

ETSI TS 102 240 V10.1.0 (2011-12)

Smart Cards;
UICC Application Programming Interface and

Loader Requirements;
Service description

(Release 10)

Technical Specification

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)2Release 10

Reference
RTS/SCP-R0263va10

Keywords
API, smart card

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2011.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)3Release 10

Contents

Intellectual Property Rights .. 5

Foreword ... 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 7

3 Definitions and abbreviations ... 7

3.1 Definitions .. 7

3.2 Abbreviations ... 8

4 Description ... 8

4.1 Design of UICC based applications using the UICC API .. 9

4.2 UICC API architecture ... 10

4.3 UICC file data access ... 11

4.4 UICC BER-TLV file access ... 11

5 Card interoperability... 11

5.1 Loader requirements ... 11

5.2 Application transport .. 12

6 Applet activation .. 12

6.1 Applet triggering .. 12

6.2 Applet selection .. 13

7 Applet life cycle management .. 13

7.1 Applet preparation .. 13

7.2 Loading .. 14

7.2.1 Arbitration... 14

7.2.2 Transport ... 14

7.2.3 Verification ... 14

7.2.4 Linking .. 14

7.3 Installation/registration/reactivation ... 14

7.4 Configuration ... 14

7.5 Execution .. 15

7.6 Deactivation ... 15

7.7 Removal ... 15

8 Security management ... 15

8.1 Management of applets .. 15

8.2 Applet certification ... 15

9 API compatibility ... 15

9.1 Level of compatibility .. 15

9.2 Compatibility at the interface ... 15

9.3 Compatibility at the programming interface .. 16

9.4 Accessibility of the programming interface ... 16

10 API extensibility ... 16

10.1 Evolution of UICC/terminal interface (TS 102 221) .. 16

10.2 Evolution of CAT application toolkit (TS 102 223) ... 16

10.3 Interworking with other systems .. 16

10.4 Evolution of UICC/terminal contactless interface (TS 102 622 and TS 102 613) .. 16

10.5 HCI low-level support .. 17

10.5.1 Use case .. 17

10.5.2 Requirements .. 17

10.6 Void .. 18

10.7 Void .. 18

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)4Release 10

10.8 Secure Channel between UICC and terminal ... 18

11 Data and function sharing and access control .. 18

11.1 Sharing resources between applets ... 18

11.2 Access to data ... 18

12 Technology considerations ... 19

12.1 UICC hardware requirements ... 19

12.2 Technology limitations ... 19

12.2.1 Memory recovery .. 19

12.3 Evolution .. 19

12.3.1 Remote Procedure Call (RPC) .. 19

13 Enhanced Runtime Environment .. 19

13.1 Interworking between multiple hardware and logical UICC/terminal interfaces ... 19

13.2 Support for TCP and UDP .. 19

13.3 Support for HTTP ... 20

13.4 Support for Card Application Toolkit (CAT) ... 20

13.5 Secure communication ... 20

13.6 Events ... 20

13.7 Access to the enhanced UICC API framework .. 20

13.8 Inter-application communication .. 20

13.9 Backward compatibility ... 21

Annex A (informative): Change history ... 22

History .. 23

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)5Release 10

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Smart Card Platform (SCP).

It is based on work originally done by the 3GPP group in "TSG-Terminals WG3" and by "ETSI Special Mobile Group
(SMG)".

The present document details the stage 1 aspects (overall service description) for the support of a UICC Application
Programming Interface (API).

The contents of the present document are subject to continuing work within ETSI SCP and may change following
formal ETSI SCP approval. Should ETSI SCP modify the contents of the present document it will then be republished
by ETSI with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

0 early working draft;

1 presented to TC SCP for information;

2 presented to TC SCP for approval;

3 or greater indicates TC SCP approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)6Release 10

1 Scope
The present document defines the service description of the UICC Application Programming Interface (UICC API)
internal to the UICC. Stage one is an overall service description, and does not deal with the implementation details of
the API.

The present document includes information applicable to network operators, service providers and terminal, UICC,
Network Access Application (NAA) providers, switch and database manufacturers.

The present document contains the core requirements, which are sufficient to provide a complete service.

