional information such as error correction codes may be attached to packets to enhance packet reception.

. Packets may have addresses for recipients to designate that they are delivered only to the designated recipients.
Packet mode TDC in DAB and sectionsin DSMCC, and | P packet transport protocol via | P tunneling are examples of
such protocols.
7.1.3 Trigger protocol

Trigger protocol isfor sending information required to trigger receivers to do designated operations at specific times
based on a certain time base. A platform standard may decide not to support any trigger protocol, but if supported, the
following properties must be satisfied:

. The time at which atrigger should be activated must be specifiable. But in the present document, no
requirement is defined for time precision.

. Arbitrary data must be able to be conveyed together with atrigger.

ETSI

15 ETSITS 102 635-1 V1.1.1 (2009-08)

. For every action that atrigger designates, a unique ID must be assigned to distinguish between the actions. A
trigger with the same ID may be transmitted more than once. By doing so, it is possible to enhance reception
of triggers, and changesin the trigger time and associated data can be communicated to the receiver.

7.2 Communication channel protocol

Communication channel protocol in this clause-shall be supported only if communication interfaces exist. The present
document does not define network dependent protocolsin figure 3. Only UDP, TCP and HTTP which are above the IP
layer and have direct effects on applications are defined and required to be implemented by the present document.

However, all the defined protocols do not need to be implemented solely within areceiver. For instance, there may be a
server-sided gateway and a specialized protocol may be used between areceiver and the gateway while TCP and UDP
are supported through the gateway. Service specific protocols are not defined in the present document.

Application
HTTP
UDP)
Service
TCP Specific
Protocols
‘;

Network-Dependent Protocols I

Network Connection

Figure 3: Communication channel protocol stack

7.2.1 Transmission Control Protocol (TCP)
Should support TCP protocol defined in RFC 793 [6].

7.2.2 User Datagram Protocol (UDP)
Should support UDP protocol defined in RFC 768 [7].

7.2.3 Hyper Text Transfer Protocol (HTTP)

Should support HTTP 1.1 protocol defined in RFC 2616 [8] with additional requirements set in the documentation on
javax.microedition.io package in MIDP 2.0 [1]. That is, HEAD, GET, and POST methods should be supported, and
absolute URI's should be supported as well as relative ones.

7.2.4 Domain Name Service (DNS)

May implement DNS that is defined in RFC 1034 [9] and RFC 1035 [10], and clarified in RFC 1982 [11] and
RFC 2181 [12]. But implementation of DNS s optional.

ETSI

16 ETSI TS 102 635-1 V1.1.1 (2009-08)

8 Locator model

8.1 Introduction

Locator isameansto indicate an object on a broadcast network in MATE. A locator, for instance, can be used to
designate a broadcasting channel, or afile, a packet stream, a video stream, an audio stream, and so on within a
broadcast channel. A locator is represented as a string, and Java APIs that take locators as parameters actually accept
javalang.String objects.

Most applications with afew exceptions like EPG can identify objects required during their execution when they are
written. For example, list of channelsto tuneto, filesto read, and so on can be identified in advance. On the other hand,
specific locations of objects may change depending on the network on which the application is transmitted and the
configuration of the transmission scheme even in the same network. Thus, for most applications, locators should be
regarded as opague pointers.

Although the present document does not preclude the possibility that an application recognizes the exact format of
locator strings and directly manipul ates them accordingly, it is designed with general cases in mind, where locators are
simple opaque pointers. Therefore, for applications complying with the present document, knowledge on specific
format of locator stringsis not required. This means that applications based on the present document can be executed
independent of concrete broadcast network specifications.

8.2 Format

The present document does not define a specific format of locator strings. Since the format of locator strings, in general,
depends on the logical structure of the underlying broadcast network complying with the present document, it is the
responsibility of each platform standard to define such aformat.

8.3 Use in APIs

When alocator is specified in the context of an API, which object the locator designates should be designated. For
instance, locators designating a multiplex to be tuned to should be specified for tuning APIs, while locators locating
files be given to the APIsfor reading files. If the actual locators given to APIs are not compliant with the requirement
set by the APIs, it isregarded as an error, and javalang.lllegal ArgumentException shall be thrown from the method that
took the wrong locator.

9 Security model

9.1 Purpose

The security model defined by the present document has a purpose of providing the following features.

9.1.1 Guarantee of application integrity
Since application modules composing an application can be installed on areceiver through various routes other than
broadcast networks, it is possible for application data and codes to be modified for a malicious purpose. Thereby, there

should be away to guarantee that applications installed on receivers are not modified in away unintended by the
original author.

9.1.2 Verification of application provider
In the following cases, identification of application provider is heeded:

e When the set of permissions given to an application is decided based on the identity of its provider.

ETSI

17 ETSITS 102 635-1 V1.1.1 (2009-08)

. When it isrequired to attribute some operations performed by an application to its provider (e.g. when auser is
charged for use of acommunication line by an application without one's confirmation).

e When an application provided by a provider needs to give other applications from other providers authorities
to access services or resources provided by it.

I dentity of an application provider must not be forgeable and there must not be any chance the provider can deny its
responsibility for applications it provides.

9.1.3 Control of application permissions

Some operations should not be allowed to some applications. For instance, use of a charged communication line
generally requires user's prior confirmation. And depending on business models, moving to other channel
programmatically by an application should not be allowed if an advertisement is showing. The present document
designates a mechanism for granting permissions to an application based on the identity of its provider.

9.1.4 Trace of tasks performed by applications

In some cases, rather than restricting permissions granted to applications to prevent them from performing some
operations, the applications need to be allowed to do the operations, and when some problems happen, or there are some
reasons to do so, the records of the performed operations may be examined later to put it on a charge for the causes. For
example, an application that has passed the authentication process may take out private information that is stored within
the receiver. Later when such an activity is discovered, it is possible to blame the application for the illegal activity. For
thisto be possible, application providers must not be able to deny the responsibility on their applications.

9.1.5 Authority delegation among applications

There may be occasions where applications may need to grant permissions to use resources or services provided by
them to other applications they designate to do so. The applications granting the permissions can specify exactly what
permissions other applications are granted based on the identities of the application providers.

9.2 Application authentication

9.2.1 Application signing

In the present document, digital signing is used to guarantee application data integrity and verify application provider as
described in clause-6.1. However, application signature may not be supported in platforms based on the present
document.

To digitaly sign an application, the corresponding application definition containing module information and each
application module composing the application are signed. Signing an application definition, the following restrictions
are imposed on the application modules:

. Application modules contai ning executable codes must be signed. In other words, receivers must not read
codes from unsigned application modules.

e Application modules without executable codes may or may not be signed, but it is recommended to sign them
if applications referring to them may behave differently from their intended behavioursin case such modules
are forged.

Since an application provider takes charge of operations performed by its application, the provider should decide
carefully which modules are to be signed or which are not to prevent its applications from behaving unexpectedly.

ETSI

18 ETSI TS 102 635-1 V1.1.1 (2009-08)

9.2.2 Application authentication procedure

Applications can optionally be signed. For a signed application, the corresponding application definition (refer to
clause-12.5.5) contains a signature part. The application authentication procedure is as follow:

1) Areceiver verifiesdigital signatures contained in application_definition(). The certificate chainsto verify can
be located within the certificate message (refer to clause-9.4.1) by keyldentifiersin signatures.

2) If the verification failsin step 1, the designated application istreated asif it did not exist.

3) If"I"isprefixed to amodule ID, the application module corresponding to the ID is verified when it is
completely downloaded. Here, again keyldentifiers are used to locate certificate chains to verify within the
certificate message (refer to clause-9.4.1).

4) If the verification in step 3) fails, the designated module is marked as failed to pass the verification.
5) If any module constituting an application has failed to pass the verification in step 4, then the application itsel f
isregarded as failed to pass the authentication, and the application is considered non-existent.

9.2.3 X.509 profile

This clause-defines a subset of X.509 Internet Profile defined in RFC 3280 [13]. The subset is defined to satisfy the
minimum requirement set by the present document, and receivers complying with the present document only need to
support the subset. This clause-only describes parts different from RFC 3280 [13] or coming with additional
restrictions. The following is the X.509 certificate syntax in ASN.1. Refer to RFC 3280 [13] for more details on ASN.1.

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signaturevalue BIT STRING }

9.231 signatureAlgorithm
Only "SHA-1 with RSA" shall be supported.

9.23.2 tbsCertificate
Restrictions on the fields constituting TBSCertifcate type are as follows:
version: shall always be version 3.
signature: only "SHA-1 with RSA" shall be supported.
issuer
- CN (common name) and C (country) must exist in DN.
- When RDN is defined as a DirectoryString, utf8String shall be used.
- String comparison must be case-sensitive.
validity: shall always be GeneralizedTime.
subject

- If the subject isa CA (Certificate Authority), CN (common name) and C (country) must exist in its DN,
and if it isan end entry, it must be encoded as an empty sequence.

- If RDN is defined as a DirectoryString, utf8String shall be used.
- String comparison must be case-sensitive.

subjectPublicKeylnfo: Only RSA is allowed.

ETSI

19 ETSI TS 102 635-1 V1.1.1 (2009-08)

issuerUniquel D and subjectUniquel D: Not used.

extensions: Refer to table 1.

Table 1: Profile for standard certificate extensions

Extension CA End Entity Semantic
Basic constraints C NONE Must exist in a CA certificate, where cA
M must be set to TRUE. In the case of an end
entity this extension shall not exist.
Authority key NC NC Only keyldentifier is used.
identifier M (not self- M
signed), O (self-
signed)
Subject key NC NC Only uses values generated by the method
identifier M M (2) in clause-5.1.2, RFC 3280 [13].
Key usage C C For CA certificates, only keyCertSign (5)
M M and cRLSign (6) shall be set. And for end
entities, only digitalSignature (0) shall be
set.
Subject alternative NONE C Shall be set only for end entities. Domain
name M name of the application provider shall be
capitalized and set in the form of
dNSName. The domain name must be
identical to the domain name that is a part
of the corresponding application ID.
Extended key NONE C Shall be set only for end entities, and must
usage o always be id-kp-codeSigning.
CRL distribution NC NC Shall exist only when CRL is in use. Only a
point (0] (0] URI on the Web shall be set to
distributionPoint. The reasons and the
cRLIssuer fields shall not be used.

Table 2: Meanings of acronyms used in CA and End Entity columns in table 1

Acronym Descriptions
C Critical. Refer to clause-5 in RFC 3280 [13].
NC Non Critical. Refer to clause-5 in RFC 3280 [13].
M Mandatory. Mandated in the context of the profile defined in the present document.
o Optional. Optional in the context of the profile defined in the present document.
NONE The corresponding extension shall not exist.

9.2.4 Root certificates and CRL management

The present document does not designate a mechanism for updating root certificates and CRLSs. The rationales behind
the decision are as follows:

. In general, aroot cerficate isvalid for 10 years. More than one root certicates with overlapping valid durations
may beinstalled in the receiver. At least one root certificate would be valid during the whole lifespan of a
receiver.

. CAs (Certificate Authorities) who issue root certificates are likely to issue certificates to broadcasters and
application developers rather than to individuals. Thereforeit is very unlikely that CRLs are published.

. If renewal of root certificates or CRLSis required, receivers may decide to do so in away specific to their
implementation. For examples, the renewal can be done via a two-way communication channel if such a
channel isavailablein the receiver. Otherwise, it can be performed when areceiver is connected to a PC via
USB interface.

ETSI

20 ETSI TS 102 635-1 V1.1.1 (2009-08)

9.3 Application authorization

9.3.1 Introduction
The following factors determine whether applications are authorized to do something or not:

e Application Requested Permissions: they are permissions specified in the application definition, and required
for the execution of the corresponding application.

. Receiver Security Policy: every receiver has a policy for determining which permissions are granted to an
application depending on the properties of the application such as the identity of the application provider.

The actual permissions granted to an application are the intersection of the permissions determined by the receiver
security policy and those requested by the application.
9.3.2 Notation for permissions

Permission is represented as a string, and such a representation is used to specify permissions requested by an
application in the corresponding application definition (refer to clause-9.3.3), and those granted to other applicationsin
credentials (refer to clause-9.3.5).

The detailed format for strings representing permissions may differ from an application type to another. In the case of
MIDlet, aformat defined in MIDP 2.0 [1] is used with additional wildcard characters defined in the present document.
The permissions required to use APIs referenced or defined in the present document are specified in the documentation
for each API.

When specifying permissions, it is sometimes convenient to specify a pattern on more than one strings rather than
listing al of them. For this, "*" and "?" may be used to designate such a pattern. If it isrequired to treat the characters as
normal ones, "\" (backslash) may be used. That is, to represent "*", "?', and "\" asnormal characters, "*", "\?" and "\\"
should be specified instead, respectively:

e *: matches asequence of zero or more characters other than "/"s (dashes).

. **: matches a sequence of zero or more characters possibly including "/"s (slashes).

. ?. matches a character other than /" (slash).
For example, "dmb.service.ServiceM anager.sel ect.default.*" represents permission to select arbitrary services. Here"/"
istreated special because of its usein URIs and file paths as the path separator.
9.3.3 Permission request

Applications should specify permissions required for their operation within their definitions. The reasons for verifying
permissions requested by an application prior to its execution are as follows:

. To execute applications, only when all the permissions mandated by them are granted.

e To prevent applications from performing unintended actions because of errors or codes inserted with a
malicious intent.

9.3.4 Receiver security policy

Security policy of areceiver isarule for determining permissions granted to an application based on the properties of
the application. The present document does not designate how the security policy of receiversisimplemented. Each
implementation can choose any approach. For example, requested permissions might be granted to all signed
applications, and in other cases, for a set of permissions, users might be asked whether to grant them.

ETSI

21 ETSI TS 102 635-1 V1.1.1 (2009-08)

9.3.5 Authority delegation
Authority delegation means that an application allows other applications to access services and/or resources provided by
it. An application can delegate to other applications only the permissions it owns. To delegate permissions to other

applications, an application must create a credential and put it into the definitions of those applications. A credential
contains the following, and must be signed by the provider of the application delegating the permissions:

. List of permissions to delegate.

° Valid duration of the credential.

9.4 Formats of the relevant messages

9.4.1 Format of certificate message

A certificate message contains severa certificate chains. Its format is described in table 3. Each chain includes all
certificates from the end entity up to the certificate right under the root certificate.

Table 3: Format of certificate message

Syntax No. of Bits Mnemonic
certificate_message(){
certificate_chain_count 16 uimsbf
for(i=0;i<certificate_chain_count;i++) {
certificate_count 16 uimsbf
for(j=0;j<certificate_count;j++) {
certificate_length 24 uimsbf
certificate()
}
}
}

certificate_chain_count: number of certificate chainsin this message.
certificate_count: number of certificates within a chain (excluding the root certificate).
certificate_length: length of a certificate in bytes.

certificate(): Certificate data structure defined in ITU-T Recommendation X.509 [18].

9.4.2 Signature format

The signature structure referred to in clause-12.5 represents a digital signature, and follows the ASN.1 DER structure
shown below:

Signature ::= SEQUENCE ({
certificateIdentifier AuthorityKeyIdentifier,
hashSignatureAlgorithm OBJECT IDENTIFIER,
signaturevalue BIT STRING }

certificateldentifier: used to identify the certificate containing the public key for verifying the signature. Its structureis
as follows. Within the scope of the present document, it shall be enough for a receiver to use keyldentifier when
identifying the key used for signature verification.

AuthorityKeyIdentifier ::= SEQUENCE ({
keyIdentifier [0] KeyIdentifier OPTIONAL,
authorityCertIssuer [1] GeneralNames OPTIONAL,
authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }

ETSI

22 ETSI TS 102 635-1 V1.1.1 (2009-08)

hashSgnatureAlgorithm: represents the hash algorithm used for the signature. Within the scope of the present
document, only SHA-1 be allowed. Note that RSA, which is the encryption algorithm used for signature generation, is
specified in SubjectKeylnfo within the certificate. That is why only hash agorithm is specified here.

9.4.3 Credential format

The credential structure referred to in clause-12.5.3.5 represents a credential, and its structure is shown in table 4.

Table 4: Format of credential

Syntax No. of Bits Mnemonic

credential {

grantor_id utf8

expiration_date 64 uimsbf

permission_count 16 uimsbf

for(i=0;i<permission_count;i++) {

permission utf8

}

signature signature
}

grantor_id: ID of an application granting permissions. The domain name part of the ID must coincide with the
capitalized domain name in dNSName field of "subject alternative name" of the relevant certificate.

expiration_date: the time when this credential expires. It isthe milliseconds passed since January 1st, 1970 UTC.
permission_count: humber of strings representing the permissionsto grant (refer to clause-9.3.2).
permission: astring representing a permission to grant (refer to clause-9.3.2).

signature: signature obtained by signing al the values specified above in this structure (refer to clause-9.4.2).

10 Graphic system model

10.1 Introduction

MATE supports a means to control the size and the location of videos presented on the screen, and also provides a basic
mechanism for presenting graphics to and getting inputs from users. In the receiver implementations conforming to the
present document, display devices capable of presenting only graphics and those presenting both graphics and videos at
the same time can coexist.

Figure 4 depicts a display device capable of presenting videos. Both video and graphics planes are identical in their
sizes, and occupy the whole screen. On the other hand, in a display device that cannot present a video, it contains only a
graphics plane.

ETSI

23 ETSI TS 102 635-1 V1.1.1 (2009-08)

Video Plane V\

Graphics Plane

Figure 4: Display model

10.2 Video plane

On avideo plane, one or more videos may be presented, and there is a Z-order associated with each of them. Since each
video is fully opaque, one closer to the eyes will obscure another farther from the eyes when they overlap.

The present document is deliberately silent on the area on a video plane that lies outside video presentations when
videos are not covering the whole screen area. Therefore, to get a predictable result on the area outside those covered by
video presentations, the uncovered area in the graphics plane should be painted opague with a colour of application's
choice.

10.3 Graphics plane

Graphics are aways presented above video presentations, and a graphics planeis fully transparent. But if a display
device does not support video presentation, then the graphics plane in that device shall be opaque. The aspect ratio of a
pixel in agraphics plane is aways assumed to be 1:1 meaning it is a square, even if it is physicaly not.

In the case of display devices capable of presenting videos, the levels of transparencies that can be designated within a
graphics plane against the corresponding video plane may differ depending on devices. All the receivers, conforming to
the present document, shall distinguish at least between fully-transparent and fully-opaque pixels.

More than one application can present graphics on a graphics plane at the same time, but it is not mandated. But, any
platform standard based on the present document may mandate the capability to present more than one application
simultaneously. When more than one application is presented on a graphics plane simultaneously, and there are
overlaps among graphics presented by those applications, the end result must be identical to the case where graphics
from the application that lies farther from the eyes are drawn first, and the rest in the same way to the top most
application, and at least, fully transparent pixels are treated as such (i.e. any non-transparent approximations are not
allowed) in composing graphics from multiple applications. But it is also permitted to draw graphics from an
application onto a separate buffer, and then move the final result at once to the graphics plane.

10.4 Composing a screen

A graphics plane is overlaid atop its corresponding video plane, where the source over rule defined in Porter-Duff [19]
shall be used. Depending on the levels of transparencies supported by the graphics plane, the end result of the plane
composition may differ.

ETSI

24 ETSI TS 102 635-1 V1.1.1 (2009-08)

11 Application model

11.1 Introduction

An application can be executed only after all the constituting modules are stored. Once executed, it follows the
application lifecycle defined in this clause.

11.2 Application storage and removal

11.2.1 Storage

The present document does not designate properties of application storages in detail. For instance, it is even allowed to
store applicationsin avolatile memory. And the minimum amount of time for which a stored application should be
retained is also not specified. Therefore, it is even legal to remove an application as soon asit is fully stored. But when
an application is removed, receivers shall perform any cleanups designated in the present document such as reclaiming
resources used by the application.

11.2.2 Receiver policy

In the present document, no specifics on application storage, removal, and state changes in the lifecycle are designated
except for those defined in the application signalling part of the present document. So receivers may change state of
applications according to their own policies.

For example, receivers may define a rule to remove applications upon memory shortage, and can provide users with
appropriate interfaces for downloading, removing, launching, pausing, starting, and stopping applications.

Asapart of the application signalling, the present document designates control information for application storage,
removal, and lifecycle management, and it is recommended that receivers follow the control information. However, it is
also permitted for receiversto deal with it differently from what is designated in the present document depending on
their policy.

11.3 Application storage, update, and removal

11.3.1 Application download

Download and storage of an application may be initiated via application signalling or by other policy specific to each
receiver (refer to clause-11.2.2). An application may be launched only when all the modules composing the application
are fully downloaded.

11.3.2 Application update

When a version change in an application is detected via application signalling, the application may be updated anytime.
Hereif invalidate previous version field defined in clause-12.5.5 is 1, the current version of the application should be
terminated as soon as a new version of the application is detected, and should not be launched until the new versionis
downloaded. Conversely, if invalidate previous versionis0, the current version can be run and launched.

In general, current versions of applications may not be used (that is, itsinvalidate previous versionis set to 1) because
of changesin the application codes.
11.3.3 Application removal

An application may be removed at any time except when it is running, according to the receiver policy (refer to
clause-11.2.2). Besides when areceiver detects that application_definition() of an application disappeared and it
contained signal bound descriptor, then the corresponding application may be removed.

ETSI

25 ETSI TS 102 635-1 V1.1.1 (2009-08)

11.4.4 Lifecycle

Upon completion of downloading modules constituting an application, the application may be launched in the following
Cases:

. When a service is selected and associated with the application via a service binding message defined in
clause-12.3.1.3.

e Whenaserviceis selected, associated with the application via a service binding message defined in
clause-12.3.1.3 in away that the association is specific to a certain period of time, and the execution of the
application is signalled via the application control message defined in clause-12.3.1.4.

o Designated to launch by a receiver-specific policy (refer to clause-11.2.2).

A running application goes through the following lifecycle depicted in figure 5.

——Start———
b

ot Loaded (—inited»| Paused Active
Loaded
\ P ~— Pause——— ‘

Destroy

Init failed ety
- Destroyed o

Figure 5. Application lifecycle

11.4.4.1 Loaded state

The loaded state is a state in which codes and data required for execution of an application are loaded into memory after
launching of the application is requested. In this state, initialization of the application immediately begins. If the
initialization is successful, the application moves into the paused state. Otherwise, it moves directly to the destroyed
state.

11.4.4.2 Paused state

Applications that completed its initialization move to the paused state. Besides those that were already activated may
move to the paused state in the following cases:

. When applications are voluntarily moving to the paused state.
e When designated by receiver policy (refer to clause-11.2.2).
In this state, applications regardless of their types should follow the following basic rules:
. Graphics drawn to the screen, sounds, and so on should be minimized not to interfere with other applications.
e Should release any shared resources such as video decoders as much as possible.
. Should reduce resource consumption to its minimum.

e Theapplication should be able to return to the active state promptly upon requests.

11.4.4.3 Active state

The active state represents a state in which an application is operating actively.

ETSI

26 ETSI TS 102 635-1 V1.1.1 (2009-08)

11.4.4.4 Destroyed state

The destroyed state is a state in which an application is destroyed. Applicationsin this state no longer own the resources
they owned while running, and are removed from the memory. Applications are destroyed in the following cases:

. Upon a change of services where an application is associated with the previous service via application
signalling, but not with the next service.

. When termination of an application is requested via application signalling.
. When an application voluntarily requests self-termination.
e When other application requests termination of an application via an appropriate means (such as APl cals).

. When designated to do so by receiver policy. (refer to clause-11.2.2).

11.5 MIDlet model

MIDlet is as defined in MIDP 2.0 [1]. This model is compatible with the model defined in figure 5. The original MIDlet
model has 3 states, seemingly different from the 4-state model specified in the present document. But within the scope
of the present document they are considered compatible for the following reason.

The loaded state corresponds to the state in MIDlet where bytecodes constituting a MIDlet are loaded into memory right
before the constructor of the MIDlet isinvoked. Initialization occurs when the Java constructor is invoked, and
additionally, if an exception is thrown in the constructor, it isregarded as if the MIDlet immediately moved into the
destroyed state.

12 Application signalling and transport

12.1 Application module

12.1.1 Definition and purpose of application module

Application module is the basic unit for composing an application, and also the unit in the transport of an application.
An application consists of one or more application modules, and all codes and data constituting an application are
transmitted, received, and stored in the unit of an application module.

Application modules constituting applications are identified by their application module ID. Therefore, each application
module must be assigned a unique ID. Different from URLS, application module I Ds are independent of the locations of
the corresponding modules on broadcast or communication networks. So the same application module may be received
via broadcast or communication network, and alternatively, installed manually by a user. As an effect, when more than
one application modules containing program codes share the same ID, and their implementations are different from one
another, they can be used interchangeably in an application as long as their interfaces are identical.

The concept of application module has the following benefits:

. Bandwidth and memory savings. codes and data shared among applications can be transferred only once, and
shared within the receiver.

. Easy updates of applications. an application may be decomposed into multiple modules depending on their
update characteristics, and some of the modules may be updated separately. As such, application management
becomes easy.

. Flexibility in application distribution: application modules constituting applications may be obtained via
various routes including broadcast and/or communication channels.

ETSI

27 ETSI TS 102 635-1 V1.1.1 (2009-08)

12.1.2 Structure of application module

Each application module consists of metadata containing additional information on the module and a body. The body
may bein either ZIP format or an application-defined format. With the evolution of the present document, additional
formats for the body may be added.

12.1.2.1 ZIP format

The body in ZIP format follows the structure of the standard ZIP file format [20], and may contain multiple files
including Java class files and image files. In the present document, an API for reading files within application modules
in ZIP format is provided.

And if such an application module is used to constitute a Java application, it is added to the classpath of the application.
In that case, classfilesin the application module may be loaded from it, and contents of files in the application module
may be retrieved with getResourceAsStream(String) of javalang.Class.

Note that Java defines JAR [21] format based on ZIP file format. JAR format is extended from ZIP format by adding
metadata in the META-INF directory created within ZIP files. For the present document, JAR format is not used in
favour of the efficiency in transporting and handling application modules. Instead, additional information and digital
signature related data are stored in the metadata portion of application modules mentioned before. Therefore, it is not
possible to digitally sign only a subset of files within a ZIP format application module, different from the standard JAR
file. If there are files not requiring digital signing such as large image files, they need to be separated into another
application module.

12.1.2.2 Application-defined format

Thisisaformat defined by each application, and applications may be free to decide the format of their application
modules. The present document defines only APIsfor retrieving binary data constituting the body of application
modules. If an application module in an application-defined format is used as part of a MIDlet, then VM does nothing
for it.

12.1.3 Application module ID and version

Each application module is assigned an ID and a version.

Application modules are identified by 1Ds of the following format.

[!]<domain name>/<module_ specific_names>
I If exists, it means that the corresponding application moduleis digitally signed.

domain_name: An internet domain name owned by the organization providing the application module. Due to this
scheme, unique IDs may be assigned to application modules without a separate registry for 1Ds.

module_specific_name: A name for identifying the application module within the organization creating it.

Since the IDs in this format may be used as a part of URLS, the IDs shall not contain characters violating
RFC 2396 [14]. The follows are examples of application module IDs. The former isan ID for an unsigned application
module, and the latter is for a signed application module.

Xyz.com/images
1foo.com/library/ui/textentry

The version of an application moduleis a 32-bit unsigned integer. When two application modules have an identical 1D,
the one with newer version must be backward compatible with the other with older version. When a new version of a
software product is not compatible with the previous version, or it is required to manage versions of an identical module
separately, different IDs should be assigned so that the modules are practically treated asif they were different.

ETSI

28 ETSI TS 102 635-1 V1.1.1 (2009-08)

12.1.4 Accessing contents of application module

12.1.4.1 Introduction
The content of an application module can be read by the foll owing two methods:

. getResourceAsStream(String) of java.lang.Class. Applicable only to the application modulesin ZIP format.
Application modulesin ZIP format are added to application's classpath when they are used as part of Java
applications. Therefore files in application modules can be read using this method in this case.

. Use of application module URL: By passing a URL to an application module or to afile within it to an open
method of javax.microedition.io.Connector as a parameter, a javax.microedition.io.lnputConnection may be
obtained. In turn, ajava.io.InputStream for reading the content of the application module or afile within it can
be obtained from the connection. But if the designated application module is not fully received, an
| OException is thrown from Connector.open. Here, available() method of the InputStream obtained as
described above shall return the total size in bytes of the application module or afile withinit.

If an application module URL is used, it is possible to read the content of an application module that is not a part of the
application using the URL. When reading application modules belonging to other applications, the application reading
them must have the following permission:

dmb.module.read.<module_id>

where <module_id> is the ID of the application module to read.

12.1.4.2 URL to an application module

The format of a URL locating an application module is as follows:

module://<module_ ids[!<paths>]
module _id: application module ID.

path: in the case of an application module in ZIP format, this is the name of afile within the body of the application
module. Thusit points to a specific file within the ZIP file. If the name does not begin with "/, no "/" shall be prefixed.

An application module URL can be in one of the following two formats:
e When designating the body of an application module:
- Format: module://<module_id>
- Example: module://xyz.com
. When designating a file within the body of an application module, and the format of the body is ZIP:
- Format: module://<module_id>!<path>

- Example: module://xyz.com/moduleA!com/xyz/image.gif

12.1.5 Compression of application module

Basically compressions performed in the protocol level of the transport network (e.g. MOT in case of terrestrial DMB)
are not used, but when the body of an application module isin ZIP format, compressions can be performed on the files
within it as designated in the ZIP specification. On the other hand, no compression mechanism is defined in the present
document for application modules in application-defined formats.

12.1.6 Transport of application module

Thereis no restriction in the kind of networks and protocols that are used to transport application modules. The location
where an application module resides is designated with a URL as defined in clause-12.3.1.2. Each platform standard
should define the types of URLsthat can be specified there.

ETSI

29 ETSI TS 102 635-1 V1.1.1 (2009-08)

In addition to having URL s to an application module specified, the present document defines a mechanism to specify
time intervals during which an application module can be downloaded from an associated URL. Thereforeit is made
possible to operate bandwidth in time divided manners by transmitting different modulesin different timeintervals.

12.1.7 Signing application module

An application module can selectively be signed. For details on the digital signing, refer to clause-9.2.1 "Application
Signing.” If an application module is signed, the ID of the application module must begin with a"!" to indicate the fact.

12.2 Application ID

An applicationisidentified by an ID of the following format:

<domain_name>/<application_specific_name>

domain_name: An internet domain name owned by the application provider. Due to this scheme, unique IDs may be
assigned to applications without a separate registry for IDs.

application_specific_name: A name identifying each application among those provided by the same application
provider.

An application ID shall not contain any character violating RFC 2396 [14]. The followings are examples of the
application I1D:

foo.com/game/soccer (domain name: foo.com, application specific_name: game/soccer)
bar.com/epg

12.3 Application signalling

In this clause, a mechanism is defined for announcing presence of applications on broadcast networks so that receivers
can download and launch them via various networks including broadcast networks. The signalling defined in this
clause-isirrelevant to a specific application type, and may be applied to application types other than Java applications.
This clause-designates overall rules for the application signalling, and the detailed format of the messagesis defined in
clause-12.5.

12.3.1 Signalling structure

Five kinds of signalling messages are defined for the application signalling in the present document. All five kinds of
messages can be associated with each other. A set of signalling messages in such association is called asignalling
message group. An ensemble may have one or more signalling message groups. Those messages must be transmitted
repeatedly with the cycle times designated in the present document, using appropriate mechanisms available in the
underlying network. Figure 6 shows the relationships among services, application modules, and the 5 signalling

Messages.

ETSI

30 ETSI TS 102 635-1 V1.1.1 (2009-08)

Application
Information
Message

Certificate [*%
Message

Video Services

Module
Information
Message

Service
Binding
Message

Audio Services

JANJVAY

Application
Control
Message

Figure 6: Signalling structure

12.3.1.1 Application information message

An application information message contains the following information on an application. Each application information
message may define multiple applications:

The application ID, the version, and the type.

The profile and its version for receivers capable of running the application.

Dependencies on other applications.

Application modules constituting the application.

Other attributes associated with the application (e.g. whether it will launch automatically).
Information intended to be shown to users including icons, names, descriptions, and so on.

Signaturesto prevent forgery of the above mentioned contents.

In addition to those listed above, additional information may be added per application type, and in the form of
descriptors.

12.3.1.2 Module information message

A module information message contains information on the modul es referenced by applications defined in the
corresponding application information message. That is, an application module appeared in an application information
message must al so appear in the associated module information message. A module information message contains the
following information for each modul e described there:

The application module 1D and the version.
Size of the application module.
URLSs pointing to locations where the application module can be downl oaded.

Time intervals per URL during which the application module can be downloaded from the location
represented by the URL.

For each application module, more than one URL may be specified. In this case, it depends on the receiver'sinterna
policy which URL is used to download the application module. The present document does not designate any specific
rule on this matter.

ETSI

31 ETSI TS 102 635-1 V1.1.1 (2009-08)

Also there is no restriction on the URL s that can be specified. An application module may be downloaded viaa
communication channel using HTTP, or via the same broadcast channel as the one conveying the signalling messages
or viaadifferent broadcast channel.

12.3.1.3 Service binding message

A service binding message associates each service with applications relevant to the service. An application may be
designated to launch when its associated service is selected, or additionally designated to do so viathe corresponding
application control message.

By referencing a service binding message, applications associated with each service can be identified even when they
are not to launch immediately. Therefore when a user selects a service, the user can see the list of applications
associated with the service prior to their launch time, and designate applications to download.

As an example, if auser knows the presence of an application providing additional information on a show that is on-air
on Saturday afternoon and initiates its download in advance, the constituting application modules will be downloaded
during the whole week.

12.3.1.4 Application control message

An application control message conveys control signals to launch or terminate applications associated with a service by
its corresponding service binding message. Via the application control message, applications can be launched and
terminated upon a specific event within the service.

An application control messageis very small in size because it refers to binding tags defined in the corresponding
service binding message.

12.3.1.5 Certificate message

A certificate message contains certificates for digital signaturesin the corresponding application information message
and application modules. For the detail, refer to clause-9.4.1.

12.3.2 Message transport

The messages defined in clause-12.3.1 are transported via a network-specific mechanism. The application control
message shall be transmitted at least every 1 second. Other messages shall be transmitted at least every 10 seconds.

Within a single ensemble, more than one signalling message group may be transmitted. Additional restrictions may be
defined for each network type. For example, if an ensembleisfully controlled by an operator, only asingle signalling
message group may be permitted, but if more than one independent service operator is managing an ensemble, a
signalling message group per service is designated to be transmitted.

12.3.3 Message monitoring

A receiver must monitor version changesin the signalling messages within the current ensembleit istuned to as
described below:

. It is recommended that a receiver monitors all the signalling messages within the current ensemble.
e Atleast the signalling messages associated with the service that is currently selected shall be monitored.

. A receiver shall be able to detect a version change within a second.

12.4 Application state control

Application signalling messages affect storage, update, removal, and state transition of applications.

ETSI

32 ETSI TS 102 635-1 V1.1.1 (2009-08)

12.4.1 Application download

Download of an application is, in principle, initiated by a user's request, and upon the completion of the download, the
application isinstalled in the receiver via an installation procedure. But if the autodownload descriptor (refer to
clause-12.6.5.4) is present in signed_descriptor_loop or unsigned_descriptor_loop of application_definition() within the
application information message, download of the corresponding application is automatically initiated. But receivers
may till ignore it depending on their policy or user settings.

12.4.2 Application update

Upon detection of a change in the version of an application, download of new application modules isimmediately
initiated. When thisis the case, the previous version may be designated to be either invalidated immediately or retained
for execution until the new version is downloaded completely.

If invalidate previous version field in application_definition() is set to 0, then the previous version can be executed
while the new version is being downloaded. On the other hand, if it is 1, the previous version cannot be executed until
the new version is downloaded completely, and the update is completed.

12.4.3 Application removal

In general, applications are removed on requests from a user. But if an application_definition() includes a signal bound
descriptor defined in clause-12.5.6.5, the application may automatically be removed when the application_definition()

disappears.
12.4.4 Application execution

An application can be launched by user's requests. Besides, it may be launched in the following cases when it is
associated with a service via a service binding message:

. If event_bound bit is set to 0, the application is automatically launched upon the selection of the associated
service.

. If event_bound bit is set to 1, the receiver launches the application associated with the user selected service
only when the binding_tag corresponding to the binding of (service, application) pair is present in the
corresponding application control message.

12.4.5 Application termination

An application may be terminated voluntarily or upon requests from user via appropriate user interfaces. Besides it may
be terminated in the following cases:

. An application automatically launched as a result of the selection of the current service is terminated when a
different service is selected and the application is not bound to the service switched to.

e Withthe event_bound bit set to 1, if adifferent serviceis selected, the application is bound to the service
switched to, and the binding_tag for the binding of (new service, existing application) pair is absent in the
corresponding application control message, the application is terminated.

If an application isaMIDlet, the destroyApp(boolean) method isinvoked upon its termination. Here, if kill bit in the
service binding messageis set to 1, atrueis passed to the method, and if 0, afalse is passed.

12.5 Application module and message formats

12.5.1 Relationship with platform standards
A platform standard based on the present document is recommended to follow the message formats defined in this

clause-asthey are, and to define only protocols used to transport the messages. But modifications specific to a platform
is permitted.

ETSI

33 ETSI TS 102 635-1 V1.1.1 (2009-08)

12.5.2 Message version

The version of each message is a 32-bit integer large enough to allow testing of the validity of the cached version of the
message by comparing the version of the cached message and that of the message being broadcast, even when the
message is not monitored for relatively long period of time. The version isincremented by 1 for every change, but
permitted to increase by more than 1 when it is required for manageria reasons.

A receiver repeatedly checks and receives new message. When aversion of a message is received 720 hours (1 month)
ago, it isalways considered invalid. Therefore, at any time interval of 720 hours, the same version must not be reused.

In general, merely a change in the version of a message is considered to signify the transmission of a new version. But
when it isimportant to know which one is newer asin the case of the service binding message, the following additional
ruleisapplied. That is, if the absolute value of the difference between two versions exceeds Ox7FFFFFFF, then a
version with asmaller value is considered newer than the other. Therefore within any 720-hour interval, any two
versions of a message must not differ by a half of 32-bit value range.

12.5.3 Common data format

This clause-defines common data types intended to be used in defining the formats of the application module and the
messages.

12.5.3.1 UTF-8 string

A string encoded in UTF-8 format as defined in 1SO 10646-1 [21].

Table 5: Format of a UTF-8 string

Syntax No. of Bits Mnemonic
utf8 {
Length 16
for(i=0;i<length;i++) {
char_byte 8 bslbf
}
}

length: length of the string in bytes.

char_byte: abyte constituting the string.

12.5.3.2 Descriptor

A descriptor used to insert additional information to each message.

Table 6: Format of a descriptor

Syntax No. of Bits Mnemonic

descriptor(){

tag 16 uimsbf

length 16 uimsbf

for(i=0;i<length;i++) {

data_byte 8 bslbf

}

}

tag: the identifier designating the type of the descriptor.
length: length of the content of the descriptor in bytes.

data_byte: a byte constituting the content of the descriptor.

ETSI

34 ETSI TS 102 635-1 V1.1.1 (2009-08)

12.5.3.3 Descriptor loop

A descriptor loop is used where one or more descriptors can be inserted.

Table 7: Format of a descriptor loop

Syntax No. of Bits Mnemonic
descriptor_loop{
descriptor_count 16 uimsbf
for(i=0;i<descriptor_count;i++){
descriptor()
}
}

descriptor_count: number of descriptors.

12.5.3.4 Digital signature

A digital signatureis represented as signature type. The signature type is defined in clause-9.4.2 of the present
document.

12.5.3.5 Credentials

A credential for delegating permissionsto an application is represented as credential type. The credentia type is defined
in clause-9.4.3 of the present document.

12.5.4 Application module format

The format of the application module is as follows. Additional information to an application module is always appended
at the end of the application module. This scheme has a benefit of being able to treat stored application modules, as they
are, as plain ZIP files. This additional information hasto be treated as a comment from the view point of a ZIP file.
Therefore, "zipfile comment length” in the ZIP file must be set to regard this additional information as"zipfile
comment” in "End of central dir record" at the end of the ZIP file in accordance with the ZIP format [20].

Table 8: Format of an application module

Syntax No. of Bits Mnemonic

module(){

module_payload N Bslbf

id utf8

version 32 Uimsbf

type 8 Uimsbf

module_descriptor_loop descriptor_loop

signature_count 8 Uimsbf

for(i=0;i<signature_count;i++){

module_signature Signature

}

footer_length 16 Uimsbf
}

module_payload: the data constituting the body of the application module.
id: 1D of the application module.
version: version of the application module. The larger isthe newer.

type: type of the module_payload. Each constant defined per-type is shown in table 9.

ETSI

35 ETSI TS 102 635-1 V1.1.1 (2009-08)

Table 9 - Types of the application module

Value Description
0x00 Unused
0x01 ZIP format
0x02~0xFE Reserved for future extensions
OxFF Application defined format

module_descriptor_loop: a descriptor loop for describing additional information on the application module.
signature_count: number of module_signatures.

module_signature: adigital signature for the application module. All the content above signature_count exclusive of the
signature_count is signed together with module_payload.

footer_length: size of the additional information on the application module. Number of bytes from right above
footer_length to right before module_payload.

12.5.5 Format of application information message

Table 10: Format of an application information message

Syntax No. of Bits Mnemonic
application_information_message(){
message_version 32 Uimsbf
application_count 16 Uimsbf
for(i=0;i<application_count;i++){
application_definition_length 16 uimsbf
application_definition()
common_descriptor_loop descriptor_loop
}

message_version: version of the message.

application_count: number of applications described in the application information message.
application_definition_length: length of application_definition().

application_definition(): defines each application. The format is defined in table 11.

common_descriptor_loop: descriptors applied to all applications listed in the application information message.

ETSI

36 ETSI TS 102 635-1 V1.1.1 (2009-08)

Table 11: Application definition

Syntax No. of Bits Mnemonic
application_definition(){

application_id utf8
application_version 32 uimsbf
invalidate_previous_version 1 bslsf
reserved 7 "1111111"
application_type 8 uimsbf
application_priority 8 uimsbf
profile_count 8 uimsbf
for(i=0;i<profile_count;i++){

profile 8 uimsbf

profile_version 24 uimsbf

profile_descriptor_loop
}
visibility 8 uimsbf
module_count 8 uimsbf
for(i=0;i<module_count;i++){

module_id utf8

module_min_version 32 uimsbf
}
signed_descriptor_loop descriptor_loop
signature_count 8 uimsbf
for(i=0;i<signature_count;i++){

application_signature signature
unsigned_descriptor_loop descriptor_loop

}

application_id: 1D of the application being defined.
application_version: version of the application. The larger isthe newer.

invalidate previous version: if thisis set to 1, it means that the current version of the application should not be used
upon detection of a new version. If the current version is running, it should be terminated immediately. On the other
hand, if 0, the current version can be run while downloading the new version.

application_type: application type. Among the types of applications, a data-only application cannot be executed, and
such an application type is added to treat a set of data as a separate application to be able to reference by other
applications as a depending application. For data-only applications, it is possible to access the content of the modules
belonging to them with the application module URLSs.

