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Intellectual Property Rights 

Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Technical Specification (TS) has been produced by ETSI Technical Committee Speech and multimedia 
Transmission Quality (STQ). 

The present document is part 6 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.2]. 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Introduction 
All the defined quality of service parameters and their computations are based on field measurements. That indicates 
that the measurements were made from users point of view (full end-to-end perspective, taking into account the needs 
of testing). 

It is assumed that the end user can handle his mobile and the services he wants to use (operability is not evaluated at this 
time). For the purpose of measurement it is assumed: 

• that the service is available and not barred for any reason; 

• routing is defined correctly without errors; and 

• the target subscriber equipment is ready to answer the call. 

Speech quality values measured should only be employed by calls ended successfully for statistical analysis. 

However, measured values from calls ended unsuccessfully (e.g. dropped) should be available for additional evaluations 
and therefore, need to be stored. 

Further preconditions may apply when reasonable. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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1 Scope 
The present document describes definitions and procedures to be used for statistical calculations which are related to 
Quality of Service (QoS) measurements done by serving probing systems in mobile communications networks, 
especially GSM and 3G networks. Network performance measurements and their related post-processing are only 
marginally covered in the present document. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference/. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

Not applicable. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI EG 201 769: "Speech Processing, Transmission and Quality Aspects (STQ); QoS parameter 
definitions and measurements; Parameters for voice telephony service required under the ONP 
Voice Telephony Directive 98/10/EC". 

[i.2] ETSI TS 102 250-1: "Speech and multimedia Transmission Quality (STQ); QoS aspects for 
popular services in mobile networks; Part 1: Assessment of Quality of Service". 

[i.3] NIST/SEMATECH: "e-Handbook of Statistical Methods". 

NOTE: Available at http://www.itl.nist.gov/div898/handbook/, retrieved 17 September 2019. 

[i.4] A. M. Law, W. D. Kelton: "Simulation modeling and analysis", McGraw-Hill, 3rd edition, 2000. 

[i.5] J. Hartung: "Lehr- und Handbuch der angewandten Statistik", Oldenbourg Wissenschaftsverlag, 
13th meditation, 2002. 

[i.6] Bates, D.M. and Chambers, J.M: "Nonlinear regression Analysis and Applications", Wiley & 
Sons, 1988. 

[i.7] Mood, Graybill, Boes: "Introduction to the theory of statistics", McCraw-Hill Statistics Series, 
1974. 

https://docbox.etsi.org/Reference/
http://www.itl.nist.gov/div898/handbook/
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[i.8] Venables, W.N. and Ripley, B.D.: "Modern Applied Statistics with S-Plus", Springer Verlag, 
1999. 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

rate: measurement result which is related to the portion of time during which it has been executed 

NOTE: The denominator's unit is related to time. 

ratio: measurement result which quantifies how a subgroup of all single measurements is related to the total number of 
executed single measurements 

NOTE: Usually, nominator and denominator share the same unit, namely a counter for measurements 
(subgroup/all). 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

E(x)=µ Expected value of random variable x 
Var(x)=σ2 Variance of random variable x 
σ Standard deviation of random variable x 
f(x) Probability Density Function (PDF) of random variable x 
F(x) Cumulative Distribution Function (CDF) of random variable x 
S, x∈ S Set of discrete values or interval of values the random variable x may take 
IR Set of real numbers 
s, s2 Empirical standard deviation / variance, analogous to σ and σ2 (theoretical) 
qα α-Quantile 

uα α-Quantile of standard normal distribution 

x(i), x(1), x(n) i-th ordered value, minimum and maximum of a given data set xi, i =1,...,n 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

3G Third Generation 
ARMA Auto-Regressive Moving Average 
AVGn Averaging Operator (regarding n days) 
BH Busy Hour 
BSC Base Station Controller 
CDF Cumulative Distribution Function or Cumulative Density Function 
CUSUM CUmulated SUM 
EWMA Exponentially Weighted Moving Average 
GSM Global System for Mobile communications 
KPI Key Performance Indicator 
LSL Lower Specification Level 
MAWD Monthly Average Working Day 
MMQ-Plot Median-Mean-Quantile Plot 
MMS Multimedia Messaging Service 
MOS Mean Opinion Score 
MSC Mobile Switching Centre 
NE Network Element 
PDF Probablility Distribution Function or Probability Density Function 
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QoS Quality of Service 
QQ-Plot Quantile-Quantile Plot 
SMS Short Message Service 
USL Upper Specification Level 

4 Important measurement data types in mobile 
communications 

4.1 Data with binary values 
Appropriate data analysis methods should depend on the type of the given data as well as on the scope of the analysis. 
Therefore before analysis methods are described, different data types are introduced and differences between them are 
pointed out. 

Four general categories of measurement results are expected when QoS measurements are done in mobile 
communications. 

Single measurements related to the data with binary values: 

• service accessibility, service availability; 

• service retainability, service continuity; 

• error ratios, error probabilities; 

in general show a binary outcome, i.e. only two outcomes are possible. This means the result of a single trial leads to a 
result which is either valued positive or negative related to the considered objective. The result may be recorded as 
decision-results Yes / No or True / False or with numerical values 0 = successful and 1 = unsuccessful (i.e. errors occur) 
or vice versa. Aggregation of trials of both types allows to calculate the according ratios which means the number of 
positive / negative results is divided by the number of all trials. Usually, the units of nominator and denominator are the 
same, namely number of trials. 

EXAMPLE: If established speech calls are considered to test the service retainability of a speech telephony 
system, every successfully completed call leads to the positive result "Call completed", every 
unsuccessfully ended call is noticed as "Dropped call" which represents the negative outcome. 
After 10 000 established calls, the ratio of dropped calls related to all established calls can be 
calculated. The result is the call drop probability. 

4.2 Data out of time-interval measurements 
Measurements related to the time domain occur in the areas: 

• duration of a session or call; 

• service access delay; 

• round trip time and end-to-end delay of a service; 

• blocking times, downtimes of a system. 

The outcome of such measurements is the time span between two time stamps marking the starting and end point of the 
time periods of interest. Results are related to the unit "second" or multiples or parts of it. Depending on the 
measurement tools and the precision needed, arbitrarily small measurement units may be realized. 

EXAMPLE: Someone can define the end-to-end delivery time for the MMS service by a measurement which 
starts when the user at the A party pushes the "Send" button and which stops when the completely 
received MMS is signalled to the user at the B party. 
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4.3 Measurement of data throughput 
Measurements related to data throughput result in values which describe the ratio of transmitted data volume related to 
the required portion of time. The outcome of a single measurement is the quotient of both measures. Used units are "bit" 
or multiples thereof for the data amount and "second" or multiples or parts thereof for the portion of time. 

EXAMPLE: If a data amount of 1 Mbit is transmitted within a period of 60 seconds, this results in a mean data 
rate of approximately 16,66 kbit/s. 

4.4 Data concerning quality measures 
Examples are given by the quality of data transfer which may be measured by its speed or evaluations of speech quality 
measured on a scale, respectively. 

Measurements related to audio-visual quality can be done objectively by algorithms or subjectively by human listeners. 
The outcome of audio-visual quality evaluation is related to a scaled value which is called Mean Opinion Score (MOS) 
for subjective testing. Thereby two types of quality measurement are distinguished subjective and objective 
measurements. If quantitative measures are identified which are highly correlated to the quality of interest, this will 
simplify the analysis. However, if this is not possible, some kind of evaluation on a standardized scale by qualified 
experts is needed. The result may therefore be given either as the measurement result or as a mark on a pre-defined 
scale. 

EXAMPLE: Within a subjective test, people are asked to rate the overall quality of video samples which are 
presented to them. The allowed scale to rate the quality is defined in the range from 1 (very poor 
quality) to 5 (brilliant quality). 

Table 4.1 summarizes the different kinds of QoS related measurements, typical outcomes and some examples. 

Table 4.1: QoS related measurements, typical outcomes and examples 

Category Relevant measurement types Examples 
Binary values Service accessibility, service availability 

 
Service retainability, service continuity 
Error ratios, error probabilities 

Service accessibility telephony, service 
non-availability SMS  
Call completion rate, call drop rate 
Call set-up error rate 

Duration values Duration of a session or call 
Service access delay 
Round trip time, end-to-end delay 
Blocking times, system downtimes  

Mean call duration 
Service access delay WAP 
ICMP Ping roundtrip time 
Blocking time telephony, SGSN downtime 

Throughput values Throughput  Mean data rate GPRS 
Peak data rate UMTS 

Content quality values Audio-visual quality MOS scores out of subjective testing 
 

5 Distributions and moments 

5.1 Introduction 
The objective of data analyses is to draw conclusions about the state of a process based on a given data set, which may 
or may not be a sample of the population of interest. If distributions are assumed, these specify the shape of the data 
mass up to parameters associated with each family of distributions specifying properties like the mean of the data mass. 
Location or dispersion shifts of the process will in general result in different parameter estimates specifying the 
distribution. Therefore the information available from the data is compressed into one or few sufficient statistics 
specifying the underlying distribution. 

Many statistical applications and computations rely in some sense on distributional assumptions, which are not always 
explicitly stated. Results of statistical measures are often only sensible if underlying assumptions are met and therefore 
only interpretable if users know about these assumptions. 
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This clause is organized as follows. Firstly, distributions, moments and quantiles are introduced in theory in 
clauses 5.2 to 5.4. This part of the present document is based on the idea of random variables having certain 
distributions. Random variables do not take single values but describe the underlying probability model of a random 
process. They are commonly denoted by: 

 X ~ distribution (parameters) 

From the distributional assumptions, moments and quantiles of random variables are derived in theory. 

Data is often viewed as being realizations of random variables. Therefore, data analysis mainly consists of fitting an 
appropriate distribution to the data and drawing conclusions based on this assumption. Clause 5.5 briefly summarizes 
the estimation of moments and quantiles. 

Subsequently, a number of important distributions is introduced in clause 5.6, each of which is visualized graphically to 
give an idea of meaningful applications. Within this clause, testing distributions are also introduced as they are needed 
in clause 5.7 for the derivation of statistical tests. 

5.2 Continuous and discrete distributions 
The main difference between the data types described above can be explained in terms of continuous and discrete 
distributions. Data with binary values follow a discrete distribution, since the probability mass is distributed only over a 
fixed number of possible values. The same holds for quality measurements with evaluation results on a scale with a 
limited number of possible values (i.e. marks 1 to 6 or similar). 

On the contrary, time-interval measurements as well as quality measurements based on appropriate quantitative 
variables may take an infinitely large number of possible values. In theory, since the number of possible outcomes 
equals infinity, the probability that a single value is exactly realized is zero. Probabilities greater than zero are only 
realized for intervals with positive width. In practice, each measurement tool will only allow a limited precision 
resulting in discrete measurements with a large number of possible outcomes. Nevertheless, data from measurement 
systems with reasonable precision are treated as being continuous. 

Formal definitions for continuous and discrete distributions are based on probability density functions as described in 
the following clauses. 

5.3 Definition of density function and distribution function 

5.3.1 Probability Distribution Function (PDF) 

Probability Density Functions (PDF) specify the probability mass either for single outcomes (discrete distributions) or 
for intervals (continuous distributions). 

A PDF is defined as a function [ )∞→ ,0: IRf  with properties: 

i) 0)( ≥xf  for all x∈ S. 

ii)  =
S

dxxf 1)(  for continuous distributions or  =
S

xf 1)(  for discrete distributions. 

In other words, firstly the values of the PDF are always non-negative, meaning that negative probabilities are neither 
assigned to values nor intervals, and secondly the summation or integration over the PDF always results in 1 (= 100 %), 
meaning that any data value will always be realized. 

EXAMPLE 1: A PDF for binary data may be given by 




=
=

=
0   x :9,0

1   x :1,0
)(xf , which implies that the probability for 

a faulty trial (x=1) is 10 %, while tests are completed successfully with probability 90 %. 

EXAMPLE 2: For time-interval measurements PDFs may take any kind of shape, as an example a normal 
distribution with mean 10 (seconds) is assumed here. The PDF for this distribution is given by 

( ){ }2
2
1

2
1 10exp)( −−= xxf
π

. Other examples for continuous distributions are following later on. 
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EXAMPLE 3: If for instance categories for speech quality are defined as 1 = very poor up to 5 = brilliant, a PDF 

for the resulting data may be given by 

{ }









=
=

∈
=

5:3,0

4:4,0

3,2,1:1,0

)(

x

x

x

xf . 

Figure 5.1 summarizes all three assumed example PDFs for the different data types. 

   
 

Figure 5.1: Probability Density Functions (PDFs) of examples 1 to 3 

5.3.2 Cumulative Distribution Function (CDF) 

A Cumulative Distribution (or Density) Function (CDF) is computed from the corresponding PDF as described before 
by summing (discrete) or integrating (continuous) over the density mass up to the current value. 

A function [ ]1,0: →IRF  with  ≤
=

xx
xfxF ~ 
)~()(  for discrete and  ∞−

=
x

xdxfxF ~)~()(  for continuous distributions is 

called CDF. This implies 1)( →xF  for ∞→x  and 0)( →xF  for −∞→x . 

In other words, the value of the CDF corresponds to the proportion of the distribution left of the value of interest. For 
the three examples from above, the CDFs are given in figure 5.2. 

  
 

 
Figure 5.2: Cumulative Distribution Functions (CDFs) of examples 1 to 3 

5.4 Moments and quantiles 
Moments are main characteristics of distributions. The most important moments are: 

• the expected value (first moment), specifying the location of the distribution; 

• the variance (second central moment), specifying the dispersion around the expected value of the distribution; 
and 
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• the skewness (third central moment), specifying whether a distribution is symmetric or skewed. 

These moments are defined as follows. 

a) The expected value (first moment, mean) of a random variable x with CDF f(x) is defined as 

 ⋅= dxxfxxE  )()(  for continuous distributions or  ⋅= )()( xfxxE  for discrete distributions, respectively. 

b) The variance (second central moment) of a random variable x with CDF f(x) is defined as 

( ) ⋅−= dxxfxExxVar  )()()( 2  for continuous distributions or ( ) ⋅−= )()()( 2 xfxExxVar  for discrete 

distributions, respectively. The square root of the variance called standard deviation, denoted as σ(x) is often 
more informative since it is defined on the original data scale. 

c) The skewness (third central moment) of a random variable x with CDF f(x) is defined as 

( ) ⋅− dxxfxEx  )()( 3  for continuous distributions or ( ) ⋅− )()( 3 xfxEx  for discrete distributions, 

respectively. A value of zero indicates a symmetric distribution. 

EXAMPLE 1: For the CDF from example 1 the moments are given by E(x) = 0,1⋅1+0,9⋅0 = 0,1, 
Var(x) = 0,1⋅0,92 +0,9⋅0,12 = 0,09 resulting in a standard deviation σ(x) = 0,3. The skewness can 
be computed as 0,1⋅0,93+0,9⋅(-0,1)3 = 0,072 indicating that the distribution is not symmetric. 

EXAMPLE 2: The moments of the above normal distribution can be computed by partial integration and the fact 
that the PDF integrates to 1, or by utilizing the properties of normal distributions stating that the 
mean and standard deviation are the parameters μ and σ of the PDF 

( )






 −−= 2

2
10

2

1
exp

2

1
),|( xxf

σπσ
σμ and that normal distributions are always symmetric. 

This results in E(x) = 10, Var(x) = σ2 = 1, which also equals the standard deviation and skewness 
= 0 for the above example.  

EXAMPLE 3: For the CDF of example 3, moments are computed by E(x) = 0,1⋅1+0,1⋅2+0,1⋅3+0,4⋅4+0,3⋅5 = 3,7, 
Var(x) = 1,61 and negative skewness of -1,824. 

The moments are computable for all three example PDFs. Nevertheless, they are not always meaningful. In particular in 
the third example, the possible outcomes are "very poor" to "brilliant", which may be ordered and named 1 to 5 as has 
been done before, but the expected value of 3,7 does not have a strict meaning. The same applies for higher moments, 
since the values of the variable of interest are not quantitative, but ordered qualitative. 

In case of non-symmetric distributed data, moments may not be appropriate for describing the distribution of interest. 
An alternative measure of location is given by the median, which can be viewed as the point cutting the distribution 
into halves, namely 50 % of the distribution mass are smaller and 50 % are larger than the median. 

More generally, quantiles are defined for each possible percentage. The α-quantile cuts the distribution in a part of 
α·100 % of the distribution smaller than this value and (1-α)·100 % larger than this value. The median as a special case 
is also called 50 %-quantile. 

A formal definition of quantiles is for instance given by Mood, Graybill, Boes (1974): 

• "The α-quantile q
α
 with α ]1,0(∈  is defined as the smallest number q

α
 satisfying αα ≤)(qF  (for α = 0, the 

minimum value with positive probability or -∞ is defined, respectively)". 

Quantiles are easiest illustrated with the examples of CDFs given above, compare figure 5.3. For each CDF, the 5 %, 
50 % and 75 %-quantiles are added to the corresponding plot. 
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Figure 5.3: Illustration of theoretical quantiles for examples 1 to 3 

5.5 Estimation of moments and quantiles 
If only samples from the population of interest are available, theoretical moments may not be computed, but have to be 
estimated empirically. 

A sample-based estimator of the expectation of the underlying distribution is given by the empirical mean 
=

=
n

i
ix

n
x

1

1

where nixi ...,,1, =  are the sample values. The variance of a distribution is commonly estimated by 
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−
−
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i xx
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s
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22
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1
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For estimating quantiles, the above definition of theoretical quantiles is commonly replaced by a linear interpolating 
function. This function on one hand ensures that all quantiles are realized within the range of the empirical distribution 
(0 %-quantile equals the minimum of the data, 100 %-quantile equals the maximum of the data). The interpolation on 
the other hand allows a "better guess" of the real quantile if only few data are given and the underlying distribution is 
continuous. The commonly used computation formula is given by: 

 )1()()1( +⋅+−= ii xfxfqα  

where   infni −⋅−+=⋅−+= αα )1(1 ,)1(1  and )()1( : nn xx =+ . 

Here x(i) denotes the i-th ordered data value and  z denotes the largest integer less or equal to z, i.e.     49,4,32,3 == . 

Therefore with the computation of i, the quantile is localized depending on the value of α between x(i) and x(i+1). The 

interpolation between these two values is done according to the deviation f between i and (1 +(n-1)·α). 

Examples of empirical CDFs and empirical quantiles for data simulated from the example distributions 1 to 3 are given 
in figure 5.4. The solid black line represents the empirical quantiles derived by the above formula (from 0 % to 100 %). 
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Figure 5.4a: Illustration of empirical CDFs and quantiles for examples 1 to 3 

   
 

Figure 5.4b: Illustration of empirical CDFs and quantiles for examples 1 to 3 

Note that the above estimation procedure should be applied with great care for data sets with only few data values 
where the underlying distribution is presumably discrete, since the estimated quantiles also take values differing from 
those contained in the given data set. This can also be seen from figure 5.4a in the plots for samples with sample size 
n = 20. 

5.6 Important distributions 

5.6.1 Overview of distributions 

5.6.1.1 Continuous distributions 

In this clause some of the important distributions related to practical usage in telecommunications are described. Either 
the mentioned distributions are directly related to measurement results or they are necessary to evaluate these results in 
a second step. Further relevant distributions may be appended later. 

In general, distributions are specified by certain parameters which describe their main characteristics. Commonly, the 
characteristics are expressed in terms of their moments, i.e. mean value and standard deviation or variance, respectively. 
Wherever possible, the relevant characteristics are given as well as examples of possible use-cases. In general, 
continuous and discrete distributions are distinguished further on. 

A large number of different continuous distributions is available to describe measurement results in a statistical manner. 
An overview is for instance given by [i.4] or [i.5]. For practical purposes in the field of Quality of Service (QoS) 
probing, the distributions described below are probably the most relevant ones. 
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5.6.1.2 Normal distribution 

The normal distribution, also called Gaussian distribution (or bell-shaped distribution) is used for many natural 
processes whenever a symmetric continuous distribution seems appropriate. (An example was given before and density 
functions of further normal distributions are given in figure 5.5.) 

 Normal distribution 
Notation X ~ ),( 2σμN  

Parameters σμ,  

PDF ( ){ }2

2
1

2
1

2exp)( μ
σπσ

−−= xxf  

CDF 
( ){ }dttxF

x


∞−

−−= 2

2
1

2
1

2exp)( μ
σπσ

 

Expected value μ=)(XE  

Variance 2)( σ=XVar  

Remarks Standard normal distribution with 0=μ  and 1=σ , see clause 5.6.1.3. 

 

The normal distribution is uniquely specified by its mean and standard deviation. For normally distributed data, about 
68 % of the data are realized within the interval [μ - σ, μ + σ], 95 % are realized within [μ - 2σ, μ + 2σ] and 99,7 % are 
realized within [μ - 3σ, μ + 3σ]. The last interval is also called 6σ-interval which gave the name to the popular 
"Six-sigma"-courses. 

   
 

Figure 5.5: Density functions of three different normal distributions 

Normally (or nearly normally) distributed data is found quite often in practice, in particular in nature, for example 
human or animal body heights. 

5.6.1.3 Standard normal distribution 

All normal distributions or normally distributed data can be standardized by subtracting the mean and afterwards 
dividing by the standard deviation of the distribution or data resulting in a standard normal distribution with mean μ = 0 
and standard deviation σ = 1. The inverse computation leads back to the original distribution or data. Therefore, all 
normal distributions may be reduced to the standard normal, if the parameters μ and σ are known or estimated. Because 
of this and the fact that many statistical tests are based on the normal distribution, statistical textbooks often provide the 
quantiles of the standard normal distribution. In particular, the α -quantile of the standard normal distribution is denoted 
as αu . 