It is highly desirable however, that technical solutions for a UICC API should be sufficiently flexible to allow for
possible enhancements. Additional functionalities not documented in the present document may implement
requirements which are considered outside the scope of the present document. This additional functionality may be on a
network wide basis, nation-wide basis or particular to a group of users. Such additional functionality shall not
compromise conformance to the core requirements of the service.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

• In the case of a reference to a TC SCP document, a non specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 102 221: "Smart cards; UICC-Terminal interface; Physical and logical characteristics
(Release 7)".

[2] ETSI TS 102 223: "Smart cards; Card Application Toolkit (CAT) (Release 7)".

[3] ISO/IEC 7816-4: "Identification cards - Integrated circuit cards Part 4: Organization, security and
commands for interchange".

[4] ETSI TS 102 622: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Host Controller
Interface (HCI)".

[5] ETSI TS 102 613: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Part 1: Physical
and data link layer characteristics".

[6] ETSI TS 102 600: "Smart Cards; UICC-Terminal interface; Characteristics of the USB interface".

[7] ETSI TS 102 483: "Smart cards; UICC-Terminal interface; Internet Protocol connectivity between
UICC and terminal".

[8] ETSI TS 102 484: "Smart Cards; Secure channel between a UICC and an end-point terminal".

[9] OMA: "Smartcard Web Server Enabler Architecture", OMA-AD-Smartcard-Web-Server-V1-0-
20070209-C.

http://docbox.etsi.org/Reference

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)7Release 10

[10] ETSI TS 102 412: "Smart Cards; Smart Card Platform Requirements Stage 1".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

applet: application built up using a number of modules which will run under the control of a virtual machine

application: in the scope of the present document either an applet or a web-application.

bytecode: machine independent code generated by a bytecode compiler and executed by a bytecode interpreter

data structure: collection of related data values such as the age, birth date and height of an individual

framework: defines a set of Application Programming Interface (API) functions and data structures for developing
applications and for providing system services to those applications

function: callable and executable body of computer instructions which perform a specific computation or data
processing task

module: collection of functions and data structures which implement an entire application or a particular application
feature or capability

UICC API framework: part of the UICC responsible for the handling of applications (including triggering and
loading)

NOTE: It also contains the library for the proactive API.

Servlet: application built up using a number of modules responding to incoming Internet protocol request (e.g. TCP,
HTTP, HTTPS, etc.)

NOTE: A Servlet runs under the control of a Servlet engine.

Servlet engine: part of the enhanced UICC API framework, responsible for handling incoming requests via the TCP/IP
protocol (e.g. HTTP/HTTPS) and dispatching them to the web-application

toolkit applet: applet loaded onto the UICC seen by the mobile as being part of the UICC toolkit application and
containing only the code necessary to run the application

NOTE: These applets might be downloaded over the radio interface.

trusted party: entity trusted by the card issuer with respect to security related services and activities

virtual machine: part of the run-time environment responsible for interpreting the bytecode

web-application: at least one Servlet or a combination of one or more Servlets, additional modules, applets, and static
content

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)8Release 10

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AID Applet IDentifier
APDU Application Protocol Data Unit
API Application Programming Interface
AVN Applet Version Number
BER Bit Error Rate
CAD Card Acceptance Device
CAT Card Application Toolkit
CLF Contactless Front-end
EPOS Electronic Point Of Sale
HCI Host Controller Interface
HTTP Hypertext Transfer Protocol
IFD InterFace Device
IP Internet Protocol
MExE Mobile Execution Environment
NAA Network Access Application
P2P Peer to peer
RPC Remote Procedure Call
TCP Transmission Control Protocol
TLS Transport Layer Security
TLV Tag, Length, Value
UDP User Datagram Protocol
UICC Universal Integrated Circuit Card
WAP Wireless Application Protocol

4 Description
The present document describes the high level requirements for an API for the UICC. This API shall allow application
programmers easy access to the functions and data described in TS 102 221 [1] and TS 102 223 [2], such that UICC
based services can be developed and loaded onto UICCs, quickly and, if necessary, remotely, after the UICC has been
issued.

