ETSI TS 102 472 vi.1.1 (2006-06)

Technical Specification

Digital Video Broadcasting (DVB);
IP Datacast over DVB-H:
Content Delivery Protocols

European Broadcasting Unior) (Union Européenne de Radio-Télévision
EBU-UER

Digital Video
Broadcasting

D

2 ETSI TS 102 472 V1.1.1 (2006-06)

Reference
DTS/JTC-DVB-188

Keywords
broadcasting, digital, DVB-H, IP, multimedia

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
© European Broadcasting Union 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 472 V1.1.1 (2006-06)

Contents

Intellectual Property RIGNES.........oo et 7
0 Yo (o SRS 7
gLl [N o1 o] o [OOSR 7
1 o010 PR 8
2 L= £ 101 8
3 Definitions and @DDreVIELIONS...........oieieieieieeses ettt n e 9
31 D= T 0 T] (0] TP P PR PRTUPTPRUSUSII 9
3.2 ADDIEVIBLIONS ...ttt et e bt b e ae et e e e eE e b e e bt e he e b e et et e bt eh e e Rt e e e b e eb e bt eneene e e re e 10
4 DElIVENY PILELFOIN ...t b e e b e e et e e e st b b n e e 11
41 0000 = o PSRSS 12
5 Delivery protocol for real-time Streaming SEIVICES.couerueriereriee et 12
51 I ST 12
5.2 Streaming session desCription With SDP........c.ooi it 12
521 SDP Parameters for IPDC SIreaming SESSIONS.......ccveiierieerieeieseeseeseesseesessessseesseessessssssssssesssesssesssssnsssnes 13
5211 S 010 < T o o =TSSP 13
5212 Destination | P address and port number for Channels. ... 13
5213 M EAIA TESCIIPLION.eeeeete ettt b et b e e s bt et b e se et ebesb e e ebesbe e ebesbenneneas 14
5214 SESSION THMING PAIAIMELENS. ...ttt ettt re ettt b e bbb bbb bbb st b e s s e bt b et b e neenes 14
5215 Service-1anguagE(S) PEI MEIAL.c.ciuirieirierieeriere ettt b e nn s 14
5216 Bandwidth SPECITICELION.........c.coiieiiiierieeter ettt bbb b e ebesr e ene s 14
522 SDP example for StrEAMING SESSION.c.eiuiieierieieteriee ettt ettt se et se et se et e e et esee e ebesbe e ebesbennenens 14
5.3 Hypothetical receiver bUffering MOUEL ..ot 15
531 Overview of the proposed buffering model (infOrMative)coeeeeeeiieiieiie e 15
5.3.2 MultiProtocol Decapsulation buffer (NOMMELIVE)coceiieeiee e 15
533 RTP Decapsulation bUffer (NOMMELIVE)ccveiiieieeie e e ettt ae e reeteenesneeenes 16
534 Signalling of initial buffering delay (NOrMELIVE)cceeiieieee e 16
535 Conformance requirements (NOMMELIVE)ccveeierieeieeieeseeseeteeeee e see e e saeesaeeaessaessaesseesteeteeneesneesnes 16
6 Delivery protocol fOr file deliVErY SEIVICES. ..o 17
6.1 L I SRR 17
6.1.1 FLUTE asafile delivery MeChanism ...t e 17
6.1.2 =011 0] o) =S 17
6.1.3 Use of Multiple FLUTE ChaNNEIScooeieee ettt ettt e 17
6.1.4 Symbol encoding @lgOMtRM........cc.eoieeee et re e s 18
6.1.5 = oo (T o = e o 1 1 o o O 18
6.1.6 (@000 o] oo 11 S 18
6.1.7 Content encoding Of fileSfOr tranNSPOITcceeiieii et nre e 18
6.1.8 ALC packet SiZe CONSIAEIALTIONS.cueueeeireeiitirteieies ettt b et b et b bbb s et b st be e e 18
6.1.9 Signalling the end of file delivery and end of file delivery SESSION ... 19
6.1.10 Files that span over several separate file delivery SESSIONS........coov e 19
6.1.11 Grouping mechanisms for FLUTE fil@ deliVErY ..o 19
6.1.12 FITE VEISIONING ..ttt b e b et b et b e e h e b e e h e b e se e st e b e st et eb e b et eb e b 20
6.1.13 File delivery session description With SDP............coeiiiiiiie e 20
6.1.13.1 SDP parameters for IPDC file deliVery SESSIONc.occvieieiieiice e 20
6.1.13.1.1 s 010 (< T o o =SS 21
6.1.13.1.2 NUMDBEr OF CHANNELS. ... e 21
6.1.13.1.3 Destination | P address and port number for ChannelScoce e 21
6.1.13.1.4 Transport Session Identifier (TSI) Of the SESSIONocveiierieeee e 22
6.1.13.1.5 SESSION tIMING PAIAIMELETS.cueitieeteit ettt bbbt b et sbe e 22
6.1.13.1.6 FEC capabilities and related Parameters..........ooeeiereererieeriereeesieee s 22
6.1.13.1.7 Service-1anguage(S) PEI MEIAL.......cuivirieeriie et 23
6.1.13.2 QLI 1CS. S 0= RS 23
6.1.14 Signalling of parameterS With FLUTE ..ottt s s 23
6.1.14.1 Signalling of parameters with Basic ALC/FLUTE headers........ooooviiieininieirieriee s 23

ETSI

4 ETSI TS 102 472 V1.1.1 (2006-06)

6.1.14.2 Signalling of Parameters with FLUTE EXtension Headers..........ccccvvvvieeveeveesc e 23
6.1.14.3 Signalling of parameters With FDT INSLANCESeciuieiieiecieeee ettt 24
6.1.14.4 Signalling of parameters OUL-DANGcociiii i 24
6.1.15 D I o 0 1 7= OSSPSR 25
6.2 Download & CarouSEl MECNBNISIMSecviiirieeiriieee e r s 26
6.2.1 TYPES Of FIll@ AElIVENY SESSIONS......eciiieieiteesiiese e se s ee sttt e s et e st e et e e tesaesaeesneesseenseenseensessenssaessens 26
6.2.1.1 StAtiC fil@ AElIVENY SESSION......iiiiitiiceet bbb bbbt b b e 26
6.21.1.1 =, 1 0l o o P 26
6.2.1.1.2 Implementation USING FLUTE ..ottt e sb e 26
6.2.1.2 Fixed CONENt AElIVEIY SESSIONoeiiiiiiietiiteriet sttt ettt b et e e b s b e b sae e b e sbennenens 27
6.2.1.2.1 =, 1 0l o o P 27
6.2.1.2.2 Implementation USING FLUTEcoi sttt 27
6.2.1.3 DynamicC fil@ dElIVENY SESSIONcueeiieeie ettt e ee e e saeeentesnaesnaesreesenas 27
6.2.1.3.1 [1T Lo TSRO 27
6.2.1.3.2 Implementation USING FLUTEooi ettt e 27
6.2.1.4 Static file elIVENY CBIOUSEcc.eeieeece ettt sae e s ae e eeenaeenaesnaesreeneens 27
6.2.1.4.1 [1T Lo TSRO 27
6.2.1.4.2 Implementation USING FLUTE ..ottt e sb e 28
6.2.1.5 Dynamic file deliVery CaroUSEL ..o 28
6.2.15.1 =, 1 0l o o P 28
6.2.1.5.2 Implementation USING FLUTE ..ottt e sb e 28
6.2.2 SESSION COMPIELENESS. ecteeeieete ettt sttt sttt b ettt b et eb e s b et b e s b et eb e se e e e b e sa et eb e seeseeb e s b e e ebesbe e ebesbennenen 29
6.22.1 Session completeness for fiXxed CONtENE SESSIONS.........c..ciiireiririeireree s 29
6.2.2.2 Session completeness for static file delivery sessions and static file delivery carousels....................... 29
6.2.2.3 session completeness for dynamic file delivery sessions and dynamic file delivery carousels............. 30
7 ASSOCIAtEd AElIVEIY PrOCEUOUIES.ccueectieieeie ettt ettt s b s et e e ste s be e e e sreeaeesbesreensesresnnensenrens 31
7.1 g1 0o 1 1 o o PSS 31
7.2 Signalling of associated deliVEry PrOCEOUIEScccoiiiiiree ettt 31
7.3 FilE repair MECHANISMS.t e bbbt b e bbbt b ens 32
731 GENETEl PIOCEAUIE. ..ottt ettt ettt ettt b e bt b et h e bt b e b e st eb e s b e ne e bt e b e neeb e e b e se e e ebesb e e ebesbeneebenbennenea 32
732 Triggering associated delivery procedures for file delivery SESSIONS.........cocvovvirieeneninienensese e 32
733 I dentification Of FEPAIT NEEASccoii ettt b et b et sb e 32
734 Distribution of repair reqQUESES OVEN TIMEccuieiiciecie et e et te e teeteeneesnneenes 33
7341 Reset Of the DACK-OFT TIMENoirciieee e ene 33
735 Distribution of repair reqUESLS OVEr FEPAIT SEIVEIS.ccueieerieerieesiesieeseeseesteesteeseeaessaesteesseesseesessssnsesees 33
7.3.6 File repair FEOUESE IMESSA0E. ... e v eeiteeeeetieeesteesteesteesteestesseesteesteesteesesseesseesaeesseenseanseaseassaesteeseeseensesnsesnsesnes 33
7.36.1 File repair request MeSSAgE fOIMEL.........cccveui ittt esae e nte e esaessaesnaesreeneeas 34
737 REPAIT SEIVEN DENAVIOUN ... e st et ra e s s e e te e be e teenteeneesneennes 35
7371 File repair FESPONSE MESSAOR. ... e veueeretereererteeetesteeetesaeeebese et ebesseseebesae e ebesbeneebesee e ebeseeneebesaeneebesbeneenens 35
7372 File repair reSponNSe MESSAGES COUEScctiuiirrirteeetertereete st et st e etesbeseebesbeseesesbeseebesbeseesesaeeebesbeneenens 36
7.3.7.3 Repair server response message format for HTTP carriage of repair data...........cccoeeveeinenenneniciennens 36
7.3.8 File repair response for broadcast/multicast Of repair data...........cccooereererereieneneenee e 37
7.39 Threshold-dependent rePaAIT SEFALEJYcoveerrirreeriieert ettt bbbttt b e et be e 38
7.3.10 Server Not ReSpONAING EITOr CaSe........ociiiie ittt st et aeenaesre e be e teenneneeenes 38
74 ReCeption rePOrting PrOCEUAUNEcueiie e ieeseesteeteeee st e st e et e e e tessaesseesaeesreesseassesneesseesseesseesseesseeseensennensnns 38
74.1 Identifying complete file reception from file deliVErycooee e 39
7.4.2 Identifying complete delivery SESSION rECEPLION.cviie et 39
74.3 Determining whether areception report iSTeQUITEdeoieeiieieccee e 39
744 REQUESE tIME SEIECLION ...t e s e et e e e e ae e e re et eeste e be e teeseeneeeneennes 40
745 ReCERtioN repOrt SEIVEr SEIECTION ..ottt bbbttt sb e 40
7.4.6 RECEDLION FEPOIT IMESSAGE ...ttt ettt b et b e bbbt b e b et bt b et bt b e se et ebesb et ebe s es 40
14.7 RECEDLiON rEPOIt FESPONSE IMESSAGEccvetereetertereete st sttt st sttt st eae st se it sbese e bt b e se e bt ebe st bt s b e se e st sbese et ebesneneees 41
7.5 XML-schemafor associated deliVery PrOCEAUIEScieirerieieee ettt bbb 41
751 Generic associated delivery procedure deSCription............coceiereeierieeriereee st sr e seeeens 41
752 Example associatedProcedureDesCription INSIANCEcuiieririeire et 43
753 XML Syntax for areception rePOrt FEOUESLccvereeieree e seesteeseesseeseesseesteeteeseessaesseesseesseesseesseensenns 43
754 Example XML for the Reception REPOIt REGQUESEcc.veiiiieiie ettt 45
8 F N oo [T o T = g S 45
8.1 FEC SCheme defiNitioNooi ittt sttt eese e be e sbe e e eneeneens 45
811 (€71 PR S 45
812 = O 7= Y o= o I | OSSOSO P SR PR SR PS 46

ETSI

5 ETSI TS 102 472 V1.1.1 (2006-06)

8.1.3 FEC Object Transmission INFOrMELiON............cuviiiiiiseeeee ettt e e e ee e s 46
9 W o) o S 46
9.1 Subtitling using 3GPP Timed TeXE FOIMELcccveiiiiieieeiesie e ee e seesste s e e ae et e esaeenaesnaesreenneas 46
911 UNICOOE SUPPOM ..ttt sttt et b e et b e et b e s e et b s e et e bt s b et e bt e b e s et e b e e et ebenb et et e s e s ee 47
912 SUPPOTE FOF TIBNSPAIENCYveveueetereeueeteseeeeteseee ettt sttt see e ebesb e e eb e s b e e eb e s b e neebesbeseebeebesbe e ebesbe e ebesbennarens 47
9.1.3 TEXE POSITION ANA SCAITNG ...ttt b bbbt b et b et b et b e e 47
9.14 OPLIONA] TEBLUIES......eteueeterteeet etttk ettt ettt e et s e st b e s e he b e se bt e b e se e b e e b e se e bt e b e sb e e ebesb e e ebesbeneenenbennenen 47
9.15 Delivery Of SUDLEIING TEXEoiieiieeiete e e bbb et n et sb e 47
9.1.6 SDP Parameters for IPDC SIreaming SESSIONS.......c.couereeuirierieierrereetesteseeiesseseese st seesesseseesessesessessesessesseseesens 47
9.2 Bitmap Dased SUDLITIINGcveeieeiece ettt s te et e et e saeesre e eseessaesteesseenseensenneennns 48
921 Pixel addressing and scaling of bitmap based SUBLILIES...........cccccveiiciecec e 49
9.2.2 Pixel addressing of NoN " 720 by 576" SUBLILIEScecciieiice e e s 50
9.2.3 Carriage of DVB subtitle Streams OVEr RTP..........cciiieiieice et ee et e e et enee s 50
9.24 Use of SDP 10 Signal DV B SUDLITIESccueeieeece ettt e 51
10 Description of SPP SIreamS USING SDPcoiuiiiiiiiininise sttt 51
10.1 Key Stream Message (KSIM) SETEAIMN......c..ciiieriieiri ettt bbbt sb e e 51
10.2 Key Management Message (KMM) SIFEAIMc.uiiiirieiiieinee st s 52
10.3 KSM SErEAM BINTING ...ttt st bbbt b et b e bt b et b et eb e bt 52
Annex A (informative): Overview of the blocking algorithm for FEC encodingid O.........ccccceieivennene. 54
Annex B (informative): Algorithm to select repair mechanism for file ddivery service........ccooenenneee. 55
Annex C (normative): FEC encoder and decoder specificationcccccveveeviieereiecce e 57
C.1 Definitions, symbolsand abbreviations ... s 57
Cl1 (0= 1T a0 SRS 57
Cl1l2 SYIMIIOIS. ...ttt ettt b e et b e et b e e e bt e R e Rt h e R e Re Rt R e R eE Rt R e Rt bRt b e et b e 58
C.13 F N o] o=V 0] = PR 58
LR © V= o1 USSP 59
(ORI w1 L=l L= o RSOSSN 59
C31 SOUrCE BlOCK CONSIIUCTION.......eiiiie ettt sttt et e et st e teseeseeeaeeeestesbeseesneeneeeeneas 59
C311 LT 07 SRS 59
C3.12 Source block and SUD-BIOCK PArtitiONINGc.coerieririirieiriereeie e b e e seeeea 60
C3.2 ENCoding PacKel CONSLIUCTION.c..cueitiieiirtiiet ettt ettt sb b 61
Cc321 (71 PSR 61
C322 [=TgTolele[TaTo 7= o3 X(= Moo 01 §ox i o] o ST 61
C.33 L= 0o S TR OPPPPTSPRRPRN 61
C34 EXAMPIE ParaMIELENS......coieiie ettt e st et e e te et e e e e saeesse e te e teenteestesaeesaeenteensesneesneesaeenneenseenteans 62
C341 Parameter derivation algorithm............ee it eesne e s 62
C34.2 = 01 0] =P 63
C.4 SystematiC RaptOr ENCOUESccviiuieiieitiecie ettt te st te s te e e besreetesaeensestesnsensesresaeensenrenn 63
c41 ENCOUING OVEIVIBW ...ttt bbb bbbt bbbt b et ne b et st b e et s 63
C4.2 First encoding step: Intermediate Symbol GENEIaLioNcoeeririeirienieeseeese e 63
c421 (71 PSR 63
C4.22 SOUICE SYMBOI TFPIES.... e st e et e e e s e e esaeesaesteesreesreeeeeneeenes 64
C4.23 Pre-coding relationNShiPSocvveeee et e e r e te et e e reeaeeneeneeenes 64
C4.24 INEErMEIAEE SYMDIOIS..... e eeieeieee et e e et e s e s e e saeesse e aeenteesaessaesteesseeseenseeneenneennns 65
C4241 DIEFINITION ..tttk b bbbt e R R e R e bR bR bR R s 65
C4.24.2 Example method for calculation of intermediate SymbolS..........ccoceeveeiecce e 65
c43 Second encoding StEP: LT €NCOUING......ccveeieiieieeieeieeseestsete et e st e s e e te e te e tesaessaesseesaeesseessenseenseeseesseessensses 66
c44 LT 0T = (= SRRSO 67
c441 RANAOM GENEIGLOT ... ettt ettt sttt et et et e e se e teseestesaeeneeseeseenteseesbesseaneeeeseessesnesseeneensensens 67
C44.2 DEOIEE GENEIBION ... ettt sttt et e e e e r bbb e e e e e s e e e Rt e Rt sb e eb e s et e aeenneanenresreer e e e ennenneas 67
C443 LT ENcOding SYMBOI GENEFBLONcoveuiiteieieitereeie sttt sttt ettt b e e bbb b 67
C444 THIPIE GENEIGLOT ...ttt b bbbt bbbt b e bt b et e b e b et e b e bt b b 68
C5 SysStemMatiC INAICES J(K) ...uiiueeieieeeieiesiese st ee sttt e et e e e tesee et e s tesseesesseeneeseesseenseseeeneensensenn 68
(O3 G = =0 To (o]0 0 T AN U 010 TS 69
Cc6.l I SR = o LS/ OSSR RSROSTO 69

ETSI

6 ETSI TS 102 472 V1.1.1 (2006-06)

C6.2 TNE TADIE V1 ettt bbb et bbb e ae e a e e e e R e b e Rt b e e Rt et e e e e bRt eh e e e ne s 69
C.7 EXAMPIEFEC UECOUENccueete ittt sttt st te s te et e st e s teetesaeeseestesneensesteeneensestesneensesrean 70
C71 GBNETEL ...ttt h e e e R R R £ R e £ e bR e R e eRe SR £ eR £ e e e ARt ARt eb e e Rt eh e e e e b e b eheebeeReene e ennas 70
C72 Decoding @SOUMCE BIOCKciiiiiiie bbb e 70
C721 (71 PSR 70
C722 FITSE PSR ..ottt bbb b b e bR e bRt b et bbb e 71
C.7.23 S 0] 0o [0 7= S TP O SOP PO ST PPPTSURTPRUN 72
C724 TRITO PSR ...t b bbb bbb b bt bbb et b e e 72
C.7.25 FOUNN PRBSE. ...ttt bbb bbbt e b e s et b e s b et b b et b b 72
Annex D (informative): Processto handle encrypted servicesin SPP SyStemS.oceeeeeierenenenencnnens 73
D.1 Examplesfor referencing key stream messages in SDP media descriptions............ccoevevrerierienenennens 73
11 SRR 75

ETSI

7 ETSI TS 102 472 V1.1.1 (2006-06)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector organizationsin
thetelevision industry. Its aim is to establish the framework for the introduction of MPEG-2 based digital television
services. Now comprising over 200 organizations from more than 25 countries around the world, DVB fosters
market-led systems, which meet the real needs, and economic circumstances, of the consumer electronics and the
broadcast industry.

Introduction

|P Datacast over DVB-H is an end-to-end broadcast system for delivery of any types of digital content and services
using | P-based mechanisms optimized for devices with limitations on computational resources and battery. An inherent
part of the IPDC system is that it comprises of a unidirectional DV B broadcast path that may be combined with a
bi-directional mobile/cellular interactivity path. IPDC is thus a platform that can be used for enabling the convergence
of services from broadcast/media and telecommunications domains (e.g. mobile / cellular).

Harmonization of the |P Datacast over DVB-H content delivery protocols with 3GPP MBMS [1] has been one of the
natural goals of the work.

ETSI

http://webapp.etsi.org/IPR/home.asp

8 ETSI TS 102 472 V1.1.1 (2006-06)

1 Scope

The present document defines a set of Content Delivery Protocols for streaming and file delivery services to be used
with IP Datacast over DVB-H [2]. Delivery protocols will be IP-based and will be implemented both in content servers
and | P Datacast terminals.

The present document includes information applicable to broadcasters, network operators, service providers and
manufacturers.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI TS 126 346: "Universal Maobile Telecommunications System (UMTS); Multimedia
Broadcast/Multicast Service (MBMYS); Protocols and codecs (3GPP TS 26.346 V6.1.0 Release 6)".

[2] ETSI EN 302 304: "Digital Video Broadcasting (DVB); Transmission System for Handheld
Terminas (DVB-H)".

[3] IETF RFC 3926: "FLUTE - File Delivery over Unidirectional Transport”.

[4] ETSI TS 102 005: "Digital Video Broadcasting (DV B); Specification for the use of Video and
Audio Coding in DVB services delivered directly over | P protocols'.

[5] IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications’.

[6] IETF RFC 2327: "SDP: Session Description Protocol".

[7] IETF RFC 3266: " Support for |Pv6 in Session Description Protocol (SDP)".

[8] IETF RFC 3890: "A Transport Independent Bandwidth Modifier for the Session Description
Protocol (SDP)".

[9] IETF RFC 3556: " Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control
Protocol (RTCP) Bandwidth".

[10] ETSI EN 301 192: "Digital Video Broadcasting (DVB); DV B specification for data broadcasting”.

[11] ISO/IEC 13818-1: "Information technology - Generic coding of moving pictures and associated
audio information - Part 1. Systems”.

[12] IETF RFC 3450: "Asynchronous Layered Coding (ALC) Protocol Instantiation”.

[13] IETF RFC 3451: "Layered Coding Transport (LCT) Building Block™.

[14] IETF RFC 3452: "Forward Error Correction (FEC) Building Block".

[15] IETF RFC 1952: "GZIP file format specification version 4.3".

[16] IETF RFC 1812: "Requirements for IP Version 4 Routers'.

[17] IETF RFC 2234: "Augmented BNF for Syntax Specifications: ABNF".

ETSI

http://docbox.etsi.org/Reference

9 ETSI TS 102 472 V1.1.1 (2006-06)

[18] IETF RFC 3066: "Tags for the identification of languages’.

[19] IETF RFC 3695: "Compact Forward Error Correction (FEC) Schemes'.

[20] IETF RFC 2616: "Hypertext Transfer Protocol - HTTP/1.1".

[21] ETSI TS 126 245: "Universal Maobile Telecommunications System (UMTS); Transparent
end-to-end Packet witched Streaming Service (PS); Timed text format (3GPP TS 26.245
version 6.1.0 Release 6)".

[22] IETF RFC 4396: "RTP Payload Format for 3GPP Timed Text".

[23] The Unicode Consortium: "The Unicode Standard”, Version 3.0 Reading, MA, Addison Wesley
Developers Press, 2000, ISBN 0-201-61633-5.

[24] IETF RFC 3629: "UTF-8, atransformation of 1SO 10646".

[25] ETSI EN 300 743: "Digital Video Broadcasting (DVB); Subtitling systems'.

[26] EACEM E-Book (TR-030).

[27] IETF RFC 2250: "RTP Playload Format for MPEGL/MPEG2 Video".

[28] ETSI TS 102 471: "Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Electronic
Service Guide (ESG)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Associated Delivery Procedures: set of procedures for file repair and reception reporting which are associated to afile
delivery session or a streaming session

Base FLUTE Channel: first channel signalled in the session description file of afile delivery session
Blocking Algorithm: algorithm to chop afileinto source blocks and encoding symbols for transport over FLUTE

DVB-H: transmission system targeted to provide IP-based services to handheld terminals over terrestrial radio
channels, as defined in " Transmission System for Handheld Terminals (DVB-H)*"

Encoding Symbol: array of data bytes that builds up an ALC/LCT packet of agivenfile

FDT Instance: set of filesdeclared in an XML document and identified by a unique Instance ID that represents a
subset of the file data table delivered during the file delivery session

File Delivery Service: set of files delivered by the server to the terminalsin atime-constrained or unconstrained
manner

File Delivery Session: instance of delivery of afile delivery service which is characterized by a start and end time and
addresses of the | P flows used for the delivery of the files between the start and end time

FLUTE channel: as defined in Flute specification [3] a FLUTE channel is defined by the combination of a sender and
destination | P address and port number

NOTE: A receiver joinsachannel to start receiving the data packets sent to the channel by the sender, and a
receiver leaves a channel to stop receiving data packets from the channel.

| P Datacast: end-to-end broadcast system for delivery of any types of digital content and services using | P-based
mechanisms

NOTE: Aninherent part of the IPDC system isthat it comprises of a unidirectional DVB broadcast path and a
bi-directional mobile/cellular interactivity path.

ETSI

10 ETSI TS 102 472 V1.1.1 (2006-06)
IP Flow: flow of 1P datagramsidentified by source | P-address, destination | P-address (either multicast or unicast), port
and protocol in use

Post-repair M echanism: set of functionalities supplied by the server and used by the terminals after end of file
delivery to recover from unsuccessful reception. These functionalities can be based on point-to-point or
point-to-multipoint recovery

Reception Reporting M echanism: mechanism that defines a request/response procedure for the server and terminals
to request and send reception reports

NOTE: Reception reports describe the status of the reception.
Sour ce Block: set of encoding symbols which is used as the basis for FEC encoding/decoding operations

Streaming Delivery Session: instance of delivery of a streaming service which is characterized by a start and end time
and addresses of the IP flows used for delivery of the media streams between start and end time

Streaming Service: set of synchronized media streams delivered in atime-constrained or unconstrained manner for
immediate consumption (during the reception)

Time Slice: burst of MPE and MPE-FEC clauses delivered over DVB-H using atime dicing method

Transport Object: set of source blocks and potentially FEC blocks that build up a given file and which are transported
during afile delivery session

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3GPP 3rd Generation Partnership Project
ABNF Augmented Backus-Naur Form

ADU Application Data Unit

ALC Asynchronous Layered Coding

AS Application Specific bandwidth modifier
AVP Audio Video Profile

cC Congestion Control

CCl Congestion Control Identifier

CENC Content ENCoding

CRLF Carriage Return Line Feed

DVB Digital Video Broadcasting

DVB-H Digital Video Broadcast — Handheld
ESG Electronic Service Guide

ESI Encoding Symbol ID

FDT File Delivery Table

FEC Forward Error Correction

FLUTE File deLivery over Unidirectiona Transport
FTI File Transfer Information

GZIP GnuzIP

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IPDC IP DataCast

KMM Key Management Message

KMS Key Management System

KSM Key Stream Message

LCT Layered Coding Transport

MBMS Multimedia Broadcast/Multicast Service
MIME Multipurpose Internet Mail Extensions
MPD MultiProtocol Decapsulation unit
MPE MultiProtocol Encapsulation
MPEG-2TS MPEG-2 Transport Stream

MTU Maximum Transmission Unit

PCR Program Clock Reference

rack reception acknowledgement

ETSI

RC
RFC
RR
RS
RTCP
RTP
SBN
SCR
SDP
SPP
star
TCP
TIAS
TO
TOI
TS
TSI
UbP
URI
URL
URN
UTF
XML

11 ETSI TS 102 472 V1.1.1 (2006-06)

Reception Report Count

Request for Comments

bandwidth modifier for RTCP reception reports
bandwidth modifier for RTCP Sender Reports
Real-Time Transport Control Protocol
Real-Time Transport Protocol

Source Block Number

System Clock Reference

Session Description Protocol

Service Purchase and Protection

statistical reporting for successful reception
Transmission Control Protocol

Transport Independent Application Specific maximum bandwith
Transport Object

Transport Object Identifier

Transport Stream

Transport Session |dentifier

User Datagram Protocol

Uniform Resource Identifier

Uniform Resource L ocator

Uniform Resource Name

Unicode Transformation Format

eXtensible Markup Language

4

Delivery platform

IP Datacast system is designed to transport different types of content such as audio, video, text, pictures, and binary
files. The content delivery services offered in | P Datacast can be classified in two classes. streaming and file delivery

Services.

In IP Datacast delivery platform, three distinct functional layers can be identified: Bearers, Delivery methods, and User

Services.

e Bearers: bearers provide the mechanism by which IP datais transported. In IPDC over DVB-H, DVB-H is used
to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of |P
Datacast services. The DV B-H bearer may be used jointly with point-to-point bearersin offering complete
service capabilities.

« Ddlivery Method: when delivering content to a receiving application one or more delivery methods are used.
Two delivery methods are defined, namely file delivery and streaming. The delivery layer may provide
functionality such as security and key distribution, reliability control by means of forward-error-correction
techniques and associated delivery procedures such as file-repair and reception reporting.

e User service: the IPDC User service enables applications. Different applications impose different requirements
when delivering content to receivers and may use different delivery methods. As an example a software package
update would use the file delivery while a TV broadcast application would use the streaming delivery.

ETSI

12 ETSI TS 102 472 V1.1.1 (2006-06)

4.1 Protocol stack

Figure 1 illustrates the protocol architecture for content delivery in IPDC over DVB-H.

Application (s)
Audio, Video, 3GP file format, Post repair
Subtitling, etc... Binary data, and reception
still images, ESG data re ortiE
SPP RTP payload Text, porting
mechanisms | SPP
(KSM, formats etc... (KMM)
KMM) I T
I carousel |
Streaming HTTP
(RTP/RTCP) File Delivery (FLUTE)
UDP TCP
IP
DVB-H Point-to-Point Bearer |
___________________ [

Figure 1: Baseline IPDC Protocol Stack for content delivery

The RTP protocol is used for streaming services, where audio, video and subtitling are delivered in real time. The
FLUTE protocol is specified for file delivery servicesin which al the file datais first downloaded and stored into the
terminal before being accessed by applications. Post -repair and reception report datais delivered using FLUTE
(point-to-multipoint) or using HTTP and TCP for point-to-point connection. For SPP, KSM (key stream messages) and
KMM (key management messages) are delivered over UDP. KMM can be a'so carried over TCP/IP for point-to-point
case.

5 Delivery protocol for real-time streaming services

The RTP protocol is specified for Real-time streaming services in which data are played while downloaded. The
supported media formats and their corresponding RTP payload formats are defined in annex B of Specification [4].

5.1 RTP

RTP[5] shall be used to deliver real time audio and video streaming services.
The sender shall generate and send RTCP packets as defined in [5]. The sender shall not provide any Reception Reports

in its Sender Report, that isthe RC (Reception Report Count) field shall be set to 0. The receivers shall not send any
RTCP Receiver Reports.

