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Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Speech Processing, Transmission
and Quality Aspects (STQ).

The present document is part 6 of a multi-part deliverable covering the QoS aspects for popular servicesin GSM and
3G networks, as identified below:

Part 1.  "ldentification of Quality of Service aspects’;

Part2:  "Definition of Quality of Service parameters and their computation™;
Part 3:  "Typical procedures for Quality of Service measurement equipment”;
Part 4:  "Reguirements for Quality of Service measurement equipment";

Part 5.  "Definition of typical measurement profiles®;

Part 6; " Post processing and statistical methods" ;

Part 7:  "Sampling methodology".

Part 1 identifies QoS aspects for popular servicesin GSM and 3G networks. For each service chosen QoS indicators are
listed. They are considered to be suitable for the quantitatively characterization of the dominant technical QoS aspects
as experienced from the end-customer perspective.

Part 2 defines QoS parameters and their computation for popular servicesin GSM and 3G networks. The technical QoS
indicators, listed in part 1, are the basis for the parameter set chosen. The parameter definition is split into two parts: the
abstract definition and the generic description of the measurement method with the respective trigger points. Only
measurement methods not dependent on any infrastructure provided are described in the present document. The
harmonized definitions given in the present document are considered as the prerequisites for comparison of QoS
measurements and measurement results.

Part 3 describes typical procedures used for QoS measurements over GSM, along with settings and parameters for such
measurements.

Part 4 defines the minimum requirements of QoS measurement equipment for GSM and 3G networks in the way that
the values and trigger-points needed to compute the QoS parameter as defined in part 2 can be measured following the
procedures defined in part 3. Test-equipment fulfilling the specified minimum reguirements, will allow to perform the
proposed measurementsin areliable and reproducible way.

Part 5 specifies test profiles which are required to enable benchmarking of different GSM or 3G networks both within
and outside national boundaries. It is necessary to have these profiles so that when a specific set of tests are carried out
then customers are comparing "like for like" performance.
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Part 6 describes procedures to be used for statistical calculationsin the field of QoS measurement of GSM and
3G network using probing systems.

Part 7 describes the field measurement method procedures used for QoS measurements over GSM where the results are
obtained applying inferential statistics.

Introduction

All the defined quality of service parameters and their computations are based on field measurements. That indicates
that the measurements were made from customers point of view (full end-to-end perspective, taking into account the
needs of testing).

It is assumed that the end customer can handle his mobile and the services he wants to use (operability is not eval uated
at thistime). For the purpose of measurement it is assumed:

. that the service is available and not barred for any reason;
. routing is defined correctly without errors; and
. the target subscriber equipment is ready to answer the call.
Voice quality values measured should only be employed by calls ended successfully for statistical analysis.

However, measured values from calls ended unsuccessfully (e.g. dropped) should be available for additional evaluations
and therefore, must be stored.

Further preconditions may apply when reasonable.

ETSI
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1 Scope

The present document describes definitions and procedures to be used for statistical calculations which are related to
Quality of Service (QoS) measurements done by serving probing systemsin mobile communications networks,
especially GSM and 3G networks. Network performance measurements and their related post-processing are only
marginally covered in the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI EG 201 769: " Speech Processing, Transmission and Quality Aspects (STQ); QoS parameter
definitions and measurements; Parameters for voice telephony service required under the ONP
Voice Telephony Directive 98/10/EC".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
rate: measurement result which isrelated to the portion of time during which it has been executed
NOTE: The denominator's unit isrelated to time.

ratio: measurement result which represents a subgroup of all single measurementsis related to the total number of
executed single measurements

NOTE: Usualy, nominator and denominator share the same unit, namely a counter for measurements
(subgroup/all).
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3.2 Symbols

For the purposes of the present document, the following symbols apply:

E(X)=p Expected value of random variable x

Var(x)= @ Variance of random variable x

o Standard deviation of random variable x

f(x) Probability Density Function (PDF) of random variable x

F(x) Cumulative Distribution Function (CDF) of random variable x

S xOS Set of discrete values or interval of values the random variable x may take
IR Set of real numbers

S, & Empirical standard deviation / variance, analogous to oand ¢ (theoretical)
dy a-Quantile

Uy a-Quantile of standard normal distribution

Xy X1y X(n) i-th ordered value, minimum and maximum of agiven dataset x;, i =1,...,n

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3G Third Generation
ARMA Auto-Regressive Moving Average
AVGn Averaging Operator (regarding n days)
BH Busy Hour
BSC Base Station Controller
CDF Cumulative Distribution Function or Cumulative Density Function (used synonymously)
CUsuUM CUmulated SUM
EWMA Exponentially Weighted Moving Average
GSM Global System for Mobile communications
KPI Key Performance I ndicator
LSL Lower Specification Level
MAWD Monthly Average Working Day
MMQ-Plot Median-Mean-Quantile Plot
MMS Multimedia Messaging Service
MOS Mean Opinion Score
MSC Mobile Switching Centre
NE Network Element
PDF Probability Density Function
QoS Quality of Service
QQ-Plot Quantile-Quantile Plot
SMS Short Message Service
USL Upper Specification Level
4 Important measurement data types in mobile

communications

Appropriate data analysis methods should depend on the type of the given data as well as on the scope of the analysis.
Therefore before analysis methods are described, different data types are introduced and differences between them are
pointed out.

Four general categories of measurement results are expected when QoS measurements are done in mobile
communications.
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4.1 Data with binary values

Single measurements related to the topics:
. service accessibility, service availability;
. service retainability, service continuity;
. error ratios, error probabilities;

in general show a binary outcome, i.e. only two outcomes are possible. This means the result of asingletrial leadsto a
result which is either valued positive or negative related to the considered objective. The result may be recorded as
decision-results Yes/ No or True/ False or with numerical values 0 = successful and 1 = unsuccessful (i.e. errors occur)
or vice versa. Aggregation of trials of both types allows to cal culate the according ratios which means the number of
positive / negative resultsis divided by the number of all trials. Usually, the units of nominator and denominator are the
same, namely number of trials.

EXAMPLE: If established voice cals are considered to test the service retainability of a voice telephony
system, every successfully completed call leads to the positive result " Call completed”, every
unsuccessfully ended call is noticed as " Dropped call™ which represents the negative outcome.
After 10 000 established calls, the ratio of dropped calls related to all established calls can be
calculated. The result isthe call drop probability.

4.2 Data out of time-interval measurements

M easurements related to the time domain occur in the areas:
. duration of asession or call;
. service access delay;
. round trip time and end-to-end delay of a service;
. blocking times, downtimes of a system.

The outcome of such measurements is the time span between two time stamps marking the starting and end point of the
time periods of interest. Results are related to the unit "second” or multiples or parts of it. Depending on the
measurement tools and the precision needed, arbitrarily small measurement units may be realized.

EXAMPLE: Someone can define the end-to-end delivery time for the MMS service by a measurement which
starts when the user at the A party pushes the "Send" button and which stops when the completely
received MMS s signalled to the user at the B party.

4.3 Measurement of data throughput

M easurements related to data throughput result in values which describe the ratio of transmitted data volume related to
the required portion of time. The outcome of a single measurement is the quotient of both measures. Used units are "bit"
or multiples thereof for the data amount and "second" or multiples or parts thereof for the portion of time.

EXAMPLE: If adataamount of 1 Mbit is transmitted within a period of 60 seconds, this results in a mean data
rate of approximately 16,66 kbit/s.

4.4 Data concerning quality measures

Examples are given by the quality of datatransfer which may be measured by its speed or evaluations of speech quality
measured on a scale, respectively.
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M easurements related to audio-visual quality can be done objectively by algorithms or subjectively by human listeners.
The outcome of audio-visual quality evaluation is related to a scaled value which is called Mean Opinion Score (MOS)
for subjective testing. Thereby two types of quality measurement are distinguished subjective and objective
measurements. If quantitative measures are identified which are highly correlated to the quality of interest, this will
simplify the analysis. However, if thisis not possible, some kind of eval uation on a standardized scale by qualified
expertsis needed. The result may therefore be given either as the measurement result or as a mark on a pre-defined
scale.

EXAMPLE: Within a subjective test, people are asked to rate the overall quality of video samples which are
presented to them. The allowed scale to rate the quality is defined in the range from 1 (very poor
quality) to 5 (brilliant quality).

Table 4.1 summarizes the different kinds of QoS related measurements, typical outcomes and some examples.

Table 4.1: QoS related measurements, typical outcomes and examples

Category Relevant measurement types Examples
Binary values Service accessibility, service availability  [Service accessibility telephony, service
non-availability SMS
Service retainability, service continuity Call completion rate, call drop rate
Error ratios, error probabilities Call set-up error rate
Duration values Duration of a session or call Mean call duration
Service access delay Service access delay WAP
Round trip time, end-to-end delay ICMP Ping roundtrip time
Blocking times, system downtimes Blocking time telephony, SGSN downtime
Throughput values Throughput Mean data rate GPRS
Peak data rate UMTS
Content quality values |Audio-visual quality MOS scores out of subjective testing
5 Distributions and moments
5.1 Introduction

The objective of dataanalysesisto draw conclusions about the state of a process based on a given data set, which may
or may not be a sample of the population of interest. If distributions are assumed, these specify the shape of the data
mass up to parameters associated with each family of distributions specifying properties like the mean of the data mass.
Location or dispersion shifts of the process will in general result in different parameter estimates specifying the
distribution. Therefore the information available from the data is compressed into one or few sufficient statistics
specifying the underlying distribution.

Many statistical applications and computations rely in some sense on distributional assumptions, which are not always
explicitly stated. Results of statistical measures are often only sensible if underlying assumptions are met and therefore
only interpretable if users know about these assumptions.

This clause is organized as follows. Firstly, distributions, moments and quantiles are introduced in theory in

clauses 5.2 to 5.4. This part of the document is based on the idea of random variables having certain distributions.
Random variables do not take single values but describe the underlying probability model of arandom process. They
are commonly denoted by:

X ~ distribution (parameters)
From the distributional assumptions, moments and quantiles of random variables are derived in theory.

Datais often viewed as being realizations of random variables. Therefore, data analysis mainly consists of fitting an
appropriate distribution to the data and drawing conclusions based on this assumption. Clause 5.5 briefly summarizes
the estimation of moments and quantiles.

Subsequently, a number of important distributionsis introduced in clause 5.6, each of which is visualized graphically to
give an idea of meaningful applications. Within this clause, testing distributions are also introduced as they are needed
in clause 5.7 for the derivation of statistical tests.
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5.2 Continuous and discrete distributions

The main difference between the data types described above can be explained in terms of continuous and discrete
distributions. Data with binary values follow a discrete distribution, since the probability massis distributed only over a
fixed number of possible values. The same holds for quality measurements with eval uation results on a scale with a
limited number of possible values (i.e. marks 1 to 6 or similar).

On the contrary, time-interval measurements as well as quality measurements based on appropriate quantitative
variables may take an infinitely large number of possible values. In theory, since the number of possible outcomes
equals infinity, the probability that asingle value is exactly realized is zero. Probabilities greater than zero are only
realized for intervals with positive width. In practice, each measurement tool will only allow alimited precision
resulting in discrete measurements with a large number of possible outcomes. Nevertheless, data from measurement
systems with reasonable precision are treated as being continuous.

Formal definitions for continuous and discrete distributions are based on probability density functions as will be
described in the following.

5.3 Definition of density function and distribution function

5.3.1 Probability Distribution Function (PDF)

Probability Density Functions (PDF) specify the probability mass either for single outcomes (discrete distributions) or
for intervals (continuous distributions).

A PDF isdefined asafunction f : IR - [0,) with properties:

i) f(x) =0 foral x/S
i) L f (X)dx =1 for continuous distributions or ZS f (X) =1 for discrete distributions.

In other words, firstly the values of the PDF are always non-negative, meaning that negative probabilities are neither
assigned to values nor intervals, and secondly the summation or integration over the PDF alwaysresultsin 1 (= 100 %),
meaning that any data value will always be realized.

01: x=1 . .
EXAMPLE 1. A PDFfor binary data may be givenby f(x) = {0 9 X 0’ which implies that the probability for
9: X =

afaulty trial (x=1) is 10 %, while tests are completed successfully with probability 90 %.

EXAMPLE 2:  For time-interval measurements PDFs may take any kind of shape, as an example a normal
distribution with mean 10 (seconds) is assumed here. The PDF for this distribution is given by

f(0) = 2-exp|- 1(x—10)?} . Other examples for continuous distributions will follow later on.

EXAMPLE 3:  If for instance categories for speech quality are defined as 1 = very poor up to 5 = brilliant, a PDF

01 : x0of123
for the resulting data may be givenby f(x) =404 : x=4
03 : X=5

Figure 5.1 summarizes all three assumed example PDFs for the different data types.
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Example 1 Example 2 Example 3
1.0
08 0.4 0.4
~ 06 - - 0.3 | - 0.3
= 04 - = 0.2 ¥ 0.2
0.2 0.1 | 0.1 | | |
0.0 B 0.0 00 ——F—T—1—1
1.0 0.0 1.0 2.0 6 8 10 12 14 1 2 3 4 5
X X X

Figure 5.1: Probability Density Functions (PDFs) of examples 1 to 3

5.3.2 Cumulative Distribution Function (CDF)

A Cumulative Distribution (or Density) Function (CDF) is computed from the corresponding PDF as described before
by summing (discrete) or integrating (continuous) over the density mass up to the current value.

A function F : IR - [0] with F(x) :kaf(i) for discrete and F(x) = f f (X)dx for continuous distributionsis
called CDF. Thisimplies F(x) - 1 for X - o and F(X) - O for x — —co.

In other words, the value of the CDF corresponds to the proportion of the distribution left of the value of interest. For
the three examples from above, the CDFs are given in figure 5.2.

Example 1 Example 2 Example 3
1.0 — 1.0 1.0 —
0.8 0.8 0.8
< 0.6 | z 06 - § 0.6
% 04 “ 0.4 04 —
02 - 02 - 024
—_— 0.0
0.0 T T T 0.0 \ \ T \ L A
40 00 10 20 6 8 10 12 14 3 5
X X X
Figure 5.2: Cumulative Distribution Functions (CDFs) of examples 1to 3
54 Moments and quantiles

Moments are main characteristics of distributions. The most important moments are:
. the expected value (first moment), specifying the location of the distribution;

. the variance (second central moment), specifying the dispersion around the expected value of the distribution;
and

. the skewness (third central moment), specifying whether a distribution is symmetric or skewed.
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These moments are defined as follows.

a) The expected value (first moment, mean) of arandom variable x with CDF f(X) is defined as
E(X) = J.x 0 (x) dx for continuous distributionsor E(x) = Z x O (x) for discrete distributions, respectively.

b)  The variance (second centra moment) of arandom variable x with CDF f(x) is defined as
Var (x) = j(x— E(X))? CF (x) dx for continuous distributions or Var (x) = Z(x— E(X))? CF (x) for discrete
distributions, respectively. The square root of the variance called standard deviation, denoted as o(x) is often
more informative since it is defined on the original data scale.

c) The skewness (third central moment) of arandom variable x with CDF f(x) is defined as
J.(x— E(x))® CF (x) dx for continuous distributions or Z(x— E(x))® CF (X) for discrete distributions,
respectively. A value of zero indicates a symmetric distribution.

EXAMPLE 1:  For the CDF from example 1 the moments are given by E(x) = 0,1[1+0,90 = 0,1,
Var(x) = 0,110,92 +0,900,12 = 0,09 resulting in a standard deviation o(x) = 0,3. The skewness can
be computed as 0,1[0,93+0.9[(-0,1)3 = 0,072 indicating that the distribution is not symmetric.

EXAMPLE 2:  The moments of the above normal distribution can be computed by partial integration and the fact
that the PDF integratesto 1, or by utilizing the properties of normal distributions stating that the
mean and standard deviation are the parameters 1 and o of the PDF

1

f(XI,U,0')=0_\/§T

Thisresultsin E(x) = 10, Var(x) = ¢ = 1, which also equals the standard deviation and skewness
= 0 for the above example.

exp{— 201_ 5 (x - 10)2} and that normal distributions are always symmetric.

EXAMPLE 3:  For the CDF of example 3, moments are computed by E(x) = 0,11+0,12+0,1(3+0,4(4+0,31 = 3,7,
Var(x) = 1,61 and negative skewness of -1,824.

The moments are computable for all three example PDFs. Nevertheless, they are not always meaningful. In particular in
the third example, the possible outcomes are "very poor" to "brilliant”, which may be ordered and named 1 to 5 as has
been done before, but the expected value of 3,7 does not have a strict meaning. The same applies for higher moments,
since the values of the variable of interest are not quantitative, but ordered qualitative.

In case of non-symmetric distributed data, moments may not be appropriate for describing the distribution of interest.
An alternative measure of location is given by the median, which can be viewed as the point cutting the distribution
into halves, namely 50 % of the distribution mass are smaller and 50 % are larger than the median.

More generally, quantiles are defined for each possible percentage. The a-quantile cuts the distribution in a part of
a+100 % of the distribution smaller than this value and (1-«)-100 % larger than this value. The median as a special case
isalso called 50 %-quantile.

A formal definition of quantilesis for instance given by Mood, Graybill, Boes (1974):

. "The a-quantile g, with a 0 (0,]] is defined as the smallest number g, satisfying F(q,) <a (for a =0, the
minimum value with positive probability or -co is defined, respectively)".

Quantiles are easiest illustrated with the examples of CDFs given above, compare figure 5.3. For each CDF, the 5 %,
50 % and 75 %-quantiles are added to the corresponding plot.
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Example 1 Example 2 Example 3
075 F-==--------
§0.50 ----------- E
0.05 £=----- PE—
Qoos  Toss do7s
X X X
Figure 5.3: lllustration of theoretical quantiles for examples 1to 3
5.5 Estimation of moments and quantiles

If only samples from the population of interest are available, theoretical moments may not be computed, but have to be
estimated empirically.

A sample-based estimator of the expectation of the underlying distribution is given by the empirical mean

n
X:EZ X , where x;,i =1,..., n arethe sample values. The variance of a distribution is commonly estimated by
n 4
i=1

n n

D (x =x)* with resuiting empirical standard deviation s= il (x —%)?.
" n—-14

i=1 i=1

=1
n-1

For estimating quantiles, the above definition of theoretical quantilesis commonly replaced by alinear interpolating
function. This function on one hand ensures that all quantiles are realized within the range of the empirical distribution
(0 %-quantile equal s the minimum of the data, 100 %-quantile equal s the maximum of the data). The interpolation on
the other hand allows a "better guess' of the real quantileif only few data are given and the underlying distribution is
continuous. The commonly used computation formulais given by:

A = (0= )% + f Ky
where i :|_1+(n—1) B?/J, f=1+(n-Dlor—i and Xpnsg) = X -

Here ;) denotes the i-th ordered data value and | z| denotes the largest integer less or equal to z,

i.e. |32]=3]49]=4. Therefore with the computation of i, the quantile is localized depending on the value of «
between Xy and X 1). The interpolation between these two values is done according to the deviation f between i and
(1 +(n-1)-a).

Examples of empirical CDFs and empirical quantiles for data simulated from the example distributions 1 to 3 are given
infigure 5.4. The solid black line represents the empirical quantiles derived by the above formula (from 0 % to 100 %).
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Example 1, n =20 Example 2, n = 20 Example 3, n =20
1.0 — 1.0 - 1.0 __J
= | — =
Z 0.8 E’ 0.8 | z 0.8 q
T 06 - T 0.6 - g 06
5 044 £ 04 - g 04
© 0.2 - 5 02 - o 0.2
0.0 T 1 T T 0.0 — 0.0 \ \ \ \ \
-1.0 0.0 1.0 2.0 6 8 10 12 14 1 2 3 4 5
X X X
Figure 5.4a: lllustration of empirical CDFs and quantiles for examples 1to 3
Example 1, n = 1000 Example 2, n = 1000 Example 3, n = 1000
1.0 | — 1.0 1.0
? 0.8 0.8 EL’% 0.8 )
T 06 = 0.6 - T 0.6
S 04— “ 04 - 5 04
— . o 0.2
0.0 — T T T ] 0.0 - 00
0 o0 10 20 6 8 10 12 14 1 2 3 4 s
X
X X

Figure 5.4b: lllustration of empirical CDFs and quantiles for examples 1to 3

Note that the above estimation procedure should be applied with great care for data sets with only few data values
where the underlying distribution is presumably discrete, since the estimated quantiles also take values differing from
those contained in the given data set. This can also be seen from figure 5.4ain the plots for samples with sasmple size
n=20.

5.6 Important distributions

In this clause some of the important distributions related to practical usage in telecommunications are described. Either
the mentioned distributions are directly related to measurement results or they are necessary to evaluate these resultsin
a second step. Further relevant distributions may be appended later.

In general, distributions are specified by certain parameters which describe their main characteristics. Commonly, the
characteristics are expressed in terms of their moments, i.e. mean value and standard deviation or variance, respectively.
Wherever possible, the relevant characteristics are given as well as examples of possible use-cases. In general,
continuous and discrete distributions are distinguished further on.

56.1 Continuous distributions

A large number of different continuous distributions is available to describe measurement results in a statistical manner.
Anoverview isfor instance given by [LAW] or [HART] (see bibliography). For practical purposesin the field of
Quiality of Service (QoS) probing, the distributions described below are probably the most relevant ones.

5.6.1.1 Normal distribution
The normal distribution, also called Gaussian distribution (or bell-shaped distribution) is used for many natural

processes whenever a symmetric continuous distribution seems appropriate. (An example was given before and density
functions of further normal distributions are givenin figure 5.5.)
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Normal distribution

Notation X ~N(u 02)
Parameters U, 0
PDF =1 -1 (x-p)?

10 =2 eql- 21 (x- )’}
CDF X

- 1 —_1 (4 2}
FOO= |4 exp| L t-p)p ot

Expected value E(X)=pu
Variance Var(X) =o?
Remarks Standard normal distribution with 4 =0 and o =1, see clause 5.6.1.1.1

The normal distribution is uniquely specified by its mean and standard deviation. For normally distributed data, about
68 % of the data are realized within the interval [ - o, u + o], 95 % are realized within [u - 20, 1 + 26] and 99,7 % are
realized within [ - 30, u + 30]. Thelast interval isalso caled 6o-interval which gave the name to the popular

"Six-sigma’-courses.