…

…

Card

Operator

Management

Communication

Applet1 AID1,TAR1

Applet2 TAR2

Trusted

Appletn AIDn,TARn

AIDx. ↔ TARx Application
AID

Application

Application
AID

…

Card

Trusted

UICC
AIDx ↔ TARx Terminal

Figure 1: Toolkit applet management and communication

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)9Release 10

4.1 Design of UICC based applications using the UICC API
Figure 2 shows how UICC applications can be developed in a standard development environment and converted into an
interpreted format, then loaded into the UICC.

Development
Environment API;
(e.g. Visual Basic
API, C API, Java
API)

Smart Card
Application
platform;
(e.g. Java Card™,
Multos, Smart Card
for Windows)

Source code; e.g. C,
Java, Visual Basic, etc.

Bytecode

Toolkit
Applet File

Applet file stored in non volatile
memory

Execution
environment

Runnable (activated)
applet

Executed applet

compile (including
libraries)

optimise
(optional)

download

install

activate

trigger

Terminal

Figure 2: Flow diagram of the development of a UICC application

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)10Release 10

4.2 UICC API architecture
The UICC API shall consist of APIs for TS 102 223 [2] (pro-active functions) and TS 102 221 [1] (transport functions).
Figure 3 illustrates the interactions between these APIs.

Toolkit

Applet 1 Applet 2
Toolkit

Applet 3 Applet n

Proactive
command manager

UICC Kernel Files

UICC API Framework

Applet
install/uninstall

Security

Applet
triggering

Applet security
manager

Activation

Proactive
commands

P/C
responses

Install
Uninstall

APDU

Interface to terminal

APDU
e.g.
Envelopes

Proactive polling, 91XX, Fetch,
Proactive commands,
Terminal Response

File
access

File access

UICC-API

…

 (see note)

NOTE: The install / uninstall process does not form part of the API. Its requirements are outlined in clause 7.

Figure 3: UICC API architecture

In this model, the UICC data field structure is viewed as a series of data structures and data access functions to the API.
In the physical model of course, they may still be stored in elementary files, but the functions will access these data as
values within those data structures.

A general requirement of the UICC API is that applets should not interfere with the basic UICC services.

The UICC API framework shall prevent the toolkit applets from sending proactive commands which would interfere
with the correct execution of the UICC operating system and/or other toolkit applets.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)11Release 10

4.3 UICC file data access
The following methods shall be offered by the API to UICC applets, to allow access to the UICC data:

activateFile This function reactivates a deactivated EF. In case of successful execution of the command, the EF
on which the command was applied becomes the current EF. After an unsuccessful execution, the
current EF and current DF shall remain the same as prior to the execution.

deactivateFile This function initiates a reversible deactivation of an EF. In case of successful execution of the
command, the EF on which the command was applied becomes the current EF. After an
unsuccessful execution, the current EF and current DF shall remain the same as prior to the
execution.

increase This function adds the value given in an array of bytes to the value of the last increased/updated
record of the current cyclic EF, and stores the result into the oldest record. The record pointer is set
to this record and this record becomes record number 1. The function does not perform the
increase if the result would exceed the maximum value of the record (represented by all bytes set
to "FF").

readBinary This function reads an array of bytes from the current transparent EF.
readRecord This function reads one complete record in the current linear fixed or cyclic EF into an array of

bytes.
SearchRecord This function searches through a linear fixed or cyclic EF to find record(s) containing a specific

pattern.
select Select a file without changing the current file of any other applet or of the subscriber session.
status This function returns information concerning the current directory.
updateBinary This function updates the current transparent EF with an array of bytes.
updateRecord This function updates one specific, complete record in the current linear fixed or cyclic EF with an

array of bytes.

4.4 UICC BER-TLV file access
The following methods shall be offered by the API to UICC applets, to allow access to the data stored in BER-TLV
files as defined in TS 102 221 [1]:

• Retrieve a list of objects stored in the BER-TLV file identified by the TAG values of the objects.

• Select a TLV object in the BER-TLV file.

• Read data from a TLV object in the BER-TLV file.

• Write data to a TLV object in a BER-TLV file.

• Delete a TLV object in a BER-TLV file.

• Add a TLV object in a BER-TLV file.

5 Card interoperability

5.1 Loader requirements
There are a number of requirements for the loader which are seen as being vital to the successful deployment of UICC
API based UICCs.