5.2 Streaming session description with SDP

SDP is provided to the IPDC terminal to describe the streaming delivery session. The SDP describes one or more RTP
session parts of the IPDC streaming delivery session. The SDP shall be correctly formed according to [6], [7].

ETSI

13 ETSI TS 102 472 V1.1.1 (2006-06)

5.2.1 SDP Parameters for IPDC streaming sessions
Session Description of an IPDC streaming session shall include the parameters:

. The sender IP address.

. The list of media componentsin the session.

. The destination | P address and port number for each and all of the media componentsin the IPDC streaming
session.

. The start time and end time of the session.
. The transport protocol (i.e. RTP/AVP).
. Mediatype(s) and media formats.
. Datarate using existing SDP bandwidth modifiers.
Session Description of an IPDC streaming session may include the parameters:

. Service-language(s) per media. The language attribute is an optional media-level attribute that can be used,
e.g. to indicate the spoken language of an audio stream.

5211 Sender IP address

The SDP file associated to a streaming session MAY provide the sender 1P address using a source-filter attribute, which
has the following syntax in ABNF format:

source-filter="a=source-filter: incl IN" SP addr-type SP dest-address SP src-list
addr-type="1P4" | "1P6"
dest-address="*"
src-list = * (unicast-address SP) unicast-address
unicast-addressis described in [7] and may be either an P4 or 1P6 address depending on addr-type.

The source-filter attribute shall only be in the session part of the session description (i.e. not per media). Several source
I P addresses may be given in the src-list field.

Note that the destination address is given as"*", which indicates that the source filter appliesto all destination
addresses.

1) The x value shall be used for the <dest-address> subfield.

5.2.1.2 Destination IP address and port number for channels

Each RTP session part of an IPDC streaming session is defined by two parameters:
. | P destination address.

. Destination port number(s).

SDP. Multiple ports using /" notation shall not be used. The RTCP port, shall be RTP port +1.

ETSI

14 ETSI TS 102 472 V1.1.1 (2006-06)

5.2.1.3 Media description

The media description line shall be used as defined in SDP [6] for RTP [5]. The <media> part indicates the type of
media: e.g. audio, video, or text. The usage of RTP and any applicable RTP profile shall be indicated by using the
<proto> field of the "m-line". The one or more payload types that are being used in this RTP session are enumerated in
the <fmt> part. Each payload type is declared using the "a=rtpmap" attribute according to SDP and use the "a=fmtp"
line when required to describe the payload format parameters.

5.2.1.4 Session timing parameters

5.2.1.5 Service-language(s) per media

The existing SDP attribute "a=lang" is used to label the language of any language-specific media.

5.2.1.6 Bandwidth specification

The bit-rate required by the streaming session and its media components shall be specified using both the"AS"
bandwidth modifier and the "TIAS" bandwidth modifier combined with "a=maxprate" [8] on medialevel in the SDP.
On session level the "TIAS" bandwidth modifier combined with "a=maxprate" may be used. Where the session level
expresses the aggregated peak bit-rate, which may be lower than the sum of the individual media streams.

The bandwidth required for RTCP is specified by the "RR" and "RS" bandwidth modifiers[9] on medialevel for each
RTP session. The "RR" modifier shall be included and set to 0 to specify that RTCP receiver reports are not used. The
bandwidth used for RTCP sender reports shall be specified using the "RS" bandwidth modifier.
5.2.2 SDP example for streaming session
Hereisafull example of SDP description describing a streaming session:
v=0
o=ghost 2890844526 2890842807 IN P4 192.168.10.10
s=IPDC SDP Example
i=Example of IPDC streaming SDP file
u=http://www.example.com/ae600
e=ghost@mail server.example.com

Cc=INIP6 FF1E:03AD::7F2E: 172A: 1E24
t=3034423619 3042462419

b=AS.77
a=source-filter: incl IN 1P6 x 2001:210:1:2:240:96FF:FE25:8EC9
m=video 4002 RTP/AVP 96
b=TIAS:62000
b=RR:0
b=RS:600
a=maxprate:17
a=rtpmap: 96 H264/90000
a=fmtp:96 profile-level-id=42A01E; packetization-mode=1;
sprop-parameter-sets=Z0IACpZTBY ml,aMljiA==
m=audio 4004 RTP/AVP 98
b=TIAS:15120
b=RR:0
b=RS:600

ETSI

15 ETSI TS 102 472 V1.1.1 (2006-06)

a=maxprate:10
a=rtpmap:98 AMR/8000

a=fmtp:98 octet-align=1

5.3 Hypothetical receiver buffering model

5.3.1 Overview of the proposed buffering model (informative)

A hypothetical receiver buffering model is presented in figure 2.

»| Transport Multiprotocol RTP Coded Decoded
buffgr » decapsulation [—®{ decapsulation [—®| data [—¥| data
buffer buffer buffer buffer

Figure 2: Hypothetical receiver buffering model

The transport buffer receives MPEG-2 TS packets and removes any duplicate packets. Its operation is described in [10]
and [11]. The multiprotocol decapsulation buffer is used for virtual FEC decoding and decapsulation of MPE clauses to
| P datagrams. The RTP decapsulation buffer is used for decapsulation of RTP and RTP payload headers and for
smoothing the bursty nature of time dlices to constant bitrate input for the media decoders. The coded data buffer and
the decoded data buffer are specified in the media decoder specifications.

Thereis one transport buffer per each MPEG-2 TS multiplex, one multiprotocol decapsulation buffer per each
elementary stream, one RTP decapsulation buffer per each |P stream, one coded data buffer per each elementary media
bitstream, and typically one decoded data buffer per each elementary media bitstream.

The multiprotocol decapsulation buffer and the RTP decapsulation buffer are described in the following.

5.3.2 MultiProtocol Decapsulation buffer (normative)
The MultiProtocol Decapsulation (MPD) buffer model is applied to time-sliced elementary streams carrying | P streams.

Informative note: The value of the time_dlicing element of the time slice and FEC identifier descriptor isequal to 1 for
time-diced elementary streams.

The MPD buffer model is specified as follows:
1) TheMPD buffer isinitially empty.
2) Datatransmission starts from the first MPEG-2 TS packet in transmission order of atime dice.
3) Payload of each MPEG-2 TS packet output from the transport buffer isinserted to the MPD buffer.
4) When:
a) thevaue of mpe_fec element inthe Time Slice and FEC Identifier descriptor isequal to 00b; and
b) an MPEG-2 TS packet completes an MPE clause; and

¢) thecompleted MPE clause completes a datagram (i.e. the value of last_clause number isequal to the
value of clause_number in the MPE clause header);

then the MPE clause is removed from the MPD buffer and the datagram carried in the MPE clause is output.
5) When the value of mpe_fec element in the Time Slice and FEC Identifier descriptor is equal to O1b:

a Whenan MPEG-2 TS packet isthe first onein atime slice, an MPE-FEC frame is formed in the MPD
buffer as specified in clause 9.3.1 of [10].

b) Each MPEG-2 TS packet isinserted to the MPE-FEC frame in the MPD buffer as specified in
clause 9.3.1 of [10].

ETSI

16 ETSI TS 102 472 V1.1.1 (2006-06)

¢) Whenan MPEG-2 TS packet is the last one containing data for the MPE-FEC frame in the MPD buffer,
then the datagrams carried in the MPE clauses of the MPE-FEC frame are output and the MPE-FEC
frame is removed from the MPD buffer.

5.3.3 RTP Decapsulation buffer (normative)

The RTP decapsulation buffer model is applied to datagrams that are output from the multiprotocol decapsulation buffer
and contain RTP packets. The RTP decapsulation buffer model is specific to an | P stream.

1) The RTP decapsulation buffer isinitially empty.

2) Each RTP packet isinserted to the RTP decapsulation buffer without UDP and I P header but including RTP
header immediately when it is output from the MPD buffer.

3) RTP packets are not removed from the RTP decapsulation buffer before the signalled initial buffering delay
(since theinsertion of the first RTP packet) has expired. The signalling means for the initial buffering delay
are specified in clause 5.3.4.

a) Application data units (ADUSs) are output from the RTP decapsulation buffer in their decoding order. The
decoding order can be established from the RTP sequence numbers, in the absence of packet
interleaving. The first ADU in decoding order is output immediately when the initial buffering delay
expires. Each succeeding ADU in decoding order is output when it becomes available in the RTP
decapsul ation buffer and the following time (in seconds) since the removal of the previous ADU has
elapsed:

8 x (size of the previous ADU in bytes) / (1000 x (value of "b=AS" SDP attribute for the stream))

4) AnRTP packet is removed from the RTP decapsulation buffer, when all the ADUs it contains are output.

5.34 Signalling of initial buffering delay (normative)

Theinitial buffering delay signals the delay in wall clock time (in units of milliseconds) from the insertion of the RTP
packet to the RTP decapsulation buffer until the first ADU in decoding order can be output from the RTP decapsulation
buffer. The signalled delay guarantees pausel ess decoding and playback. The value is expressed in milliseconds using
an unsigned 16-bit integer in network byte order.

Theinitial buffering delay parameter SHALL be signalled to the receiver within the session description. In SDP, the
initial buffering delay is provided a session wide attribute "min-buffer-time". The syntax of the "min-buffer-time" is
givenin ABNF asfollows:

Min-buffer-time="a=min-buffer-time:"1x16DIGIT

5.35 Conformance requirements (normative)

Any time-sliced elementary stream carrying IP streams shall conform to the presented buffering model and the
following requirements:

. For any elementary stream, the buffer occupancy level of the multiprotocol decapsulation buffer shall not
exceed A bytes.

. A = maxMPERows x maxMPECols x 1,2 = 1024 x 255 x 1,.2 = 313 344 Bytes.

. For any IP stream carried in the elementary stream, the output of the RTP decapsulation buffer shall conform
to decoding specification of the media format.

. For any IP stream carried in the elementary stream, the buffer occupancy level of the RTP decapsulation buffer
shall not exceed B bytes. In the calculation of B, the assumption of 1 IP stream per MPE-FEC frame is
assumed.

. B = maxMPERows x maxMPECols x (1 — (IPUDPHdr/MaxIPSize)) x1,.2 =1 024 x 255 x (1 —12/4096) x 1,2
= 312 426 Bytes.

A and B are proportional to the maximum MPE-FEC frame size. A marginal factor of 1,2 to smooth out variationsin
bitrate and time-dlice interval SHOULD be assumed.

ETSI

17 ETSI TS 102 472 V1.1.1 (2006-06)

6 Delivery protocol for file delivery services

File delivery uses FLUTE [3] to deliver files and other discrete binary objects. This enables arange of file delivery
services, from progressive file delivery, to background opportunistic file delivery, to Electronic Service Guide
description transport.

6.1 FLUTE

IPDC file delivery method is based on the FLUTE protocol [3]. FLUTE (File deLivery over Unidirectional
Transport) [3] shall be used for this function. In addition to basic protocol the proposed file delivery solutionis
comprised of parts that further specify how FLUTE is used.

FLUTE is built on top of the Asynchronous Layered Coding (ALC) protocol instantiation [12]. ALC combines the
Layered Coding Transport (LCT) building block [13], a congestion control building block and the Forward Error
Correction (FEC) building block [14] to provide congestion controlled reliable asynchronous delivery of content to an
unlimited number of concurrent receivers from a single sender. As mentioned in [12], congestion control is not
appropriate in the type of environment that IPDC system is provides, and thus congestion control is not used for IPDC
file delivery. See figure 3 for anillustration of FLUTE building block structure. FLUTE is carried over UDP/IP, and is
independent of the IP version and the underlying link layers used.

FLUTE

ALC
LCT | CC | FEC

Figure 3: Building block structure of FLUTE

ALC usesthe LCT building block to provide in-band session management functionality. The LCT building block has
several specified and under-specified fields that are inherited and further specified by ALC. ALC usesthe FEC building
block to provide reliability. The FEC building block allows the choice of an appropriate FEC code to be used within
ALC, including using the no-code FEC code that simply sends the original data using no FEC coding. ALC is
under-specified and generally transports binary objects of finite or indeterminate length. FLUTE is afully-specified
protocol to transport files (any kind of discrete binary object), and uses special purpose objects — the File Delivery
Table (FDT) Instances—to provide a running index of files and their essential reception parametersin-band of a
FLUTE session.

6.1.1 FLUTE as a file delivery mechanism

The purpose of file delivery isto deliver content in files. A file contains any type of data (e.g. Audio/Video file, Binary
data, Still images, Text, ESG metadata).

In the present document the term "file" is used for al objects carried by FLUTE (with the exception of the FDT
Instances).

IPDC clients and servers shall implement all the mandatory parts of the FLUTE specification [3], aswell asALC [12]
and LCT [13] features that FLUTE inherits. In addition, several optional and extended aspects of FLUTE, as described
in the following clauses, shall be supported.

6.1.2 Segmentation of files

Segmentation of files shall be provided by a blocking algorithm (which cal culates source blocks from source files) and
asymbol encoding algorithm (which calculates encoding symbols from source blocks).

6.1.3 Use of multiple FLUTE channels

The use of single FLUTE channel for a FLUTE session shall be supported.

ETSI

18 ETSI TS 102 472 V1.1.1 (2006-06)

The use of multiple FLUTE channels for a FLUTE session may be supported by terminals and senders. For terminals
that do not support multiple channels, it should be possible for them to receive enough data from the first channel
named base FLUTE channel in order to declare the channel as complete. The base FLUTE channel is the channel for
which the connection information appearsfirst in the SDP session description file. Thisimpliesthat FDT instances
carried over the base FLUTE channel shall not reference files carried over other channels. Terminals that do not support
multiple channels, shall ignore all but the base FLUTE channel declaration in the SDP session description file.

Each FLUTE channel of a session may send the data packets at a different rate so that it allows to receive faster prior
channels.
6.1.4 Symbol encoding algorithm

The "Compact No-Code FEC scheme" [19] (FEC Encoding ID 0, also known as "Null-FEC") SHALL be supported.
The "Raptor FEC Scheme" (FEC Encoding Id 1) is defined in clause 8. This scheme consists of two distinct
components as defined in clause 8:

. Source block and source packet construction and reception.
. Repair packet construction and reception and Raptor FEC encoding and decoding.

Terminals SHALL support interpretation of source packets constructed according to the source packet construction and
reception component of the Raptor FEC Scheme for the case where there is a single sub-block (i.e. N=1).

Terminals MAY support the Repair packet construction and Raptor FEC decoding component of the Raptor FEC
Scheme.

In case of Service Discovery (ESG) the sender SHALL provide enough unencoded source packets of the Raptor FEC
scheme such that terminals not supporting the repair packet reception and Raptor FEC decoding component are able to
reconstruct the ESG data (or alternatively the sender SHALL use Compact No-Code FEC Scheme).

6.1.5 Blocking algorithm

In the case of the Compact no-Code FEC Scheme, the " Algorithm for Computing Source Block Structure” described
within the FLUTE specification [3] shall be used.

In the case of the raptor FEC Scheme, the algorithm described in clause 8 shall be used.

6.1.6 Congestion control

For simplicity of congestion control, all FLUTE channels shall be fully provisioned by the datacast operator so that no
transport layer congestion control is necessary. FLUTE channelization may be provided by asingle FLUTE channel.
6.1.7 Content encoding of files for transport

Files may be content encoded for transport, as described in [3], in the file delivery method using the generic GZip
algorithm [15]. Terminals shall support GZip content decoding of FLUTE files.

For GZip-encoded files, the FDT File element attribute " Content-Encoding” SHALL be given the value "gzip".

6.1.8 ALC packet size considerations

In order to avoid | P-fragmentation (fragmentation of one I P datagram into several 1P datagramsto changing link MTUs
across an end-to-end system) it is recommended that all FLUTE packets (including IPFUDP/ALC headers and the
payload of the packet itself) are no greater in size than the smallest anticipated MTU of al links end-to-end. A
maximum size of such packet is 1 500 bytes as recommended in [16]. The overhead of protocol headers should aso be
considered when determining the maximal size of payload data.

ETSI

19 ETSI TS 102 472 V1.1.1 (2006-06)

6.1.9 Signalling the end of file delivery and end of file delivery session

FLUTE File Delivery Table (FDT) Instances include an "expires’ attribute, which defines the expiration time of the
FDT instance. The sender must use an absolute expiry time. According to FLUTE [3] "the receiver SHOULD NOT use
areceived FDT Instance to interpret packets received beyond the expiration time of the FDT Instance."

The terminal determines the end of file delivery based on the expiration time of the FDT instance, the end time of the
session (as declared in the session description), and any end-of-object (B-flag) and end-of-session (A-flag, and SDP end
time) information available.

When aparticular file (URI) ispresent in several FDT Instances with different TOI values, then the expiration time of
the FDT Instance with the highest FDT Instance ID which includes that file determines the end of file delivery for that
file. A terminal shall only determine end of file delivery based only on the most up-to-date instance of the file— and
shall not use FDT Instance expiry time to determine end of file delivery for any other (TOI) instances of afile
(fileURI).

When aparticular file (URI) is present in more than one FDT Instance with the same TOI value, then the end of file
delivery is defined by the expiration time of the last FDT Instance to expire.

If an FDT Instance is received describing the file after thistime (giving an FDT Instance expiry time in the future and
the same or newer version), the terminal shall determine that the delivery of the file has not ended, i.e. that more packets
may arrive for that file. Note, this effectively resets and stops any running timers already initiated for an associated
delivery procedure for that file.

If the terminal receives an end-of-object packet (with FLUTE header B flag set true) the terminal shall determine that
the delivery of that object has ended, and shall assume that file delivery is complete if no, more recent, TOIs are
described for the same file (URI) in any received and unexpired FDT Instance(s).

If the terminal determines that the file delivery session has ended then it shall assume that al file deliveries for al files
declared in that session have ended.

6.1.10 Files that span over several separate file delivery sessions

Spanning files over severd file delivery sessionsis not allowed. The use of auxiliary sessions to handlefile repair is
described in clause 7.

However, afile (or some encoding symbols of afile) may be sent simultaneously or at different time over multiple
channels. As defined in clause 6.1.3, sufficient encoding symbolsto recover afile, which isdeclared in an FDT Instance
that is sent over the base channel, have to be sent over the base channel. When afileis declared in different FDT
instances, which are sent over different channels, the expiry time of these FDT instances does not necessarily need to be
the same. Instead, the terminal shall consider the most up-to-date expiry time of the corresponding FDT Instances, in
order to decide whether the fileis still valid or not.

6.1.11 Grouping mechanisms for FLUTE file delivery
Files downloaded as part of a multiple-file delivery are generally related to one another.
Following examples are explicitely stated for file grouping:

. Web pages are usually linked to each other. A root web page may have links to other web pages, images, or
any other files. It is worthwhile to indicate to the receiver that these files constitute afile group. The receiver is
then instructed to download all related files, which belong to the same group.

. Software update packages are usually composed of several files. These files usually have to be downloaded as
agroup because of the existing dependencies. The reception of al files of the software update packageis
necessary to perform the software update. Logical grouping can be used in this case to indicate the grouping of
the different files of the software package. The receiver recognizes through this means that the reception of all
files of the group is necessary for the file delivery to be complete.

Logical file grouping allows the server to inform the terminal about existing dependencies between objects of afile
delivery session, without the need for the terminal to reconstruct these dependencies at application layer by interpreting
the contents of files (or by other means).

ETSI

20 ETSI TS 102 472 V1.1.1 (2006-06)
FLUTE clients analyse the XML-encoded FDT Instances as they are received, identifies each requested file, associates
it with FLUTE packets (using the TOI) and discover the relevant in-band delivery configuration parameters of each file.

An additional "group” field inthe FLUTE FDT instance and file elements enables logical grouping of related files. A
FLUTE receiver should download all the files belonging to all groups where one or more of the files of those groups
have been requested. (A terminal is permitted to instruct its FLUTE receiver to ignore grouping to deal with special
circumstances, such as low storage availability).

The group names are alocated by the FLUTE sender and each specific group name shall group the corresponding files
together as one group, including files described in the same and other FDT Instances, for a session.

Each file element of an FDT Instance may be labelled with zero, one or more group names. Each FDT Instance element
may be labelled with zero, one or more group names which are inherited by all files described in that FDT Instance. The
usage of the Group element in the FDT is shown in clause 6.1.15.

6.1.12 File versioning

In FLUTE, afileisuniquely identified by its "Content-Location" field, which is provided in the FDT Instance that
declares that file. Using the FDT, a mapping between the " Content-Location" URI and the TOI is established. A
transport object isidentified by the Transport Object Identifier.

A file may be associated with several transport objects (i.e. with several TOI values) during the lifetime of thefile
delivery session. In this case, the transport object declared in the FDT Instance with the highest FDT Instance ID value
SHALL represent the latest version of the file. Wrap-around of the FDT Instance ID values SHALL be taken into
account in determining the highest FDT Instance ID value. A new FDT Instance may keep the TOI associated with a
given file unchanged, which meansthat thisis the version of the file did not change.

The FLUTE sender SHOULD stop sending FLUTE packets of a given file with an older TOI value as soon as a new
FDT Instance with a different TOI value for the same file has been sent. The FLUTE sender SHOULD not assign an
expiry timeto anew FDT Instance that is before the expiry time of older FDT Instances. The FLUTE sender SHALL
make sure that any TOI value is at most assigned to one single file unambiguously at any point of time during the
lifetime of afile delivery session.

Thereceiver MAY stop receiving atransport object that represents an old version of afile as soon asan FDT Instance
including a newer version of the file is received. The receiver may keep track of the TOI values assigned to agiven file
to identify the versioning history.

NOTE: Thereceiver shal not send post-repair requests for an old version of afile once aFDT Instance including
anewer version of thefileisreceived.
6.1.13 File delivery session description with SDP

The FLUTE specification [3] describes required and optional parameters for FLUTE session and media descriptors.
This clause specifies SDP for FLUTE session that is used for the IPDC file delivery sessions. The formal specification
of the parametersisgivenin ABNF [17].

6.1.13.1 SDP parameters for IPDC file delivery session
Session description of an IPDC file delivery session shall include the parameters:
. the sender |P address;
. the number of channelsin the session;
. the destination I P address and port number for each channel in the session per media;
. the Transport Session Identifier (TSI) of the session;
. the start time and end time of the session;
. the protocol ID (i.e. FLUTE/UDP);

. media type(s) (i.e. "application™) and fmt-list (i.e. "0");

ETSI

21 ETSI TS 102 472 V1.1.1 (2006-06)

. FEC capabilities and related parameters.

Session Description of an IPDC file delivery session may include the parameters:
. datarate using existing SDP bandwidth modifiers;
. service-language(s) per media.

Thislist includes the parameters required by FLUTE [3].

These shall be expressed in SDP [6], [7], [8] syntax according to the following clauses.

6.1.13.1.1 Sender IP address

There shall be exactly one IP sender address per IPDC file delivery session, and thus there shall be exactly one IP
source address per complete IPDC file delivery session SDP description. The |P source address shall be provided using
a source-filter attribute, which has the following syntax in ABNF:

source-filter="a=source-filter: incl IN" SP addr-type SP dest-address SP src-list
addr-type="1P4" | "1P6"
dest-address="*"
sre-list = unicast-address
unicast-addressis described in [7] and may be either an P4 or an | P6 address depending on addr-type.
The following exceptions apply to the source-filter:

1) Exactly one source address may be specified by this attribute such that exactly one source addressis given by
the src-list field.

2) Thereshall be exactly one source-filter attribute per complete IPDC file delivery session SDP description, and
this shall be in the session part of the session description (i.e. not per media).

Note that the destination addressis given as"*", which indicates that the source filter appliesto all destination
addresses.

6.1.13.1.2 Number of channels

FLUTE session. FLUTE session channelisation shall be defined according to the SDP attribute at session level as
specified here.

The multiple channel attribute parameter indicates to the receiver that the sender is using multiple channelsin the
FLUTE session to transmit data. The attribute also indicates the number of channels used by the sender. The value
specified by this descriptor may be used by the receiver to check that it has received al the m-lines describing the
destinations.

The FLUTE number of channels SDP syntax is given below:
sdp-flute-channel-line = "a=flute-ch:" integer CRLF integer = as defined in [6].

integer isthe number of channels used by the sender to transmit datain a FLUTE session. For example, if the value of
this parameter is 2, then there should be 2 channels specified by the m-lines.

In the absence of this descriptor, areceiver shall understand that exactly one FLUTE channel is used for the FLUTE
session. As described in clause 6.1.3, the use of multiple channels is not normatively mandated but may be supported by
the terminals.

6.1.13.1.3 Destination IP address and port number for channels

The FLUTE channel shall be described by the media-level channel descriptor. These channel parameters shall be per
channel:

¢ |Pdestination address.

ETSI

22 ETSI TS 102 472 V1.1.1 (2006-06)

e Destination port number.

The I P destination address shall be defined according to the "connection data’ field ("c=") of SDP[6],[7]. The
destination port number shall be defined according to the <port> sub-field of the media announcement field ("m=") of
SDP.

The presence of a FLUTE session on a certain channel shall be indicated by using the "m-line” in the SDP description
as shown in the following example:

m=application 12345 FLUTE/UDP 0
c=IN IP6 FF1E:03AD::7F2E:172A:1E24/1

In the above SDP attributes, the m-line indicates the media used and the c-line indicates the corresponding channel.
Thus, in the above example, the m-line indicates that the mediais transported on a channel that uses FLUTE over UDP.
Further, the c-line indicates the channel address, which, in this case, isan IPv6 address.

6.1.13.1.4 Transport Session Identifier (TSI) of the session

The combination of the TSI and the IP source address identifies the FLUTE session. Each TS| shall uniquely identify a
FLUTE session for a given | P source address during the time that the session is active, and aso for alarge time before
and after the active session time (thisisalso an LCT requirement [13]).

The TSI shall be defined according to the SDP descriptor given below. There shall be exactly one occurrence of this
descriptor in acomplete FLUTE SDP session description and it shall appear at session level.

The syntax in ABNF is given below:
sdp-flute-tsi-line = "a=flute-tsi:" integer CRLF integer = as defined in [6].

6.1.13.1.5 Session timing parameters

A IPDC file delivery session start and end times shall be defined according to the SDP timing field ("t=") [6].

6.1.13.1.6 FEC capabilities and related parameters
A new FEC-declaration attribute is defined which resultsin, e.g.:a=FEC-declaration:0 encoding-id=128; instance-id=0.

This can be session-level (and so the first instance (fec-ref=0) becomes the default for all media) and media-level to
specify differences between media. Thisis optional as the information will be available elsewhere (e.g. FLUTE FDT
Instances). If this attribute is not used the terminal may assume that support for FEC id 0 is sufficient capability to enter
the session.

A new FEC-declaration attribute shall be defined which resultsin, e.g.: a=FEC:0.

Thisisonly amedia-level attribute, used as a short hand to inherit one of one or more session-level FEC-declarations to
a specific media.

The syntax for the attributesin ABNF [17] is:
. sdp-fec-declaration-line = "a=FEC-declaration:" fec-ref SP fec-enc-id ;" [SP fec-inst-id] CRLF.
. fec-ref = 1xDIGIT (value isthe SDP-internal identifier for FEC-declaration).
. fec-enc-id = "encoding-id=" enc-id.
. end-id = 1xDIGIT (valueisthe FEC Encoding ID used, valid FEC encoding Id are specified in clause 6.1.4).
. fec-inst-id = "instance-id=" inst-id.
. inst-id = 1xDIGIT (value isthe FEC Instance ID used, valid FEC encoding Id are specified in clause 6.1.4).
. sdp-fec-line = "a=FEC:" fec-ref CRLF.

. fec-ref = 1xDIGIT (value is the FEC-declaration identifier).

ETSI

23 ETSI TS 102 472 V1.1.1 (2006-06)

The SDP declares the default FEC encoding scheme (on session or media level). The FEC encoding scheme may
however change from file to file and thisis overwritten by declarationsin the FDT, or inthe EXT_FTI ALC/LCT
header. It is recommended for non-FDT objects to always include the complete FEC OTI inthe FDT or inthe EXT_FTI
header, and forFDT objects to include the complete FEC OTI in the EXT_FTI header.

6.1.13.1.7 Service-language(s) per media
The existing SDP attribute "a=lang" is used to label the language of any language-specific media. The values are taken
from[18] (e.g. "a=lang:EN-US").
6.1.13.2 Three timers
A single attribute line of SDP description might be used as described in the following example.
EXAMPLE: a=session-timeout: 100;200; 300

Where the first value "100" isthe value of fragment wait timer; the second value "200" is the value of table wait timer;
and the third value "300" is the value of object wait timer.

The syntax described in ABNF:
Session timeout line= "a=session-timeout:" ST
ST=1xDIGIT ;' 1xDIGIT "' 1xDIGIT CRLF

The above attribute shall appear at session level of SDP.
6.1.14 Signalling of parameters with FLUTE

6.1.14.1 Signalling of parameters with Basic ALC/FLUTE headers
FLUTE and ALC mandatory header fields shall be as specified in [3], [12] with the following additional specializations:

. The length of the CCl (Congestion Control Identifier) field shall be 32 bits and it is assigned a value of zero
(C=0).

. The Transmission Session Identifier (TSI) field shall be of length 16 bits (S=0, H=1, 16 bits) or 32 bits (S=1,
H=0) when TOI isanidentifier of 32 bits.

. The Transport Object Identifier (TOI) field should be of length 16 bits (O=0, H=1) or 32 bits (O=1, H=0).
. Only Transport Object Identifier (TOI) O (zero) shall be used for FDT Instances.

. The following features shall be used for signalling the end of session; the following features should be used for
signalling an end of object transmission to the receiver prior to the FDT expiry date:

- The Close Session flag (A) for indicating the end of a session as described in clause 6.1.9.
- The Close Object flag (B) for indicating the end of an object.
In FLUTE the following applies:
. The LCT header length (HDR_LEN) shall be set to the total length of the LCT header in units of 32-bit words.

. For "Compact No-Code FEC scheme”, the payload ID shall be set according to [19] such that a 16 bit SBN
(Source Block Number) and then the 16 bit ESI (Encoding Symbol ID) are given.

6.1.14.2 Signalling of Parameters with FLUTE Extension Headers
FLUTE extension header fields EXT_FDT, EXT_FTI, EXT_CENC [3] shall be used as follows:
. EXT_FTI shall beincluded in every FLUTE packet carrying symbols belonging to any FDT Instance.

. FDT Instances shall not be content encoded and therefore EXT_CENC shall not be used.

ETSI

24 ETSI TS 102 472 V1.1.1 (2006-06)

In FLUTE the following applies:
. EXT_FDT isin every FLUTE packet carrying symbols belonging to any FDT Instance.
. FLUTE packets carrying symbols of files (not FDT instances) do not include the EXT_FDT.

The optional use of EXT_FTI for packets carrying symbols of files (not FDT instances) shall comply to FLUTE [3] for
the signalling of FEC Object Transmission Information associated to FEC Encoding 0. When Raptor forward error
correction code defined in annex C isused, the EXT_FTI format is defined in clause 8.1.3.