Normal PDF Example 1
with p=100, 0 =20

Normal PDF Example 2
with p=20,0=3

Normal PDF Example 3
Standard Normal with u=0,0=1
99.7 % within/ H

0020 7 68 % withi 95 % within 0.4 - 0.3% outside
6 within 20, 142 2%
0.015 [u-o, u+ 0.10 - (=20, u+20] 0 [1-30, p+30]
-30 u+30
.010 — 0.2 u
0.010 0.05
0.005 — 01
0.000 ‘ 0.00 0.0 1 | | | | |

0 50 100 150 200

0 5 10 20 30

Figure 5.5: Density functions of three different normal distributions

Normally (or nearly normally) distributed datais found quite often in practice, in particular in nature, for example

human or animal body heights.

5.6.1.1.1

Standard normal distribution

All normal distributions or normally distributed data can be standardized by subtracting the mean and afterwards

dividing by the standard deviation of the distribution or data resulting in a standard normal distribution with mean = 0
and standard deviation o = 1. The inverse computation leads back to the original distribution or data. Therefore, all
normal distributions may be reduced to the standard normal, if the parameters i and ¢ are known or estimated. Because
of thisand the fact that many statistical tests are based on the normal distribution, statistical textbooks often provide the
guantiles of the standard normal distribution. In particular, the a -quantile of the standard normal distribution is denoted

as u, .

In example 3 of figure 5.5, the density of the standard normal distribution is given.
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Standard normal distribution

Notation X~N(0JD
Parameters none
PDF — 2
f(x) = ﬁexp{—%x }
CDF X
F(X) = jﬁexp{—%tz} dt
Expected value E(X)=0
Variance Var(X) =1
Remarks
5.6.1.1.2 Central limit theorem

Another reason for the frequent use of normal distributions (in particular for testing purposes) is given by the central
limit theorem, one of the most important theoremsin statistical theory. It states that the mean of n equally distributed
random variables with mean x and variance o2 approaches a normal distribution with mean  and variance 2/n asn
becomes larger. This holds for arbitrary distributions and commonly the typical shape of the normal distribution is
sufficiently reached for n = 4. For further details about the central limit theorem see [LAW] or [MOOQOD)]

(see bibliography).

A number of tools was developed for checking whether data (or means) are normal, namely test procedures like the
well-known Kolmogorov-Smirnov goodness-of -fit test (see clause 5.6.6.1.2) among others or graphical tools like
histograms or QQ-plots. The mentioned graphical tools will be introduced in clause 6.

5.6.1.1.3 Transformation to normality

As has been seen, the normal distribution is very powerful and can be applied in many situations. Nevertheless, it is hot
always appropriate, in particular in technical applications, where many parameters of interest have non-symmetric
distributions. However, in these situations it may be possible to transform the data to normality. This idea leads for
instance to the Log-Normal distribution, which is often assumed for technical parameters.

5.6.1.2 Log-Normal distribution

The distribution of arandom variable is said to be Log-Normal, if the logged random variable is normally distributed,
which is denoted by log(x) ~ N(x, &2).

Log-Normal distribution

Notation X ~ LN(1,0%) or log(X) ~ N(1,0?)
Parameters U,
PDF

1 _(InG9 - p)?
fx(x) = g’x\/gr &P 20—2 if x>0
Oelse
CDF X
ot

F(x) = J‘U\/lﬁex

—00

Lot -u)z} dt

207

Expected value 1,
E() =exp(u+507)

Variance Var (x) = exp(2u + o ?)(exp(o?) - 1)
Remarks

Log-Normal distributions are skewed and have heavier upper tails compared to the normal distribution implying a
higher variability in the upper quantiles. Density examples for different values of /and o are givenin figure 5.6 and
illustrate that the Log-Normal distribution can take a variety of different shapes.
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Log-Normal Example 1 Log-Normal Example 2 Log-Normal Example 3
log(x) is standard normal log(x) is normal with u=2, 6 =0.5 log(x) is normal with p=2, 0=1.5
0.6 0.10
0.5 0.10 0.08
0.4
03 0.06
0.2 - 0.05 0.04
0.1 0.02
0.0 I e e 0.00 — 000 +———7 71 1 1
01 2 3 4 5 6 7 0 5 10 15 20 25 30 0 10 20 30 40 50
X X

X
Figure 5.6: Density functions of Log-Normal distributions

5.6.1.2.1 Use-case: transformations

A given data set can be checked whether it is distributed according to a Log-Normal distribution by computing the log
of the data val ues and using one of the graphical tools mentioned before for verifying the normal distribution for the
logged data. Empirical mean and standard deviation of the transformed data can then be used for estimating the
parameters of the distribution, respectively.

Similarly, other transformation-based distributions can be derived from the normal distribution, for instance for the

square-root transformation +/x ~ IN(, @) or the reciprocal transformation 1/x ~ IN(, ¢2). A general concept based on
power-transformations of x was proposed by Box and Cox (1964).

5.6.1.3 Exponential distribution

For modelling arrival processes, often the negative exponential distribution is used. The relevant parameter for this
distributionis A which symbolizes the life cycle of a process. Concerning arrival processes, A isnamed the
inter-arrival rate of succeeding events.

Exponential distribution

Notation X~ Exp(A)
Parameters A>0
PDF f(x) = Aexp(- Ax) if x=0
CDF F(x) :1—exp(—)lx) if x=0
Expected value
P E{X} -1
A
Variance 1
var{x} = =
Remarks Life-cycle description, survival function:

Survival probability P(X > X) = exp(—=1X)
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Negative Exponential Example Negative Exponential Example Negative Exponential Example
Lambda is 0.5 Lambda is 1 Lambda is 2
0.6 10 2.0
0.5 :
0.4 0.8 15
0.3 0.6 1.0
0.4
0.2 05
0.1 0.2
00 +——7—71 7171 71 71 00 +—F——F— 77171 00 +——7— 71T T 1
01 2 3 45 6 7 01 2 3 45 6 7 01 2 3 456 7
X X X

Figure 5.7: Density functions of negative exponential distributions

5.6.14 Weibull distribution

The Weibull distribution is a heavy-tailed distribution which means the distribution is skewed with a non-negligible part
of the probability massin the tail. This distribution can be used to describe processes which have a rare frequency, but
which are not negligible due to their weight.

Weibull distribution

Notation X ~Weibull (a, £)
Parameters a with a =2 0,

B with 8 >0
PDF f,(X) = g’ Lexp(-ax?) if x>0
CDF F (X) :1—exp(—afxﬁ) if x>0

Expected value 1
Y R |
E{X} =a r(_ +1J
B
with ' Gamma function

_2 2
Var{x} =a * F(%+lj—(r(%+ljj with ' Gamma function

Variance

Remarks Fatigue of material
Weibull (2, 8) is a Rayleigh distribution with parameter £ . Rayleigh is used for

description of fading effects.

The Gamma function is defined as the integral function r(x) = jexp(—t) it . One important relationship for the
0
Gammafunction is given by F(X + 1) =X EII'(X) . For integer values n thisrelation transformsinto I"'(n) = (n-21)!
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Weibull data witha=1and =1
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Weibull Example 2

Weibull data witha=2and =1
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Weibull Example 3

Weibull data with a=3 and B =1

1.0
0.8
0.6
0.4
0.2
0.0 T T T T T

Figure 5.8: Density functions of Weibull distributions

5.6.15 Pareto distribution

The Pareto function also models a heavy tailed distribution. One common use-case of this distribution is the modelling
of packet-oriented datatraffic. For example, the size of HTTP requests and replies as well as FTP downloads can be

described as a Pareto function.

Pareto distribution

Notation X ~ Pareto(c,a)
Parameters C scale and location parameter
a shape parameter

PDF f(x)=ax @ for x>c
CDF

F(x)=1- (Ej

X
Expected value E{X} _C for a>1
a-1

Variance Var{X} _ ca for g > 2

(0-1°ta-2)
Remarks

Pareto Example 1
Pareto data witha=1andc=1

Pareto Example 2
Pareto data witha=2andc=1

Pareto Example 3
Pareto datawitha=4andc=1

Figure 5.9: Density functions of Pareto distributions

ETSI



5.6.1.6

22 ETSI TS 102 250-6 V1.2.1 (2004-10)

Extreme distribution (Fisher-Tippett distribution)

For modelling extremely seldom events with a high and negligible influence, the extreme distribution may be

appropriate.
EXAMPLE 1:

EXAMPLE 2:

In service probing, this distribution for example relates to the amount of data which is transferred
via FTP data connections. Whereas most of the users generate traffic in the range of some ten or
hundred megabytes, at some time single users occur which like to transfer for example

10 gigabytes in one session. When modelling the overall FTP data traffic, these users cannot be
neglected due to their immense data volume, but their occurrence probability is very low.

Concerning insurance cases, single incidents which require a very high financial effort arise when
for example an explosion eliminates a complete factory building. Again, due to the high financial
effort these cases have be taken into account even they occur rarely.

Extreme distribution

Notation X ~ Extram(a’ﬁ)
Parameters a shape parameter
[ scale parameter
PDF _ -
F() =i®xp(—ﬁj (exp —exp(— . aj
B B B
CDF

ol 5]

Expected value

E(¥ =a+8y
with y = 0,57721566 constant of Euler-Mascheroni

Variance

2 n2
Var{ﬁznég for a >2

Remarks

Extreme Example 1
Exteme datawitha=1and =1

0.4

0.0 \ \ \ T \

Extreme Example 3
Extreme data witha=4 and 3 =2

Extreme Example 2
Extreme data witha=4and =1

0.4 — 0.4
0.3 - 0.3
0.2 1 0.2
0.1 0.1
0.0 00 =77 1 717 1

Figure 5.10: Density functions of extreme distributions

5.6.2

Statistical tests are commonly applied to rgject an assumption in favour of an alternative assumption. Therefore, most
tests are based on some kind of measure of deviation. This may be the deviation of data from a model assumption or
from an assumed mean value, atarget value and so on. For computational ease, single deviations are often assumed to
be normally distributed.

Testing distributions

Based on these concepts, three important testing distributions are introduced in the following, namely the Chi-square-,
F- and Student t-distributions.
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5.6.2.1 Chi-Square distribution with n degrees of freedom

If the results of a service probing is assumed to be the result of a number of independent standard Normal processes,
this distribution provides a basis for testing against this assumption. For eval uation purposes concerning the x>
distribution, see clause 5.6.4.

A x? distribution represents a combination of n independent random variables Z4, ..., Z, where each random variable
is standard normal, i.e. Z; ~ N(0,1) . The combination is done according to:
n
z z% ~ X3

i=1

The result of this combination is called a" (central) 2 distribution with n degrees of freedom".

(Central) Chi-Square distribution
i 2
Notation X ~ x?
n
— 2
Random variable X = z Zi
i=1
Parameters N : degrees of freedom
Z4, ...., Zn: independent standard normal random variables: Z; ~ N(0,1)
PDF
_ 1 %-1 X
f(x)=————0k= [&xp T ) forx>0
5 n
22 [T| —
2
CDF X
FO9= [f(&) dé
No closed solution available
Expected value E{ x} =n
Variance Var{X} =2n
Remarks Combination of n statistically independent N(0,1) random variables (standard normal)
Approximation:
X—n
F(x)=P(X <x)0®
\/2n
ChiSquare Example 1 ChiSquare Example 2 ChiSquare Example 3
ChiSquare data with n=1 ChiSquare data withn=3 ChiSquare data with n=5
1.4 1.4 1.4
1.2 1.2 1.2
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 T T T T 0.0 T 0.0 e e
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
X X X

Figure 5.11: Density functions of Chi-Square distributions
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5.6.2.1.1 Further relations

The referenced gamma function is defined as the integral function:
M(x) = I exp(~t) %Lt
0

Additional useful relations according to this function are:
M(x+1) = x0T (x)
and

M(n) = (n—l)! if X=n isaninteger value

5.6.2.1.2 Relation to empirical variance
. If the mean value  isknown, the empirical variance of n normally distributed random variables reads
13 N . : . o .
sf, = o q_l: ( X - ,u)z . With this piece of information, a chi-square distribution is given for the following
2

expression: NG5 ~ x?2.
o

_ . . 1 - . .
. Without knowledge of £, the empirical variance s* = 1 ()g - X)2 estimates the variance of the
n-1 7=
2

process. The appropriate relation in this case reads (n-1) E—IS—Z ~ X2,
o

5.6.2.2 Student t-distribution

If astandard normal and a statistically independent chi-square distribution with n degrees of freedom are combined

U
accordingto X = 7 , Where Z ~ x2 (chi-square distributed) and U ~ N(0,1) (standard normal distributed), the
n

constructed random variable X is said to be t-distributed with n degrees of freedom. Alternatively, the denomination
" Student t-distribution" can be used.
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Student t-distribution
Notation X ~t,

U
Random variable X = 7 with U ~ N(0,1), Z~x,2, independent.
n

Parameters N : degrees of freedom
PDF r n+1 141
2

f(x) =

CDF X
FO9= [f(&) dé
No closed solution available
Expected value n=2: E{Z} =0
Variance n
n=3: Var{Z} :—2
Remarks The PDF is a symmetric function with symmetry axis x = 0.
Additional relation for a -quantiles t.,: t,., =ty 4
Student-t Example 1 Student-t Example 2 Student-t Example 3
Student-t data with n=2 Student-t data with n=4 Student-t data with n =40
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
00 — 71— 00 +——7——71 7171 7 00 =777 71 71
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
X X X
Figure 5.12: Density functions of Student-t distributions
5.6.2.2.1 Relation to normal distribution

It may not be obvious, but t-distributions with large number of degrees of freedom may be approximated by a standard
normal distribution.

. The standardization of normal variables was covered before: If X ~ N(y, @), then (X-1)/a~ N(O, 1).

. Consider the case of data assumed to be normal with unknown variance. As stated before, the empirical
variance is then related to a chi-square distribution. The empirical mean and variance of n normally distributed

(N(, 6)) random variables X,, X,,..., X, are given by:
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-
e

5.6.2.3 F distribution

The F distribution is acombination of m standard normal distributed random variables Y; and n standard normal
distributed random variables V; which are combined as described below. Again, m and n are called "degrees of
freedom" of this distribution.

Thisdistribution is often used for computation and eval uation purposes, for example in relation with confidence
intervals for the binomial distribution (Pearson-Clopper formula). In general, it compares two types of deviations, for

instance if two different models are fitted.

F distribution

Notation X ~Fon
m
S
Random variable X = i:l
1 2
CEON
i=1
Parameters m, N : degrees of freedom
Y;,...., Yy - independent random variables according to N(0,1)
Vi,....,V, : independent random variables according to N(0,1)
PDF moo
(Ej 2 D(E_l _m+n
0= 1 m) e x>0
m n n
Bl —,—
(53)
r o
with B(p7q) = M
r(p+a)
Eularian beta function
CDF X
FO9= [f(&) dé
No closed solution available
Expected value
P n>2: E{7 ="
n-2
Variance 2
+ —
n>4: Var{z} :M
m(n - 2) (n - 4)
Remarks A F.,, related distribution can be interpreted as the quotient of a y 72
distribution and a y? distribution multiplied with AL
m
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F Example 1 F Example 2 F Example 3
F data with m =4 and n=40 F datawithm=2andn=2 F data with m =40 and n=4
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
00 +—F—FT—"FTF—7— 00 ——T—71 7 1 1 T 00— 1 1 11
0123456 7 01234567 01234567

X
X X

Figure 5.13: Density functions of F distributions

5.6.2.3.1 Quantiles
For quantile computation purposes, the following relations may be useful:

1
F”l*”z;l‘y - =
N,y

In general, quantile values of this distribution are tabulated.

5.6.2.3.2 Approximation of quantiles
If the desired quantile value cannot be found in tables, the following approximation may be helpful:

If the y -quantileiswanted with y intherange 0,5< y <1, therelation
Fo.n,.y Dexplua-b)
applies where u =u, isthe y -quantile of the standard normal distribution N(0,1).

The symbols a and b are derived from the following equations:

a=+2d +cd?

p=zf -t Lo lfes2-9]
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5.6.2.3.3 Relations to other distributions

When the F distribution comes to usage, the following relations may ease the handling of this distribution:

2
. Relationto t distribution for n; =1: Fin,y :{t 1+VJ .
Ny ——
2
. 2 1 2
. Relationto y“ distribution for n, — oo: Freoy =— DXny”
Yy ;

. If g - o and n, - o, thedidtribution smplifiesto:  F,,., =1

56.3 Discrete distributions

Discrete distributions describe situations where the outcome of measurements is restricted to integer values. For
example, the results of service access tests show either that service accessis possible (mostly represented by alogical
"1" value) or that it is not possible (mostly represented by alogical "0" value). Depending on the circumstances under
which such "drawing a ball out of abox" tests are executed, different statistical distributions apply like shownin
clauses 5.6.3.1t0 5.6.3.4.

5.6.3.1 Bernoulli distribution

The starting point of different discrete distributionsis given by the Bernoulli distribution. It simply describes the
probability P of apositive outcome of asingle test where only two states are allowed, generally a positive one and a
negative one. As soon as more than one single test is executed, further discrete distribution may be applied as shown in
the following clauses.

Bernoulli distribution

Notation X ~ Bernoulli(p)

Parameters p0(03)

PDF 1-p ifx=0
p(x) = p ifx=1

0 otherwise

CDF 0 if x<0
F(x) = 1-p ifO0sx<l
1 if 1<x
Expected value E{X} =p
Variance Var{X} = p(jl— @
Remarks
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Bernoulli 1 Bernoulli 2 Bernoulli 3
pis0.8 pis 0.6 pis0.3
1.0 1.0 — 1.0
0.8 0.8 0.8
— 0.6 — 0.6 | — 0.6 |
X = X
= 04 = 04 = 04
0.2 0.2 0.2
0.0 T T 0.0 — T T 0.0 T T
-1.0 0.0 1.0 2.0 -1.0 0.0 1.0 2.0 -1.0 0.0 1.0 2.0
X X X
Figure 5.14: Density functions of Bernoulli distributions
5.6.3.2 Binomial distribution

Whenever the outcome of atest is either true or false, the binomial distribution can be applied. In any case where a
"black or white" interpretation of results is appropriate, this distribution is able to describe the measurement process.
Dueto this"yes or no" character, the binomial distribution can be interpreted as the result of different Bernoulli tries.
Relevant examples related to service probing are service access issues (e.g. call successrate, SM S send failure ratio,
etc.). For ahigh number of measurement results, the distribution can be replaced by the Normal distribution as a first
approximation as shown in clause 5.6.3.3.

Precondition: To determine the CDF of abinomial distribution with relation to different tests, the single events haveto
be independent from each other. This means that the probability of a successful outcome of different consecutive tests
must not change. In consequence, this means a memory-less process where the result of a succeeding test is not related
to the outcome of its predecessor(s).

Binomial distribution

Notation X ~ Bin(n, p)
Parameters n Number of tests
mNumber of successful test outcomes
p= m Observed probability of successful outcomes
n
g =1- p Observed probability of unsuccessful outcomes
PDF n
P(X =K) :[kaka— P =b(n, p,k)
with k=0,1 2,...,n
CDF ko n) "
P(X skg) = p(L-p)™
wsw=3
with k =0,1, 2,...,n and ky =k
Expected value E{ X} =nlp
Variance Var{X} =nlpll=nlp{-p)
Remarks Related to F distribution
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Binomial 1 Binomial 2 Binomial 3
nis 10, pis 0.25 nis 10, pis 0.5 nis 20, pis 0.5
0.35 0.35 0.35
0.30 0.30 0.30
0.25 0.25 0.25
< 0.20 = 0.20 Egig
=0.15 F0.15 .
0.10 0.10 | | 832
0.05 :
005 | |, 0.00 1 L. 0.00
0.00 ! ! T ] . I I I 1
0 5 10 15 0 5 10 15 0 5 10 15 20 25
X X X

Figure 5.15: Density functions of binomial distributions

For computation purposes, the following relation between the binomial distribution and the F distribution may be
useful:

P(X <x)=1- P(F <N Xp P j
x+1l 1-p

Inthisformula, F representsa F distributed random variable with 2[{x +1) , 2[{n— x) degrees of freedom.

5.6.3.3 Geometric distribution

The geometric distribution typically describes the following situation: A number of Bernoulli trialsis executed
consecutively. Each of these trials has a success probability p . By use of the geometrical distribution, one can

determine the probability of a successful outcome of a Bernoulli trial after X unsuccessful outcomes.

Scenarios where this computation may be of interest are for example the occurrence of the first success after X failures,
or related to service probing, the number of failed service access attempts before the first successful attempt.

Geometric distribution

Notation X ~ G( p)
Parameters pd (0,1)
PDF _[p@-p)*it xofo,1,.}
p(x) = ,
0 otherwise
CDF .
F(x) = {1— (- p)if x2 0
0 otherwise
Expected value E{X} _ 1—p p
Variance var {X} _ 1—2p
p
Remarks
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Geometric 1 Geometric 2 Geometric 3
pis 0.25 pis 0.5 pis 0.8

0.8 0.8 0.8
0.6 0.6 0.6
Z 04 Z 04 Z 04
0.2 0.2 0.2

0.0 0.0 ! ! Ly 1 T I 0.0 [ \ \ I

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

X X X
Figure 5.16: Density functions of geometric distributions
5.6.3.4 Poisson distribution

The Poisson distribution is also called "distribution of rare events'. Generally, this distribution relates to the number of
events within a certain time of period under the precondition that the events occur at a constant rate A . The Poisson
distribution often is used to describe call arrivalsin atransmission system, especially the current number of processed
service attemptsin asystem.

Poisson distribution

Notation X ~ Po(/l)
Parameters A
PDF k

P(X =k) :/IL—Iexp(—/l)
with k=0,12,...,n

CDF k /]k
P(X <k)=)» —exp(-A
(X=k) = “-exp(-1)
i=0
with k=0,1 2,...,n
Expected value E{ x} =1
Variance var{X} =
Remarks Related to x? distribution
Poisson 1 Poisson 2 Poisson 3
Lambdais 0.5 Lambda is 1 Lambda is 3
0.6 0.6 0.6
0.5 0.5 0.5
04 04 o 04
Z 03 £ 03 = 03
0.2 0.2 0.2 |
0.1 0.1 0.1 | |
| L
0.0 ! ! T T | 0.0 \ e \ | 0.0 \ ! \ \ |
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Figure 5.17: Density functions of Poisson distributions

ETSI



32 ETSI TS 102 250-6 V1.2.1 (2004-10)
For computation purposes, the following relation between the Poisson distribution and the y? distribution may be
useful:

P(X <x) =1-P(x? < 2)

In thisformula, x? representsa X2x2 distributed random variable.

