TR 101 101 vi1.1.1 (1997-08)

Technical Report

Methods for Testing and Specification (MTS);

TTCN interim version including ASN.1 1994 support
[ISO/IEC 9646-3]

(Second Edition Mock-up for JTC1/SC21 Review)

ETSI %

European Telecommunications Standards Institute

2 TR 101 101 V1.1.1 (1997-08)

Reference
DTR/MTS-00045 (a7000ics.PDF)

Keywords
ASN.1, TTCN

ETSI Secretariat

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +334 9294 42 00 Fax: +334 936547 16
Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

X.400
c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr
http://www.etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1997.
All rights reserved.

3 TR 101 101 V1.1.1 (1997-08)

Contents

INtellectual Property RIGNTS.o i i e s e s 4
0T (=11 o] o TP TP P PPPPI 4
100 18 Tox (o] o H RO PPPPPPRRR 5
1 ST ol0] o1 UPPPPPPRIN 6
2 (=T (=T =] o [T U PPRRPPPR 6
Appendix 1: The Tree and Tabular Combined Notation (TTCN)oviiiiiiiiiiiiiee e
F Y o] o1 aTo D QA B = (=T o A =T oo] T 254

[(151 (0] Y2 PP 267

4 TR 101 101 V1.1.1 (1997-08)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly availablET& members and non-membersand can be found

in ETR 314:"Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of
ETSI standards"which is availabléree of chargefrom the ETSI Secretariat. Latest updates are available on the ETSI
Web server (http://www.etsi.fr/ipr).

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No
guarantee can be given as to the existence of other IPRs not referenced in ETR 314 (or the updates on
http://wwwe.etsi.fr/ipr) which are, or may be, or may become, essential to the present document.

Foreword

ISO/IEC 9646 is produced and maintained under the responsibility of ISO/IEC JTC1/SC21. It provides a methodology
and framework for the conformance testing and the interconnection testing of Open Systems and of Information and
Communication Systems and Equipment at the User and Network side in general.

Part 3 of this international Standard (ISO/IEC 9646-3) is the well established "Tree and Tabular Combined Notation"
(TTCN), which is a notation that has been adopted and used by many ETSI technical bodies and other European and
world wide organizations active in the area of telecommunications. These organizations have produced an impressive
number of TTCN Abstract Test Suites (ATS), e.g., for a wide set of telecommunication domains, such as N-ISDN, B-
ISDN, GSM, DECT, etc..

This ETSI Technical Report (TR) contains an appendix (appendix 1) which is the result of the technical analyses,
discussions and elaboration on the TTCN notation and the needed evolution that has taken place during the last years in
the framework of ETSI TC MTS activities, in co-operation and in liaison with EWOS/EGCT.

It is here recognized that the basic inputs to the mentioned technical work of ETSI TC MTS and EWOS/EGCT were the
published edition one of the ISO/IEC 9646-3 standard [1], and the related approved amendments AM1 and AM2.

ISO/IEC has kindly granted ETSI copyright permission to publish annex 1 of this TR on an interim basis. Without this
support it would have been difficult for ETSI to make most relevant up to date technical information available for its
members. The present document will be withdrawn as soon as a new edition of ISO/IEC 9646-3 (1992): has been
published by ISO/IEC.

The work of TC MTS and EGCT was mainly aimed at supporting and facilitating at the technical level the publication
by ISO of the official second edition of TTCN containing the features that are felt essential to telecommunication (and
to the information infrastructures in general).

The reason for ETSI publishing this TR is twofold:

Firstly, in the spirit of the mutually beneficial collaboration between ISO/IEC and ETSI, the appendix 1 of this TR is a
relevant ETSI contribution to the JTC1 SC21 work aimed at publishing the official second edition of the TTCN
standard. Actually, the document in appendix 1 is the SC21 review copy for national body and liaison organization
review.

Secondly, by publishing this TR, ETSI is also making the most relevant up to date technical information on the main
new features available to its members for internal use. It is expected that the publication of this TR will be found useful
by a wide community of TTCN users and ETSI ATSs developers and by tools manufacturers, network operators,
administrations, regulators, and user associations.

5 TR 101 101 V1.1.1 (1997-08)

Introduction

Relationship with the ISO/IEC JTC1/SC21 editing group

The ISO/IEC JTC1/SC21 editing group for ISO/IEC 9646-3 (TTCN) was active in 1994 to resolve comments on
DAM-1 (in October 1993) and DAM-2, but then progress ground to a halt due to funding issues.

After a period of over a year with no significant activity, a little funding was found in two EC funded projects, and this
led to the main technical work of integration of edition one with AM-1 and AM-2 by November 1995, resulting in the
completion of the BNF and table proformas, which were put into a document for SC21 NBLO review.

No comments were received during this review but in parallel several defect reports were resolved, including a group of
26 defect reports resolved by a single technical corrigendum for modular TTCN. This solution to the issue of modular
TTCN was a joint production of EWOS/EGCT and ETSI TC/MTS.

Then in January 1996, the ISO editor - with some support from other TTCN experts active in the framework of ETSI
and EWOS - took on the job of producing a complete mock-up of the second edition consistent with the BNF and
proformas in the SC21 review document, but with the addition of the various technical corrigenda. During the first 6
months of 1996 he produced several deliveries, culminating in delivery 8 in June 1996, presented to the Bruxelles joint
meeting of TC MTS and EWOS/EGCT. It was then decided that this version needed to be checked by the tool makers
and other interested parties to validate the consistency of the syntax and static semantics.

Editorial control was then taken back by the ISO rapporteur for a technical validation phase. It was agreed that various
small bugs reported by tool makers and users should be removed from delivery 8 and that deliveries numbered 8.x
should signify this, whereas there was one larger technical corrigendum which should be added to produce the
functionality of the eventual ISO publication and this would appear in deliveries numbered 9.x.

So it was that delivery 8.3 was produced in August 1996 and comments on it were discussed in the ETSI TC/MTS
meeting in October 1996. This resulted in delivery 8.4 in November 1996 and delivery 9.4 in December 1996.

A final round of ETSI TC/MTS defect reports on these two versions was then held. The final resolution of the resulting
19 defect reports was agreed in the ETSI TC/MTS meeting in March 1997. The ISO rapporteur agreed to make that
solution the SC21 NBLO review copy of the mock-up of the second edition.

Delivery 9.6 (contained in the appendix 1 of the present document) was produced on 21 April in a form suitable for
SC21 distribution. The I1SO editor has now taken back editorial control to do final editing, including production of the
contents list, introduction and indexes.

Main Technical features and new defect reports
The key new technical features for the second edition of TTCN include:
a) concurrency;
b) encoding operations;
c¢) formalized test suite operations;
d) active defaults;
€) modularity;
f) grouping sets of related objects.

Since the final draft of this TR was approved by ETSI TC MTS a number of technical defects have been discovered. All
these defects are concerned with the integration of ASN.1TEe& Recommendations X. 680 1994 [2] with TTCN.
appendix 2 of the present document contains the six defect reports that ETSI has submitted to the ISO together with the
corresponding proposed technical corrigenda. ETSI TC MTS urges all users of the present document to treat them as
necessary corrections to TTCN version 2.

6 TR 101 101 V1.1.1 (1997-08)

1 Scope

The present document outlines an interim update state of the standard ISO/IEC 9646-3: (1992) [1], which will be further

maintained and published later by ISO. The present document is provided in order to make the present status available
for TTCN users and for ATS developers and users.

2 References

References may be made to:

a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) all versions up to and including the identified version (identified by "up to and including” before the version
identity); or

¢) all versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] ISO/IEC 9646-3 (1992): "Information Technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

[2] ITU-T Recommendation X.680 (1994): "Information technology - Open System Interconnection -

Abstract Syntax Notation One (ASN.1): Specification of Basic Notation" (also published as ISO
8824-1).

7 TR 101 101 V1.1.1 (1997-08)

Appendix 1:
The Tree and Tabular Combined Notation (TTCN)

Second Edition Mock-Up for SC21 Review
of
ISO/IEC 9646-3: 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Information technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 3: The
Tree and Tabular Combined Notation (TTCN)

1 Scope

This part of ISO/IEC 9646 defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for
conformance test suites, which is independent of test methods, layers and protocols, and which reflects the abstract t
methodology defined in ISO/IEC 9646-1 and ISO/IEC 9646-2.

It also specifies requirements and provides guidance for using TTCN in the specification of system-independent conform
test suites for one or more OSI standards. It specifies two forms of the notation: one, a human-readable form, appéicable
production of conformance test suite standards for OSI protocols; and the other, a machine-processable form, applica
processing within and between computer systems.

This part of ISO/IEC 9646 applies to the specification of conformance test cases which can be expressed abstractly in ter
control and observation of protocol data units and abstract service primitives. Nevertheless, for some protocols, tegt case
be needed which cannot be expressed in these terms. The specification of such test cases is outside the scope @®iis part
IEC 9646, although those test cases may need to be included in a conformance test suite standard.

For example, some static conformance requirements related to an application service may require testing techniques whi
specific to that particular application.

The specification of test cases in which more than one behaviour description is to be run in parallel is dealt with by
concurrency features (particularly involving the definition of Test Components and Test Component Configurations).

This part of ISO/IEC 9646 specifies requirements on what a test suite standard may specify about a conforming realizati
the test suite, including the operational semantics of TTCN test suites.

This part of ISO/IEC 9646 applies to the specification of conformance test suites for OSI protocols in OSI layers 2 t
specifically including Abstract Syntax Notation One (ASN.1) based protocols. The following are outside the scope of this |
of ISO/IEC 9646:

a) the specification of conformance test suites for Physical layer protocols;
b) the relationship between TTCN and formal description techniques;
c) the means of realization of executable test suites (ETS) from abstract test suites.

This part of ISO/IEC 9646 defines mechanisms for using concurrency in the specification of abstract test cases. Concurrel
TTCN is applicable to the specification of test cases:

a) in a multi-party testing context;
b) which handle multiplexing and demultiplexing in either a single-party or multi-party testing context;
¢) which handle splitting and recombining in either a single-party or multi-party testing context;

d) in a single-party testing context when the complexity of the protocol or set of protocols handled by the IUT is such
concurrency can simplify the specification of the test case.

TTCN modules are defined to allow sharing of common TTCN specifications between test suites.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO/I
9646. At the time of publication, the editions indicated were valid. All standards are subject to revision, and partesdotzgre
based on this part of ISO/IEC 9646 are encouraged to investigate the possibility of applying the most recent editions @
standards listed below. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 646 : 1991Information technology - ISO 7-bit coded character set for information interchange.

ISO/IEC 7498-1 : 1999nformation technology - Open Systems Interconnection - Basic Reference Model - Part 1: The Bas

Delivery 9.6, 21 April 1997 1

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Model.
(See also ITU-T Recommendation X.200 : 1994.)

ISO/IEC 8824-1 : 1994nformation technology - Abstract Syntax Notation One (ASN.1) - Part 1: Specification of Basic
Notation.

(See also ITU-T Recommendation X.680 : 1994.)

ISO/IEC 8824-1/Amd. 1 : 199Mnformation Technology - Abstract Syntax Notation One (ASN.1) - Part 1: Specification of Basic
Notation - Amendment 1: Rules for Extensibility.

(See also ITU-T Recommendation X.680 Amendment 1 : 1995.)

ISO/IEC 8824-2 : 1994nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 2: Information Object
Specification.

(See also ITU-T Recommendation X.681 : 1994.)

ISO/IEC 8824-2/Amd. 1 : 1993nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 2: Information Object
Specification - Amendment 1: Rules for Extensibility.

(See also ITU-T Recommendation X.681 Amendment 1 : 1995.)
ISO/IEC 8824-3 : 1994nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 3: Constraint Specification.
(See also ITU-T Recommendation X.682 : 1994.)

ISO/IEC 8824-4 : 1994nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 4: Parameterization of ASN.1
Specifications.

(See also ITU-T Recommendation X.683 : 1994.)

ISO/IEC 8825-1 : 1994nformation technology - Encoding Rules for Abstract Syntax Notation One (ASN.1) - Part 1:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).

(See also ITU-T Recommendation X.690 : 1994.)

ISO/IEC 8825-2 : 1999nformation technology - Encoding Rules for Abstract Syntax Notation One (ASN.1) - Part 2: Packed
Encoding Rules (PER).

(See also ITU-T Recommendation X.690 : 1995.)

ISO/IEC 9646-1 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and
framework - Part 1: General concepts.

(See also ITU-T Recommendation X.290 : 1995)

ISO/IEC 9646-2 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and
framework - Part 2: Abstract test suite specification.

(See also ITU-T Recommendation X.291 : 1995)

ISO/IEC 9646-4 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and
framework - Part 4: Test realization.

(See also ITU-T Recommendation X.293 : 1995)

ISO/IEC 9646-5 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and
framework - Part 5: Requirements on test laboratories and clients for the conformance assessment process.

(See also ITU-T Recommendation X.294 : 1995)

ISO/IEC 10646-1 : 1993nformation technology - Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane.

ISO/IEC 10731: 1994nformation technology - Open Systems Interconnection -Basic Reference Model: Conventions for the

2 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

definition of OSE Services.
(See also ITU-T Recommendation X.210 : 1993.)

3 Definitions

3.1 Basic terms from ISO/IEC 9646-1
The following terms defined in ISO/IEC 9646-1 apply:

a) abstract service primitive

b) abstract testing methodology

c) abstract test case

d) abstract test method

e) abstract test suite

f) conformance log

g) conformance test suite

h) coordinated test method

i) distributed test method

j) executable test case

k) executable test case error

[) executable test suite

m) fail verdict

n) idle testing state

0) implementation under test

p) inconclusive verdict

g) invalid test event

r) local test method

s) lower tester

t) means of testing

u) pass verdict

v) PICS proforma

w) PIXIT proforma

x) protocol implementation conformance statement

y) protocol implementation extra information for testing

z) point of control and observation

aa)remote test method

ab)stable testing state

ac)standardized abstract test suite

ad)static conformance requirements

ae)syntactically invalid test event

af) system under test

ag)test body

ah)test case

Delivery 9.6, 21 April 1997

Second Edition Mock-Up for SC21 Review

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

ai) test case error

aj) test coordination procedures
ak)test event

al) test group

am)test group objective
an)test laboratory

ao)test management protocol
ap)test outcome

aq)(test) postamble

ar) (test) preamble

as)test purpose

at) test realization

au)test realizer

av)test step

aw)test suite

ax)test system

ay)upper tester

az)(test) verdict

ba)testing state

3.2 Terms from ISO/IEC 7498-1
The following terms defined in ISO/IEC 7498-1: 1995 apply:
a) (N)-layer (particularly for application, session and transport layers)
b) (N)-protocol-data-unit
¢) (N)-service-access-point
d) subnetwork
e) transfer syntax

3.3 Terms from ISO/IEC 10731
The following terms defined in ISO/IEC 10731: 1995 apply:
a) OSl-service-provider

3.4 Terms from ISO/IEC 8824-1
The following terms defined in ISO/IEC 8824-1: 1994 apply:

a) bitstring type

b) characterstring type

¢) enumerated type

d) external type

e) object identifier

f) octetstring type

g) real type

h) selection type

i) sequence type

4 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

j) sequence-of type
k) set type
) set-of type
m) subtype
NOTE - Where there may be ambiguity with TTCN terms these terms are prefixed with the term ASN.1.

3.5 Terms from ISO/IEC 8825-1
The following term defined in ISO/IEC 8825-1: 1994 applies:
a) encoding

3.6 TTCN specific terms
For the purposes of this part of ISO/IEC 9646 the following definitions apply:

3.6.1 applicable encoding rulesThe actual encoding rules that are to be used when sending or receiving a PDU, after
relevant encoding defaults and overrides, if any, have been combined.

3.6.2 attach construct:A TTCN statement which attaches a Test Step to a calling tree.
3.6.3 base constraintSpecifies a set of default values for each and every field in an ASP or PDU type definition.
3.6.4 base typeThe type from which a type defined in a test suite is derived.

3.6.5 behaviour line:An entry in a dynamic behaviour table representing a test event or other TTCN statement together v
associated label, verdict, constraints reference and comment information as applicable.

3.6.6 behaviour tree:A specification of a set of sequences of test events, and other TTCN statements.

3.6.7 blank entry: In a modified compact constraint table a blank entry in a constraint parameter or field denotes tha
constraint value is to be inherited.

3.6.8 calling tree:The behaviour tree to which a Test Step is attached.

3.6.9 compact constraint tableDeclaration of a set of constraints for an ASP, PDU or Structured Type arranged in a sing
table

3.6.10 compact test case tabl®eclaration of a set of Test Cases for a given Test Group arranged in a single table
3.6.11 concurrent test caseA test case which is specified using concurrent TTCN.

3.6.12 concurrent TTCN: TTCN which uses test components and test component configurations in order to expre
concurrency in the dynamic behaviour of test cases.

3.6.13 constraints part:That part of a TTCN test suite concerned with the specification of the values of ASP parameters &
PDU fields being sent to the IUT, and conditions on ASP parameters and PDU fields received from the IUT.

3.6.14 constraints referenceA reference to a constraint, given in a behaviour line.

3.6.15 coordination message [CMJAn item of structured information which may be transfered from one Test Component t
another at a Coordination Point.

3.6.16 coordination point [CP]:A point within a testing environment, assigned to two Test Components in a Test Compone
Configuration, where CMs may be exchanged asynchronoulsy between these Test Components.

3.6.17 declarations partThat part of a TTCN test suite concerned with the definition and/or declaration of all non-predefine
objects that are used in the test suite.

3.6.18 default behaviour:The events, and other TTCN statements, which may occur at any level of the associated tree,
which are indicated in the Default behaviour proforma.

3.6.19 default group:A named set of default behaviours.

3.6.20 default group referenceA path specifying the logical location of a Default in the Default Library.
3.6.21 default identifier: A uniqgue name for a Default.

3.6.22 default library: The set of the Default behaviours in a test suite.

Delivery 9.6, 21 April 1997 5

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

3.6.23 default referenceA reference to a Default in the Default Library from a Test Case or Test Step table.

3.6.24 derivation path: An identifier, consisting of a base constraint identifier concatenated with one or more modified
constraint identifiers, separated by dots and finishing with a dot.

3.6.25 dynamic chaining:The linking from constraint declarations of an ASP parameter or PDU field to the constraint
declaration of another PDU by means of parameterization. Which PDUs are chained is specified in the constraints reference of a
behaviour line.

3.6.26 dynamic part: That part of a TTCN test suite concerned with the specification of Test Case, Test Step and Default
dynamic behaviour descriptions.

3.6.27 expanded test suitél test suite with all imported objects expanded. This will be a result of converting of a modularized
test suite according to the algorithm in annex B.

3.6.28 explicit external:A named object in the External table. An object which is explicitly declared as external in a module is
to be explicitly defined or exported as an external object.

3.6.29 explicitly defined object:An object for which a definition or declaration exists in the module or test suite.

3.6.30 explicitly exported object:A named object in the Exports tables being available for use. If the object is an imported
object, the name of the source object is to be given.

3.6.31 explicitly imported object:A named object in the Import tables being available for explicit references.

3.6.32 exported objectAn explicitly defined object or explicitly imported object in a source object, made available for use in
any other module or test suite. An exported object is either an explicitly exported object or an implicitly exported object.

3.6.33 external object:An object being referred to by its name in a module, but neither imported nor explicitly defined. An
external object is to be declared in the External table. An external object may be either explicitly external or immicitdi ext

3.6.34 global result variable:A predefined test case variable maintained by a Main Test Component in the MPyT context or
by the test case in the SPyT context to record the accumulated effect of all the preliminary results of the test case in order
determine the test verdict.

3.6.35 implicit external: An externally declared object in an export table which is omitted from a corresponding Import table.

3.6.36 implicitly exported object: An explicitly defined object or explicitly imported object, which is not itself explicitly
exported but which is referred to by an explicitly exported object.

3.6.37 implicitly imported object: An object referred to by some explicitly imported object. The use of an implicitly imported
object is restricted to the explicitly imported objects (from the same source object) referring to it.

3.6.38 implicit send eventA mechanism used in Remote Test Methods for specifying that the IUT should be made to initiate
a particular PDU or ASP.

3.6.39 imported object:An object copied from some other source object, being available for use. An imported object is either
an explicitly imported object or an implicitly imported object.

3.6.40 level of indentationindicates the tree structure of a behaviour description. It is reflected in the behaviour description by
indentation of text.

3.6.41 local result variable:A predefined variable maintained by a Test Component to record the accumulated effect of its
preliminary results.

3.6.42 local tree A behaviour tree defined in the same proforma as its calling tree.

3.6.43 main test component [MTC]The single Test Component in a Test Component Configuration responsible for creating
and controlling Parallel Test Components and computing and assigning the test verdict.

3.6.44 modified constraint:A constraint defined for an ASP or a PDU that already has a base constraint, and which makes
modifications on that base constraint.

3.6.45 modularized test suiteA test suite containing Import tables.

3.6.46 moduleA self-contained collection of TTCN objects. All referenced objects are either explicitly defined in the Module,
are imported from other sources or are defined as external objects in the module.

3.6.47 non-concurrent test case test case which is specified in TTCN but without using concurrent TTCN.

6 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

3.6.48 object:An element of one of the object categories listed in A.4.2.2 (for TTCN objects with a globally unique identifie
and A.4.2.6 (for ASN.1 identifiers which are globally unique throughout the test suite).

3.6.49 operational semanticsSemantics explaining the execution of a TTCN behaviour tree.
3.6.50 original source objectThe module or test suite where an object is explicitly defined.
3.6.51 otherwise eventThe TTCN mechanism for dealing with unforeseen test events in a controlled way.

3.6.52 overview part:That part of a TTCN test suite concerned with presenting an overview of the structure of the test su
the structure (if any) of the Test Step Library, the structure (if any) of the Default Library and the association of selec
expressions (if any) with Test Cases and/or Test Groups. This part also provides indexes to Test Cases, Test Steps and D

3.6.53 parallel test component [PTC]A test component created by the main test component.

3.6.54 preliminary result: A result recorded before the end of a test case indicating whether the associated part of the test
passed, failed or was inconclusive.

3.6.55 pseudo-even® pseudo-event is a TTCN expression or Timer operation appearing on a statement line in the behavi
description without any associated event.

3.6.56 qualified eventAn event that has an associated Boolean expression.
3.6.57 receive evenfThe receipt of an ASP or PDU at a named or implied PCO.

3.6.58 result variable:A predefined test case variable for storing preliminary results. In non-concurrent TTCN there is ol
result variable called R. In concurrent TTCN, there is one global result variable called R, each PTC has a local result var
called R, and the MTC has a local result variable called MTC_R.

3.6.59 root tree:The main behaviour tree of a Test Case, occurring at the level of entry into the Test Case.
3.6.60 send evenfrhe sending of an ASP or PDU to a named or implied PCO.

3.6.61 set of alternativesTTCN statements coded at the same level of indentation and belonging to the same predecessor r
They represent the possible events, pseudo-events and constructs which are to be considered at the relevant poinidn the e»
of the Test Case.

3.6.62 single constraint tableA declaration of a constraint for a single ASP or PDU of a given type arranged in a single tabl

3.6.63 snapshot semantic& semantic model to eliminate the effect of timing on the execution of a Test Case, defined in terr
of snapshots of the test environment, during which the environment is effectively frozen for a prescribed period.

3.6.64 source objectA module or test suite which is imported and has a corresponding Import table.
3.6.65 specific valueA value in TTCN which does not contain any matching mechanism or unbound variable.

3.6.66 static chainingThe linking from constraint declarations of an ASP parameter or PDU field to the constraint declaratit
of another PDU by explicitly referencing a constraint as its value.

3.6.67 static semanticsSemantic rules that restrict the usage of the TTCN syntax.

3.6.68 structured type:A collection of one or more ASP parameters or PDU fields which may exist in one or more ASP «
PDU type definition which is defined in a separate declaration and which may be used to specify a portion of a flat structu
a substructure within the ASP or PDU.

3.6.69 submoduleA module which is included in another module.
3.6.70 test case identifierA unique name for a Test Case.

3.6.71 test case variablédne of a set of variables declared globally to the test suite, but whose value is retained only for
execution of a single Test Case.

3.6.72 test componentA named subdivision of a concurrent test case capable of being executed in parallel with other t
components, and declared as having a fixed number of PCOs and a fixed or maximal number of CPs.

3.6.73 test component configurationA fixed arrangement of Test Components, PCOs and CPs that is declared for use
concurrent test cases.

3.6.74 test group referenceA path specifying the logical location of a Test Case in the ATS structure.
3.6.75 test step groupA named set of test steps.

Delivery 9.6, 21 April 1997 7

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

3.6.76 test step group referenceé path specifying the logical location of a Test Step in the Test Step Library.

3.6.77 test step identifierA unique name for a Test Step.

3.6.78 test step library:The set of the Test Step dynamic behaviour descriptions in the test suite, that are not local Test Steps.
3.6.79 test step objectiveAn informal statement of what the Test Step is meant to accomplish.

3.6.80 test suite constan®ne of a set of constantgtderived from the PICS or PIXIT, which will remain constant throughout
the test suite.

3.6.81 test suite parameterOne of a set of constants derived from the PICS or PIXIT which globally parameterize a test suite.

3.6.82 test suite variableOne of a set of variables declared globally to the test suite, and which retain their values between Test
Cases.

3.6.83 timeout eventAn event which is used within a behaviour tree to check for expiration of a specified timer.

3.6.84 tree attachmentThe method of indicating that a behaviour tree specified elsewhere (either at a different point in the
current proforma, or as a Test Step in the Test Step Library) is to be included in the current behaviour tree.

3.6.85 tree headerAn identifier for a local tree followed by an optional list of formal parameters for the tree.

3.6.86 tree identifier:A name identifying a local tree.

3.6.87 tree leafA TTCN statement in a behaviour tree or Test Step which has no specified subsequent behaviour.
3.6.88 tree nodeA single TTCN statement.

3.6.89 tree notation:The notation used in TTCN to represent Test Cases as trees.

3.6.90 TTCN statementAn event, a pseudo-event or construct which is specified in a behaviour description.

3.6.91 unforeseen test evenk test event which has not been identified as a test event within a foreseen test outcome in the test
suite. It is normally handled using the OTHERWISE event.

3.6.92 unqualified eventAn event that does not have an associated Boolean expression.

4 Abbreviations

4.1 Abbreviations defined in ISO/IEC 9646-1.
For the purposes of this part of ISO/IEC 9646, the following abbreviations defined in ISO/IEC 9646-1:1994, clause 4 apply:

ATS: abstract test suite

ASP : abstract service primitive

ETS: executable test suite

IUT : implementation under test

LT: lower tester

MOT : means of testing

PCO: point of control and observation

PICS: protocol implementation conformance statement
PIXIT : protocol implementation extra information for testing
SUT : system under test

TMP : test management protocol

UT: upper tester

LTCF: lower tester control function

4.2 Abbreviations defined in ISO/IEC 9646-2
For the purposes of this part of ISO/IEC 9646, the following abbreviations defined in ISO/IEC 9646-2:1994, clause 4 apply:

DS: distributed single-layer (test method)
LS: local single-layer (test method)

RS : remote single-layer (test method)
TTCN : tree and tabular combined notation

8 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

4.3 Other abbreviations
For the purposes of this part of ISO/IEC 9646, the following abbreviations also apply:

ASN.1: abstract syntax notation one
BNF : the extended Backus-Naur form used in TTCN
CM: coordination message

CP: coordination point

FDT : formal description technique
FIFO : first in first out

MTC : main test component

oSl : open systems interconnection
PDU : protocol data unit

PTC: parallel test component

SAP : service access point

TCP: test coordination procedures

TTCN.GR : tree and tabular combined notation, graphical form
TTCN.MP : tree and tabular combined notation, machine processable form

5 The syntax forms of TTCN
TTCN is provided in two forms
- a graphical form (TTCN.GR) suitable for human readability;

- a machine processable form (TTCN.MP) suitable for transmission of TTCN descriptions between machines and pos
suitable for other automated processing.

TTCN.GR is defined using tabular proformas. TTCN.MP is defined using syntax productions which have special TTCN.|
keywords as terminal symbols instead of the fixed parts of the tabular profergathé box lines and headers). The entries
within the TTCN.GR tables are defined by syntax productions which do not include any TTCN.MP keywords; these product
are common to both TTCN.GR and TTCN.MP.

The syntax productions of TTCN.MP are specified in annex A. As an aid to clarifying the TTCN.GR description, many of
syntax productions that are common to both TTCN.MP and TTCN.GR are embedded in the text of the body of this part of
IEC 9646; these are marked: SYNTAX DEFINITION. To aid readability some productions will appear in several places in
text.

EDITOR’S NOTE 1 - In this mock-up, most of the syntax productions which should be embedded in the text are omitte
although they will appear in the published edition 2.

The syntax productions embedded within the text are intended to be identical copies of the corresponding productions
annex A, but if there is any conflict annex A shall take precedence.

The text description of TTCN.GR is intended to be consistent with the underlying syntax as defined in the TTCN.MP syr
productions, except for the differences identified in A.5 and the static semantic restrictions specified in Annex A (which
common to both TTCN.MP and TTCN.GR).

If there is any conflict between the TTCN.GR syntax, on the one hand, and the static and operational semantics, orsthe otl
described by the text and as described by Annex A, then

a) except for the differences specified in A.5, the TTCN.MP syntax productions shall have precedence over the text and s
productions in the body of this part of ISO/IEC 9646;

b) the static semantics restrictions specified in A.4 and in the static semantics comments (marked STATIC SEMANTICS
the syntax productions in A.3 specify restrictions on what is valid TTCN, restricting what is allowed according to the syn
productions;

c) similarly, the operational semantics restrictions specified in the operational semantics comments (mar
OPERATIONAL SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid TTCN at run-time
restricting what is allowed according to the syntax productions;

Delivery 9.6, 21 April 1997 9

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

d) the static and operational semantics restrictions specified in annex A shall have precedence over the text in thes body of thi
part of ISO/IEC 9646.

If an ATS is specified in TTCN.GR in compliance with this part of ISO/IEC 9646, then there is a unique corresponding
TTCN.MP representation of that ATS sharing the same underlying syntax. These two representations have identical operational
semantics. Two different representations of an ATS are equivalent if and only if they have identical operational semantics.

NOTE - If there is a standardized ATS specified in TTCN.GR and an apparently equivalent TTCN.MP representation, buttinéietima
interpretation of the operational semantics of the two, then the operational semantics of the TTCN.GR takes precedenitestibeause
TTCN.GR version that is the standardized ATS.

6 Compliance
6.1 ATSs that comply with this part of ISO/IEC 9646 shall satisfy the requirements for either TTCN.GR or TTCN.MP.
NOTE - See ISO/IEC 9646-1:1994, clause 10, for an explanation of the use of the term “compliance” in ISO/IEC 9646.

6.2 ATSs that comply with the requirements of TTCN.GR shall satisfy the TTCN.GR syntax requirements stated in clauses 9
through 16 and A.4.

6.3 ATSs that comply with the requirements of TTCN.MP shall satisfy the TTCN.MP syntax requirements stated in A.3.

6.4 ATSs that comply with this part of ISO/IEC 9646 shall satisfy the static semantic requirements specified in clauses 7 through
16 and annex A and have operational semantics in accordance with the definition of the operational semantics in annex B togethe
with the operational semantics restrictions specified in A.3, such that they are semantically valid.

6.5 A standardized ATS that complies with this part of ISO/IEC 9646 shall require that any realization of that test suite that
claims to conform to that standardized ATS shall

a) have operational semantics equivalent to the operational semantics of the test suite as defined by annex B;
b) meet the additional operational semantics requirements specified in A.3;
c) comply with ISO/IEC 9646-4.

NOTE - If, during execution of the executable test case that conforms to the TTCN specification of the correspondingsilustsactt static
semantic or operational semantic error is detected, then a test laboratory complying with ISO/IEC 9646-5 will recordtar eketratable
test case error, depending on where the error is located.

7 Conventions

7.1 Introduction
The following conventions have been used when defining the TTCN.GR table proformas and the TTCN.MP grammar.

7.2 Syntactic metanotation
Table 1 defines the metanotation used to specify the extended BNF grammar for TTCN (henceforth called BNF):

Table 1 - The TTCN.MP Syntactic Metanotation

n= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

10 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 1 - Use of the BNF metanotation:
FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type})"
The following conventions will be used for text used in table proformas:
a) Bold text [jke this) shall appear verbatim in each actual table in a TTCN test suite;

b) Text in italics (ke thig shall not appear verbatim in a TTCN test suite. This font is used to indicate that actual text sh
be substituted for the italicized symbol. Syntax requirements for the actual text can be found in the corresponding TTCN
BNF production.

EXAMPLE 2 - Suiteldentifiecorresponds to production 3 in Annex A

7.3 TTCN.GR table proformas

7.3.1 Introduction

The TTCN.GR is defined using two types of table:
a) single TTCN object tables (see 7.3.2),

which are used to define, declare or describe a single TTCN object such as a PDU declaration or a Test Case dyi
behaviour;

b) multiple TTCN object tables (see 7.3.3);

are used to define a number of TTCN object of the same type in a single table, such as simple type definitions or Test
Variables.

7.3.2 Single TTCN object tables
The general lay-out of a table for a single TTCN object is shown below

Title of Table Title
Object Name A
Group : (Optional way of grouping together related objects) Header
Comments :This entire comment line is optional. v
Object Name ... Other Columns ... Comment A

This column is Body

optional
Detailed Comments:This footer is optional.

Footer

Figure 1 - Generalized layout of a single declaration table

The header of the table contains general information on the object defined in the table. The first item in the hea@jetamed
Name contains an identifier for the object. A second item, naBredip may be used to provide an identifier to group together
related objects in the same category. This item is optional. The last item, Gametentgontains an informal description of
the object. This item is optional.

Delivery 9.6, 21 April 1997 11

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

The body of the table consists of one or more columns. Each column has a title. The rightmost colu@onritiedtscontains
informal descriptions of the components of the object specified in the body. It does not exist in all proformas. In proformas
containing a comments column this column can be omitted.