In example 3 of figure 5.5, the density of the standard normal distribution is given. 
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 Standard normal distribution 
Notation X ~ )1,0(N  

Parameters none 
PDF { }2

2
1

2
1 exp)( xxf −=
π

 

CDF 
{ }dttxF

x


∞−

−= 2
2
1

2
1 exp)(
π

 

Expected value 0)( =XE  

Variance 1)( =XVar  

Remarks  
 

5.6.1.4 Central limit theorem 

Another reason for the frequent use of normal distributions (in particular for testing purposes) is given by the central 
limit theorem, one of the most important theorems in statistical theory. It states that the mean of n equally distributed 
random variables with mean μ and variance σ2 approaches a normal distribution with mean μ and variance σ2/n as n 
becomes larger. This holds for arbitrary distributions and commonly the typical shape of the normal distribution is 
sufficiently reached for n ≥ 4. For further details about the central limit theorem see [i.4] or [i.7]. 

A number of tools was developed for checking whether data (or means) are normal, namely test procedures like the 
well-known Kolmogorov-Smirnov goodness-of-fit test (see clause 5.6.6.3) among others or graphical tools like 
histograms or QQ-plots. The mentioned graphical tools is introduced in clause 6. 

5.6.1.5 Transformation to normality 

As has been seen, the normal distribution is very powerful and can be applied in many situations. Nevertheless, it is not 
always appropriate, in particular in technical applications, where many parameters of interest have non-symmetric 
distributions. However, in these situations it may be possible to transform the data to normality. This idea leads for 
instance to the Log-Normal distribution, which is often assumed for technical parameters. 

5.6.1.6 Log-Normal distribution 

The distribution of a random variable is said to be Log-Normal, if the logged random variable is normally distributed, 
which is denoted by log(x) ~ N(μ, σ2). 

 Log-Normal distribution 
Notation ),(~ 2σμLNX  or ),(~)log( 2σμNX  

Parameters σμ,  
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Expected value 
)

2

1
exp()( 2σμ +=xE  

Variance )1))(exp(2exp()( 22 −+= σσμxVar  

Remarks  
 

Log-Normal distributions are skewed and have heavier upper tails compared to the normal distribution implying a 
higher variability in the upper quantiles. Density examples for different values of μ and σ are given in figure 5.6 and 
illustrate that the Log-Normal distribution can take a variety of different shapes. 



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)18 

  
 

 
Figure 5.6: Density functions of Log-Normal distributions 

5.6.1.7 Use-case: transformations 

A given data set can be checked whether it is distributed according to a Log-Normal distribution by computing the log 
of the data values and using one of the graphical tools mentioned before for verifying the normal distribution for the 
logged data. Empirical mean and standard deviation of the transformed data can then be used for estimating the 
parameters of the distribution, respectively. 

Similarly, other transformation-based distributions can be derived from the normal distribution, for instance for the 
square-root transformation x ~ IN(μ, σ2) or the reciprocal transformation 1/x ~ IN(μ, σ2). A general concept based on 
power-transformations of x was proposed by Box and Cox (1964). 

5.6.1.8 Exponential distribution 

For modelling arrival processes, often the negative exponential distribution is used. The relevant parameter for this 

distribution is λ which symbolizes the life cycle of a process. Concerning arrival processes, λ is named the inter-arrival 
rate of succeeding events. 

 Exponential distribution 
Notation X ~ Exp(λ) 
Parameters 0>λ  
PDF ( )xxf λλ −= exp)(  if 0≥x  

CDF ( )xxF λ−−= exp1)(  if 0≥x  

Expected value { }
λ
1=XE  

Variance { }
2

1

λ
=XVar  

Remarks Life-cycle description, survival function: 
Survival probability )exp()( xxXP λ−=>  
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Figure 5.7: Density functions of negative exponential distributions 

5.6.1.9 Weibull distribution 

The Weibull distribution is a heavy-tailed distribution which means the distribution is skewed with a non-negligible part 
of the probability mass in the tail. This distribution can be used to describe processes which have a rare frequency, but 
which are not negligible due to their weight. 

 Weibull distribution 
Notation ),(~ βαWeibullX  

Parameters α  with 0≥α , 
β with 0>β  

PDF )exp()( 1 ββ ααβ xxxf x −= −  if 0>x  
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Remarks Fatigue of material 
),2( βWeibull  is a Rayleigh distribution with parameter β . Rayleigh is used for 

description of fading effects. 
 

The Gamma function is defined as the integral function 
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−−=Γ
0

1)exp()( dtttx x
. One important relationship for the 

Gamma function is given by ( ) ( )xxx Γ⋅=+Γ 1 . For integer values n  this relation transforms into )!1()( −=Γ nn  
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Figure 5.8: Density functions of Weibull distributions 

5.6.1.10 Pareto distribution 

The Pareto function also models a heavy tailed distribution. One common use-case of this distribution is the modelling 
of packet-oriented data traffic. For example, the size of HTTP requests and replies as well as FTP downloads can be 
described as a Pareto function. 

 Pareto distribution 
Notation ( )α,~ cParetoX  

Parameters c  scale and location parameter 
α  shape parameter 

PDF ( ) ααα cxxf ⋅⋅= +− 1)(  for x c>  

CDF 

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xF 1)(  

Expected value { }
1−

=
α

c
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Variance { }
( ) ( )21 2 −⋅−
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αα

αc
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Remarks  
 

   
 

Figure 5.9: Density functions of Pareto distributions 
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5.6.1.11 Extreme distribution (Fisher-Tippett distribution) 

For modelling extremely seldom events with a high and negligible influence, the extreme distribution may be 
appropriate. 

EXAMPLE 1: In service probing, this distribution for example relates to the amount of data which is transferred 
via FTP data connections. Whereas most of the users generate traffic in the range of some ten or 
hundred megabytes, at some time single users occur which like to transfer for example 
10 gigabytes in one session. When modelling the overall FTP data traffic, these users cannot be 
neglected due to their immense data volume, but their occurrence probability is very low. 

EXAMPLE 2: Concerning insurance cases, single incidents which require a very high financial effort arise when 
for example an explosion eliminates a complete factory building. Again, due to the high financial 
effort these cases have be taken into account even they occur rarely. 

 Extreme distribution 
Notation ( )~ ,X Extreme α β  

Parameters α  shape parameter 
β  scale parameter 
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Figure 5.10: Density functions of extreme distributions 

5.6.2 Overview of testing distributions 

5.6.2.1 Chi-Square distribution with n degrees of freedom 

Statistical tests are commonly applied to reject an assumption in favour of an alternative assumption. Therefore, most 
tests are based on some kind of measure of deviation. This may be the deviation of data from a model assumption or 
from an assumed mean value, a target value and so on. For computational ease, single deviations are often assumed to 
be normally distributed. 

Based on these concepts, three important testing distributions are introduced in the following, namely the Chi-square-, 
F- and Student t-distributions. 
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If the result of a service probing is assumed to be the result of a number of independent standard Normal processes, this 
distribution provides a basis for testing against this assumption. For evaluation purposes concerning the 2χ  

distribution, see clause 5.6.4. 

A 2χ  distribution represents a combination of n  independent random variables Z1, ..., Zn where each random variable 

is standard normal, i.e. Zi ~ )1,0(N . The combination is done according to: 

 2

1

2 ~ n

n

i
iZ χ

=

 

The result of this combination is called a "(central) 2χ  distribution with n  degrees of freedom". 

 (Central) Chi-Square distribution  
Notation 2~ nX χ  

Random variable 
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=
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i
iZX

1

2  

Parameters n : degrees of freedom  

nZZ ....,,1 : independent standard normal random variables: Zi ~ )1,0(N  
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Figure 5.11: Density functions of Chi-Square distributions 
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5.6.2.2 Further relations 

The referenced gamma function is defined as the integral function: 

 
∞

−⋅−=Γ
0

1)exp()( dtttx x
 

Additional useful relations according to this function are: 

 )()1( xxx Γ⋅=+Γ  

and 

 ( )!1)( −=Γ nn  if nx =  is an integer value 

5.6.2.3 Relation to empirical variance 

• If the mean value μ is known, the empirical variance of n normally distributed random variables reads 

( )22

1

1 n

i
i

s x
nμ μ

=
= ⋅ − . With this piece of information, a chi-square distribution is given for the following 

expression: 
2

2
2

~ n

s
n μ χ

σ
⋅ . 

• Without knowledge of μ, the empirical variance ( )22

1

1

1

n

i
i

s x x
n =

= ⋅ −
−   estimates the variance of the 

process. The appropriate relation in this case reads ( )
2

2
12

1 ~ n

s
n χ

σ −− ⋅ . 

5.6.2.4 Student t-distribution 

If a standard normal and a statistically independent chi-square distribution with n  degrees of freedom are combined 

according to 

n
Z

U
X = , where Z ~ χ2 (chi-square distributed) and U ~ N(0,1) (standard normal distributed), the 

constructed random variable X is said to be t-distributed with n degrees of freedom. Alternatively, the denomination 
"Student t-distribution" can be used. 
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 Student t-distribution 
Notation ntX ~  

Random variable 

n
Z

U
X =  with U ~ N(0,1), Z~χn

2, independent. 

Parameters n : degrees of freedom  
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Figure 5.12: Density functions of Student-t distributions 

5.6.2.5 Relation to normal distribution 

It may not be obvious, but t-distributions with large number of degrees of freedom may be approximated by a standard 
normal distribution. 

• The standardization of normal variables was covered before: If X ~ N(μ, σ2), then (X-μ)/σ ~ N(0, 1). 

• Consider the case of data assumed to be normal with unknown variance. As stated before, the empirical 
variance is then related to a chi-square distribution. The empirical mean and variance of n normally distributed 
(N(μ, σ2))) random variables 1 2, ,..., nX X X  are given by: 
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With these relations, the relation between the t-distribution and the n normal distributed random variables reads: 

 
12

~ n

X
n t

S

μ
−

−⋅ . 

5.6.2.6 F distribution 

The F  distribution is a combination of m standard normal distributed random variables iY  and n  standard normal 

distributed random variables Vi which are combined as described below. Again, m and n  are called "degrees of 

freedom" of this distribution. 

This distribution is often used for computation and evaluation purposes, for example in relation with confidence 
intervals for the binomial distribution (Pearson-Clopper formula). In general, it compares two types of deviations, for 
instance if two different models are fitted. 

 F distribution 
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Parameters nm, : degrees of freedom  

nYY ,....,1 : independent random variables according to )1,0(N  

nVV ,....,1 : independent random variables according to )1,0(N  
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Figure 5.13: Density functions of F distributions 

5.6.2.7 Quantiles 

For quantile computation purposes, the following relations may be useful: 
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In general, quantile values of this distribution are tabulated. 

5.6.2.8 Approximation of quantiles 

If the desired quantile value cannot be found in tables, the following approximation may be helpful: 

If the γ -quantile is wanted with γ  in the range 15,0 << γ , the relation: 

 ( )bauF nn −⋅≅ exp;, 21 γ  

applies where γuu = is the γ -quantile of the standard normal distribution ( )1,0N . 

The symbols a  and b are derived from the following equations: 
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5.6.2.9 Relations to other distributions 

When the F distribution comes to usage, the following relations may ease the handling of this distribution: 

• Relation to t  distribution for 11 =n : 

2

2

1
;

;,1
2

2 












= +γγ

n
n tF . 

• Relation to 2χ  distribution for ∞→2n : 2
;

1
;, 11

1
γγ χ nn n

F ⋅=∞ . 

• If ∞→1n  and ∞→2n , the distribution simplifies to: 1;, =∞∞ γF  

5.6.3 Overview of discrete distributions 

5.6.3.1 Bernoulli distribution 

Discrete distributions describe situations where the outcome of measurements is restricted to integer values. For 
example, the results of service access tests show either that service access is possible (mostly represented by a logical 
"1" value) or that it is not possible (mostly represented by a logical "0" value). Depending on the circumstances under 
which such "drawing a ball out of a box" tests are executed, different statistical distributions apply like shown 
throughout clause 5.6.3. 

The starting point of different discrete distributions is given by the Bernoulli distribution. It simply describes the 
probability p  of a positive outcome of a single test where only two states are allowed, generally a positive one and a 

negative one. As soon as more than one single test is executed, further discrete distribution may be applied as shown in 
the following clauses. 

 Bernoulli distribution 
Notation )(~ pBernoulliX  

Parameters ( )1,0∈p  
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Figure 5.14: Density functions of Bernoulli distributions 

5.6.3.2 Binomial distribution 

Whenever the outcome of a test is either true or false, the binomial distribution can be applied. In any case where a 
"black or white" interpretation of results is appropriate, this distribution is able to describe the measurement process. 
Due to this "yes or no" character, the binomial distribution can be interpreted as the result of different Bernoulli tries. 
Relevant examples related to service probing are service access issues (e.g. call success rate, SMS send failure ratio, 
etc.). For a high number of measurement results, the distribution can be replaced by the Normal distribution as a first 
approximation. 

Precondition: To determine the CDF of a binomial distribution with relation to different tests, the single events have to 
be independent from each other. This means that the probability of a successful outcome of different consecutive tests 
needs not to change. In consequence, this means a memory-less process where the result of a succeeding test is not 
related to the outcome of its predecessor(s). 

 Binomial distribution 
Notation ( )pnBinX ,~  
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Figure 5.15: Density functions of binomial distributions 

For computation purposes, the following relation between the binomial distribution and the F  distribution may be 
useful: 
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In this formula, F  represents a F distributed random variable with )(2,)1(2 xnx −⋅+⋅  degrees of freedom. 

5.6.3.3 Geometric distribution 

The geometric distribution typically describes the following situation: A number of Bernoulli trials is executed 
consecutively. Each of these trials has a success probability p. By use of the geometrical distribution, one can 

determine the probability of a successful outcome of a Bernoulli trial after x  unsuccessful outcomes. 

Scenarios where this computation may be of interest are for example the occurrence of the first success after x  failures, 
or related to service probing, the number of failed service access attempts before the first successful attempt. 

 Geometric distribution 
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Figure 5.16: Density functions of geometric distributions 

5.6.3.4 Poisson distribution 

The Poisson distribution is also called "distribution of rare events". Generally, this distribution relates to the number of 

events within a certain time of period under the precondition that the events occur at a constant rate λ. The Poisson 
distribution often is used to describe call arrivals in a transmission system, especially the current number of processed 
service attempts in a system. 
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Figure 5.17: Density functions of Poisson distributions 
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For computation purposes, the following relation between the Poisson distribution and the 2χ  distribution may be useful: 

 )2(1)( 2 λχ ≤−=≤ PxXP  

In this formula, 2χ  represents a 
2

2xχ distributed random variable. 

5.6.4 Overview of transitions between distributions and appropriate 
approximations 

5.6.4.1 From binomial to Poisson distribution 

Depending on the number of available measurement results, different distributions can be applied to handle the results. 
Throughout this clause 5.6.4, some useful transitions between common distributions and their required conditions are 
discussed. 

The binomial distribution can be approximated by the Poisson distribution if: 

• the probability p is small (rule of thumb: 1,0<p ); and 

• the number of executed test cases n  is high enough (rule of thumb: 30>n ). 

The approximation of a binomial distributed quantity by a Poisson distribution is given by: 
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)( λλ −⋅≅=
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kXP
k

 

where the Poisson distribution parameter λ is given by: 

 np ⋅=λ  

5.6.4.2 From binomial to Normal distribution 

If a binomial distribution fulfils the rule of thumb: 

 9≥⋅⋅ qpn  

then it can be approximated by the Normal distribution: 
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The approximation in detail reads: 
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Especially for smaller numbers of n  the following approximation may be more favourable: 
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5.6.4.3 From Poisson to Normal distribution 

According to the Poisson limit theorem, the Poisson distribution can be approximated to the Normal distribution if the 

distribution parameter λ fulfils the following relation: 

 9≥⋅= npλ  



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)32 

which is quite similar to the transition from binomial to Normal distribution. 

Then, the approximation reads: 
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kXP )(  

5.6.5 Truncated distributions 

According to resource constraints of measurement equipment, some measurements have to consider timeout values. By 
the use of timeouts, the maximal period of time in which measurement results are considered as relevant for the 
measurement is limited. The resulting density function then is clipped at the right-hand side. Truncation may also occur 
at both ends of a density function. 

For example, if the end-to-end delivery time of some message service is subject of a measurement, the introduction of 
timeout values may reduce the number of measurement samples. This is because all delivery times which are higher 
than the defined timeout value are discarded. By discarding some samples, the entirety of data is reduced which means 
that probabilities describing the measurement may be influenced. 

In general, truncation can be described by conditional probabilities. The condition is given by the timeout value. 
Furthermore, probabilities are then computed under the constraint of the timeout. Truncated Normal and Poisson 
distributions are covered in more detail by [i.7]. 

5.6.6 Overview of distribution selection and parameter estimation 

5.6.6.1 Test procedures 

If a distribution is sought to describe a given data set, two steps have to be carried out. Firstly, an appropriate 
distribution family (type of distribution) has to be selected and secondly, the corresponding parameters specifying this 
distribution have to be estimated. Test procedures or graphical methods may be applied for the first step, parameter 
estimation procedures are needed for the second. 

The formulation of tests is covered in detail in clause 5.7.1. In this clause, three well-known tests that may be used for 
checking distributional assumptions are described briefly. It focuses mainly on the fundamental ideas leading to these 
tests. 

All test procedures are based on comparisons between assumed and empirical distribution. That is, from the data on 
hand, the underlying distribution is guessed and then verified by applying one of the test procedures described in 
clauses 5.6.6.2 to 5.6.6.4. 

5.6.6.2 Chi-Square test 

The main idea of the Chi-Square test is to test whether a set of data comes from a normal distribution by building 
classes and checking whether the expected number of observations and the number of data in each class are similar. If 
the deviations between both numbers - in terms of squared differences - exceeds a corresponding χ2-value, the 
distribution assumed has to be rejected. 

5.6.6.3 Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov test is based on the cumulative distribution functions of the theoretical (assumed) and 
empirical distribution of the data at hand. The main idea is that the distributional assumption is rejected, if the 
maximum vertical distance between both Cumulative Density Functions (CDFs) exceeds a critical value. 

5.6.6.4 Shapiro-Wilk test 

Shapiro and Wilk suggested a test procedure that is based on quantiles and related to the QQ-Plot introduced in 
clause 6. The main idea of this test is to compare the sum of squared deviations between the points of the QQ-Plot and 
the best fitting straight line with a given χ2-value. 
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5.6.6.5 Parameter estimation methods 

Most frequently applied methods for parameter estimation are Maximum-Likelihood or Moment estimation methods. 
For the mean of a normal distribution, both methods yield identical results. For further details compare [i.7]. 

5.7 Evaluation of measurement data 

5.7.1 Statistical tests 

5.7.1.1 Formulation of statistical tests 

Related to active service probing, certain issues can become much easier to handle if it is able to describe the gathered 
data in a very compact way. One possible way to reach this aim is to execute different tests and thereby to check some 
assumptions. These assumptions are stated before any testing is done. They are called "hypotheses". 

From a slightly more theoretical point of view, this topic can be expressed as follows: 

With every measurement sample some information about the investigated process is retrieved. Since commonly the 
characteristics of the process are unknown, with every piece of additional information (i.e. every sample) the degree of 
knowledge increases. This knowledge is formalized by the application of statistical tests or the determination of 
confidence intervals for the distributional parameters of interest. 

Statistical tests are introduced by specifying the test components first and afterward distinguishing different test classes 
and giving examples where appropriate. 

Statistical tests are formulated by specifying the following components: 

• (Null-)Hypothesis: This hypothesis is commonly denoted by H or H0. 

EXAMPLE 1: H: µ = 60. 

• Alternative Hypothesis: This one is commonly denoted by A or H1. 

EXAMPLE 2: A: 60μ ≠  or A: µ > 60. 

• Test statistic: A test statistic is derived so that it is sensitive for deviation from the hypothesis in favour of the 
alternative. That is, the meaning of the test statistic is to notice if in fact A is true instead of H. Test statistics 
are commonly denoted by T. 

• Testing rule and critical value: The testing rule states the condition under which H is rejected in favour of 
the alternative A. So it represents something like a switching condition. 

EXAMPLE 3: "Reject H, if x c> " or "Reject H, if x c> ". 

 The value c is called "critical value". 

• Type I: Error level α : The probability of rejection H, although true, is controlled by the value α . The 
specification of α  has direct impact on c and thereby on the testing rule. Commonly, the type I error is 
restricted to 5 % or 1 %, that is α = 0,05 or α  = 0,01, respectively. 

A statistical test is carried out by specifying all of the above components, computing the test statistic and comparing it 
with the critical value. Test results are usually documented by reporting the value of the test statistic as well as the 
corresponding test result. Alternatively, the so called p-value may be reported. This value measures the "significance" 
or a test result in the way that if the p-value is smaller than the error level α , the hypothesis is rejected, otherwise it may 
not be rejected. A p-value corresponds to the smallest α -level for which the test would have been rejected. 
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5.7.1.2 Classes of statistical tests 

Commonly, statistical tests are formulated in the way that the alternative makes the statement one wishes to prove in a 
statistical sense. That is, in general tests seek to reject a given hypothesis and are therefore formulated accordingly. This 
is done due to the fact that if the Type I error is specified, a rejection implies that the hypothesis is untrue with 
user-defined certainty. 

However, a number of test procedures exist that differ from the mentioned general test philosophy. Some of these 
examples are the tests used for selecting distributions (compare clause 5.6.6). Their purpose is to support the hypothesis. 
Nevertheless, strictly speaking it is impossible to proof any equality hypothesis, therefore the test result can either be 
that there is no hint that the hypothesis is violated or that there is evidence that the assumed distribution is not 
appropriate. In the following, it is assumed that one wishes to reject the hypothesis in favour of the alternative. 

