
 

 

 

 

 
ETSI TR 102 397-4-1 V1.1.1 (2005-12)

Technical Report 

Open Service Access (OSA);
Mapping of Parlay X Web Services to Parlay/OSA APIs;

Part 4: Short Messaging Mapping;
Sub-part 1: Mapping to User Interaction

 

 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 2  

 

 

 

Reference 
DTR/TISPAN-01021-04-01-OSA 

Keywords 
API, OSA, service 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

Individual copies of the present document can be downloaded from: 
http://www.etsi.org 

The present document may be made available in more than one electronic version or in print. In any case of existing or 
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). 

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive 
within ETSI Secretariat. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

http://portal.etsi.org/tb/status/status.asp 

If you find errors in the present document, please send your comment to one of the following services: 
http://portal.etsi.org/chaircor/ETSI_support.asp 

Copyright Notification 

No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© European Telecommunications Standards Institute 2005. 

© The Parlay Group 2005. 
All rights reserved. 

 
DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. 

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. 

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp


 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 3  

Contents 

Intellectual Property Rights ................................................................................................................................4 

Foreword.............................................................................................................................................................4 

1 Scope ........................................................................................................................................................5 

2 References ................................................................................................................................................5 

3 Definitions and abbreviations...................................................................................................................5 
3.1 Definitions..........................................................................................................................................................5 
3.2 Abbreviations .....................................................................................................................................................5 

4 Mapping Description................................................................................................................................6 

5 Sequence Diagrams ..................................................................................................................................6 
5.1 Send Short Message to One or More Addresses ................................................................................................6 
5.2 Notification of Short Message Reception and Retrieval ....................................................................................9 

6 Detailed Mapping Information...............................................................................................................11 
6.1 Operations ........................................................................................................................................................11 
6.1.1 sendSms ......................................................................................................................................................11 
6.1.1.1 Mapping to IpUIManager.createNotification....................................................................11 
6.1.1.2 Mapping to IpUIManager.createUI ...........................................................................................11 
6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq .............................................................................12 
6.1.2 sendSmsLogo..............................................................................................................................................12 
6.1.3 sendSmsRingtone .......................................................................................................................................13 
6.1.4 getSmsDeliveryStatus.................................................................................................................................13 
6.1.4.1 Mapping from IpAppUI.sendInfoAndCollectRes .................................................................13 
6.1.4.2 Mapping from IpAppUI.sendInfoAndCollectErr .................................................................14 
6.1.4.3 Mapping from IpAppUIManager.reportEventNotification ............................................14 
6.1.5 notifySmsDeliveryReceipt..........................................................................................................................14 
6.1.5.1 Mapping from IpAppUI.sendInfoAndCollectErr .................................................................15 
6.1.5.2 Mapping from IpAppUIManager.reportEventNotification ............................................15 
6.1.6 startSmsNotification ...................................................................................................................................15 
6.1.6.1 Mapping to IpUIManager.createNotification........................................................................................15 
6.1.7 notifySmsReception....................................................................................................................................16 
6.1.7.1 Mapping from IpAppUIManager.reportEventNotification ............................................16 
6.1.8 getReceivedSms..........................................................................................................................................17 
6.1.9 stopSMSNotification ..................................................................................................................................17 
6.1.9.1 Mapping to IpUIManager.destroyNotification......................................................................................17 
6.2 Exceptions ........................................................................................................................................................17 

7 Additional Notes ....................................................................................................................................17 

History ..............................................................................................................................................................18 
 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 4  

Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Telecommunications and Internet 
converged Services and Protocols for Advanced Networking (TISPAN). 

The present document is part 4, sub-part 1, of a multi-part deliverable providing an informative mapping of Parlay X 
Web Services to the Parlay Open Service Access (OSA) APIs and, where applicable, to IMS, as identified below: 

Part 1: "Common Mapping"; 

Part 2: "Third Party Call Mapping"; 

Part 3: "Call Notification Mapping"; 

Part 4: "Short Messaging Mapping"; 

Sub-part 1: "Mapping to User Interaction"; 

Sub-part 2: "Mapping to Multi-Media Messaging"; 

Part 5: "Multimedia Messaging Mapping"; 

Part 6: "Payment Mapping"; 

Part 7: "Account Management Mapping"; 

Part 8: "Terminal Status Mapping"; 

Part 9: "Terminal Location Mapping"; 

Part 10: "Call Handling Mapping"; 

Part 11: "Audio Call Mapping"; 

Part 12: "Multimedia Conference Mapping"; 

Part 13: "Address list Management Mapping"; 

Part 14: "Presence Mapping". 