The footer of the table contains one item, namethiled CommentsThis footer can be used for the same purposes as the
comments column in the body of the table. The test suite specifier can use the detailed comments footer in combination with the
comments column, instead of a comments column, or not at all, in which case the footer can be omitted.

7.3.3 Multiple TTCN object tables
The general lay-out of a table for multiple TTCN objects is shown below:

Title of Table

Group: (Optional way of grouping together related sets of objects)

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next
Collective Comment or until the end of this table.

Object Name ... Other Columns ... Comments

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next
Collective Comment or until the end of this table.

Object Name ... Other Columns ... Comments

Detailed Comments:

Figure 2 - Generalized layout of a multiple declaration table

The optionalCollective Commentsiay be used preceding a group of related objects declared in a multiple object table, both to
indicate the grouping and to give a comment that applies to each member of the group or the group as a whole.

This type of table has only a minimal optional header section, which may co@ed@identifier and aCollective Comment
The body of the table consists of one or more columns. Each column has a title. The leftmost colu@bjedtééhmecontains
identifiers of the objects defined or declared in the table. The rightmost columrCttleasientscontains informal descriptions
of the objects defined or declared in the table. It does not exist in all proformas. When it exists its use is optiotedtfeuitee
specifier. The footer of the table is identical to the footer of the single table type.

7.3.4 Alternative compact tables

In some cases it is allowed to display a number of single TTCN object tables in an alternative space-saving compacttformat. Tha
is, a number of single TTCN object tables may be displayed in a single compact table. The only tables that may be presented in
this format are

12 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

- ASP constraints (tabular and ASN.1);

- PDU constraints (tabular and ASN.1);

- Structured Type constraints;

- ASN.1 Type constraints;

- Test Case dynamic behaviours.
The formats of these alternative compact proformas are defined in Annex E.
7.3.5 Specification of proformas

This part of ISO/IEC 9646 specifies numerous types of TTCN.GR tables and provides a graphic view of the correspon
proformas. These proformas conform to the generalised layout of 7.3.2 and 7.3.3. When a column is shaded in a proform:
is a reminder that the column is optional.

7.4 Free Text and Bounded Free Text

Some table entries allow the use of free test,characters from any of the character sets defined in ISO 10646. The following
restrictions apply:

a) Free Text shall not contain the combination of characters “*/", unless preceded by backslash (\), as this is used i
TTCN.MP to indicate the end of a Free Text string. This means that double backslash (\\) means backslash.

b) The combinations of characters “/*” and “*/” which open and close BoundedFreeText strings in the TTCN.MP shall r
appear in the TTCN.GR.e., wherever a Bounded FreeText string appears in a table section, as in a Full Identifier, the
combinations of characters shall not be printed.

8 Concurrency in TTCN

8.1 Test Components

TTCN allows the specification of test components which may be executed concurrently. This clause gives an overview o
additional proformas and mechanisms available in concurrent TTCN. These proformas and mechanisms shall not be u:
ATSs that do not use concurrency (i.e. the use of concurrency is optional).

A tester consists of a Main Test Component (MTC) and zero or more Parallel Test Components (PTCs). In non-concurrent T
it is not necessary to declare the Main Test Component since there is only one test component and the default iskteahit is the
Test Component.

Test components are declared in the Test Component Declarations table. A test component may communicate with the IL
one or more Points of Control and Observation (PCOs). Test components may communicate with each other by excha
Coordination Messages (CMs) through Coordination Points (CPs). PTCs may also communicate with the MTC implicitly,
means of assignments to the global result variable and by the MTC being able to check whether or not one or more PTC:s
terminated execution. The Test Component Configuration Declarations tables are used to specify (abstract) configurations «
components. These declarations (one for each configuration) show which PCOs and CPs are used, if any, by the test comp
CMs are specified in a manner very similar to the method used to specify ASPs. ASN.1 may be used for CM specification.
constraints are also very similar to ASP constraints. Special proformas are provided for the definition of CM Types and
declaration of CM constraints. CMs are sent and received using the normal TTCN SEND and RECEIVE statements.

In summary, if concurrent TTCN is used the following proformas shall be used:
a) Test Component Declarations;
b) Test Component Configuration Declarations.
In addition, if concurrent TTCN is used the following proformas may be used:
c) CP Declarations;
d) CM Type Definitions and/or ASN.1 CM Type Definitions, provided that CP declarations are used;
e) CM Constraints Declarations, provided that CM Type Definitions are used;
f) ASN.1 CM Constraint Declarations, provided that ASN.1 CM Type Definitions are used.

Delivery 9.6, 21 April 1997 13

Second Edition Mock-Lp for SC21 Review

8.2 Test Component Configurations

Some possible configurations of test components are shown in Figure 3 and Figure 4. In a realization of these abstract

ISO/IEC 9646-3: 1997

configurations, test components may reside in a single machine or be distributed over several machines.

It is possible to use different PTC configurations in different test cases of an Abstract Test Suite. Each Abstract TishCase w

uses concurrency shall use one of the declared Test Component Configurations.

Note the following valid but unusal cases:
a) a PTC need not have any PCOs;

b) a PTC need not have a CP to an MTC. In such cases the only interaction between the PTC and the MTC will be the creation
of the PTC and the implicit result reports from the PTC, i.e., the MTC has no explicit control over the PTC after creation;

¢) two PTCs may be connected by more than one CP;

d) atest case whose test component configuration refers to a PTC need not contain any CREATE statement to start this PTC
e) a test case whose test component configuration refers to a CP need not contain any SEND or RECEIVE statements using

this CP.

Items a), b) and c) are illustrated in Figure 3 and Figure 4.

MTC1
MCP1 MCP2 MCP3
CP1 CP2
TC1 TC2 -« » TC3
PCO_A PCO_B PCO_C

Figure 3 - Example Test Component Configuration CONFIG1

14

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

MTC2
A
MCP2 MCP3
CP1
TC2 TC4 TC5
P
CP2
PCO_B PCO D PCO_E
\

Figure 4 - Example Test Component Configuration CONFIG2

9 TTCN test suite structure

9.1 Introduction

TTCN allows a test suite to be hierarchically structured in accordance with ISO/IEC 9646-1:1991, 8.1. The components of
structure are

a) Test Groups;
b) Test Cases;
c) Test Steps;
A TTCN test suite may be completely flae(, have no structure) in which case there are no Test Groups.
TTCN allows the use of Test Step Groups and Default Groups, similar to the concept of Test Groups, in order to structure
Steps and Defaults hierarchically. This hierarchical structure is optional.
9.2 Test Group References

TTCN supports a haming structure that shows a conceptual grouping of Test Cases. Test Groups can be nested. Test Ca
also be stand alone (see ISO/IEC 9646-1:1991, clause 8, figure 9). The Test Group References define the structure of tl
suite. Test Group References shall have the following syntax:

SYNTAX DEFINITION:
626 TestGroupReference ::= [Suiteldentifier /"] {TestGroupldentifier "/"}
EXAMPLE 3 - A Transport group reference: TRANSPORT/CLASSO/CONN_ESTAB/

9.3 Test Step Group References

9.3.1Test steps may be explicitly identified in TTCN and used to structure Test Cases and other Test Steps. Alternatively
Steps may be implicit within the behaviour description of a Test Case. Explicit Test Steps may be specified either

- locally within a Test Case or Test Step behaviour description; or
- globally within a Test Step Library, which may be hierarchically structured into Test Step Groups.

NOTE - For example, a preamble may consist of just a few statement lines within a behaviour description of the Test Chsease Wis
implicit.Alternatively, a preamble may be explicitly specified with its own behaviour description. If such an explicit prisaonbleof use

Delivery 9.6, 21 April 1997 15

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

within one Test Case, then it may be specified locally within that Test Case, but if it is of use in several Test Cashsultkhédtspecified
in the Test Step Library.

9.3.2 Local Test Steps are identified simply by a tree identifier. Global Test Steps are identified by a Test Step identifier. Globa
Test Steps also have a Test Step Group Reference, which shows the position of a Test Step in the Test Step LibraryeThe structu
of the Test Step Library is independent of the structure of the test suite. Test Step Group References shall have the following
syntax:

SYNTAX DEFINITION:

641 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
EXAMPLE 4 - Transport Test Step Group Reference: TRANSPORT/STEP_LIBRARY/CLASSO/CONN_ESTAB/

9.4 Default Group References
Default behaviours (if any) are located in a Default Library.

A Default Group Reference specifies the location of the Default in the Default Library, which may be hierarchically structured.
The Default Library has no influence on the test suite structure itself. Default Group References shall have the follawing synt

SYNTAX DEFINITION:

651 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
EXAMPLE 5 - Transport Default Group Reference: TRANSPORT/DEFAULT_LIBRAR/CLASSO0/

9.5 Parts of a TTCN test suite
An ATS written in TTCN shall have the following four sections in the order indicated:
a) Suite Overview (see clause 10),

which contains the information needed for the general presentation and understanding of the test suite, such as test reference
and a description of its overall purpose;

b) Import Part (see 10.7),
which contains the declarations of the objects used in the test suite or module that are imported from a source object.
c) Declarations Part (see clause 11),

which contains the definitions or declarations of all the components that comprise the testgUREQS, Timers, ASPs,
PDUs, and their parameters or fields);

d) Constraints Part (see clause 12, 13, 14),

which contains the declarations of values for the ASPs, PDUs, and their parameters used in the Dynamic Part. The constraints
shall be specified using

1) TTCN tables; or

2) the ASN.1 value notation; or

3) both TTCN tables and the ASN.1 value notation.
e) Dynamic Part (see clause 15),

which comprises three sections that contain tables specifying test behaviour expressed mainly in terms of the occurrence of
ASPs or PDUs at PCOs. These sections are

1) the Test Case dynamic behaviour descriptions;
2) alibrary containing Test Step dynamic behaviour descriptions (if any);
3) alibrary containing Default dynamic behaviour descriptions (if any).

16 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

10 Test Suite Overview

10.1 Introduction

The purpose of the Test Suite Overview part of the ATS is to provide information needed for general presentation
understanding of the test suite. This includes:

a) Test Suite Structure (see 10.2);
b) Test Case Index (see 10.3);

c) Test Step Index (see 10.4);

d) Default Index (see 10.5);

e) Test Suite Exports (see 10.6).

10.2 Test Suite Structure

The Test Suite Structure contains identification of the pertinent reference documents, specification of the structust of the
suite, a brief description of its overall purpose, and references to the Test Group selection criteria.

The Test Suite Structure shall include at least the following information:
a) the name of the test suite;
b) references to the relevant base standards;
c) a reference to the PICS proforma;
d) a reference to the partial PIXIT proforma (see ISO/IEC 9646-2:1991, clause 15);

e) an indication of the test method or methods to which the test suite applies, plus for the Coordinated Test Methc
reference to where the TMP is specified,;

f) other information which may aid understanding of the test suite, such as its version number or how it has been derived
information should be included as a comment;

g) a list of Test Groups in the test suite (if any),
where the following information shall be supplied for each group:
1) the Test Group Reference,

where the first identifier may be the suite name, and each successive identifier represents further conceptual ordering
test suite. Test Groups shall be listed in the order that their corresponding Test Cases appear in the ATS. Furthermore
shall be ordered such that every group within a single group immediately follows that group. All Test Groups in the test <
shall be listed,;

imported test cases may be included under any group, independently under which group they are defined in the ori
source object. A new group may be listed that does not occur in the Dynamic Part. This group shall only contain impc
test cases;

the groups of the Dynamic Part shall occur in the same order as they appear there, but the list may be preceded, inter
or followed by new groups of imported test cases. For these new groups the page number shall not be supplied;

the Selection Ref column may contain the identifier of a selection expression applicable to the new test groups. The
selection expression shall override the specified selection expression in the original test group (if there is any). €he ab:
of the selection expression identifier in this column indicates that the specified selection expression in the origingd test g
is omitted (if there is any);

the Test Group Objective column may contain a new informal statement of the objective of the new test group. This
objective shall override the objective in the imported test group (if any). The absence of the test group objective-in this
umn indicates that the specified test group objective is omitted;

2) an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test Cases
group apply to specific IUTs. This column may contain the identifier of a selection expression applicable to the Test Gre
If a selection expression identifier is provided for a group, and the referenced selection expression evaluates to FALSE

Delivery 9.6, 21 April 1997 17

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

no Test Case in that group shall be selected for execution. If the selection expression evaluates to TRUE then Test Cases i
that group shall be selected for execution depending on the evaluation of the selection expressions relevant to subgroups o

that group and/or individual Test Cases. Omission of a selection expression identifier is equivalent to the Boolean value
TRUE;

3) the Test Group Objective,
which is an informal statement of the objective of the Test Group;
4) a page number,

providing the location of the first Test Case of the group in the ATS. The page number listed with each Test Group Reference
in the Test Suite Structure table shall be the page number of the first Test Case behaviour description in the group.

This information shall be provided in the format shown in the folloing proforma:

18 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Test Suite Structure
Suite Name : Suiteldentifier
Standards Ref . Free Text
PICS Ref . Free Text
PIXIT Ref : Free Text
Test Method(s) . FreeText
Comments . [FreeText]
Test Group Reference Selection Ref Test Group Objective Page N
TestGrou.pReference [SeleétExpr- FreéText Nur.nber
Identifier]
Detailed Comments: [FreeText]

Proforma 1 - Test Suite Structure
SYNTAX DEFINITION:

41 Suiteldentifier ::= Identifier
626 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
202 SelectExprldentifier ::= Identifier

10.3 Test Case Index

The Test Case Index contains a complete list of all Test Cases in the ATS. The following information shall be provided for «
Test Case:

a) an optional Test Group Reference (if the ATS is structured into Test Groups),

which defines where in the test suite group structure the Test Case resides. If the group reference for a Test Case is m
then the Test Case is assumed to reside in the same Test Group as the previous Test Case in the index. Test Groups
listed in the order in which they exist in the ATS. An explicit Test Group Reference shall be provided for the first Test C
of each group. An explicit Test Group Reference shall also be provided for each Test Case that immediately follows the
Test Case of the Test Group; this is necessary if a Test Group contains both Test Groups and Test Cases;

b) the Test Case name,

¢) which shall be the identifier provided in the Test Case dynamic behaviour table. Test Cases shall be listed in the orc
which they exist in the ATS;

d) an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test Case s
be selected for execution. This column may contain the identifier of a selection expression applicable to the Test Case
selection expression identifier is provided, and the referenced selection expression evaluates to FALSE, then the Test
shall not be selected for execution. If the selection expression evaluates to TRUE then the Test Case shall be select
execution depending on the evaluation of the selection expressions for the Test Groups containing the Test Case. A Tes
is selected if the selection expression for the Test Case, and all groups containing the Test Case, evaluate to TRUE. On
of a selection expression identifier is equivalent to the Boolean value TRUE;

Delivery 9.6, 21 April 1997 19

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

e) a description of the Test Case,
which is possibly a shortened form of the test purpose;
f) a page number,

providing the location of the Test Case in the ATS. The page number listed with each Test Case Identifier in the Test Case
Index table shall be the page number of the corresponding Test Case behaviour description.

This information shall be provided in the format shown in the folloing proforma:

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page Nr
TestGroupReference TestCase- [SelectExpr- FreeText Number
Identifier Identifier]

Detailed Comments: [FreeText]

Proforma 2 - Test Case Index
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

626 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
624 TestCaseldentifier ::= Identifier
202 SelectExprldentifier ::= Identifier

The complete list of test cases shall include the imported test cases. Explicitly defined Test Cases shall be listegrimthe ord
which they exist in the ATS. Page numbers shall not be supplied for imported test cases.

The Selection Ref column has similar semantic as the one given in the previous section (10.2).

The Description column may contain a new shortended form of the Test Purpose. This new description shall override the
description in the imported test case (if any). The absence of the description in this column indicates that the spéipified desc

is omitted.

10.4 Test Step Index

The Test Step Index contains a complete list of all Test Steps in the ATS. The following information shall be provided for each
Test Step:

a) an optional Test Step Group Reference, (if the ATS is structured into Test Step Groups),

which defines where in the Test Step Library structure the Test Step resides. If the group reference for a Test Step is missing
then the Test Step is assumed to reside in the same group as the previous Test Step in the index. Test Step Groued shall be lis
in the order in which they exist in the ATS. An explicit Test Step Group Reference shall be provided for the first Test Step of
each group. An explicit Test Step Group Reference shall also be provided for each Test Step that immediately follows the last
Test Step of the group; this is necessary if a Test Step Group contains both Test Step Groups and Test Steps;

b) the Test Step name,

which shall be the identifier provided in the Test Step dynamic behaviour table. Test Steps shall be listed in the otter in whi
they exist in the ATS;

c) a description of the Test Step,
which is possibly a shortened form of the Test Step Objective;

20 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

d) a page number,

providing the location of the Test Step in the ATS. The page number listed with each Test Step Identifier in the Test Step |
table shall be the page number of the corresponding Test Step behaviour description;

This information shall be provided in the format shown in the folloing proforma:

Test Step Index

Test Step Group Reference Test Step Id Description Page N
TestStepGroupReference TestStep- FreeText Number
Identifier

Detailed Comments: [FreeText]

Proforma 3 - Test Step Index
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

641 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
639 TestStepldentifier ::= Identifier

The complete list of test steps shall include the imported test steps. Explicitly defined Test Steps shall be listectirirthe orc
which they exist in the ATS. Page numbers shall not be supplied for imported test steps.

The Description column may contain a new shortended form of the Test Step Objective. This new description shall overrid
description in the imported test step (if any). The absence of the description in this column indicates that the speigified desc
is omitted.

10.5 Default Index

The Default Index contains a complete list of all Defaults in the ATS. The following information shall be provided for ea
Default:

a) an optional Default Group Reference, (if the ATS is structured into Default Groups),

which defines where in the Default Library structure the Default resides. If the group reference for a Default is missing, t
the Default is assumed to reside in the same group as the previous Default in the index. Defaults shall be listed in the or
which they exist in the ATS. An explicit Default Group Reference shall be provided for the first Default of each group. .
explicit Default Group Reference shall also be provided for each Default that immediately follows the last Default of

group;
b) the Default name,

which shall be the identifier provided in the Default dynamic behaviour table. Defaults shall be listed in the order in wh
they exist in the ATS;

c) a description of the Default,
which is possibly a shortened form of the Default Objective;
d) a page number,

providing the location of the Default in the ATS. The page number listed with each Default Identifier in the Default ledex ta
shall be the page number of the corresponding Default behaviour description.

Delivery 9.6, 21 April 1997 21

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

This information shall be provided in the format shown in the following proforma:

Default Index

Default Group Reference Default Id Description Page Nr
DefaultGroupReference Default- FreeText Number
Identifier

Detailed Comments: [FreeText]

Proforma 4 - Default Index
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

651 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
650 Defaultldentifier ::= Identifier

The complete list of defaults shall include the imported defaults. Explicitly defined Defaults shall be listed in thevdriér in
they exist in the ATS. Page numbers shall not be supplied for imported defaults.

The Description column may contain a new shortended form of the Default Objective. This new description shall override the
description in the imported default (if any). The absence of the description in this column indicates that the speciigaihdescri

is omitted.

10.6 Test Suite Exports

The Test Suite Exports table may be used to specify explicitly which objects in the test suite are designed to be re-usable anc
hence may be imported into other test suites or TTCN modules.

The Test Suite Exports proforma is used to identify the objects which may be exported.
If a PCO type is given as an exported object in the Export table, it shall be defined in the optional PCO Type table.
The name of the original source object shall be given if the object is itself imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported smtirce obj
(implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other objects
which are defined in the corresponding type are not exported as well. They are however implicitly exported and can be referred
in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the Test Suite Exports table for each of the exported objects:

a) the name of the object
If the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to the object name
embedded in brackets.

b) the object type
¢) the name of the original source object if the object is imported, or the object directive EXTERNAL

d) a page number
providing the location of the object in the test suite (no page number shall be given for imported objects)

e) an optional comment

22 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

This information shall be provided in the format shown in the following proforma:

Test Suite Exports

Object Name Object Type Source Name Page Nr Comments

[FreeText]

[Sourceldentifier | Number

ObjectDirective]

Objectldentifier TTCN_ObjectType

Detailed Comments: [FreeText]

Proforma 5 - Test Suite Exports
SYNTAX DEFINITION:

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[* Identifier "]"

15 TTCN_ObjectType ::SimpleType_Object| StructType_Object| ASN1_Type_Object| TS_Op_Object| TS_Proc_Obiject|
TS_Par_Object| SelectExpr_Object| TS_Const_Object| TS_Var_Object| TC_Var_Object | PCO_Type_Object|
PCO_Object| CP_Object| Timer_Object | TComp_Object| TCompConfig_Object| TTCN_ASP_Type_Object|
ASN1_ASP_Type_Object TTCN_PDU_Type_Object| ASN1_PDU_Type_Objec{ TTCN_CM_Type_Obiject|
ASN1_CM_Type_Object| EncodingRule_Object| EncodingVariation_Object | InvalidFieldEncoding_Object | Alias_Object|
StructTypeConstraint_Object | ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object|
ASN1_ASP_Constraint_Objec TTCN_PDU_constraint_Object| ASN1_PDU_Constraint_Object|
TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object| TestCase_Object TestStep Object | Default_Object |
NamedNumber_Object| Enumeration_Object

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

18 ObjectDirective ::= OmitEXTERNAL

567 Omit ::= Dash@MIT

EXAMPLE 6 - Test Suite Exports

Test Suite Exports

Object Name Object Type Source Name Page Nr Comments
String5 SimpleTypeDef 3
wait TimerDcl Module_B
INTC TTCN_PDU_Type 13
DEF1 Default TestSuite_1
TC 2 TestCase TestSuite_2
TC 3 TestCase 33
Preamble TestStep EXTERNAL

Detailed Comments:

10.7 The Import Part

10.7.1 Introduction

The purpose of the Import Part is to declare the objects used in the test suite that are imported from a source obgett. The
of the imports is equivalent to having a copy of the imported objects within the test suite.

Delivery 9.6, 21 April 1997 23

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

An object may be imported only if it is exported by a source object. A test suite without an export table exports allrethects w
have a global name. A module and a test suite with at least one export table export the objects contained in the exyport tables.
object which is not itself explicitly imported is implicitly imported if it is referenced by an imported object.

10.7.2 Imports

The Imports table identifies the source object and provides information on the overall objective of the source object. The
following information shall be supplied in the Imports table:

a) the name of the source object;
b) a description of the objective of the source object;

c) afull reference to the source objegthich should contain a document identifier and other information, such as version and
date;

d) other information which may aid understanding of the source object, this should be insladethment;

e) a list of the objects from the imported source object; for each object the following information shall be provided:
1) the name of the object as used in the source object;
2) the type of the object; which shall be the same as the type given in the source object;

3) the name of the original source object if the object is imported from another source object, the object directive OMIT or
“-" if the object is to be omitted from the set of objects imported from the source object, or the object directive EXTERNAL
if the object is declared as external in the source object

This information shall be provided in the format shown in the following proforma:

Imports
Source Name . Sourceldentifier
Group . [ImportsGroupReference]
Standards Ref . [FreeText]
Comments . [FreeText]
Object Name Object Type Source Name Comments
[FreeText]
Objectl.dentifier TTCN_dbjectType [Sourcel.dentifier |
ObjectDirective]
Detailed Comments: [FreeText]

Proforma 6 - Imports
SYNTAX DEFINITION:

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[" Identifier "]"

15 TTCN_ObjectType ::-SimpleType_Object| StructType_Object| ASN1_Type_Object] TS_Op_Object| TS_Proc_Object|
TS_Par_Object| SelectExpr_Object] TS_Const_Objeci TS_Var_Object| TC_Var_Object | PCO_Type_Object| PCO_Object
| CP_Object| Timer_Object | TComp_Object| TCompConfig_Object| TTCN_ASP_Type_Object| ASN1_ASP_Type_Object
| TTCN_PDU_Type_Object| ASN1_PDU_Type_Objec{ TTCN_CM_Type_Object | ASN1_CM_Type_Obiject|
EncodingRule_Object| EncodingVariation_Obiject | InvalidFieldEncoding_Object | Alias_Object |
StructTypeConstraint_Object | ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object|
ASN1_ASP_Constraint_Objeci TTCN_PDU_constraint_Object| ASN1_PDU_Constraint_Object|

24 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object| TestCase_Object TestStep Object | Default_Object|
NamedNumber_Object| Enumeration_Object
18 ObjectDirective ::= OmitEXTERNAL

567 Omit ::= DashQMIT

EXAMPLE 7 - An Imports table

Source Name : ModuleA
Source Ref . {iso standard 1234}
Standards Ref 1 1SO 300 313
Comments : Layer 2 Test Suite

Object Name Object Type Source Name Comments
String5 SimpleTypeDef
Wait TimerDcl ModuleB 1)
R1_POSTAMBLE TestStep EXTERNAL 2)
TSAP PCO_TypeDcl 3)
blue[ColorEnum] Enumeration
a[NN_typel] NamedNumber OMIT 4)

Detailed Comments:

1) The original source of this timer is ModuleB
2) This test step is declared as external in ModuleA and must be explicitly defined or imported where this module |is used.
3) TSAP must be defined in the PCO Type Dcl table.

4) This Named Number is omitted from the imports and hence should be redefined explicitly in the test suite.

11 Declarations Part

11.1 Introduction

The purpose of the declarations part of the ATS is to define and declare all the objects used in the test suite. Thelfjelétsving
of an ATS referenced from the overview part, the constraints part and the dynamic part shall have been declared il
declarations part. These objects are

a) definitions:
1) Test Suite Types (see 11.2.3);
2) Test Suite operations (see 11.3.4);
b) parameterization and selection of Test Cases:
1) Test Suite Parameters (see 11.4);
2) Test Case Selection Expressions (see 11.5);
c) declarations/definitions:
1) Test Suite Constants (see 11.6 and 11.7);
2) Test Suite Variables (see 11.8.1);
3) Test Case Variables (see 11.8.3);
4) PCO types (see 11.9);
5) PCO s (see 11.10);
6) CPs (see 11.11);

Delivery 9.6, 21 April 1997 25

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

7) Timers (see 11.12);

8) Test Components (see 11.13.1);

9) Test Component Configurations (see 11.13.2);
10) ASP types (see 11.14);

11) PDU types (see 11.15);

12) Encoding Rules (see 219);

13) Encoding Variations (see 11.16.2);

14) Invalid Field Encodings (see 11.16.3);

15) CM types (see 11.17);

16) Aliases (see 11.21).

11.2 TTCN types
11.2.1 Introduction

TTCN supports a number of predefined types and mechanisms that allow the definition of specific Test Suite Types. These types
may be used throughout the test suite and may be referenced when Test Suite Parameters, Test Suite Constants, Test Sui
Variables, ASP parameters, PDU fietts. are declared.

TTCN is a weakly typed language, in that values of any two types which have the same base type are considered to be type
compatible (e.g. for the purposes of performing assignments or parameter passing).

11.2.2 Predefined TTCN types

A number of commonly used types are predefined for use in TTCN. All types defined in ASN.1 and in this clause may be
referenced even though they do not appear in a type definition in a test suite. All other types used in a test suiteckdraiiibe d
in the Test Suite Type definitions, ASP definitions or PDU definitions and referenced by name.

The following TTCN predefined types are considered to be the same as their counterparts in ASN.1:

a) INTEGER predefined type: a type with distinguished values which are the positive and negative whole numbers,
including zero.

Values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless the value ig®; the val
zero shall be represented by a single zero;

b) BOOLEAN predefined type: a type consisting of two distinguished values.
Values of the BOOLEAN type are TRUE and FALSE;
c) BITSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one, or more bits.

Values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded by a single’
and followed by the pair of characters 'B;

EXAMPLE 8 - '01101'B

d) HEXSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one, or more HEX
digits, each corresponding to an ordered sequence of four bits.

Values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the HEX digits:
0123456789ABCDEF
preceded by a single ' and followed by the pair of characters 'H; each HEX digit is used to denote the value of a semi-octet
using a hexadecimal representation;
EXAMPLE 9 - 'ABO1D'H

e) OCTETSTRING predefined type: a type whose distinguished values are the ordered sequences of zero or a positive even
number of HEX digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of the HEX digits:
0123456789ABCDEF

26 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

preceded by a single ' and followed by the pair of characters 'O; each HEX digit is used to denote the value of a semi-
using a hexadecimal representation;

EXAMPLE 10 - 'FF96'0O

f) OBJECTIDENTIFIER predefined type: a type whose distinguished values are the set of all object identifiers allocate
in accordance with the rules of ISO/IEC 8824-1: 1994,

0) R_TYPE predefined type:a type consisting of the following distinguished values:

pass, fail, inconc and none

These values are predefined identifiers and as such, are case sensitive. This predefined type is for use with verdicts, see

h) CharacterString predefined types types whose distinguished values are zero, one, or more characters from sor
character set; the CharacterString types listed in table 2 may be used; they are defined in clause 31 of ISO/IEC 8824-1:

Table 2 - Predefined CharacterString Types

NumericString
PrintableString
TeletexString
T61String
VideotexString
VisibleString
ISO646String
IA5String
GraphicString
GeneralString

Values of CharacterString types shall be denoted by an arbitrary number (possibly zero) of characters from the charact
referenced by the CharacterString type, preceded and followed by double quote ("); if the CharacterString type include
character double quote, this character shall be represented by a pair of double quote in the denotation of any value.

SYNTAX DEFINITION:

735

736

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

PredefinedType :INTEGER |BOOLEAN |BITSTRING |HEXSTRING |OCTETSTRING |OBJECTIDENTIFIER |
R_Type| CharacterString

CharacterString ::NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String | GraphicString
| GeneralString | T61String | ISO646String

Number ::= (NonZeroNum {Num})Q

NonZeroNum 4 12|3|4|516]7|8]9

Num ::= 0 | NonZeroNum

BooleanValue ::¥RUE | FALSE

Bstring ::="" {Bin | Wildcard} " B

Bin =01

Hstring ::= """ {Hex | Wildcard} ""H

Hex :=NumPA |[B|C|D|E|F

Ostring ::="" {Oct | Wildcard} ""O

Oct ::= Hex Hex

Cstring ::= """ {Char | Wildcard | "\"} "™

Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. */

Wildcard ::= AnyOne | AnyOrNone
AnyOne ::="?"
AnyOrNone ::="*"

Delivery 9.6, 21 April 1997 27

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

11.2.3 Test Suite Type Definitions
11.2.3.1 Introduction

Type definitions to be used as types for data objects and as subtypes for structured ASs;.R&tUke introduced using a
tabular format and/or ASN.1. Wherever types are referenced within Test Suite Type definitions those references shall not be
recursive (neither directly or indirectly).

11.2.3.2 Simple Type Definitions using tables

To define a new Simple Type, the following information shall be provided:
a) a name for the type;
b) the base type,

where the base type shall be a Predefined Type or a Simple Type. The base type is followed by the type restriction that shall
take one of the following forms:

1) alist of distinguished values of the base type; these values comprise the new type;

2) aspecification of a range of values of type INTEGER; the new type comprises the values including the lower boundary
and the upper boundary specified in the range. In order to specify an infinite range, the keyword INFINITY may be used
instead of a value indicating that there is no upper boundary or lower boundary;

3) a specification of a particular length or length range of a predefined or test suite string type; the length value(s) shall b
interpreted according to Table 5 in 11.18; only non-negative INTEGER literals or the keyword INFINITY for the upper
bound shall be used;

¢) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an explicit
encoding for the simple type, which overrides the encoding rules and encoding variations applicable to any PDU in which that
simple type is used; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field
Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

This information shall be provided in the format shown in the following proforma:

Simple Type Definitions

Group . [SimpleTypeGroupReference]
Type Name Type Definition Type Encoding Comments
SimpleTypeldentifier Type&Restriction [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 7 - Simple Type Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

Where a range is used in a type definition either as a value range or as a length range (for strings) it shall be batederith t
of the two values on the left. An integer range shall be used only with a base type of INTEGER or a type derived from INTEGER.
In the latter case, integer range shall be a subrange of the set of values defined by the base type.

Where a value list is used, the values shall be of the base type and shall be a true subset of the values definedypethe base t
Where a length restriction is used, the set of values for a type defined by this restriction shall be a true subseesfdeinedu
by the base type.

28 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Values of any two simple types which have the same base type are considered to be type compatible (e.g. for the purpc
performing assignments or parameter passing).

EXAMPLE 11 - Simple Test Suite Type definitions

Simple Type Definitions
Type Name Type Definition Comments
Transport_classes INTEGER(O, 1, 2, 3, 4) classes that may be used for transport Idyer
connection
String5 IA5String[5] string of length 5
SeqNumbers INTEGER(0..127) all numbers from 0 to 127
PositiveNumbers INTEGER(L..INFINITY) all positive INTEGER numbers
String10to20 IA5String [10 .. 20] string, min. length 10 characters and mgx.
length 20 characters

11.2.3.3 Structured Type Definitions using tables

Structured Types can be defined in the tabular form to be used for declaring structured objects as subtypes within ASP anc
definitions and other Structured Typats.

The following information shall be supplied for each Structured Type:
a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an abbreviation is used, tht
full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU,;

In order to specify explicit Encoding Variations for entire structured types, which override the Encoding Variations applica
to any PDU in which this structured type is used, this optional entry shall reference an entry in the relevant Encoding Varia
table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding Variations are thode applic
to each PDU within which this structured type is used. See 11.16.4.

c) a list of the elements associated with the Structured Type,

where the following information shall be supplied for each element:
1) its name,
where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then th
name shall follow in parentheses;
2) its type and an optional attribute,
where elements may be of a type of arbitrarily complex structure; there shall be no recursive references (neither directl
indirectly);
the optional element length restriction can be used in order to give the minimum and maximum length of an element
string type (see 11.18);

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an exp
encoding for the structured type, which overrides the encoding rules and encoding variations applicable to any PDU inw
that structured type is used; the encoding identifier, if any, shall identify either one of the Encoding Variations ddan Inv
Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The elements of Structured Type definitions are considered to be opti®nal,instances of these types whole elements may
not be present.

