

ETSI TS 102 241 V15.0.0 (2019-01)

Smart Cards;
UICC Application Programming Interface (UICC API)

for Java Card™
(Release 15)



TECHNICAL SPECIFICATION

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)2Release 15

Reference
RTS/SCP-T0310vf00

Keywords
API, smart card

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)3Release 15

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 7

3 Definition of terms, symbols and abbreviations ... 7

3.1 Terms .. 7

3.2 Symbols .. 8

3.3 Abbreviations ... 8

4 Description ... 8

4.0 Purpose ... 8

4.1 UICC Java Card™ architecture .. 9

5 File access API ... 10

5.0 Introduction .. 10

5.1 FileView objects ... 10

5.2 FileView operations ... 11

5.3 BERTLVFileView operations .. 11

6 Toolkit API and CAT Runtime Environment .. 11

6.0 Introduction .. 11

6.1 Applet triggering .. 12

6.1.0 Triggering mechanism .. 12

6.1.1 Exception handling ... 12

6.2 Definition of events .. 13

6.3 Registration .. 19

6.4 Proactive command handling ... 20

6.5 Envelope response handling ... 20

6.6 System handler management .. 21

6.7 CAT Runtime Environment behaviour... 23

6.7.0 Basic rules ... 23

6.7.1 System proactive commands... 24

6.7.1.0 Overall behaviour .. 24

6.7.1.1 SET UP MENU ... 24

6.7.1.2 SET UP EVENT LIST .. 25

6.7.1.3 POLL INTERVAL and POLLING OFF ... 25

6.7.1.4 NEGOTIATION OF POLL INTERVAL .. 25

6.7.1.5 ACTIVATE ... 25

6.7.2 UICC memory reliability monitoring ... 26

7 Toolkit applet ... 26

7.1 Applet loading .. 26

7.2 Data and function sharing ... 26

7.3 Package, applet and object deletion .. 26

8 UICC and ADF File System Administration API .. 27

8.0 Overview .. 27

8.1 AdminFileView objects .. 27

8.2 AdminFileView operations .. 27

9 UICC Java Card™ Services ... 27

9.0 Introduction .. 27

9.1 High update arrays.. 28

10 UICC Java Card Runtime Environment ... 28

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)4Release 15

10.1 Overview .. 28

10.2 UICC suspension .. 28

10.2.1 UICC Suspension purpose .. 28

10.2.2 Suspension mechanism ... 29

10.2.2.1 Suspension mechanism overview .. 29

10.2.2.2 Suspension Request Operation .. 29

10.2.2.3 Suspension Operation.. 29

10.2.3 Resume mechanism .. 30

10.2.3.1 Resume mechanism overview ... 30

10.2.3.2 Resume Indication ... 30

10.2.4 Handler management .. 30

Annex A (normative): Java Card™ UICC API .. 31

Annex B (normative): Java Card™ UICC API identifiers .. 32

Annex C (normative): UICC API package version management .. 33

Annex D (informative): Menu order example .. 35

D.0 Preamble ... 35

D.1 State after initialization .. 35

D.2 Some application installation later ... 35

D.3 Installation of application A with position of menu entry set to 3 ... 35

D.4 Installation of application B with position of menu entry set to 3 ... 35

D.5 Installation of application C with position of menu entry set to 2 and 3 .. 36

D.5.1 Insert at position 2 .. 36

D.5.2 Insert at position 3 .. 36

D.6 Installation of application D with position of menu entry set to "00" .. 36

D.7 Installation of application E with position of menu entry set to 20 .. 37

D.8 Disabling/Locking of application legacy1 and application A with menu entries at position 1
respectively 6 .. 37

D.9 Re-enabling/Unlocking of application legacy1 and application A with menu entries at position 1
respectively 6 .. 37

D.10 Deletion of application A with menu entry at position 6 ... 38

Annex E (informative): Change history ... 39

History .. 42

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)5Release 15

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Smart Card Platform (SCP).

The present document details the stage 2 aspects (overall service description) for the support of an "Application
Programming Interface and Loader Requirements" [11].

The contents of the present document are subject to continuing work within TC SCP and may change following formal
TC SCP approval. If TC SCP decides to modify the contents of the present document, it will be re-released by TC SCP
with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x: the first digit:

1 presented to TC SCP for information;

2 presented to TC SCP for approval;

3 or greater indicates TC SCP approved document under change control.

y: the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z: the third digit is incremented when editorial only changes have been incorporated in the document.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)6Release 15

1 Scope
The present document defines the stage 2 description of the "Application Programming Interface and Loader
Requirements" [11] internal to the UICC.

This stage 2 describes the functional capabilities and the information flow for the UICC API implemented on the Java
Card™ Platform, 3.0.1 Classic Edition [2], [3] and [4].

The present document includes information applicable to network operators, service providers and UICC, server and
database manufacturers.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

• In the case of a reference to a TC SCP document, a non-specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] Void.

[2] ORACLE: "Application Programming Interface, Java Card™ Platform, 3.0.1 Classic Edition".

[3] ORACLE: "Runtime Environment Specification, Java Card™ Platform, 3.0.1 Classic Edition".

[4] ORACLE: "Virtual Machine Specification Java Card™ Platform, 3.0.1 Classic Edition".

NOTE: ORACLE Java Card™ Specifications can be downloaded at
http://docs.oracle.com/javame/javacard/javacard.html.

[5] ETSI TS 101 220: "Smart Cards; ETSI numbering system for telecommunication application
providers".

[6] ETSI TS 102 221: "Smart Cards; UICC-Terminal interface; Physical and logical characteristics".

[7] ETSI TS 102 223: "Smart Cards; Card Application Toolkit (CAT)".

[8] ETSI TS 102 222: "Integrated Circuit Cards (ICC); Administrative commands for
telecommunications applications".

[9] ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications".

[10] ETSI TS 102 226: "Smart Cards; Remote APDU structure for UICC based applications".

[11] ETSI TS 102 240: "Smart Cards; UICC Application Programming Interface and Loader
Requirements; Service description".

[12] ETSI TS 123 040 (V6.6.0): "Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications System (UMTS); Technical realization of Short Message Service
(SMS) (3GPP TS 23.040 version 6.6.0 Release 6)".

http://docbox.etsi.org/Reference
http://docs.oracle.com/javame/javacard/javacard.html

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)7Release 15

[13] ETSI TS 102 241: "Smart Cards; UICC Application Programming Interface (UICC API) for Java
Card™".

[14] ETSI TS 102 671: "Smart Cards; Machine to Machine UICC; Physical and logical characteristics".

[15] GlobalPlatform: "Card Specification, version 2.3.1".

NOTE: See http://www.globalplatform.org/.

[16] GlobalPlatform: "Java Card API and Export File for Card Specification, v2.2.1",
(org.globalplatform) v1.6.

NOTE: See http://www.globalplatform.org/.

[17] ETSI TS 102 613: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Physical and data
link layer characteristics".

[18] ETSI TS 102 705: "Smart Cards; UICC Application Programming Interface for Java Card™ for
Contactless Applications".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

• In the case of a reference to a TC SCP document, a non-specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

applet: application built up using a number of classes which will run under the control of the Java Card™ virtual
machine

bytecode: machine independent code generated by a Java compiler and executed by the Java interpreter

class: type that defines the implementation of a particular kind of object

NOTE: A Class definition defines instance and class variables and methods.

framework: defines a set of Application Programming Interface (API) classes for developing applications and for
providing system services to those applications

java: object oriented programming language developed by Sun Microsystems designed to be platform independent

method: piece of executable code that can be invoked, possibly passing it certain values as arguments

NOTE: Every Method definition belongs to some class.

http://www.globalplatform.org/
http://www.globalplatform.org/

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)8Release 15

object: principal building block of object oriented programs

NOTE: Each object is a programming unit consisting of data (variables) and functionality (methods).

package: group of classes

NOTE: Packages are declared when writing a Java Card™ program.

toolkit application: application on the UICC card which can be triggered by toolkit events issued by the Terminal and
which can send proactive commands to the terminal

NOTE: These applications can be downloaded via any type of network.

UICC suspended context: internal status of the UICC stored during a successful UICC suspension procedure
according to ETSI TS 102 221 [6]

virtual machine: part of the Run-time environment responsible for interpreting the bytecode

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the abbreviations given in ETSI TS 102 221 [6] and the following apply:

ADF Application Dedicated File
AID Application IDentifier
APDU Application Protocol Data Unit
API Application Programming Interface
DF Dedicated File (abbreviation formerly used for Data Field)
EF Elementary File
FFS For Further Study
JCRE Java Card™ Runtime Environment
MF Master File
NAA Network Access Application (e.g. SIM, USIM)
RFM Remote File Management
TLV Tag Length Value

4 Description

4.0 Purpose
The present document describes an API and a Runtime Environment for the UICC platform. This API and the Runtime
Environment allows application programmers to get access to the functions and data described in ETSI TS 102 221 [6]
and ETSI TS 102 223 [7] such that UICC based services can be developed and loaded onto a UICC, quickly and, if
necessarily, remotely, after the card has been issued.

This API is an extension to the "Application Programming Interface, Java Card™ Platform, 3.0.1 Classic Edition" [2],
the Runtime Environment is an extension of the "Runtime Environment Specification, Java Card™ Platform, 3.0.1
Classic Edition" [3].

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)9Release 15

4.1 UICC Java Card™ architecture
The overall architecture of the UICC API is based on Java Card™ Platform, 3.0.1 Classic Edition [2], [3] and [4].

102 221 based
Applications
(e.g. SIM
Applet or
USIM Applet)

ADF File
System Server

Other
Applications
not based on
102 221

Toolkit Applet
(e.g. Toolkit
service,
Remote
Management
Applications,
Browser
Applications)

UICC File
System
Server

uicc.system
package

uicc.toolkit
package

uicc.access
package

Java Card
TM

Packages

CAT Runtime Environment

Toolkit
Handlers

Toolkit
Registry

Triggering
Entity

Java Card TM

Runtime Environment

Items that are defined in this specification

UICC

Runtime

Environment

Figure 1: UICC Java Card™ architecture

Java Card™ Runtime Environment: this is specified in "Runtime Environment Specification, Java Card™ Platform,
3.0.1 Classic Edition" [3] and is able to select any specific applet and transmit to it the process of its APDU.

CAT Runtime Environment: this is the CAT Runtime Environment composed of, the Toolkit Registry, the Toolkit
Handlers and the Triggering Entity. It is an addition to the JCRE.

UICC Runtime Environment: addition to the Java Card™ Runtime Environment.

Toolkit Registry: this is handling all the registration information of the Toolkit applets, and their link to the JCRE
registry.

Toolkit Handlers: this is handling the availability of the system handler and the toolkit protocol (i.e. Toolkit applet
suspension).

UICC File System Server: it contains the File System of the UICC specified in ETSI TS 102 221 [6] (i.e. the EF and
DF under the MF).

ADF File System Server: it contains the files of an ADF as specified in ETSI TS 102 221 [6] (i.e. the EF and DF under
the ADF).

Applets: these derive from javacard.framework.applet and provide the entry points: process, select, deselect, install as
defined in the "Runtime Environment Specification, Java Card™ Platform, 3.0.1 Classic Edition" [3].

Toolkit Applets: are the Java Card™ based implementation of Toolkit Applications, these derive from
javacard.framework.applet, to provide the same entry points, and provide one object implementing the
uicc.toolkit.ToolkitInterface interface, so that these applets can be triggered by an invocation of the processToolkit()
method. The Toolkit applet(s) AID are defined in ETSI TS 101 220 [5].