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP. 

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/


 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 5  

1 Scope 
The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions 
that application developers and the IT community can both quickly comprehend and use to generate new, innovative 
applications. 

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use 
of network functionality through an open standardized interface, i.e. the Parlay/OSA APIs. 

The present document is part 4, sub-part 1, of an informative mapping of Parlay X Web Services to Parlay/OSA APIs. 

The present document specifies the mapping of the Parlay X Short Messaging Web Service to the Parlay/OSA User 
Interaction Service Capability Feature (SCF). 

2 References 
For the purposes of this Technical Report (TR) the following references apply: 

[1] ETSI TR 121 905: "Digital cellular telecommunications system (Phase 2+); Universal Mobile 
Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)". 

[2] W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes". 

NOTE: Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/ 

[3] ETSI TR 102 397-1: "Open Service Access (OSA); Mapping of Parlay X Web Services to 
Parlay/OSA APIs; Part 1: Common Mapping". 

[4] ETSI TS 123 040: "Digital cellular telecommunications system (Phase 2+); Universal Mobile 
Telecommunications System (UMTS); Technical realization of Short Message Service (SMS) 
(3GPP TS 23.040)". 

[5] IETF RFC 2822: "Internet Message Format". 

NOTE: Available at http://www.ietf.org/rfc/rfc2822.txt 

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the terms and definitions given in TR 102 397-1 [3] and the following apply: 

Shortcode: Short telephone number, usually 4 to 6 digits long. This is represented by the 'tel:' URI defined in 
TR 102 397-1 [3].  

Whitespace: See definition for CFWS as defined in RFC 2822 [5]. 

3.2 Abbreviations 
For the purposes of the present document, the abbreviations given in TR 102 397-1 [3] and the following apply: 

SMS Short Message Service 

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.ietf.org/rfc/rfc2822.txt


 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 6  

4 Mapping Description 
The Short Messaging capability can be implemented with the Parlay/OSA User Interaction SCF. 

It is applicable to ETSI OSA 1.x/2.x/3.x, Parlay/OSA 3.x/4.x/5.x and 3GPP Releases 4.x/5.x/6.x. 

5 Sequence Diagrams 

5.1 Send Short Message to One or More Addresses 
This describes where an application sends a short message to one or more addresses. The use case is the same whether 
the message is text, ringtone or a logo, however a different operation on the Parlay X SendSms interface is used for 
each. For the diagram below replace sendSms with sendSmsLogo or sendSmsRingtone as appropriate. 

1. Prior to processing any sendSmsRequest messages from the application, the web service creates an event 
notification with criteria identifying the application (OriginatingAddress) and the terminal 
delivery related states (ServiceCode). 

2. The application requests the sending of a short message to multiple addresses using the sendSms operation. If 
the contents of the sendSmsRequest message are invalid for any reason, the appropriate service or policy 
exception is thrown. Otherwise, a sendSmsResponse message is returned to the application containing a 
unique identifier for this SMS delivery request and processing continues as described below.  

3. The web service resolves all group addresses in the addresses part of the sendSmsRequest message to 
individual destination addresses. The web service creates a UI session for each individual destination address 
in the request. 

4. The web service sends the message to each individual destination address and requests a message identifier 
(e.g. a network tracking number) using the sendInfoAndCollectReq method. 

5. The application can invoke the getSmsDeliveryStatus operation at any time after it receives the 
sendSmsResponse message and use the unique identifier it received in this message to obtain the current 
delivery status for each individual destination address. At this stage, the status returned for each address is 
either MessageWaiting or, in the event of an error, DeliveryImpossible. 

6. The web service processes an invocation of a sendInfoAndCollectRes method for each individual 
destination address, which contains a message identifier (e.g. a network tracking number). 

7. After the web service processes the sendInfoAndCollectRes method invocation for a destination 
address, it releases the associated UI session objects created in step 3. 

8. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for each 
individual destination address is one of the following: 

- MessageWaiting, if the sendInfoAndCollectRes method has not yet been invoked. 

- DeliveryImpossible, in the event an error occurred. 

- DeliveredToNetwork, if the sendInfoAndCollectRes method has been invoked. 

- DeliveryUncertain, otherwise. 

9. The web service processes an invocation of a reportEventNotification method containing the 
message identifier (i.e. as received by the web service in step 6), the terminal delivery related 
status and the sent message. This method notifies the application of an occurred network event matching 
specific terminal delivery related status criteria, which were previously installed with an 
invocation (in step 1) of the createNotification method. 