Delivery 9.6, 21 April 1997 29

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

This information shall be provided in the format shown in the following proforma:

Structured Type Definition

Type Name : Structld&Fullld

Group : [StructTypeGroupReference]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]
Element Name Type Definition Field Encoding Comments
EIemIdI&FuIIId Type&Attributes [PDU_FieIdIéncodingCaIl] [FreéText]

Detailed Comments: [FreeText]

Proforma 8 - Structured Type Definition
SYNTAX DEFINITION:

to be added
11.2.3.4 Test suite type definitions using ASN.1

Test Suite Types can be specified using ASN.1 This shall be achieved by an ASN.1 definition using the ASN.1 syntax as defined
in ISO/IEC 8824-1: 1994. The following information shall be supplied for each ASN.1type:

a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an abbreviation is used, then th
full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU,;

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding Variations applicable to

any PDU in which this ASN1_Type is used, this optional entry shall reference an entry in the relevant Encoding Variations
table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding Variations are thode applicab

to each PDU within which this ASN1_Type is used. See 11.16.4.

c) the ASN.1 type definition,

which shall follow the syntax defined in ISO/IEC 8824-1: 1994, except that there is the additional option of specifying an
Encoding Variation or Invalid Field Encoding associated with either the whole ASN1 Type or any ASN.1 Type within the
ASN1 Type. Thisis done by giving a specific encoding identifier followed by any necessary actual parameter list, in order to
specify explicit encodings for individual fields or other subtypes of a PDU, which override the encoding rules and encoding
variations applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the Encodings/ariati

or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the dash symbol (-) shall not be used. The underscore symbol (_) may be used instead
The type identifier in the table header is the name of the first type defined in the table body.

Types referred to from the type definition shall be defined in other ASN.1 type definition tables, be defined by refdrence in t
ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally defined types
shall not be used in other parts of the test suite.

ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/IEC 8824-1: 1994. ASN.1
comments can be used within the table body. The comments column shall not be present in this table.

30 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Comments in ASN.1 start with “--” and end with either the next occurrence of “--” or with “end of line”, whichever comes firs
This prevents a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbo
TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASH
comments with “--".

This information shall be provided in the following proforma:

ASN.1 Type Definition

Type Name : ASN1_Typeld&Fullid

Group . [ASN1_TypeGroupReference]
Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 9 - ASN.1 Type Definition
SYNTAX DEFINITION:

to be added

EXAMPLE 12 - An ASN.1 Test Suite Type definition:

ASN.1 Type Definition

Type Name :DATE_type
Comments :to illustrate the structure of ASN.1 type definitions

Type Definition

SEQUENCE {
day DAY_type,
month MONTH_type,
year YEAR_type

}

-- local DAY _type
DAY _type::= INTEGER {first(1), last(31)}

-- MONTH_type and YEAR_type are defined in other ASN.1 Type Definitions tables

11.2.3.5 ASN.1 Type Definitions by Reference

Types can be specified by a precise reference to an ASN.1 type defined in an OSI standard or by referencing an ASN.:
defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each type:

a) its name,
where this name may be used throughout the entire test suite. This name shall be specified without a Fullldentifier;

Delivery 9.6, 21 April 1997 31

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

b) the type reference,

which shall follow the identifier rules stated in ISO/IEC 8824-1: 1994;

¢) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994, and an optional
Objectldentifier; the module shall be unigque within the domain of interest;

d) the Encoding Variations to be used for such ASN1_Types within a PDU;

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding Variations applicable to

any PDU in which this ASN1_Type is used, this optional entry shall reference an entry in the relevant Encoding Variations
table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding Variations are those applicab

to each PDU within which this ASN1_Type is used. See 11.16.4.

This information shall be provided in the following proforma:

ASN.1 Type Definitions By Reference

Group . [ASN1_TypeGroupReference]
Type Name Type Reference Module Identifier Encoding Variation Comments
ASN1_Typeld- TypeReference ASN1_Moduleldentifier| [EncVariationCall] [FreeText]
&Fullld

Detailed Comments: [FreeText]

Proforma 10 - ASN.1 Type Definitions By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

Since the ASN.1 types imported from ASN.1 modules can contain identifiers, type references and value references that follow
the identifier rules in ISO/IEC 8824-1: 1994, they can contain hyphens. To be able to use the imported definitions irsTTCN it i
necessary to change the hyphens in imported identifiers to underscore. This is done in the import process.

32 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 13 - The following type definition in an ASN.1 module:

module-1 DEFINITIONS BEGIN
Type-1 ::= SEQUENCE { field1 Sub-Type-1,
field2 BIT STRING {first-bit(0), second-bit(1) } }
END
can be imported to TTCN with:

ASN.1 Type Definitions By Reference

Type Name Type Reference Module Identifier Comments
Type_1 Type-1 module-1
Sub_Type_1 Sub-Type-1 module-1

The above reference definition of Type-1 is equivalent to the following definition:

ASN.1 Type Definition

Type Name :Type_ 1
Comments

Type Definition

SEQUENCE { fieldl Sub_Type 1,
field2 BIT STRING {first_bit(0), second_bit(1) } }

11.3 TTCN operators and TTCN operations
11.3.1 Introduction

TTCN supports a number of predefined operators, operations and mechanisms that allow the definition of Test Suite Opera
These operators and operations may be used throughout any dynamic behaviour descriptions and constraints.

11.3.2 TTCN operators

11.3.2.1 Introduction

The predefined operators fall into three categories:
a) arithmetic;
b) relational;
c) Boolean.

The precedence of these operators is shown in Table 3. Parentheses may be used to group operands in express
parenthesized expression has the highest precedence for evaluation.

Within any row in table 3, the listed operators have equal precedence. If more than one operator of equal precedence apj
an expression, the operations are evaluated left to right.

Table 3 - Precedence of Operators

highest ()
Unary |+ - NOT
/ MOD AND
Binary [+ - OR
= < > <> >= <=

*

lowest

Delivery 9.6, 21 April 1997 33

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

SYNTAX DEFINITION:

to be added
11.3.2.2 Predefined arithmetic operators

The predefined arithmetic operators are:
ll+ll’ II_II’ ll*ll, II/II’ MOD

They represent the operations of addition, subtraction, multiplication, division and modulo. Operands of these opetagors shall
of type INTEGER iie., TTCN or ASN.1 predefined) or derivations of INTEGER.(subrange). ASN.1 Named Values shall
not be used within arithmetic expressions as operands of operations.

The result type of arithmetic operations is INTEGER.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. Theimgsult of u
the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two INTEGER values gives the whole INTEGER value resulting from
dividing the first INTEGER by the seconide(, fractions are discarded).

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first INTEGER by the
second.

11.3.2.3 Predefined relational operators
The predefined relational operators are:
II=II II<II | Il>ll | II<>II | II>=II | ll<=ll
They represent the relations of equality, less than, greater than, not equal to, greater than or equal to and less Ithan or equa
Operands of equality (=) and not equal to (<>) may be of an arbitrary type. The two operands shall be compatible. All other

relational operators shall have operands only of type INTEGER or derivatives of INTEGER. The result type of these operations
is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CharacterStrings may contain the wildcard
characters AnyOrNone (*) and AnyOne (?). In this case the comparison is performed according to the pattern matching rules
defined in 12.6.2.

11.3.2.4 Predefined Boolean operators
The predefined Boolean operators are
NOT AND OR
They represent the operations of negation, logical AND and logical OR. Their operands shall be of type BOOLEAN (TTCN or
ASN.1 or predefined). The result type of the Boolean operators is BOOLEAN.

The logical AND returns the value TRUE if both its operands are TRUE; otherwise it returns the value FALSE. The logical OR
returns the value TRUE if at least one of its operands is TRUE,; it returns the value FALSE only if both operands are FALSE.
The logical NOT is the unary operator that returns the value TRUE if its operand was of value FALSE and returns the value
FALSE if the operand was of value TRUE.

11.3.3 Predefined operations

11.3.3.1 Introduction

11.3.3.1.1The predefined operations fall into two categories:
a) conversion;
b) others

11.3.3.1.2Predefined operations may be used in every test suite. They do not require an explicit definition using a Test Suite
Operation Definition table. When a predefined operation is invoked

a) the number of the actual parameters shall be the same as the number of the formal parameters; and
b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type; and

34 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

c) all variables appearing in the parameter list shall be bound.
Each of the predefined operations is presented in the following format:
OPERATION_NAME (FORMAL_PARAMETER_LIST)] RESULT_TYPE
11.3.3.2 Predefined conversion operations
11.3.3.2.I7TTCN supports the following predefined operations for type conversions:
a) HEX_TO_INT converts HEXSTRING to INTEGER;
b) BIT_TO_INT converts BITSTRING to INTEGER;
c) INT_TO_HEX converts INTEGER to HEXSTRING;
d) INT_TO_BIT converts INTEGER to BITSTRING.

These operations provide encoding rules within the context of the operations only. It is invalid to assume these encoding
apply outside the domain of the operations in TTCN.

11.3.3.2.HEX_TO_INT(hexvalue:HEXSTRINGD INTEGER
This operation converts a single HEXSTRING value to a single INTEGER value.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The right
HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent the deciesal val
0 .. 15 respectively.

11.3.3.2.BIT_TO_INT(bitvalue:BITSTRING)O INTEGER
This operation converts a single BITSTRING value to a single INTEGER value.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The rightmos
is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values 0 and élyespecti

11.3.3.2.4NT_TO_HEX(intvalue, slength:INTEGER) HEXSTRING
This operation converts a single INTEGER value to a single HEXSTRING value. The resulting stengtistHEX digits long.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The right
HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent the deciesal val
0 .. 15 respectively.

If the conversion yields a value with fewer HEX digits than specified in the second parameter, then the HEXSTRING shal
padded on the left with zeros.

A test case error shall occur if tiidvalueis negative or if the resulting HEXSTRING contains more HEX digits than specified
in the second parameter.

11.3.3.2.9NT_TO_BIT(intvalue, slength:INTEGER) BITSTRING
This operation converts a single INTEGER value to a single BITSTRING value. The resulting stiemgtisbits long.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The rightmos
is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values 0 and élyespecti

If the conversion yields a value with fewer bits than specified in the second parameter, then the BITSTRING shall be padd
the left with zeros.

A test case error shall occur if thvalueis negative or if the resulting BITSTRING contains more bits than specified in the
second parameter.

11.3.3.3 Other predefined operations
TTCN also defines the following predefined operations:
a) IS_PRESENT;
b) IS_CHOSEN;
c) NUMBER_OF_ELEMENTS;
d) LENGTH_OF;

Delivery 9.6, 21 April 1997 35

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

e) SIZE_OF.
11.3.3.3.1S_PRESENT(DataObjectReferen¢&)BOOLEAN

As an argument the operation shall take a reference to a field within a data object only if it is defined as being OPTHONAL or
it has a DEFAULT value. The field may be of any type. The result of applying the operation is the BOOLEAN value TRUE if
and only if the value of the field is present in the actual instance of the data object. Otherwise the result is FALSE.

The argument of the operation shall have the format as defined in 15.10.2.

EXAMPLE 14 - Use of IS_PRESENT:
if received_PDU is of ASN.1 type
SEQUENCE({ field_1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER }
then, the operation call
IS_PRESENT(received_PDU .field_1)
evaluates to TRUE if field_1 in the actual instance of received_PDU is present.

11.3.3.3.2S_CHOSEN(DataObjectReferende) BOOLEAN

The operation returns the BOOLEAN value TRUE if and only if the data object reference specifies the variant of the CHOICE
type that is actually selected for a given data object. Otherwise the result is FALSE. The operation shall not be apalied to da
objects or fields of data objects other than those of ASN.1 type CHOICE. The argument of the operation shall have the format as
defined in 15.10.2.

EXAMPLE 15 - Use of IS_CHOSEN:
if received_PDU is of ASN.1 type
CHOICE{ p1 PDU_typel,
p2 PDU_type2,
p3 PDU_type }
then, the operation call
IS_CHOSEN(received_PDU.p2)
returns TRUE if the actual instance of received_PDU carries a PDU of the type PDU_type2.

11.3.3.3.NUMBER_OF_ELEMENTS(Valuell INTEGER

The operation returns the actual number of elements of a value that is of type ASN.1 SEQUENCE OF or SET OF. lIts result is
fully compatible with that of the equivalent ASN.1 SIZE constraint applied to objects of these types. The operation ghall not b
applied to values other than of ASN.1 type SEQUENCE OF or SET OF. The argument of the operation shall have the format as
defined in 15.10.2.

EXAMPLE 16 - Use of NUMBER_OF_ELEMENTS:
if received_PDU is of ASN.1 type

SEQUENCE({ field_1 INTEGER OPTIONAL,

field_2 SEQUENCE OF INTEGER }

then, the operation call

NUMBER_OF_ELEMENTS(received_PDU .field_2)
returns the number of elements of the SEQUENCE OF INTEGER within the actual data object received_PDU.
Also, NUMBER_OF_ELEMENTS ({3, 0, 5}) returns 3.

11.3.3.3.4ENGTH_OF(Value)d INTEGER

The operation returns the actual length of a value that is of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString or of ASN.1 type BIT STRING or OCTET STRING. The units of length for each string type are defined in Table
5in 11.18.2.

NOTE - These units of length are compatible with those used in ASN.1 SIZE constraints for objects of ASN.1 types, birabiviues

which in this context in TTCN are considered to be of the corresponding TTCN type. Thus, an hstring such as ‘F3'H whicAgbuidbe
of type BIT STRING or OCTET STRING, will be interpretaed as the TTCN type HEXSTRING.

36 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

The argument of the operation shall have the format as defined in 15.10.2.

The operation shall not be applied to values other than of type BITSTRING, HEXSTRING, OCTETSTRING, ¢
CharacterString, or of ASN.1 type BIT STRING or OCTET STRING.

EXAMPLE 17 - Use of LENGTH_OF

If Sis of type BITSTRING or ASN.1 type BIT STRING and ='010'B then LENGTH_OF(S) returns 3
If S is of type HEXSTRING and ='F3'H then LENGTH_OF(S) returns 2

If S is of type OCTETSTRING and ='F2'0O then LENGTH_OF(S) returns 1

If S is of a CharacterString type and ="EXAMPLE” then LENGTH_OF(S) returns 7

If Sis of ASN.1 type BIT STRING and ='F3'H then LENGTH_OF(S) returns 8

If Sis of ASN.1 type OCTET STRING and ='F3'H then LENGTH_OF(S) returns 1

If Sis of ASN.1 type OCTET STRING and ='01010011'B then LENGTH_OF(S) returns 1
Also, LENGTH_OF (INT_TO_HEX (26, 4)) returns 4

LENGTH_OF (‘F3'H) returns 2

and, LENGTH_OF (“Length_of Example”) returns 17

11.3.4 Test Suite Operation definitions and descriptions
11.3.4.1 Introduction

Operations specific to a test suite may be defined by the ATS specifier. To define a new operation, the following shal
provided:
a) a name for the operation;
b) a list of the input parameters and their types;
This is a list of the formal parameter names and types. Each parameter name shall be followed by a colon and then the
of the parameter’s type.

When more than one parameter of the same type is used, the parameters may be specified as a parameter sub-list.
parameter sub-list is used, the parameter names shall be separated from each other by a comma. The final parameter in
shall be followed by a colon and then the name of the type of the parameter.

When more than one parameter and type pair (or parameter list and type pair) is used, the pairs shall be separated froi
other by semicolons.

Only predefined types and data types as defined in the Test Suite Type definitions, ASP type definitions or PDU |1
definitions may be used as types for formal parameters. PCO types shall not be used as formal parameter types. All para
shall be passed by value, meaning that in evaluating a call of a test suite operation, the actual parameters are assigne
corresponding formal parameters, as if in an assignment statement.

EXAMPLE 18 - Parameter lists

The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one BOOLEAN pa-
rameter:

(A:INTEGER,; B:INTEGER; C:BOOLEAN)
(A, BIINTEGER; C:BOOLEAN)

c) the type of the result,

which shall follow the rules for the parameter types in b);
d) a definition of the operation,

which shall consist of one of the following:

1) a procedural definition, which when evaluated results in the evaluation of a RETURNVALUE statement to provide
result of the operation, including explanatory comments embedded within the procedural definition at appropriate plac
text delimited by “/*” and “*/”, or

2) adescription of the operation in text, possibly including a reference to a publicly available specification of the algorit
to be applied when the operation is invoked, plus at least one example showing an invocation and corresponding resu

Delivery 9.6, 21 April 1997 37

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

explanation should begin by stating the operation name, followed by a parenthesized list containing the parameter names of
the operation; this provides a “pattern” invocation for the operation;

e) optionally, further comment describing the operation, provided either in the Comments part of the table header or in the
Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations, bt a textu
explanation is allowed as an alternative for backwards compatibility.

In the case of a procedural definition, this information shall be provided in the format shown in the following proforma:

Test Suite Operation Procedural Definition

Operation Name : TS_Procld&ParList

Group : [TS_ProcGroupReference]
Result Type . Type

Comments . [FreeText]

Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 11 - Test Suite Operation Procedural Definition
SYNTAX DEFINITION:

to be added

In the case of a textual description, this information shall be provided in the following proforma:

Test Suite Operation Description

Operation Name : TS_Opld&ParList
Group : [TS_OpGroupReference]
Result Type . Type
Comments . [FreeText]
Description
FreeText

Detailed Comments: [FreeText]

Proforma 12 - Test Suite Operation Description
SYNTAX DEFINITION:

to be added

38 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

11.3.4.2 Parameters

A test suite operation may be compared to a function in an ordinary programming language. Values shall only be passed in
operation by formal parameters. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type Ide!
ASP Type Identifier, PDU Type Identifier, CM Type Identifier or the meta-Bip&. Test suite variables, test case variables,
test suite constants, test suite parameters and constraints shall not directly be used within the procedural defisttisutef a te
operation, but if required in the test suite operation shall be passed as actual parameters.

There shall be no side-effects, that is, the parameters to the operation shall not be altered as a result of any ealitidnhe op
Predefined operations and other test suite operations may be used within the procedural definition of a test suite oper
without having to be passed as actual parameters.

When a Test Suite Operation is invoked
a) the number of the actual parameters shall be the same as the number of the formal parameters;
b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type;
c) all variables appearing in the actual parameter list shall be bound; and
d) the actual parameters shall be passed by value.

11.3.4.3 Variables and Identifiers

If a procedural definition is used, it may include the declaration of local variables, placed at the head of the prodeitioral def
between the keyword¢AR andENDVAR. These variables may be of any type allowed in TTCN. The scope of these loce
variables is the procedural definition itself. These declarations declare lists of variable identifiers, each of a gindretgie a
list may either be declared to B# ATIC or not. Variables, botBTATIC and those not declared 8§ATIC , may be given an
optional initial value.

NOTE - It is recommended always to provllEATIC variables with an initial value.

The variables which are not declared t&SFATIC are initialized every time the operation is invoked, with the specified initial
value,if any, and thus they shall not convey a value from one evaluation of the test suite operation to another. Those whic
declared to b8TATIC are initialized with the specified initial value, if any, the first time the operation is invoked within a giver
test component, or within a given test case if test components are not used, and thereafter they retain their values frol
invocation to the next within that test component or test case.

Variables which are not assigned an initial value are considered to be unbound and shall be explicitly bound to a value |
assignment in the operation body before being used in an expression. If an unbound variable is used in an expressen thel
test case error.

Each identifier used in the procedural definition of a test suite operation shall be one of the following:
a) locally declared variable name;
b) a type name, used in a variable declaration;
c) aformal parameter name declared in a formal parameter list of the operation;
d) a test suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suite oper
Thus, the values of all other types of identifier are not directly accessible within the procedural definition of a opsratibe.
To access such values they shall be passed as actual parameters to the test suite operation.

11.3.4.4 Procedure Statements

In a procedural definition, following the declaration of local variables, if any, there shall be a procedure statemefftloé one o
following kinds:

a) a Return statement;

b) an Assignment statement;
c) an If statement;

d) a While loop;

e) a Case statement;

Delivery 9.6, 21 April 1997 39

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

f) a block containing a sequence of procedure statements separated by semicolons and all enclosed by thBE@&yMords
andEND.

Comments may be embedded as text within procedural statements, delimited by “/*” and “*/”. Comments shall not be embedded
within other comments.

11.3.4.5 ReturnValue statements

Each evaluation of a test suite operation shall end with the evaluation of a ReturnValue statement, consisting of the keyword
RETURNVALUE followed by an expression. This statement shall return the value of the given expression as the result of the
test suite operation. The type of this result shall match the Result Type specified in the header of the test suiteadjetiation d

table.

11.3.4.6 Assignment statements

The form of Assignment is the same as in the TTCN behaviour descriptions (see 15.10.4), except that it is not enclosed in
parentheses. The DataObjectReference on the left hand side shall begin with a local variable. If the type of the lodal variable

a structured type then the DataObjectReference may access a component of that structure (using a record reference, arra
reference or bit reference, as appropriate, see 15.10.2 and 15.10.3).

11.3.4.7 If statements

There are two forms of If statement:
- IF expressioMHEN procedure-statemeB1LSE procedure-statemeBENDIF
- IF expressioMHEN procedure-statemeBNDIF

The expression following the keywalfd shall be evaluated first and shall evaluate to a Boolean value. If this evalUaRésHo
then the procedure statement following the keywitHEEN shall be evaluated. If the expression evaluatéMASE then the
procedure statement following the keyw®&USE, if any, is evaluated. The use of the keywBNDIF to end the If statement
allows the procedure statements followiHgEN andELSE to be If statements without having to be enclosed in a block.

11.3.4.8 While loop
A While loop takes the form:
- WHILE expressioO procedure-statemeBENDWHILE

The expression following the keywoWHILE shall be evaluated first and shall evaluate to a Boolean value. If it evaluates to
TRUE then the procedure statement following the keywa@lshall be evaluated and then, if no ReturnValue statement has
been evaluated, the process shall be repeated starting with the evaluation of the expression again. As soon as the expressic
evaluates t&-ALSE the evaluation of the While loop is complete.

11.3.4.9 Case statement
A Case statement takes one of the two following forms:
- CASE expressiorOF
integer-label_1: procedure-statement_1;

integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ELSE

procedure-statement
ENDCASE

- CASE expressiorOF
integer-label_1: procedure-statement_1;

integer-label_2: procedure-statement_2;

40 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

integer-label_n: procedure-statement_n;
ENDCASE

The expression following the keywo@ASE shall be evaluated first and shall evaluate to a positive integer which shall matc
at most one of the integer labels in the body of the Case statement. The procedure statement following the matched,intege
if any, shall be evaluated and this completes the evaluation of the Case statement. If, however, the result of evaluatin
expression does not match any of the integer labels, then the procedure statement following theEkeSkyafény, shall be
evaluated and this completes the Case statement. If, however, there is no match against an integer BbS8Endaase, then

the result of the Case statement is a test case error. Thus, the Case statement is equivalent to a nested sequere@®f If st
each testing the expression “(expression) = integer-label_i”, possibly followed BlyS#h clause at the innermost level of
nesting.

11.3.4.10 Use of Test Suite Operations
A test suite operation together with its actual parameter list may be used wherever an expression is allowed.

Each test suite operation should include appropriate error checking. If an error (e.g. division by zero, an invalid @etygeeter,
mismatch, or evaluation of an unbound variable) is detected during evaluation of a test suite operation, it shall restult in
case error.

EXAMPLE 19 - Definition of the operation SUBSTR:

Test Suite Operation Description
Operation Name : SUBSTR (source:IA5String; start_index, length:INTEGER)
Result Type . IA5String

Description

SUBSTR(source, start_index, lengththe string of lengtten starting from indexstart_indexof the
source stringsource
For example: SUBSTR("abcde",3,2) = "cd"

SUBSTR("abcde",1,3) = "abc"

SUBSTR(source, start_index, lehgall only be defined if
start_index>=1,
len>= 0, and

start_index+ len <= (length of source+ 1.

Any attempt to evaluate SUBSTR applied to arguments on which it is not defined will result in a test cage error.

EXAMPLE 20 - Definition of the operation NUMBER_OF_INVOCATIONS:

Test Suite Operation Procedural Definition
Operation Name : NUMBER_OF_INVOCATIONS

Result Type : INTEGER
Definition
VAR STATIC COUNT : INTEGER : 0
ENDVAR
BEGIN

COUNT := COUNT + 1,
RETURNVALUE COUNT
END

Detailed Comments: NUMBER_OF_INVOCATIONS() gives an integer value which is equal to the number of times
this operation has been invoked in the current test component, or test case if test components are not used.

Delivery 9.6, 21 April 1997 41

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

11.4 Test Suite Parameter Declarations

The purpose of this part of the ATS is to declare constants derived from the PICS and/or PIXIT which are used to globally
parameterize the test suite. These constants are referred to as Test Suite Parameters, and are used as a basis fecfi@st Case se
and parameterization of Test Cases.

The following information relating to each Test Suite Parameter shall be provided:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its default value, if any,
which may be used to suggest suitable values for some test suite parameters such as timeout durations;
d) PICS/PIXIT entry reference,

which is a reference to an individual PICS/PIXIT proforma entry that will clearly identify where the value to be used for this
Test Suite Parameter will be found.

This information shall be provided in the format shown in the following proforma:

Test Suite Parameter Declarations

Group . [TS_ParGroupReference]
Parameter Name Type Default Value PICS/PIXIT Ref Comments
TS_Parldentifier Type [DefaultValue] FreeText [FreeText]

Detailed Comments: [FreeText]

Proforma 13 - Test Suite Parameter Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

EXAMPLE 21 - Declaration of Test Suite Parameters:

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question xx
PAR2 INTEGER PICS question yy
PAR3 INTEGER PIXIT question zz

11.5 Test Case Selection Expression Definitions

The purpose of this part of the ATS is to define selection expressions to be used in the Test Case selection proces$. This part
the ATS shall meet the requirements of ISO/IEC 9646-2.

42 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

A selection expression is associated with one or more Test Groups and/or Test Cases by placing its identifier in the Test
Selection Reference column of the Test Suite Structure and/or Test Case Index. An expression may be referenced by mo!
one Test Group and/or Test Case.

Use of a selection expression shall be taken to mean that the Test Case is to be run if the selectionexpression evéldates to
The following information relating to each Test Case Selection Expression shall be provided:

a) its name;

b) a selection expression,

which shall evaluate to a BOOLEAN value, and which shall use only literal values, Test Suite Parameters, Test Suite Cons
and other selection expression identifiers in its terms;

This information shall be provided in the format shown in the following proforma:

Test Case Selection Expression Definitions

Group . [SelectionGroupReference]
Expression Name Selection Expression Comments
SelectExprldentifier SelectionExpression [FreeText]

Detailed Comments: [FreeText]

Proforma 14 - Test Case Selection Expression Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

11.6 Test Suite Constant Declarations

The purpose of this part of the ATS is to declare a set of names for naludsrived from the PICS or PIXIT that will be
constant throughout the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,

where the type shall be a predefined type, a simple type or an ASN.1 Type (including PDUs, ASPs and CMs express
ASN.1);

c) its value,

where the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value shall ev
to an element of the type indicated in the type column.

Delivery 9.6, 21 April 1997 43

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations

Group . [TS_ConstGroupReference]
Constant Name Type Value Comments
TS_Constldentifier Type DeclarationValue [FreeText]

Detailed Comments: [FreeText]

Proforma 15 - Test Suite Constant Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

EXAMPLE 22 - Declaration of Test Suite Constants

Test Suite Constant Declarations

Constant Name Type Value Comments
TS_CONST1 BOOLEAN TRUE
TS_CONST2 IA5String "A string”

11.7 Test Suite Constant Declarations by Reference

The purpose of this part of the ATS is to declare a set of names for natdesived from the PICS or PIXIT that will be constant
throughout the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,

where the type shall be a predefined type or an ASN.1 type (including PDU, ASP or CM types expressed in ASN.1) imported
by an ASN.1 Type Definition By Reference from the ASN.1 module identified by the specified module identifier;

c) its value reference,
where the value shall correspond to an element of the type indicated in the type column;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994, and an optional
Objectldentifier; the module shall be unigue within the domain of interest.

44 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations By Reference

Group [TS_ConstGroupReference]
Constant Name Type Value Reference Module Identifier Comments
TS_Constldentifier Type ValueReference ASN1_Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

SYNTAX DEFINITION:
to be added

11.8 TTCN variables

11.8.1 Test Suite Variable Declarations

Proforma 16 - Test Suite Constant Declarations By Reference
Collective comments may be used in this table according to Figure 2.

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their valueg throus
the test suite. These variables are referred to as Test Suite Variables.

A Test Suite Variable is used whenever it is necessary to pass information from one Test Case to another. In concurrent T
Test Suite Variables shall only be used by the MTC.

The following information shall be provided for each variable declaration:

a) its name;
b) its type,

where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its initial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Suite Variable at its poin
declaration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value
evaluate to an element of the type indicated in the type column. Specifying an initial value is optional.

Delivery 9.6, 21 April 1997

45

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

This information shall be provided in the format shown in the following proforma:

Test Suite Variable Declarations

Group : [TS_VarGroupReference]
Variable Name Type Value Comments
TS_Varldentifier Type [DeclarationValue] [FreeText]

Detailed Comments: [FreeText]

Proforma 17 - Test Suite Variable Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

Since it is possible that any particular Test Case may be run independently of the others in the test suite, it is re¢dbssary th
use made of Test Suite Variables does not make assumptions about the ordering of the Test Case execution.

EXAMPLE 23 - Declaration of Test Suite Variables:

Test Suite Variable Declarations

Variable Name Type Value Comments

state IA5String "idle" Used to indicate the final stg
ble state of the previous Teg
Case, if any, in order to help
determine which preamble tp
use.

—

11.8.2 Binding of Test Suite Variables

Initially Test Suite Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) at the point of declaration if an initial value is specified;
b) when the Test Suite Variable appears on the left-hand side of an assignment statement (see 15.10.4);

Once a Test Suite Variable has been bound to a value, the Test Suite Variable will retain that value until either ibisbound t
different value, or execution of the test suite terminates - whichever occurs first.

If an unbound Test Suite Variable is used in the right-hand side of an assignment, then it is a test case error.
11.8.3 Test Case Variable Declarations

A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is defta¢d to be
to the Test Case.

In concurrent TTCN, each test component, including the MTC, receives a fresh copy of all Test Case Variables when it is created
These variables are referred to as Test Case Variables.

The following information shall be provided for each variable declaration:
a) its name;

46 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its initial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Case Variable at its poir
declaration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value
evaluate to an element of the type indicated in the type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Case Variable Declarations

Group . [TC_VarGroupReference]
Variable Name Type Value Comments
TC_Varldentifier Type [DeclarationValue] [FreeText]

Detailed Comments: [FreeText]

Proforma 18 - Test Case Variable Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

NOTE - Caution must be exercised when using Test Case Variables as local variables within a Test Step, in order to avoftiatsagéh
other Test Steps or Test Case Variables. A test suite specifier may avoid such problems by adopting a naming conventibresifitah w
all such variables being uniquely named within a test suite.

11.8.4 Binding of Test Case Variables
Initially Test Case Variables are unbound. They may become bound (or be re-bound) in the following contexts:

a) at the point of declaration if an initial value is specified;
b) when the Test Case appears on the left-hand side of an assignment statement (see 15.10.4).

Once a Test Case Variable has been bound to a value, the Test Case Variable will retain that value until either it & boun
different value, or execution of the Test Case terminates - whichever occurs first. At termination of the Test Case abe Test
Variable becomes re-bound to its initial value, if one is specified, otherwise it becomes unbound.

If an unbound Test Case Variable is used in the right-hand side of an assignment, then it is a test case error.

11.9 PCO Type Declaration
This part of the ATS lists the set of service boundaries where the PCOs (Points of Control and Observation) are located.
The following information shall be provided for each PCO types used in the test suite:

a) its name,

which is the same name given in the PCO table;

b) its role,

which shall be declared either as UT or LT in the Role column or by descriptive text in the Comment column; the predefi
identifier UT indicates that the PCO is an upper tester PCQ.&nspecifies a lower tester PCO; if the Role column is used
then its contents shall be consistent with the role, if any, given in the PCO declaration table.

Delivery 9.6, 21 April 1997 47

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

NOTE - In atest suite using concurrency, the role of a PCO type may need to be described in terms of the nature of e édtaum
underlying service provider to be coupled by PCOs of this type.

This information shall be provided in the format shown in the following proforma:

PCO Type Declarations

Group . [PCO_GroupReference]
PCO Type Role Comments
PCO_Typeldentifier [PCO_Role] [FreeText]

Detailed Comments: [FreeText]

Proforma 19 - PCO Type Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

PCO types are defined in the PCO table and therefore the PCO Type table is optional. If a PCO type is given as an esfported obje
in the Export table, it shall be defined in the PCO Type table.

11.10 PCO Declarations

This part of the ATS lists the set of points of control and observation (PCOs) to be used in the test suite and explains where
the testing environment these PCOs exist.

NOTE 1 - The number of PCOs is, where applicable, as defined in ISO/IEC 9646-1: 1994 and ISO/IEC 9646-2: 1994 for thedi@3t meth
identified in the Test Suite Structure table. In TTCN, PCOs may also be used in ways not described in ISO/IEC 9646-2|ddo examp
municate with parts of the test system or test environment not defined in the test suite (e.g. to manipulate frequentaés lasiavers for
radio protocol testing).

NOTE 2 - TTCN behaviour statements specified for execution at the UT PCO should not place requirements beyond thosey $8€xified b
IEC 9646-2.

In TTCN the PCO model is based on two First In First Out (FIFO) queues:
- one output queue for sending ASPs and/or PDUs
- one input queue for receiving ASPs and/or PDUs
The output queue is assumed to be located within the underlying service-provider or in the case of the UT, within the IUT.

A SEND event at a PCO is successful when the event is passed from the LT to the service-provider, or when the event is passe
from the UT to the IUT.

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed hy the tester
the same order they were received, and without loss of any events.