Two major classes of tests are distinguished, namely one-sample and two-sample tests: 

• If a test is based on only one data set for which a reference alternative is to be checked, this is a one-sample 
test. 

• On the other hand, two data sets may be compared by testing for instance the hypothesis H related to the 
Multimedia Messaging Service (MMS). 

H: MMS-E2E-Delivery Time [this week] > MMS-E2E-Delivery Time [last week] 

 against the alternative that the MMS-E2E-Delivery Time was reduced from last week to this week. 

Furthermore, tests that are based on distributional assumptions and distribution-free tests are distinguished. Most 
distribution-based tests are testing for the location and dispersion / variation of an assumed distribution. For two-sample 
tests, both samples are assumed to be from the same type of distribution, but possibly with different parameters, for 
instance different location. In contrast, distribution-free tests should be applied, if there is not enough knowledge about 
the distribution of the data. However, distribution-free tests are in general less powerful, therefore distribution-based 
tests should be preferred, if appropriate. 

5.7.1.3 Tests for normal and binomial data 

In the following clauses, two of the main use-cases of statistical data are taken into concern. These clauses deal with test 
for normal distributed and binomial distributed data. 

5.7.1.4 One-sample tests for normal data 

If data are from a normal distribution with known variance 2
0σ , i.e. 2

1 0, ..., ~ ( , )nX X N µ σ , three different 

location tests may be carried out. All of these compare the location of a given sample to a value μ0, that may be chosen 

arbitrarily. 

• Test for H: μ = μ0 vs. A: μ ≠ μ0: The corresponding test statistic is given by 
0

x µ
T n

σ
−=  

H is rejected, if T > u1-α/2. 

• Test for H: μ ≤ μ0 vs. A: μ >μ0: The corresponding test statistic is given by 0

0

x µ
T n

σ
−=  

H is rejected, if T > u1-α (for α < 0,5). 

• Test for H: μ ≥ μ0 vs. A: μ <μ0: The corresponding test statistic is again given by 0

0

x µ
T n

σ
−=  

H is rejected, if T < uα = − u1−α (for α < 0,5). 
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If data are from a normal distribution, but the variance is unknown, i.e. 2
1 , ..., ~ ( , )nX X N µ σ , the variance has to 

be estimated from the data and the above "normal-tests" are replaced by student t-tests. In this case, the variance 
estimator: 

 ( )22

1

1

1

n

i
i

s x x
n =

= −
−   

is applied. Test statistics are replaced as follows: 0x µ
T n

S

−=  or 0

0

x µ
T n

σ
−= , respectively. Critical values are 

given by the quantiles of the t-distribution: tn-1, 1-α/2 , tn-1, 1-α or tn-1, α, respectively. 

If instead the variance is unknown and subject of a test, i.e. 2
1 , ..., ~ ( , )nX X N µ σ  with unknown μ and σ2, the 

following tests comparing the variance of a given sample to a value 0σ , that may be carried out. 

• Test for H: σ = σ0 vs. A: σ ≠ σ0: The corresponding test statistic is given by T = (n-1)/σ0 2 s2 with 

( )22

1

1

1

n

i
i

s x x
n =

= −
−  . H is rejected, if T > χ2

1-α/2, n-1 or T < χ2
α/2, n-1. 

• Test for H: σ ≤ σ 0 vs. A: σ >σ 0: The corresponding test statistic is again given by T = (n-1)/σ0
2 s2 with s2 as 

given above. H is rejected, if T > χ2
1-α,, n-1. 

• Test for H: σ ≥ σ 0 vs. A: σ <σ 0: Test statistic and empirical variance are as before. In this case, H is rejected, 

if T < χ2
α,, n-1. 

5.7.1.5 Two-sample tests for normal data 

In the case of two samples, that are to be compared, two very different situations are distinguished. The two samples 
can either be collected on the same observational units or can be observed independently. If both samples are from the 
same units, for example measuring the cut-of-call-ratio at different network elements before and after a new piece of 
software is installed, the two samples are called paired and two observations from the same unit will generally be 
correlated. In this case, the differences between both measurements for each unit are computed and the new 
observations Di = Xi - Yi are assumed to be normal with expectation μD = μ X − μY . Then, the above tests for normal 

data may be applied, for instance to test for μD=0, i.e. μ X =μY to prove that there is a significant difference between 

both samples. 

For independent data from two samples, both assumed to be normally distributed with the same known variance, 
but possibly different expectations, i.e. 2

1 , ..., ~ ( , )n XX X N µ σ  and 2
1 , ..., ~ ( , )m YY Y N µ σ , tests to compare both 

means are given as follows. 

The following test statistic T is defined for testing the hypotheses: 

 

mn

yx
T

11 +

−=
σ

 

• Test for H: μX = μY vs. A: μX ≠ μY: H is rejected, if |T| > u1-α/2 

• Test for H: μX ≤ μY vs. A: μX > μY: H is rejected, if T > u1-α 

• Test for H: μX ≥ μY vs. A: μX < μY: H is rejected, if T < uα 

If the variance is unknown but assumed to be equal for both samples, the normal distribution is again replaced by a 
Student t-distribution resulting in the following test procedures. 
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• Test for H: μX = μY vs. A: μX ≠ μY: H is rejected, if |T| > t1-α/2, n+m-2. 

• Test for H: μX ≤ μY vs. A: μX > μY: H is rejected, if T > t1-α, n+m−2. 

• Test for H: μX ≥ μY vs. A: μX < μY: H is rejected, if T < tα, n+m-2. 

In general, before carrying out one of the above tests, the assumption of equal variances has to be verified. This can 
be done by using the following test: 

• Test for H: σX
2 = σY

2 vs. A: σX
2 ≠ σY

2: The corresponding test statistic is given by 
2

2

Y

X

s

s
T = ,  

where 

 ( )
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−
−

=
n

i
iX xx

n
S

1

22
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5.7.1.6 Test for binomial data 

For binomial data, tests for the probability of success p may be carried out that compare the sample probability to some 
specified value p0. Three one-sample tests may be derived by computing the critical values under the three hypotheses. 

If m is the number of successful trials, the first hypothesis is rejected, if: 
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The second hypothesis is rejected if α−> 1cm  and the third one if αdm< . 

An alternative way may be appropriate if large numbers of samples are available (large means ( ) 91 ≥− pnp  is 

fulfilled). In this case, the test statistic: 

 
( )00

0

1 pnp

npm
Z

−
−

=  

can be applied. In this case: 

• the first hypothesis is rejected, if |Z| > u1-α/2; 
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• the second one, if |Z| > u1-α ; and 

• the third one, if |Z| < u1-α . 

5.7.1.7 Distribution-free tests for location 

If the location for two sets of random variables shall be compared, but there is not enough knowledge for a 
distributional assumption, distribution-free test may be applied. 

5.7.1.8 Sign tests 

In the case of paired samples, the differences between both measurements for each unit are again computed as 

i i iD X Y= − . If both distributions have the same location, the probability of i iX Y<  should equal the probability of 

i iX Y>  and both should equal 0,5. Based on this consideration, the following tests may be carried out. 

• Test for H: 5,0)()( =<=> iiii YXPYXP  vs. A: 5,0)( ≠> ii YXP . 

• Test for H: 5,0)( ≤> ii YXP  vs. A: 5,0)( >> ii YXP . 

• Test for H: 5,0)( ≥> ii YXP  vs. H: 5,0)( <> ii YXP . 

In all cases, the test statistic T is given as the number of positive differences Di. This test statistic is a binomial random 

variable with ( )i ip P X Y= > . Therefore all of the above stated hypotheses are tested by applying a binomial test. 

5.7.1.9 Sign rank test 

For the same situation, another kind of test, namely the sign rank test, may be preferable if the distribution of 
differences is symmetric around some value δ, that is ( ) ( )i iP D a P D aδ δ≤ − = ≥ +  for all real numbers a. In 

comparison to the previous clause, the sign rank test not only uses the signs of the differences between both 
measurements, but also the absolute values in terms of their ranks. 

For each of the following hypotheses, the test statistic ( )
1

n

i i
i

T V R D
=

=   with 1iV = , if 0iD >  and 0iV =  otherwise 

and ( )R ⋅  the rank operator that sorts the entries and gives rank 1 to the smallest entry and rank n to the largest, is used 

as a basis for the test decision. 

• Test for H: 0δ =  vs. A: 0δ ≠ . 

• Test for H: 0δ ≤  vs. A: 0δ > . 

• Test for H: 0δ ≥  vs. A: 0δ < . 

The test statistic has a distribution with expectation ( ) ( )1
1

4
E T n n= +  and variance ( ) ( )( )1

1 2 1
24

Var T n n n= + + . 

The quantiles of the resulting distribution are given in statistical text books on nonparametric methods. However, in 

case 20n≥ , the distribution of 
( )
( )

T E T

Var T

−
 may be approximated by a standard normal distribution. 
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5.7.1.10 Wilcoxon rank sum test 

In contradiction to both tests explained before, the rank sum test suggested by Wilcoxon is used for independent 
samples. It assumes that both samples come from the same kind of distribution, but with a shifted location, that is 

1 ,..., nX X  and 1 ,..., mY Y  ( n m≤ ) are independent and have continuous distribution functions XF  and YF  respectively. 

These are shifted by δ, i.e. ( ) ( )X YF x F x δ= + . Meaningful hypotheses are the following: 

• Test for H: 0δ =  vs. A: 0δ ≠ . 

• Test for H: 0δ ≤  vs. A: 0δ > . 

• Test for H: 0δ ≥  vs. A: 0δ < . 

In this situation, for instance a rejection of the third hypothesis, i.e. 0δ <  would imply that the location of the second 
distribution function is significantly smaller, that is the y-values are in general be smaller than the x-values. 

For the above tests, a sensible test statistic is derived by combining both data sets to one sample and computing ranks 
by ordering the values according to their size. The test statistic T is now given by the sum of all ranks for values from 
the first sample, i.e. the x-values. For this test statistic, expectation and variance are given by: 

 ( ) ( )1
1

2
E T n n m= + +  

and 

 ( ) ( )1
1

12
Var T n m n m= + +  

respectively. Again, exact critical values for these tests are not easy to derive, but approximations exist. If , 4n m ≥ and 

30n m+ ≥ , the distribution of 
( )
( )

T E T

Var T

−
 may be approximated by a standard normal distribution. 

5.7.2 Confidence interval 

5.7.2.1 Binomial distribution 

In contrast to point estimators where a single number is used to summarize measurement data (compare methods for 
estimating moments or quantiles in clause 5.5), confidence intervals describe an interval that covers the true parameter 
value with a certain probability. Usual probability measures are in the 90 percent range. For example, a confidence 
interval represents the interval in which the mean of the underlying distribution lies with a probability of 95 percent or 
with a probability of 99 percent. 

Confidence intervals are related to statistical tests in the sense that a confidence interval with a given confidence level, 
for instance 95 %, contains all Confidence levels are denoted by 1-α, where α corresponds to the Type I error level for 
tests. 

As a rule of thumb the number of samples within a measurement campaign correlate with the reliability of results. In 
other word: The higher the number of collected samples, the more precise and trustworthy the results are. 

The computation of confidence intervals depends heavily on the assumed kind of distribution. In the following, the 
computation of confidence intervals is described for the binomial and the normal (Gaussian) distribution. 

This clause 5.7.2.1 defines how to compute a confidence interval to the level α−1  for p for a binomial distribution. 

At first, the computation of a confidence interval [ ]21; pp  according to the binomial distribution depends on the 

number of tests n  which are executed to determine p. 
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• If the condition 9≥⋅⋅ qpn is fulfilled, the binomial distribution can be approximated by the Normal 

distribution which eases the computation of the according confidence interval. 

The values for 1p  and 2p  are then given by: 
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with the known parameters m and n  from the clause 5.6.3.2 (Binomial distribution). The term 
2

1
α−

u  represents the 
2

1
α−  

quantile of the standard normal distribution ( )1,0N . Some examples for different confidence levels α  and their 

according 
2

1
α−

u  quantile values are given in the following table 5.1. 

Table 5.1 

Confidence level α−1  α  
Term 

2
1

α−  
Quantile 

2
1

α−
u  

0,9         ( =̂ 90 %) 0,1 0,95 1,6449 
0,95       ( =̂ 95 %) 0,05 0,975 1,96 
0,96       ( =̂ 96 %) 0,04 0,98 2,0537 
0,97       ( =̂ 97 %) 0,03 0,985 2,1701 
0,98       ( =̂ 98 %) 0,02 0,99 2,3263 
0,99       ( =̂ 99 %) 0,01 0,995 2,5758 
0,999     ( =̂ 99,9 %) 0,001 0,9995 3,2905 

 

The quantile values can be taken from tabulated quantile values of the standard normal distribution respectively the 
cumulated distribution function of this distribution. 

• If the previous condition is not fulfilled, the confidence interval has to be computed with regard to the 
binomial distribution itself. In this case the parameters 1p  and 2p  are called "Pearson-Clopper values". In 

detail, the values 1p  and 2p  represent interval boundaries which fulfil the relations: 
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Using the relation between the binomial distribution and the F  distribution with )(2,)1(2 xnx −⋅+⋅  degrees of 

freedom: 
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The Pearson-Clopper values can be determined as: 
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γ;, 21 nnF  represents the γ  quantile of a F  distribution with degrees of freedom 1n  and 2n  which are tabulated in the 

literature. An approximation for γ  quantiles of the F  distribution is given in clause 5.6.2.3. 

5.7.2.2 Normal (Gaussian) distribution 

Related to the Normal distribution, confidence statements depend on the composition of known and unknown 
parameters. This means different computations have to applied if mean value and/or variance of the distribution are 
known. If the parameters are not known, they can be estimated by empirical values (see clause 5.5). Furthermore, 
confidence statements can be made related to the expected value, to the variance and to the standard deviation. 

To sum up, the estimated empirical values of the Normal distribution are: 

• Empirical mean 
=

=
n

i
ix

n
x

1

1
, where nixi ,...,1, =  are the sample values. 
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i
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• Empirical standard deviation ( )
=

−
−

=
n

i
i xx

n
s

1
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1 . 

Based on these expressions, the following terms are applied to estimate confidence intervals for the mean value, the 
variance and the standard deviation of a Normal distribution: 

• Confidence interval for mean value μ if variance 2σ  is known: 
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• Confidence interval for mean value μ if variance 2σ  is unknown: 
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• Confidence interval for variance 2σ  if mean μ is known: 
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• Confidence interval for variance 2σ  if mean μ is unknown: 
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• Confidence interval for standard deviationσ  if mean μ is unknown: 
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• Confidence interval for standard deviation σ  if mean μ is known: 
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5.7.3 Required sample size for certain confidence levels 

In this clause, the relationship between the number of acquired measurement samples and the resulting confidence level 
is in the focus. 

Whereas in the usual measurement chain at first the samples are collected and afterwards the confidence level is 
determined, in some situations the reverse procedure may be necessary. For example, during a measurement campaign 
there may exist preconditions which require a certain confidence level which should be reached during the 
measurements. The unknown parameter is the number of measurement samples which have to be collected to reach this 
confidence level and needs to be determined in advance. 

Tables of required sample size depending on desired confidence levels are given in clause A.5. The tables are based on 
the binomial distribution and the according Pearson-Clopper expressions. Due to this fact they are available and valid 
for rather small sample sizes like they occur if manual tests are executed. 

The tables provide two kinds of information: 

• The limits and the range of the confidence interval of the mean for an increasing number of samples whereas 
the estimated rate is constant. 

• The range ("span") of the confidence interval of the mean for a varying estimated rate whereas the number of 
samples is constant. 

Based on this, one can state in advance the maximum span of the confidence interval based on the number of samples 
which should be gathered. 
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6 Visualization techniques 

6.1 Visualization of static data 

6.1.1 Histograms 

In clause 6, some useful visualization techniques are presented. This is not meant as a complete overview over all 
possible methods, but should give some standard techniques and some non-standard alternatives. 

In the following a distinction is made between static and dynamic data. By static data, variables are meant which do not 
change systematically within the time period under consideration, i.e. which are not subject to seasonal or daily 
influences. Dynamic data on the contrary are data which vary systematically over time. Examples are usage data that 
show a typical curve with high usage during the day (in particular in the afternoon) and low usage at night. 

Visualization techniques for static data assume that the underlying distribution does not change over the considered 
time period and try do give a compressed overview over this distribution. 

Histograms compress the information by building classes and counting the number of data values falling into each of 
the specified classes. The main idea is to represent each class by a bar with area equivalent to the portion of data values 
included. An example is given in figure 6.1. 

Histograms can be viewed as density estimators since the area of the visualized bars adds up to one, smoothed density 
estimation curved can also be applied as available in most of the common statistical analysis computer packages. The 
two plots of example 1 in figure 6.1 with different bar width illustrate the concept of histograms. Here one bar in the 
first plot contains the same number of data values than five successive bars in the second plot, therefore the height of 
one bar in plot one is given by the mean height of the five corresponding bars in plot two. Histograms even allow bar 
heights greater than one, if the bar width is small, respectively. 

   
 

Figure 6.1: Examples of histograms 

6.1.2 Barplots 

Barplots are suitable for ordinal samples and visualize the total or relative number of elements from a sample with 
different values of a characteristic of interest. Barplots are used if the distribution of users to groups with different 
business state or of trouble tickets with different priorities or other examples of ordinal samples are to be visualized. 
Since for ordinal samples, the differences between groups are not to be interpreted in a numerical sense, the main 
difference in comparison to histograms is that the widths of the bars does not have any meaning, only the height 
corresponds to the total or relative number of elements represented by each bar. Moreover, commonly gaps are left 
between the bars, to illustrate that ordinal samples are visualized. Examples are given in figure 6.2 where months and 
priorities are used as example units. 
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Figure 6.2: Examples of barplots 

6.1.3 QQ-Plots 

An important tool for checking the normality assumption is the so called Quantile-Quantile-Plot or QQ-Plot. This plot 
compares the quantiles of two distributions in a scatter plot. In particular the theoretical quantiles of the normal 
distribution may be compared to empirical quantiles from a sample of interest, but also any other distributional 
assumptions can be checked, respectively. 

In case of a normal QQ-Plot, theoretical quantiles can be taken from the standard normal distribution. The points of the 
resulting scatter plot should then fall on a straight line with slope corresponding to the empirical standard deviation of 
the sample. Figure 6.3 gives three example normal QQ-Plots for normal and non-normal samples. 

In the first plot, the sample is in fact normal and the normal QQ-Plot also supports the assumption of normal data. For 
both other plots, non-normal data are simulated to visualize the normal QQ-Plot in cases where the assumptions are 
violated. In the second example, the entire distribution disagrees with the normal assumption while in example three, 
only the right tail of the distribution does not agree with the normality assumption. 

   
 

Figure 6.3: Examples of normal QQ-Plots 

6.1.4 Boxplots 

Boxplots, as the name suggests, consist of a box and some additional shapes called whiskers. These visualize the data 
information compressed in only a few numbers based on quantiles of the empirical distribution. The end-points of the 
box are given by the 25 % and 75 %-Quantile (also called Quartiles), the horizontal line is given by the median of the 
data (50 %-Quantile). Therefore the box contains 50 % of the given data. The whiskers (in the example plots 
represented by dotted lines) extend to the most extreme data point which is no more than 1,5 times the interquartile 
range (between the 25 %-Quantile and the 75 %-Quantile) from the box. All data points outside this interval are 
individually added and may be viewed as outliers. Figure 6.4 gives some boxplot examples. 
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Figure 6.4: Boxplot examples 

6.2 Visualization of dynamic data 

6.2.1 Line Diagrams 

For dynamic data, visualization techniques should take the dynamic aspect into account. This can be done by 
visualizing single data points or by using aggregated data values or summary statistics like the mean, respectively. In 
addition, visualizations as introduced for static data can be compared over time. 

If summary statistics are applied, a chronological classification of the data is needed. This can be done by summarizing 
a given number of succeeding data points or by summarizing data of a given time period like an hour or a day. In any 
case, data within a time period or group should be as homogeneous as possible, i.e. changes of the parameter of interest 
should not be hidden by large classification groups for instance due to long time intervals. 

Line Diagrams may be based on single data points or values of a summary statistic like the mean. They only provide a 
visual comparison of the data points over time without any kind of assessment. This can be achieved by adding control 
limits yielding control charts as will be described in clause 9.2. In figure 6.5, examples of line diagrams are given. If the 
measurements are not equidistant in time, points of measurement should be specified by points in addition to the 
connecting line. 

   
 

Figure 6.5: Examples of line diagrams 

6.2.2 Temporal changing Boxplots 

Instead of a single summary statistic, boxplots may be used as a summarizing tool and visualized and compared over 
time. Boxplots are not only appropriate for comparing empirical distributions over time, but also for unordered groups 
like the comparison of delay or delivery times for different service providers or vendors. These boxplots are then called 
parallel boxplots. Examples for both cases are given in figure 6.6. 
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Figure 6.6: Examples of parallel boxplots 

6.2.3 MMQ-Plots 

Median-Mean-Quantile-Plots (MMQ-Plots) visualize the serial of each of the three statistics median, mean and 
95 %-quantile over time in a common plot. The 95 %-quantile characterizes the upper tail of the empirical distribution, 
while mean and median as measures for location allow conclusions about outliers which will only affect the mean due 
to its non-robustness. Examples of MMQ-Plots are given in figure 6.7. 

   
 

Figure 6.7: Examples of MMQ plots and their temporal behaviour 

7 Time series modelling 

7.1 Descriptive characterization 

7.1.1 Empirical moments 

Beneath stationary processes, on the one hand temporal changes are very interesting. On the other hand there are many 
cases where an appropriate description of the changes in a system over time have to be handled. Both cases are covered 
by the so called time series and their appropriate methods. 