• The Applet format shall be common to all compliant UICCs, such that a card issuer can deploy UICC API
based service applets to any UICC API compliant UICC.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)12Release 10

• The loader environment that allows the loading of applets to the UICC shall be common to all UICC API
compliant UICCs. This loader shall be able to send applets to UICCs in three distinct ways:

- During the personalization of the UICC, prior to the issue of the UICC to the user.

- During the life of the UICC using the UICC Data Download mechanism defined in TS 102 223 [2] or
using other standardized application dependent mechanisms.

- During the life of the UICC using an IFD (Interface Device) or CAD (Card Accepting Device,
e.g. an EPOS terminal).

5.2 Application transport
The transport of applications shall be transparent to the terminal. Applications may be transported via several different
bearers.

6 Applet activation

6.1 Applet triggering
The application triggering portion of the UICC Framework is responsible for the activation of toolkit applets, based on
the APDU received by the UICC. The inputs and outputs could be represented in figure 4.

APDU
Applet Triggering

Menu

Terminal

...

Figure 4: Applet triggering module

Entry points to the applet shall be provided in two ways:

• High level entry points, in order to have a simple programming of the UICC.

• Low level entry points to support the evolution of the TS 102 223 [2] specification.

Some of the high level entry points are listed below:

• Application loading.

• Application removal.

• Terminal profile.

• Menu selection.

• Events upon file system operations by the terminal or by application(s) in the card:

- read file;

- update file;

- set data;

- retrieve data;

- search record;

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)13Release 10

- create file;

- delete file;

- resize file;

- terminate file;

- activate file;

- deactivate file.

6.2 Applet selection
Applet activation through selection shall follow the rules defined in TS 102 221 [1] for application selection.

7 Applet life cycle management
The applet life cycle management concerns the applet preparation, loading, installation, registration, configuration,
execution and removal/deactivation.

Server Card Applet Status

Preparation

Arbitration
Transport

Verification
Linking

Installation
Registration

Activation
Deactivation

Removal

Loaded

Installed
Registered

Activated
Deactivated

Figure 5: Applet life cycle

7.1 Applet preparation
"Applet preparation" refers to the optional phase of verifying the compliance of the applet code with card issuer or other
standards.

The applet is to be identified through an Applet Identification Number (AID) which is assigned through the procedure
detailed in ISO/IEC 7816-4 [3] and an Applet Version Number (AVN). Both AID and AVN are assigned during the
applet preparation phase.

The minimum requirements for the applet (such as API versions, UICC capabilities, resource requirements) shall be
specified.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)14Release 10

7.2 Loading
"Loading" refers to the process of transporting the applet code from a load server to the UICC and generating the loaded
code on the UICC.

The process shall be under the principle control of the card issuer, who may choose to delegate this responsibility to one
or more trusted parties, possibly while imposing resource restrictions (e.g. maximum memory allowance) or access
restrictions (e.g. limited or reduced functionality).

The loading process involves four distinct phases: Arbitration, Transport, Verification and Linking. The UICC shall
provide acknowledgement of success or failure (including error identification code) to the load server if the load server
requires this.

7.2.1 Arbitration

This phase is accomplished by mutual authentication between the UICC and the load server, and by establishing
appropriate session keys for ensuring security during the data transfer, which is to follow.

The minimum applet requirements are verified with regard to the environment present on the UICC (e.g. API version,
UICC capabilities and available memory). If this fails, the loading process shall be aborted.

The Applet IDentifiers (AIDs) and version numbers (AVNs) of any applets already installed on the UICC are compared
to the AID and AVN of the applet, which is to be downloaded. If an identical applet is already installed on the UICC
(i.e. both applet identifier and version number match), the phases Transport, Verification and Linking are skipped. If an
applet with an identical applet identifier (AID) but different version number (AVN) is available on the UICC, that
applet is removed (see clause 7.7).

7.2.2 Transport

This stage shall encompass the transport of the data packets from the load server to the UICC, and may be done with
optionally additional encryption using session keys generated/exchanged during the arbitration phase.

7.2.3 Verification

This stage shall encompass the verification of the received data and may involve byte-code level or applet-specific
verification. Should the verification stage fail, the applet shall be discarded.

7.2.4 Linking

This stage shall encompass the linking of the received code against the runtime environment present on the UICC.