NOTE 3 - The queue model is only an abstract model and is not intended to imply a specific implementation.
The following information shall be provided for each PCO used in the test suite:

a) its name,

which is used in the behaviour descriptions to specify where particular events occur;

b) its type,

which is used to identify the service boundary where the PCO is located, and which may if necessary be followed by
information concerned with multiplexing requirements to be met immediately below this PCO but above the service boundary;

48 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

if the activity at two or more PCOs is to be multiplexed together by the service provider (e.g. onto a single connection «
point) then, in the PCO declarations for these PCOs, the PCO type shall be followed by the same MuxValue (i.e. a test
parameter) given in parentheses; the precise meaning of this test suite parameter shall be specified in the relevant PIXI

NOTE - See also F.11 for further explanation of MuxValue.

EXAMPLE 24 - Use of MuxValue

LT1 LT2

PCO_1 PCO_2
N-SAP (MuxA) N-SAP (MuxA)

N-SAP
N-Service plus Multiplexing Service Provider f

c) itsrole,

which may be omitted if it is specified in the PCO type declaration table for each of the PCO types used; if the role is
specified in a PCO type declation table then it shall be declared either as UT or LT in the Role column or by descriptive
in the Comment column; the predefined identitidr indicates that the PCO is an upper tester PCQ @nspecifies a lower
tester PCO; if the Role column is used then its contents shall be consistent with the role, if any, given in the PCO
declaration table.

NOTE - In a test suite using concurrency, the role of a PCO may need to be described in terms of the nature of the testasmwmpone
underlying service provider to be coupled by this PCO.

This information shall be provided in the format shown in the following proforma:

PCO Declarations

Group : [PCO_GroupReference]
PCO Name Type Role Comments
PCO_ldentifier PCO_Typeldentifier [PCO_Role] [FreeText]
[(MuxValue)]

Detailed Comments: [FreeText]

Proforma 20 - PCO Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

Delivery 9.6, 21 April 1997 49

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 25 - Declaration of PCOs

PCO Declarations

PCO Name PCO Type Role Comments
L TSAP LT Transport service access
point at the lower tester.
U SSAP uT Session service access point
at the upper tester.

Points of control and observation are usually just SAPs, but in general can be any appropriate points at which thedast events
be controlled and observed. However, it is possible to define a PCO to correspseibtSAPS, provided all the SAPs (Service
Access Point) comprising that PCO are

- at the same locationg.,in the LT or in the UT);
- SAPs of the same service.

When a PCO corresponds to several SAPs the appropriate address is used to identify the individual SAP. PCOs are normally
associated with one service access point of the (N-1) service-provider or the IUT.

NOTE - A PCO may not be related to a SAP at all. This could be the case when a layer is composed of suhlaydre Application layer,
or in the lower layers, where a subnetwork point of attachment is not a SAP).

11.11 CP Declarations

CPs are used to facilitate the exchange of CMs between test components. CPs are modelled as two queues, one for each directi
of communication. In this respect they are similar to PCOs (see figure 3). A difference between CPs and PCOs is thattCPs connec
two test components, while PCOs connect a test component with the external environment, usually either the IUT or a service

provider.
[[[=—
—&E—

Figure 5 - Model of a CP

CPs can be realized either by local communication or by communication that spans physical boundaries.

Communication via CPs is asynchronous, that is, communication is achieved by one test component sending a CM to its partner
and its partner receiving the CM when ready. The test component that initiated the CM, however, proceeds with execution

immediately after sending the CM. If it is required that the sending test component suspends its activity until the CM has been

received, a test suite specifier should use a handshake mechanism. An example of how such a handshake can be specified

shown in figure 4.

A_CP! READY A_CP? READY
A_CP? OK A_CP! OK

Figure 6 - Example of a simple handshake

All CPs shall be declared. The name of each CP shall be unique within the test suite.

50 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

This information shall be provided in the format shown in the following proforma:

CP Declarations

Grou . [CP_GroupReference

p p
CP Name Comments
CP_ldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 21 - CP Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

11.12

Timer Declarations

A test suite may make use of timers. The following information shall be provided for each timer:

a) the timer name,
b) the optional timer duration,

where the default duration of the timer shall be an expression which may be omitted if the value cannot be established pr
execution of the test suite; the terms in the value expression shall not contain: Test Suite Variables or Test Casdhéariable
timer duration shall evaluate to an unsigned positive INTEGER value;

c¢) the time unit,

where the time unit shall be one of the following:

1)
2)
3)
4)
5)
6)

ps(i.e., picosecond);
ns (i.e., nanosecond);
us (i.e., microsecond);
ms (i.e., millisecond);
s (i.e., second);

min (i.e., minute).

Time units are determined by the test suite designer and are fixed at the time of specification. Different timers magntse diff
units within the same test suite. If a PICS or PIXIT entry exists, the timer declaration shall specify the same unitsninclude
the PICS/PIXIT entry.

Delivery 9.6, 21 April 1997 51

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

This information shall be provided in the format shown in the following proforma:

Timer Declarations

Group . [TimerGroupReference]
Timer Name Duration Unit Comments
Timerldentifier [DeclarationValue] TimeUnit [FreeText]

Detailed Comments: [FreeText]

Proforma 22 - Timer Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:
to be added
Each Test Component gets a fresh copy of all timers when it starts executing its behaviour.

EXAMPLE 26 - Declaration of timers

Timer Declarations

Timer Name Duration Unit Comments
wait 15 S General purpose wait.
no_response A min Used to wait for IUT to conneqt

or react to connection establigh-
ment, longer duration than gep-
eral purpose wait. Gets value
from PIXIT.

delay_time ms Duration to be established duf
ing execution of the test suite

11.13 Test Components and Configuration Declarations
11.13.1 Test Components
11.13.1.1 Main Test Component

The Main Test Component is intended to fulfil the role of the Lower Tester Control Function (LTCF), as defined in ISO/IEC
9646-2, 12.5.2. Its behaviour is described in the first tree of the test case behaviour description table and all tikés iattache
It is responsible for:

a) creating all PTCs required within the current configuration and monitoring their termination;
b) managing CPs that exist between itself and PTCs;

¢) computation and assignment of the test verdict using its knowledge of the combined effect of the preliminary results from
the PTCs.

In addition a Main Test Component may manage PCO(s).

52 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Only the Main Test Component shall use Test Suite Variables. Test Suite Variables shall not be passed to PTCs in the CR!
construct.

11.13.1.2 Parallel Test Components

Parallel Test Components are intended to fulfil the role of the Lower Testers or Upper Testers . Their behaviour is describ
the tree which is referenced in a CREATE statement in the MTC, and all trees attached to it. A PTC assigns preliminary re
but does not assign test verdicts.

A PTC shall not:

a) use Test Suite Variables;

b) create other test components.
11.13.1.3 Test Component Declarations

If concurrent TTCN is used, this section of the ATS shall declare all individual test components that are used. These
components are later referenced from the Test Component Configurations declarations which define specific configuratior

The following information shall be provided for each test component:
a) its name,
which shall be unique throughout the test suite;
b) its role,

which shall indicate whether the test component is the Main Test Component or a Parallel Test Component, and where a
one test component shall be a Main Test Component, and at least one test component shall be a Parallel Test Compon

¢) number of PCOs used,
where zero or more PCOs may be associated with the test component;
d) number of CPs used,
where zero or more CPs may be associated with the test component;
This information shall be provided in the format shown in the following proforma:

Test Component Declarations

Group . [TCompGroupReference]
Component Name Component Role Nr of PCOs Nr of CPs Comments
TCompldentifier TCompRole Num_PCOs Num_CPs [FreeText]

Detailed Comments: [FreeText]

Proforma 23 - Test Component Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

Delivery 9.6, 21 April 1997 53

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 27 - Declaration of test components

This Test Component Declarations table can be used in conjunction with the Test Component Configurations CONFIG1
and CONFIG2, illustrated in Figure 3 and Figure 4, and declared in Example 28 and Example 29.

Test Component Declarations
Component Name Component Role Nr PCOs Nr CPs Comments

MTC1 MTC 0 3 Used in Config 1

MTC2 MTC 1 2 Used in Config 2,with a PCO

TC1 PTC 1 2 Used in Config 1

TC2 PTC 1 3 Used in Config 1 and Config 2
TC3 PTC 1 2 Used in Config 1

TC4 PTC 0 3 Used in Config 2

TC5 PTC 1 0 Used in Config 2, without a CP

11.13.2 Test Component Configuration Declarations

Test components are used to build a logical architecture, or configuration, that facilitates concurrent execution of TTIEN dynam
behaviour trees. Each Test Component configuration that is used in an Abstract Test Case using concurrency shall be declared

The following information shall be provided for each Test Component Configuration:
a) its name,
which shall be unique within the test suite, and shall be referenced from a test case dynamic behaviour table header;
b) a list of the test components belonging to the test configuration,
where the following information shall be provided for each test component:
1) its name,

which shall have been declared as a test component name. Exactly one of the test components in the configuration shall be
declared as an MTC.

2) PCOs used,

where a list of zero or more declared PCOs is associated with each test component. The number of PCOs in the list shall be
the same as the number of PCOs declared in the relevant Test Components Declaration. No PCO shall be used more tha
once in a single configuration (i.e. test components in one configuration shall not share PCOs).

3) CPs used,

where a list of zero or more declared CPs is associated with each test component. The number of CPs in the list for a PTC
shall be the same as the number of CPs declared in the relevant Test Components Declaration. The number of CPs in the lis
of an MTC shall not exceed the number of CPs declared. No CP name shall appear more than once in each CP list. Each CI
name in the list for one test component shall appear in the list for exactly one other test component in the configuration. In
other words, each CP name used in the configuration will appear exactly twice in the configuration table. These CP pairs are
used to specify the connectivity of test components in the configuration.

54 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

This information shall be provided in the format shown in the following proforma:

Test Component Configuration Declaration

Configuration Name

TCompConfigldentifier

Group [TCompConfigGroupReference]
Comments [FreeText]
Components Used PCOs Used CPs Used Comments
TCompldentifier [PCO_List] [CP_List] [FreeText]
Detailed Comments: [FreeText]
Proforma 24 - Test Component Configuration Declaration
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:
to be added
EXAMPLE 28 - Test Component Configuration declaration corresponding to Figure 3
Test Component Configuration Declaration
Configuration Name CONFIG_1
Components Used PCOs Used CPs Used
MTC1 MCP1, MCP2, MCP3
TC1 PCO_A MCP1, CP1
TC2 PCO_B MCP2, CP1, CP2
TC3 PCO_C MCP3, CP2
EXAMPLE 29 - Test Component Configuration declaration corresponding to Figure 4
Test Component Configuration Declaration
Configuration Name CONFIG_2
Components Used PCOs Used CPs Used
MTC2 PCO_D MCP2, MCP3
TC2 PCO_B MCP2, CP1, CP2
TC4 MCP3, CP1, CP2
TC5 PCO_E

Delivery 9.6, 21 April 1997

55

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

11.14 ASP Type Definitions
11.14.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or receickdted the de
PCOs. ASP type definitions may include ASN.1 type definitions, if appropriate.

11.14.2 ASP Type Definitions using tables
The following information shall be supplied for each ASP:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, them#he full na
shall follow in parentheses;

b) the PCO type associated with the ASP,

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is defined within
a test suite, specifying the PCO type in an ASP type definition is optional.

c) a list of the parameters associated with the ASP,

where the following information shall be supplied for each parameter:
1) its name,
where either:

- the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then the full name
shall follow in parentheses; or

- the macro symbol (<-) indicating that the entry in the type column identifies a set of parameters that is to be inserted
directly in the list of ASP parameters; the macro symbol shall be used only with Structured Types defined in the Structured
Types definitions;

2) its type and an optional attribute,

where parameters may be of a type of arbitrarily complex structure, including being specified as a Test Suite Type (either
predefined, Simple Type, Structured Type or ASN.1 type); if a parameter is to be structured as a PDU, then its type may be
stated either:

- as a PDU identifier to indicate that in the constraint for the ASP this parameter may be chained to a PDU constraint of a
specific PDU type; or

- asPDU to indicate that in the constraint for the ASP this parameter may be chained to a PDU constraint of any PDU
type; and where the optional attribute is Length;

in which case the specification may restrict the parameter to a particular length or a range according to 11.18. The length
values shall be interpreted according to Table 5 in 11.18. The boundaries shall be specified in terms of non-negative INTE-
GER literals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the ASP parameter type in the Test Suite Type definitions shall not conflict with the
length specifications in the ASP type definitiae,, the set of strings defined by a length restriction in an ASP definition
shall be a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of
length.

NOTE -It is usually unnecessary to restrict the length of ASP parameters, but in some cases this may be necessaryfieotirgdy to e
restrict the length of a corresponding PDU field in an underlying protocol.

The parameters of ASP type definitions are considered to be optienal,instances of these types whole parameters may
not be present.

56 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

This information shall be provided in the format shown in the following proforma:

ASP Type Definition

ASP Name : ASP_Id&Fullld
Group . [ASP_GroupReference]
PCO Type . [PCO_Typeldentifier]
Comments . [FreeText]
Parameter Name Parameter Type Comments
ASP_ParIIdOrMacro Type&Attributes [FreéText]

Detailed Comments: [FreeText]

Proforma 25 - ASP Type Definition
The Parameter Name and Parameter Type columns shall either be both present or both omitted.
SYNTAX DEFINITION:

to be added

EXAMPLE 30 - T_CONNECTrequest Abstract Service Primitive

The figure below shows an example from the Transport Service [ISO 8072]. This could be part of the set of ASPs used to

describe the behaviour of an abstract UT in a DS test suite for the Class 0 Transport. CDA,CGA and QOS are Test Suite Types
[ISO 8073].

ASP Type Definition

ASP Name : CONreq (T_CONNECTrequest)
PCO Type : TSAP

Comments
Parameter Name Parameter Type Comments
Cda (Called Address) CDA ... of upper tester
Cga (Calling Address) CGA ... of lower tester
QoS (Quality of Service) QOS should ensure class 0 is used

Detailed Comments: ASP to be sent at Transport service access point

11.14.3 Use of Structured Types within ASP Type Definitions
There are two possible relationships between a Structured Type and ASP definitions which refer to it, as follows:

a) if a parameter name is given in the definition, then the Structured Type referenced is a substructure. This allows defir
of ASPs containing a multi-level substructure of parameters;

b) if the macro symbol (<-) is used instead of a parameter name then this is equivalent to a macro expansion; the entry
ASP type definition expands directly to a list of parameters without introducing an additional level of substructure.

Delivery 9.6, 21 April 1997 57

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simple., Torggs,
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

11.14.4 ASP Type Definitions using ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the ASN.1 syntax
as defined in ISO/IEC 8824-1: 1994. The following information shall be supplied for each ASN.1 ASP:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, theméhe full na
shall follow in parentheses;

b) the PCO type associated with the ASP,

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is defined within
a test suite, specifying the PCO type in an ASP type definition is optional;

c) the ASN.1 ASP type definition,

which shall follow the syntax defined in ISO/IEC 8824-1: 1994. For identifiers within that definition the hyphen symbol (-)
shall not be used. The underscore symbol (_) may be used instead. The ASP identifier in the table header is the name of the
first type defined in the table body.

Types referred to from the ASP definition shall be defined in other ASN.1 type definition tables, be defined by reference in th
ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally defined types
shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--" and end with either the next occurrence of “--" or with “end of line”, whichever comes first.
This prevents a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in
TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1
comments with “--".

This information shall be provided in the following proforma:

ASN.1 ASP Type Definition

ASP Name : ASP_Id&Fullld

Group . [ASN1ASP_GroupReference]
PCO Type . [PCO_Typeldentifier]
Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 26 - ASN.1 ASP Type Definition
SYNTAX DEFINITION:
to be added
11.14.5 ASN.1 ASP Type Definitions by Reference

ASPs can be specified by a precise reference to an ASN.1 ASP defined in an OSI standard or by referencing an ASN.1 type
defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each ASP:

58 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

a) its name,
where this name may be used throughout the entire test suite;
b) the PCO type associated with the ASP;

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is de
within a test suite, specifying the PCO type in an ASP type definition is optional,

c) the type reference,
which shall follow the identifier rules stated in ISO/IEC 8824-1: 1994;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994 and an optic
Objectldentifier.

This information shall be provided in the following proforma:

ASN.1 ASP Type Definitions By Reference

Group . [ASN1ASP_GroupReference]
ASP Name PCO Type Type Reference Module Identifier Comments
ASP_Id&Fullid [PCO_Typeldentifier] TypeReference Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 27 - ASN.1 ASP Type Definitions By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:
to be added

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use imported definitic
TTCN it is necessary to change the hyphens to underscore (see A.4.2.1).

11.15 PDU Type Definitions
11.15.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of the PDUs that may be sent or received
directly or embedded in ASPs at the declared PCOs. PDU type definitions may include ASN.1 type definitions, if appropr
PDU definitions define the set of PDUs exchanged with the IUT which are syntactically valid with respect to the ATS but
necessarily valid with respect to the protocol specification.

It is required to declare all fields of the PDUs that are defined in the relevant protocol standard, either explicitlgity gpli
referring to encoding rules (ASN.1 encoding rules, if applicable).

The encoding of PDU fields shall follow that as defined in the relevant protocol specification unless encoding informatio
included in the test suite.

11.15.2 PDU Type Definitions using tables
The definition of PDUs is similar to that of ASPs. The following information shall be supplied for each PDU:
a) its name,

Delivery 9.6, 21 April 1997 59

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, theméhe full na
shall follow in parentheses;

b) the PCO type associated with the PDU,

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is sent or received only embeddec
in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO is defined within a test suite,
specifying the PCO type in a PDU type definition is optional;

c) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite as
whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BER to
DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

d) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations for the
test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g.framthange
SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

e) a list of the fields associated with the PDU,

where the following information shall be supplied for each field:
1) its name,
where either:

- the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then the full name
shall follow in parentheses; or

- the macro symbol (<-) indicating that the entry in the type column identifies a set of fields that is to be insefyed direct
in the list of PDU fields; the macro symbol shall be used only with Structured Types defined in the Structured Type defi-
nitions;

2) its type and an optional attribute;

where fields may be of a type of arbitrarily complex structure, including being specified as a Test Suite Type (either prede-
fined, Simple Type, Structured Type or ASN.1 type); if a field is to be structured as a PDU, then its type may be stated either

- as a PDU identifier to indicate that in the constraint for the PDU this field may be chained to a PDU constraint of a spe-

cific PDU type; or

- asPDU to indicate that in the constraint for the PDU this field may be chained to a PDU constraint of any PDU type;
and where the optional attribute is Length;

in which case the specification may restrict the field to a particular length or a range according to 11.18. The length values
shall be interpreted according to Table 5 in 11.18. The boundaries shall be specified in terms of non-negative INTEGER
literals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict with the length
specifications in the PDU type definitiare., the set of strings defined by a length restriction in a PDU definition shall be a
true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of
length.

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify explicit
encodings for individual fields of a PDU, which override the encoding rules and encoding variations applicable to the PDU
as a whole; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field Encoding
Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The fields of PDU type definitions are considered to be optidealjn instances of these types whole fields may not be
present.

60 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

This information shall be provided in the format shown in the following proforma:

PDU Type Definition

PDU Name

Group

PCO Type

Encoding Rule Name

Encoding Variation

PDU_lId&Fullld

[PDU_GroupReferenceGroupReference]

[PCO_Typeldentifier]
[EncodingRuleldentifier]

[EncVariationCall]

Comments [FreeText]
Field Name Field Type Field Encoding Comments
PDU_FieldldOrMacro Type&Attributes [PDU_FieldEncodingCall] [FreeText]
Detailed Comments: [FreeText]
Proforma 28 - PDU Type Definition
The Field Name and Field Type columns shall either be both present or both omitted.
SYNTAX DEFINITION:
to be added
EXAMPLE 31 - A typical PDU Type Definition
PDU Type Definition
PDU Name : INTC (Interrupt Confirm)
PCO Type : NSAP
Field Name Field Type Comments
GFlI BITSTRING General Format Identifier
LCGN BITSTRING Logical Channel Group Number
LCN BITSTRING Logical Channel Identifier
PTI OCTETSTRING Packet Type Identifier
EXTRA OCTETSTRING To create long INTC packets

11.15.3 Use of Structured Types within PDU definitions
There are two possible relationships between a Structured Type and PDU definitions which refer to it, as follows:

a) if a field name is given in the definition, then the Structured Type referenced is a substructure. This allows definitiot

PDUs containing a multi-level substructure of fields;

b) if the macro symbol (<-) is used instead of a field hame then this is equivalent to a macro expansion; the entry in the

type definition expands directly to a list of fields without introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simpée, dppes
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

Delivery 9.6, 21 April 1997

61

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

11.15.4 PDU Type Definitions using ASN.1

Where more appropriate, PDUs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the ASN.1 syntax
as defined in ISO/IEC 8824-1: 1994. The following information shall be supplied for each ASN.1 PDU:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, theméhe full na
shall follow in parentheses;

b) the PCO type associated with the PDU,

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is always sent or received embedde
in ASPs, then specification of the PCO type in the PDU type definition is optional; if only a single PCO is defined vgithin a te
suite, then specification of the PCO type in the PDU type definition is optional;

c) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite as
whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BER to
DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

d) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations for the
test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g.framthange
SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

e) the ASN.1 PDU type definition,

which shall follow the syntax defined in ISO/IEC 8824-1: 1994, except that there is the additional option of specifying an
Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type or any ASN.1 Type within the
ASN1_Type. This is done by giving a specific encoding identifier followed by any necessary actual parameter list, in order to
specify explicit encodings for individual fields or other subtypes of a PDU, which override the encoding rules and encoding
variations applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the Encodingd/ariati

or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol (_) may beadsed inste
The PDU identifier in the table header is the name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by reference in
the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally dedmed ty
shall not be used in other parts of the test suite.

ASN.1 comments may be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--" and end with either the next occurrence of “--" or with “end of line”, whichever comes first.
This prevents a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in
TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1
comments with “--".

62 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

This information shall be provided in the following proforma:

ASN.1 PDU Type Definition

PDU Name : PDU_Id&Fullid

Group . [ASN1PDU_GroupReference]
PCO Type . [PCO_Typeldentifier]
Encoding Rule Name : [EncodingRuleldentifier]
Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 29 - ASN.1 PDU Type Definition
SYNTAX DEFINITION:

to be added

EXAMPLE 32 - An FTAM ASN.1 Definition

ASN.1 PDU Type Definition

PDU Name : F_INIT (F_INITIALIZE_response)
PCO Type
Comments

Type Definition

SEQUENCE {
state_result State_result DEFAULT success,
action_result Action_Result multiple success,
protocol_id Protocol_Version,
-- etc.

11.15.5 ASN.1 PDU Type Definitions by Reference

PDUs can be specified by a precise reference to an ASN.1 PDU defined in an OSI standard or by referencing an ASN.]
defined in an ASN.1 module attached to the test suite. ASN.1 identifiers, type references and value references may cc
hyphens. In order to be able to use imported definitions in TTCN it is necessary to change the hyphens to underscore
A.4.2.1).

The following information shall be supplied for each PDU:
a) its name,
where this name may be used throughout the entire test suite;
b) the PCO type associated with the PDU;

Delivery 9.6, 21 April 1997 63

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is sent or received only embeddec
in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO is defined within a test suite,
specifying the PCO type in a PDU type definition is optional;

c) the type reference,
which shall follow the identifier rules stated in ISO/IEC 8824-1: 1994;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824-1: 1994 and an optional
Objectldentifier;

e) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite as
whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BER to
DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

f) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations for the
test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g.framthange
SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

This information shall be provided in the following proforma:

ASN.1 PDU Type Definitions By Reference

Group . [ASN1PDU_GroupReference]

PDU Name PCO Type Type Reference Module Identifier Enc Rule Enc Variation Comments

. [PCO_Type-Iden-
PDU_Id&Fullld tifier] TypeReference Moduleldentifier [EncodingRule- [EncVariation- [FreeText]
Identifier] Call]

Detailed Comments: [FreeText]

Proforma 30 - ASN.1 PDU Type Definitions By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

to be added

11.16 Test Suite Encoding Information
11.16.1 Encoding Definitions

To facilitate specification and testing of the encoding rules of an OSI protocol, if there is any allowed flexibility sotliegen

rules applicable to the protocol, then an encoding definition should be provided. If an encoding definition is providedca refe

shall be given in the ATS to the specification in which the encoding rules are specified. The reference may be to the protocol
specification itself, or to a separate encoding rules specification. If such a reference cannot be provided, i.e., theusoding

of the protocol are not standardized, then the encoding rules shall not be tested.

The following information shall be provided for each set of encoding rules relevant to the protocol:
a) the Encoding Rule Name, which is a unique identifier to be used throughout the test suite to refer to an encoding definition;
b) the reference to the relevant standard which defines the encoding rules;

64 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

c) a Default Expression, identifying the encoding rules to be used as the default; this Default Expression shall evaluate

Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite Constants in its terms.

d) optionally, further comment, provided in the Comments column, or in the Detailed Comments area of the table.

If more than one set of encoding rules may be used for a protocol, the names of the encoding rules shall be listed inghe En
Rule Name column of the Encoding Definitions table. The Encoding Rule Name associated with the Default Expression w
evaluates to TRUE shall be chosen as the default set for the test suite. If more than one Default Expression or no D
Expression in the Encoding Definitions table evaluates to TRUE, it shall be a test case error. If no Default Expres#ied s spec

it is equivalent to the value FALSE being specified.
The information shall be provided in the following proforma:

Encoding Definitions

Group [EncodingGroupReference]
Encoding Rule Name Reference Default Comments
EncodingRuleldentifier EncodingReference [DefaultExpression] [FreeText]
Detailed Comments: [FreeText]
Proforma 31 - Encoding Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:
to be added
The encoding rules specified in this proforma apply to PDUs only.
EXAMPLE 33 - Encoding Definitions
Encoding Definitions
Encoding Rule Name Reference Default Comments
BER ISO/IEC 8825-1: 1993 TRUE Basic Encoding Rules
PER ISO/IEC 8825-1: 1993 Packed Encoding Rules
DER ISO/IEC 8825-1: 1993 Distinguished Encoding Ruleg

Detailed Comments: [FreeText]

11.16.2 Encoding Variations

Admissable variations of each encoding definition that may be used in the test suite may be provided.

To define such Encoding Variations, the following information shall be provided:

a) an Encoding Rule Name, which is the name of the encoding rules identified in the Encoding Definition table to which

variation applies;

b) an optional Type List, listing the types to which this Encoding Variation may be applied; an empty list means that
Encoding Variations may be applied to any PDU field. The types may be any PDU type or any type may occur within a P

c¢) a list of Encoding Variations,
where the following information shall be supplied for each Encoding Variation:

Delivery 9.6, 21 April 1997

65

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

1) the Encoding Variation name, which is a unique identifier referring to an allowed encoding definition for a specific type,
as contained in the relevant encoding rules specification;

2) aReference, which is used to identify the section in the encoding rules specification which describes this set of Encoding
Variations;

3) a Default Expression, identifying the Encoding Variation to be used as the default; this Default Expression shall evaluate
to a Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite Constants in its terms;

d) optionally, further comment, provided in the Comments part of the table header, the Comments column, or in the Detailed
Comments area of the table.

The Encoding Variation associated with the expression which evaluates to TRUE shall be chosen as the default Encoding
Variation for the given list of types, if any, or otherwise for all types within the test suite. If more than one DefagkKi&ixjme

the Encoding Variations table evaluates to TRUE, it shall be a test case error. If no Default Expression is specified for an
Encoding Variation, it is equivalent to the value FALSE being specified. If no Default Expressions are specified orutddl eval

to FALSE, the first Encoding Variation shall be taken as the default.

Encoding variations shall be provided in the format shown in the following proforma:

Encoding Variations

Group . [EncVariationGroupReference]
Encoding Rule Name : EncodingRuleldentifier
Type List . [TypelList]
Comments . [FreeText]
Encoding Variation Reference Default Comments
Echariatio.nId&ParList Variation.Reference [DefauItE.xpression] [Free;Text]

Detailed Comments: [FreeText]

Proforma 32 - Encoding Variations
SYNTAX DEFINITION:

to be added

66 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 34 - Encoding Variations

Encoding Variations

Encoding Rule Name : BER
Type List : Length
Comments . Length is defined to be an INTEGER type.

Encoding Variation Reference Default Comments
SD 6.3.3.1 TRUE
LD(len: INTEGER) 6.3.3.2
Detailed Comments:

11.16.3 Invalid Field Encoding Definitions

In order to test encoding rules thoroughly, it may be necessary to define illegal variations of the encoding definitigribaused b
protocol. Invalid field encoding definitions may be provided for any of the Types used in PDU fields in the test suite. Ol
defined, an invalid field encoding definifion may be used to override the normal encoding of a specific PDU Constraint fi
value of the same Type (see 13.4).

The following information relative to an invalid field encoding definition shall be provided:

a) an Invalid Field Encoding Name, which is a unique identifier to be used throughout the test suite to refer to thisluhvalid f
encoding definition, followed by an optional formal parameter list;

b) an optional Type List, to list the types to which this encoding may be applied; an empty list means that the enco
definition may be applied to any field of a PDU;

¢) an Encoding Operation Definition which contains the definition of how the values are to be encoded,

which shall consist of a procedural definition, in the same form as a procedural definition of a Test Suite Operation (11..
which when evaluated results in the evaluation of a ReturnValue statement to provide the result of the operation, inclu
explanatory comments embedded within the procedural definition at appropriate places as text delimited by “/*” and *
explanatory comments shall include an example showing an invocation; the result of the Encoding Operation shall
Bitstring with a defined order of transmission, being the encoding of the relevant value;

d) optionally, further comment describing the operation, provided either in the Comments part of the table header or ir
Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations.

If a formal parameter list is specified, the values passed to the encoding operation are used to affect the encoding of the
field. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type Identifier or a PDU Type Ident
For example, an integer value may be passed to an encoding operation that calculates the length of a PDU field. Thehway in
parameters passed to the operation are used shall be explained in the encoding operation definition.

One proforma shall be used for each Invalid Field Encoding Definition.

Delivery 9.6, 21 April 1997 67

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Invalid Field Encoding Operation Definitions shall be provided in the following proforma:

Invalid Field Encoding Operation Definition

Group : [InvalidFieldEncodingGroupReference]
Operation Name . InvalidFieldEncodingld&ParList
Result Type . [TypelList]
Comments . [FreeText]
Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 33 - Invalid Field Encoding Operation Definition
SYNTAX DEFINITION:

to be added
11.16.4 Application of encoding rules

Encoding rules specified in the test suite are applied to all PDUs sent or received in the Behaviour Part. Encoding mules may b
specified for the whole test suite or for type declarations or constraint declarations, as noted in Table 1. The plac#s in tabl
marked J identify the allowed scope of application of each of the kinds of encoding information.

68 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Table 4 - Applicability of Encoding Definitions

Encoding Definitions
Encoding Rules Encoding Variations
Invalid Field
Precedence chpe_of Default Other Default Other Encodings
Application
Lowest Test Suite J J
Type
Declarations
PDUs J J J
Structured
Types or
ASN.1 Types ‘J ‘J
Simple types
or PDU fields/
elements ‘J ‘] ‘]
Constraint
Declarations
PDUs J J J
Structured
Types or
ASN.1 Types ‘J ‘]
Highest PDU fields/ J J J
elements
Precedence within a row Lowest Highest

The encoding rules shall be applied according to the precedence values of the rows shown in the first column in table 1,
"(4)" having the highest priority, and "(1)" having the lowest. Within each row the precedence is from left to right, with t
rightmost entry having the highest precedence. Thus, Constraint field encoding rules have precedence over all others,
default encoding rules applied at the test suite level may be overriden by any of the other specification methods. The &
encoding rules to be used for a PDU after all overrides have been applied are referred to as the applicable encoding rules

If no encoding information is specified on a structured or ASN.1 Type Constraint, it inherits the encoding rules applied at
PDU level. Thus, the encoding rules applied to a structured or ASN.1 Type Constraint will vary, based on the PDU in whi
is used. Conversely, if encoding information is specified on a Structured or ASN.1 Type Constraint, it will override thg encoc
information of every PDU in which it is used. If such a Structured or ASN.1 Type Constraint is used in an ASP, the encot
information is ignored.

On RECEIVE events, if no specific encoding rules apply to the incoming PDU, it can be encoded in any variation allowec
the applicable Encoding Definition (e.g., any form of length encoding allowed by BER).

Delivery 9.6, 21 April 1997 69

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

11.17 CM Type Definitions
11.17.1 Introduction

CM parameters may be of any type that may be specified in TTCN. Simple CMs may contain no associated parameters or may
contain just one parameter, e.g. a naural number, a preliminary result, or a character string like “suspend” or “contnue”. Mor
complex CMs may carry additional information, e.g. a whole PDU, a PDU field, or the value read from a timer. There are no
predefined CMs.

11.17.2 CM Type Definitions using tables
CM Types may be declared using TTCN tables. The following information shall be provided for each CM type:
a) its name,
where each name shall be unique within the test suite;
b) a list of parameters associated with the CM,
where the following information shall be provided for each parameter:
1) its name,
which shall be unique withinthe CM;
2) its type and an optional attribute,
in the same way as for PDU fields.

in which case the specification may restrict the field to a particular length or a range according to 11.18. The length values
shall be interpreted according to Table 5 in 11.18. The boundaries shall be specified in terms of non-negative INTEGER
literals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict with the length
specifications in the PDU type definitiare., the set of strings defined by a length restriction in a PDU definition shall be a
true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of
length.

All parameters of CMs are optional, that is they may be omitted when the CM is used.
This information shall be provided in the format shown in the following proforma:

CM Type Definition

CM Name : CM_lIdentifier
Group . [CM_GroupReference]
Comments . [FreeText]
Parameter Name Parameter Type Comments
CM_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 34 - CM Type Definition
The Parameter Name and Parameter Type columns shall either be both present or both omitted.