10. If the receiptRequest part of the associated, original sendSmsRequest message was present, and this 
capability is supported by the web service, then the web service invokes the notifySmsDeliveryReceipt 
operation to notify the application of the final status of the SMS delivery to an individual destination address. 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 7  

11. The web service releases the associated UI session object created in step 9. 

12. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for each 
individual destination address is one of the following: 

- DeliveredToTerminal, if this status is reported by the reportEventNotification method.  

- MessageWaiting, if the sendInfoAndCollectRes method has not yet been invoked. 

- DeliveryImpossible, in the event an error occurred. 

- DeliveredToNetwork, if the sendInfoAndCollectRes method, but not the 
reportEventNotification method, has been invoked. 

- DeliveryUncertain, otherwise. 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 8  

Application Short 
Messaging 

IpAppUI 
Manager 

IpAppUI IpUI 
Manager 

IpUI 

2a: sendSmsRequest 

"new" 

3: createUI()  "new" 

2b: sendSmsResponse 

4: sendInfoAndCollectReq() 

6: sendInfoAndCollectRes() 
"forward event" 

10.1a: notifySmsDelivery 
ReceiptRequest 

8a: getSmsDeliveryStatusRequest 

IpAppUI 
IpAppUI 

IpUI 

1: createNotification()  

"destroy" 

7: release() 

9.1: reportEventNotification() 
"forward event" 

11.1: release() 

 "new" 

10.1b: notifySmsDelivery 
ReceiptResponse 

8b: getSmsDeliveryStatusResponse 

10.xa: notifySmsDelivery 
ReceiptRequest 

9.x: reportEventNotification() 
"forward event" 

11.x: release() 

 "new" 

12a: getSmsDeliveryStatusRequest 

12b: getSmsDeliveryStatusResponse 

5a: getSmsDeliveryStatusRequest 

5b: getSmsDeliveryStatusResponse 

10.xb: notifySmsDelivery 
ReceiptResponse 

IpUI 

 

Figure 1 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 9  

5.2 Notification of Short Message Reception and Retrieval 
1. The application registers for the reception of short messages by invoking startSmsNotification. The request 

includes event criteria consisting of a value for the short message destination address (the 
smsServiceActivationNumber part) and an optional text string for matching against the first word of the 
message body (the criteria part); also a URI for a Web Service implementing the SmsNotification interface 
on the client application side, and a correlation value for identifying this event registration request. 

- Note that the application may also register offline for the reception of short messages: i.e. without using 
the Parlay X interface and the startSmsNotification operation. The registration request should at a 
minimum specify the message destination address. The request may also specify a URI for a Web 
Service implementing the SmsNotification interface on the client application side and/or the optional 
text string criteria. The registration request is assigned a unique registration identifier.  

2. A check is made within the web service to see if a notification for the given short message destination address 
is active. If no notification is active, then the Short Messaging web service requests that a notification be 
created by the UI SCS; note that the optional text string criteria (for matching against the first word in the SMS 
body) is not sent to the UI SCS. Otherwise a notification is already active and the request is not made.  

3. The UI SCS sends a reportEventNotification containing the message identifier, the message delivery 
status and the received message. The web service stores the short message information. 

4. The web service releases the UI session within the notification and verifies the event satisfies all criteria 
specified in step 1, including matching the first word of the message body against the value of the optional text 
string criteria. If the event is verified, then it stores the received message and notifies the application (step 5); 
else the event is invalid (step 5 is skipped) and it discards the received message. 

5. The web service notifies the application of the received short message information by invoking the 
notifySmsReception operation on the application Web Service. 

6. Steps 3, 4 and 5 are repeated for any received message event matching the notification criteria. The application 
may invoke the getReceivedSms operation to request a list of received short messages matching a registration 
identifier associated with off-line provisioned notification criteria. The web service returns the list of any such 
messages and deletes them. 

7. to 10. Repeat of steps 3 through 6. In step 10, only messages received by the web service during step 7, which 
match the registration identifier associated with off-line provisioned notification criteria, can be "bulk" 
retrieved by this getReceivedSms operation. 

11. The application terminates an existing registration for the reception of short messages by invoking the 
stopSMSNotification operation. The request includes the same correlation value previously specified in the 
earlier startSMSNotification operation (step 1).  

- Note that the application may also deregister offline for the reception of short messages: i.e. without 
using the Parlay X interface and the stopSmsNotification operation. The deregistration request would 
specify the registration identifier associated with the original, offline registration operation (step 1).  