6.1.14.3 Signalling of parameters with FDT instances

The FLUTE FDT Instance schema defined in clause 6.1.15 shall be used. Some of the data elements can be included at
the FDT-Instance or at the File level. In this case, the data element values in the File element override the samein the
FDT Instance element. In addition, the following applies to both the FDT-Instance level information and all files of a
FLUTE session.

Theinclusion of these FDT Instance data elements is mandatory according to the FLUTE specification:
. Content-Location (URI of afile);
. TOI (Transport Object Identifier of afileinstance);
. Expires (expiry datafor the FDT Instance).
Additionally, theinclusion of these FDT Instance data elements is mandatory:
. Content-Length (source file length in bytes);

. Content-Type (content MIME type). This attribute shall be either in the FDT-Instance or File element or in
both.

Theinclusion of the following FDT Instance data elements is optional and depends on the FEC Scheme:
. FEC-OTI-Maximum-Source-Block-Length;
. FEC-OTI-Encoding-Symbol-Length;
. FEC-OTI-Max-Number-of-Encoding-Symbols;
. FEC-OTI-Scheme-Specific-Info.
These optional FDT Instance data elements may or may not be included for FLUTE in IPDC:

. Complete (the signalling that an FDT Instance provides a complete, and subsequently not modifiable, set of
file parameters for a FLUTE session may or may not be performed according to this method);

. FEC-OTI-FEC-Encoding-1D (the default value is FEC Encoding ID 0);
. FEC-OTI-FEC-Instance-1D;

. Content_Encoding;

. Transfer_length;

. Content-MD5 (Checksum of the file as defined in [3]).

6.1.14.4 Signalling of parameters Out-band

Support of session description asin clause 6.1.13 shall be supported. Use of other data formats and protocols for
out-of-band (of a FLUTE session) signalling may be supported but not specified further by the present document.

ETSI

ETSI TS 102 472 V1.1.1 (2006-06)

6.1.15 FDT schema

The following XML schema shall be used for the FDT instance.

26 ETSI TS 102 472 V1.1.1 (2006-06)

<xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

</xs:schema>

6.2 Download & carousel mechanisms

6.2.1 Types of file delivery sessions
There are five types of file delivery sessions that are specified on the basis of FLUTE:
. Static file delivery session.
. Fixed content delivery session.
. Dynamic file delivery session.
. Static file delivery carousel.
. Dynamic file delivery carousel.

The type of the file delivery session SHALL be determined from the usage of FLUTE. In the following, a description of
each of the file delivery session typesis given. The rules of how to use FLUTE to realize the session are also specified.

Clause 6.2.2 describes means to signal and determine session completeness for the different session types.
6.2.1.1 Static file delivery session

6.2.1.1.1 Definition

A Static file delivery session is defined as afile delivery session that carries a predefined set of files. The version of a
file may change during the lifetime of the session, however only one version of afileis delivered at any point of time.

6.2.1.1.2 Implementation using FLUTE
A static file delivery session isrealized with FLUTE as follows:

. At least one FDT Instance, which contains the fully exhaustive list of mappings between each TOI and the
respective file parameters, SHALL be delivered. This FDT Instance sets the attribute "Complete" to "TRUE".

. Some FDT Instances may add parameters which were not present in previously delivered FDT instances
(e.g. file size), further the values of some parameters may be changed (e.g. file size).

. An FDT Instance can be repeated several times during the file delivery session.

ETSI

27 ETSI TS 102 472 V1.1.1 (2006-06)

6.2.1.2 Fixed content delivery session

6.2.1.2.1 Definition

Fixed content delivery session is a special type of static file delivery session where the set of files and their
version/content can not change during a session. Figure 4 gives an example of a fixed content delivery session.

6.2.1.2.2 Implementation using FLUTE
A fixed content delivery session isrealized with FLUTE asfollows:

e Each FDT Instance delivered SHALL contain the fully exhaustive list of mappings between each TOI and the
respective file parameters.

« AnFDT Instance can be repeated several times during the file delivery session.

e Each FDT Instance sets the attribute "Complete” to "TRUE".

One Shot Delivery with a Single FDT Instance

FDT =]
file info ‘ > file info |:1‘> 'Q’/
SRy — Qg/

A —
= ~[] > B
= he) >
content Receivers
(files) Objfc'[objsect objzect objlect objoect Wanting
content

Figure 4. Example of fixed content delivery session

6.2.1.3 Dynamic file delivery session

6.2.1.3.1 Definition

Dynamic file delivery session is defined as afile delivery session, which carries a possibly changing set of files.

6.2.1.3.2 Implementation using FLUTE

In adynamic file delivery session the basic rules of FLUTE session dynamics apply.
6.2.1.4 Static file delivery carousel

6.2.1.4.1 Definition

Static carousel

—__ F—=— @
s
,mgagh/g E

object object object object object object object object object object
4 3 2 1 0 4 3 2 1 0

Figure 5. Example of static file delivery carousel

ETSI

28 ETSI TS 102 472 V1.1.1 (2006-06)

Static file delivery carousel is a possibly time-unbounded file delivery session in which afixed set of unchanging files
are delivered. The concept of a static file delivery carousdl isillustrated in figure 5.

6.2.1.4.2 Implementation using FLUTE

A static file delivery carousel isrealized as fixed content delivery sessionin clause 6.2.1.2. The only difference is that
in the static file delivery carousel datafor the FDT and the objectsis sent continuously completely during the session,
which is possibly unbounded in time.

In the case that the Compact No-Code FEC Scheme is used then the FDT and each object are repeated one or more
times completely during the session.

In the case that the Raptor FEC Scheme is used, then data for a given object may include Raptor-encoded repair
symbols in addition to the original source symbols. In particular, file reception time will be minimized if symbols are
never repeated until all 65,536 possible symbols (source and repair) have been sent.

Note that packets for each file may be sent together as a block or packets from multiple files may be interleaved.
6.2.1.5 Dynamic file delivery carousel

6.2.1.5.1 Definition

Dynamic carousel

{change - ___ F—— [FDT 7L
ange.

PN Iy a3
- eyl ==
[

=

object object object object object object object object object object
0 3 5 1 0 4 3 2 1 0

Figure 6: Example of dynamic file delivery carousel

A dynamic file delivery carousel is a possibly time-unbounded file delivery session in which a changing set of possibly
changed/added/deleted files is delivered. The concept of dynamic file delivery carousel isillustrated in figure 6.

In adynamic file delivery carousel the receiver can detect the change in carousel information by observing the FDT
instance number changes.

Another example of dynamic file delivery carousel is given below.

Table 1: Example of a file delivery sequence in a dynamic file delivery carousel

Round FDT instance Files being delivered Notes
number
1 1 Filel, File2, File3 Initial situation
2 2 Filel, File2 v2, File3 File2 changed
3 3 Filel, File2 v2, File3, File4 File4 added
4 3 Filel, File2 v2, File3, File4 Unchanged
5 4 Filel v2, File2 v2, File4 Filel changed,
File3 deleted
6.2.1.5.2 Implementation using FLUTE

A dynamic file delivery carousel isrealized in the same way as dynamic file delivery session specified in clause 6.2.1.3.
The only difference isthat in the dynamic file delivery carousel the datafor FDT and the objects is sent continuously
during the session, which is possibly unbounded in time. Both the FDT Instance and the set of files and their content
may change during transmission.

In the case that the Compact No-Code FEC Scheme is used then the FDT and each object are repeated one or more
times completely during the session.

ETSI

29 ETSI TS 102 472 V1.1.1 (2006-06)

In the case that the Raptor FEC Scheme is used, then data for a given object may include Raptor-encoded repair
symbols in addition to the original source symbols. In particular, file reception time will be minimized if symbols are
never repeated until all 65,536 possible symbols (source and repair) have been sent.

Note that packets for each file may be sent together as a block or packets from multiple files may be interleaved.

6.2.2 Session completeness

It isimportant to the terminal to know when a given session is assumed to be complete enough for the receiver. A
session is complete if the terminal does not expect further data of interest anymore. In that case the terminal SHOULD
leave the file delivery session.

Session completeness is well defined in the case of fixed content sessions, where thefile list is fixed and the data itself
will not change during the session. However, in the cases of static file delivery session, and static file carousel, the files
to be delivered may be updated at unknown points of time during the lifetime of the session. Furthermore, in the case of
dynamic file delivery session, new files may be added during the lifetime of the session. Also, in the case of file
carousels, the end time of the session may be unbounded or may be far in the future. In those cases, it is not possible to
define absol ute completeness of a session. The notion of complete enough is defined to indicate the point in time where
the terminal can assume that no more data of interest will be delivered over the session.

In the following, the session completeness criteriafor the different session types are defined.

6.2.2.1 Session completeness for fixed content sessions
Thereceiver MAY consider the session to be complete when:
. Theterminal has received one FDT instance with complete-attribute set; AND;
- For every file declared in that FDT instance:
L] the terminal has received al corresponding packets successfully;
OR
L] the terminal has received at |east one packet with the B-flag for that file;
OR
. The terminal receives one or more packets with A-flag set.
6.2.2.2 Session completeness for static file delivery sessions and static file delivery
carousels
The receiver MAY consider the session to be complete enough when:
. The terminal has received one FDT instance with complete-attribute set; AND;
- For every file declared in that FDT instance:

L] the terminal has successfully received all packets of the most up-to-date version (known to the
terminal) of that file;

OR
" the terminal has received at least one packet with the B-flag for that file;
OR

. The terminal receives one or more packets with A-flag set.

ETSI

30 ETSI TS 102 472 V1.1.1 (2006-06)

6.2.2.3 session completeness for dynamic file delivery sessions and dynamic file
delivery carousels

The receiver MAY use the smart timeout algorithm to determine whether the dynamic session is complete enough.

The smart timeout algorithm is used to determine completeness of a dynamic session. The algorithm is based on using
three timers (fragment wait timer, table wait timer and object wait timer) bound to the file delivery session. These
parameters enable the creator and sender to determine the semantics of dynamic file delivery session. When receiving
timer values, the receivers know when to assume session to be complete enough.

13

7,8 1,2,3,4

TOs
received

Session
complete

Figure 7: State machine

The state machine of figure 7 is used to specify the operation for determining the completeness. In the "Wait" state, the
receiver iswaiting for aTOI, or for adeclaration of aTOIl. Inthe"ldle" state, the receiver isidle and no timers are
active. Inthe "TOsreceived" dtate, all the declared objects have been fully received. The session may be left in the error
state, which indicates that an error has happened, or in "session complete" state, which indicates that a sessionis
complete.

There are anumber of events, which can trigger transition from the "Wait" state. Transition 1 istriggered when an FDT
that contains one or more new TOIs, that is TOIs that have not been previoudly declared, is received. Thistriggersthe
setting and starting of a fragment wait timer t1 for each of the new TOlIs. The transition 1 isto the "Wait" state.
Transition 2 istriggered in response to the event of receiving a packet for a TOI that has an active fragment wait timer
t1. Theresponseis to stop the fragment wait timer t1 for that TOI. This transition 2 can occur only if there still are one
or more active fragment wait timerstl or table wait timerst2. The transition 2 returns to the "Wait" state. Transition 3 is
triggered by the event of receiving an FDT that contains a declaration for a TOI that has an active table wait timer t2.
This can occur only if there are still one or more active table wait timerst2 or fragment wait timerstl. On the transition
3 the active wait table t2 for that TOI is stopped. The third transition 3 isto the "Wait" state. Transition 4 istriggered by
the event of receiving afirst packet for aTOI, whichisnot an FDT table. Thistriggers the starting of atable wait timer
t2 for that TOI. The transition is to the "Wait" state.

Transition 5 is made from the "Wait" state to the"ldle" state in response to the event of receiving a packet for aTOI
that has an active fragment wait timer t1. Transition 5 occurs only if there are no other active table or fragment wait
timers. The fragment wait timer t1 for that TOI is stopped. Transition 6 istriggered by the event of receivingan FDT
that contains a declaration for a TOI that has an active table wait timer t2. The table wait timer for that TOI is stopped
as a conseguence of thistransition 6. Transition 6 is from the "Wait" state to the "ldle" state.

ETSI

31 ETSI TS 102 472 V1.1.1 (2006-06)

Wheninthe"ldl€" state, there are three possible transitions. Transition 7, isin response to the event of receiving aFDT
that contains one or more new TOIs. Thistriggers a fragment wait timer t1 to be set and start for each of those new
TOls. Thetransitionisfromthe "Idle" state to the "Wait" state. Another transition 8 from the "Idle" state to the "Wait"
state occurs in response to the receiving afirst packet for a TOI which isnot an FDT table. Thistriggers the starting of a
table wait timer t2 for that TOI. The transition 9 from the "Idle" state is to the objects "TOs received” state. This
transition 9 occurs when the last missing file fragment is received. This triggers the resetting and starting of the object
wait timer t3.

When inthe "TOs received” state, three transitions are possible. Transition 10 isto the "Wait" state, and occurs when an
FDT, which contains one or more new TOIs, isreceived. Thistriggers the setting and starting of a fragment wait timer
t1 for each of the new TOlIs. Optionaly, thistransition 10 may cause the object wait timer t3 to be stopped. Transition
11 istothe "Wait" state, and occurs when a packet with a TOI that has not been declared in any received FDT instance
so far isreceived. Thistriggers the setting and starting of atable wait timer t2 for the received new TOIs. Optionaly,
thistransition 11 may cause the object wait timer t3 to be stopped. Transition 12 is from the "TOs received" state to the
session complete state. This transition 12 occurs when the object wait timer t3 expires.

A transition from the "Wait" state to the "Error" state occurs when any of the fragment wait timers t1 or the table wait
timerst2 for any TOIs expires. Thistransition islabelled 13 in the diagram. The parameters SHOULD be signalled in
the session description as described in clause 6.1.13.2.

7 Associated delivery procedures

7.1 Introduction

Associated delivery procedures are applicable to content delivery in IPDC over DVB-H. These facilities are especially
provided to receivers that have an interactive channel.

. Post-repair of files, initially delivered as part of a FLUTE session, are specified. These repair mechanisms start
with a phase where receivers request for the repair of missing elements (part of file(s), entirefile(s)). The
repair data may be sent either in a point-to-point or in a point-to-multipoint way.

. Reception reporting procedures are specified, as well. These procedures allow areceiver to report the complete
reception of one or more files, and also to report statistics about a streaming session.

The terminal sends the repair requests and delivery confirmation reports to ad-hoc servers. To avoid network congestion
in the uplink and downlink directions, and also to protect servers against overload situations, the messages from
receivers shall be distributed over time and resources (network elements). The parameters of time-window and servers
location shall be signalled to the receivers.

7.2 Signalling of associated delivery procedures

When associated delivery procedures are deployed with a given delivery session, asignalling shall be sent to the
receivers to describe the existence and the configuration parameters of one or more associated delivery procedures.

This information may be delivered:

. within the ESG prior to the content delivery session along with the session description (out-of-band of that
session); or

. in-band within the content delivery session.
The preferred format for an instance of configuration parameters of an associated delivery procedureis an XML file.

The latest version of the configuration file (as described in clause 6.1.12) shall take priority, such that configuration
parameters received prior to, and out-of-band of, the content delivery session they apply to are regarded as " global
defaults’, and configuration parameters received during, and in-band with the content delivery session, overwrite the
earlier received parameters. This provides a method to update parameters dynamically on a short time-scale, but as
would be desirable where dynamics are minimal, it is not mandatory. In the ESG, the associated delivery procedure
description instance is clearly identified using a URI, to enable cross-referencing of in and out-of-band configuration
files.

ETSI

32 ETSI TS 102 472 V1.1.1 (2006-06)

The MIME type <text/xml> should be used for associated delivery procedure instances.
The XML schema for an instance of an associated delivery procedure configuration is defined in clause 7.5.

All configuration parameters of one associated delivery procedure are contained as attributes of an
"associ at edPr ocedur eDescri pti on" element. The elements (e.g. "post Fi | eRepai r" and "post Recept i onReport ™) of
an "associ at edPr ocedur eDescri pti on" element identify which associated delivery procedure(s) to configure.

7.3 File repair mechanisms

7.3.1 General procedure

The purpose of the File Repair Procedureisto repair lost or corrupted file fragments from a given file delivery. Three
problems must generally be avoided:

. Feedbacks implosion due to a large number of receivers requesting simultaneous file repairs. This would
congest the uplink network channels.

. Downlink network channel congestion to transport the repair data, as a consequence of the simultaneous
clients requests.

. Repair server overload, caused again by the incoming and outgoing traffic due to the clients" requests arriving
at the server, and the server responses to serve these repair requests.

The three problems are interrelated and must be addressed at the same time, in order to guarantee a scalable and
efficient solution for file repair.

The principle to protect network resourcesisfirst to spread the file repair request load in time and across multiple
servers, and secondly to give the possibility to send the repaired elements to the receivers either in unicast
(point-to-point) or in multicast (point-to-multipoint) depending on defined efficiency thresholds.

The overall procedure is the following:
The receiver:
1) Identifiesthe missing datafrom afile delivery.
2) Cadculates arandom Back-off Time and selects a server randomly out of alist.
3) Sendsarepair request message to the selected server at the calculated time.
Then the server:

1) Respondswith arepair response message either containing the requested data, or redirecting the receiver to
another repair server, or information about the access to a point-to-multipoint file repair session. Error cases
messages are specified, aswell.

7.3.2 Triggering associated delivery procedures for file delivery sessions

The identification of the end of file delivery and end of file delivery session is specified in clause 6.1.9.

Theterminal SHALL not start the associated delivery procedure back-off timer for older versions of afile.

7.3.3 Identification of repair needs

At the end of afile delivery, the receiversidentify their repair needs associated to that file. The session description and
FLUTE provide the receiver with sufficient information to determine the source block and encoding symbol structure of
each file. From thisinformation, the receiver is able to determine set of symbols sufficient to complete reception of the
file. The receiver may request a specific set of symbols from the repair server, in the case that the Raptor FEC Scheme
is used, the receiver may request a number of encoding symbols sufficient to recover the file.

ETSI

33 ETSI TS 102 472 V1.1.1 (2006-06)

In the case that the raptor fEC scheme is used, the receiver should either:

. identify a minimal set of encoding symbolsto be requested that, combined with the already received symbols,
allow the Raptor FEC decoder to recover thefile; or

. identify a number of new repair symbols sufficient to recover thefile.

7.3.4 Distribution of repair requests over time
The receivers shall send their repair requests during a defined time window.

An offsetTime is first signalled to the receivers as an associated delivery procedure configuration parameter. Thistimeis
the time that areceiver shall wait after the end of a given file delivery to start the file repair procedure.

The RandomTimePeriod that is signalled to the receivers as another associated delivery procedure configuration
parameter refers to the time window length over which areceiver shall calculate arandom time for the initiation of the
file repair procedure. The method provides for statistically uniform distribution over arelevant period of time.

The receiver shall calculate a uniformly distributed RandomTime out of the interval between 0 and RandomTimePeriod.

The sending of thefile repair request message shall start at Back-offTime = offsetTime + RandomTime, and this
calculated time shall be arelative time after the file delivery has ended. The receiver shall not start sending the repair
request message(s) before this calculated time has elapsed after the initial transmission ends.

The back-off time is expressed in seconds.

7.34.1 Reset of the back-off timer

The reception of an updated (higher version number) associatedProcedureDescription configuration file and/or an
updated sessionDescription shall overwrite the timer parameters used in the back-off algorithm. Except in the case that
the offset-time, random-time-period and session end time parameters are identical to the earlier version; the back-off
time shall be recalculated. For currently running timersthis requires areset.

7.3.5 Distribution of repair requests over repair servers

The receiver randomly selects one of the server URIs from the list of repair serversthat is provided by the associated
delivery procedure description instance.

The server URIs may a so be provided as I P addresses to avoid DNS queries for address resolution. The repair server
URIs of asingle associated delivery procedure description should be of the same type, e.g. all IP addresses of the same
version, or al domain names. The number of URIsis determined by the number of "serverURI" elements, each of
which shall be a child element of the "procedure” element. The "serverURI" element provides the referencesto the file
repair server viathe standard XML Schema "anyURI" type value. At least one "serverURI" element shall be present.

7.3.6 File repair request message

Once missing file datais identified, the receiver sends one or more messagesto a repair server requesting transmission
of datathat allows recovery of missing file data. All point-to-point repair requests for agiven file delivery shall take
placeinasingle TCP session using the HTTP 1.1 protocol [20]. If the receiver needs repair data for more than one file
received, the receiver shall send separate HTTP GET requests for each file. The repair request is routed to the repair
server | P address resolved from the selected "serverURI™.

If there is more than one repair request to be made for a given file, these are sent immediately after the first.

The receiver is recommended to request exactly the number of encoding symbols, per source block, that would be the
minimum to complete the download/reconstruction of a file and shall not request more than this number. Where source
symbols were among the transmission (i.e. Compact No-Code FEC or Raptor FEC), then only source symbols shall be
requested for repair.

ETSI

34 ETSI TS 102 472 V1.1.1 (2006-06)

7.3.6.1 File repair request message format

After the file delivery, the receiver identifies the missing file data and requests for their transmission. The regquested
data are either the whole file (identified by its URI) or alist of missing file elements. The individual file elements are
identified by their FEC Payload ID as used by the ALC/FLUTE. The client makes afile repair request using the HTTP
request method GET. The Request URI used with the GET method shall include the service URI and a query string.
The service URI shall point to the repair service and may either be arelative path or and absolute URI. In case the
service URI isthe relative path of the service, the URL indicated by the Host header field shall be used as the base URI
for the request. If no Host header field is present in the message and arelative service URI is used, the message shall be
treated as an invalid HTTP request. The query string of the Request URI shall include the URI of the file for which it is
requesting the repair datain the query part of the request. The file URI is required to uniquely identify thefile
(resource). The (SBN, ESI) of encoding symbols sufficient to complete the file reception are a so encoded in the query
part of the Request URI.

An HTTP client implementation might limit the length of the URL to afinite value, for example 256 bytes. In the case
that the length of the URL-encoded file URI and (SBN, ESI) data exceeds this limit, the receiver shall distribute the
URL-encoded datainto multiple HTTP GET requests, but using the same TCP connection.

In the following, the details of the general syntax used for the repair requests are given.
The HTTP GET with anormal query shall be used to request the missing data.
The HTTP URL syntax is as follows:
repair_request URL = repair_server URI "?' query_string
where:

. Repair_server_URI = <the URL of the repair server selected from the associated delivery procedure
description and which points to arepair service or the relative path of the repair service with respect to the
repair server URL given by the Host header field>;

. query_string = file_ URI *("&" sbn_info).

file_URI = "fileURI=" URI-reference; URI-referenceis the file URI asindicated by the "Content-Location" field of the
corresponding FDT.

. application = "ipdc-flute-repair”;

. sbn_info ="SBN=" shn_range;

. sbn_range=(sbnA ["-" sbnZ]) / (sbnA [*;" esi_info]);

. es_info="ESI=" (esi_range x("," es_range)) /(esiA "+ " number_symbols);
. es_range=esA["-"esiZ];

. sbnA = 1xDIGIT; the SBN, or the first of arange of ESIs;

. sbnZ = 1xDIGIT; the last SBN of arange of ESls;

. esA = 1xDIGIT; the ESI, or the first of arange of ESls;

. esiZ = 1xDIGIT; thelast ESI of arange of ESIs;

. number_symbols = 1xDIGIT; the number of additional symbols required.

For example, assume that in a FLUTE session a 3gp file with URI = www.example.com/news/latest.3gp was delivered.
After the file delivery, agiven receiver detects that it did not receive two packets with SBN = 5, ESI = 12 and SBN=20,
ESI = 27. Thenthe HTTP GET request is as follows:

. GET.
fipdc_file_repair_service?ileURI=www.example.com/news/latest.3gp& SBN=5;ESI=12+SBN=20;ES|=27 HTTP/1.1

Host: http://www.repairserver.com

ETSI

35 ETSI TS 102 472 V1.1.1 (2006-06)

For messaging efficiency, the formal definition enables several contiguous and non-contiguous ranges to be expressed
inasingle query:

7.3.7

A symbol of asource block (like in the above example).

A range of symbols for a certain source block (e.g....& SBN=12;ESI=23-28).
A list of symbolsfor acertain source block (e.g....& SBN=12;ESI=23,26,28).
All symbols of a source block (e.g....& SBN=12).

All symbols of arange of source blocks (e.g....& SBN=12-19).

Non-contiguous ranges (e.g.1....& SBN=12;ES|=34& SBN=20;ESI=23 also,
e.g.2...& SBN=12-19& SBN=28;ES|=23-59& SBN=30;ESI=101).

A number of additional symbols starting from a given ESI (e.g. ...& SBN=12;ESI=65+20).

Repair server behaviour

The repair server behaviour depends on the selected repair strategy, and can be as follows:

1)

2)
3)

7.3.7.1

point-to-point repair independently of the number of requests for encoding symbols/source blocks of a given
file;

point-to-multipoint repair for certain encoding symbols/source blocks or files of afile delivery session;

on the basis of the requests that have been received, the server may decide to switch from point-to-point repair
strategy to point-to-multipoint repair strategy for a given set of encoding symbols/source blocks of a given file
of the file delivery session. The server may use a threshol d-dependent algorithm to determine when to switch
to point-to-multipoint delivery.

File repair response message

Once the repair server has assembled a set of file elements that contain sufficient data to allow the receiver to
reconstruct the file data from a particular file repair request, the file repair server sends one message to the receiver.
Each file repair response occurs in the same TCP and HTTP session as the repair request that initiated it.

A receiver shall be prepared for any of these 4 response scenarios.

The server returns arepair response message where a set of encoding symbols formsan HTTP payload as
specified below.

The server redirects the client to a broadcast/multicast delivery (afile delivery session).

The server redirects the client to another repair server (if a server isfunctioning correctly but is temporarily
overloaded).

AnHTTP error code is returned.

For (reasonably) uniformly distributed random data losses, immediate point-to-point HTTP delivery of the repair data
will generally be suitable for all clients. However, broadcast/multicast delivery of the requested data may be desirable in
some cases.

A file carousel (al or part of the files from afile delivery session) is aready scheduled and the repair server
prefersto handle repairs after that file carousel.

Many terminals request the same data (over a short period of time) indicating that broadcast/multicast delivery
of the repaired data would be desirable.

In this case aredirect to the broadcast/multicast repair session for terminals that have made a repair request would be
advantageous.

ETSI

36 ETSI TS 102 472 V1.1.1 (2006-06)

7.3.7.2 File repair response messages codes

In the case that the file repair server receives a correctly formatted repair request which it is able to understand and
properly respond to with the appropriate repair data, the file repair server shall attempt to serve that request without an
error case.

For adirect point-to-point HT TP response with the requested data, the file response message shall report a 200 OK
status code and the file repair response message shall consist of HTTP header and file repair response payload (HTTP
payload), as defined in clause 7.3.7.3. If the client receives a 200 OK response with fewer than all the quantity of
requested symbolsit shall assume that the repair server wishes the missing symbols to be requested again (due to its
choice or inability to deliver those symbols with this HTTP response).

For aredirect case the HTTP File Repair Server uses the HTTP response status code 302 (Found - Redirection) to
indicate to the receiver that the resource (file repair data) is temporarily available viaa different URI. The temporary
URI isgiven by the Location field in the HTTP response. In the case of aredirect to another file repair server, this
temporary URI shall be the URL of that repair server.

In the case of aredirect to a broadcast/multicast delivery, the temporary URI shall be the URI of the Session
Description (SDP file) of the broadcast/multicast (repair) session as described in clause 7.3.8.

Other HTTP status codes [20] shall be used to support other cases. These may include server errors, client errors (in the
file repair request message), server overload and redirection to other repair servers.
7.3.7.3 Repair server response message format for HTTP carriage of repair data
Thefile repair response message consists of HTTP header and file repair response payload (HT TP payload).
The HTTP header shall provide:

. HTTP status code, set to 200 OK.

. Content type of the HTTP payload (see below).

. Content transfer encoding, set to binary.

The Content-Type shall be set to "application/simpleSymbol Container", which denotes that the message body is a
simple container of encoding symbols as described below.

This header is asfollows:
. HTTP/1.1 200 OK.
. Content-Type: application/simpleSymbol Container.
. Content-Transfer-Encoding: binary.
NOTE: Other HTTP headers may also be used but are not mandated by this mechanism.

Encoding symbols are included in the response in groups. Each group is preceded by an indication of the number of
symbols within the group and an FEC Payload 1D coded according to the FEC scheme used for the original file delivery
session. The FEC Payload ID identifies al the symbolsin the group in the same way that the FEC Payload ID of an
FEC source or repair packet identifies all the symbolsin the packet. The file repair response payload is constructed by
including each FEC Payload 1D and Encoding Symbol group one after another (these are aready byte aligned). The
order of these pairsin the repair response payload may be in order of increasing SBN, and then increasing ESI, value;
however no particular order is mandated.

A single HTTP repair response message shall contain, at the most, the same number of symbols as requested by the
respective HTTP repair request message.

The UE and file repair server already have sufficient information to calcul ate the length of each encoding symbol and
each FEC Payload ID. All encoding symbols are the same length; with the possible exception of the last source
encoding symbol in the repair response. All FEC Payload | Ds are the same length for one file repair request-response as
asingle FEC Schemeisused for asinglefile.

Figure 8 illustrates the complete file repair response message format (box sizes are not indicative of the relative lengths
of the labelled entities).

ETSI

37 ETSI TS 102 472 V1.1.1 (2006-06)

HTTP Header

Length FEC Payload .
Indicator ID Encoding Symbols
Length FEC Payload .
Indicator ID Encoding Symbols
Length FEC Payload .
Indicator D Encoding Symbols

NOTE 1: Length Indicator (2 bytes): indicates the number of encoding symbols in the group (in network byte order,
i.e. high order byte first)

NOTE 2: FEC Payload ID: indicates which encoding symbols are included in the group. The format and
interpretation of the FEC Payload ID are dependent on the FEC Scheme in use.

NOTE 3: Encoding Symbols: contain the encoding symbols. All the symbols shall be the same length.

Figure 8: File Repair Response Message Format

7.3.8 File repair response for broadcast/multicast of repair data

Clause 7.3.9 defines the behaviour of the terminal, in order to receive point-to-multipoint repair data. Annex B provides
an algorithm for the selection of the repair mode. The FEC Object Transmission Information and Content-Encoding for
filesincluded in the broadcast/multicast session shall be the same as for the original file delivery session.

Prior to the decision to use broadcast/multicast repair, each repair response shall be provided by HT TP according to
clause 7.3.7.1.

The HTTP Repair Server uses the HT TP response status code 302 (Found - Redirection) to indicate to the terminal that
the resource (file repair data) is temporarily available via adifferent URI. The temporary URI is given by the Location
field in the HTTP response and is the URI of the Session Description (SDP fil€) of the broadcast/multicast repair
session.

Where feasible, it is recommended that the same file delivery session that delivered the original data be used for the
broadcast/multicast repair. If this conflicts with the session end time limit of the Session Description then a new version
of the Session Description shall be sent with an updated (extended) session end time. This shall be sent in-band of that
file delivery session.

In some cases this may not be feasible and a different (possibly new) file delivery session may be defined for the repair.