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)10Release 15

Remote Application Management Application: this is handling the loading, installation, management and removal of
applets and packages as specified in ETSI TS 102 226 [10].

Shareable interface: this is defined in the "Runtime Environment Specification, Java Card™ Platform, 3.0.1 Classic
Edition" specifications [2], [3] and [4].

CAT session: card session opened by a terminal supporting proactive UICC, starting with the download of the
Terminal Profile and ending with a subsequent reset or deactivation of the card.

5 File access API

5.0 Introduction
The file access API consists of the uicc.access package, which allows applets to access the file systems of the UICC.

5.1 FileView objects

Figure 2: Logical structure of FileView

Any applet (not only Toolkit applets) is allowed to retrieve and use a FileView.

A FileView object can be retrieved by invoking one of the getTheFileView() methods defined in the UICCSystem class.

The UICC FileView allows to access the MF and all DFs and EFs that are located under the MF, including DF Telecom
and any access technology specific DF located under the MF, but not the files located under any ADF. This FileView
can be retrieved by invoking the getTheFileView() method from the UICCSystem. The only way to access the DF GSM
is to request the UICC FileView.

An ADF FileView allows to access only the DFs and EFs located under the ADF. It is not possible to access the MF or
any DF or EF located under the MF from an ADF FileView. An ADF FileView can be retrieved by invoking the
getTheFileView(…) method with passing as parameter the full AID of the application owning the ADF.

Each FileView object shall be provided as a permanent JCRE entry point object.

A separate and independent file context shall be associated with each and every FileView object: the operation
performed on files in a given FileView object shall not affect the file context associated with any other FileView object.

This context can be transient or persistent depending on what was required by the applet during the creation of the
FileView object.

e.g.
DF GSM ADF 1 ADF 2DF Telecom

MF

EF's

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)11Release 15

Each FileView shall be given the access control privileges associated with the UICC or the corresponding ADF for the
applet. The access control privileges are defined by the UICC access application specific parameters specified in ETSI
TS 102 226 [10]. UICC administrative access application specific parameters shall not apply to objects retrieved from
the uicc.access.UICCSystem class. The access control privileges are verified against the access rules defined in ETSI
TS 102 221 [6] each time a method of the FileView object is invoked.

The root of the context of a FileView object is the MF for the UICC FileView or the ADF for an ADF FileView.

At the creation of a FileView object, the current DF of the FileView's context is the root. When the transient context of a
FileView is cleared, the current DF becomes the root of the FileView.

5.2 FileView operations
The following functions are provided by the methods defined in the uicc.access.FileView interface see annex A:

• ACTIVATE FILE as defined in ETSI TS 102 222 [8].

• DEACTIVATE FILE as defined in ETSI TS 102 222 [8].

• INCREASE as defined in ETSI TS 102 221 [6].

• READ BINARY as defined in ETSI TS 102 221 [6].

• READ RECORD as defined in ETSI TS 102 221 [6].

• SEARCH RECORD as defined in ETSI TS 102 221 [6].

• SELECT by File ID or by Path as defined in ETSI TS 102 221 [6].

• STATUS as defined in ETSI TS 102 221 [6].

• UPDATE BINARY as defined in ETSI TS 102 221 [6].

• UPDATE RECORD as defined in ETSI TS 102 221 [6].

5.3 BERTLVFileView operations
BER TLV files functions may be optionally supported by an implementation. If supported, an implementation shall
provide the uicc.access.bertlvfile package and the 32-bit integer data type support defined optional in "Virtual Machine
Specification Java Card™ Platform, 3.0.1 Classic Edition" [4] is mandatory.

The interface uicc.access.bertlvfile.BERTLVFileView extends the interface uicc.access.FileView, i.e. objects
implementing the interface BERTLVFileView inherit FileView functionality.

If BER TLV files functions are supported by an implementation, the getTheFileView() and getTheUICCView() methods
defined in the UICCSystem class shall return the reference of an object implementing the BERTLVFileView interface.

The following functions are provided by the methods defined in the uicc.access.bertlvfile.BERTLVFileView interface
see annex A:

• RETRIEVE DATA as defined in ETSI TS 102 221 [6].

• SET DATA as defined in ETSI TS 102 221 [6].

6 Toolkit API and CAT Runtime Environment

6.0 Introduction
The toolkit API consists of the uicc.toolkit package, which allows applets to access the toolkit features defined in ETSI
TS 102 223 [7].

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)12Release 15

6.1 Applet triggering

6.1.0 Triggering mechanism

The application triggering portion of the CAT Runtime Environment is responsible for the activation of Toolkit applets,
based on the APDU received by the UICC.

Figure 3: Toolkit applet triggering diagram

The Translator converts the information from an incoming APDU into the corresponding Event information.

The Triggering Entity requests the information from the Toolkit Registry, which Toolkit applets are registered to this
Event. The Triggering Entity then triggers the Toolkit applet. The terminal shall not be adversely affected by the
presence of applets on the UICC card. For instance a syntactically correct Envelope shall not result in an error status
word in case of a failure of an applet. The applications seen by the terminal are first level applications (e.g. SIM,
USIM).

The difference between a Java Card™ applet and a Toolkit applet is that the latter does not handle APDUs directly. It
will handle higher-level messages. Furthermore the execution of a method could span over multiple APDUs, in
particular, the proactive protocol commands (Fetch, Terminal Response).

As written above, when a first level application is the selected application and when a Toolkit applet is triggered the
select() method of the Toolkit applet shall not be launched since the Toolkit applet itself is not selected.

The CAT Runtime Environment shall only trigger a Toolkit applet if it is in the selectable state as defined in ETSI
TS 102 226 [10].

The CAT Runtime Environment shall trigger the Toolkit applets according to their priority level assigned at installation
time. The priority level specifies the order of activation of an applet compared to the other applets registered to the same
event. If two or more applets are registered to the same event and have the same priority level, except for the internal
event EVENT_PROACTIVE_HANDLER_AVAILABLE (see clause 6.2), the applets are triggered according to their
installation time (i.e. the most recent applet is activated first). ETSI TS 102 226 [10] defined the priority level coding
and how this parameter is provided to the UICC.

When the CAT Runtime Environment has to trigger several applets on the same event, the next applet is triggered on
the return of the processToolkit() method of the previous Toolkit applet.

If a UICC suspended context exists at the initiation of the card session (see clause 10), the CAT Runtime Environment
shall not trigger applets on events (e.g. EVENT_FIRST_COMMAND_AFTER_ATR) but shall queue them. If the
resume operation is successfully processed, this list of queued events shall be voided. Otherwise if the resume operation
is cancelled (e.g. disallowed APDU command, bad resume token, etc.), the CAT Runtime Environment shall trigger
Toolkit applets on queued events in the order of appearance of those events.

NOTE: When the resume operation is rejected, this is equivalent to a power off for applets selected at the time of
the suspend operation as they are neither called on their deselect() method nor informed on the cancelled
resume.

6.1.1 Exception handling

A Toolkit applet may throw an exception or an exception can occur during its processing. The CAT Runtime
Environment shall catch any exception type or class and process as described here after.

Translator Triggering EntityAPDU Event

Toolkit Registry

E
vent T

oo
lk

it
In

te
rf

ac
e(

s)

Toolkit AppletTrigger

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)13Release 15

If more than one applet shall be triggered by the currently processed event all Exceptions shall be caught by the CAT
Runtime Environment and shall not be sent to the terminal. The CAT Runtime Environment shall proceed with the
triggering.

If only one applet shall be triggered by the currently processed event and an ISOException with the following reason
code is thrown it shall be sent to the terminal:

• ISOException with reason code REPLY_BUSY (0x9300).

Other Exceptions shall not be propagated to the terminal, this behaviour may be extended by an access technology
depended specification.

6.2 Definition of events
The following events can trigger a Toolkit applet.

Table 1: UICC toolkit event list

Event Name Reserved short value
Not to be used 0
EVENT_PROFILE_DOWNLOAD 1
Reserved by 3GPP 2
Reserved by 3GPP 3
Reserved by 3GPP 4
Reserved by 3GPP 5
Reserved by 3GPP 6
EVENT_MENU_SELECTION 7
EVENT_MENU_SELECTION_HELP_REQUEST 8
EVENT_CALL_CONTROL_BY_NAA 9
Reserved by 3GPP 10
EVENT_TIMER_EXPIRATION 11
EVENT_EVENT_DOWNLOAD_MT_CALL 12
EVENT_EVENT_DOWNLOAD_CALL_CONNECTED 13
EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED 14
EVENT_EVENT_DOWNLOAD_LOCATION_STATUS 15
EVENT_EVENT_DOWNLOAD_USER_ACTIVITY 16
EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE 17
EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS 18
EVENT_STATUS_COMMAND 19
EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION 20
EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION 21
EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE 22
EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS 23
Reserved by 3GPP 24
EVENT_EVENT_DOWNLOAD_ACCESS_TECHNOLOGY_CHANGE 25
EVENT_EVENT_DOWNLOAD_DISPLAY_PARAMETER_CHANGED 26
EVENT_EVENT_DOWNLOAD_LOCAL_CONNECTION 27
EVENT_EVENT_DOWNLOAD_NETWORK_SEARCH_MODE_CHANGE 28
EVENT_EVENT_DOWNLOAD_BROWSING_STATUS 29
Reserved by 3GPP 30
Reserved by 3GPP 31
EVENT_EVENT_DOWNLOAD_HCI_CONNECTIVITY 32
Reserved by 3GPP 33
EVENT_EVENT_DOWNLOAD_FRAMES_INFORMATION_CHANGED 34
EVENT_EVENT_DOWNLOAD_CONTACTLESS_STATE_REQUEST 35
EVENT_EVENT_POLL_INTERVAL_NEGOTIATION 36
RFU 37 to 118
Reserved by 3GPP 119
Reserved by 3GPP 120
Reserved by 3GPP 121
Reserved by 3GPP 122
EVENT_PROACTIVE_HANDLER_AVAILABLE 123
EVENT_EXTERNAL_FILE_UPDATE 124

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)14Release 15

Event Name Reserved short value
EVENT_REMOTE_FILE_UPDATE 125
EVENT_APPLICATION_DESELECT 126
EVENT_FIRST_COMMAND_AFTER_ATR 127
EVENT_EVENT_DOWNLOAD_ACCESS_TECHNOLOGY_CHANGE_
MULTIPLE

128

EVENT_MEMORY_FAILURE 129
EVENT_TERMINAL_APPLICATIONS 130
EVENT_TERMINAL_CAPABILITY 131
RFU 132 to 32 767
EVENT_UNRECOGNIZED_ENVELOPE -1
Reserved for Proprietary Use:
- range for Card manufacturer proprietary events
- range for Card Issuer proprietary events

-2 to -64

-65 to -128
RFU -129 to -32 768

EVENT_PROFILE_DOWNLOAD

 Upon reception of a TERMINAL PROFILE APDU command as defined in ETSI TS 102 221 [6] the CAT
Runtime Environment shall store the terminal profile and trigger all the Toolkit applet(s) registered to this
event.

EVENT_TERMINAL_CAPABILITY

 Upon reception of a TERMINAL CAPABILITY APDU command as defined in ETSI TS 102 221 [6] the
CAT Runtime Environment shall store the terminal capability and trigger all the Toolkit applet(s) registered to
this event.