For example, if measurements in a mobile network are executed for a period of one month with regard to the 
transmitted traffic volume, a periodic behaviour will be observable. Depending on the hour of day and on the week of 
day, different traffic situations will be expected. 
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Figure 7.1: Example of daily traffic 

Related to time series, four different main areas can be identified: 

1) Descriptive characterization 

- This method is based on the principle "let the data speak". Partially, very basic procedures are applied to 
achieve a description of time series which is as exact and detailed as possible. Especially the method of 
extracting different components with respect to different time scales is presented. 

2) Modelling 

- Time series are interpreted as a realization of a stochastic process which means a sequence of dependent 
random variables. Under the stationary assumption (i.e. the main characteristics of the process are not 
varying over time), methods using so called Auto-Regressive Moving Average (ARMA) processes are in 
the focus. 

3) Prognosis 

- If it is assumed that the found stochastical model is valid, it is possible to state the future behaviour. 

4) Monitoring 

- Methods in this area are used to model variables which describe technical processes. The aim is to enable 
the controlling and monitoring of the related processes. Specialized visualization techniques, so called 
control charts, allow the deployment of these mechanisms in the operational realm. Their main advantage 
consists in the fact that no further detailed knowledge about statistical methods is required. 

Formally speaking, a time series is an amount of observations xt which are ordered in ascending order by a time index t. 

The observations are interpreted as realizations of a random variable Xt. In general, it is assumed that at the point of 

time the analysis is done, a certain history of observations is available. The history is formally described as a finite 
amount of parameters N. 

 Nxxx ,...,, 21  

Example: Daily Traffic
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Talking in a more practical manner, the observations are represented by certain measurement results which are collected 
over time and which are analysed in their order of occurrence. Furthermore, the observations can be distinguished 
according to their timely occurrence: A stochastical process can be observed at fixed points of time which leads to 
equally spaced intervals between the observations. Another way to observe a process is by executing permanent 
measurements which deliver measurement results related to some events, so called event data. In effect, the time 
intervals between consecutive events may vary heavily. In this case it may be appropriate to approximate the situation at 
fixed points of time. This allows to use mechanisms which are designed for discrete time series. 

Similar to the handling of one-dimensional measurement results, descriptive characteristics (clause 5) can be deployed 
to describe the main characteristics of a time series. In particular, the arithmetic mean value or the variance respectively 
the standard deviation are addressed by this issue. 

However, these global parameters of time series are only applicable if there is no systematic change in the series, so 
called stationary time series. In these cases, a movement in a certain direction (i.e. a trend) is not allowed. Concerning 
non-stationary time series it might be useful to fragment the series in smaller parts. Then, the partial time series can be 
assumed to be approximately stationary. This allows to use some procedures with a local meaning. 

Beyond this, the question arises if dependencies exist between different observations at different points of time. 
Corresponding to the covariance, the autocovariance function: 

  −−= +
t

jttj xxxx
N

c ))((
1  

and the autocorrelation function: 

 
0c

c
r j

j =  

are defined to measure linear dependencies between succeeding observations of a process. Both functions are defined as 
functions of the temporal difference (lags) j = - (N-1), .., -1, 0, 1, ..., (N-1) between the observations. 

The graphical representation of the autocorrelation function rj is named correlogram. Correlograms are of high 

relevance for finding cyclic (i.e. periodic) structures in the gathered measurement data. 

 

Figure 7.2: Example of correlogram 

Furthermore, the autocovariance function again depends on the stationary character of the measurement results because 
its definition assumes the existence of constant mean values. 
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7.1.2 Decomposition of time series 

The reflection of the example given in the last clause shows the following: Data which is related to the behaviour of 
users leads to a mixture of short-term cycles like days and long-term cycles which change on an annual basis. This 
means that the daily changes are overlaid by for example weekly changes as well as seasonal or yearly modifications. 

Now, the aim to reach by the decomposition of time series is the following: The time series should be decomposited to 
be able to identify the long-term trend of a process. The question which should be answered is: Are there any long-term 
movements behind the different layered cyclic processes? Especially with respect to management decisions, this 
information can be of a very high importance. 

In general, time series are based on two different assumptions: 

• Additive time series: 

 ttttt RSKTx +++=  for nt ...,,1=  

• Multiplicative time series: 

 ttttt RSKTx ⋅⋅⋅=  for nt ,....,1=  

The different parts are in detail: 

• Tt (Trend) represents the systematic long-term changes of the mean value of a time series. 

• The economic component Kt includes long-term changes in the model which need not to be regular in any 

way. The combination of Tt and Kt often is concentrated in terms of a smooth component Gt. 

• Cyclical changes are represented by the term St. This is the seasonal component of the process. 

• Rt stands for an irregular behaviour of the process which is not known in advance. Generally speaking, this 

component is assumed to be part of a random process which oscillates around the zero level. 

If seasonal changes occur with the same amplitude in each period, the additive time series model should be taken into 
account. The other way round, if seasonal changes change their amplitude with every observation period while they 
keep their general behaviour, the multiplicative approach may be the better choice. 
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Figure 7.3: Example of decomposition in different components 

In general, there is no statement how to process a given time series in an optimal way. Therefore, different approaches 
or modelling types may lead to different results. Particularly, two different approaches can be distinguished: 

• Global component model: The time series is mapped to a global model which is valid for all clauses of the 
time series and which is adapted to the specific time series. The estimation of the trend component is usually 
done by the adaption of linear and non-linear regression models based on the method of minimized square 
values. 

• Local component model: In this model, the time series is split up in different clauses. For every clause, a 
certain local model with partial meaning can be developed. The concatenation of all the local models 
represents the complete time series. The trend estimation is normally done by filtering mechanisms and  
non-linear procedures. 

Both different models are discussed in the following clauses. 

7.1.3 Determination of the trend component 

7.1.3.1 Trend function types 

The trend component describes the long-term behaviour of a process. Due to the importance the trend component may 
have with regard to the management view, the choice of the appropriate model is one of the main issues right from the 
start. The use of an incorrect model has a far reaching influence with respect to the quality of the component model. 

Furthermore, wrong assumptions may lead to misinterpretations. For example, if a linear trend model is introduced, the 
conclusions drawn from such a model are restricted to a linear character. It is not possible to describe processes which 
own a more complex function which such a simple model. If it is done anyhow, the resulting conclusions may be 
completely wrong. 
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Different types of trend functions are possible. All of them introduce some unknown coefficients ai which need to be 

determined by calculation or estimation. The subsequent clauses introduce different approaches and their 
characteristics. 

7.1.3.2 Linear trend function 

The most well-known approach to model a trend function is a linear function. It is assumed that the observations xt 

depend on the time index t in a linear manner. This relation can be formalized by the expression: 

 taaxt 21 +=  

It is very easy to interpret this model since the sign of a1 represents if the time series increases (positive sign) or 

decreases (negative sign) over time. 

7.1.3.3 Polynomial trend function 

Extending the linear approach, the polynomial approach assumes that a time series can be described as the composition 
of different functions m: 

 )()()( 2211 tmatmatmax kkt +++= K  

mi(t) are arbitrary known functions. It is important that the combination of all the single expressions aimi(t) is linear. 

A very simple approach is to define the mi functions as polynomials of rank (i-1). Then, the approach reads: 

 
1

21
−+++= k

kt tataax K  

According to the theory, p + 1 points of a function can be perfectly approximated if a polynomial of rank p is used. This 
means it is possible to reach a perfect approximation between model and any time series in any case. However, there are 
two serious disadvantages: 

• Resulting models are very complex and cannot be interpreted in a simple manner (compared with the basic 
trend model). 

• The assimilation takes only the available data into account. Therefore, it is not possible to make statements 
about the behaviour in the future. 

Both effects are considered as overfitting effects. 

7.1.3.4 Non-linear trend models 

Lots of different non-linear trend models are available. Because of difficulties to describe all models in a general 
manner, this clause concentrates on some important cases with a very special meaning: 

1) Exponential models: 

 
)()()( 2211 tmatmatma

t
kkex +++= K

 

2) Power models: 

 ka
k

aa
t tmtmtmx )()()( 2

21
1

K⋅⋅=  

 Both models can be reduced to linear models if a logarithmic operation is applied. Then, the multiplication 
respective exponentiation is reduced to a simple addition. 

3) Logistic models. 
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In many use cases, it can be assumed that natural limits exist which can be reached by a time series if observations are 
done over a longer period of time. For example, the growth of users in a network follows a function which is shaped 
like an S. In other words, these processes are constrained by saturation effects. 

Formally, these time series can be described the following approach: 

 tat
ea

a
x

3
2

1
−+

=  

In this case the values of the time series converge to the saturation at the value G = a1/a2. 

7.1.3.5 Trend estimation 

The common principle behind the different presented approaches is to determine the unknown parameters ai. Regularly, 

this is done by estimating the minimization of a squared expression based on a difference. The difference is built by 
comparing the measurement value xt with the according approximation given by the chosen approach. Afterwards, the 

resulting difference is squared and summed up. For the polynomial approach, the according overall expression reads: 

 ( ) Minimum)()()(

2

1
2211 →+++−=

=

N

i
kkt tmatmatmaxQ K  

Now, the task is to minimize the expression for Q. 

To solve the minimization problem, partial derivatives are calculated. In detail, Q is derived with respect to each of the 
parameters ai: 

 ni
a

Q

i

,,1,0
!

K==
∂
∂

 

A system of so called normal equations is the result of this calculation. Under the assumption of linear independency of 
the different functions mi, a closed solution exists so that the different parameters ai can be identified. 

Related to non-linear models, the minimization approach leads to normal equations that cannot be solved explicitly. A 
further leading approach which might solve these problems is based on linear approximations and is called the 
Gauss-Newton procedure. Additional information can be found in [i.6]. 

 

Figure 7.4: Example of a linear model 
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Figure 7.5: Example of a polynomial model 

7.1.3.6 Transformation of time series by filtering 

Besides the determination of global trends the identification of local trends within the time series is important. The 
identification of local trends corresponds to the smoothing of a time series by applying filtering functions. One main 
advantage of this procedure lies in the fact that low-ordered polynomials already lead to acceptable results. This 
simplification reduces the required computational power. 

On the other hand, the main disadvantage of this method is caused by the possibility to get a high number of describing 
parameters without finding an easy to handle closed solution or model description. In other words: The outcome of this 
approach may be a smoothened time series, but no model description. 

7.1.3.7 Linear filters 

A very simple approach to reach smoothing effects is the application of a sliding window to a time series. This 
corresponds to the calculation of a moving average. In general, the according approach can formally described as 
follows: 

A linear filter L is a transformation of a time series xt into a time series yt with respect to the relation: 

 qNsixaLxy
s

qi
ititt −+=== 

−=
− K,1  

where (a-q, ..., as) symbolize different weights. 

The simplest approach is done by "simple moving average". According to the notation given above, it reads: 

 qqi
q

a i K,,
12

1 −=
+

=  

The smoothing effect increases with the number of values taken into account which is the case for increasing values 
of q. 

Reducing the condition for the weighting parameters of the filter to the standardization  =1ia , it is possible to 

prove that the local approximation based on polynomials is equivalent to the filtering method: 

1) The simple moving average is the same as a local trend estimation of the data (xi-q,...,xi+q). 
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2) The filter represented by the polynomial: 

 ( )2112 31217123
35

1
++−− −+++−= tttttt xxxxxy  

 represents a local trend estimation according to the squared minimization approach which is based on a 
polynomial of second order. 

Figures 7.6, 7.7 and 7.8 show some examples for filtering with linear and polynomial filters. 

 

Figure 7.6: Example of linear filter with q = 7 

 

Figure 7.7: Example of linear filter with q = 20 
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Figure 7.8: Example of polynomial filter 

7.1.3.8 Exponential filters 

Linear filters always use a constant number of weights. Furthermore, a different approach can be interesting which takes 
into account that older values may be less interesting than newer ones. This is realized by decreasing the weights of 
older values whereas newer values lead to a higher weighting and is known as an exponential approach. This approach 
reads in recursive description: 

 
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0
1 )1(

i
it
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t xaay  

and is equivalent to the formula: 

 ttt yaaxy )1(1 −+=+  

Both expressions are stated in such a way that they can be read as a prediction for the next point of time. 

From this equation it can be seen that exponential smoothing also overcomes another limitation of moving averages: 
older values are weighted with decreasing weights. That is, since a is a number between 0 and 1, the weights [a, a(1-a), 
a(1-a)2, etc.] show a decreasing magnitude. These are the reasons why exponential smoothing has gained such wide 
acceptance as a forecasting method. 

By rearranging terms, the equation above can also be written as: 

 ( )tttt yxayy −+=+1  

In this form the new forecast is simply the old forecast plus a times the error in the old forecast (xt - yt). It is evident that 

when a has a value close to 1, the new forecast will include a substantial adjustment for any error that occurred in the 
preceding forecast. Conversely, when a is close to 0, the new forecast will not show much adjustment for the error from 
the previous forecast. Thus the effect of a large and a small a is analogous to the effect of including a small number of 
observations in computing a moving average versus including a large number of observations in a moving average. 



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)55 

 

Figure 7.9: Example of exponential filter with a = 0,1 

 

Figure 7.10: Example of exponential filter with a = 0,5 

7.1.4 Seasonal component 

Especially in data series which are related to the user's usage, seasonal figures are essentially contained. That means 
cyclical fluctuations with regular characteristics can be found. Interesting intervals in this area are yearly, monthly and 
daily periods. 

According to two different reasons respective open questions, it may be interesting to eliminate the seasonal influences 
in the available data. Related to practical issues, the latter procedure is mostly preferred. 

• Retrospective view: How would the data have been in the past if no seasonal influences were overlaid? 

• Prospective view: What is the long term tendency with respect to the smooth component? 

As an example of all the different possible procedures the so called "mean phase" procedure is explained. This 
procedure is one of the easiest of the available procedures. It is suitable to achieve the elimination of a fixed seasonal 
component of a time series without a trend component. This means within the data of the time series no trend 
component is allowed. It has to have been removed before by a trend elimination mechanism. 
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The procedure can be subdivided into four different steps. Generally, it is assumed that the time series x1, ..., xN can be 

separated in different parts, the so called phases p, each with a length of n data elements. Formally, this relation is given 
by: 

 ( ) ( ) njpixNtx jit ,,1,,1,  ,1, , KKK ==→=  

The first index i describes the number of the segment or the phase whereas the second index j represents the consecutive 
number within this phase. For example, if a data series contains data of a period of 5 years on a monthly basis, it can be 
described by the parameters p = 5 (representing 5 phases, each for one year) and n = 12 (representing the 12 months 
within each year). 

The following calculations implement the already mentioned four steps to achieve data without underlying seasonal 
impacts: 

1) Calculation of the average of different phases: 
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2) Calculation of the total average: 
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3) Calculation of seasonal indices (seasonal factors): 

 
x

x
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j =  

Related to the last mentioned calculation, the averaged phases jx  are set into relation to the total average x. In the 

example, the average of January is for example divided by the total average. This step is done for all of the different 
monthly averages. If January data is much above average, then si > 1. According to this, if January data is much below 

average, si < 1 will be the result. 

4) Calculation of seasonally adjusted values: 
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ji KK ,1,,1,,

, ===  

This step concludes the basic calculation scheme related to the determination of the seasonal component. 

8 Data aggregation 

8.1 Basic data aggregation operators 
Depending on the objective, i.e. for monitoring or reporting purposes, different types of aggregation may be of interest. 
Firstly, different granularities in time and space may be needed. Secondly, weighting of data may be considered for 
instance to generate the QoS perceived by the user. This may be more or less straightforward, if the smallest time 
granularity is evenly spaced and the full information at any time point or interval is available, i.e. there are no missing 
data. However, data aggregation becomes more challenging if event data are considered, like data from active probing 
systems, or if data are missing and substitution algorithms are needed for defining meaningful results at higher 
aggregation levels. 
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In the following, after presenting some basic aggregation operators, different data sources and corresponding structures 
are distinguished, temporal and spatial aggregation levels are defined and estimation methods for incomplete data are 
suggested. Based on a summary of desirable attributes of aggregation procedures, an aggregation strategy is suggested 
and discussed. Subsequently, weighted aggregations are motivated and weighting methods are introduced. 

Most common data aggregation operators are sums and means. Sums are applied if the total number of events, usage, 
etc. within a given time period is of interest, while means are commonly applied if some kind of averaging is needed. 
However, in particular for data out of time-interval measurements, means may not lead to interpretable and convincing 
aggregation results, therefore other summarizing statistics like the minimum, maximum, median and other quantiles of 
data are also used as aggregation operators. For quality of services measures like accessibilities, retainabilities and so 
on, ratios in the sense of fractions are used. 

The combination of aggregation operators in a row might raise problems, even if the same operator is used at each 
single step. If the data basis is complete, the combination of sums on different aggregation levels, that is summing sums 
of lower levels for a higher level aggregation result, ensures a meaningful interpretation. If the considered time intervals 
are equidistant in addition, the same holds true for the combination of means on different aggregation levels. Minimum 
and maximum operators are also examples where this kind of combination is possible and meaningful. However, for 
other quantiles like the median or Q95, it is not recommended to base aggregations on higher levels on the results of 
lower aggregation levels, since for instance the median of subgroup-medians is not guaranteed to be near the overall 
median. Aggregation methods for fractions will be discussed later. 

If different aggregation operators are combined one after another, the resulting values should be interpreted with great 
care. For instance the minimum and maximum of mean values from lower aggregation levels should not be mistaken as 
the range of the original data values. However, one can think of many examples where this kind of combination yields 
meaningful results that are of interest, for instance if different BSCs are compared with regard to QoS parameters, the 
median or quantiles of the values for all BSCs may be used as cut-points to identify BSCs performing particularly good 
or bad. 

8.2 Data sources, structures and properties 

8.2.1 Raw, Performance and Event data 

A distinction between raw data that may result from data sources with different attributes and parameters that are 
defined based on these raw data is made. 

For measuring QoS, data from a number of different data sources are used. These "raw data" are based on different 
measurement systems with possibly different granularities, differences due to release changes of the underlying systems 
and so on. Therefore raw data often come with a number of attributes that need to be taken into account for aggregation. 
Here performance data and event data are considered, although other data sources and types could also provide valuable 
information about QoS (like fault management data). 

In the situation that not all data are available - which is a common problem not only in mobile communications - raw 
data are rarely substituted or adjusted, but are stored with the full source information to allow suitable parameter 
definition and estimation. This is often only possible by applying all available reference knowledge, for instance which 
or how many cells were supposed to deliver data for a given time period. 

Most performance data are given by Network Element (NE) counters. Due to different underlying systems or releases, 
these may be available in different temporal granularities, like values for 15 minutes from one system and values for 
hours from another system, respectively. Here basic operations are needed to enable a common data format in order to 
ensure that values are comparable and basic aggregations are needed for total NE counter values independent of 
underlying systems. In addition to results of basic aggregations, the total number of aggregated values or even 
additional detailed reference information needs to be stored. 

Examples for performance data are the number of calls per hour per cell, the total number of call minutes per  
quarter-hour per cell or the number of started WAP-sessions per hour per cell. 

Billing data are one example of event data that may provide information about the QoS. On the other hand, results from 
active probing systems are also in general not equally spaced over time. This may be due to varying duration of trials, 
possibly depending on network performance or other influences. Also there may be reasons to do a larger number of 
tests regarding a specific service over a given period of time, for instance if new services are launched. 
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Event data do not provide information of a time interval, but just a number of results, each for a corresponding point in 
time. To allow statements about time periods, it is either possible to use all original data points for defining and 
aggregating parameters for each time interval of interest, or as an alternative, relatively small time intervals have to be 
defined for which a first, "basic", aggregation step is carried out which then allows higher aggregations independent of 
the original data. 

8.2.2 Key Performance Indicators / Parameters 

A particular feature of a Key Performance Indicator (KPI or parameter) - in comparison to raw data - is given by the 
fact that KPIs are defined in an abstract manner, thereby allowing a common interpretation for parameters computed 
from different data sources and on various aggregation levels. Usually, there are two possible reasons for a parameter to 
be identified as a KPI, either: 

• the KPI is a function aggregation of different parameters; or 

• the KPI represents a very important quality measure related to the user's perspective. 

In the latter case, data aggregation is not necessarily implied. 

Parameters are defined to serve specific purposes like answering questions about QoS or performance by utilizing raw 
data or basic aggregations of raw data. This might also include combinations of different data by mathematical 
operations like ratios. Unlike raw data, parameters are independent of the underlying software releases or system 
vendors. One could also define them as being independent of different underlying systems, if appropriate. 

Parameters based on performance data are for instance the Cut-of-Call Ratio, which is based on two different NE 
counters, namely the number of unintentionally terminated calls divided by the number of successful call attempts times 
100 %. Data from active probing systems allow the definition of parameters like the Recharging-Failure-Ratio, 
SMS-E2E-Failure-Ratios and so on. 

For the definition and computation of parameters, rules for handling missing data are needed. Therefore methods for 
data substitution become a major point when talking about parameter computation and aggregation and will be covered 
in some detail after defining aggregation hierarchies of interest. 

8.3 Aggregation hierarchies 

8.3.1 Temporal aggregation 

Aggregation hierarchies are commonly divided into temporal and spatial aggregation hierarchies, where temporal in fact 
refers to different time intervals while the term spatial may also cover aggregations over items with similar properties 
with respect to an attribute of interest. 

Temporal aggregation levels that should be used for a given parameter will depend on the intended use of the parameter 
as well as on the raw data frequency. For most parameters, sensible aggregations levels will be some or all of the ones 
given in the following set: 

• quarter-hour; 

• hour; 

• day; 

• week; 

• month; 

• quarter year; 

• calendar year; and 

• business year. 
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In addition, incomplete temporal aggregation levels can be defined, for instance cumulative values for the current week 
based on the daily values that are available so far. This is of particular interest for parameters that are based on ratios or 
mean values because these may be interpreted directly. For the interpretation of incomplete parameters that are based on 
sums, the number of covered time units has to be taken into account. 