7.3 Installation/registration/reactivation
This stage refers to the execution of applet-code regarding to the installation and registration of the applet with respect
to the UICC runtime environment and is out of scope for the present document. It may require additional procedures
depending on the UICC/terminal environment (e.g. this may involve the generation of an applet-specific menu entry in
the terminal's user interface through the appropriate toolkit command, and the generation of applet-specific data
structures in UICC memory).

If the applet already exists on the UICC and is deactivated (see clause 7.6), the installation request shall reactivate the
applet. Other methods of reactivation are possible via a separate command.

7.4 Configuration
This stage may involve any necessary configuration of the applet code with regard to a particular
user/set-up/environment. This stage is driven through code provided with the applet itself and may be executed
repeatedly.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)15Release 10

7.5 Execution
At this stage, providing the applet is activated, the applet is in a state where its execution may be triggered by any event
as specified in clause 6.

7.6 Deactivation
This stage involves disabling the ability to execute applet code in the UICC and may be triggered by the user, the card
issuer or any third party, providing sufficient access rights are granted to them. Deactivation may include the release of
any applet reserved resources (e.g. memory resources, etc.).

7.7 Removal
This stage follows the deactivation of the applet and prevents the applet's reactivation. This may be followed by the
release of the applet's memory. For security reasons, the memory may be overwritten by null data.

8 Security management

8.1 Management of applets
Security might be required during the loading of the applet from a load server onto the UICC, and the communications
between the applet and any remote server during the execution of the applet code. In both cases security may involve
the authentication of the communicating entities and the encryption of the data traffic between those entities.

A hierarchy of keys may be bootstrapped by initializing a set of keys by the card issuer during card personalization.
Additional keys may be generated, distributed using existing keys, and equipped with limited authority. Such keys may
be passed on to trusted parties and subsequently used for authentication and encryption.

8.2 Applet certification
The role of certification is to ensure that only the authorized entities are able to download an application on to the
UICC. Based on this certificate, the UICC shall decide whether or not to accept the downloaded application.

9 API compatibility

9.1 Level of compatibility
The commands and features supported by the API shall be as specified in the same Release year of TS 102 221 [1] and
TS 102 223 [2].

9.2 Compatibility at the interface
In order to provide compatibility with the UICC/terminal interface, a UICC using the UICC API shall provide full
functional compatibility with the structure and content of TS 102 221 [1] and TS 102 223 [2] commands as specified in
those documents.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)16Release 10

9.3 Compatibility at the programming interface
All commands (at the functional level) shall be presented in a manner consistent with the customary or recommended
use of the programming language at the programming level.

The UICC API shall be provided in two ways:

• an easy to use high level interface (proactive commands level); and

• a low level interface (i.e. the TLV parameters) to maximize scope without the need to extend the UICC API.

9.4 Accessibility of the programming interface
The UICC API shall be accessible by any UICC application (e.g. Java CardTM applet).

10 API extensibility
The UICC API shall support applications written for previous versions of the UICC API.

There shall be means to manage versions of the UICC API.

At installation of an applet the required UICC API version shall be checked as described in clause 7.

The ability to extend the UICC API to add functionality may be possible without reissuing the card.

10.1 Evolution of UICC/terminal interface (TS 102 221)
As the UICC/terminal interface is handled by the UICC kernel any evolution of the interface may require the
introduction of a new UICC API version.

10.2 Evolution of CAT application toolkit (TS 102 223)
The UICC API shall provide a low-level interface to support any further releases of TS 102 223 [2].

The UICC API should provide a high level interface to support specific features.

10.3 Interworking with other systems
If interworking at APDU and UICC API level with other systems (e.g. MExE, WAP) require some specific
functionality, it will first need to be defined either in the TS 102 221 [1] or TS 102 223 [2], and as a result it will be
taken into account in the API specification.

10.4 Evolution of UICC/terminal contactless interface
(TS 102 622 and TS 102 613)

The UICC API shall provide the following features:

• Transmit and receive messages to and from the CLF in card emulation mode according to TS 102 622 [4].

• Transmit and receive messages to and from the CLF in reader emulation mode according to TS 102 622 [4].

• Transmit and receive messages to and from the CLF in P2P mode according to TS 102 622 [4].