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST

 Upon reception of an ENVELOPE (MENU SELECTION) APDU command as defined in ETSI
TS 102 221 [6] the CAT Runtime Environment shall only trigger the Toolkit applet registered to the
corresponding event with the associated menu identifier.

 A Toolkit applet shall be triggered by the EVENT_MENU_SELECTION_HELP_REQUEST event only if
help is available for the corresponding Menu entry.

EVENT_CALL_CONTROL_BY_NAA

 Upon reception of an ENVELOPE (CALL CONTROL) APDU command as defined in ETSI TS 102 221 [6]
the CAT Runtime Environment shall trigger the Toolkit applet registered to this event. Regardless of the
Toolkit applet state the CAT Runtime Environment shall not allow more than one Toolkit applet to be
registered to this event at a time, in particular, if a Toolkit applet is registered to this event but not in selectable
state the CAT Runtime Environment shall not allow another Toolkit applet to register to this event.

EVENT_TIMER_EXPIRATION

 Upon reception of an ENVELOPE (TIMER EXPIRATION) APDU command as defined in ETSI
TS 102 221 [6] the CAT Runtime Environment shall only trigger the Toolkit applet registered to this event
with the associated timer identifier.

EVENT_EVENT_DOWNLOAD_MT_CALL

EVENT_EVENT_DOWNLOAD_CALL_CONNECTED

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED

EVENT_EVENT_DOWNLOAD_LOCATION_STATUS

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)15Release 15

EVENT_EVENT_DOWNLOAD_LANGUAGE_SELECTION

EVENT_EVENT_DOWNLOAD_BROWSER_TERMINATION

EVENT_EVENT_DOWNLOAD_DISPLAY_PARAMETER_CHANGED

EVENT_EVENT_DOWNLOAD_NETWORK_SEARCH_MODE_CHANGE

EVENT_EVENT_DOWNLOAD_BROWSING_STATUS

EVENT_EVENT_DOWNLOAD_FRAMES_INFORMATION_CHANGED

EVENT_EVENT_DOWNLOAD_HCI_CONNECTIVITY

EVENT_EVENT_DOWNLOAD_CONTACTLESS_STATE_REQUEST

 Upon reception of an ENVELOPE (Event Download) APDU command as defined in ETSI TS 102 221 [6] the
CAT Runtime Environment shall trigger all the Toolkit applets registered to the corresponding event.

EVENT_EVENT_DOWNLOAD_ACCESS_TECHNOLOGY_CHANGE

 Upon reception of an ENVELOPE (Event Download - Access Technology Change (single access technology))
APDU command as defined in ETSI TS 102 221 [6] the CAT Runtime Environment shall trigger all Toolkit
applets registered to this event.

EVENT_EVENT_DOWNLOAD_ACCESS_TECHNOLOGY_CHANGE_MULTIPLE

 Upon reception of an ENVELOPE (Event Download - Access Technology Change (multiple access
technologies)) APDU command as defined in ETSI TS 102 221 [6] the CAT Runtime Environment shall
trigger all Toolkit applets registered to this event.

EVENT_EVENT_DOWNLOAD_LOCAL_CONNECTION

 Upon reception of an ENVELOPE (DOWNLOAD LOCAL CONNECTION) APDU as defined in ETSI
TS 102 221 [6] command the CAT Runtime Environment shall only trigger the Toolkit applet registered to
this event with the associated service identifier.

 The registration to this event is effective once the Toolkit applet has issued a successful DECLARE SERVICE
(add) proactive command, and is valid until the first successful DECLARE SERVICE (delete) with the
corresponding service identifier, or the end of the card session.

EVENT_EVENT_DOWNLOAD_DATA_AVAILABLE

EVENT_EVENT_DOWNLOAD_CHANNEL_STATUS

 Upon reception of an ENVELOPE (Event Download) APDU command as defined in ETSI TS 102 221 [6] the
CAT Runtime Environment shall only trigger the Toolkit applet registered to the corresponding event with the
associated channel identifier.

 The registration to these events is effective once the Toolkit applet has issued a successful OPEN CHANNEL
proactive command. It is valid to the end of the card session or to, the first successful CLOSE CHANNEL
proactive command with the corresponding channel identifier.

A proactive command CLOSE CHANNEL for UICC Server Mode with command details set to "TCP in
LISTEN state" does not affect the registration of the Toolkit applet to the event.

 When a Toolkit applet sends an OPEN CHANNEL proactive command and receives a TERMINAL
RESPONSE with General Result = "0x0X", the CAT Runtime Environment shall assign the channel identifier
to the calling Toolkit applet.

 When a Toolkit applet sends a CLOSE CHANNEL proactive command and receives a TERMINAL
RESPONSE with General Result = "0x0X", the CAT Runtime Environment shall release the corresponding
channel identifier. An exception to this rule applies in the case of CLOSE CHANNEL for UICC Server Mode
with command details set to "TCP in LISTEN state": When this proactive command is sent by a Toolkit applet
and this applet receives a TERMINAL RESPONSE with General Result = "0x0X", the CAT Runtime
Environment shall not release the corresponding channel identifier.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)16Release 15

EVENT_STATUS_COMMAND

 Upon reception of an STATUS APDU command as defined in ETSI TS 102 221 [6] the CAT Runtime
Environment shall trigger all the Toolkit applet(s) registered to this event.

EVENT_APPLICATION_DESELECT

 When an application session is terminated (as described in ETSI TS 102 221 [6]) the CAT Runtime
Environment shall trigger all the Toolkit applets registered to this event. The AID of the deselected application
is available to the Toolkit applet in the EnvelopeHandler, as an AID Simple TLV data object as defined in
ETSI TS 102 223 [7].

 The ProactiveHandler is not available for triggered Toolkit applets during the processing of this event.

EVENT_FIRST_COMMAND_AFTER_ATR

 Upon reception of the first APDU after either the ATR or the reception of the TERMINAL RESPONSE
following the successful execution of a REFRESH with mode eUICC Profile State Change and before the
Status Word related to this first APDU has been sent back by the UICC, the CAT Runtime Environment shall
trigger all the Toolkit applet(s) registered to this event.

 If the first APDU received is a Toolkit applet triggering APDU (e.g. TERMINAL PROFILE), the Toolkit
applets registered to the EVENT_FIRST_COMMAND_AFTER_ATR event shall be triggered first.

 The ProactiveHandler shall not be available at the invocation of the processToolkit method of the Toolkit
applet on the EVENT_FIRST_COMMAND_AFTER_ATR event.

EVENT_UNRECOGNIZED_ENVELOPE

 Upon reception of an unrecognized ENVELOPE APDU command as defined in ETSI TS 102 221 [6] the CAT
Runtime Environment shall trigger all the Toolkit applet(s) registered to this event.

 An ENVELOPE APDU command shall be considered as unrecognized by the CAT Runtime Environment if
its BER-TLV tag is not defined in the ToolkitConstants interface or if the BER-TLV tag is reserved for
GSM/3G/3GPP2 in ETSI TS 101 220 [5]. The EVENT_UNRECOGNIZED_ENVELOPE event allows a
Toolkit applet to handle the evolution of the ETSI TS 102 223 [7] specification.

As a consequence of the EnvelopeResponseHandler availability rules specified in clause 6.6, only the first triggered
Toolkit applet is guaranteed to be able to post a response.

EVENT_PROACTIVE_HANDLER_AVAILABLE

 The CAT Runtime Environment shall trigger all the Toolkit applets registered to this event when the
ProactiveHandler is available and all the Toolkit applets registered to the previous event have been triggered
and have returned from the processToolkit() invocation.

As with other events, the applet with the highest priority level and newest installation date shall be triggered
first.

 An applet that has the proactive handler may register for EVENT_PROACTIVE_HANDLER_AVAILABLE
before returning to allow implementing a simple co-operative "task switching" mechanism based on priorities.
Applets with the same priority level may implement "task switching" in a cyclic fashion.

 If several applets have registered to EVENT_PROACTIVE_HANDLER_AVAILABLE and an applet returns
from this event, the sequence of triggering shall be determined as follows:

- The list of registered applets shall be re-evaluated.

- If there is an applet with a higher priority level than the applet that returned, the applet with the highest
priority shall be triggered.

- Else if there are one or more applet(s) with the same priority level as the applet that returned, all applets
with this priority level shall be triggered in a cyclic fashion: As long as there is at least one applet with
the same priority level and older installation date, the next older applet shall be triggered. If there is no
older one, the applet with newest installation date shall be triggered.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)17Release 15

- Else if there are only applet(s) left with lower priority level as the applet that returned, the applet with the
next highest priority level and newest installation date shall be triggered.

 When a Toolkit applet is triggered, it is automatically deregistered by the CAT Runtime Environment.

 If the CAT session ends prior to an applet triggering, the applet will be triggered at the next CAT session.

NOTE 1: When the Toolkit applet is triggered the handlers' availability and content can be different from the
content at the registration time. Therefore, the Toolkit applet has to store any handler data in order to use
it in this event.

EVENT_EXTERNAL_FILE_UPDATE

Upon successful execution of an UPDATE BINARY or UPDATE RECORD or INCREASE or SET DATA APDU
command (sent by the Terminal and received by the UICC on the I/O line) as defined in ETSI TS 102 221 [6], the CAT
Runtime Environment shall trigger all the Toolkit applets registered to this event with the associated updated file. An
applet shall only be triggered once per command.

Applet triggered upon execution of SET DATA command shall only occur once the related data object transfer is
successfully completed.

When an applet is triggered by the EVENT_EXTERNAL_FILE_UPDATE event, the system EnvelopeHandler shall be
made available, and shall contain the following COMPREHENSION TLVs (the order of the TLVs given in the system
EnvelopeHandler is not specified):

• Device Identity with source set to terminal and destination set to UICC, as defined in ETSI TS 102 223 [7].

• File List, as defined in ETSI TS 102 223 [7]. The number of files shall be set to one. If a SFI referencing is
used in the APDU Command, it shall be converted to its File Identifier.

• AID of the ADF, as defined in ETSI TS 102 223 [7], if the updated file belongs to an ADF. In this case, the
path "3F007FFF" given in the File List indicates the ADF of the UICC application given through the AID. If
the updated file belongs to the UICC shared file system, the AID TLV object is not present.

• File Update Information object:

- In case of transparent file or record file:

Byte(s) Description Length
1 File Update Information tag 1
2 Length = 4 1

3 to 4 Position 2
5 to 6 Number of bytes updated 2

 Position depends on the file type:

- In case of transparent file, Position = Offset.

- In case of record file, Position = Absolute Record number.

 For the INCREASE APDU, the number of bytes updated is the record length.

- In case of BER-TLV file, if a data object has been successfully updated:

Byte(s) Description Length
1 File Update Information tag 1
2 Length = T 1

3 to T+2 BER-TLV Tag of the updated data object 1 ≤ T ≤ 3
T+3 File Update Information tag 1
T+4 Length = L 1

T+5 to T+L+4 Length of the BER-TLV Value of the updated data object 1 ≤ L ≤ 4

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)18Release 15

- In case of BER-TLV file, if a data object has been deleted or if a data object transfer has been aborted:

Byte(s) Description Length
1 File Update Information tag 1
2 Length = T 1

3 to T+2 BER-TLV Tag of the deleted data object 1 ≤ T ≤ 3

 If a data object transfer has been aborted due to power loss, the event shall be generated at next card session.