12. A check is made within the web service to see if the registration identifier (correlation value) represents the 
last active notification for the corresponding destination address. If it is the last, then the web service requests 
that the notification be destroyed by the UI SCS. Otherwise at least one other notification (i.e. associated with 
a different text string criteria value) remains active for this destination address and the request is not made.  



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 10 

Application Short 
Messaging 

IpAppUI 
Manager 

IpUI 
Manager 

IpUI 

1a: startSmsNotificationRequest 

1b: startSmsNotificationResponse 

9a: notifySmsReceptionRequest 

2: createNotification()  - if no notification is active 
for the specified destination address 

7: reportEventNotification() "forward event" 

8: release() 

 "new" 

9b: notifySmsReceptionResponse 

11a: stopSmsNotificationRequest 

11b: stopSmsNotificationResponse 

12: destroyNotification()  - if no other notifications are active 
for the destination address 

6a: getReceivedSmsRequest 

6b: getReceivedSmsResponse 

5a: notifySmsReceptionRequest 

3: reportEventNotification() 
"forward event" 

4: release() 

5b: notifySmsReceptionResponse 

10a: getReceivedSmsRequest 

10b: getReceivedSmsResponse 

 "new" 

 

Figure 2 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 11 

6 Detailed Mapping Information 

6.1 Operations 

6.1.1 sendSms 

The sequence diagram in clause 5.1 Send Short Message to One or More Addresses (figure 1) illustrates the flow for 
the sendSms operation. 

The sendSms operation is synchronous from the Parlay X client's point of view. It is mapped to the following 
Parlay/OSA methods: 

•  IpUIManager.createNotification 

•  IpUIManager.createUI 

•  IpUI.sendInfoAndCollectReq 

6.1.1.1 Mapping to IpUIManager.createNotification  

Prior to processing any sendSmsRequest messages from the application, the web service creates an event notification 
with criteria identifying the application (OriginatingAddress) and the terminal delivery related 
states (ServiceCode). The IpUIManager.createNotification method is invoked with the following 
parameters: 

Name Type Comment 
appUIManager IpAppUIManagerRef Reference to callback (internal) 
eventCriteria TpUIEventCriteria The mapping to the eventCriteria parameter is as follows: 

•  the OriginatingAddress element identifies the Parlay X 
application: e.g. as appropriate, the Plan element is assigned a 
value of P_ADDRESS_PLAN_URL, P_ADDRESS_PLAN_SMTP,…. 

•  the DestinationAddress element is not mapped: i.e. the Plan 
element is assigned a value of P_ADDRESS_PLAN_ANY. 

•  the ServiceCode element, which defines a 2-digit code 
indicating the UI to be triggered, is set to an 
operator-specific value identifying one or more 
terminal delivery related status event(s) to be 
monitored. 

 

The result from IpUIManager.createNotification is of type TpAssignmentID and is used internally to 
correlate the callbacks. Specifically it is used to correlate a future invocation of the IpAppUIManager. 
reportEventNotification method, which reports a terminal delivery related status event for SMS messages 
originated by this Parlay X application. 

Parlay exceptions thrown by IpUIManager.createNotification indicate that the delivery receipt notification 
capability is not supported for this application. Subsequent sendSmsRequest messages from the application, containing 
the optional receiptRequest part will be rejected by the web service, i.e. by raising the exception SVC0283: Delivery 
Receipt Notification not supported. 

6.1.1.2 Mapping to IpUIManager.createUI  

The IpUIManager.createUI method is invoked with the following parameters: 

Name Type Comment 
appUI IpAppUIRef Reference to callback (internal) 
userAddress TpAddress Specifies the address to which the SMS should be sent. It is constructed 

based on the URI provided in the addresses part of sendSmsRequest, 
mapped as described in TR 102 397-1 [3] 

 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 12 

The result from IpUIManager.createUI is of type TpUIIdentifier and identifies the User Interaction 
interface objects upon which future methods are invoked: e.g. IpUI.sendInfoAndCollectReq. 

Parlay exceptions thrown by IpUIManager.createUI are not mapped to Parlay X exceptions. Instead they are 
reported to the application in a notifySmsDeliveryReceiptRequest message and/or in a 
getSmsDeliveryStatusResponse message, with the following part values: 

•  [notifySmsDeliveryReceiptRequest message only] correlator has the value of the correlator element of the 
receiptRequest part of the sendSmsRequest message; 

•  the deliveryStatus.address element has the value of the address specified in the userAddress parameter of 
the IpUIManager.createUI method, mapped as described in TR 102 397-1 [3]; 

•  the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible. 