70 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

SYNTAX DEFINITION:
to be added
11.17.3 CM Type Definitions using ASN.1
CM Types may be declared using ASN.1. The following information shall be provided for each ASN.1 CM type:

a) its name,
where each name shall be unique within the testsuite;
b) the ASN.1 CM type definition,

which shall follow the syntax defined in ISO/IEC 8824-1: 1994. For identifiers within that definition the hyphen symbol (-
shall not be used. The underscore symbol (_) may be used instead. The PDU identifier in the table header is the name
first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by referenc
the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally dedmed ty
shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--" and end with either the next occurrence of “--" or with “end of line”, whichever comes firs
This prevents a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbo
TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASH
comments with “--".

This information shall be provided in the format shown in the following proforma:

ASN.1 CM Type Definition

CM Name : CM_ldentifier
Group . [ASN1CM_GroupReference]
Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 35 - ASN.1 CM Type Definition
SYNTAX DEFINITION:

to be added

11.18 String length specifications

11.18.1TTCN permits the specification of length restrictions on string tyipesRITSTRING, HEXSTRING, OCTETSTRING
and all CharacterString types, plus the ASN.1 types BIT STRING and OCTET STRING) in the following instances:

a) when declaring Test Suite Types as a type restriction;

b) when declaring simple ASP parameters, PDU fields and elements of Structured Types as an attribute of the paramete!
or element type;

c) when defining ASP/PDU or Structured Type constraints as an attribute of the constraint value.

Delivery 9.6, 21 April 1997 71

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

11.18.2 ength specifications can have the following formats:
a) [Length]
restricting the length of the possible string values of a type to examtiyth
b) [MinLengthTO MaxLength] or [MinLength .. MaxLength]
specifying a minimum and a maximum length for the values of a particular string type.

The length boundariekength MinLengthandMaxLengthare of different complexity depending on where they are used. In all
cases, these boundaries shall evaluate to non-negative INTEGER values. For the upper bound the keyword INFINITY may also
be used to indicate that there is no upper limit for the length. Where a range length is specified, the lower of the shalalues

be specified on the left.

In the context of constraints, length restrictions can also be specified on values of type SEQUENCE OF or SET OF, thus limiting
the number of their elements.

The following table specifies the units of length for different string types:

Table 5 - Units of length used in field length specifications

Type Units of Length
BITSTRING or BIT STRING Bits
HEXSTRING Hex digits

OCTETSTRING or OCTET STRING Octets

CharacterString Characters
SEQUENCE OF Elements of its base type
SET OF Elements of its base type

Length specifications shall not conflicg.,a restriction on a type (set of values) that is already restricted shall specify a subrange
of values of its base type.

EXAMPLE 35 - Length specification
Assume the following ASN.1 type definitions:
typel ::= OCTETSTRING [0 .. 25]
type2 ::=typel [15 .. 24]
the length restriction on type2 is correct since type2 comprises all OCTETSTRING values having a minimum length of 15 and
a maximum length of 24, which is a true subset of all OCTETSTRINGs of a maximum length of 25. On the other hand:

type2 ::=typel[15 .. 30]
is invalid since it contains values not included in typel.
11.19 ASP, PDU and CM Definitions for SEND events

In ASPs and/or PDUs that are sent from the tester, values for ASP parameters and/or PDU fields that are defined in the
Constraints Part (see clause 12, 13, 14) shall correspond to the parameter or field definition. This means

a) the value shall be of the type specified for that ASP parameter or PDU field; and
b) each value shall satisfy any relevant length restrictions associated with the type.
c) PDU field values shall be encoded in accordance with applicable encoding rules.

The encoding operations defined in the test suite are performed implicitly as part of the SEND event. Defaults and @verrides ar
applied, as necessary. Thus, the output of the SEND event is the encoded data to be passed to the relevant service provider.

72 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

11.20 ASP, PDU and CM Definitions for RECEIVE events

For ASPs and/or PDUs received by the tester the ASPs and/or PDUtype defines the class of incoming ASPs and/or PDL
can match an event specification of that type. An incoming ASP or PDU is considered to be of that class if and only if

a) the ASP parameter and/or PDU field values are of the type specified in the ASP and/or PDU definition; and
b) the value satisfies any relevant length restrictions associated with the type.
c) PDU field values can be decoded in accordance with applicable encoding rules.
In all other cases an incoming ASP and/or PDU does not match an event specification of that type.
In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules apply to the fie
the substructure(s) recursively.
11.21 Alias Definitions
11.21.1 Introduction

In order to enhance the readability of TTCN behaviour descriptions, an Alias may be used to facilitate the renaming of ASP
or PDU identifiers in behaviour descriptions. This renaming may be done to highlight the exchange of PDUs embedded in A

The following information shall be provided for each Alias:
a) an Alias identifier;
b) its expansion,
which is itself an identifier.
This information shall be provided in the format shown in the following proforma:

Alias Definitions

Group . [AliasGroupReference]
Alias Name Expansion Comments
Aliasldentifier Expansion [FreeText]

Detailed Comments: [FreeText]

Proforma 36 - Alias Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:
to be added
11.21.2 Expansion of Aliases

The following rules shall apply:

a) an Alias is an identifier that shall follow the syntax rules for identifier defined in the TTCN.MP. This means that an Al
is delimited by any character (symbol) not allowed in a TTCN identifier;

b) Aliases are not transitive - if one Alias appears as the expansion of another Alias it shall not be expaitded(one
pass expansion);

Delivery 9.6, 21 April 1997 73

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

¢) an Alias shall be used only to replace an ASP identifier or a PDU identifier within a single TTCN statement in a behaviour
tree. It shall be used only in a behaviour description column;

d) the expansion of an Alias shall follow the syntax rules for identifier as defined in the TTCN.MP.

EXAMPLE 36 - Alias definition from a Transport Test Suite:

Alias Definitions

Alias Name Expansion Comments
CR N_DATArequest Alias for the N_DATArequest ASP
used to carry a CR_TPDU
DR N_DATArequest Alias for the N_DATArequest ASP
used to carry a DR_TPDU
CcC N DATAindication Alias for the N_DATAindication
ASP used to carry a CC_TPDU

NOTE - Because Aliases are treated as macro expansions, the term Aliasldentifier does not appear in the BNF for TTC8! event line

12 Constraints Part

12.1 Introduction

An ATS shall specify the values of the ASP parameters and PDU fields that are to be sent or received by the test system. The
constraints part fulfils that purpose in TTCN.

The dynamic behaviour descriptions (see clause 15) shall reference constraints to construct outgoing ASPs and/or PDUs in SENLC
events; and to specify the expected contents of incoming ASPs and/or PDUs in RECEIVE events.

Constraints can be specified in either of the two forms:
a) tabular constraints (see clause 13);
b) ASN.1 constraints (see clause 14).
Actual values or constraints on the values of a CM shall be declared in the same way as PDU constraints are to be declared.

12.2 General principles

This subclause describes the general principles and defines the mechanisms of how to build constraints for SEND events and hov
to match RECEIVE events. These principles are common to both the tabular and ASN.1 forms of constraints.

Constraints are detailed specifications of ASPs and/or PDUs. Normally, each constraint is defined specifically for userwith eit
SEND events or RECEIVE events. A constraint need not be specified if an ASP or CM has not parameters or if PDU has no
fields. Any given constraint may be used in either context, provided the operational semantic restrictions defined inrannex B a
met.

The constraint specification of an ASP and/or PDU shall have the same structure as that of the type definition of thBXASP or P

If an ASP and/or PDU is substructured, then the constraints for ASPs and/or PDUs of that type shall have the same tabular
structure or a compatible ASN.1 structure.(possibly with some groupings).

Structured Types expanded into an ASP or PDU definition by use of the macro symbol (<-) are not considered to be
substructures. Constraints for such ASPs or PDUs shall either have a completely flat streictheedlements of an expanded
structure are explicitly listed in the ASP or PDU constraint) or shall reference a corresponding structure constraint for macro
expansion.

Constraints specify ASP parameter and PDU field values using various combinations of literal values, data object references,
expressions, ASN.1 constructed values, special matching mechanisms and references to other constraints. Constraints applyin
to the whole of or part of a PDU may also specify encoding rules to override the general encoding rules being appligd in the te
suite. Such encoding rules may be specified for the whole Constraint or for a single field of the Constraint.

Values of all TTCN or ASN.1 types can be used in constraints. Expressions used in constraints shall evaluate to a #pecific valu
when the constraint is used for sending or receiving events.

74 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Whichever way the values are obtained, they shall correspond to the parameter or field entries in the ASP or PDU
definitions. This means

a) the value shall be of the type specified for that parameter or field; and
b) the length shall satisfy any restriction associated with the type.

An expression in a constraint shall contain only Values (including, for example, ConstraintValue&Attributes), Test St
Parameters, Test Suite Constants, formal parameters, Component References and Test Suite Operations.

A constraint reference (possibly parameterized) is also allowed as a parameter or field value (static chaining).

Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed as actual paranagtiers. In t
case they shall be bound to a value and are not changed by the occurrence of a SEND or a RECEIVE event.

Matching mechanisms are defined in 12.6.2.

12.3 Parameterization of constraints

Constraints may be parameterized. In such cases the constraint name shall be followed by a formal parameter list enclo
parentheses. The formal parameters shall be used to specify ASP parameter or PDU field values in the constraint.

Each formal parameter name shall be followed by a colon and the name of the parameter’s type. If more than one param
the same type is used, the parameter may be specified as a parameter sub-list. When a parameter sub-list is used, the pe
names shall be separated by a comma. The final parameter in the sub-list shall be followed by a colon and the name
parameter sub-list's type. When more than one parameter and type pair (or parameter sub-list and type pair) is used, the
shall be separated from each other by semicolons.

Literal values, Test Suite Parameters, Test Suite Constants, Test Suite Variables, Test Case Variables and PDU or Tes
Type constraints may be passed as actual parameters to a constraint in a constraints reference made from a behavinur des
The parameters shall not be of PCO type or ASP type.

12.4 Chaining of constraints

Constraints may be chained by referencing a constraint as the value of a parameter or field in another constraint. For exe
the value of the Data parameter of an N-DATAreq (Network Data Request) ASP could be a reference to a T-CRPDU (Tran
Connect Request PDU) PDU constrair,, the T-CRPDU is chained to the N-DATAreq ASP.

Constraints can be chained in one of two ways, either by

a) static chaining, where an ASP parameter value or PDU field value in a constraint is an explicit reference to anc
constraint; or

b) dynamic chaining, where an ASP parameter value or PDU field value in a constraint is a formal parameter of the const
When such a constraint is referenced from a dynamic behaviour, the corresponding actual parameter to the constrair
reference to another constraint (see annex D for examples of static and dynamic chaining).

Wherever constraints are referenced within constraints declarations, those references shall not be recursive (neitbrer dire
indirectly).

Chaining of constraints may only be used if the appropriate declarations have been set up to allow chaining. For example
ASP parameter is to be chained to a PDU constraint, then the ASP parameter shall be declared to be of an appropriate PC
or the meta-typ@DU. In ASN.1 PDU declarations, the PDU type might well be one defined as a CHOICE of all valid individue
PDU types, whereas in tabular PDU declarations the met&?iypevould need to be used to achieve a similar effect. Similarly,

if a PDU field is to be chained to a Structure constraint, then the PDU field shall be declared to be of an appropriege Stru

type.
12.5 Constraints for SEND events

Constraints that are referenced for SEND events shall not include wildcard&nyValue (?) or AnyOrOmit (*)) unless
these are explicitly assigned specific values on the SEND event line in the behaviour description.

In tabular constraints, all ASP parameters and PDU fields are optional and therefore may be omitted using the Omit symb
indicate that the ASP parameter or PDU field is to be absent from the event sent.

In ASN.1 constraints, only ASP parameters and PDU fields declared as OPTIONAL may be omitted. These may be om
either by using the Omit symbol or by simply leaving out the relevant ASP parameter or PDU field.

Delivery 9.6, 21 April 1997 75

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

None of the matching mechanisms defined in 12.6.2 except SpecificValue provides a value for an ASP parameter or PDU field
on a SEND event.

In cases where ASN.1 values of type SET or SET OF are used in a constraint, the values of the elements of the set shall be sel
in the order specified by the relevant constraint.

12.6 Constraints for RECEIVE events

12.6.1 Matching values

If a constraint is to be used to construct the values of ASP parameters or PDU fields that a received ASP or PDU shall match, i
shall contain only specific values evaluated as explained in 12.6.3, or special matching mechanisms where it is nobdesirable,
possible, to specify specific values. The matching mechanisms specify other ways of matching than “equal to a specific value”.

An incoming ASP and/or PDU matches a constraint used in a RECEIVE event if, and only if, all the following conditions are met:
a) all the ASP parameters and/or PDU fields are of the type specified in the ASP and/or PDU definitions;
b) the value, alphabet and length satisfies any restriction associated with the type;
c) the ASP parameter and/or PDU field values correctly match those of the constraint;

d) for PDUs, the correct decoding of the PDU has taken place, taking into account applicable encoding rule defaults and
overrides; if encoding rules other than those specified for the constraint have been used to encode the received PDU, then tha
received PDU will not match.

In the case of substructured ASPs and/or PDUSs, either using Structured Types or ASN.1, the above rules shall applg to the field
of the substructure(s) recursively.

NOTE - If a RECEIVE event is qualified by a Boolean expression, then a successful match means that both the incoming ARERJand/or
must match the constraint and that the qualifier must evaluate to TRUE.

12.6.2 Matching mechanisms

An overview of the supported matching mechanisms is shown in Table 6, including the special symbols and the scope of their
application. The left hand column of this table lists all the ASN.1 types and TTCN equivalent types to which these matching
mechanisms apply. The matching mechanisms in the horizontal headings are arranged in four groups:

a) specific values;
b) special symbols that can be ugesteadof values;
¢) special symbols that can be usesldevalues;
d) special symbols which describtiributesof values.
Some of the symbols may be used in combination, as detailed in the following clauses.
The shaded area in Table 6 indicates the mechanisms that apply to both predefined TTCN and ASN.1 types.

76 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Table 6 - TTCN Matching Mechanisms

VALUE INSTEAD OF VALUE INSIDE VALUE | ATTRIBUTES
s > >
s | s Sz c 25
> +— = N—" = —
= é_ o % 5 - o) @ o) g g ‘g c @
o g = >09% 208 0 Q O E 5 9
t | EEzzs5c5s8 | 2zs |£§
TYPE 2 OO0 << >0 n h < < o o =
BOOLEAN . e o o o o o
INTEGER e o o o o o .
ENUMERATED . o o o o .
BITSTRING o e o o o o o o o o
OCTETSTRING ° e o o o o o o o o
HEXSTRING o e o o o o o o o o
CHARSTRINGS . e o o o o o o o o
SEQUENCE . e o o o .
SEQUENCE OF d e o o o o e o o o o
SET ° ° ° ° ° ° °
SET OF ° . ° ° ° ° ° ° . . ° °
ANY ° ° ° . ° ° °
CHOICE d b b L4 ° ° °
OBJECT ID . e o o o o .

In a constraint specification, the matching mechanisms may replace values of single ASP parameters or PDU fields or ev
entire contents of an ASP or PDU.

NOTE - When these matching mechanisms are used singly or in combination, many protocol restrictions can be specifiestriairite con
thereby avoiding undesirable computation details in the behaviour part.

12.6.3 Specific Value
This is the basic matching mechanism. Specific values in constraints are expressions. Unless otherwise specified, a con

ASP parameter or PDU field matches the corresponding incoming ASP parameter or PDU field if, and only if, the incoming /
parameter or PDU field has exactly the same value as the value to which the expression in the constraint evaluates.

Two values of a tabular ASP, PDU or Structured Type, or of ASN.1 SEQUENCE or SEQUENCE OF are considered the s
if each of their parameters fields or elements match and are in the same order. For ASN.1 SET and SET OF types two valt
the same if they have the same number of elements, and each element in one value matches exactly one element in tt
value. The elements in a SET or SET OF type value need not be in the same order to match.

12.6.4 Instead of Value
12.6.4.1 Complement

Complement is an operation for matching that can be used on all values of all types. Complement is denoted by the key
COMPLEMENT followed by a list of constraint values. Each constraint value in the list shall be of the type declared for the A
parameter or PDU field in which the Complement mechanism is used.

SYNTAX DEFINITION:
to be added

A constraint ASP parameter or PDU field that uses Complement matches the corresponding ASP parameter or PDU field |
only if the incoming ASP parameter or PDU field does not match any of the values listed in the ValueList.

Delivery 9.6, 21 April 1997 77

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 37 - Constraints using Complement instead of a value, and with a value list:

Type Constraint

INTEGER COMPLEMENT(5)

INTEGER COMPLEMENT(1, 3, 5)
12.6.4.2 Omit

Omit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or PDU field is
optional.

In ASN.1 constraints it is also possible to simply leave out an OPTIONAL ASP parameter or PDU field instead of using OMIT
explicitly.

NOTE - In tabular constraints, all parameters, fields and elements are considered to be implicitly optional, and hencmitiey bsing

Omit. In ASN.1 constraints, parameters, fields and elements which are not explicitly marked as OPTIONAL in the type aefimiiodatory

and cannot be omitted without violating the type definition. If such a parameter, field or element needs to be omittedtfootaegonstraint,

either another type needs to be defined in which that parameter, field or element is explicitly marked as OPTIONAL (petédqusgby
everything as OPTIONAL), or an Invalid Field Encoding needs to be applied to that parameter, field or element, with tfi@wefitdog it

from the encoding.

In tabular constraints Omit shall be denoted by dash (-). In ASN.1 constraints Omit is der@kd by
SYNTAX DEFINITION:
to be added
An Omit symbol in a constraint is used to indicate that an optional ASP parameter or PDU field shall be absent.

EXAMPLE 38 - Constraint using Omit instead of a value, at top level:

Type Constraint
INTEGER OPTIONAL OMIT

12.6.4.3 AnyValue

AnyValue is a special symbol for matching that can be used on values of all types. In both tabular and ASN.1 constraints
AnyValue is denoted by "?".

SYNTAX DEFINITION:
to be added

A constraint ASP parameter or PDU field that uses AnyValue matches the corresponding incoming ASP parameter or PDU field
if, and only if, the incoming ASP parameter or PDU field evaluates to a single element of the specified type.

EXAMPLE 39 - Constraint using Value in combination with AnyValue:

Type Constraint
SEQUENCE OF SET OF INTEGER { {1, 2},

?,

{1,2,?} }

12.6.4.4 AnyOrOmit

AnyOrOmit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or PDU
field is declared as optional. In both tabular and ASN.1 constraints AnyOrOmit is denoted by “*”.

NOTE - The symbol “*” is used for both AnyOrOmit and AnyOrNone. Ambiguity in interpretation is resolved by the requirerh2ré@siid
and 12.6.5.2.

SYNTAX DEFINITION:

to be added

A constraint ASP parameter or PDU field that uses AnyOrOmit matches the corresponding incoming ASP parameter or PDU
field if, and only if, either the incoming ASP parameter or PDU field evaluates to any element of the specified type, or if the
incoming ASP parameter or PDU field is absent.

78 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 40 - Constraint using Value in combination with AnyOrOmit:

Type Constraint
SEQUENCE OF { id1 SET OF INTEGER { id1{2,5),
id2 SET OF INTEGER id2 * }

12.6.4.5 ValueList

ValueList can be used on values of all types. In both tabular and ASN.1 constraints. ValueLists are denoted by a parenthe
list of values separated by commas.

SYNTAX DEFINITION:

to be added

A constraint ASP parameter or PDU field that uses a ValueList matches the corresponding incoming ASP parameter or
field if, and only if, the incoming ASP parameter or PDU field value matches any one of the values in the ValueList. Each v:
in the ValueList shall be of the type declared for the ASP parameter or PDU field in which the ValueList mechanism is use

EXAMPLE 41 - Constraint using ValueList instead of a specific value, for INTEGER type:

Type Constraint
INTEGER (2,4, 6)

EXAMPLE 42 - Constraints using ValueList instead of a specific value, for CHOICE type:

Type Constraint
CHOICE { a INTEGER, (a2, b TRUE)
b BOOLEAN }

12.6.4.6 Range

Ranges shall be used only on values of INTEGER type. A range is denoted by two boundary values, separated by “..” o
enclosed by parentheses. A boundary value shall be either

a) INFINITY or -INFINITY;
b) a constraint expression that evaluates to a specific INTEGER value.

The lower boundary shall be put on the left side of the “..” or TO, the upper boundary at the right side. The lower balindary
be less than the upper boundary.

SYNTAX DEFINITION:
to be added

A constraint ASP parameter or PDU field that uses a Range matches the corresponding incoming ASP parameter or PDL
if, and only if, the incoming ASP parameter or PDU field value is equal to one of the values in the Range.

EXAMPLE 43 - Constraint using Range instead of a value:

Type Constraint
INTEGER (1..6)
(-INFINITY .. 8)

(12 .. INFINITY)
12.6.4.7 SuperSet

SuperSet is an operation for matching that shall be used only on values of SET OF type. SuperSet shall be used only in /
constraints. SuperSet is denotedIWPERSET.

SYNTAX DEFINITION:
to be added

A constraint ASP parameter or PDU field that uses SuperSet matches the corresponding incoming ASP parameter or PDL
if, and only if, the incoming ASP parameter or PDU field contains at least all of the elements defined within the SuperSet,

Delivery 9.6, 21 April 1997 79

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

may contain more. The argument of SuperSet shall be of the type declared for the ASP parameter or PDU field in which the
SuperSet mechanism is used.

EXAMPLE 44 - Constraint using SuperSet instead of a specific value:

Type Constraint
SET OF INTEGER SUPERSET({1, 2, 3})

12.6.4.8 SubSet

SubSet is an operation for matching that can be used only on values of SET OF type. SubSet shall be used only in ASN.1
constraints. SubSet is denoted3lyBSET.

SYNTAX DEFINITION:
to be added

A constraint ASP parameter or PDU field that uses SubSet matches the corresponding incoming ASP parameter or PDU field if,
and only if, the incoming ASP parameter or PDU field contains only elements defined within the SubSet, and may contain less.
The argument of SubSet shall be of the type declared for the ASP parameter or PDU field in which the SubSet mechanism is used

EXAMPLE 45 - Constraint using SubSet instead of a specific value:

Type Constraint
SET OF INTEGER SUBSET({2, 4, 6, 8, 10})

12.6.5 Inside Values
12.6.5.1 AnyOne

AnyOne is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF. In both
tabular and ASN.1 constraints AnyOne is denoted by “?”.

SYNTAX DEFINITION:

to be added

Inside a string, SEQUENCE OF or SET OF a “?” in place of a single element means that any single element will be accepted. If
the symbol “?” is needed within a CharacterString as a character, it shall be indicated by “\?”. If the symbol “\" is ribgded wi
a CharacterString as a character, it shall be indicated by “\\".

EXAMPLE 46 - Constraints using AnyOne:

Type Constraint
IA5String “a?cd”
SEQUENCE OF INTEGER {1,2,2}

NOTE - The “?” in the second example can be interpreted as an AnyValue replacing an INTEGER value, or AnyOne inside a SEGUENCE
INTEGER value. Since both interpretations lead to the same set of events that match the constraint, no problem arises.

12.6.5.2 AnyOrNone

AnyOrNone is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF. In
both tabular and ASN.1 constraints AnyOrNone is denoted by “*”.

If a “*" appears at the highest level inside a value of string type, SEQUENCE OF or SET OF, it shall be interpreted as
AnyOrNone.

NOTE - This rule prevents the otherwise possible interpretation of “*” as AnyOrOmit that replaces an element inside tBEQUIBHICE
OF or SET OF.

SYNTAX DEFINITION:

to be added

Inside a string, SEQUENCE OF or SET OF a “*" in place of a single element means that either none, or any number of
consecutive elements will be accepted. The “*” symbol matches the longest sequence of elements possible, according to the
pattern as specified by the symbols surrounding the “*”. If the symbol “*” is needed within a CharacterString as a character, i
shall be indicated by “*". If the symbol “\" is needed within a CharacterString as a character, it shall be indicated by “\\".

80 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 47 - Constraints using AnyOne:

Type Constraint
IA5String “ab*z”
SEQUENCE OF INTEGER {1,2,* 10}
SEQUENCE OF IA5String { “ab*z",

*

“abC" }

12.6.5.3 Permutation

Permutation an operation for matching that can be used only on values inside a value of SEQUENCE OF type. Permutatior
be used only in ASN.1 constraints. Permutation is denot@ERMUTATION .

SYNTAX DEFINITION:

to be added

Permutation in place of a single element means that any series of elements is acceptable provided it contains the same el
as the value list in the Permutation, though possibly in a different order. If both Permutation and AnyOrNone are used ins
value, the AnyOrNone shall be evaluated first. Each element listed in Permutation shall be of the type declared inside
SEQUENCE OF type of the ASP parameter or PDU field.

EXAMPLE 48 - Constraint using Permutation:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1, 2, 3), 5}

EXAMPLE 49 - Constraints using Permutation in combination with AnyOrNone:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1,2,3), *}

{PERMUTATION (1,2,3,%)}

Note that the first constraint matches with incoming ASPs and/or PDUs that consist of a sequence of INTEGER values, starting
with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; or 3,2,1 and followed by any number of values of type INTEGER. The second constraint

matches any incoming ASP and/or PDU of type SEQUENCE OF INTEGER, that contains the elements 1, 2,3 in any order

and in any position. It matches, for example; {5,2,7,1,3} and {9,3,7,2,12,1,17}.

12.6.6 Attributes of values

12.6.6.1 Length

Length is an operation for matching that can be used only as an attribute of the following mechanisms: Complement, AnyV
AnyOrOmit, AnyOne, AnyOrNone, Permutation, SuperSet and SubSet. It can be used in conjunction with the IfPre:
attribute..

In both tabular and ASN.1 constraints, length may be specified as an exact value or range in string values and SEQUENC
or SET OF values, according to 11.18. The units of length are to interpreted according to Table 5. The boundaries sh:

denoted by specific non-negative INTEGER values. Alternatively, the keyword INFINITY can be used as a value for the ug
boundary in order to indicate that there is no upper limit of length.

The length specifications defined for the ASP parameter or PDU field type in the Test Suite Type definitions shall not con
with the length specifications in the ASP or PDU constramt,the set of strings defined by a length restriction in an ASP or
PDU constraint shall be a true subset of the set of strings defined by the ASP or PDU definition.

SYNTAX DEFINITION:

to be added

A constraint ASP parameter or PDU field that uses Length as an attribute of a symbol matches the corresponding incoming
parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches both the symbol and its associ
attribute. The length attribute matches if the length of the incoming ASP parameter or PDU field is greater than or equal tt
specified lower bound and less than or equal to the upper bound. In the case of a single length value the length atiebute m
only if the length of the received ASP parameter or PDU field is exactly the specified value.

Delivery 9.6, 21 April 1997 81

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

In the case of an omitted parameter, field or element, Length is always considered as matching. Hence, with Omit it ts redundan
and with AnyOrOmit and IfPresent it places a restriction on the incoming value, if any.

EXAMPLE 50 - Constraints using Value in combination with Length:

Type Constraint
IA5String “ab*ab” [13]

12.6.6.2 IfPresent

IfPresent is a special symbol for matching that can be used as an attribute of all the matching mechanisms, provided the type i
declared as optional. In both tabular and ASN.1 constraints IfPresent is dentie@RESENT.

A constraint ASP parameter or PDU field that uses an IfPresent symbol as an attribute of another symbol matches the
corresponding incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches the
symbol, or if the incoming ASP parameter or PDU field is absent.

NOTE - The AnyOrOmit symbol (*) has exactly the same meaning as ? IF_PRESENT

EXAMPLE 51 - Constraints using Value in combination with IfPresent:

Type Constraint
IA5String OPTIONAL “abcdef’ IF_PRESENT

13 Specification of constraints using tables

13.1 Introduction

This clause describes the specification of tabular constraints on Structured Types, ASPs and PDUs. It describes how single
constraint tables can be used to specify constraints on flat (unstructured) ASPs or PDUs and how structured constraints can b
specified by declaring constraints on Structured Types, defined in the Test Suite Types.

In Annex C additional tables are defined which allow many single constraint declarations in a single table.

13.2 Structured Type Constraint Declarations

If an ASP or PDU is defined using Structured Types, either as macro expansions or substructures, constraints for these ASPs o
PDUs shall be similarly substructured.The following information shall be supplied for each Strucutred Type Constraint:

a) the name of the constraint,

which may be followed by an optional formal parameter list;
b) the structured type name;

c) the derivation path (see 13.6);

d) the Encoding Variations to be used for the Constraint;

In order to specify explicit Encoding Variations for entire Structured Type Constraints, which override the encoding rules and
Encoding Variations applicable to the PDU Constraint in which this Structured Type Constraint is used, this optional entry
shall reference an entry in the relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entryds not use
then the encoding rules and Encoding Variations applicable to the PDU Constraint apply to this Structured Type Constraint as
well. See 11.16.4.

e) a constraint value for each element,
where the following information shall be supplied for each element:
1) its name,

Each entry in the element name column shall have been declared in the relevant Structured Type definition. If any of the
original elements is defined as having both a short name and full identifier, the constraint shall not repeat the] identifi

If the Structured Type definition refers to another Structured Type by macro expaesjaitli “<-" in place of the element
name) then in a corresponding constraint either:

- the individual elements from the Structured Type shall be included directly within the constraints; or

82 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

- the macro symbol (<-) shall be placed in the corresponding position in the Element Name column of the constraint
the value shall be a reference to a constraint for the Structured Type referenced from this Structured Type’s definitic

Use of Structured Constraints by macro expansion in a constraint shall not be used unless the corresponding Structurec
definition also references the inner Structured Type by macro expansion.

2) its value and an optional attribute;

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to a specify expl
encoding for the individual element of a Structured Type Constraint, which override the encoding rules and Encoding Vv
ations applicable to the whole Structured Type Constraint, and which also override any encoding specified for this eler
in the Structured Type declaration; the encoding identifier, if any, shall identify either one of the Encoding Variations or
Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The element values for structure constraints shall be provided in the format shown in the following proforma:

Structured Type Constraint Declaration
Constraint Name : Consld&ParlList
Group : [StructTypeConstraintGroupReference]
Structured Type : Structldentifier
Derivation Path . [DerivationPath]
Encoding Variation . [EncVariationCall]
Comments . [FreeText]
Element Name Element Value Element Encoding Comments
EIemIc.ientifier Constra.intVaIue- [PDU_FieIdIéncodingCalI] [FreéText]
&Attributes
Detailed Comments: [FreeText]

Proforma 37 - Structured Type Constraint Declaration
This proforma is used in the same way that the PDU Constraint Declaration proforma is used for PDUs (see 13.4).
SYNTAX DEFINITION:

to be added

If an ASP or PDU definition refers to a Structured Type as a substructure of a parameteria.fi@ith(a parameter name or

a field name specified for it) then the corresponding constraint shall have the same parameter or field name in the sgrrespc
position in the parameter name or field name column of the constraint and the value shall be a reference to a conatraint ft
parameter or fieldi., for that substructure in accordance with the definition of the Structured Type). If the ASP or PD!
definition refers to a parameter or field specified as being of metatype PDU then in a corresponding constraint thehaglue fo
parameter or field shall be specified as the name of a PDU constraint, or formal parameter.

Delivery 9.6, 21 April 1997 83

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

13.3 ASP Constraint Declarations
The parameter values for ASP constraints shall be provided in the format shown in the following proforma:

ASP Constraint Declaration

Constraint Name . Consld&ParList
Group . [ASP_ConstraintGroupReference]
ASP Type : ASP_ldentifier
Derivation Path . [DerivationPath]
Comments . [FreeText]
Parameter Name Parameter Value Comments
ASP_Par.IdOrMacro ConstraintVa;Iue&Attributes [FreéText]

Detailed Comments: [FreeText]

Proforma 38 - ASP Constraint Declaration
The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for ASPs in the same way that the PDU Constraint Declaration proforma is used (see 13.4) except that
encoding information is not relevant and shall not be specified.

SYNTAX DEFINITION:
to be added

13.4 PDU Constraint Declarations

In the tabular format a constraint is defined by specifying a value and optional attributes for each PDU field. The following
information shall be supplied for each PDU constraint:

a) the name of the constraint,

which may be followed by an optional formal parameter list;
b) the PDU type name;

c) the derivation path (see 13.6);

d) the encoding rules to be used for the Constraint;

In order to specify explicit encodings for entire PDU Constraints, which override the encoding rules applicable to the given
PDU type, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BER to
DER). If this entry is not used, then the encoding rules applicable to the PDU type apply. See 11.16.4.

e) the Encoding Variations to be used for the Constraint;

In order to specify explicit Encoding Variations for entire PDU Constraints, which override the Encoding Variations applicable
to the given PDU type, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g., to change
from SD to LD(3)). If this entry is not used, then the Encoding Variations applicable to the PDU type apply. See 11.16.4.

f) a constraint value for each field,
where the following information shall be supplied for each field:

84 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

1) its name,

Each field entry in the field name column shall have been declared in the relevant PDU type definition. If any of the orig
PDU fields is defined as having both a short name and full identifier, the constraint shall not repeat the full identifier;

If the PDU definition refers to a Structured Type by macro expans@éniith “<-" in place of the PDU field name) then
in a corresponding constraint either:

- the individual elements from the Structured Type shall be included directly within the constraints; or

- the macro symbol (<-) shall be placed in the corresponding position in the PDU field name column of the constr
and the value shall be a reference to a constraint for the Structured Type referenced from the PDU definition.

Use of structured constraints by macro expansion in a constraint shall not be used unless the corresponding PDU defi
also references the same Structured Type by macro expansion.

2) its value and an optional attribute.

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify expl
encodings for individual fields of a PDU Constraint, which override the encoding rules and encoding variations applice
to the PDU Constraint as a whole, and which override any specific field encoding applicable to this field for PDUs of t
PDU type; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field Encodi
Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The encoding mechanism shall not be used with ASP constraints.
This information shall be provided in the format shown in the following proforma:

PDU Constraint Declaration
Constraint Name : Consld&ParlList
Group : [PDU_ConstraintGroupReference]
PDU Type : PDU_ldentifier
Derivation Path . [DerivationPath]
Encoding Rule Name : [EncodingRuleldentifier]
Encoding Variation . [EncVariationCall]
Comments . [FreeText]
Field Name Field Value Field Encoding Comments
PDU_FieIaIdOrMacro Constra.intVaIue- [PDU_FieIdIéncodingCaII] [Free;Text]
&Attributes

Detailed Comments: [FreeText]

Proforma 39 - PDU Constraint Declaration

The Field Name and Field Value columns shall either be both present or both omitted The Field Encoding column shall n
present as a single column on its own.