The value returned upon a getBERTag() method invocation shall be equal to the BER-TLV tag for intra-UICC
communication, as defined in ETSI TS 101 220 [5].

The registration to this event is effective once the applet has successfully called any of the methods
registerFileEvent(…).

The deregistration for a particular file to this event is effective once the applet has successfully called any of the method
deregisterFileEvent(…) whatever the method used to register was. A call to the method
clearEvent(EVENT_EXTERNAL_FILE_UPDATE) clears the event EVENT_EXTERNAL_FILE_UPDATE from the Toolkit Registry
of the applet. For all registered files, i.e. the applet is no longer triggered when a file which was previously registered is
updated.

EVENT_REMOTE_FILE_UPDATE

This event shall be triggered on successful execution of a Remote File Management (RFM) command string containing
one or several UPDATE BINARY or UPDATE RECORD or INCREASE APDU commands as defined in ETSI
TS 102 226 [10] according to the following rules:

• The execution of the RFM command string shall be considered successful if at least one of the commands
UPDATE BINARY, UPDATE RECORD or INCREASE APDU which are contained in it were successfully
executed.

• The CAT Runtime Environment shall trigger all Toolkit applets registered to this event if at least one of the
files contained in their list of registered files was updated. An applet which is not registered to any of the
updated files shall not be triggered.

• An applet shall only be triggered once per RFM command string.

• Data provided in the system EnvelopeHandler shall not contain update information referring to the execution
of more than one RFM command string.

• When an applet is triggered by the event EVENT_REMOTE_FILE_UPDATE the system EnvelopeHandler
shall be made available and it shall contain the following COMPREHENSION TLVs (the order of the Device
Identity object, AID object and File List object given in the system EnvelopeHandler is not specified, the order
of the File Update Information objects is relevant):

- Device Identity with source set to network and destination set to UICC, as defined in ETSI
TS 102 223 [7].

- AID of the ADF, as defined in ETSI TS 102 223 [7], if at least one of the updated files belongs to an
ADF. If all successfully updated files belong to the UICC shared file system, the AID TLV object shall
not be present.

- File List, as defined in ETSI TS 102 223 [7]. The number of files shall be set to the number of successful
update commands which were applied to files which were registered by the triggered applet. Files which
were not registered by the triggered applet shall not occur in the File List. If a file belongs to the ADF
indicated in the AID TLV, then its path starts with "3F007FFF". If a file has been updated several times
in the command string, then it appears several times in the file list. If SFI referencing is used in the
APDU Command, it shall be converted to its File Identifier. In case of an update or increase to a file that
is deleted within the same command string the file shall not be included in the File List TLV for this
event.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)19Release 15

- File Update Information objects, as defined for EVENT_EXTERNAL_FILE_UPDATE. The system
EnvelopeHandler shall contain as many File Update Information objects as there were successful update
operations on files listed in the File List object. The order of each File Update Information object shall
reflect the order of the files in the File List object.

NOTE 2: The maximum number of updated files that can be managed by the CAT Runtime Environment is
implementation dependent.

NOTE 3: In case of many update commands in one RFM command string, the list of COMPREHENSION TLVs
may exceed the capacity of the system Envelope Handler. In that case the list of COMPREHENSION
TLVs may be truncated.

The registration to this event is effective once the applet has successfully called any of the methods
registerFileEvent(…).

The deregistration for a particular file to this event is effective once the Applet has successfully called any of the
methods deregisterFileEvent(…). A call to the method clearEvent(EVENT_REMOTE_FILE_UPDATE) clears the event
EVENT_REMOTE_FILE_UPDATE from the Toolkit Registry of the Applet i.e. the Applet is no longer triggered when a file
is updated due to a command in an RFM command string.

EVENT_MEMORY_FAILURE

If the UICC is provided with memory reliability monitoring mechanism (see clause 6.7.2), the CAT Runtime
Environment shall trigger all the Toolkit applets registered to this event when the card operating system has
detected an irrecoverable memory failure in any location of the persistent memory.

An irrecoverable memory failure is said to occur when a loss of data is detected or when it is no longer possible
to write data to memory. The event is reported once per applet, during the lifecycle of the card.

The memory reliability monitoring mechanism and its implementation specific limitations are described in
clause 6.7.2.

EVENT_TERMINAL_APPLICATIONS

 Upon reception of an ENVELOPE (TERMINAL APPLICATIONS) APDU command as defined in ETSI
TS 102 221 [6] with the ENVELOPE (TERMINAL APPLICATIONS) as defined in ETSI TS 102 223 [7] the
CAT Runtime Environment shall trigger the Toolkit applets registered to the corresponding event.

EVENT_POLL_INTERVAL_NEGOTIATION

 Upon reception of an ENVELOPE (POLL INTERVAL NEGOTIATION) APDU command as defined in
ETSI TS 102 221 [6] the CAT Runtime Environment shall trigger all Toolkit applets registered to this event.

Toolkit applets can request a poll interval shorter than the poll interval suggested by the Terminal by invoking
the method uicc.toolkit.ToolkitRegistry.requestPollIntervall(short duration). Requests for longer values shall
be ignored by the CAT Runtime Environment.

6.3 Registration
A Toolkit applet shall register to the JCRE as specified in "Runtime Environment Specification, Java Card™ Platform,
3.0.1 Classic Edition" [3].

A Toolkit applet shall register to the CAT Runtime Environment, by calling the ToolkitRegistrySystem.getEntry()
method. A Toolkit applet can change its registration to toolkit events during its whole life cycle.

The registration of a Toolkit applet to an event shall not be affected by its life cycle state, in particular a Toolkit applet
shall still be considered as registered to an event if it is not in the selectable life cycle state.

The toolkit events registration API is described in the uicc.toolkit.ToolkitRegistry interface in annex A.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)20Release 15

6.4 Proactive command handling
The CAT Runtime Environment is in charge of managing the toolkit protocol for the Toolkit applet(s) (i.e. 91xx, Fetch,
Terminal Response).

The uicc.toolkit.ProactiveHandler API defines the methods made available to Toolkit applets by the CAT Runtime
Environment so that the Toolkit applets can:

• initialize a proactive command with the init() method;

• append several Simple TLV as defined in ETSI TS 102 223 [7] to the proactive command with the
appendTLV() methods;

• request the CAT Runtime Environment to send this proactive command to the terminal and wait for the
response, with the send() method.

On the call to the send() method the CAT Runtime Environment shall handle the transmission of the proactive
command to the terminal, and the reception of the response. On the return from the send() method the CAT Runtime
Environment shall resume the Toolkit applet execution. It shall provide to the Toolkit applet the
uicc.toolkit.ProactiveResponseHandler, so that the Toolkit applet can analyse the response.

The CAT Runtime Environment shall prevent the Toolkit applet from sending the following system proactive
commands: SET UP MENU, SET UP EVENT LIST, POLL INTERVAL, POLLING OFF. If an applet attempts to send
such a command, the CAT Runtime Environment shall throw an exception.

The CAT Runtime Environment shall prevent a Toolkit applet from sending a TIMER MANAGEMENT proactive
command using a timer identifier, which is not allocated to it. If an applet attempts to send such a command, the CAT
Runtime Environment shall throw an exception.

The CAT Runtime Environment shall prevent a Toolkit applet from sending a DECLARE SERVICE (add, delete)
proactive command using a service identifier, which is not allocated to it. If an applet attempts to send such a command,
the CAT Runtime Environment shall throw an exception.

The CAT Runtime Environment shall prevent a Toolkit applet from sending a SEND DATA, RECEIVE DATA and
CLOSE CHANNEL proactive commands using a channel identifier, which is not allocated to it. If an applet attempts to
send such a command the CAT Runtime Environment shall throw an exception.

The CAT Runtime Environment shall prevent a Toolkit applet from sending an OPEN CHANNEL proactive command
if it exceeds the maximum number of channels allocated to this applet. If an applet attempts to send such a command
the CAT Runtime Environment shall throw an exception.

All other proactive commands shall be sent to the terminal as constructed by the Toolkit applet without any check by
the CAT Runtime Environment.

The CAT Runtime Environment cannot guarantee if the SET UP IDLE MODE TEXT proactive command is used by a
Toolkit applet, that another Toolkit applet will not overwrite this text at a later stage.

6.5 Envelope response handling
The uicc.toolkit.EnvelopeResponseHandler API defines the methods made available to Toolkit applets by the CAT
Runtime Environment so that the Toolkit applets can send a response to some specific events.
(e.g. EVENT_CALL_CONTROL_BY_NAA). The COMPREHENSION-TLV list contained in the
EnvelopeResponseHandler shall be sent as the response data of the ENVELOPE command. The Boolean parameter
passed to the post() or postAsBERTLV() method shall be mapped by the CAT Runtime Environment to the correct status
word, if the value is true it corresponds to a successful ending of the command status word "9000", if the value is false
it corresponds to a warning status word "6200". An extension of the CAT Runtime Environment for a specific NAA can
overwrite this mapping.

In case of EVENT_CALL_CONTROL_BY_NAA, the Boolean value parameter passed to the post() or
postAsBERTLV() method is meaningless and shall be ignored by the CAT Runtime Environment.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)21Release 15

A Toolkit applet can post a response to some events with the post() or the postAsBERTLV() methods and can continue
its processing after the call to these methods.

The CAT Runtime Environment shall send the response before the emission of the next proactive command or when all
the Toolkit applets triggered by the event have finished their processing.

6.6 System handler management
The system handlers: ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and EnvelopeResponseHandler
are Temporary JCRE Entry Point Object as defined in the "Runtime Environment Specification, Java Card™ Platform,
3.0.1 Classic Edition" [3].

A system handler is available if the exception ToolkitException. HANDLER_NOT_AVAILABLE is not thrown when
the corresponding getTheHandler() method is called or a method of its interface is called.

A system handler shall not be available if the corresponding getTheHandler() method is not called, directly or
indirectly, from the applet's processToolkit() method. If necessary and only when explicitly stated in another
specification, the ProactiveHandler and the ProactiveResponseHandler may in addition be available if the
corresponding getTheHandler() method was called from within a different method than processToolkit().

The following rules define the availability and the content of the system handlers. These are generic rules and may vary
with the event that triggers the Toolkit applet. These rules apply also, if the ProactiveHandler or the
ProactiveResponseHandler are available in a method different from processToolkit(). Under this condition, and for all
following rules concerning the ProactiveHandler and the ProactiveResponseHandler, the method name
"processToolkit()" has to be replaced by the method name in which the method getTheHandler() was called. The
following rules concerning the ProactiveHandler and the ProactiveResponseHandler may in addition be modified by
another specification.

ProactiveHandler:

• The ProactiveHandler shall not be available if the Terminal Profile command has not yet been processed by
the CAT Runtime Environment.

• When available the ProactiveHandler shall remain available until the termination of the processToolkit()
method.

• If a proactive command is pending the ProactiveHandler may not be available.

• At the processToolkit() method invocation the TLV-List is cleared.

• At the call of its init method the content is cleared and then initialized.

• After a call to ProactiveHandler.send() method the content of the handler shall not be modified by the CAT
Runtime Environment.

ProactiveResponseHandler:

• The ProactiveResponseHandler shall be available as soon as the ProactiveHandler is available, its TLV list
shall be empty before the first call to the ProactiveHandler.send() method. Shall remain available until the
termination of the processToolkit() method.