8.3.2 Spatial aggregation 

Spatial aggregation originally refers to aggregation levels from the smallest possible units like radio cells (or even 
sectors) in mobile communications up to the entire network. This can be done from a technical point of view for 
instance by taking the order "cell - BSC - MSC - (branch) - entire network", or from a regional point of view by  
"cell - state / region - entire network". 

As mentioned before, the term "spatial" may also be used in the context of summarizing cells with similar properties 
regarding an attribute of interest, like all cells that cover motorways, or the position of a cell in terms of the surrounding 
area, whether it belongs to a large city, a small town or a rural area. In these cases, spatially incoherent units are 
aggregated. 

8.4 Parameter estimation methods 

8.4.1 Projection method 

The ideal situation of full information is rarely met in practice. Network elements or branches failing to deliver data in 
time are common reasons for missing data. Since in most situations, missing values as parameter values are 
unacceptable, even if parts of the raw data are missing, data estimation methods are needed. Depending on the situation, 
projection, substitution or combined estimation methods are suitable. 

The easiest method of data substitution is to project the available data to the entire time interval of interest. For 
example, if a fraction of 90 % of the expected data measuring the quality of a specific service within one hour is 
available and an hour-value is sought, these 90 % of the data are viewed as being representative for the hour of interest. 
If the aggregation contained of cumulating the entries, the value achieved by the available data has to be multiplied by a 
factor 100/90. If aggregated values are mean (or median) values, the mean (or median) of the available data is used as 
an aggregated value. If minimum or maximum values (or other quantiles besides the median) are sought as aggregated 
values, more sophisticated estimation methods should be applied like maximum likelihood methods. 

Provided that a high percentage of data is available and there are no systematic reasons for missing data, the above 
procedure is sufficiently reasonable. However, an analysis of the times and circumstances of missing data might be of 
interest to identify the reasons, if missing values are becoming more frequent or appear suspect that there might be an 
underlying pattern. 

If only a low percentage of data is available for a time period of interest, for instance less than 50 %, the above 
projection procedure is more than questionable. In particular if the parameter of interest is subject to dynamic changes 
over time, the results may be heavily biased. As an example consider usage data where a high percentage of missing 
data consists of records that should have been taken at night. If the usage is then estimated by projecting the available 
results, the usage is extremely overestimated. Therefore it seems sensible to define a "critical percentage" of data that 
need to be available for applying the method above. This percentage should depend on the specific service which is 
evaluated and on the needed precision of the aggregation results. 

8.4.2 Substitution method 

If the estimation of parameters can or should not be based on the available data, since a large number of data is missing 
or the data are not credible for some reason, substitution methods apply values from former time periods. This can 
either be done by using the last available value for the parameter of interest, which is only sensible for static parameters 
that are not subject to dynamic changes over time, or by using the last available value of a comparable time period with 
similar properties like the same day-type (weekday/Saturday/holiday or Sunday) or the same day of the week and the 
same time. 
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8.4.3 Application of estimation methods 

Common problems that complicate the application of the methods suggested above are given by: 

1) Unavailability of reference data: The number of missing data is needed for deciding which method should be 
used and for the application of the projection method. 

2) Determination of values for substitution: Comparable time intervals have to be defined and substitution values 
may be stored in a data base, which needs to be updated and maintained. In addition, calendar information 
about holidays/working days, weekdays and so on is needed. 

3) Parameters that are defined as ratios: Either numerator and denominator are estimated separately based on the 
available information for each part, or the ratio is estimated as a whole by using only data with information 
about both, numerator and denominator. In the situation of full information, there is no difference between 
both possibilities, in case some data are available for one part of the ratio and not for the other, both strategies 
yield different results. 

Referring to data aggregation, the question arises, at which aggregation level an estimation should take place. Is it 
acceptable to use estimated values as a basis for higher aggregations? Data aggregation procedures combining both 
introduced methods are derived in the following, originating from a summary of desirable attributes of aggregation 
procedures. 

8.4.4 Attributes of aggregation operators 

Aggregation methods may be evaluated according to the following attributes: 

1) The result should be meaningful, that is as near as possible to the true value of interest. In particular, 
NULL-values are not sensible as a result of a higher level aggregation. In addition, all information about 
missing values should be used to take non-available data into account, to avoid biased parameter values. 
(Moreover, the variance of parameter values caused by estimation methods should be as small as possible.) 

2) Aggregation results should be reproducible and understandable. In particular, at higher aggregation levels no 
estimation procedure should be used so that results on a higher aggregation level are in accordance with values 
of the underlying level. 

3) Aggregation results should not depend on the used aggregation paths, i.e. there should be no difference of 
results, if spatial or temporal aggregation steps are interchanged as well as direct aggregation and aggregation 
with intermediate steps should not lead to different results. Independence of paths refers to aggregation 
calculations. 

4) Results should be consistent. On a given aggregation level, individual aggregation results should agree with 
total result, i.e. the sums for different branches should add up to the total sum for the company and so on. 
Consistency refers to aggregation results. 

5) The applied calculation procedures should be rather easy. This also implies independence of past values like 
those from previous time periods. 

6) Independence of network references like assignment of results to network elements. 

In general, it is not possible to meet all requirements at the same time. Easy methods may lead to non-sensible results, 
while methods that contain estimation procedures often rely on values from previous time periods or network references 
and may be more sophisticated. In particular the requirements 1 and 5/6 are contradicting as estimation methods 
ignoring network references and past values will presumably often lead to worse results compared to methods that take 
into account all available information. 

One idea to combine the above requirements to a certain extent is to define a smallest temporal and spatial aggregation 
level for which the data are completed by estimation procedures (for missing parameter data) or basic aggregations (for 
event data and parameter data with different lowest levels), like per hour per cell. This yields an equally spaced 
"complete" data pool and therefore simplifies all further aggregation steps and in particular ensures consistency of 
results and independence of aggregation paths. 
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One major disadvantage of this method is the fact that estimation procedures have to be applied on low aggregation 
levels which rely heavily on reference data and good substitution values or projection procedures. For parameters that 
are dynamic over time, time series methods as covered in clause 7 should be considered, which then implies more 
complicated calculation procedures for low aggregation levels and therefore might take some computation time. 

8.5 Weighted aggregation 

8.5.1 Perceived QoS 

In many situations, in particular if the QoS perceived by the user is of interest, simple aggregations of the available 
information or estimated values are not very meaningful. A better approach would be to take into account e.g. how 
many users are affected if a service fails. That leads to the idea of weighted aggregation, where for instance the usage 
can be applied for weighting, respectively. It should be noted, however, that weighted aggregation methods will in 
general lead to non-consistent results in the sense of property 4 from clause 8.4.4. 

Depending on the point of view and the corresponding intention of a parameter of interest, it appears reasonable to only 
consider users view instead of the network view e.g. by taking the usage of a service into account. Depending on the 
applied aggregation procedure, this may have already been done implicitly. For instance, if the aggregated cut-of-call-
ratio for a particular week is considered, different aggregation procedures imply different weightings (it is assumed that 
values are available hourly): 

1) If the cut-of-call-ratio is stored for hourly intervals and the weekly aggregation is done by averaging all values 
for the week of interest, no weighting is carried out and each hour viewed as being equally important. This 
does not correspond with the users perspective. (Note that a geometric rather than an arithmetic mean should 
be applied for averaging ratios.) 

2) If the numerator and denominator are stored for hourly intervals and the weekly aggregation is done by first 
summing all entries for the numerator and denominator separately and then dividing both numbers, an implicit 
weighting is carried out. Since high usage time intervals contribute a larger number of call attempts than low 
usage intervals, thereby the users perspective is expressed. 

When applying the first method, one should consider using weighted means instead of simple means. Depending on the 
type of parameter, weighted arithmetic means are computed according to: 
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Weights can either be based on true or average usage curves, but also on strategic reasons or any other procedure in 
accordance with the aim of the analysis. An average usage curve may for instance be achieved by averaging over the 
past 30 working days, the past 5 Saturdays and the past 5 Sundays or holidays or by applying some kind of time series 
modelling and forecasting methods. Weights based on usage curves are then computed as: 
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respectively, where ui is the true or estimated usage within time period i. 
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If the second method from above is applied, weighting is done implicitly with the actual usage curve. However, other 
problems arise in particular regarding missing data handling as mentioned in clause 8.4.3. For each time period, the 
percentage of missing data might be of interest for applying projection or substitution methods and to ensure that the 
cut-of-call-ratio does not exceed 1, e.g. the number of unintentionally terminated calls should not exceed the number of 
successful call attempts, one might only want to consider data pairs where both numbers are known. When using the 
first method, this could be avoided by estimating only on an hourly basis. 

Remark: For ratios, higher level aggregations are commonly achieved by applying the second method because of the 
implicit weighting, which is more intuitive. 

Data from active probing systems are generally not weighted implicitly, since probing frequencies are commonly 
non-representative for user behaviour. In this context, the idea of weighting might even be of importance in more than 
one respect. 

1) Since data from active probing systems are not equally spaced, a weighting of each trial result by the time 
between two trials in some way could be considered. This can either be realized by defining (rather small) time 
intervals for which all trials done within this interval are summarized without weighting or alternatively by 
computing using half of the time interval between the last trial and the current one and half of the time interval 
between the current trial and the next one as a basis for weighting. If such weighting is considered, an upper 
bound for the defined underlying intervals should be considered and strategies for the situation that the active 
probing system does not work or data are not delivered for a longer time period are to be thought of 
(estimation or NULL-values, depending on the situation and parameters of interest). 

2) A second - and probably more important - way of weighting results from active probing system is the usage 
weighting for achieving the perceived QoS as explained before. 

If both types of weighting are applied, combined weights are computed as ( )
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, where u(ti) is the usage within 

time period ti assigned to probing trial i according to the distribution of trials over time (1st weighting), either for a basic 

aggregation level for further aggregation or for the desired aggregation level directly. 

8.5.2 Weighted quantiles 

For duration values as results from active probing trials, quantiles represent meaningful aggregation results on higher 
aggregation levels. From the above weighting discussion the necessity of determining weighted quantiles arises. Due to 
the calculation of quantiles based on ordered data values, a weighting similar to those for mean values is not applicable. 
Instead, a replication algorithm could be used for computing weighted quantiles. This algorithm simply repeats each 
value according to an assigned weight and calculates the desired quantile of the resulting new data set. (If weights are 
irrational, sensible rounding is needed.) 

EXAMPLE: The original (ordered) data set of 10 MMS-E2E delivery times is given by 51, 55, 60, 61, 65, 70, 
71, 72, 72, 80 seconds. These measurements have been taken at different daytimes and therefore 
get a weight of 1, if taken at night, 2, if taken in the morning or late in the evening and 4, if taken 
between noon and 8 p.m. for instance. According weights are therefore given by 1, 4, 2, 2, 1, 4, 4, 
2, 1, 4 resulting in a data set with 25 data: 51, 55, 55, 55, 55, 60, 60, 61, 61, 65, 70, 70, 70, 70, 71, 
71, 71, 71, 72, 72, 72, 80, 80, 80, 80. Quantiles from the original and the replicated data set will in 
general lead to slightly different results. 

If a weighting according to some kind of usage curve is aimed, this curve can be used as a replication function or 
replication curve and represent the basis for defining the needed weights. To simplify the computation, weights may be 
defined by identifying the minimum of the replication function rmin and to define the weights according to: 
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If a uniform concept for weighting of any kind of parameter is sought, the approach based on replication functions 
might also be used for means or non-accessibilities or other parameters of interest. Differences for instance between 
conventionally weighted means and means weighted by replication curves are only due to the applied rounding step for 
the latter approach. 
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8.6 Additional data aggregation operators 

8.6.1 MAWD and BH 

In this clause 8.6, some additional data aggregation operators are covered, adding to those mentioned in clause 8.1, that 
are in some sense individual regarding their attributes and/or application. 

In particular for network maintenance an aggregation operator of interest is the "Monthly Average Working Day" 
(MAWD). This operator can be viewed as being an aggregation result as well as a possible weighting function for other 
aggregation operators. 

The monthly average working day of a given data set is computed by filtering all data from working days within a given 
month first and then computing the mean value for each hour of the day over all data from corresponding hours. The 
result is therefore given by a vector of 24 entries, each corresponding to one hour of the day (0 h - 1 h, ..., 23 h - 24 h). 

Based on the MAWD, the "Busy Hour" (BH) is defined as the hour in which the MAWD-vector takes its maximum 
value. In mathematical notation, this is argmax(m), where m = (m1, ..., m24)T is the vector resulting from applying the 

MAWD operator. 

8.6.2 AVGn 

The class of parameters AVGn is applied for similar reasons as the BH-operator mentioned in clause 8.6.1. Both try to 
identify peaks of high usage or traffic, where the BH-operator considers hours where the highest usage is observed on 
average, while the AVGn-operators are interested in the maximum usage or traffic for a given calendar week. The mean 
of the n largest values realized on n different days (n between 1 and 5 or 7, depending on intended use) is defined as 
AVGn. 

9 Assessment of performance indices 

9.1 Estimation of performance parameters based on active 
service probing systems 

End-to-end service probing systems yield valuable information about services and systems that may not be provided by 
the network elements alone. Active probing systems are used to view the user perspective of the Quality of Service, i.e. 
the perceived QoS. Typical parameters that may be computed based on active probing systems are failure ratios, 
accessibilities and end-to-end-delivery times for a number of different services. 

One characteristic of active probing systems is that the tests are often done more or less equally distributed over time 
for utilizing the equipment as exhaustingly as possible. In this respect they fail to reflect the user's perspective, since 
derogation during the day will be a lot more severe than after midnight due to lower volume of traffic for almost all 
services at night. 

From a statistical point of view, end-to-end active probing systems try to estimate the real behaviour of a service by 
taking a defined number of samples. Therefore, the results of measurement campaigns have to be interpreted as the 
current view on a certain service and need not necessarily represent user experience. Depending on the number of 
considered samples, the connection between observed measurement results and unknown real behaviour may vary. 

9.2 Monitoring concepts 

9.2.1 Control charts 

To ensure that network problems are noticed and remedied as quickly as possible, monitoring concepts based on active 
probing results are important tools for an efficient alarming system. Such monitoring tools may be based on control 
charts or other alarming rules. 
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Control charts are based on the assumption that if the service under study works properly, data gained from active 
probing systems follow a stable distribution with given parameters. From former observations, the underlying 
distribution may be identified and parameters have to be estimated. Control charts are now set up based on statistical 
considerations such that in case of network problems, i.e. the process is "out of control", an alarm is created. On the 
other hand, false alarms have to be avoided, that is as long as the process is "in control", no alarming should occur. 

Control charts generally visualize the development of a quality characteristic of interest over time similar to a line 
diagram as shown in figure 9.1. Further, a target line and control and or warning limits are added to the plot. The target 
line represents the line around which data values are expected. Warning and control limits may be used to define 
identify realizations indicating that the process it "out of control". Different types of control charts were invented for 
different types of data. 

Shewhart control charts 

If data are normal or mean values are considered (central limit theorem, compare section), Shewhart charts (see 
clause 2.2.2.1 of [i.3]) for normal data may be applied. In this case, the current short-term data is compared against an 
underlying data model which represents the long-term behaviour. According to this model it is possible to define the 
usual or "normal" situation. This is required to pay attention to unusual situations. Shewhart control charts are widely 
used in different sections of the industry. 

CUSUM and EWMA charts 

Two other approaches can be used to introduce some kind of weighting into control charts. The CUSUM approach (see 
clause 6.3.2.3 of [i.3]) uses sums data up over time and therefore indicates the behaviour over a greater period of time. 
A slightly different approach is represented by "exponentially weighted moving average (EWMA)" charts (see 
clause 6.3.2.4 of [i.3]) where older values gain less influence than newer data does. 

9.2.2 Other alarming rules 

Furthermore, the deviation between the long-term data model and the short-term monitoring data should lead to 
consecutive actions if a critical state is reached. This relation is defined as "alarming rules". One example for alarming 
rules is the set of the Western Electric Company (WECO) rules (see clause 6.3.2 of [i.3]). 

9.3 Methods for evaluation of objectives 

9.3.1 Desirability functions 

Commonly objectives are formulated in terms of target values for important parameters. Then the evaluation of 
objectives could mean to assess to which extend these aims have been achieved within a given time-period (i.e. month 
or business year). If there is only one important parameter, this is a rather easy task. However, if a number of 
pre-defined parameters are to be combined in an overall measure and in addition different groups (i.e. branches or 
departments) are to be compared regarding their performance, the main issue for evaluation will be to define a common 
measurement scale for all parameters. This allows the combination to an overall evaluation index of some kind and 
thereby a comparison of groups is facilitated. 

In the following, two methods are described that allow the evaluation of objectives, namely the desirability approach 
and the loss function approach. Both approaches rely on definitions of target values and specification limits for the 
parameters. In this context, parameter values are denoted by Piyi ,...,1, =  and target values are denoted by Pii ,...,1, =τ . 

Specification limits are given as upper and / or lower specification limits  ii , LSLUSL for each parameter under 

consideration i = 1,...,P. (It might also be sensible to consider lower and upper target values, if the target is given as an 
interval instead of a numerical value.) 

Desirability functions use a transformations of the values iy to the interval [0,1] based on system requirements by 

defining a transformation function based on target values and specification limits. Desirability functions are piecewise 
defined continuous linear functions where desirability values of 0 are assigned to parameter values iy outside the 

specification limits, realizations on target get desirability values of 1 and outcomes between target and specification 
limits are assigned by a linear connection or a power transformation thereof. 
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The principle of desirabilities is best explained by providing example desirability functions as summarized in figure 9.1. 

   
 

Figure 9.1: Examples of different desirability functions 

9.3.2 Loss functions 

Loss functions in contrary evaluate a realized parameter value in terms of costs arising due to deviation from target or 
realization outside the specification limits. Therefore values within the interval [0,∞) will be achieved. The main issue 
for the specification of loss functions is the assignment of arising costs. The loss of earnings if services are not fully 
usable may be stated rather easily, but quantifying the image loss and corresponding costs might be a much more 
difficult task. 

For each parameter of interest, the arising loss for a value iy  is given by 2)()( iii ycyL τ−=  or alternatively 

( )22 )(,)(min )( iiiii SLLyUSLycyL −−= , where IRc∈  quantifies the arising cost. 

Mainly, normal distributed values are in the focus if loss functions are discussed. Generally speaking, the area which is 
covered by the lower and upper tails of the normal (or Gaussian) distribution is in the main interest. These branches 
violate the guaranteed specification levels Upper Specification Level (USL) for the upper and Lower Specification 
Level (LSL) for the lower tail. All values in these areas represent defects referring to the observed process. The 
underlying theory specifies rules how to set the limits and how to proceed with asymmetric cases. One useful hint for 
further research in this area is the "six sigma approach" which is wide-spread in the industry. 
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Annex A (informative): 
Examples of statistical calculations 

A.1 Overview 

A.1.1 Step by step computation 
In this Annex A, some example computations are given for different topics. All computations are done step by step as 
well as by applying statistical software tools. The statistical software mainly applied here is the open source language 
and environment R, based on the S language which is widely spread in the statistics area. For further information and 
download, the reader is referred to: 

• http://www.r-project.org 

R is a piece of freely distributed software, its installation is straightforward and commonly done within five minutes. 
For further applications and more sophisticated statistical methods, a number of libraries is available from the website. 
For creating graphics and first steps in programming see also [i.8]. For reliable results, the use of R is highly 
recommended. 

As Excel is a standard software used for calculations, also some commands are given for Excel-users. Nevertheless, it 
needs to be said that Excel does not have a uniform definition for the computation of different expressions or operators, 
e.g. quantiles. Most of the mathematical functions are defined only with regard to specific desired tests. The user should 
therefore be warned to use any of Excels mathematical procedures without a deeper understanding of the functionality 
differences between these procedures. 

Confidence intervals for binomial distribution 

This example tries to clarify the usage of the Pearson-Clopper formula which is related to the binomial distribution and 
may be used for measurements with a small amount of measurement data. 

EXAMPLE: During a one hour manual test of service X the service access attempts lead to the following results 
("0" represents an unsuccessful attempt, "1" a successful attempt). 

No. 1-10 1 0 1 0 1 1 1 1 0 0 
No. 11-20 0 1 1 1 1 0 1 1 0 1 
No. 21-30 1 1 0 1 1 1 1 1 1 1 
No. 31-40 0 1 0 0 1 1 1 1 1 1 

 

Within the 40=n  attempts 29=m  have been successful. The point estimation leads to 725,0
40

29 ===
n

m
p . 

Since the results show a binary outcome, the binomial distribution can be applied in any case. At first, the allowance of 
the easier to handle Normal distribution has to be checked via the following expression: 

 ( ) 9975,71 <=−⋅⋅ ppn  

Therefore, the Normal distribution should not be used for this measurement. Furthermore, the following computations 
are directly based on the binomial distribution. 

If the required confidence level is defined as 95,01 =−α , the resulting α  value is 05,0=α . According to this, the 
Pearson-Clopper formulas now read: 

 
( )

( ) 025,0;24,58

025,0;24,58

2
;12,2

2
;12,2

1 2912

29

1 F

F

Fmmn

Fm

p

mnm

mnm

⋅+
⋅

=
⋅++−

⋅

=
+−

+−

α

α

 

http://www.r-project.org/
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( )
( ) ( )

( )
( ) ( ) 975,0;22,60

975,0;22,60
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Eventually, four steps have to be executed to get the relevant confidence interval: 

1) Lookup if the needed quantile values of the F distribution are tabulated. 