6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq 

The IpUI.sendInfoAndCollectReq method is invoked with the following parameters: 

Name Type Comment 
userInteraction 
SessionID 

TpSessionID Not mapped. [The value provided in the result from 
IpUIManager.createUI]. 

info TpUIInfo Specifies the Short Message text to send. The InfoData element is 
constructed from the message part of sendSmsRequest.  

language TpLanguage Not mapped. 
variableInfo TpUIVariableInfo 

Set 
•  Some mapping support for the optional charging part: i.e. it could be 

mapped to a VariablePartPrice element(s) of the variableInfo 
parameter. 

•  Some mapping support for the optional senderName part: i.e. it could 
be mapped to a VariablePartAddress element of the 
variableInfo parameter. 

criteria TpUICollect 
Criteria 

Not mapped. Specifies additional properties for the collection of information 
from the network: i.e. a message identifier for the Short Message. 

response 
Requested 

TpUIResponse 
Request 

Not mapped. Set to P_UI_RESPONSE_REQUIRED. 

 

The result from IpUI.sendInfoAndCollectReq is of type TpAssignmentID and is used internally to 
correlate the callbacks. Specifically it is used to correlate a future invocation of the 
IpAppUI.sendInfoAndCollectRes method. 

Parlay exceptions thrown by IpUI.sendInfoAndCollectReq are not mapped to Parlay X exceptions. Instead 
they are reported to the application in a notifySmsDeliveryReceiptRequest message and/or in a 
getSmsDeliveryStatusResponse message, with the following part values: 

•  [notifySmsDeliveryReceiptRequest message only] correlator has the value of the correlator element of the 
receiptRequest part of the sendSmsRequest message; 

•  the deliveryStatus.address element has the value of the address specified in the userAddress parameter of 
the IpUIManager.createUI method, mapped as described in TR 102 397-1 [3]; 

•  the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible.  

6.1.2 sendSmsLogo 

The sequence diagram in clause 5.1 Send Short Message to One or More Addresses (figure 1) illustrates the flow for 
the sendSms operation. The flow for the sendSmsLogo operation is identical. 

The sendSmsLogo operation is synchronous from the Parlay X client's point of view. It is mapped to the same 
Parlay/OSA methods as the sendSms operation (clause 6.1.1 sendSms). The only difference is the mapping to the 
info and variableInfo parameters of the IpUI.sendInfoAndCollectReq method, as follows: 

•  The info parameter specifies the logo to send. The InfoBinData element is constructed from the image 
part of the sendSmsLogoRequest message. 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 13 

•  The variableInfo parameter could additionally include a VariablePartInteger element 
constructed from the smsFormat part of the sendSmsLogoRequest message. 

6.1.3 sendSmsRingtone 

The sequence diagram in clause 5.1 Send Short Message to One or More Addresses (figure 1) illustrates the flow for 
the sendSms operation. The flow for the sendSmsRingtone operation is identical. 

The sendSmsRingtone operation is synchronous from the Parlay X client's point of view. It is mapped to the same 
Parlay/OSA methods as the sendSms operation (clause 6.1.1 sendSms). The only difference is the mapping to the 
info and variableInfo parameters of the IpUI.sendInfoAndCollectReq method, as follows: 

•  The info parameter specifies the ringtone to send. The InfoData element is constructed from the ringtone 
part of the sendSmsRingtoneRequest message. Alternatively the InfoData element is constructed from the 
ringtone and smsFormat parts of sendSmsRingtoneRequest in the form of a single concatenated string. 

•  The variableInfo parameter could additionally include a VariablePartInteger element 
constructed from the smsFormat part of the sendSmsRingtoneRequest message. 

6.1.4 getSmsDeliveryStatus 

The sequence diagram in clause 5.1 Send Short Message to One or More Addresses (figure 1) illustrates the flow for 
the getSmsDeliveryStatus operation. 

The getSmsDeliveryStatus operation is synchronous from the Parlay X client's point of view. It is mapped from the 
following Parlay/OSA methods: 

•  IpAppUI.sendInfoAndCollectRes. 

•  IpAppUI.sendInfoAndCollectErr. 

•  IpAppUIManager.reportEventNotification. 