The SDP file for broadcast/multicast repair session may be carried as payload (entity-body) in the HT TP response
which is especially useful if the broadcast/multicast repair session isanew (or recently end time modified) FLUTE file
delivery session and other means of service announcement prior to this were not feasible.

The delivery method's associatedProcedureDescription may be updated and the new version transmitted in-band with
the file delivery session so that currently active client back-off timers are reset, thus minimizing additional client
requests until after the broadcast/multicast repair session. The server shall be prepared for additional requestsin any
case as successful reception of the updated associatedProcedureDescription can not be assured in all cases.

The existence of a broadcast/multicast file repair session is signalled by the inclusion of the optional bmFileRepair
procedure in the updated associatedProcedureDescription. Thisis signalled by the bmFileRepair element with asingle
"sessionDescriptionURI" attribute of type "xs.anyURI" which specifies the URI of the broadcast/multicast file repair
session's session description.

In the cases where the same I P addressing and TSI is used for the broadcast/multicast repair session as the original file
delivery session, the terminal simply shall not leave the group. Otherwise, the terminal shall join to the broadcast repair
session as it would for any delivery session.

A broadcast/multicast file repair session behaves just as a file delivery session, and the determination of end of files and
session, and use of further associated delivery procedures uses the same techniques as specified for the file delivery
method.

ETSI

38 ETSI TS 102 472 V1.1.1 (2006-06)

7.3.9 Threshold-dependent repair strategy

At the start of afile delivery session or within an update to the associatedProcedureDescription, the server indicates to
the terminal s the existence of a point-to-multipoint repair session. The terminal shall join the indicated
point-to-multipoint repair session at the start of post-repair mechanism (as defined in clause 7.3.2), if it did not
completely recover the file. The terminal may send point-to-point repair requests at arandom time instant and to a
randomly selected repair server as defined in clause 7.3. If the service operator decidesto switch to the
point-to-multipoint repair mode, this decision shall be signalled to the terminal s that send point-to-point repair requests,
by sending a redirect response to the repair requests. The server shall also declare the file by sending an FDT Instance
with an updated and valid (in the future) expiry time to the point-to-multipoint repair session. If the service operator
decides to use point-to-point repair mode for a given file, it shall not send any dataor FDT Instance for that file on the
point-to-multipoint session. If the terminal does not receive an FDT Instance declaring a file over the
point-to-multipoint session for the total duration of the repair session (which is RandomTimePeriod+offsetTime) after
the start of the repair mechanism for the given file (or after the start of the indicated repair session, if thisoneisin the
future), it shall assume that the service operator will not use point-to-multipoint to repair that given file. In that case, the
terminal may leave the point-to-multipoint repair session.

7.3.10 Server Not Responding Error Case

In the error case where aterminal determines that its selected file repair server is not responding it shall return to the
serverURI list of repair servers and uniformly randomly select another server from the list, excluding any serversit has
determined are not responding. All the repair requests message(s) from that terminal shall then be immediately sent to
the newly selected file repair server.

If al of the repair servers from the serverURI list are determined to be not responding, the terminal may wait for an
update of the associated delivery procedure description, in which an up to date list of the repair serversis made
available. Otherwise terminal behaviour in this case is unspecified.

A terminal determinesthat afile repair server is not responding if any of these conditions apply:
1) Theterminal isunable to establish a TCP connection to the repair server.

2) Therepair server does not respond to any of the HTTP repair requests that have been sent by the terminal (itis
possible that second and subsequent repair requests are sent before the first repair request is determined to be
not responded to).

3) Therepair server returns an unrecognized message (not a recognizable HT TP response).

4) Theserver returns an HTTP server error status code (in the range 500-505).

7.4 Reception reporting procedure

Following successful reception of content whether through the broadcast channel or the point-to-point channel, a
reception reporting procedure can be initiated by the receiver to the server.

For file delivery, the reception reporting procedure is used to report the compl ete reception of one or more files. For
streaming delivery, the reception reporting procedure is used to report statistics on the stream reception.

If the server provided parameters requiring reception reporting confirmation then the receiver shall confirm the content
reception.

If reception reporting is requested for statistical purposes the server may specify the percentage subset of receiversit
would like to perform reception reporting.

Transport errors can prevent areceiver from deterministically discovering whether the reception reporting associated
delivery procedureis described for a session, and even if thisis successful whether a sample percentage is described. A
receiver shall behave according to the information it has even when it is aware that this may be incomplete.

Thereceiver:
1) Identifiesthe complete reception of a content item (e.g. afile).

2) Determinesthe need to report reception. See clause 7.4.3.

ETSI

39 ETSI TS 102 472 V1.1.1 (2006-06)
3) Selectsatime (Request time) at which areception report request will be sent and selects a server from alist
both randomly and uniformly distributed. See clause 7.4.4 and clause7.4.5.
4) Sends areception report request message to the selected server at the selected time.
Then the server:
1) Responds with areception report response message either containing the requested data, or alternatively,
describing an error case.
7.4.1 Identifying complete file reception from file delivery

A fileis determined to be completely downloaded when it is fully received thanks to one or many delivery iterations,
and /or FEC decoding and/or a subsequent File Repair Procedure. The purpose of determining file delivery
completenessis to determine when it is feasible for aterminal to compile the reception report for that file.

7.4.2 Identifying complete delivery session reception

Delivery sessions (file and streaming) are considered compl ete when the "stop time" value of the session description
(from "t="in SDP) isreached. If the "stop time" is unbounded ("0") then this parameter is not used for identifying
completed sessions.

Delivery sessions are also considered complete when the terminal decides to exit the session — where no further data
from that session will be received.

For file delivery sessions, FLUTE provides a A-flag which, when used, indicates to the terminal that the sessionis
complete.
7.4.3 Determining whether a reception report is required

Upon full reception of a content object or when a session is complete, the receiver must determine whether a reception
report isrequired. An associated delivery procedure description indicates the parameters of a reception reporting
procedure (which is transported using the same methods as the ones that describe File Repair).

A delivery method may associate zero or one associated delivery procedure descriptions with a delivery session. Where
an associated delivery procedure description is associated with a session, and the description includes a
postReceptionReport element, the terminal shall initiate a reception reporting procedure. Reception reporting behaviour
depends on the parameters given in the description as explained below.

The Reception Reporting Procedure isinitiated if:
a) A postReceptionReport element is present in the associated delivery procedure description instance.
One of the following will determine the terminal behaviour:

a) reportTypeis set to rack (Reception Acknowledgement). Only successful file reception is reported without
reception details.

b) reportTypeisset to star (Statistical Reporting for successful reception). Successful file reception is reported
(as with rack) with reception details for statistical analysis in the network.

c) reportTypeis set to star-all (Statistical Reporting for all content reception). The same as star with the addition
that failed reception is also reported. star-all is relevant to both streaming and file delivery.

The reportType attribute is optional and behaviour shall default to rack when it is not present.

The samplePercentage attribute can be used to set a percentage sample of receivers which should report reception. This
can be useful for statistical data analysis of large populations while increasing scalability due to reduced total uplink
signalling. The samplePercentage takes on a value between 0 and 100, including the use of decimals. This attribute is of
astring type and it is recommended that no more than 3 digits follow a decimal point (e.g. 67,323 is sufficient
precision).

ETSI

40 ETSI TS 102 472 V1.1.1 (2006-06)

The samplePercentage attribute is optional and behaviour shall default to 100 (%) when it is not present. The
sampl ePercentage attribute may be used with star and star-al, but shall not be used with rack.

When the samplePercentage is hot present or its value is 100 each terminal which entered the associated session shall
send areception report. If the samplePercentage were provided for reportType star and star-all and the value is less than
100, the terminal generates a random number which is uniformly distributed in the range of 0 to100. The terminal sends
the reception report when the generated random number is of alower value than samplePercentage value.

7.4.4 Request time selection
The receiver selects atime at which it isto issue a delivery confirmation request.
Back-off timing is used to spread the load of delivery confirmation requests and responses over time.

Back-off timing is performed according to the procedure described in clause 7.3.4. TheoffsetTime and
randomTimePeriod used for delivery confirmation may have different values from those used for file-repair and are
signalled separately in the postReceptionReport of an associated delivery procedure description instance.

In general, reception reporting procedures may be less time critical than file repair procedures. Thus, if a postFileRepair
timer may expire earlier than a postReceptionReport, network resources may be saved by using the file
repair point-to-point connection also for reception reporting.

The default behaviour is that aterminal shall stop its postReceptionReport timers which are active when a
postFileRepair timer expires and results in the successful initiation of point-to-point communications between terminal
and server.

In some circumstances, the system bottleneck may be in the server handling of reception reporting. In this case the
forceTimel ndependence attribute may be used and set to true. (false is the default case and would be a redundant use of
this optional attribute). When forceTimel ndependence is true the terminal shall not use file repair point-to-point
connections to send reception reporting messages. Instead it will allow the timers to expire and initiate point-to-point
connections dedicated to reception report messaging.

For star and star-al, session completeness - according to clause 7.4.2 - shall determine the back-off timer initialization
time.

For rack, the complete file delivery session reception - according to clause 7.4.2 - as well as completing any associated
file repair delivery procedure or completing afile carousel shall determine the back-off timer initialization time. racks
shall be only sent for completely received files according to clause 7.4.1.

7.4.5 Reception report server selection

Reception report server selection is performed according to the procedure described in clause 7.3.5.

7.4.6 Reception report message

Once the need for reception reporting has been established, the receiver sends one or more Reception Report messages
to the server. All Reception Report request and responses for a particular transmission should take placein asingle TCP
session using the HTTP protocol [20].

The Reception Report request shall include the URI of the file for which delivery is being confirmed. URI isrequired to
uniquely identify the file (resource).

The client shall make a Reception Report request using the HTTP [20] POST request carrying XML formatted metadata
for each reported received content (file). An HTTP session shall be used to confirm the successful delivery of asingle
file. If more than one file were downloaded in a particular download multiple descriptions shall be added in asingle
POST request.

Each Reception Report isformatted in XML according the following XML schema (clause 7.5.3). An informative
example of asingle reception report XML object is also given (clause 7.5.4).

Multipart MIME (multipart/mixed) may be used to aggregate several small XML files of reception reportsto alarger
object.

For Reception Acknowledgement (rack) a receptionAcknowledgement element shall provide the relevant data.

ETSI

41 ETSI TS 102 472 V1.1.1 (2006-06)

For Statistical Reporting (star/Star-all) a statistical Reporting element shall provide the relevant data.

For both rack and star/star-all (mandatory):

For file delivery, one or more fileURI elements shall specify the set of files which are reported.

For only star/star-all (all optional):

1.4.7

Each fileURI element has an optional receptionSuccess status code attribute which defaults to "true™ ("1")
when not used. This attribute shall be used for star-all reports. This attribute shall not be used for star reports.

The sessionl D attribute identifies the delivery session. Thisis of the format source IP_address+ ":" +
FLUTE_TSI/RTP_source _port.

The sessionType attribute defines the basic delivery method session type used = "download" || "streaming” ||
"mixed".

The serviceld attribute is value and format is taken from the respective servicel D in the ESG Service
Fragment.

The clientld attribute is unique identifier for the receiver.

The serverURI attribute value and format is taken from the respective associatedProcedureDescription
serverURI which was selected by the terminal for the current report. This attribute expresses the reception
report server to which the reception report is addressed.

Reception report response message

An HTTP response is used as the Reception Report response message.

The HTTP header shall use a status code of 200 OK to signal successful processing of areception report. Other status
codes may be used in error cases as defined in [20].

7.5

7.5.1

XML-schema for associated delivery procedures

Generic associated delivery procedure description

Below isthe formal XML syntax of associatedProcedureDescription instances.

ETSI

ETSI TS 102 472 V1.1.1 (2006-06)

43 ETSI TS 102 472 V1.1.1 (2006-06)

7.5.2 Example associatedProcedureDescription instance

Below is an example of an associated ProcedureDescription instance.

7.5.3 XML Syntax for a reception report request

Below isthe formal XML syntax of reception report request instances.

http://www.example.com/associatedProcedure
http://www.example.com/associatedProcedure

ETSI TS 102 472 V1.1.1 (2006-06)

45 ETSI TS 102 472 V1.1.1 (2006-06)

</xs:simpleType>

</xs:schema>

7.5.4 Example XML for the Reception Report Request

<?xml version="1.0" encoding="UTF-8"?>
<receptionReport xmlns="urn:dvb:ipdc:cdp:receptionReportRequest:2005"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:dvb:ipdc:cdp:receptionReportRequest:2005
receptionReportRequest.xsd">
<statisticalReport sessionld="76298746" sessionType="download" serviceld="78237463726">
<fileURI receptionSuccess="true">"http://www.example.com/ipdc-files/file1.3gp"</fileURI>
<fileURI receptionSuccess="true">"http://www.example.com/ipdc-files/file2.3gp"</fileURI>
<fileURI receptionSuccess="true">"http://www.example.com/ipdc-files/file4.3gp"</fileURI>
</statisticalReport>

</receptionReport>

8 Application layer FEC
8.1 FEC Scheme definition

8.1.1 General

This clause defines an FEC Scheme according to [14], for the Raptor forward error correction code defined in annex C
for thefile delivery. This schemeisidentified by FEC Encoding ID 1. The FEC Payload ID format and FEC Object
Transmission Information format are as defined in the following clauses.

Functionally, this FEC Scheme consists of two components:
. Source block and source packet construction and reception.
. Repair packet construction and reception and Raptor FEC encoding and decoding.

The Source Block and Source Packet construction and reception component allows the original source data to be sent
unencoded such that it may be interpreted by terminals which do not support the repair packet reception and Raptor
FEC decoding component as well as by terminal s which do support the repair packet reception and Raptor FEC
decoding component.

Support of the Source Block and Source Packet construction component requires support of the FEC Payload 1D and
FEC Object Transmission Information defined in clause 8.1.2 and 8.1.3 as well as the source packets constructed
according to clause C.3.1 and C.3.2.1. Terminals which support only this component SHALL ignore packets with an
Encoding Symbol 1D which is greater than or equal to the number of source symbolsin the source block.

Support of the Raptor FEC encoding and decoding component requires support of the remainder of annex C.

ETSI

46 ETSI TS 102 472 V1.1.1 (2006-06)

8.1.2 FEC payload ID
The FEC Payload ID shall be a4 octet field defined as follows in figure 9.

Source Block Number (SBN) Encoding Symbol ID (ESI)

Figure 9: FEC Payload ID format

Source Block Number (SBN), (16 bits): An integer identifier for the source block that the encoding symbols within the
packet relate to.

Encoding Symbol ID (ESI), (16 bits): Aninteger identifier for the encoding symbols within the packet.

The interpretation of the Source Block Number and Encoding Symbol Identifier is defined in annex C.

8.1.3 FEC Object Transmission Information
The FEC Object Transmission information shall consist of:

. The FEC Encoding ID.

. The Transfer Length (F).

. The parameters T, Z, N and A defined in annex C.

When EXT_FTI is used to communicate the Object Transmission Information, the FEC Encoding ID and Transfer
Length shall be coded according to FLUTE [3]. The other parameters shall be encoded in the FEC Encoding 1D specific
portion of the EXT_FTI field as shown in figure 10.

General EXT_FTI format Encoding Symbol Length (T)
Number of Source Blocks (2) Number of Sub-Blocks Symbol Alignment
(N) Parameter (A)

Figure 10: FEC Encoding ID-specific EXT_FTI format.

The parameters T and Z are 16 bit unsigned integers, N and A are 8 bit unsigned integers.

When the FDT is used to deliver the FEC Object Transmission Information, then the FEC Encoding ID, Transfer
Length (F) and Encoding Symbol Length (T) shall be encoded using the Transfer-Length, FEC-OTI-Encoding-1D and
FEC-OTI-Encoding-Symbol-Length elements defined in the FDT Schema. The remaining parameters Z, N, A, shall be
encoded as a4 byte field within the FEC-OTI-Scheme-Specific-Info field, according to the format specified in

figure 10, excepting the Encoding Symbol Length field.

9 Subtitling

For IPDC over DVB-H system two optional subtitling methods for network and terminals are defined. Either the
character encoded format, or the bitmap based format or both may be supported by terminals. For the character encoded
format, the 3GPP Timed Text Format and the corresponding RTP payload format SHALL be used as described in
clause 9.1. For the bitmap based format, the DV B Bitmap format and the RTP payload format for MPEG-2 streams
SHALL be used as described in clause 9.2.

9.1 Subtitling using 3GPP Timed Text Format

In the character encoded format subtitles, the 3GPP Timed Text Format [20] and the RTP payload format for 3GPP
Timed Text [21] SHALL be used for formatting the subtitling text.

Additionally, the following restrictions and extensions apply.

ETSI

a7 ETSI TS 102 472 V1.1.1 (2006-06)

9.1.1 Unicode Support

The Unicode 3.0 [23] standard shall be used. Terminals shall correctly decode UTF-8 format as specified in [24]. The
support for UTF-16 is not required.

9.1.2 Support for Transparency

Colour specifications support a transparency value. A transparency value of 0 indicates a fully transparent colour, and a
value of 255 indicates fully opague. Support for full transparency (value 0) isrequired.

9.1.3 Text position and scaling

All text positions are specified as integer values of 16 bit resolution. Since these positions are encoded as 16.16 floating
point values, the lower 16 bits of each value shall be set to 0.

The translation coordinates of the text region tx and ty are relative to the upper left corner of the display area. The
receiver shall use the parameters "max-w" and "max-h" as an indication of the sender”s reference display area. Asa
default it shall assume following values: "max-w=720" and "max-h=576". Using its own display dimensions, the
terminal shall establish a scaling relationship as follows:

. W: isthe current display width;

. H: isthe current display height;

. Sx =W / max-w;

. Sy = H/ max-h.
All position parameters shall be multiplied by the corresponding scaling factor Sx or Sy.

The font size shall be scaled accordingly and rounded to the next smaller sizein order to fit within the new scaled text
box.

9.1.4 Optional features
Following features are optional:

. Marquee scrolling: Terminals not supporting this option shall display the text, or the portion of it that fitsinto
the text box. All related information such as the scroll delay shall be ignored.

. Highlighting and dynamic highlighting (for closed caption and karaoke): The default value is non-highlighted
text. Terminals not supporting this option shall ignoreit.

. HyperText: hypertext links are optional and should be ignored if the terminal does not support them.

. Blinking text: terminals that do not support blinking shall ignoreit.

9.1.5 Delivery of subtitling text

The RTP payload format for 3GPP Timed Text [22] defined by the IETF shall be used. All unit types (1 to 5) shall be
supported. The sender is allowed to send new sample descriptors in-band by generating units of type 5. The default
(static) sample descriptors can be sent during session announcement using the "tx3g" parameter as described in
clause 9.1.6.

The sender shall use an RTP timestamp clockrate of 1 000 Hz.

9.1.6 SDP Parameters for IPDC streaming sessions
The semantics of a media type description shall include the following parameters:

. The mediatype, which shall be set to text.

ETSI

48 ETSI TS 102 472 V1.1.1 (2006-06)

The media subtype " 3gpp-tt" and the timestamp clockrate are declared in the "a=rtpmap" line.

The list of supported versions of the 3GPP Timed Text Format "sver" shall contain the value 60 referring to
version 6.0 and is declared in the SDP "a=fmtp" attribute.

The parameters "tx", "ty", "layer”, "tx3g", "width" and "height" are optional and if present shall be declared in
the SDP "a=fmtp" attribute.

The parameters "max-w" and "max-h" are optional and are used for scaling purposes and if present shall be
declared in the SDP "a=fmtp" attribute.

The language attribute "a=lang" is optional and can be used to indicate the human language of the subtitling
stream.

NOTE: That severa subtitling streams may be present in the same session description. Furthermore, if the

subtitling media stream is transported separately and/or independently of other media (such as avideo
stream) following parameters shall also be present:

- The sender |P address.

- The destination IP address and port number for the subtitling media component in the IPDC streaming
session.

- The start time and end time of the session.

Hereisafull example of SDP description describing a streaming session with a subtitling media component:

v=0

o=ghost 2890844526 2890842807 IN P4 192.168.10.10
s=IPDC SDP Example

i=Example of IPDC streaming SDP file
u=http://www.example.com/ae600

e=ghost@mail server.example.com

c=INIP6 FF1E:03AD::7F2E:172A: 1E24
t=3034423619 3042462419

b=AS:77

a=source-filter: incl IN 1P6 x 2001:210:1:2:240:96FF:FE25:8EC9
m=video 4002 RTP/AVP 97 96 100

a=maxprate:17

a=rtpmap: 96 H264/90000

a=fmtp:96 profile-level-id=42A01E; packetization-mode=1;
sprop-parameter-sets=Z0IACpZTBY ml,aMljiA==

m=text 4006 RTP/AVP 102

a=rtpmap: 102 3gpp-tt/1000

a=fmtp:102 tx=20;ty=200;width=200;height=50;tx3g=Z0lACpZTBY miaMljiA==,
LOEABpKRBY mGbMlei A==;max-w=720;max-h=576

a=lang:en

9.2 Bitmap based subtitling

Bitmap based subtitlesin IPDC systems SHALL be coded as defined in [25] with the corrigenda and extensions
specified in [26].

ETSI

49 ETSI TS 102 472 V1.1.1 (2006-06)

DVB subtitles are positioned using a " page composition segment™ as defined in clause 7.2.1 in [25]. The clause states:

"NOTE: All addressing of pixelsisbased on a frame of 720 pixels horizontally by 576 scan lines vertically.
Thesenumbers are independent of the aspect ratio of the picture; on a 16:9 display a pixel looks a bit
wider thanon a 4:3 display. In some cases, for instance a 1ogo, this may lead to unacceptable distortion.
Separatedata may be provided for presentation on each of the different aspect ratios. The
subtitle_descriptorsignals whether the associated subtitle data can be presented on any display or on
displays of specific aspect ratio only.”

AsIPDC systems will have a number of different resolutions some clarifications on the use of pixel addressing and
scaling of the bitmaps are needed. The clause "Pixel addressing and scaling of bitmap based subtitles based on [25] will
define how pixel in non 720 by 576 systems are addressed and how bitmaps are scaled. Clause "Pixel addressing of non
720 by 576 subtitles" will define extensionsto [25] for the use of subtitles which are not authored for 720x576 systems.
Receivers SHALL support both modes.

9.2.1 Pixel addressing and scaling of bitmap based subtitles

Subtitles authored for 720x576 system can be displayed on IPDC systems with different resol utions without the need to
do any conversion of the subtitles on the server side. In this case 720x576 is defined to be "full screen”.

"Full screen” in this respect means that 720x576 have to be mapped to the real resolution of the video. In case of a CIF
video, 720x576 would map to 352x288. Note that if the video is being scaled to a different resolution on the device, the
pixel addressing and scaling of the subtitles have to be changed as well.

Table 2: Pixel addressing and scaling parameters for bitmap based subtitling

Description
X4 res Actual display resolution in X at which the video will be shown
Yd_res Actual display resolution in Y at which the video will be shown
Xv_res Resolution of the video in X
Y, Resolution of the video in Y

v_res

—|

x

Scaling factor in X by which the pixel address and bitmaps have to be scaled

—h
=<

Scaling factor in Y by which the pixel address and bitmaps have to be scaled

Actual position in X for subtitles

<| X
o

D Actual position in Y for subtitles

If X4 res iSthe number of pixelsin X and Yy ¢ the number of pixelsin'Y of acertain device and (Xs,Ys) are the
coordinates specified in the subtitling stream than the resulting coordinates (Xd,Y d) on the device are:

Xp = f, X, Y, = T, ¥
with f, and fy being the scaling factors:

X, e X

vV_res d_res _

Y, Y, Y,

xd_res — 'v_res d_res _ 'd_res

f o= =
720 X,,. 720 Y 576 Y,, 576

Vv

As the bitmaps in this case are authored for 720x576 they will have to be scaled by the factorsf, and fy_ before being
rendered.

The following fields of the " page composition segment” (clause 7.2.1 in [25]) are affected:
region_horizontal_address. The value of this field will be scaled by f,
region_vertical_address: The value of this field will be scaled by fy

The following fields of the "Region composition segment” (clause 7.2.2 in [25]) are affected:

region_width: The value of thisfield will be scaled by f,. The sum of the scaled
region_horizontal_address field and the scaled region_width SHALL not exceed Xy res

ETSI

50 ETSI TS 102 472 V1.1.1 (2006-06)

region_height: The value of thisfield will be scaled by fy. The sum of the scaled
region_vertical_address field and the scaled region_height SHALL not exceed Yd res

9.2.2 Pixel addressing of non "720 by 576" subtitles

If bitmap based subtitles are authored for video content which does not have the resolution of 720x576 it would not
make sense to create the subtitles for this resolution. The page composition and region composition segments from [25]
however assume subtitles which are authored for 720x576. In order to signal the intended resolution of the subtitlesa

new segment type is defined in table 3 with the segment_type id of 0x14 (see clause 7.2 in [25]).

Table 3: Syntax of an authored_subtitle_size_segment

Syntax Size Type
authored_subtitle_size_segment{
sync_byte 8 bslbf
segment_type 8 bslbf
page_id 16 bslbf
segment_length 16 uimsbf
authored_width 16 uimsbf
authored_height 16 uimsbf
}
NOTE 1: authored_width The width the subtitles are authored for.
NOTE 2: authored_height The height the subtitles are authored for.

This authored_subtitle size segment should immediately follow a page_composition_segment and there SHALL only
be one authored_subtitle size segment between a page_composition_segment and an end_of display_set_segment.

The authored width (X,) and height (Y, (e) signalled in the authored_subtitle_size_segment is valid for the
complete display set and the following scaling factors should be used:

— Xv_res Dxd_res — Xd_res — Yv_res Yd_res — Yd_res
" xa_res xv_r% xa_res Y Ya_reﬁ Yv_reﬁ Ya_res

In the case that the authored size is the same as the actual display resolution no scaling of neither the bitmaps nor the
pixel addressis needed.

9.2.3 Carriage of DVB subtitle streams over RTP

DVB subtitles shall be carried as PES packets in a MPEG transport stream which in turnis carried viaRTP.
Specification [28] definesin clause 2 how a MPEG transport streams is encapsulated in RTP packets. The payload
format used is MP2T and the payload id is 33.

The mapping between the PTS in the MPEG2 Transport stream and the NTP wall clock is given by the RTP timestamp
in the RTP packets. The resolution of the timestamps shall be 90 kHz.

Each RTP timestamp represents the PTS of the first byte of payload data. Note that thisisin contrast to [28] whereitis
stated:

"This clock is synchronized to the system stream Program Clock Reference (PCR) or System Clock Reference (SCR)
and represents the target transmission time of the first byte of the packet payload. The RTP timestamp will not be
passed to the MPEG decoder. This use of the timestamp is somewhat different than normally isthe casein RTP, in that
it is not considered to be the media display or presentation timestamp. The primary purposes of the RTP timestamp will
be to estimate and reduce any network-induced jitter and to synchronize relative time drift between the transmitter and
receiver."

ETSI

51 ETSI TS 102 472 V1.1.1 (2006-06)

9.2.4 Use of SDP to signal DVB subtitles

The following example shows how to use SDP to signal the presents of DVB subtitlesin an MPEG2 transport stream
carried over RTP.

m= data 4008 RTP/AVP 33
a=fmtp:33 ts-content=DV B-Subtitles; max-w=720; max-h=576
a=lang:en

with max-w specifying the width the subtitles are authored for and max-h the height.

10 Description of SPP Streams using SDP

General ESG signalling to support different Service Purchase and Protection (SPP) systemsis defined in [27] and in the
present document.

This clause gives descriptions of Service Purchase and Protection streams using SDP.

Process to handle encrypted services in SPP systems and examples of referencing key stream messagesin SDP media
descriptions are described in the Informative annex D.

10.1 Key Stream Message (KSM) Stream

To support efficient KSM carriage, each KSM Streamis carried in its own UDP stream. The mime type ipdc-ksmis
defined to signal aKSM Stream. The explicit format of the key stream is given by the IPDCKM SId parameter in the
a=fmtp line.

Thelocation of aKSM stream is signalled within the SDP file used to describe the delivery parameters for agiven
service. The SDP file describing the service typically contains a media announcement entry for the Video and one for
the Audio. In addition, to signal KSM streams, one or more additional stream announcements are added.

A key streamis signalled in the following way:
m=data <port> UDP ipdc-ksm.

The following parameters (table 4) are defined for this mime type and are signalled in the "fmtp:" line.

Table 4: Parameters of the mime type ipdc-ksm

Parameter Mand / Type Comments
Opt
IPDCStreamid M Integer Stream identifier uniquely defined by the headend.
IPDCKMSId M Integer KMSidentifier.
IPDCOperatorld M String Operator identifier.
IPDCAccessRights 0] String Optional description or URL of the access rights associated
with the content.

NOTE 1: IPDCStreamld uniquely identifies the key stream within the scope of the service (the SDP file) and allows later
referencing.

NOTE 2: IPDCKMSId identifies the Key Management System. This identifier is globally unique and is allocated by DVB.

NOTE 3: IPDCOperatorld identifies the operator controlling this key stream. This identifier is unique within the scope of
the IPDCKMSId and is allocated by the Key Management System. It allows differentiating between two
operators using the same Key Management System. This parameter can appear multiple times for a single
key stream to allow multiple operators to share a key stream.

NOTE 4: IPDCAccessRights is an optional field that may be used by the operator to point to relevant information
concerning this key stream, such as a means of acquiring the relevant access rights.

Additional parameters can be freely added to support any specific KMS.

ETSI

52 ETSI TS 102 472 V1.1.1 (2006-06)

10.2 Key Management Message (KMM) stream

The mime type for key management message (kmm) streams (e.g. stream carrying rights objectgentitlements) is
data/ipdc-kmm.

A key management message stream is signalled in the following way:
m=data <port> UDP ipdc-kmm.

The actual format of the key management message stream is given by the IPDCKM SId and, if present, the
IPDCDRMId in the "a=fmtp:ipdc-kmm" line. Every a=fmtp line should contain a parameter IPDCStreamld which

identifies the particular stream.

Table 5: Parameters of the mime type ipdc-kmm

Parameter Mand / Type Comments
Opt
IPDCStreamid ®) Integer Stream identifier uniquely defined by the headend.
IPDCKMSId M Integer KMS identifier.
IPDCDRMId 6] String String identifying the used DRM system.
IPDCOperatorld M String IPDCOperatorld of key management stream.

EXAMPLE: m=data 49230 UDP ipdc-kmm
Cc=IN 1P4 224.2.17.12/127

a=fmtp:ipdc-kmm IPDCKM SId=0xABCD; IPDCDRMId=XRMID; IPDCStreaml d=42;
IPDCOperatorld=SOMEID.

10.3 KSM Stream Binding

The signalling described below allows the terminal to clearly identify which KSM streams are relevant for each media
stream. Several media streams may reference the same KSM stream, thereby sharing the same Traffic Encryption Keys,
but each media stream may also reference a different KSM stream.

A single media stream may reference several KSM streams, where different KM S provide secure delivery of the same
Traffic Encryption Keys.

EXAMPLE 1: A service comprising avideo stream and an audio stream, both encrypted with the same Traffic
Encryption Keys, and protected by two different KM Ss will make use of 4 streams:. one for the
video, one for the audio, one for KMSH1 KSM stream and one for KM SH#2 KSM stream

(figure 11).