SYNTAX DEFINITION:
to be added

Delivery 9.6, 21 April 1997 85

Second Edition Mock-Lp for SC21 Review

EXAMPLE 52 - A constraint, called C1, on the PDU called PDU_A

ISO/IEC 9646-3: 1997

PDU Constraint Declaration

Constraint Name : C1

Derivation Path
Comments

PDU Type : PDU_A

Field Name

Field Value

Comments

FIELD1
FIELD2
FIELD3

(4 .. INFINITY)
TRUE
"A STRING"

13.5 Parameterization of constraints

Constraints may be parameterized using a formal parameter list. The actual parameters are passed to a constraint from .
constraints reference in a behaviour description.

EXAMPLE 53 - A parameterized constraint

PDU Constraint Declaration

Constraint Name : C2(P1L:INTEGER; P2:BOOLEAN)

PDU Type : PDU_B
Derivation Path
Comments
Field Name Field Value Comments
FIELD1 P1
FIELD2 P2
FIELD3 "A STRING"

Detailed Comments: A possible reference to C2 from a Test Case or Test Step may be: C2 (0, TRUE)

13.6 Base constraints and modified constraints

For every ASP, PDU or CM type definition at least one base constraint may be specified. In the case in which an ASP or CM has
no parameters or a PDU has no fields, constraints are irrelevant and hence base constraints are unnecessary. A base constra
specifies a set of base, or default, values or matching symbols for each and every field defined in the appropriateTthediaition.

may be any number of base constraints for any particular PDU (see Annex F for examples).

When a constraint is specified as a modification of a base constraint, any fields not re-specified in the modified cdhstraint w
default to the values or matching symbols specified in the base constraint. The name of the modified constraint shaiébe a uniq
identifier. The name of the base constraint which is to be modified shall be indicated in the derivation path entry indimé cons
header. This entry shall be left blank for a base constraint. A modified constraint can itself be modified. In such a case the
Derivation Path indicates the concatenation of the names of the base and previously modified constraints, separated by dots (.
A dot shall follow the last modified constraint name. The rules for building a modified constraint from a base constraint are:

a) if a parameter or field and its corresponding value or matching symbol is not specified in the modified constraint, then the
value or matching symbol in the parent constraint shall be usedhe value is inherited);

b) if a parameter or field and its corresponding value or matching symbol is specified in themodified constraint, then the
specified value or matching symbol replaces the one specified in the parent constraint.

86 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

13.7 Formal parameter lists in modified constraints

If a base constraint is defined to have a formal parameter list, the following rules apply to all modified constraintsatarived
that base constraint, whether or not they are derived in one or several modification steps:

a) the modified constraint shall have the same parameter list as the base constraint. In particular, there shall be o para
omitted from or added to this list;

b) the formal parameter list shall follow the constraint name for every modified constraint;

c) parameterized ASP parameters or PDU in a base constraint fields shall not be modified or explicitly omitted in a modi
constraint.

13.8 CM Constraint Declarations
The field values for CM constraints shall be provided in the format shown in the following proforma:

CM Constraint Declaration

Constraint Name : Consld&ParlList

Group . [CM_ConstraintGroupReference]
CM Type : CM_lIdentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Parameter Name Parameter Value Comments

CM_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 40 - CM Constraint Declaration
The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for CMs in the same way as the PDU Constraint Declaration proforma is used (see 13.4).
SYNTAX DEFINITION:

to be added
This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

14 Specification of constraints using ASN.1

14.1 Introduction

This clause describes a method of specifying Type, ASP and PDU constraints in ASN.1, in a way similar to the definitio
tabular constraints. The normal ASN.1 value declaration is extended to allow the use of the matching mechanisms. Mecha
to replace or omit parts of ASN.1 constraints, to be used in modified constraints, are also defined.

In other respects, ASN.1 is used in constraints in the same way that it is used in types. In particular,

Delivery 9.6, 21 April 1997 87

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

a) for identifiers within an ASN.1 constraint the dash symbol (“-”) shall not be used; the undescore symbol (“_") may be used
instead;

b) ASN.1 constraints shall not use external value references as defined in ISO/IEC 8824-1: 1994;

¢) ASN.1 comments can be used within the table body. The comments column shall not be present in this table. Comments in
ASN.1 start with “--" and end with either the next occurrence of “--" or with “end of line”, whichever comes first. Thigpreven

a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in TTCN.MP. ATS
specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with “--".

14.2 ASN.1 Type Constraint Declarations

Both ASN.1 ASP constraints and ASN.1 PDU constraints can be structured by using references to ASN.1 Test Suite Type
constraints for values of complex fields. ASN.1 Test Suite Types are defined in the declarations part of the ATS.

The following information shall be supplied for each ASN.1 Type Constraint Declaration:
a) the name of the Constraint,
which may be followed by an optional formal parameter list;
b) the ASN.1 Type name;
c) the derivation path (see 13.6 and 14.6),

in order to specify explicit Encoding Variations for entire ASN.1 Type Constraints, which override both the Encoding
Variations of the PDU Constraint that references this ASN.1 Type Constraint and the default global Encoding Variations for
the test suite, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g., to change from SD
LD(3)); if this entry is not used, then the default Encoding Variations apply to all ASN.1 Type Constraints of this type, unles
specifically overridden within a particular Constraint;

d) the Encoding Variations to be used for the Constraint;

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint that is
taken as the basis of this modification shall be referenced in the table in the derivation path entry.

e) the constraint value,

where the body of the ASN.1 Type Constraint table contains the ASN.1 Constraint Declaration with optional attributes; all
constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 Type Constraint, which override all other Encoding
Variations for the specific ASN.1 Type Constraint encodings (see c) above), the k&N1id used after the relevant value,
followed by a specific encoding identifier and any necessary actual parameter list. The encoding identifier shall identify eith
one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test suite.

88 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

ASN.1 Type Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 Type Constraint Declaration

Constraint Name : Consld&ParList

Group . [ASN1_TypeConstraintGroupReference]
Structured Type . ASN1_Typeldentifier

Derivation Path . [DerivationPath]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 41 - ASN.1 Type Constraint Declaration
SYNTAX DEFINITION:

to be added
This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used (see :

14.3 ASN.1 ASP Constraint Declarations
The following information shall be supplied for each ASN.1 ASP Constraint Declaration:
a) the name of the constraint,
which may be followed by an optional formal parameter list;
b) the ASP type name;
c¢) the derivation path (see 13.6 and 14.6),

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint t
is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

d) the constraint value,

where the body of the ASP constraint table contains the ASN.1 Constraint Declaration with optional attributes. All constr
values and attributes defined in 12.6 can be used in ASN.1 constraints.

Delivery 9.6, 21 April 1997 89

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

ASN.1 ASP Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 ASP Constraint Declaration

Constraint Name . Consld&ParList

Group : [ASN1ASP_ConstraintGroupReference]
ASP Type : ASP_ldentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 42 - ASN.1 ASP Constraint Declaration

SYNTAX DEFINITION:

to be added
This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used (see 14.4).

14.4 ASN.1 PDU Constraint Declarations
The following information shall be supplied for each ASN.1 PDU Constraint Declaration:
a) the name of the Constraint,
which may be followed by an optional formal parameter list;
b) the PDU type name;
¢) the derivation path (see 13.6 and 14.6),
d) the encoding rules to be used for the Constraint,

in order to specify explicit encodings for entire ASN.1 PDU Constraints, which override the default global encoding rules for
the test suite, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to chamg® from B
to DER); if this entry is not used, then the default encoding rules apply to all ASN.1 PDU Type Constraints of this tgpe, unles
specifically overridden in a particular Constraint;

e) the Encoding Variations to be used for the Constraint,

in order to specify explicit Encoding Variations for entire ASN.1 PDU Constraints, which override the default global Encoding
Variations for the test suite, this optional entry shall reference an entry in the relevant Encoding Variations tabtémge to

from SD to LD(3)); if this entry is not used, then the default Encoding Variations apply to all ASN.1 PDU Type Constraints of
this type, unless specifically overridden in a particular Constraint;

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint that is
taken as the basis of this modification shall be referenced in the table in the derivation path entry.

f) the constraint value,

where the body of the PDU constraint table contains the ASN.1 Constraint Declaration with optional attributes; all constraint
values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 PDU Constraint, which override the default global
encoding rules or the specific ASN.1 PDU Constraint encodings (see c¢) and d) above), the kd{@isrdsed after the relevant

90 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

value, followed by a specific encoding identifier and any necessary actual parameter list. The encoding identifier $jpall ide
either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test suite.

PDU Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 PDU Constraint Declaration

Constraint Name . Consld&ParList

Group . [ASN1PDU_ConstraintGroupReference]
PDU Type . PDU_ldentifier

Derivation Path . [DerivationPath]

Encoding Rule Name : [EncodingRuleldentifier]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 43 - ASN.1 PDU Constraint Declaration
SYNTAX DEFINITION:

to be added

14.5 Parameterized ASN.1 constraints
ASN.1 constraints may be parameterized (see 13.5).

14.6 Modified ASN.1 constraints

ASN.1 constraints can be specified by modifying an existing ASN.1 constraint. Portions of a constraint can be respecifie
create a new constraint by using the REPLACE/OMIT mechanism.

Particular parameters or fields of a base or a modified constraint may be identified through a list of field selectorgin ord
replace their defined value by a new value, or to omit the defined value. A ReferenceList consists of the field seldietie identi
(defined in the corresponding type definition) separated by dots which uniquely identify a particular (possibly strudtured) f
within a PDU (or ASP). First level fields can be identified by a single selector, whereas nested fields require the full path.

Replace values shall be used only when a derivation path is specified. Full ASN.1 values shall be used only when a deri\
path is not specified. Values that are REPLACEd or OMITted may be structured.

SYNTAX DEFINITION:
to be added

If a field belongs to a SEQUENCE, SET or CHOICE structure, the position of the field in parentheses may be used
replacement for the field selector identifier. This technique shall be used where the identifier is not provided in thierdeclar:
of the field.

Delivery 9.6, 21 April 1997 91

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

14.7 Formal parameter lists in modified ASN.1 constraints
The requirements of 13.7 also apply to modified ASN.1 constraints.

14.8 ASP Parameter and PDU field names within ASN.1 constraints

When specifying a constraint for an ASP or PDU in ASN.1, the parameter or field identifiers defined in the ASN.1 typadefinitio

for SEQUENCE, SET and CHOICE types may be used in order to identify the particular ASP or PDU parameters or fields a
value stands for. In the case of CHOICE types the identifiers identifying the variant shall be used. For SEQUENCE types,
parameter or field identifiers shall be used whenever the value definition becomes ambiguous because of omitted values for
OPTIONAL parameters or fields. For SET types, parameter or field identifiers shall be used in all cases.

EXAMPLE 54 - Field values in an ASN.1 PDU constraint
Assume the type definition::

ASN.1 PDU Type Definition

PDU Name : XY_PDU
PCO Type
Comment

Type Definition

SET { field_1 INTEGER OPTIONAL,
field_2 BOOLEAN,
field_3 INTEGER OPTIONAL,
field_4 INTEGER OPTIONAL }

Then a possible constraint is:

ASN.1 PDU Constraint Declaration

Constraint Name : CONS1

PDU Type . XY_PDU
Derivation Path
Comments
Constraint Value

{field_1 5,

field_2 TRUE,

field_3 3
}

-- field_4 is not specified => omitted when sending
-- if identifier field_3 was not used it would be ambiguous whether 3 was the value of field_3 or
-- field_4, since both are OPTIONAL.

92 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

14.9 ASN.1 CM Constraint Declarations
The parameter values for CM constraints shall be provided in the format shown in the following proforma:

ASN.1 CM Constraint Declaration

Constraint Name : Consld&ParlList

Group . [ASN1CM_ConstraintGroupReference]
CM Type : CM_lIdentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 44 - ASN.1 CM Constraint Declaration
SYNTAX DEFINITION:

to be added
This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

15 The Dynamic Part

15.1 Introduction
The Dynamic Part contains the main body of the test suite: the Test Case, the Test Step and the Default behaviour descri

15.2 Test Case dynamic behaviour
15.2.1 Specification of the Test Case Dynamic Behaviour table
15.2.1.1The title of the table shall be “Test Case Dynamic Behaviour”
15.2.1.2The header shall contain the following information:
a) Test Case name,
giving a unique identifier for the Test Case described in the table;
b) Test Group Reference,

giving the full name of the lowest level to the group that contains the Test Case; that full name shall conform to
requirements of 9.2, and end with a slash (/);

c) Test Purpose,

an informal statement of the purpose of the Test Case, as given in the relevant test suite structure and test purposes s
(if any) or equivalent part of the test suite standard (if any);

d) Default Reference,

an identifier (including an actual parameter list if necessary) of a Default behaviour description, if any, which applies to
Test Case behaviour description (see 15.4);

Delivery 9.6, 21 April 1997 93

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

15.2.1.3The body of the table shall display the following columns and corresponding information:
a) an (optional) line number column (see 15.2.5),
which, if present, shall be placed at the extreme left of the table.
b) a label column,
where labels can be placed to identify the TTCN statements to allow jumps using the GOTO construct (see 15.14);
c) a behaviour description,

which describes the behaviour of the LT and/or UT in terms of TTCN statements and their parameters, using the tree notation
(see 15.6);

d) a constraints reference column,

where constraint references are placed to associate TTCN statements in a behaviour tree with a reference to specific ASP anc
or PDU values defined in the constraints part (see clause 12);

e) a verdict column,
where verdict or result information is placed in association with TTCN statements in the behaviour tree (see 15.17);
f) an (optional) comments column,

this column is used to place comments that ease understanding of TTCN statements by providing short remarks or reference:
to additional text in the optional detailed comments section;

The columns c), d), e) and f) shall be displayed in that order, from left to right. It is recommended that the mandamontabel
be placed at the left of the behaviour description. Alternately, the label column may be placed to the right of the behaviour
description.

15.2.1.4An (optional) footer can contain detailed comments.

94 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

15.2.2 The Test Case Dynamic Behaviour proforma
The Test Case dynamic behaviour shall be provided in the format shown in the following proforma:

Test Case Dynamic Behaviour
Test Case Name . TestCaseldentifier
Group : TestGroupReference
Purpose . FreeText
Configuration : TCompConfigldentifier
Defaults . [DefaultRefList]
Comments . [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] | [Verdict] [FreeText]
Treel;|eader
StatementLine
n
Detailed Comments: [FreeText]

Proforma 45 - Test Case Dynamic Behaviour
The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviatdd tref, V andC. This enables the behaviour tree column to be as wide
as possible in cases of physical paper size limitations.

SYNTAX DEFINITION:
to be added

Delivery 9.6, 21 April 1997 95

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

15.2.3 Structure of the Test Case behaviour

Each Test Case contains a precise description of sequences of (anticipated) events and related verdicts. This description i
structured as a tree, with TTCN statements as nodes in that tree and verdict assignments at its leaves. In many cases it is mo
efficient to use Test Steps as a means of substructuring this tree:

Statement and Verdict
Statement

Statement Test Step

Statement and Verdict

Test Case Test Case
Statement and Verdict Statement and Verdict
Statement Statement
Statement Statement
Statement and Verdict "
Statement and Verdict
1: Unstructured Test Case Behaviour 2: Structured Test Case Behaviour

Figure 7 - Test Case Behaviour Structure

In TTCN this explicit modularization is expressed using Test Steps and the ATTACH construct.
15.2.4 Concurrent Test Case Behaviour Description

If PTCs are used in a test case then the header shall contain the additional entry, Configuration, which shall identify a Test
Component Configuration declared in the Declaration Part.

The behaviour of the MTC is described by the first tree in the Test Case Behaviour table plus all attached trees. The MTC
behaviour tree creates PTCs when required and associates each PTC with its own behaviour tree.

If a PTC behaviour is specified as a local tree in the test case behaviour then the Defaults Reference shall be empty. This
restriction prevents a PTC from inheriting the Default Behaviour of the MTC.

A test case shall only use the Test Components that are present in the referenced Test Component Configuration. The chose
configuration shall determine the set of PCOs and CPs that may be used in the test case. When used, the Configuration entry i
the Test Case Dynamic Behaviour Header shall be provided in the format shown in Proforma 45.

15.2.5 Line numbering and continuation

Since lines in the behaviour description, when printed, may be too long to fit on one line it is necessary to use additadsal sy
to indicate the extent of a single behaviour line. There are two available techniques:

a) indicate the beginning of a new behaviour line; an extra line column is added as the leftmost column in the body of the table
there shall only be an entry in this column on those lines where a new behaviour line starts; the line numbers used shall be 1,
2, 3, and the numbering shall not be restarted when local trees are defintitbre is a unique line number for each
behaviour line of the behaviour table;

NOTES
1 The line numbers can be used for logging purposes, to record unambiguously which behaviour line was executed.
2 The line numbers can be used as references in the detailed comments section.

b) indicate the continuation of lines; if a line is to be continued within the behaviour description column a hash (#) symbol
shall be placed in the leftmost position of the behaviour column, on the line of the continued text; it is recommended that the
text of the continued part adopts the same level of indentation as the line it is continuing.

96 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

If a line is continued in any column other than the behaviour description column the hash symbol is not required.

EXAMPLE 55 - Printing long behaviour line
55.1Recommended style:

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 This is a TTCN statement that is too long to print on a sipgle Refl
line because the column is too narrow
2 This is the next statement line This is a constraint refert
ence that is too long to
print on one line

3 An alternative statement line Ref2

55.2Alternative style:

Label Behaviour Description Constraints Ref Verdict | Comments

This is a TTCN statement that is too long to print on a
single line because the column is too narrow

This is the next statement line

An alternative statement line

Refl

This is a constraint refert
ence that is too long to
print on one line

Ref2

15.3 Test Step dynamic behaviour
15.3.1 Specification of the Test Step Dynamic Behaviour table

The dynamic behaviour of Test Steps is defined using the same mechanisms as for Test Cases, except that Test Steps
parameterized (see 15.7). Test Step dynamic behaviour tables are identical to Test Case dynamic behaviour tablesgexcept

following differences:
a) the table has the title "Test Step Dynamic Behaviour";
b) the first item in the header is the Test Step name,

which is a unique identifier for the Test Step followed by an optional list of formal parameters, and their associated ty

These parameters may be used to pass PCOs, constraints or other data objects into the root tree of the Test Step;
c) the second item in the header is the Test Step Group Reference,

which gives the full name to the lowest level of the Test Step Library group that contains the Test Step; that full name ¢

conform to the requirements of (see 9.3), and end with a slash (/);

d) the third item in the header is the Test Step Objective,
which is an informal statement of the objective of the Test Step.

Delivery 9.6, 21 April 1997

97

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

15.3.2 The Test Step Dynamic Behaviour proforma
The Test Step dynamic behaviour shall be provided in the format shown in the following proforma:

Test Step Dynamic Behaviour
Test Step Name . TestStepld&ParList
Group . TestStepGroupReference
Obijective : FreeText
Defaults . [DefaultRefList]
Comments . [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] | [Verdict] [FreeText]
TreeHeader
StatementLine
n
Detailed Comments: [FreeText]

Proforma 46 - Test Step Dynamic Behaviour
The alternative position of the label column is shown in dotted lines.
Column headers of this proforma can be abbreviatdd t©ref, V andC.
SYNTAX DEFINITION:

to be added

15.4 Default dynamic behaviour
15.4.1 Default behaviour

A TTCN Test Case shall specify alternative behaviouef@rypossible event (including invalid ones). It often happens that in
a behaviour tree every sequence of alternatives ends in the same behaviour. This behaviour may be factored out as defau
behaviour to this tree. Such Default behaviour descriptions are located in the global Default Library.

The dynamic behaviour of Defaults is defined using the same mechanisms as for Test Steps, except for the following; restrictions
a) it is not permitted to specify Default behaviour for the Default behaviour;
b) a default behaviour description may attach local trees (see 15.7.1) but shall not attach Test Steps.
c) if local trees are used in a Default behaviour description, they shall not attach Test Steps.
d) the tree(s) in the behaviour description shall not use the ACTIVATE operation (see 15.18.4).

Both PCOs and other actual parameters may be passed to Default behaviour descriptions in the same way that they may be pass
to Test Steps. The same rules on scope and textual substitution of these parameters apply as described for tree attachment (s
15.13).

15.4.2 Specification of the Default Dynamic Behaviour table
Default dynamic behaviour tables are identical to Test Step dynamic behaviour tables, except for the following differences:

98 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

a) the table has the title "Default Dynamic Behaviour";
b) the first item in the header is the Default name,

which is a unique identifier for the Default followed by an optional list of formal parameters, and their associated types. Tt
parameters may be used to pass PCOSs, constraints or other data objects into the root tree of the Default;

c) the second item in the header is the Default Group Reference,

which gives the full name of the lowest level to the Default Group that contains the Default; that full name shall conforn
the requirements of (see 9.4), and end with a slash (/);

d) the third item in the header is the Default Objective,
which is an informal statement of the objective of the Default.
15.4.3 The Default Dynamic Behaviour proforma
The Default dynamic behaviour shall be provided in the format shown in the following proforma:

Default Dynamic Behaviour

Default Name . Defaultld&ParList
Group . DefaultGroupReference
Objective . FreeText
Comments . [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] | [Verdict] [FreeText]
TreeHeader
StatementLine
n

Detailed Comments: [FreeText]

Proforma 47 - Default Dynamic Behaviour
The alternative position of the label column is shown in dotted lines.
Column headers of this proforma can be abbreviatdd toref, V andC.
SYNTAX DEFINITION:

to be added

15.5 The behaviour description

The behaviour description column of a dynamic behaviour table contains the specification of the combinations of TT

statements that are deemed possible by the test suite specifier. The set of these combinations is called the behagiour tre

TTCN statement is a node in the behaviour tree.

15.6 The tree notation

Each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two
- as sequences of TTCN statements;

Delivery 9.6, 21 April 1997 99

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

- as alternative TTCN statements.

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement being indented on
from left to right, with respect to its predecessor.

EXAMPLE 56 - TTCN statements in sequence:

EVENT_A
CONSTRUCT_B
EVENT_C

Statements at the same level of indentation and belonging to the same predecessor node represent the possible alternatiy
statements which may occur at that time. Henceforth, this set of TTCN statements will be referredsiet a$ #fternativesor
simply alternatives

EXAMPLE 57 - Alternative TTCN statements:

CONSTRUCT Al
STATEMENT_A2
EVENT_A3

EXAMPLE 58 - Combining sequences and alternatives to build a tree:

EVENT_A
CONSTRUCT_B
EVENT_C
STATEMENT_D1
EVENT_D2

Whether a TTCN statement can be evaluated successfully or not depends on various conditions associated with the statemer
line. These conditions are not necessarily mutually exclusaejt is possible that for any given moment more than one
statement line could be evaluated successfully. Since statement lines are evaluated in the order of their appearanafe in the set
alternatives the first statement with a fulfilled condition will be successful. This might lead to unreachable behavitiaglar pa

if statements are encoded as alternatives following statements that are always successful.

REPEAT and GOTO are always successful. In addition, SEND, IMPLICIT SEND, assignments and timer operations are
successful provided that the accompanying qualifier, if any, evaluates to TRUE.

Graphical indentation of statement lines in the TTCN.GR form is mapped to indentation values in TTCN.MP. Statements in the
first level of alternatives having no predecessor in the root or local tree they belong to, shall have the indentatiorevalue of
Statements having a predecessor shall have the indentation value of the predecessor plus one as their indentation value.

SYNTAX DEFINITION:
to be added

EXAMPLE 59 - $Line [6] +R1_POSTAMBLE

15.7 Tree names and parameter lists
15.7.1 Introduction

Each behaviour description shall contain at least one behaviour tree. In order that trees may be unambiguously reférred to (suc
as in an ATTACH construct) each tree has a tree name.

100 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the idematifiey appe
in the header of its dynamic behaviour table. That is, the tree name of the root tree of a Test Step is the Test Stdpridentifi
that Test Step, and likewise for root trees in Test Case dynamic behaviours and Default dynamic behaviours.

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. Local trees are prefix
a tree header which contains the tree name.

SYNTAX DEFINITION:
to be added
15.7.2 Trees with parameters

All trees, except Test Case root trees, may be parameterized. The parameters may provide PCOs, constraints, variables,
such items for use within the tree. Test Case root trees shall not be parameterized.

If a tree is parameterized, then a list of formal parameters and their types shall appear within parentheses directlyhi@llowin
tree name. For example, the formal parameter list for a Test Step root tree shall appear within parentheses immediatgly foll
the Test Step Identifier in the header of the Test Step dynamic behaviour table. Similarly, the formal parameter list for a |
tree shall appear immediately after the tree name in the tree header.

In constructing the formal parameter list, each formal parameter shall be followed by a colon and the name of the type c
formal parameter. If more than one formal parameter of the same type is present, these may be combined into a sub-list.
such a sub-list is used, the formal parameters within the sub-list shall be separated from each other by a comma. iiaé final 1
parameter in the sub-list shall be followed by a colon and the formal parameter’s type.

When there is more than one formal parameter and type pair (or more than one sub-list and type pair), the pairs shigtibe sej
from each other by semi-colons.

Formal parameters may be of PCO type, ASP type, PDU type, structure type or one of the other predefined or Test Suite T

If a formal parameter of a tree is typ®U then specific fields in the PDU shall not be referenced in the tree. If the formal
parameter is a specific PDU identifier, then specific fields in the PDU may be referenced in the tree.

EXAMPLE 60 - A Test Step using formal parameters: EXAMPLE_TREE (L:TSAP; X:INTEGER; Y:INTEGER)
EXAMPLE 61 - A Test Step using a formal parameters with a sub-list: EXAMPLE_TREE (L:TSAP; X, Y:INTEGER)

15.8 TTCN statements

The tree notation allows the specification of test events initiated by the Lower Tester(s) or Upper Tester(s) (SEND
IMPLICIT SEND events), test events received by the Lower Tester(s) or Upper Tester(s) (RECEIVE, OTHERWIS
TIMEOUT and DONE), constructs (GOTO, ATTACH, REPEAT, CREATE, RETURN and ACTIVATE) and pseudo-event:
comprising combinations of qualifiers, assignments and timer operations. These are collectively known as TTCN statemet

Test events can be accompanied by qualifiers (Boolean expressions), assignments and timer operations. Qualifiers, assigl
and timer operations can also stand alone, in which case they are called pseudo-events.

15.9 TTCN test events

15.9.1 Sending and receiving events

TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs at |
PCOs. The PCO model is defined in 11.10 and 15.9.5.3.Concurrent TTCN supports the sending and receiving of CMs to n
CPs. The CP model is defined in 11.11.

SYNTAX DEFINITION:
to be added

In the simplest form, an ASP identifier or PDU identifier follows the SEND symbol (!) for events to be initiated by the LT
UT, or a RECEIVE symbol (?) for events which it is possible for the LT or UT to accept. The optional PCO name is
provided. This form is valid when there is only one PCO in the test suite.

Delivery 9.6, 21 April 1997 101

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 62 - ICONreq or ?CONind

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the formal pafameter lis
the tree, shall prefix the SEND symbol or the RECEIVE symbol. The PCO name is used to indicate the PCO at which the test
event may occur.

EXAMPLE 63 - L! CONreq or L? CONind

In the case of CPs, the CP identifier shall be used and shall prefix the SEND symbol in the case of sending a CM aid shall pref
the RECEIVE symbol in the case of receiving a CM.

EXAMPLE 64 - A_CPIA CM or A_CP?A_CM

15.9.2 Receiving events

A RECEIVE event line evaluates successfully if an incoming ASP or PDU on the specified PCO matches the event line. A match
occurs if the following conditions are fulfilled:

a) the incoming PDU can be decoded in accordance with the applicable encoding rules;

b) the incoming ASP or PDU is valid according to the ASP or PDU type definition referred to by the event name on the event
line. In particular, all parameters and/or field values shall be of the type defined, and satisfy any length restricfieds speci

¢) the ASP or PDU matches the constraint reference on the event line;

d) in cases where a qualifier is specified on the event line, the qualifier shall evaluate to TRUE; the qualifier may contain
references to ASP parameters and/or PDU fields.

The incoming event is removed from the PCO queue only when it successfully matches a RECEIVE event line.
In concurrent TTCN the receipt and matching of a CM at a CP is treated in the same manner as described above.
15.9.3 Sending events

A SEND event line with a qualifier is successful if the expression in the qualifier evaluates to TRUE. Unqualified SEND events
are always successful. The outgoing ASP or PDU that results from a SEND event shall be constructed as follows:

a) All ASP parameter and PDU field values shall be of the type specified in the corresponding definitions, and will satisfy any
length restrictions in the definitions;

b) the value of the ASP parameter and PDU fields shall be set as specified in the constraint referenced on the event line (see
clause 12, 13 and 14 for an explanation of constructing ASPs or PDUs with constraints);

¢) any direct assignments to ASP parameters or PDU fields on the event line will supersede the corresponding value specified
in the constraint, if any;

d) all parameters and/or fields in the outgoing ASP or PDU shall contain specific values or be explicitly omitted prior to
completion of the SEND event;

e) the fully constructed PDU shall be encoded in accordance with the applicable encoding rules;

Generation of an ASP parameter or PDU field value by either the constraints or assignments that violates the declared type anc
length restrictions shall cause a test case error.

In concurrent TTCN the sending of CMs at CPs is treated in the same manner as described above.
15.9.4 Lifetime of events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used only to reference ASP
parameter and PDU field values on the statement line itself.

In the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, in appropriate assignments on th
SEND line.

EXAMPLE 65 - IA_PDU (A_PDU.FIELD:=3)
The effects of such an assignment shall not persist after the event line in which they occurred.

In the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently referenced, either the
whole ASP or PDU or a relevant part of it shall be assigned to variables on the RECEIVE line itself. These variables may then
be referenced in subsequent lines.

102 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 66 - ?A_PDU (VAR:=A_PDU.FIELD)
where VAR may be used on event lines subsequent to receipt of A_PDU.

The lifetime of CMs is also restricted to the relevant RECEIVE statement. Identifiers of CM fields may be accessed in a sir
manner as identifiers of PDU fields.

EXAMPLE 67 - A CPIACM or A_CP?A_CM

15.9.5 Execution of the behaviour tree
15.9.5.1 Introduction

The test suite specifier shall organize the behaviour tree representing a Test Case or a Test Step according to th@ldsllowin
regarding test execution:

a) starting from the root of the tree, the LT or UT remains on the first level of indentation until an event matches. if an e
is to be initiated the LT or UT initiates it; if an event is to be received, it is said to match only if a received rezmdarent
and matches the event line;

b) once an event has matched, the LT or UT moves to the next level of indentation. No return to a previous level of indent
can be made, except by using the GOTO construct;

c) eventlines at the same level of indentation and following the same predecessor event line represent the possibk alterr
which may match at that time. Alternatives shall be given in the order that the test suite specifier requires the LT or U
attempt either to initiate or receive them, if necessary, repeatedly, until one matches;

EXAMPLE 68 - lllustration of a TTCN behaviour tree

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection, exchange
some data, and close the connection. The events occur at the lower tester PCO L:

a) CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTrequest;

Progress can be thwarted at any time by the IUT or the service-provider. This generates two more sequences:
b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTindication;

c) CONNECTrequest, DISCONNECTIndication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of alternatives, and only three
leaves (a to c), because the SEND events L! are always successful. Execution is to progress from left to right (sequence), and
from top to bottom (alternatives). The following figure illustrates this progression, and the principle of the TTCN behaviour

tree:
| progression of time |
f‘ EXAMPLE-TREE (L:NSAP)
t L! CONNECTrequest
r L
r —= .7 CONNECTconfirm
n
f\ |—> L! DATArequest
i L? DATAindication
%
e |—>L! DISCONNECTrequest a)
S L? DISCONNECTindication b)
* L L ? DISCONNECTindication c)

There are no lines, arrows or leaf names in TTCN. The behaviour tree of the previous example would be represented as fo

Delivery 9.6, 21 April 1997 103

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 69 - A TTCN behaviour tree

Test Step Dynamic Behaviour
Test Step Name : TREE_EX_1(L:NSAP)
Group : TTCN_EXAMPLES/TREE_EXAMPLE_1/
Objective . Toillustrate the use of trees.
Default :
Comments : NOTE - This example can be simplified by using Defaults
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 L! CONNECTrequest CR1 Request ...
2 L? CONNECTconfirm CC1 ... Confirm
3 L ! DATArequest DTR1 Send Data
4 L? DATAiIndication DTI1 Receive Data
5 L! DISCONNECTrequest DSCR1 PASS | Accept
6 L? DISCONNECTindication DSCI1 INCONC | Premature
7 L? DISCONNECTindication DSCR1 INCONC | Premature

15.9.5.2 The concept of snapshot semantics

The alternative statements at the current level of indentation are processed in their order of appearance. TTCN operational
semantics (see Annex B) assume that the status of any of the events cannot change during the process of trying to match one
a set of alternatives. This implies that snapshot semantics are used for received events and TIME@&&£Tstime around a

set of alternatives a snapshot is taken of which events have been received and which TIMEOUTS have fired. Only those identified
in the snapshot can match on the next cycle through the alternatives.

15.9.5.3 Restrictions on using events
In order to avoid test case errors the following restrictions apply:

a) a Test Case or Test Step should not contain behaviour where the relative processing speed of the MOT (Means of Testing]
could impact the results. To prevent such problems, a RECEIVE, OTHERWISE or TIMEOUT event line shall only be
followed by other RECEIVE, OTHERWISE and TIMEOUT event lines in a set of alternatives. As a consequence, Default trees
shall contain only RECEIVE, OTHERWISE and TIMEOUT event lines on the first set of alternatives.

b) Once there is an event on a PCO or CP queue or a timeout in the timeout list, it can be removed from the queue or list only
by a successful match of the related TTCN statement. In the case of a set of alternatives that includes RECEIVE statements
the set of expected incoming events shall be fully specified. This means that it shall be a test case error if, duringrexecutio
match of any of the RECEIVE statements occurs and yet execution progresses to the next level of alternatives because of &
TIMEOUT which occurred after an ASP or PDU, that was not specified in the set of RECEIVE statements, was received on
any one of the relevant PCO or CP queues. IMPLICIT SEND shall not be used with CMs.