• The ProactiveResponseHandler shall not be available if the ProactiveHandler is not available.

• The ProactiveResponseHandler TLV list is filled with the simple TLV data objects of the last TERMINAL
RESPONSE APDU command. The simple TLV data objects shall be provided in the order given in the
TERMINAL RESPONSE command data.

• The ProactiveResponseHandler content shall be updated after each successful call to ProactiveHandler.send()
method and shall remain unchanged until the next successful call to the ProactiveHandler.send() method.

EnvelopeHandler:

• When available (as specified in table 1) the EnvelopeHandler shall remain available and its content shall
remain unchanged from the invocation to the termination of the processToolkit() method.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)22Release 15

• The EnvelopeHandler TLV list is filled with the simple TLV data objects of the ENVELOPE APDU
command. The simple TLV data objects shall be provided in the order given in the ENVELOPE command
data.

EnvelopeResponseHandler:

• The EnvelopeResponseHandler is available (as specified in table 1) for all triggered Toolkit applets, until a
Toolkit applet has posted an envelope response or sent a proactive command.

• After a call to the post() method the handler is no longer available.

• After the first invocation of the ProactiveHandler.send() method the EnvelopeResponseHandler is no more
available.

• At the processToolkit() method invocation the TLV-List is cleared.

Table 2 describes the minimum availability of the handlers for all the events at the invocation of the processToolkit()
method of the Toolkit applet.

Table 2: Handler availability for each event

EVENT Reply busy
allowed

(see note 2)

Envelope
Handler

Envelope
Response
Handler

Nb of triggered/
registered applet

_MENU_SELECTION Y Y N 1/n (per Item Id)
_MENU_SELECTION_HELP_REQUEST Y Y N 1/n (per Item Id)
_CALL_CONTROL_BY_NAA N Y Y 1/1
_TIMER_EXPIRATION Y Y N 1/8 (per timer)

(see note 1)
 _EVENT_DOWNLOAD
 _MT_CALL Y Y N n/n
 _CALL_CONNECTED Y Y N n/n
 _CALL_DISCONNECTED Y Y N n/n
 _LOCATION_STATUS Y Y N n/n
 _USER_ACTIVITY Y Y N n/n
 _IDLE_SCREEN_AVAILABLE Y Y N n/n
 _CARD_READER_STATUS Y Y N n/n
 _LANGUAGE_SELECTION Y Y N n/n
 _BROWSER_TERMINATION Y Y N n/n
 _DATA_AVAILABLE Y Y N 1/7 (per channel)

(see note 1)
 _CHANNEL_STATUS Y Y N 1/7 (per channel)

(see note 1)
 _ACCESS_TECHNOLOGY_CHANGE Y Y N n/n
 _ACCESS_TECHNOLOGY_CHANGE_
MULTIPLE

Y Y N n/n

 _DISPLAY_PARAMETER_CHANGED Y Y N n/n
 _NETWORK_SEARCH_MODE_CHANGE Y Y N n/n

 _BROWSING_STATUS Y Y N n/n

 _FRAMES_INFORMATION_CHANGED Y Y N n/n

 _HCI_CONNECTIVITY Y Y N n/n

 _LOCAL_CONNECTION Y Y N 1/8 (per service
identifier) (see note 2)

 _CONTACTLESS_STATE_REQUEST Y Y N n/n
 _POLL_INTERVAL_NEGOTIATION N Y N n/n
_TERMINAL_APPLICATIONS Y Y N n/n
_UNRECOGNIZED_ENVELOPE Y Y Y n/n
_STATUS_COMMAND N N N n/n
_PROFILE_DOWNLOAD N N N n/n
_TERMINAL_CAPABILITY N N N n/n
_PROACTIVE_HANDLER_AVAILABLE N N N n/n
_FIRST_COMMAND_AFTER_ATR N N N n/n
_EXTERNAL_FILE_UPDATE N Y N n/n
_APPLICATION_DESELECT N Y N n/n

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)23Release 15

EVENT Reply busy
allowed

(see note 2)

Envelope
Handler

Envelope
Response
Handler

Nb of triggered/
registered applet

_REMOTE_FILE_UPDATE N Y N n/n
_MEMORY_FAILURE N N N n/n
NOTE 1: One Toolkit applet can register to several timers/channels/services identifier, but a timer/channel/services

identifier can only be allocated to one Toolkit applet.
NOTE 2: It is recommended to use ISOException with reason code 0x9300 only for events where reply busy is

allowed.

6.7 CAT Runtime Environment behaviour

6.7.0 Basic rules

The following rules define the CAT Runtime Environment behaviour for:

• ToolkitInterface object retrieval:

- The CAT Runtime Environment shall invoke the getShareableInterfaceObject() method of the Toolkit
applet to retrieve the reference of its ToolkitInterface object, before triggering it the first time in its life
cycle.

- The AID parameter of the getShareableInterfaceObject() method shall be set to null.

- The byte parameter of the getShareableInterfaceObject() method shall be set to one (i.e. "01").

• Triggering of a Toolkit applet (invocation of the processToolkit() method of the ToolkitInterfaceobject):

- The CAT Runtime Environment triggers a Toolkit applet by calling the processToolkit() method of the
ToolkitInterface shareable interface object provided by the Toolkit applet. As a consequence all the rules
defined in "Runtime Environment Specification, Java Card™ Platform, 3.0.1 Classic Edition" [3] apply
(e.g. access to CLEAR_ON_DESELECT transient objects, context switch, multi selectable).

- At the invocation of the processToolkit() method there shall be no transaction in progress.

- The context as defined in Java Card™ shall be set to the context of the Toolkit applet. The previous
context (context of the caller) shall be the context of the CAT Runtime Environment.

• Termination of a Toolkit applet (return from the processToolkit() method):

- A pending Toolkit applet transaction is aborted.

• Invocation of ProactiveHandler.send() method:

- During the execution there might be other context switches, but at the return of the send() method the
Toolkit applet context is restored.

- A pending Toolkit applet transaction at the method invocation is aborted.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)24Release 15

6.7.1 System proactive commands

6.7.1.0 Overall behaviour

The system proactive command shall only contain information from Toolkit applets that are in the selectable state.

The CAT Runtime Environment shall send its system proactive command(s) as soon as no proactive session is ongoing
and after all the Toolkit applets registered to the current events have been triggered and have returned from the
processToolkit() method invocation.

6.7.1.1 SET UP MENU

At the beginning of a CAT session, the CAT Runtime Environment shall send a SET UP MENU system proactive
command, if at least one menu entry is registered and enabled by a selectable Toolkit applet.

During a CAT session the CAT Runtime Environment shall send a SET UP MENU system proactive command
whenever a menu entry is modified, added or removed or the EFSUME file under the DFTELECOM file is updated as

defined in ETSI TS 102 222 [8].

If help is available for at least one Menu Entry inserted in the SET UP MENU system proactive command the CAT
Runtime Environment shall indicate to the terminal that help information is available. Otherwise the CAT Runtime
Environment shall not indicate to the terminal that help information is available.

The CAT Runtime Environment shall use the data of the EFSUME file under the DF_Telecom when issuing the SET UP

MENU proactive command.

If a text attribute different from the default format is provided for at least one Menu Entry, the SET UP MENU system
proactive command shall contain the item text attribute list Comprehension TLV. The default format as defined in ETSI
TS 123 040 [12] is "00 00 03 90".

A Menu Entries' list is managed by the CAT Runtime Environment. The Menu Entries' list is a simple link list which is
modified either when initMenuEntry() is successfully called or when an applet is successfully deleted. The Menu
Entries' list is managed regardless of the menu entry state (enable/disable) as well as regardless of the Toolkit applet(s)
life cycle state(e.g. Selectable/Locked, etc.).

Each element of the list corresponds to an Item used by the CAT Runtime Environment to build and send the
SET UP MENU system proactive command to the terminal. The CAT Runtime Environment shall provide the items to
the terminal in the same order than in the Menu Entries' list (from the first element to the last element).

The positions of the Toolkit applet menu entries in the Menu Entries' list, the requested item identifiers and the
associated limits (e.g. maximum length of item text string) are provided at the installation of the Toolkit applet.

• Item identifiers: The Item identifiers used in Item comprehension TLV of the SET UP MENU system
proactive command are the ones returned by the initMenuEntry(…) method. The Item identifier values are split
in two ranges:

- The range (1,127) of the item identifier is managed by the Remote Application Management Application
(ETSI TS 102 226 [10]) and provided to the CAT Runtime Environment.

- The range (128,255) is managed by the CAT Runtime Environment. When the requested item identifier
is "00" the CAT Runtime Environment shall assign the first free value in the range (128,255).

• Item position: The Item position of a Menu Entry indicates the position where the Menu Entry shall be inserted
in the Menu Entries' list:

- If the new Menu Entry has to be inserted at an already occupied position, the entries from the requested
position to the last element of the Menu Entries' list are shifted to the next positions.

- If the position indicated is greater than the number of elements in the Menu Entries' list, then the Menu
Entry takes the last position in the Menu Entries' list.

- If the position indicated is equal to "00", then the Menu Entry takes the last position in the Menu Entries'
list.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)25Release 15

6.7.1.2 SET UP EVENT LIST

At the beginning of a CAT session, the CAT Runtime Environment shall send a SET UP EVENT LIST system
proactive command, if at least one of the EVENT_EVENT_DOWNLOAD_* events is registered by a selectable
Toolkit applet.

During a CAT session the CAT Runtime Environment shall send a SET UP EVENT LIST system proactive command
whenever the registered event list is changed.

6.7.1.3 POLL INTERVAL and POLLING OFF

At the beginning of a CAT session, the CAT Runtime Environment shall send a POLL INTERVAL system proactive
command, if at least one Toolkit applet has requested a poll interval duration.

During a CAT session the CAT Runtime Environment shall send a POLL INTERVAL or POLLING OFF system
proactive command whenever the system poll interval duration is changed.

6.7.1.4 NEGOTIATION OF POLL INTERVAL

If at least one Toolkit applet has registered the EVENT POLL INTERVAL NEGOTIATION the Terminal can send an
ENVELOPE(POLL INTERVAL NEGOTIATION) at any time.

The CAT Runtime Environment shall send a response to the EVENT POLL INTERVAL NEGOTIATION as defined in
ETSI TS 102 223 [7] according to the following rules:

If none of the triggered Toolkit applets has requested a shorter poll interval duration than the one supplied by the
Terminal, and if none of the Toolkit applets that is not triggered on this event has previously requested a shorter poll
interval duration than the one supplied by the Terminal, the CAT Runtime Environment shall respond with the "Poll
interval result" set to "Accepted" as defined in ETSI TS 102 223 [7] and the "Duration" set to the new poll interval
duration.

If one or more triggered applets requested a shorter poll interval duration than the poll interval duration value supplied
by the Terminal, or if at least one of the Toolkit applets that is not triggered on this event has previously requested a
shorter poll interval duration than the one supplied by the Terminal, the CAT Runtime Environment shall respond with
the "Poll interval result" set to "Modified" and with the lowest poll interval value duration requested by the Toolkit
applets set as "Duration" as defined in ETSI TS 102 223 [7].

The "Duration" sent in the response to the ENVELOPE(POLL INTERVAL NEGOTIATION) shall be persistent and is
the new value of the poll interval duration used by the CAT Runtime Environment according to the rules defined in
clause 6.7.1.3, and as the response to an invocation of the ToolkitRegistry.getPollInterval() method.