Audio

Video

sweals

Figure 11: KSM Stream Binding

Thisway, the KMS will only listen to and process the KSM stream coming on the relevant 1P connection. SDP [6] is
used to describe the KSM stream(s) associated with each media stream. The following attribute is defined for mapping

key streams to media streamsin the SDP.

Table 6: Definition of IPDCKSMStream attribute

Attribute Mand / Type Comments
Opt
IPDCKSMStream (0] Stream reference IPDCStreamID indicating which KSM stream
applies to this media stream.

ETSI

53 ETSI TS 102 472 V1.1.1 (2006-06)

The attribute can be at session level, in this caseit appliesto all media streams or the attribute can be at medialevel in
this caseit only appliesto the specified media and would overwrite any session level attribute.

Each session or media stream can have a multiple IPDCK SM Stream attributes.

Using this attribute the terminal can lookup the corresponding KSM stream announcements and figure out which one to
listen to and process.

Below is an example where two key streams are associated on session level with the media streams, however two other
key streams (13 and 14) are associated to a second audio track. The IPDCK SM Stream attribute on media level
overwrites thel PDCK SM Stream attribute on session level for that particular media stream. That means KSM streams 10
or 11 cannot be used to decrypt the Spanish audio track in this example.

EXAMPLE 2:
v=0
0=IPDC 2890844526 2890842807 IN I1P4 126.16.64.4
S=A SPP stream
c=IN 1P4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
a=IPDCKSM Stream: 10
a=IPDCKSM Stream:11

m=audio 49170 RTP/AVP 0
a=lang:en

m=video 51372 RTP/AVP 31
m=audio 52002 RTP/AVP 0
a=lang:ES

a=IPDCKSMStream: 13
a=IPDCKSM Stream: 14

ETSI

54 ETSI TS 102 472 V1.1.1 (2006-06)

Annex A (informative):
Overview of the blocking algorithm for FEC encoding id O

This clause gives a brief overview on how files are constructed for and transported during a FLUTE session when using
FEC encoding id 0.

The sender takes afile, e.g. avideo clip or astill image, which is used as the transport object for FLUTE (see

figure A.1). Alternatively, the file can be encoded (for example with gzip) before using it as the transport object. One
FLUTE encoding symbol is carried as the payload of a each FLUTE packet, thus the FLUTE packet size is determined
by the encoding symbol length. Both the encoding symbols length and the maximum allowed source block length are
configured by the server. Based on the transport object length, the encoding symbol length and the maximum source
block length, FLUTE calculates the source block structure (i.e. the number of source blocks and their length).

Constructing FLUTE Packets

1011010100 1011010100
1010101101 1010101101
I 1010101010 1010101010
_ |ozo0100101 0100100101 FLUTE
/ — |0000000000 0000000000 ;
1111111111 1111111111 UDP.
0110010110 0110010110 11111 P
1100101011 P> 1100101011 packet
. transport source encodin
file iy 9 FLUTE packet
object block(s) symbol(s)

Figure A.1: Constructing of FLUTE Packets

The server communicates the transport object length, the encoding symbol length and the maximum source block length
to the receiver(s) within the FLUTE transmission. Thus the receiver can also calculate the source block structurein
advance of receiving afile.

Encoding Symbols are the FLUTE packet payloads. They are taken from the source blocks in fragments according to
the encoding symbol length (the figure A.1 shows 4 fragments). Then the FLUTE packet is constructed from FLUTE
header and encoding symbol payload.

Source blocks are the logical collection of encoding symbols on which FEC encoding and decoding operations are
performed.

EXAMPLE: If thereisafile of 1 000 000 bytes to transmit via FLUTE. Each FLUTE encoding symbol
length = 500 bytes (only packet payload). The maximum allowed source block length = 100
encoding symbols
Thiswill generate 20 source blocks each long 50 000 bytes (100 symbols). Both the sender and
receivers are aware of the fragmentation scheme used by FLUTE.

ETSI

55 ETSI TS 102 472 V1.1.1 (2006-06)

Annex B (informative):
Algorithm to select repair mechanism for file delivery service

This clause specifies one possible algorithm for the service operator of afile delivery service to select the repair
mechanism to be used. The parameters used in this algorithm have to be estimated and adjusted by the service operator,
in order to yield optimal performance of the service.

The service operator may base its choice of the repair mode on an efficiency metric. The efficiency of arepair mode can
be calculated as follows:

E= number of receiverswith successful recovery
cost of transmission of repair data

The service operator estimates both parameters for the point-to-point and the point-to-multipoint repair modes
separately. The service operator may then decide to schedule a point-to-multipoint repair session for a specific file, if
the point-to-multipoint repair mode is more efficient.

The service operator estimates the cost for the transmission of a single octet over the cellular point-to-point network ¢,
and over the DVB-H broadcast network c,,.

The service operator also estimates the expected number of repair requests and the amount of data exchanged over the
point-to-point and the point-to-multipoint link. The service operator estimates then the expected number of receivers,
which will be able to recover the file after the post-repair session.

Estimation of the number of repair requests

After the start of the repair session (i.e. after the file transmission has ended), terminals have to wait for an offset time
and then send their repair requests randomly within the maxBackOff time window. The service operator selects avalue
a between 0 and 1. It then calculates atime instant t as follows:

t=t,4 +t

end offsetTime tax Tmax BackOff

where t, 4 isthetime of the end of file delivery as defined in clause 6.1.9, tyfteatime IS the offset time, and T, 4 g ackof
is the random time period window.

At timet, the service operator queries any of the declared repair serversto get information about the number of repair
requests received Nreq, the number of encoding symbols requested Ngym: and the number of unique receivers, which

have sent repair requests n, o, Given the fact that repair requests are uniformly randomly distributed over time and over
the repair servers, the service operator estimates the expected total number of requests Nreq: the expected number of
requested symbols Ngym and the expected total number of unique receivers sending arepair request N, ., for the whole
repair session (i.e. over the whole maxBackOff time window) as follows:

n
—_Teq

N = Xr
a
n

Ngm = —XT1
sym a
n

Nieoy = —XT
recv a

where r isthe number of active repair servers for the current file delivery session.

For the point-to-point repair mode the total cost can then be estimated as Cotp:

Cop =€ XNy XSy +C, XN o, XS

ETSI

56 ETSI TS 102 472 V1.1.1 (2006-06)

where Sym and Seq @€ the average size of an encoding symbol and the average overhead of arepair request
respectively.

In the case of point-to-multipoint repair mode, the server redirects terminals to the point-to-multipoint repair session
after the switching decision has been made (after timet). In this case, the repair mode will be point-to-point before time
t, and point-to-multipoint after timet. The service operator should assume that terminals will still send their
point-to-point repair requests up to the end of the repair time. The service operator should also assume that the
point-to-multipoint repair session will contain the whole file (or equivalent data) to achieve complete reception. The
cost for the point-to-multipoint repair will then be Cpyy:

Cptm =me(S+San)+Cu X Nreq ><S‘req +Cu xnwmxswm

where Sisthe size of the file (or equivalent data) and s, is the size of the announcement session overhead.

Estimation of number of receiverswith successful reception

The service operator should estimate the number of receivers that were able to completely recover agiven file after a
repair session. For the point-to-point repair case, the service operator should assume that all terminals that did send
repair requests will be able to recover the file. So for the point-to-point repair mode, N, o, receivers will be able to
recover thefile.

number of receiverswith successful receptiony, = Nyecy

However, there are some terminals that either do not have a point-to-point connection or are not willing to use it. The
server should estimate the fraction of these terminals by (1-B), where 8 is between 0 and 1. When using the
point-to-multipoint repair mode, these terminals will have the opportunity to recover the files. However, there will be a
fraction of the receiversthat are still not able to recover the file after the point-to-multipoint repair session, e.g. because
of some packet loss, and this depends on an estimated success rate (1-p). Hence, the total number of receivers
recovering the file after point-to-multipoint repair should be estimated as follows:

. . . N
number of receiverswith successful receptionpm = Nreey + (L— p)X(recv _ nrecvj

B

Decision on the repair mode

The service operator should uses the cost and number of receivers with successful recovery to calculate the cost per
satisfied receiver. The service operator decides then to use the repair mode with the least cost per satisfied receiver,
i.e. the repair mode with the highest efficiency as defined in clause 7.3.9.

I mplementation | ssues

The communication between the file delivery server, the file repair servers, and other service componentsis
implementation specific. The service operator needs to indicate its repair mode decision and all related parameters
(e.g. session description file for the point-to-multipoint repair session) to all repair servers.

The service operator may constantly update its estimation of the parameters B, p, ¢, C, Sregr and s,, to achieve higher

accuracy. The selection of the parameter a, which determines the time instant of the decision, should be so that it is
small enough to allow for fast selection of the optimal mode, and high enough to account for fluctuations (due to
netowork delays, inaccurate random number generators, inaccurate determining of end of file delivery, etc...) that may
happen at the start of the repair session. An appropriate value of may be a 0.1, given along enough maxBack Of f
window.

ETSI

57 ETSI TS 102 472 V1.1.1 (2006-06)

Annex C (normative):
FEC encoder and decoder specification

This clause specifies the systematic Raptor forward error correction code and its application to CBMS. Raptor isa
fountain code, i.e. as many encoding symbols as needed, up to 65536, can be generated by the encoder on-the-fly from
the source symbols of ablock. The decoder is able to recover the source block from any set of encoding symbols only
slightly more in number than the number of source symbols.

The code described in the present document is a systematic code, that is, the original source symbols are sent
unmodified from sender to receiver, as well as a number of repair symbols. The specification istechnically identical to
the onein 3GPP MBMS[1].

C.1 Definitions, symbols and abbreviations

C.1.1 Definitions

For the purposes of this annex, the following terms and definitions apply:
Sour ce block: ablock of K source symbols which are considered together for Raptor encoding purposes

Sour ce symbol: the smallest unit of data used during the encoding process. All source symbols within a source block
have the same size

Encoding symbol: asymbol that isincluded in a data packet. The encoding symbols consist of the source symbols and
the repair symbols. Repair symbols generated from a source block have the same size as the source symbols of that
source block

Systematic code: a code in which the source symbols are included as part of the encoding symbols sent for a source
block

Repair symbol: the encoding symbols sent for a source block that are not the source symbols. The repair symbols are
generated based on the source symbols

I ntermediate symbols. symbols generated from the source symbols using an inverse encoding process

NOTE: Therepair symbols are then generated directly from the intermediate symbols. The encoding symbols do
not include the intermediate symbols, i.e. intermediate symbols are not included in data packets.

Symbol: aunit of data. The size, in bytes, of a symbol is known as the symbol size

Encoding symbol group: agroup of encoding symbols that are sent together, i.e. within the same packet whose
relationship to the source symbols can be derived from a single Encoding Symbol 1D

Encoding Symbol I D: information that defines the relationship between the symbols of an encoding symbol group and
the source symbols

Encoding packet: data packets that contain encoding symbols

Sub-block: a source block is sometime broken into sub-blocks, each of which is sufficiently small to be decoded in
working memory

NOTE: For asource block consisting of K source symbols, each sub-block consists of K sub-symbols, each
symbol of the source block being composed of one sub-symbol from each sub-block.

Sub-symbol: part of a symbol. Each source symbol is composed of as many sub-symbols as there are sub-blocks in the
source block

Sour ce packet: data packets that contain source symbols

Repair packet: data packets that contain repair symbols

ETSI

58 ETSI TS 102 472 V1.1.1 (2006-06)

C.1.2 Symbols

For the purposes of the present document, the following symbols apply:

i,j, % h,a, b, d,v, mrepresent positive integers

ceil(x)
choose(i,j)
floor(x)

i %]
XNY

A

AT
A-l

K
Kmax
L

S

H

C

Cll

X

Vo Vi
Rand[X, i, m|
Deg|V]

denotes the smallest positive integer which is greater than or equal to x

denotes the number of ways| objects can be chosen from among i objects without repetition
denotes the largest positive integer which isless than or equal to x

denotesi modulo j

denotes, for equal-length bit strings X and Y, the bitwise exclusive-or of X and Y

denote a symbol alignment parameter. Symbol and sub-symbol sizes are restricted to be multiples
of A.

denotes the transposed matrix of matrix A

denotes the inverse matrix of matrix A

denotes the number of symbolsin a single source block

denotes the maximum number of source symbolsthat can be in asingle source block (Set to 8192).

denotes the number of pre-coding symbols for a single source block

denotes the number of LDPC symbols for a single source block

denotes the number of Half symbolsfor a single source block

denotes an array of intermediate symbols, C[0], C[1], C[2],..., C[L-1]

denotes an array of source symbols, C'[0], C'[1], C"[2],..., C"[K-1]
anon-negative integer value

two arrays of 4-byte integers, V[0], V[1]...., Vg[255] and V4[0], V4[1],..., V4[255]
pseudo-random number generator

degree generator

LTENnc[K, C,(d,a, b)] LT encoding symbol generator

Trip[K, X]
G

N
T
-l-u

triple generator function

number of symbols within an encoding symbol group

number of sub-blocks within a source block

symbol size in bytes. If the source block is partitioned into sub-blocks, then T=T"-N.
sub-symbol size, in bytes. If the source block is not partitioned into sub-blocks then T is not
relevant.

filesize, for file delivery, in bytes

sub-block size in bytes

for file delivery, the payload size of each packet, in bytes, that is used in the recommended
derivation of the file delivery transport parameters. For streaming, the payload size of each repair
packet, in bytes, that is used in the recommended derivation of the streaming transport parameters.
Q =65521, i.e. Qisthelargest prime smaller than 216

number of source blocks, for file delivery

systematic index associated with K

denotes any generator matrix

denotes the SxSidentity matrix

denotes the SxH zero matrix

C.1.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ES
LDPC
LT
SBN
SBL

Encoding Symbol 1D

Low Density Parity Check

Luby Transform

Source Block Number

Source Block Length (in units of symbols)

ETSI

59 ETSI TS 102 472 V1.1.1 (2006-06)

C.2 Overview

The Raptor forward error correction code can be applied to the CBM S file delivery application.

The principle component of the systematic Raptor code is the basic encoder described in clause C.4. Firgt, itis
described how to derive values for a set of intermediate symbols from the original source symbols such that knowledge
of the intermediate symbols is sufficient to reconstruct the source symbols. Secondly, the encoder produces repair
symbols which are each the exclusive OR of a number of the intermediate symbols. The encoding symbols are the
combination of the source and repair symbols. The repair symbols are produced in such a way that the intermediate
symbols and therefore also the source symbols can be recovered from any sufficiently large set of encoding symbols.

The present document defines the systematic Raptor code encoder. A number of different decoding algorithms are
possible. An efficient decoding algorithmis provided in clause C.7.

The construction of the intermediate and repair symbolsis based in part on a pseudo-random number generator
described in clause C.4. This generator is based on a fixed set of 512 random numbers which must be available to both
sender and receiver. These are provided in clause C.6.

Finally, the construction of the intermediate symbols from the source symbolsis governed by a"systematic index",
values of which are provided in clause C.5 for source block sizes from 4 source symbolsto Ky, 5x = 8192 source

symbols.

C.3 File Delivery

C.3.1 Source block construction

C3.11 General

In order to apply the Raptor encoder to a sourcefile, the file may be broken into Z> 1 blocks, known as source blocks.
The Raptor encoder is applied independently to each source block. Each source block isidentified by a unique integer
Source Block Number (SBN), where the first source block has SBN zero, the second has SBN one, etc. Each source
block is divided into a number, K, of source symbols of size T bytes each. Each source symbol isidentified by a unique
integer Encoding Symbol Identifier (ESI), where the first source symbol of a source block has ESI zero, the second has
ESI one, etc.

Each source block with K source symbolsis divided into N> 1 sub-blocks, which are small enough to be decoded in the
working memory. Each sub-block is divided into K sub-symbols of size T".

Note that the value of K is not necessarily the same for each source block of afile and the value of T* may not
necessarily be the same for each sub-block of a source block. However, the symbol size T is the same for all source
blocks of afile and the number of symbols, K is the same for every sub-block of a source block. Exact partitioning of
the file into source blocks and sub-blocks is described in clause C.3.1.2.

Figure C.1 shows an example source block placed into atwo dimensional array, where each entry isa T"-byte
sub-symbol, each row is a sub-block and each column is a source symbol. In this example, the value of T" isthe same
for every sub-block. The number shown in each sub-symbol entry indicates their original order within the source block.
For exampl e, the sub-symbol numbered K contains bytes T -K through T"-(K+1)-1 of the source block. Then, source
symbol i isthe concatenation of the ith sub-symbol from each of the sub-blocks, which corresponds to the sub-symbols
of the source block numbered i, K+i, 2-K+i,..., (N-1)-K+i.

ETSI

60 ETSI TS 102 472 V1.1.1 (2006-06)

Figure C.1: Source symbols from sub - symbols—the 3 highlighted columns
show source symbols 0, 2 and K-1
C.3.1.2 Source block and sub-block partitioning

The construction of source blocks and sub-blocks is determined based on five input parameters, F, A, T, Zand N and a
function Partition[]. The five input parameters are defined as follows:

. F thesizeof thefilg, in bytes;

. A asymbol aignment parameter, in bytes;

Tthe symbol size, in bytes, which must be a multiple of A,
. Z the number of source blocks;
. N the number of sub-blocksin each source block.

These parameters shall be set so that ceil(ceil (F/T)/Z) < Ky ax- Recommendations for derivation of these parameters are
provided in clause C.3.4

The function Partition[] takes a pair of integers (1, J) asinput and derives four integers (I, I, J| , Jg) as output.
Specifically, the value of Partition[l, J] is a sequence of four integers (I, I, J;, J9), where || = ceil(1/J), 5= floor(1/J),
J =1-lg-Jand Jg=J - J, . Partition[] derives parameters for partitioning a block of size | into J approximately equal
sized blocks. Specifically, J; blocks of length I, and Jgblocks of length I

The source file shall be partitioned into source blocks and sub-blocks as follows.
Let:

K; = cel(F/T)

(K., Kg Z;, Zg) = Partition[K;, Z]

(TL, Ts N, No) = Partition[T/A, N

Then, the file shall be partitioned into Z = Z, + Zg contiguous source blocks, the first Z; source blocks each having
length K| -T bytes and the remaining Zg source blocks each having Kg T bytes.

If K -T > F then for encoding purposes, the last symbol shall be padded at the end with K, -T —F zero bytes.

Next, each source block shall be divided into N = N, + Ng contiguous sub-blocks, the first N; sub-blocks each
consisting of K contiguous sub-symbols of size of T, -A and the remaining Ng sub-blocks each consisting of K
contiguous sub-symbols of size of Tg-A. The symbol alignment parameter A ensures that sub-symbols are always a
multiple of A bytes.

Finally, the mth symbol of a source block consists of the concatenation of the mth sub-symbol from each of the N
sub-blocks.

ETSI

61 ETSI TS 102 472 V1.1.1 (2006-06)

C.3.2 Encoding packet construction

C.3.2.1 General

Each encoding packet contains the following information:

. Source Block Number (SBN).

. Encoding Symbol 1D (ESI).

. Encoding symbol(s).
Each source block is encoded independently of the others. Source blocks are numbered consecutively from zero.
Encoding Symbol 1D values from 0 to K-1 identify the source symbols. Encoding Symbol IDs from K onwards identify
repair symbols.
C.3.2.2 Encoding packet construction

Each encoding packet either consists entirely of source symbols (source packet) or entirely of repair symbols (repair
packet). A packet may contain any number of symbols from the same source block. In the case that the last symbol in
the packet includes padding bytes added for FEC encoding purposes then these bytes need not be included in the packet.
Otherwise, only whole symbols shall be included.

The Encoding Symbol ID, X, carried in each source packet is the Encoding Symbol 1D of the first source symbol carried
in that packet. The subsequent source symbols in the packet have Encoding Symbol 1Ds, X+1 to X+G-1, in sequential
order, where G is the number of symbolsin the packet.

Similarly, the Encoding Symbol 1D, X, placed into arepair packet is the Encoding Symbol ID of the first repair symbol
in the repair packet and the subsequent repair symbolsin the packet have Encoding Symbol IDs X+1 to X+G-1in
sequential order, where G is the number of symbolsin the packet.

Note that it is not necessary for the receiver to know the total number of repair packets. The G repair symbol triples
(d[a1, a[qq, b[qp),..., (d[G-1], a|G-1], b[G-1]) for the repair symbols placed into arepair packet with ESI X are
computed using the Triple generator defined in clause C.5.3.4 as follows:

Foreachi =0, ..., G-1

(d[i], afi], bi]) = Trip[K,X+i]

The G repair symbols to be placed in repair packet with ES| X are calculated based on the repair symbol triples as
described in clause C.5.3 using the intermediate symbols C and the LT encoder LTenc[K, C, (d[i], ali], b[i])].

C.3.3 Transport

This clause describes the information exchange between the Raptor encoder/decoder and any transport protocol making
use of Raptor forward error correction for file delivery.

The Raptor encoder and decoder for file delivery require the following information from the transport protocol:
. Thefilesize, F, in bytes.
. The symbol alignment parameter, A.

. The symboal size, T, in bytes, which must be a multiple of A.

The number of source blocks, Z.
. The number of sub-blocks in each source block, N.
The Raptor encoder for file delivery additionally requires:

. The file to be encoded, F bytes.

ETSI

62 ETSI TS 102 472 V1.1.1 (2006-06)

The Raptor encoder supplies the transport protocol with encoding packet information consisting, for each packet, of:
. Source Block Number (SBN).
. Encoding Symbol 1D (ESI).
. Encoding symbol(s).

The transport protocol shall communicate this information transparently to the Raptor decoder.

Suitable transport protocols based on FLUTE/ALC and HTTP are defined in the present document.

C.3.4 Example Parameters

C.3.4.1 Parameter derivation algorithm

This clause provides recommendations for the derivation of the four transport parameters, A, T, Zand N. This
recommendation is based on the following input parameters:

. F thefilesize, in bytes.

. W atarget on the sub-block size, in bytes.

. P the maximum packet payload size, in bytes, which is assumed to be amultiple of A.
. A the symbol alignment factor, in bytes.

* Kyax the maximum number of source symbols per source block.
* Kyynaminimum target on the number of symbols per source block.
. Gyax @ maximum target number of symbols per packet.

Based on the above inputs, the transport parameters T, Z and N are calculated as follows:
Let:

G = min{ceil(P Ky, n/F), PIA, Gyax} - the approximate number of symbols per packet.

T = floor(P/(A-G))-A.

K, = ceil(F/T) - the total number of symbolsin thefile.

Z = ceil (K¢ /Kpax)-

N = min{ ceil(ceil (K/2Z)-T/W), T/A}.
The values of G and N derived above should be considered as lower bounds. It may be advantageous to increase these
values, for example to the nearest power of two. In particular, the above algorithm does not guarantee that the symbol
size, T, divides the maximum packet size, P, and so it may not be possible to use the packets of size exactly P. If,
instead, G is chosen to be a value which divides P/A, then the symbol size, T, will be adivisor of P and packets of size

P can be used.

Recommended settings for the input parameters, W, A, Ky and Gy, ax are as follows:

W= 256 KB A=4 Kyn = 1024 Gyax = 10

ETSI

63 ETSI TS 102 472 V1.1.1 (2006-06)

C.3.4.2 Examples

The above algorithm leads to transport parameters as shown in table C.1, assuming the recommended values for W, A,
Kymin @d Gy ax and P =512,

Table C.1: Examples of transport parameters

Lo Symbol Source |Sub-blocks . .
FilesizeF | G sizeT | CT K, blocks Z N K Ks TLA TsA
100 KB 6 84 504 1220 1 1 1220 1220 N/A N/A
100 KB 8 64 512 1 600 1 1 1 600 1 600 N/A N/A
300 KB 2 256 512 1200 1 2 1200 1200 128 128
1,000 KB 1 512 512 2 000 1 5 2 000 2 000 104 100
3,000 KB 1 512 512 6 000 1 12 6 000 6 000 44 40
10 000 KB 1 512 512 | 20 000 3 14 6 666 6 667 40 36

C.4 Systematic Raptor encoder

C.4.1 Encoding overview

The systematic Raptor encoder is used to generate repair symbols from a source block that consists of K source
symbols.

Symbols are the fundamental data units of the encoding and decoding process. For each source block (sub-block) all
symbols (sub-symbols) are the same size. The atomic operation performed on symbols (sub-symbols) for both encoding
and decoding is the exclusive-or operation.

Let C'[0Q],..., C'[K-1] denote the K source symbols.
Let C[0],..., C[L-1] denote L intermediate symbols.

Thefirst step of encoding is to generate a number, L > K, of intermediate symbols from the K source symbols. In this
step, K source triples (d[0], a[0], b[Q]), ..., (d[K-1], a[K-1], b[K-1]) are generated using the Trip[] generator as
described in clause C.4.4.4. The K source triples are associated with the K source symbols and are then used to
determine the L intermediate symbols C[0],..., C[L-1] from the source symbols using an inverse encoding process. This
process can be can be realized by a Raptor decoding process.

Certain "pre-coding relationships' must hold within the L intermediate symbols. Clause C.4.2 describes these
relationships and how the intermediate symbols are generated from the source symbols.

Once the intermediate symbol s have been generated, repair symbols are produced and one or more repair symbols are
placed as a group into a single data packet. Each repair symbol group is associated with an Encoding Symbol ID (ESI)
and a number, G, of encoding symbols. The ESI is used to generate atriple of three integers, (d, a, b) for each repair
symbol, again using the Trip[] generator as described in clause C.4.4.4. Thisis done as described in clauses C.3 and C.4
using the generators described in clause C.4.4 . Then, each (d,a,b)-triple is used to generate the corresponding repair
symbol from the intermediate symbols using the LTEnc[K, C[Q],..., C[L-1], (d,a,b)] generator described in

clause C.4.4.3.

C.4.2 First encoding step: Intermediate Symbol Generation

C.4.2.1 General

Thefirst encoding step is a pre-coding step to generate the L intermediate symbols C[0], ..., C[L-1] from the source
symbols C'[0], ..., C"[K-1]. Theintermediate symbols are uniquely defined by two sets of constraints:

1) Theintermediate symbols are related to the source symbols by a set of source symbol triples. The generation
of the source symbol triplesis defined in clause C.4.2.2 using the Trip[] generator as described in
clause C.4.4.4.

ETSI

64 ETSI TS 102 472 V1.1.1 (2006-06)
2) A set of pre-coding relationships hold within the intermediate symbols themselves. These are defined in
clause C.4.2.3.

The generation of the L intermediate symbolsis then defined in clause C.4.2.4.

C.4.2.2 Source symbol triples

Each of the K source symbols is associated with atriple (d[i], &[i], b[i]) for 0 <i < K. The source symbol triples are
determined using the Triple generator defined in clause C.4.4.4 as.

For eachi, 0<i <K

(d[i], a[i], bfi]) = Trip[K,]

C.4.2.3 Pre-coding relationships

The pre-coding relationships amongst the L intermediate symbols are defined by expressing the last L-K intermediate
symbolsin terms of the first K intermediate symbols.

The last L-K intermediate symbols C[K],...,C[L-1] consist of SLDPC symbols and H Half symbols The values of Sand
H are determined from K as described below. Then L= K+S+H.

Let:
X bethe smallest positive integer such that X(X-1) > 2K.
S bethe smallest primeinteger such that S> ceil(0.01-K) + X.
H bethe smallest integer such that choose(H,ceil(H/2)) > K + S,
H* =cel(H/2).
L =K+StH.
C[Q],..., C[K-1] denote the first K intermediate symbols.
CI[K],..., C[K+S-1] denote the SLDPC symboals, initialized to zero.
C[K+4,..., C[L-1] denote the H Half symboals, initialized to zero.
The SLDPC symbols are defined to be the values of C[K],..., C[K+S-1] at the end of the following process:
For:i=0,...,K-1do
a=1+ (floor(i/S) % (S1))
b=i%S
C[K +b] =C[K + b] ~ C[i]
b=(b+a) %S
C[K+b] =C[K +b] ~(C][i]
b=(b+a) %S
C[K+b] =C[K +b] ~(C][i]
The H Half symbols are defined as follows:
Let:
gli] =i~ (floor(i/2)) for al positive integersi

NOTE: d[i] isthe Gray sequence, in which each element differs from the previous onein a single bit position.

ETSI

65 ETSI TS 102 472 V1.1.1 (2006-06)
g[j.K] denote the jth element, j=0, 1, 2, ..., of the subsequence of g[i] whose elements have exactly k non-zero bitsin
their binary representation.
Then, the Half symbols are defined as the values of C[K+9],..., C[L-1] after the following process:
For:h=0,...,H-1do
For;j =0,...,K+S1do
If bit h of g[j,H"] isequal to 1 then C[h+K+S] = C[h+K+5] ~ C[j].

C.4.2.4 Intermediate symbols

C4.241 Definition

Given the K source symbols C"[0], C"[1],..., C"[K-1] the L intermediate symbols C[0], C[1],..., C[L-1] are the
uniquely defined symbol values that satisfy the following conditions:

1) TheK source symbols C"[0], C'[1],..., C'[K-1] satisfy the K congtraints:
C"[i] =LTENnc[K, (C[0Q],..., C[L-1]), (d[i], a[i], b[i])], for al i, 0 <i < K.
2) Thel intermediate symbols C[0], C[1],..., C[L-1] satisfy the pre-coding relationships defined in
clause C.4.2.3.
C.4.24.2 Example method for calculation of intermediate symbols

This clause describes a possible method for calculation of the L intermediate symbols C[0Q], C[1],..., C[L-1] satisfying
the constraintsin clause C.5.2.4.1.

The generator matrix G for a code which generates N output symbols from K input symbolsis an NxK matrix over
GF(2), where each row corresponds to one of the output symbols and each column to one of the input symbolsand

where the it output symbol is equal to the sum of those input symbols whose column contains a non-zero entry in row
i

Then, the L intermediate symbols can be calculated as follows:
Let:
C denote the column vector of the L intermediate symbols, C[0], C[1],..., C[L-1].

D denote the column vector consisting of S+tH zero symbols followed by the K source symbols C*'[0], C'[1],
C'[K-1].

Then the above constraints define an LxL matrix over GF(2), A, such that:

AC=D
The matrix A can be constructed as follows:

Let:
G| ppc be the Sx K generator matrix of the LDPC symbols. So,
Gippc - (CI0], ..., CIK-1])T = (C[K], ..., C[K+S1])T
Ghar bethe H x (K+§) generator matrix of the Half symbols, So,
Gpas - (CIO], ..., C[SHK-1])T = (C[K+S], ..., C[K+S+H-1])T
| s be the Sx Sidentity matrix

|y bethe H x H identity matrix

ETSI

66 ETSI TS 102 472 V1.1.1 (2006-06)

Og bethe Sx H zero matrix

G| 1 bethe KxL generator matrix of the encoding symbols generated by the LT Encoder.

G - (C[0], ..., C[L-1])T = (C"[0], C'[4],..., C"[K-1])T
EXAMPLE: Grrij=1 if and only if C[j] isincluded in the symbols which are XORed to produce LTENc[K,
(ClO], ..., C[L-1]), (d[i], &[i], b[i])].
Then:
Thefirst Srows of A areequal t0 G| ppc | I5|ZgeH.
The next H rows of A are equal to Gy4¢ | 1.