Table 12: Application types

Value Description
0x00 Unused
0x01 MIDlet
0x02~0xFF Reserved for future extensions

application_priority: priority of the application. It isto assist receiversin judging relative importance of the application.
Receivers may give priorities to some applications based on their priority when the remaining memory space is low, or
some other resources are insufficient to run all the applications. A larger value means a higher priority.

profile_count: number of platform profiles against which the application can run.

profile: platform profile ID on the platform of the profile the application can run. Specific valuesto be specified here
are supposed to be defined in platform standards. A profile corresponding to a receiver must be shown here to be able to
run the application on the receiver.

profile_version: aversion of the profile. If the version of areceiver is greater than this, it can run the application.

profile_descriptor_loop: a descriptor loop containing additional information on the profile

ETSI

37 ETSI TS 102 635-1 V1.1.1 (2009-08)

visibility: visibility of the application from the viewpoint of both user interfaces and application control API. Thelist of
values eligible for thisfield is defined in table 13.

Table 13: Application visibility

Value Description
0x00 Unused
0x01 User visible
0x02 API visible
0x03~0xFE Reserved for future extensions
OxFF Hidden. Used when applications are transmitted for testing. Thus
normal receivers must treat it as non-existent

module_count: number of application modules constituting the application.
module_id: the ID of an application module constituting the application.
module_min_version: the minimum version of the application module.

signed_descriptor_loop: a descriptor loop containing additional information on the application. Since the content of
thisloop is signed when this application definition is signed, descriptors that must not be forged must be listed here.

signature_count: number of digital signaturesfor this application definition. If one of them is successfully verified,
this application definition is considered as valid.

application_signature: a signature signing from application_id to signed_descriptor_loop inclusive. For details, refer
to the security model (clause-9.2).

unsigned_descriptor_loop: a descriptor loop containing additional information on the application. Thisloop is
excluded when the application definition is signed. Therefore, descriptors that need to be referred to before the
signature verification should be placed here.

12.5.6 Application related descriptors

This clause-defines descriptors that can be placed in descriptor_|loops within the application information message.

12.5.6.1 Module download descriptor

A module download descriptor is used to designate application modules that contain icons or some other data
referenced by the application definition itself. If this descriptor is placed in common_descriptor_loop of an application
information message, then the application modules are automatically downloaded after receiving the application
information message. If an application module is removed from the application information message in the next
version, the corresponding application module is removed either.

Table 14: Module download descriptor

Syntax No. of Bits Mnemonic
module_download_descriptor(){
tag 16 uimsbf
length 16 uimsbf
module_count 8 uimsbf
for(i=0;i<module_count;i++){
module_id utfg8
module_min_version 32 uimsbf
}
}
tag: 0x0001

length: length of the content of the descriptor following thisfield in bytes.

module_count: number of application modules to download.

ETSI

38 ETSI TS 102 635-1 V1.1.1 (2009-08)

module_id: 1D for an application module to download.

module_min_version: the minimum version of the application module to download.

12.5.6.2 Application description descriptor

An application description descriptor contains the names and the descriptions of an application, which are intended to
be presented to end users. This descriptor can be placed in signed_descriptor_loop or unsigned_descriptor_|oop of
application_definition(). For each application, more than one descriptor can be specified per each language.

Table 15: Application description descriptor

Syntax No. of Bits Mnemonic
application_description_descriptor(){
Tag 16 uimsbf
Length 16 uimsbf
language_code n*8 bslbf
Null 8 "00000000"
Name utf8
Description utf8
}
tag: 0x0002

length: length of this descriptor from right after thisfield to the end in bytes.
language code: alanguage code defined in RFC 3066 [15].

null: aterminator to mark the end of the language _code field above.

name: name of the application in the language represented by language code.

description: description of the application in the language represented by language code.

12.5.6.3 Application icon descriptor

An application icon descriptor designates the location of an icon to be presented to end users. This descriptor may be
placed either signed_descriptor_loop or unsigned_descriptor_loop of application_definition(). Theicon is assumed to be
inside an application module, must be encoded in PNG format and at least 16 by 16 pixelsin size though thereis no
designated limit on the size of the icon. Receivers may expand or shrink the size if necessary.

This descriptor may be listed more than once for an application, and in that case, any of them may be used. Therefore
each descriptor would be preferable to indicate a distinct location but the same icon.

Table 16: Application icon descriptor

Syntax No. of Bits Mnemonic
application_icon_descriptor(){
Tag 16 uimsbf
icon_locator utf8
}
tag: 0x0003

icon_locator: an application module URL (clause-12.1.4.2) excluding the "module://" part.

12.5.6.4 Autodownload descriptor

An autodownload descriptor designates the corresponding application to be downloaded without user request. This
descriptor is placed into signed_descriptor_loop or unsigned_descriptor_loop of application_definition(). If placed, the
application corresponding to the application_definition() is automatically downloaded. A receiver may ignore this
descriptor depending on its policy. This descriptor is valid once specified until detecting that it disappeared.

ETSI

39 ETSI TS 102 635-1 V1.1.1 (2009-08)

Table 17: Autodownload descriptor

Syntax No. of Bits Mnemonic
autodownload_descriptor(){
Tag 16 uimsbf
Length 16 uimsbf
}
tag: 0x0004

length: length of the content in the descriptor following this field. For this descriptor, thisis awaysO0.

12.5.6.5 Signal bound descriptor

A signal bound descriptor isfor designating that an application should be removed when it is no longer present in the
signalling. This descriptor is placed in signed_descriptor_loop or unsigned _descriptor_loop of application_definition().

Table 18: Signal bound descriptor

Syntax No. of Bits Mnemonic
signal_bound_descriptor(){
Tag 16 uimsbf
Length 16 uimsbf
}
tag: 0x0005

length: length of the content in the descriptor following this field. For this descriptor, thisis awaysO0.

12.5.6.6 MiIDlet descriptor

A MIDlet descriptor describes additional information on a MIDIet. If the type of an application is MIDlet, this
descriptor must be present in signed_descriptor_loop of application_definition().

Table 19: MIDlet descriptor

Syntax No. of Bits Mnemonic
midlet_descriptor(){

Tag 16 uimsbf
Length 16 uimsbf
initial_class utf8
parameter_count 16 uimsbf
for(i=0;i<parameter_count;i++){

parameter_name utfg8

parameter_value utfg8
}
permission_count 16 uimsbf
required_permission_count 16 uimsbf
for(i=0;i<permission_count;i++){

Permission utf8
}
credential_count 8 uimsbf
for(i=0;i<credential_count;i++){

application_credential credential
}

}
tag: 0x0006

length: length of the content of this descriptor following this field.

initial_class: name of the MIDlet class (fully qualified name).

ETSI

40 ETSI TS 102 635-1 V1.1.1 (2009-08)

parameter _count: number of parametersto be read with MIDlet.getAppProperty(String).

parameter_name: name of a parameter. It corresponds to a name passed to MIDlet.getAppProperty(String).
parameter _value: value of a parameter. It corresponds to areturn value from MIDlet.getAppProperty(String).
permission_count: number of permissions the application requests.

required_permission_count: number of permissions that are required for the operation of the application from the
beginning of the whole list of permissions requested by the application. That is, those permissions designated by this
count must be granted for the application to execute.

permission: a permission the application requests for its operation. The format of this permission string is defined in
clause-9.3.2.

credential_count: number of credentials for the application.

application_credential: an application credential. For the details, refer to clause-9.4.3.

12.5.6.7 Profile extension descriptor

A profile extension descriptor describes a profile extension to designate additional characteristics of the receiver eligible
to running the corresponding application. It is placed in profile_descriptor_|loop of application_definition().

Table 20: Profile extension descriptor

Syntax No. of Bits Mnemonic
profile_extension_descriptor(){
Tag 16 Uimsbf
Length 16 Uimsbf
profile_extension_class_id 16 Uimsbf
for(i=0;i<N;i++){
profile_extension 8 Uimsbf
}
}
tag: 0x0007

length: length of the content of this descriptor following this field.

profile_extension_class id: an ID representing the class of information included in this descriptor.. The details meaning
of each ID is supposed to be defined in platform standards based on the present document.

profile_extension: a profile extension. The meaning of each profile extension is defined by each platform standard
based on the present document. The length of the profile_extension can be deduced by subtracting 2 bytes
corresponding to profile_extension_class_id from length.

12.5.6.8 Application expiration descriptor

An application expiration descriptor designates a time point from which an application becomesinvalid becauseit is
expired. Thisdescriptor is placed in unsigned_descriptor_loop of application_definition().

Table 21: Application expiration descriptor

Syntax No. of Bits Mnemonic
application_expiration_descriptor(){
Tag 16 uimsbf
Length 16 uimsbf
Expiration 64 uimsbf
}
tag: 0x0008

ETSI

41 ETSITS 102 635-1 V1.1.1 (2009-08)

length: length of the content of this descriptor following this field.

expiration: the time when the corresponding application expires represented with the difference between January 1st,
2000 UTC and the time in seconds. Passing this point of time, the corresponding application is no longer valid, meaning

it may be removed.

12.5.7 Format of module information message

The format of the module information message is defined in table 22.

Table 22: Format of module information message

for(l = 0;i<module_count;i++){
module_locator()

}

common_descriptor_loop

}

Syntax No. of Bits Mnemonic
module_information_message(){
message_version 32 uimsbf
module_count 16 uimsbf

descriptor_loop

message_version: version of the message.

module_count: number of application modules listed in this message.

module_locator: represents alocation and time interval, where and when an application module can be downloaded.

This structure is defined in table 23.

common_descriptor_loop: descriptors to be applied to all application modules in this message.

Table 23: Module locator

Syntax No. of Bits Mnemonic
module_locator(){
module_id utf8
module_version 32 uimsbf
module_size 32 uimsbf
locator_version 32 uimsbf
url_count 8 uimsbf
for(i=0;i<url_count;i++){
url utf8
schedule_count 8 uimsbf
for(j = 0;j<schedule_count;j++){
start_time 64 uimsbf
Duration 32 uimsbf
}
url_descriptor_loop descriptor_loop
}
locator_descriptor_loop descriptor_loop
}

module_id: 1D of the application module.

module_version: version of the application module. A larger value means a newer version.

module_size: size of the application module in bytes. This value must coincide with the size of the actual application

module.
locator_version: version of the whole module_locator.

url_count: number of URLSs locating the application module.

url: aURL locating the application module. The types of URL s supported are different by the underlying network.

ETSI

42 ETSI TS 102 635-1 V1.1.1 (2009-08)
schedule_count: number of time intervals during which the application module may be downloaded from the associated
URL. O in this filed means that the application module is always downloadable.

start_time: the start of the time interval where the application module can be downloaded from the corresponding URL.
It isthe difference between the start time and January 1st, 2000 UTC in seconds.

duration: the length of the time interval in seconds from the start time during which the application module can be
downloaded from an associated URL.

url_descriptor_loop: descriptors for additional information on the URL.

locator_descriptor_loop: descriptors for additional information on this module_|locator.

12.5.8 Format of service binding message

The format of the service binding message is defined in table 24.

Table 24: Format of service binding message

Syntax No. of Bits Mnemonic
service_binding_message()}{
message_version 32 uimsbf
service_count 8 uimsbf
for (i=0;i<service_count;i++){
service_locator()
bound_app_count 8 uimsbf
for(j=0;j<bound_app_count;j++){
binding_id 32 uimsbf
Start 1
Kill 1
event_bound 1
Reserved 5 "11111"
if (event_bound=="1") {
binding_tag 8 uimsbf
application_id utf8
app_min_version 32 uimsbf
binding_descriptor_loop descriptor_loop
}
service_descriptor_loop descriptor_loop
}
common_descriptor_loop descriptor_loop
}

message_version: version of this message.

service_count: number of services.

service_locator(): locator pointing to a service. The format of the locator is defined by each platform standard.
bound_app_count: number of applications bound to a service.

binding_id: an ID identifying an association between a service and an application. If there is any change in the specifics
of abinding, so must the ID, and it shall be unique within the context of a service binding message.

start: if set to 1, the corresponding application shall be started when the event_bound bit is set, and the corresponding
service is selected, or when the event_bound bit is cleared, the service is selected, and the corresponding binding_tag
appears in the application control message. If cleared to 0, the application shall not be started in any of the above
conditions. The reason for clearing this bit is mainly for cases where an application is not intended to be started from a
service, but it should not terminate when the service is selected after the application is started from another service.

kill: if set to 1, the corresponding application is terminated unconditionally. If cleared, the application is allowed to
terminate voluntarily. More specifically, in the case of MIDIet, if thisbit is 1, destroyApp method is passed atrue. If it
is0, afalseis passed to the method.

ETSI

43 ETSI TS 102 635-1 V1.1.1 (2009-08)

event_bound: if thisbit is set to 1, the corresponding application is launched, when the associated service is selected,
and at the same time, the binding_tag appears in the corresponding application control message. Once launched, it is
terminated when the binding_tag disappears in the application control message.

binding_tag: atag for designating a specific binding in the corresponding application control message. Within a service
binding message, this tag shall be unique.

application_id: 1D of an application to be associated with the associated service.
app_min_version: minimum version of the application bound to the service.

binding_descriptor_loop: descriptors describing additional information specific to each binding between a service and
an application.

service_descriptor_loop: descriptors describing additional information on each service.

common_descriptor_loop: descriptors to be applied to the whole service binding message.

12.5.9 Format of application control message

The content that must be conveyed within an application control message is as follows. The concrete format for the
application control message is supposed to be defined in each platform standard.

service_binding_message version: designates the version of the service binding message, to which the application
control message refers for the binding_tags within it. Only when the version of the service binding message stored in
the receiver is equal to or newer than this version, the binding_tags within the application control message isvalid with
respect to the stored service binding message.

binding_tag: an 8-bit unsigned integer which is atag for a service-application binding. Within an application control
message, multiple binding_tags may be included. Applications with their corresponding tags present in the message are
automatically started, and they terminate when the tags disappear.

12.5.10 Format of certificate message

The format of the certificate message is defined in clause-9.4.1 of the present document.

13 Java environment

13.1 Introduction

The present document designates an environment consisting of aJVM and APIs, where Java applications may be
executed. This clause-defines the Java environment required by the present document.

13.2 Requirements on Java environment

The present document requires MIDP 2.0 [1] at a minimum. But the present document is allowed to be implemented on
Personal Basis Profile 1.1 [2], and therefore an implementation of the present document based on Java ME Personal
Basis Profile 1.1 is perfectly legal.

13.3 DMB extensions

MATE is based on MIDP 2.0, but requires extensionsto it. This clause-summarizes, in one place, the extensions
required in addition to MIDP 2.0 or Java ME Personal Basis Profile to help understanding of the present document.

ETSI

44 ETSITS 102 635-1 V1.1.1 (2009-08)

13.3.1 Standard optional packages
Among the standard Java APIs, MATE requires the following optional packages:
. FileConnection API, apart of JSR 75 PDA optional package [17] is required.

. A profile of JSR 135 Mobile Media API 1.1 [16] asdesignated in clause-13.8.1 is required.

13.3.2 Simultaneous execution of multiple applications

CLDC 1.1 and MIDP 2.0 specifications do not explicitly set any restriction on simultaneous execution of more than one
application, but they are designed with an implicit assumption that an application at a time can be executed. Different
from such an assumption, MATE requires simultaneous application of multiple applications.

13.3.3 Graphics extension

The LCD Ul API defined by MIDP 2.0 lacks in the following two areas, thus requiring extensions. The extensions are
defined in the dmb.ui package:

e A transparent graphics planeisoverlaid atop a video plane and composed by the source over rule defined in
Porter-Duff [19]. Therefore, it should be possible to designate alpha val ues and a composition rule for graphics
operations. Composition rules of clear, source, and source over rules defined in Porter-Duff [19] should be
supported.

. More than one application needs to display graphics on a screen at the same time. The current MIDP 2.0
specification permits only one application to be shown up on the screen at atime, so an extension is required
to enable that functionality.

But the following options are available for the cases where strict conformance to the specification is too costly to
implement:

. For graphics operations performed in source over mode, it is permitted to perform them in source mode with
an exception of image drawing. |mage drawing should always follow its original behaviour designated by
MIDP 2.0.

. In all cases where alpha channel isinvolved, the minimum requirement is to respect fully-transparent pixels as
they are.

13.4 Simultaneous execution of multiple applications

13.4.1 Requirements

It isrecommended that MATE implementations are capable of simultaneously running as many applications as
possible, but it is not required.

When an implementation can run only one application at atime, an application with the highest priority set in its
application_definition (see clause-12.5.5) shall be chosen to run. But even when there is only one application running
at atime, it is still required to use resource management framework since the underlying implementation may use it to
arbitrate resources among it and other native entities such as native applications.

ETSI

45 ETSI TS 102 635-1 V1.1.1 (2009-08)

13.4.2 JVM implementation

An application is considered to run within alogicaly isolated JVM. But depending on Java ME configurations, the
present document also permits an implementation running multiple applications at oncein a VM using class loaders.
As a consequence, MATE implementations and applications should follow the following rules:

1) 1A MATE implementation may choose not to invoke finalizers on classes defined by an application upon
termination of the application. JVM does not guarantee the execution of finalizers on exit. Therefore,
applications must also not rely on it.

2) System classes and other classes shared among more than one application may be physically identical in the
JVM level. This exception to the isolation among applicationsisto permit an implementation running more
than one application within a JVM using the class loader mechanism. In this case, applications must not
violate the following rules. And if they do, such applications may cause problems depending on MATE
implementations:

- Applications must not synchronize on system classes, other classes shared among applications, or objects
shared among applications via static members.

- Applications must not assume that any static member (variable or method) is shared with other
application. As an example, it is not permitted to exchange data between applications using a static field.

13.5 Standard properties

The present document defines standard properties that can be read by applications. Some of them have different values
per MIDlet, and some are receiver-wide. Such properties are used for applications to get information on themselves or
on the receiver they are running on.

13.5.1 MiIDlet properties

A MIDlet property may be obtained by invoking MIDIlet.getAppProperty(String), and is information specific to an
application. Property names beginning with "dmb." are reserved for use by the present document. Therefore, platform
standards may not use a name beginning with "dmb.".

Table 25: Standard MIDlet Properties

Value Description
dmb.app.id The application ID of the MIDlet
dmb.app.dir The path string representing the root directory of the file system the application
owns (clause-13.17.2)

13.5.2 System properties

System properties may be retrieved using java.lang.System.getProperty(String), and provide information on the
receiver. Property names beginning with "dmb." are reserved for use by the present document. Therefore, platform
standards may not use a name beginning with “dmb.".

ETSI

46 ETSI TS 102 635-1 V1.1.1 (2009-08)

Table 26: Standard system properties

Value Description
dmb.dev.id The unique ID for identifying the receiver. The format of the ID is as follows:

<domain_name>/<device_id>

The above ID shall not include any character that violates RFC 2396 [14]. The
meaning of each part of the ID is as follows:

domain_name: the internet domain name owned by the manufacturer of the
receiver. By using a domain name here, unique IDs may be assigned to
manufacturers without a central registry of ID.

device_id: ID for the receiver that is unique among the set of receivers from the
receiver manufacturer. As far as it does not violate the URI format, any
numeric and alphabetic character is allowed in this part.

13.6 Basic APIs

In MATE, to reduce the total size of the API set, and make it easily understandable, the following basic API and
patterns are used.

13.6.1 AsyncResult/AsyncRequestor pattern

On abroadcast network, it is very common that the latency required for getting dataislong and irregular, since such
data are repeatedly retransmitted rather than directly accessible. Also, when controlling other applications from an
application, the time to compl ete a change in the state of other application may vary depending on the operations of the
controlled application.

Because of the nature of those operations, many APIs should be designed to work in an asynchronous way taking their
result via separate listeners or callbacks. But asynchronous APIs are difficult to use, and in some cases, it is better to
block threads invoking such APIstill they complete despite their long latency.

The pattern of AsyncResult/AsyncRequestor defined in dmb.util package enables an API to act in both asynchronous
and synchronous ways, and widely used throughout MATE APIs.

A method following the pattern has, in general, the following form:

AsyncResult doSomething(int argl, int arg2, AsyncRequestor requestor);

Such a method just reguests an operation, and returns immediately without waiting for its completion. The progress of
the operation triggered by the method call may be monitored using the returned AsyncResult object (polling), or a
certain method may be invoked on the AsyncResult to wait for the result (synchronous call). Also, if permitted, such an
operation may be cancelled.

In addition to polling or waiting for the completion, if the progress of the operation needs to be notified of viaa
different thread, an AsyncRequestor should be designated. resultUpdated(AsyncResult) method of AsyncRequestor is
invoked every time there is some progress in the operation. If such notifications are not required, it is always possible to
pass a null to the method triggering an operation.

Regardless of how to get to know the completion of an operation, get() method of an AsyncResult may be invoked to
retrieve the result of the operation, and in case there is any exception thrown in the course of the operation, the
exception is re-thrown when the get() is invoked.

Depending on APIs, the progress of an operation is reported through AsyncResult.getProgress()method as an integer
between 0 and 100 inclusive. If there is no such information available, the method returns

AsyncResult. PROGRESS _UNKNOWN instead. Therefore, within AsyncRequestor.resultUpdated(AsyncResult),
AsyncResult.isDone() must be consulted to know whether the operation is completed or not.

ETSI

a7 ETSITS 102 635-1 V1.1.1 (2009-08)

13.6.2 AttributedObject pattern

AttributedObject defined in dmb.util package is to publish named data of various types to applications. The information
conveyed via a broadcast network is of various types, and varying platform by platform. Instead of defining separate
classes to retrieve such information per platform, MATE utilizes a more generic interface of AttributedObject
throughout many parts of it.

An attribute i s represented with a string, and its value may be of such types as java.lang.Object, java.lang.String,
boolean, int, long, java.util.Date, byte[], and java.lang.Object[]. An API based on the AttributeObject pattern may
define additional types as needed.

If an AttributedObject is asked to return a value of non-existing attribute, dmb.util.InvalidAttributeException is thrown.
isvalid(String) method may be used to query if an attribute exists prior to trying to retrieve its value, and
getAttributes()method may be used to get alist of all attributes provided by an AttributedObject.

13.7 Graphic user interface API

The present document defines APIsin dmb.ui package by extending certain classes in javax.microedition.lcdui package
of MIDP 2.0. Whileit follows the basic framework of MIDP 2.0, additional rules and APIs for managing multiple
applications sharing a display are defined. DM BCanvas extends Canvas which is defined by MIDP 2.0, and isthe basis
for user interfaces of DMB applications. DisplayControl augments Display to provide additional means to manage the
screen. AlphaAttribute is associated with each Graphics to provide functionalities such as specifying alpha values and
composite operations. An abstract class, DMBItem, isto aid implementation of user interfaces, and Textltem extending
DMBItem, isto provide an ability to get text inputs from users. FontLoader is for loading fonts dynamically into the
system, and KeyL ock is used to reserve some keys for exclusive use by an application.

13.7.1 Screen management

Different from Canvas that exclusively occupies the whole screen, DMBCanvas may use a certain portion or the whole
area of a screen by designating a screen area to cover. By using DMBCanvases, more than one application may access
and draw on a display device at the same time, and screen areas used by applications may overlap with one another.
Each application is assigned a Z-order value, which represents how the application (or an active DMBCanvas) is close
to the user, and when a screen is updated, applications are painted in the order of increasing Z-order.

Display
DMBCanvas#1
. MIDlet#1
Background
o TORE, Y MIDlet#2
— DMBCanvas#3 dl—- - MIDlet#3 } Foreground
2=2
2

Drawing
Order

Figure 7. Management of z order

ETSI

48 ETSI TS 102 635-1 V1.1.1 (2009-08)

Asinfigure 7, an application with the largest z-order is drawn topmost, and as the foreground application, has the key
focus. Except for the cases of using KeyLock as described below, basically all the key events generated are delivered to
the DM BCanvas of the application owning the key focus. Pointer events, on the other hand, are delivered to a
DMBCanvas that contains the position where the pressed event is generated and has the largest z-order. And the
following drag and release events are delivered also to the same DMBCanvas. If a pressed event is generated at the
point where no DM BCanvas covers, the events following it shall not be delivered to any DMBCanvas, and just ignored.

When an application needs to change its z-order, setPriority(int priority) of the DisplayControl can be invoked to set a
priority. The possible priorities are HIGH, NORMAL, and LOW. An application with a higher priority shall be drawn
over the application with alower priority.

Display
DMEBCanvas#1
Z=0 Low
DMBCanvas#2
Z=1
DMECanvas#3
2=2 Normal
DMBCanvasfd
Z=3 2
DMBCanvas#5
Z=4
— DMECanvas#6
Z=5
o —
|| = High
Drawing orde L
-

Figure 8: Priority in z order

Figure 8 shows the priorities and the z-orders assigned to DM BCanvases each of which is activated in an application
owning it. When it is necessary to change z-orders of applications with a single priority, toFront()and toBack() methods
of DisplayControl may be invoked, respectively resulting in sending an application to the bottom and bringing it to the
front among those with the same priority.

To change the current owner of the key focus, an application may change its z-order resulting in getting the key focus or
yielding it to other application. For example, if an application needs to display an important warning and get some input
from the user, it may do so by setting its priority to HIGH, and calling toFront(). Then it may bring it to the topmost
position among those with the HIGH priority. If an application does not require any key input,
DisplayControl.setFocusable(false) may be invoked not to accept the key focus. Depending on implementations, a
separate manager coordinating z-orders may exist to set the z-order of applications from outside the applications. But
the present document only defines a means to change the z-order of an application from itself. Thus the operations of
such an external manager are not restricted, and may coexist with an implementation of this API.

13.7.2 Processing alpha values

MIDP 2.0 only applies the source over rule defined in Porter-Duff [19], and assumes that the drawing surfaces do not an
alpha channel. On the other hand, DMB applications require more advanced processing of apha valuesto enable
composition among them and between the graphics and the video planes. AlphaAttribute classisto enable setting of an
apha composite rule among CLEAR, SRC, and SRC_OVER when a drawing surface has an alpha channel. CLEAR
ruleisto clear the colour and the a pha value of the destination to 0, SRC to set both the colour and the a pha val ue of
the destination as the current values, and SRC_OVER is to composite the source and the destination considering their
aphavalues to determine the final value in the destination. setComposite(int compRule) method may be invoked to set
the composite rule. Once set, the rule is applied to all of drawing operations on the relevant Graphics object. Note that
the original alpha processingin MIDP 2.0 isidentical to the case where the composite rule is set to SRC_OVER and the
current alpha valueis set fully opaque.

ETSI

49 ETSI TS 102 635-1 V1.1.1 (2009-08)

13.7.3 User interface elements

DMBItem is a user interface element that is similar to an Item managed by Form class, and may be added to a
DMBCanvas. A user interface element may be implemented by extending the class. A DM BItem, much like
DMBCanvas, designates a screen area it manages, and receives key, pointer, and paint events from the DMBCanvas
containing it. If more than one DMBItem is used within aDMBCanvas, it is assigned a z-order value asit is added to
the containing DM BCanvas, and one of the DM BItems owns the key focus resulting in receiving the key events from
the containing DM BCanvas. Each DM BItem has methods invoked when there are key/pointer/paint events, it has
gained or lost the key focus, and it has been added to or removed from the containing DM BCanvas. DMBCanvas
mai ntains methods for adding and removing DM BItems, and changing the focus.

Different from a Displayable in MIDP 2.0 that occupies the whole screen, DM BCanvases and DMBItems occupy a
certain portion of a screen by nature, and have alocal coordinate, the origin of which istheir top-left corner.

(0,0)

Display

Xy (0,0)

DMBCanvas DMBCanvas

DMBIitem

Figure 9: Coordinate systems of DMBCanvas and DMBIltem

When key/pointer/paint events are delivered, any coordinate associated with them is described in the local coordinate.
On the other hand, when positioning a DMBCanvas within a display device, or DMBItem within its containing
DMBCanvas using setBounds(int,int,int,int), the local coordinate system of its parent entity is used.

13.7.4 Key mapping

DMB receivers may have certain keys dedicated to DMB watching and applications. To support such keys,
DMBCanvas defines DMBAction similar to GameAction in Canvas. Each key may be mapped to a DMBAction.
getDMBAction(int) method can be used to retrieve a DMBAction value corresponding a key, and
getDMBKeyCode(int) to get a key code mapped to a given DMBAction. Asin the case of GameAction, more than one
key code can be mapped to a DMBAction, the following equation may not evaluate to true:

keyCode == getDMBKeyCode (getDMBAction (keyCode))

The present document defines DMBActions of VOLUME UP, VOLUME_DOWN, MUTE, CHANNEL _UP,
CHANNEL_DOWN, RECORD, GUIDE, and INFO.

13.7.5 Reserving keys for exclusive use
Within abroadcast receiver, it is common that an application, without any GUI component being presented on the

screen, needsto get key inputs, or reserve certain hot keys for its exclusive use. For example, an EPG application may
reserve the EPG in the receiver for its exclusive use, and react to the key by showing up in the screen.

ETSI

50 ETSI TS 102 635-1 V1.1.1 (2009-08)

To support this kind of scenarios, MATE provides KeyLock API. An application may create a KeyL ock object, and
acquire its ownership via the resource manager (clause-13.16), to reserve the keys of the specified codes for exclusive
use by it. Key events corresponding to the key codes may directly be processed by subclassing KeyL ock class, or may
be designated to be delivered to the application in the same way asin afocused application.

13.7.6 Loading fonts dynamically

FontL oader class can be used to load and create fonts, that were absent in the receiver, from the data either received
from a broadcast or return channel, or retrieved from the application resources. Dynamic creation of fontsis an optional
feature, and the present document does not designate any specific format for such fonts.

13.8 Media control API

MATE utilizes Java ME MMAPI 1.1 [16] for playback of audio and video clips, and controling presentation of
broadcast audio and video. This clause-defines parts of MMAPI elements that must be supported in MATE, and their
relationship with other APIs such as those for service selection.

13.8.1 A MMAPI 1.1 profile

MATE requires all the controls designated with "SHOULD" and "MUST" in the "Sampled Audio" and "Video" parts of
MMAPI 1.1 according to the rules defined in "Optionality and | mplementation Requirements” section of the same
specification. But in the case of a broadcast stream, StopTimeControl and FramePositioningControl need not be
supported. And when presenting broadcast videos, dmb.media.BackgroundVideoControl must be supported in place of
VideoControl. Optionally, RecordControl may be supported for broadcast videos.

13.8.2 Player creation

Players cannot be created via javax.microedition.media.Manager for the playback of broadcast streams. Such Players
are created internally by dmb.service.ServiceManager, and accessible via getPlayer(String) and getPlayers() methods of
the ServiceManager. For audio and video clips stored in storage devices, Players may directly be created via Manager.

13.9 Broadcast data access API

Asdefined in clause-7.1, MATE supports three types of broadcast channel protocols. In this clause, APIs for accessing
files, packets, and triggers are defined respectively. Those APIs are defined in dmb.io package and utilizes the
GCF(Generic Connection Framework) defined in Java ME MIDP 2.0 [1].

13.9.1 File access API

13.9.1.1 Creation of file objects

A BroadcastFileConnection object is used to access a broadcast file. It may be obtained by passing an appropriate
locator to open(String) method of javax.microedition.io.Connector. Here, such a locator may locate afile within a
broadcast file system, or the file system itself. In the latter case, the returned BroadcastFileConnection is a directory
returning true from BroadcastFileConnection.isDirectory() method.

When a BroadcastFileConnection object is no longer required, it is a good practice to invoke close() oniit. If so, any
resource associated with the BroadcastFileConnection may be reclaimed as soon as possible.

13.9.1.2 Directory

If adirectory containing list of filesistransported within afile system, a BroadcastFileConnection object corresponding
to it may be obtained. With the BroadcastFileConnection object, list of files within the directory can be obtained, and a
file or directory under the directory can be open by specifying a path relative to it.

ETSI

51 ETSITS 102 635-1 V1.1.1 (2009-08)

13.9.1.3 Metadata

In general, afile or directory may entail various metadata such asits MIME type. Since the BroadcastFileConnection is
admb.util. AttributedObject, such data may be attached to it as attributes. The types of metadata supported for files and
directories differ from a platform to another.

13.9.14 File access

To read the content of afile, ajava.io.lnputStream should be obtained by calling openlnputStream() method. When
accessing a file system containing afile, the content of afile may aready be loaded into memory, but otherwise, it may
take arbitrary time to read data from the InputStream. In such a case, BroadcastFileSystem.load(AsyncReguestor)
method may be used to get notified without waiting when the content of the corresponding fileis fully loaded into
memory. If load(AsyncRequestor) isinvoked on multiple files, and the files are processed when their loading is
completed, it is possible to increase the overall throughput by overlapping 1/0 and CPU-bound jobs.

13.9.1.5 File update

When afileis updated, an application can get notified of the fact by registering a BroadcastFileListener. Upon such a
notification, an application can invoke BroadcastFileConnection.flush() and read the content of the new version.

13.9.2 Packet access API

To receive packets, javax.microedition.io.DatagramConnection APl is used asit is. But since the target streamisa
broadcast stream, packets can only be read from the stream.

Therefore among the methods of DatagramConnection, only getMaximumLength(), newDatagram(byte[], int),
newDatagram(int), and receive(Datagram) are supported. Among other methods, newDatagram(byte[], int, String),
newDatagram(int, String), and send(Datagram) result in an |OException, setAddress(Datagram), setAddress(String),
and setData(byte[], int, int) cause a RuntimeException, and getNominal Length() always returns 0.

13.9.3 Trigger API

To receiver triggers, the same javax.microedition.io.DatagramConnection is used as in the case of receiving packets.
The methods supported for receiving triggers are same as those supported for packet receiving. If alocator passed to
Connector locates atrigger stream, the returned DatagramConnection shall create dmb.io.Triggers instead of
Datagrams, and those trigger objects must be used to receive triggers.

Each trigger has an ID, and as far as there is no change in the content of atrigger assigned an ID, it isimmediately
passed to an application only once. In that case, the getState() method of the received Trigger object returns
Trigger.RECEIVED, and the receiving application may prepare to perform an action designated by the trigger
responding to the trigger.

After receiving atrigger, the receiver tracks the current time to see when the time designated by the trigger comes. At
the designated time, the application is passed the same trigger, where the getState() method of the trigger returns
Trigger. TRIGGERED, meaning the application should perform the designated action immediately.

If there is any discontinuity or drift in the AV clock, areceiver may fail to detect the time designated in atrigger, and
needs to cancel thetrigger. If this happens, the same trigger is delivered to the application once more, but this time,
Trigger. CANCELED isreturned from getState().

Note that more than one trigger with the same ID may be delivered to an application if there was a change in the
designated time or the content of the trigger.

ETSI

52 ETSI TS 102 635-1 V1.1.1 (2009-08)

13.10 Service information API

13.10.1 Introduction

The service information refers to the information on channel configurations and/or program schedules in Ensembles.
Applications like EPG require presenting such service information received by the receiver to the user. To provide a
level of compatibilities among various differing broadcast network specifications, the present document defines basic
elements available in the most of broadcast networks, and provides a means to query such information by specifying a
condition to meet by the target information. Additionally the service information API utilizes dmb.util. AttributedObject
pattern, to facilitate the addition of new concepts.

13.10.2 Service information object

MATE considers that the service information is composed of certain kinds of service information objects (hereafter,
referred to as Sl objects). Those objects refer to various entities described by the service information. Each platform
standard defines Sl objectsin detail, and attributes are defined for each of them. The type of an S| object is represented
by the value of its Sl Attribute. TY PE attribute. A set of objects supported by a platform, and their attributes are defined
in detail by a platform standard.

13.10.2.1 Sl database

Though an S| database (dmb.si.SIDatabase) itself is not an Sl object, it is an AttributedObject meaning it may also have
its own attributes. The attributes associated with an Sl database are usually applicable to al of Sl objects.

13.10.3 Sl query and view

A query may be submitted against the values of attributes of Sl objects, and the result may be retrieved as alist of Sl
objects of the same type. Here, it is possible to get the result of the query as aview rather than alist of Sl objects.
Different fromthelist, aview is updated automatically based on the query used to create it when there is any changein
the underlying Sl information.

Once created, aview may be submitted another query, and alistener may be added to one to get notified of additions,
removals, or updates occurring in the view.

13.11 Tuning API

A tuner is adevice to read the content of an ensemble by tuning to it. MATE provides two classes in dmb.tuning
package to control the tuner.

13.11.1 Tuner

dmb.tuning.Tuner object is for activating, deactivating, and getting the signal quality of atuner in the receiver.

13.11.2 TunerLock

dmb.tuning. TunerLock is an abastract concept of sharing a Tuner. It permits applications tuning to an ensemble to share
atuner. A TunerLock isaresource, and acquiring the ownership of it means that the associated tuner istuned to an
ensembl e designated by the TunerLock. Once acquired, the ownership to the TunerLock is retained unless another
application acquires a TunerLock for the same tuner by specifying a higher priority, the tuning fails, or the signal istoo
weak to keep tuning to the ensemble.

13.12 Service selection API

For service selection MATE defines ServiceManager in dmb.service package. It provides a means to select a service,
and to add and remove service components from it. Since a ServiceManager is aresource, it must be acquired viathe
resource manager (clause-13.16) before selecting a channel with it. For details, refer to the APl documentation.

ETSI

53 ETSI TS 102 635-1 V1.1.1 (2009-08)

13.13 CAS API

MATE defines a set of APIsfor purchasing paid contents, and controlling the process in dmb.ca package.

13.13.1 Communication with CA module

There are occasions where it is required to directly exchange messages with a CA module. Reading the smartcard
number, or changing the PIN (Personal Identification Number) requires such a direct communication.

dmb.ca.CAModule provides a direct interface to a CA module. Once a CASession is created, with

CAM odule.openSession method, an application may send requests in the form of CARequest to the CAModule. Events
or responses to CARequests from the CAModule are delivered to an application via CAEventReceiver that was passed
to the openSession method. In this case, general events are represented with CAEvent, and on the other hand, responses
to CARequest are represented with CAResponse, a subclass of CAEvent.

Each platform should define concrete subclasses of CARequest, CAEvent, and CAResponse for each CAS, since the
detailed protocol between an application and a CA module differs by CAS. Therefore the present document does not
define such concrete subclasses.

13.13.2 Purchasable entities

dmb.ca.Purchasable isintended to be implemented by an object representing a purchasable entity, and defines the
methods for retrieving information on the entity, and other ones to be implemented by such an object. Any type of
objects may implement this interface, but in most cases, Sl objects representing services or program locations, which
are purchasable, implement this interface.

To purchase an entity implementing this interface, purchase or openPurchaseSession methods may be invoked. When
purchase method isinvoked, the receiver implementation is responsible for managing the whole process of the
purchasing the entity providing appropriate user interfaces. Thus applications such as EPG, which directly use CA API,
do not need to do something while apurchaseisin progress.

On the other hand, openPurchaseSession creates a CA Session like CAModule.openSession. Thus it enables the direct
control over the purchase procedure by permitting direct communication between a CA module and an application. As
in the case of CAModule, concrete subclasses of CARequest, CAEvent, and CAResponse should be defined depending
on platform standards and/or CA Ses.

13.14 Application control API

To enable control of other applications from an application, MATE defines a set of APIsin dmb.app package. First of
all, AppControls for applications may be obtained via AppManager. An AppControl may be used to control the
lifecycle, and installation and removal of the associated application.

AppControl represents an application of any type, which conforms to the application signalling and transport
specification defined by the present document. A subclass called MIDletControl is defined to specifically support
MIDlets.

13.15 Inter-application communication API
The present document defines a means to communicate among MIDlet, which is based on message queue. Message

gueue is easy to use, and may be used to synchronize multiple applications in various ways, in addition to allowing
exchange of data.

13.15.1 Messages

A datum to be exchanged among applications is represented by an object implementing dmb.messaging.Message
interface, and can be created with Port.newMessages. Similar to javax.microedition.io.Datagram object, this object
provides a similar means to read, write, send, and receive data.

ETSI

54 ETSITS 102 635-1 V1.1.1 (2009-08)

13.15.2 Port

For multiple applications to exchange messages, they must share a Port. Messages are sent to and received from a port.

Application A A\\v "' A\\v Application B

Sending Receiving
message message

Figure 10: Concept of port

13.15.3 Sending messages

If amessage is sent to a port (viasend or sendFirst method of dmb.messaging.Port), the message isimmediately stored
in the port. Messages are processed by a port in a FIFO (First-I1n, First-Out) way, meaning that they are stored in their
order of sending, and retrieved by receiversin the same order. But if sendFirst of Port classis used, a message may be
put to the front of a port.

When creating a port, the maximum number of messages that can be stored within the port may be specified. It isaso
possible to set the maximum to 0. When there is no free space within a port, a message can be sent. In that case,
depending on the setting of the blocking mode on the port, the sender may block until a space becomes available by
other applications retrieval of messages from the port, or return immediately without sending it.

13.15.4 Receiving messages

Messages stored in a port may be retrieved with receive method. Upon reception of a message, it is removed from the
port, and copied to the buffer inside a message object of the receiving application.

If it is requested to receive a message when the port is empty, depending on the blocking mode setting, the application
either waits for a message is available in the port, or immediately returns without a message.

13.16 Resource manager API

13.16.1 Introduction

Resources within areceiver such as video decoders may be used by an application at atime, and tuners may be shared
among only applications that want to read the same ensemble. As such, thereisarulein sharing such resources of a
receiver among multiple applications.

Also, there should be priorities among applications requiring the same resource. Otherwise, an application, whichis
important from user's standpoint, may stop its operation by losing its resources to other applications performing trivial
tasks.

The resource manager API is for representing such rules for sharing resources in an appropriate way, and trading
ownerships to the shared resources among the receiver implementation and applications, according to the priorities
specified by applications.

13.16.2 Resource objects
In MATE, the objects implementing dmb.resources.Resource interface are considered as resources. Such resource

objects include dmb.tuning. TunerLock and dmb.ui.KeyL ock. A resource may be a hardware entity such as
dmb.ca.CAModule, but it may also represent an abstract concept like dmb.tuning.TunerLock.