6.7.1.5 ACTIVATE

This clause applies if the UICC supports ETSI TS 102 613 [17] and ETSI TS 102 705 [18].

The CAT Runtime Environment shall send this system proactive command automatically only if all the following
conditions are fulfilled:

• the terminal supports the SWP [17] interface and indicates support of the ACTIVATE proactive command in
the Terminal Profile;

• the UICC supports the AUTO_ACTIVATE_SERVICE_ID service as defined in [18]; and

• the SWP [17] interface is in DEACTIVATED state; and

• the UICC needs to communicate using this interface.

The CAT Runtime Environment shall not prevent applets from sending this proactive command.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)26Release 15

6.7.2 UICC memory reliability monitoring

The support of the event EVENT_MEMORY_FAILURE is optional.

If a Toolkit applet tries to register to this event, and the event is not supported, the registration shall fail, and a
ToolkitException is generated, with EVENT_NOT_SUPPORTED reason code.

Typical persistent memory technologies suffer of limited write cycles. Silicon manufacturers specify a nominal
minimum guaranteed number of writecycles at specific conditions. When this number is exceeded for a memory cell or
operating conditions are extreme, persistent memory reliability degrades and memory operations may fail.

In UICCs, particularly for those destined to M2M applications, the card operating system may be provided with an
optional mechanism for monitoring the status of persistent memory or part of it.

Using said mechanism, the CAT Runtime Environment can inform the applets sending them the event
EVENT_MEMORY_FAILURE. The applets triggered by this event are responsible to perform recovery actions, e.g. by
remotely signalling the card Issuer that a replacement is advised. The memory reliability monitoring mechanism could
be based on either hardware facilities, on software solutions or both. The techniques implemented to detect defective
memory cells are card manufacturer specific and out of scope of the present document.

It has to be understood that there are certain limitations of the aforementioned mechanism:

• If the UICC is provided with further mechanism to recover from write errors, e.g. by multiple writing attempts,
by reallocating data structures to different addresses etc., errors that can be transparently recovered by the
UICC shall not result in the triggering of the aforementioned event. Recovering techniques are manufacturer
dependant and are not mandated by the present document.

• The techniques to deal with memory failure may depend on the support of the semiconductor device
manufacturer and are UICC manufacturer specific and out of scope of the present document.

• There is no guarantee that the aforementioned event will be sent to an application. A sudden memory failure
could affect a part of memory vital to the card operating system, the CAT Runtime Environment and/or Java
Card™ Runtime Environment any time.

7 Toolkit applet

7.1 Applet loading
The UICC API card shall be compliant to the "Virtual Machine Specification Java Card™ Platform, 3.0.1 Classic
Edition" [4] and to annex B to guarantee interoperability at byte code Level.

The applet loading mechanism and applet life cycle are defined in ETSI TS 102 226 [10]. The applet loading protocol is
defined in ETSI TS 102 225 [9].

7.2 Data and function sharing
The sharing mechanism defined in "Application Programming Interface, Java Card™ Platform, 3.0.1 Classic
Edition" [2] and "Runtime Environment Specification, Java Card™ Platform, 3.0.1 Classic Edition" [3] shall be used by
the Toolkit applet(s) to share data and function.

7.3 Package, applet and object deletion
The Package and applet deletion mechanism defined in "Runtime Environment Specification, Java Card™ Platform,
3.0.1 Classic Edition" [3] shall be used to delete the content from the UICC. The object deletion mechanism defined
optional in "Application Programming Interface, Java Card™ Platform, 3.0.1 Classic Edition" [2] is mandatory.

If requested by an applet, the object deletion shall start prior to the processing of the next APDU if no applet is running
or suspended. This implies that it cannot be guaranteed that the object deletion has been performed prior to the next
invocation of the applet.process() method or ToolkitInterface.processToolkit() method.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)27Release 15

NOTE: The maximum work waiting time depends on several factors (e.g. the permissible duration of a
network-UICC authentication); in some cases as little as 2 s could be required. During this period the
UICC should respect the work waiting time procedure, defined in ETSI TS 102 221 [6].

8 UICC and ADF File System Administration API

8.0 Overview
The file administration API consists of the uicc.access.fileadministration package, which allows applets to administrate
file systems of the UICC.

8.1 AdminFileView objects
The interface AdminFileView extends the interface FileView, i.e. objects implementing the interface AdminFileView
inherit FileView functionality.

An AdminFileView object can be retrieved by invoking one of the getAdminFileView() methods defined in the
AdminFileViewBuilder class.

If BER TLV files functions are supported by an implementation, the getAdminFileView() and
getTheUICCAdminFileView() methods defined in the AdminFileViewBuilder class shall return the reference of an
object implementing the AdminBERTLVFileView interface.

Each AdminFileView shall be given the access control privileges associated with the UICC or the corresponding ADF
for the applet. The access control privileges are defined by the UICC Administrative access application specific
parameters specified in ETSI TS 102 226 [10]. UICC access application specific parameters shall not apply to objects
retrieved from the uicc.access.fileadministration.AdminFileViewBuilder class. The access control privileges are
checked against the access rules defined in ETSI TS 102 221 [6] each time a method of the AdminFileView object is
invoked.

8.2 AdminFileView operations
The following functions are provided by the methods defined in the uicc.access.fileadministration.AdminFileView
interface see annex A:

• CREATE FILE as defined in ETSI TS 102 222 [8]. Creation of an ADF at the API level is FFS.

• DELETE FILE as defined in ETSI TS 102 222 [8].

• RESIZE as defined in ETSI TS 102 222 [8].

9 UICC Java Card™ Services

9.0 Introduction
UICC Java Card™ Services are implemented as GlobalPlatform Global Services Applications according to the
GlobalPlatform Card Specification [15]. A unique service name identifies each service. Applets request a reference to a
UICC Java Card™ Service through the following method defined in the GlobalPlatform API [16]:

org.globalplatform.GPSystem.getService(javacard.framework.AID serverAID, short sServiceName)

The service names constant values are defined in the uicc.system.servicesConstants interface. The support for any of the
UICC Java Card™ Services defined in the present document is optional. In case a specific service is not supported, the
getService() method invoked with the corresponding service name shall return null.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)28Release 15

9.1 High update arrays
The uicc.services.highupdatearray.HighUpdateArrayBuilder shareable interface is an optional UICC Java Card™
Service that provides the creation of Java Card™ arrays, called high update arrays, which support a specified number of
update operations, which is expected to be higher than required for general data. Each update action on the array,
regardless of the position and number of the updated element(s), is counted as one update operation. The service name
to be used to obtain a reference to the HighUpdateArrayBuilder object is
SERVICE_ID_HIGH_UPDATE_ARRAY_BUILDER.

The unavailability of this Service does not exclude that the platform may perform the management of frequently
updated data transparently. In that case, the application may use the standard array feature.

If the high update arrays service is available, the UICC shall be classified with the JX property representing its update
performance with reference to high update arrays, in a similar way as described in ETSI TS 102 671 [14]. The JX
property value indicates the UICC's expected minimum number of update operations supported for a high update array.
The following JX property values are defined:

• JA: UICCs indicating JA as their minimum number of update operations property shall be able to update an
high update array 100 000 times without failure; loss of information due to time factors is excluded from this
property.

• JB: UICCs indicating JB as their minimum number of update operations property shall be able to update an
high update array 500 000 times without failure; loss of information due to time factors is excluded from this
property.

• JC: UICCs indicating JC as their minimum number of update operations property shall be able to update an
high update array 1 000 000 times without failure; loss of information due to time factors is excluded from this
property.

Applets can query the JX property value of the UICC by using the method
HighUpdateArrayBuilder.makeHighUpdateObjectArray().

10 UICC Java Card Runtime Environment

10.1 Overview
The UICC Java Card Runtime Environment is an extension of the "Runtime Environment Specification, Java Card™
Platform" described in [3]. The UICC Runtime Environment offers services not related to the CAT Runtime
Environment by means of a dedicated API that extends "Application Programming Interface, Java Card™ Platform"
[2].

10.2 UICC suspension

10.2.1 UICC Suspension purpose

The UICC suspension mechanism allows the terminal to suspend the UICC when access is not required a long period of
time. Upon suspension the UICC shall store its internal state and volatile data in order to restore them upon a successful
resume operation.

The interface uicc.suspendresume.SuspendMechanism allows applets to:

• be informed of a suspend request of the terminal;

• reject the request to suspend the UICC;

• accept the suspend request, with indication of the maximum suspension time for the applet;

• apply its own logic prior its suspension;

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)29Release 15

• be informed of and to apply its own logic after a successful resume.

Applets that do not implement this interface do not take part in this mechanism and are suspended by the UICC
Runtime Environment without notification.

Exceptions raised by applets during the execution of methods defined in the interface
uicc.suspendresume.SuspendMechanism shall not be propagated to the terminal.

Upon the invocation of all methods of uicc.suspendresume.SuspendMechanism except explicitly stated, the UICC
Runtime Environment shall invoke the applet as the ''currently selected applet instance'' according to [3].

10.2.2 Suspension mechanism

10.2.2.1 Suspension mechanism overview

On reception of a SUSPEND UICC command for Suspend operation, as described in ETSI TS 102 221 [6], the UICC
Runtime Environment shall execute the following steps:

• evaluate the request, to determine if the suspension is possible and to determine the maximum time, according
to clause 10.2.2.2;

• inform the applets about the suspension and allow them to apply any required action according to
clause 10.2.2.3;

• process the suspension.

10.2.2.2 Suspension Request Operation

To properly evaluate the suspension request, the UICC Runtime Environment shall call suspendRequest() for all applets
that implement the uicc.suspendresume.SuspendMechanism interface with the minimum and maximum time value
received in the SUSPEND UICC command. Each applet shall evaluate if the request can be accepted based on the input
parameters provided by the method.

If an applet rejects the suspension, either by raising an exception, by answering with an interval time lower than the
proposed interval time or by answering with an incorrect time interval unit, the UICC Runtime Environment shall not
continue to call the method suspendRequest() of the remaining applets and shall reject the suspension mechanism
request returning to the command the status word '9864'.

If no applet rejects the suspension, the UICC Runtime Environment determines the maximum duration of the
suspension taking the lowest time value returned by all applets. If all applets provide a value higher than the allowed
maximum value, the UICC Runtime Environment shall select the allowed maximum value.

10.2.2.3 Suspension Operation

The UICC Runtime Environment shall process the suspension mechanism calling the method suspendOperation() for
all applets that implement the uicc.suspendresume.SuspendMechanism interface with the maximum suspension time
computed from Suspension Request Operation.

If an applet raises an exception, the suspension operation shall not be stopped. The UICC Runtime Environment shall
not propagate the exception.

Afterwards, the UICC Runtime Environment shall store the UICC context to be suspended composed of its internal
state and volatile data. The UICC Runtime Environment shall not deselect applets selected on any logical channels.

The UICC Runtime Environment shall answer to the APDU command with the maximum suspension time allowed and
with the generated 8 byte token.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)30Release 15

10.2.3 Resume mechanism

10.2.3.1 Resume mechanism overview

Upon reception of a SUSPEND UICC command for resume operation, as described in ETSI TS 102 221 [6], the UICC
evaluate the command. If the command is accepted the UICC Runtime Environment shall execute the following steps:

• restore the UICC suspended context with all its internal state and all applets states;

• notify applets of the restoration of their context according to clause 10.2.2.2;

• delete the UICC suspended context.