2) If the quantiles are not tabulated, try the relation 
γ

γ
;,

1;,
12

21

1

nn
nn F

F =−  to get the required information. 

3) If both approaches do not succeed, try the approximation ( )bauF nn −⋅≅ exp;, 21 γ  for γ  in the range 

15,0 << γ . 

4) Determine the confidence interval by using the quantile values. 

Now, the quantiles 025,0;24,58F  and 975,0;22,60F  have to be retrieved before the Pearson-Clopper values are computable.  

1) Looking up some tabulated quantile values may lead to the following results: 

 145,2975,0;22,60 =F  

 If the quantile 025,0;24,58F  cannot be found, the following steps may be appropriate. 

2) If 025,0;24,58F  is missing in the tables, perhaps the quantile: 

 
025.0;24,58

975,0;58,24
1

F
F =  

 is available. If this is also not the case, a first sight approximation is given by a neighbouring quantile value: 

 882,1
1

025,0;24,60
975,0;60,24 ==

F
F  

 5313,0
1

975,0;60,24
025,0;24,60 ==

F
F  

3) Since the quantile variable 975,0=γ  lies in the range 15,0 << γ , the approximation: 

 ( )bauF nn −⋅≅ exp;, 21 γ  

 can be applied. Therefore, the following computational steps have to be executed to determine 975.0;58,24F  in a 

more precise way: 

- At first, the parameter dis done:  

 06102,0
158

1

124

1

1

1

1

1

21
≈

−
+

−
=

−
+

−
=

nn
d  

- Before computing 
( )

6

32 −
= γu

c , the 0,975-quantile of the standard normal distribution ( )1,0N  has to be 

retrieved from a table: 

 96,1975,0 975,0 == uγ  
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 So c  reads: 

 
( )

61402,0
6

396,1 2
=−=c  

- As a result, b is given by: 

 04944,0
3
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6

5
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nn
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- With these results, a  leads to: 

 35,006102.014026,006102,022 22 =⋅+⋅=+= cdda  

- Finally, the approximation for the quantile value reads: 

 ( ) 8899.104944.035.096.1exp975,0;24,58 =−⋅≅F  

The originally searched quantile value 
975.0;58,24

025,0;24,58
1

F
F =  results then in: 

 5291,0
8899,1

1
025,0;24,58 ==F  

4) After the quantiles of the F distribution are known, in the last step the Pearson-Clopper values itself can be 
determined: 
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With these values, the confidence interval for the given measurement can be described as: 

 [ ] [ ]854,0;5611,0; 21 =pp  

A.1.2 Computation using statistical software 
The different calculations can be executed by R. To enable a user-oriented simplicity, the according expressions are 
given in the next clauses. 

Computation in R 

Required quantiles of the F-distribution may also be obtained in R. Here no approximation is carried out. Commands 
(marked by " >") and results (marked by "[1..]") are given by: 

> qf(0.025, 24, 58) 
[1] 0.4797205 
 
> qf(0.975, 60, 22) 
[1] 2.144594 
 

Alternatively, a function can be defined for computing the Pearson-Clopper confidence interval directly. This function 
takes the following input variables: 

• n: Number of trials (total); 
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• m: Number of (un-)successful interesting trials, either successful ones or non-successful ones; 

• alpha: desired confidence level (default: 5 % 1- alpha = 95 %, means alpha = 5 % = 0,05). 

The output consists of: 

• estimator: The estimated value of the according rate parameter; 

• confidence interval for the estimator (lower and upper bound). 

The function is given by: 

pearson.clopper <- function(n, m, alpha = 0.05) { 
    # computation of F-quantiles 
    f1 <- qf(alpha/2,2*m,2*(n-m+1)) 
    f2 <- qf(1-alpha/2,2*(m+1),2*(n-m)) 
    # computation of confidence limits 
    p1 <- m * f1/(n-m+1+m*f1) 
    p2 <- (m+1)*f2/(n-m+(m+1)*f2) 
    out <- list(estimator = m/n, confidence.interval = c(p1, p2)) 
    return(out) 
} 
 

The function is applied by calling it with the required arguments. The result for the above example is given by: 

> pearson.clopper(40, 29) 
$estimator 
[1] 0.725 
 
$confidence.interval 
[1] 0.5611171 0.8539910 
 

Computation in Excel 

In Excel, quantiles of the F-distribution are derived by applying the functions: 

 FINV(p-value;df1;df2) 

Related to the use of Excel, it is very important to have a very clear understanding what is done by a certain expression. 
For example, the calculation of FINV depends on the parameter p-value which is NOT the same as the parameter 
"alpha" in the R section! 

A.2 Transition from binomial to normal distribution 
To use of the transition from a binomial distribution to a normal one, the condition: 

 ( ) 91 ≥−⋅⋅=⋅⋅ ppnqpn  

has to be fulfilled. 

EXAMPLE 1: If n = 30 samples are gathered which lead to an estimated rate of p = 0,8, the condition reads: 

 98,42,08,030)1( <=⋅⋅=−⋅⋅=⋅⋅ ppnqpn  

 This means, the approximation is not allowed and confidence intervals have to be calculated with 
the Pearson-Clopper formula. 

EXAMPLE 2: Now, the same rate p = 0,8 is estimated on a basis of n = 300 samples. The according relation 
reads: 

 9482,08,0300)1( >=⋅⋅=−⋅⋅=⋅⋅ ppnqpn  

 In this case, the approximation of the binomial distribution by a normal distribution is allowed. 
The confidence intervals can be calculated with the according expressions of the normal 
distribution. 
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A.3 Definitions of ETSI EG 201 769 
The following clause presents another definition of confidence intervals related to the normal distribution. It can be 
found in ETSI EG 201 769 [i.1]: 

• Relationship between the accuracy of estimator of the unsuccessful call ratio and the number of calls to be 
observed. 

If k unsuccessful calls are observed out of N call attempts, then the true value of the unsuccessful call ratio lies between 

Δ−
N

k
 and Δ+

N

k
 with a confidence level α−1 , Δ  being approximated (for large value of N) by: 

 
N

pp )1(
)(

−××≈Δ ασ  

where p is the expected unsuccessful call ratio and )(ασ  is the 100)
2

1( ×− α
 percentile of the normal distribution with 

mean 0 and standard deviation 1 (N(0,1)). I.e. the number of call attempts to be observed should be: 

 
2

2 )1()(

Δ
−×= pp

N
ασ

 

• If the confidence level is 95,01 =−α  then 296,1)( ≈=ασ . 

• If the required accuracy for 01,0≤p  is 001,0=Δ , then the number of call attempts to be observed should be 

N = 4 × 106 × p(1-p) for a confidence level of 95 %. 

• If the required accuracy for p > 0,01 is 1,0=Δ
p

, then the number of call attempts to be observed should be  

N = 400 × ((1 - p)/p) for a confidence level of 95 %. 

• For example, if the expected unsuccessful call ratio is 1 %, the number of call attempts to be observed should 
be: 

 N = 4 × 106 × 0,01(1 - 0,01) = 39 600 

 for an accuracy of Δ  = 0,001 with a confidence level of 95 %. 

• If the unsuccessful call ratio is expected to be 3 %, then the number of call attempts should be: 

 N = 400 × ((1 - 0,03)/0,03) 13 000 

 for a relative accuracy of 1,0=Δ
p

 and with a confidence level of 95 %. 

A.4 Calculation of confidence intervals 

A.4.1 Estimated rate 5 % 
This clause A.4 gives more information about the calculation of confidence intervals. Due to the possibility that also 
small numbers may occur for example if service probing is done manually, the calculation of confidence intervals is 
based on the relations given by the Pearson-Clopper expressions. 
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The structure of this clause is as follows: 

• Starting with some visualized use cases of the Pearson-Clopper formulas, an impression of the relationship 
between the estimated rate value and the according confidence interval is given. 

Regarding a 5 % estimate rate, the confidence interval gets smaller with an increasing number of available samples. The 
less data is available, the higher the uncertainty is. Another effect which is covered by the Pearson-Clopper approach is 
the asymmetric behaviour of the upper and lower limits of the confidence interval. Additionally, this asymmetry 
depends on the estimated rate values (see figures A.4.1, A.4.2 and A.4.3). 

Some further remarks might be helpful: 

• The confidence interval can be calculated for rather small sample sizes. 

• An overestimation like it would have appeared by applying the normal (Gaussian) approximation is not 
recognizable.  

• If a rate value is equal to 0 %, this is also the value of the lower limit of the confidence interval. The 
calculation of quantiles of the F-distribution is not valid in this case. 

• If a rate value is equal to 100 %, this is also the value of the upper limit of the confidence interval. The 
calculation of quantiles of the F-distribution is not valid in this case. 

 

Figure A.4.1: Confidence interval for estimated rate of 5 % 

The depicted limit curves can be found in the columns of the following tables (estimated rate is constant, number of 
measurements varies). 

A.4.2 Estimated rate 50 % 
In figure A.4.2 the confidence interval for an estimated rate of 50 % is depicted. In this case the confidence interval 
owns a symmetric behaviour. 

0 100 200 300 400 500

0
20

40
60

80
10

0

Limits of confidence interval (Pearson-Clopper)

Number samples

P
er

ce
nt

ag
e

Upper limit
Estimated rate
Lower limit



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)72 

 

Figure A.4.2: Confidence interval for estimated rate of 50 % 

A.4.3 Estimated rate 95 % 
Figure A.4.3 describes the situation according to a 95 % rate. The situation is comparable with the graph of the 5 % 
rate. 

 

Figure A.4.3: Confidence interval for estimated rate of 95 % 
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A.4.4 Lower limit of confidence intervals according to Pearson-Clopper formula 
Table A.4.1 contains values which specify the lower limit of the confidence interval. The lower limit depends on the number of samples and the according rate value. In 
figures A.4.1 to A.4.3 this information can be found at the blue lines. 

Table A.4.1 

 Rate                     
NrMeas 1 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 % 50 % 55 % 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 100 % 

100 0,03 % 1,64 % 4,90 % 8,65 % 12,67 % 16,88 % 21,24 % 25,73 % 30,33 % 35,00 % 39,80 % 44,70 % 49,72 % 54,82 % 60,02 % 65,29 % 70,74 % 76,37 % 82,24 % 88,48 % 95,15 % 
200 0,12 % 2,42 % 6,22 % 10,35 % 14,69 % 19,16 % 23,74 % 28,41 % 33,15 % 37,96 % 42,86 % 47,82 % 52,85 % 57,95 % 63,14 % 68,38 % 73,75 % 79,25 % 84,93 % 90,91 % 97,53 % 
300 0,21 % 2,83 % 6,85 % 11,16 % 15,62 % 20,20 % 24,87 % 29,61 % 34,41 % 39,28 % 44,19 % 49,17 % 54,21 % 59,31 % 64,46 % 69,69 % 75,00 % 80,43 % 86,01 % 91,84 % 98,34 % 
400 0,27 % 3,08 % 7,24 % 11,65 % 16,19 % 20,83 % 25,55 % 30,33 % 35,16 % 40,05 % 44,99 % 49,98 % 55,01 % 60,10 % 65,25 % 70,45 % 75,73 % 81,11 % 86,61 % 92,35 % 98,75 % 
500 0,33 % 3,26 % 7,51 % 11,98 % 16,58 % 21,26 % 26,01 % 30,82 % 35,67 % 40,58 % 45,53 % 50,52 % 55,56 % 60,64 % 65,77 % 70,96 % 76,21 % 81,55 % 87,02 % 92,69 % 99,00 % 
600 0,37 % 3,40 % 7,72 % 12,24 % 16,87 % 21,58 % 26,36 % 31,18 % 36,05 % 40,97 % 45,92 % 50,92 % 55,96 % 61,03 % 66,15 % 71,33 % 76,57 % 81,88 % 87,31 % 92,92 % 99,17 % 
700 0,40 % 3,51 % 7,88 % 12,44 % 17,10 % 21,83 % 26,62 % 31,46 % 36,35 % 41,27 % 46,23 % 51,23 % 56,26 % 61,34 % 66,45 % 71,62 % 76,84 % 82,13 % 87,53 % 93,10 % 99,29 % 
800 0,43 % 3,60 % 8,01 % 12,60 % 17,28 % 22,03 % 26,84 % 31,69 % 36,58 % 41,51 % 46,48 % 51,48 % 56,51 % 61,58 % 66,69 % 71,85 % 77,05 % 82,33 % 87,70 % 93,24 % 99,37 % 
900 0,46 % 3,67 % 8,12 % 12,73 % 17,43 % 22,20 % 27,02 % 31,88 % 36,78 % 41,71 % 46,68 % 51,68 % 56,72 % 61,78 % 66,89 % 72,03 % 77,23 % 82,49 % 87,85 % 93,36 % 99,44 % 

1 000 0,48 % 3,73 % 8,21 % 12,84 % 17,56 % 22,34 % 27,17 % 32,04 % 36,95 % 41,88 % 46,85 % 51,85 % 56,89 % 61,95 % 67,05 % 72,19 % 77,38 % 82,63 % 87,97 % 93,45 % 99,50 % 
1 100 0,50 % 3,79 % 8,29 % 12,94 % 17,67 % 22,47 % 27,30 % 32,18 % 37,09 % 42,03 % 47,00 % 52,00 % 57,04 % 62,10 % 67,19 % 72,33 % 77,51 % 82,75 % 88,07 % 93,54 % 99,54 % 
1 200 0,52 % 3,84 % 8,36 % 13,03 % 17,77 % 22,57 % 27,42 % 32,30 % 37,21 % 42,16 % 47,13 % 52,13 % 57,16 % 62,23 % 67,32 % 72,45 % 77,62 % 82,85 % 88,16 % 93,61 % 99,58 % 
1 300 0,53 % 3,88 % 8,42 % 13,10 % 17,86 % 22,67 % 27,52 % 32,40 % 37,32 % 42,27 % 47,25 % 52,25 % 57,28 % 62,34 % 67,43 % 72,55 % 77,72 % 82,94 % 88,24 % 93,67 % 99,61 % 
1 400 0,55 % 3,92 % 8,48 % 13,17 % 17,93 % 22,75 % 27,61 % 32,50 % 37,42 % 42,37 % 47,35 % 52,35 % 57,38 % 62,44 % 67,52 % 72,64 % 77,81 % 83,02 % 88,31 % 93,72 % 99,64 % 
1 500 0,56 % 3,95 % 8,53 % 13,23 % 18,00 % 22,83 % 27,69 % 32,58 % 37,51 % 42,46 % 47,44 % 52,44 % 57,47 % 62,53 % 67,61 % 72,73 % 77,88 % 83,09 % 88,37 % 93,77 % 99,67 % 
1 600 0,57 % 3,98 % 8,57 % 13,28 % 18,07 % 22,89 % 27,76 % 32,66 % 37,59 % 42,54 % 47,52 % 52,52 % 57,55 % 62,61 % 67,69 % 72,80 % 77,95 % 83,15 % 88,42 % 93,81 % 99,69 % 
1 700 0,58 % 4,01 % 8,61 % 13,33 % 18,12 % 22,96 % 27,83 % 32,73 % 37,66 % 42,62 % 47,60 % 52,60 % 57,63 % 62,68 % 67,76 % 72,87 % 78,02 % 83,21 % 88,47 % 93,85 % 99,71 % 
1 800 0,59 % 4,04 % 8,65 % 13,38 % 18,17 % 23,01 % 27,89 % 32,79 % 37,73 % 42,68 % 47,66 % 52,67 % 57,69 % 62,75 % 67,82 % 72,93 % 78,08 % 83,26 % 88,52 % 93,89 % 99,72 % 
1 900 0,60 % 4,06 % 8,69 % 13,42 % 18,22 % 23,07 % 27,95 % 32,85 % 37,79 % 42,75 % 47,73 % 52,73 % 57,76 % 62,81 % 67,88 % 72,99 % 78,13 % 83,31 % 88,56 % 93,92 % 99,74 % 
2 000 0,61 % 4,09 % 8,72 % 13,46 % 18,27 % 23,12 % 28,00 % 32,91 % 37,84 % 42,80 % 47,78 % 52,79 % 57,81 % 62,86 % 67,94 % 73,04 % 78,18 % 83,36 % 88,60 % 93,95 % 99,75 % 
2 100 0,62 % 4,11 % 8,75 % 13,50 % 18,31 % 23,16 % 28,05 % 32,96 % 37,90 % 42,86 % 47,84 % 52,84 % 57,87 % 62,92 % 67,99 % 73,09 % 78,22 % 83,40 % 88,64 % 93,98 % 99,76 % 
2 200 0,63 % 4,13 % 8,78 % 13,53 % 18,35 % 23,20 % 28,09 % 33,01 % 37,94 % 42,91 % 47,89 % 52,89 % 57,92 % 62,97 % 68,04 % 73,13 % 78,27 % 83,44 % 88,67 % 94,00 % 99,77 % 
2 300 0,63 % 4,15 % 8,80 % 13,56 % 18,38 % 23,24 % 28,13 % 33,05 % 37,99 % 42,95 % 47,94 % 52,94 % 57,96 % 63,01 % 68,08 % 73,18 % 78,31 % 83,47 % 88,70 % 94,03 % 99,78 % 
2 400 0,64 % 4,16 % 8,83 % 13,59 % 18,42 % 23,28 % 28,17 % 33,09 % 38,03 % 43,00 % 47,98 % 52,98 % 58,01 % 63,05 % 68,12 % 73,22 % 78,34 % 83,51 % 88,73 % 94,05 % 99,79 % 
2 500 0,65 % 4,18 % 8,85 % 13,62 % 18,45 % 23,31 % 28,21 % 33,13 % 38,07 % 43,04 % 48,02 % 53,02 % 58,05 % 63,09 % 68,16 % 73,25 % 78,38 % 83,54 % 88,76 % 94,07 % 99,80 % 
2 600 0,65 % 4,19 % 8,87 % 13,65 % 18,48 % 23,35 % 28,24 % 33,16 % 38,11 % 43,07 % 48,06 % 53,06 % 58,09 % 63,13 % 68,20 % 73,29 % 78,41 % 83,57 % 88,78 % 94,09 % 99,81 % 
2 700 0,66 % 4,21 % 8,89 % 13,67 % 18,51 % 23,38 % 28,28 % 33,20 % 38,15 % 43,11 % 48,10 % 53,10 % 58,12 % 63,17 % 68,23 % 73,32 % 78,44 % 83,60 % 88,81 % 94,11 % 99,81 % 
2 800 0,67 % 4,22 % 8,91 % 13,70 % 18,53 % 23,41 % 28,31 % 33,23 % 38,18 % 43,15 % 48,13 % 53,13 % 58,16 % 63,20 % 68,26 % 73,35 % 78,47 % 83,62 % 88,83 % 94,13 % 99,82 % 
2 900 0,67 % 4,24 % 8,93 % 13,72 % 18,56 % 23,43 % 28,34 % 33,26 % 38,21 % 43,18 % 48,16 % 53,17 % 58,19 % 63,23 % 68,29 % 73,38 % 78,50 % 83,65 % 88,85 % 94,14 % 99,83 % 
3 000 0,68 % 4,25 % 8,95 % 13,74 % 18,58 % 23,46 % 28,36 % 33,29 % 38,24 % 43,21 % 48,19 % 53,20 % 58,22 % 63,26 % 68,32 % 73,41 % 78,52 % 83,67 % 88,87 % 94,16 % 99,83 % 
3 100 0,68 % 4,26 % 8,97 % 13,76 % 18,60 % 23,48 % 28,39 % 33,32 % 38,27 % 43,24 % 48,22 % 53,23 % 58,25 % 63,29 % 68,35 % 73,44 % 78,55 % 83,69 % 88,89 % 94,17 % 99,84 % 
3 200 0,68 % 4,27 % 8,98 % 13,78 % 18,63 % 23,51 % 28,42 % 33,35 % 38,30 % 43,27 % 48,25 % 53,26 % 58,28 % 63,32 % 68,38 % 73,46 % 78,57 % 83,71 % 88,91 % 94,19 % 99,84 % 
3 300 0,69 % 4,28 % 9,00 % 13,80 % 18,65 % 23,53 % 28,44 % 33,37 % 38,32 % 43,29 % 48,28 % 53,28 % 58,31 % 63,34 % 68,40 % 73,49 % 78,59 % 83,74 % 88,92 % 94,20 % 99,85 % 
3 400 0,69 % 4,29 % 9,01 % 13,82 % 18,67 % 23,55 % 28,46 % 33,40 % 38,35 % 43,32 % 48,31 % 53,31 % 58,33 % 63,37 % 68,43 % 73,51 % 78,61 % 83,75 % 88,94 % 94,21 % 99,85 % 
3 500 0,70 % 4,30 % 9,03 % 13,83 % 18,69 % 23,57 % 28,48 % 33,42 % 38,37 % 43,34 % 48,33 % 53,33 % 58,35 % 63,39 % 68,45 % 73,53 % 78,64 % 83,77 % 88,96 % 94,22 % 99,86 % 
3 600 0,70 % 4,31 % 9,04 % 13,85 % 18,70 % 23,59 % 28,51 % 33,44 % 38,39 % 43,37 % 48,35 % 53,36 % 58,38 % 63,42 % 68,47 % 73,55 % 78,65 % 83,79 % 88,97 % 94,24 % 99,86 % 
3 700 0,71 % 4,32 % 9,05 % 13,86 % 18,72 % 23,61 % 28,53 % 33,46 % 38,42 % 43,39 % 48,38 % 53,38 % 58,40 % 63,44 % 68,49 % 73,57 % 78,67 % 83,81 % 88,99 % 94,25 % 99,86 % 
3 800 0,71 % 4,33 % 9,06 % 13,88 % 18,74 % 23,63 % 28,55 % 33,48 % 38,44 % 43,41 % 48,40 % 53,40 % 58,42 % 63,46 % 68,51 % 73,59 % 78,69 % 83,82 % 89,00 % 94,26 % 99,87 % 
3 900 0,71 % 4,34 % 9,08 % 13,89 % 18,75 % 23,65 % 28,56 % 33,50 % 38,46 % 43,43 % 48,42 % 53,42 % 58,44 % 63,48 % 68,53 % 73,61 % 78,71 % 83,84 % 89,01 % 94,27 % 99,87 % 
4 000 0,72 % 4,35 % 9,09 % 13,91 % 18,77 % 23,66 % 28,58 % 33,52 % 38,48 % 43,45 % 48,44 % 53,44 % 58,46 % 63,50 % 68,55 % 73,63 % 78,73 % 83,86 % 89,03 % 94,28 % 99,87 % 
4 100 0,72 % 4,35 % 9,10 % 13,92 % 18,79 % 23,68 % 28,60 % 33,54 % 38,50 % 43,47 % 48,46 % 53,46 % 58,48 % 63,52 % 68,57 % 73,64 % 78,74 % 83,87 % 89,04 % 94,29 % 99,88 % 
4 200 0,72 % 4,36 % 9,11 % 13,93 % 18,80 % 23,70 % 28,62 % 33,56 % 38,51 % 43,49 % 48,48 % 53,48 % 58,50 % 63,54 % 68,59 % 73,66 % 78,76 % 83,88 % 89,05 % 94,30 % 99,88 % 
4 300 0,72 % 4,37 % 9,12 % 13,95 % 18,81 % 23,71 % 28,63 % 33,57 % 38,53 % 43,51 % 48,49 % 53,50 % 58,52 % 63,55 % 68,61 % 73,68 % 78,77 % 83,90 % 89,06 % 94,30 % 99,88 % 
4 400 0,73 % 4,37 % 9,13 % 13,96 % 18,83 % 23,73 % 28,65 % 33,59 % 38,55 % 43,52 % 48,51 % 53,52 % 58,53 % 63,57 % 68,62 % 73,69 % 78,79 % 83,91 % 89,08 % 94,31 % 99,89 % 
4 500 0,73 % 4,38 % 9,14 % 13,97 % 18,84 % 23,74 % 28,66 % 33,61 % 38,56 % 43,54 % 48,53 % 53,53 % 58,55 % 63,59 % 68,64 % 73,71 % 78,80 % 83,92 % 89,09 % 94,32 % 99,89 % 