ETSI

55 ETSITS 102 635-1 V1.1.1 (2009-08)

13.16.3 Resource group and choice

When an application needs resources, it is common to require more than one resource at the same time rather than a
single resource at atime. For instance, let's say that an application reads data from an ensemble, does playback of an
audio clip, and reserves akey for its exclusive use in a certain section of an application. In that case, it is of no use to
acquire only parts of the resources required to perform all of the intended actions. MATE provides a means to represent
and acquire the required resources as a unit. If any of the resources may not be acquired, the ownershipsto al of the
resources are given up to let other applications make use of them. The benefits gained by such a policy are as follows:

. Increased utilization of resources within a receiver: There are occasions where multiple applications need to
acquire more than one resource to continue to proceed. In such cases, each application may acquire a resource
but not others, and therefore no application can proceed. Or an application may lose the ownership to a
resource that was already acquired while acquiring other resources. If these kinds of inefficiencies are avoided,
the overall utilization of the receiver resources can be increased.

. Smple implementation of applications and receivers: Since an application does not need to coordinate
multiple resources explicitly, requesting resources and coordinating their ownership become simple.
Applications may delegate to the receiver implementation all the chores involved in the coordination of the
resource acquisition, and as the result, their implementation is made simple. Also in the receiver side, the
coordination of the resource acquisition may be made simpler than when dealing with each resource
separately, by processing aggregated resources at once as a unit.

To group resources as a unit, two types of resource sets called resource group and resource choice are defined.

13.16.4 Resource group

A resource group represents a set of resources that must be acquired. If any resource within a resource group cannot be
acquired, all the resources within the group are given up together. And even if the ownership to all the resources within
aresource group was acquired, and later one of them becomes lost to other application, the ownership to al other
resources are also given up together.

A resource group is represented by a dmb.resources.ResourceGroup object, and can group a set of resources.

13.16.5 Resource choice

A resource choice is also a collection of more than one resource like a resource group. But rather than being a unit to be
acquired and given up together, a resource choice represents a requirement of acquiring any single resource among
those in the resource choice.

For instance, when areceiver has multiple tuners, and an application is to acquire one of them, all the tuners may be
grouped in aresource choice, and then acquired. Depending on the current condition of the receiver, the application can
acquire either the ownership to a tuner or nothing.

A resource choice is represented by a dmb.resources.ResourceChoice object, and can group a set of resources, only one
of which isrequired to be acquired.
13.16.6 Nesting resource groups and choices

Both resource group and choice are a set of resources, but they are also aresource themselves. Therefore, resource
groups or choices include other groups and/or choices. By nesting groups and choices in such a way, complex
requirements on the acquisition of resources can be specified.

13.16.7 Rule for determining resource ownership

To acquire ownership to aresource, acquire method of dmb.resources.ResourceManager should be invoked. And to
rel ease the ownership of aresource when an application finishes with it, release method of ResourceOwnership should
be invoked.

Once aresource is requested, free resources are checked first, and if there is no free resource, resources owned by other
applications are checked. When the resource isin use by other application, whether it can be taken over from the
application or not should be determined. This decision is based on the priority set on each resource by each application.

ETSI

56 ETSI TS 102 635-1 V1.1.1 (2009-08)

That is, if an application specifies a higher priority for aresource than that specified by the current owner, then the
resource can be taken over from the current owner. If there is more than one resource satisfying a request from an
application, then one with lowest priority among them is picked.

The priority can be set when acquiring a resource, and for the resources that are already acquired, it can be changed
with ResourceOwnership.setPriority(int). The method should frequently be invoked to reflect priorities varying
according to the state of an application.

After checking that all the resources can be acquired, the original owners are given an opportunity to do cleanups for the
resources. The opportunity is notified via ResourceOwner object specified when acquiring the resources.

prepareRel ease(ResourceOwnership) method isinvoked on the object, but when it was inevitable to release the
resources before invoking prepareRelease, or it took too much time within the method, then the resources may forcibly
be revoked, and notifyRel ease(ResourceOwnership) method be invoked instead.

13.17 Storage API

MATE requires the FileConnection API of JSR 75 PDA Optional Package [17] to support I/0 with FLASH memory,
disks, and other storage devices. The content stored in a storage device should persist even when there is no power
supplied to the device.

13.17.1 Implementation requirements

MATE does not require a general purpose file system for the implementation of FileConnection API. For each
application, only a directory must be accessible, and within the directory, only plain files shall be able to be created.
Support for nested directoriesis not required.

13.17.2 Per-application storage

When an application is granted appropriate permissions, a directory is created for the application, for which the
application has al the authorities. The root of the directory can be obtained by reading a MIDlet property named
"dmb.app.dir”. The directory can be accessed via FileConnection API.

When an application is removed from the receiver, the corresponding directory is also removed. Therefore, to protect
application-specific datain such a case, it must be stored in a separate storage or server.

For an application to access a directory owned by other application, the owner needs to delegate appropriate
permissions to the application. For details on authority delegation, refer to clause-9.3.5.
13.17.3 Permissions

In MATE, MIDP 2.0 style permissions defined in FileConnection API cannot be used asthey are. Therefore, the
following permissions are additionally defined:

. dmb.io.file.<operation>.<path>: a permission to perform the designated <operation> to the designated <path>.
Here, <operation> is one of read, write, create, and remove, and <path> represents a path where the designated
operation is permitted.

An application must request appropriate permissions to use storage. Also, the permission string defined above may be
used in credentials.

13.18 Communication channel API

MATE supports al the APIs defined in javax.microedition.io package of Java ME MIDP 2.0 [1] to support use of

communication channels. Note that al the APIs, defined in MIDP 2.0 [1] and relevant to communication channels, are
al so supported by Personal Basis Profile 1.1 [2].

ETSI

57 ETSITS 102 635-1 V1.1.1 (2009-08)

Annex A (informative):
Automated test environment for receiver certification

The purpose of this annex isto provide arecommended practice for the structure of an automated test environment, and
atesting method. Since MATE and its base platform, MIDP 2.0, define all the elements required for building an
automated test environment, no additional API is defined in the present document. And because an application
implementing a set of tests may be downloaded to receivers, no separate communication protocol is also defined.

To certify an implementation of MATE to conform to the present document, an automated test environment and a
receiver with the implementation should be connected, and the test cases for the certification should be run, where the
automated test environment and the receiver should be able to exchange appropriate control signals and messages
according to the progress of the test.

Stream Generatgr (RF signal)

:\

Wireless oOf Wired
Receiver

HTTP
{ (implementable via a proxy) b
Data and Control Signals d

Receiver

Test Cases Automated Test Server
(includes a Web server)

Receiver

Figure A.1: A configuration of an automated test environment

Figure A.1 represents an automated test environment. Given alist of test cases, the automated test server performs each
test, and logs the result. The automated test server controls the stream generator to create test programs and test data
based on each test case, where the stream generator generates streams to be transmitted via broadcast interfaces.

The procedure by which each test is performed is as follows:

1) Theautomated test server reads a test case.

2) According to the test case, the followings are transferred to the stream generator: the test program to be run on
the receiver, the communication module to be used by the program to communicate with the automated test
server to proceed and log the test, and the associated test data. In this step, the test program is signaled to
automatically launch:

- The receiver runs the test program as soon asit is fully received.

- While the test program runs, it communicates with the automated test server viaHT TP using the
communication module to get control commands, or sending out the test results. MATE is based on
MIDP 2.0, which requiresHTTP. That iswhy HTTPis used here.

- Upon the completion of atest case, the automated test server logs the test result, and the test program on
the receiver terminates.

- Returnsto 1) and repeats.

Figure A.2 depicts the interactions between a receiver and an automated test environment in more detail.

ETSI

Downloaded from the
broadcast stream

Test Application
(Part of a Test Case)

Test API and Protocol
Implementation

DMB MATE Imglementation
HttpConnection
HTTP

Implementation

| Non-HTTP
(Serial, WAP, ...)

¢ via broadcast network

58

Download

ETSI TS 102 635-1 V1.1.1 (2009-08)

Automated Test Environment

Optional

Stream Generator

Test Ca
Databa

A

Test Server

HTTP Server

Figure A.2: Interactions within an automated test environment

ETSI

59 ETSI TS 102 635-1 V1.1.1 (2009-08)

Annex B (informative):
Delivery and processing of key events among embedded
applications and MATE

B.1 Introduction

All the types of applications defined in the present document (hereafter, referred to as MATE applications) can receive
key inputs, and if aJava API, dmb.ui.KeyLock, is used, the corresponding application can intercept key inputs going to
other applications.

But depending on receiver implementations, various applications may be embedded. For example, an application
dealing with basic channel zapping may be implemented in C language, and embedded within areceiver. Such
embedded applications need to get key inputs, and the issue of coordinating those applications with MATE applications
in terms of their key inputsis raised here.

The purpose of this clause-is to provide arecommended practice in distributing and processing key events among both
embedded and MATE applications, as a reference for the implementation of receivers conforming to the present
document.

B.2 Key processing of embedded applications

Embedded applications should follow the following basic rules in processing key events:

e The embedded applications may exclusively use certain keysif they are not designated to be delivered to
MATE applications by the platform standard. As an example, keys for activating receiver-specific menus or
resetting the receiver may present. In this case, those keys are not delivered to MATE applications no matter
whether one of the embedded applications has the key focus or not.

e The embedded applications may receive keys other than those mentioned in the right above, but if MATE
applications reserve some of them using KeyLock (clause-13.7.5), the keys should be delivered to the
corresponding MATE applications. A key to activate an EPG is a good example of such keys. But it is
recommended to minimize the number of keys corresponding to this case. Also if it is possible to restrict use
of the keys to the moments when one of the embedded applications has the key focus, then it is recommended
to do so.

e With the exception of the above two cases, the embedded applications may process any key when they have
the key focus.

B.3 Key focus management of MATE applications

When the embedded applications run simultaneously with MATE applications, the MATE applications are
recommended to obey the following rules to make users comfortable:

. From the user's point of view, unlessa MATE application is activated and considered to exclusively interact
with the user, it should remove its dmb.ui.DMBCanvas by invoking removeDisplayable() of
dmb.ui.DisplayControl, or avoid gaining the key focus by passing a false to setFocusable(boolean) of the same
class. By doing so, the embedded applications may operate without unnecessary restrictions, when the MATE
applications are not interacting with the user.

. As an exception to the case above, when a MATE application is not interacting with the user, and still needsto
react to certain keys, such keys should be clearly specified using KeyL ocks. By clearly specifying keys used
by MATE applications, the embedded applications may get key inputs without unnessary restrictions if
compared to the case when a MATE application has the key focus.

ETSI

60 ETSI TS 102 635-1 V1.1.1 (2009-08)

Annex C (informative):
Accessing location information from Java applications

Information on the physical location of areceiver is quite useful enabling various location-based services. Though not

mandating, the present document recommends use of JSR 176 [22] when such functionality is available on a specific
receiver.

Presence of an implementation JSR 176 may be identified by examining a system property with akey
"microedition.location.version.”

ETSI

61 ETSI TS 102 635-1 V1.1.1 (2009-08)

Annex D (normative):
API specification

Package Summary Page

dmb.a Defines classes and interfaces to get the list of applications known to receiver, and control 59

arach each of them.

dmb.ca Defines an interface to conditional access system in the receiver. 82

dmb.io Defines APIs for accessing data coming from the broadcast channel. 95

dmb.media As an extension to MMAPI, this package contains additional classes and interfaces. 103

dmb.messaging |Definesan API for applications to communicate with one another. 109

dmb.resour ces Defl nes the basic framework to share resources among the receiver implementation and the 118

——————= |gplications.

dmb.service Defines APIsfor service selection. 131
. Provides APIsfor giving access to service information managed by the underlying receiver

dmb.si : : 159

Ea— implementation.

dmb.tuning Defines a set of APIsfor controlling tuners available in the receiver. 183
: This package provides a Ul extension to javax.microedition.lcdui to handlethe

dmb.ui o X) 192

— peculiaritiesin DMB environment such as support for transparent graphics plane.

dmb.util Defines common interfaces and classes used in other packages. 233

ETSI

62 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.app

Defines classes and interfaces to get the list of applications known to receiver, and control each of them.

See:

Description
Interface Summary Page
AppControl Represents an application known to the receiver. 59
AooListListener An mtgrfage to be implemented by an object that needs to listen to changes in the application 7
SRkl e list maintained by AppManager.
AppStatel istener Ani pterface to be implemented by an object that needs to listen to changes in the state of 76

applications.

MIDletControl |Provides ameansto control an MIDlet associated with an instance of thisinterface. 79
Class Summary Page
AppM anager M anages applications known to the receiver. 73

Package dmb.app Description

Defines classes and interfaces to get the list of applications known to receiver, and control each of them. The list and
each application may be monitored for changes. By using facilities defined in this package, an application may install,
remove, execute, and terminate any application programatically.

AppManager may be used to obtain AppControlsfor the applications of interest. In turn, AppControl providesa
mean to control download and run states of the corresponding application.appControl isthe common base interface
for all application modelsthat are and will be designated in DMB MATE specification. So in the case of
javax.microedtion.midlet.MIDlet, MIDletControl isdefined asan extensionto dmb. app . Appcontrol to
deal with specifics of MID1let. When there is another application model defined in the specification, then an additional
subinterface of aAppcontrol may beintroduced in the future.

| nter face AppControl

dmb.app

All Known Subinterfaces:
MIDletControl

public interface AppControl

Represents an application known to the receiver. Through this interface other applications may initiate download and
control execution of the downloaded application. Later the application may be marked for removal through this
interface.

ETSI

63 ETSI TS 102 635-1 V1.1.1 (2009-08)

Download States

Download of an application may be initiated by calling download () . It requests download of an application for either
itsinitial installation or its upgrade. It does not protect the application from being removed. Thus the download may be
canceled or, if it is not running, the application may be removed without prior notice.

The current download state may be obtained with getDownloadstate () . Also changesin the download state are
reported via any registered AppStateListener with DOWNLOAD_STATE _CHANGED event. When the event is
delivered, the fourth argument to AppStateListener.stateChanged (AppControl, String, int, String) isset
to the reason of the state change. The reason codes are declared in AppStateListener, and they all have REASON
prefix. Thisreason code is usually useful when the download state is changing from DOWNLOADING t0 NOT STORED and
from uPDATING to STORED. Such changesisthe result of some error occurred while trying to download an application.

Run States

An application can be executed when its download state is either sTORED or { @linK #UPDATING}. Here, note that a
copy of an application is fully downloaded and ready when it isin uppaTING state. The updateisin progressin the
background without affecting the current version. When an application is directed to run in a download state other than
those, an 111egalStateException isthrown. The current run state of an application may be queried with
getRunState () method. Initially an application isin NOT RUNNING state. With init, start, and pause methods,
the run state of an application may be controlled. When a call to those methods implies multiple state transitions and the
whole transitions are not completed, then the call is considered canceled. Thusacall to AsyncResult.isCanceled ()
returns true in that case.

When thereis achangein the run state, aRUN_STATE _CHANGED event is delivered to the registered listeners. In
this case, arelevant reason code is passed to the listener as the fourth argument to
AppStateListener.stateChanged (AppControl, String, int, String). For reason codes, refer to constants
beginning with REASON _in AppStateListener.

Montoring Download Progress

The download progress of an application may be obtained via get Progress () . It reports progress with an integer
ranging from 0 to 100, where 0 means nothing is downloaded and 100 fully downloaded. When there is some progress
it isreported to any registered listenersviaappstateListener with DOWNLOAD PROGRESSED event.

When an Application isno longer signaled

The receiver implementation shall go through the following process, when it notices that an application is no longer
signaled:

o If the current download state is DOWNLOADING, the download is canceled automatically.

o Ifitiseither the above mentioned case or one where the application's download state isin NOT STORED state,
the appControl instance for the application becomes INVALID and the registered listeners are notified. Once
itisin INVALID state, any method incurs a state change throws 111egalStateException. Normally an
application may be controlled with prior knowledge on the state of it. Thusin most cases, such
IllegalStateExceptionsdo not matter. But any general application manager application must process
IllegalStateException Sinceit dealswith any application it does not have any knowledge on. Other
methods in appcontrol that are not marked to throw T11egalStateException must return their prior
value, since such behaviour simplifies implementation of applications displaying information on applications
in such a exceptional case.

Permissions
Permissions affecting operatons of AppControl are asfollows:

e dmb.app.control.<app ids>: permission to control the download and the run states of an application
through methods in appControl. Thisis required to invoke download (), remove (),

ETSI

64 ETSI TS 102 635-1 V1.1.1 (2009-08)

init (AsyncRequestor), start (AsyncRequestor), pause (AsyncRequestor), stop (boolean,

AsyncRequestor), and switchTo ().

Field Summary Page
int |DOWNLOADING
Represents a download state where an application is being downloaded, or updated while its 63
previous version is aready invalidated.
int |INVALID
Represents a download state where this AppControl instanceisinvalid, since the 63
corresponding application is disappeared while it is not stored.
int [NOT RUNNING
64
Represents a run state where an application is not running.
int INOT STORED
Represents a download state where data congtituting an application is not stored in the 63
receiver side.
int |QUTDATED
Represents a download state where an application is fully downloaded, but a newer versionis 64
known to be available.
int |PAUSED
64
Represents a run state where an application isloaded and initialized.
int |STARTED
64
Represents a run state where an application is activated and doing what it is designated to do.
int |STORED
64
Represents a download state where an application is fully downloaded and ready to run.
int |UPDATING
Represents a download state where an application is being updated while the current version 63
isdtill valid and can be run.
Method Summary Page
void |addAppStatelistener (AppStatelListener listener)
69
Adds an appstateListener to monitor changesin the state of this application.
void|download ()
66
Requests download of this application represented by this appControl.
String |getDescription ()
71
Returns the description of this application.
String |getDescription (String lang)
72
Returns the description of this application in the designated |anguage.
String[] |getDescriptions ()
Returns al the descriptions of this application represented in different languages together 2
with the corresponding language code.

ETSI

65 ETSI TS 102 635-1 V1.1.1 (2009-08)

int |getDownloadState ()
65
Returns the current download state of this application.
AsyncResult |getIcon (AsyncRequestor requestor)
71
Gets the icon associated with this application.
String getID ()
65
Returns the ID of this application.
String |getName ()
70
Returns the name of this application.
String |getName (String lang)
70
Returns the name of this application represented in the given language.
string[] |getNames ()
71
Returns alist of the application namesin all languages available in the signalling message.
int |getProgress ()
Returns the current progress in downloading this application as an int ranging from 0 to 66
100.
int |getRunState ()
66
Returns the current run state of this application.
int \getVersion ()
65
Returns the version of this application.
AsyncResult [init (AsyncRequestor r)
67
Initializes this application.
boolean |isAutoDownload ()
Returns whether this application represented by this aAppcontrol isto be automatically 66
downloaded or not.
boolean |igVisible ()
70
Returns whether this application should be visible to usersvia Ul or so.
AsyncResult |pause (AsyncRequestor r)
68
Pauses this application.
void | remove ()
67
Designates this application should be removed.
void |removeAppStateListener (AppStatelistener listener)
70
Removes the designated appStateListener from this application.
AsyncResult [gstart (AsyncRequestor r)
68
Starts this application.
AsyncResult |stop (boolean forced, AsyncRequestor r)
69
Stops this application.
void |gwitchTo ()
69
Switches the calling application to an application represented by this AppControl.

ETSI

66 ETSI TS 102 635-1 V1.1.1 (2009-08)

Field Detail

INVALID

public static final int INVALID = -1

Represents a download state where this appControl instance isinvalid, since the corresponding applicationis
disappeared while it is not stored. All the methods for changing the download and the run states throw
IllegalStateException When an AppControl isinthis state.

NOT_STORED

public static final int NOT STORED = 0

Represents a download state where data constituting an application is not stored in the receiver side. In this
state, the application is known to the receiver through the application signalling mechanism, but either its
download is not initiated or it was downloaded and stored, but later removed. If download of the application is
requested, then the download state changes to powNLoADING and the receiver begins to download data

congtituting the application. In this state, get Progress () returnsO.

See Also:

getDownloadState ()

DOWNLOADING

public static final int DOWNLOADING = 1

Represents a download state where an application is being downloaded, or updated while its previous version
is aready invalidated. When the download compl etes, the download state is automatically changed to STORED
state. In this state, applications can be run, and get Progress () method returns the current download

progress.

See Also:

getDownloadState ()

UPDATING

public static final int UPDATING = 2

Represents a download state where an application is being updated while the current version is still valid and
can be run. This state may be entered while an application is previously in oUTDATED state. Note that the
application can be run in this state, and get Progress () reflects the current progress of the update.

See Also:

getDownloadState ()

ETSI

67 ETSI TS 102 635-1 V1.1.1 (2009-08)

STORED

public static final int STORED = 3

Represents a download state where an application is fully downloaded and ready to run. In this state,
getProgress () awaysreturns 100.

See Also:

getDownloadState ()

OUTDATED

public static final int OUTDATED = 4

Represents a download state where an application is fully downloaded, but a newer version is known to be
available. In this state, get Progress () aways returns 100.

NOT_RUNNING

public static final int NOT RUNNING = O

Represents a run state where an application is not running.

See Also:

getRunState ()

PAUSED

public static final int PAUSED = 1

Represents a run state where an application is loaded and initialized. When an application is started and then
paused, it also enters this state. In this state, an application should occupy receiver resources as less as
possible, but be ready to start quickly.

See Also:

getRunState ()

STARTED

public static final int STARTED = 2

Represents a run state where an application is activated and doing what it is designated to do.

ETSI

68

See Also:

getRunState ()

ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

getID

public String getID()
Returns the ID of this application.

Returns:

application ID

getVersion

public int getVersion ()

Returns the version of this application. The version is meaningful only whenit isin sTORED state. Whenitis

not yet stored, thisreturns -1.

Returns:

if this application isin STORED state, then returnsits version. Otherwise, returns -1..

getDownloadState

public int getDownloadState ()

Returns the current download state of this application.

Returns:

the current download state. One of the following:

® NOT STORED
® DOWNLOADING
e UPDATING

. STORED

e OUTDATED

L] INVALID

ETSI

69

getRunState

public int getRunState ()

Returns the current run state of this application.
Returns:
the current run state. One of the following:
° NOT RUNNING
¢ PAUSED

. STARTED

ETSI TS 102 635-1 V1.1.1 (2009-08)

getProgress

public int getProgress|()

Returns the current progress in downloading this application as an int ranging from 0 to 100. Here, 0 means
nothing is downloaded yet, and 100 fully downloaded. Note that this returns a number between 0 and 100 only

when this application isin either DOWNLOADING OF UPDATING State.

Returns:

the current progress in downloading this application

isAutoDownload

public boolean isAutoDownload ()

Returns whether this application represented by this AppControl isto be automatically downloaded or not.

Returns:

true if it isto be automatically downloaded, false otherwise.

download

public void download()
throws SecurityException,
IllegalStateException

Requests download of this application represented by this appControl. When this applicationisin the

NOT STORED Of OUTDATED State and this method is called, the application is entered to the DOWNLOADING oOf
UPDATING state, respectively. When the download is completed, it automatically moves into the STORED state.
Such state changes are reported through registered AppStateListenersS.

ETSI

70 ETSI TS 102 635-1 V1.1.1 (2009-08)

Throws:

SecurityException - When caller does not have a permission to control the state of this
application

IllegalStateException - Whenthisapplicationisin INVALID state

remove

public

void remove ()
throws SecurityException,
IllegalStateException

Designates this application should be removed. The call to this method changes the state of this application to
NOT STORED. If the application is no longer signaled too, then its state is automatically changed to INVALID
State.

Throws:

SecurityException - When caller does not have a permission to control the state of this
application

IllegalStateException - Whenthisapplicationisin INVALID state

init

public

AsyncResult init (AsyncRequestor r)
throws SecurityException,
IllegalStateException

Initializes this application. It enters PAUSED state after a sucessful initialization. Otherwise it remainsin
NOT RUNNING state. This method isinvoked when this application is not in STORED Or UPDATING State, an
IllegalStateException isthrown. Caling this method is meaningful only whenitisin NOT RUNNING
state, but it islegal to call it in other states and the call is silently ignored in that case. This method returns
immediately without blocking. The actua progress may be obtained via AsyncRequestor and
AsyncResult.

Parameters:

r - AsyncRequestor t0 get the progress. Specify nul1l if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get () returnsnull if this
application was successfully initialized. Otherwise, it will throw an exception representing the cause
of the failure. In the case of MID1et, it rethrows an exception thrown by MmiD1let in the course of its
initialization

Throws:
SecurityException - the caling application does not have proper permission to call this method

IllegalStateException - thisapplication wasin INVALID, NOT STORED, Of DOWNLOADING

ETSI

start

public

71 ETSITS 102 635-1 V1.1.1 (2009-08)

AsyncResult start (AsyncRequestor r)
throws SecurityException,
IllegalStateException

Starts this application. Asthe result, it enters sSTARTED state. If itisinNoT RUNNING before calling this
method, the receiver behaves asif init (AsyncRequestor) wasfirst called and completed. Asin the case of
calling init, this method must be called in STORED or UPDATING state. Otherwise, an
IllegalStateException isthrown. Interms of the run state, this method is meaningful only in

NOT RUNNING Of PAUSED state. But it islegal to call this method in other states, and such attempt will silently
beignored. If starting is not successful, it remainsin PAUSED state. Note that this method returns immediately
without blocking, so AsyncRequestor and AsyncResult should be used to track the progress of the
operation.

Parameters:

r - AsyncRequestor t0 get the progress. Specify nul1l if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get () returnsnull if this
application was successfully started. Otherwise, it will throw an exception representing the cause of
the failure. In the case of MID1et, it rethrows an exception thrown by MID1et whiletrying to start it

Throws:
SecurityException - the caling application does not have proper permission to call this method

IllegalStateException - thisapplication wasin INVALID, NOT STORED, OF DOWNLOADING

pause

public

AsyncResult pause (AsyncRequestor r)
throws SecurityException,
IllegalStateException

Pauses this application. As the result, the run state of this application is changed to PAUSED state upon success.
This method may be invoked only when this application isin STARTED state, but doing so in other state does
not incur any error and is silently ignored. Note that this method returns immediately without blocking. The
actual progress can be monitored with AsyncRequestor and AsyncResult.

Parameters:

r - AsyncRequestor to get the progress. Specify nul1l if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get () returnsnull if this
application was successfully paused. Otherwise, it will throw an exception representing the cause of
the failure. In the case of MID1et, it rethrows an exception thrown by MIplet whiletrying to pause it

Throws:
SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - thisapplication wasin INVALID, NOT STORED, Of DOWNLOADING

ETSI

72 ETSI TS 102 635-1 V1.1.1 (2009-08)

stop

public AsyncResult stop (boolean forced,
AsyncRequestor r)
throws SecurityException,
IllegalStateException

Stops this application. Upon successful termination, this application is entered STARTED state. This method is
meaningful in STARTED or PAUSED state. But calling it in other statesislegal and silently ignored without
throwing an exception. Note that this method returns immediately without blocking. To monitor the progress
of this operation, AsyncRequestor and asyncResult should be used appropriately.

Parameters:

forced - if true, this application should be terminated unconditionally. Otherwise, this application
have a choice of vetoing the termination request

r - AsyncRequestor t0 get the progress. Specify nul1l if no report is required

Returns:

AsyncResult object to query the current progress. AsyncResult.get () returnsnull if this
application was successfully stopped. Otherwise, it will throw an exception representing the cause of
the failure. In the case of MID1et, it rethrows an exception thrown by MIDlet whiletrying to stop it

Throws:
SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - thisapplication wasin INVALID, NOT STORED, Of DOWNLOADING

switchTo

public void switchTo ()

Switches the calling application to an application represented by this appControl. This means that the calling
application is destroyed first, and then the designated application is launched. Note that failing to launch the
second application does not cause relaunching of the first application.

This method is useful in aresource constrainted environment, since the two applications are never active at the
sametime.

Throws:

IllegalStateException - if an application represented by this AppControl isinthe INVALID,
NOT STORED, Of DOWNLOADING State

SecurityException - the calling application does not have a proper permission to call this method

addAppStatel istener

public void addAppStatelListener (AppStatelistener listener)

Adds an appstateListener to monitor changesin the state of this application. If 1istener iSnull, the
call issilently ignored.

ETSI

73 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:

listener - thelistener

removeAppStatel istener

public void removeAppStatelListener (AppStatelListener listener)

Removes the designated AppstateListener fromthisapplication. If 1istener isnull or the listener was
not added previously, the call is silently ignored.

Parameters:

listener - listener to remove

isVisible
public boolean isVisible()
Returns whether this application should be visible to users via Ul or so.

Returns:

true if this application should be presented to end users. false otherwise

getName

public String getName ()

Returns the name of this application. If thereis a default language of choice, then the returned name shall bein
the language. Otherwise, the underlying implementation should try its best to return an appropriate
representation. If there was no name signaled, then this method returns a String of zero-length (that is, an

empty string).
Returns:

the name of this application

getName

public String getName (String lang)

Returns the name of this application represented in the given language. If there is no representation in that
language, returns an empty string.

Parameters:

lang - alanguage code designated in RFC 3066

ETSI

74 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns:

the name of this application in the given language

getNames

public String[] getNames ()

Returns alist of the application namesin all languages available in the signalling message. When thereis no
name signaled, this returns an array of zero-length.

Returns:

alist of the application names. A string at zero or even index is RFC 3066 [15] language code, and the
corresponding entry at odd index contains the name of this application represented in the language
designated with the language code

getlcon

public AsyncResult getIcon (AsyncRequestor requestor)

Gets the icon associated with this application. This method returnsimmediately without blocking, and the
download of theicon progressesin the background if it is not fully loaded. The progress and the actual icon
can be obtained via AsyncRequestor and AsyncResult interfacese. When completed,
AsyncResult.get () returns Image for theloaded icon. If noicon is designated for this application, it
returnsnull.

Parameters:

requestor - AsyncRequestor to get notified of the download progress. If such report is not
required, nul1l may be specified

Returns:

AsyncResult to track the download of the icon, and get the result

getDescription

public String getDescription ()

Returns the description of this application. When there are more than one description each of whichis
represented in adifferent language, the name in the default language is returned. If no name represented in the
default language, this returns an empty string.

Returns:

the description of this application

ETSI

75 ETSITS 102 635-1 V1.1.1 (2009-08)

getDescription

public String getDescription (String lang)

Returns the description of this application in the designated language. If there was no description represented
in the designated language, this method returns an empty string.

Parameters:
lang - alanguage code designated in RFC 3066
Returns:

the description of this application in the designated language if any. Otherwise, returns an empty
string

getDescriptions

public String[] getDescriptions/()

Returns all the descriptions of this application represented in different languages together with the
corresponding language code. If there is no description signaled, returns an array of zero-length.

Returns:

descriptions of this application. 0 and even index contains alanguage code in RFC 3066 [15], and the
corresponding odd index contains the description of this application represented in the designated
language

Interface AppListListener

dmb.app

public interface AppListListener

Aninterface to be implemented by an object that needs to listen to changesin the application list maintained by
AppManager. An event is delivered to this listener when there is any application added and/or removved to/from the
list, and information on any application has been updated. Note that these changes do not include the download and the
run state changes. They are delivered through AppStatelListener.

Method Summary LS
void|appListUpdated ()

Called when there is any change in the application list managed by appManager and/or the &

information associated with any application.

ETSI

76 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

appListUpdated

public void appListUpdated ()

Cadled when there is any change in the application list managed by appManager and/or the information
associated with any application.

Class AppM anager

dmb.app

java.lang.Object

L dmb . app . AppManager

final public class AppM anager

extends Object

M anages applications known to the receiver. Applications are represented with AppControls, and they may be used to
control and get information on the applications.

The list of applications maintainaed by this class contains all the applications known to the receiver while surfing
channels and those being downloaded or stored in the receiver.

If there is any new application, or information on any of applicationsis changed, it is notified to the registered
AppListListeners. In addition to that, the current states of applications may be monitored through
AppStateListenersadded directly to aAppManager. It has the same effect asregistering aAppStatelListenerswith
all the applications separately.

Method Summary Page
static void|addAppListListener (AppListListener listener)
75
Adds alistener to monitor changesin the list of applications.
static void|addAppStatelListener (AppStatelListener listener)
Adds the given listener for monitoring state changes of any of applications known to the 76
receiver.
static |getAppControl (String id)
AppControl |™ 74
Returns an AppControl corresponding to an application of the given ID.
static | getAppControls ()
AppControl [] 74
Returns alist of al the applications known to the receiver.
static |getEventBoundApps (String service)
AppControl []
Returns alist of appControlsfor the applications bound to one or more eventsin the S
service represented by the given locator.

ETSI

77 ETSI TS 102 635-1 V1.1.1 (2009-08)

static |getServiceBoundApps (String service)
AppControl []
. A : 74
Returns alist of appcontrolsfor the applications bound to the service represented by the
given locator.
static void |removeAppListListener (AppListListener listener)
75
Removes the given listener from the list of registered listeners.
static void |removeAppStateListener (AppStatelListener listener)
76
Removes the given listener from this appManager.

Method Detail

getAppControl

public static AppControl getAppControl (String id)

Returns an AppControl corresponding to an application of the given ID.
Parameters:

id - application ID
Returns:

an appControl for the application with the given ID. If there is no application with the given ID,
then returnsnull

Throws:

NullPointerException - if thegivenID isnull.

getAppControls
public static AppControl[] getAppControls ()
Returns alist of al the applications known to the receiver.

Returns:

alist of appcontrolsfor al the applications known to the receiver

getServiceBoundApps

public static AppControl[] getServiceBoundApps (String service)

Returns alist of appcontrolsfor the applications bound to the service represented by the given locator. The
list only includes appcontrol only for service-bound applications with no ones for event-bound ones.

Parameters:

service - aservice locator

ETSI

78 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns:

alist of appcontrolsfor the applications bound the given service. If there is no application bound to
the given service, returns an array of zero-length

Throws:
NullPointerException - thrown if the given locator stringisnull

IllegalArgumentException - thrown if the given locator string isinvalid. The locator may be
invalid in terms of its format, or since designating no valid service

getEventBoundApps

public static AppControl[] getEventBoundApps (String service)

Returns alist of appcontrolsfor the applications bound to one or more events in the service represented by
the given locator. The list only includes appcontrol only for event-bound applications with no ones for
service-bound ones.

Parameters:
service - aservice locator
Returns:

alist of appcontrolsfor the applications bound the given service. If there is no application bound to
the given service, returns an array of zero-length

Throws:
NullPointerException - thrown if the given locator stringisnull

IllegalArgumentException - thrown if the given locator string isinvalid. The locator may be
invalid in terms of its format, or since designating no valid service

addAppListListener

public static void addApplListListener (AppListListener listener)

Adds alistener to monitor changesin thelist of applications. If 1istener isnull, the cal issilently ignored.

Parameters:

listener - alistner to add

removeAppListListener

public static void removeAppListListener (AppListListener listener)

Removes the given listener from the list of registered listeners. If it was not added or 1istener iSnull, the
call issilently ignored.

ETSI

79 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:

listener - thelistner to remove

addAppStateL istener

public static void addAppStatelListener (AppStatelListener listener)

Adds the given listener for monitoring state changes of any of applications known to the receiver. If 1istener
isnull, no exception isthrown and the call is sliently ignored.

Parameters:
listener - alistener to add

removeAppStatel istener

public static void removeAppStateListener (AppStatelistener listener)

Removes the given listener from this aAppManager. If it was not added or 1istener isSnull, thecal is
silently ignored.
Parameters:

listener - thelistener to remove

| nter face AppStatel istener

dmb.app

public interface AppStatelL istener

An interface to be implemented by an object that needs to listen to changesin the state of applications.

Field Summary Page
String [IDOWNLOAD PROGRESSED
A constant string designating that there was a change in the progress reported by 77
AppControl.getProgress () Whenan applicationisin DOWNLOADING or
AppControl .UPDATING sState.
String |DOWNLOAD STATE CHANGED
7
A constant string designating that download state has been changed.

ETSI

80 ETSI TS 102 635-1 V1.1.1 (2009-08)

String |REASON APP REQUESTED
78
Designates that the current state change is incurred by arequest from an application.
String |REASON NETWORK UNAVAILABLE
78
Designates that network status is bad or there is no network interface available in the device.
String |REASON OUT OF STORAGE
78
Designates that there is not enough storage for an application.
String |REASON UNKNOWN
78
Designates that the reason is unknown.
String |REASON VOLUNTEERED
78
Designates that the current state change is requested by the application itself.
String |RUN STATE CHANGED
77
A constant string designating that run state has been changed.
Method Summary Page
void |stateChanged (AppControl control, String event, int state, String reason)
78
Called when the run or download state of an application has been changed.

Field Detail

DOWNLOAD_STATE_CHANGED

public static final String DOWNLOAD STATE CHANGED = "downloadStateChanged"

A constant string designating that download state has been changed. Given to stateChanged (AppControl,
String, int, String) method asthe second argument.

RUN_STATE_CHANGED

public static final String RUN_STATE CHANGED = "runStateChanged"

A constant string designating that run state has been changed. Given to stateChanged (AppControl,
String, int, String) method asthe second argument.

DOWNLOAD_PROGRESSED

public static final String DOWNLOAD PROGRESSED = "downloadProgressed"

A constant string designating that there was a change in the progress reported by
AppControl.getProgress () Whenan applicationisin DOWNLOADING or AppControl . UPDATING
state. Givento stateChanged (AppControl, String, int, String) method asthe second argument.

ETSI

81 ETSI TS 102 635-1 V1.1.1 (2009-08)

REASON_OUT_OF STORAGE

public static final String REASON OUT_ OF STORAGE = "outOfStorage"

Designates that there is not enough storage for an application. This reason code is specified only when the
download state of an application is changed to NOT_STORED state.

REASON_NETWORK_UNAVAILABLE

public static final String REASON NETWORK UNAVAILABLE = "networkUnavailable"

Designates that network statusis bad or there is no network interface available in the device. This reason code
is specified only when the download state of an application is changed to NOT_STORED state.

REASON_APP_REQUESTED

public static final String REASON APP REQUESTED = "appRequested"

Designates that the current state change isincurred by a request from an application.

REASON_VOLUNTEERED

public static final String REASON VOLUNTEERED = "volunteered"

Designates that the current state change is requested by the application itself.

REASON_UNKNOWN

public static final String REASON UNKNOWN = "unknown"

Designates that the reason is unknown.

Method Detail

stateChanged

public void stateChanged (AppControl control,
String event,
int state,
String reason)

Called when the run or download state of an application has been changed.

ETSI

82 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:
control - AppControl representing an application the state of which has been changed
event - kind of the event

state - thefina state as the result of the change notified by this event. Depending on the kind of the
event, thisis set to a constant designating either arun or download state. When event is
DOWNLOAD PROGRESSED this should be AppControl . DOWNLOADING OF AppControl . UPDATING.

reason - the reason of the state change. One of the constants defined in this interface prefixed with
REASON . When event is DOWNLOAD PROGRESSED, this is always set to null

| nterface M I DletControl

dmb.app

All Superinterfaces:
AppControl

public interface M | DletControl

extends AppControl

Provides ameansto control an MIDlet associated with an instance of thisinterface. Thisinterface is an extension to
AppControl providing MIDlet specific features.

Fieldsinherited from interface dmb.app.AppContr ol

DOWNLOADING, INVALID, NOT RUNNING, NOT STORED, OUTDATED, PAUSED, STARTED, STORED,
UPDATING

Method Summary Page

String |getProperty (String key)

Returns the same property value that may be retrieved by the application represented by this 80

control viaMIDlet .getAppProperty (String).

AsyncResult [init (String[] props, AsyncRequestor r)

80
Initializes this application with the given properties.

void|gwitchTo (String[] props)

Switches the calling application to an application represented by this aAppControl passing 80

the given properties.

M ethods inherited from interface dmb.app.AppContr ol

addAppStatelistener, download, getDescription, getDescription, getDescriptions,
getDownloadState, getIcon, getID, getName, getName, getNames, getProgress, getRunState,
getVersion, init, isAutoDownload, isVisible, pause, remove, removeAppStatelListener,
start, stop, switchTo

ETSI

83 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

init

public AsyncResult init(String[] props,
AsyncRequestor r)
throws SecurityException,
IllegalStateException

Initializes this application with the given properties. By an invocation of this method, the corresponding
application should begin to move to PAUSED state.

Parameters:

props - List of properties, 0 and even index contains name of a property, and the corresponding value
of the property is stored at the next index.

Returns:

AsyncResult oObject to query the current progress. AsyncResult.get () returnsnull if this
application was successfully initialized. Otherwise, it will throw an exception representing the cause
of the failure. In the case of MID1et, it rethrows an exception thrown by mip1let in the course of its
initialization

Throws:
SecurityException - the calling application does not have proper permission to call this method

IllegalStateException - thisapplication wasin INVALID, NOT STORED, Of DOWNLOADING

switchTo

public void switchTo (String[] props)

Switches the calling application to an application represented by this AppControl passing the given
properties. This method isidentical to switchTo () except that this method allows for additional propertiesto
be passed to the application being switched to. The properties can be retrieved with

MIDlet .getAppProperty (String).

Parameters:

props - List of properties, 0 and even index contains name of a property, and the corresponding value
of the property is stored at the next index.

Throws:

IllegalStateException - if an application represented by this AppControl isinthe INVALID,
NOT STORED, and DOWNLOADING state.

SecurityException - the calling application does not have proper permission to call this method

getProperty

public String getProperty (String key)

ETSI

84 ETSI TS 102 635-1 V1.1.1 (2009-08)
Returns the same property value that may be retrieved by the application represented by this control via
MIDlet .getAppProperty (String). If thereisno such property, then null isreturned.
Parameters:
key - property key
Returns:

the value corresponding to the specified key. If no such property exists, returns null

ETSI

85 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.ca

Defines an interface to conditional access system in the receiver.

See:
Description
Interface Summary Page
CAEventReceiver |Receives CA events from a CA module. 83
CASession Represents a communication session between a CA module and an application. 88
Purchasable Represents an entity that can be purchased via CA system. 89
Class Summary Page
CAEvent Represents an event generated by a CA module. 82
CAModule Represents a CA module within the receiver. 84
CARequest Represents arequest to a CA module. 87
Represents an event generated by a CA module in response to a corresponding request sent to
CAResponse the module viacasSession. send (CARequest). 8
Exception Summary Page
CARefusal Excention An e_xcgpﬂon throwp When an operation isrej ectgd by a CA system because an 86
application performing it does not have enough right to do so.

Package dmb.ca Description

Defines an interface to conditional access system in the receiver. Purchasable may be implemented by objects

representing products under control of the CA system. It provides a means to initiate a purchase procedure without
dealing with the details of the procedure, and a separate means to open a message session with a CA module to directly
control the purchase procedure by exchanging messages with the CA module and interacting with the user. Also
CAModule is defined to open a message session for exchaning messages not related to a purchase.

Class CAEvent

dmb.ca

java.lang.Object

L dmb.ca.CAEvent

Direct Known Subclasses:
CAResponse

ETSI

86 ETSI TS 102 635-1 V1.1.1 (2009-08)

abstract public class CAEvent

extends Object

Represents an event generated by a CA module. Thisisthe base class of all of the classes representing CA events.