5.6.4  Transitions between distributions and appropriate approximations

Depending on the number of available measurement results, different distributions can be applied to handle the results.
In this clause, some useful transitions between common distributions and their required conditions are discussed.

5.6.4.1 From binomial to Poisson distribution
The binomial distribution can be approximated by the Poisson distribution if:
. the probability p issmall (rule of thumb: p<0,1); and
. the number of executed test cases n is high enough (rule of thumb: n>30).

The approximation of abinomial distributed quantity by a Poisson distribution is given by:
/1k
P(X =k) DW Cexp(=A)

where the Poisson distribution parameter A is given by:

A=phh
5.6.4.2 From binomial to Normal distribution
If abinomial distribution fulfils the rule of thumb:

nplg=9

then it can be approximated by the Normal distribution:
B(n, p) ON(nCp,nCpLe)

The approximation in detail reads:

X -nlp
P(X <x) 0P —=
[an]

Especially for smaller numbers of n the following approximation may be more favourable:

P(x, < X < X,) Dq{XZ_”Ep+°’5J_¢[X1-nED—O,5J

VYnipLg VnipLg

56.4.3 From Poisson to Normal distribution

According to the Poisson limit theorem, the Poisson distribution can be approximated to the Normal distribution if the
distribution parameter A fulfils the following relation:

A=ph=9

which is quite similar to the transition from binomial to Normal distribution.
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Then, the approximation reads:

P(X <k) ch(%}

5.6.5 Truncated distributions

According to resource constraints of measurement equipment, some measurements have to consider timeout values. By
the use of timeouts, the maximal period of time in which measurement results are considered as relevant for the
measurement is limited. The resulting density function then is clipped at the right-hand side. Truncation may also occur
at both ends of a density function.

For example, if the end-to-end delivery time of some message service is subject of a measurement, the introduction of
timeout values may reduce the number of measurement samples. Thisis because all delivery times which are higher
than the defined timeout value are discarded. By discarding some samples, the entirety of datais reduced which means
that probabilities describing the measurement may be influenced.

In general, truncation can be described by conditional probabilities. The condition is given by the timeout value.
Furthermore, probabilities are then computed under the constraint of the timeout. Truncated Normal and Poisson
distributions are covered in more detail by [MOOD] (see bibliography).

5.6.6 Distribution selection and parameter estimation

If adistribution is sought to describe a given data set, two steps have to be carried out. Firstly, an appropriate
distribution family (type of distribution) has to be selected and secondly, the corresponding parameters specifying this
distribution have to be estimated. Test procedures or graphical methods may be applied for the first step, parameter
estimation procedures are needed for the second.

5.6.6.1 Test procedures

The formulation of testsis covered in detail in clause 5.7.1. In this clause, three well-known tests that may be used for
checking distributional assumptions are described briefly. It focuses mainly on the fundamental ideas leading to these
tests.

All test procedures are based on comparisons between assumed and empirical distribution. That is, from the data on
hand, the underlying distribution is guessed and then verified by applying one of the test procedures described in
clauses 5.6.6.1.1t0 5.6.6.1.3.

5.6.6.1.1 Chi-Square test

The main idea of the Chi-Square test is to test whether a set of data comes from anormal distribution by building
classes and checking whether the expected number of observations and the number of datain each class are similar. If

the deviations between both numbers - in terms of squared differences - exceeds a corresponding x2-value, the
distribution assumed has to be rejected.

5.6.6.1.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is based on the cumulative distribution functions of the theoretical (assumed) and
empirical distribution of the data at hand. The main ideais that the distributional assumption isrejected, if the
maximum vertical distance between both Cumulative Density Functions (CDFs) exceeds a critical value.

5.6.6.1.3 Shapiro-Wilk test

Shapiro and Wilk suggested atest procedure that is based on quantiles and related to the QQ-Plot introduced in
clause 6. The main idea of this test isto compare the sum of squared deviations between the points of the QQ-Plot and

the best fitting straight line with a given x2-val ue.
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5.6.6.2 Parameter estimation methods

Most frequently applied methods for parameter estimation are Maximum-Likelihood or Moment estimation methods.
For the mean of anormal distribution, both methods yield identical results. For further details compare [MOOD] (see

bibliography).

5.7 Evaluation of measurement data

Related to active service probing, certain issues can become much easier to handleif it is able to describe the gathered
datain avery compact way. One possible way to reach thisaimis to execute different tests and thereby to check some
assumptions. These assumptions are stated before any testing is done. They are called "hypotheses”.

From a dightly more theoretical point of view, thistopic can be expressed as follows:

With every measurement sample some information about the investigated process is retrieved. Since commonly the
characteristics of the process are unknown, with every piece of additional information (i.e. every sample) the degree of
knowledge increases. This knowledge is formalized by the application of statistical tests or the determination of
confidence intervals for the distributional parameters of interest.

Theidea of statistical tests and some simple examples are presented in clause 5.7.1. Subsequently, the construction of
confidence intervals and the relation between test and confidence intervals will be covered in clause 5.7.2.

5.7.1 Statistical tests

Statistical tests are introduced by specifying the test components first and afterward distinguishing different test classes
and giving examples where appropriate.

5.71.1 Formulation of statistical tests

Statistical tests are formulated by specifying the following components:

. (Null-)Hypothesis: This hypothesisis commonly denoted by H or H,

EXAMPLE 1: H:pu=60.

. Alternative Hypothesis: This oneis commonly denoted by A or H;.
EXAMPLE2: A p#60 or A u>60.

. Test gtatistic: A test statistic is derived so that it is sensitive for deviation from the hypothesisin favour of the
aternative. That is, the meaning of the test statistic isto notice if in fact Aistrueinstead of H. Test statistics
are commonly denoted by T.

. Testing ruleand critical value: Thetesting rule states the condition under which H is rejected in favour of
the alternative A. So it represents something like a switching condition.

EXAMPLE3: "RejectH, if X>c" or "Reject H, if [X|>c".
Thevalueciscalled "critical value'.

. Typel: Error level a : The probability of rejection H, although true, is controlled by the value & . The
specification of @ hasdirect impact on ¢ and thereby on the testing rule. Commonly, the type |l error is
restricted to 5 % or 1 %, that is a = 0,05 or a = 0,01, respectively.

A statistical test is carried out by specifying all of the above components, computing the test statistic and comparing it
with the critical value. Test results are usually documented by reporting the val ue of the test statistic as well asthe
corresponding test result. Alternatively, the so called p-value may be reported. This value measures the "significance"
or atest result in the way that if the p-valueis smaller than the error level a , the hypothesisis rejected, otherwise it
may not be rejected. A p-value correspondsto the smallest a -level for which the test would have been rejected.
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57.1.2 Classes of statistical tests

Commonly, statistical tests are formulated in the way that the alternative makes the statement one wishesto provein a
statistical sense. That is, in general tests seek to reject a given hypothesis and are therefore formulated accordingly. This
is done due to the fact that if the Type | error is specified, arejection implies that the hypothesisis untrue with
user-defined certainty.

However, a number of test procedures exist that differ from the mentioned general test philosophy. Some of these
examples are the tests used for selecting distributions (compare clause 5.6.6). Their purpose isto support the hypothesis.
Nevertheless, strictly speaking it isimpossible to proof any equality hypothesis, therefore the test result can either be
that there is no hint that the hypothesisis violated or that there is evidence that the assumed distribution is not
appropriate. In the following, it is assumed that one wishes to reject the hypothesisin favour of the alternative.

Two major classes of tests are distinguished, namely one-sample and two-sample tests.

. If atest isbased on only one data set for which areference alternative is to be checked, thisis a one-sample
test.

. On the other hand, two data sets may be compared by testing for instance the hypothesis H related to the
Multimedia Messaging Service (MMS).

H: MMS-E2E-Delivery Time [this week] > MMS-E2E-Delivery Time [last week]
against the alternative that the MM S-E2E-Delivery Time was reduced from last week to this week.

Furthermore, tests that are based on distributional assumptions and distribution-free tests are distinguished. Most
distribution-based tests are testing for the location and dispersion / variation of an assumed distribution. For two-sample
tests, both samples are assumed to be from the same type of distribution, but possibly with different parameters, for
instance different location. In contrast, distribution-free tests should be applied, if thereis not enough knowledge about
the distribution of the data. However, distribution-free tests are in general less powerful, therefore distribution-based
tests should be preferred, if appropriate.

5.7.1.3 Tests for normal and binomial data

In the following clauses, two of the main use-cases of statistical data are taken into concern. These clauses deal with test
for normal distributed and binomial distributed data.

5.7.1.3.1 One-sample tests for normal data

If data are from anormal distribution with known variance g%, i.e. X,,..., X, ~ N(W,0,’) , three different
location tests may be carried out. All of these compare the location of a given sample to a value 14, that may be chosen
arbitrarily.

Y_
. Test for H: i =14 vs. A: i1 # 14y The corresponding test statisticisgivenby T = Jn H
0
Hisrejected, if T> ug_ 0.
. o _ X =M,
. Test for H: 1 < 1y vs. A: > 4y The corresponding test statisticisgivenby T = \/ﬁ
0
Hisrejected, if T> uy_, (fora <0,5).
. T o _ X = Hy
. Test for H: p 2> 1y vs. A: 1< 14y The corresponding test statistic isagain givenby T = Jn
UO

Hisrejected, if T<u,= -u;_,(fora <0,5).
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If data are from anormal distribution, but thevarianceisunknown, i.e. X,,..., X, ~ N(W,0?), the variance has to

be estimated from the data and the above "normal-tests" are replaced by student t-tests. In this case, the variance
estimator:

S
s-n_liﬂ()g X)

X - X -
\/ﬁ SUo orT= \/ﬁ Ho , respectively. Critical values are
UO

given by the quantiles of the t-distribution: t, ;1 1.4, thq, 1.9 OF th.q o respectively.

is applied. Test statistics are replaced as follows: T =

If instead the variance is unknown and subject of atest, i.e. X,,..., X, ~ N(u,0?) with unknown pand &2, the
following tests comparing the variance of a given sampleto avalue g, that may be carried out.

+  TestforH: 0 =qyvs A 0# gy The corresponding test statistic is given by T = (n-1)/ g 2 § with
1 n
2

$== (% —X)* . Hisreected, if T> X1 02 01 OF T< o na-
n- i=1 ' 1

+  TestforH: os0yvs A 0>0 The corresponding test statistic is again given by T = (n-1)/ g2 s? with 2 as
given above. H isrejected, if T> ¥2 ; 1.

« TestforH: o>0yvs A o<0o: Test statistic and empirical variance are as before. In this case, H is rejected,
if T< Xy n1

5.7.1.3.2 Two-sample tests for normal data

In the case of two samples, that are to be compared, two very different situations are distinguished. The two samples
can either be collected on the same observational units or can be observed independently. If both samples are from the
same units, for example measuring the cut-of-call-ratio at different network elements before and after a new piece of
softwareisinstalled, the two samples are called paired and two observations from the same unit will generally be
correlated. In this case, the differences between both measurements for each unit are computed and the new
observations D; = X; - Y; are assumed to be normal with expectation (4, = £/ — £4, . Then, the above tests for normal

data may be applied, for instance to test for £y=0, i.e. 1y =4 to prove that there is a significant difference between
both samples.

For independent data from two samples, both assumed to be normally distributed with the same known variance,
but possibly different expectations, i.e. X,,..., X, ~ N(Ky,0°) and Y,,...,Y, ~ N(L,,0°) , tests to compare both
means are given as follows.

The following test statistic T is defined for testing the hypotheses:

% -V
T :—y
1.1
g,[—+—
n m
o Testfor H: s = vs Ar piy # 14y Hisrejected, if [T| > uy_
o TestforH: py <o vs A iy > iy Hisrejected, if T> uy_,
o TestforH: g > o vs Al iy < 4 Hisrejected, if T< u,

If the varianceis unknown but assumed to be equal for both samples, the normal distribution is again replaced by a
Student t-distribution resulting in the following test procedures.
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i=1

1 1 - n+m-2
s‘/—+—
n m

o TestforH: i =iy vs. Al iy # iy Hisrejected, if [T| > t_ 0 nemo:

s Testfor H: i < vs. Al iy > phe Hisrejected, if T> 4 5 o
o TestforH: gy 2o vs Al piy < fa Hisrejected, if T<t, o0

In general, before carrying out one of the above tests, the assumption of equal variances hasto be verified. Thiscan
be done by using the following test:

2
s Testfor H: o2 =2 vs. Al 0y? # &2 The corresponding test statistic is given by T :S—é,
sy
where
S =13 (e 1) st =13y, -y
* n-1gt m-14""
5.7.1.3.3 Test for binomial data

For binomial data, tests for the probability of success p may be carried out that compare the sample probability to some
specified value p,. Three one-sample tests may be derived by computing the critical values under the three hypotheses

If misthe number of successful trids, the first hypothesisis rejected, if:

m>c orm<d
19, %

where
() .
oy = kmr{?.'f‘r}i:m(i jpé(l- p)" <a
and
k-1 n . .
6, = 3|l sa

The second hypothesisisrejected if M > C,_, and thethird oneif M < da .
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An aternative way may be appropriate if large numbers of samples are available (large means np(l— p) >9is
fulfilled). In this case, the test statistic:

m-np,

VAL (1_ po)

Z =

can be applied. In this case:
. the first hypothesisisrejected, if [Z] > uy_ o,
. the second one, if |Z] > u,_,; and

»  thethirdone, if |Z] < uy_,.

5714 Distribution-free tests for location

If the location for two sets of random variables shall be compared, but there is not enough knowledge for a
distributional assumption, distribution-free test may be applied.

5.7.1.4.1 Sign tests

In the case of paired samples, the differences between both measurements for each unit are again computed as
D, = X, Y. If both distributions have the same location, the probability of X; <Y, should equal the probability of

X, >, and both should equal 0,5. Based on this consideration, the following tests may be carried out.

o TestforH: P(X; >Y;) =P(X; <Y;) =05 vs A P(X; >Y;)#05.

Testfor H: P(X; >Y;)<05 vs. A: P(X; >Y;)>05.
 TestforH: P(X; >Y;)205 vs. H: P(X; >Y;)<05.

In all cases, the test statistic T is given as the number of positive differences D;. Thistest statistic is abinomial random

variablewith p=P(X, >Y,) . Therefore all of the above stated hypotheses are tested by applying abinomial test as
described in some more detail in clause 5.7.1.3.3.

5.7.1.4.2 Sign rank test

For the same situation, another kind of test, namely the sign rank test, may be preferable if the distribution of
differencesis symmetric around some value O , thatis P(D, <0 —a) =P(D, 2 J +a) for all real numbersa. In

comparison to the previous clause, the sign rank test not only uses the signs of the differences between both
measurements, but also the absolute valuesin terms of their ranks.

n
For each of the following hypotheses, the test statistic T = Y V,R(|D,|) with V, =1, if D, >0 and V, =0 otherwise
i=1

and R([)] the rank operator that sorts the entries and gives rank 1 to the smallest entry and rank n to the largest, is used
as abasisfor the test decision.

. TestforH: =0 vs. A: 0#0.
. TestforH: 0<0vs. A: 0>0.

TestforH: 0=0vs. A: 0<0.
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1
For the test statistic, we have a distribution with expectation E(T) = 2 n(n+1) and variance

1
Var (T) = o n(n+1)(2n +1). The quantiles of the resuiting distribution are given in statistical text books on

T-E(T)
ar (T)

nonparametric methods. However, in case n= 20, the distribution of may be approximated by a standard

normal distribution.

5.7.14.3 Wilcoxon rank sum test

In contradiction to both tests explained before, the rank sum test suggested by Wilcoxon is used for independent
samples. It assumes that both samples come from the same kind of distribution, but with a shifted location, that is

X, X, and Y., Y, (NS m) are independent and have continuous distribution functions F, and F, respectively.
These are shifted by 0 ,i.e. Fy (X) =k (X +5) . Meaningful hypotheses are the following:

. TestforH: 0=0vs. A: 0#0.
. TestforH: 0<0vs. A: 0>0.
. TestforH: 0=0vs. A: 0<0.

In this situation, for instance a rejection of the third hypothesis, i.e. 0 <0 would imply that the location of the second
distribution function is significantly smaller, that is the y-values are in general be smaller than the x-values.

For the above tests, a sensible test statistic is derived by combining both data sets to one sample and computing ranks
by ordering the values according to their size. The test statistic T is now given by the sum of all ranks for values from
the first sample, i.e. the x-values. For this test statistic, expectation and variance are given by:

E(T)=%n(n+m+1)
and
Var (T) =in m(n+m+1)
12

respectively. Again, exact critical values for these tests are not easy to derive, but approximations exist. If n,m= 4and
T- E(T)

n+mz= 30, the distribution of
ar (T)

may be approximated by a standard normal distribution.

57.2 Confidence interval

In contrast to point estimators where a single number is used to summarize measurement data (compare methods for
estimating moments or quantilesin clause 5.5), confidence intervals describe an interval that covers the true parameter
value with a certain probability. Usual probability measures are in the 90 percent range. For example, a confidence
interval represents the interval in which the mean of the underlying distribution lies with a probability of 95 percent or
with a probability of 99 percent.

Confidence intervals are related to statistical testsin the sense that a confidence interval with a given confidence level,
for instance 95 %, contains all Confidence levels are denoted by 1-a, where a corresponds to the Type | error level for
tests.

As arule of thumb the number of samples within a measurement campaign correlate with the reliability of results. In
other word: The higher the number of collected samples, the more precise and trustworthy the results are.

The computation of confidence intervals depends heavily on the assumed kind of distribution. In the following, the
computation of confidence intervalsis described for the binomial and the normal (Gaussian) distribution.
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5721 Binomial distribution

This clause defines how to compute a confidence interval to thelevel 1-a for p for abinomial distribution.

At first, the computation of a confidence interval [pl; p2] according to the binomial distribution depends on the number
of tests n which are executed to determine p.

. If the condition n[p [ = 9isfulfilled, the binomial distribution can be approximated by the Normal
distribution which eases the computation of the according confidence interval.

Thevaluesfor p, and p, arethen given by:
2 _ 2 _m
2m+ul_% ul_% D\/ul_g+4n‘(l nj
P =
2[n+u12_a]
2

1
P, =
2
n+u
2

with the known parameters m and n from clause 5.6.3.4 (Binomia distribution). The term ul « representsthe 1—%

2
quantile of the standard normal distribution N(O,l). Some examples for different confidence levels a and their

according ul » Quantile values are given in the following table.
2

Confidence level 1-a a Term 1_2 Quantile ul-ﬂ
2 2
0,9 (£90 %) 0,1 0,95 1,6449
0,95 (£95 %) 0,05 0,975 1,96
0,96 (£96 %) 0,04 0,98 2,0537
0,97 (£97 %) 0,03 0,985 2,1701
0,98 (£98 %) 0,02 0,99 2,3263
0,99 (£99 %) 0,01 0,995 2,5758
0,999 (£99,9 %) 0,001 0,9995 3,2905

The quantile values can be taken from tabulated quantile values of the standard normal distribution respectively the
cumulated distribution function of this distribution.

. If the previous condition is not fulfilled, the confidence interval has to be computed with regard to the
binomial distribution itself. In this case the parameters p, and p, are called " Pear son-Clopper values'. In

detail, the values p; and p, represent interval boundaries which fulfil the relations:
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Using the relation between the binomial distribution and the F distribution with 2[{x+1) , 2[{n - x) degrees of
freedom (see clause 5.6.2.3):

P(X <x) =1- P(F < ”_Xgij

x+1l 1-p

The Pearson-Clopper values can be determined as:

mF

2m, 2(n—m+l);%

P T m+1emiF R
2m, 2(n—m+1);E

(m * 1) |:Fz(m+1), 2(n—m);l—%

P2 =
n=m+ (m " 1) D:Z(m+l), 2(n—m);1—%

Frn,;y representsthe y quantile of a F distribution with degrees of freedom n, and n, which are tabulated in the

literature. An approximetion for y quantiles of the F distributionis givenin clause 5.6.2.3.

5.7.2.2 Normal (Gaussian) distribution

Related to the Normal distribution, confidence statements depend on the composition of known and unknown
parameters. This means different computations have to applied if mean value and/or variance of the distribution are
known. If the parameters are not known, they can be estimated by empirical values (see clause 1.5). Furthermore,
confidence statements can be made related to the expected value, to the variance and to the standard deviation.

To sum up, the estimated empirical values of the Normal distribution are:
1 n
. Empirical mean i:—z X , where x;,i =1,...,n arethe sample values.
n“
i=1
. . s 1 2
+  Empirical variance s* =——>"(x - x)*.

n-13

. Empirical standard deviation s =

Based on these expressions, the following terms are applied to estimate confidence intervals for the mean val ue, the
variance and the standard deviation of a Normal distribution:

. Confidence interval for mean value i if variance o2 is known:

g g
X—-Uu O—;X+u 0=
[ A \/ﬁ]
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. Confidence interval for varianceg? if mean 4 isknown:

. Confidence interval for varianceg? if mean 4 isunknown:

(n-1)s?  (n-1)s?

R

a a
n-11-— n-1,—
2 2

. Confidence interval for standard deviationo if mean p isunknown:

SD’ 2_1 ;SD’ n2—1
VX n-11-2 JXn—l;a
2 2

. Confidenceinterval for standard deviation o if mean y isknown:

5.7.3 Required sample size for certain confidence levels

In this clause, the relationship between the number of acquired measurement samples and the resulting confidence level
isinthe focus.

Whereas in the usual measurement chain at first the samples are collected and afterwards the confidence level is
determined, in some situations the reverse procedure may be necessary. For example, during a measurement campaign
there may exist preconditions which require a certain confidence level which should be reached during the
measurements. The unknown parameter is the number of measurement samples which have to be collected to reach this
confidence level and must be determined in advance.

Tables of required sample size depending on desired confidence levels are given in clause A.5. The tables are based on
the binomial distribution and the according Pearson-Clopper expressions. Due to this fact they are available and valid
for rather small sample sizes like they occur if manual tests are executed.

The tables provide two kinds of information:

. The limits and the range of the confidence interval of the mean for an increasing number of samples whereas
the estimated rate is constant.

. Therange ("span") of the confidence interval of the mean for a varying estimated rate whereas the number of
samplesis constant.

Based on this, one can state in advance the maximum span of the confidence interval based on the number of samples
which should be gathered.
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6 Visualization techniques

In this clause, some useful visualization techniques are presented. This is not meant as a complete overview over al
possible methods, but should give some standard techniques and some non-standard alternatives.