The delivery status provided to the Parlay X client will depend on the timing of 
the getSmsDeliveryStatus operation invocation. If a message event notification is triggered in the network as a result 
of an earlier sendSmsXxx-related operation, then the delivery status information provided in the 
IpAppUIManager.reportEventNotification callback is mapped. If such a notification is not enabled, or it 
has not triggered, then the delivery status provided in the IpAppUI.sendInfoAndCollectRes callback is 
mapped. 

6.1.4.1 Mapping from IpAppUI.sendInfoAndCollectRes 

The IpAppUI.sendInfoAndCollectRes method is invoked with the following parameters: 

Name Type Comment 
userInteraction 
SessionID 

TpSessionID Not mapped. [The value provided in the result from 
IpUIManager.createUI]. 

assignmentID TpAssignmentID Not mapped. [The value provided in the result from 
IpUI.sendInfoAndCollectReq]. 

response TpUIReport The response parameter maps to the DeliveryStatus element of a 
DeliveryInformation parameter of the deliveryStatus part of a 
getSmsDeliveryStatusResponse message, as follows.  
•  P_UI_REPORT_UNDEFINED maps to DeliveryUncertain 
•  All other values (i.e. P_UI_REPORT_INFO_SENT; 

P_UI_REPORT_INFO_COLLECTED; P_UI_REPORT_NO_INPUT; 
P_UI_REPORT_TIMEOUT) map to DeliveredToNetwork. 

collectedInfo TpString If the response parameter value is P_UI_REPORT_INFO_COLLECTED, then 
the collectedInfo parameter contains a network message identifier for 
the Short Message. This identifier is subsequently used for correlating with 
the value of the eventNotificationInfo.UIEventData element of the 
IpAppUIManager.reportEventNotification method: clause 6.1.4.3
 Mapping from IpAppUIManager.reportEventNotification. 

 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 14 

6.1.4.2 Mapping from IpAppUI.sendInfoAndCollectErr 

The IpAppUI.sendInfoAndCollectErr method is invoked with the following parameters: 

Name Type Comment 
userInteraction 
SessionID 

TpSessionID Not mapped. [The value provided in the result from 
IpUIManager.createUI]. 

assignmentID TpAssignmentID Not mapped. [The value provided in the result from 
IpUI.sendInfoAndCollectReq]. 

error TpUIError Maps to the DeliveryImpossible value of the DeliveryStatus element of a 
DeliveryInformation parameter of the deliveryStatus part of a 
getSmsDeliveryStatusResponse message. 

 

6.1.4.3 Mapping from IpAppUIManager.reportEventNotification 

The IpAppUIManager.reportEventNotification method is invoked with the following parameters: 

Name Type Comment 
userInteraction TpUIIdentifier Not mapped. Specifies the reference to the User Interaction interface and the 

sessionID to which the notification relates. 
eventNotification 
Info 

TpUIEvent 
NotificationInfo 

The mapping to the deliveryStatus part is as follows: 
•  The OriginatingAddress element is not mapped. It identifies the 

Parlay X application, as described in clause 6.1.1.1 Mapping to 
IpUIManager.createNotification . 

•  The DestinationAddress element maps to the 
DeliveryInformation.address element.  

•  The ServiceCode element contains an operator-specific value 
reporting a terminal delivery related status event. It is 
(one of) the value(s) specified in the ServiceCode 
element of the eventCriteria parameter of the 
IpUIManager.createNotification method (clause 6.1.1.1
 Mapping to IpUIManager.createNotification ). This 
operator-specific value maps to one of the following values of the 
DeliveryInformation.deliveryStatus element::  
•  DeliveryImpossible 
•  DeliveredToTerminal 
•  DeliveryUncertain  

•  The DataTypeIndication element is not mapped, but should have a 
value of P_UI_EVENT_DATA_TYPE_TEXT. 

•  The UIEventData element (a text string) provides the correlation with 
the UI interface objects used to send the message to the destination 
address. [It contains the message identifier returned to the web service 
in the collectedInfo parameter of the 
IpAppUI.sendInfoAndCollectRes method (clause 6.1.4.1 Mapping 
from IpAppUI.sendInfoAndCollectRes).] 

assignmentID TpAssignmentID Not mapped. [The value provide in the result from 
IpUIManager.createNotification]. 

 

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally 
to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification. This 
callback reference result parameter may be set to a default value since there is no further interaction with this message 
delivery status-related UI instance: the IpUI.release method is invoked as shown in clause 5.1 Send Short 
Message to One or More Addresses (step 11). 