Constructor Summary Page

protected |CAEvent ()

83

Creates an instance of cAEvent.

Constructor Detail

CAEvent

protected CAEvent ()

Creates an instance of cakvent. This constructor is provided for implementation convenience, and evolution
of the specification. Therefore, applications are not supposed to use this constructor.

| nterface CAEventReceiver

dmb.ca

public interface CAEventReceiver

Receives CA events from a CA module. An object interested in such events should implement this interface.

Method Summary Page

Void |receive (CAEvent e)

83

Called when a CA event is sent from a CA module viaa CA session.

Method Detail

receive

public void receive (CAEvent e)

Called when a CA event is sent from a CA module viaa CA session.
Parameters:

e - the event object

ETSI

87

ETSI TS 102 635-1 V1.1.1 (2009-08)

Class

CAModule

dmb.ca

java.lang.Object

L dmb.

ca.CAModule

All Implemented Interfaces:
Resource

abstract public class CAM odule

extends Object

implements Resource

Represents a CA module within the receiver. To exchange messages with a CA module, a cASession must be open,
and prior to doing so, the ownership of the r7T3CAModule must be acquired. Otherwise, a
ResourceNotOwnedException iSthrown.

To open a session with a CA module, the application must have an appropriate permission as follows:

e dmb.ca.session.<ca_ids:required to open asessionto a CA module with an ID designated in <ca id>

Constructor Summary Page
protected [CAModule ()
84
Creates an instance of caModule.
Method Summary Page
static tDef 1t
CAModule HE-EERenLs 0 85
Returns the default CA module in the receiver.
int |getModulelID ()
85
Returns the ID for this CA module.
static(list ()
CAModule [] 85
Returns all CA modulesin the receiver.
Casession |openSession (CAEventReceiver r)
85
Opens a session to communicate with this CA module.
Constructor Detalil

CAModule

protected CAModule ()

ETSI

88 ETSI TS 102 635-1 V1.1.1 (2009-08)

Creates an instance of camModule. This constructor is provided for implementation convenience, and evolution
of the specification. Therefore, applications are not supposed to use this constructor.

Method Detail

getDefault

public static CAModule getDefault ()

Returns the default CA module in the receiver.
Returns:

the default CA module

list
public static CAModule[] 1list()
Returns all CA modulesin the receiver.

Returns:

list of all CA modules

getM odulel D

public int getModuleID ()

Returnsthe ID for this CA module.
Returns:

theCA ID

openSession

public CASession openSession (CAEventReceiver r)
throws ResourceNotOwnedException,
SecurityException

Opens a session to communicate with this CA module.
Parameters:

r - aCAEventReceiver t0 receive events originating from this CA module

ETSI

89 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns:

aCaSession object that provides a means to communicate with this CA module. If it is possible to
open a session for areason not signaled with exceptions that may be thrown from this method, nu11
may be returned

Throws:

ResourceNotOwnedException - thrown when the ownership of this module is not owned by the
calling application

SecurityException - thrown when the calling application does not have permissions to call this
method

Class CARefusalException

dmb.ca

java.lang.Object
L java.lang.Throwable
L java.lang.Exception

(I dmb.ca.CARefusalException

All Implemented Interfaces:
Serializable

public class CARefusalException

extends Exception

An exception thrown when an operation is rejected by a CA system because an application performing it does not have
enough right to do so.

Constructor Summary Page
CARefusalException ()

86
Creates an instance of this exception with no detail message.

CARefusalException (String reason)

87

Creates an instance of this exception with the given detail message.

Constructor Detail

CARefusalException

public CARefusalException ()

ETSI

90 ETSI TS 102 635-1 V1.1.1 (2009-08)

Creates an instance of this exception with no detail message.

CARefusalException

public CARefusalException (String reason)

Creates an instance of this exception with the given detail message.

Class CARequest

dmb.ca

java.lang.Object

L dmb.ca.CARequest

abstract public class CARequest

extends Object

Represents arequest to a CA module. Thisisthe base class for all the classes representing such requests.

Constructor Summary Page

protected |CARequest ()

87

Creates an instance of CARequest.

Constructor Detail

CARequest

protected CARequest ()

Creates an instance of carRequest. This constructor is provided for implementation convenience, and
evolution of the specificiation. Therefore, applications are not supposed to use this constructor.

ETSI

91 ETSI TS 102 635-1 V1.1.1 (2009-08)

Class CAResponse

dmb.ca

java.lang.Object

(I dmb.ca.CAEvent

L dmb.ca.CAResponse

abstract public class CAResponse

extends CAEvent

Represents an event generated by a CA module in response to a corresponding request sent to the module via
CASession.send (CARequest) . All the classes representing such responses are extended from this class.

Constructor Summary Page

protected |CAResponse ()

88

Creates an instance of CAResponse.

Constructor Detail

CAResponse

protected CAResponse ()

Creates an instance of carResponse. This constructor is provided for implementation convenience, and
evolution of the specification. Therefore, applications are not supposed to use this constructor.

| nterface CASession

dmb.ca

public interface CASession

Represents a communication session between a CA module and an application.

Method Summary Page

void|close ()

89
Closes this session.

ETSI

92 ETSI TS 102 635-1 V1.1.1 (2009-08)

void|gend (CARequest r)

89

Sends a request to the CA module for which this session is established.

M ethod Detail

send

public void send (CARequest r)
throws IOException

Sends arequest to the CA module for which this session is established.
Parameters:

r - the CA request to send to the CA module
Throws:

IOException - thrown when this session is already closed

close

public void close()

Closes this session. Upon the termination of this session, the caEventReceiver registered with the
corresponding CA module is automatically removed.

If the application that acquired the ownership of the associated CA module loses its ownership, then the
session established with the CA module is automatically closed.

| nter face Purchasable

dmb.ca

public interface Purchasable

Represents an entity that can be purchased via CA system. Thisinterface isimplemented by objects representing such
entities. For example, some of sTobjectsretrieved viadmb . si APl may implement thisinterface if it is not free, and
should be purchased to consume. Also appControl may do so if the application is not free.

For purchasing an entity, thisinterface provides two different ways of interacting with a CA module. First of all, an
application can initiate a purchase session, and let the receiver and the CA module implementations deal with the
remaining details. And an application can aso open a purchase session and directly communicate with a CA module. In
that case, al the interaction with the user must be handled by the application.

ETSI

93 ETSI TS 102 635-1 V1.1.1 (2009-08)

Field Summary Page
String |CURRENCY CODE
91
A currency code defined by 1SO 4217 [25].
String |DESC
92
The description on the product in a purchase information.
String |LONG DESC
92
The long description on the product in a purchase information.
String |LONG NAME
92
The long name of the product in a purchase information.
String |NAME
91
The name of the product in a purchase information.
String |PRICE FRACTION
91
The fraction part of the price in a purchase information.
String |PRICE FRACTION DIGITS
91
The number of digitsin the fraction part of the price in a purchase information.
String |PRICE INT
91
The integer part of the price in a purchase information.
String |PRICE SYMBOL
91
The currency symbol in a purchase information.
String |PURCHASE WINDOW END
92
The end time of the purchase window during which arelevant product can be purchased.
String |PURCHASE WINDOW START
92
The start time of the purchase window during which arelevant product can be purchased.
Method Summary Page
AttributedObject |getPurchaseInfo ()
Returns an attributedObject containing information on the product to be %
purchased.
boolean |isAvailable ()
93
Returns whether the product represented by this object may be purchased or not.
boolean |igPurchased ()
93
Returns whether this product isin purchased state or not.
ChSession |openPurchaseSession (CAEventReceiver r)
93
Opens a casession to purchase a product represented by this object.
AsyncResult |purchase (AsyncRequestor r)
92
Purchases the product represented by this object.

ETSI

94 ETSI TS 102 635-1 V1.1.1 (2009-08)

Field Detail

PRICE_INT

public static final String PRICE INT = "pricelnt"

The integer part of the pricein a purchase information. The type of itsvalueis int.

PRICE_FRACTION

public static final String PRICE FRACTION = "priceFraction"

The fraction part of the pricein a purchase information. The type of itsvalueis int.

PRICE_FRACTION_DIGITS

public static final String PRICE FRACTION DIGITS = "priceFractionDigits"

The number of digitsin the fraction part of the price in a purchase information. The type of itsvalueis int.

CURRENCY_CODE

public static final String CURRENCY CODE = "currencyCode"

A currency code defined by 1SO 4217 [25]. The type of itsvalueis string.

PRICE_SYMBOL

public static final String PRICE SYMBOL = "priceSymbol"

The currency symbol in a purchase information. The type of itsvalueis string.

NAME

public static final String NAME = "name"

The name of the product in a purchase information. The type of itsvalueis string.

ETSI

95 ETSI TS 102 635-1 V1.1.1 (2009-08)

LONG_NAME

public static final String LONG NAME = "longName"

The long name of the product in a purchase information. The type of itsvalueis string.

DESC
public static final String DESC = "desc"

The description on the product in a purchase information. The type of itsvalueis string.
LONG_DESC

public static final String LONG DESC = "longDesc"

The long description on the product in a purchase information. The type of itsvalueis string.

PURCHASE_WINDOW_START

public static final String PURCHASE WINDOW START = "purchaseWindowStart"

The start time of the purchase window during which a relevant product can be purchased. The type of its value

iSDate.

PURCHASE_WINDOW_END

public static final String PURCHASE WINDOW_END = "purchaseWindowEnd"

The end time of the purchase window during which arelevant product can be purchased. The type of its value

iSDate.

Method Detail

purchase

public AsyncResult purchase (AsyncRequestor r)

Purchases the product represented by this object. This method returns immediately without blocking, and the
actual progress can be monitored and controlled with asyncresult returned from this method. And whenever
possible, the purchase can be canceled by canceling the asyncresult. If apurchase fails,
AsyncResult.complete () throwSaCARefusalException.

ETSI

96 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:
r - AsyncRequestor to be notified of the progress of the purchase. If such notification is not
anticipated, then nul1 may be specified

Returns:
AsyncResult to monitor and control the purchase initiated by this method

openPur chaseSession

public CASession openPurchaseSession (CAEventReceiver r)

Opens a casession to purchase a product represented by this object. Opening a session does not actually
begin the purchase procedure, but the application should exchange messages with the CA module to progress.
The application may need to present Uls to provide relevant information and/or get input from the user in

response to messages exchanged with the CA module.

Returns:
A casession used to communicate with a CA module. If a session cannot be open for some reason,
thisreturnsnull

isPurchased
public boolean isPurchased()
Returns whether this product isin purchased state or not.

Returns:

if purchased, true. Otherwise, false

iSAvailable
public boolean isAvailable ()

Returns whether the product represented by this object may be purchased or not. If it is out of the purchase
window, then it may not be possible to purchase the product.

Returns:
if the product can be purchased, returns true. Otherwise, returns false

getPurchaselnfo

public AttributedObject getPurchaseInfo()

ETSI

97 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns an At tributedoObject containing information on the product to be purchased. The standard set of
attributes is defined in this class. But since some of them may not be supported depending on implementations,
AttributedObject.isValid (String) must be consulted before getting attributes from the returned
object.

Returns:

an AttributedObject containing information on the product represented by this object

ETSI

98 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.io

Defines APIs for accessing data coming from the broadcast channel.

See:

Description
Interface Summary Page
BroadcastFileConnection |Represents a connection to a broadcast file. 95
BroadcastFilel istener }A”r; .nterface to be implemented by an object to get notified of changesin broadcast 99
Tricaer Represents a datagram containing an associated timing when the data contained 100

within the datagram will be used for some action.

Package dmb.io Description

Defines APIs for accessing data coming from the broadcast channel. The APIs defined in this package are extensions to
"Generic Connection Framework” defined in javax.microedition. io package of Java ME CLDC 1.1.

Thisfirst provides an API to access broadcast files, which are repeatedly transmitted for reliable delivery. It aso
notifies changesin the files via alistener mechanism. A BroadcastFileConnection can be open with
Connector.open (String) by specifying alocator to the file. Viathe interface, the file system containing the file is
mounted, and the contents of the file can be loaded and accessed. If aBroadcastFileListener iSadded, it can get
notified of version changes of thefile.

And batagramConnection isused for receiving packets being broadcast, and for streams carrying triggers, the
DatagramConnection returns Trigger that isan extension of batagram to provide additional timing information.

| nter face BroadcastFileConnection

dmb.io

All Superinterfaces:
AttributedObject, Connection, InputConnection

public interface BroadcastFileConnection

extends | nputConnection, AttributedObject

Represents a connection to a broadcast file. If a URL to abroadcast fileis given to connector, and the file actually
eXists, aBroadcastFileConnection isreturned. If the specified file does not exist, then an ToException isthrown.

Also to ease access to files within a broadcast file system, open (String) method is provided. Once a
r113BroadcastFileConnection is obtained for a directory, open (String) may be called on it with relative pathsto files
to get another r113BroadcastFileConnections for files under the directory. If thereis no such file corresponding to the
specified path, then an 10Exception isthrown.

For reading the content of the file, then the methods defined in TnputConnection may be used to get InputStreams.
And other methods for getting size, name, and URL for the file are provided.

ETSI

99 ETSI TS 102 635-1 V1.1.1 (2009-08)

Broadcast files may be updated in the transmission side, and those updates can be monitored by adding a listener with
addListener (BroadcastFileListener). Thenthelistener is notified when there is any change in the file.

Method Summary Page
void|addListener (BroadcastFileListener listener)
98
Adds alistener to get notified of changes in the content of thisfile.
long fileSize ()
96
Returns the size of thisfile.
void|flush ()
98
Removes the cached content of thisfileif any.
String |getName ()
97
Returns the name of thisfile.
String |getPath ()
97
Returns the path to this file within the broadcast file system containing thisfile.
boolean |isDirectory ()
97
Reports whether this connection represents a directory or not.
Stringl[] |1ist ()
97
Listsal thefiles contained in this connection in case thisis adiectory.
AsyncResult |1oad (AsyncRequestor requestor)
98
Starts the loading of the content of thisfile.
BroadcastFileConnection open (String relPath)
Opens arl13BroadcastFileConnection located at the specified path relative to 97
this directory.
void |removeListener (BroadcastFileListener listener)
99
Removes aBroadcastFileListener that was previoudly added to thisfile.

M ethodsinherited from interface dmb.util AttributedObject

getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDatelList, getlnt,
getIntList, getlLong, getLonglist, getObject, getObjectlist, getString, getStringlist,
isvalid

Method Detail

fileSize
public long fileSize()

Returnsthe size of thisfile.
Returns:

the sizein bytes

ETSI

100 ETSI TS 102 635-1 V1.1.1 (2009-08)

getName
public String getName ()
Returns the name of thisfile.

Returns:

the name of thisfile

getPath
public String getPath()

Returns the path to this file within the broadcast file system containing thisfile.

Returns:
the file path

isDirectory
public boolean isDirectory ()

Reports whether this connection represents a directory or not.

Returns:
if this represents adirectory, returns true. Otherwise returns false

list
public Stringl[] 1list()

Lists al the files contained in this connection in case thisis a diectory. This method is only meaningful when
isDirectory () returns true. If thisisnot a directory, then returnsnul1. Note that thisreturns O if this

directory is empty.

Returns:
list of all the files and directories within this directory. If thisis not adirectory, then returnsnu11

open

public BroadcastFileConnection open(String relPath)
throws IOException

ETSI

101 ETSITS 102 635-1 V1.1.1 (2009-08)

Opens arll3BroadcastFileConnection located at the specified path relative to this directory.
Parameters:
relPath - therelative path to the file to open
Returns:
the connection object
Throws:

IOException - thrown when the file does not exist

flush
public void flush()
Removes the cached content of thisfileif any. After invoking this method, the receiver loads the content of
thisfile directly from broadcast stream, and al the 10ad requests that were in progress are canceled. And if
there was an open InputStream obtained from this connection, then any attempt to retrieve data from the
stream will result in an 10Exception.
load
public AsyncResult load(AsyncRequestor requestor)
Starts the loading of the content of this file. This method returnsimmediately. And the actual progress can be
monitored and controlled via asyncResult returned from this method.
Parameters:
requestor - AsyncRequestor 10 get notified of progresses of the loading. nul1 may be specified
if such notification is not required
Returns:
An asyncResult object for controlling the loading process. If the loading is failed,
AsyncResult.complete () throwsan I0Exception. AsyncResult.get () returnsnull upon
successful loading
addL istener
public void addListener (BroadcastFileListener listener)

throws IOException

Adds alistener to get notified of changes in the content of thisfile. A notification is delivered only when this
fileisfully loaded, and the version of thisfilein the broadcast stream is compared with the version of the
loaded content. Once a notification is delivered, additional version changes are smply ignored if a new version
is not loaded. Whether afilethat isfully loaded is £1ush () "ed or not does not affect the monitoring of the
version. *

ETSI

102 ETSI TS 102 635-1 V1.1.1 (2009-08)

If the given 1istener parameter isnull, it issilently ignored without throwing an exception.
Parameters:

listener - the listener to add
Throws:

IOException - thrown when there is not enough resource to monitor the underlying stream

removel istener

public void removelListener (BroadcastFileListener listener)

Removes aBroadcastFileListener that was previoudy added to thisfile. If thegiven 1istener iSnull,
or it was never added to thisfile, then the call is silently ignored without incurring an exception.

Parameters:

listener - thelistener to remove

| nter face BroadcastFilel istener

dmb.io

public interface BroadcastFileL istener

Aninterface to be implemented by an object to get notified of changes in broadcast files. Upon natification, the content
of the changed file is not automatically loaded. To load the new content, BroadcastFileConnection.flush () must
be called first to clear the cache, and then BroadcastFileConnection. load (AsyncRequestor) need to be called.

See Also:

BroadcastFileConnection

Method Summary Page

void|fileUpdated (BroadcastFileConnection conn)

99

Called when a broadcast file has been updated.

Method Detail

fileUpdated

public void fileUpdated (BroadcastFileConnection conn)

Cadlled when a broadcast file has been updated.

ETSI

103 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:

conn - BroadcastFileConnection object for accessing the broadcast file

| nterface Trigger

dmb.io

All Superinterfaces:
Datagram, Datal nput, DataOutput

public interface Trigger

extends Datagram

Represents a datagram containing an associated timing when the data contained within the datagram will be used for
some action. Thisinterface extends javax.microedition.Datagram to provide access to the timing information.
Trigger conveys the timing information to synchronize the action triggered by it with a specific point in the associated
A/V. Each Trigger has an associated trigger 1D, and the timing to trigger an action associated with itself.

If more than one trigger isreceived, and their trigger IDs are identical, all of them are considered same, and reported to
the receiving application only once. The reason for sending more than one trigger with the same ID isto increase the
possibility of receiving atrigger. In addition to that, the trigger ID may be used to change the timing associated with a
trigger. If atrigger is processed, then its ID may be reused over time for other triggers.

If an application is blocked for receiving atrigger, and atrigger of a specific ID is successfully received, then the
Trigger object specified by the application is filled with the contents of the received trigger, and the calling thread
returns immediately. If the time associated with the trigger has not come, getstate () of the Trigger returns
RECEIVED. If more than one trigger with the same ID is returned, then it means that the data associated with the trigger
has been changed. Otherwise, no trigger with the same ID shall be returned more than once before the time associated
with it passes. After the reception of atrigger, the receiver keeps track of the time associated with the trigger to notify a
receiving application when the time has come. At that time, the application receives the same trigger (even though the
corresponding trigger packet is not received again) with its state set to TRIGGERED. Responding to the reception, the
application should perform an action associated with the trigger. As an exception, if the receiver could not track the
time associated with the trigger, and it is sure that the time has passed already, then the trigger is ssimply canceled, and
the same trigger is returned to the application with its state set to cancELED thistime. Once atrigger of aspecific ID is
delivered with either TRIGGERED Or CANCELED state, then other triggers delivered after it with the sametrigger ID are
different ones.

When a stream conveying triggers is open with Conector, aDatagramConnection isreturned and itSnewbDatagram
method shall return Trigger instead of Datagram.

See Also:

DatagramConnection

Field Summary Page

int |CANCELED

Represents that this trigger has been received before, and the receiver has failed to track the 101

time associated with it.

ETSI

104 ETSITS 102 635-1 V1.1.1 (2009-08)

int |RECEIVED
101
Represents that thistrigger isjust received, and the time associated with it has not come yet.
int ITRIGGERED
Represents that this trigger has been received before, and the time associated with it has just 101
come.
Method Summary Page
int |getID ()
102
Returns the ID for this trigger.
int |getState ()
102
Returns the state of thistrigger.
long | getTime ()
102
Returns the time point associated with this trigger.
Field Detail
RECEIVED

public static final int RECEIVED = 0

Represents that thistrigger isjust received, and the time associated with it has not come yet. If thereis more
than one trigger with the same ID, only the first one will actually be delivered to the application, and others

will be discared if it does not signal changes in the contents of the trigger.

See Also:

getState ()

TRIGGERED

public static final int TRIGGERED = 1

Represents that this trigger has been received before, and the time associated with it has just come. The

application receiving thistrigger is considered to perform some action associated with this trigger. Note that a
trigger in this state does not mean a new trigger packet is received. A trigger packet may be reported more than

once with different states.

See Also:

getState ()

CANCELED

public static final int CANCELED = 2

ETSI

105 ETSITS 102 635-1 V1.1.1 (2009-08)

Represents that this trigger has been received before, and the receiver has failed to track the time associated
withit.
See Also:

getState ()

Method Detail

getState
public int getState()

Returns the state of thistrigger. Once atrigger packet is received, it is delivered to an application in RECEIVED

state. And if the time associated with it has come, the same trigger is delivered again in TRIGGERED State. As
an exception, if the receiver has failed to track the time, and it is sure that the time has already passed, then the

trigger is delivered in CANCELED state instead of TRIGGERED state.

Returns:

the state of thistrigger

getID
public int getID()
Returnsthe ID for this trigger.

Returns:

thetrigger ID

getTime
public long getTime ()

Returns the time point associated with thistrigger. Thistime is not exact, so should be used just asa hint.
Especidly, itisfairly difficult to estimate the exact time when there is a discontinuity in the mediatime of A/V

streams associated with thistrigger.

Returns:
The trigger time. Elapsed time in milliseconds since midnight, January 1, 1970 UTC. If itis

impossible to estimate the time then returns -1

ETSI

106 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.media

As an extension to MMAPI, this package contains additional classes and interfaces.

See:
Description
Interface Summary Page

A control providing ameansto control video presentation laid under the graphics

103
plane.

BackgroundVideoControl

Package dmb.media Description

As an extension to MMAPI, this package contains additional classes and interfaces. BackgroundvideoControl may
be obtained from p1ayers presenting a broadcast video, and can be used to control the size and the location of the area
where the video is displayed.

| nter face BackgroundVideoControl
dmb.media

All Superinterfaces:
Control

public interface BackgroundVideoContr ol

extends Control

A control providing a means to control video presentation laid under the graphics plane. P1ayers obtained from a
ServiceManager and resposible for video presentation must return this control. And in the case of players created
viaManager should also return this control if it supports presentation of video under the graphics plane. If both
javax.microedition.media.control.VideoControl and thiscontrol arereturned fromarlayer, the
successful initialization of one of them must disable the other, resulting in the initialization failure of the disabled one.

Field Summary Page
String |SIZE CHANGED
104
An event fired when the display size of a background video has been changed.
Method Summary Page
int |getDisplayHeight ()
107
Returns the height of the area where the video is displayed.

ETSI

107 ETSITS 102 635-1 V1.1.1 (2009-08)

int getDisplayWidth ()

107
Returns the width of the area where the video is displayed.

int |getDisplayX ()
106
Returns the x coordinate of the top-left corner of the area where the video is displayed.

int |getDisplay¥ ()

107
Returns the y coordinate of the top-left corner of the area where the video is displayed.

int |getSourceHeight ()
106
Returns the height of the source video.

int |getSourceWidth ()

106
Returns the width of the source video.

int |getZOrder ()

Returns the z-order value of the video controlled by this control. 0 istop most, that is, closest 108

to the viewer, and as the value increases, it is farther from the viewer.

voidiinit (Display display)
104
Initializes this control for the presentation of video on the given bisplay.

void|getDisplayBounds (int x, int y, int width, int height)

105
Sets the bounds of the area where video will be displayed.

void|getVisible (boolean visible)

105
Sets the video visible or invisible depending on the argument.

void|getZOrder (int zOrder)

107
Sets the z-order of the video the presentation of which is controlled by this control.

AsyncResult |\takeSnapshot (String path, AsyncRequestor r)

105

Takes the snapshot of the current video frame, and storesit to the given file in JPEG format.

Field Detail

SIZE_CHANGED

public static final String SIZE CHANGED = "backgroundVideoSizeChanged"

An event fired when the display size of a background video has been changed. When this event is delivered to
PlayerListener.playerUpdate (Player, String, Object), thethird argument to the method shall be
aBackgroundvideoControl Object associated with the background video.

M ethod Detail

init
public void init (Display display)

throws IllegalStateException,
NullPointerException

ETSI

108 ETSI TS 102 635-1 V1.1.1 (2009-08)
Initializes this control for the presentation of video on the given bisplay. This method must be invoked
before presentation begins, and cannot be called more than once.
Parameters:
display - the Display to present video on
Throws:
IllegalStateException - thrownif called more than once

NullPointerException - thrown when the argument isnull

setDisplayBounds
public void setDisplayBounds (int x,
int vy,

int width,
int height)

Sets the bounds of the area where video will be displayed. The bounds are specified in the screen’s coordinate
system. If the specified size is smaller than that of the original video, then it isimplementation dependent
whether the video is scaled or the portion outside the areaiis clipped out.

Parameters:
x - the x coodinate of the top-left corner of the video area
y - they coodinate of the top-left corner of the video area
width - the width of the video area

height - the height of the video area

setVisible
public void setVisible (boolean visible)
Sets the video visible or invisible depending on the argument.

Parameters:

visible - if true, thevideoisvisble. If false, setinvisible

takeSnapshot

public AsyncResult takeSnapshot (String path,
AsyncRequestor r)
throws IOException

Takes the snapshot of the current video frame, and stores it to the given file in JPEG format. This method
returns immediately without blocking, and the progress may be monitored and controlled via asyncResult

ETSI

109 ETSI TS 102 635-1 V1.1.1 (2009-08)

and AsyncRequestor associated with each call to this method. AsyncResult.get () refurnsSnull upon
completion of snapshot taking. If there was any problem in storing the file an ToException may be thrown.

Parameters:
path - afile (apath in afile system) to store the snapshot

r - AsyncRequestor t0 get notified of the progress of the snapshot taking. In case such notification
isnot required, nul1l may be specified

Returns:
AsyncResult to monitor and control the progress
Throws:

IOException - thrown when an error isimmediately detected (for example, when the given path is
invalid)

getSour ceWidth

public int getSourceWidth ()
Returns the width of the source video.

Returns:

the width of the source video

getSour ceHeight

public int getSourceHeight ()
Returns the height of the source video.

Returns:

the height of the source video

getDisplayX

public int getDisplayX()

Returns the x coordinate of the top-left corner of the area where the video is displayed. The coordinateisin
Display's coordinate system.

Returns:

the x coordinate of the video

ETSI

110 ETSITS 102 635-1 V1.1.1 (2009-08)

getDisplayY
public int getDisplayY ()

Returns the y coordinate of the top-left corner of the area where the video is displayed. The coordinateisin
Display's coordinate system.

Returns:

the y coordinate of the video

getDisplayWidth
public int getDisplayWidth ()
Returns the width of the area where the video is displayed.

Returns:

the width of the video

getDisplayHeight
public int getDisplayHeight ()
Returns the height of the area where the video is displayed.

Returns:

the height of the video

setZOrder

public void setZOrder (int zOrder)
throws IllegalArgumentException

Sets the z-order of the video the presentation of which is controlled by this control. The z-order valueis
relative to each other, therefore there may be no video associated with a specific z-order value even though
there are for two z-order values respectively larger and smaller than the value. If there are more than one video
with the same z-order value, then the actual z-order isimplementation dependent. Z-order of zero represents
top most video, that is, closest to the viewer, and as the value increases, the video is farther from the viewer.

Parameters:
zOrder - the z-order value for the video
Throws:

IllegalArgumentException - if z-order is negative

ETSI

111 ETSITS 102 635-1 V1.1.1 (2009-08)

getZOrder
public int getZOrder ()

Returns the z-order value of the video controlled by this control. O istop most, that is, closest to the viewer,
and asthe value increases, it is farther from the viewer. When aplayer isfirst created, the default value is set

to 0 meaning top-most.

Returns:

the z-order of the video

ETSI

112 ETSITS 102 635-1 V1.1.1 (2009-08)

Package dmb.messaging

Definesan API for applications to communicate with one another.

See:

Description
Interface Summary Page
Message Represents a message that can be sent to or received from a port. 109
Class Summary Page
Port ‘Represents a port where more than one application can communicate with one another. 112

Package dmb.messaging Description

Defines an API for applications to communicate with one another. The communication model supported by the API
defined in this package is the message queue. With this messaging model, applications can synchronize their executions
with one another as well as exchaning data.

Applications may share a port by specifying a common name agreed upon among them. And they may send and/or
receive messages via the shared port. The message is abstracted by Message object. It isakind of buffer for copying
datain/out to ports.

| nter face M essage

dmb.messaging

All Superinterfaces:
Datal nput, DataOutput

public interface M essage

extends Datal nput, DataOutput

Represents a message that can be sent to or received from a port. It has abuffer inside, and can be configured either
read or write mode. Therefore once created, a message may be used repeatedly for sending and receiving data via
Ports.

Reading a message

To set amessage for reading, readFrom (int) should be called. It sets the contents of the message to be read from the
designated byte-offset from the beginning of the message buffer. Since this class implements bataInput, the methods
defined in the interface may be used to read the contents. If read beyond the length of the data returned from
getLength (), a8 EOFException isthrown. And in the read mode, calling methods defined in Dataoutput that is
also implemented by this classincurs an 10Exception. If called more than once, readrFrom (int) can be used to read
the same message more than once from different positions.

ETSI

113 ETSITS 102 635-1 V1.1.1 (2009-08)

Writing to a message

Asinreading, writeFrom(int) should be called to set the message for writing. Then the message is set for writing
from the specified byte-offset from the beginning of the message buffer. The methods defined in Dataoutput can be
used to write data, and if datais written beyond the current length of the message, the length isincreased automatically.
Once set for writing, the methods defined in bataInput cannot be called. If called, an 10Exception isthrown. If
writeFrom(int) iscalled morethan once, part of the otherwise same message may be modified multiple times.

State of a message after sending or receiving data

A messageis sent to or received from a port. After sending a message, there is no change in the state of the message.
That is, the read/write mode previously set isretained asit was, and getPosition () and getLength () return the
same values as before sending its data.

In the case of receiving data, the original data contained in the message is deleted, and the newly received datais copied
to the message from the beginning of the internal buffer of the message. The length is set to that of datareceived from
the port, and the message is automatically set for reading from the beginning of the message buffer. Thus
getPosition () returnsO.

Method Summary Page

void |end ()

111
Sets the current position returned by getPosition () to bethelength of this message.

int \getLength ()

111
Returns the length of this message.

int |getPosition ()
111
Returns the next position to read or write data from.

void |readFrom (int pos)

Sets this message for reading from the given byte-offset from the beginning of the internal 110

buffer.

void |gsetCapacity (int capacity)

112
Sets the capacity of this message in bytes.

void|writeFrom(int pos)

Sets this message for writing from the given byte-offset from the beginning of the internal 1l

buffer.

Method Detail

readFrom

public void readFrom(int pos)

Sets this message for reading from the given byte-offset from the beginning of the internal buffer. Once called,
the methods defined in DataInput work as specified, and data can be read to the length of this message in the
internal buffer.

Parameters:

pos - the byte-offset from which to read datain the internal buffer of this message

ETSI

114 ETSITS 102 635-1 V1.1.1 (2009-08)

Throws:

IllegalArgumentException - thrown when the given pos parameter islessthan O, or larger than
or equal to getLength ()

writeFrom

public void writeFrom(int pos)

Sets this message for writing from the given byte-offset from the beginning of the internal buffer. Once called,
the methods defined in bataoutput work as specified, and data can be written to the internal buffer. If datais
written beyond the current length of the message, the length is increased automatically.

Parameters:
pos - the byte-offset from which to write datain the internal buffer of this message
Throws:

IllegalArgumentException - thrown when the given pos parameter islessthan O, or larger than
or equal to getLength ()

getPosition
public int getPosition/()

Returns the next position to read or write data from.

Returns:

the next position to read or write data. An byte-offset from the beginning of the internal buffer

end

public void end()

Sets the current position returned by getPosition () to bethe length of this message.

getL ength

public int getLength()

Returns the length of this message. When a message is created for the first time, thisis set to 0.

Returns:

the length of the message

ETSI

115 ETSITS 102 635-1 V1.1.1 (2009-08)

setCapacity

public void setCapacity(int capacity)

Sets the capacity of this message in bytes. Thisvalueis used as a hint of the preferred buffer space. By
respecing this value, the underlying implementation may keep the allocated space minimum, or reduce
reallocations of internal buffer. But the actual size of the internal buffer may differ from the value specified via
this method depending on implementations.

Parameters:
capacity - the preferred size of the buffer in bytes
Throws:

IllegalArgumentException - thrown when the given capacity parameter is negative or less
than the length of this message

Class Port
dmb.messaging

java.lang.Object

L dmb .messaging.Port

abstract public class Port

extends Object

Represents a port where more than one application can communicate with one another. To send data to other
applications, aMessage should be filled with the data. On the other hand, for receiving data, aMessage to copy the
datainto should be specified.

A port isimplemented as a queue that isa FIFO (First In First Out) data structure, so the order of messages received
with receive (Message) isthe same asthat of messages sent with send (Message) .

A port can be configured either blocking or non-blocking mode. In the blocking mode, methods for sending or
receiving amessage block if it cannot be sent or received immediately. Conversely in the non-blocking mode, such
methods return immediately returning £alse without performing the designated operation if it can be done
immediately. In the case of the blocking mode, setTimeout (1ong) may be used to specify the timeout for which
those methods will block without completing the designated operation. If the timeout expires without completing the
designated operation, the methods return £alse. Therefore return values must be checked in the non-blocking mode.

Permissions
Access to ports by applications can be controlled with the following permission.

e dmb.messaging.Port.open.<name>: PErMission to open aport with the specified <name>

ETSI

116 ETSITS 102 635-1 V1.1.1 (2009-08)

Constructor Summary Page
protected |Port ()
113
Creates an instance of port.
Method Summary Page
abstraﬁ:t clear ()
void 117
Removes all the Messages pending in this port.
abstract [close ()
void 114
Closes this port.
abstract lconfigureBlocking (boolean block)
void
114
Sets the blocking mode of this port.
abstract \getTimeout ()
long |~
Returns the timeout for sending or receiving a messsage when this port is set to the blocking 115
mode.
abstract [igBlocking ()
boolean 115
Checksif this port is set to the blocking mode or not.
abstract InewMessage (int size)
Message
Creates anew Message instance for use with this port that has a buffer of at least the given 115
size.
static open (String name, int capacity, boolean createIfNecessary)
Port
- 114
Returns a port with the given name.
abstract [receive (Message msg)
boolean 116
Receives a message from this port.
abstract |[send (Message msg)
boolean 116
Sends a message to this port.
abstract [sendFirst (Message msg)
boolean 117
Puts the given message to the front of the queue within this port.
abstract |[setTimeout (long timeout)
void |— 115
Sets the timeout when sending or receiving a message in the blocking mode.
Constructor Detail

Port

protected Port ()

Creates an instance of port. This constructor is for implementation convenience and evolution of the
specification. Therefore, applications must not make use of this constructor.

ETSI

117 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Detail

open

public static Port open (String name,
int capacity,
boolean createlfNecessary)
throws IOException,
SecurityException

Returns a port with the given name. If there isaready a port with the given name, returns the instance. But
if it isnot the case and the createIfNessary parameter is true, anew pPort is created and then returned.

Parameters:
name - name of the port

capacity - the maximum number of messages that can be stored without blocking within this port.
Thisis meaningful only when anew port is created

createlfNecessary - if true, anew port is created when one with the given name is absent in the
receiver

Throws:

IOException - thrown when the createIfNcessary parameter is false and thereisno port
with the given name

SecurityException - thrown when the caller does not have a permission to call this method with
the given parameters

IllegalArgumentException - thrown when the capacity parameter is negative

NullPointerException - thrown when the name parameter isnull

close

public abstract void close()

Closesthis port. If thereis no application holding this port unclosed, this port is actually removed from the
receiver. Closed ports should not be used, and no method should be invoked on them.

configureBlocking

public abstract void configureBlocking (boolean block)

Sets the blocking mode of this port.

Parameters:

block - if true, thisport is set to the blocking mode. Otherwise set to the non-blocking mode

ETSI

118 ETSITS 102 635-1 V1.1.1 (2009-08)

isBlocking

public abstract boolean isBlocking()

Checksif this port is set to the blocking mode or not. Newly created ports are set to the blocking mode. If this
method is called after close () iscaled, the return value is not defined.

Returns:

true if thisport isin the blocking mode. false otherwise

setTimeout

public abstract void setTimeout (long timeout)

Sets the timeout when sending or receiving a message in the blocking mode. If the timeout is expired without
sending or receiving a message, the corresponding method returns returning false. If the timeout valueis set
to o, it means that those methods wait forever until sending or receiving a message. When a port is created,
its timeout defaultsto o.

Parameters:
timeout - the timeout value in milliseconds
Throws:

IllegalArgumentException - thrown when the t imeout parameter is negative

getTimeout

public abstract long getTimeout ()

Returns the timeout for sending or receiving a messsage when this port is set to the blocking mode. The port
waits for this timeout until sending or receiving a message. After the timeout is expired, the methods for
sending or receiving a message returns false. If 0 isgiven, it means that those methods wait forever util
sending or receiving a message. When a port is created, its timeout defaultsto o.

Returns:

the timeout value in milliseconds. If this port isclosed, then returns -1

newM essage

public abstract Message newMessage (int size)

Creates anew Message instance for use with this port that has a buffer of at least the given size.

Parameters:

size - the minimum size of the internal buffer

ETSI

119 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns:
the created Message
Throws:

IllegalArgumentException - thrown when the size argument is negative

receive

public

abstract boolean receive (Message msg)
throws IOException

Receives a message from this port. If this port is empty, then the behaviour of this method differs depending on
the blocking mode set to this port. If this port isin the blocking mode, waits for a message for at most the
timeout set with setTimeout (1ong) or until this Port is closed. If a message is not obtained as the result,
this method returns false. On the other hand, if this port is in the non-blocking mode and there is no message
immediately available for receiving, this method returns immediately with £alse asthereturn value.

Parameters:
msg - aMessage object to store the message data obtained from this port
Returns:

if received successfully, returns true. Otherwise false. Note that false isreturned when timeout is
expired or this port isclosed without retrieving a message

Throws:

IOException - thrown when there was an error while receiving a message, or this port is aready
closed

InterruptedIOException - thrown when the calling thread has been interrupted while blocking on
this port

NullPointerException - thrown when the msg parameter isnull

send

public

abstract boolean send(Message msg)
throws IOException

Sends a message to this port. If there isno available free slot in this port, the behaviour of this method is
different depending on the blocking mode set to this port. If thisport is set to the blocking mode, the calling
thread blocks for at most the timeout set with set Timeout (1ong) or until this port isclosed. If the timeout
isexpired or this port is closed without sending the message, this method returns £alse. On the other hand,
in the non-blocking mode, this method returnsimmediately with false asthereturn valueif it is not possible
to send the message without blocking.

Parameters:

msg - aMessage Object containing data sent to this port

ETSI

120 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns:

returns true if the message is sent. Otherwise false. Note that false isreturned when timeout is
expired or this port isclosed without sending a message

Throws:

IOException - thrown when there was an error while receiving a message, or this port is aready
closed

InterruptedIOException - thrown when the calling thread has been interrupted while blocking on
this port successfully. Otherwise returns false

NullPointerException - thrown when the msg parameter isnull

sendFirst

public abstract boolean sendFirst (Message msg)

throws IOException

Puts the given message to the front of the queue within this port. That is, the message is sent prior to other
messages waiting to be taken in this port. If there is no free slot, then the behaviour of this method is different
depending on the blocking mode set to this port. In the blocking mode, the thread calling this method blocks
for at most the timeout set with set Timeout (1long) or until this port isclosed. If it could not send the
message within the timeout or until this port isclosed, this method just returns £alse. On the other hand, in
the non-blocking mode, this method returns immediately with false asthe return value if the message cannot
be sent without blocking.

Parameters:
msg - @Message Object containing data sent to this port

Returns:

returns true if the messageis sent. Otherwise false. Notethat false isreturned when timeout is
expired or this port is closed without sending a message

Throws:

IOException - thrown when there was an error while receiving a message, or this port is aready
closed

InterruptedIOException - thrown when the calling thread has been interrupted while blocking on
this port successfully. Otherwise returns false

NullPointerException - thrown when the msg parameter isnull

clear

public abstract void clear()

Removes all the Messages pending in this port.

ETSI

121 ETSITS 102 635-1 V1.1.1 (2009-08)

Package dmb.resour ces

Defines the basic framework to share resources among the receiver implementation and the aplications.

See:
Description
Interface Summary Page
Resource A marker interface to mark resources managed by ResourceManager. 120
ResourceOwner Represents the owner of the resource acquired viaResourceManager. 128
ResourceOwnership Represent§ an ownership of single or a set of resources acquired by acall to acquire or 129
tryAcquire methods of ResourceManager.
Class Summary Page
ResourceChoice |Represents a set of choices for resources. 120
ResourceGroup |Represents a group of resources to be acquired as a unit. 122
Resour ceM anager Represent§ the system-wide resource manager, which keeps track of ownerships of various 123
resourcesin the system.
Exception Summary Page
. . |An exception thrown when an operation cannot be performed because thereis
I nsufficientResour ceException not enough resource. 119
Resour ceNotOwnedException An exception thrown when an application tries to call methods on a resource 127

object it does not have the ownership.

Package dmb.resour ces Description

Defines the basic framework to share resources among the receiver implementation and the aplications. All the objects

that are considered as resources are marked with resource interface. Resources may be a hardware entity such as

Tuner, Or SOme abstract permission such as KeyLock.

ResourceManager iSused to acquire the ownership of resources. Each application may specify the priority associated

with each resource acquisition to express the priority of its operation using those resources. The receiver assigns

resources based on these priorities. Each application may set a higher priority to retain resources of their concern, and
may be notified when resources it owns are taken away by the receiver implementation or other applications.