In the following a distinction is made between static and dynamic data. By static data, variables are meant which do not
change systematically within the time period under consideration, i.e. which are not subject to seasonal or daily
influences. Dynamic data on the contrary are data which vary systematically over time. Examples are usage data that
show atypical curve with high usage during the day (in particular in the afternoon) and low usage at night.

6.1 Visualization of static data

Visualization techniques for static data assume that the underlying distribution does not change over the considered
time period and try do give a compressed overview over this distribution.

6.1.1 Histograms

Histograms compress the information by building classes and counting the number of data values falling into each of
the specified classes. The main ideais to represent each class by a bar with area equivalent to the portion of data values
included. An exampleisgiven in figure 6.1.

Histograms can be viewed as density estimators since the area of the visualized bars adds up to one, smoothed density
estimation curved can also be applied as available in most of the common statistical analysis computer packages. The
two plots of example 1 in figure 6.1 with different bar width illustrate the concept of histograms. Here one bar in the
first plot contains the same number of data values than five successive bars in the second plot, therefore the height of
one bar in plot oneis given by the mean height of the five corresponding barsin plot two. Histograms even allow bar
heights greater than one, if the bar width is small, respectively.

Histogram Example 1 Histogram Example 1 Histogram Example 2
MMS E2E-Delivery Time, bar width: 50 sec MMS E2E-Delivery Time, bar width: 10 sec normal data with p=6 and 0 =2
o S
| [0} (=)
8
2 9 2 ° 4 P N
Z 3+ 2 g 2 g
g ° 8 g~ 8 s
| o _| B
o o o
S 1 T \ 3 \ \ \ \ = L B e
o o
0 100 200 300 400 0 100 200 300 400 0 2 4 6 8 10 12
MMS E2E Delivery time (sec) MMS E2E Delivery time (sec) normal data

Figure 6.1: Examples of histograms

6.1.2 Barplots

Barplots are suitable for ordinal samples and visualize the total or relative number of elements from a sample with
different values of a characteristic of interest. Barplots are used if the distribution of customers to groups with different
business state or of trouble tickets with different priorities or other examples of ordinal samples are to be visualized.
Since for ordinal samples, the differences between groups are not to be interpreted in anumerical sense, the main
difference in comparison to histograms is that the widths of the bars does not have any meaning, only the height
corresponds to the total or relative number of elements represented by each bar. Moreover, commonly gaps are left
between the bars, to illustrate that ordinal samples are visualized. Examples are given in figure 6.2 where months and
priorities are used as example units.
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Barplot Example 1 Barplot Example 1 Barplot Example 2
Trouble Tickets in a specific category Trouble Tickets in a specific category o Trouble Tickets by Priority
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Figure 6.2: Examples of barplots

6.1.3 QQ-Plots

An important tool for checking the normality assumption is the so called Quantile-Quantile-Plot or QQ-Plot. This plot
compares the quantiles of two distributions in a scatter plot. In particular the theoretical quantiles of the normal
distribution may be compared to empirical quantiles from a sample of interest, but also any other distributional
assumptions can be checked, respectively.

In case of anormal QQ-Plot, theoretical quantiles can be taken from the standard normal distribution. The points of the
resulting scatter plot should then fall on a straight line with slope corresponding to the empirical standard deviation of
the sample. Figure 6.3 gives three example normal QQ-Plots for normal and non-normal samples.

In the first plot, the sampleisin fact normal and the normal QQ-Plot also supports the assumption of normal data. For
both other plots, non-normal data are simulated to visualize the normal QQ-Plot in cases where the assumptions are
violated. In the second example, the entire distribution disagrees with the normal assumption while in example three,
only the right tail of the distribution does not agree with the normality assumption.

Normal QQ-Plot Example 1 Normal QQ-Plot Example 2 Normal QQ-Plot Example 3
normal data with p=6 and 0 =2 exponential datawith A=1/6 t-distributed data (10 df) x2+6
ﬁ _| ° — 0y
5 7 8 8- g 9-
= = 7 5
g 0 - g 8 B g 9! Slope: 6=2.31
o o o | &
Q@ 3 o 2w
g < Slope: 6=2.04 % S %
& N n 7 (e
(54 O e e
© T 71 T T T 1 L e T T T T T T
3 2 -1 0 1 2 3 3 21 0 1 2 3 32101 2 3
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles

Figure 6.3: Examples of normal QQ-Plots

6.1.4 Boxplots

Boxplots, as the name suggests, consist of abox and some additional shapes called whiskers. These visualize the data
information compressed in only afew numbers based on quantiles of the empirical distribution. The end-points of the
box are given by the 25 % and 75 %-Quantile (also called Quartiles), the horizontal lineis given by the median of the
data (50 %-Quantile). Therefore the box contains 50 % of the given data. The whiskers (in the example plots
represented by dotted lines) extend to the most extreme data point which is no more than 1,5 times the interquartile
range (between the 25 %-Quantile and the 75 %-Quantile) from the box. All data points outside thisinterval are
individually added and may be viewed as outliers. Figure 6.4 gives some boxplot examples.
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Boxplot Example 1 Boxplot Example 2 Boxplot Example 3
normal data with p=6 and 0 =2 exponential data with r=1/6 t-distributed data (10 df) x2+6
12 . 35 1 .
N 30 . 15
10 :
25 ——
8 | . 10 1
20 H i
N 21 —
4 - 10 *]
_ 5
2 _ = o]
0 - : 0

Figure 6.4: Boxplot examples

6.2 Visualization of dynamic data

For dynamic data, visualization techniques should take the dynamic aspect into account. This can be done by
visualizing single data points or by using aggregated data values or summary statistics like the mean, respectively. In
addition, visualizations as introduced for static data can be compared over time. Boxplots as described in clause 6.1.4
are an adequate tool for characterizing changes over time and will be addressed in clause 6.2.2.

If summary statistics are applied, a chronological classification of the data is needed. This can be done by summarizing
agiven number of succeeding data points or by summarizing data of a given time period like an hour or aday. In any
case, data within atime period or group should be as homogeneous as possible, i.e. changes of the parameter of interest
should not be hidden by large classification groups for instance due to long time intervals.

6.2.1 Line Diagrams

Line Diagrams may be based on single data points or values of a summary statistic like the mean. They only provide a
visual comparison of the data points over time without any kind of assessment. This can be achieved by adding control
limits yielding control charts as will be described in clause 9.2. In figure 6.5, examples of line diagrams are given. If the
measurements are not equidistant in time, points of measurement should be specified by pointsin addition to the
connecting line.

Line Diagram Example 1 Line Diagram Example 2 Line Diagram Example 3
Mean Recharging Delay (sec) non-accessibility (in %) per hour number of probing trials (specific service) per hour
12 7 -
0 N 6 R VAVAWRW
10 | _
g \)'\\/v 5 8
4 4 6 —
6 3
4 —
4 4 2
2 1 - 2 7
0 N N N B B B 0 I B O B B B 0 [ R R B R R
ccccccccccccC
§565555&56 5655855556558 SHeBHIREHOT Y
= NN AN —

Figure 6.5: Examples of line diagrams

6.2.2 Temporal changing Boxplots

Instead of a single summary statistic, boxplots may be used as a summarizing tool and visualized and compared over
time. Boxplots are not only appropriate for comparing empirical distributions over time, but also for unordered groups
like the comparison of delay or delivery times for different service providers or vendors. These boxplots are then called
parallel boxplots. Examples for both cases are given in figure 6.6.
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SMS E2E-Delivery time (probing trials) per hour (sec)
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Parallel Boxplots, Example 2
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Parallel Boxplots, Example 3
MMS E2E Delivery time (sec) by service provider

150 —
100 — i ‘:
L | B EE =
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P1 P2 P3

Figure 6.6: Examples of parallel boxplots

6.2.3

MMQ-Plots

Median-Mean-Quantile-Plots (MM Q-Plots) visualize the serial of each of the three statistics median, mean and

95 %-quantile over time in acommon plot. The 95 %-quantile characterizes the upper tail of the empirical distribution,
while mean and median as measures for location allow conclusions about outliers which will only affect the mean due
to its non-robustness. Examples of MMQ-Plots are given in figure 6.7.

MMQ-Plot Example 1

SMS E2E-Delivery time (probing trials) per hour (sec)

MMQ-Plot Example 2

reaction time by month (minutes)

MMQ-Plot Example 3

delay (minutes) per calendar week

- P
50 25
40 - 20 \\\\ //////
30 15 — ) T P tean
20 - s 10 [ .
N \ - — Median
Q95
10 e, >
O 771 717 71 T 1 O 7771 71 T T 7T U \ \ T T
§ & 66 & 6 & § 8L 5853 20 21 22 23 24
Figure 6.7: Examples of MMQ plots and their temporal behaviour
7 Time series modelling

Beneath stationary processes, on the one hand temporal changes are very interesting. On the other hand there are many
cases where an appropriate description of the changes in a system over time have to be handled. Both cases are covered
by the so called time series and their appropriate methods.

For example, if measurements in a mobile network are executed for a period of one month with regard to the
transmitted traffic volume, a periodic behaviour will be observable. Depending on the hour of day and on the week of
day, different traffic situations will be expected.
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Example: Daily Traffic

Figure 7.1: Example of daily traffic

Related to time series, four different main areas can be identified:

1) Descriptive characterization

- This method is based on the principle "let the data speak”. Partialy, very basic procedures are applied to
achieve a description of time series which is as exact and detailed as possible. Especially the method of
extracting different components with respect to different time scalesis presented.

2) Modelling

- Time series are interpreted as a realization of a stochastic process which means a sequence of dependent
random variables. Under the stationary assumption (i.e. the main characteristics of the process are not
varying over time), methods using so called Auto-Regressive Moving Average (ARMA) processesarein

the focus.
3) Prognosis
- If it is assumed that the found stochastical model isvalid, it is possible to state the future behaviour.

4)  Monitoring

- Methods in this area are used to model variables which describe technical processes. The aimisto enable
the controlling and monitoring of the related processes. Specialized visualization techniques, so called
control charts, allow the deployment of these mechanismsin the operational realm. Their main advantage
consistsin the fact that no further detailed knowledge about statistical methods is required.

7.1 Descriptive characterization

Formally speaking, atime seriesis an amount of observations x, which are ordered in ascending order by atime index t.
The observations are interpreted as realizations of arandom variable X,. In general, it is assumed that at the point of
time the analysisis done, a certain history of observationsis available. The history isformally described as afinite
amount of parameters N.

Xp s Xo yeeey Xy
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Talking in amore practical manner, the observations are represented by certain measurement results which are collected
over time and which are analysed in their order of occurrence. Furthermore, the observations can be distinguished
according to their timely occurrence: A stochastical process can be observed at fixed points of time which leads to
equally spaced intervals between the observations. Another way to observe a process is by executing permanent
measurements which deliver measurement results related to some events, so called event data. In effect, thetime
intervals between consecutive events may vary heavily. In this case it may be appropriate to approximate the situation at
fixed points of time. This allows to use mechanisms which are designed for discrete time series.

7.1.1 Empirical moments

Similar to the handling of one-dimensional measurement results, descriptive characteristics (clause 5) can be deployed
to describe the main characteristics of atime series. In particular, the arithmetic mean value or the variance respectively
the standard deviation are addressed by thisissue.

However, these global parameters of time series are only applicableif there is no systematic change in the series, so
called stationary time series. In these cases, a movement in a certain direction (i.e. atrend) is not alowed. Concerning
non-stationary time series it might be useful to fragment the seriesin smaller parts. Then, the partia time series can be
assumed to be approximately stationary. This allows to use some procedures with alocal meaning which are presented
inclause 7.1.4.

Beyond this, the question arises if dependencies exist between different observations at different points of time.
Corresponding to the covariance, the autocovariance function:

= 206005, =)

and the autocorrelation function:

]
£ |0

are defined to measure linear dependencies between succeeding observations of a process. Both functions are defined as
functions of the temporal difference (lags) j = - (N-1), .., -1, 0, 1, ..., (N-1) between the observations.

The graphical representation of the autocorrelation function I is named cor relogram. Correlograms are of high

relevance for finding cyclic (i.e. periodic) structures in the gathered measurement data.
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Figure 7.2: Example of correlogram

Furthermore, the autocovariance function again depends on the stationary character of the measurement results because
its definition assumes the existence of constant mean values.

7.1.2 Decomposition of time series

The reflection of the example given in the last clause shows the following: Data which is related to the behaviour of
customers leads to a mixture of short-term cycles like days and long-term cycles which change on an annua basis. This
means that the daily changes are overlaid by for example weekly changes as well as seasonal or yearly modifications.

Now, the aim to reach by the decomposition of time seriesisthe following: The time series should be decomposited to
be able to identify the long-term trend of a process. The question which should be answered is: Are there any long-term
movements behind the different layered cyclic processes? Especially with respect to management decisions, this
information can be of a very high importance.
In general, time series are based on two different assumptions:
. Additive time series:
X =T +K+§+Rfort=1..,n

. Multiplicative time series:

X =T, IK,[§ R fort=1...,n

The different parts arein detail:

. T, (Trend) represents the systematic long-term changes of the mean niveau of atime series.

. The economic component K, includes long-term changes in the model which need not to be regular in any
way. The combination of T, and K, often is concentrated in terms of a smooth component G;.

. Cyclical changes are represented by the term S;. This s the seasonal component of the process.

. R, stands for an irregular behaviour of the process which is not known in advance. Generally speaking, this
component is assumed to be part of arandom process which oscillates around the zero level.
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If seasonal changes occur with the same amplitude in each period, the additive time series model should be taken into
account. The other way round, if seasonal changes change their amplitude with every observation period while they
keep their general behaviour, the multiplicative approach may be the better choice.

observed
340
1

320

trend
2 3 320 330 340 350 360

seasonal
-2 -1 0 1
1 1 1 1

-3
1

0.5
1

0.0

random

-0.5
1

T T T T
1960 1970 1980 1990

Time

Figure 7.3: Example of decomposition in different components

In general, there is no statement how to process a given time seriesin an optimal way. Therefore, different approaches
or modelling types may lead to different results. Particularly, two different approaches can be distinguished:

. Global component model: The time seriesis mapped to a global model which isvalid for all clauses of the
time series and which is adapted to the specific time series. The estimation of the trend component is usually
done by the adaption of linear and non-linear regression models based on the method of minimized square
values.

. Local component model: In this model, the time seriesis split up in different clauses. For every clause, a
certain local model with partial meaning can be developed. The concatenation of al the local models
represents the complete time series. The trend estimation is normally done by filtering mechanisms and
non-linear procedures.

Both different models are discussed in the following clauses.

7.1.3 Determination of the trend component
The trend component describes the long-term behaviour of a process. Due to the importance the trend component may

have with regard to the management sight, the choice of the appropriate model is one of the main issues right from the
start. The use of an incorrect model has a far reaching influence with respect to the quality of the component model.
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Furthermore, wrong assumptions may lead to misinterpretations. For example, if alinear trend model isintroduced, the
conclusions drawn from such a model are restricted to alinear character. It isnot possible to describe processes which
own a more complex function which such asimple model. If it is done anyhow, the resulting conclusions may be
completely wrong.

7.1.3.1 Trend function types

Different types of trend functions are possible. All of them introduce some unknown coefficients a which must be

determined by calculation or estimation. The subsequent clauses introduce different approaches and their
characteristics.

7.1.3.1.1 Linear trend function

The most well-known approach to model atrend function is alinear function. It is assumed that the observations x;
depend on thetimeindex t in alinear manner. This relation can be formalized by the expression:

X =a +al
Itisvery easy to interpret this model since the sign of &, represents if the time series increases (positive sign) or

decreases (negative sign) over time.

7.1.3.1.2 Polynomial trend function

Extending the linear approach, the polynomial approach assumes that a time series can be described as the composition
of different functions m:

X =am(t) +a,m,(t) +...+am(t)
m,(t) are arbitrary known functions. It isimportant that the combination of all the single expressions g m(t) islinear.

A very simple approach is to define the m; functions as polynomials of rank (i-1). Then, the approach reads:

x =a +at+.. . +at’

According to the theory, p + 1 points of afunction can be perfectly approximated if a polynomial of rank p isused. This
means it is possible to reach a perfect approximation between model and any time series in any case. However, there are
two serious disadvantages.

. Resulting models are very complex and cannot be interpreted in a simple manner (compared with the basic
trend model).

. The assimilation takes only the available data into account. Therefore, it is not possible to make statements
about the behaviour in the future.

Both effects are considered as overfitting effects.
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7.1.3.1.3 Non-linear trend models

Lots of different non-linear trend models are available. Because of difficulties to describe all modelsin a general
manner, this clause concentrates on some important cases with a very special meaning:

1) Exponential models:

X[ — ealml(t)+azm2 (t)+...+a,my (t)

2) Power models:

X =my(t)* O, ()™ 0..m ()™

Both models can be reduced to linear models if alogarithmic operation is applied. Then, the multiplication
respective exponentiation is reduced to a simple addition.

3) Logistic models.

In many use cases, it can be assumed that natural limits exist which can be reached by atime seriesif observations are
done over alonger period of time. For example, the growth of customersin a network follows a function whichis
shaped like an S. In other words, these processes are constrained by saturation effects.

Formally, these time series can be described the following approach:

X =t
a2 +e—a3t

In this case the val ues of the time series converge to the saturation at the value G = ay/a,.

7.1.3.2 Trend estimation

The common principle behind the different presented approaches is to determine the unknown parameters a. Regularly,

thisis done by estimating the minimization of a squared expression based on a difference. The differenceis built by
comparing the measurement val ue x, with the according approximation given by the chosen approach. Afterwards, the

resulting difference is squared and summed up. For the polynomial approach, the according overall expression reads:

N 2
Q=" (% —am(t)+a,m,(t)+...+am () - Minimum
i1

|
Now, the task isto minimize the expression for Q.

To solve the minimization problem, partial derivatives are calculated. In detail, Q is derived with respect to each of the
parameters &:

A system of so called normal equations s the result of this calculation. Under the assumption of linear independency of
the different functions m;, a closed solution exists so that the different parameters & can be identified.

Related to non-linear models, the minimization approach leads to normal equations that cannot be solved explicitly. A

further leading approach which might solve these problemsis based on linear approximations and is called the
Gauss-Newton procedure. Additional information can be found in [BAT] (see bibliography).
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Figure 7.4: Example of alinear model

Figure 7.5: Example of a polynomial model

7.1.3.3 Transformation of time series by filtering

Besides the determination of global trends the identification of local trends within the time seriesisimportant. The
identification of local trends corresponds to the smoothing of atime series by applying filtering functions. One main
advantage of this procedure lies in the fact that low-ordered polynomials already lead to acceptable results. This
simplification reduces the required computational power.

On the other hand, the main disadvantage of this method is caused by the possibility to get a high number of describing
parameters without finding an easy to handle closed solution or model description. In other words: The outcome of this
approach may be a smoothened time series, but no model description.
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7.1.3.3.1 Linear filters

A very simple approach to reach smoothing effectsis the application of adiding window to atime series. This
corresponds to the calculation of a moving average. In general, the according approach can formally described as
follows:

A linear filter L isatransformation of atime series x; into atime seriesy, with respect to the relation:
S
Y =Lx = Zaixt_i i=s+1...N-qg
i=—q
where (a_q, ..., &) symbolize different weights.
The simplest approach is done by "simple moving average". According to the notation given above, it reads:

1
2q+1’

a = i=-q,...q

The smoothing effect increases with the number of values taken into account which is the case for increasing values
of g.

Reducing the condition for the weighting parameters of the filter to the standardization Z a =1,itispossibleto
prove that the local approximation based on polynomialsis equivalent to the filtering method:

1) Thesimple moving average isthe same asalocal trend estimation of the data (xi_q,...,xi +q).

2) Thefilter represented by the polynomial:

L (~3%_p +12x 4 +17% +12X41 ~3%42)

Ytzg

represents alocal trend estimation according to the squared minimization approach which is based on a
polynomial of second order.

The following graphs show some examples for filtering with linear and polynomial filters.

Figure 7.6: Example of linear filter with q =7
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Figure 7.7: Example of linear filter with g = 20

Figure 7.8: Example of polynomial filter
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7.1.3.3.2 Exponential filters

Linear filters aways use a constant number of weights. Furthermore, a different approach can be interesting which takes
into account that older values may be less interesting than newer ones. Thisis realized by decreasing the weights of
older values whereas newer values lead to a higher weighting and is known as an exponential approach. This approach
reads in recursive description:

Yir = (1_ a)zai Xi-i
i=0

and is equivalent to the formula:

Yip =+ (1_ a) Yi
Both expressions are stated in such away that they can be read as a prediction for the next point of time.

From this equation it can be seen that exponential smoothing also overcomes another limitation of moving averages:
older values are weighted with decreasing weights. That is, since a is anumber between 0 and 1, the weights [a, a(1-a),

a(1-a)?, etc.] show a decreasing magnitude. These are the reasons why exponential smoothing has gained such wide
acceptance as a forecasting method.

By rearranging terms in the equation above we can obtain:

Yea =V T a(xt_yt)

In this form the new forecast is simply the old forecast plus a times the error in the old forecast (x, - y,). It is evident that

when a has avalue close to 1, the new forecast will include a substantial adjustment for any error that occurred in the
preceding forecast. Conversely, when ais close to 0, the new forecast will not show much adjustment for the error from
the previous forecast. Thus the effect of alarge and asmall a is analogous to the effect of including a small humber of
observations in computing a moving average versus including alarge number of observationsin a moving average.

Figure 7.9: Example of exponential filter with a=0,1
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Figure 7.10: Example of exponential filter with a =0,5

7.1.4 Seasonal component

Especially in data series which are related to the customer's usage, seasona figures are essentially contained. That
means cyclical fluctuations with regular characteristics can be found. Interesting intervalsin thisarea are yearly,
monthly and daily periods.

According to two different reasons respective open questions, it may be interesting to eliminate the seasonal influences
in the available data. Related to practical issues, the latter procedure is mostly preferred.

. Retrospective view: How would the data have been in the past if no seasonal influences were overlaid?
. Prospective view: What is the long term tendency with respect to the smooth component?

Asan example of all the different possible procedures the so called "mean phase" procedure is explained. This
procedure is one of the easiest of the available procedures. It is suitable to achieve the elimination of afixed seasonal
component of atime series without a trend component. This means within the data of the time series no trend
component is alowed. It must have been removed before by atrend elimination mechanism.