¢) Precautions should be taken when using concurrent TTCN to avoid unreliable results caused by situations in which the order
of receipt of envents at different PCOs or CPs is used to determine verdict assignment. The actual time at which PDU or CM
is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected when executing parallel test

components.

104 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 70 - An incomplete set of RECEIVE events

PARTIAL_TREE

PARTIAL_TREE IASTART T
IASTART T ?B

?B ? OTHERWISE

?TIMEOUT T FAIL

IC ?TIMEOUT T
?D IC
?D
a) b)

In a) if D is received in response to !A the test case will assign an erroneous PASS verdict by virtue of the TIMEOUT. This
can be avoided by using the OTHERWISE statement:

d) In concurrent TTCN, the relative ordering of events at different PCOs or different CPs should not affect the ver
assigned, since this would lead to unrepeatability of results caused by differences in processing and transmission speec

15.9.5.4 Precautions when using concurrent TTCN

Precautions should be taken when using concurrent TTCN to avoid unrepeatable results caused by situations in which the
of receipt of events at different PCOs or at different CPs is used to determine verdict assignment. The actual timéP&hich a
or CM is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected when executing parallel
components.

15.9.6 The IMPLICIT SEND event

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means of specifyi
a given point in the description of the behaviour of the LT, that the IUT should be made to initiate a particular PDU ot ASP
not CM). For this purpose, the implicit send event is defined, with the following syntax:

SYNTAX DEFINITION:

to be added

ThelUT in the syntax takes the place of the PCO identifier used with a normal SEND or RECEIVE, indicating that the speci
ASP or PDU is to be sent by the IUT. The angle brackets signify that this is an implicitievethiere is no specification of
what is done to the IUT to trigger this reaction, only a specification of the required reaction itself.

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and at the
level of indentation as the IMPLICIT SEND are unreachable.

An IMPLICIT SEND shall be used only where the relevant OSI standard(s) permit the IUT to send the specified ASP or PD
that point in its communication with the LT.

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the partial P
proforma that permits indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote Test Methods
IMPLICIT SEND event shall not be used unless the same effect could have been achieved using the DS test method.

NOTE 1 - For example, when testing a connection-oriented Transport Protocol implementation, if this restriction did tnebabddte per-
missible to use IMPLICIT SEND to get the IUT to initiate a CR TPDU because in the DS test method that effect could bebgaietegl
the UT to send a T-CONreq ASP. On the other hand, it would not be permissible to use IMPLICIT SEND to get the IUT to MifRettRaq
ASP because that effect could not be controlled through the Transport Service boundary. The reason for this restrietv@emisTespCases
from requiring greater external control over an IUT than is provided for in the relevant protocol standard.

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet the requiren
of the standard for the protocol being tested are also perfoengeget timer, initialize state variables.

The semantics of IMPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the initiation oféde spec
ASP or PDU. The way in which the SUT is to be controlled should be specified in the PIXIT (or documentation referencec
the PIXIT).

Delivery 9.6, 21 April 1997 105

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Neither a final verdict nor a preliminary result shall be associated with an IMPLICIT SEND event.

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU that should,
as a result, have been sent by the IUT.

EXAMPLE 71 - EXAMPLE use of IMPLICIT SEND

Test Case Dynamic Behaviour

Test Case Name 1 IMP1

Group : TTCN_EXAMPLES/IMPLICIT_SEND1/

Purpose . A patrtial tree to illustrate the use of IMPLICIT SEND.

Default :

Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
5 <IUT!CR > CR1
6 L? CR CR1
7 L' CC CC1
12 L? OTHERWISE

15.9.7 The OTHERWISE event

The predefined event OTHERWISE is the TTCN mechanism for dealing with unforeseen test events in a controlled way.
OTHERWISE has the syntax:

SYNTAX DEFINITION:
to be added

OTHERWISE is used to denote that the LT or UT shall acagphaoming event which has not previously matched one of the
alternatives to the OTHERWISE. The tester shall accept any incoming data that it has not been possible to decode dr that has nc
matched a previous alternative to this OTHERWISE event.

In non-concurrent TTCN, if more than one PCO exists in a test suite, then either a PCO name appearing in the declarations part
or a formal parameter from the formal parameter list of the tree where that formal parameter is used to convey a PC® name, shal
prefix the OTHERWISE. The PCO name is used to indicate the PCO at which the test event may occur. Incoming events,
including OTHERWISE, are considered only in terms of the given PCO.

EXAMPLE 72 - Use of OTHERWISE with PCO identifiers:

PARTIAL_TREE

PCO1? A

PCO2? B PASS
PCO1? C INCONC
PCO2? OTHERWISE FAIL

Assume no event is received at PCO1, then receipt of event B at PCO2 results in a PASS verdict. Receipt of any other event at
PCO2 results in a FAIL verdict.

Due to the significance of ordering of alternatives, incoming events which are alternatives following an unconditional
OTHERWISE on the same PCO will never match.

106 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 73 - Incoming events following an OTHERWISE:

PARTIAL_TREE

PCO1? A PASS
PCO1? OTHERWISE FAIL
PCO1?C INCONC

The OTHERWISE will match any incoming event other than A. The last alternative, ?C, can never be matched.
15.9.8 OTHERWISE and concurrent TTCN

In concurrent TTCN, OTHERWISE may be used with CPs as well as PCOs. OTHERWISE on CPs is allowed to provide
efficient way of handling “all other CMs on thgis CP".

15.9.9 The TIMEOUT event

The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a Test Case. When a timer expi
(conceptually immediately before a snapshot processing of a set of alternative events), a TIMEOUT event is placed irto a tin
list. The timer becomes immediately inactive. Only one entry for any particular timer may appear in the list at any one ti
Since TIMEOUT is not associated with a PCO, a single timeout list is used.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is a timeout ¢
matching the timer name, that event is removed from the list, and the TIMEOUT event succeeds.

If no timer name is indicated, any TIMEOUT event in the timeout list matches. The TIMEOUT event succeeds if the list is
empty. When this occurs, the entire timeout list is immediately emptied.

TIMEOUT has the following syntax:
SYNTAX DEFINITION:

to be added

EXAMPLE 74 - Use of TIMEOUT:

?TIMEOUT T

Since TIMEOUT events are not RECEIVE events they are not rendered unreachable by previously listed OTHERW
alternatives.

15.9.10 Concurrent TTCN events and constructs
The CREATE construct and the DONE event are used in concurrent TTCN.
15.9.10.1 The CREATE construct

The Main Test Component is started at the beginning of Test Case execution. The Main Test Component starts Paralle
Components, as needed, by means of the CREATE construct, which has the following syntax:

SYNTAX DEFINITION:

to be added

This construct invokes a set of Parallel Test Components. For each PTC, there are two arguments. The first is the identil
the PTC that is created, which shall match the identifier of a PTC in the Test Component Configuration referenced in the
case header. The second is a reference to a behaviour tree (i.e. Test Step or local tree), possibly with a paraméterdist con
actual values (e.g. PCOs and CPs). The effect of the CREATE construct is that each PTC listed starts executing its beh:
description in parallel with the execution of the Main Test Component.

NOTE 2 - Passing PCO and CP identifiers to a behaviour tree as actual parameters allows the same behaviour tree toobe thsedanen
test component.

The PCOs and CPs used in the execution of the behaviour description associated with a PTC by the CREATE construc
only be those determined by the Test Component Configuration for that Test Case.

The execution of a CREATE construct on a PTC which has already been created shall result in a Test Case error. The exe
of a CREATE by any Test Component other than the MTC shall result in a test case error.

Delivery 9.6, 21 April 1997 107

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

In the CREATE construct, PCO identifiers and CP identifiers are passed to a PTC by textual substitution, as is usual in the
ATTACHment of Test Steps. All others parameters are passed by value. This is done to prevent side effects on variables which
could affect the processing of other PTCs, causing unrepeatable results.

15.9.10.2 The DONE event

When the MTC terminates, the final verdict is assigned by the MTC, as calculated up to this moment (15.17.5). The DONE event
can be used in the MTC and the PTCs to find out whether PTCs have already terminated. Test Components can use this
information to determine their own preliminary results and further actions; in particular, the MTC can avoid terminating before
all PTCs have terminated (15.17.5).

SYNTAX DEFINITION:
to be added

A missing argument list is interpreted as being a list of all PTCs stated in a CREATE constructs executed prior to the executio
of the DONE event. A DONE event without an argument list shall only be used by the MTC.

EXAMPLE 75 - Use of the DONE event

PARTIAL_MTC_TREE

CREATE(PTC1: TREEA)
CREATE(PTC2: TREEB)
START T1
?DONE(PTC1,PTC2)
2TIMEOUT T1 FAIL

NOTES

1 It is recommended to use ?TIMEOUT as an alternative to ?DONE.

2 If DONE is the only alternative, it amounts to an order to wait for the specified PTCs to terminate.

3 DONE is not a means for the MTC to coordinate termination of PTCs. Termination can only be achieved by providing arieapgropria
change of CMs. TTCN does not offer any predefined CMs for this purpose.

15.10 TTCN expressions

15.10.1 Introduction

There are two kinds of expressions in TTCN: assignments and Boolean expressions. Both assignments and Boolean expressior
may contain explicit values and the following forms of reference to data objects:

a) Test Suite Parameters;

b) Test Suite Constants;

c) Test suite and Test Case Variables;

d) Formal parameters of a Test Step, Default or local tree;
e) ASPs and PDUs (on event lines).

Any variables occurring in Boolean expressions and/or on the right hand side of an assignment shall be bound. If an unbound
variable is used this is a test case error.

SYNTAX DEFINITION:
to be added

108 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

15.10.2 References for ASN.1 defined data objects
15.10.2.1 Introduction

In order to permit references to components of data objects defined using ASN.1, TTCN provides three access mechar
record references, array references and bit references.

SYNTAX DEFINITION:

708 DataObjectReference ::= DataObjectldentifier {ComponentReference}
710 ComponentReference ::= RecordRef | ArrayRef | BitRef

15.10.2.2 Record references

Arecord reference may be used to reference to a component of a data object of the type SEQUENCE, SET or CHOICE. Ar
reference is constructed using a dot notation, appending a dot and the name (component identifier) or number (comp
position) of the desired component to the data object identifier. The component identifier, if defined, should be usehteprefe
to the component position. References to unnamed components are constructed by giving within parentheses the number
is the position of the component within the type definition. By definition, the implicit numbering of components startowith ze
hence the third component has position number 2.

ISO/IEC 8824-1: 1994 defines SET types having unordered components. This is relevant only if values of that type are enc
and sent over the underlying service-provider. TTCN therefore treats data objects of SET type in the same way as obje
SEQUENCE type,e.,referring to the components with numbalways means a reference toithdield as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with thé witletways return the same value.
There is no change of order of the elements in a SET by any operation in TTCN.

SYNTAX DEFINITION:

711 RecordRef ::= Dot (Componentldentifier | ComponentPosition)
712 Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier | ASN1_Identifier
714 ComponentPosition ::="(" Number ")"

EXAMPLE 76 - Component record references

Example_type ::= SEQUENCE {
field_1 INTEGER,
field_2 BOOLEAN,
OCTET STRING }

If varl is of ASN.1 type Example_type, then the following could be written:
varl.field_1 which refers to the first (INTEGER) field
varl.(3) which refers to the third (unnamed) field

EXAMPLE 77 - PDU field references

XY_PDUtype ::= SEQUENCE {

user_data OCTET STRING,
©o}

On a statement line that contains XY_PDUtype, the following could be written:
L? XY_PDU (buffer := XY_PDUtype.user_data)
in order to load the variable buffer with the contents of the user_data field of the incoming PDU.

When a PDU or an ASN.1 type parameter, field or element is chained to an ASP, another PDU, or a CM, a record referenc
be used to identify a component of that PDU or ASN.1 type. The record reference shall identify the relevant complete seqt
of parameter, field or element names separated by dots, starting with a data object identifier which resolves to theSkelevan
identifier, CM identifier, or (if ASPs are not used in the test suite) PDU identifier. Beyond this initial data objeceidiuetifi

sequence shall not contain any PDU identifiers or ASN.1 type identifiers, but rather just the identifiers of the releveterparam

Delivery 9.6, 21 April 1997 109

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

fields and elements. This mechanism shall not be used if there is any ambiguity about the identity of a PDU constraint or ASN.1
type constraint in the sequence. The following example illustrates the use of record references when chaining of constraints is
used (see 12.4).

EXAMPLE 78 - Record references with chaining

ASN.1 ASP Type Definition
ASP1_type ::= SEQUENCE {
parl OCTET STRING,
par2 OCTET STRING,
pdul PDU1_type

}

ASN.1 PDU Type Definition
PDU1_type ::= SEQUENCE {
fieldl OCTET STRING,
field2 OCTET STRING,
f F_type
}

ASN.1 Structure Type Definition
F_type ::= SEQUENCE {
datal IA5String,
data2 |A5String

}

When using constraints of type ASP1_type, PDU1_type and F_type, the values of datal and data2 may be referenced as
follows:
ASP1_Type.pdul.F.datal
ASP1_Type.pdul.F.data2
Similarly the whole PDU field F may be referenced as:
ASP1_Type.pdul.F
or the whole PDU may be referenced as:
ASP1_Type.pdul

It should be noted that the declarations used in this example could apply to both static chaining and dynamic chaining, as the
differences between the two types of chaining are only visible in the constraints. Thus, the record reference is independent of
the variety of chaining used.

15.10.2.3 Array references

An array reference may be used to reference a component of a data object of the type SEQUENCE OF or SET OF. An array
reference shall be constructed using a dot notation, appending a dot and the index of the desired component to the data objec
identifier. The index, giving the position of the component within the data object (when the object is viewed as a lingar array
enclosed within square brackets. By definition within ASN.1, the indexing of components starts with zero. The index may be an
expression, in which case it shall evaluate to a non-negative INTEGER.

ISO/IEC 8824-1: 1994 defines SET OF types having unordered components. This is relevant only if values of that type are
encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET OF type in the same way ac
objects of SEQUENCE OF typee., referring to the components with numbelways means a reference to tthefield as

declared in the type.

After an ASP or PDU or CM has been received, referring to the component with thé wiletways return the same value.
There is no change of order of the elements in a SET OF by any operation in TTCN.

SYNTAX DEFINITION:

715 ArrayRef ::= Dot "[* ComponentNumber ""
716 ComponentNumber ::= Expression

110 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 79 - Component array references

Array_type ::= SEQUENCE OF {BOOLEAN}

If var2 is of ASN.1 type Array_type, then the following could be written in order to refer to the first BOOLEAN in the
sequence:
var2.[0]
varl.[1-1]
15.10.2.4 Bit references

A bit reference may be used to reference particular bits within a BITSTRING type. For this purpose, data objects of BITSTR
type are assumed to be defined as SEQUENCE OF {BOOLEAN}. Thus, a bit reference may be constructed using the i
notation as for array references. The leftmost bit has the index zero. An expression used as an index in a bit reference
evaluate to a non-negative INTEGER. Alternatively, if cetain bits of a BITSTRING are associated with an identifier (named b
then this identifier may be used to refer to the bit.

SYNTAX DEFINITION:

717 BitRef ::= Dot (Bitldentifier | "[" BitNumber "]")
718 Bitldentifier ::= Identifier
719 BitNumber ::= Expression

EXAMPLE 80 - Bit references

B_type ::= BIT STRING { ack(0), poll(3) }

This defines a BITSTRING type B_type where bit zero is called “ack” and bit three is called “poll”.
If b_stris of ASN.1 type B_type, then the following could be written:
b_str.ack := TRUE
b_str.[2] := FALSE
Note that b_str.poll := TRUE and b_str.[3] := TRUE both assign the value TRUE to the “poll” bit.
15.10.3 References for data objects defined using tables

The same syntax as defined in 15.10.2.2 shall be used to construct record references to components of ASPs, PDUs, CI
Structured Types defined in tabular form. Chaining of ASPs, PDUs, CMs and Structured Types in tabular form affects re
references in exactly the same way as it does for those defined in ASN.1.

Where a parameter, field or element is defined to include an item which is a true substructure of a type defined ind Struc
Type table, a reference to the item in the substructure shall consist of the record reference to the parameter, field or el
followed by a dot and the identifier of the item within that Structure.

Where a Structure is used as a macro expansion, the elements in the Structure shall be referenced to as if it was expanc
the Structure referring to it.

If a parameter, field or element is defined to be of meta®ypd no reference shall be made to fields of that substructure.
15.10.4 Assignments
15.10.4.1 Introduction

Test events may be associated with a list of assignments and/or a qualifier. Assignments are separated by commasand tf
enclosed in parentheses.

SYNTAX DEFINITION:
to be added
During execution of an assignment the right-hand side shall evaluate to an element of the type of the left-hand side.

The effect of an assignment is to bind the Test Case or Test Suite Variable (or ASP parameter or PDU field) to the value
expression. The expression shall contain no unbound variables.

All assignments occur in the order in which they appear, that is left to right processing.

Delivery 9.6, 21 April 1997 111

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 81 - use of assignments with event lines:

(X:=1)
(Y:=2)
LIA (Y:=0, X:=Y, A.field1:=Y)
L?B (Y:=B.field2, X:=X+1)

When PDU A is successfully transmitted the contents of the Test Case Variables X and Y will be zero, and field1 of PDU A
will also contain zero. Upon receipt of PDU B the Test Case Variable Y would be assigned the contents of field2 from PDU B
and the Test Case Variable X would be incremented.

15.10.4.2 Assignment rules for string types
If length-restricted string types are used within an assignment the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated oo the right t
maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left-apigdeédnd
with fill characters up to the maximum size of the destination string type.

Fill characters are:
" " (blank) for all CharacterStrings;
"0" (zero) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGs.

When an unboundedl €., arbitrary length) string type variable is used on the left-hand side of an assignment it shall become
bound to the value of the right-hand side without padding. Padding is only necessary when the variable is of a fixeth¢gngth str

type.
15.10.5 Qualifiers

An event may be qualified by placing a Boolean expression enclosed in square brackets after the event. This qualification shall
be taken to mean that the statement is executed only if both the event matches and the qualifier evaluates to TRUE.

If both a qualifier and an assignment are associated with the same event, then the qualifier shall appear first, arbyeiagm in it
evaluated with the values holding before execution of the assignment.

SYNTAX DEFINITION:

to be added
15.10.6 Event lines with assignments and qualifiers

An event may be associated with an assignment, a qualifier or both. If an event is associated with an assignment, the assignmer
is executed only if the event matches. If an event is associated with a qualifier, the event may match only if the qlisdiféer ev

to TRUE. If an event is associated with both, the event may match only if the qualifier evaluates to TRUE, and the assignment
is executed only if the event matches.

If a RECEIVE event is qualified and the event that has occurred potentially matches the specified event, then the dualifier sha
be evaluated in the context of the event that has occurred. If the qualifier contains a reference to ASP parameters and/or PDL
fields then the values of those parameters and/or fields are taken from the event that has occurred.

The rules for use of assignments within events are as follows:
a) on a SEND event all assignments are perforafiedthe qualifier is evaluated ahaforethe ASP or PDU is transmitted;
b) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted;

c) on a RECEIVE event assignments are perforafeat the event occurs and cannot be made to fields of the ASP or PDU
just received.

An assignment to a constraint ASP parameter, PDU field or structure element in the behaviour part will overwrite constraint
values on a SEND event line.

112 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 82 - Use of a qualified SEND event:

PARTIAL_TREE
IA[X=3]
B

Processing these alternative SEND events the tester will send A only if the value of the variable X is 3. OtherwisaiBwill sen

The OTHERWISE event may be used together with qualifiers and/or assignments. If a qualifier is used, this Boolean bec
an additional condition for accepting any incoming event. If an assignment statement is used, the assignment will tdige place
if all conditions for matching the OTHERWISE are satisfied.

EXAMPLE 83 - Using OTHERWISE, qualifiers and assignments:.

PARTIAL_TREE (PCO1:XSAP; PCO2:YSAP)

PCO1? A PASS
PCO2? B [X=2] INCONC
PCO1? C PASS
PCO2? OTHERWISE [X<>2] (Reason:="X not equal 2") FAIL
PCO2? OTHERWISE (Reason:="X equals 2 but event not B") FAIL

Assume that no event is received at PCO1. Receipt of event B at PCO2 when X=2 gives an inconclusive verdict. Receipt of
any other event at PCO2 when X<>2 results in a FAIL verdict and assigns a value of “X not equal 2” to the CharacterString
variable: Reason. If an event is received at PCO2 that satisfies neither of these scenarios then the final OTHERWISE wiill
match.

Events involving CMs occuring at CPs may also be associated with an assignment, a qualifier or both, in the same manner
PDUs, as described above.

EXAMPLE 84 - CMs associated with a qualifier
A_CP!A_CM [X=2]
15.11 Pseudo-events

It is permitted to use assignments, qualifiers and timer operations by themselves on a statement line in a behaviooutree, w
any associated event. These stand-alone expressions are called pseudo-events.

The meaning of such a pseudo-event is as follows:

a) if only a qualifier is specified: the qualifier is evaluated and execution continues with subsequent behaviour, ifigne qual
evaluates to TRUE; if it evaluates to FALSE the next alternative is attempted. If no alternative exists, then this sea test
error.

b) if only assignments and/or timer operations are specified: the assignments shall be executed from left to right andi/c
timer operations shall be executed from left to right;

c¢) if assignments and/or timer operations are specified preceded by a qualifier: the qualifier shall be evaluated first an
assignments and/or timer operations shall be evaluated only if the qualifier evaluates to TRUE.

15.12 Timer management

15.12.1 Introduction

A set of operations is used to model timer management. These operations can appear in combination with events or as
alone pseudo-events.

Timer operations can be applied to:
- an individual timer, which is specified by following the timer operation by the timer name;
- all timers, which is specified by omitting the timer name.

It is assumed that the timers used in a test suite are either inactive or rédiningning timers are automatically cancelled at
the end of each Test Case. There are three predefined timer operations: START, CANCEL and READTIMER. More than
timer operation may be specified on a event line if necessary. This is indicated by separating the operations by commas.

Delivery 9.6, 21 April 1997 113

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

When a timer operation appears on the same statement line as an event and/or a qualifier, the timer operation shall be execute
if, and only if, the event matches and/or the qualifier evaluates to TRUE.

SYNTAX DEFINITION:
to be added
15.12.2 The START operation
The START operation is used to indicate that a timer should start running.
SYNTAX DEFINITION:
to be added

The optional timer value parameter shall be used if no default duration is given, or if it is desired to assign an ety time
duration) for a timer that overrides the default value specified in the timer declarations.

Timer values shall be of type INTEGER. The test case writer shall ensure that the optional timer value parameter shall evaluate
to a positive non-zero INTEGER. A test case error shall result if a timer is started with a zero or negative value.

Any variables occurring in the expression specifying the optional timer value shall be bound. If an unbound variableds used th
is a test case error.

When a timer duration is overridden, the new value applies only to the current instance of the timer: any later STARE operation
for this timer which do not specify a duration will use the duration stated in the timer declarations part.

EXAMPLE 85 - Uses of START timer:
the 'I'I are timer identifiers and theI ¥re timer values:

START TO
START TO (VO)
START T1, START T2 (V2)

The START operation may be applied to a running timer, in which case the timer is cancelled, reset and started. Angentry in th
timeout list for this timer shall be removed from the timeout list.

15.12.3 The CANCEL operation
The CANCEL operation is used to stop a running timer.
SYNTAX DEFINITION:

to be added

A cancelled timer becomes inactive. If a TIMEOUT event for that timer is in the timeout list, that event is removed from the
timeout list. If the timer name on the CANCEL operation is omitted, all running timers become inactive and the timeout list is
emptied.

Cancelling an inactive timer is a valid operation, although it does not have any effect.

EXAMPLE 86 - Some uses of CANCEL timer:
where the 1I'are timer identifiers:

CANCEL

CANCEL TO

CANCEL T1, CANCEL T2
CANCEL T1, START T3

15.12.4 The READTIMER operation

The READTIMER operation is used to retrieve the time that has passed since the specified timer was started and to store it into
the specified Test Suite or Test Case Variable. This variable shall be of type INTEGER. The time value assigned to the variable
is interpreted as having the time unit specified for the timer in its declaration. By convention, applying the READTIMER
operation on an inactive timer will return the value zero.

114 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

SYNTAX DEFINITION:
to be added

EXAMPLE 87 - Using READTIMER:

START TimerName (TimerVal)
?EVENT_A
+Tree_A
?EVENT_B
+Tree_B
?EVENT_C
READTIMER TimerName (CurrTime)
+Tree_C
?TIMEOUT TimerName

If EVENT_C is received prior to expiration of the timer named by TimerName, the amount of time which has passed since
starting the timer will be stored in the Test Case or Test Suite Variable CurrTime. The behaviour contained in Tree_C may use
the value of this Test Suite or Test Case Variable.

EXAMPLE 88 - READTIMER used in combination with other timer operations:
READTIMER T1 (PASSED_TIME), CANCEL T1
READTIMER T1 (V1), START NEW_TIMER (V1)
15.13 The ATTACH construct
15.13.1 Introduction
Trees may be attached to other trees by using the ATTACH construct, which has the syntax:
SYNTAX DEFINITION:
to be added

Test suite and Test Case Variables are global to both the tree that does the attachment (the main tree) and the agached t
any changes made to variables in an attached tree also apply to the main tree. Tree attachment constructs shall appe
statement line by themselves.

15.13.2 Scope of tree attachment

Behaviour descriptions may contain more than one tree. However, offissthieee in the behaviour description is accessible
from outside the behaviour description. Any subsequent trees are considered to be Test Steps local to the behavioyr desc
and thus not externally accessible.

It should be noted that only Test Cases are directly executable, while Test Steps are executed only if attached to @Test C
to a Test Step whose point of attachment can be traced back to a Test Case (either directly or via other attachedTiesgtt Step
Cases are not attachable.

Tree reference may be Test Step Identifiers or tree identifiers, where

a) a Test Step Identifier denotes the attachment of a Test Step that resides in the Test Step Library; the Test Steqalis refe
by its unique identifier;

b) a tree identifier shall be the name of one of the trees in the current behaviour description; this is attachmentreéa local
15.13.3 Tree attachment basics

Given a behaviour tree, it is possible to detach parts of this tree in the form of separate behaviori; TregtsSteps. The points
where a Test Step has been cut out of the original tree are indicated by the attach symbol (+) followed by the narte assig
the Test Step.

Delivery 9.6, 21 April 1997 115

Second Edition Mock-Lp for SC21 Review

EXAMPLE 89 - Partitioning a large tree into two smaller trees:

ISO/IEC 9646-3: 1997

TOP_TREE TOP_TREE STEP
A A D1
Al Al D11
D1)] . + STEP D12
D11 is equivalent to: c and
D12 C1
C +STEP
C1
D1
D11
D12

This operation can be performed not only on the main behaviour tree of the Test Case (the root tree) but also on the Test Step
detached from it. The attached tree will either be a local tree or a member of the Test Step Library.

Tree attachment can be defined in a more general way than the mere re-insertion of complete Test Steps:

- An attached tree need not contain full paths down to the leaves of the tree it is attachedltmditseg. Rather, some
subsequent behaviour common to all paths of the attached tree may be specified in the calling tree, namely as behaviour
subsequent to the attachment line.

- Some (even top level) lines of the attached Test Step may again have the form +SOME_SUBTREE, calling for the attachment
of further Test Steps.

- Attached Test Steps may be parameterized.

15.13.4 The meaning of tree attachment

15.13.4.1The following list defines the tree attachment execution semantics:
a) The attachment linee(g.,+STEP) in the behaviour tree.§., TOP_TREE) is formally onea(g.,Ai) in an ordered set of
alternatives:

(Ap s A A)

1
Attaching STEP in this position means expanding the TOP_TREE by inserting the Test Step STEP'’s top alte.ma(lﬁi/fs,

. Bm) into this sequence, yielding a new sequence:

(A LB A
m

7 A(i-l)’ Bl’ . (i+1) An)
of alternatives. Any subsequent behaviour to the Bs will be attached together with them.

EXAMPLE 90 - Expansion of a Test Step:

TOP_TREE STEP TOP_TREE
A Bl A
Al B11 Al
+ STEP B2 B1
A3 and is equivalent to: B11
B2
A3

b) Any behaviour subsequent to the +STEP line in the tree will become behaviour subsequent to all the leaves of the attachec
STEP expanded into the tree;

116

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 91 - Subsequent behaviour to an ATTACH:

TOP_TREE STEP TOP_TREE
A D1 A
+ STEP D11 D1
B D2 D11
and is equivalent to: B
D2
B

c) When an actual parameter list is used on an ATTACH construct, then the actual parameter shall be substituted for
corresponding formal parameter using simple textual substitution. This substitution shall take place according to the folloy
scoping rules:

1) Actual parameters on the ATTACH of a local tree shall be substituted for corresponding formals only directly witt
that local tree;

2) Actual parameters on the ATTACH of a root tree of a Test Step are substituted for all occurrences of the correspor
formals within the root tree and any local trees directly within the Test Step;

3) When a parameterized tree is attached:
A) the number of the actual parameters shall be the same as the number of formal parameters;
B) each actual parameter shall evaluate to an element of its corresponding formal parameter type; and
C) formal and actual parameters of test steps shall be used in such a way that only valid TTCN is created by textua
stitution.

EXAMPLE 92 - Substitution of parameters:

TOP_TREE (L:NSAP; U:TSAP) | _ . |STEP (PCO:TSAP; X,Y:INTEGER)
LICONreq (M:=1) PCO?CONind (X: = Y)
+ STEP(U, M, 2)

TOP_TREE (L:NSAP; U:TSAP)
L!CONreq (M:=1)
U?CONind (M: = 2)

is equivalent to:

Delivery 9.6, 21 April 1997 117

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

EXAMPLE 93 - Scoping rules for parameter substitution:

Test Step Dynamic Behaviour

Test Step Name : TEST_STEP_1(X, Y:INTEGER)

Group . TTCN_EXAMPLES/PARAMS/STEPS/

Objective . Toillustrate scoping rules for parameter substitution.

Default

Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 ?A Al

2 +TEST_STEP_2(X)

3 +LOCAL(5)

LOCAL(F:INTEGER)
4 B B1
5 (TC_VAR:=F+Y) PASS

Detailed Comments:
When TEST_STEPL1 is attached by a calling tree, all occurrences of the formal parameters X and Y within the entire Telstd8tgm(thin the
local tree LOCAL) will be replaced with the actuals provided. Note that formals X and Y are not automatically substitudetlialghwithin
TEST_STEP2. However, the actual parameter value for formal X is substituted in the ATTACH construct "+TEST_STEP2(X)" It§his treu
substitution of the actual parameter value X (in TEST_STEP1) for whatever formal parameter appears in the declaration TE FESin&lly,
note that actual parameter (constant) 5 is substituted for formal "F" when the tree LOCAL is attached. This substityilanetakdyg within thg

local tree.

15.13.5 Passing parameterized constraints

Constraints may be passed as parameters to Test Steps. If the constraint has a formal parameter list then the cobstraint shall
passed together with an actual parameter list. The actual parameters of the constraint shall already be bound at the point o
attachment.

EXAMPLE 94 - Passing a parameterized constraint:
Suppose that the constraint C1 has a single formal parameter of type INTEGER. TOP_TREE attaches STEP and passes C1 as
a parameter. Note that the constraints reference in STEP is not parameterized:

TOP_TREE STEP(PAR:A_PDU)

+ STEP(C1(3)) IA_PDU PAR

15.13.6 Recursive tree attachment

As tree attachment works recursively (STEP may contain a +SOME_OTHER_TREE line) the tree expansion semantics may
never lead to a tree free of attachment lines.

118 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

EXAMPLE 95 - A legal recursive tree attachment:

Second Edition Mock-Up for SC21 Review

TOP TREE STEP TOP_TREE
A C A
+ STEP + TOP_TREE one expansion C
B D is equivalent to: + TOP_TREE
and B
D
B

A tree shall not attach itself, either directly or indirectly, at its top level of indentation.

NOTE - It is unnecessary to expand either any Test Step that will not be executed, or any alternatives beyond the cuméhatevel

alternative from the current level has been selected.

EXAMPLE 96 - An illegal recursive tree attachment:

TOP TREE STEP TOP_TREE
A C A
+ STEP D one expansion c
B + TOP_TREE is equivalent to: D
and B
+ TOP_TREE
B

15.13.7 Tree attachment and Defaults
The expansion of Defaults in a tree shall be completed before this tree is attached anywhere (see 15.18.5).
NOTE - Special care has to be taken where both tree attachment and Defaults are used in a behaviour description.

15.14 Labels and the GOTO construct
A label may be placed in the labels column on any statement line in the behaviour tree.

NOTE 1 - Whenever an entry is executed in the behaviour tree for which a label is specified, that label should be réeocdedoimtance
log in such a way that it can be associated with the record of the execution of that entry.

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with the first of a se
alternatives, one of which is an ancestor node of the point from which the GOTO is to be made. A GOTO shall be used onl
jumps within one tred,e., within a Test Case root tree, a Test Step tree a Default tree or a local tree. As a consequence,
label used in a GOTO construct shall be found within the same tree in which the GOTO is used. No GOTO shall be made 1
first level of alternatives of local trees, Test Steps or Defaults.

A GOTO shall not refer to a label prior to an ACTIVATE construct which is an ancestor node of the GOTO.

A GOTO shall be specified by placing an arrow (->) or the keyword GOTO, followed by the name of the label, on a staten
line of its own in the behaviour tree.