ETSI

122 ETSI TS 102 635-1 V1.1.1 (2009-08)

Class | nsufficientResour ceException

dmb.resour ces

java.lang.Object
L java.lang.Throwable
L java.lang.Exception
L java.lang.RuntimeException

L dmb.resources.InsufficientResourceException

All Implemented Interfaces:
Serializable

public class | nsufficientResour ceException

extends RuntimeException

An exception thrown when an operation cannot be performed because there is not enough resource.

Constructor Summary Page
InsufficientResourceException ()
119
Creates an instance of this exception without specifying the reason.
InsufficientResourceException (String desc)
119

Creates an instance of this exception with a string describing the reason.

Constructor Detail

I nsufficientResour ceException

public InsufficientResourceException ()

Creates an instance of this exception without specifying the reason.

I nsufficientResour ceException

public InsufficientResourceException (String desc)

Creates an instance of this exception with a string describing the reason.

ETSI

123 ETSI TS 102 635-1 V1.1.1 (2009-08)

| nter face Resour ce

dmb.resour ces

All Known Implementing Classes:
CAModule, KeyL ock, ResourceChoice, ResourceGroup, ServiceManager, Tuner, TunerL ock

public interface Resour ce

A marker interface to mark resources managed by ResourceManager.

Class Resour ceChoice

dmb.resour ces

java.lang.Object

L dmb . resources.ResourceChoice

All Implemented Interfaces:
Resource

public class ResourceChoice
extends Object

implements Resource

Represents a set of choices for resources. Acquiring a ResourceChoice means that only one of the resources
contained in it is required. Once aResourceChoice isacquired, getAcquired () may be consulted to get the
resource that is actually acquired among those within thisresourceChoice.

Note that this classis different from other Resources, in that an instance of it cannot be specified in arequest for
resource acquisition if it is aready acquired in the context of other request. If it is specified in such a case, then an
IllegalArgumentException iSraised.

See Also:

ResourceGroup

ETSI

124 ETSITS 102 635-1 V1.1.1 (2009-08)

Constructor Summary Page

ResourceChoice (Resource[] res)

121

Creates aResourceChoice from the given resources.

Method Summary e
Resource (getAcquired ()
o 121
Returns the resource that is actually acquired.
Resource[] |getResources ()
121

Returns an array containing resources consisting of thisResourceChoice.

Constructor Detail

Resour ceChoice

public ResourceChoice (Resource[] res)

Creates aResourceChoice from the given resources. The specified array is copied, so changing it does not
affect the created ResourceChoice.

Throws:

IllegalArgumentException

Method Detail

getResources
public Resource[] getResources/()

Returns an array containing resources consisting of thisresourcecChoice.

Returns:

an array containing the resources. It is a copy of the array kept in this object

getAcquired
public Resource getAcquired()
Returns the resource that is actually acquired. If thisresourceChoice isnot acquired, then returnsnuill.

Returns:

the resource that is actually acquired. If this choiceis not acquired, then returns nul1

ETSI

125 ETSITS 102 635-1 V1.1.1 (2009-08)

Class Resour ceGroup

dmb.resour ces

java.lang.Object

L dmb .resources.ResourceGroup

All Implemented Interfaces:
Resource

public class Resour ceGroup
extends Object

implements Resource

Represents a group of resources to be acquired as aunit. If arResourceGroup issubmitted t0 ResourceManager for
acquisition, the acquisition succeeds only when all the resources contained in it may be obtained at the same time.
Otherwise, it is not acquired.

ResourceGroup May recursively contain ResourceChoices. But r173ResourceGroup may not be nested directly or
indirectly within another r173ResourceGroup. If used together with ResourceChoice, ResourceGroup may be used
to specify various resource requirements.

See Also:

ResourceChoice

Constructor Summary Page
ResourceGroup (Resource[] res)
122
Creates an instance of ResourceGroup consisting of the given resources.

Method Summary oL
Resource[] |getResources ()

123
Returns the resource consisting of this group as an array.

Constructor Detail

Resour ceGroup

public ResourceGroup (Resource[] res)

Creates an instance of ResourceGroup consisting of the given resources.

Throws:

IllegalArgumentException

ETSI

126 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

getResour ces

public Resource[] getResources ()

Returns the resource consisting of this group as an array. This array is a copy of the array kept within this
group.

Returns:

the resource array

Class Resour ceM anager

dmb.resour ces

java.lang.Object

L dmb.resources.ResourceManager

abstract public class Resour ceM anager

extends Object

Represents the system-wide resource manager, which keeps track of ownerships of various resourcesin the system.
Application may acquire aresource by calling acquire (Resource, int,ResourceOwner, AsyncRequestor), and
releases an acquired resource by calling ResourceOwnership.release () ontheResourceOwnership object
obtained as the result of successfully gaining the ownership of the resource.

A resource may be single entity such as Tuner, but ResourceGroup may be used to acquire more than one resource at
once. In this case, all of the resources represented by ResourceGroup must be able to be acquired as awhole,
otherwise the request is failed. In addition to requesting a set of resources at once, ResourceChoice may be used to
list a set of resources, only one of which should be acquired. ResourceGroup and ResourceChoice may be used
together to specify complex requirements on resources.

The ResourceOwner givento acquire (Resource, int, ResourceOwner, AsyncRequestor) providesameans
for this resource manager to communicate with the owner of the resource. That is, when other application or the
underlying receiver implementation may need to take resources that are already owned by an application, the resource
manager may communicate with the application via the methods defined in Resourceowner. For details, refer to
ResourceOwner.

ResourceSin the receiver must be acquired before using via ResourceManager. Otherwise some methods of
ResourceSWill throw ResourceNotOwnedException.

Per missions

Each application can specify a priority for the resourcesit acquires. But if any application can specify a priority as high
asit wants, then any malfunctioning application may hamper proper operation of the receiver. So applications require
the following permission to set an appropriate priority.

e dmb.resources.priority.<priorityCeiling>: A permission to set the priority to <priorityCeiling>. In

other words, an application cannot specify a priority larger than <priorityCeiling>. When this permission is not
specified at all, the corresponding application cannot specify a priority larger than NORMAL.

ETSI

127 ETSITS 102 635-1 V1.1.1 (2009-08)

Field Summary Page
static |HIGH
final int|™
A priority value meaning an application requires high prority in using the resources of its 124
concern.
static |LOW
final int|™
A priority value meaning an application requires low prority in using the resources of its 125
concern.
static [NORMAL
final int|™
A priority value meaning an application requires normal prority in using the resources of its 125
concern.
static |PRIVILEGED
final int|™
A priority value meaning an application requires privileged right to the resources of its 124
concern.
Constructor Summary Page
protected |ResourceManager ()
125
Creates an instance of ResourceManager.
Method Summary Page
abstract lacquire (Resource r, int priority, ResourceOwner owner, AsyncRequestor
AsyncResult requestor) -
126
Definitely acquires the given resource by retrying until it is possible.
static |getInstance ()
ResourceManager 125
Returns an instance of ResourceManager.
abstract [tryAcquire (Resource r, int priority, ResourceOwner owner,
AsyncResult |aqvncRequestor requestor) 125
Triesto acquire the given resource only if it is possible.
Field Detail
PRIVILEGED

public static final int PRIVILEGED = 268435456

A priority value meaning an application requires privileged right to the resources of its concern. Thisvalueis
usually specified by privileged applications such as EPG.

HIGH

public static final int HIGH = 536870912

ETSI

128 ETSI TS 102 635-1 V1.1.1 (2009-08)

A priority value meaning an application requires high prority in using the resources of its concern.

NORMAL

public static final int NORMAL = 805306368

A priority value meaning an application requires normal prority in using the resources of its concern.

LOW

public static final int LOW = 1073741824

A priority value meaning an application requires low prority in using the resources of its concern.

Constructor Detail

Resour ceM anager

protected ResourceManager ()

Creates an instance of ResourceManager. This constructor is added for implementation convenience and
easy evolution of the specification. Therefore applications are not supposed to use this constructor.

M ethod Detail

getlnstance

public static ResourceManager getInstance ()

Returns an instance of ResourceManager.
Returns:

ResourceManager instance

tryAcquire

public abstract AsyncResult tryAcquire (Resource r,
int priority,
ResourceOwner owner,
AsyncRequestor requestor)
throws IllegalArgumentException,
InsufficientResourceException,
SecurityException

ETSI

129 ETSI TS 102 635-1 V1.1.1 (2009-08)

Triesto acquire the given resource only if it ispossible. If it is possible to acquire the given resource, this
method returns AsyncResult, otherwise null. This method returns immediately, and the returned
AsyncResult may be used to monitor the progress of the acquisition process. When the ownership is
acquired, then AsyncResult .get () returnsaResourceOwnership object representing the acquired
ownership. When asyncRequestor gets notified, it means that the resource is acquired. So acall to
AsyncRequestor.resultUpdated (AsyncResult) may be considered asthe completion of the resource
acquisition without checking AsyncResult.get () and/or AsyncResult.getProgress ().

Parameters:
r - the resource to try to acquire

priority - the priority associated with this acquisition of the resource. This priority is used to decide
which application will own the resource. An application specifying the highest priority owns the
resource

owner - the owner of the resource. If notification viarResourceOwner isnot required, null may be
specified

requestor - AsyncRequestor to get notified when the resource is actually acquired. If no
notification isrequired, nul1 may be specified

Returns:

if the resource cannot be acquired, returnsnul1. Otherwise returns an AsyncResult object. When
the resource is successfully acuigred, AsyncResult .get () returnsaResourceOwnership object
representing the ownership of the resource

Throws:

IllegalArgumentException - thrown when the specified resource represents or contains a
resource unknown to the receiver or aResourceChoice that isaready acquired

InsufficientResourceException - thrown when thisrequest cannot be satisfied, because there
is not enough resource within the receiver regardless of the current ownership of them. For instance, it
isimpossible to prepare 3 tuners when there is only one in the receiver

SecurityException

Securityexception - thrown when the given priority ishigher than the ceiling granted for the
caller

acquire

public abstract AsyncResult acquire (Resource r,
int priority,
ResourceOwner owner,
AsyncRequestor requestor)
throws IllegalArgumentException,
InsufficientResourceException,
SecurityException

Definitely acquires the given resource by retrying until it is possible. This method returns immediately, but the
resource manager does the acquisition in the background. When the returned AsyncResult isdone, it means
that the resource is actually acquired (more specifically, AsyncResult . isDone () returns true,
AsyncResult.isCanceled () false). Whenthe ownershipisacquired, AsyncResult.get () returnsa
ResouceOwnership object representing the acquired ownership of the resource.

Parameters:

r - the resource to acquire

ETSI

130 ETSI TS 102 635-1 V1.1.1 (2009-08)

priority - the priority associated with this acquisition of the resource. This priority is used to decide
which application will own the resource. An application specifying the highest priority ownsthe
resource

owner - the owner of the resource. If notification viaResourceoOwner isnot required, nul1l may be
specified

requestor - AsyncRequestor to get notified when the resource is actually acquired. If no
notification isrequired, null may be specified

Returns:

returns an AsyncrResult for tracking the acquisition. When the resource is acquired,
AsyncResult.get () returnsthe ResourceOwnership representing the acquired ownership

Throws:

IllegalArgumentException - thrown when the specified resource represents or contains a
resource unknown to the receiver or arResourceChoice that isaready acquired

InsufficientResourceException - thrown when this request cannot be satisfied, because there
is not enough resource within the receiver regardless of the current ownership of them. For instance, it
isimpossible to prepare 3 tuners when there is only one in the receiver

SecurityException

Securityexception - thrown when the given priority is higher than the ceiling granted for the
caler

Class Resour ceNotOwnedException

dmb.resour ces

java.lang.Object
L java.lang.Throwable
I—java .lang.Exception
L java.lang.RuntimeException

L dmb .resources.ResourceNotOwnedException

All Implemented Interfaces:
Serializable

public class Resour ceNotOwnedException

extends RuntimeException
An exception thrown when an application tries to call methods on a resource object it does not have the ownership. If it

acquired aresource, and ResourceOwner .notifyRelease (ResourceOwnership) iscalled later, it meansthat the
resource is already released, and this exception is thrown if methods on the resource object are called.

ETSI

131 ETSITS 102 635-1 V1.1.1 (2009-08)

Constructor Summary Page
ResourceNotOwnedException ()
128
Creates an instance of this exception with no detailed description on the reason.
ResourceNotOwnedException (String desc)
128

Creates an instance of this exception with a string describing the reason.

Constructor Detail

Resour ceNotOwnedException

public ResourceNotOwnedException ()

Creates an instance of this exception with no detailed description on the reason.

Resour ceNotOwnedException

public ResourceNotOwnedException (String desc)

Creates an instance of this exception with a string describing the reason.

| nter face Resour ceOwner

dmb.resour ces

public interface Resour ceOwner

Represents the owner of the resource acquired viaResourceManager. For each acquisition of aresource, a separate
ResourceOwner May be associated.

While an application owns aresource, and another application requests the same resource, then the resource manager
compares the priority specified by the current resource owner with the new priority specified by the second application.
If the second one specifies a higher priority, then it can take the ownership of the resource from the current owner.

When the current owner should release the ownership, prepareRelease (ResourceOwnership) of the
ResourceOwner associated with the resourceis called to give the application a chance to do some cleanup. Once the
method returns, the ownership is actually transferred to the new owner. This method must return as soon as possible. If
it takes too long before returning from this method, the ownership may be reclaimed forcibly. The amount of the time
before forcing the reclamation is implementation-dependent.

If prepareRelease (ResourceOwnership) doesnot return too long, or the receiver need to reclaim the resource
immediately without first notifying the resource manager, the resource may be reclaimed first and then
notifyRelease (ResourceOwnership) may be called to notify the fact.

ETSI

132 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Summary Page
void notifyRelease (ResourceOwnership ownership)
129
Called when the resource owned by this application has been reclaimed forcibly.
void |prepareRelease (ResourceOwnership ownership)
129

Called when the resource manager requests the current owner of the resource to prepare for the
release of the resource.

Method Detail

prepareRelease

public

void prepareRelease (ResourceOwnership ownership)

Called when the resource manager requests the current owner of the resource to prepare for the release of the
resource. Before this method returns, it must do anything required. This method must return as soon as
possible, otherwise the receiver may reclaim the resource forcibly, and notify it with acall to
notifyRelease (ResourceOwnership).

Parameters:

ownership - the ownership of the resource about to be relelased

notifyRelease

public

void notifyRelease (ResourceOwnership ownership)

Called when the resource owned by this application has been reclaimed forcibly. Such cases include when
prepareRelease (ResourceOwnership) doesnot return for along time, or the receiver needsto reclaim
the resource forcibly for some reasons.

Parameters:

ownership - the ownership of the resource that has been reclaimed

| nter

face Resour ceOwner ship

urces

dmb.reso

public interface Resour ceOwner ship

Represents an ownership of single or a set of resources acquired by acall to acquire or tryAcquire methods of
ResourceManager

ETSI

133 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Summary Page
void|release ()
130
Releases this ownership.
void|getPriority (int priority)
130

Setsthe priority associated with this ownership.

Method Detail

setPriority

public void setPriority(int priority)

Sets the priority associated with this ownership. If the previous priority and the new priority are identical,
nothing happens. If there is a change in the priority, it works asif the ownership isfirst released, and then the
resource is re-acquired with the new priority. But the process is atomic in the case of this method.

Parameters:

priority - the new priority

release

public void release()

Releases this ownership.

ETSI

134 ETSITS 102 635-1 V1.1.1 (2009-08)

Package dmb.service

Defines APIs for service selection.

See:
Description
Interface Summary Page
ServiceComponent Represents a component within a service. 131
ServiceManagerL istener An mtlerface to be implemented by an object to be notified of changesin 152
ServiceManager.
Class Summary Page
Represents an entity managing the process of selecting a service at time, and monitoring the

ServiceM anager |current selection for proper reaction to the changes in the environment related to the 132

presentation of the current service.

Package dmb.service Description

Defines APIs for service selection. Service selection and control of components to be presented are done via
ServiceManager. dmb.service.ServiceManage maintainsthe current service, and does al the complex tasks

required for presentation of a service including control of tuner, CAS, A/V decoder, and so on.

| nter face ServiceComponent

dmb.service

All Superinterfaces:
AttributedObject

public interface ServiceComponent

extends AttributedObject

Represents a component within a service. This may be an audio, video, or any other.

The locator representing this component.

Field Summary Page
String |LANGUAGE
132
The language associated with this component.
String |LOCATOR
132

ETSI

135 ETSITS 102 635-1 V1.1.1 (2009-08)

String IMIME TYPE
132

MIME type of this component.

M ethodsinherited from interface dmb.util AttributedObject

getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDatelList, getlInt,
getIntList, getLong, getLonglList, getObject, getObjectList, getString, getStringlist,
isvalid

Field Detail

MIME_TYPE

public static final String MIME TYPE = "mimeType"

MIME type of this component. A string value.

LANGUAGE

public static final String LANGUAGE = "language"

The language associated with this component. A language code designated in RFC 3066 [15]. A string
value.

LOCATOR

public static final String LOCATOR = "locator"

The locator representing this component. A string value.

Class ServiceM anager

dmb.service

java.lang.Object

L dmb.service.ServiceManager

All Implemented Interfaces:
Resource

ETSI

136 ETSI TS 102 635-1 V1.1.1 (2009-08)

abstract public class ServiceM anager
extends Object

implements Resource

Represents an entity managing the process of selecting a service at time, and monitoring the current selection for proper
reaction to the changes in the environment related to the presentation of the current service. ServiceManager doesal
the tasks required to present a selected service, that is, including retrieval of the list of componentsin the service,
selecting the default components to be presented, acquiring resources required for the presentation, and beginning the
presentation. In addition to those, serviceManager monitors the current presentation and reacts to the various changes
in the surrounding environment.

Besides selection of aservice, serviceManager providesameansto control presentation of a service component-by-
component. It is possible to perform operations such as adding and removing components to/from the list of
components being presented.

ServiceManager may be used by one application at atime, so it is considered as aresource. For applications to use a
ServiceManager it should obtain the ownership for the serviceManager. Otherwise, some methodsin
ServiceManager throw ResourceNotOwnedException.

State M odel

ServiceManager can bein one of the Six states - STOPPED, ACQUIRING SERVICE, SERVICE ACQUIRED,
PREPARING MEDIA, PRESENTING, DISPOSED. State transition among them is depicted in the following diagram.

MAMAGER_DISPOSED

dispose(} b[- dispose()
| - DISPOSED - |
dizposa() L, J dispose()
-

no Service companents to select 4k
stop() or p stopged for some reason

—

top() or presentation of any selected media failed—
N rvice selection™ —

Service salection”

setComponents()
—

. |
dispose()

Service selection™

Service seleciion” After all listeners \'j-
g . complete ~ \When Players
STOPPED select() Service oo o AT sat = PRESENTING
eon '9'"| aé“” COMPONENTS presenting
acquire IDENTIFIED
stop() or acquisition falled Component updat : IComponeants()

ol
.

o |
A

Y
MANAGER_STOPPED SELECTION_INITIATED COMPOMENTS_IDENTIFIED COMPONENTS_SET

Upon realization of new Players

|
Comppnrent updal i
k1 v

PRESENTATION_STARTED

!
0
0

[
On the change of
the servica bound apglication list

*): select() or switches
between nomal and PLAYERS_REALIZED

alternative contents APP_LIST CHANGED

.. -
|| “-

Click theimage to enlarge

In the diagram above, states are represented as rounded rectanges, transitions among them are as solid lines connecting
the states where conditions for each transition are specified on the lines. Ovals are events that may be fired in the state
to which it is connected via dotted lines. Shadows under some of the oval s represent that the corresponding events are
intended to be delivered fully to the registered listeners before a transition to other state occurs. By "fully delivered”, it
means that all the listeners are notified of the events their event methods being called, and al those calls return to the
caler.

STOPPED State

ETSI

137 ETSITS 102 635-1 V1.1.1 (2009-08)

Theinitial stateis sTOPPED state. In this state, ServiceManager does not have a selected service, and therefore
presents nothing. If there was a service being presented, the presentation is stopped, and all the p1ayers used for the
presentation of the service are closed with player.close (). The following methods are worth noting in STOPPED
State.

e getService():returnsnull.

e getAllComponents (): returnsan array of zero-length.

e getSelectedComponents (): returnsan array of zero-length.

e getPlayer (ServiceComponent): Alwaysthrows 11legalArgumentException.

e getPlayers(): returnsan array of zero-length.

® setComponents (ServiceComponent [], AsyncRequestor): ThrowsIllegalArgumentException.In
this state, there is no selected service, so is no component to select.

ACQUIRING_SERVICE State

This state is entered when a service is selected by either acall to select (String, AsyncRequestor) or for some
reason, a request from the underlying receiver implementation (e.g. when a preview period terminated). In this state, the
receiver performs tasks required to access the service, and tries to obtain configuration of the service, that is, list of
components with the service. If there was a service being presented, the presentation is stopped at some point in this
dtate. If the acquisition fails, serviceManager automatically movesinto stoppeD state. The following methods are
worth noting in this state.

e getService (): returnsthe selected service.

e getAllComponents (): returnsan array of zero-length.

e getSelectedComponents (): returnsan array of zero-length.

® getPlayer (ServiceComponent): awaysthrows 11legalArgumentException.

e getPlayers():returnsan array of playersused for the presentation of the previous service but not closed
yet. Those are in PREFETCHED or STARTED.

® setComponents (ServiceComponent [], AsyncRequestor):throwsIllegalStateException. NO
service component exists for selection since the configuration of the selected service is not known yet in this
state.

SERVICE_ACQUIRED State

When serviceManager isready to access a selected service and the configuration of the service is fully known, this
state is entered. Upon entering this state, COMPONENTS IDENTIFIED event is delivered to the registered listeners
with alist of serviceComponents selected for presentation by default. In case of N0 ServiceComponent to select,
COMPONENTS IDENTIFIED event isnot delivered to thelisteners and ServiceManager iSchanged to the STOPPED
state. Any of the listeners may invoke setComponents (ServiceComponent [], AsyncRequestor) to changethe
default selection, and it will affect list of theinitial components to be presented. But invoking set Components ina
listener will not affect the list of the default components passed to the other listeners. Only one of the listeners calling
setComponents Will affect the final list of components. But which one actually affects the selection of theinitial
components is implementation-dependent. After acall to setComponents, the result will immediately be effective
making get SelectedComponents () returning the new list. When all the listeners are notified of the event, and
returned from the event notification method, serviceManager automatically enters PREPARING MEDIA state. The
following methods are worth noting in this state.

e getService (): returnsthe selected service.

e getAllComponents (): returnsall the service components available in the service.

ETSI

138 ETSI TS 102 635-1 V1.1.1 (2009-08)

e getSelectedComponents (): returnsthelist of the components selected for presentation. Initialy it returns
the default selection passed to listeners, and reflects the components selected by any of listenersvia
setComponents method.

e getPlayer (ServiceComponent): throws I1llegalArgumentException because no player isalocated
10 ServiceComponents Yet.

e getPlayers():returnsan array of playersused for the presentation of the previous service but not closed
yet. Those arein PREFETCHED or STARTED.

PREPARING_MEDIA State
To control the presentation of the selected components, MMAPI is used. In this state, the receiver prepares playersto
present selected service components. Players are newly created if required, and if some of pP1ayers used for the

presentation of the previous service may be reconfigured and reused, then they are used.

Upon entering this state, COMPONENTS SET event is delivered to registered listeners with arelevant reason code.

ServiceManager reuses Playersif possible. Therefore, p1ayersthat are not closed are checked first to seeif they
may be reconfigured for the representation of new components. That is, P1ayers used for rendering of audios may be
reused only for audios, and those for videos may be only for videos. Remaining p1ayers not selected for reuse are all
closed. And for service components that are not allocated existing players, new ones are created. If there is any newly
created player, then the application owning the ServiceManager ViaResourceManager Will receive

PLAYERS REALIZED event. Thelist of the newly created playersis passed to registered listeners with the event.
All the playersarein REALIZED state. One of listenersreceiving PLAYERS REALIZED should initialize them
appropriately. Especialy those for presenting videos should beinitialized by obtaining BackgroundVideoControl and
caling init method on it. After all the listeners fully process PLAYERS REALIZED event and return from the event
notification method, the p1ayers are automatically started, and the serviceManager is moved int0 PRESENTING
state.

If there is not enough resource for presenting the selected components, ServiceManager MOVES iNt0 STOPPED state.
The following methods are worth nothing in this state.

e getService (): returnsthe selected service.

e getAllComponents (): returnsall the service components within the selected service.

e getSelectedComponents (): returnsthelist of components selected for presentation.

e getPlayer (ServiceComponent): returnsaplayer instance corresponding to the given component.

e getPlayers():returnsplayersin REALIZED, PREFETCHED, or STARTED state that are allocated to
service components to be presented.

PRESENTING State
This state is entered from PREPARING MEDIA State after playersfor presenting the selected components are properly

created and initialized. Upon entering this state, PRESENTATION_STARTED event is delivered to registered listeners.
In this state, all of methods defined in serviceManager work as designated in the present document.

Even when a service is presented successfully, the presentation may stop automatically for some reasons. For instance,
one of the resources used for the presentation may be revoked by the receiver implementation for some reason.

The following methods are worth nothing in this state.

e getService (): returnsthe selected service.

e getAllComponents (): returnsall the service components within the selected service.

e getSelectedComponents (): returnsthe list of components selected for presentation.

ETSI

http://www.jcp.org/en/jsr/detail?id=135

139 ETSI TS 102 635-1 V1.1.1 (2009-08)

e getPlayer (ServiceComponent): returnsaplayer instance corresponding to the given component.

e getPlayers():returnsplayersin REALIZED, PREFETCHED, or STARTED state that are allocated to
service components to be presented.

e getServiceBoundapps (): returnsthelist of appcontrol for applications bound to the current service
being presented.

e getEventBoundApps (): returnsthelist of AppControl for applications bound to one or more eventsin the
current service being presented.

DISPOSED State

This state is entered when an application calls dispose () . Any method invoked in this state throws an
IllegalStateException. Different from sTOPPED state, this state guaranteesthat serviceManager releases al the
resourcesit held before.

Resource Acquisition

Depending on platforms, resources such as tuners are required for the presentation of aservice. ServiceManager
acquires appropriate service when selecting a service. The entity requesting and owning a resource at thistimeis not the
application selecting a service but the serviceManager itself. It obtains resources based on the priority set by
setPriority (int). The priority affects the resource acquisition asif it was specified to ResourceManager when
acquiring aresource. When created, a ServiceManager hasNORMAL priority.

Default Instance

Thereisone serviceManager instance that is automatically created by the underlying receiver implementation. It is
the default instance, and shared among all the applications running on the receiver. The default instance reflects the
current selection of service from the view point of the user. Therefore, EPG and channel navigator applications either
select a service viathe default instance or effectively behave asif they do so. The name of the default instanceis
DEFAULT. Besides the default instance, applications may create instances of serviceManager and share them with
other applications via export mechanism. For further details, see export (String).

A/V Presentation

If a selected service contains are A/V components, corresponding players are created and set to REALIZED state.
Whenthe PLAYERS REALIZED event isdelivered, those p1ayers are passed to registered listeners. Any of the
listeners may fetch appropriate controlsfromthe players, and set up them appropriately before presentation begins.
For example, in the case of video components, BackgroundvideoControl may be fetched and used to control the
size and position of the video presentation. Components sharing the same timeline shares the same Player.

If an application owning a serviceManager has accessto players associated with the serviceManager, al the
Players are closed when the application |oses the ownership of the serviceManager.

Each p1ayer isreused if possible. When selecting a service or changing components, unclosed playersarefirst
checked if they are reusable. For new components are to be associated with a specific player, the Controls
obtainable from the P1ayer must be identical to those required by the new components. If some of them are not
reusable, new playersare created. Playersthat are not reusable will be closed with Player.close().

Preference Setting

Preferences may be specified that will affect service selection and selection of default components to be presented. For
example, LANGUAGE preference may be specified to express the preference in the language associated with service
cmponents. When sel ecting an audio component among multiple choices, the language preference will be respected.
Preferences may be set with set Preference (String, Object).

Per missions

ETSI

To invoke some methods on serviceManager, the invoking application must have appropriate permissions.

140 ETSITS 102 635-1 V1.1.1 (2009-08)

Otherwise, a securityException may be thrown. The followings are list of permissions relevant to
ServiceManager.

dmb.service.ServiceManager.setPriority.<name>: Permission to set the priority for resource
acquisition on serviceManager Of the given name. Note that the maximum priority that can be set to

ServiceManager iSthepriorityCeiling specified with another permission,
dmb.resources.priority.<priorityCeilings>

dmb.service.ServiceManager.createInstance: Permission to create an instance of ServiceManager
(createInstance())

dmb.service.ServiceManager.getManagingInstance: Permission to get the managing instance for the
calling application (getManagingInstance ())

dmb.service.ServiceManager.getInstance.<name>. Permission to get an instance of
ServiceManager With the given name (get Instance (String))

dmb.service.ServiceManager.export.<name>. Permission to share a ServiceManager instance with
other applications (export (String))

dmb.service.ServiceManager.dispose.<name>. Permission to dispose a ServiceManager instance of

the given name (dispose ())

dmb.service.ServiceManager.getPlayers.<name>. Permission to get player for controlling the
presentation of the current service selected to a serviceManager of the given name
(getPlayer (ServiceComponent), getPlayers ())

dmb.service.ServiceManager.stop.<name>. Permission to stop service presentation of a
ServiceManager With the given name (stop (AsyncRequestor))

dmb.service.ServiceManager.select.<names>.<locator>: Permission to select a service specified by
the given locator to a serviceManager with the given name (select (String, AsyncRequestor))

Field Summary Page
_ static |]ACQUIRING SERVICE
final int 140
A constant indicating that this serviceManager isin the acquiring service state.
static |DEFAULT
final (&7
String . 139
Name of the default instance.
_ static |DISPOSED
final int 140
A constant indicating this serviceManager isin disposed state.
s?ticl; LANGUAGE
ina
String 139
Represents preference on a language.
static |MASK APP
final (—
String . . . 140
Represents whether service or event bound applications shall be launched or not when a
serviceis selected.
) StaFiC PREPARING MEDIA
final int 141
A constant indicating that this serviceManager isin the media prepared state.
i StaFiC PRESENTING
final int 141
A constant indicating that this serviceManager isin the presenting state.

ETSI

141 ETSITS 102 635-1 V1.1.1 (2009-08)

_ static|SERVICE ACQUIRED
final int 141
A constant indicating that this serviceManager isin the service acquired state.
_ static |STOPPED
final int 140
A constant indicating this serviceManager isin the stopped state.
Constructor Summary Page
protected |ServiceManager ()
141
Creates an instance of serviceManager.
Method Summary Page
abstract void|addListener (ServiceManagerListener 1)
150
Adds alistener to be notified of changesin this serviceManager.
~ static|createInstance ()
ServiceManager 142
Creates a new instance.
abstract void diSEose ()
143
Disposes of thisinstance.
abstract void|export (String name)
143
Exportsthis serviceManager with the given name.
abstract |getAllComponents ()
ServiceComponent []
- 145
Returns all the components constituting the current service.
abstract |getComponents (Player player)
ServiceComponent []
- 146
Returns serviceComponents presented by the given player.
abstract |getEventBoundApps ()
AppControl []
Returns the list of AppControls denoting applications which are bound to one or 147
more events in the service being presented.
static|getInstance (String name)
ServiceManager
142
Returns a shared serviceManager instance with the given name.
static |getManagingInstance ()
ServiceManager
142
Returnsthe serviceManager managing the calling application.
abstract Player |getPlayer (ServiceComponent component)
145
Returnsa player responsible for the presentation of the given service component.
abstract Player/[] getPlayers ()
144
Returns al the p1ayers created but not closed by this serviceManager.
abstract Object \getPreference (String key)
151
Returns the preference val ue associated with the given key.

ETSI

142 ETSITS 102 635-1 V1.1.1 (2009-08)

abstract int setprioritx ()
. . , . . 144
Returns the priority this serviceMananger uses when acquiring resources required
for presentation of a selected service.
abstract |getSelectedComponents ()
ServiceComponent []
Returns the components current being presented among those constituting the current 146
service.
abstract String getService ()
148
Returns the locator of the service currently selected to this serviceManager.
abstract |getServiceBoundApps ()
AppControl []
.| 147
Returnsthe list of aAppcontrolsdenoting applications which are bound to the service
being presented.
abstract int |getState ()
143
Returns the current state of this serviceManager.
abstract void|removeListener (ServiceManagerListener 1)
151
Removes the given listener registered previous.
abstract |select (String locator, AsyncRequestor r)
AsyncResult |— 148
Selects a service represented by the given locator.
abstract [setComponents (ServiceComponent [] components, AsyncRequestor r)
AsyncResult 149
Sets the components to be presented within the current service.
abstract Object |gsetPreference (String key, Object value)
151
Sets a preference.
abstract void|getPriority(int priority)
. . , : . 144
Sets the priority used when this serviceManager acquires resources required for
presentation of a selected service.
abstract |stop (AsyncRequestor r)
AsyncResult 150
Stops the presentation of the current service.
Field Detail
DEFAULT
public static final String DEFAULT = "default"

Name of the default instance.

See Also:

getInstance (String)

LANGUAGE

public static final String LANGUAGE = "language"

ETSI

143 ETSITS 102 635-1 V1.1.1 (2009-08)

Represents preference on a language. This preference affects selection of service components presented to
users by default. For example, if there are more than one audio streams in different languages, this preference
is considered to select an audio track in the specified language. The value should be alanguage code defined in

RFC 3066 [15].
See Also:

setPreference (String, Object)

MASK_APP

public static final String MASK APP = "maskApp"

Represents whether service or event bound applications shall be launched or not when a service is selected.
The value must be one of Boolean.TRUE and Boolean.FALSE. The former means that bound applications
must not be launched, and the latter must be launched. The default value for this preferenceis
Boolean.FALSE meaning applications must automatically launched.

See Also:

setPreference (String, Object)

DISPOSED

public static final int DISPOSED = 0
A constant indicating this serviceManager isin disposed state.

See Also:

getState ()

STOPPED

public static final int STOPPED = 1
A constant indicating this serviceManager isin the stopped state.

See Also:

getState ()

ACQUIRING_SERVICE

public static final int ACQUIRING SERVICE = 2

A constant indicating that this serviceManager isin the acquiring service state.

ETSI

144 ETSITS 102 635-1 V1.1.1 (2009-08)

See Also:

getState ()

SERVICE_ACQUIRED

public static final int SERVICE ACQUIRED = 3

A constant indicating that this serviceManager iSin the service acquired state.
See Also:

getState ()

PREPARING_MEDIA

public static final int PREPARING MEDIA = 4

A constant indicating that this serviceManager isin the media prepared state.

See Also:

getState ()

PRESENTING

public static final int PRESENTING = 5

A constant indicating that this serviceManager isin the presenting state.

See Also:

getState ()

Constructor Detail

ServiceM anager

protected ServiceManager ()

Creates an instance of serviceManager. This constructor isfor implementation convenience and evolution of
the specification. Therefore, applications must not make use of this constructor.

ETSI

145 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Detail

getM anagingl nstance

public static ServiceManager getManagingInstance ()
throws SecurityException

Returnsthe serviceManager managing the calling application. The managing instance isthe
ServiceManager that launched the calling application in the context of a service which the applicationis
bound to.

Returns:

the managing instance if thereis one. If the calling application does not have a managing instance,
returnsnull

Throws:

SecurityException - thrown when the caller does not have proper permission to call this method

getlnstance

public static ServiceManager getInstance (String name)
throws SecurityException,
NullPointerException

Returns a shared serviceManager instance with the given name.
Parameters:
name - the name of the instance to retrieve
Returns:
the instance with the given name. If there is no such instance, then returnsnui1l
Throws:

SecurityException - thrown when the calling application does not have proper permission to call
this method

NullPointerException - thrown when name argument iSnull

createl nstance

public static ServiceManager createInstance ()
throws SecurityException

Creates a new instance.
Returns:

the created instance

ETSI

146 ETSITS 102 635-1 V1.1.1 (2009-08)

Throws:

SecurityException - thrown when the caller does not have a permission to create an instance

getState

public abstract int getState()

Returns the current state of this serviceManager.
Returns:

a constant indicating the current state. One of DISPOSED, STOPPED, ACQUIRING SERVICE,
SERVICE ACQUIRED, PRESENTING

export

public abstract void export (String name)
throws IllegalArgumentException,
IllegalStateException,
SecurityException,
NullPointerException

Exportsthis serviceManager with the given name. An exported instance may be shared with other
applications by alowing them to obtain the instance by specifying the given name to

getInstance (String). Notethat if thisinstance isthe managing instance of this application, it is
impossible to export it even when it is not already exported. If tried, this method will throw
SecurityException.

Parameters:
name - the name of thisinstance
Throws:

IllegalArgumentException - thrown when thereis an instance exported with the same name as
name

IllegalStateException - thrown when thisinstanceis already exported, or it isin DISPOSED
State

SecurityException - thrown when the caller does not have permission to call this method, or
when the caller tries to export its managing instance

NullPointerException - thrown when the given name parameter isnull

dispose

public abstract void dispose()
throws SecurityException

Disposes of thisinstance. Once diposed, applications can not make acall on this serviceManager. If tried, it
will result in an I1legalArgumentException thrown. And if thisinstance was exported, then the exported

ETSI

147 ETSITS 102 635-1 V1.1.1 (2009-08)

instance will no longer be accessible with get Instance (String) . Applications can dispose of instances
they created without any special permission. If this method is called more than once, it will be siliently ignored

without an exception thrown.

Throws:

SecurityException - thrown when the calling application does not have permission to dispose of
thisinstance

setPriority
public abstract void setPriority(int priority)

throws SecurityException,
IllegalStateException

Setsthe priority used when this serviceManager acquires resources required for presentation of a selected
service.

Parameters:

priority - thepriority. Thisisthe priority given to ResourceManager When acquiring resources

Throws:

SecurityException - thrown when the calling application does not have proper permission to call
this method

IllegalStateException - thrown whenthisinstanceisin bISPOSED state

getPriority
public abstract int getPriority()

Returnsthe priority this serviceMananger uses when acquiring resources required for presentation of a
selected service. The default value isResourceManager . NORMAL.

Returns:

the current priority to be specified when acquiring reguired resources

Throws:

IllegalStateException - thrown whenthis serviceManager has been disposed

getPlayers

public abstract Player[] getPlayers()
throws SecurityException,
IllegalStateException

Returns all the p1ayers created but not closed by this serviceManager. When this serviceManager isin
STOPPED state, returns an array of zero-length.

ETSI

148 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns:
an array containing players created for the presentation of the current service but not closed yet
Throws:

SecurityException - thrown when the calling application does not have permission to obtain
PlayerS

IllegalStateException - thrown whenthis serviceManager has been disposed

getPlayer

public abstract Player getPlayer (ServiceComponent component)
throws SecurityException,
IllegalArgumentException,
IllegalStateException,
NullPointerException

Returns a p1ayer responsible for the presentation of the given service component.
Parameters:

component - the service component
Returns:

the p1ayer responsible for the presentation of the given service component. If the component is not
being presented, returnsnull

Throws:

SecurityException - thrown when the calling application does not have permission to call this
method

IllegalArgumentException - thrown when the given component does not belong to the current
service

IllegalStateException - thrown whenthis SserviceManager iSin DISPOSED state

NullPointerException - thrown when the given argument, component iSnull

getAllComponents

public abstract ServiceComponent[] getAllComponents ()
throws IllegalStateException

Returns al the components constituting the current service. Returns an array of zero-length in the following
Cases.

1. ServiceManager iSin STOPPED State

2. ServiceManager iSINACQUIRING SERVICE State

Returns:

an array containing all the serviceComponents constituting the current service

ETSI

149 ETSITS 102 635-1 V1.1.1 (2009-08)

Throws:

IllegalStateException - thrown whenthis ServiceManager iSin DISPOSED state

getSelectedComponents

public abstract ServiceComponent[] getSelectedComponents ()
throws IllegalStateException

Returns the components current being presented among those constituting the current service. This method
returns an array of zero-length in the following conditions.

1. ServiceManager iSin STOPPED State

2. ServiceManager iSINACQUIRING SERVICE state

3. ServiceManager iSiN SERVICE ACQUIRED State

Returns:
an array containing service components being presented
Throws:

IllegalStateException - thrown if this SserviceManager iSin DISPOSED state

getComponents

public abstract ServiceComponent [] getComponents (Player player)
throws IllegalArgumentException,
NullPointerException,
IllegalStateException

Returns serviceComponents presented by the given player.

Parameters:
player - one of Playersreturned fromgetPlayers ()
Returns:

an array of serviceComponents for the presentation of which the given p1ayer isresposible

Throws:
IllegalArgumentException - thrown if the given player isnot related to this serviceManager

NullPointerException - thrown when the given player parameter iSnull

IllegalStateException

IllegalStatetException - thrown when this ServiceManager iSiN DISPOSED State

ETSI

150 ETSITS 102 635-1 V1.1.1 (2009-08)

getServiceBoundApps

public abstract AppControl[] getServiceBoundApps ()
throws IllegalStateException

Returnsthe list of aAppcontrolsdenoting applications which are bound to the service being presented. The list
only includes appcontrol only for service-bound applications with no ones for event-bound ones. This
method returns an array of zero-length in the following conditions.

1. ServiceManager iSin STOPPED State

2. ServiceManager iSINACQUIRING SERVICE state

3. ServiceManager iSiN SERVICE ACQUIRED State

4, ServiceManager iSiN PRESENTING state and the first
ServiceManagerListener.APP LIST CHANGED eventisnot yet delivered

5. ServiceManager iSin PRESENTING state and no service-bound applications are found

Returns:

an array of appControlsfor applications bound to the service being currently presented.
Throws:

IllegalStateException

IllegalStatetException - thrown whenthis serviceManager iSin DISPOSED state

getEventBoundApps

public abstract AppControl[] getEventBoundApps ()
throws IllegalStateException

Returns the list of AppControlsdenoting applications which are bound to one or more eventsin the service
being presented. Thelist only includes appcontrol only for event-bound applications with no ones for
service-bound ones. This method returns an array of zero-length in the following conditions.

1. ServiceManager iSin STOPPED State

2. ServiceManager iSINACQUIRING SERVICE State

ServiceManager iSiN SERVICE ACQUIRED State

> W

ServiceManager iSin PRESENTING state and the first
ServiceManagerListener.APP LIST CHANGED eventisnot yet delivered

5. ServiceManager iSin PRESENTING state and no event-bound applications are found

Returns:

an array of appcontrolsfor applications bound to one or more eventsin the service being currently
presented.