The procedure can be subdivided into four different steps. Generally, it is assumed that the time series x4, ..., Xy can be
separated in different parts, the so called phases p, each with alength of n data elements. Formally, thisrelationis given
by:

() )t=L..N = [x;)i=2..pj=1...,n
Thefirst index i describes the number of the segment or the phase whereas the second index j represents the consecutive
number within this phase. For example, if a data series contains data of a period of 5 years on a monthly basis, it can be

described by the parameters p = 5 (representing 5 phases, each for one year) and n = 12 (representing the 12 months
within each year).
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The following calculations implement the already mentioned four steps to achieve data without underlying seasonal
impacts:

1) Calculation of the average of different phases:

2) Cadlculation of thetotal average:

3) Cadculation of seasonal indices (seasonal factors):

Related to the last mentioned calculation, the averaged phases X; are set into relation to the total average X . Inthe

example, the average of January isfor example divided by the total average. This step is done for al of the different
monthly averages. If January data is much above average, then s > 1. According to this, if January datais much below

average, § < 1 will be the result.

4)  Cadculation of seasonally adjusted values:

This step concludes the basic calculation scheme related to the determination of the seasonal component.

8 Data aggregation

Depending on the objective, i.e. for monitoring or reporting purposes, different types of aggregation may be of interest.
Firstly, different granularities in time and space may be needed. Secondly, weighting of data may be considered for
instance to generate the QoS perceived by the customer. This may be more or less straightforward, if the smallest time
granularity is evenly spaced and the full information at any time point or interval is available, i.e. there are no missing
data. However, data aggregation becomes more challenging if event data are considered, like data from active probing
systems, or if data are missing and substitution algorithms are needed for defining meaningful results at higher
aggregation levels.

In the following, after presenting some basic aggregation operators, different data sources and corresponding structures
are distinguished, temporal and spatial aggregation levels are defined and estimation methods for incomplete data are
suggested. Based on a summary of desirable attributes of aggregation procedures, an aggregation strategy is suggested
and discussed. Subsequently, weighted aggregations are motivated and weighting methods are introduced.

8.1 Basic data aggregation operators

Most common data aggregation operators are sums and means. Sums are applied if the total number of events, usage,
etc. within agiven time period is of interest, while means are commonly applied if some kind of averaging is needed.
However, in particular for data out of time-interval measurements, means may not lead to interpretable and convincing
aggregation results, therefore other summarizing statistics like the minimum, maximum, median and other quantiles of
data are also used as aggregation operators. For quality of services measures like accessihilities, retainabilities and so
on, ratios in the sense of fractions are used.
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The combination of aggregation operatorsin arow might raise problems, even if the same operator is used at each
single step. If the data basis is complete, the combination of sums on different aggregation levels, that is summing sums
of lower levelsfor a higher level aggregation result, ensures a meaningful interpretation. If the considered time intervals
are equidistant in addition, the same holds true for the combination of means on different aggregation levels. Minimum
and maximum operators are also examples where this kind of combination is possible and meaningful. However, for
other quantiles like the median or Q95, it is not recommended to base aggregations on higher levels on the results of
lower aggregation levels, since for instance the median of subgroup-medians is not guaranteed to be near the overall
median. Aggregation methods for fractions will be discussed |ater.

If different aggregation operators are combined one after another, the resulting values should be interpreted with great
care. For instance the minimum and maximum of mean values from lower aggregation levels should not be mistaken as
the range of the original data values. However, one can think of many examples where this kind of combination yields
meaningful results that are of interest, for instance if different BSCs are compared with regard to QoS parameters, the
median or quantiles of the values for all BSCs may be used as cut-points to identify BSCs performing particularly good
or bad.

8.2 Data sources, structures and properties

In the following, a distinction between raw data that may result from data sources with different attributes and
parameters that are defined based on these raw datais made.

8.2.1 Raw data

For measuring QoS, data from a number of different data sources are used. These "raw data" are based on different
measurement systems with possibly different granularities, differences due to release changes of the underlying systems
and so on. Therefore raw data often come with a number of attributes that need to be taken into account for aggregation.
Here performance data and event data are considered, although other data sources and types could also provide valuable
information about QoS (like fault management data).

In the situation that not all data are available - which is a common problem not only in mobile communications - raw
data are rarely substituted or adjusted, but are stored with the full source information to allow suitable parameter
definition and estimation. Thisis often only possible by applying all available reference knowledge, for instance which
or how many cells were supposed to deliver data for a given time period.

8211 Performance data

Most performance data are given by Network Element (NE) counters. Due to different underlying systems or releases,
these may be available in different temporal granularities, like values for 15 minutes from one system and values for
hours from another system, respectively. Here basic operations are needed to enable a common data format in order to
ensure that values are comparable and basic aggregations are needed for total NE counter val ues independent of
underlying systems. In addition to results of basic aggregations, the total number of aggregated values or even
additional detailed reference information needs to be stored.

Examples for performance data are the number of calls per hour per cell, the total number of call minutes per
quarter-hour per cell or the number of started WAP-sessions per hour per cell.

8.21.2 Event data

Billing data are one example of event data that may provide information about the QoS. On the other hand, results from
active probing systems are also in general not equally spaced over time. This may be due to varying duration of trials,
possibly depending on network performance or other influences. Also there may be reasons to do a larger number of
tests regarding a specific service over a given period of time, for instance if new services are launched.

Event data do not provide information of atime interval, but just a number of results, each for a corresponding point in
time. To alow statements about time periods, it is either possible to use all original data points for defining and
aggregating parameters for each time interval of interest, or as an alternative, relatively small time intervals have to be
defined for which afirst, "basic", aggregation step is carried out which then allows higher aggregations independent of
the original data.
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8.2.2 Key Performance Indicators / Parameters

A particular feature of a Key Performance Indicator (KPI or parameter) - in comparison to raw data - is given by the
fact that KPIs are defined in an abstract manner, thereby allowing a common interpretation for parameters computed
from different data sources and on various aggregation levels. Usually, there are two possible reasons for a parameter to
beidentified as a KPI, either:

. the KPI isafunction aggregation of different parameters; or
. the KPI represents avery important quality measure related to the customer's perspective.
In the latter case, data aggregation is not necessarily implied.

Parameters are defined to serve specific purposes like answering questions about QoS or performance by utilizing raw
data or basic aggregations of raw data. This might also include combinations of different data by mathematical
operations likeratios. Unlike raw data, parameters are independent of the underlying software releases or system
vendors. One could also define them as being independent of different underlying systems, if appropriate.

Parameters based on performance data are for instance the Cut-of-Call Ratio, which isbased on two different NE
counters, namely the number of unintentionally terminated calls divided by the number of successful call attemptstimes
100 %. Data from active probing systems allow the definition of parameters like the Recharging-Failure-Ratio,
SMS-E2E-Failure-Ratios and so on.

For the definition and computation of parameters, rules for handling missing data are needed. Therefore methods for
data substitution become a major point when talking about parameter computation and aggregation and will be covered
in some detail after defining aggregation hierarchies of interest.

8.3 Aggregation hierarchies

Aggregation hierarchies are commonly divided into temporal and spatial aggregation hierarchies, where temporal in fact
refersto different time intervals while the term spatial may also cover aggregations over items with similar properties
with respect to an attribute of interest.

8.3.1  Temporal aggregation

Temporal aggregation levels that should be used for a given parameter will depend on the intended use of the parameter
as well as on the raw data frequency. For most parameters, sensible aggregations levels will be some or all of the ones
given in the following set:

. quarter-hour;

. hour;

+  day;

. week;
. month;

. quarter year;
. calendar year; and
. business year.

In addition, incomplete temporal aggregation levels can be defined, for instance cumulative values for the current week
based on the daily values that are available so far. Thisis of particular interest for parameters that are based on ratios or
mean val ues because these may be interpreted directly. For the interpretation of incomplete parameters that are based on
sums, the number of covered time units has to be taken into account.
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8.3.2 Spatial aggregation

Spatial aggregation originally refers to aggregation levels from the smallest possible units like radio cells (or even
sectors) in mobile communications up to the entire network. This can be done from atechnical point of view for
instance by taking the order "cell - BSC - MSC - (branch) - entire network", or from aregional point of view by
"cell - state/ region - entire network".

As mentioned before, the term "spatial" may also be used in the context of summarizing cells with similar properties
regarding an attribute of interest, like al cellsthat cover motorways, or the position of acell in terms of the surrounding
area, whether it belongs to alarge city, asmall town or arura area. In these cases, spatially incoherent units are

aggregated.

8.4 Parameter estimation methods

Theideal situation of full information israrely met in practice. Network elements or branches failing to deliver datain
time are common reasons for missing data. Since in most situations, missing val ues as parameter values are
unacceptable, even if parts of the raw data are missing, data estimation methods are needed. Depending on the situation,
projection, substitution or combined estimation methods are suitable.

8.4.1 Projection method

The easiest method of data substitution is to project the available datato the entire timeinterval of interest. For
example, if afraction of 90 % of the expected data measuring the quality of a specific service within one hour is
available and an hour-value is sought, these 90 % of the data are viewed as being representative for the hour of interest.
If the aggregation contained of cumulating the entries, the value achieved by the available data has to be multiplied by a
factor 100/90. If aggregated values are mean (or median) values, the mean (or median) of the available datais used as
an aggregated value. If minimum or maximum values (or other quantiles besides the median) are sought as aggregated
values, more sophisticated estimation methods should be applied like maximum likelihood methods.

Provided that a high percentage of datais available and there are no systematic reasons for missing data, the above
procedure is sufficiently reasonable. However, an analysis of the times and circumstances of missing data might be of
interest to identify the reasons, if missing values are becoming more frequent or appear suspect that there might be an
underlying pattern.

If only alow percentage of datais available for atime period of interest, for instance less than 50 %, the above
projection procedure is more than questionable. In particular if the parameter of interest is subject to dynamic changes
over time, the results may be heavily biased. As an example consider usage data where a high percentage of missing
data consists of records that should have been taken at night. If the usage is then estimated by projecting the available
results, the usage is extremely overestimated. Therefore it seems sensible to define a " critical percentage” of data that
need to be available for applying the method above. This percentage should depend on the specific service which is
evaluated and on the needed precision of the aggregation results.

8.4.2 Substitution method

If the estimation of parameters can or should not be based on the available data, since alarge number of datais missing
or the data are not credible for some reason, substitution methods apply values from former time periods. This can
either be done by using the last available value for the parameter of interest, which is only sensible for static parameters
that are not subject to dynamic changes over time, or by using the last available value of a comparable time period with
similar properties like the same day-type (weekday/Saturday/holiday or Sunday) or the same day of the week and the
same time.
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8.4.3  Application of estimation methods
Common problems that complicate the application of the methods suggested above are given by:

1) Unavailability of reference data: The number of missing datais needed for deciding which method should be
used and for the application of the projection method.

2) Determination of values for substitution: Comparable time intervals have to be defined and substitution values
may be stored in a data base, which needs to be updated and maintained. In addition, calendar information
about holidays/working days, weekdays and so on is needed.

3) Parametersthat are defined asratios: Either numerator and denominator are estimated separately based on the
available information for each part, or theratio is estimated as a whole by using only data with information
about both, numerator and denominator. In the situation of full information, there is no difference between
both possihilities, in case some data are available for one part of the ratio and not for the other, both strategies
yield different results.

Referring to data aggregation, the question arises, at which aggregation level an estimation should take place. Isit
acceptable to use estimated values as a basis for higher aggregations? Data aggregation procedures combining both
introduced methods are derived in the following, originating from a summary of desirable attributes of aggregation
procedures.

8.4.4  Attributes of aggregation operators
Aggregation methods may be evaluated according to the following attributes:

1) Theresult should be meaningful, that is as near as possible to the true value of interest. In particular,
NULL-values are not sensible as aresult of a higher level aggregation. In addition, all information about
missing values should be used to take non-available data into account, to avoid biased parameter val ues.
(Moreover, the variance of parameter values caused by estimation methods should be as small as possible.)

2)  Aggregation results should be reproducible and understandable. In particular, at higher aggregation levels no
estimation procedure should be used so that results on a higher aggregation level are in accordance with values
of the underlying level.

3) Adggregation results should not depend on the used aggregation paths, i.e. there should be no difference of
results, if spatial or tempora aggregation steps are interchanged as well as direct aggregation and aggregation
with intermediate steps should not lead to different results. Independence of paths refers to aggregation
caculations.

4) Results should be consistent. On a given aggregation level, individua aggregation results should agree with
total result, i.e. the sums for different branches should add up to the total sum for the company and so on.
Consistency refers to aggregation results.

5)  Theapplied calculation procedures should be rather easy. This also implies independence of past values like
those from previous time periods.

6) Independence of network references like assignment of results to network elements.

In general, it is not possible to meet all requirements at the same time. Easy methods may lead to non-sensible results,
while methods that contain estimation procedures often rely on values from previous time periods or network references
and may be more sophisticated. In particular the requirements 1 and 5/6 are contradicting as estimation methods
ignoring network references and past values will presumably often lead to worse results compared to methods that take
into account all available information.

One idea to combine the above requirements to a certain extent is to define a smallest temporal and spatial aggregation
level for which the data are completed by estimation procedures (for missing parameter data) or basic aggregations (for
event data and parameter data with different lowest levels), like per hour per cell. Thisyields an equally spaced
"complete" data pool and therefore simplifies all further aggregation steps and in particular ensures consistency of
results and independence of aggregation paths.
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One mgjor disadvantage of this method is the fact that estimation procedures have to be applied on low aggregation
levels which rely heavily on reference data and good substitution values or projection procedures. For parameters that
are dynamic over time, time series methods as covered in clause 7 should be considered, which then implies more
complicated calculation procedures for low aggregation levels and therefore might take some computation time.

8.5 Weighted aggregation

In many situations, in particular if the QoS perceived by the customer is of interest, simple aggregations of the available
information or estimated values are not very meaningful. A better approach would be to take into account e.g. how
many users are affected if a servicefails. That leads to the idea of weighted aggregation, where for instance the usage
can be applied for weighting, respectively. It should be noted, however, that weighted aggregation methods will in
general lead to non-consistent results in the sense of property 4 from clause 8.4.4.

8.5.1 Perceived QoS

Depending on the point of view and the corresponding intention of a parameter of interest, it appears reasonable to only
consider users view instead of the network view e.g. by taking the usage of a service into account. Depending on the
applied aggregation procedure, this may have already been done implicitly. For instance, if the aggregated cut-of-call-
ratio for a particular week is considered, different aggregation procedures imply different weightings (it is assumed that
values are available hourly):

1) If the cut-of-call-ratio is stored for hourly intervals and the weekly aggregation is done by averaging all values
for the week of interest, no weighting is carried out and each hour viewed as being equally important. This
does not correspond with the users perspective. (Note that a geometric rather than an arithmetic mean should
be applied for averaging ratios.)

2)  If the numerator and denominator are stored for hourly intervals and the weekly aggregation is done by first
summing all entries for the numerator and denominator separately and then dividing both numbers, an implicit
weighting is carried out. Since high usage time intervals contribute a larger number of call attempts than low
usage intervals, thereby the users perspective is expressed.

When applying the first method, one should consider using weighted means instead of simple means. Depending on the
type of parameter, weighted arithmetic means are computed according to:

n
wherez w;, =1, weighted geometric means are given by:
i=1

iw = (l_l X W, )l/n

where [Tw, =1. (For unweighted arithmetic or geometric means, all weights are givenby w; = /norw, =1,
respectively.)

Weights can either be based on true or average usage curves, but also on strategic reasons or any other procedure in
accordance with the aim of the analysis. An average usage curve may for instance be achieved by averaging over the
past 30 working days, the past 5 Saturdays and the past 5 Sundays or holidays or by applying some kind of time series
modelling and forecasting methods. Weights based on usage curves are then computed as:

U u
or W =

W = / i
U Mu,

respectively, where u; is the true or estimated usage within time period i.
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If the second method from above is applied, weighting is done implicitly with the actual usage curve. However, other
problems arise in particular regarding missing data handling as mentioned in clause 8.4.3. For each time period, the
percentage of missing data might be of interest for applying projection or substitution methods and to ensure that the
cut-of-call-ratio does not exceed 1, e.g. the number of unintentionally terminated calls should not exceed the number of
successful call attempts, one might only want to consider data pairs where both numbers are known. When using the
first method, this could be avoided by estimating only on an hourly basis.

Remark: For ratios, higher level aggregations are commonly achieved by applying the second method because of the
implicit weighting, which is more intuitive.

Data from active probing systems are generally not weighted implicitly, since probing frequencies are commonly
non-representative for customer behaviour. In this context, the idea of weighting might even be of importance in more
than one respect.

1) Since datafrom active probing systems are not equally spaced, aweighting of each trial result by the time
between two trials in some way could be considered. This can either be realized by defining (rather small) time
intervals for which al trials done within thisinterval are summarized without weighting or alternatively by
computing using half of the time interval between the last trial and the current one and half of the time interval
between the current trial and the next one as a basis for weighting. If such weighting is considered, an upper
bound for the defined underlying intervals should be considered and strategies for the situation that the active
probing system does not work or data are not delivered for alonger time period are to be thought of
(estimation or NUL L-values, depending on the situation and parameters of interest).

2) A second - and probably more important - way of weighting results from active probing system is the usage
weighting for achieving the perceived QoS as explained before.

u(t,)
Dou(t)

within time period t; assigned to probing trial i according to the distribution of trials over time (1% weighting), either for
abasic aggregation level for further aggregation or for the desired aggregation level directly.

If both types of weighting are applied, combined weights are computed as W, = , Where u(t;) is the usage

8.5.2  Weighted quantiles

For duration values as results from active probing trials, quantiles represent meaningful aggregation results on higher
aggregation levels. From the above weighting discussion the necessity of determining weighted quantiles arises. Due to
the calculation of quantiles based on ordered data values, aweighting similar to those for mean valuesis not applicable.
Instead, areplication agorithm could be used for computing weighted quantiles. This algorithm simply repeats each
value according to an assigned weight and calculates the desired quantile of the resulting new data set. (If weights are
irrational, sensible rounding is needed.)

EXAMPLE: The original (ordered) data set of 10 MM S-E2E delivery timesis given by 51, 55, 60, 61, 65, 70,
71, 72, 72, 80 seconds. These measurements have been taken at different daytimes and therefore
get aweight of 1, if taken at night, 2, if taken in the morning or late in the evening and 4, if taken
between noon and 8 p.m. for instance. According weights are thereforegivenby 1, 4, 2,2, 1, 4, 4,
2,1, 4 resulting in adata set with 25 data: 51, 55, 55, 55, 55, 60, 60, 61, 61, 65, 70, 70, 70, 70, 71,
71,71, 71,72,72, 72, 80, 80, 80, 80. Quantiles from the original and the replicated data set will in
general |lead to dightly different results.

If aweighting according to some kind of usage curve is aimed, this curve can be used as a replication function or
replication curve and represent the basis for defining the needed weights. To simplify the computation, weights may be
defined by identifying the minimum of the replication function r,,;,, and to define the weights according to:

W, :round(%. j
min

If a uniform concept for weighting of any kind of parameter is sought, the approach based on replication functions
might also be used for means or non-accessibilities or other parameters of interest. Differences for instance between
conventionally weighted means and means weighted by replication curves are only due to the applied rounding step for
the latter approach.
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8.6 Additional data aggregation operators

In the following, some additional data aggregation operators are covered, adding to those mentioned in clause 8.1, that
arein some sense individual regarding their attributes and/or application.

8.6.1 MAWD and BH

In particular for network maintenance an aggregation operator of interest is the "Monthly Average Working Day"
(MAWD). This operator can be viewed as being an aggregation result as well as a possible weighting function for other
aggregation operators.

The monthly average working day of a given data set is computed by filtering all data from working days within a given
month first and then computing the mean value for each hour of the day over al data from corresponding hours. The
result is therefore given by a vector of 24 entries, each corresponding to one hour of theday (Oh-1h, ..., 23 h- 24 h).

Based on the MAWD, the "Busy Hour" (BH) is defined as the hour in which the MAWD-vector takes its maximum
value. In mathematical notation, thisis argmax(m), wherem= (m, ..., rr124)T isthe vector resulting from applying the
MAWD operator.

8.6.2 AVGn

The class of parameters AVGn is applied for similar reasons as the BH-operator mentioned in clause 8.6.1. Both try to
identify peaks of high usage or traffic, where the BH-operator considers hours where the highest usage is observed on
average, while the AV Gn-operators are interested in the maximum usage or traffic for a given calendar week. The mean
of the n largest values realized on n different days (n between 1 and 5 or 7, depending on intended use) is defined as
AVGn.

9 Assessment of performance indices

9.1 Estimation of performance parameters based on active
service probing systems

End-to-end service probing systems yield val uable information about services and systems that may not be provided by
the network elements alone. Active probing systems are used to view the customer perspective of the Quality of
Service, i.e. the perceived QoS. Typica parameters that may be computed based on active probing systems are failure
ratios, accessibilities and end-to-end-delivery times for a number of different services.

One characteristic of active probing systems is that the tests are often done more or less equally distributed over time
for utilizing the equipment as exhaustingly as possible. In this respect they fail to reflect the customers perspective,
since derogation during the day will be alot more severe than after midnight due to lower volume of traffic for almost
all servicesat night.

From a statistical point of view, end-to-end active probing systemstry to estimate the real behaviour of a service by
taking a defined number of samples. Therefore, the results of measurement campaigns have to be interpreted as the
current view on a certain service and need not necessarily represent customer experience. Depending on the number of
considered samples, the connection between observed measurement results and unknown real behaviour may vary.

9.2 Monitoring concepts

To ensure that network problems are noticed and remedied as quickly as possible, monitoring concepts based on active
probing results are important tools for an efficient alarming system. Such monitoring tools may be based on control
charts or other alarming rules.
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9.2.1 Control charts

Control charts are based on the assumption that if the service under study works properly, data gained from active
probing systems follow a stable distribution with given parameters. From former observations, the underlying
distribution may be identified and parameters have to be estimated. Control charts are now set up based on statistical
considerations such that in case of network problems, i.e. the processis "out of control", an alarmis created. On the
other hand, false alarms have to be avoided, that is as long as the processis "in control”, no alarming should occur.

Control charts generally visualize the development of a quality characteristic of interest over time similar to aline
diagram as shown in figure 9.1. Further, atarget line and control and or warning limits are added to the plot. The target
line represents the line around which data values are expected. Warning and control limits may be used to define
identify realizations indicating that the processit "out of control”. Different types of control charts were invented for
different types of data.