• Set and retrieve registry parameters defined in TS 102 622 [4] in the CLF.

• Subscribe and receive all the events defined in TS 102 622 [4] needed to operate in card emulation mode.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)17Release 10

• Subscribe and receive all the events defined in TS 102 622 [4] needed to operate in reader mode.

• Subscribe and receive all the events defined in TS 102 622 [4] needed to operate in P2P mode.

• Provide a mechanism to access non-volatile memory content which is not part of the file-system or not
addressable by the UICC API framework (in order to support memory writing and memory reading
operations).

• Provide means to inform the UICC application of the phone status (availability of the end user interface,
availability of the network interface).

• Initiate events defined for the connectivity gate as defined in TS 102 622 [4].

• Provide the availability of contactless interface power mode in the CLF according to TS 102 613 [5] and
TS 102 622 [4]: i.e. low power mode/full power mode.

10.5 HCI low-level support

10.5.1 Use case

TS 102 622 [4] (HCI) supports the usage of proprietary gates that can be used to support application specific
functionality. An application residing on the UICC creates a proprietary gate to provide application specific
functionality, e.g. OTA services, to other hosts, e.g. an embedded secure element. An application residing on that
embedded secure element can create and open a pipe to the proprietary gate provided by the application on the UICC to
make use of services supported by the application.

This low-level API shall support this functionality and allow applications residing on the UICC to create proprietary
gates, manage pipes for these gates and to receive and send data over these pipes accordingly.

This low-level API shall be separated from the functionality provided by the higher-level API covering the Card
emulation mode, Reader mode, Connectivity functionality and P2P mode in that the gates and pipes used exclusively by
these modes shall not be affected.

10.5.2 Requirements

• Access to proprietary gates shall be supported whereas access to the gates (e.g. card RF gates, card application
gates. reader RF gates, reader application gates, connectivity gate, etc.) defined by the HCI specification in
TS 102 622 [4] shall be excluded by the low-level API.

• Support a Host discovery, by retrieving a list of available hosts in the system from the CLF.

• Modification of the host's own white list shall be supported.

• Allow notifications upon changes of the host list on the CLF.

• Support creation and deletion of proprietary, i.e. application specific, gates.

• Support creating, opening, closing, and deleting of pipes.

• Transmit and receive messages over pipes the applet created itself.

• Allow notifications upon pipe state changes.

• Support access control to gates and pipes:

- An application shall not be able to delete/close pipes it did not create/open.

- An application shall not be able to delete or modify a gate it did not create.

- An application shall not be able to create a gate with an already assigned gate ID.

- An application shall not be able to create a pipe with an already assigned pipe ID.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)18Release 10

10.6 Void

10.7 Void

10.8 Secure Channel between UICC and terminal
The API for UICC supporting the Secure Channel as defined in TS 102 484 [8] shall provide the following features:

• Management of the establishment and the closure of a secure channel.

• Communication over an established secure channel.

• Management of application settings such as the mandating of the use of the secure channel.

• Remote configuration of Secure Channel settings: e.g. load a PSK or a certificate in the UICC.

• Management of the UICC endpoints.

• Inform applications of their Secure Channel communication status.

• The API applies to secured APDU platform to platform and application to application.

There shall be a mechanism to restrict access to this API to authorized applications only.

11 Data and function sharing and access control

11.1 Sharing resources between applets
The API shall provide a secure data structure and function sharing mechanism between applets and with the UICC
kernel.

The UICC kernel should be able to share with applets:

• files: to get file status, read and update data field;

• PIN1, PIN2: to get status.

A toolkit applet shall be able to share any kind of data with any other applet even a non-toolkit applet.

The data and function sharing mechanism and the access control management shall be common to all card issuers.

To ease the deployment, these requirements have the following priorities:

• high: UICC kernel data sharing;

• medium: inter industry sharing mechanism between applets.

11.2 Access to data
The UICC API shall provide a way to let each applet indicate:

• the shared data and functions;

• the associated access functions to these data and functions;

• the security or trust level required;

• the accepted certification authorities; and

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)19Release 10

• the identity of the applet provider.

The UICC API framework shall check all these parameters before granting an access to data.