Throws:

IllegalStateException

IllegalStatetException - thrown when this ServiceManager iSiN DISPOSED State

ETSI

151 ETSITS 102 635-1 V1.1.1 (2009-08)

getService

public abstract String getService()
throws IllegalStateException

Returns the locator of the service currently selected to this serviceManager.
Returns:

the locator for the current service. Returnsnull when this serviceManager iSin STOPPED state
Throws:

IllegalStateException - thrown whenthis ServiceManager iSiN DISPOSED state

select

public abstract AsyncResult select(String locator,
AsyncRequestor r)
throws ResourceNotOwnedException,
IllegalArgumentException,
SecurityException,
NullPointerException,
IllegalStateException

Selects a service represented by the given locator. This method returnsimmediately, and the exact progress of
the selection process may be monitored with AsyncResult and AsycnRequestor associated with this
method. When the selection completes, asyncrResult.get () returnsthe locator specified in this method.
Otherwise, it throws the following exceptions depending on the cause of the failure. Asa specia casg, if a
selection is canceled by another selection, then the first selection is treated as if it were canceled, and
AsyncResult.isCanceled () returns true.

1. TuningFailedException: when tuning failed

2. InsufficientResourceException: when some of the required resources could not be acquired

3. CARefusalException: whenitisrefused by CAS

4. MediaException: when thereisno such service, or there is some problem with components within
the selected service

Parameters:
locator - the locator representing the service to select

r - AsyncRequestor to get notified of the progress of the service selection. nul1 may be given
when no natification is required

Returns:
an AsyncResult to monitor the progress of the service selection
Throws:

ResourceNotOwnedException - thrown when the calling application does not have the ownership
of thisServiceManager

ETSI

152 ETSITS 102 635-1 V1.1.1 (2009-08)

IllegalArgumentException - thrown when the locator isin a wrong format, or does not designate
avalid service

SecurityException - thrown when the calling application does not have permission to select the
given service

NullPointerException - thrown whenthe locator argument isnull

IllegalStateException - thrown whenthis ServiceManager iSiN DISPOSED state

setComponents

public abstract AsyncResult setComponents (ServiceComponent [] components,
AsyncRequestor r)
throws ResourceNotOwnedException,
InsufficientResourceException,
SecurityException,
NullPointerException,
IllegalStateException

Sets the components to be presented within the current service. When there is any change in the list of
components to be presented, those being presented are kept as they are as much as possible. Thus the
presentation of those remaining in thelist is not affected, if possible.

This method returns immediately, and the compnoent setting is performed asynchronously. The actual progress
can be monitored and controlled with AsyncResult returned from this method. Upon the completion of the
component setting, that is, when the components are successfully displayed generating
PRESENTATION_STARTED, AsyncResult.get () returnsnull. If thereis not enough resource to present
the selected components, and it can be detected immediately, InsufficientResourceException isS
thrown. Otherwise, AsyncResult .get () Will throw one of the following exceptions depending on the cause
of the failure.

1. InsufficientResourceException: when it was not possibleto acquire al of the resources
required for the presentation

2. CARefusalException: when CAS refused to present some of the selected components

3. MediaException: when thereisany problem with the components set for presentation
When the component setting was failed, ServiceManager movesinto STOPPED state.

If there isany update in the list of componentsin the current service, the component setting is canceled and
COMPONENTS IDENTIFIED event is delivered, whether the setting would be successful or not.

Parameters:
components - components to be presented

r - AsyncRequestor to be notified of the progress of the component setting. If no notification is
required, null may be specified

Returns:
AsyncResult to track and control the progress of the component setting
Throws:

ResourceNotOwnedException - thrown when the calling application does not have the ownership
of thisServiceManager

ETSI

153 ETSITS 102 635-1 V1.1.1 (2009-08)

InsufficientResourceException - thrown when thereis not enough resource for the compnoent
setting

SecurityException - thrown when the calling application does not have permission to call this
method

NullPointerException - thrown when the components givenisnull

IllegalStateException - thrown whenthis ServiceManager iSin one of SERVICE ACQUIRED,
PREPARING MEDIA, and PRESENTING states

stop

public abstract AsyncResult stop (AsyncRequestor r)

throws ResourceNotOwnedException,
SecurityException,
IllegalStateException

Stops the presentation of the current service. This method returnsimmediately, and the progress can be
monitored and controlled with AsyncResult and AsyncRequestor associated with each call to this method.
When completed, AsyncResult.get () returnsnull.

Parameters:

r - AsyncRequestor t0 be notified of the progress of the operation of this method. nu11 may be
specified if no notification is required

Throws:

ResourceNotOwnedException - thrown when the calling application does not have the ownership
of thisserviceManager

SecurityException - thrown when the calling application does not have permission to stop the
presentation of the current service

IllegalStateException - thrown whenthis serviceManager has been disposed

addL istener

public abstract void addListener (ServiceManagerListener 1)

throws IllegalStateException

Adds alistener to be notified of changesin this serviceManager. If null isgiven, it issilently ignored
without throwing any exception.

Parameters:
1 - the listener to add
Throws:

IllegalStateException - thrown whenthis serviceManager has been disposed

ETSI

154 ETSITS 102 635-1 V1.1.1 (2009-08)

removel istener

public abstract void removelListener (ServiceManagerListener 1)
throws IllegalStateException

Removes the given listener registered previous. If null is specified or the listener was not added to this
ServiceManager, it will beignored silently without throwing any exception.

Parameters:
1 - thelistener to remove

Throws:

IllegalStateException - thrown whenthis serviceManager has been disposed

setPreference

public abstract Object setPreference (String key,
Object value)
throws NullPointerException,
IllegalArgumentException,
IllegalStateException

Sets a preference.
Parameters:
key - preference key
value - preference value
Returns:
returns the previous value for the preference if there was one
Throws:
NullPointerException - thrown whenkey iSnull

IllegalArgumentException - thrown the key parameter is not supported by this
ServiceManager

IllegalStateException - thrown whenthis serviceManager has been disposed

getPreference

public abstract Object getPreference (String key)
throws NullPointerException,
IllegalArgumentException,
IllegalStateException

Returns the preference val ue associated with the given key.

Parameters:

key - preference key

ETSI

155 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns:
the value associated with the given key
Throws:
NullPointerException - thrown whenkey iSnull

IllegalArgumentException - thrown the key parameter is not supported by this
ServiceManager

IllegalStateException - thrown whenthis serviceManager has been disposed

| nter face ServiceM anager Listener

dmb.service

public interface ServiceM anager Listener

An interface to be implemented by an object to be notified of changesin serviceManager.

Field Summary Page
String |APP LIST CHANGED
An event indicating that the list of service- or event-bound applications bound to the current 155
service being presented.
String | COMPONENTS IDENTIFIED
An event indicating that list of componentsin the current service is either first obtained or 154
updated.
String |COMPONENTS SET
154
An event indicating that the list of components to be presented is determined.
String |MANAGER DISPOSED
153
An event indicating that serivceManager has been disposed.
String MANAGER STOPPED
155
An event indicating that the presentation of the previous service has been stopped.
String |PLAYERS REALIZED
An event indicating that all the p1ayersare prepared for the presentation of the current set of 154
components in the current service.
String |PRESENTATION STARTED
155
An event indicating that the presentation of the selected components just began.
String |REASON ALTERNATIVE CONTENT
The current service isto be replaced with an alternative content for some reason (a reason 156
code).

ETSI

156 ETSITS 102 635-1 V1.1.1 (2009-08)

String |REASON APPLICATION REQUESTED
155
Application has requested and resulted in the corresponding event (a reason code).
String |REASON EQUIVALENT SERVICE
156
Transition to an equivalent service has begun (a reason code).
String |REASON NO RIGHT
157
No proper right is obtained for the presentation of the current service (areason code).
String |REASON NORMAL CONTENT
156
Selection of the original content has begun (a reason code).
String |REASON OTHER
157
Unknown reason (a reason code).
String |REASON PREVIOUS SELECTION FAILED
155
Selection of the previous service has been failed (a reason code).
String |REASON RESOURCE UNAVAILABLE
Some of resources required for the presentation of the current service are no longer available 157
(areason code).
String |REASON SERVICE UNAVAILABLE
157
The current service is no longer available for some reasons (a reason code).
String |REASON SWITCH FORCED
For some reasons such as emergency broadcasting, automatic transition to another service has 156
begun (areason code).
String |SELECTION INITIATED
153
An event indicating that a selection of a new service has begun.
Method Summary Page
void |managerUpdate (ServiceManager s, String eventType, Object data)
158
Called when there isa change in serviceManager to which thislistener has been added.

Field Detail

MANAGER_DISPOSED

public static final String MANAGER DISPOSED = "managerDisposed"

An event indicating that serivceManager has been disposed. The corresponding event datais alwaysnull.

SELECTION_INITIATED

public static final String SELECTION INITIATED = "selectionInitiated"

ETSI

157 ETSITS 102 635-1 V1.1.1 (2009-08)

An event indicating that a selection of a new service has begun. This event is generated, in most cases, asa
result of acal to serviceManager.select (String, AsyncRequestor) . But in some cases, this may be
delivered automatically. For instance, when a preview period ends, the receiver may select a promotional
service.

When this event isdelivered to alistener, serviceMananger.getService () returnsthe service being
selected. This event entails an appropriate reason code relevant to the event. So the last argument to

managerUpdate (ServiceManager, String, Object) may be compared to reason codes defined in this
interface.

COMPONENTS_IDENTIFIED

public static final String COMPONENTS IDENTIFIED = "componentsIdentified"

An event indicating that list of componentsin the current serviceis either first obtained or updated. This event
isonly delivered to an application owning the corresponding serviceManager, and may be generated at any
time, more than once after adelivery of SELECTION INITIATED event.

ServiceManager.getAllComponents () returnsall the componentsin the current service upon delivery of
this event.

If this event is generated while selecting a service, the presentation of the previous service shall be stopped.
And if aservice was being presented, then the receiver triesits best to maintain the presentation of the service.
It is guaranteed that there is no change in the presentation of the current service util all the listener methods
return. So within listener methods, setComponents may be called to set the list of components to be presented.
If listeners do not set components to present, the default selection will be used, and the default selection is
passed to listeners as the third argument t0 managerUpdate (ServiceManager, String, Object). Itisan
array of serviceComponents. If nolistener calls setComponents, then the default selection of components
will be set for presentation by the underlying receiver implementation.

COMPONENTS SET

public static final String COMPONENTS SET = "componentsSet"

An event indicating that the list of components to be presented is determined. The third argument to
managerUpdate (ServiceManager, String, Object) carriesarelevant reason code, and the final list of
components can be obtained with serviceManager.getSelectedComponents ().

PLAYERS REALIZED

public static final String PLAYERS REALIZED = "playersRealized"

An event indicating that all the p1ayersare prepared for the presentation of the current set of componentsin
the current service. Thisevent is delivered only to an application owning the corresponding ServiceManager
only when there is at least one p1ayer newly created. An array of the p1ayersare passed as the third
argument to managerUpdate (ServiceManager, String, Object), and they are al in REALIZED sate.
Listeners may obtain controls such as BackgroundvideoControl to initialize and set up the players. The
Playersare started automatically when al the listener methods are called and returned. If an application are
to set bounds of video presentation, then it should respond to this method.

ETSI

158 ETSITS 102 635-1 V1.1.1 (2009-08)

PRESENTATION_STARTED

public static final String PRESENTATION STARTED = "presentationStarted"

An event indicating that the presentation of the selected components just began. There is no data associated
with this event, so the third argument to managerUpdate (ServiceManager, String, Object) isaways
null.

APP_LIST_CHANGED

public static final String APP_LIST CHANGED = "appListChanged"

An event indicating that the list of service- or event-bound applications bound to the current service being
presented. The corresponding event datais awaysnull. If thisevent received,

ServiceManager.getServiceBoundApps () and ServiceManager.getEventBoundApps () haveto be
called again to get new list of applications, whether the list was previously retrieved or not.

MANAGER_STOPPED

public static final String MANAGER STOPPED = "managerStopped"

An event indicating that the presentation of the previous service has been stopped. This event entails an
appropriate reason code describing the cause of this event. The third argument to

managerUpdate (ServiceManager, String, Object) may be compared with appropriate reason codes
defined in this interface.

REASON_PREVIOUS _SELECTION_FAILED

public static final String REASON PREVIOUS_ SELECTION FAILED = "previousSelectionFailed"
Selection of the previous service has been failed (a reason code).

See Also:

MANAGER STOPPED

REASON_APPLICATION_REQUESTED

public static final String REASON APPLICATION REQUESTED = "applicationRequested"

Application has requested and resulted in the corresponding event (a reason code).
See Also:

SELECTION INITIATED, COMPONENTS SET, MANAGER STOPPED

ETSI

159 ETSITS 102 635-1 V1.1.1 (2009-08)

REASON_ALTERNATIVE_CONTENT

public static final String REASON ALTERNATIVE CONTENT = "alternativeContent"

The current service isto be replaced with an alternative content for some reason (a reason code). This reason
code is specified in the following conditions:

e Theprevious selection incurred selection of an alternative content, where the alternative content may
be another service, components that is not being presented, a purchase dialogue, or a promotional
material.

e The current components being presented have been replaced with other alternative content, for
example, when a preview period ends.

See Also:

SELECTION INITIATED, COMPONENTS SET

REASON_NORMAL_CONTENT

public static final String REASON NORMAL_ CONTENT = "normalContent"

Selection of the original content has begun (areason code). This reason code may be specified in the following
condition.

While presenting an alternative content, transition to the original content has been triggered. For example, as
an alternative content, a promotional material and a purchase dialogue may have been presented. But when the
user completes the purchase, transition to the original content should be started automatically.

See Also:

SELECTION INITIATED, COMPONENTS SET

REASON_EQUIVALENT_SERVICE

public static final String REASON EQUIVALENT SERVICE = "equivalentService"

Transition to an equivalent service has begun (a reason code). As a example, the current service may not keep
presented because of weak signal. In that case, the receiver may trigger selection of another service the signal
of which is strong enough and carries the same programs.

See Also:

SELECTION INITIATED

REASON_SWITCH_FORCED

public static final String REASON SWITCH FORCED = "switchForced"

ETSI

160 ETSI TS 102 635-1 V1.1.1 (2009-08)
For some reasons such as emergency broadcasting, automatic transition to another service has begun (areason
code).

See Also:

SELECTION INITIATED

REASON_SERVICE_UNAVAILABLE

public static final String REASON SERVICE UNAVAILABLE = "serviceUnavailable"

The current service is no longer available for some reasons (a reason code). It may be no longer transmitted, or
the signal islost.

See Also:

MANAGER STOPPED

REASON_RESOURCE_UNAVAILABLE

public static final String REASON RESOURCE UNAVAILABLE = "resourcesUnavailable"

Some of resources required for the presentation of the current service are no longer available (areason code).
For example, atuner used for the presentation of the current service may be tuned away by a cause other than
the service selection.

See Also:

MANAGER STOPPED

REASON_NO_RIGHT

public static final String REASON NO_ RIGHT = "noRight"

No proper right is obtained for the presentation of the current service (areason code).

See Also:

MANAGER STOPPED

REASON_OTHER

public static final String REASON OTHER = "other"

Unknown reason (areason code).

ETSI

161 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Detail

manager Update

public void managerUpdate (ServiceManager s,
String eventType,
Object data)

Cadlled when there isa change in ServiceManager to which thislistener has been added.

Parameters:

s - ServiceManager from which the event is originated

eventType - the event type. One of the events defined in thisinterface

data - data associated with each event. It is different from event to event. Refer to the description on
each event

ETSI

162 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.si

Provides APIsfor giving access to service information managed by the underlying receiver implementation.

See:

Description
Interface Summary Page
Sl Attribute Represents an attribute belonging to a specific type of s1object. 160
Sl AttributeSet Represents the set of attributes for atype of stobject. 168
SIChangeL istener A I|§tener interface to be implemented by listeners that need to get notified of changesin 169

SIViewsS.

Sl Object Represents an object in the Sl database. 175
SIQuer Represents a query to be submitted against sTviews. 177
SlView Represents a set of objects satisfying a specific condition. 178
Class Summary Page
SlDatabase Represents a database of service information. 171
Exception Summary Page
InvalidQuer yException |An exception thrown when a query can not be created or executed. 159

Package dmb.si Description

Provides APIsfor giving access to service information managed by the underlying receiver implementation. The APIs
defined in this package provide a database consisting of s10bjects, which extends Attributedobject. Applications
such as EPG may submit queriesto retrieve a set of s1objectsof their interest. This API islargely independent of the
underlying schema supported by each system, and aiming to provide a generic framework for representing and easily
retrieving service informations obeying various schema. New additional objects or totally new schema may be used

within the framework without changing the API design.

Class I nvalidQuer yException

dmb.si

java.lang.Object
I—java .lang.Throwable
(I java.lang.Exception

L dmb.si.InvalidQueryException

All Implemented Interfaces:
Seridizable

ETSI

163 ETSI TS 102 635-1 V1.1.1 (2009-08)

public class I nvalidQuer yException

extends Exception

An exception thrown when a query can not be created or executed.

Creates an instance of this exception with the reason that caused this exception to be thrown.

Constructor Summary Page
InvalidQueryException ()
160
Creates an instance of this exeption without the reason for this exception.
InvalidQueryException (String reason)
160

Constructor Detail

InvalidQuer yException

public InvalidQueryException ()

Creates an instance of this exeption without the reason for this exception.

InvalidQueryException

public InvalidQueryException (String reason)

Creates an instance of this exception with the reason that caused this exception to be thrown.

| nterface Sl Attribute

dmb.si

public interface Sl Attribute

Represents an attribute belonging to a specific type of stobject. Thisisused in sTQuerysfor representing the value

of an attribute.

Field Summary

Page

String |[TYPE

An attribute representing the type of an sTtobject.

162

ETSI

164 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Summary Page

SIQuery |after (Date d)

Creates an sTQuery that is satisfied when the value of thispate type attribute represents a 166

Date after the given Date.

SIQuery |before (Date d)

Creates an sTQuery that is satisfied when the value of thispate type attribute represents a 166

Date before the given bate.

SIguery contains (Object o)
168
Creates an s1guery that is satisfied when an element of this attribute contains the given object.

SIQuery|equalTo (int v)

Creates an sIQuery that is satisfied when the value of this int type attribute is equal to the 164

specified value.

SIguery|equalTo (Object o)
166
Creates an s1Query that is satisfied when the value of this attribute is equal to the given object.

SIQuery lequalTo (long v)

Creates an sTQuery that is satisfied when the value of this 1ong type attribute is equal to the 165

specified value.

SIguery |greaterThan (int v)

Creates an s1Query that is satisfied when the value of this int type attribute is greater than the 162

specified value.

SIQuery \greaterThan (long v)

Creates an sTQuery that is satisfied when the value of this 1ong type attribute is greater than 164

the specified value.

SIQuery|greaterThanOrEqualTo (int V)

Creates an s1Query that is satisfied when the value of this int type attribute is greater than or 163

equa to the specified value.

SIguery |greaterThanOrEqualTo (long v)

Creates an s1Query that is satisfied when the value of this 1ong type attribute is greater than or 165

equa to the specified value.

SIQuery|isFalse ()
167
Creates an s1Query that is satisfied when the value of thisboolean attributeis false.

SIQuery |isTrue ()
167
Creates an s1Query that is satisfied when the value of thisboolean attributeis true.

SIQuery|lessThan (int v)

Creates an sTQuery that is satisfied when the value of this int type attributeislessthanthe | 162

specified value.

SIQuery|lessThan (long v)

Creates an sTQuery that is satisfied when the value of this 1ong type attribute is less than the 164

specified value.

ETSI

165 ETSITS 102 635-1 V1.1.1 (2009-08)

SIQuery|lessThanOrEqualTo (int v)

Creates an s1Query that is satisfied when the value of this int type attribute is less than or 163

equa to the specified value.

SIguery|lessThanOrEqualTo (long v)

Creates an s1Query that is satisfied when the value of this 1ong type attribute is less than or 165

equal to the specified value.

SIguery lnotEqualTo (Object o)

Creates an s1Query that is satisfied when the value of this attribute is not equal to the given 167

object.

SIguery|startsWith (String o)

Creates an sIQuery that is satisfied when the value of this st ring attribute starts with the 168

given string.

Field Detail

TYPE

public static final String TYPE = "type"

An attribute representing the type of an stobject. The type of values of this attribute is object, each of
which represents a specific type.

Method Detail

lessT han

public SIQuery lessThan(int v)
throws InvalidQueryException

Creates an s1Query that is satisfied when the value of this int type attribute is less than the specified value.
Parameters:
v - the value to compare with that of this attribute
Returns:
the created s1Query oObject
Throws:

InvalidQueryException - thrown when this attribute isnot an int one

greater Than

public SIQuery greaterThan (int v)
throws InvalidQueryException

ETSI

166 ETSI TS 102 635-1 V1.1.1 (2009-08)

Creates an sIQuery that is satisfied when the value of this int type attribute is greater than the specified
value.
Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute isnot an int one

lessThanOrEqualTo

public SIQuery lessThanOrEqualTo (int v)
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of this int type attribute is less than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute isnot an int one

greater ThanOrEqualTo

public SIQuery greaterThanOrEqualTo (int v)
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of this int type attribute is greater than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute isnot an int one

ETSI

167 ETSITS 102 635-1 V1.1.1 (2009-08)

equalTo

public SIQuery equalTo (int v)
throws InvalidQueryException

Creates an s1Query that is satisfied when the value of this int type attribute is equal to the specified value.
Parameters:
v - the value to compare with that of this attribute
Returns:
the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute isnot an int one

lessT han

public SIQuery lessThan(long v)
throws InvalidQueryException

Creates an s1Query that is satisfied when the value of this 1ong type attribute is less than the specified value.
Parameters:
v - the value to compare with that of this attribute
Returns:
the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute is not an 1ong one

greater Than

public SIQuery greaterThan (long v)
throws InvalidQueryException

Creates an s1Query that is satisfied when the value of this 1ong type attribute is greater than the specified
value.

Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute is not an 1ong one

ETSI

168 ETSI TS 102 635-1 V1.1.1 (2009-08)

lessThanOrEqualTo

public SIQuery lessThanOrEqualTo (long v)
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of this 1ong type attribute is less than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query object
Throws:

InvalidQueryException - thrown when this attribute is not an 1ong one

greater ThanOrEqualTo

public SIQuery greaterThanOrEqualTo(long v)
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of this 1ong type attribute is greater than or equal to the
specified value.

Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query oObject
Throws:

InvalidQueryException - thrown when this attribute is not an 1ong one

equalTo

public SIQuery equalTo(long v)
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of this 1ong type attribute is equal to the specified value.
Parameters:

v - the value to compare with that of this attribute
Returns:

the created s1Query object

ETSI

169 ETSI TS 102 635-1 V1.1.1 (2009-08)

Throws:

InvalidQueryException - thrown when this attribute is not an 1ong one

before

public SIQuery before(Date d)
throws InvalidQueryException,
NullPointerException

Creates an sIQuery that is satisfied when the value of thisDate type attribute represents a ate before the
given Date.

Parameters:

d - the Date to compare
Returns:

the created sTQuery

Throws:
InvalidQueryException - thrown when the type of this attribute is not bate

NullPointerException - thrown when the given d parameter isnull

after

public SIQuery after (Date d)
throws InvalidQueryException,
NullPointerException

Creates an s1Query that is satisfied when the value of thispate type attribute represents apate after the
given Date.

Parameters:

d - the Date to compare
Returns:

the created s1Query

Throws:

InvalidQueryException - thrown when the type of this attribute is not bate

NullPointerException - thrown when the given d parameter isnull

equalTo

public SIQuery equalTo (Object o)
throws InvalidQueryException

ETSI

170 ETSITS 102 635-1 V1.1.1 (2009-08)

Creates an sIQuery that is satisfied when the value of this attribute is equal to the given object.
Parameters:
o - an object to compare
Returns:
the created s1Query
Throws:

InvalidQueryException - thrown when the type of values of this attribute is not an object

notEqualTo

public SIQuery notEqualTo (Object o)
throws InvalidQueryException

Creates an s1Query that is satisfied when the value of this attribute is not equal to the given object.
Parameters:
o - an object to compare
Returns:
the created s1Query
Throws:

InvalidQueryException - thrown when the type of values of this attribute is not an object

isTrue

public SIQuery isTrue ()
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of thisboolean attributeis true.
Returns:

the created s1Query
Throws:

InvalidQueryException - thrown when the type of thisattribute is not boolean

isFalse

public SIQuery isFalse()
throws InvalidQueryException

Creates an sIQuery that is satisfied when the value of thisboolean attributeis false.

ETSI

171 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns:
the created s1Query
Throws:

InvalidQueryException - thrown when the type of thisattribute is not boolean

startsWith

public SIQuery startsWith(String o)
throws InvalidQueryException

Creates an s1Query that is satisfied when the value of this string attribute starts with the given string.
Parameters:
o - the prefix string
Returns:
the created s1Query
Throws:

InvalidQueryException - thrown when the type of this attribute is not string

contains

public SIQuery contains (Object o)
throws InvalidQueryException

Creates an s1Query that is satisfied when an element of this attribute contains the given object.
Parameters:
o - the object to check in the array that is a value of this attribute
Returns:
the created s1Query
Throws:

InvalidQueryException - thrown when the type of this attribute is not an array of object

| nterface S| AttributeSet

dmb.si

public interface Sl AttributeSet

ETSI

172 ETSITS 102 635-1 V1.1.1 (2009-08)

Represents the set of attributes for atype of stobject. Aninstance of thisinterface is used to create sIattribute
objects, and they are used when constructing s1Querys. Thereisa specific stattributeset object per each type of
SIObjectS. FOr asiQuery, al the stattribute used init must be fromthe same s1attributeSet.

Method Summary Page

siattribute |get (String a)

169

Returns an sTattribute representing an attribute of the given name.

Method Detail

get

public SIAttribute get(String a)
throws InvalidAttributeException

Returns an s1attribute representing an attribute of the given name.
Parameters:

a - name of the attribute
Returns:

an sIAttribute object corresponding to the given attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute

NullPointerException - thrown when the given a parameter isnull

| nter face SI Changel istener

dmb.si

public interface SIChangeL istener

A listener interface to be implemented by listeners that need to get notified of changesin s1views. Receiver
implementations are supposed to detect changesin s1views, but may not find out the exact kinds of changes (addition,
removal, and change). In this case, an implementation shall generate aBULK UPDATE event.

Field Summary Page

String |BULK UPDATE

170

An event generated when there was aradical changein an siview.

ETSI

173 ETSITS 102 635-1 V1.1.1 (2009-08)

String |OBJECTS ADDED
170
An event generated when S| objects are added to an s1view.
String |OBJECTS CHANGED
171
An event generated when there is any change in the objectswithin an sTview.
String |OBJECTS REMOVED
170
An event generated when Sl objects are removed from an s1view.
Method Summary Page
void |gsiUpdate (SIView source, String type, SIObject[] data)
171
Called when thereisany changein an siview.
Field Detail

BULK_UPDATE

public static final String BULK UPDATE = "bulkUpdate"

An event generated when there was aradical changein an stview. Upon receiving this event, the application
must re-execute queries to retrieve Sl objects used for displaying SI. Once an event of this typeis generated,
No separate OBJECTS ADDED, OBJECTS REMOVED, and/or OBJECTS CHANGED events are generated for the
change reported by the event. The last argument to siUpdate (SIView, String, SIObject []) iSnull for
this type of events.

OBJECTS ADDED

public static final String OBJECTS ADDED = "objectsAdded"

An event generated when Sl objects are added to an s1view. The added objects are passed to
siUpdate (SIView, String, SIObject []1) asthelast argument.

OBJECTS_REMOVED

public static final String OBJECTS REMOVED = "objectsRemoved"

An event generated when S| objects are removed from an s1view. When programs end, rather than having a
change in the underlying Sl database, then this event is not generated. The last argument to

siUpdate (SIView, String, SIObject []) islist of the removed objects. Note that the returned objects are
already removed from the underlying data when they are passed to registered listeners. Therefore it may not
possible to get the values of attributes the type of whichissIview.

ETSI

174 ETSI TS 102 635-1 V1.1.1 (2009-08)
OBJECTS CHANGED
public static final String OBJECTS CHANGED = "objectsChanged"

An event generated when there is any change in the objects within an s1view. List of the changed objectsis
passed as the last argument to siUpdate (SIView, String, SIObject [1).

Method Detail

siUpdate

public void siUpdate (SIView source,
String type,
SIObject [] data)

Cadlled when there isany changein an s1view. But acal to this method does not guarantee that there really is
any changein an stview. That is, this method is guaranteed to be called, when there is any changein an
SIview, but there may be false alarms. Depending on implementations, they may try to reduce or eliminate
such false alarms.

Parameters:
source - the s1view containing possible changes

type - the type of the event. One of BULK UPDATE, OBJECTS ADDED, OBJECTS REMOVED, and
OBJECTS CHANGED

data - list of sT0bjectsrelated to the event

Class Sl Database

dmb.si

java.lang.Object

(I dmb.si.SIDatabase

All Implemented Interfaces:
AttributedObject

abstract public class Sl Database
extends Object

implements AttributedObject

Represents a database of service information. Each database may be constructed from single source or merged from
multiple sources. As such, each database may describe completely different set of services and events, or in some cases,
there may be more than one databases describing the same set of services and events.

SIDatabase implementsAttributedObiject. Thisisfor retrieving database-wide attributes such as list of genres.

ETSI

175 ETSITS 102 635-1 V1.1.1 (2009-08)

Constructor Summary Page
protected |[SIDatabase ()
172
Creates a SIDatabase Object.
Method Summary Page
abstract |[forceUpdate (AsyncRequestor r)
AsyncResult
Invalidates all the previously-cached service information and starts re-caching the 175
information from the beginning.
abstract lgetAttributeSet (Object type)
SIAttributeSet
Returnsan s1attributeSet object representing all the attributes associated with 175
S10bjects of the given type.
static |getDatabases ()
SIDatabasel] [T 173
Returns al the stpatabase availablein the device.
static |getDefault ()
SIDatabase 173
Returns the system-default sIDatabase instance.
abstract |getLocatedObject (String locator)
SIObject 174

Returns an s1ob-ject represented by the given locator.

abstract |getPreferredLanguage ()
String 174
Returns the preferred language for the information retrieved from this sipatabase.

abstract \getProvider ()
string|™ 173
Returnsthe ID of the supplier of thissipatabase.

abstract |getView (Object type)
SIView

Returns an s1view representing all the stobjectsof the given typein this 1ra
SIDatabase.
abstract void|gsetPreferredLanguage (String lang)
173

Sets the preferred language used for values retrieved from this sipatabase.

M ethodsinherited from interface dmb.util AttributedObject

getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDatelList, getlnt,
getIntList, getLong, getLonglList, getObject, getObjectList, getString, getStringlist,
isvalid

Constructor Detail

Sl Database

protected SIDatabase ()

Creates aS1Database Object. This constructor is added for implementation convenience and evalution of the
specification. Therefore, applications are not supposed to use this constructor.

ETSI

176 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Detail

getDatabases
public static SIDatabase[] getDatabases()
Returns all the stDatabase availablein the device.

Returns:

an array containing all the database instances

getDefault
public static SIDatabase getDefault ()
Returns the system-default stDatabase instance.

Returns:

the default database

getProvider
public abstract String getProvider ()
Returnsthe ID of the supplier of thissipatabase.

Returns:

the supplier ID

setPreferredL anguage

public abstract void setPreferredLanguage (String lang)

Sets the preferred language used for values retrieved from this stpatabase. A language code defined in
RFC 3066 [15] must be specified. If this method is called, even s1ob-jects created before the call are

affected.
Parameters:

lang - the language code
Throws:

NullPointerException - thrown when the given 1ang parameter isnull

IllegalArgumentException - thrown when the given 1ang parameter is not avalid langauge
code or the corresponding language is not supported by the device

ETSI

177 ETSITS 102 635-1 V1.1.1 (2009-08)

getPr eferredL anguage

public abstract String getPreferredLanguage ()

Returns the preferred language for the information retrieved from this stpatabase. Returns one of the
language codes defined in RFC 3066 [15].

getView

public abstract SIView getView(Object type)

Returns an s1view representing al the stobjects of the given typein this stpatabase. Since the returned
object isan s1view, any change in the underlying database will be reflected to it automatically. Additional
queries may be given to the s1view to narrow down the set of sTobjects. And when done, the current
snapshot of the set of s10bjectsrepresented by the stview may be retrieved.

Parameters:
type - thetype of the sTview
Returns:

an s1view containing al the stobjects of the specified type

Throws:
IllegalArgumentException - thrown when thereisno such type

NullPointerException - thrown when the type parameter isnull

getL ocatedObj ect

public abstract SIObject getLocatedObject (String locator)

Returns an s1object represented by the given locator.
Parameters:
locator - the locator for the sT0bject to retrieve
Returns:
an s10bject pointed to by the locator
Throws:
NullPointerException - thrown when the locator parameter isnull

IllegalArgumentException - thrown when the 1ocator parameter is not avalid locator, or there
iISno s10bject corresponding to the given locator

ETSI

178 ETSI TS 102 635-1 V1.1.1 (2009-08)

getAttributeSet

public abstract SIAttributeSet getAttributeSet (Object type)

Returns an sIAttributeSet object representing all the attributes associated with sTobjectsof the given
type. Thereturned sIattributeSet isused to construct queries.

Parameters:

type - thetype of the stobject for which to retrieve an sTAttributeSet

Returns:

therequested s1attributeSet

Throws:
NullPointerException - thrown when the given type parameter isnull

IllegalArgumentException - thrown when the given type parameter does not represent avalid
type known to this sIDatabase

forceUpdate

public abstract AsyncResult forceUpdate (AsyncRequestor r)

Invalidates al the previoudy-cached service information and starts re-caching the information from the
beginning.

Parameters:

r - AsyncRequestor to get notified of the progress of the caching. nu11 may be given when no
notification isrequired.

Returns:

an AsyncResult to monitor the progress of the caching. AsyncResult.get () returnsnull if the
service information was successfully cached. Otherwise, it will throw an exception representing the
cause of the failure.

I nter face Sl Obj ect

dmb.si

All Superinterfaces:
AttributedObject

public interface SI Object

extends AttributedObject

ETSI

179 ETSITS 102 635-1 V1.1.1 (2009-08)

Represents an object in the SI database. All types of Sl objects are represented by this object. The type of each object
may be identified with value of the s1attribute. TYPE attribute. Each object has a set of attributes defined by the
underlying platform depending on its type. Those attributes may be retrieved with get methods defined in this
interface.

An s10bject represents a specific version of Sl data. Thus, once obtained, it will return any attribute value cached in
the object, regardless of changesin the underlying S| database. And if some attributes are not cached and there was any
change in the object, then any attempt to retrieve their values shall resultinan 111egalStateException. This
behaviour is a safeguard in order not to return different versions of datafrom asingle sTobject causing
inconsistencies.

When r297SI Objects representing the same object are retrieved, they may be distinct instances.

Method Summary Page

Siview|getView(String a)

176
Returns value of the given attribute the type of whichissiview.

M ethodsinherited from interface dmb.util AttributedObject

getAttributes, getBoolean, getBooleanList, getBytes, getDate, getDatelList, getlInt,
getIntList, getlLong, getLonglist, getObject, getObjectlist, getString, getStringlist,
igvValid

Method Detail

getView

public SIView getView(String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns value of the given attribute the type of whichis siview.
Parameters:
a - hame of the attribute

Returns:

an s1view that isthe value of the attribute

Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not s1view

NullPointerException - thrown when the given nameisnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

180 ETSI TS 102 635-1 V1.1.1 (2009-08)

I nterface SIQuery

dmb.si

public interface SI Query

Represents a query to be submitted against sTviews. A query may specify conditions to meet only on one type of
SI0ObjectsS. A query can be constructed first by obtaining an stattributeSet froman siDatabase.

SIAttributeSet s = SIDatabase.getDefault ()
.getAttributeSet (Program.TYPE) ;
// Genre: OriginationCS and L1 are 5 and 7, respectively (Cinema)
SIQuery gl = s.get (Program.GENRE) .startsWith("005.007") ;
SIQuery g2 = s.get (Program.FREE) .isTrue() ;
SIQuery g = gl.and(g2) ;

SIView programs = SIDatabase.getDefault () .getView (Program.TYPE) ;
SIObject [] result = programs.createView(q) .getSnapshot () ;

Method Summary Page

SIQuery|and (SIQuery q)

Creates aquery that is satisfied if and only if both this and the given queries are satisfied at the Loy

sametime.
SIQuery negate ()

178
Creates aquery that is satisfied if and only if this query is not satisified.

SlQuery |or (SIQuery q)
178

Creates aquery that is satisfied if and only if this or the given query is satisfied.

Method Detail

and

public SIQuery and(SIQuery q)
throws InvalidQueryException,
NullPointerException

Creates aquery that is satisfied if and only if both this and the given queries are satisfied at the same time.
Parameters:
g - aquery to combine
Returns:
created query
Throws:

InvalidQueryException - thrown when the type of objects for the given query is different from
that of this sTQuery object

NullPointerException - thrown when the g parameter isnull

ETSI

181 ETSITS 102 635-1 V1.1.1 (2009-08)

or

public SIQuery or (SIQuery)
throws InvalidQueryException,
NullPointerException

Createsaquery that is satisfied if and only if this or the given query is satisfied.
Parameters:
g - aquery to combine
Returns:
created query
Throws:

InvalidQueryException - thrown when the type of objects for the given query is different from
that of this sTQuery object

NullPointerException - thrown when the g parameter isnull

negate

public SIQuery negate ()
Creates aquery that is satisfied if and only if this query is not satisified.
Returns:

created query

I nterface Sl View

dmb.si

public interface Sl View

Represents a set of objects satisfying a specific condition. A view may be created from another view by calling
createView (SIQuery) Of createAttributeView (String). Also one may be obtained from
SIDatabase.getView (Object) OF SIObject.getView (String) methods. Once created, aview reflectsthe
current state of the underlying Sl database regardless of updates occurred after its creation.

ETSI

182 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Summary Page

void|addSIChangelListener (SIChangelListener 1)

Adds the given listener to monitor changes in this view such as additions, removals, and 162

updates to the view contents.

Siview |createAttributeView (String a)

Creates a view representing objects that are values of the given attribute of the objectsin this 180

view.

Siview |createView (SIQuery query)

179
Creates a view representing a set of objects satisfying the given query.

SIObject |getObject ()

181
Returns an s10bject contained in thisview.

int |getSize ()

180
Returns the number of sT0bjectscontained in thisview.

sIObject[] |getSnapshot ()

180
Returns al the sTobjects represented by this view at the time of calling this method.

SIObjectl] |getSnapshot (int startIndex, int count)

Returns a subset of s10bjects contained in this view by specifying the start index in the list 180

of sT0bjectsand the number of STobjectstoretrieve.

void |removeSIChangeListener (SIChangeListener 1)

182
Removes the given listener from this view.

void|gort (String[] sortBy, boolean[] isDescending)
181
Sortsalist of objects represented by this view by the specified order.

Method Detail

createView

public SIView createView (SIQuery query)
throws InvalidQueryException,
NullPointerException

Creates aview representing a set of objects satisfying the given query.
Parameters:
query - the query. This must be one created for objects of the type of this view
Returns:
the created view
Throws:

InvalidQueryException - thrown when the type the given query is created for and the type of this
view are different

NullPointerException - thrown when the given query parameter isnull

ETSI

183 ETSI TS 102 635-1 V1.1.1 (2009-08)

createAttributeView

public SIView createAttributeView(String a)
throws InvalidAttributeException,

NullPointerException

Creates a view representing objects that are values of the given attribute of the objectsin this view.
Parameters:

a - name of the attribute
Returns:

the created view

Throws:

InvalidAttributeException - thrown when type of the given attribute is not stobject or
r311SIView

NullPointerException - thrown when the given a parameter isnull

getSize
public int getSize()
Returns the number of sT0bjectscontained in this view.

Returns:

the number of sTobjects. If itisimpossible to get a snapshot of this view, returns -1

getSnapshot

public SIObject[] getSnapshot ()

Returns all the sTobjects represented by this view at the time of calling this method.

Returns:

list of s10bjectsthisview contains. In case where the list canot be retrieved for some reason,
returnsnul1. This should be distinguished from the case where this view does not contain any object,

thus returning O

getSnapshot

public SIObject[] getSnapshot (int startIndex,
int count)

ETSI

184 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns a subset of s10bjects contained in this view by specifying the start index in the list of sT0bjects
and the number of sTobjectstoretrieve.

Parameters:

startIndex - the start index in thelist of sTobjectsinthisview, from which stobjectswill be
retrieved

count - the number of s1objectsto retrieve. If the number of sT0bjectsislessthan the number of
S10bjectsfromthe given start index to the end of the list, then al of the available s1objectsare

returned

Returns:

An array containing retrieved s1objects. If thereis no object to return, then returns an array of zero-
length. If it isimpossible to retrieve the designated sTobjects, then returnsnull.

getObject

public SIObject getObject ()

Returns an s10bject contained in thisview. This method is a convenience method used when it is obvious
that this view contains only one object. When there is more than one object within this view, it depends on the
implementation what to return from this method.

Returns:

an s10bject thisview contains. If there is no object within this view or it isimpossible to retrieve
objects within this view, returnsnull. Note that this method cannot distinguish between the above
mentioned two cases. If such distinction isrequired, get Snapshot () must be used instead

sort

public void sort(String[] sortBy,

boolean[] isDescending)

Sorts alist of objects represented by this view by the specified order. The relative ordering of attribute values
is defined for the following types: boolean (false isfollowed by true in ascending order), int, long,
String (the order defined by string.compareTo (String)), Date(the order of Date.getTime ()S). In
other cases, an exception isthrown since there is no defined order between values. And if values are references

(that is, objects), and nu11 values are retrieved, null is considered to come later in ascending order.

Parameters:

sortBy - list of attributesin the objectsin this view. Thefirst onein thelist is considered first when
sorting out the result, ties are broken by the next attribute, and the same repeated

isDescending - each entry in this array correspondsto an entry in the sortBy array at the same
index. If an entry inthisarray is false it means the corresponding attribute is consulted and the sort
is donein ascending order with respect to the attribute. If true, the atttribute is considered in
descending order. This array may be shorter than sortBy. In that case, missing entries are considered
to have false meaning those attributes are consulted for sorting in ascending order

ETSI

185 ETSITS 102 635-1 V1.1.1 (2009-08)

Returns:

the list of sTOobjectsthisview contains after sorting them as specified by sortBy and
isDescending parameters. If it isimpossible to retrieve objects, the returnsnul1 rather than O

Throws:

InvalidAttributeException - thrown when the sortBy parameter contains non-existing
attribute, or there is no order defined for values of any attribute

NullPointerException - thrown when the sortBy parameter or itselementsarenull, and also
when the i sDescending paraemeter isnull

addSI ChangeL istener

public void addSIChangeListener (SIChangelListener 1)

Adds the given listener to monitor changesin this view such as additions, removals, and updates to the view
contents. If the given listener isnul1, it isignored silently without throwing an exception.