Theremaining K rows of A areequal to G .

The matrix A is depicted in figure C.2.

K S H
S GiLorc l's ZaH
H Gt Ih
K Gt

Figure C.2: The matrix A

The intermediate symbols can then be calculated as:
C=A1lD

The source triples are generated such that for any K matrix A has full rank and is therefore invertible. This calculation
can be realized by applying a Raptor decoding process to the K source symbols C'[0], C'[1],..., C"[K-1] to produce the
L intermediate symbols C[0], C[1],..., C[L-1].

To efficiently generate the intermediate symbols from the source symbols, it is recommended that an efficient decoder
implementation such as that described in clause C.7 be used. The source symbol triples are designed to facilitate
efficient decoding of the source symbols using that algorithm.

C.4.3 Second encoding step: LT encoding

In the second encoding step, the repair symbol with ESI X is generated by applying the generator LTENc[K, (C[0],
C[1],..., C[L-1]), (d, &, b)] defined in clause C.4.4 to the L intermediate symbols C[0], C[1],..., C[L-1] using the triple
(d, a, b)=Trip[K,X] generated according to clauses C.3.2.2 and clause C.4.2.

ETSI

67 ETSI TS 102 472 V1.1.1 (2006-06)

C.4.4 Generators

C.4.4.1 Random Generator

The random number generator Rand[X, i, m] is defined as follows, where X is a non-negative integer, i is a non-negative
integer and mis a positive integer and the value produced is an integer between 0 and m-1. Let Vy and V, be arrays of

256 entries each, where each entry is a 4-byte unsigned integer. These arrays are provided in clause C.7.

Then:;
Rand[X, i, m] = (Vo[(X + i) % 256] " V4[(floor(X/256)+ i) % 256]) % m

C.4.4.2 Degree Generator

The degree generator Deg[V] is defined as follows, where v is an integer that is at least 0 and less than 220 = 1048576.
Intable C.2, find the index j such that f[j-1] <v < f[j]

Deglv] = d[j].

Table C.2: Defines the degree distribution for encoding symbols

Index j fli] dfj]
0 0 -
1 10241 1
2 491582 2
3 712794 3
4 831695 4
5 948446 10
6 1032189 11
7 1048576 40

C.4.4.3 LT Encoding Symbol Generator
The encoding symbol generator LTENC[K, (C[0], C[1],..., C[L-1]), (d, a, b)] takes the following inputs:

K isthe number of source symbols (or sub-symbols) for the source block (sub-block). Let L be derived from K
asdescribed in clause C.4.2, and let L" be the smallest prime integer greater than or equal to L.

(C[o], C[1],..., C[L-1]) isthe array of L intermediate symbols (sub-symbols) generated as described in clause C.4.2
(d, a, b) is asource triple determined using the Triple generator defined in clause C.4.3.4, whereby:
disan integer denoting an encoding symbol degree
aisan integer between 1 and L"-1 inclusive
b isan integer between 0 and L"-1 inclusive
The encoding symbol generator produces a single encoding symbol as output, according to the following a gorithm:
While(b>L)dob=(b+a)%L"
LTENnc[K, (C[0], C[1],..., C[L-1]), (d, &, b)] = C[b].
Forj=1,...,min(d-1,L-1) do
b=(b+a)%L"
While(b>L)dob=(b+a)%L"
LTEnc[K, (C[0], C[1],..., C[L-1]), (d, &, b)] = LTEnc[K, (C[0], C[1],..., C[L-1]), (d, &, b)] ~ C[b]

ETSI

68 ETSI TS 102 472 V1.1.1 (2006-06)

C.4.4.4 Triple generator
The triple generator Trip[K,X] takes the following inputs:
K The number of source symbols
X Anencoding symbol ID
Let:
L be determined from K as described in clause C.4.2
L" be the smallest prime that is greater than or equal to L
Q = 65521, the largest prime smaller than 216,
J(K) be the systematic index associated with K, as defined in clause C.7
The output of the triple generator is atriples, (d, a, b) determined as follows:
1) A= (53591 + J(K)-997) % Q

o9}
1

2) 10267-(J(K)+1) % Q

3)

<
1

(B+X-A) %Q

4) Rand[Y, 0, 220]

<
1

5 d=Deg[V]

1+ Rand[Y, 1, L"-1]

6) a
7)

o
1

Rand[Y, 2, L"]

C.5 Systematic Indices J(K)

For each value of K the systematic index J(K) is desighed to have the property that the set of source symbol triples
(d[Q1, a[q], b[q)), ..., (d[L-1], a[L-1], b[L-1]) are such that the L intermediate symbols are uniquely defined, i.e. the
matrix A in clause C.4.2.4.2 has full rank and is therefore invertible.

Thefollowing isthelist of the systematic indices for values of K between 4 and 8192 inclusive,

18,14, 61, 46, 14, 22, 20, 40, 48, 1, 29, 40, 43, 46, 18, 8, 20, 2, 61, 26, 13, 29, 36, 19, 58, 5,58, 0, 54, 56, 24, 14, 5, 67, 39, 31, 25, 29, 24, 19, 14, 56, 49, 49, 63, 30, 4,39, 2, 1, 20, 19, 61, 4, 54, 70, 25, 52, 9, 26, 55, 69, 27, 68, 75, 19, 64, 57, 45, 3, 37, 31, 100, 41, 25, 41, 53, 23, 9, 31, 26, 30, 30, 46,
90, 50, 13, 90, 77, 61, 31, 54, 54, 3, 21, 66, 21, 11, 23, 11, 29, 21,7, 1, 27, 4, 34, 17, 85, 69, 17, 75, 93, 57, 0, 53, 71, 88, 119, 88, 90, 22, 0, 58, 41, 22, 96, 26, 79, 118, 19, 3, 81, 72, 50, 0, 32, 79, 28, 25, 12, 25, 29, 3, 37, 30, 30, 41, 84, 32, 31, 61, 32, 61, 7, 56, 54, 39, 33, 66, 29, 3, 14, 75, 75, 78, 84,
75, 84, 25, 54, 25, 25, 107, 78, 27, 73, 0, 49, 96, 53, 50, 21, 10, 73, 58, 65, 27, 3, 27, 18, 54, 45, 69, 29, 3, 65, 31, 71, 76, 56, 54, 76, 54, 13, 5, 18, 142, 17, 3, 37, 114, 41, 25, 56, 0, 23, 3, 41, 22, 22, 31, 18, 48, 31, 58, 37, 75, 88, 3, 56, 1, 95, 19, 73, 52, 52, 4, 75, 26, 1, 25, 10, 1, 70, 31, 31, 12, 10, 54,
46,11, 74,84, 74, 8,58, 23, 74, 8, 36, 11, 16, 94, 76, 14, 57, 65, 8, 22, 10, 36, 36, 96, 62, 103, 6, 75, 103, 58, 10, 15, 41, 75, 125, 58, 15, 10, 34, 29, 34, 4, 16, 29, 18, 18, 28, 71, 28, 43, 77, 18, 41, 41, 41, 62, 29, 96, 15, 106, 43, 15, 3, 43, 61, 3, 18, 103, 77, 29, 103, 19, 58, 84, 58, 1, 146, 32, 3, 70, 52,

54,29, 70, 69, 124, 62, 1, 26, 38, 26, 3, 16, 26, 5, 51, 120, 41, 16, 1, 43, 34, 34, 29, 37, 56, 29, 96, 86, 54, 25, 84, 50, 34, 34, 93, 84, 96, 29, 29, 50, 50, 6, 1, 105, 78, 15, 37, 19, 50, 71, 36, 6, 54, 8, 28, 54, 75, 75, 16, 75, 131, 5, 25, 16, 69, 17, 69, 6, 96, 53, 96, 41, 119, 6, 6, 88, 50, 88, 52, 37, 0, 124,
73,73,7,14, 36,69, 79, 6, 114, 40, 79, 17, 77, 24, 44, 37, 69, 27, 37, 29, 33, 37, 50, 31, 69, 29, 101, 7, 61, 45, 17, 73, 37, 34, 18, 94, 22, 22, 63, 3, 25, 25, 17, 3, 90, 34, 34, 41, 34, 41, 54, 41, 54, 41, 41, 41, 163, 143, 96, 18, 32, 39, 86, 104, 11, 17, 17, 11, 86, 104, 78, 70, 52, 78, 17, 73, 91, 62, 7, 128,
50, 124, 18, 101, 46, 10, 75, 104, 73, 58, 132, 34, 13, 4, 95, 88, 33, 76, 74, 54, 62, 113, 114, 103, 32, 103, 69, 54, 53, 3, 11, 72, 31, 53, 102, 37, 53, 11, 81, 41, 10, 164, 10, 41, 31, 36, 113, 82, 3, 125, 62, 16, 4, 41, 41, 4, 128, 49, 138, 128, 74, 103, 0, 6, 101, 41, 142, 171, 39, 105, 121, 81, 62, 41, 81,
37,3,81,609, 62, 3,69, 70, 21, 29, 4, 91, 87, 37, 79, 36, 21, 71, 37, 41, 75, 128, 128, 15, 25, 3, 108, 73, 91, 62, 114, 62, 62, 36, 36, 15, 58, 114, 61, 114, 58, 105, 114, 41, 61, 176, 145, 46, 37, 30, 220, 77, 138, 15, 1, 128, 53, 50, 50, 58, 8, 91, 114, 105, 63, 91, 37, 37, 13, 169, 51, 102, 6, 102, 23, 105,
23,58, 6,29, 29, 19, 82, 29, 13, 36, 27, 29, 61, 12, 18, 127, 127, 12, 44, 102, 18, 4, 15, 206, 53, 127, 53, 17, 69, 69, 69, 29, 29, 109, 25, 102, 25, 53, 62, 99, 62, 62, 29, 62, 62, 45, 91, 125, 29, 29, 29, 4, 117, 72, 4, 30, 71, 71, 95, 79, 179, 71, 30, 53, 32, 32, 49, 25, 91, 25, 26, 26, 103, 123, 26, 41, 162,
78, 52,103, 25, 6, 142, 94, 45, 45, 94, 127, 94, 94, 94, 47, 200, 138, 39, 39, 19, 154, 73, 67, 91, 27, 91, 84, 4, 84, 91, 12, 14, 165, 142, 54, 69, 192, 157, 185, 8, 95, 25, 62, 103, 103, 95, 71, 97, 62, 128, 0, 29, 51, 16, 94, 16, 16, 51, 0, 29, 85, 10, 105, 16, 29, 29, 13, 29, 4, 4, 132, 23, 95, 25, 54, 41, 29,
50, 70, 58, 142, 72, 70, 15, 72, 54, 29, 22, 145, 29, 127, 29, 85, 58, 101, 34, 165, 91, 46, 46, 25, 185, 25, 77, 128, 46, 128, 46, 188, 114, 46, 25, 45, 45, 114, 145, 114, 15, 102, 142, 8, 73, 31, 139, 157, 13, 79, 13, 114, 150, 8, 90, 91, 123, 69, 82, 132, 8, 18, 10, 102, 103, 114, 103, 8, 103, 13, 115, 55,
62,3, 8,154,114, 99,19, 8, 31, 73, 19, 9, 10, 6, 121, 32, 13, 32, 119, 32, 29, 145, 30, 13, 13, 114, 145, 32, 1, 123, 39, 29, 31, 69, 31, 140, 72, 72, 25, 25, 123, 25, 123, 8, 4, 85, 8, 25, 39, 25, 39, 85, 138, 25, 138, 25, 33, 102, 70, 25, 25, 31, 25, 25, 192, 69, 69, 114, 145, 120, 120, 8, 33, 98, 15, 212,
155, 8,101, 8, 8, 98, 68, 155, 102, 132, 120, 30, 25, 123, 123, 101, 25, 123, 32, 24, 94, 145, 32, 24, 94, 118, 145, 101, 53, 53, 25, 128, 173, 142, 81, 81, 69, 33, 33, 125, 4, 1, 17, 27, 4, 17, 102, 27, 13, 25, 128, 71, 13, 39, 53, 13, 53, 47, 39, 23, 128, 53, 39, 47, 39, 135, 158, 136, 36, 36, 27, 157, 47, 76,
213,47, 156, 25, 25, 53, 25, 53, 25, 86, 27, 159, 25, 62, 79, 39, 79, 25, 145, 49, 25, 143, 13, 114, 150, 130, 94, 102, 39, 4, 39, 61, 77, 228, 22, 25, 47, 119, 205, 122, 119, 205, 119, 22, 119, 258, 143, 22, 81, 179, 22, 22, 143, 25, 65, 53, 168, 36, 79, 175, 37, 79, 70, 79, 103, 70, 25, 175, 4, 96, 96, 49,
128, 138, 96, 22, 62, 47, 95, 105, 95, 62, 95, 62, 142, 103, 69, 103, 30, 103, 34, 173, 127, 70, 127, 132, 18, 85, 22, 71, 18, 206, 206, 18, 128, 145, 70, 193, 188, 8, 125, 114, 70, 128, 114, 145, 102, 25, 12, 108, 102, 94, 10, 102, 1, 102, 124, 22, 22, 118, 132, 22, 116, 75, 41, 63, 41, 189, 208, 55, 85, 69,
8,71,53,71, 69, 102, 165, 41, 99, 69, 33, 33, 29, 156, 102, 13, 251, 102, 25, 13, 109, 102, 164, 102, 164, 102, 25, 29, 228, 29, 259, 179, 222, 95, 94, 30, 30, 30, 142, 55, 142, 72, 55, 102, 128, 17, 69, 164, 165, 3, 164, 36, 165, 27, 27, 45, 21, 21, 237, 113, 83, 231, 106, 13, 154, 13, 154, 128, 154, 148,
258, 25, 154, 128, 3, 27, 10, 145, 145, 21, 146, 25, 1, 185, 121, 0, 1, 95, 55, 95, 95, 30, 0, 27, 95, 0, 95, 8, 222, 27, 121, 30, 95, 121, 0, 98, 94, 131, 55, 95, 95, 30, 98, 30, 0, 91, 145, 66, 179, 66, 58, 175, 29, 0, 31, 173, 146, 160, 39, 53, 28, 123, 199, 123, 175, 146, 156, 54, 54, 149, 25, 70, 178, 128,
25,70, 70, 94, 224, 54, 4, 54, 54, 25, 228, 160, 206, 165, 143, 206, 108, 220, 234, 160, 13, 169, 103, 103, 103, 91, 213, 222, 91, 103, 91, 103, 31, 30, 123, 13, 62, 103, 50, 106, 42, 13, 145, 114, 220, 65, 8, 8, 175, 11, 104, 94, 118, 132, 27, 118, 193, 27, 128, 127, 127, 183, 33, 30, 29, 103, 128, 61,
234,165, 41, 29, 193, 33, 207, 41, 165, 165, 55, 81, 157, 157, 8, 81, 11, 27, 8, 8, 98, 96, 142, 145, 41, 179, 112, 62, 180, 206, 206, 165, 39, 241, 45, 151, 26, 197, 102, 192, 125, 128, 67, 128, 69, 128, 197, 33, 125, 102, 13, 103, 25, 30, 12, 30, 12, 30, 25, 77, 12, 25, 180, 27, 10, 69, 235, 228, 343, 118,
69, 41,8, 69, 175, 25, 69, 25, 125, 41, 25, 41, 8, 155, 146, 155, 146, 155, 206, 168, 128, 157, 27, 273, 211, 211, 168, 11, 173, 154, 77, 173, 77, 102, 102, 102, 8, 85, 95, 102, 157, 28, 122, 234, 122, 157, 235, 222, 241, 10, 91, 179, 25, 13, 25, 41, 25, 206, 41, 6, 41, 158, 206, 206, 33, 296, 296, 33, 228,
69, 8, 114, 148, 33, 29, 66, 27, 27, 30, 233, 54, 173, 108, 106, 108, 108, 53, 103, 33, 33, 33, 176, 27, 27, 205, 164, 105, 237, 41, 27, 72, 165, 29, 29, 259, 132, 132, 132, 364, 71, 71, 27, 94, 160, 127, 51, 234, 55, 27, 95, 94, 165, 55, 55, 41, 0, 41, 128, 4, 123, 173, 6, 164, 157, 121, 121, 154, 86, 164,
164, 25, 93, 164, 25, 164, 210, 284, 62, 93, 30, 25, 25, 30, 30, 260, 130, 25, 125, 57, 53, 166, 166, 166, 185, 166, 158, 94, 113, 215, 159, 62, 99, 21, 172, 99, 184, 62, 259, 4, 21, 21, 77, 62, 173, 41, 146, 6, 41, 128, 121, 41, 11, 121, 103, 159, 164, 175, 206, 91, 103, 164, 72, 25, 129, 72, 206, 129, 33,
103, 102, 102, 29, 13, 11, 251, 234, 135, 31, 8, 123, 65, 91, 121, 129, 65, 243, 10, 91, 8, 65, 70, 228, 220, 243, 91, 10, 10, 30, 178, 91, 178, 33, 21, 25, 235, 165, 11, 161, 158, 27, 27, 30, 128, 75, 36, 30, 36, 36, 173, 25, 33, 178, 112, 162, 112, 112, 112, 162, 33, 33, 178, 123, 123, 39, 106, 91, 106,
106, 158, 106, 106, 284, 39, 230, 21, 228, 11, 21, 228, 159, 241, 62, 10, 62, 10, 68, 234, 39, 39, 138, 62, 22, 27, 183, 22, 215, 10, 175, 175, 353, 228, 42, 193, 175, 175, 27, 98, 27, 193, 150, 27, 173, 17, 233, 233, 25, 102, 123, 152, 242, 108, 4, 94, 176, 13, 41, 219, 17, 151, 22, 103, 103, 53, 128, 233,
284, 25, 265, 128, 39, 39, 138, 42, 39, 21, 86, 95, 127, 29, 91, 46, 103, 103, 215, 25, 123, 123, 230, 25, 193, 180, 30, 60, 30, 242, 136, 180, 193, 30, 206, 180, 60, 165, 206, 193, 165, 123, 164, 103, 68, 25, 70, 91, 25, 82, 53, 82, 186, 53, 82, 53, 25, 30, 282, 91, 13, 234, 160, 160, 126, 149, 36, 36, 160,
149, 178, 160, 39, 294, 149, 149, 160, 39, 95, 221, 186, 106, 178, 316, 267, 53, 53, 164, 159, 164, 165, 94, 228, 53, 52, 178, 183, 53, 294, 128, 55, 140, 294, 25, 95, 366, 15, 304, 13, 183, 77, 230, 6, 136, 235, 121, 311, 273, 36, 158, 235, 230, 98, 201, 165, 165, 165, 91, 175, 248, 39, 185, 128, 39, 39,
128, 313, 91, 36, 219, 130, 25, 130, 234, 234, 130, 234, 121, 205, 304, 94, 77, 64, 259, 60, 60, 60, 77, 242, 60, 145, 95, 270, 18, 91, 199, 159, 91, 235, 58, 249, 26, 123, 114, 29, 15, 191, 15, 30, 55, 55, 347, 4, 29, 15, 4, 341, 93, 7, 30, 23, 7, 121, 266, 178, 261, 70, 169, 25, 25, 158, 169, 25, 169, 270,
270, 13, 128, 327, 103, 55, 128, 103, 136, 159, 103, 327, 41, 32, 111, 111, 114, 173, 215, 173, 25, 173, 180, 114, 173, 173, 98, 93, 25, 160, 157, 159, 160, 159, 159, 160, 320, 35, 193, 221, 33, 36, 136, 248, 91, 215, 125, 215, 156, 68, 125, 125, 1, 287, 123, 94, 30, 184, 13, 30, 94, 123, 206, 12, 206,
289, 128, 122, 184, 128, 289, 178, 29, 26, 206, 178, 65, 206, 128, 192, 102, 197, 36, 94, 94, 155, 10, 36, 121, 280, 121, 368, 192, 121, 121, 179, 121, 36, 54, 192, 121, 192, 197, 118, 123, 224, 118, 10, 192, 10, 91, 269, 91, 49, 206, 184, 185, 62, 8, 49, 289, 30, 5, 55, 30, 42, 39, 220, 298, 42, 347, 42,
234, 42,70, 42, 55, 321, 129, 172, 173, 172, 13, 98, 129, 325, 235, 284, 362, 129, 233, 345, 175, 261, 175, 60, 261, 58, 289, 99, 99, 99, 206, 99, 36, 175, 29, 25, 432, 125, 264, 168, 173, 69, 158, 273, 179, 164, 69, 158, 69, 8, 95, 192, 30, 164, 101, 44, 53, 273, 335, 273, 53, 45, 128, 45, 234, 123, 105,
103, 103, 224, 36, 90, 211, 282, 264, 91, 228, 91, 166, 264, 228, 398, 50, 101, 91, 264, 73, 36, 25, 73, 50, 50, 242, 36, 36, 58, 165, 204, 353, 165, 125, 320, 128, 298, 298, 180, 128, 60, 102, 30, 30, 53, 179, 234, 325, 234, 175, 21, 250, 215, 103, 21, 21, 250, 91, 211, 91, 313, 301, 323, 215, 228, 160,
29, 29, 81, 53, 180, 146, 248, 66, 159, 39, 98, 323, 98, 36, 95, 218, 234, 39, 82, 82, 230, 62, 13, 62, 230, 13, 30, 98, 0, 8, 98, 8, 98, 91, 267, 121, 197, 30, 78, 27, 78, 102, 27, 298, 160, 103, 264, 264, 264, 175, 17, 273, 273, 165, 31, 160, 17, 99, 17, 99, 234, 31, 17, 99, 36, 26, 128, 29, 214, 353, 264,
102, 36, 102, 264, 264, 273, 273, 4, 16, 138, 138, 264, 128, 313, 25, 420, 60, 10, 280, 264, 60, 60, 103, 178, 125, 178, 29, 327, 29, 36, 30, 36, 4, 52, 183, 183, 173, 52, 31, 173, 31, 158, 31, 158, 31, 9, 31, 31, 353, 31, 353, 173, 415, 9, 17, 222, 31, 103, 31, 165, 27, 31, 31, 165, 27, 27, 206, 31, 31, 4, 4,
30,4, 4,264, 185, 159, 310, 273, 310, 173, 40, 4, 173, 4, 173, 4, 250, 250, 62, 188, 119, 250, 233, 62, 121, 105, 105, 54, 103, 111, 291, 236, 236, 103, 297, 36, 26, 316, 69, 183, 158, 206, 129, 160, 129, 184, 55, 179, 279, 11, 179, 347, 160, 184, 129, 179, 351, 179, 353, 179, 129, 129, 351, 11, 111,
93, 93, 235, 103, 173, 53, 93, 50, 111, 86, 123, 94, 36, 183, 60, 55, 55, 178, 219, 253, 321, 178, 235, 235, 183, 183, 204, 321, 219, 160, 193, 335, 121, 70, 69, 295, 159, 297, 231, 121, 231, 136, 353, 136, 121, 279, 215, 366, 215, 353, 159, 353, 353, 103, 31, 31, 298, 298, 30, 30, 165, 273, 25, 219, 35,
165, 259, 54, 36, 54, 54, 165, 71, 250, 327, 13, 289, 165, 196, 165, 165, 94, 233, 165, 94, 60, 165, 96, 220, 166, 271, 158, 397, 122, 53, 53, 137, 280, 272, 62, 30, 30, 30, 105, 102, 67, 140, 8, 67, 21, 270, 298, 69, 173, 298, 91, 179, 327, 86, 179, 88, 179, 179, 55, 123, 220, 233, 94, 94, 175, 13, 53, 13,
154,191, 74, 83, 83, 325, 207, 83, 74, 83, 325, 74, 316, 388, 55, 55, 364, 55, 183, 434, 273, 273, 273, 164, 213, 11, 213, 327, 321, 21, 352, 185, 103, 13, 13, 55, 30, 323, 123, 178, 435, 178, 30, 175, 175, 30, 481, 527, 175, 125, 232, 306, 232, 206, 306, 364, 206, 270, 206, 232, 10, 30, 130, 160, 130,
347, 240, 30, 136, 130, 347, 136, 279, 298, 206, 30, 103, 273, 241, 70, 206, 306, 434, 206, 94, 94, 156, 161, 321, 321, 64, 161, 13, 183, 183, 83, 161, 13, 169, 13, 159, 36, 173, 159, 36, 36, 230, 235, 235, 159, 159, 335, 312, 42, 342, 264, 39, 39, 39, 34, 298, 36, 36, 252, 164, 29, 493, 29, 387, 387,
435,493, 132, 273, 105, 132, 74, 73, 206, 234, 273, 206, 95, 15, 280, 280, 280, 280, 397, 273, 273, 242, 397, 280, 397, 397, 397, 273, 397, 280, 230, 137, 353, 67, 81, 137, 137, 353, 259, 312, 114, 164, 164, 25, 77, 21, 77, 165, 30, 30, 231, 234, 121, 234, 312, 121, 364, 136, 123, 123, 136, 123, 136,
150, 264, 285, 30, 166, 93, 30, 39, 224, 136, 39, 355, 355, 397, 67, 67, 25, 67, 25, 298, 11, 67, 264, 374, 99, 150, 321, 67, 70, 67, 295, 150, 29, 321, 150, 70, 29, 142, 355, 311, 173, 13, 253, 103, 114, 114, 70, 192, 22, 128, 128, 183, 184, 70, 77, 215, 102, 292, 30, 123, 279, 292, 142, 33, 215, 102,
468, 123, 468, 473, 30, 292, 215, 30, 213, 443, 473, 215, 234, 279, 279, 279, 279, 265, 443, 206, 66, 313, 34, 30, 206, 30, 51, 15, 2086, 41, 434, 41, 398, 67, 30, 301, 67, 36, 3, 285, 437, 136, 136, 22, 136, 145, 365, 323, 323, 145, 136, 22, 453, 99, 323, 353, 9, 258, 323, 231, 128, 231, 382, 150, 420,
39,94, 29, 29, 353, 22, 22, 347, 353, 39, 29, 22, 183, 8, 284, 355, 388, 284, 60, 64, 99, 60, 64, 150, 95, 150, 364, 150, 95, 150, 6, 236, 383, 544, 81, 206, 388, 206, 58, 159, 99, 231, 228, 363, 363, 121, 99, 121, 121, 99, 422, 544, 273, 173, 121, 427, 102, 121, 235, 284, 179, 25, 197, 25, 179, 511, 70,
368, 70, 25, 388, 123, 368, 159, 213, 410, 159, 236, 127, 159, 21, 373, 184, 424, 327, 250, 176, 176, 175, 284, 316, 176, 284, 327, 111, 250, 284, 175, 175, 264, 111, 176, 219, 111, 427, 427, 176, 284, 427, 353, 428, 55, 184, 493, 158, 136, 99, 287, 264, 334, 264, 213, 213, 202, 481, 93, 264, 292,
295, 295, 6, 367, 279, 173, 308, 285, 158, 308, 335, 299, 137, 137, 572, 41, 137, 137, 41, 94, 335, 220, 36, 224, 420, 36, 265, 265, 91, 91, 71, 123, 264, 91, 91, 123, 107, 30, 22, 292, 35, 241, 356, 298, 14, 298, 441, 35, 121, 71, 63, 130, 63, 488, 363, 71, 63, 307, 194, 71, 71, 220, 121, 125, 71, 220,
71,71, 71,71, 235, 265, 353, 128, 155, 128, 420, 400, 130, 173, 183, 183, 184, 130, 173, 183, 13, 183, 130, 130, 183, 183, 353, 353, 183, 242, 183, 183, 306, 324, 324, 321, 306, 321, 6, 6, 128, 306, 242, 242, 306, 183, 183, 6, 183, 321, 486, 183, 164, 30, 78, 138, 158, 138, 34, 206, 362, 55, 70, 67,
21,375, 136, 298, 81, 298, 298, 298, 230, 121, 30, 230, 311, 240, 311, 311, 158, 204, 136, 136, 184, 136, 264, 311, 311, 312, 312, 72, 311, 175, 264, 91, 175, 264, 121, 461, 312, 312, 238, 475, 350, 512, 350, 312, 313, 350, 312, 366, 294, 30, 253, 253, 253, 388, 158, 388, 22, 388, 22, 388, 103, 321,
321, 253,7,437, 103, 114, 242, 114, 114, 242, 114, 114, 242, 242, 242, 306, 242, 114, 7, 353, 335, 27, 241, 299, 312, 364, 506, 409, 94, 462, 230, 462, 243, 230, 175, 175, 462, 461, 230, 428, 426, 175, 175, 165, 175, 175, 372, 183, 572, 102, 85, 102, 538, 206, 376, 85, 85, 284, 85, 85, 284, 398, 83,
160, 265, 308, 398, 310, 583, 289, 279, 273, 285, 490, 490, 211, 292, 292, 158, 398, 30, 220, 169, 368, 368, 368, 169, 159, 368, 93, 368, 368, 93, 169, 368, 368, 443, 368, 298, 443, 368, 298, 538, 345, 345, 311, 178, 54, 311, 215, 178, 175, 222, 264, 475, 264, 264, 475, 478, 289, 63, 236, 63, 299,
231, 296, 397, 299, 158, 36, 164, 164, 21, 492, 21, 164, 21, 164, 403, 26, 26, 588, 179, 234, 169, 465, 295, 67, 41, 353, 295, 538, 161, 185, 306, 323, 68, 420, 323, 82, 241, 241, 36, 53, 493, 301, 292, 241, 250, 63, 63, 103, 442, 353, 185, 353, 321, 353, 185, 353, 353, 185, 409, 353, 589, 34, 271, 271,
34,86, 34, 34, 353, 353, 39, 414, 4, 95, 95, 4, 225, 95, 4, 121, 30, 552, 136, 159, 159, 514, 159, 159, 54, 514, 206, 136, 206, 159, 74, 235, 235, 312, 54, 312, 42, 156, 422, 629, 54, 465, 265, 165, 250, 35, 165, 175, 659, 175, 175, 8, 8, 8, 8, 206, 206, 206, 50, 435, 206, 432, 230, 230, 234, 230, 94, 299,
299, 285, 184, 41, 93, 299, 299, 285, 41, 285, 158, 285, 206, 299, 41, 36, 396, 364, 364, 120, 396, 514, 91, 382, 538, 807, 717, 22, 93, 412, 54, 215, 54, 298, 308, 148, 298, 148, 298, 308, 102, 656, 6, 148, 745, 128, 298, 64, 407, 273, 41, 172, 64, 234, 250, 398, 181, 445, 95, 236, 441, 477, 504, 102,
196, 137, 364, 60, 453, 137, 364, 367, 334, 364, 299, 196, 397, 630, 589, 589, 196, 646, 337, 235, 128, 128, 343, 289, 235, 324, 427, 324, 58, 215, 215, 461, 425, 461, 387, 440, 285, 440, 440, 285, 387, 632, 325, 325, 440, 461, 425, 425, 387, 627, 191, 285, 440, 308, 55, 219, 280, 308, 265, 538, 183,
121, 30, 236, 206, 30, 455, 236, 30, 30, 705, 83, 228, 280, 468, 132, 8, 132, 132, 128, 409, 173, 353, 132, 409, 35, 128, 450, 137, 398, 67, 432, 423, 235, 235, 388, 306, 93, 93, 452, 300, 190, 13, 452, 388, 30, 452, 13, 30, 13, 30, 306, 362, 234, 721, 635, 809, 784, 67, 498, 498, 67, 353, 635, 67, 183,
159, 445, 285, 183, 53, 183, 445, 265, 432, 57, 420, 432, 420, 477, 327, 55, 60, 105, 183, 218, 104, 104, 475, 239, 582, 151, 239, 104, 732, 41, 26, 784, 86, 300, 215, 36, 64, 86, 86, 675, 294, 64, 86, 528, 550, 493, 565, 298, 230, 312, 295, 538, 298, 295, 230, 54, 374, 516, 441, 54, 54, 323, 401, 401,
382, 159, 837, 159, 54, 401, 592, 159, 401, 417, 610, 264, 150, 323, 452, 185, 323, 323, 185, 403, 185, 423, 165, 425, 219, 407, 270, 231, 99, 93, 231, 631, 756, 71, 364, 434, 213, 86, 102, 434, 102, 86, 23, 71, 335, 164, 323, 409, 381, 4, 124, 41, 424, 206, 41, 124, 41, 41, 703, 635, 124, 493, 41, 41,
487, 492, 124, 175, 124, 261, 600, 488, 261, 488, 261, 206, 677, 261, 308, 723, 908, 704, 691, 723, 488, 488, 441, 136, 476, 312, 136, 550, 572, 728, 550, 22, 312, 312, 22, 55, 413, 183, 280, 593, 191, 36, 36, 427, 36, 695, 592, 19, 544, 13, 468, 13, 544, 72, 437, 321, 266, 461, 266, 441, 230, 409, 93,