12 Technology considerations

12.1 UICC hardware requirements
The UICC API requires a smart card device that is capable of implementing a virtual machine and the UICC API
framework. It is seen as necessary that there is sufficient non volatile memory to contain UICC Applets alongside
mandatory application specific files and potentially many (if not all) of optional application specific files.

12.2 Technology limitations

12.2.1 Memory recovery

Although there is a requirement for UICC API compliant devices to allow reconfiguration, termination and removal of
Applets, it is recognized that UICC API devices may not be fully capable of reclaiming the memory freed up.

12.3 Evolution

12.3.1 Remote Procedure Call (RPC)

Some current technologies that meet the needs of the UICC API are not designed to allow RPC. Future alternative
technologies may be able to support this. It is seen as a future requirement of UICC API when interacting with terminal
based execution environments.

13 Enhanced Runtime Environment
For a UICC that supports multiple logical interfaces based on TS 102 600 [6], TS 102 622 [4] and TS 102 483 [7] a
runtime environment, called the enhanced UICC API framework, allowing applications concurrent access to these
multiple interfaces, may be implemented. This runtime environment shall have the following characteristics.

13.1 Interworking between multiple hardware and logical
UICC/terminal interfaces

A UICC based on a combination of TS 102 221 [1], TS 102 600 [6], TS 102 622 [4], TS 102 483 [7] and
TS 102 484 [8] can have multiple active logical interfaces based on different protocol layers (APDU, TCP, UDP, HCI)
with the terminal. The enhanced UICC API framework shall manage all the communication over these multiple
interfaces concurrently and independently from each other. In order to handle these logical interfaces independently, the
UICC API framework shall be based on a technology allowing concurrent access to the interfaces. The enhanced UICC
API framework is responsible to manage the communication between the terminal and the different applications via
these logical interfaces. A reset of one of the interfaces, either hardware or logical, shall not affect the communication
via the other logical interfaces or hardware interfaces. The enhanced UICC API framework shall provide information
about the establishment as well as the reset of interfaces to registered applications in the form of events.

13.2 Support for TCP and UDP
The functionality for applications to communicate concurrently via TCP/IP or UDP/IP according to TS 102 483 [7]
shall be provided by an enhanced UICC API framework. The enhanced UICC API framework shall provide the
functionality to applications to communicate over TCP/IP in server and client mode.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)20Release 10

The enhanced UICC API framework shall provide a generic and extendable way to retrieve APIs for the different types
of the Internet protocol family as well as support any further releases of TS 102 483 [7].

The enhanced UICC API framework shall be able to concurrently activate applications upon incoming TCP/UDP
requests that are listening on a specific TCP/UDP port. The UICC API framework shall be able to manage several
incoming and outgoing requests via TCP/UDP concurrently. The UICC API framework shall provide the functionality
to establish a secure communication on this specific TCP/UDP port according to TS 102 484 [8].

13.3 Support for HTTP
The functionality for applications to receive and respond to HTTP requests shall be provided by a servlet engine that is
part of the enhanced UICC API framework. Applications that deal with the HTTP protocol are called Web applications.
This servlet engine shall be able to activate concurrently Web applications upon request to a URI. Web applications
shall be identified by a URI, see OMA [9]. The URI identifying a Web application must be unique for the UICC on
which this Web application is loaded.

13.4 Support for Card Application Toolkit (CAT)
The enhanced UICC API framework shall provide the functionality to receive Toolkit events and send Proactive
commands as described in TS 102 223 [2].

13.5 Secure communication
The enhanced UICC API framework shall provide the means to establish a secure channel, by implementing the TLS
application to application secure channel, over TCP/IP according to TS 102 484 [8]. It shall be possible to assign at
least one TCP port, as an end point for a secure channel, per application. It shall be possible for applications to open a
secure channel in server-listen mode or in client mode. It shall be possible that several secure channel sessions are
active concurrently at the same time.

The enhanced UICC API framework shall provide the means to perform the following operations:

• the key agreement for the secure channel;

• the secure channel setup.

The enhanced UICC API framework shall provide the means to manage secure communication for the APDU
application to application protocol according to TS 102 484 [8].