Parameters:

1 - the listener to add

removeS| Changel istener

public void removeSIChangeListener (SIChangelListener 1)

Removes the given listener from this view. If the listener was not added to this view before, or isnull, then it
is simply ignored without incurring any exception.

Parameters:

1 - the listener to remove

ETSI

186 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.tuning

Defines a set of APIsfor controlling tuners available in the receiver.

See:

Description
Interface Summary Page
TunerListener An interface to be implemented by an object that needs to get notified of changesin a 187
- Tuner.
Class Summary Page
Tuner Represents atuner in the receiver. 184
TunerL ock Represents a state where atuner islocked on an ensemble. 188
Exception Summary Page
ScanningFailedException |An exception thrown when frequency scanning has been failed for some reason. 183
TuningFailedException |An exception thrown when tuning has been failed for some reason. 190

Package dmb.tuning Description

Defines a set of APIsfor controlling tuners available in the receiver. Tuning is performed via creating a TunerLock,
and acquiring it with ResourceManager. And a separate abstraction called Tuner is provided to monitor the state of a
tuner, and to do tasks such as service scanning. The reason why there is another abstraction TunerLock in addition to
Tuner iSthat it enables sharing of atuner among multiple applications if they are required to tune to a single ensemble.

Class ScanningFailedException

dmb.tuning

java.lang.Object
(I java.lang.Throwable
L java.lang.Exception

L dmb. tuning.ScanningFailedException

All Implemented Interfaces:
Serializable

public class ScanningFailedException

extends Exception

ETSI

187 ETSITS 102 635-1 V1.1.1 (2009-08)

An exception thrown when frequency scanning has been failed for some reason.

Constructor Summary Page
ScanningFailedException ()
184
Creates an instance of this exception without the detailed message.
ScanningFailedException (String reason)
184

Creates an instance of this exception with the given detailed message.

Constructor Detail

ScanningFailedException

public ScanningFailedException ()

Creates an instance of this exception without the detailed message.

ScanningFailedException

public ScanningFailedException (String reason)

Creates an instance of this exception with the given detailed message.

Class Tuner
dmb.tuning

java.lang.Object

L dmb. tuning.Tuner

All Implemented Interfaces:
Resource

public class Tuner
extends Object

implements Resource

Represents atuner in the receiver. The tuner may be temporarily deactivated if there has been no TunerLock owned by
applications for some time that is implementation dependent, or for some other reasons such as battery shortage. Once
deactivated, the tuner may be activated again by acall to scan (int [1, boolean, AsyncRequestor) OfF Owninga
TunerLock.

ETSI

188 ETSI TS 102 635-1 V1.1.1 (2009-08)

Constructor Summary Page
protected |Tuner ()
185
Creates an instance of Tuner.
Method Summary Page
void|addTunerListener (TunerListener 1)
187
Adds alistener to monitor changes in the state of this tuner.
static|getDefault ()
Tuner 186
Returns the default tuner in the receiver.
String |getLocator ()
186
Returns the locator representing the broadcast channel this tuner islocked to.
int |getSignalQuality ()
187
Returns the quality of the signal recevied by thistuner.
static|list ()
Tuner [] 185
Returns al the tuners available in the receiver.
void |removeTunerListener (TunerListener 1)
Removes a listener that was previously added to this tuner for monitoring changesin the 187
state of thistuner.
AsyncResult [gcan (int [] fregs, boolean resetSI, AsyncRequestor r)
186

Scans the specified frequencies for services.

Constructor Detail

Tuner

protected Tuner ()

Creates an instance of Tuner. This constructor is for implementation convenience and evolution of the

specification. Therefore, applications must not make use of this constructor.

Method Detail

list

public static Tuner[] 1list()

Returns all the tuners available in the receiver.

Returns:

list of tuners

ETSI

189 ETSI TS 102 635-1 V1.1.1 (2009-08)

getDefault

public static Tuner getDefault ()

Returns the default tuner in the receiver.

Returns:

the default tuner

SCan

public AsyncResult scan(int[] fregs,
boolean resetSI,
AsyncRequestor r)
throws ResourceNotOwnedException,
SecurityException

Scans the specified frequencies for services. If thistuner isnot active, it is automatically activated. Prior to
calling this method, this tuner must be owned by the calling application, and the application must have
appropriate permissions. The relevant permission to be owned for calling this method is dmb . tuning. scan.

Parameters:
fregs - list of frequenciesin Hz

resetSI - if true, clears Sl dataincluding the list of services. If £alse, only information obtained
by scaning is updated, and other information isretained asit is

r - AsyncRequestor to get notified of progressesin the scanning. If no notification is anticipated,
then nul1l may be specified

Returns:

AsyncResult object to query and control the scanning process. Once completed,
AsyncResult.get () returnsnull. If the scanning fails, a ScanningFailedException isthrown

Throws:

ResourceNotOwnedException - thrown when this method is called without owning this tuner via
ResourceManager

SecurityException - thrown when the calling application does not have the required permission

getL ocator

public String getLocator ()

Returns the locator representing the broadcast channel this tuner islocked to. If thistuner is not locked to a
channel, thisreturnsnu11.

Returns:

the locator for the channel thistuner islocked to. If thistuner isturned off or not in the locked state,
thenreturnsnull

ETSI

190 ETSI TS 102 635-1 V1.1.1 (2009-08)

getSignalQuality
public int getSignalQuality()

Returns the quality of the signal recevied by thistuner. The quality is an integer in the range of 0 to 100
inclusive, where 0 means no signal at all, and 100 means the signal is strongest possible. Note that thereis no
guarantee that all the values between 0 and 100 inclusive are returned from this method. Depending on the
underlying hardware, only a subset of the values may be returned. This returns O when this tuner is currently

turned off, or not in the locked state.

Returns:
the signal quality

addTunerListener

public void addTunerListener (TunerListener 1)

Adds alistener to monitor changesin the state of thistuner. If the given 1 parameter isnul1l, itissilently
ignored without causing an exception thrown.

Parameters:

1 - the listener to add

removeT unerListener

public void removeTunerListener (TunerListener 1)

Removes a listener that was previously added to this tuner for monitoring changesin the state of this tuner. If
the given listener was not added to this tuner, or the 1 parameter isnull, itis silently ignored without

throwing an exception.
Parameters:

1 - thelistener to remove

Interface TunerListener
dmb.tuning

public interface TunerListener

An interface to be implemented by an object that needs to get notified of changesin a Tuner. Such change includes that
of signal quality received by a Tuner.

ETSI

191 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Summary Page
void|signalQualityChanged (Tuner tuner, int quality)
188
Called when there is change in the quality of signal received from the given Tuner.
void | tunedTo (Tuner tuner, String locator)
188

Called when the given Tuner istuned to an ensemble represented by the given locator.

Method Detail

tunedTo

public void tunedTo (Tuner tuner,
String locator)

Called when the given Tuner is tuned to an ensemble represented by the given locator.

Parameters:
tuner - the Tuner tuned to other ensemble

locator - thelocator pointing to the ensemble. nul1 is specified when the Tuner isturned off

signalQualityChanged

public void signalQualityChanged (Tuner tuner,
int quality)

Cadlled when there is change in the quality of signal received from the given Tuner. Note that thisis not called
when a Tuner isturned off.

Parameters:
tuner - the Tuner

quality - new quality indicator (from O to 100 inclusive).

Class TunerL ock

dmb.tuning

java.lang.Object

(I dmb. tuning.TunerLock

All Implemented Interfaces:
Resource

ETSI

192 ETSI TS 102 635-1 V1.1.1 (2009-08)

final public class TunerL ock
extends Object

implements Resource

Represents a state where atuner is locked on an ensemble. If acquisition of a TunerLock isrequested by an application
ViaResourceManager, then aTuner isallocated, and tuning begins. If the tuning succeeds, the TunerLock is
successfully acquired. If not, AsyncResult.get () throwsaTuningFailedException. Once acquired, the Tuner is
guaranteed to be locked on the current ensemble as long as the ownership of TunerLock isretained. The Tuner used
for aTunerLock is not specified explicitly. Instead, the receiver implmentation picks appropriate one. If there is no
Tuner that can satisfy the requirement set by a TunerLock, then a Tuner associated with TunerLock(s), al of which
are held by applications with lower priorities than that of the TunerLock being acquired. If none has alower priority,
then acquisition of the TunerLock fails.

For tuning, applications must have appropriate permissions. The permissions relevant to tuning are as follows:

e dmb.tuning.tune.<locators: Here<locator> represents a set of ensembles an application can tune to.
Within <locator> string, wildcards specified in the main body of the present document can be used to designate
aset of ensembles

If more than one application requests tuning to a single ensemble, then regardless of the number of TunerLocks, they
may share the same Tuner.

Constructor Summary Page
TunerLock (String locator)
189
Creates a TunerLock that requests tuning to an ensemble represented by the given locator.
Method Summary Page
String |getLocator ()
190
Returns the locator representing the ensemble to tune to.
Tuner |getTuner ()
190
Returns the Tuner that is allocated to meet the requirement set by this TunerLock.

Constructor Detail

TunerLock

public TunerLock (String locator)
throws IllegalArgumentException,
SecurityException,
NullPointerException

Creates a TunerLock that requests tuning to an ensembl e represented by the given locator. If it isacquired by
the application viaResourceManager, a Tuner isallocated, and the tuning completes. If tuning fails while a
TunerLock isbeing acquired, a TuningFailedException isthrown from AsyncResult.get () Or
AsyncResult.complete ().

ETSI

193

Throws:
IllegalArgumentException

SecurityException

NullPointerException

ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

getTuner

public Tuner getTuner ()

Returns the Tuner that is allocated to meet the requirement set by this TunerLock.

Returns:

the Tuner. If this TunerLock is not in the acquired state, the returns nui1

getL ocator

public String getLocator ()

Returns the locator representing the ensemble to tune to.

Returns:
the locator pointing to an ensemble

Class TuningFailedException

dmb.tuning

java.lang.Object
L-java.lang.Throwable

L java.lang.Exception

L dmb. tuning.TuningFailedException

All Implemented Interfaces:
Seridizable

public class TuningFailedException

extends Exception

An exception thrown when tuning has been failed for some reason.

ETSI

194

ETSI TS 102 635-1 V1.1.1 (2009-08)

Constructor Summary Page
TuningFailedException ()
191
Creates an instance of this exception without the detailed message.
TuningFailedException (String reason)
191
Creates an instance of this exception with the given detailed message.

Constructor Detail

TuningFailedException

public TuningFailedException ()

Creates an instance of this exception without the detailed message.

TuningFailedException

public TuningFailedException (String reason)

Creates an instance of this exception with the given detailed message.

ETSI

195 ETSITS 102 635-1 V1.1.1 (2009-08)

Package dmb.ui

This package provides a Ul extension to javax.microedition.lcdui to handlethe peculiaritiesin DMB
environment such as support for transparent graphics plane.

See:

Description
Class Summary Page
AlphaAttribute Represents the qttri butes of the grap_hic context, which are relevant to the alpha component 192
APNAAINOWE | and the composite mode of an associated Graphics object.
DisplayControl |Controlsthe z-order of the pisplay and the key focus associated with an application. 196
DMBCanvas Represents the basic drawing surface which islaid over the video presentation. 200
DMBIltem The base class for Ul components that can be added to apvMBCanvas. 214
FontL oader Loads new fonts from an InputStream or application resource. 217
KeyL ock Represents the right to exclusively receive events generated by the associated set of keys. 218
Textltem A DMBItem subclass providing text editing capability. 221
Userltem A DMBItem subclass that may be subclassed and customized. 228

Package dmb.ui Description

This package provides a Ul extension to javax.microedition.lcdui to handlethe peculiaritiesin DMB
environment such as support for transparent graphics plane. In DMB environment, more than one application may be
running simultaneously. The Ul system designates one application as the foreground application, and others are treated
as background ones. The foreground application obtains the key focus.

In DMB environment, more than one application represent themselves on the display at the same time, and may need to
receive key events associated with the keys of their interest even if it does not have the key focus, or in some cases, it
does not have a Ul component at all. The extension defined in this package deals with these peculiarities.

Class AlphaAttribute

dmb.ui

java.lang.Object

L gmb.ui.AlphaAttribute

public class AlphaAttribute

extends Object

Represents the attributes of the graphic context, which are relevant to the alpha component and the composite mode of
an associated Graphics object.

ETSI

196 ETSI TS 102 635-1 V1.1.1 (2009-08)

The drawing surface represented by aGraphics object does not have an alpha component. The purpose of this object is
to provide the control over the alpha component of the drawing surface used in DMB environment. With this object, the
current al pha value and the current composite mode may be specified to affect the rendering methods in the associated
Graphics object.

Alpha Value

AlphaAttribute alowsfor the specification of an alphavalue ranging from 0 to 255 inclusive, in addition to RGB
values that may be specified with Graphics object. The alphavalue specified with setAlphavalue (int) isapplied
to most of drawing methods of the corresponding Graphics object. But, methods such as drawImage, drawRegion,
and drawRGB, which may entail separate alpha valuesin the source, are not affected by the current alpha value set with
setAlphavalue (int) . In case the source of the methoes does not have an alpha channel, then they are assumed to be
fully opaque, that is, an alpha value of 255.

Alpha Composite M odes

AlphaAttribute object allows for setting of the apha composite mode. The mode is applied to most of operations
performed on the associated Graphics object. Among the Porter-Duff rules, CLEAR, SRC, and SRCOVER rules are
supported. cLEAR sets all of the components in the destination pixels to zero, thus making the destination fully
transparent, and src copies all the components of the source pixelsincluding the a pha component to the destination.
SRCOVER is the default rule, and works exactly asthe way Graphics doesin LCD Ul. But it considers the alpha
channel of the destination surface different from the case of usual MIDP environment where the destination does not
have an alpha channel. For the details on the alpha composite modes specified here, refer to the documentation for
java.awt.AlphaComposite, Whichisapart of Java Standard Edition.

Lifecycle

AnalphaAttribute instance may be obtained by calling getalphaattribute (Graphics) method with a
Graphics object. Once created, it will be valid exactly while the corresponding Graphics object isvalid. If
getAlphaAttribute (Graphics) isinvoked more than once with the same Graphics object, the returned
AlphaAttribute object will beidentical between the calls. And if it is created from aGraphics object passed into
variouspaint (Graphics) methods, thenthe aAlphaAttribute object will last for the duration of executing

paint (Graphics). If arendering surface associated with aGraphics object is an opague surface without an alpha
channel, a new alpha channel is created when the associated Alphaattribute is created, and the surface isinitialized
to be fully transparent. The default alpha value for the newly obtained a1phaattribute is255, meaning fully opague,
and the default composite mode is SRCOVER.

Field Summary Page
static |CLEAR
final int|™
A composite rule setting al of the compomponents in the destination to zero (Porter-Duff 194
Clear rule).
static |SRC
final int|™
A composite rule copying the components in the source pixels to the destination pixels 194
(Porter-Duff Sourcerule).
static [SRCOVER
final int|™
A composite rule determining the values of the destination pixels based on both the values of 194
the source and the destination pixels (Porter-Duff Source Over Destination rule).

ETSI

197 ETSITS 102 635-1 V1.1.1 (2009-08)

Method Summary Page
static |getAlphaAttribute (Graphics g)
AlphaAttribute 195
Returns an AlphaAttribute object associated with the given Graphics object.
int |getAlphavalue ()
196
Returns the current alpha value for the associated Graphics object.
int |getComposite ()
195
Returns the current al pha composite mode.
void|setAlphaValue (int alpha)
Sets the alphavalue that will affect graphics operations performed with the associated 196
Graphics object.
void|getComposite (int compRule)
Sets the alpha composite mode for the Graphics object associated with this 195
AlphaAttribute object.

Field Detail

CLEAR

public static final int CLEAR = 1

A composite rule setting all of the compomponents in the destination to zero (Porter-Duff Clear rule). This
composite mode does not use both source and destination values.

SRC

public static final int SRC = 2

A composite rule copying the components in the source pixels to the destination pixels (Porter-Duff Source
rule). The desitination value is not used when drawing is performed.

SRCOVER

public static final int SRCOVER = 0

A composite rule determining the val ues of the destination pixels based on both the val ues of the source and
the destination pixels (Porter-Duff Source Over Destination rul€). Refer to java . awt . AlphaComposite in
Java Standard Edition for details on this composite mode. The implementation of this mode is permitted not be
exact, since the exact implementation requires significant computing power.

ETSI

198 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

getAlphaAttribute

public static AlphaAttribute getAlphaAttribute (Graphics g)

Returns an AlphaaAttribute object associated with the given Graphics object. Thereisonly one
AlphaAttribute Object per Graphics object, All the settings done to an alphaattribute object are valid
while the corresponding Graphics object isvalid.

If there is no alpha channel in the drawing surface associated with the given Graphics object, then an apha
channel is created for the surface upon the creation of an a1phaattribute, and the alphavalues for the
surface are set to zero, thus making it fully transparent.

When first created, the default alpha value is set to 255, and the default composite mode to SRCOVER.
Parameters:

g - the Graphics object
Throws:

NullPointerException - if the g parameter isnull

setComposite

public void setComposite (int compRule)

Sets the alpha composite mode for the Graphics object associated with thisalphaattribute object. The
valid set of modes includes src, SRCOVER, and CLEAR. Once set, the mode affects al the following operations
performed on the associated Graphics object with afew exceptions such as drawImage as specified in the
class documentation for this class.

Parameters:
compRule - the apha composite mode to set
Throws:

IllegalArgumentException - thrown when the comprule isinvalid

getComposite

public int getComposite ()

Returns the current alpha composite mode.
Returns:

the current composite mode. The default value is SRCOVER. One of SRC, SRCOVER, and CLEAR May
be specified

ETSI

199 ETSI TS 102 635-1 V1.1.1 (2009-08)

setAlphaValue

public void setAlphaValue (int alpha)

Sets the alphavalue that will affect graphics operations performed with the associated Graphics object. This
value affects most of methods called on the associated Graphics object. The default value is 255.

Parameters:
alpha - an aphavalue ranging from 0 to 255 inclusive
Throws:

IllegalArgumentException - thrown when the given alpha isout of the valid range

getAlphaValue

public int getAlphaValue ()

Returns the current alpha value for the associated Graphics object.
Returns:

the current alpha value

Class DisplayControl

dmb.ui

java.lang.Object

(I dmb.ui.DisplayControl

public class DisplayControl

extends Object
Controls the z-order of the Display and the key focus associated with an application.

Z-Order Control

When more than one applications share the display, this class provides a means to set the z-order of the display of each
application. In addition to the z-order, this class classifies applications into three classes of H1GH, NORMAL, and LOW.

ETSI

200 ETSI TS 102 635-1 V1.1.1 (2009-08)

] Low

]]m

Display

DMBCanvas#3
2=2

DMBCanvas#d

2=3
DMBCanvas#5
Z2=4

DMBCanvas#s
£=5

} HIGH

As shown in the above picture, each application is assigned a priority that is one of HIGH, NORMAL, and Low. An
application with a higher priority than others is always displayed closer to the viewer. To set the priority of an
application, setPriority (int) may beinvoked. Among applications with identical priority, their relative z-order
may be changed by toFront () and toBack () methods. For instance, if an application should be displayed on the top
of other applications, first its priority should be set to HIGH, and toFront () should be called to bring it to the front
among those assigned HIGH priority.

Key Focus M anagement

In some cases, an application may not want to receive keys even when it is topmost. By calling
setFocusable (boolean), an application may be set if it wishesto receive key events or not.

Field Summary Page
static |HIGH
final int|™ 198
M eans the corresponding application has the high priority in terms of the display device.
static |[LOW
final int|™ 198
Means the corresponding application has the low priority in terms of the display device.
static INORMAL
final int|™ 198
M eans the corresponding application has the normal priority in terms of the display device.
Method Summary Page
static|getDisplayControl (MIDlet m)
DisplayControl 198
ReturnsapisplayControl object for the given MIDlet.
int |getPriority ()
200
Returns the current priority of the application associated with thispisplayControl.
boolean |isFocusable ()
200
Returnsif the associated application will receive the key focus or not.
void [removeDisplayable ()
Removes the current pisplayable (including bMBCanvas) set to the pisplay 199
associated with the application, in turn, associated with thispisplayControl.

ETSI

201 ETSI TS 102 635-1 V1.1.1 (2009-08)

void | setFocusable (boolean focusable)
200
Sets whether the associated application will receive key events.

void|setPriority(int priority)
199
Setsthe display priority for the application associated with thispisplayControl.

void|toBack ()

MovestheDisplayable oOf the corresponding application to the bottom among the 199

applications with the same priority.

void |toFront ()

Bringsthe pisplayable of the corresponding application to the front among the 199

applications with the same priority.

Field Detail

HIGH

public static final int HIGH = 268435456

M eans the corresponding application has the high priority in terms of the display device. Applications with this
priority are displayed closest to the viewer, and guaranteed atop other applications with alower priority.

NORMAL

public static final int NORMAL = 536870912

M eans the corresponding application has the normal priority in terms of the display device. Applications with
this priority are displayed under those with HIGH priority, and above those with Low priority.

LOW

public static final int LOW = 805306368

Means the corresponding application has the low priority in terms of the display device. Applications with this
priority are displayed under applications with a higher priority.

Method Detail

getDisplayControl

public static DisplayControl getDisplayControl (MIDlet m)

ReturnsapisplayControl object for the given MIDlet.
Parameters:

m - the MIDlet instance

ETSI

202 ETSI TS 102 635-1 V1.1.1 (2009-08)

Throws:

NullPointerException - thrown when the m parameter isnull

removeDisplayable

public void removeDisplayable ()

Removes the current bisplayable (including DMBCanvas) set to the Display associated with the
application, in turn, associated with thispisplayControl. After acall to this method,
Display.getCurrent () returnsnull. Notethat calling Display.setCurrent (Displayable) With
null does not remove the current bisplayable.

toFront

public void toFront ()

Bringsthe bisplayable of the corresponding application to the front among the applications with the same
priority.

toBack

public void toBack()

Movesthe Displayable Of the corresponding application to the bottom among the applications with the same
priority.

setPriority

public void setPriority(int priority)

Sets the display priority for the application associated with thispisplayControl. The priority must be one of
HIGH, NORMAL, and Low. And the higher the priority is, the closer the display isto the viewer.

Parameters:
priority - the priority
Throws:

IllegalArgumentException - thrown whenthe priority isnot one of HIGH, NORMAL, and LOW

ETSI

203 ETSI TS 102 635-1 V1.1.1 (2009-08)

getPriority

public int getPriority ()

Returns the current priority of the application associated with thispisplayControl. The default valueis
NORMAL.

Returns:

the current priority

setFocusable

public void setFocusable (boolean focusable)

Sets whether the associated application will receive key events. If true, the application gets the key focus
when it istopmost in the display device. Otherwise, it yields the key focus to the application next to itself in
the z-order. And the same rule is applied to the next one. This processis repeated until an application to get the
key focusis found. If no application is eligible for owning the key focus, the key focusis set to no application,
and key events are just discarded. The default value for this property is true.

Parameters:

focusable - Whether the associated application hopes to receive the key focus or not

isFocusable

public boolean isFocusable ()
Returnsif the associated application will receive the key focus or not.

Returns:

true if it will get the key focus, false, otherwise

Class DM BCanvas

dmb.ui

java.lang.Object
(I javax.microedition.lcdui.Displayable
L javax.microedition.lcdui.Canvas

(I dmb.ui.DMBCanvas

ETSI

204 ETSI TS 102 635-1 V1.1.1 (2009-08)

abstract public class DM BCanvas

extends Canvas

Represents the basic drawing surface which islaid over the video presentation. Thisis a subclass of canvas and
provides additional key mappings, which are unique to DMB environment. Besides the above mentioned facilities,
DMBCanvas provides asimple framework for implementing custom Ul components by allowing DMBItemsto be added
toit.

Screen M anagement

When acanvas in MIDP LCD Ul isset to theDisplay, the current canvas of the foreground application occupies the
whole display area, and consumes all the input events generated by the user. Different from its superclass canvas,
DMBCanvas shares the display area with other bMBCanvases set to Display by other applications. Therefore, the
bounds of bMBCanvas must be specified. Graphics generated by a bMBCcanvas will not be drawn outside its bounds,

and pointer events are delivered to a bMBCanvas only when the pointer isinside the bounds of the bMBCanvas.:

As shown in the above picture, a display is shared among more than one bMBcanvas, and they are placed along the line
of sight depending on the z-order value assigned for them. When a display is updated, a bMBCanvas with the smallest
z-order value is drawn first, one with the next smallest value drawn next, and so on. So a bMBCavnas with the largest
z-order value is drawn closest to the viewer (in the picture, the one with Z=2), and it is the foreground application.

Local Coordinate System

10,0}

Display

DMBCanvas DMBCanvas

DMElem

DMBCanvas and DMBItem have aloca coordinate system of their own. In the left picture above, the display coordinate
system is used when specifying the bounds of a DMBCanvas viaits constructor or setBounds (int, int, int, int).
But the methods on Graphics, and other methods like pointerPressed (int, int), pointerDragged (int, int),
and pointerReleased (int, int) usethelocal coordinate system of the corresponding DMBCanvas, where the origin
in the coordinate system is the top-left corner of the bMBCanvas. As such, DMBItem usesthelocal coordinate system of
its parent bMBCanvas When specifying its bounds within the parent, but when specifying coordinates for generating
graphics and processing events, all the coordinates arein the local coordinate of the DMBItem.

DMB Action

To map actions unique in DM B environment, bMBCanvas provides the concept of DMB action. It is much like "game
action” in canvas, but defines a different set of actions which are unique to DMB. Instead of mapping arbitrary key
codes to some actions, key codes should be checked if they correspond to any of DMB actions defined in this class,
such as VOLUME UP, VOLUME DOWN, MUTE, CHANNEL UP, CHANNEL DOWN, RECORD, GUIDE, INFO, and so on. Each key
code may be mapped to only one DMB action.

Key and Focus Events

Key events are delivered to aDpMBCavnas that has the key focus. Among DMBCanvases Set to Display by focusable
applications (refer to DisplayControl.setFocusable (boolean)), the onethat is closest to the viewer receives the

ETSI

205 ETSI TS 102 635-1 V1.1.1 (2009-08)

key focus, and so does key events. If amiDlet placed at the top of Display does not want to have the key focus, then
it can call DisplayControl.setFocusable (boolean) With false.

In some cases, an application needs to exclusively receive events generated by acting on a set of keys, even when the
application does not have a bMBCanvas. It may use KeyLock and reserve it with ResourceManager. Then the events
for the designated set of keys will be delivered to the application owning the KeyLock whether it has Ul and the key
focus or not.

For some reasons, the key focus may be transferred among applications. In that case, the one losing the focus will be
notified viaacall to focusLost (), and another gaining the focus will be notified viaacall to focusGained () .

Pointer Events

When the pointer is pressed on the display, the corresponding event is delivered to a bMBCanvas which is closest to the
viewer among those containing the point where the pointer is pressed. Drag and rel ease events following a press event
are delivered to the pMBCanvas to which the press event was delivered. If the pointer is pressed at a point not belonging
to apMBCanvas, then al the pointer events generated until another press event is generated will be delivered to no
DMBCanvas, and silently ignored.

Paint Events

Different from canvas to which paint events are delivered only when the canvas is set by the foreground application,
DMBCanvas May receive paint events. All the graphic operations performed in paint (Graphics) take effect on the
display if they are not obscured by graphics generated by another bMBCanvas.

When more than one DMBCanvas display graphics on the display, it is drawn in the order imposed by their z-order
values. But depending on implementations, if an area within abpMBCanvas is updated, other bMBCanvases covering a
portion of the updated area need to recover the portion. In that case, the update performance may degrade significantly.
This needs to be considered when planning applications coexisting at the same time sharing the display.

DMBItem

In amuch similar way to Form, DMBCanvas may contain a set of DMBI tems, provides methods for adding/removing
and controlling MBI tems within it, and manages the contained DMBItems.

When akey event is generated, it is delivered to a MBI tem Which has the key focus if the containing bMBCanvas has
the key focus. Key events are first delivered to DMBCanvas, and then to a focused pMBItem. Note that the dispatchis
done by the default implementation of the relevant event handling methods defined in bMBCanvas such as
keyPressed (int).

In the case of pointer events, once they are to be delivered to apMBcanvas according to the rule described above, they
are delivered to a DMBI tem Within the DMBCanvas that contains the point asssociated with pointer events, and is closest
to the viewer. Pointer events are also delivered to aDMBI tem first through DMBCanvas. The dispatch mechanismis
implemented within the relevant event handling methods defined in bMBCanvas. Once apressed event is delivered to a
DMBI tem, then the corresponding dragged and released events are delivered to the same DMBI tem Whether the events
are generated within the bMBItem or not. On the other hand, the pointer is pressed on no DMBI tem, then any other
pointer events generated till another pressed event is generated shall be ignored silently. Thus they are delivered to no
DMBTItem.

DMBItemsS are assigned an index. One with smaller index is drawn below one with larger index. The drawing is
performed in paintItems (Graphics) method.

Field Summary Page
static |BACK
final int|™ 206
The action of going back in the user interface.

ETSI

206 ETSI TS 102 635-1 V1.1.1 (2009-08)

_ static|CHANNEL DOWN
final int 205
The channel down action.
static |CHANNEL UP
final int 205
The channel up action.
static |EXIT
final int 206
The action of exiting a context.
static |GUIDE
final int|™ 206
The action of activating the guide program.
static |INFO
final int 206
The action of requesting more information.
static |MUTE
final int 205
The audio muting action.
static |RECORD
final int 205
The action of initiating recording of media.
_ static |VOLUME DOWN
final int 205
The volume down action.
~ static |VOLUME UP
final int 205
The volume up action.
Constructor Summary Page
protected |DMBCanvas (int x, int y, int width, int height)
206
Creates a new DMBCanvas to occupy the given areain the display.
Method Summary Page
int lappendItem (DMBItem item)
208
Adds the given DMBItem to this DMBCanvas.
protected |focusGained ()
void 208
Called when thispMBCcanvas gained the key focus.
protected |focusLost ()
void 208
Cdled when this bMBCanvas lost the key focus.
int |getDMBAction (int keyCode)
207
Returns the DMB action corresponding to the given key code in the device.
int |getDMBKeyCode (int dmbAction)
207
Returns a key code corresponding to the given DMB action in the device.
DMBItem |getFocusedItem ()
211
Returns the DMBI tem that has the key focus within thispmMBCanvas.

ETSI

207 ETSI TS 102 635-1 V1.1.1 (2009-08)

DMBItem |getItem(int itemNum)
209
Returns apMBItem at the given index in thelist of DMBItems contained in thisDMBCanvas.
int \getItemNum ()
210
Returns the number of DMBItems contained in thisbDMBCanvas.
int getx ()
Returns the x cooridnate of the top-left corner of this pMBCanvas in the display's coordinate 211
system.
int getY ()
Returns the y cooridnate of the top-left corner of this DMBcanvas in the display's coordinate 211
system.
final |hasFocus ()
boolean 208
Returns whether this bMBCanvas hasthe key focus.
void|insertItem (DMBItem item, int itemNum)
209
Insertsthe given DMBItem at the given index in the list of DMBItemsin thisDMBCanvas.
protected |keyPressed (int keyCode)
void |—
212
Called when this bMBCanvas hasthe key focus and akey is pressed.
protected keyReleased (int keyCode)
void 212
Cadlled when akey that was previously pressed is released.
protected \keyRepeated (int keyCode)
void 213
Called when a key is repeated (held down).
protected |paint (Graphics g)
void
211
Paints the content of thisbMBCanvas.
void|paintItems (Graphics g)
211
Paints all the DMBItemsin thisDMBCanvas from the one with the smallest index.
protected |pointerDragged (int x, int y)
void |
Called when the pointer is dragged after the corresponding pressed event is delivered to this 214
DMBCanvas.
protected |pointerPressed(int x, int y)
void 213
Called when the pointer is pressed on a point this bMBCanvas contains.
protected |pointerReleased (int x, int y)
void
213
Called when the pointer was pressed in this bMBCanvas and is then released.
void |removeAllItems ()
210
Removes all the DMBI tems contained in thisDMBCanvas.
void|removeItem (DMBItem item)
210
Removes the given bMBI tem from the list of DMBItems contained in thispMBCanvas.
void |removeItem(int itemNum)
210
Removes aDMBItem at the givenindex inthelist of DMBItems contained in this DMBCanvas.

ETSI

208 ETSI TS 102 635-1 V1.1.1 (2009-08)

void |setBounds (int x, int y, int width, int height)
207
Sets the bounds of this pMBCanvas.

Field Detail

VOLUME_UP

public static final int VOLUME_UP = 1

The volume up action.

VOLUME_DOWN

public static final int VOLUME_DOWN = 2

The volume down action.

MUTE

public static final int MUTE = 3

The audio muting action.

CHANNEL_UP

public static final int CHANNEL UP = 4

The channel up action.

CHANNEL_DOWN

public static final int CHANNEL DOWN = 5

The channel down action.

RECORD

public static final int RECORD = 6

The action of initiating recording of media.

ETSI

209

ETSI TS 102 635-1 V1.1.1 (2009-08)

GUIDE

public static final int GUIDE = 7

The action of activating the guide program.

INFO

public static final int INFO = 8

The action of requesting more information.

BACK

public static final int BACK = 9

The action of going back in the user interface.

EXIT

public static final int EXIT = 10

The action of exiting a context.

Constructor Detail

DMBCanvas

protected DMBCanvas (int x,
int vy,
int width,
int height)

Creates anew DMBCanvas to occupy the given areain the display. The coordinates are specified in the

coordinate system of the display.

ETSI

210 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

setBounds

public void setBounds (int x,
int vy,
int width,
int height)

Sets the bounds of this DMBCanvas. The coordinates are in the display coordinate system.
Parameters:

x - the x coordinate of the top-left corner of this bMBCanvas

y - the'y coordinate of the top-left corner of this bMBCanvas

width - the width of thispMBCanvas in pixels

height - the height of thispMBCanvas in pixels

getDMBAction

public int getDMBAction (int keyCode)

Returns the DMB action corresponding to the given key code in the device.
Parameters:
keyCode - akey code

Returns:

the DMB action associated with the given key code. If there is no corresponding action, then returns O

getDM BKeyCode

public int getDMBKeyCode (int dmbAction)
throws IllegalArgumentException

Returns a key code corresponding to the given DMB action in the device.

Parameters:
dmbAction - aDMB action
Returns:
akey code corresponding to the given DMB action

Throws:

IllegalArgumentException - thrown when the given action isinvalid

ETSI

211 ETSITS 102 635-1 V1.1.1 (2009-08)

focusGained
protected void focusGained ()
Cadled when this bMBCanvas gained the key focus. More specificaly, thisis called in the following cases.

e When thisbMBcanvas gained the key focus, and it did not have it before

e WhenthispMBcanvas Set to Display, and the application has already fulfilled the condition to get
the key focus. In this case, the key focusisimmediately transferred to the newly set bDMBCanvas.

The default implementation of this method dispatches this event by invoking UserItem. focusGained () to
the userItem having the key focus within the focused pMBCanvas.

Note that when abMBItem that isnot auserItem hasthe key focus, the default implementation of this
method may have the responsibility of notifying the bMBItem of its gaining the key focus. Thus the default
implementation of this method must be called at an appropriate timing when overriding this method in any of
subclasses.

focusL ost

protected void focusLost ()

Called when this bMBCcanvas lost the key focus. But this method is not called if thisbMBCanvas had once the
key focus, and isremoved from Display by calling DisplayControl.removeDisplayable ().

The default implementation of this method dispatches this event to the UserItem owning the key focus within
thispMBCanvas by calling UserItem. focusLost ().

Note that even when the focused DMBItem is not aUserItem, the underlyiing implementation may rely on the
default implementation of this method to get notified of the fact that the key focus has been moved to the
DMBItem. Thusthe default implementation of this method must be called in any of descendants of this class
when overriding the default implementation.

hasFocus

public final boolean hasFocus ()

Returns whether this bMBcanvas has the key focus. When apMBcanvas hasthe key focus, it is eligible for
receiving forthcoming key events.

Returns:

if owning the key focus, true. Otherwise false

appenditem

public int appendItem(DMBItem item)

ETSI

212 ETSI TS 102 635-1 V1.1.1 (2009-08)

Adds the given DMBItem to thisDMBCanvas. It is placed at the end of the list of bMBItems managed by this
DMBCanvas. |t meansthat the bMBItem placed closest to the viewer.

Parameters:
item - DMBItem t0 add
Returns:
theindex of the added DMBItem inthelist DMBItem
Throws:
NullPointerException - thrown when the argument, itemisnull

IllegalStateException - thrown when the given item isalready added to DMBCanvas

insertltem

public void insertItem (DMBItem item,
int itemNum)

Insertsthe given DMBItem at the given index in the list of DMBItemSin thiSDMBCanvas. itemNum must bein
arange from 0 to get ItemNum () including O and the get ItemNum (), and if itemNum iSequal to
getItemNum (), thenthe bMBItem isadded to the end of thislist.

Parameters:
item - the DMBItem to insert
itemNum - theindex at which the item will be inserted
Throws:
NullPointerException - thrownif itemisnull
IllegalStateException - thrown when the givenitemis aready contained in this bMBCanvas

IndexOutOfBoundsException - thrown when the given i temnum is out of the valid range

getltem

public DMBItem getItem(int itemNum)

ReturnsapvMBItem at the given index in the list of DMBItems contained in this bMBCanvas. The given
itemNum should be in the range from 0 to get T temNum () -1 inclusive.

Parameters:

itemNum - the index of the DMBItem to retrieve
Returns:

the designated DMBItem

Throws:

IndexOutOfBoundsException - thrown when the given i temNum is not in the valid range

ETSI

213 ETSI TS 102 635-1 V1.1.1 (2009-08)

removeltem

public void removeItem(int itemNum)

Removes aDMBItem at the givenindex in thelist of DMBItems contained in this bMBCanvas. The given index,
itemNum, should be in the range from 0 to get TtemNum () -1 inclusive. If the bMBI tem that is removed, had
the key focus, then after removal, get FocusedItem () returnsnull. But in this case, even though the
removed DMBItem iSaUserItem, UserItem. focusLost () will not be called.

Parameters:
itemNum - the index of aDMBItem to remove
Throws:

IndexOutOfBoundsException - thrown when the given itemNum is outside the valid range

removeltem

public void removeItem (DMBItem item)

Removes the given pMBItem from the list of DMBItems contained in this bMBCanvas. If thereisno such
DMBItem inthisDMBCanvas, it issilently ignored without throwing an exception. If the removed DMBItem
had the key focus within thispMBcanvas, after removal, get FocusedItem () will returnnuill.

Parameters:
item - the DMBItem to remove
Throws:

NullPointerException - thrownif the given itemisnull

removeAllltems

public void removeAllItems ()

Removes all the DMBItems contained in thisDMBCanvas.

getltemNum

public int getItemNum ()

Returns the number of DMBItems contained in this DMBCanvas.
Returns:

the number of DMBItemsin thisDMBCanvas

ETSI

214 ETSITS 102 635-1 V1.1.1 (2009-08)

paintltems

public void paintItems (Graphics g)

Paints al the bMBItemsin this DMBCcanvas from the one with the smallest index.

Parameters:

g - aGraphics object to be used to paint DMBItems

getFocusedltem

public DMBItem getFocusedItem ()

Returns the DMBI tem that has the key focus within thispmMBcanvas. A newly created r394DMBCanvas does
not have abMBItem. If thefirst DMBItem isinserted, and DMBItem. setFocus () isnotinvoked onit, then
getFocusedItem () shall return null meaning thereisno bMBItem owning the key focus. An explicit call to

DMBItem.setFocus () isrequired to set abMBItem focused.

Returns:
apMBItem that ownsthe key focus. If there is no pMBItem owning the key focus, then returnsnuiil

getX
public int getX()

Returns the x cooridnate of the top-left corner of thispMBCanvas in the display's coordinate system.

Returns:

the x coordinate of thisbMBCanvas

getY
public int getY()

Returns the y cooridnate of the top-left corner of thisbMBCanvas in the display's coordinate system.

Returns:

the y coordinate of this pMBCanvas

paint

protected void paint (Graphics g)

ETSI

215 ETSITS 102 635-1 V1.1.1 (2009-08)

Paints the content of thispmMBCanvas. The default implementation of this method calls

paintItems (Graphics) to paint DMBItemsS contained in thispMBcanvas. If any graphics need to be painted
in the background of the bMBI tems, then this method should be overriden. The overriden method may paint
something first in the background, and then invoke the default implementation of this method or

paintItems (Graphics). Conversely if this method is overriden and the default implementation is not
called, then no pMBItemswill be painted automatically.

Overrides:
paint inclass canvas
Parameters:

g - the Graphics object to be used for painting the content of this bMBCanvas

keyPressed

protected void keyPressed (int keyCode)

Called when thispmMBCcanvas has the key focus and akey is pressed. The implementation of this method in
r394DMBCanvas tries to dispatch the event to the bMBItem currently owning the key focus within this
DMBCanvas. |f the DMBItem owning the key focusisaUserItemUserItem.keyPressed (int) iscaled on
the UserItem.

Note that aDMBItem other than UserItem may rely on the implementation of this method to obtain key
events. Thusif this method is overriden, and al the pMB1tems need to work properly, then the original
implementation of this method must be called at an appropriate location within the overriden method.

Overrides:
keyPressed in class Canvas
Parameters:

keyCode - code for the key that is pressed

keyReleased

protected void keyReleased(int keyCode)

Called when a key that was previoudly pressed is released. The implementation of this method in DMBCanvas
tries to dispatch the event to a MBI tem owning the key focus. If the focused DMBItem iSaUserItem, then
UserItem.keyReleased (int) iscaled.

Note that DMBItems oOther than auserItem may rely on the implementation of this method to get key events.
So if this method is overriden, and all the DMBI tems within this DMBCanvas need to respond to key events
properly, the original implementation must be called appropriately.

Overrides:
keyReleased inclass canvas
Parameters:

keyCode - code for the key that is released

ETSI

216 ETSI TS 102 635-1 V1.1.1 (2009-08)

keyRepeated
protected void keyRepeated (int keyCode)
Called when a key is repeated (held down). The implementation of this method in DMBCanvas tries to dispatch

the event to aDMBItem in thisDMBCanvas, which hasthe key focus. If the DMBItem iSaUserItem, then
UserItem.keyRepeated (int) iscaled onit.

Even in the case of other DMBI tems than UserItems, they may rely on the implementation of this method to
get key events of their interest. So if this method is overriden, and such DMBItems need to work properly, then
this original implementation must be called at an appropriate time.