ETSI

69 ETSI TS 102 472 V1.1.1 (2006-06)

521,521, 345, 235, 22, 142, 150, 102, 569, 235, 264, 91, 521, 264, 7, 102, 7, 498, 521, 235, 537, 235, 6, 241, 420, 420, 631, 41, 527, 103, 67, 337, 62, 264, 527, 131, 67, 174, 263, 264, 36, 36, 263, 581, 253, 465, 160, 286, 91, 160, 55, 4, 4, 631, 631, 608, 365, 465, 294, 427, 427, 335, 669, 669, 129,
93, 93, 93, 93, 74, 66, 758, 504, 347, 130, 505, 504, 143, 505, 550, 222, 13, 352, 529, 291, 538, 50, 68, 269, 130, 295, 130, 511, 295, 295, 130, 486, 132, 61, 206, 185, 368, 669, 22, 175, 492, 207, 373, 452, 432, 327, 89, 550, 496, 611, 527, 89, 527, 496, 550, 516, 516, 91, 136, 538, 264, 264, 124,
264, 264, 264, 264, 264, 535, 264, 150, 285, 398, 285, 582, 398, 475, 81, 694, 694, 64, 81, 694, 234, 607, 723, 513, 234, 64, 581, 64, 124, 64, 607, 234, 723, 717, 367, 64, 513, 607, 488, 183, 488, 450, 183, 550, 286, 183, 363, 286, 414, 67, 449, 449, 366, 215, 235, 95, 295, 295, 41, 335, 21, 445, 225,
21,295,372, 749, 461, 53, 481, 397, 427, 427, 427, 714, 481, 714, 427, 717, 165, 245, 486, 415, 245, 415, 486, 274, 415, 441, 456, 300, 548, 300, 422, 422, 757, 11, 74, 430, 430, 136, 409, 430, 749, 191, 819, 592, 136, 364, 465, 231, 231, 918, 160, 589, 160, 160, 465, 465, 231, 157, 538, 538, 259,
538,326, 22, 22, 22, 179, 22, 22, 550, 179, 287, 287, 417, 327, 498, 498, 287, 488, 327, 538, 488, 583, 488, 287, 335, 287, 335, 287, 41, 287, 335, 287, 327, 441, 335, 287, 488, 538, 327, 498, 8, 8, 374, 8, 64, 427, 8, 374, 417, 760, 409, 373, 160, 423, 206, 160, 106, 499, 160, 271, 235, 160, 590, 353,
695, 478, 619, 590, 353, 13, 63, 189, 420, 605, 427, 643, 121, 280, 415, 121, 415, 595, 417, 121, 398, 55, 330, 463, 463, 123, 353, 330, 582, 309, 582, 582, 405, 330, 550, 405, 582, 353, 309, 308, 60, 353, 7, 60, 71, 353, 189, 183, 183, 183, 582, 755, 189, 437, 287, 189, 183, 668, 481, 384, 384, 481,
481, 481, 477, 582, 582, 499, 650, 481, 121, 461, 231, 36, 235, 36, 413, 235, 209, 36, 689, 114, 353, 353, 235, 592, 36, 353, 413, 209, 70, 308, 70, 699, 308, 70, 213, 292, 86, 689, 465, 55, 508, 128, 452, 29, 41, 681, 573, 352, 21, 21, 648, 648, 69, 509, 409, 21, 264, 21, 509, 514, 514, 409, 21, 264,
443, 443, 427, 160, 433, 663, 433, 231, 646, 185, 482, 646, 433, 13, 398, 172, 234, 42, 491, 172, 234, 234, 832, 775, 172, 196, 335, 822, 461, 298, 461, 364, 1120, 537, 169, 169, 364, 694, 219, 612, 231, 740, 42, 235, 321, 279, 960, 279, 353, 492, 159, 572, 321, 159, 287, 353, 287, 287, 206, 206,
321, 287, 159, 321, 492, 159, 55, 572, 600, 270, 492, 784, 173, 91, 91, 443, 443, 582, 261, 497, 572, 91, 555, 352, 206, 261, 555, 285, 91, 555, 497, 83, 91, 619, 353, 488, 112, 4, 592, 295, 295, 488, 235, 231, 769, 568, 581, 671, 451, 451, 483, 299, 1011, 432, 422, 207, 106, 701, 508, 555, 508, 555,
125, 870, 555, 589, 508, 125, 749, 482, 125, 125, 130, 544, 643, 643, 544, 488, 22, 643, 130, 335, 544, 22, 130, 544, 544, 488, 426, 426, 4, 180, 4, 695, 35, 54, 433, 500, 592, 433, 262, 94, 401, 401, 106, 216, 216, 106, 521, 102, 462, 518, 271, 475, 365, 193, 648, 206, 424, 206, 193, 206, 206, 424,
299, 590, 590, 364, 621, 67, 538, 488, 567, 51, 51, 513, 194, 81, 488, 486, 289, 567, 563, 749, 563, 338, 338, 502, 563, 822, 338, 563, 338, 502, 201, 230, 201, 533, 445, 175, 201, 175, 13, 85, 960, 103, 85, 175, 30, 445, 445, 175, 573, 196, 877, 287, 356, 678, 235, 489, 312, 572, 264, 717, 138, 295,
6,295, 523, 55, 165, 165, 295, 138, 663, 6, 295, 6, 353, 138, 6, 138, 169, 129, 784, 12, 129, 194, 605, 784, 445, 234, 627, 563, 689, 627, 647, 570, 627, 570, 647, 206, 234, 215, 234, 816, 627, 816, 234, 627, 215, 234, 627, 264, 427, 427, 30, 424, 161, 161, 916, 740, 180, 616, 481, 514, 383, 265, 481,
164, 650, 121, 582, 689, 420, 669, 589, 420, 788, 549, 165, 734, 280, 224, 146, 681, 788, 184, 398, 784, 4, 398, 417, 417, 398, 636, 784, 417, 81, 398, 417, 81, 185, 827, 420, 241, 420, 41, 185, 185, 718, 241, 101, 185, 185, 241, 241, 241, 241, 241, 185, 324, 420, 420, 1011, 420, 827, 241, 184, 563,
241, 183, 285, 529, 285, 808, 822, 891, 822, 488, 285, 486, 619, 55, 869, 39, 567, 39, 289, 203, 158, 289, 710, 818, 158, 818, 355, 29, 409, 203, 308, 648, 792, 308, 308, 91, 308, 6, 592, 792, 106, 106, 308, 41, 178, 91, 751, 91, 259, 734, 166, 36, 327, 166, 230, 205, 205, 172, 128, 230, 432, 623, 838,
623, 432, 278, 432, 42, 916, 432, 694, 623, 352, 452, 93, 314, 93, 93, 641, 88, 970, 914, 230, 61, 159, 270, 159, 493, 159, 755, 159, 409, 30, 30, 836, 128, 241, 99, 102, 984, 538, 102, 102, 273, 639, 838, 102, 102, 136, 637, 508, 627, 285, 465, 327, 327, 21, 749, 327, 749, 21, 845, 21, 21, 409, 749,
1367, 806, 616, 714, 253, 616, 714, 714, 112, 375, 21, 112, 375, 375, 51, 51, 51, 51, 393, 206, 870, 713, 193, 802, 21, 1061, 42, 382, 42, 543, 876, 42, 876, 382, 696, 543, 635, 490, 353, 353, 417, 64, 1257, 271, 64, 377, 127, 127, 537, 417, 905, 353, 538, 465, 605, 876, 427, 324, 514, 852, 427, 53,
427,557,173, 173, 7, 1274, 563, 31, 31, 31, 745, 392, 289, 230, 230, 230, 91, 218, 327, 420, 420, 128, 901, 552, 420, 230, 608, 552, 476, 347, 476, 231, 159, 137, 716, 648, 716, 627, 740, 718, 679, 679, 6, 718, 740, 6, 189, 679, 125, 159, 757, 1191, 409, 175, 250, 409, 67, 324, 681, 605, 550, 398,
550, 931, 478, 174, 21, 316, 91, 316, 654, 409, 425, 425, 699, 61, 699, 321, 698, 321, 698, 61, 425, 699, 321, 409, 699, 299, 335, 321, 335, 61, 698, 699, 654, 698, 299, 425, 231, 14, 121, 515, 121, 14, 165, 81, 409, 189, 81, 373, 465, 463, 1055, 507, 81, 81, 189, 1246, 321, 409, 886, 104, 842, 689,
300, 740, 380, 656, 656, 832, 656, 380, 300, 300, 206, 187, 175, 142, 465, 206, 271, 468, 215, 560, 83, 215, 83, 215, 215, 83, 175, 215, 83, 83, 111, 206, 756, 559, 756, 1367, 206, 559, 1015, 559, 559, 946, 1015, 548, 559, 756, 1043, 756, 698, 159, 414, 308, 458, 997, 663, 663, 347, 39, 755, 838,
323, 755, 323, 159, 159, 717, 159, 21, 41, 128, 516, 159, 717, 71, 870, 755, 159, 740, 717, 374, 516, 740, 51, 148, 335, 148, 335, 791, 120, 364, 335, 335, 51, 120, 251, 538, 251, 971, 1395, 538, 78, 178, 538, 538, 918, 129, 918, 129, 538, 538, 656, 129, 538, 538, 129, 538, 1051, 538, 128, 838, 931,
998, 823, 1095, 334, 870, 334, 367, 550, 1061, 498, 745, 832, 498, 745, 716, 498, 498, 128, 997, 832, 716, 832, 130, 642, 616, 497, 432, 432, 432, 432, 642, 159, 432, 46, 230, 788, 160, 230, 478, 46, 693, 103, 920, 230, 589, 643, 160, 616, 432, 165, 165, 583, 592, 838, 784, 583, 710, 6, 583, 583, 6,
35, 230, 838, 592, 710, 6, 589, 230, 838, 30, 592, 583, 6, 583, 6, 6, 583, 30, 30, 6, 375, 375, 99, 36, 1158, 425, 662, 417, 681, 364, 375, 1025, 538, 822, 669, 893, 538, 538, 450, 409, 632, 527, 632, 563, 632, 527, 550, 71, 698, 550, 39, 550, 514, 537, 514, 537, 111, 41, 173,592, 173, 648, 173, 173,
173,1011, 514, 173, 173, 514, 166, 648, 355, 161, 166, 648, 497, 327, 327, 550, 650, 21, 425, 605, 555, 103, 425, 605, 842, 836, 1011, 636, 138, 756, 836, 756, 756, 353, 1011, 636, 636, 1158, 741, 741, 842, 756, 741, 1011, 677, 1011, 770, 366, 306, 488, 920, 920, 665, 775, 502, 500, 775, 775, 648,
364, 833, 207, 13, 93, 500, 364, 500, 665, 500, 93, 295, 183, 1293, 313, 272, 313, 279, 303, 93, 516, 93, 1013, 381, 6, 93, 93, 303, 259, 643, 168, 673, 230, 1261, 230, 230, 673, 1060, 1079, 1079, 550, 741, 741, 590, 527, 741, 741, 442, 741, 442, 848, 741, 590, 925, 219, 527, 925, 335, 442, 590, 239,
590, 590, 590, 239, 527, 239, 1033, 230, 734, 241, 741, 230, 549, 548, 1015, 1015, 32, 36, 433, 465, 724, 465, 73, 73, 73, 465, 808, 73, 592, 1430, 250, 154, 154, 250, 538, 353, 353, 353, 353, 353, 175, 194, 206, 538, 632, 1163, 960, 175, 175, 538, 452, 632, 1163, 175, 538, 960, 194, 175, 194, 632,
960, 632, 94, 632, 461, 960, 1163, 1163, 461, 632, 960, 755, 707, 105, 382, 625, 382, 382, 784, 707, 871, 559, 387, 387, 871, 784, 559, 784, 88, 36, 570, 314, 1028, 975, 335, 335, 398, 573, 573, 573, 21, 215, 562, 738, 612, 424, 21, 103, 788, 870, 912, 23, 186, 757, 73, 818, 23, 73, 563, 952, 262,
563, 137, 262, 1022, 952, 137, 1273, 442, 952, 604, 137, 308, 384, 913, 235, 325, 695, 398, 95, 668, 776, 713, 309, 691, 22, 10, 364, 682, 682, 578, 481, 1252, 1072, 1252, 825, 578, 825, 1072, 1149, 592, 273, 387, 273, 427, 155, 1204, 50, 452, 50, 1142, 50, 367, 452, 1142, 611, 367, 50, 50, 367, 50,
1675, 99, 367, 50, 1501, 1099, 830, 681, 689, 917, 1089, 453, 425, 235, 918, 538, 550, 335, 161, 387, 859, 324, 21, 838, 859, 1123, 21, 723, 21, 335, 335, 206, 21, 364, 1426, 21, 838, 838, 335, 364, 21, 21, 859, 920, 838, 838, 397, 81, 639, 397, 397, 588, 933, 933, 784, 222, 830, 36, 36, 222, 1251,
266, 36, 146, 266, 366, 581, 605, 366, 22, 966, 681, 681, 433, 730, 1013, 550, 21, 21, 938, 488, 516, 21, 21, 656, 420, 323, 323, 323, 327, 323, 918, 581, 581, 830, 361, 830, 364, 259, 364, 496, 496, 364, 691, 705, 691, 475, 427, 1145, 600, 179, 427, 527, 749, 869, 689, 335, 347, 220, 298, 689, 1426,
183, 554, 55, 832, 550, 550, 165, 770, 957, 67, 1386, 219, 683, 683, 355, 683, 355, 355, 738, 355, 842, 931, 266, 325, 349, 256, 1113, 256, 423, 960, 554, 554, 325, 554, 508, 22, 142, 22, 508, 916, 767, 55, 1529, 767, 55, 1286, 93, 972, 550, 931, 1286, 1286, 972, 93, 1286, 1392, 890, 93, 1286, 93,
1286, 972, 374, 931, 890, 808, 779, 975, 975, 175, 173, 4, 681, 383, 1367, 173, 383, 1367, 383, 173, 175, 69, 238, 146, 238, 36, 148, 888, 238, 173, 238, 148, 238, 888, 185, 925, 925, 797, 925, 815, 925, 469, 784, 289, 784, 925, 797, 925, 925, 1093, 925, 925, 925, 1163, 797, 797, 815, 925, 1093,
784, 636, 663, 925, 187, 922, 316, 1380, 709, 916, 916, 187, 355, 948, 916, 187, 916, 916, 948, 948, 916, 355, 316, 316, 334, 300, 1461, 36, 583, 1179, 699, 235, 858, 583, 699, 858, 699, 1189, 1256, 1189, 699, 797, 699, 699, 699, 699, 427, 488, 427, 488, 175, 815, 656, 656, 150, 322, 465, 322, 870,
465, 1099, 582, 665, 767, 749, 635, 749, 600, 1448, 36, 502, 235, 502, 355, 502, 355, 355, 355, 172, 355, 355, 95, 866, 425, 393, 1165, 42, 42, 42, 393, 939, 909, 909, 836, 552, 424, 1333, 852, 897, 1426, 1333, 1446, 1426, 997, 1011, 852, 1198, 55, 32, 239, 588, 681, 681, 239, 1401, 32, 588, 239,
462, 286, 1260, 984, 1160, 960, 960, 486, 828, 462, 960, 1199, 581, 850, 663, 581, 751, 581, 581, 1571, 252, 252, 1283, 264, 430, 264, 430, 430, 842, 252, 745, 21, 307, 681, 1592, 488, 857, 857, 1161, 857, 857, 857, 138, 374, 374, 1196, 374, 1903, 1782, 1626, 414, 112, 1477, 1040, 356, 775, 414,
414,112, 356, 775, 435, 338, 1066, 689, 689, 1501, 689, 1249, 205, 689, 765, 220, 308, 917, 308, 308, 220, 327, 387, 838, 917, 917, 917, 220, 662, 308, 220, 387, 387, 220, 220, 308, 308, 308, 387, 1009, 1745, 822, 279, 554, 1129, 543, 383, 870, 1425, 241, 870, 241, 383, 716, 592, 21, 21, 592, 425,
550, 550, 550, 427, 230, 57, 483, 784, 860, 57, 308, 57, 486, 870, 447, 486, 433, 433, 870, 433, 997, 486, 443, 433, 433, 997, 486, 1292, 47, 708, 81, 895, 394, 81, 935, 81, 81, 81, 374, 986, 916, 1103, 1095, 465, 495, 916, 667, 1745, 518, 220, 1338, 220, 734, 1294, 741, 166, 828, 741, 741, 1165,
1371, 1371, 471, 1371, 647, 1142, 1878, 1878, 1371, 1371, 822, 66, 327, 158, 427, 427, 465, 465, 676, 676, 30, 30, 676, 676, 893, 1592, 93, 455, 308, 582, 695, 582, 629, 582, 85, 1179, 85, 85, 1592, 1179, 280, 1027, 681, 398, 1027, 398, 295, 784, 740, 509, 425, 968, 509, 46, 833, 842, 401, 184,
401, 464, 6, 1501, 1501, 550, 538, 883, 538, 883, 883, 883, 1129, 550, 550, 333, 689, 948, 21, 21, 241, 2557, 2094, 273, 308, 58, 863, 893, 1086, 409, 136, 1086, 592, 592, 830, 830, 883, 830, 277, 68, 689, 902, 277, 453, 507, 129, 689, 630, 664, 550, 128, 1626, 1626, 128, 902, 312, 589, 755, 755,
589, 755, 407, 1782, 589, 784, 1516, 1118, 407, 407, 1447, 589, 235, 755, 1191, 235, 235, 407, 128, 589, 1118, 21, 383, 1331, 691, 481, 383, 1129, 1129, 1261, 1104, 1378, 1129, 784, 1129, 1261, 1129, 947, 1129, 784, 784, 1129, 1129, 35, 1104, 35, 866, 1129, 1129, 64, 481, 730, 1260, 481, 970,
481, 481, 481, 481, 863, 481, 681, 699, 863, 486, 681, 481, 481, 55, 55, 235, 1364, 944, 632, 822, 401, 822, 952, 822, 822, 99, 550, 2240, 550, 70, 891, 860, 860, 550, 550, 916, 1176, 1530, 425, 1530, 916, 628, 1583, 916, 628, 916, 916, 628, 628, 425, 916, 1062, 1265, 916, 916, 916, 280, 461, 916,
916, 1583, 628, 1062, 916, 916, 677, 1297, 924, 1260, 83, 1260, 482, 433, 234, 462, 323, 1656, 997, 323, 323, 931, 838, 931, 1933, 1391, 367, 323, 931, 1391, 1391, 103, 1116, 1116, 1116, 769, 1195, 1218, 312, 791, 312, 741, 791, 997, 312, 334, 334, 312, 287, 287, 633, 1397, 1426, 605, 1431, 327,
592, 705, 1194, 592, 1097, 1118, 1503, 1267, 1267, 1267, 618, 1229, 734, 1089, 785, 1089, 1129, 1148, 1148, 1089, 915, 1148, 1129, 1148, 1011, 1011, 1229, 871, 1560, 1560, 1560, 563, 1537, 1009, 1560, 632, 985, 592, 1308, 592, 882, 145, 145, 397, 837, 383, 592, 592, 832, 36, 2714, 2107, 1588,
1347, 36, 36, 1443, 1453, 334, 2230, 1588, 1169, 650, 1169, 2107, 425, 425, 891, 891, 425, 2532, 679, 274, 274, 274, 325, 274, 1297, 194, 1297, 627, 314, 917, 314, 314, 1501, 414, 1490, 1036, 592, 1036, 1025, 901, 1218, 1025, 901, 280, 592, 592, 901, 1461, 159, 159, 159, 2076, 1066, 1176, 1176,
516, 327, 516, 1179, 1176, 899, 1176, 1176, 323, 1187, 1229, 663, 1229, 504, 1229, 916, 1229, 916, 1661, 41, 36, 278, 1027, 648, 648, 648, 1626, 648, 646, 1179, 1580, 1061, 1514, 1008, 1741, 2076, 1514, 1008, 952, 1089, 427, 952, 427, 1083, 425, 427, 1089, 1083, 425, 427, 425, 230, 920, 1678,
920, 1678, 189, 189, 953, 189, 133, 189, 1075, 189, 189, 133, 1264, 725, 189, 1629, 189, 808, 230, 230, 2179, 770, 230, 770, 230, 21, 21, 784, 1118, 230, 230, 230, 770, 1118, 986, 808, 916, 30, 327, 918, 679, 414, 916, 1165, 1355, 916, 755, 733, 433, 1490, 433, 433, 433, 605, 433, 433, 433, 1446,
679, 206, 433, 21, 2452, 206, 206, 433, 1894, 206, 822, 206, 2073, 206, 206, 21, 822, 21, 206, 206, 21, 383, 1513, 375, 1347, 432, 1589, 172, 954, 242, 1256, 1256, 1248, 1256, 1256, 1248, 1248, 1256, 842, 13, 592, 13, 842, 1291, 592, 21, 175, 13, 592, 13, 13, 1426, 13, 1541, 445, 808, 808, 863,
647, 219, 1502, 1029, 1225, 917, 1963, 1129, 555, 1313, 550, 660, 550, 220, 660, 552, 663, 220, 533, 220, 383, 550, 1278, 1495, 636, 842, 1036, 425, 842, 425, 1537, 1278, 842, 554, 1508, 636, 554, 301, 842, 792, 1392, 1021, 284, 1172, 997, 1021, 103, 1316, 308, 1210, 848, 848, 1089, 1089, 848,
848, 67, 1029, 827, 1029, 2078, 827, 1312, 1029, 827, 590, 872, 1312, 427, 67, 67, 67, 67, 872, 827, 872, 2126, 1436, 26, 2126, 67, 1072, 2126, 1610, 872, 1620, 883, 883, 1397, 1189, 555, 555, 563, 1189, 555, 640, 555, 640, 1089, 1089, 610, 610, 1585, 610, 1355, 610, 1015, 616, 925, 1015, 482,
230,707, 231, 888, 1355, 589, 1379, 151, 931, 1486, 1486, 393, 235, 960, 590, 235, 960, 422, 142, 285, 285, 327, 327, 442, 2009, 822, 445, 822, 567, 888, 2611, 1537, 323, 55, 1537, 323, 888, 2611, 323, 1537, 323, 58, 445, 593, 2045, 593, 58, 47, 770, 842, 47, 47, 842, 842, 648, 2557, 173, 689,
2291, 1446, 2085, 2557, 2557, 2291, 1780, 1535, 2291, 2391, 808, 691, 1295, 1165, 983, 948, 2000, 948, 983, 983, 2225, 2000, 983, 983, 705, 948, 2000, 1795, 1592, 478, 592, 1795, 1795, 663, 478, 1790, 478, 592, 1592, 173, 901, 312, 4, 1606, 173, 838, 754, 754, 128, 550, 1166, 551, 1480, 550,
550, 1875, 1957, 1166, 902, 1875, 550, 550, 551, 2632, 551, 1875, 1875, 551, 2891, 2159, 2632, 3231, 551, 815, 150, 1654, 1059, 1059, 734, 770, 555, 1592, 555, 2059, 770, 770, 1803, 627, 627, 627, 2059, 931, 1272, 427, 1606, 1272, 1606, 1187, 1204, 397, 822, 21, 1645, 263, 263, 822, 263, 1645,
280, 263, 605, 1645, 2014, 21, 21, 1029, 263, 1916, 2291, 397, 397, 496, 270, 270, 1319, 264, 1638, 264, 986, 1278, 1397, 1278, 1191, 409, 1191, 740, 1191, 754, 754, 387, 63, 948, 666, 666, 1198, 548, 63, 1248, 285, 1248, 169, 1248, 1248, 285, 918, 224, 285, 1426, 1671, 514, 514, 717, 514, 51,
1521, 1745, 51, 605, 1191, 51, 128, 1191, 51, 51, 1521, 267, 513, 952, 966, 1671, 897, 51, 71, 592, 986, 986, 1121, 592, 280, 2000, 2000, 1165, 1165, 1165, 1818, 222, 1818, 1165, 1252, 506, 327, 443, 432, 1291, 1291, 2755, 1413, 520, 1318, 227, 1047, 828, 520, 347, 1364, 136, 136, 452, 457, 457,
132, 457, 488, 1087, 1013, 2225, 32, 1571, 2009, 483, 67, 483, 740, 740, 1013, 2854, 866, 32, 2861, 866, 887, 32, 2444, 740, 32, 32, 866, 2225, 866, 32, 1571, 2627, 32, 850, 1675, 569, 1158, 32, 1158, 1797, 2641, 1565, 1158, 569, 1797, 1158, 1797, 55, 1703, 42, 55, 2562, 675, 1703, 42, 55, 749,
488, 488, 347, 1206, 1286, 1286, 488, 488, 1206, 1286, 1206, 1286, 550, 550, 1790, 860, 550, 2452, 550, 550, 2765, 1089, 1633, 797, 2244, 1313, 194, 2129, 194, 194, 194, 818, 32, 194, 450, 1313, 2387, 194, 1227, 2387, 308, 2232, 526, 476, 278, 830, 830, 194, 830, 194, 278, 194, 714, 476, 830,
714, 830, 278, 830, 2532, 1218, 1759, 1446, 960, 1747, 187, 1446, 1759, 960, 105, 1446, 1446, 1271, 1446, 960, 960, 1218, 1446, 1446, 105, 1446, 960, 488, 1446, 427, 534, 842, 1969, 2460, 1969, 842, 842, 1969, 427, 941, 2160, 427, 230, 938, 2075, 1675, 1675, 895, 1675, 34, 129, 1811, 239, 749,
1957, 2271, 749, 1908, 129, 239, 239, 129, 129, 2271, 2426, 1355, 1756, 194, 1583, 194, 194, 1583, 194, 1355, 194, 1628, 2221, 1269, 2425, 1756, 1355, 1355, 1583, 1033, 427, 582, 30, 582, 582, 935, 1444, 1962, 915, 733, 915, 938, 1962, 767, 353, 1630, 1962, 1962, 563, 733, 563, 733, 353, 822,
1630, 740, 2076, 2076, 2076, 589, 589, 2636, 866, 589, 947, 1528, 125, 273, 1058, 1058, 1161, 1635, 1355, 1161, 1161, 1355, 1355, 650, 1206, 1206, 784, 784, 784, 784, 784, 412, 461, 412, 2240, 412, 679, 891, 461, 679, 679, 189, 189, 1933, 1651, 2515, 189, 1386, 538, 1386, 1386, 1187, 1386,
2423, 2601, 2285, 175, 175, 2331, 194, 3079, 384, 538, 2365, 2294, 538, 2166, 1841, 3326, 1256, 3923, 976, 85, 550, 550, 1295, 863, 863, 550, 1249, 550, 1759, 146, 1069, 920, 2633, 885, 885, 1514, 1489, 166, 1514, 2041, 885, 2456, 885, 2041, 1081, 1948, 362, 550, 94, 324, 2308, 94, 2386, 94,
550, 874, 1329, 1759, 2280, 1487, 493, 493, 2099, 2599, 1431, 1086, 1514, 1086, 2099, 1858, 368, 1330, 2599, 1858, 2846, 2846, 2007, 2846, 713, 713, 1854, 1123, 713, 713, 3010, 1123, 3010, 538, 713, 1123, 447, 822, 555, 2011, 493, 508, 2292, 555, 1736, 2135, 2704, 555, 2814, 555, 2000, 555,
555, 822, 914, 327, 679, 327, 648, 537, 2263, 931, 1496, 537, 1296, 1745, 1592, 1658, 1795, 650, 1592, 1745, 1745, 1658, 1592, 1745, 1592, 1745, 1658, 1338, 2124, 1592, 1745, 1745, 1745, 837, 1726, 2897, 1118, 1118, 230, 1118, 1118, 1118, 1388, 1748, 514, 128, 1165, 931, 514, 2974, 2041,
2387, 2041, 979, 185, 36, 1269, 550, 173, 812, 36, 1165, 2676, 2562, 1473, 2885, 1982, 1578, 1578, 383, 383, 2360, 383, 1578, 2360, 1584, 1982, 1578, 1578, 1578, 2019, 1036, 355, 724, 2023, 205, 303, 355, 1036, 1966, 355, 1036, 401, 401, 401, 830, 401, 849, 578, 401, 849, 849, 578, 1776, 1123,
552, 2632, 808, 1446, 1120, 373, 1529, 1483, 1057, 893, 1284, 1430, 1529, 1529, 2632, 1352, 2063, 1606, 1352, 1606, 2291, 3079, 2291, 1529, 506, 838, 1606, 1606, 1352, 1529, 1529, 1483, 1529, 1606, 1529, 259, 902, 259, 902, 612, 612, 284, 398, 2991, 1534, 1118, 1118, 1118, 1118, 1118, 734,
284, 2224, 398, 734, 284, 734, 398, 3031, 398, 734, 1707, 2643, 1344, 1477, 475, 1818, 194, 1894, 691, 1528, 1184, 1207, 1501, 6, 2069, 871, 2069, 3548, 1443, 2069, 2685, 3265, 1350, 3265, 2069, 2069, 128, 1313, 128, 663, 414, 1313, 414, 2000, 128, 2000, 663, 1313, 699, 1797, 550, 327, 550,
1526, 699, 327, 1797, 1526, 550, 550, 327, 550, 1426, 1426, 1426, 2285, 1123, 890, 728, 1707, 728, 728, 327, 253, 1187, 1281, 1364, 1571, 2170, 755, 3232, 925, 1496, 2170, 2170, 1125, 443, 902, 902, 925, 755, 2078, 2457, 902, 2059, 2170, 1643, 1129, 902, 902, 1643, 1129, 606, 36, 103, 338,
338, 1089, 338, 338, 338, 1089, 338, 36, 340, 1206, 1176, 2041, 833, 1854, 1916, 1916, 1501, 2132, 1736, 3065, 367, 1934, 833, 833, 833, 2041, 3017, 2147, 818, 1397, 828, 2147, 398, 828, 818, 1158, 818, 689, 327, 36, 1745, 2132, 582, 1475, 189, 582, 2132, 1191, 582, 2132, 1176, 1176, 516,
2610, 2230, 2230, 64, 1501, 537, 1501, 173, 2230, 2988, 1501, 2694, 2694, 537, 537, 173, 173, 1501, 537, 64, 173, 173, 64, 2230, 537, 2230, 537, 2230, 2230, 2069, 3142, 1645, 689, 1165, 1165, 1963, 514, 488, 1963, 1145, 235, 1145, 1078, 1145, 231, 2405, 552, 21, 57, 57, 57, 1297, 1455, 1988,
2310, 1885, 2854, 2014, 734, 1705, 734, 2854, 734, 677, 1988, 1660, 734, 677, 734, 677, 677, 734, 2854, 1355, 677, 1397, 2947, 2386, 1698, 128, 1698, 3028, 2386, 2437, 2947, 2386, 2643, 2386, 2804, 1188, 335, 746, 1187, 1187, 861, 2519, 1917, 2842, 1917, 675, 1308, 234, 1917, 314, 314, 2339,
2339, 2592, 2576, 902, 916, 2339, 916, 2339, 916, 2339, 916, 1089, 1089, 2644, 1221, 1221, 2446, 308, 308, 2225, 2225, 3192, 2225, 555, 1592, 1592, 555, 893, 555, 550, 770, 3622, 2291, 2291, 3419, 465, 250, 2842, 2291, 2291, 2291, 935, 160, 1271, 308, 325, 935, 1799, 1799, 1891, 2227, 1799,
1598, 112, 1415, 1840, 2014, 1822, 2014, 677, 1822, 1415, 1415, 1822, 2014, 2386, 2159, 1822, 1415, 1822, 179, 1976, 1033, 179, 1840, 2014, 1415, 1970, 1970, 1501, 563, 563, 563, 462, 563, 1970, 1158, 563, 563, 1541, 1238, 383, 235, 1158, 383, 1278, 383, 1898, 2938, 21, 2938, 1313, 2201,
2059, 423, 2059, 1313, 872, 1313, 2044, 89, 173, 3327, 1660, 2044, 1623, 173, 1114, 1114, 1592, 1868, 1651, 1811, 383, 3469, 1811, 1651, 869, 383, 383, 1651, 1651, 3223, 2166, 3469, 767, 383, 1811, 767, 2323, 3355, 1457, 3341, 2640, 2976, 2323, 3341, 2323, 2640, 103, 103, 1161, 1080, 2429,
370, 2018, 2854, 2429, 2166, 2429, 2094, 2207, 871, 1963, 1963, 2023, 2023, 2336, 663, 2893, 1580, 691, 663, 705, 2046, 2599, 409, 2295, 1118, 2494, 1118, 1950, 549, 2494, 2453, 2046, 2494, 2453, 2046, 2453, 2046, 409, 1118, 4952, 2291, 2225, 1894, 1423, 2498, 567, 4129, 1475, 1501, 795,
463, 2084, 828, 828, 232, 828, 232, 232, 1818, 1818, 666, 463, 232, 220, 220, 2162, 2162, 833, 4336, 913, 35, 913, 21, 2927, 886, 3037, 383, 886, 876, 1747, 383, 916, 916, 916, 2927, 916, 1747, 837, 1894, 717, 423, 481, 1894, 1059, 2262, 3206, 4700, 1059, 3304, 2262, 871, 1831, 871, 3304, 1059,
1158, 1934, 1158, 756, 1511, 41, 978, 1934, 2603, 720, 41, 756, 41, 325, 2611, 1158, 173, 1123, 1934, 1934, 1511, 2045, 2045, 2045, 1423, 3206, 3691, 2512, 3206, 2512, 2000, 1811, 2504, 2504, 2611, 2437, 2437, 2437, 1455, 893, 150, 2665, 1966, 605, 398, 2331, 1177, 516, 1962, 4241, 94, 1252,
760, 1292, 1962, 1373, 2000, 1990, 3684, 42, 1868, 3779, 1811, 1811, 2041, 3010, 5436, 1780, 2041, 1868, 1811, 1780, 1811, 1868, 1811, 2041, 1868, 1811, 5627, 4274, 1811, 1868, 4602, 1811, 1811, 1474, 2665, 235, 1474, 2665