6.1.5 notifySmsDeliveryReceipt 

The sequence diagram in clause 5.1 Send Short Message to One or More Addresses (figure 1) illustrates the flow for 
the notifySmsDeliveryReceipt operation, which is mapped from the following Parlay/OSA methods:  

•  Parlay exceptions thrown by IpUIManager.createUI, as described in 
clause 6.1.1.2 Mapping to IpUIManager.createUI . 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 15 

•  Parlay exceptions thrown by IpUI.sendInfoAndCollectReq, as described in 
clause 6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq. 

•  IpAppUI.sendInfoAndCollectErr. 

•  IpAppUIManager.reportEventNotification. 

6.1.5.1 Mapping from IpAppUI.sendInfoAndCollectErr 

The IpAppUI.sendInfoAndCollectErr method is invoked with the following parameters: 

Name Type Comment 
userInteraction 
SessionID 

TpSessionID Not mapped. [The value provide in the result from 
IpUIManager.createUI]. 

assignmentID TpAssignmentID Not mapped. [The value provide in the result from 
IpUI.sendInfoAndCollectReq]. 

error TpUIError Maps to the DeliveryImpossible value of the DeliveryStatus element of the 
DeliveryInformation parameter of the deliveryStatus part of a 
notifySmsDeliveryReceiptRequest message. 

 

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the 
correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates. 

6.1.5.2 Mapping from IpAppUIManager.reportEventNotification 

The IpAppUIManager.reportEventNotification method is invoked with the following parameters: 

The mapping of the parameters of the IpAppUIManager.reportEventNotification method to the 
deliveryStatus part of the notifySmsDeliveryReceiptRequest message is identical to the mapping to the 
getSmsDeliveryStatusResponse message, as described in clause 6.1.4.3 Mapping from 
IpAppUIManager.reportEventNotification. 

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the 
correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates. 

6.1.6 startSmsNotification 

The sequence diagram in clause 5.2 Notification of Short Message Reception and Retrieval (figure 2) illustrates the 
flow for the startSmsNotification operation, which is mapped to the Parlay/OSA method: 
IpUIManager.createNotification, provided there is no existing notification already established for the 
destination address contained in the smsServiceActivationNumber part. 

6.1.6.1 Mapping to IpUIManager.createNotification 

The IpUIManager.createNotification is invoked with the following parameters: 

Name Type Comment 
appUIManager IpAppUIManagerR

ef 
Not mapped. Reference to callback (internal). 

eventCriteria TpUIEvent 
Criteria 

Specifies the event notification criteria, consisting of 3 elements: 
•  The OriginatingAddress is not mapped. It is set to be valid for all 

senders. 
•  The DestinationAddress is constructed based on the URI provided 

in the smsServiceActivationNumber part of the 
startSmsNotificationRequest message, mapped as described in 
TR 102 397-1 [3]. 

•  The ServiceCode element is not mapped. 
 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 16 

The result from IpUIManager.createNotification is of type TpAssignmentID and is used internally to 
correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in 
the startSmsNotificationRequest message and the correlator part returned to the application in the 
notifySmsReceptionRequest message. 

Note that the reference part and the optional criteria part of a startSmsNotificationRequest message are not mapped 
to IpUIManager.createNotification. Instead the web service uses all the text string criteria values associated 
with a specific destination address to parse any event reported for that address by the 
IpAppUIManager.reportEventNotification method. The web service determines 
whether the event is valid - i.e. there is a match with a text string criteria value. If valid, 
the web service stores the message and selects the previously provisioned application 
callback web service to receive the notifySmsReceptionRequest message. If invalid, 
the web service discards the event notification. 

Parlay exceptions thrown by IpUIManager.createNotification are mapped to Parlay X exceptions as 
defined in clause 6.2 Exceptions. 

6.1.7 notifySmsReception 

The sequence diagram in clause 5.2 Notification of Short Message Reception and Retrieval (figure 2) illustrates the 
flow for the notifySmsReception operation, which is mapped from the Parlay/OSA method: 
IpAppUIManager.reportEventNotification. 

6.1.7.1 Mapping from IpAppUIManager.reportEventNotification 

The IpAppUIManager.reportEventNotification method is invoked with the following parameters: 

Name Type Comment 
userInteraction TpUIIdentifier Not mapped. Specifies the reference to the User Interaction interface and 

the sessionID to which the notification relates. 
eventNotification 
Info 

TpUIEvent 
NotificationInfo 

The mapping to the message part is as follows: 
•  the OriginatingAddress element maps to the senderAddress 

element of the SmsMessage parameter of the message part; 
•  the DestinationAddress element maps to the 

smsServiceActivationNumber element of the SmsMessage 
parameter of the message part; 

•  the ServiceCode element is not mapped; 
•  the DataTypeIndication element is not mapped, but should have a 

value of P_UI_EVENT_DATA_TYPE_TEXT; 
•  the UIEventData element (a text string) should contain, using a 

vendor/operator-specific convention, the text contained in the event-
related Short Message, which maps to the message element of the 
SmsMessage parameter of the message part. 

assignmentID TpAssignmentID Not mapped. [The value provide in the result from 
IpUIManager.createNotification]. 