If the command is rejected, the UICC Runtime Environment shall delete the UICC suspended context and the CAT
Runtime Environment shall trigger Toolkit applets on queued events according to clause 6.1.0.

10.2.3.2 Resume Indication

Afterward, the UICC Runtime Environment shall call the method resumeIndication() of all applets that implement the
uicc.suspendresume.SuspendMechanism.

If an applet raises an exception, the UICC Runtime Environment shall not propagate the exception and shall not cancel
the resume operation, but it shall continue to call the method resumeIndication() of remaining applets.

10.2.4 Handler management

For all methods of the uicc.suspendresume.SuspendMechanism interface, the CAT Runtime Environment shall not
allow access to system handlers. ProactiveHandler, ProactiveResponseHandler, EnvelopeHandler and
EnvelopeResponseHandler shall not be available.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)31Release 15

Annex A (normative):
Java Card™ UICC API
The source files for the Java Card™ UICC API (102241_Annex_A_Java.zip and 102241_Annex_A_HTML.zip) are
contained in ts_102241v150000p0.zip, which accompanies the present document.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)32Release 15

Annex B (normative):
Java Card™ UICC API identifiers
The export files for the uicc.* package (102241_Annex_B_Export_Files.zip) are contained in ts_102241v150000p0.zip,
which accompanies the present document.

NOTE: See the "Virtual Machine Specification Java Card™ Platform, 3.0.1 Classic Edition" [4].

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)33Release 15

Annex C (normative):
UICC API package version management
Table C.1a describes the relationship between each ETSI TS 102 241 [13] specification version and its UICC API
packages AID and Major, Minor versions defined in the export files.

Table C.1a

uicc.access package
ETSI TS 102 241 [13] Major, Minor AID

6.0.1 1.0
A000000009 0005 FFFF FFFF 89 11 000000 7.3.0 1.1

7.9.0 1.2

Table C.1b

uicc.toolkit package
ETSI TS 102 241 [13] Major, Minor AID

6.0.1 1.0

A000000009 0005 FFFF FFFF 89 12 000000

7.3.0 1.1
7.9.0 1.2
8.0.0 1.3
8.1.0 1.4
9.1.0 1.5
9.2.0 1.6

11.0.0 1.7
11.1.0 1.8

12 1.9
13 1.10

13.1 1.11
15.0 1.12

Table C.2

uicc.system package
ETSI TS 102 241 [13] Major, Minor AID

6.0.1 1.0
A000000009 0005 FFFF FFFF 89 13 000000

11.1.0 1.1

Table C.3

uicc.access.fileadministration package
ETSI TS 102 241 [13] Major, Minor AID

6.0.1 1.0 A000000009 0005 FFFF FFFF 89 11 010000

Table C.4

uicc.access.bertlvfile package
ETSI TS 102 241 [13] Major, Minor AID

7.9.0 1.0 A000000009 0005 FFFF FFFF 89 11 020000

Table C.5

uicc.services.highupdatearray package
ETSI TS 102 241 [13] Major, Minor AID

11.1.0 1.0 A000000009 0005 FFFF FFFF 89 18 010000

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)34Release 15

Table C.6

uicc.suspendresume package
ETSI TS 102 241 [13] Major, Minor AID

14.0.0 1.0 A0 00 00 00 09 00 05 FF FF FF FF 89 14 00 00 00

The package AID coding is defined in ETSI TS 101 220 [5]. The UICC API packages' AID are not modified by
changes to Major or Minor Version.

The Major Version shall be incremented if a change to the specification introduces byte code incompatibility with the
previous version.

The Minor Version shall be incremented if a change to the specification does not introduce byte code incompatibility
with the previous version.

For a table describing the versioning of a package, a line is introduced only upon changes of Major or Minor version of
its package.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)35Release 15

Annex D (informative):
Menu order example

D.0 Preamble
The following examples are in consecutive order.

D.1 State after initialization
Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

D.2 Some application installation later
Position in ToolkitRegistry Menu

Entries' list
Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 Legacy2 Legacy2
3 Legacy3 Legacy3
4 Legacy4 Legacy4

D.3 Installation of application A with position of menu
entry set to 3

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 Legacy2 Legacy2
3 A A
4 Legacy3 Legacy3
5 Legacy4 Legacy4

NOTE: The indicated position 3 pushes the entries "Legacy3" and "Legacy4" one position
down.

D.4 Installation of application B with position of menu
entry set to 3

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 Legacy2 Legacy2
3 B B
4 A A
5 Legacy3 Legacy3
6 Legacy4 Legacy4

NOTE: The indicated position 3 pushes also the previously installed Application A from
position 3 one position down to the new position 4.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)36Release 15

D.5 Installation of application C with position of menu
entry set to 2 and 3

D.5.1 Insert at position 2
Position in ToolkitRegistry Menu

Entries' list
Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 C1 C1
3 Legacy2 Legacy2
4 B B
5 A A
6 Legacy3 Legacy3
7 Legacy4 Legacy4

D.5.2 Insert at position 3
Position in ToolkitRegistry Menu

Entries' list
Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 C1 C1
3 C2 C2
4 Legacy2 Legacy2
5 B B
6 A A
7 Legacy3 Legacy3
8 Legacy4 Legacy4

D.6 Installation of application D with position of menu
entry set to "00"

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 C1 C1
3 C2 C2
4 Legacy2 Legacy2
5 B B
6 A A
7 Legacy3 Legacy3
8 Legacy4 Legacy4
9 D D

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)37Release 15

D.7 Installation of application E with position of menu
entry set to 20

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 C1 C1
3 C2 C2
4 Legacy2 Legacy2
5 B B
6 A A
7 Legacy3 Legacy3
8 Legacy4 Legacy4
9 D D

10 E E

D.8 Disabling/Locking of application legacy1 and
application A with menu entries at position 1
respectively 6

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 C1
2 C1 C2
3 C2 Legacy2
4 Legacy2 B
5 B Legacy3
6 A Legacy4
7 Legacy3 D
8 Legacy4 E
9 D

10 E

D.9 Re-enabling/Unlocking of application legacy1 and
application A with menu entries at position 1
respectively 6

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 C1 C1
3 C2 C2
4 Legacy2 Legacy2
5 B B
6 A A
7 Legacy3 Legacy3
8 Legacy4 Legacy4
9 D D

10 E E

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)38Release 15

D.10 Deletion of application A with menu entry at
position 6

Position in ToolkitRegistry Menu
Entries' list

Name SET UP MENU proactive command

1 Legacy1 Legacy1
2 C1 C1
3 C2 C2
4 Legacy2 Legacy2
5 B B
6 Legacy3 Legacy3
7 Legacy4 Legacy4
8 D D
9 E E

NOTE: Menu entries below menu position 6 are moved up one position.

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)39Release 15

Annex E (informative):
Change history
This annex lists all Changes Requests (CR) applied to the present document.

Meeting Plenary
Tdoc

VERS CR REV CAT SUBJECT Resulting
Version

SCP-14 SCP-030212 6.0.0 003 B Menu Entries position management 6.1.0
SCP-15 SCP-030483 6.1.0 008 1 B API to react on the end of a Proactive Session 6.2.0

 SCP-030484 009 1 C API correction to be Transport Protocol independent
 SCP-030454 015 C Upgrade the reference from Java Card™ 2.2 to

version 2.2.1

 SCP-030454 004 C New method appendTLV() with two byte arrays as input
parameters.

 SCP-030454 006 B Add new methods initMoreTime() in class
ProactiveHandler

 SCP-030454 007 B Introduction of Global Byte Array
 SCP-030454 010 B Specification of the first command after ATR event
 SCP-030454 011 D ProactiveResponseHandlerSystem.getTheHandler()

method set to public

 SCP-030454 012 D Incorrect wording in UICCException
 SCP-030454 014 1 B Introduction of BER and COMPREHENSION TLV

Handlers

SCP-16 SCP-040047 6.2.0 005 1 B Addition of select(SFI) method 6.3.0
 SCP-040068 016 1 C getTheFileView throw ArrayIndexOutOfBoundException

when an AID is passed as byte array with invalid offset
and length parameters

 SCP-040069 017 1 C Issuing system proactive command SET UP MENU in
case EFSUME is updated

 SCP-040047 018 F Update of UICC Java Card™ Architecture diagram
 SCP-040047 019 C Clarification of CAT Runtime Environment behaviour
 SCP-040071 020 1 C Specification of Java Card™ object deletion for UICC

Java Card™ and Toolkit applet

 SCP-040067 021 1 C Modification of LOCAL SERVICE identifiers management
 SCP-040047 023 D Renaming of the attached files
 SCP-040047 025 D Remove all references to 51.011

SCP-17 SCP-040214 6.3.0 027 F Reordering of UICCException reason codes 6.4.0
 SCP-040214 028 F Suppression of FILE_INVALIDATED reason code
 SCP-040214 029 C Splitting of the proprietary range of events
 SCP-040214 013 2 C Allow passing of specified status words through the toolkit

framework

 SCP-040214 032 C Specify the system handlers availability outside of
processToolkit() invocation

 SCP-040214 033 D Update clauses where HANDLER_NOT_AVAILABLE
reason is used

 SCP-040214 037 D Editorial cleaning
 SCP-040271 038 D Addition of text formatting for menu items
 SCP-040277 030 F Clarification of EVENT_UNRECOGNIZED_ENVELOPE

definition

 SCP-040278 031 1 F Clarify behaviour upon an unsuccessful TLV search
 SCP-040279 034 1 B Introduction of Browsing status event and Network search

mode change event

 SCP-040280 035 1 F Clarification of the Access Controls for the File Access
API

 SCP-040281 036 1 B Introduction of an API to create, delete and resize files
 SCP-040289 040 B Introduction of File Event

SCP-18 SCP-040311 6.4.0 041 F Correction to constructor of HandlerBuilder class of
uicc.system package

6.5.0

 042 C Remove getValue(short idx) method in TerminalProfile
class of uicc.toolkit package

 SCP-040365 043 F Addition of exceptions in ViewHandler buildTLVHandler()
methods definition

 SCP-040311 044 F Clarification of
EVENT_PROACTIVE_HANDLER_AVAILABLE
registration

 045 D Clarifications in documentation of method
uicc.access.FileView.searchRecord()

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)40Release 15

Meeting Plenary
Tdoc

VERS CR REV CAT SUBJECT Resulting
Version

 046 F Clarification about capacity parameter of
buildTLVHandler() methods

 048 F Correction of erroneous constant definitions in
uicc.access.UICCConstants.java

SCP-19 SCP-040432 6.5.0 049 F Clarification for non-specific references 6.6.0
 050 F Terminal Profile update to the latest changes in ETSI

TS 102 223

 052 F Definition of TAR_NOT_DEFINED for ToolkitException
 053 F Clarification for Exception in case capacity is negative
 054 F Clarification for the EVENT_EXTERNAL_FILE_UPDATE
 055 F Terminal Profile update for text attribute features

SCP-19 SCP-040432 6.6.0 051 D Clarification in description of AdminFileView 7.0.0
SCP-20 SCP-050019 7.0.0 057 A Corrections in documentation of Java methods for file

event registration
7.1.0

 059 A Access rights clarification for FileView and AdminFileView
 061 A Correction of SET UP EVENT LIST system command

behaviour

 063 A Clarification of file event deregistration
SCP-22 SCP-050244 7.1.0 065 A Clarification of envelope response handling in case of