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)74 

 Rate                     
4 600 0,73 % 4,39 % 9,15 % 13,98 % 18,85 % 23,75 % 28,68 % 33,62 % 38,58 % 43,56 % 48,54 % 53,55 % 58,57 % 63,60 % 68,65 % 73,72 % 78,81 % 83,93 % 89,10 % 94,33 % 99,89 % 
4 700 0,74 % 4,39 % 9,16 % 13,99 % 18,86 % 23,77 % 28,69 % 33,64 % 38,60 % 43,57 % 48,56 % 53,56 % 58,58 % 63,62 % 68,67 % 73,74 % 78,83 % 83,95 % 89,11 % 94,34 % 99,89 % 
4 800 0,74 % 4,40 % 9,17 % 14,00 % 18,88 % 23,78 % 28,71 % 33,65 % 38,61 % 43,59 % 48,58 % 53,58 % 58,60 % 63,63 % 68,68 % 73,75 % 78,84 % 83,96 % 89,12 % 94,34 % 99,90 % 
4 900 0,74 % 4,41 % 9,17 % 14,01 % 18,89 % 23,79 % 28,72 % 33,66 % 38,62 % 43,60 % 48,59 % 53,59 % 58,61 % 63,65 % 68,69 % 73,76 % 78,85 % 83,97 % 89,13 % 94,35 % 99,90 % 
5 000 0,74 % 4,41 % 9,18 % 14,02 % 18,90 % 23,80 % 28,73 % 33,68 % 38,64 % 43,61 % 48,60 % 53,61 % 58,63 % 63,66 % 68,71 % 73,78 % 78,86 % 83,98 % 89,13 % 94,36 % 99,90 % 

 

A.4.5 Upper limit of confidence intervals according to Pearson-Clopper formula 
Table A.4.2 contains values which specify the upper limit of the confidence interval. The upper limit depends on the number of samples and the according rate value. In 
figures A.4.1 to A.4.3 this information can be found at the red lines. 

Table A.4.2 

 Rate                     
NrMeas 1 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 % 50 % 55 % 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 100 % 

100 5,45 % 11,28 % 17,62 % 23,53 % 29,18 % 34,66 % 39,98 % 45,18 % 50,28 % 55,30 % 60,19 % 64,98 % 69,67 % 74,27 % 78,76 % 83,18 % 87,41 % 91,44 % 95,20 % 98,48 % 100,00 % 
200 3,57 % 9,00 % 15,02 % 20,72 % 26,22 % 31,60 % 36,87 % 42,05 % 47,15 % 52,18 % 57,14 % 62,03 % 66,85 % 71,59 % 76,26 % 80,86 % 85,34 % 89,68 % 93,82 % 97,63 % 100,00 % 
300 2,89 % 8,11 % 13,97 % 19,55 % 24,98 % 30,30 % 35,53 % 40,69 % 45,79 % 50,82 % 55,80 % 60,73 % 65,59 % 70,39 % 75,14 % 79,81 % 84,39 % 88,86 % 93,17 % 97,21 % 100,00 % 
400 2,54 % 7,62 % 13,37 % 18,88 % 24,26 % 29,54 % 34,75 % 39,90 % 44,99 % 50,03 % 55,01 % 59,95 % 64,84 % 69,67 % 74,45 % 79,18 % 83,82 % 88,37 % 92,77 % 96,94 % 100,00 % 
500 2,32 % 7,29 % 12,97 % 18,44 % 23,78 % 29,04 % 34,23 % 39,36 % 44,45 % 49,48 % 54,47 % 59,42 % 64,32 % 69,18 % 73,99 % 78,74 % 83,43 % 88,02 % 92,50 % 96,75 % 100,00 % 
600 2,16 % 7,06 % 12,68 % 18,11 % 23,43 % 28,67 % 33,84 % 38,97 % 44,05 % 49,08 % 54,08 % 59,03 % 63,95 % 68,82 % 73,65 % 78,42 % 83,13 % 87,77 % 92,29 % 96,61 % 100,00 % 
700 2,05 % 6,89 % 12,47 % 17,86 % 23,16 % 28,38 % 33,55 % 38,66 % 43,74 % 48,77 % 53,77 % 58,73 % 63,65 % 68,54 % 73,38 % 78,17 % 82,91 % 87,57 % 92,13 % 96,50 % 100,00 % 
800 1,96 % 6,75 % 12,29 % 17,67 % 22,94 % 28,15 % 33,31 % 38,42 % 43,49 % 48,52 % 53,52 % 58,49 % 63,42 % 68,31 % 73,16 % 77,97 % 82,72 % 87,41 % 92,00 % 96,41 % 100,00 % 
900 1,89 % 6,63 % 12,15 % 17,50 % 22,77 % 27,96 % 33,11 % 38,22 % 43,29 % 48,32 % 53,32 % 58,29 % 63,22 % 68,12 % 72,98 % 77,80 % 82,57 % 87,27 % 91,89 % 96,34 % 100,00 % 

1 000 1,83 % 6,54 % 12,03 % 17,37 % 22,62 % 27,81 % 32,95 % 38,05 % 43,11 % 48,15 % 53,15 % 58,12 % 63,05 % 67,96 % 72,83 % 77,66 % 82,44 % 87,16 % 91,79 % 96,27 % 100,00 % 
1 100 1,78 % 6,46 % 11,93 % 17,25 % 22,49 % 27,67 % 32,80 % 37,90 % 42,97 % 48,00 % 53,00 % 57,97 % 62,91 % 67,82 % 72,70 % 77,54 % 82,33 % 87,06 % 91,71 % 96,22 % 100,00 % 
1 200 1,74 % 6,39 % 11,84 % 17,15 % 22,38 % 27,55 % 32,68 % 37,77 % 42,84 % 47,87 % 52,87 % 57,84 % 62,79 % 67,70 % 72,58 % 77,43 % 82,23 % 86,98 % 91,64 % 96,17 % 100,00 % 
1 300 1,70 % 6,33 % 11,76 % 17,06 % 22,28 % 27,45 % 32,57 % 37,66 % 42,72 % 47,75 % 52,75 % 57,73 % 62,68 % 67,59 % 72,48 % 77,33 % 82,14 % 86,90 % 91,58 % 96,12 % 100,00 % 
1 400 1,67 % 6,28 % 11,69 % 16,98 % 22,19 % 27,35 % 32,48 % 37,56 % 42,62 % 47,65 % 52,65 % 57,63 % 62,58 % 67,50 % 72,39 % 77,25 % 82,07 % 86,83 % 91,52 % 96,09 % 100,00 % 
1 500 1,64 % 6,23 % 11,63 % 16,91 % 22,12 % 27,27 % 32,39 % 37,47 % 42,53 % 47,56 % 52,56 % 57,54 % 62,49 % 67,42 % 72,31 % 77,18 % 82,00 % 86,77 % 91,47 % 96,05 % 100,00 % 
1 600 1,62 % 6,18 % 11,58 % 16,84 % 22,05 % 27,20 % 32,31 % 37,39 % 42,45 % 47,48 % 52,48 % 57,46 % 62,41 % 67,34 % 72,24 % 77,11 % 81,94 % 86,72 % 91,43 % 96,02 % 100,00 % 
1 700 1,60 % 6,15 % 11,53 % 16,79 % 21,98 % 27,13 % 32,24 % 37,32 % 42,37 % 47,40 % 52,40 % 57,38 % 62,34 % 67,27 % 72,17 % 77,04 % 81,88 % 86,67 % 91,39 % 95,99 % 100,00 % 
1 800 1,58 % 6,11 % 11,48 % 16,73 % 21,92 % 27,07 % 32,18 % 37,25 % 42,31 % 47,33 % 52,34 % 57,32 % 62,27 % 67,21 % 72,11 % 76,99 % 81,83 % 86,62 % 91,35 % 95,96 % 100,00 % 
1 900 1,56 % 6,08 % 11,44 % 16,69 % 21,87 % 27,01 % 32,12 % 37,19 % 42,24 % 47,27 % 52,27 % 57,25 % 62,21 % 67,15 % 72,06 % 76,93 % 81,78 % 86,58 % 91,31 % 95,94 % 100,00 % 
2 000 1,54 % 6,05 % 11,40 % 16,64 % 21,82 % 26,96 % 32,06 % 37,14 % 42,19 % 47,21 % 52,22 % 57,20 % 62,16 % 67,09 % 72,00 % 76,89 % 81,73 % 86,54 % 91,28 % 95,92 % 100,00 % 
2 100 1,52 % 6,02 % 11,36 % 16,60 % 21,78 % 26,91 % 32,01 % 37,08 % 42,13 % 47,16 % 52,16 % 57,14 % 62,10 % 67,04 % 71,96 % 76,84 % 81,69 % 86,50 % 91,25 % 95,89 % 100,00 % 
2 200 1,51 % 6,00 % 11,33 % 16,56 % 21,73 % 26,86 % 31,96 % 37,03 % 42,08 % 47,11 % 52,11 % 57,09 % 62,06 % 66,99 % 71,91 % 76,80 % 81,65 % 86,47 % 91,22 % 95,87 % 100,00 % 
2 300 1,50 % 5,97 % 11,30 % 16,53 % 21,69 % 26,82 % 31,92 % 36,99 % 42,04 % 47,06 % 52,06 % 57,05 % 62,01 % 66,95 % 71,87 % 76,76 % 81,62 % 86,44 % 91,20 % 95,86 % 100,00 % 
2 400 1,48 % 5,95 % 11,27 % 16,49 % 21,66 % 26,78 % 31,88 % 36,95 % 41,99 % 47,02 % 52,02 % 57,00 % 61,97 % 66,91 % 71,83 % 76,72 % 81,58 % 86,41 % 91,17 % 95,84 % 100,00 % 
2 500 1,47 % 5,93 % 11,24 % 16,46 % 21,62 % 26,75 % 31,84 % 36,91 % 41,95 % 46,98 % 51,98 % 56,96 % 61,93 % 66,87 % 71,79 % 76,69 % 81,55 % 86,38 % 91,15 % 95,82 % 100,00 % 
2 600 1,46 % 5,91 % 11,22 % 16,43 % 21,59 % 26,71 % 31,80 % 36,87 % 41,91 % 46,94 % 51,94 % 56,93 % 61,89 % 66,83 % 71,76 % 76,66 % 81,52 % 86,35 % 91,13 % 95,81 % 100,00 % 
2 700 1,45 % 5,89 % 11,19 % 16,40 % 21,56 % 26,68 % 31,77 % 36,83 % 41,88 % 46,90 % 51,90 % 56,89 % 61,85 % 66,80 % 71,72 % 76,62 % 81,49 % 86,33 % 91,11 % 95,79 % 100,00 % 
2 800 1,44 % 5,87 % 11,17 % 16,38 % 21,53 % 26,65 % 31,74 % 36,80 % 41,84 % 46,87 % 51,87 % 56,85 % 61,82 % 66,77 % 71,69 % 76,60 % 81,47 % 86,30 % 91,09 % 95,78 % 100,00 % 
2 900 1,43 % 5,86 % 11,15 % 16,35 % 21,50 % 26,62 % 31,70 % 36,77 % 41,81 % 46,83 % 51,84 % 56,82 % 61,79 % 66,74 % 71,66 % 76,57 % 81,44 % 86,28 % 91,07 % 95,77 % 100,00 % 
3 000 1,42 % 5,84 % 11,13 % 16,33 % 21,48 % 26,59 % 31,68 % 36,74 % 41,78 % 46,80 % 51,81 % 56,79 % 61,76 % 66,71 % 71,64 % 76,54 % 81,42 % 86,26 % 91,05 % 95,75 % 100,00 % 
3 100 1,42 % 5,83 % 11,11 % 16,31 % 21,45 % 26,56 % 31,65 % 36,71 % 41,75 % 46,77 % 51,78 % 56,76 % 61,73 % 66,68 % 71,61 % 76,52 % 81,40 % 86,24 % 91,03 % 95,74 % 100,00 % 
3 200 1,41 % 5,81 % 11,09 % 16,28 % 21,43 % 26,54 % 31,62 % 36,68 % 41,72 % 46,74 % 51,75 % 56,73 % 61,70 % 66,65 % 71,58 % 76,49 % 81,37 % 86,22 % 91,02 % 95,73 % 100,00 % 
3 300 1,40 % 5,80 % 11,07 % 16,26 % 21,41 % 26,51 % 31,60 % 36,66 % 41,69 % 46,72 % 51,72 % 56,71 % 61,68 % 66,63 % 71,56 % 76,47 % 81,35 % 86,20 % 91,00 % 95,72 % 100,00 % 
3 400 1,39 % 5,79 % 11,06 % 16,24 % 21,38 % 26,49 % 31,57 % 36,63 % 41,67 % 46,69 % 51,69 % 56,68 % 61,65 % 66,60 % 71,54 % 76,45 % 81,33 % 86,18 % 90,99 % 95,71 % 100,00 % 
3 500 1,39 % 5,77 % 11,04 % 16,23 % 21,36 % 26,47 % 31,55 % 36,61 % 41,65 % 46,67 % 51,67 % 56,66 % 61,63 % 66,58 % 71,52 % 76,43 % 81,31 % 86,17 % 90,98 % 95,70 % 100,00 % 
3 600 1,38 % 5,76 % 11,03 % 16,21 % 21,34 % 26,45 % 31,53 % 36,58 % 41,62 % 46,64 % 51,65 % 56,63 % 61,61 % 66,56 % 71,49 % 76,41 % 81,30 % 86,15 % 90,96 % 95,69 % 100,00 % 



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)75 

 Rate                     
3 700 1,38 % 5,75 % 11,01 % 16,19 % 21,33 % 26,43 % 31,51 % 36,56 % 41,60 % 46,62 % 51,62 % 56,61 % 61,58 % 66,54 % 71,47 % 76,39 % 81,28 % 86,14 % 90,95 % 95,68 % 100,00 % 
3 800 1,37 % 5,74 % 11,00 % 16,18 % 21,31 % 26,41 % 31,49 % 36,54 % 41,58 % 46,60 % 51,60 % 56,59 % 61,56 % 66,52 % 71,45 % 76,37 % 81,26 % 86,12 % 90,94 % 95,67 % 100,00 % 
3 900 1,36 % 5,73 % 10,98 % 16,16 % 21,29 % 26,39 % 31,47 % 36,52 % 41,56 % 46,58 % 51,58 % 56,57 % 61,54 % 66,50 % 71,44 % 76,35 % 81,25 % 86,11 % 90,92 % 95,66 % 100,00 % 
4 000 1,36 % 5,72 % 10,97 % 16,14 % 21,27 % 26,37 % 31,45 % 36,50 % 41,54 % 46,56 % 51,56 % 56,55 % 61,52 % 66,48 % 71,42 % 76,34 % 81,23 % 86,09 % 90,91 % 95,66 % 100,00 % 
4 100 1,35 % 5,71 % 10,96 % 16,13 % 21,26 % 26,36 % 31,43 % 36,48 % 41,52 % 46,54 % 51,54 % 56,53 % 61,50 % 66,46 % 71,40 % 76,32 % 81,22 % 86,08 % 90,90 % 95,65 % 100,00 % 
4 200 1,35 % 5,70 % 10,95 % 16,12 % 21,24 % 26,34 % 31,41 % 36,46 % 41,50 % 46,52 % 51,52 % 56,51 % 61,49 % 66,44 % 71,38 % 76,30 % 81,20 % 86,07 % 90,89 % 95,64 % 100,00 % 
4 300 1,34 % 5,69 % 10,94 % 16,10 % 21,23 % 26,32 % 31,39 % 36,45 % 41,48 % 46,50 % 51,51 % 56,49 % 61,47 % 66,43 % 71,37 % 76,29 % 81,19 % 86,06 % 90,88 % 95,63 % 100,00 % 
4 400 1,34 % 5,69 % 10,92 % 16,09 % 21,21 % 26,31 % 31,38 % 36,43 % 41,47 % 46,48 % 51,49 % 56,48 % 61,45 % 66,41 % 71,35 % 76,27 % 81,17 % 86,04 % 90,87 % 95,63 % 100,00 % 
4 500 1,34 % 5,68 % 10,91 % 16,08 % 21,20 % 26,29 % 31,36 % 36,41 % 41,45 % 46,47 % 51,47 % 56,46 % 61,44 % 66,39 % 71,34 % 76,26 % 81,16 % 86,03 % 90,86 % 95,62 % 100,00 % 
4 600 1,33 % 5,67 % 10,90 % 16,06 % 21,19 % 26,28 % 31,35 % 36,40 % 41,43 % 46,45 % 51,46 % 56,45 % 61,42 % 66,38 % 71,32 % 76,25 % 81,15 % 86,02 % 90,85 % 95,61 % 100,00 % 
4 700 1,33 % 5,66 % 10,89 % 16,05 % 21,17 % 26,26 % 31,33 % 36,38 % 41,42 % 46,44 % 51,44 % 56,43 % 61,40 % 66,36 % 71,31 % 76,23 % 81,14 % 86,01 % 90,84 % 95,61 % 100,00 % 
4 800 1,32 % 5,65 % 10,88 % 16,04 % 21,16 % 26,25 % 31,32 % 36,37 % 41,40 % 46,42 % 51,42 % 56,41 % 61,39 % 66,35 % 71,29 % 76,22 % 81,12 % 86,00 % 90,83 % 95,60 % 100,00 % 
4 900 1,32 % 5,65 % 10,87 % 16,03 % 21,15 % 26,24 % 31,30 % 36,35 % 41,39 % 46,41 % 51,41 % 56,40 % 61,38 % 66,34 % 71,28 % 76,21 % 81,11 % 85,99 % 90,83 % 95,59 % 100,00 % 
5 000 1,32 % 5,64 % 10,87 % 16,02 % 21,14 % 26,22 % 31,29 % 36,34 % 41,37 % 46,39 % 51,40 % 56,39 % 61,36 % 66,32 % 71,27 % 76,20 % 81,10 % 85,98 % 90,82 % 95,59 % 100,00 % 

 

A.4.6 Span of confidence intervals according to Pearson-Clopper formula 
Table A.4.3 contains values which specify the difference ("span") between the upper and the lower limit of the confidence interval. The span depends on the number of samples 
and the according rate value. In figures A.4.1 to A.4.3 this information can be found as the vertical distance between the red and the blue lines. 