9211 Shewhart control charts

If data are normal or mean values are considered (central limit theorem, compare section), Shewhart charts for normal
data may be applied. In this case, the current short-term data is compared against an underlying data model which
represents the long-term behaviour. According to this model it is possible to define the usual or "normal” situation. This
isrequired to pay attention to unusual situations. Shewhart control charts are widely used in different sections of the
industry.

921.2 CUSUM and EWMA charts

Two other approaches can be used to introduce some kind of weighting into control charts. The CUSUM approach uses
sums data up over time and therefore indicates the behaviour over agreater period of time. A slightly different approach
is represented by "exponentially weighted moving average" charts where older values gain less influence than newer
data does.

9.2.2 Other alarming rules

Furthermore, the deviation between the long-term data model and the short-term monitoring data should lead to
consecutive actionsif acritical state isreached. Thisrelation is defined as "alarming rules'. One example for alarming
rulesis the set of the Western Electric Rules.

9.3 Methods for evaluation of objectives

Commonly objectives are formulated in terms of target values for important parameters. Then the evaluation of
objectives could mean to assess to which extend these aims have been achieved within a given time-period (i.e. month
or business year). If there is only one important parameter, thisis arather easy task. However, if a number of
pre-defined parameters are to be combined in an overall measure and in addition different groups (i.e. branches or
departments) are to be compared regarding their performance, the main issue for evaluation will be to define acommon
measurement scale for all parameters. This allows the combination to an overall evaluation index of some kind and
thereby a comparison of groupsis facilitated.

In the following, two methods are described that allow the evaluation of objectives, namely the desirability approach
and the loss function approach. Both approaches rely on definitions of target values and specification limits for the
parameters. In this context, parameter values are denoted by y;,i =1,...,P and target values are denoted by

r;,i =1...,P. Specification limits are given as upper and / or lower specification limits USL;, LSL; for each parameter
under considerationi = 1,...,P. (It might also be sensible to consider lower and upper target values, if the target is given
as an interval instead of anumerical value.)
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9.3.1 Desirability functions

Desirability functions use a transformations of the valuesy; to the interval [0,1] based on system requirements by
defining a transformation function based on target values and specification limits. Desirability functions are piecewise
defined continuous linear functions where desirability values of 0 are assigned to parameter values y; outside the

specification limits, realizations on target get desirability values of 1 and outcomes between target and specification
limits are assigned by alinear connection or a power transformation thereof.

The principle of desirabilitiesis best explained by providing example desirability functions as summarized in figure 9.1.

Desirability function Desirability function Desirability function
Example 1: Cut-of-Call-Ratio Example 2: SMS E2E Delivery time Example 3: Time Service Factor
S o« | E S @
<_>5 o g g o
B USL-y
g‘ UsL-1 g‘ g‘ <
8 31 g g o
8 - ) )
S o T usL © © o
=} T T I ! ! o T
0 1 2 3 4 40 50 60 70 80 90 100
Cut-of-Call-Ratio (in %) SMS EZ2E Delivery time (in sec) Time Service Factor (in %)

Figure 9.1: Examples of different desirability functions

9.3.2 Loss functions

Loss functionsin contrary evaluate a realized parameter value in terms of costs arising due to deviation from target or
realization outside the specification limits. Therefore values within the interval [0,00) will be achieved. The main issue
for the specification of loss functionsis the assignment of arising costs. The loss of earningsif services are not fully
usable may be stated rather easily, but quantifying the image loss and corresponding costs might be a much more
difficult task.

For each parameter of interest, the arising loss for avalue Y, isgivenby L(y;) = c(y, -1,)? or dternatively
L(y;) = cmin((yi —Us)? . (y; - LSLi)Z), where cO IR quantifiesthe arising cost.

Mainly, normal distributed values are in the focusiif loss functions are discussed. Generally speaking, the areawhichis
covered by the lower and upper tails of the normal (or Gaussian) distribution isin the main interest. These branches
violate the guaranteed specification levels Upper Specification Level (USL) for the upper and Lower Specification
Level (LSL) for the lower tail. All values in these areas represent defects referring to the observed process. The
underlying theory specifies rules how to set the limits and how to proceed with asymmetric cases. One useful hint for
further research in this areais the "six sigma approach” which is wide-spread in the industry.
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Annex A (informative):
Examples of statistical calculations

In the following, some example computations are given for different topics. All computations are done step by step as
well as by applying statistical software tools. The statistical software mainly applied here is the open source language
and environment R, based on the S language which is widely spread in the statistics area. For further information and

download, the reader isreferred to:

. http://www.r-project.org

R isapiece of freely distributed software, itsinstallation is straightforward and commonly done within five minutes.
For further applications and more sophisticated statistical methods, a number of librariesis available from the website.
For creating graphics and first stepsin programming see also [V EN] (see bibliography). For reliable results, the use of
R is highly recommended.

As Excel isastandard software used for calculations, also some commands are given for Excel-users. Nevertheless, it
must be said that Excel does not have a uniform definition for the computation of different expressions or operators,

e.g. quantiles. Most of the mathematical functions are defined only with regard to specific desired tests. The user should
therefore be warned to use any of Excels mathematical procedures without a deeper understanding of the functionality
differences between these procedures.

Al Confidence intervals for binomial distribution

This example tries to clarify the usage of the Pearson-Clopper formula which is related to the binomial distribution and
may be used for measurements with a small amount of measurement data.

EXAMPLE: During a one hour manual test of service X the service access attempts lead to the following results
("0" represents an unsuccessful attempt, "1" a successful attempt).

No. 1-10 1 0 1 0 1 1 1 1 0 0
No. 11-20 0 1 1 1 1 0 1 1 0 1
No. 21-30 1 1 0 1 1 1 1 1 1 1
No. 31-40 0 1 0 0 1 1 1 1 1 1
_m_29

Withinthe n =40 attempts m= 29 have been successful. The point estimation leadsto p=— = 0 =0,725.
n

A.1l.1 Step by step computation

Since the results show a binary outcome, the binomial distribution can be applied in any case. At first, the allowance of
the easier to handle Normal distribution has to be checked via the following expression:

npfl- p)=7,975<9

Therefore, the Normal distribution should not be used for this measurement. Furthermore, the following computations
are directly based on the binomial distribution.

If the required confidence level isdefined as 1-a = 0,95, theresulting a valueis a =0,05. According to this, the
Pearson-Clopper formulas now read:

mQF a
_ 2m,2{n-m1); % _ 290Fsg 240,025
n-m+1+m(F a 12+29|:F5824‘0025
2m, 2(n—m+1);E o

Py
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(m + 1) F a
2(m2),2(n-m): 1= 300Fg0,22,0,975

a 11+300Fg0220,975
2

P2 =
-m+(m+1)F
n-m (m ) 2(m+1),2(n-m);1-

Eventually, four steps have to be executed to get the relevant confidence interval:

1) Lookupif the needed quantile values of the F distribution are tabulated.

2)  If the quantiles are not tabulated, try the relation Foonay = % to get the required information.
N,y

3)  If both approaches do not succeed, try the approximation F, ., U exp(u R b) for yintherange
05<y <1.

4)  Determine the confidence interval by using the quantile values.
Now, the quantiles Fgg 54,0 025 and Fgg 220 975 have to be retrieved before the Pearson-Clopper values are computable.
1) Looking up some tabulated quantile values may lead to the following results:
Fe0,22,0,975 = 2145
If the quantile Fsg 54,0005 Can not be found, the following steps may be appropriate.

2)  If Fgg 40025 S missing in the tables, perhaps the quantile

1
Fosse0975 = 3
58,24;0.025

isavailable. If thisis aso not the case, afirst sight approximation is given by a neighbouring quantile value:

1
Fae00075 =7 =1882
60,240,025
- 1 _
= Feo240,005 = ————=05313
24,60,0975

3) Sincethe quantile variable y = 0,975 liesintherange 0,5< y <1, the approximation
Frny O exp(u (a- b)
can be applied. Therefore, the following computational steps have to be executed to determine Fy, 550975 ina
more precise way:
- At first, the parameter d isdone:

1 1 1 1
= + = +
n-1 n—-1 24-1 58-1

s | the 0,975-quantile of the standard normal distribution N(0:2) hasto be

= 0,06102

- Before computing ¢ =

retrieved from atable;

y=0975= Uggs5 =19
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So ¢ reads

2
. (1L96)* -3
6

=0,14026

Asaresult, b isgiven by:

Y E€c+§—9j:2 L—thﬁo,mozeé—0’061°2j:o,04944
m-1 n,-1)1 6 3 24-1 58-1 6 3

- With these results, aleadsto:

a=+/2d +cd? =4/2[D,06102 + 014026 [D.061022 = 0,35
- Finally, the approximation for the quantile value reads:

Fsg.20:0975 1€xp(1.96 (.35 - 0.04944) = 1.8899

The originally searched quantile value Fsg 54,0 025 = 1 resultsthen in:
24,58;0.975
Fcg o4 =———=0,5291
56,240,025 ~ 1 ggaq
4)  After the quantiles of the F distribution are known, in the last step the Pearson-Clopper values itself can be
determined:
a
o, = 2m,2(n-m1). 5 __ OMsseg005 _ 2905291 _ o0
L h—m+1+miF o 12+29(Fggo00005 12+29(0,5291
2m, 2(n—m+1);E e
(m + 1) F a
_ 2m)2n-mii-2 30[Fgop097s 3002145
i —— (m+1)F 11+30(Fgp 00075 11+3002145

2(m+1), 2(n—m);l——

N R

With these values, the confidence interval for the given measurement can be described as:

[py; o] =[0,5611; 0854

A.1.2 Computation using statistical software

The different calculations can be executed by R. To enable a user-oriented simplicity, the according expressions are
given in the next clauses.

A.1.2.1 Computation in R

Required quantiles of the F-distribution may also be obtained in R. Here no approximation is carried out. Commands
(marked by " >") and results (marked by "[1..]") are given by:

> gf (0.025, 24, 58)
[1] 0.4797205

> gf (0.975, 60, 22)
[1] 2.144594

ETSI



71 ETSI TS 102 250-6 V1.2.1 (2004-10)

Alternatively, afunction can be defined for computing the Pearson-Clopper confidence interval directly. This function
takes the following input variables:

. n: Number of trials (total);

. m: Number of (un-)successful interesting trials, either successful ones or non-successful ones,

. alpha: desired confidence level (default: 5 % 1- alpha = 95 %, means alpha=5 % = 0,05).
The output consists of:

. estimator: The estimated value of the according rate parameter;

. confidence interval for the estimator (lower and upper bound).

The functionis given by:

pear son. cl opper <- function(n, m alpha = 0.05) {
# conputation of F-quantiles
f1 <- qgf(al pha/2,2*m 2*(n-m+l))
f2 <- qgf (1-al pha/ 2, 2*(m+l), 2*(n-m)
# conputation of confidence limts
pl <- m* f1/(n-m-1+ntf1)
p2 <- (ml)*f2/(n-m-(mrl)*f2)
out <- list(estimator = m'n, confidence.interval = c(pl, p2))
return(out)

}

The functionis applied by calling it with the required arguments. The result for the above example is given by:
> pearson. cl opper (40, 29)

$est i mat or

[1] 0.725

$confi dence. i nterval
[1] 0.5611171 0.8539910

A.1.2.2 Computation in Excel
In Excel, quantiles of the F-distribution are derived by applying the functions:
FINV (p-value;df1;df2)

Related to the use of Excel, it is very important to have a very clear understanding what is done by a certain expression.
For example, the calculation of FINV depends on the parameter p-value which is NOT the same as the parameter
"alpha" in the R section!

A.2  Transition from binomial to normal distribution
To use of the transition from a binomial distribution to anormal one, the condition:
N =npi-p)=9
has to be fulfilled.
EXAMPLE 1.  If n= 30 samples are gathered which lead to an estimated rate of p = 0,8, the condition reads:
np=nlpl-p)=30M08M0M2=48<9

This means, the approximation is not allowed and confidence intervals have to be calculated with
the Pearson-Clopper formula.
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EXAMPLE 2: Now, the samerate p = 0,8 is estimated on a basis of n = 300 samples. The according relation
reads

nplg=nlpl-p)=300MD08M0M,2=48>9
In this case, the approximation of the binomial distribution by a normal distribution is allowed.

The confidence intervals can be calculated with the according expressions of the normal
distribution.

A.3 Definitions of EG 201 769

The following clause presents another definition of confidence intervals related to the normal distribution. It can be
found in EG 201 769-1 [1]:

. Relationship between the accuracy of estimator of the unsuccessful call ratio and the number of callsto be
observed.

If k unsuccessful calls are observed out of N call attempts, then the true value of the unsuccessful call ratio lies between

%—A and %+A with a confidencelevel 1-a, A being approximated (for large value of N) by:

A=o(@)x /pX(il— P)

where p is the expected unsuccessful call ratio and o(a) isthe (1—%) x100 percentile of the normal distribution with
mean 0 and standard deviation 1 (N(0,1)). I.e. the number of call attempts to be observed should be:

N = 7@ xp(-p)
AZ

. If the confidence level is 1-a = 0,95 then g(a) =1,96=2 .

. If the required accuracy for p < 0,01 is A = 0,001, then the number of call attempts to be observed should be
N =4 x 10% x p(1-p) for a confidence level of 95 %.

. If the required accuracy for p>0,01is % = 0,1, then the number of call attempts to be observed should be
N =400 x ((1 - p)/p) for a confidence level of 95 %.

. For example, if the expected unsuccessful call ratio is 1 %, the number of call attempts to be observed should
be

N =4 x 105 x 0,01(1 - 0,01) = 39 600
for an accuracy of A = 0,001 with a confidence level of 95 %.
. If the unsuccessful call ratio is expected to be 3 %, then the number of call attempts should be:

N = 400 x ((1 - 0,03)/0,03) 13 000

for arelative accuracy of % =0,1 and with a confidence level of 95 %
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A4 Calculation of confidence intervals

This clause gives more information about the calculation of confidence intervals. Due to the possibility that also small
numbers may occur for example if service probing is done manually, the calculation of confidence intervalsis based on
the relations given by the Pearson-Clopper expressions.

The structure of thisclauseis as follows:

. Starting with some visualized use cases of the Pearson-Clopper formulas, an impression of the relationship
between the estimated rate value and the according confidence interval is given.

A.4.1 Estimated rate 5 %

The confidence interval gets smaller with an increasing number of available samples. The less datais available, the
higher the uncertainty is. Another effect which is covered by the Pearson-Clopper approach is the asymmetric behaviour
of the upper and lower limits of the confidence interval. Additionally, this asymmetricy depends on the estimated rate
values (see following graphs).

Some further remarks might be helpful:
. The confidence interval can be calculated for rather small sample sizes.

. An overestimation like it would have appeared by applying the normal (Gaussian) approximation is not
recognizable.

. If arate valueis equal to 0 %, thisis also the value of the lower limit of the confidence interval. The
calculation of quantiles of the F-distribution is not valid in this case.

. If arate value is equal to 100 %, thisis also the value of the upper limit of the confidence interval. The
calculation of quantiles of the F-distribution is not valid in this case.

Limits of confidence interval (Pearson-Clopper)
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Figure A.4.1: Confidence interval for estimated rate of 5 %

The depicted limit curves can be found in the columns of the following tables (estimated rate is constant, number of
measurements varies).
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A.4.2 Estimated rate 50 %

In figure A.4.2 the confidence interval for an estimated rate of 50 % is depicted. In this case the confidence interval
owns a symmetric behaviour.

Limits of confidence interval (Pearson-Clopper)
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Figure A.4.2: Confidence interval for estimated rate of 50 %

A.4.3 Estimated rate 95 %

Figure A.4.3 describes the situation according to a 95 % rate. The situation is comparable with the graph of the 5 %
rate.

Limits of confidence interval (Pearson-Clopper)
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Figure A.4.3: Confidence interval for estimated rate of 95 %
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A.4.4 Lower limit of confidence intervals according to Pearson-Clopper formula

Table A.4.1 contains val ues which specify the lower limit of the confidence interval. The lower limit depends on the number of samples and the according rate value. In
figures A.4.1 to A.4.3 thisinformation can be found at the blue lines.

Table A.4.1

Rate

Nrveas| 1% | 5% | 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | 80% | 85% | 90% | 95% | 100 %

100 |0,03 941,64 %4,90 % 8,65 % (12,67 %916,88 %921,24 % 25,73 %30,33 %35,00 %439,80 %44,70 %949,72 %54,82 %/60,02 %/65,29 %70,74 9%476,37 %82,24 %988,48 %95,15 %

200 10,12 %2,42 %6,22 %410,35 %14,69 %919,16 %923,74 % 28,41 % 33,15 % 37,96 %42,86 %47,82 %52,85 %57,95 %[63,14 %68,38 %73,75 % 79,25 %484,93 %490,91 % 97,53 %

300 10,21 %2,83 %6,85 %411,16 %15,62 %920,20 %924,87 %929,61 %934,41 %39,28 %44,19 %49,17 %54,21 %59,31 %|64,46 %69,69 % 75,00 %480,43 %486,01 %491,84 %98,34 %

400 |0,27 943,08 947,24 %11,65 %16,19 %20,83 %25,55 %30,33 %35,16 %40,05 %44,99 %49,98 %55,01 %460,10 %65,25 %70,45 %75,73 481,11 %86,61 %492,35 %98,75 %

500 10,33 993,26 %7,51 9%911,98 %16,58 %21,26 %26,01 %30,82 %435,67 %440,58 %45,53 %50,52 %55,56 %60,64 %65,77 %470,96 % 76,21 %981,55 % 87,02 %92,69 %99,00 %

600 [0,37 993,40 %7,72 %912,24 %16,87 %21,58 %26,36 %31,18 %436,05 %440,97 %45,92 %50,92 %55,96 %61,03 %66,15 %71,33 % 76,57 %981,88 %87,31 %92,92 %99,17 %

700 10,40 93,51 %7,88 9%912,44 %17,10 9%921,83 %926,62 % 31,46 % 36,35 %41,27 %46,23 %51,23 %56,26 %61,34 %[66,45 %71,62 %76,84 %82,13 %487,53 %493,10 %99,29 %

800 10,43 93,60 %8,01 9%412,60 %17,28 9%922,03 %926,84 % 31,69 % 36,58 %41,51 % 46,48 %51,48 %56,51 %61,58 %|66,69 %71,85 % 77,05 %82,33 %487,70 %493,24 %99,37 %

900 |0,46 93,67 %8,12 9%912,73 %17,43 9%922,20 %927,02 % 31,88 %936,78 %41,71 % 46,68 %51,68 %56,72 %61,78 %|66,89 %72,03 %477,23 %82,49 %487,85 %493,36 %499,44 %

1000 |0,48 %3,73 998,21 %12,84 %17,56 %422,34 %427,17 % 32,04 % 36,95 %41,88 %46,85 %51,85 %56,89 %61,95 %67,05 % 72,19 % 77,38 %82,63 487,97 %493,45 %99,50 %

1100 |0,50 %3,79 98,29 %12,94 %17,67 %422,47 %427,30 %932,18 % 37,09 %42,03 %47,00 %52,00 %57,04 %62,10 %67,19 % 72,33 % 77,51 %82,75 %88,07 %493,54 %99,54 %

1200 |0,52 9%3,84 %8,36 %13,03 %|17,77 %922,57 %27,42 % 32,30 %437,21 %42,16 %47,13 %52,13 %57,16 %62,23 %67,32 % 72,45 % 77,62 %982,85 % 88,16 % 93,61 %99,58 %

1300 |0,53 9%3,88 %8,42 %13,10 %[17,86 %22,67 %27,52 %32,40 %437,32 %42,27 %47,25 %52,25 %57,28 %62,34 %67,43 % 72,55 %9 77,72 %982,94 % 88,24 % 93,67 %99,61 %

1400 |0,55 9%3,92 %8,48 %13,17 %[17,93 %22,75 %27,61 %32,50 %437,42 %42,37 %447,35 %52,35 %57,38 %62,44 %67,52 % 72,64 %977,81 %983,02 %9 88,31 %93,72 %99,64 %

1500 |0,56 %3,95 98,53 %13,23 %/18,00 %422,83 %427,69 %932,58 %937,51 %42,46 %47,44 %52,44 %57,47 %62,53 %67,61 % 72,73 % 77,88 %83,09 488,37 %93,77 %99,67 %

1600 |0,57 %3,98 998,57 913,28 %18,07 %422,89 %427,76 %932,66 %9 37,59 %42,54 %47,52 %52,52 %57,55 %62,61 %67,69 % 72,80 % 77,95 %83,15 %88,42 %493,81 %99,69 %

1700 |0,58 %44,01 %8,61 %13,33 %[18,12 %22,96 %27,83 %32,73 % 37,66 %42,62 %447,60 %52,60 %57,63 %62,68 %67,76 % 72,87 %978,02 %983,21 % 88,47 % 93,85 %99,71 %

1800 0,59 %4,04 %8,65 913,38 %[18,17 %23,01 %27,89 %32,79 %37,73 %442,68 %47,66 %52,67 %57,69 %62,75 %67,82 % 72,93 % 78,08 % 83,26 % 88,52 %93,89 %99,72 %

1900 |0,60 %44,06 %8,69 913,42 %[18,22 %23,07 %27,95 %32,85 % 37,79 %42,75 %47,73 %52,73 %57,76 %62,81 %67,88 %72,99 % 78,13 % 83,31 % 88,56 %93,92 %99,74 %

2000 |0,61 %4,09 98,72 %413,46 %418,27 %923,12 % 28,00 %32,91 %37,84 %42,80 %447,78 452,79 %57,81 %62,86 %/67,94 % 73,04 % 78,18 %483,36 % 88,60 %993,95 %/99,75 %

2100 |0,62 %4,11 %8,75 %413,50 %4 18,31 %923,16 %28,05 %32,96 %37,90 %442,86 %447,84 %52,84 %57,87 %62,92 %/67,99 % 73,09 % 78,22 %483,40 % 88,64 %993,98 %/99,76 %

2200 10,63 %94,13 %8,78 9413,53 %18,35 9%423,20 %428,09 %33,01 %4 37,94 %42,91 %47,89 %52,89 %57,92 %62,97 %|68,04 %|73,13 % 78,27 %83,44 %88,67 %94,00 %99,77 %