EVENT_CALL_CONTROL_BY_NAA
7.2.0

 067 A Addition of missing OUT_OF_TLV_BOUNDARIES
ToolkitException in getChannelIdentifier() method
definition of ProactiveResponseHandler interface

069 F Delete the reference to ISO/IEC 7816-3
SCP-050231 077 A Addition of missing

AdminException.INCORRECT_PARAMETERS exception
in resizeFile() method definition

079 A Correction of description for SET UP MENU
SCP-23 SCP-050484 7.2.0 071 1 A Clarifications and corrections in FileView interface of

uicc.access package
7.3.0

 080 D Corrections in the description of the method
HandlerBuilder.buildTLVHandler()

087 B Reservation of events values "121" and "122" for 3GPP
089 A Clarifications and corrections in FileView interface of

uicc.access package
090 D Corrections createFile and resizeFile method description

SCP-050493 086 A Clarify handler availability for
EVENT_APPLICATION_DESELECT

SCP-050500 087 B Addition of UICCException reason code
CONDITIONS_OF_USE_NOT_SATISFIED

SCP-050501 084 B Define the constant for the proactive command send
short message

SCP-25 SCP-060154 7.3.0 092 1 A UICC API increase 7.4.0
SCP-26 SCP-060286 7.4.0 095 D Correct a comment about TAG_FCP_LCS_INTEGER

value
7.5.0

 096 B Event External File Update : support for BER-TLV files
SCP-060283 094 2 B Introduction of new exceptions to reflect changes due to

the introduction of the termination state for files in
ETSI TS 102 221 and ETSI TS 102 222

SCP-27 SCP-060445 7.5.0 101 A Correction of the release for references 7.6.0
SCP-060476 097 1 F Reserve a short identifier for a 3GPP event defined in

ETSI TS 102 223
SCP-29 SCP-070023 7.6.0 106 A Correction of method AdminFileView.resizeFile() for

BER-TLV Files
7.7.0

 108 F Correction of incorrect constant value in
UICCConstants.java

109 B Reference to Java Card™ 2.2.2 specification
SCP-30

bis
SCP-070191 7.7.0 099 2 B Support for RETRIEVE DATA and SET DATA functions

for BER-TLV files
7.8.0
withdrawn

 104 2 B Addition of a method for concurrent card application
toolkit sessions

 Missing values supplied in COMMAND_NOT_ALLOWED,
class uicc.access.UICCException (in attachment)

ETSI TS 102 241 v7.8.0 was withdrawn (decision made at SCP #35)
SCP-30

bis
SCP-070191 7.7.0 099 2 B Support for RETRIEVE DATA and SET DATA functions

for BER-TLV files
7.9.0

 Missing values supplied in COMMAND_NOT_ALLOWED,
class uicc.access.UICCException (in attachment)

SCP-33 SCP-070419 7.7.0 111 F Modification of CAT Runtime Environment behaviour in
case of CLOSE CHANNEL command for UICC Server
Mode in mode "TCP in LISTEN state"

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)41Release 15

Meeting Plenary
Tdoc

VERS CR REV CAT SUBJECT Resulting
Version

 112 D Editorial Correction in Method
uicc.system.HandlerBuilder.buildTLVHandler()

SCP-35 SCP-070191 7.7.0 104 2 B Addition of a method for concurrent card application toolkit
sessions (only changes to clauses 6.1 and 6.2 are
implemented as the rest of the changes is superseded by the
technical content in CR 113)

7.9.0

SCP-35 SCP-080035 7.9.0 113 1 F Implement the
isPrioritizedProactiveHandlerAvailableEventSet method
to the "ToolkitRegistrySystem" class

8.0.0

SCP-40 SCP-090067 8.0.0 115 1 F Addition of missing CAT events in table 1
(wrong value allocated for
EVENT_EVENT_DOWNLOAD_NETWORK_REJECTION
- new value allocated with the rapporteur)

8.1.0

SCP-41 SCP-090125 8.0.0 116 B Availability of the ProactiveHandler and the
ProactiveResponseHandler

8.1.0

SCP-44 SCP(10)0024 8.0.0 117 F Reservation of Event value for 3GPP CT6 8.1.0
SCP-45 SCP(10)0182 8.1.0 118 F Change reference from 'Java Card 2.2.2' to 'Java Card

3.0.1 Classic Edition'
9.0.0

SCP-47 SCP(11)0044 9.0.0 123 F Addition of missing contactless state request event (CR
number renumbered from 118 to 123)

9.1.0

SCP-48 SCP(11)0096 9.0.0 120 F CR 102 241 R9 #120: Correction to ToolkitConstants.java 9.1.0
SCP-48 SCP(11)0097 9.0.0 121 F CR 102 241 R9 #121: Correction to TerminalProfile

Interface
9.1.0

SCP-48 SCP(11)0098 9.0.0 122 F CR 102 241 R9 #122: Correction of packages version 9.1.0
SCP-51 SCP(11)0227r1 9.1.0 125 1 A Correction of package versions 9.2.0
SCP-51 SCP(11)0228r1 9.1.0 126 1 F Adding constant values for contactless operation and

other features
9.2.0

SCP-51 SCP(11)0265r1 9.2.0 127 F Reservation of IMS events for 31.130 10.0.0
SCP-52 SCP(11)0281r1 9.2.0 129 A Corrections related to changes of event Access

Technology Change in ETSI TS 102 223 (mirror of
SCPTEC(11)0137)

10.0.0

SCP-53 SCP(11)0377 10.0.0 130 B M2M Events for monitoring of data reliability 11.0.0
SCP-57 SCP(12)000261 11.0.0 131 B API services for high activity arrays 11.1.0
SCP-61 SCP(13)000237 11.0.0 132 F Adding constants for the TerminalProfile interface 11.1.0
SCP-68 SCP(15)000122 11.0.0 137 F Covering EVENT_MEMORY_FAILURE in the Handler

availability table
11.1.0

SCP-68 SCP(15)000123 11.0.0 138 F Covering
EVENT_EVENT_ACCESS_TECHNOLOGY_CHANGE_
MULTIPLE in the Handler availability table

11.1.0

SCP-65 SCP(14)000209 11.1.0 133 D Update of Java Card™ reference 12.0.0
SCP-65 SCP(14)000210 11.1.0 134 C Update of TerminalProfile class 12.0.0
SCP-66 SCP(14)000281 11.1.0 135 D Correct description of getPollInterval method 12.0.0
SCP-67 SCP(15)000046 11.1.0 136 C Update of ToolkitConstant Interface 12.0.0
SCP-68 SCP(15)000124 11.1.0 139 B Support of Poll Interval Negotiation 12.0.0
SCP-69 SCP(15)000174 12.0.0 140 B Supported Radio Access Technologies in PROVIDE

LOCAL INFORMATION support in the API
13.0.0

SCP-71 SCP(15)000269 13.0.0 141 B Add support for ENVELOPE (TERMINAL
APPLICATIONS)

13.1.0

SCP-72 SCP(16)000018 13.0.0 142 B Description of CAT ACTIVATE as a system command 13.1.0
SCP-73 SCP(15)000088 13.0.0 143 F Update of references to GlobalPlatform specifications 13.1.0
SCP-73 SCP(16)000089 13.0.0 144 B TERMINAL PROFILE eUICC Profile Switch constant

addition
13.1.0

SCP-76 SCP(16)00234 13.0.0 146 F Trigger EVENT_FIRST_COMMAND_AFTER_ATR event
after profile change

13.1.0

SCP-79 SCP(17)000085 13.0.0 150 1 F Correction in Terminal Profile Class 13.1.0
SCP-79 SCP(17)000086r1 13.0.0 151 1 F Correction in Terminal Profile Class 13.1.0
SCP-75 SCP(16)000188 13.0.0. 145 B TERMINAL PROFILE constant addition for eUICC Profile

Operation
14.0.0

SCP-76 SCP(16)000235r1 13.0.0 147 1 B Suspend Resume API 14.0.0
SCP-76 SCP(17)000019r1 13.0.0 148 1 B TerminalProfile constant addition for GET INPUT with

Variable Time out
14.0.0

SCP-78 SCP(17)000050 13.0.0. 149 B Suspend Resume Utility API 14.0.0
SCP-82 SCP(18)000016r1 15.0.0 152 1 D Annex C clarifications 15.0.0.
SCP-82 SCP(18)000033r1 14.0.0 153 B Add TERMINAL CAPABILITY information storage and

retrieval
15.0.0

SCP-83 SCP(18)000090r1 15.0.0 154 1 F Correct the EVENT_TERMINAL_CAPABILITY value 15.0.0

ETSI

ETSI TS 102 241 V15.0.0 (2019-01)42Release 15

History

Document history

V15.0.0 January 2019 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Description
	4.0 Purpose
	4.1 UICC Java Card™ architecture

	5 File access API
	5.0 Introduction
	5.1 FileView objects
	5.2 FileView operations
	5.3 BERTLVFileView operations

	6 Toolkit API and CAT Runtime Environment
	6.0 Introduction
	6.1 Applet triggering
	6.1.0 Triggering mechanism
	6.1.1 Exception handling

	6.2 Definition of events
	6.3 Registration
	6.4 Proactive command handling
	6.5 Envelope response handling
	6.6 System handler management
	6.7 CAT Runtime Environment behaviour
	6.7.0 Basic rules
	6.7.1 System proactive commands
	6.7.1.0 Overall behaviour
	6.7.1.1 SET UP MENU
	6.7.1.2 SET UP EVENT LIST
	6.7.1.3 POLL INTERVAL and POLLING OFF
	6.7.1.4 NEGOTIATION OF POLL INTERVAL
	6.7.1.5 ACTIVATE

	6.7.2 UICC memory reliability monitoring

	7 Toolkit applet
	7.1 Applet loading
	7.2 Data and function sharing
	7.3 Package, applet and object deletion

	8 UICC and ADF File System Administration API
	8.0 Overview
	8.1 AdminFileView objects
	8.2 AdminFileView operations

	9 UICC Java Card™ Services
	9.0 Introduction
	9.1 High update arrays

	10 UICC Java Card Runtime Environment
	10.1 Overview
	10.2 UICC suspension
	10.2.1 UICC Suspension purpose
	10.2.2 Suspension mechanism
	10.2.2.1 Suspension mechanism overview
	10.2.2.2 Suspension Request Operation
	10.2.2.3 Suspension Operation

	10.2.3 Resume mechanism
	10.2.3.1 Resume mechanism overview
	10.2.3.2 Resume Indication

	10.2.4 Handler management

	Annex A (normative): Java Card™ UICC API
	Annex B (normative): Java Card™ UICC API identifiers
	Annex C (normative): UICC API package version management
	Annex D (informative): Menu order example
	D.0 Preamble
	D.1 State after initialization
	D.2 Some application installation later
	D.3 Installation of application A with position of menu entry set to 3
	D.4 Installation of application B with position of menu entry set to 3
	D.5 Installation of application C with position of menu entry set to 2 and 3
	D.5.1 Insert at position 2
	D.5.2 Insert at position 3

	D.6 Installation of application D with position of menu entry set to "00"
	D.7 Installation of application E with position of menu entry set to 20
	D.8 Disabling/Locking of application legacy1 and application A with menu entries at position 1 respectively 6
	D.9 Re-enabling/Unlocking of application legacy1 and application A with menu entries at position 1 respectively 6
	D.10 Deletion of application A with menu entry at position 6

	Annex E (informative): Change history
	History