C.6 Random Numbers

The two tables Vy and V, described in clause C.4.4.1 are given below. Each entry is a 32-bit integer in decimal
representation.

C.6.1 The table V,

251291136, , 123631495, 3351110 , 2011642291, 774603218, 2402805061, 1004366930, , 428891132, , 1591258008, 3067016507, 1433388735, 504005498, 2032657933, 3419319784,
2805686246, 3102436986, 38086711.54 2501582075 3978944421, 246043949, 4016898363, 649743608, 651273766, 2357956801, 689605112 715807172, 2722736134 191939188, 3535520147, 3277019569, 1470435941, 3763101702, 3232409631,
122701163, 3920852693, 782246947, 372121310, 2995604341, 2045698575, 2332962102, 4006368743 218596347, 3415381967 4207612806, 861117671, 3676575285, 2581671944, 3312220480, 681232419, 307306866, 4112503940, 1158111502, 709227802,
2724140433, 4201101115, 4215970289, 4048876515, 129243379, 3142379587, 2569842483, 3033268270, 1658118006, 932109358, 1982290045, 2983082771, 3007670818, 3448104768, 683749698, 778296777,
1399125101, 1939403708, 1692176003, 1422476658, 593093658, 64389521, , 424618399, 1347204291, 2669179716, 2434425874, 2540801947, 1384069776, 4123580443,
1523670218, 2708475297, 1046771089, . 4213663089, 1521330547, 3041843489, 420130494, 10677091, 515623176, 3457502702, 2115821274, 2720124766, 3242576090, 854310108, 425073987, 325832382, 1796851292, 2462744411,
1976681690, 1408671665, 1228817808, 391721.0008 263976645, 2593736473, 2471651269, 4291353919, 650792940, 1191 3046561335, , 969168436, , 2268075521, 1169345068, 3250240009, 3963499681, 2560755113,
911182396, 760842409, 3569308693, 2687243553, 381854665, 2613828404, 2761078866, 1456668111, 883760091, 1014570643 , 30625180 3115293053 138853680, 4160398285, 3322241130, 2068983570,
2247491078, 3669524410, 1575146607, 828029864, 3732001371, 3422026452, 3370954177, 4006626915, 543812220, 1243116171 3928372514 2791443445, 4081325272, 2280416606 885616073 616452097, 3188863436, 2780382310, 2340014831, 1208439576,
258356309, 3837963200, 2075009450, 3214181212, 3303882142, 880813252, 1355575717, 207231484, 2420803184, 358923368, 1617557768, 3272161958, 1771154147, 2842106362, 1751209208, 1421030790, 658316681, 194065839, 3241510581, 38625260,
301875395, 4176141739, 297312930, 2137802113, 1502984205, 3669376622, 3728477036, 234652930, 2213589807, 2734638932, 1129721478, 3187422815, 2850178611, 3284308411, 3819792700, 3557526733, 451874476, 1740576081, 3592838701, 1709429513,
3702918379, 3533351328, 1641660745, 179350258, 2380520112, \ 3176611298, 834787554, 331353807, 517858103, 3010168884, 4012642001, 2217188075, 3756943137, 3077882590, 2054995199,
3081443129, 3895308812, 1141007543, 2376261053, 2626808255, 2554703076, 401233789, 1460049922, 678083952, 1064990737, 940909784, 1673396780, 528881783, 1712547446, 3629685652, 1358307511

C.6.2 The table V;

807385413, 2043073223, 3336749796, 1302105633, 2278607981, 541015020, 1684564270, 372700334, 3508252125, 1768346005, 1270451202, 2603020534, 2049367273, 3801424859, 2152048345, 4114760273, 915180810, 375478798, 700503826, 2131559305,

224437350, 854 , 1779595665, , 1424062773, 1033448464, 4050396853, 3302235057, 420600373, 2868446243, 311689386, 259047959, 4057180909, 1575367248, 4151214153, 110249784,
3006865921, 4293710613, 3501%6572 998007483 499288295 1205710710, 2997199489 640417429, 3044194711 486690751, 2686640734, 2394526209, 2521660077, 49993987, 3843885867, 4201106668, 415906198, 19296841, 2402488407, 2137119134,
1744097284, 579965637, 2037662632, 852173610, 2681403713, 1047144830, 2982173936, 910285038, 4187576520, 2589870048, 989448887, 3292758024, 506322719, 176010738, 1865471968, 2619324712, 564829442, 1996870325, 339697593, 4071072948,
3618966336, 2111320126, 1093955153, 957978696, 892010560, 1854601078, 1873407527, 2498544695, 2694156259, 1927339682, 1650555729, 183933047, 3061444337, 2067387204, 228962564, 3904109414, 1595995433, 1780701372, 2463145963, 307281463,
, 522074127, 146352474, , 3545667983, 976628269, 3 2139377204, , 3226247917, 3674004636, 2698992189, 3453843574,
1963216666, 3500855005, 2358481858, 747331248, 1957348676, 1097574450, 2435697214, 3870972145, 2914085525, , 127311334 412536684, 1156034077, 3823026442, 1066971017, 3598330293, 1979273937,
2079029895, 1195045009, 1071986421, 2712821515, 3377754505, 2184151095, 750918864, 2585729879, 4249895712, 1832579367, 1192240192, 946734366, 31230688, 3174399083, 3549375728, 1642430184, 1904857554, 861877404, 3277825584, 4267074718,
3122860549, 666423581, 644189126, 226475395, 307789415, 1196105631, 3191691839, 782852669, 1608507813, 1847685900, 4069766876, 3931548641, 2526471011, 766865139, 2115084288, 4259411376, 3323683436, 568512177, 3736601419, 1800276898,
4012458395, 1823982, 27980198, 2023839966, 869505096, 431161506, 1024804023, 1853869307, 3393537983, 1500703614, 3019471560, 1351086955, 3096933631, 3034634988, 2544598006, 1230942551, 3362230798, 159984793, 491590373, 3993872886,
3681855622, 903593547, 3535062472, 1799803217, 772984149, 895863112, 1899036275, 4187322100, 101856048, 234650315, 3183125617, 3190039692, 525584357, 1286834489, 455810374, 1869181575, 922673938, 3877430102, 3422391938, 1414347295,
1971054608, 3061798054, 830555096, 2822905141, 167033190, 1079139428, 4210126723, 3593797804, 429192890, 372093950, 1779187770, 3312189287, 204349348, 452421568, 2800540462, 3733109044, 1235082423, 1765319556, 3174729780, 3762994475,
3171962488, 442160826, 198349622, 45942637, 1324086311, 2001868599, 678860040, 3812229107, 19936821, 1119590141, 3640121682, , 2102949142,

ETSI

70 ETSI TS 102 472 V1.1.1 (2006-06)

C.7 Example FEC decoder

C.7.1 General

This clause describes an efficient decoding a gorithm for the Raptor codes described in the present document. Note that
each received encoding symbol can be considered as the value of an equation amongst the intermediate symbols. From
these simultaneous equations, and the known pre-coding rel ationships amongst the i ntermediate symbols, any algorithm
for solving simultaneous equations can successfully decode the intermediate symbols and hence the source symbols.
However, the algorithm chosen has a major effect on the computational efficiency of the decoding.

C.7.2 Decoding a source block

C.7.2.1 General

It is assumed that the decoder knows the structure of the source block it isto decode, including the symbol size, T, and
the number K of symbolsin the source block.

From the algorithms described in clauses C.5, the Raptor decoder can calculate the total number L = K+S+H of
pre-coding symbols and determine how they were generated from the source block to be decoded. In this description it
is assumed that the received encoding symbols for the source block to be decoded are passed to the decoder.
Furthermore, for each such encoding symbol it is assumed that the number and set of intermediate symbols whose
exclusive-or is equal to the encoding symbol is passed to the decoder. In the case of source symbols, the source symbol
triples described in clause C.4.2.2 indicate the number and set of intermediate symbols which sum to give each source
symbol.

Let N> K be the number of received encoding symbols for a source block and let M = S+H+N. The following M by L
bit matrix A can be derived from the information passed to the decoder for the source block to be decoded. Let C be the
column vector of the L intermediate symbols, and et D be the column vector of M symbols with values known to the
receiver, where the first S+H of the M symbols are zero-valued symbols that correspond to LDPC and Half symbols
(these are check symbols for the LDPC and Half symbols, and not the LDPC and Half symbols themselves), and the
remaining N of the M symbols are the received encoding symbols for the source block. Then, A isthe bit matrix that
satisfies A-C = D, where here - denotes matrix multiplication over GF [2]. In particular, A[i,j] = 1 if the intermediate
symbol corresponding to index j is exclusive-ORed into the LDPC, Half or encoding symbol corresponding to index i in
the encoding, or if index i corresponds to a LDPC or Half symbol and index j corresponds to the same LDPC or Half
symbol. For all other i and j, Ali,j] = 0.

Decoding a source block is equivalent to decoding C from known A and D. It isclear that C can be decoded if and only
if the rank of A over GF [2] isL. Once C has been decoded, missing source symbols can be obtained by using the
source symbol triples to determine the number and set of intermediate symbols which must be exclusive-ORed to obtain
each missing source symbol.

Thefirst step in decoding C isto form a decoding schedule. In this step A is converted, using Gaussian elimination
(using row operations and row and column reorderings) and after discarding M — L rows, into the L by L identity matrix.
The decoding schedule consists of the sequence of row operations and row and column re-orderings during the
Gaussian elimination process, and only depends on A and not on D. The decoding of C from D can take place
concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the
decoding schedule.

The correspondence between the decoding schedule and the decoding of C isas follows. Let c[0] =0,
c[1] =1...,c[L-1] =L-1and d[0] =0, d[1] = 1...,d[M-1] = M-1initialy.

. Eachtimerow i of A isexclusive-ORed into row i" in the decoding schedule then in the decoding process
symbol D[d[i]] is exclusive-ORed into symbol D[d[i"]].

. Each time row i is exchanged with row i" in the decoding schedule then in the decoding process the value of
d[i] is exchanged with the value of d[i"].

. Each time column j is exchanged with column j* in the decoding schedule then in the decoding process the
value of [j] is exchanged with the value of c[j"].

ETSI

71 ETSI TS 102 472 V1.1.1 (2006-06)

From this correspondence it is clear that the total number of exclusive-ORs of symbols in the decoding of the source
block isthe number of row operations (not exchanges) in the Gaussian elimination. Since A isthe L by L identity matrix
after the Gaussian elimination and after discarding the last M — L rows, it is clear at the end of successful decoding that
the L symbols D[d[0]], D[d[1]]...., D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]],..., C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not
the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian
elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although thisis not
described here). The remainder of this clause describes an order in which Gaussian elimination could be performed that
isrelatively efficient.

C.7.2.2 First phase

The first phase of the Gaussian elimination the matrix A is conceptually partitioned into submatrices. The submatrix
sizes are parameterized by non-negative integersi and u which are initialized to 0. The submatrices of A are:

1) Thesubmatrix | defined by the interclause of the first i rows and first i columns. Thisis the identity matrix at
the end of each step in the phase.

2) Thesubmatrix defined by the interclause of thefirst i rowsand all but the first i columns and last u columns.
All entries of this submatrix are zero.

3) The submatrix defined by the interclause of the first i columns and all but the first i rows. All entries of this
submatrix are zero.

4) Thesubmatrix U defined by the interclause of all the rows and the last u columns.

5) The submatrix V formed by the interclause of all but the first i columns and the last u columns and all but the
firsti rows.

Figure C.3 illustrates the submatrices of A. At the beginning of the first phase V = A. In each step, arow of A is chosen.

[dentity matrix
All zeroes
I]

All zeroes \%

Figure C.3: Submatrices of A in the first phase.

The following graph defined by the structure of V is used in determining which row of A is chosen. The columns that
intersect V are the nodes in the graph, and the rows that have exactly 2 onesin V are the edges of the graph that connect
the two columns (nodes) in the positions of the two ones. A component in this graph is amaximal set of nodes
(columns) and edges (rows) such that there is a path between each pair of nodes/edgesin the graph. The size of a
component is the number of nodes (columns) in the component.

There are at most L stepsin the first phase. The phase ends successfully wheni + u =L, i.e. whenV and the all zeroes
submatrix above V have disappeared and A consists of |, the all zeroes submatrix below I, and U. The phase ends
unsuccessfully in decoding failure if at some step before V disappears there is no non-zero row in V to choose in that
step. In each step, arow of A is chosen as follows:

. If al entries of V are zero then no row is chosen and decoding fails.
. Let r be the minimum integer such that at least one row of A has exactly r onesin V.
. If r # 2 then choose a row with exactly r onesin V with minimum original degree among all such rows.

. If r = 2 then choose any row with exactly 2 onesin V that is part of a maximum size component in the graph
defined by X.

After the row is chosen in this step the first row of A that intersects V is exchanged with the chosen row so that the
chosen row is the first row that intersects V. The columns of A among those that intersect V are reordered so that one of
ther onesin the chosen row appears in the first column of V and so that the remaining r-1 ones appear in the last
columns of V. Then, the chosen row is exclusive-ORed into all the other rows of A below the chosen row that have a
onein thefirst column of V. Finaly, i isincremented by 1 and u isincremented by r-1, which completes the step.

ETSI

72 ETSI TS 102 472 V1.1.1 (2006-06)

C.7.2.3 Second phase

The submatrix U is further partitioned into thefirst i rows, Uy,o., and the remaining M —i rows, U Gatissian
elimination is performed in the second phase on U, tO €ither determine that its rank is |ess than u (decoding failure)

or to convert it into a matrix where the first u rows is the identity matrix (success of the second phase). Call thisu by u
identity matrix | ,. The M — L rows of A that intersect U, — |, are discarded. After this phase A has L rows and L

columns.

C.7.2.4 Third phase

After the second phase the only portion of A which needs to be zeroed out to finish converting A into the L by L
identity matrix is Uy ,ne.. The number of rowsi of the submatrix U, is generally much larger than the number of

columns u of U TO zero out U, efficiently, the following precomputation matrix U" is computed based on I, in
the third phase and then U" is used in the fourth phase to zero out U pper- The u rowsof |, are partitioned into ceil(u/8)
groups of 8 rows each. Then, for each group of 8 rows al non-zero combinations of the 8 rows are computed, resulting

in 28 - 1 = 255 rows (this can be done with 28-8-1 = 247 exclusive-ors of rows per group, since the combinations of
Hamming weight one that appear in |, do not need to be recomputed). Thus, the resulting precomputation matrix U"

has 255ceil (u/8) rows and u columns. Note that U" isnot formally a part of matrix A, but will be used in the fourth

phase to zero out U

C.7.2.5 Fourth phase

For each of thefirsti rows of A, for each group of 8 columnsin the U, ¢ submatrix of thisrow, if the set of 8 column
entriesin U ypper @€ not all zero then the row of the precomputation matrix U" that matches the pattern in the 8 columns

is exclusive-ORed into the row, thus zeroing out those 8 columnsin the row at the cost of exclusive-applying an
exclusive-or operation on one row of U" into the row.

After thisphase A isthe L by L identity matrix and a compl ete decoding schedule has been successfully formed. Then,
as explained in clause C.2.1, the corresponding decoding consisting of exclusive-ORing known encoding symbols can
be executed to recover the intermediate symbols based on the decoding schedule.

The triples associated with all source symbols are computed according to clause C.4.2.2.The triples for received source
symbols are used in the decoding. The triples for missing source symbols are used to determine which intermediate
symbols need to be exclusive-ORed to recover the missing source symbols.

ETSI

73 ETSI TS 102 472 V1.1.1 (2006-06)

Annex D (informative):
Process to handle encrypted services in SPP systems.

Protected services are signalled by setting the freeT oAir attribute in Service fragment to false [28]. If only parts of a
service are protected the protected programmes are signalled by setting clearToAir in Schedule fragment to false [28].
The actual encryption algorithm used to protect the content/service is specified by each KMS. Independently of the
encryption algorithm used traffic keys which are used to descrambl e the traffic have to be broadcast in parallel to the
actual encrypted traffic. The KeyStream element in the Acquisition fragment lists all available key streams for agiven
media stream [28]. Based on the IPDCKM SId the terminal can decided which key stream to receive by checking
whether a given KM S is supported by the terminal. There can be multiple key streams for any given media stream.
Every key stream is signalled within the SDP of the media stream as a UDP data stream with the mime type of
data/ipdc-ksm:

m=data <PORT> UDP ipdc-ksm
The format of the key stream is further specified by the IPDCKMSId in the "a=fmtp: ipdc-ksm" line
SDP examples for key streams:

EXAMPLE: m=data 49230 UDP ipdc-ksm
c=IN 1P4 224.2.17.12/127
a=fmtp: ipdc-ksm IPDCStreaml d=10;
IPDCA ccessRights=https://www. | PDCshop.com/channel 9.asp;
IPDCKMSId=1559; IPDCOperatorld=1234

D.1 Examples for referencing key stream messages in
SDP media descriptions

An ISMACryp encrypted video stream, could be signalled as:

m=vi deo 41970 rtp/savp 96

a=rt pmap: 96 enc-generi c-nmp4/ 16000/ 1

a=fnt p: 96 node=vi deo; profile-I|evel-id=42A01E;

sprop- par anet er - set s=Z01 ACpZTBYm , aM j i A==; | SMACRYP_CRYPTO _SUI TE=AES CTR 128;
| SMACRYP_| V_LENGTH=4; | SMACRYP_DELTA |V_LENGTH=0;

| SMACRYP_KEY_| NDI CATOR_LENGTH=1; | SMACRYP_SALT=base64,

Aol AESBAQBBAQUBSgABQKX k YXRhOmFwe;

a=| PDCKSMst r eam 10

a=| PDCKSMst r eam 11

An |PSec encrypted stream (e.g. a video stream) could be signalled as:

mevi deo 41970 RTP/ AVP 96

a=rt pmap: 96 H264/ 9000

a=fntp:96 profile-Ilevel-id=42A01E; sprop-paraneter-sets=Z0l ACpZTBYmM , aM j i A==;
a=| PDCKSMst r eam 10

a=| PDCKSMst r eam 11

A SRTP encrypted stream (e.g. asimilar video stream as for |PSec example) could be signalled as:

mevi deo 41970 rtp/ savp 96a=rtpmap: 96 H264/9000a=fnt p: 96 profil e-1evel -i d=42A01E;
sprop- par anet er - set s=Z01 ACpZTBYm , aM j i A==;

a=| PDCKSMst r eant 10

a=| PDCKSMst ream 11

ETSI

74 ETSI TS 102 472 V1.1.1 (2006-06)

In all cases, this signalling announces that to gain access to the video stream, the terminal may use either the key stream
with IPDCStreaml| D=10, or the one with IPDCStreamID=11. The terminal can then lookup in the same SDP file both
key streams (identified by their IPDCStreamlI D), identify the KM S and the operator each is associated with and decide,
on the basis of thisinformation and depending on which KMSiit is supporting, which stream it needsto listento in

order to get the Key Stream Messagesiit requires.

ETSI

75

ETSI TS 102 472 V1.1.1 (2006-06)

History

Document history

V111

June 2006

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Delivery platform
	4.1 Protocol stack

	5 Delivery protocol for real-time streaming services
	5.1 RTP
	5.2 Streaming session description with SDP
	5.2.1 SDP Parameters for IPDC streaming sessions
	5.2.1.1 Sender IP address
	5.2.1.2 Destination IP address and port number for channels
	5.2.1.3 Media description
	5.2.1.4 Session timing parameters
	5.2.1.5 Service-language(s) per media
	5.2.1.6 Bandwidth specification

	5.2.2 SDP example for streaming session

	5.3 Hypothetical receiver buffering model
	5.3.1 Overview of the proposed buffering model (informative)
	5.3.2 MultiProtocol Decapsulation buffer (normative)
	5.3.3 RTP Decapsulation buffer (normative)
	5.3.4 Signalling of initial buffering delay (normative)
	5.3.5 Conformance requirements (normative)

	6 Delivery protocol for file delivery services
	6.1 FLUTE
	6.1.1 FLUTE as a file delivery mechanism
	6.1.2 Segmentation of files
	6.1.3 Use of multiple FLUTE channels
	6.1.4 Symbol encoding algorithm
	6.1.5 Blocking algorithm
	6.1.6 Congestion control
	6.1.7 Content encoding of files for transport
	6.1.8 ALC packet size considerations
	6.1.9 Signalling the end of file delivery and end of file delivery session
	6.1.10 Files that span over several separate file delivery sessions
	6.1.11 Grouping mechanisms for FLUTE file delivery
	6.1.12 File versioning
	6.1.13 File delivery session description with SDP
	6.1.13.1 SDP parameters for IPDC file delivery session
	6.1.13.1.1 Sender IP address
	6.1.13.1.2 Number of channels
	6.1.13.1.3 Destination IP address and port number for channels
	6.1.13.1.4 Transport Session Identifier (TSI) of the session
	6.1.13.1.5 Session timing parameters
	6.1.13.1.6 FEC capabilities and related parameters
	6.1.13.1.7 Service-language(s) per media

	6.1.13.2 Three timers

	6.1.14 Signalling of parameters with FLUTE
	6.1.14.1 Signalling of parameters with Basic ALC/FLUTE headers
	6.1.14.2 Signalling of Parameters with FLUTE Extension Headers
	6.1.14.3 Signalling of parameters with FDT instances
	6.1.14.4 Signalling of parameters Out-band

	6.1.15 FDT schema

	6.2 Download & carousel mechanisms
	6.2.1 Types of file delivery sessions
	6.2.1.1 Static file delivery session
	6.2.1.1.1 Definition
	6.2.1.1.2 Implementation using FLUTE

	6.2.1.2 Fixed content delivery session
	6.2.1.2.1 Definition
	6.2.1.2.2 Implementation using FLUTE

	6.2.1.3 Dynamic file delivery session
	6.2.1.3.1 Definition
	6.2.1.3.2 Implementation using FLUTE

	6.2.1.4 Static file delivery carousel
	6.2.1.4.1 Definition
	6.2.1.4.2 Implementation using FLUTE

	6.2.1.5 Dynamic file delivery carousel
	6.2.1.5.1 Definition
	6.2.1.5.2 Implementation using FLUTE

	6.2.2 Session completeness
	6.2.2.1 Session completeness for fixed content sessions
	6.2.2.2 Session completeness for static file delivery sessions and static file delivery carousels
	6.2.2.3 session completeness for dynamic file delivery sessions and dynamic file delivery carousels

	7 Associated delivery procedures
	7.1 Introduction
	7.2 Signalling of associated delivery procedures
	7.3 File repair mechanisms
	7.3.1 General procedure
	7.3.2 Triggering associated delivery procedures for file delivery sessions
	7.3.3 Identification of repair needs
	7.3.4 Distribution of repair requests over time
	7.3.4.1 Reset of the back-off timer

	7.3.5 Distribution of repair requests over repair servers
	7.3.6 File repair request message
	7.3.6.1 File repair request message format

	7.3.7 Repair server behaviour
	7.3.7.1 File repair response message
	7.3.7.2 File repair response messages codes
	7.3.7.3 Repair server response message format for HTTP carriage of repair data

	7.3.8 File repair response for broadcast/multicast of repair data
	7.3.9 Threshold-dependent repair strategy
	7.3.10 Server Not Responding Error Case

	7.4 Reception reporting procedure
	7.4.1 Identifying complete file reception from file delivery
	7.4.2 Identifying complete delivery session reception
	7.4.3 Determining whether a reception report is required
	7.4.4 Request time selection
	7.4.5 Reception report server selection
	7.4.6 Reception report message
	7.4.7 Reception report response message

	7.5 XML-schema for associated delivery procedures
	7.5.1 Generic associated delivery procedure description
	7.5.2 Example associatedProcedureDescription instance
	7.5.3 XML Syntax for a reception report request
	7.5.4 Example XML for the Reception Report Request

	8 Application layer FEC
	8.1 FEC Scheme definition
	8.1.1 General
	8.1.2 FEC payload ID
	8.1.3 FEC Object Transmission Information

	9 Subtitling
	9.1 Subtitling using 3GPP Timed Text Format
	9.1.1 Unicode Support
	9.1.2 Support for Transparency
	9.1.3 Text position and scaling
	9.1.4 Optional features
	9.1.5 Delivery of subtitling text
	9.1.6 SDP Parameters for IPDC streaming sessions

	9.2 Bitmap based subtitling
	9.2.1 Pixel addressing and scaling of bitmap based subtitles
	9.2.2 Pixel addressing of non "720 by 576" subtitles
	9.2.3 Carriage of DVB subtitle streams over RTP
	9.2.4 Use of SDP to signal DVB subtitles

	10 Description of SPP Streams using SDP
	10.1 Key Stream Message (KSM) Stream
	10.2 Key Management Message (KMM) stream
	10.3 KSM Stream Binding

	Annex A (informative): Overview of the blocking algorithm for FEC encoding id 0
	Annex B (informative): Algorithm to select repair mechanism for file delivery service
	Annex C (normative): FEC encoder and decoder specification
	C.1 Definitions, symbols and abbreviations
	C.1.1 Definitions
	C.1.2 Symbols
	C.1.3 Abbreviations

	C.2 Overview
	C.3 File Delivery
	C.3.1 Source block construction
	C.3.1.1 General
	C.3.1.2 Source block and sub-block partitioning

	C.3.2 Encoding packet construction
	C.3.2.1 General
	C.3.2.2 Encoding packet construction

	C.3.3 Transport
	C.3.4 Example Parameters
	C.3.4.1 Parameter derivation algorithm
	C.3.4.2 Examples

	C.4 Systematic Raptor encoder
	C.4.1 Encoding overview
	C.4.2 First encoding step: Intermediate Symbol Generation
	C.4.2.1 General
	C.4.2.2 Source symbol triples
	C.4.2.3 Pre-coding relationships
	C.4.2.4 Intermediate symbols
	C.4.2.4.1 Definition
	C.4.2.4.2 Example method for calculation of intermediate symbols

	C.4.3 Second encoding step: LT encoding
	C.4.4 Generators
	C.4.4.1 Random Generator
	C.4.4.2 Degree Generator
	C.4.4.3 LT Encoding Symbol Generator
	C.4.4.4 Triple generator

	C.5 Systematic Indices J(K)
	C.6 Random Numbers
	C.6.1 The table V0
	C.6.2 The table V1

	C.7 Example FEC decoder
	C.7.1 General
	C.7.2 Decoding a source block
	C.7.2.1 General
	C.7.2.2 First phase
	C.7.2.3 Second phase
	C.7.2.4 Third phase
	C.7.2.5 Fourth phase

	Annex D (informative): Process to handle encrypted services in SPP systems.
	D.1 Examples for referencing key stream messages in SDP media descriptions

	History