Overrides:
keyRepeated in class canvas
Parameters:

keyCode - code for the key that is repeated

pointer Pressed

protected void pointerPressed(int x,
int y)

Cadlled when the pointer is pressed on a point this bMBCanvas contains. The implementation of this method in
DMBCanvas triesto dispatch the event to abMBItem Which is closest to the viewer among those containing the
point. If itisaUserItem, UserItem.pointerPressed (int, int) shall be called, where x and y
coodinates are in the local coordinate system of the userItem.

Note that MBI tems other than userItems may rely on the implementation of this method to get pointer
events of their interest. So if this method is overriden, and such bMBItems need to work properly, the original
implementation of this method must be called at an appropriate time.

Overrides:
pointerPressed inclass canvas
Parameters:

x - the x coordinate of the point where the pointer is pressed in the local coordinate system of this
DMBCanvas

y - the y coordinate of the point where the pointer is pressed in the local coordinate system of this
DMBCanvas

pointer Released

protected void pointerReleased (int x,
int y)

Called when the pointer was pressed in this bMBCanvas and isthen released. The implementation of this
method in DMBCanvas triesto dispatch the event to a bMBItem the corresponding pressed event was delivered

ETSI

217 ETSITS 102 635-1 V1.1.1 (2009-08)

to. If itisaUserItem, UserItem.pointerReleased (int, int) shall becaledonit. Thex andy
coordinates are in the local coordinate system of the UserItem.

Note that MBI tems other than userItems may rely on the implementation of this method to get pointer
events of their interest. If this method is overriden and pMBI tems need to work properly, then the original
implementation must be called at an appropriate time.

Overrides:
pointerReleased inclass canvas
Parameters:
x - the x coordinate of the point where the pointer isreleased

y - the y coordinate of the point where the pointer is released

pointer Dragged

protected void pointerDragged (int x,
int y)

Called when the pointer is dragged after the corresponding pressed event is delivered to thispMBCanvas. The
implementation of this method in this class tries to dispatch the event to an appropriate DMBItem within this
DMBCanvas. The event is delivered to a bMBItem Where the corresponding pressed event was delivered. If the
DMBItemiSaUserItem,then UserItem.pointerDragged (int, int) isinvoked, wherex and y
coordinates are in the local cooridnate system of the UserItem.

Note that even if the DMBItem iSnot auserItem, the underlying implementation of the bMBItem may rely on
the implementation of this method to get the relevant events. Thusif this method is overriden in a subclass of
this class, then the original implementation must be invoked, or bMBI tems within instances of the subclass
may not work properly.

Overrides:
pointerDragged in class canvas
Parameters:

x - the x coordinate of the pointer when this event is generated in the local coordinate system of this
DMBCanvas

y - the'y coordinate of the pointer when this event is generated in the local coordinate system of this
DMBCanvas

ClassDMBItem

dmb.ui

java.lang.Object

L dmb.ui.DMBItem

Direct Known Subclasses:
Textltem, Userltem

ETSI

218 ETSI TS 102 635-1 V1.1.1 (2009-08)

abstract public class DM Bltem
extends Object
The base class for Ul components that can be added to a bMBCanvas. When specifying the bounds of thispMBItem, the

local coordinate system of the parent bMBCanvas is used. But in the case of painting and pointer events, relevant
coordinates are in the local coordinate system of thisbMBItem.

Method Summary Page
int |getHeight ()
216
Returns the height of thisbMBItem in pixels.
int |getWidth ()
216
Returns the width of thispMBItem in pixels.
int ge tX ()
Returns the x coordinate of the top-left corner of thispMBItem in thelocal coordinate system of 216
the enclosing bMBCanvas.
int ge tY ()
Returns the y coordinate of the top-left corner of thispmMBItem in the local coordinate system of 216
the enclosing bMBCanvas.
final lhasFocus ()
boolean 216
Returns whether this bMBI tem has the key focus.
void|getBounds (int x, int y, int width, int height)
215
Sets the bounds of thispmBItem inthe local coordinate system of the enclosing DMBCanvas.
void |setFocus ()
217
Sets this DMBI tem to be the key focus owner within its parent bMBCanvas.

Method Detail

setBounds

public void setBounds (int x,
int vy,
int width,
int height)

Sets the bounds of thispvBItem inthelocal coordinate system of the enclosing DMBCanvas.
Parameters:

x - the x cooridnate of thiSDMBItem

y - they cooridnate of thispMBItem

width - the width of thispMBItem in pixels

height - the height of thisbMBItem in pixels

ETSI

219 ETSI TS 102 635-1 V1.1.1 (2009-08)

getX

public int getX()
Returns the x coordinate of the top-left corner of thispMBItem in the local coordinate system of the enclosing

DMBCanvas.

Returns:
the x coordinate

gety

public int getY¥()
Returns the y coordinate of the top-left corner of thispMBItem inthelocal coordinate system of the enclosing

DMBCanvas.

Returns:
the y coordinate

getWidth

public int getwidth()

Returns the width of thisbMBItem in pixels.

Returns:
the width

getHeight
public int getHeight ()

Returns the height of thispMBItem in pixels.

Returns:

the height

hasFocus

public final boolean hasFocus ()

ETSI

220 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns whether this bMBItem has the key focus. More specifically, for this method to return true, the parent
DMBCanvas Of thisDMBItem must have the key focus, and this must be designated as abMBItem Owning the
key focus within the DMBCanvas.

Returns:

true if thispMBItem hasthe key focus. Otherwise, false

setFocus

public void setFocus ()

SetsthispMBItem to be the key focus owner within its parent DMBCanvas. If thisDMBItem isnot added to a
DMBCanvas, thisrequest is silently ignored.

If this method isinvoked, the bMBItem owning the key focusis changed, but this does not mean that its parent
DMBCanvas Will bethe key focus owner. Thus hasFocus () must return true, and actual key eventswill be
delivered to the focused DMBItem.

Class FontL oader

dmb.ui

java.lang.Object

L dmb.ui.FontLoader

public class FontL oader

extends Object

Loads new fonts from an InputStream or application resource. This classis for introducing new fonts that were not
installed in the device. Font data may be transferred as a part of an application, or obtained in any other means. The
created font will be valid only during the lifespan of the application loading the font. Thus, when amiDlet is
shutdown, all the fonts loaded by it shall be unloaded accordingly.

Method Summary Page
static|loadFont (InputStream i)
Font 218
Creates a Font fronthe given InputStream.
static|loadFont (String resourceName)
Font 218

Creates a Font from the specified application resource.

ETSI

221 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

loadFont

public static Font loadFont (InputStream i)

Creates a Font fron the given InputStream.
Parameters:

i - an InputStream containing the raw font data
Returns:

the created Font

Throws:

IllegalArgumentException - thrown when the given Inputstream does not convey avalid font
data

loadFont

public static Font loadFont (String resourceName)

Creates a Font from the specified application resource.
Parameters:
resourceName - hame of the resource containing the font data
Returns:
the created Font
Throws:

IllegalArgumentException - thrown when a Font can not be created from the specified resource

Class KeyL ock

dmb.ui

java.lang.Object

L dmb .ui.KeyLock

All Implemented Interfaces:
Resource

ETSI

222 ETSI TS 102 635-1 V1.1.1 (2009-08)

public class KeyL ock
extends Object

implements Resource

Represents the right to exclusively receive events generated by the associated set of keys. To exclusively receive events
for a set of keys no matter whether an application has Ul or not, the application should acquire an instance of this class
that is created in association with the keys of interest. Then the key events will exclusively be delivered to the owning
application.

Constructor Summary Page
KeyLock (int [] keyCodes)
Creates aKeyLock instance to get the exclusive right to receive key events generated by the specified 219
keys.
Method Summary Page
int[] |getKeyCodes ()
219
Returns the key codes associated with this KeyLock object.
prgte;:ted keyPressed (int keyCode)
oolean 220
Called when one of the associated keysis pressed.
protected |keyReleased (int keyCode)
boolean |™ 220
Called when one of the associated keys is released.
protected keyRepeated (int keyCode)
boolean 220
Called when one of the associated keysis repeated.

Constructor Detail

KeyL ock

public KeyLock (int [] keyCodes)

Creates aKeyLock instance to get the exclusive right to receive key events generated by the specified keys.

Method Detail

getK eyCodes

public int[] getKeyCodes ()

Returns the key codes associated with this KeyLock object. The array returned is a copy of the array given to
the constructor of KeyLock.

ETSI

223 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns:

the list of key codes associated with this object

keyPressed

protected boolean keyPressed(int keyCode)

Called when one of the associated keys is pressed. Depending on the return value of this method, the event is
further dispatched to the Displayable. If true isreturned, it meansthat the key event is fully processed
within this method, so the event is not propagated further. But if false isreturned, it signifiesthat the event
should be processed further by a Ul component that has the key focus within the context of the application
receiving the key event. The default implementation of this method returns false. Thusin case an application
wants to process key eventsit exclusively reserved, keyLock need not be subclassed.

Parameters:
keyCode - the code of the pressed key
Returns:

true, if the key event should not be dispatched to a Ul component. false otherwise

keyReleased

protected boolean keyReleased (int keyCode)

Called when one of the associated keys s released. Depending on the return value of this method, the event is
further dispatched to the Displayable. If true isreturned, it means that the key event is fully processed
within this method, so the event is not propagated further. But if £alse isreturned, it signifiesthat the event
should be processed further by a Ul component that has the key focus within the context of the application
receiving the key event. The default implementation of this method returns false. Thusin case an application
wants to process key eventsit exclusively reserved, keyLock need not be subclassed.

Parameters:
keyCode - the code of the released key
Returns:

true, if the key event should not be dispatched to a Ul component. false otherwise

keyRepeated

protected boolean keyRepeated (int keyCode)

Called when one of the associated keys is repeated. Depending on the return value of this method, the event is
further dispatched to the Displayable. If true isreturned, it means that the key event is fully processed
within this method, so the event is not propagated further. But if £alse isreturned, it signifiesthat the event
should be processed further by a Ul component that has the key focus within the context of the application
receiving the key event. The default implementation of this method returns false. Thusin case an application
wants to process key eventsit exclusively reserved, KeyLock need not be subclassed.

ETSI

224 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:

keyCode - the code of the repeated key

Returns:

true, if the key event should not be dispatched to a Ul component. false otherwise

Class Textltem

dmb.ui

java.lang.Object

L dmb.ui.DMBItem

(I dmb.ui.TextItem

public class Textltem

extends DM BItem

A DMBItem subclass providing text editing capability. This class has almost the same set of methods as TextField,
and input constraints and mode setting are identical to it. Instead, this DMBItem does not have any decoration around it,

thus may be used in the context of custom user interfaces without any inconsistency with the look of the surrounding
user interfaces.

Constructor Summary Page
TextItem(String text, int maxSize, int constraints)
Creates anew TextItem With the given initial text, the maximum number of characters, and a 222
constraints.
Method Summary Page
void|delete (int offset, int length)
227
Deletes characters from this Text Item.
int |getCaretPosition ()
223
Returns the current position of the caret where the next character will be inserted.
void|getChars (char[] data)
Copies the current contents of this Text Item into the given character array starting at index 226
zero.
int |getConstraints ()
224
Returns the current input constraints of this TextItem.

ETSI

225 ETSI TS 102 635-1 V1.1.1 (2009-08)

int \getMaxSize ()
224

Returns the maximum size (number of characters) that can be stored in this Text Ttem.
String|getString ()

225
Returns the contents of this Text Item asastring value.

void|insert (char[] data, int offset, int length, int position)
226
Inserts a subrange of the given array of charactersinto the contents of this Text Ttem.

void|insert (String str, int position)
227
Inserts a string into the contents of this Text Item.

void|gsetChars (char[] data, int offset, int length)

225
Sets the contents of this Text I1tem from a character array, replacing the previous contents.

void |getConstraints (int constraints)

224
Sets the input constraints of this Text Item.

void|getInitialInputMode (String characterSubset)

Sets a hint to the implementation as to the input mode that should be used when the user 223

initiates editing of this TextItem.

void |setMaxSize (int maxSize)
223
Sets the maximum size (number of characters) that can be contained in this Text item.

void|setString (String text)
224
Sets the contents of this Text Item as astring value, replacing the previous contents.

int |gize ()
223
Returns the number of characters that are current stored in this Text Item.

M ethodsinherited from class dmb.ui.DM Bltem

getHeight, getWidth, getX, getY, hasFocus, setBounds, setFocus

Constructor Detail

Textltem
public TextItem(String text,

int maxSize,
int constraints)

Creates anew TextItem With the giveninitial text, the maximum number of characters, and a constraints.

Throws:

IllegalArgumentException

ETSI

226 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

getCaretPosition
public int getCaretPosition()
Returns the current position of the caret where the next character will be inserted.

Returns:

The current input position, where 0 means the beginning of the text

setlnitiallnputM ode

public void setInitialInputMode (String characterSubset)

Sets a hint to the implementation as to the input mode that should be used when the user initiates editing of this
TextItem. The characterSubset parameter names a subset of Unicode charactersthat is used by the
implementation to choose an initial input mode. If nul1 is passed, the implementation should choose a default
input modes. The concept of input modes is same asthat of TextField. Please refer to the description on the
class for further details on input modes.

Parameters:

characterSubset - astring naming a Unicode character subset, or nul1

size
public int size()
Returns the number of characters that are current stored in this Text Item.

Returns:

number of charactersin this Text Item

setM axSize

public void setMaxSize (int maxSize)

Sets the maximum size (number of characters) that can be contained in this Text i tem. If the current contents
of the Text Item are larger than maxsize, the contents are truncated to fit.

Parameters:
maxSize - the new maximum size
Throws:

IllegalArgumentException - thrown when any of the followingsistrue.

ETSI

227 ETSI TS 102 635-1 V1.1.1 (2009-08)

e whenmaxSize iSnon-positive

e when the contents after truncation would be illegal for the current input constraints

getM axSize
public int getMaxSize ()

Returns the maximum size (number of characters) that can be stored in this Text Ttem.

Returns:

the maximum size in characters

setConstraints

public void setConstraints(int constraints)

Setsthe input constraints of this Text Ttem. If the curent contents of this Text Item do not match the new
constraints, the contents are set to empty.

Parameters:
constraints - theinput constraints. See TextField for the details of input constraints
Throws:

IllegalArgumentException - thrown when the constraintsis not one of those specified in
TextField

getConstraints

public int getConstraints ()

Returns the current input constraints of thisTextItem.

Returns:
the current input constraints value

See Also:

setConstraints (int)

setString

public void setString(String text)

Sets the contents of this Text Item asastring value, replacing the previous contents.

ETSI

228 ETSI TS 102 635-1 V1.1.1 (2009-08)

Parameters:
text - the new value of this Text Ttem, Or null if thisText ITtem isto be made empty
Throws:

IllegalArgumentException - thrown in the following cases.

e whenthegiven text isillegal for the current input constraints(see setConstraints (int)

e when the given text would exceed the current maximum capacity

setChars

public void setChars (char[] data,
int offset,
int length)

Sets the contents of this Text Ttem from a character array, replacing the previous contents. Characters are
copied from the region of the given data array starting at the given index, of fset, and running for the given
length characters. If the data isnull, this Text Item iS set to be empty and the other parameters are
ignored.

The of fset and the 1ength parameters must specify avalid range of characters within the character array,
data. The of fset parameter must be within the range [0..(data.length)], inclusive. The 1ength parameter
must be a non-negative integer such that (offset + length) <= data.length.

Parameters:
data - the source of the character data
of fset - the beginning index of the regionto copy indata
length - the number of charactersto copy

Throws:

ArrayIndexOutOfBoundsException - thrown when of fset and 1ength do not specify avalid
range within the data array

IllegalArgumentException - thrown when either the given data array isillegal for the current
input constraints, or the specified text would exceed the current maximum capacity

getString
public String getString()
Returns the contents of this Text Item asastring value.

Returns:

the current contents as a string

ETSI

229 ETSI TS 102 635-1 V1.1.1 (2009-08)

getChars

public void getChars (char[] data)

Copiesthe current contents of this Text Item into the given character array starting at index zero. Array
elements beyond the characters copied are left unchanged.

Parameters:

data - the character array into which the contents will be copied
Returns:

the number of charactersto be copied
Throws:

ArrayIndexOutOfBoundsException - thrown when the length of the given array is smaller than
the number of charactersto copy

NullPointerException - thrown when the given data isnull

insert

public

void insert (char([] data,
int offset,
int length,
int position)

Inserts a subrange of the given array of charactersinto the contents of thisText Item. The given offset and
the 1ength parametersindicate the subrange of the data array to be used for insertion. Behaviour is otherwise
identical to that of insert (String, int).

The of fset and the 1ength parameters must specify avalid range of characters within the given character
array, data. The of fset parameter must be within the range [0..(data.length)], inclusive. The 1ength
parameter must be a non-negative integer such that (offset + length) <= data.length.

Parameters:
data - the source of the character data
offset - the beginning index of start of the region to copy
length - the number of charactersto copy
position - the position at which the given data will be inserted
Throws:

ArrayIndexOutOfBoundsException - thrown whenthe given of fset and the 1ength do not
specify avalid range within the given data array

IllegalArgumentException - thrown when the resulting contents would beillegal for the current
input constraints, or exceed the current maximum capacity

NullPointerException - thrown when the given data isnull

ETSI

insert

public

230 ETSI TS 102 635-1 V1.1.1 (2009-08)

void insert (String str,
int position)

Inserts a string into the contents of this Text Ttem. The string isinserted just before the character indicated by
the position parameter, where zero specifies the first character in the contents of this Text Ttem. If
position islessthan or equal to zero, the insertion occurs at the beginning of the contents, thus effecting a
prepend operation. If position isgreater than or equal to the current size of the contents, the insertion occurs
immediately after the end of the contents, thus effecting an append operation. For example, text . insert (s,
text.size ()) awaysappendsthe string s to the current contents.

The current size of the contentsis increased by the number of inserted characters. The resulting string must fit
within the current maximum capacity.

If the application needs to simulate typing of characters, it can determine the location of the current insertion
point("caret") using getCaretPosition (). For example, text . insert (s,
text.getCaretPosition ()) insertsthestring s at the current caret position.

Parameters:
str - the string to be inserted
position - the position at which the str will be inserted

Throws:

IllegalArgumentException - thrown when the resulting contents would beillegal for the current
input constraints, or exceed the current maximum capacity

NullPointerException - thrown when the given str isnull

delete

public void delete(int offset,

int length)

Deletes characters from this Text Item.

Thegiven offset and length parameters must specify avalid range of characters within the contents of this
TextItem. The of fset parameter must bein the range of [0..(size())], inclusive. And the 1ength parameter
must be a non-negative integer such that (offset + length) <= size.

Parameters:
of fset - the beginningof the region to delete
length - the number of charactersto delete

Throws:

IllegalArgumentException - thrown when the resulting contents would beillegal for the current
input constraints

StringIndexOutOfBoundsException - thrown when the given of £set and the 1ength do not
specify avalid range within the contents of this TextItem

ETSI

231 ETSI TS 102 635-1 V1.1.1 (2009-08)

Class Userltem

dmb.ui

java.lang.Object

(I dmb.ui.DMBItem

L dmb.ui.UserItem

abstract public class Userltem

extends DMBIltem
A pMBItem subclassthat may be subclassed and customized. In this class, methods for setting and getting various

properties affecting the behaviour and the look are provided. In addition to them, this class defines a set of methods to
get notified of Ul events delivered to userTtem.

Constructor Summary Page

protected |UserItem ()

229
Createsanew UserItem.

Method Summary Page

protected ladded (DMBCanvas canvas)
void

229
Called when thisUserItem isadded to aDMBCanvas.

protected |focusGained ()
void

231
Cadled when thisuserItem gained the key focus.

protected |focusLost ()
void

232
Cadled when the key focusislost.

protected |keyPressed (int keyCode)
void|—™/

Called when akey is pressed while thisuseritem ownsthe key focus (that is, hasFocus () 230

returns true).

protected keyReleased (int keyCode)

void

Called when akey is released while thisuserTtem owns the key focus (that is, hasFocus () 230

returns true).

protected keyRepeated (int keyCode)

void

Called when a key is repeated while thisuser1tem ownsthe key focus (that is, hasFocus () 230

returns true).

protected |paint (Graphics g)

abstract

void . . . i i 229
Paints the contents of thisuserItem using the given Graphics object.

ETSI

232 ETSI TS 102 635-1 V1.1.1 (2009-08)

protected |pointerDragged (int x, int y)
void 231
Called when the pointer isfirst pressed within thisuserItem and dragged.

protected |pointerPressed (int x, int y)
void

231

Cadled when the pointer is pressed within thisuseritem.

protected pointerReleased (int x, int y)
void 231
Called when the pointer is pressed within thisuserTtem and released.

protected |removed (DMBCanvas canvas)
void

230

Called when thisuserItem isremoved from the parent DMBCanvas.

M ethods inherited from class dmb.ui.DM Bltem

getHeight, getWidth, getX, getY, hasFocus, setBounds, setFocus

Constructor Detail

Userltem

protected UserItem()

Createsanew UserItem.

Method Detail

paint
protected abstract void paint (Graphics g)

Paints the contents of thisuserItem using the given Graphics object. The Graphics object usesthe local
coordinate system of thisuserItem.

Parameters:

g - aGraphics to paint the contents with

added

protected void added (DMBCanvas canvas)

Called when thisuserItem is added to abDMBCanvas.

As with methods described in Event Handling section of the package description of
javax.microedition. lcdui, this method isnot called at the same time as those methods.

Parameters:

canvas - DMBCanvas WherethisuserItem isadded

ETSI

233 ETSI TS 102 635-1 V1.1.1 (2009-08)

removed

protected void removed (DMBCanvas canvas)

Called when thisuserItem isremoved from the parent DMBCanvas.

As with methods described in Event Handling section of the package description of
javax.microedition. ledui, this method is not called at the same time as those methods.

Parameters:

canvas - DMBCanvas from which thisuserItemisremoved

keyPressed
protected void keyPressed (int keyCode)
Cadlled when akey is pressed while thisuseritem ownsthe key focus (that is, hasFocus () returns true).

Parameters:

keyCode - the key code

keyReleased
protected void keyReleased(int keyCode)
Called when akey is released while thisuserTtem ownsthe key focus (that is, hasFocus () returns true).

Parameters:

keyCode - the key code

keyRepeated
protected void keyRepeated (int keyCode)
Cadlled when akey isrepeated while thisuser1tem ownsthe key focus (that is, hasFocus () returns true).

Parameters:

keyCode - the key code

ETSI

234 ETSI TS 102 635-1 V1.1.1 (2009-08)

pointer Dragged

protected void pointerDragged (int x,
int y)

Called when the pointer isfirst pressed within thisuserItem and dragged.
Parameters:
x - the x coordinate of the pointer when it is dragged

y - they coordinate of the pointer when it is dragged

pointer Pressed

protected void pointerPressed(int x,
int y)

Cadled when the pointer is pressed within thisuseritem.
Parameters:
x - the x coordinate of the pointer when it is pressed

y - the'y coordinate of the pointer when it is pressed

pointer Released

protected void pointerReleased (int x,
int y)

Called when the pointer is pressed within thisuser1tem and released.
Parameters:
x - the x coordinate of the pointer when it is released

y - they coordinate of the pointer when it is released

focusGained

protected void focusGained()

Called when thisuserItem gained the key focus. To gain the key focus, thisuserItem must be added to a
DMBCanvas, Set to get the key focus within the bMBCanvas, and the bMBcanvas must gain the key focus.

As with methods described in Event Handling section of the package description of
javax.microedition. lcdui, this method isnot called at the same time as those methods.

ETSI

235 ETSI TS 102 635-1 V1.1.1 (2009-08)

focusL ost

protected void focusLost ()

Cadlled when the key focusislost. More specifically, another bMBItem may gain the key focus, or DMBCanvas
may lost the key focus.

As with methods described in Event Handling section of the package description of
javax.microedition. lcdui, this method isnot called at the same time as those methods.

ETSI

236 ETSI TS 102 635-1 V1.1.1 (2009-08)

Package dmb.util

Defines common interfaces and classes used in other packages.

See:

Description
Interface Summary Page
AsvncRequestor Aninterface to be m_1p| emented by an object that needs to get notified of progresses of an 233
ASynCRequestor asynchronous operation.
AsyncResult Represents an asynchronous operation that will be completed in the future. 234
AttributedObject |Represents an object having an associated set of attributes. 238
Exception Summary Page
InvalidAttributeException An exlceptlon thrpwn when a non-existing attribute is specified for an a7

AttributedObject.

Package dmb.util Description

Defines common interfaces and classes used in other packages.

| nter face AsyncRequestor

dmb.util

public interface AsyncRequestor

An interface to be implemented by an object that needs to get notified of progresses of an asynchronous operation. A
method supporting asynchronous operation usually takes an instance of this interface as a parameter.

See Also:

AsyncResult

Method Summary Page

void|resultUpdated (AsyncResult result)

234

Called when an associated asynchronous operation has progressed.

ETSI

237 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Detail

resultUpdated

public void resultUpdated (AsyncResult result)

Called when an associated asynchronous operation has progressed. If the operation reports progresses besides
its completion, then AsyncResult .getProgress () may be consulted. In that case, for an AsyncResult,
this method may be called more than once. So AsyncResult.isDone () must be consulted to know if the
operation has been completed.

Parameters:

result - the AsyncResult associated with the operation that has been progressed

| nter face AsyncResult

dmb.util

public interface AsyncResult

Represents an asynchronous operation that will be completed in the future. APIs supporting asynchronous operation
return an instance of thisinterface. With this interface, the operation may be tracked and controlled.

AsyncResult and AsyncRequestor are elements of an API pattern supporting monitoring and control of
asynchronous operations. A method initiating an asynchronous operation should return an instance of AsyncResult.
And if it isto provide notification of progresses of the operation, AsyncrRequestor should also be taken as a parameter
to the method. The following code snippets are examples of using APIs supporting the pattern consisting of
AsyncResult and AsyncRequestor.

public class Loader {

AsyncResult loadAsynchronously (String url, AsyncRequestor requestor) ;

Loader 1 = new Loader() ;

// Getting notified when the operation is completed
1.loadAsynchronously ("http://image.location/icon.png",

new AsyncRequestor () {
public void resultUpdated (AsyncResult result) ({
if (!result.isDone()) {

System.out.println("Progress (%): "

+ result.getProgress()) ;
return;
}

try {
ui.setIcon((Image) result.get());

ui.repaint () ;
} catch (Exception e) {
e.printStackTrace () ;
1

}i

// After performing some other tasks, and then waiting for the result
// of an asynchronous operation
AsyncResult r = 1l.loadAsynchronously ("http://image.location/icon.png",

ETSI

238 ETSI TS 102 635-1 V1.1.1 (2009-08)

null) ;
. Do something else ...

try {
ui.setIcon((Image) r.get());
ui.repaint () ;

} catch (Exception e) {
e.printStackTrace () ;

}

// Polling the result in-between performing other tasks
AsyncResult r = 1l.loadAsynchronously ("http://image.location/icon.png",
null) ;
try {
while (!r.isDone()) {
Thread.sleep(1000) ;
1

ui.setIcon((Image) r.get());
ui.repaint () ;

} catch (Exception e) {
e.printStackTrace () ;

}

Field Summary Page

int IPROGRESS UNKNOWN

Returned from get Progress () when thereis no information on the current progress, or the 236

operation is canceled or failed.

Method Summary Page

boolean |cancel ()

238
Cancels the operation.

void|complete ()
237
Waits for the completion of the operation.

void|complete (int timeout)
237
Waits for the operation completes or the given timeout is expired.

Object &t ()
236
Returns the result of the operation.

Object |get (int timeout)
237
Returns the result of this operation if it is completed before the given timeout.

int \getProgress ()

Returns the current progress of the operation in percents. 0 means there is no progress at all, and 238

100 meansit is completed.

boolean |igCanceled ()

236
Reports whether the operation has been canceled or not.

boolean |i gsDone ()

236
Reports whether the operation is done.

ETSI

239 ETSI TS 102 635-1 V1.1.1 (2009-08)

Field Detail

PROGRESS UNKNOWN

public static final int PROGRESS_UNKNOWN = -1

Returned from get Progress () when thereis no information on the current progress, or the operation is
canceled or failed.

Method Detail

isDone

public boolean isDone ()

Reports whether the operation is done.

Returns:

if the operation is done, returns true. Otherwise, false. Note that this method returns true,
whether the operation has been completed normally, canceled by cancel (), or failed for some

reason

isCanceled
public boolean isCanceled ()
Reports whether the operation has been canceled or not.

Returns:

if canceled, true. Otherwise, false

get
public Object get()

throws InterruptedException,
Exception

Returns the result of the operation. If it is not complete yet, this method blocks until it is completed.

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt (), or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

ETSI

240 ETSI TS 102 635-1 V1.1.1 (2009-08)

complete

public void complete ()
throws InterruptedException,
Exception

Waits for the completion of the operation. Except that this method does not return aresult, thisisidentical to
get ().

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt (), Or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

get
public Object get (int timeout)

throws InterruptedException,
Exception

Returns the result of this operation if it is completed before the given timeout. This method blocks until the
operation completes, or the given timeout is expired. When this method returns because of the timeout, returns
null. But null may be returned when the result valueitself isnull. Therefore isDone () must be consulted
to check whether the operation actually completed.

Parameters:

timeout - the timeout in milliseconds. 0 means there is no timeout

Returns:

the result of the operation. If this method returns because of the timeout, returns nu11

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt (), Or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

complete
public void complete (int timeout)

throws InterruptedException,
Exception

Waits for the operation completes or the given timeout is expired. Except that this method does not return the
result, thisisidentical to get (int).

Parameters:

timeout - the timeout in milliseconds. 0 means there is no timeout

ETSI

241 ETSITS 102 635-1 V1.1.1 (2009-08)

Throws:

InterruptedException - thrown when the calling thread is interrupted by
Thread.interrupt (), Or the operation is canceled

Exception - thrown when the operation caused any exception other than InterruptedException
to be thrown

cancel

public boolean cancel ()

Cancels the opeation.
Returns:

if the operation is successfully canceled, returns true. Otherwise false. Usualy an asynchronous
operation can not be canceled because it is already completed, or APl implementation does not
support cancelation

getProgress

public int getProgress/()

Returns the current progress of the operation in percents. 0 means there is no progress at all, and 100 meansiit
is completed. But 100 does not ensure that i sbone () returns true. S0 to check if the operation is completed,
isDone () must be consulted instead of this method.

Returns:

an integer representing the current progress. It isfrom 0 to 100, inclusive. For some reasons, the
current progress is unknown, returns PROGRESS UNKNOWN

| nter face AttributedObj ect

dmb.util

All Known Subinterfaces:
BroadcastFileConnection, ServiceComponent, SIObject

All Known Implementing Classes:
SlDatabase

public interface AttributedObj ect

Represents an object having an associated set of attributes.

ETSI

242 ETSI TS 102 635-1 V1.1.1 (2009-08)

Method Summary Page
Stringl] |getAttributes ()
239
Returns alist of the attributes associated with this object.
boolean |getBoolean (String a)
241
Returns aboolean value that isthe value of the given attribute.
boolean[] |getBooleanList (String a)
242
Returns an array of booleans that isthe value of the given attribute.
bytel] |getBytes (String a)
246
Returns a byte array that is the value of the given attribute.
Date \getDate (String a)
245
Returns apate value that is the value of the given attribute.
Date[] \getDateList (String a)
246
Returns an array of Datesthat isthe value of the given attribute.
int |getInt (String a)
242
Returns an int vauethat isthe value of the given attribute.
int[] |getIntList (String a)
243
Returns an array of intsthat isthe value of the given attribute.
long getLong (String a)
243
Returns a 1ong value that is the value of the given attribute.
longl] \getLongList (String a)
244
Returns an array of 1ongsthat isthe value of the given attribute.
Object |getObject (String a)
240
Returns an object that isthe value of the given attribute.
Object[] [getObjectList (String a)
241
Returns the value of the given attribute that is an array of objects.
String|getString (String a)
244
Returns a st ring value that is the value of the given attribute.
Stringl] |getStringList (String a)
245
Returns an array of stringsthat isthe value of the given attribute.
boolean |igValid (String a)
240
Checksif there is an attribute of the given name in this object.
Method Detail

getAttributes

public String[] getAttributes ()

ETSI

243 ETSI TS 102 635-1 V1.1.1 (2009-08)

Returns alist of the attributes associated with this object.

Returns:

an array containing names of all the attributes associated with this object

isvalid

public boolean isValid(String a)
throws NullPointerException

Checks if thereis an attribute of the given name in this object.
Parameters:
a - name of the attribute to check
Returns:
true if thereisan attribute of the given name. Otherwise, false
Throws:
NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown whenitisimpossible to read value of the given attribute
because of version change or removal of the underlying data

getObject

public Object getObject (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an object that isthe value of the given attribute.
Parameters:

a - hame of the attribute
Returns:

the object value

Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown whenitisimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

244 ETSITS 102 635-1 V1.1.1 (2009-08)

getObjectList

public Object[] getObjectList (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns the value of the given attribute that is an array of objects.
Parameters:

a - hame of the attribute
Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when thereisno such attribute or itstypeis not an array of
object

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

getBoolean

public boolean getBoolean (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns aboolean valuethat isthe value of the given attribute.
Parameters:

a - hame of the attribute
Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
Nnot boolean

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

245 ETSITS 102 635-1 V1.1.1 (2009-08)

getBooleanL ist

public boolean[] getBooleanList (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an array of booleansthat isthe value of the given attribute.
Parameters:

a - name of the attribute
Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not an array of booleans

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

getlnt

public int getInt (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an int vauethat isthe value of the given attribute.
Parameters:

a - name of the attribute
Returns:

the value of the attribute

Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not int

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown whenitisimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

246 ETSI TS 102 635-1 V1.1.1 (2009-08)

getintList

public int[] getIntList(String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an array of intsthat isthe value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not an array of ints

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

getLong

public long getLong(String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns a 1ong value that is the value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not long

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown whenitisimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

247 ETSITS 102 635-1 V1.1.1 (2009-08)

getLongList

public long[] getLongList (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an array of 1ongsthat isthe value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not an array of 1ongs

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

getString

public String getString(String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns a string value that is the value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not string

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown whenitisimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

248 ETSI TS 102 635-1 V1.1.1 (2009-08)

getStringList

public String[] getStringList (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an array of stringsthat isthe value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not an array of strings

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

getDate

public Date getDate (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns apate value that is the value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not bate

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown whenitisimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

249 ETSI TS 102 635-1 V1.1.1 (2009-08)

getDateL ist

public Date[] getDateList (String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns an array of patesthat isthe value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not an array of pates

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

getBytes

public byte[] getBytes(String a)
throws InvalidAttributeException,
NullPointerException,
IllegalStateException

Returns a byte array that is the value of the given attribute.
Parameters:
a - name of the attribute
Returns:
the value of the attribute
Throws:

InvalidAttributeException - thrown when thereis no such attribute in this object, or itstypeis
not an array of bytes

NullPointerException - thrown when the given a parameter isnull

IllegalStateException - thrown when it isimpossible to read value of the given attribute
because of version change or removal of the underlying data

ETSI

250 ETSI TS 102 635-1 V1.1.1 (2009-08)

Class I nvalidAttributeException

dmb.util

java.lang.Object
L java.lang.Throwable
L java.lang.Exception
L java.lang.RuntimeException

L dmb.util.InvalidAttributeException

All Implemented Interfaces:
Serializable

public class I nvalidAttributeException

extends RuntimeException

An exception thrown when a non-existing attribute is specified for an Attributedobject.

Constructor Summary Page
InvalidAttributeException ()
247
Creates an instance of this exception without specifying the reason.
InvalidAttributeException (String reason)
247

Creates an instance of this exception with a string describing the reason of the exception.

Constructor Detail

InvalidAttributeException

public InvalidAttributeException ()

Creates an instance of this exception without specifying the reason.

InvalidAttributeException

public InvalidAttributeException (String reason)

Creates an instance of this exception with a string describing the reason of the exception.

ETSI

251

ETSI TS 102 635-1 V1.1.1 (2009-08)

History

Document history

V111

August 2009

Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions, abbreviations and conventions
	3.1 Definitions
	3.2 Abbreviations
	3.3 Conventions
	3.3.1 Syntax of binary messages
	3.3.2 BNF

	4 Introduction
	5 System architecture
	5.1 Introduction
	5.2 Receiver model
	5.2.1 System resources
	5.2.2 System software

	5.3 Application

	6 Basic data formats
	6.1 Image file formats
	6.1.1 JPEG
	6.1.2 PNG

	6.2 Font file formats
	6.3 Video file formats
	6.4 Audio file formats

	7 Transport protocol
	7.1 Broadcast channel protocol
	7.1.1 File transport protocol
	7.1.2 Packet streaming protocol
	7.1.3 Trigger protocol

	7.2 Communication channel protocol
	7.2.1 Transmission Control Protocol (TCP)
	7.2.2 User Datagram Protocol (UDP)
	7.2.3 Hyper Text Transfer Protocol (HTTP)
	7.2.4 Domain Name Service (DNS)

	8 Locator model
	8.1 Introduction
	8.2 Format
	8.3 Use in APIs

	9 Security model
	9.1 Purpose
	9.1.1 Guarantee of application integrity
	9.1.2 Verification of application provider
	9.1.3 Control of application permissions
	9.1.4 Trace of tasks performed by applications
	9.1.5 Authority delegation among applications

	9.2 Application authentication
	9.2.1 Application signing
	9.2.2 Application authentication procedure
	9.2.3 X.509 profile
	9.2.3.1 signatureAlgorithm
	9.2.3.2 tbsCertificate

	9.2.4 Root certificates and CRL management

	9.3 Application authorization
	9.3.1 Introduction
	9.3.2 Notation for permissions
	9.3.3 Permission request
	9.3.4 Receiver security policy
	9.3.5 Authority delegation

	9.4 Formats of the relevant messages
	9.4.1 Format of certificate message
	9.4.2 Signature format
	9.4.3 Credential format

	10 Graphic system model
	10.1 Introduction
	10.2 Video plane
	10.3 Graphics plane
	10.4 Composing a screen

	11 Application model
	11.1 Introduction
	11.2 Application storage and removal
	11.2.1 Storage
	11.2.2 Receiver policy

	11.3 Application storage, update, and removal
	11.3.1 Application download
	11.3.2 Application update
	11.3.3 Application removal
	11.4.4 Lifecycle
	11.4.4.1 Loaded state
	11.4.4.2 Paused state
	11.4.4.3 Active state
	11.4.4.4 Destroyed state

	11.5 MIDlet model

	12 Application signalling and transport
	12.1 Application module
	12.1.1 Definition and purpose of application module
	12.1.2 Structure of application module
	12.1.2.1 ZIP format
	12.1.2.2 Application-defined format

	12.1.3 Application module ID and version
	12.1.4 Accessing contents of application module
	12.1.4.1 Introduction
	12.1.4.2 URL to an application module

	12.1.5 Compression of application module
	12.1.6 Transport of application module
	12.1.7 Signing application module

	12.2 Application ID
	12.3 Application signalling
	12.3.1 Signalling structure
	12.3.1.1 Application information message
	12.3.1.2 Module information message
	12.3.1.3 Service binding message
	12.3.1.4 Application control message
	12.3.1.5 Certificate message

	12.3.2 Message transport
	12.3.3 Message monitoring

	12.4 Application state control
	12.4.1 Application download
	12.4.2 Application update
	12.4.3 Application removal
	12.4.4 Application execution
	12.4.5 Application termination

	12.5 Application module and message formats
	12.5.1 Relationship with platform standards
	12.5.2 Message version
	12.5.3 Common data format
	12.5.3.1 UTF-8 string
	12.5.3.2 Descriptor
	12.5.3.3 Descriptor loop
	12.5.3.4 Digital signature
	12.5.3.5 Credentials

	12.5.4 Application module format
	12.5.5 Format of application information message
	12.5.6 Application related descriptors
	12.5.6.1 Module download descriptor
	12.5.6.2 Application description descriptor
	12.5.6.3 Application icon descriptor
	12.5.6.4 Autodownload descriptor
	12.5.6.5 Signal bound descriptor
	12.5.6.6 MIDlet descriptor
	12.5.6.7 Profile extension descriptor
	12.5.6.8 Application expiration descriptor

	12.5.7 Format of module information message
	12.5.8 Format of service binding message
	12.5.9 Format of application control message
	12.5.10 Format of certificate message

	13 Java environment
	13.1 Introduction
	13.2 Requirements on Java environment
	13.3 DMB extensions
	13.3.1 Standard optional packages
	13.3.2 Simultaneous execution of multiple applications
	13.3.3 Graphics extension

	13.4 Simultaneous execution of multiple applications
	13.4.1 Requirements
	13.4.2 JVM implementation

	13.5 Standard properties
	13.5.1 MIDlet properties
	13.5.2 System properties

	13.6 Basic APIs
	13.6.1 AsyncResult/AsyncRequestor pattern
	13.6.2 AttributedObject pattern

	13.7 Graphic user interface API
	13.7.1 Screen management
	13.7.2 Processing alpha values
	13.7.3 User interface elements
	13.7.4 Key mapping
	13.7.5 Reserving keys for exclusive use
	13.7.6 Loading fonts dynamically

	13.8 Media control API
	13.8.1 A MMAPI 1.1 profile
	13.8.2 Player creation

	13.9 Broadcast data access API
	13.9.1 File access API
	13.9.1.1 Creation of file objects
	13.9.1.2 Directory
	13.9.1.3 Metadata
	13.9.1.4 File access
	13.9.1.5 File update

	13.9.2 Packet access API
	13.9.3 Trigger API

	13.10 Service information API
	13.10.1 Introduction
	13.10.2 Service information object
	13.10.2.1 SI database

	13.10.3 SI query and view

	13.11 Tuning API
	13.11.1 Tuner
	13.11.2 TunerLock

	13.12 Service selection API
	13.13 CAS API
	13.13.1 Communication with CA module
	13.13.2 Purchasable entities

	13.14 Application control API
	13.15 Inter-application communication API
	13.15.1 Messages
	13.15.2 Port
	13.15.3 Sending messages
	13.15.4 Receiving messages

	13.16 Resource manager API
	13.16.1 Introduction
	13.16.2 Resource objects
	13.16.3 Resource group and choice
	13.16.4 Resource group
	13.16.5 Resource choice
	13.16.6 Nesting resource groups and choices
	13.16.7 Rule for determining resource ownership

	13.17 Storage API
	13.17.1 Implementation requirements
	13.17.2 Per-application storage
	13.17.3 Permissions

	13.18 Communication channel API

	Annex A (informative): Automated test environment for receiver certification
	Annex B (informative): Delivery and processing of key events among embedded applications and MATE
	B.1 Introduction
	B.2 Key processing of embedded applications
	B.3 Key focus management of MATE applications

	Annex C (informative): Accessing location information from Java applications
	Annex D (normative): API specification
	History