 

Note that this mapping occurs if there is at least one active notification established for the value of the 
eventNotificationInfo.DestinationAddress element, an associated application callback web 
service, and one of the following conditions is satisfied: 

•  There is only one active notification that was defined without the optional text string criteria value. 

•  There is one active notification that was defined with the optional text string criteria value and that value 
matches the first word in the value of the eventNotificationInfo.UIEventData element.  

- Note that the "first word" in the message is defined as the initial characters after discarding any leading 
Whitespace and ending with a Whitespace or end of message. The matching shall be case-insensitive.  

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally 
to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification. 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 17 

6.1.8 getReceivedSms 

The sequence diagram in clause 5.2 Notification of Short Message Reception and Retrieval (figure 2) illustrates the 
flow for the getReceivedSms operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the 
getReceivedSms operation is a bulk retrieval capability for previously received short messages matching criteria 
defined in an off-line provisioning step. This retrieval operation includes matching messages previously and 
individually delivered to the application via the notifySmsReception operation. 

6.1.9 stopSMSNotification 

The sequence diagram in clause 5.2 Notification of Short Message Reception and Retrieval (figure 2) illustrates the 
flow for the stopSmsNotification operation, which is mapped to the Parlay/OSA method: 
IpUIManager.destroyNotification, provided that the referenced notification is the last active notification for 
the associated destination address. Otherwise at least one other notification (i.e. associated with a different text string 
criteria value) remains active for this destination address and the mapping is not performed. 

6.1.9.1 Mapping to IpUIManager.destroyNotification 

The IpUIManager.destroyNotification is invoked with the following parameters: 

Name Type Comment 
assignmentID TpAssignmentID Not mapped. [The value provide in the result from 

IpUIManager.createNotification and correlated with the 
value of the reference part received from the application in the original 
startSmsNotificationRequest message and the value of the correlator 
part received from the application in the stopSmsNotificationRequest 
message]. 

 

Parlay exceptions thrown by IpUIManager.destroyNotification are mapped to Parlay X exceptions as 
defined in clause 6.2 Exceptions. 

6.2 Exceptions 
For this mapping document, the mapping of Parlay/OSA API method exceptions to Parlay X Web Service exceptions is 
common and defined in TR 102 397-1 [3]. There are no service-specific exception mappings.  

7 Additional Notes 
No additional notes are provided. 



 

ETSI 

ETSI TR 102 397-4-1 V1.1.1 (2005-12) 18 

History 

Document history 

V1.1.1 December 2005 Publication 

   

   

   

   

 


	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Mapping Description
	5 Sequence Diagrams
	5.1 Send Short Message to One or More Addresses
	5.2 Notification of Short Message Reception and Retrieval

	6 Detailed Mapping Information
	6.1 Operations
	6.1.1 sendSms
	6.1.1.1 Mapping to IpUIManager.createNotification
	6.1.1.2 Mapping to IpUIManager.createUI
	6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq

	6.1.2 sendSmsLogo
	6.1.3 sendSmsRingtone
	6.1.4 getSmsDeliveryStatus
	6.1.4.1 Mapping from IpAppUI.sendInfoAndCollectRes
	6.1.4.2 Mapping from IpAppUI.sendInfoAndCollectErr
	6.1.4.3 Mapping from IpAppUIManager.reportEventNotification

	6.1.5 notifySmsDeliveryReceipt
	6.1.5.1 Mapping from IpAppUI.sendInfoAndCollectErr
	6.1.5.2 Mapping from IpAppUIManager.reportEventNotification

	6.1.6 startSmsNotification
	6.1.6.1 Mapping to IpUIManager.createNotification

	6.1.7 notifySmsReception
	6.1.7.1 Mapping from IpAppUIManager.reportEventNotification

	6.1.8 getReceivedSms
	6.1.9 stopSMSNotification
	6.1.9.1 Mapping to IpUIManager.destroyNotification


	6.2 Exceptions

	7 Additional Notes
	History