2300 10,63 %94,15 %8,80 %413,56 %18,38 %423,24 9428,13 %33,05 %4 37,99 %42,95 %47,94 %52,94 %57,96 %63,01 %|68,08 %|73,18 % 78,31 %83,47 %88,70 %94,03 %99,78 %

2400 |0,64 %4,16 98,83 %413,59 %418,42 %923,28 %28,17 % 33,09 %38,03 %443,00 %447,98 %52,98 %958,01 % 63,05 %/68,12 % 73,22 % 78,34 %83,51 %88,73 %994,05 %/99,79 %

2500 |0,65 %4,18 98,85 %413,62 %418,45 %923,31 % 28,21 %33,13 %38,07 %443,04 %448,02 %53,02 %958,05 %63,09 %/68,16 %/ 73,25 % 78,38 %483,54 %88,76 %994,07 %/99,80 %

2600 |0,65 %4,19 98,87 %413,65 %418,48 %923,35 %28,24 %33,16 %38,11 %443,07 %448,06 %53,06 %958,09 %63,13 %/68,20 %73,29 % 78,41 %483,57 %88,78 %994,09 %/99,81 %

2700 |0,66 %4,21 %8,89 %413,67 %18,51 %423,38 928,28 %33,20 %4 38,15 %43,11 %48,10 %53,10 %58,12 %63,17 %|68,23 %|73,32 % 78,44 % 83,60 %88,81 %94,11 %/99,81 %

2800 10,67 %94,22 %8,91 9%413,70 %18,53 %423,41 9%428,31 %33,23 %4 38,18 %43,15 %48,13 %53,13 %58,16 %63,20 %|68,26 %|73,35 % 78,47 % 83,62 %88,83 %94,13 %99,82 %

2900 (0,67 %4,24 %8,93 %413,72 % 18,56 %923,43 %28,34 %33,26 %38,21 %43,18 %448,16 %53,17 %958,19 %63,23 %/68,29 %/ 73,38 % 78,50 %483,65 % 88,85 %994,14 %/99,83 %

3000 |0,68 %4,25 98,95 %413,74 %418,58 %923,46 %28,36 %33,29 %38,24 943,21 %48,19 % 53,20 %58,22 %63,26 %/68,32 % 73,41 % 78,52 %83,67 % 88,87 %994,16 %/99,83 %

3100 |0,68 %4,26 98,97 %413,76 %418,60 %923,48 %28,39 %33,32 % 38,27 %43,24 %448,22 %53,23 %58,25 %63,29 %/68,35 % 73,44 % 78,55 %483,69 %88,89 %994,17 %/99,84 %

3200 10,68 %4,27 %8,98 9413,78 %18,63 %423,51 %428,42 % 33,35 %4 38,30 %43,27 %48,25 %53,26 %58,28 %63,32 %|68,38 %|73,46 % 78,57 %83,71 %88,91 %94,19 %/99,84 %

3300 10,69 %4,28 %99,00 9%413,80 %418,65 %423,53 %428,44 %33,37 %438,32 %943,29 %48,28 %53,28 %58,31 %63,34 %/68,40 %|73,49 % 78,59 % 83,74 %88,92 %94,20 %99,85 %

3400 |0,69 %4,29 99,01 %413,82 %418,67 %923,55 %28,46 %33,40 %38,35 %43,32 %48,31 % 53,31 %58,33 %63,37 %/68,43 % 73,51 % 78,61 %483,75 %88,94 %994,21 %/99,85 %

3500 |0,70 %4,30 909,03 %413,83 %418,69 %923,57 %28,48 %33,42 % 38,37 %43,34 %448,33 %53,33 %958,35 %63,39 %/68,45 % 73,53 % 78,64 %483,77 %88,96 %994,22 %/99,86 %
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3600 (0,70 %4,31 %9,04 %13,85 %18,70 % 23,59 %428,51 % 33,44 %4 38,39 %43,37 %448,35 % 53,36 %58,38 %63,42 %/68,47 % 73,55 % 78,65 % 83,79 % 88,97 %494,24 %99,86 %
3700 (0,71 %4,32 %9,05 % 13,86 %418,72 %423,61 %428,53 % 33,46 %4 38,42 % 43,39 %448,38 % 53,38 %58,40 %63,44 %/68,49 % 73,57 % 78,67 % 83,81 % 88,99 9%494,25 %99,86 %
3800 (0,71 94,33 949,06 %413,88 %418,74 %423,63 %428,55 % 33,48 94 38,44 %443,41 %448,40 % 53,40 958,42 %63,46 %68,51 % 73,59 % 78,69 % 83,82 %89,00 9%494,26 %99,87 %
3900 (0,71 %4,34 949,08 9%413,89 % 18,75 % 23,65 %4 28,56 % 33,50 %4 38,46 %443,43 %448,42 % 53,42 % 58,44 %63,48 %/68,53 % 73,61 % 78,71 % 83,84 %489,01 9494,27 % 99,87 %
4000 [0,72 %(4,35 %99,09 %13,91 % 18,77 %23,66 %28,58 %33,52 % 38,48 %43,45 % 48,44 % 53,44 %58,46 %63,50 %|68,55 %|73,63 %|78,73 %83,86 %89,03 %994,28 %/99,87 %
4100 [0,72 %(4,35 %99,10 %13,92 % 18,79 %23,68 %28,60 % 33,54 % 38,50 %43,47 %48,46 %53,46 %58,48 %63,52 %|68,57 %| 73,64 %78,74 %83,87 %89,04 %994,29 %/99,88 %
4200 0,72 %(4,36 %99,11 %13,93 % 18,80 %23,70 %28,62 % 33,56 %038,51 %43,49 %48,48 %53,48 %58,50 %63,54 %|68,59 %|73,66 %[78,76 983,88 %89,05 %94,30 %/99,88 %
4300 [0,72 %(4,37 %99,12 %13,95 918,81 %23,71 %28,63 %33,57 9%938,53 %943,51 948,49 %53,50 %58,52 %63,55 %|68,61 %|73,68 %|78,77 %83,90 %89,06 %994,30 %/99,88 %
4400 [0,73 %(4,37 %99,13 %13,96 918,83 %23,73 %28,65 %33,59 938,55 %43,52 948,51 %53,52 %58,53 %63,57 %|68,62 %| 73,69 %[78,79 %83,91 %89,08 %994,31 %/99,89 %
4500 [0,73 %4,38 999,14 %13,97 % 18,84 %23,74 %28,66 %33,61 %38,56 %943,54 %48,53 %53,53 %58,55 %63,59 %(68,64 %|73,71 %[78,80 %83,92 %89,09 %994,32 %/99,89 %
4600 [0,73 %4,39 %9,15 %13,98 % 18,85 %23,75 %28,68 %33,62 % 38,58 %943,56 %48,54 %53,55 %58,57 %63,60 %|68,65 %|73,72 %78,81 %83,93 %89,10 %94,33 %/99,89 %
4700 0,74 %(4,39 %9,16 %13,99 % 18,86 %23,77 %28,69 % 33,64 %38,60 %43,57 %48,56 %53,56 %58,58 %63,62 %|68,67 %|73,74 %|78,83 983,95 %89,11 %94,34 %/99,89 %
4800 |0,74 %4,40 %9,17 %14,00 % 18,88 %23,78 928,71 % 33,65 %938,61 %43,59 948,58 %53,58 %58,60 %63,63 %|68,68 %|73,75 %|78,84 983,96 %89,12 %94,34 %/99,90 %
4900 (0,74 %4,41 %99,17 %14,01 9% 18,89 %23,79 %28,72 % 33,66 %938,62 %43,60 %48,59 %53,59 %58,61 %63,65 %(68,69 %|73,76 %|78,85 983,97 %89,13 %94,35 %(99,90 %
5000 (0,74 %4,41 %9,18 % 14,02 %418,90 % 23,80 %428,73 % 33,68 %4 38,64 %43,61 %448,60 % 53,61 %58,63 %63,66 %68,71 % 73,78 % 78,86 % 83,98 %4 89,13 %494,36 %99,90 %

A.4.5 Upper limit of confidence intervals according to Pearson-Clopper formula

Table A.4.2 contains val ues which specify the upper limit of the confidence interval. The upper limit depends on the number of samples and the according rate value. In
figures A.4.1to A.4.3 thisinformation can be found at the red lines.

Table A.4.2

Rate

NrMeas| 1 % 5% 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | 80% | 85% | 90% | 95% | 100 %
100 |5,45 %11,28 %17,62 %923,53 %/29,18 % 34,66 %39,98 %45,18 %50,28 %55,30 %60,19 % 64,98 %69,67 %74,27 %|78,76 %83,18 %87,41 %91,44 %95,20 %98,48 %100,00 %
200 (3,57 % 9,00 % (15,02 %20,72 %/26,22 %31,60 %36,87 %42,05 %947,15 %952,18 %57,14 %62,03 %66,85 % 71,59 %|76,26 %80,86 %85,34 %89,68 %93,82 %497,63 %4100,00 %
300 (2,89 % 8,11 % (13,97 %19,55 %/24,98 %[30,30 %35,53 %40,69 %45,79 %50,82 %55,80 %60,73 %65,59 %70,39 % 75,14 %|79,81 %84,39 %88,86 %93,17 %4 97,21 % 100,00 %
400 (2,54 % 7,62 % (13,37 %418,88 924,26 %29,54 % 34,75 %4 39,90 %4 44,99 %50,03 %455,01 %459,95 %4 64,84 %469,67 % 74,45 %|79,18 % 83,82 % 88,37 % 92,77 %496,94 % 100,00 %
500 (2,32 % 7,29 % (12,97 %(18,44 %|23,78 %[29,04 %34,23 %(39,36 %44,45 %49,48 % 54,47 %59,42 %64,32 %69,18 %|73,99 %|78,74 %83,43 %88,02 %92,50 %4 96,75 %4 100,00 %
600 (2,16 % 7,06 % (12,68 %18,11 %/23,43 %[28,67 %33,84 %38,97 %944,05 %949,08 %54,08 %59,03 %63,95 %68,82 %|73,65 %|78,42 %83,13 %87,77 %92,29 %496,61 %4 100,00 %
700 (2,05 % 6,89 % (12,47 %(17,86 %23,16 %[28,38 %33,55 %38,66 %943,74 %48,77 %53,77 %58,73 %63,65 %68,54 %|73,38 %|78,17 %82,91 %87,57 %92,13 %496,50 %4 100,00 %
800 (1,96 % 6,75 % (12,29 %17,67 %22,94 %[28,15 %33,31 %38,42 %43,49 %48,52 %53,52 %58,49 %63,42 %68,31 %|73,16 %|77,97 %82,72 %87,41 %92,00 %496,41 % 100,00 %
900 (1,89 % 6,63 % (12,15 %(17,50 %[22,77 %[27,96 %33,11 %38,22 %43,29 %48,32 %53,32 %58,29 %63,22 %68,12 %|72,98 %|77,80 %82,57 %87,27 %91,89 %496,34 % 100,00 %
1000 |{1,83 % 6,54 % (12,03 %417,37 %22,62 %27,81 % 32,95 %4 38,05 %443,11 %448,15 %53,15 %458,12 %4 63,05 %467,96 % 72,83 % 77,66 % 82,44 %87,16 % 91,79 996,27 % 100,00 %
1100 |1,78 % 6,46 %(11,93 %417,25 %22,49 %27,67 %4 32,80 %4 37,90 %442,97 %448,00 % 53,00 %4 57,97 %462,91 %467,82 % 72,70 % 77,54 % 82,33 % 87,06 % 91,71 %96,22 % 100,00 %
1200 |1,74 % 6,39 % (11,84 %417,15 %22,38 %27,55 % 32,68 %4 37,77 ¥442,84 ¥%447,87 %52,87 %457,84 %462,79 %67,70 % 72,58 % 77,43 % 82,23 %86,98 % 91,64 %496,17 % 100,00 %
1300 |1,70 % 6,33 % (11,76 %4 17,06 %22,28 %27,45 % 32,57 %4 37,66 %442,72 Y%447,75 %52,75 %4 57,73 %462,68 %467,59 % 72,48 % 77,33 % 82,14 %86,90 % 91,58 %496,12 % 100,00 %
1400 |1,67 % 6,28 %|11,69 %416,98 %22,19 %27,35 %4 32,48 %4 37,56 %442,62 %47,65 % 52,65 %4 57,63 %462,58 %467,50 % 72,39 % 77,25 % 82,07 %86,83 % 91,52 9%496,09 % 100,00 %
1500 |1,64 % 6,23 % (11,63 %416,91 %22,12 %27,27 % 32,39 %4 37,47 ¥%442,53 %447,56 %52,56 %4 57,54 %462,49 %467,42 % 72,31 % 77,18 % 82,00 %86,77 % 91,47 %96,05 % 100,00 %
1600 |1,62 % 6,18 % (11,58 %416,84 %422,05 %27,20 %4 32,31 %4 37,39 %442,45 %447,48 %52,48 %4 57,46 %462,41 %67,34 % 72,24 % 77,11 % 81,94 %86,72 % 91,43 %496,02 % 100,00 %
1700 |1,60 % 6,15 %|11,53 %416,79 %421,98 %27,13 % 32,24 % 37,32 ¥%442,37 ¥%447,40 %52,40 %4 57,38 %462,34 %467,27 % 72,17 % 77,04 % 81,88 %86,67 % 91,39 %495,99 % 100,00 %
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1800

1,58 %

6,11 %

11,48 %

16,73 %

21,92 %

27,07 %

32,18 %

37,25 %

42,31 %

47,33 %

52,34 %

57,32 %

62,27 %

67,21 %

72,11 %

76,99 %

81,83 %

86,62 %

91,35 %

95,96 %

100,00 %

1900

1,56 %

6,08 %

11,44 %

16,69 %

21,87 %

27,01 %

32,12 %

37,19%

42,24 %

47,27 %

52,27 %

57,25 %

62,21 %

67,15 %

72,06 %

76,93 %

81,78 %

86,58 %

91,31 %

95,94 %

100,00 %

2000

1,54 %

6,05 %

11,40 %

16,64 %

21,82 %

26,96 %

32,06 %

37,14 %

42,19 %

47,21 %

52,22 %

57,20 %

62,16 %

67,09 %

72,00 %

76,89 %

81,73 %

86,54 %

91,28 %

95,92 %

100,00 %

2100

1,52 %

6,02 %

11,36 %

16,60 %

21,78 %

26,91 %

32,01 %

37,08 %

42,13 %

47,16 %

52,16 %

57,14 %

62,10 %

67,04 %

71,96 %

76,84 %

81,69 %

86,50 %

91,25 %

95,89 %

100,00 %

2200

151 %

6,00 %

11,33 %

16,56 %

21,73 %

26,86 %

31,96 %

37,03 %

42,08 %

47,11 %

52,11 %

57,09 %

62,06 %

66,99 %

71,91 %

76,80 %

81,65 %

86,47 %

91,22 %

95,87 %

100,00 %

2300

1,50 %

5,97 %

11,30 %

16,53 %

21,69 %

26,82 %

31,92 %

36,99 %

42,04 %

47,06 %

52,06 %

57,05 %

62,01 %

66,95 %

71,87 %

76,76 %

81,62 %

86,44 %

91,20 %

95,86 %

100,00 %

2400

1,48 %

5,95 %

11,27 %

16,49 %

21,66 %

26,78 %

31,88 %

36,95 %

41,99 %

47,02 %

52,02 %

57,00 %

61,97 %

66,91 %

71,83 %

76,72 %

81,58 %

86,41 %

91,17 %

95,84 %

100,00 %

2500

1,47 %

5,93 %

11,24 %

16,46 %

21,62 %

26,75 %

31,84 %

36,91 %

41,95 %

46,98 %

51,98 %

56,96 %

61,93 %

66,87 %

71,79 %

76,69 %

81,55 %

86,38 %

91,15 %

95,82 %

100,00 %

2600

1,46 %

591 %

11,22 %

16,43 %

21,59 %

26,71 %

31,80 %

36,87 %

41,91 %

46,94 %

51,94 %

56,93 %

61,89 %

66,83 %)

71,76 %

76,66 %

81,52 %

86,35 %

91,13 %

95,81 %

100,00 %

2700

1,45 %

5,89 %

11,19 %

16,40 %

21,56 %

26,68 %

31,77 %

36,83 %

41,88 %

46,90 %

51,90 %

56,89 %

61,85 %

66,80 %

71,72 %

76,62 %

81,49 %

86,33 %

91,11 %

95,79 %

100,00 %

2800

1,44 %

5,87 %

11,17 %

16,38 %

21,53 %

26,65 %

31,74 %

36,80 %

41,84 %

46,87 %

51,87 %

56,85 %

61,82 %

66,77 %

71,69 %

76,60 %

81,47 %

86,30 %

91,09 %

95,78 %

100,00 %

2900

1,43 %

5,86 %

11,15 %

16,35 %

21,50 %

26,62 %

31,70 %

36,77 %

41,81 %

46,83 %

51,84 %

56,82 %

61,79 %

66,74 %

71,66 %

76,57 %

81,44 %

86,28 %

91,07 %

95,77 %

100,00 %

3000

1,42 %

5,84 %

11,13 %

16,33 %

21,48 %

26,59 %

31,68 %

36,74 %

41,78 %

46,80 %

51,81 %

56,79 %

61,76 %

66,71 %

71,64 %

76,54 %

81,42 %

86,26 %

91,05 %

95,75 %

100,00 %

3100

1,42 %

5,83 %

11,11 %

16,31 %

21,45 %

26,56 %

31,65 %

36,71 %

41,75 %

46,77 %

51,78 %

56,76 %

61,73 %

66,68 %)

71,61 %

76,52 %

81,40 %

86,24 %

91,03 %

95,74 %

100,00 %

3200

1,41 %

5,81 %

11,09 %

16,28 %

21,43 %

26,54 %

31,62 %

36,68 %

41,72 %

46,74 %

51,75 %

56,73 %

61,70 %

66,65 %

71,58 %

76,49 %

81,37 %

86,22 %

91,02 %

95,73 %

100,00 %

3300

1,40 %

5,80 %

11,07 %

16,26 %

21,41 %

26,51 %

31,60 %

36,66 %

41,69 %

46,72 %

51,72 %

56,71 %

61,68 %

66,63 %

71,56 %

76,47 %

81,35%

86,20 %

91,00 %

95,72 %

100,00 %

3400

1,39 %

579 %

11,06 %

16,24 %

21,38 %

26,49 %

31,57 %

36,63 %

41,67 %

46,69 %

51,69 %

56,68 %

61,65 %

66,60 %

71,54 %

76,45 %

81,33 %

86,18 %

90,99 %

95,71 %

100,00 %

3500

1,39 %

577 %

11,04 %

16,23 %

21,36 %

26,47 %

31,55 %

36,61 %

41,65 %

46,67 %

51,67 %

56,66 %

61,63 %

66,58 %)

71,52 %

76,43 %

81,31 %

86,17 %

90,98 %

95,70 %

100,00 %

3600

1,38 %

5,76 %

11,03 %

16,21 %

21,34 %

26,45 %

31,53 %

36,58 %

41,62 %

46,64 %

51,65 %

56,63 %

61,61 %

66,56 %)

71,49 %

76,41 %

81,30 %

86,15 %

90,96 %

95,69 %

100,00 %

3700

1,38 %

575 %

11,01 %

16,19 %

21,33 %

26,43 %

31,51 %

36,56 %

41,60 %

46,62 %

51,62 %

56,61 %

61,58 %

66,54 %

71,47 %

76,39 %

81,28 %

86,14 %

90,95 %

95,68 %

100,00 %

3800

1,37 %

574 %

11,00 %

16,18 %

21,31 %

26,41 %

31,49 %

36,54 %

41,58 %

46,60 %

51,60 %

56,59 %

61,56 %

66,52 %

71,45 %

76,37 %

81,26 %

86,12 %

90,94 %

95,67 %

100,00 %

3900

1,36 %

573 %

10,98 %

16,16 %

21,29 %

26,39 %

31,47 %

36,52 %

41,56 %

46,58 %

51,58 %

56,57 %

61,54 %

66,50 %)

71,44 %

76,35 %

81,25 %

86,11 %

90,92 %

95,66 %

100,00 %

4000

1,36 %

572%

10,97 %

16,14 %

21,27 %

26,37 %

31,45 %

36,50 %

41,54 %

46,56 %

51,56 %

56,55 %

61,52 %

66,48 %

71,42 %

76,34 %

81,23 %

86,09 %

90,91 %

95,66 %

100,00 %

4100

1,35%

571 %

10,96 %

16,13 %

21,26 %

26,36 %

31,43 %

36,48 %

41,52 %

46,54 %

51,54 %

56,53 %

61,50 %

66,46 %)

71,40 %

76,32 %

81,22 %

86,08 %

90,90 %

95,65 %

100,00 %

4200

1,35%

5,70 %

10,95 %

16,12 %

21,24 %

26,34 %

31,41 %

36,46 %

41,50 %

46,52 %

51,52 %

56,51 %

61,49 %

66,44 %

71,38 %

76,30 %

81,20 %

86,07 %

90,89 %

95,64 %

100,00 %

4300

1,34 %

5,69 %

10,94 %

16,10 %

21,23 %

26,32 %

31,39 %

36,45 %

41,48 %

46,50 %

51,51 %

56,49 %

61,47 %

66,43 %

71,37 %

76,29 %

81,19 %

86,06 %

90,88 %

95,63 %

100,00 %

4400

1,34 %

5,69 %

10,92 %

16,09 %

21,21 %

26,31 %

31,38 %

36,43 %

41,47 %

46,48 %

51,49 %

56,48 %

61,45 %

66,41 %

71,35 %

76,27 %

81,17 %

86,04 %

90,87 %

95,63 %

100,00 %

4500

1,34 %

5,68 %

10,91 %

16,08 %

21,20 %

26,29 %

31,36 %

36,41 %

41,45 %

46,47 %

51,47 %

56,46 %

61,44 %

66,39 %)

71,34 %

76,26 %

81,16 %

86,03 %

90,86 %

95,62 %

100,00 %

4600

1,33 %

5,67 %

10,90 %

16,06 %

21,19 %

26,28 %

31,35 %

36,40 %

41,43 %

46,45 %

51,46 %

56,45 %

61,42 %

66,38 %)

71,32 %

76,25 %

81,15%

86,02 %

90,85 %

95,61 %

100,00 %

4700

1,33 %

5,66 %

10,89 %

16,05 %

21,17 %

26,26 %

31,33 %

36,38 %

41,42 %

46,44 %

51,44 %

56,43 %

61,40 %

66,36 %

71,31 %

76,23 %

81,14 %

86,01 %

90,84 %

95,61 %

100,00 %

4800

1,32 %

5,65 %

10,88 %

16,04 %

21,16 %

26,25 %

31,32 %

36,37 %

41,40 %

46,42 %

51,42 %

56,41 %

61,39 %

66,35 %

71,29 %

76,22 %

81,12 %

86,00 %

90,83 %

95,60 %

100,00 %

4900

1,32 %

5,65 %

10,87 %

16,03 %

21,15 %

26,24 %

31,30 %

36,35 %

41,39 %

46,41 %

51,41 %

56,40 %

61,38 %

66,34 %

71,28 %

76,21 %

81,11 %

85,99 %

90,83 %

95,59 %

100,00 %

5000

1,32 %

5,64 %

10,87 %

16,02 %

21,14 %

26,22 %

31,29 %

36,34 %

41,37 %

46,39 %

51,40 %

56,39 %

61,36 %

66,32 %)

71,27 %

76,20 %

81,10 %

85,98 %

90,82 %

95,59 %

100,00 %
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A.4.6 Span of confidence intervals according to Pearson-Clopper formula

ETSI TS 102 250-6 V1.2.1 (2004-10)

Table A.4.3 contains values which specify the difference ("span") between the upper and the lower limit of the confidence interval. The span depends on the number of samples
and the according rate value. In figures A.4.1 to A.4.3 thisinformation can be found as the vertical distance between the red and the blue lines.