13.6 Events
The enhanced UICC API framework shall support an extendable event framework, that allows the definition of events
that can be raised by the platform (UICC, Interfaces, Frameworks) or by applications deployed in the UICC. The
enhanced UICC API framework shall provide a mechanism to applications to subscribe and unsubscribe to these events.

13.7 Access to the enhanced UICC API framework
The enhanced UICC API framework shall support a permission based security mechanism as a means to restrict access
to the features of the framework, as requested by TS 102 412 [10].

13.8 Inter-application communication
The enhanced UICC API framework shall provide a mechanism allowing applications to share data in a secure and
authenticated way.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)21Release 10

13.9 Backward compatibility
The enhanced UICC API framework shall provide the means allowing existing applications, based on the Rel-7 or
earlier API specifications, to be deployed on new cards implementing the enhanced UICC API framework.

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)22Release 10

Annex A (informative):
Change history
This annex lists all change requests approved for the present document by ETSI SCP.

Date Meeting TC SCP Doc. CR Rv Cat Subject/Comment Old New
2004-11 SCP#19 N4-040456 001 Clarification for non-specific references 6.0.0 6.1.0
2005-06 SCP#21 SCP-050157 002 F ISO/IEC update 6.1.0 6.2.0
2005-06 SCP#21 SCP-050157 B Requirements for large file support by the API 6.1.0 6.2.0
2005-12 SCP#23 SCP-050521 003 B Requirements for system events 6.2.0 7.0.0

SCP-050522 004 1 B UICC API accessibility Requirement
2008-07 SCP#38 SCP-080347 005 B Addition of requirements for a Contactless API 7.0.0 8.0.0
2009-01 SCP#40 SCP-090055 006 B Requirements for an enhanced Runtime

Environment
8.0.0 9.0.0

2010-03 SCP#44 SCP(10)0047 007 B Addition of contactless low-level API
functionality

9.0.0 10.0.0

2009-04 SCP#41 SCP-090176 - B Requirements for the Secure Channel API 10.0.0 10.1.0

ETSI

ETSI TS 102 240 V10.1.0 (2011-12)23Release 10

History

Document history

V10.0.0 July 2011 Publication

V10.1.0 December 2011 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Description
	4.1 Design of UICC based applications using the UICC API
	4.2 UICC API architecture
	4.3 UICC file data access
	4.4 UICC BER-TLV file access

	5 Card interoperability
	5.1 Loader requirements
	5.2 Application transport

	6 Applet activation
	6.1 Applet triggering
	6.2 Applet selection

	7 Applet life cycle management
	7.1 Applet preparation
	7.2 Loading
	7.2.1 Arbitration
	7.2.2 Transport
	7.2.3 Verification
	7.2.4 Linking

	7.3 Installation/registration/reactivation
	7.4 Configuration
	7.5 Execution
	7.6 Deactivation
	7.7 Removal

	8 Security management
	8.1 Management of applets
	8.2 Applet certification

	9 API compatibility
	9.1 Level of compatibility
	9.2 Compatibility at the interface
	9.3 Compatibility at the programming interface
	9.4 Accessibility of the programming interface

	10 API extensibility
	10.1 Evolution of UICC/terminal interface (TS 102 221)
	10.2 Evolution of CAT application toolkit (TS 102 223)
	10.3 Interworking with other systems
	10.4 Evolution of UICC/terminal contactless interface (TS 102 622 and TS 102 613)
	10.5 HCI low-level support
	10.5.1 Use case
	10.5.2 Requirements

	10.6 Void
	10.7 Void
	10.8 Secure Channel between UICC and terminal

	11 Data and function sharing and access control
	11.1 Sharing resources between applets
	11.2 Access to data

	12 Technology considerations
	12.1 UICC hardware requirements
	12.2 Technology limitations
	12.2.1 Memory recovery

	12.3 Evolution
	12.3.1 Remote Procedure Call (RPC)

	13 Enhanced Runtime Environment
	13.1 Interworking between multiple hardware and logical UICC/terminal interfaces
	13.2 Support for TCP and UDP
	13.3 Support for HTTP
	13.4 Support for Card Application Toolkit (CAT)
	13.5 Secure communication
	13.6 Events
	13.7 Access to the enhanced UICC API framework
	13.8 Inter-application communication
	13.9 Backward compatibility

	Annex A (informative): Change history
	History