Table A.4.3 

 Rate                     
NrMeas 1 % 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 % 50 % 55 % 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 100 % 

100 5,42 % 9,64 % 12,72 % 14,89 % 16,52 % 17,78 % 18,74 % 19,46 % 19,95 % 20,30 % 20,38 % 20,28 % 19,95 % 19,46 % 18,74 % 17,90 % 16,67 % 15,07 % 12,96 % 10,00 % 4,85 % 
200 3,44 % 6,58 % 8,81 % 10,36 % 11,53 % 12,44 % 13,13 % 13,64 % 13,99 % 14,22 % 14,29 % 14,21 % 13,99 % 13,64 % 13,13 % 12,48 % 11,59 % 10,43 % 8,90 % 6,71 % 2,47 % 
300 2,69 % 5,29 % 7,12 % 8,40 % 9,36 % 10,10 % 10,66 % 11,08 % 11,39 % 11,54 % 11,61 % 11,55 % 11,37 % 11,08 % 10,68 % 10,12 % 9,39 % 8,43 % 7,17 % 5,36 % 1,66 % 
400 2,27 % 4,54 % 6,13 % 7,24 % 8,07 % 8,71 % 9,21 % 9,57 % 9,82 % 9,98 % 10,02 % 9,97 % 9,82 % 9,57 % 9,21 % 8,73 % 8,09 % 7,26 % 6,16 % 4,59 % 1,25 % 
500 1,99 % 4,03 % 5,46 % 6,45 % 7,20 % 7,77 % 8,21 % 8,54 % 8,77 % 8,90 % 8,95 % 8,90 % 8,77 % 8,54 % 8,22 % 7,79 % 7,21 % 6,47 % 5,48 % 4,07 % 1,00 % 
600 1,80 % 3,66 % 4,97 % 5,87 % 6,56 % 7,08 % 7,49 % 7,78 % 8,00 % 8,11 % 8,15 % 8,11 % 7,99 % 7,78 % 7,49 % 7,09 % 6,57 % 5,89 % 4,98 % 3,69 % 0,83 % 
700 1,65 % 3,38 % 4,59 % 5,43 % 6,06 % 6,55 % 6,92 % 7,20 % 7,39 % 7,50 % 7,54 % 7,50 % 7,39 % 7,20 % 6,93 % 6,56 % 6,07 % 5,44 % 4,60 % 3,40 % 0,71 % 
800 1,53 % 3,15 % 4,28 % 5,07 % 5,66 % 6,12 % 6,47 % 6,73 % 6,90 % 7,01 % 7,05 % 7,01 % 6,90 % 6,73 % 6,47 % 6,12 % 5,67 % 5,08 % 4,29 % 3,17 % 0,63 % 
900 1,43 % 2,96 % 4,03 % 4,77 % 5,33 % 5,76 % 6,09 % 6,34 % 6,51 % 6,60 % 6,64 % 6,60 % 6,50 % 6,34 % 6,10 % 5,77 % 5,34 % 4,78 % 4,04 % 2,98 % 0,56 % 

1 000 1,35 % 2,81 % 3,82 % 4,52 % 5,05 % 5,46 % 5,77 % 6,01 % 6,17 % 6,26 % 6,29 % 6,26 % 6,17 % 6,01 % 5,78 % 5,47 % 5,06 % 4,53 % 3,83 % 2,82 % 0,50 % 
1 100 1,28 % 2,67 % 3,64 % 4,31 % 4,81 % 5,20 % 5,50 % 5,72 % 5,88 % 5,97 % 6,00 % 5,97 % 5,87 % 5,72 % 5,50 % 5,21 % 4,82 % 4,31 % 3,64 % 2,68 % 0,46 % 
1 200 1,22 % 2,55 % 3,48 % 4,12 % 4,61 % 4,98 % 5,26 % 5,48 % 5,62 % 5,71 % 5,74 % 5,71 % 5,62 % 5,48 % 5,27 % 4,98 % 4,61 % 4,13 % 3,48 % 2,56 % 0,42 % 
1 300 1,17 % 2,45 % 3,34 % 3,96 % 4,42 % 4,78 % 5,05 % 5,26 % 5,40 % 5,48 % 5,51 % 5,48 % 5,40 % 5,26 % 5,06 % 4,78 % 4,43 % 3,96 % 3,34 % 2,46 % 0,39 % 
1 400 1,12 % 2,36 % 3,21 % 3,81 % 4,26 % 4,60 % 4,87 % 5,07 % 5,20 % 5,28 % 5,31 % 5,28 % 5,20 % 5,06 % 4,87 % 4,61 % 4,26 % 3,81 % 3,22 % 2,36 % 0,36 % 
1 500 1,08 % 2,27 % 3,10 % 3,68 % 4,11 % 4,45 % 4,70 % 4,89 % 5,02 % 5,10 % 5,12 % 5,10 % 5,02 % 4,89 % 4,70 % 4,45 % 4,12 % 3,68 % 3,11 % 2,28 % 0,33 % 
1 600 1,05 % 2,20 % 3,00 % 3,56 % 3,98 % 4,30 % 4,55 % 4,73 % 4,86 % 4,93 % 4,96 % 4,93 % 4,86 % 4,73 % 4,55 % 4,31 % 3,98 % 3,56 % 3,01 % 2,21 % 0,31 % 
1 700 1,01 % 2,13 % 2,91 % 3,45 % 3,86 % 4,17 % 4,41 % 4,59 % 4,71 % 4,79 % 4,81 % 4,79 % 4,71 % 4,59 % 4,41 % 4,17 % 3,86 % 3,46 % 2,91 % 2,14 % 0,29 % 
1 800 0,98 % 2,07 % 2,83 % 3,35 % 3,75 % 4,05 % 4,29 % 4,46 % 4,58 % 4,65 % 4,67 % 4,65 % 4,58 % 4,46 % 4,29 % 4,06 % 3,75 % 3,36 % 2,83 % 2,08 % 0,28 % 
1 900 0,95 % 2,01 % 2,75 % 3,26 % 3,65 % 3,94 % 4,17 % 4,34 % 4,46 % 4,52 % 4,55 % 4,52 % 4,46 % 4,34 % 4,17 % 3,95 % 3,65 % 3,27 % 2,75 % 2,02 % 0,26 % 
2 000 0,93 % 1,96 % 2,68 % 3,18 % 3,55 % 3,84 % 4,06 % 4,23 % 4,34 % 4,41 % 4,43 % 4,41 % 4,34 % 4,23 % 4,07 % 3,84 % 3,56 % 3,18 % 2,68 % 1,97 % 0,25 % 
2 100 0,90 % 1,91 % 2,61 % 3,10 % 3,47 % 3,75 % 3,97 % 4,13 % 4,24 % 4,30 % 4,32 % 4,30 % 4,24 % 4,13 % 3,97 % 3,75 % 3,47 % 3,10 % 2,62 % 1,92 % 0,24 % 
2 200 0,88 % 1,87 % 2,55 % 3,03 % 3,39 % 3,66 % 3,87 % 4,03 % 4,14 % 4,20 % 4,22 % 4,20 % 4,14 % 4,03 % 3,87 % 3,66 % 3,39 % 3,03 % 2,56 % 1,87 % 0,23 % 
2 300 0,86 % 1,83 % 2,50 % 2,96 % 3,31 % 3,58 % 3,79 % 3,94 % 4,05 % 4,11 % 4,13 % 4,11 % 4,05 % 3,94 % 3,79 % 3,58 % 3,31 % 2,96 % 2,50 % 1,83 % 0,22 % 
2 400 0,84 % 1,79 % 2,44 % 2,90 % 3,24 % 3,50 % 3,71 % 3,86 % 3,96 % 4,02 % 4,04 % 4,02 % 3,96 % 3,86 % 3,71 % 3,51 % 3,24 % 2,90 % 2,44 % 1,79 % 0,21 % 
2 500 0,82 % 1,75 % 2,39 % 2,84 % 3,17 % 3,43 % 3,63 % 3,78 % 3,88 % 3,94 % 3,96 % 3,94 % 3,88 % 3,78 % 3,63 % 3,43 % 3,18 % 2,84 % 2,39 % 1,75 % 0,20 % 
2 600 0,81 % 1,71 % 2,34 % 2,78 % 3,11 % 3,37 % 3,56 % 3,70 % 3,80 % 3,86 % 3,88 % 3,86 % 3,80 % 3,70 % 3,56 % 3,37 % 3,11 % 2,78 % 2,35 % 1,72 % 0,19 % 
2 700 0,79 % 1,68 % 2,30 % 2,73 % 3,05 % 3,30 % 3,49 % 3,63 % 3,73 % 3,79 % 3,81 % 3,79 % 3,73 % 3,63 % 3,49 % 3,30 % 3,05 % 2,73 % 2,30 % 1,68 % 0,19 % 
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 Rate                     
2 800 0,78 % 1,65 % 2,26 % 2,68 % 3,00 % 3,24 % 3,43 % 3,57 % 3,66 % 3,72 % 3,74 % 3,72 % 3,66 % 3,57 % 3,43 % 3,24 % 3,00 % 2,68 % 2,26 % 1,65 % 0,18 % 
2 900 0,76 % 1,62 % 2,22 % 2,63 % 2,95 % 3,19 % 3,37 % 3,51 % 3,60 % 3,65 % 3,67 % 3,65 % 3,60 % 3,50 % 3,37 % 3,19 % 2,95 % 2,63 % 2,22 % 1,62 % 0,17 % 
3 000 0,75 % 1,59 % 2,18 % 2,59 % 2,90 % 3,13 % 3,31 % 3,45 % 3,54 % 3,59 % 3,61 % 3,59 % 3,54 % 3,45 % 3,31 % 3,13 % 2,90 % 2,59 % 2,18 % 1,60 % 0,17 % 
3 100 0,74 % 1,57 % 2,14 % 2,55 % 2,85 % 3,08 % 3,26 % 3,39 % 3,48 % 3,53 % 3,55 % 3,53 % 3,48 % 3,39 % 3,26 % 3,08 % 2,85 % 2,55 % 2,15 % 1,57 % 0,16 % 
3 200 0,72 % 1,54 % 2,11 % 2,51 % 2,80 % 3,03 % 3,21 % 3,34 % 3,42 % 3,48 % 3,49 % 3,48 % 3,42 % 3,34 % 3,21 % 3,03 % 2,80 % 2,51 % 2,11 % 1,54 % 0,16 % 
3 300 0,71 % 1,52 % 2,08 % 2,47 % 2,76 % 2,98 % 3,16 % 3,28 % 3,37 % 3,42 % 3,44 % 3,42 % 3,37 % 3,28 % 3,16 % 2,98 % 2,76 % 2,47 % 2,08 % 1,52 % 0,15 % 
3 400 0,70 % 1,50 % 2,05 % 2,43 % 2,72 % 2,94 % 3,11 % 3,23 % 3,32 % 3,37 % 3,39 % 3,37 % 3,32 % 3,23 % 3,11 % 2,94 % 2,72 % 2,43 % 2,05 % 1,50 % 0,15 % 
3 500 0,69 % 1,47 % 2,02 % 2,39 % 2,68 % 2,90 % 3,06 % 3,19 % 3,27 % 3,32 % 3,34 % 3,32 % 3,27 % 3,19 % 3,06 % 2,90 % 2,68 % 2,40 % 2,02 % 1,48 % 0,14 % 
3 600 0,68 % 1,45 % 1,99 % 2,36 % 2,64 % 2,86 % 3,02 % 3,14 % 3,23 % 3,28 % 3,29 % 3,28 % 3,23 % 3,14 % 3,02 % 2,86 % 2,64 % 2,36 % 1,99 % 1,45 % 0,14 % 
3 700 0,67 % 1,43 % 1,96 % 2,33 % 2,60 % 2,82 % 2,98 % 3,10 % 3,18 % 3,23 % 3,25 % 3,23 % 3,18 % 3,10 % 2,98 % 2,82 % 2,60 % 2,33 % 1,96 % 1,43 % 0,14 % 
3 800 0,66 % 1,41 % 1,93 % 2,30 % 2,57 % 2,78 % 2,94 % 3,06 % 3,14 % 3,19 % 3,20 % 3,19 % 3,14 % 3,06 % 2,94 % 2,78 % 2,57 % 2,30 % 1,94 % 1,41 % 0,13 % 
3 900 0,65 % 1,39 % 1,91 % 2,27 % 2,54 % 2,74 % 2,90 % 3,02 % 3,10 % 3,15 % 3,16 % 3,15 % 3,10 % 3,02 % 2,90 % 2,74 % 2,54 % 2,27 % 1,91 % 1,40 % 0,13 % 
4 000 0,64 % 1,38 % 1,88 % 2,24 % 2,50 % 2,71 % 2,86 % 2,98 % 3,06 % 3,11 % 3,12 % 3,11 % 3,06 % 2,98 % 2,86 % 2,71 % 2,50 % 2,24 % 1,89 % 1,38 % 0,13 % 
4 100 0,64 % 1,36 % 1,86 % 2,21 % 2,47 % 2,67 % 2,83 % 2,94 % 3,02 % 3,07 % 3,08 % 3,07 % 3,02 % 2,94 % 2,83 % 2,68 % 2,47 % 2,21 % 1,86 % 1,36 % 0,12 % 
4 200 0,63 % 1,34 % 1,84 % 2,18 % 2,44 % 2,64 % 2,79 % 2,91 % 2,99 % 3,03 % 3,05 % 3,03 % 2,99 % 2,91 % 2,80 % 2,64 % 2,44 % 2,18 % 1,84 % 1,34 % 0,12 % 
4 300 0,62 % 1,33 % 1,82 % 2,16 % 2,41 % 2,61 % 2,76 % 2,87 % 2,95 % 3,00 % 3,01 % 3,00 % 2,95 % 2,87 % 2,76 % 2,61 % 2,41 % 2,16 % 1,82 % 1,33 % 0,12 % 
4 400 0,61 % 1,31 % 1,80 % 2,13 % 2,39 % 2,58 % 2,73 % 2,84 % 2,92 % 2,96 % 2,98 % 2,96 % 2,92 % 2,84 % 2,73 % 2,58 % 2,39 % 2,13 % 1,80 % 1,31 % 0,11 % 
4 500 0,61 % 1,30 % 1,78 % 2,11 % 2,36 % 2,55 % 2,70 % 2,81 % 2,88 % 2,93 % 2,94 % 2,93 % 2,88 % 2,81 % 2,70 % 2,55 % 2,36 % 2,11 % 1,78 % 1,30 % 0,11 % 
4 600 0,60 % 1,28 % 1,76 % 2,09 % 2,33 % 2,52 % 2,67 % 2,78 % 2,85 % 2,90 % 2,91 % 2,90 % 2,85 % 2,78 % 2,67 % 2,52 % 2,33 % 2,09 % 1,76 % 1,28 % 0,11 % 
4 700 0,59 % 1,27 % 1,74 % 2,06 % 2,31 % 2,50 % 2,64 % 2,75 % 2,82 % 2,87 % 2,88 % 2,87 % 2,82 % 2,75 % 2,64 % 2,50 % 2,31 % 2,06 % 1,74 % 1,27 % 0,11 % 
4 800 0,59 % 1,25 % 1,72 % 2,04 % 2,28 % 2,47 % 2,61 % 2,72 % 2,79 % 2,83 % 2,85 % 2,84 % 2,79 % 2,72 % 2,61 % 2,47 % 2,28 % 2,04 % 1,72 % 1,26 % 0,10 % 
4 900 0,58 % 1,24 % 1,70 % 2,02 % 2,26 % 2,44 % 2,59 % 2,69 % 2,76 % 2,81 % 2,82 % 2,81 % 2,76 % 2,69 % 2,59 % 2,45 % 2,26 % 2,02 % 1,70 % 1,24 % 0,10 % 
5 000 0,57 % 1,23 % 1,68 % 2,00 % 2,24 % 2,42 % 2,56 % 2,66 % 2,74 % 2,78 % 2,79 % 2,78 % 2,74 % 2,66 % 2,56 % 2,42 % 2,24 % 2,00 % 1,68 % 1,23 % 0,10 % 
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A.5 Different sample sizes 
The following examples show the effect of different sample sizes in a measurement campaign. It is also based on the 
Pearson-Clopper formulas for the calculation of confidence intervals. Therefore, the examples are valid in a generic 
way and even for small sample sizes. For higher sample numbers, the calculation of confidence intervals based on the 
approximation of a normal distribution can be applied. 

Three different graphs are depicted: Sample sizes in the range: 

• between 100 and 1 100 samples; 

• between 1 100 and 2 100 samples; and 

• between 1 000 and 11 000 samples. 

The depicted curves can be found in the rows of tables A.4.1, A.4.2 and A.4.3 (number of measurements is constant, 
estimated rate varies). 

 

Figure A.5.1: Width of confidence interval for different sample sizes 
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Figure A.5.2: Width of confidence interval for different sample sizes 

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Estimated rate in percent

W
id

th
 o

f c
on

fid
en

ce
 in

te
rv

al
 in

 p
er

ce
nt

x

x

x

x

x
x

x
x

x
x

x
x

xxx xxx xxx xxx xxx xxx xxx xxx xxx
x

x
x

x
x

x
x

x

x

x

x

x+

+

+

+
+

+
+

+
+

+
+++++++++++++++++++++++++++++++

+
+

+
+

+
+

+

+

+

+o

o

o

o
o

o
o

o
o

o
ooooooooooooooooooooooooooooooo

o
o

o
o

o
o

o

o

o

ox

x

x

x
x

x
x

x
x

x
xx xxx xxx xxx xxx xxx xxx xxx xxx xxx xx

x
x

x
x

x
x

x

x

x

x+

+

+

+
+

+
+

+
+

+++++++++++++++++++++++++++++++++
+

+
+

+
+

+

+

+

+

o
x
+
o
x
+

1100 Samples
1300 Samples
1500 Samples
1700 Samples
1900 Samples
2100 Samples



 

ETSI 

ETSI TS 102 250-6 V1.3.1 (2019-11)79 

 

Figure A.5.3: Width of confidence interval for different sample sizes 

A.6 Calculation methods 

A.6.1 Calculation of quantiles 
Clause A.6 depicts some examples of how to calculate statistical values out of measurement data. 

In this clause A.6.1 the different basic steps to calculate quantile values related to measurement samples are described. 

 

Figure A.6.1: Example of measured data as a time series 
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Assuming that measurement data according to figure A.6.1 has been collected, the following steps can be executed: 

• Determine the number N of available measurements. 

• Sorting of data: The samples are sorted in an ascending order. 

• Define the p-quantile value that should be retrieved. In this example, the 95 % quantile (Q95) is requested, so 
p = 95 % = 0,95. 

• Start counting the sorted samples, until you reach the p-percentage of all available samples. In this example, 
this means 95 % of the samples have to be counted. 

• The sample where the according percentage is reached is taken. The appropriate ordinate value represents the 
searched p-quantile, in this case the 95 % quantile. 

 

Figure A.6.2: Determination of quantiles on sorted data 

The different steps are visualized in figure A.6.2. Further example for other p-quantiles are: 

p percentage 5 % 25 % 50 % 75 % 95 % 
p-quantile 0,2959737 0,5370118 0,8579087 1,6867595 4,5992459 
 

If for example the 95 % value is not covered by a sample, an interpolation between the left-hand and the right-hand 
neighbour may be appropriate. This interpolation may have different grades, e.g. linear or quadratic interpolation. 

Another possibility to determine quantile values is given by analysis of the Cumulative Distribution Function (CDF). 
The steps to create a CDF out of measurement results are generally the same as described above. 

A.7 Reporting of results 

A.7.1 Methods to use 
Clause A.7 describes which pieces of information should be given to the reader when generating a test report. The 
categories of different data types are related to the definitions in clause 4. 

The variables x, y and z in the following table A.7.1 need to be accordingly replaced by the estimated data. 

When quantile values are used, it should be kept in mind that the computation of quantiles separates a low percentage of 
outlier data from the remaining data. This means: 

• If lower values represent a better outcome from the user's perspective, a small percentage containing the 
highest values could be separated by calculating a 95 %-quantile or a 90 %-quantile. This is the case for 
example for duration values. 
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• If higher values represent a better outcome from the user's perspective, a small percentage containing the 
lowest values could be separated by calculating a 5 %-quantile or a 10 %-quantile. This is the case for example 
for throughput values. 

• Related to content quality, the appropriate quantile computation orientates itself on the scale of the determined 
test results. In practice, some algorithms define a value of 0 on a scale from 0 to 5 as the best quality whereas 
others define the value of 5 as the highest possible quality. Table A.7.1 below gives some hints how to use the 
quantile computation in these cases. 

Table A.7.1 

Category of 
data 

Type of 
information 

Method to use Reporting statement Additional 
information 

Related 
clauses 

Binary values 
(Success rates, 
error rates, etc.) 

Estimated rate 
plus 
confidence 
interval 

Pearson-
Clopper 

 Always valid, borders 
of confidence interval 
are asymmetric 
(except for x = 50) 

5.7.2.1 

Gaussian 
approximation 

 Applicable if 
, 

symmetric borders of 
confidence interval 

5.7.2.2 

Duration values  
(End-to-end 
delay, 
establishment 
delay, etc.) 

Mean delay 
plus standard 
deviation 

Empirical mean 
plus empirical 
standard 
deviation 

 Always valid 
N: number of samples 
taken into account 

5.4 and 
5.5 

-Quantile 
plus number of 
samples 

Quantile 
computation 

 N: number of samples 
taken into account 

: Desired quantile 
level, mostly 

 or 

 

5.4 and 
5.5 

Throughput 
values  
(Data rates) 

Mean data rate 
plus standard 
deviation 

Empirical mean 
plus empirical 
standard 
deviation 

 Always valid 
N: number of samples 
taken into account 

5.4 and 
5.5 

-Quantile 
plus number of 
samples 

Quantile 
computation 

 N: number of samples 
taken into account 

: Desired quantile 
level, mostly 

 or 

 

5.4 and 
5.5 

Content quality 
values  
(Audio quality, 
video quality) 

Mean score 
plus standard 
deviation 

Empirical mean 
plus empirical 
standard 
deviation 

 Always valid 
N: number of samples 
taken into account 

5.4 and 
5.5 

-Quantile 
plus number of 
samples 

Quantile 
computation 

 N: number of samples 
taken into account 

: Desired quantile 
level, mostly 

 or 

 if lower 
values represent 
better quality, 

 or 

 if higher 
values represent 
better quality 

5.4 and 
5.5 
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A.7.2 Number of significant decimals 
When representing final results, the number of reported significant decimals should be orientated on the precision of the 
evaluation method used (e.g. calculation of standard deviation, confidence interval, etc.). 

A.7.3 Rounding of end results 
During the execution of consecutive calculation steps, no rounding functionality should be applied. Only the final 
results may be rounded. At least three significant decimals should still remain after applying the rounding functionality 
whenever possible. 
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