Table A.4.3

Rate

NrMeas|

1%

5%

10 %

15%

20 %

25%

30 %

35%

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

100 %

100

542 %

9,64 %

12,72 %y

14,89 %

16,52 %

17,78 %

18,74 %

19,46 %

19,95 %

20,30 %

20,38 %

20,28 %

19,95 %

19,46 %y

18,74 %

17,90 %

16,67 %

15,07 %

12,96 %

10,00 %

4,85 %

200

3,44 %

6,58 %

8,81 %

10,36 %

11,53 %

12,44 %

13,13 %

13,64 %

13,99 %

14,22 %

14,29 %

14,21 %

13,99 %

13,64 %

13,13 %

12,48 %

11,59 %

10,43 %

8,90 %

6,71 %

2,47 %

300

2,69 %

5,29 %

7,12%

8,40 %

9,36 %

10,10 %

10,66 %

11,08 %

11,39 %

11,54 %

11,61 %

11,55 %

11,37 %

11,08 %

10,68 %

10,12 %

9,39 %

8,43 %

7,17 %

5,36 %

1,66 %

400

2,27 %

4,54 %

6,13 %

7,24 %

8,07 %

8,71 %

9,21 %

9,57 %

9,82 %

9,98 %

10,02 %

9,97 %

9,82 %

9,57 %

9,21 %

8,73 %

8,09 %

7,26 %

6,16 %

4,59 %

1,25 %

500

1,99 %

4,03 %

5,46 %

6,45 %

7,20 %

777 %

8,21 %

8,54 %

8,77 %

8,90 %

8,95 %

8,90 %

8,77 %

8,54 %

8,22 %

7,79 %

7,21 %

6,47 %

5,48 %

4,07 %

1,00 %

600

1,80 %

3,66 %

4,97 %

5,87 %

6,56 %

7,08 %

7,49 %

7,78 %

8,00 %

8,11 %

8,15 %

8,11 %

7,99 %

7,78 %

7,49 %

7,09 %

6,57 %

5,89 %

4,98 %

3,69 %

0,83 %

700

1,65 %

3,38 %

4,59 %

543 %

6,06 %

6,55 %

6,92 %

7,20 %

7,39 %

7,50 %

7,54 %

7,50 %

7,39 %

7,20 %

6,93 %

6,56 %

6,07 %

5,44 %

4,60 %

3,40 %

0,71 %

800

1,53 %

3,15 %

4,28 %

5,07 %

5,66 %

6,12 %

6,47 %

6,73 %

6,90 %

7,01 %

7,05 %

7,01 %

6,90 %

6,73 %

6,47 %

6,12 %

5,67 %

5,08 %

4,29 %

3,17%

0,63 %

900

1,43 %

2,96 %

4,03 %

4,77 %

533 %

5,76 %

6,09 %

6,34 %

6,51 %

6,60 %

6,64 %

6,60 %

6,50 %

6,34 %

6,10 %

577 %

534 %

4,78 %

4,04 %

2,98 %

0,56 %

1000

1,35%

281 %

3,82 %

452 %

5,05 %

5,46 %

577 %

6,01 %

6,17 %

6,26 %

6,29 %

6,26 %

6,17 %

6,01 %

5,78 %

547 %

5,06 %

4,53 %

3,83 %

2,82 %

0,50 %

1100

1,28 %

2,67 %

3,64 %

4,31 %

4,81 %

5,20 %

5,50 %

572%

5,88 %

5,97 %

6,00 %

597 %

5,87 %

572%

5,50 %

521 %

4,82 %

431 %

3,64 %

2,68 %

0,46 %

1200

1,22 %

2,55 %

3,48 %

4,12 %

4,61 %

4,98 %

5,26 %

5,48 %

5,62 %

571 %

574 %

571 %

5,62 %

5,48 %

5,27 %

4,98 %

4,61 %

4,13 %

3,48 %

2,56 %

0,42 %

1300

1,17 %

2,45 %

3,34 %

3,96 %

4,42 %

4,78 %

5,05 %

5,26 %

5,40 %

5,48 %

5,51 %

5,48 %

5,40 %

5,26 %

5,06 %

4,78 %

4,43 %

3,96 %

3,34 %

2,46 %

0,39 %

1400

1,12 %

2,36 %

3,21 %

3,81 %

4,26 %

4,60 %

4,87 %

5,07 %

5,20 %

5,28 %

531 %

5,28 %

5,20 %

5,06 %

4,87 %

4,61 %

4,26 %

3,81 %

3,22 %

2,36 %

0,36 %

1500

1,08 %

227 %

3,10 %

3,68 %

4,11 %

4,45 %

4,70 %

4,89 %

5,02 %

5,10 %

512 %

5,10 %

5,02 %

4,89 %

4,70 %

4,45 %

4,12 %

3,68 %

3,11 %

2,28%

0,33 %

1600

1,05 %

2,20%

3,00 %

3,56 %

3,98 %

4,30 %

4,55 %

4,73 %

4,86 %

4,93 %

4,96 %

4,93 %

4,86 %

4,73 %

4,55 %

4,31 %

3,98 %

3,56 %

3,01 %

221 %

0,31 %

1700

1,01 %

2,13 %

2,91 %

3,45 %

3,86 %

4,17 %

4,41 %

4,59 %

4,71 %

4,79 %

4,81 %

4,79 %

4,71 %

4,59 %

4,41 %

4,17 %

3,86 %

3,46 %

2,91 %

2,14 %

0,29 %

1800

0,98 %

2,07 %

2,83 %

3,35%

3,75%

4,05 %

4,29 %

4,46 %

4,58 %

4,65 %

4,67 %

4,65 %

4,58 %

4,46 %

4,29 %

4,06 %

3,75%

3,36 %

2,83 %

2,08 %

0,28 %

1900

0,95 %

2,01 %

275%

3,26 %

3,65 %

3,94 %

4,17 %

4,34 %

4,46 %

4,52 %

4,55 %

4,52 %

4,46 %

4,34 %

4,17 %

3,95 %

3,65 %

3,27 %

2,75%

2,02 %

0,26 %

2000

0,93 %

1,96 %

2,68 %

3,18 %

3,55 %

3,84 %

4,06 %

4,23 %

4,34 %

4,41 %

4,43 %

4,41 %

4,34 %

4,23 %

4,07 %

3,84 %

3,56 %

3,18 %

2,68 %

1,97 %

0,25 %

2100

0,90 %

191 %

2,61%

3,10 %

3,47 %

3,75%

3,97 %

4,13 %

4,24 %

4,30 %

4,32 %

4,30 %

4,24 %

4,13 %

3,97 %

3,75%

3,47 %

3,10 %

2,62 %

1,92 %

0,24 %

2200

0,88 %

1,87 %

2,55 %

3,03 %

3,39 %

3,66 %

3,87 %

4,03 %

4,14 %

4,20 %

4,22 %

4,20 %

4,14 %

4,03 %

3,87 %

3,66 %

3,39 %

3,03 %

2,56 %

1,87 %

0,23 %

2300

0,86 %

1,83 %

2,50 %

2,96 %

331 %

3,58 %

3,79 %

3,94 %

4,05 %

4,11 %

4,13 %

4,11 %

4,05 %

3,94 %

3,79 %

3,58 %

331%

2,96 %

2,50 %

1,83 %

0,22 %

2400

0,84 %

1,79 %

2,44 %

2,90 %

3,24 %

3,50 %

3,71 %

3,86 %

3,96 %

4,02 %

4,04 %

4,02 %

3,96 %

3,86 %

3,71 %

3,51 %

3,24 %

2,90 %

2,44 %

1,79%

0,21 %

2500

0,82 %

1,75%

2,39 %

2,84 %

3,17 %

3,43 %

3,63 %

3,78 %

3,88 %

3,94 %

3,96 %

3,94 %

3,88 %

3,78 %

3,63 %

3,43 %

3,18 %

2,84 %

2,39 %

1,75%

0,20 %

2600

0,81 %

1,71 %

2,34 %

2,78 %

3,11 %

3,37 %

3,56 %

3,70 %

3,80 %

3,86 %

3,88 %

3,86 %

3,80 %

3,70 %

3,56 %

3,37 %

3,11 %

2,78 %

2,35%

1,72%

0,19 %

2700

0,79 %

1,68 %

2,30 %

2,73%

3,05 %

3,30 %

3,49 %

3,63 %

3,73%

3,79%

3,81 %

3,79%

3,73%

3,63 %

3,49 %

3,30 %

3,05 %

2,73%

2,30 %

1,68 %

0,19 %

2800

0,78 %

1,65 %

2,26 %

2,68 %

3,00 %

3,24 %

3,43 %

3,57 %

3,66 %

3,72%

3,74 %

3,72%

3,66 %

3,57 %

3,43 %

3,24 %

3,00 %

2,68 %

2,26 %

1,65 %

0,18 %

2900

0,76 %

1,62 %

2,22%

2,63 %

2,95 %

3,19 %

3,37 %

3,51 %

3,60 %

3,65 %

3,67 %

3,65 %

3,60 %

3,50 %

3,37 %

3,19 %

2,95 %

2,63 %

222%

1,62 %

0,17 %

3000

0,75 %

1,59 %

2,18%

2,59 %

2,90 %

3,13 %

3,31 %

3,45 %

3,54 %

3,59 %

3,61 %

3,59 %

3,54 %

3,45 %

3,31 %

3,13 %

2,90 %

2,59 %

2,18%

1,60 %

0,17 %

3100

0,74 %

157 %

2,14 %

2,55 %

2,85 %

3,08 %

3,26 %

3,39 %

3,48 %

3,53 %

3,55 %

3,53 %

3,48 %

3,39 %

3,26 %

3,08 %

2,85 %

2,55 %

215%

157 %

0,16 %

3200

0,72 %

1,54 %

2,11 %

2,51 %

2,80 %

3,03 %

3,21 %

3,34 %

3,42 %

3,48 %

3,49 %

3,48 %

3,42 %

3,34 %

3,21 %

3,03 %

2,80 %

2,51 %

2,11 %

1,54 %

0,16 %

3300

0,71 %

1,52 %

2,08 %

247 %

2,76 %

2,98 %

3,16 %

3,28 %

337%

342 %

3,44 %

342 %

3,37 %

3,28 %

3,16 %

2,98 %

2,76 %

247 %

2,08 %

1,52 %

0,15 %

3400

0,70 %

1,50 %

2,05 %

2,43 %

272%

2,94 %

3,11 %

3,23 %

3,32 %

3,37 %

3,39 %

3,37 %

3,32 %

3,23 %

3,11 %

2,94 %

272%

2,43 %

2,05 %

1,50 %

0,15 %

3500

0,69 %

1,47 %

2,02 %

2,39 %

2,68 %

2,90 %

3,06 %

3,19 %

3,27 %

3,32 %

3,34 %

3,32 %

3,27 %

3,19 %

3,06 %

2,90 %

2,68 %

2,40 %

2,02 %

1,48 %

0,14 %

3600

0,68 %

1,45 %

1,99 %

2,36 %

2,64 %

2,86 %

3,02 %

3,14 %

3,23 %

3,28 %

3,29 %

3,28 %

3,23 %

3,14 %

3,02 %

2,86 %

2,64 %

2,36 %

1,99 %

1,45 %

0,14 %
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Rate

3700

0,67 %

1,43 %

1,96 %

2,33%

2,60 %

2,82 %

2,98 %

3,10 %

3,18 %

3,23%

3,25 %

3,23%

3,18 %

3,10 %

2,98 %

2,82 %

2,60 %

2,33%

1,96 %

1,43 %

0,14 %

3800

0,66 %

1,41 %

1,93 %

2,30 %

2,57 %

2,78 %

2,94 %

3,06 %

3,14%

3,19%

3,20 %

3,19%

3,14%

3,06 %

2,94 %

2,78 %

257%

2,30 %

1,94 %

1,41 %

0,13 %

3900

0,65 %

1,39 %

191 %

227 %

2,54 %

2,74 %

2,90 %

3,02 %

3,10 %

3,15%

3,16 %

3,15%

3,10 %

3,02 %

2,90 %

2,74 %

2,54 %

227 %

191 %

1,40 %

0,13 %

4000

0,64 %

1,38 %

1,88 %

2,24 %

2,50 %

271 %

2,86 %

2,98 %

3,06 %

3,11 %

3,12%

3,11 %

3,06 %

2,98 %

2,86 %

2,71 %

2,50 %

2,24 %

1,89 %

1,38 %

0,13 %

4100

0,64 %

1,36 %

1,86 %

2,21 %

2,47 %

2,67 %

2,83 %

2,94 %

3,02 %

3,07 %

3,08 %

3,07 %

3,02 %

2,94 %

2,83 %

2,68 %

2,47 %

2,21 %

1,86 %

1,36 %

0,12 %

4200

0,63 %

1,34 %

1,84 %

2,18%

2,44 %

2,64 %

2,79 %

2,91 %

2,99 %

3,03 %

3,05 %

3,03 %

2,99 %

2,91 %

2,80 %

2,64 %

2,44 %

2,18 %

1,84 %

1,34 %

0,12 %

4300

0,62 %

1,33 %

1,82 %

2,16 %

2,41 %

2,61 %

2,76 %

2,87 %

2,95 %

3,00 %

3,01 %

3,00 %

2,95 %

2,87 %

2,76 %

2,61%

241 %

2,16 %

1,82 %

1,33 %

0,12 %

4400

0,61 %

131 %

1,80 %

2,13%

2,39 %

2,58 %

2,73%

2,84 %

2,92%

2,96 %

2,98 %

2,96 %

2,92%

2,84 %

2,73%

2,58 %

2,39 %

2,13%

1,80 %

131 %

0,11 %

4500

0,61 %

1,30 %

1,78 %

211 %

2,36 %

2,55 %

2,70 %

281 %

2,88 %

2,93 %

2,94 %

2,93 %

2,88 %

281 %

2,70 %

2,55 %

2,36 %

211 %

1,78 %

1,30 %

0,11 %

4600

0,60 %

1,28 %

1,76 %

2,09 %

2,33 %

2,52 %

2,67 %

2,78 %

2,85%

2,90 %

2,91 %

2,90 %

2,85%

2,78 %

2,67 %

2,52 %

2,33%

2,09 %

1,76 %

1,28 %

0,11 %

4700

0,59 %

1,27 %

1,74 %

2,06 %

2,31 %

2,50 %

2,64 %

2,75%

2,82 %

2,87%

2,88 %

2,87%

2,82 %

2,75%

2,64 %

2,50 %

231 %

2,06 %

1,74 %

1,27 %

0,11 %

4800

0,59 %

1,25 %

1,72%

2,04 %

2,28 %

2,47 %

2,61 %

272%

2,79%

2,83%

2,85 %

2,84 %

2,79%

2,72%

2,61 %

247 %

2,28%

2,04 %

1,72%

1,26 %

0,10 %

4900

0,58 %

1,24 %

1,70%

2,02 %

2,26 %

244 %

2,59 %

2,69 %

2,76 %

281 %

2,82 %

281 %

2,76 %

2,69 %

2,59 %

2,45 %

2,26 %

2,02 %

1,70%

1,24 %

0,10 %

5000

0,57 %

1,23 %

1,68 %

2,00 %

2,24 %

242 %

2,56 %

2,66 %

2,74 %

2,78 %

2,79 %

2,78 %

2,74 %

2,66 %

2,56 %

242 %

2,24 %

2,00 %

1,68 %

1,23%

0,10 %
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A.5 Different sample sizes

The following examples show the effect of different sasmple sizesin a measurement campaign. It is also based on the
Pearson-Clopper formulas for the calculation of confidence intervals. Therefore, the examples are valid in a generic
way and even for small sample sizes. For higher sample numbers, the calculation of confidence intervals based on the
approximation of a normal distribution can be applied.

Three different graphs are depicted: Sample sizesin the range:
. between 100 and 1 100 samples;
. between 1 100 and 2 100 samples; and
. between 1 000 and 11 000 samples.

The depicted curves can be found in the rows of the tables given above (humber of measurementsis constant, estimated
rate varies).
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Figure A.5.1: Width of confidence interval for different sample sizes
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Figure A.5.2: Width of confidence interval for different sample sizes
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Figure A.5.3: Width of confidence interval for different sample sizes

A.6 Calculation methods

This clause depicts some examples of how to calculate statistical values out of measurement data.
A.6.1 Calculation of quantiles
In this clause the different basic steps to calculate quantile values related to measurement samples are described.

Quantile example
Random data F distribution (m=5,n=7)

y(t)

P NWhOOO
|

\ \ \ \ \
20 40 60 80 100

t

Figure A.6.1: Example of measured data as atime series
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Assuming that measurement data according to the graph above has been collected, the following steps can be executed:

. Determine the number N of available measurements.

. Sorting of data: The samples are sorted in an ascending order.

. Define the p-quantile value that should be retrieved. In this example, the 95 % quantile (Q95) is requested, so
p=95%=0,95.

. Start counting the sorted samples, until you reach the p-percentage of all available samples. In this example,
this means 95 % of the samples have to be counted.

. The sample where the according percentage is reached is taken. The appropriate ordinate val ue represents the
searched p-quantile, in this case the 95 % quantile.

q(x)

o N b~ O

Quantile example

Sorted random data

los Q25 Q30

0O 20 40 60 80 100

X

Figure A.6.2: Determination of quantiles on sorted data

The different steps are visualized in the graph above. Further example for other p-quantiles are:

p percentage

5%

25%

50 %

75 %

95 %

p-quantile

0,2959737

0,5370118

0,8579087

1,6867595

4,5992459

If for example the 95 % value is not covered by a sample, an interpolation between the left-hand and the right-hand
neighbour may be appropriate. Thisinterpolation may have different grades, e.g. linear or quadratic interpolation.

Another possibility to determine quantile valuesis given by analysis of the Cumulative Distribution Function (CDF).

The stepsto create a CDF out of measurement results are generally the same as described above.
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A.7  Reporting of results

This clause describes which pieces of information should be given to the reader when generating a test report. The
categories of different data types are related to the definitionsin clause 4.

A.7.1 Methods to use

The variables x, y and z in the following table must be accordingly replaced by the estimated data.

When quantile values are used, it should be kept in mind that the computation of quantiles separates alow percentage of
outlier data from the remaining data. This means:

. If lower values represent a better outcome from the customer's perspective, a small percentage containing the
highest values could be separated by calculating a 95 %-quantile or a 90 %-quantile. Thisisthe case for
example for duration values.

. If higher values represent a better outcome from the customer's perspective, a small percentage containing the
lowest values could be separated by calculating a5 %-quantile or a 10 %-quantile. Thisisthe case for example
for throughput val ues.

. Related to content quality, the appropriate quantile computation orientates itself on the scale of the determined
test results. In practice, some algorithms define a value of 0 on a scale from 0 to 5 as the best quality whereas
others define the value of 5 as the highest possible quality. The table below gives some hints how to use the
guantile computation in these cases.
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Table A.7.1
Category of Type of Method to use Reporting statement Additional Related
data information information clauses
Binary values Estimated rate |Pearson- X0p*t 1% Always valid, borders |5.7.2.1
(Success rates, |plus Clopper ~Y,% of confidence interval
error rates, ...) |confidence are asymmetric
interval (except for x = 50)
Gaussian X%+ y% Applicable if 5.7.2.2
approximation nplg=9,
symmetric borders of
confidence interval
Duration values |Mean delay Empirical mean | x s+ ys(N=2) Always valid 5.4 and
(End-to-end plus standard |plus empirical N: number of samples |5.5
delay, deviation standard taken into account
establishment deviation
delay, ...) a -Quantile Quantile q, =XS (N - Z) N: number of samples |5.4 and
plus number of [computation a taken into account 55
samples ' : Desired quantile
level, mostly
a =95% or
a =90%
Throughput Mean data rate |Empirical mean | x kbit/s+ y kbit/s(N = 2) Always valid 5.4 and
values plus standard |plus empirical N: number of samples |5.5
(Data rates) deviation standard taken into account
deviation
a -Quantile Quantile q, = X kbit/s (N - Z) N: number of samples (5.4 and
plus number of [computation a taken into account 55
samples ' : Desired quantile
level, mostly
a =5% or
a =10%
Content quality |Mean score Empirical mean | x MOS + y MOS (N = 2) Always valid 5.4 and
values plus standard |plus empirical N: number of samples |5.5
(Audio quality, |deviation standard taken into account
video quality) deviation
a -Quantile Quantile q, = X MOS (N - Z) N: number of samples (5.4 and
plus number of |computation a taken into account 5.5
samples ' : Desired quantile

level, mostly
a =95% or
a =90% if lower

values represent
better quality,

a =5% or

a =10% if higher
values represent
better quality

A.7.2 Number of significant decimals

When representing final results, the number of reported significant decimal s should be orientated on the precision of the

evaluation method used (e.g. calculation of standard deviation, confidence interval, ...).

A.7.3 Rounding of end results

During the execution of consecutive cal culation steps, no rounding functionality should be applied. Only the final
results may be rounded. At least three significant decimals should still remain after applying the rounding functionality
whenever possible.
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