SYNTAX DEFINITION:
to be added

A label shall be unique within a tree. If a GOTO is executed, the Test Case shall proceed with the set of alternativas refer
by the label.

GOTOs shall always be unconditional and therefore always execute.
NOTE 2 - a Boolean expression may be placed as the immediate ancestor of a GOTO to gain the effect of a conditional jump.

Delivery 9.6, 21 April 1997 119

Second Edition Mock-Lp for SC21 Review

EXAMPLE 97 - Use of GOTO

ISO/IEC 9646-3: 1997

Test Case Dynamic Behaviour

Test Case Name :GOTO_EX1
Group : TTCN_EXAMPLES/GOTO_EXAMPLE1/
Purpose . Toillustrate use of labels and GOTO.
Default
Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments

1 LA 1A Al

2 LB ?B B1

3 LB2 + B-tree

4 | LC ?C C1

5| LD [B=1]

6 -> LA

[E=1]

7 LE IE

8 LF F1 FAIL
Detailed Comments:
This example shows a jump to LA. From the same position in that tree it would also be allowed to jump to LB or LD, bunivtmitdiowed t
jump to LB2 or LF (because the set of alternatives does not contain an ancestor node of the point from which the jumpoistma@epr LE|
(because these are not the first of a set of alternatives).

15.15 The REPEAT construct

This subclause describes a mechanism to be used in behaviour descriptions for iterating a Test Step a number of tirags. The synt

of this REPEAT construct is:
SYNTAX DEFINITION:

to be added

The tree reference shall be a reference to either a local tree or a Test Step defined in the Test Step Library. Fof the rules o
attachment see 15.13. The REPEAT construct has the following meaning: first the tree, referred to by the tree reference, is
executed. Then, the qualifier is evaluated. If the qualifier evaluates to TRUE, execution of the REPEAT construct is completed.

If not, the tree is executed again, followed by evaluation of the qualifier. This process is repeated until the qualifies ¢valu

TRUE.
The REPEAT construct can always be executed and should be the last alternative of a series of TTCN statements at the sam

level of indentation, as allowed by 15.9.5.3 a).
NOTE 3 - The REPEAT construct is recommended, if applicable, instead of use of GOTO.

120

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 98 - Use of REPEAT (see also annex D)

Test Case Dynamic Behaviour

Test Case Name :RPT_EX1

Group . TTCN_EXAMPLES/REPEAT_EXAMPLE1/
Purpose . To illustrate use of REPEAT.
Default :
Comments
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 (FLAG:=FALSE)
2 A Al
3 REPEAT STEP1 (FLAG) UNTIL [FLAG]
4 D D1 PASS
STEP1 (F:BOOLEAN)
?B (F:=TRUE)
S 2C(F:=FALSE) Bl
6 C1

Detailed Comments:
This example describes a test that is capable of receiving an arbitrary number of C events at the lower tester PCQyaited thessage B
received.

[

15.16 The Constraints Reference
15.16.1 Purpose of the Constraints Reference column

This column allows references to be made to a specific constraint placed on an ASP, PDU or CM. Such constraints are d
in the constraints part (see clause 12, 13 and 14). The constraints reference shall be present in conjunction with SEND, IMP!
SEND and RECEIVE. A constraints reference is optional if an ASP or CM has no parameters or if a PDU has no fields. It
not be present with any other kind of TTCN statement.

The entry Constraints Reference column may be an actual constraint reference, the AnyValue symbol (“?”), or a fol
parameter whose actual parameter shall be a constraint reference or the AnyValue symbol. If AnyValue is used in place
constraint reference it means a “don’t care” constraint, equivalent to a constraint with AnyOrNone (“*”) in every paraideter, fi
or element.

An actual constraint reference has the syntax:
SYNTAX DEFINITION:

to be added

EXAMPLE 99 - A constraint reference without a parameter list:

N_SAP? CR_PDU CR1

15.16.2 Passing parameters in Constraint References

A constraint reference may have an optional parameter list to allow the manipulation of specific constraint values from
behaviour tree.

The actual parameter list shall fulfil the following:
a) the number of actual parameters shall be the same as the number of formal parameters; and

b) each actual parameter shall evaluate to either a value of its corresponding formal type or a matching symbol that can |
a value of that formal type.

Delivery 9.6, 21 April 1997 121

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

If a constraint is passed as an actual parameter, and that constraint is declared with a formal parameter list, thexinthe constr
shall also have a (possibly nested) actual parameter list. All variables appearing in the parameter list shall be bownd when th
constraint is used. If an unbound variable is used then this is a test case error.

EXAMPLE 100 - A constraints reference with a parameter list:

N_SAP? N_DATAreq D1(P1, CR1(P2))

Where D1 is a constraint on N_DATAreq with two parameters (actual parameters P1 and CR1), and CR1 is a constraint with
one parameter (actual parameter P2).

15.16.3 Constraints and qualifiers and assignments

If an event is qualified and also has a constraints reference, this shall be interpreted as: the event matches if, lawtth tmdy if,
qualifierandthe constraint hold.

If an event is followed by an assignment and has a constraints reference and/or a qualifier, then this shall be int¢hgreted as:
assignment is performed if, and only if, the event occurs according to the definition given above.
15.17 Verdicts
15.17.1 Introduction
Entries in the verdict column in Dynamic Behaviour tables shall be either
- a preliminary result, which shall be given in parentheses;
- or an explicit final verdict.
An entry, of either type, shall not occur on an empty line, or on the following TTCN statements:
a) an ATTACH construct;
b) a REPEAT construct;
c) aGOTO;
d) an IMPLICIT SEND
SYNTAX DEFINITION:
to be added

NOTE - During Test Case execution, whenever an entry in a behaviour tree occurs for which there is a correspondingericirctiiamn
of the abstract Test Case, that verdict column information is intended to be recorded in the conformance log in suchitisvassticiated
with the record of that entry in the behaviour tree.

15.17.2 Preliminary results

A predefined variable called R, of the predefined type R_TYPE, is available to each Test Case to store any intermediate
resuls.These values are predefined identifiers and as such are case sensitive.

R may be used wherever other Test Case Variables may be used, except that it shall not be used on the left-hand side of a
assignment statement. Thus, it is a read-only variable, except for the changes to its value caused by entries in thenverdict co
(as specified below).

If a preliminary result is to be specified in the verdict column it shall be one of the following:
a) (P) or (PASS) meaning that some aspect of the test purpose has been achieved;

b) () or INCONC), meaning that something has occurred which makes the Test Case inconclusive for some aspect of the
test purpose;

¢) (F) or(FAIL) , meaning that a protocol error has occurred or that some aspect of the test purpose has resulted in failure.

NOTE 1 - PASS or P, FAIL or F and INCONC or | are keywords that are used in the verdicts column only. The predefined phestifier
fail, inconcandnoneare values that represent the possible contents of the predefined variable R. These predefined identifiers are to be used for
testing the variable R in behaviour lines only.

Whenever a preliminary result is recorded, because the corresponding entry in the behaviour tree is executed, then the value o
the predefined Test Case Variable R shall be changed according to the following table:

122 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

Table 7 - Calculation of the variable R

Current Entry in verdict column

value of R | (PASS) (INCONC) (FAIL)
none pass inconc fall
pass pass inconc fall
inconc inconc inconc fall
fall fall fall fall

NOTE 2 - Thus, the order of precedence (lowehigher) is: N, P, I, F. Even if R has valiad it can be useful to record a preliminary result
of P or I in order to record in the conformance log that a P or | is appropriate for some aspect of the test purpose fiesphattthis will
not change the value of R.

15.17.3 Final verdict
If an explicit final verdict is to be specified in the verdict column, it shall be one of the following:
a) P or PASS meaning that a pass verdict is to be recorded;
b) I orINCONC, meaning that an inconclusive verdict is to be recorded;
c) F orFAIL , meaning that a fail verdict is to be recorded;
d) the predefined variable R, meaning that the value of R is to be taken as the final verdict, unless the valenefrr is
which case a test case error is recorded instead of a final verdict.

Table 8 - Calculation of the final verdict R

Current Entry in verdict column

value of R | PASS INCONC FAIL R

none pass inconc fail *error*
pass pass inconc fall pass
inconc *error* inconc fail inconc
fail *error* *error* fail fall

Whenever, during execution of a Test Case, an explicit final verdict is specified, then this terminates the Test Case
compliance with ISO/IEC 9646-2, an explicit final verdict should be specified only if the Test Case has returned to a suit
stable testing state.@.,the idle testing state).

NOTE 1 - The termination of the Test Case caused by the specification of an explicit final verdict is necessary, for fetkengpddy|é state
is reached in an attached Test Step when subsequent behaviour is specified in the calling tree.

If the leaf of the behaviour tree is reached without an explicit final verdict being specified, then the final verdiaghiaatbter
as for case d) aboved., as if R had been put in the verdict column).

If an explicit final verdict other than R is to be recorded, then that verdict shall be compared with the value in R tedeterr
whether or not they are consistent. If Rais then a final verdict oPASSor INCONC shall be regarded as inconsistent; if R is
inconcthen a final verdict dPASSshall be regarded as inconsistent. If there is one of these inconsistencies, then it is a test
error.

NOTE 2 - In such a case, "Test Case Error" should be recorded in the conformance log.
15.17.4 Verdicts and OTHERWISE

An OTHERWISE statement shall not lead to a PASS verdict. It should lead to a FAIL verdict, because the OTHERWISE c«
match an invalid test event.

15.17.5 Verdict assignment in concurrent TTCN

In concurrent TTCN, the final verdictis assigned by the MTC, either explicitly in the verdict column or implicitly as
consequence of MTC termination. Preliminary test results are maintained in the global result variable, which is acdessible t

Delivery 9.6, 21 April 1997 123

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

MTC as the test case variable R. The global result variable is updated whenever a preliminary result or verdict is meorded in
verdict column by a matched MTC behaviour line. If the MTC terminates without assigning an explicit verdict, then the verdict
shall be determined as if R had been placed in the verdict column (15.17.3 d)).

In addition, each PTC shall record at least one preliminary result. This preliminary result is maintained in its locatiedde|t v

which is accessible to the PTC as its test case variable R. When a preliminary result is assigned by a PTC, by any entry in the
verdict column of a matched PTC behaviour line (whether or not the entry is in parentheses), both its local result vahiable and
global result variable are updated using the algorithm specified in 15.17.2. In a PTC, an entry in the verdict column without
parentheses around it is not a final verdict, but shall cause termination of the PTC if that behaviour line matches.

Termination of the MTC before termination of all PTCs shall result in a test case error.

When the MTC uses the R variable in a Boolean expression or an assignment, it accesses the global result variable. When a PT
uses the R variable in a Boolean expression or an assignment, it accesses its local result variable. The MTC may also access
local result variable of its own by using the predefined test case variable MTC_R rather than R. MTC_R is of predefined type
R_TYPE. MTC_R is updated whenever a preliminary result is recorded in the verdict column by a matched MTC behaviour line,
but is unaffected by the preliminary results of PTCs. The MTC_R variable shall not be used in the verdict column.

The value of a PTC's local result variable can be communicated to another Test Component only via CMs. The value of the
MTC'’s local or global result variables can be communicated to a PTC only via CMs.

15.18 The meaning of Defaults

15.18.1 Introduction

In many cases Default behaviour will be used to emphasize a set of interesting paths through a test by declaring dsifess inter
common alternatives (+ their subsequent behaviour) as Default behaviour.

The same effect, though less concisely, would be achieved by Test Step attaelgnemEFAULT) as an additional general
last alternative. As opposed to tree attachment, Default behaviour expands into many points of the tree it is assog@iai®d with.
property calls for a careful use of Defaults.

EXAMPLE 101 - Identifying a Default tree:

TOP_TREE TOP_TREE TOP_TREE
A A Default: COMMON
Al Al A
All All Al
C + COMMON All
D A2 A2
A2 + COMMON B
C B B1
D B1
B + COMMON
B1 + COMMON COMMON
C C
D D
C COMMON
D C
D
1: the complete set of al- 2: explicit tree attach- 3: Default achieves the
ternatives. ment. same as 2.

No Default behaviour shall be specified to a Default behayiaei; a Default may not have Default behaviour itself. Tree
attachments shall not be used in Default behaviour treefefault behaviour trees shall not attach Test Steps. Test Cases or
Test Steps shall not be referred to as Defaults.

For the execution of a Test Case it is not necessary to expand Defaults everywhere in all the trees referring to thebe This can
seen from an operational description of the meaning of Defaults: in attempting to match a sequence of alternatives (which may
need repeated attempts), each time they all failed to match, the first level of alternatives of the Default behavioystare attem

124 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

as well. If none of these matches either, the sequence is retried with the new states of timers and queues at all PGOs con
If there is a match in the Default, the Default behaviour is pursued at that point.

To ensure that no subsequent behaviour will occur following the execution of a Default behaviour, the execution of a leaf
Default tree, other than a RETURN statement, shall cause the termination of the test case. In order to accomplish this termir
in a Default tree, every leaf which has no verdict or preliminary result in the verdict column is implicitly provided witicta ve
column entry of “R”, and every leaf which has a preliminary result in the verdict column has that preliminary result implicit
transformed into a final verdict.

15.18.2 Default References

Test Case and Test Step behaviours reference a list of Default behaviours in the Default Library through the Defadleentry i
table header.

SYNTAX DEFINITION:

to be added

Each reference in this list locates a Default by its unique identifier. The Defaultldentifier shall be a reference toceeéaiilt
in the Default Library.

Defaults can be parameterized. The actual parameter list shall fulfil the following:
a) the number of actual parameters shall be the same as the number of formal parameters;

b) each actual parameter shall evaluate to an element of its corresponsding formal type; and
c) all variables appearing in the parameter list shall be bound when the constraint is invoked.

EXAMPLE 102 - Default reference:

102.1
Test Case Dynamic Behaviour
Test Case Name :DEF_EX1
Group . TTCN_EXAMPLES/DEFAULT_EXAMPLE1/
Purpose . To illustrate the use of Defaults.
Default : DEF1 (L)
Comments . The tree of example ** can be split into this Test Case with the Default behaviour DEF1.
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 L! CONNECTrequest CR1 Request ...
2 L? CONNECTconfirm CcC1 ... Confirm
3 L! DATArequest DTR1 Send Data
4 L? DATAindication DTI1 Receive Data
5 L! DISCONNECTrequest DSC1 PASS | Accept
102.2
Default Dynamic Behaviour
Default Name : DEF1(X:XSAP)
Group : TTCN_EXAMPLES/DEFAULTS_LIB/DEFAULT_1/
Objective . lllustration of a simple Default.
Comments
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 X?DISCONNECTIndication DSC2 INCONC Premature

Delivery 9.6, 21 April 1997 125

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

NOTE - Syntactically, the Default behaviour of the second of the two tables in the above example attaches X?DISCONNE@Tasdaratio
alternative to each of the L! and L? statements in the first table. However, attachment of the Default tree as an alemridtstatement that always
succeeds is meaningless.

15.18.3 The RETURN statement

The RETURN statement is an extension of the Default behaviour description capabilities. A RETURN statement shall only be us
a Default tree. It shall have the syntax:

When the Default expansion of a tree is performed, execution of a RETURN statement will cause processing to continge at th
alternative in the set of alternatives that caused the Default behaviour to be attempted.

15.18.4 The ACTIVATE statement

The ACTIVATE statement allows the activation of one set of Default behaviours. Instead of being implicitly active for iive afurat
the test case, defaults may be activated selectively by the ACTIVATE statement. Default behaviour thus activated is atteenpted
order in which it is specified by the ACTIVATE, e.g., ACTIVATE (Def_1, Def_2) will cause Def_1 to be executed before Def 2 wh
default behaviour is needed.

The default behaviour specified in an ACTIVATE statement overrides any active default behaviour, including default behav
specified in a test case or test step header.

An ACTIVATE with an empty default reference list, i.e. ACTIVATE(), deactivates all default behaviour.
15.18.5 Defaults and tree attachment

Whenever tree attachment is used it is important to have a clear understanding of how Defaults apply both to the cadlitmttree a
attached Test Step. In order to avoid hidden side-effects the Defaults that apply within an attached Test Step are edfined to b
specified in the table that defines that Test Step. Thus, if the Test Step is defined in the Test Step Library, therntshibdd afaypily

are specified in header of the Test Step behaviour table. Alternatively, if the Test Step is defined locally in the sauethbleass

the calling tree, then the same Defaults apply to both the calling tree and the attached Test Step.

In order to avoid multiple insertions of Defaults within a set of alternatives, the Default specified for a particulanttegpgdy to
the top level of alternatives of that tree unless the tree is the root tree of a Test Case.

In order to generate a correct expansion of a tree it is necessary to expand the Defaults both
a) before the tree is expanded as an attached tree; and
b) before any of the tree’s attached Test Steps are expanded.

The expansion of Defaults is thus local to a single tree and comprises the attachment of the Default tree to the bott@ataffever
alternatives within the tree (except the top set of alternatives for any tree other than the root tree of a Test Case).

Default expansion rules hold equally in the case where a set of alternatives contains an OTHERWISE event.

126 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

EXAMPLE 103 - Locality of a Default against a Test Step:

TOP_TREE STEP TOP_TREE
A B A
+ STEP C B
D E C
D
E
STEP D
Default: STEP_DEF
B
c

STEP_DEF

E
1: TOP_TREE attaches 2: STEP_DEF expanded 3: STEP expanded into
STEP, which has the De- into STEP TOP_TREE
fault STEP_DEF
EXAMPLE 104 - Locality of a Default against a calling tree:

TOP_TREE TOP_TREE TOP_TREE

Default: TOP_DEF A A

A + STEP B

+ STEP E C
E
E

TOP_DEF E

E

STEP

B

C
1: TOP_TREE attaches 2: TOP_DEF expanded into 3: STEP expanded into
STEP. TOP_TREE hasthe TOP_TREE TOP_TREE

Default TOP_DEF

Delivery 9.6, 21 April 1997 127

Second Edition Mock-Lp for SC21 Review

EXAMPLE 105 - A case of cyclic tree attachment:

ISO/IEC 9646-3: 1997

STEP_1 STEP_1 STEP_1 EyOCICE - such
Default: DEF_1 A A attachments are
A + STEP_2 c

+STEP 2 B A

B E1l + STEP_2

B
DEF 1 STEP_2 El
E1l C D
+STEP_1 E2

STEP 2 D B
Default: DEF_2 E2 El
C

+STEP_1

D
DEF 2
E2

1: STEP_1 and STEP_2 attach each oth- ». DEF_1 expanded into
er. STEP_l has Default DEF_1. STEP_2 STEP_]_ and DEF_2 ex-

has Default DEF_2. panded into STEP_2

3: After one expansion of the Default-free
STEP_2 and one expansion of the De-
fault-free STEP_1

15.18.6 Tree Attachment, Defaults, Activate and Return

If the ACTIVATE operation is used within a test case, the semantics of defaults and tree attachment can only be desciizly dynar
rather than statically. Indeed, the operational semantics of defaults in Annex B are specified in terms of dynamic ti@e exgansi
level at a time.

In this dynamic semantic model, the specification of a list of defaults in the header is equivalent to prefixing the Ieeawibiian
ACTIVATE of that list of default trees. In a test step, placing a default list in the header is equivalent to placing an a1 Wat

list of default trees between each alternative in the first level of alternatives and its subsequent behaviour. Ifia &éstated which

has no defaults specified in the header, then the implied ACTIVATE operations have no parameters and hence deactiviéte all de

Since behaviour subsequent to a tree attachment takes its defaults from the context of the calling tree rather thastaiachtedde
attachment implies the insertion of an ACTIVATE after every non-terminating leaf node (i.e., one which does not assighta verdit
restore the defaults to those of the context in which the attachment was made. In the case of the leaf node being a RETpIRN, thi
ACTIVATE has to come before the RETURN to ensure that it takes effect before jumping back into the outer context.

The effect of a combination of defaults and tree attachment is illustrated by the example test case shown in Example 106.

128 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

EXAMPLE 106 - Example test case X-Def1 to illustrate the meaning of defaults

Test Case Dynamic Test Step Dynamic Test Step Dynamic
Behaviour Behaviour Behaviour
Test Step Name X-Defl Test Step Name T1 Test Step Name T2
Group : Group : Group :
Purpose : Objective : Objective
Default :D1, D2 Default :D3, D4 Default
L Behaypur Cref | V L Behaypur Cref | V L Behaypur Cref | V
Description Description Description
X A D
+T1 B E
Y C F
Zz
+T2

This example test case is equivalent to the one shown in Example 107, in which the list of defaults in the test case head
been replaced by an ACTIVATE of the same list of defaults as the first TTCN statement of the behaviour tree.

EXAMPLE 107 - Alternative specification of example test case X-Defl using ACTIVATE

Test Case Dynamic Behaviour

Test Step Name X-Defl

Group :

Purpose

Default

L | Behaviour g |y
Description

ACTIVATE(D1,D2)
X
+T1
Y
Z
+T2

The processing of an ACTIVATE sets the current default context. Progression to the next level of alternatives attaches th
of default trees in the current default context to the next level of alternatives.

Thus, the evaluation of the example test case shown in Example 107 could progress as illustrated in Figure 8. Firstly
ACTIVATE(D1,D2) statement is evaluated to set the default context to D1 and D2. Then, assuming that X matches, D1 an
are attached at the same level of alternatives as T1. When T1 is then expanded, ACTIVATE(D3,D4) is inserted after the
level of alternatives of that test step, and ACTIVATE(D1,D2) is inserted after the two leaf nodes in order to restordtthe det
context before the subsequent behaviour, Y, is reached. Assuming that A then matches, the defaults D1 and D2 are at
redundantly at the same level of alternatives as the ACTIVATE; this is because the current default context is always appe
to the next level of alternatives, indiscriminately, even if the next level of alternatives consists of a construct orvpséudo-e
which always matches. When the new ACTIVATE statement is evaluated, the default context is changed to that applicak

test step T1. Then if B matches, the evaluation progresses to the ACTIVATE which restores the default context back tc
applicable to the root tree.

Delivery 9.6, 21 April 1997 129

Second Edition Mock-Lp for SC21 Review

ISO/IEC 9646-3: 1997

X +T1
+T1 Y
Y +D1
z P D2
+T2 X matches
+D1
+D2
Default Context = D1, D2 Default Context = D1, D2
A ACTIVATE(D3,D4)
ACTIVATE(D3,D4) B
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Y
Y C
L .
@ A matches ACTIVATE(D1,D2)
Expand +T1 ACTIVATE(D1,D2) Y
Y +D1
+D1 +D2
+D2
Default Context = D1, D2 Default Context = D1, D2
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) | Y
Y +D3
c B matches +D4
AC-\I—(NATE(DLDZ) Default Context = D3, D4
+D3
- +D4 Evaluate
Evaluate ACTIVATE
ACTIVATE
Default Context = D3, D4 v
+D1
+D2

130

Default Context = D1, D2

Figure 8 - Possible progression of evaluation of example test case X-Defl

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Example 108 gives another example test case, this one mixing defaults specified in headers with an explicit ACTIV/
statement and tree attachment.

EXAMPLE 108 - Example test case X-Def2 to illustrate the meaning of defaults and

ACTIVATE
Test Case Dynamic Behaviour Test Step pynamlc
Behaviour
Test Step Name X-Def2 Test Step Name T
Group : Group :
Purpose : Objective :
Default :D1 Default :D3
L Behaquur Cref | V L Behay|o_ur Cref | V
Description Description
X Y
ACTIVATE(D2) z
+T
S
+T
S

The progression of the evaluation of this test case is illustrated in Figure 9. This shows the progression of the evaligdtion th
the two main paths of the test case, showing that the default context applicable to the first S is determined by the ACTIV/
whereas the default context applicable to the second S is determined by the defaults specified in the test case heafler; ne
these default contexts for the S statements is affected by the preceding tree attachments.

Figure 9 begins by showing the effect of expanding the attachment of T at the first level of alternatives plus the apgeanding ¢
initial defaults. If X matches, the evaluation progresses via the ACTIVATE(D2) to the second occurrence of the attachmel
T, with the default context changed to D2 and the attachment of D2 appended at the same level of alternatives as T. T i
expanded, remembering to insert the two ACTIVATE statement to set the test step default context and then restore the ro«
default context. These changes in the default context are then shown in the next two stages of the evaluation, asstghing th
Y matches and then Z. The result is S with an alternative of the attachment of D2 being evaluated in default context D2.

The alternative path shown in Figure 9 starts with Y matching instead of X. This causes the progression into default ,contex
whereupon if Z matches the default context is restored to be D1. Thus, what is reached down this path of the progressio
with an alternative of the attachment of D1 being evaluated in default context D1.

Delivery 9.6, 21 April 1997 131

Second Edition Mock-Lp for SC21 Review

ISO/IEC 9646-3: 1997

X
ACTIVATE(D2)
+T
S T
Y s
ACTIVATE(D3) ————{ .7
z X matches
ACTIVATE(D1) and evaluate —
S ACTIVATE Default Context = D2
+D1
Expand T
Default Context = D1
Y matches Y
and evaluate ACTIVATE(D3)
ACTIVATE z
ACTIVATE(D2)
S
+D2
Z
ACTIVATE(D1) Default Context = D2
S Y matches
and evaluate
Default Context = D3 V ACTIVATE
Z
ACTIVATE(D2)
Z matches S
and evaluate —
ACTIVATE Default Context = D3
Z matches
and evaluate
ACTIVATE
Y
S S
+D1 +D2

Default Context = D1

Default Context = D2

Figure 9 - Possible progression of evaluation of example test case X-Def2

The progression of evaluation of example test cases in Figure 8 and Figure 9 has not shown the expansion of the défahérirees.
the default tree is expanded, it is found that the default tree or any associated local tree contains a RETURN coistagaty dhént

to a label being placed at the head of the current set of alternatives with every RETURN construct being replaced by areACTIV
to restore the default context of the calling tree, followed by a GOTO construct to go to that new label.

All leaf nodes, other than RETURN, of a default behaviour tree in which all local subtrees have been attached have nd subse
behaviour and so they shall either set a verdict or result in a test case error.

132 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

To illustrate this, the example test case given in Example 109 will be used.

EXAMPLE 109 - Example test case X-Def3 to illustrate the meaning of defaults and RETURN

Test Case Dynamic Behaviour Default Dynamic Behaviour
Test Step Name X-Def3 Default Name D1
Group : Test Step Name
Purpose : Objective
Default :D1
L Behay|o_ur Cref | V L Behaypur Cref | V
Description Description
X C
Y P D
RETURN
E
F

The progression of the evaluation of this example test case is illustrated in Figure 10. Firstly, the default tree Dadisitattach
the first level of alternatives of the root tree. D1 is then expanded. Since D1 contains a RETURN statement, this is a f
complex expansion. The top event in the level of alternatives at which the attachment occurs is labelled with a unique lab
Since the attached tree is a default, its own internal default context is empty because defaults do not have their gw@analefaul
therefore an ACTIVATE with no arguments is inserted after the first level of alternatives of the attached tree. In addition
RETURN statement is replaced by an ACTIVATE to restore the default context to D1, followed at the next level by GOTC
Now, when this expanded tree is evaluated, if C matches, it progresses to the ACTIVATE() statement together with the redu
attachment of the default context, D1. The effect of evaluating the ACTIVATE() is to empty the default context. Then, if
matches, the ACTIVATE(D1) is evaluated to restore the default context to D1. This leads to the GOTO statement together
another redundant attachment of the default context D1. The evaluation of the GOTO then returns the processing to the s
which the label L was added. Evaluation will continue to cycle round this loop until either X, followed by Y, matchesdpr a pe
or C, followed by E, matches for a fail.

Delivery 9.6, 21 April 1997 133

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

X
Y
+D1

Default Context = D1

Expand D1, inserting ACTIVATE()
and replacing RETURN with a
label, ACTIVATE(D1) and a GOTO

L: X
Y
C
ACTIVATE() GOTO L
D |t +D1
ACTIVATE(D1)| Execute GOTO _
GOTOL (i.e. Return to L) | Default Context = D1
E
Evaluate
Default Context = D1 ACTIVATE
ACTIVATE(D1)
GOTO L
C matches
Default Context = empty
ACTIVATE() T D matches
D
ACTIVATE(D1) D
GOTO L ACTIVATE(D1)
E - GOTO L
+D1 Evaluate E
ACTIVATE
Default Context = D1 ¢ Default Context = empty

Figure 10 - Possible progression of evaluation of example test case X-Def3

15.18.7 Defaults and CREATE

Default behaviour is not inherited by test steps which are used in a CREATE operation, i.e. test steps which executeitiieir beh
description in parallel with the MTC. Thus, the scope of Default behaviour in concurrent TTCN is always local to the MTC.or a P

In instances when a test step is used in a CREATE operation, the Default behaviour specified in the test step heagmpligiladitbe a
the first level of indentation. This use of Defaults is consistent with the application of Defaults in test cases.

15.18.8 Defaults and CMs

Default behaviour is applied to a set of alternatives which receive only CMs. This may cause PDUs which arrive priordbtheceipt
executed CM, or PDUs which are already in the PCO queue but not yet received, to be removed from the PCO queue. To prev

134 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

removal of PDUs from the PCO queue, the NO_DEFAULTS construct (see ...) shall be specified as the event immedia
preceding the set of alternatives which receive only the CM(s).

16 Page continuation

16.1 Page continuation of TTCN tables
When any TTCN table is too long to fit on a single page the following mechanism shall be used:
a) the words “Continued on next page” shall be priafiéer the table line where the split occurs;
b) the words “Continued from previous page” shall be pribefdrethe continued table on the next page.
Tables may be split at any locatiarg., in their header, body, or footer section. In all cases, the section® fiflecélumn
headers), shall be repeated on the next page. The complete header may or may not be repeated.

EXAMPLE 110 - A continued Test Suite Parameters table:

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question aa
PAR2 BOOLEAN PICS question bb
PAR3 IA5String PIXIT question cc
Continued on next page page n
Continued from previous page page n+1

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PAR4 BOOLEAN PICS question dd
PARS HEXSTRING PICS question ee

16.2 Page continuation of dynamic behaviour tables
When it is necessary to continue a dynamic behaviour table, then either of the following two mechanisms can be used:
a) modularization,

where some part of the behaviour of the tree is specified as a library (non-local) Test Step, thereby modularizing the trei
reducing the amount of behaviour for the current proforma to that which will fit on a single page, or

b) page continuation mechanism,

where, in the case of a dynamic behaviour table, in order to aid alignment of indentation levels, the following additic
information shall be presented:

1) the level of indentation (enclosed in square brackets) of the last TTCN statement before the page split occurs, sh
printed before the words "Continued on next page".

2) onthe continued page, the level of indentation (enclosed in square brackets) of the first TTCN statement in the conti
table, shall be printed after the words "Continued from previous page".

It may be necessary in the case of lengthy Test Cases to indent to a different level than the stated one. In suchtedses th
level of indentation enclosed in square brackets will be aligned with the chosen indentation of the first statement line ir
continued table. To further aid alignment of indentation levels, additional indications of indentation levels may also
given.

Delivery 9.6, 21 April 1997 135

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Annex A
(normative)

Syntax and static semantics of TTCN

A.1l Introduction

This annex defines the syntax and the static semantics of TTCN. There are two forms of TTCN, a graphical form (TTCN.GR)
and a machine processable form (TTCN.MP). For the human user the graphical form of TTCN, the TTCN.GR, takes advantage
of an easily understood visual interpretation. However, TTCN.GR does not readily lend itself to machine processing. The
TTCN.MP addresses this problem and serves the following purposes:

a) to provide a formal syntax for TTCN in BNF;

b) to act as a transfer syntax;

c) to ease automated derivation of ETSs from ATSs;

d) other machine processing.
NOTE - Automated derivation of ETSs is outside the scope of this part of ISO/IEC 9646.
This annex also defines the static semantics for both TTCN.GR and TTCN.MP.

A.2 Conventions for the syntax description

A.2.1 Syntactic metanotation
Table 1 defines the metanotation used to specify the extended form of BNF grammar for TTCN (henceforth called BNF):

Table A.1 - The TTCN.MP Syntactic Metanotation

= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(..) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

In the metanotation, concatenation binds more tightly than the alternative operator. Hence “abc def | ghi jkI” is equ{adlent to

def) | (ghi jkI)”.

A.2.2 TTCN.MP syntax definitions

A.2.2.1 Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$Begin_KEYWORD.... $End_KEYWORD

EXAMPLE A.1 -TS_PARdcls ::=$Begin_TS_PARdcITS_PARdcl}+$End_TS_PARdcls
Normally, these productions contain at least one mandatory component.
A.2.2.2 Both sets of lines of a table and individual lines. (sets of fields in a table) are represented by productions of the kind:
SKEYWORD ceee o $End_KEYWORD

136 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Begin does not appear in the opening keyword.
EXAMPLE A.2 - TS_PARdcl ::=$TS_PARdcITS_PARid TS_PARtype PICS_PIXIT [Comme&&nd_TS_PARdcl
A.2.2.3 Individual fields in a line are represented by:
SKEYWORD ... oot et i e e

There is no closing keyword.
EXAMPLE A.3 - TS_Parlid ::=$TS_Parld TS_Parldentifier
EXAMPLE A.4 - TS Parlidentifier ::= Identifier
A.2.2.4 Sets of tables, up to and including the test suite, are represented by productions of the kind:
$KEYWORD e o $End_KEYWORD

EXAMPLE A.5 - ASP_TypeDefs ::8ASP_TypeDefTTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
$End_ASP_TypeDefs

A.2.2.5 All other productions defining non-terminal symbols have no keywords at the beginning or the end of the right-he

expression.
EXAMPLE A.6 - Timerldentifier ::= Identifier

A.2.2.6 When parsing TTCN.MP, any symbol not allowed within an identifier may denote the end of an identifier. In those ca
in which it is necessary to insert a meaningless character at the end of an identifier in order to separate it frommtifather ide
or keyword (e.g. when an identifier is followed by a keyword suddYasr OR) then the recommended separators are space

and tab characters.

Delivery 9.6, 21 April 1997 137

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.3 The TTCN.MP syntax productions in BNF

A.3.1 TTCN Specification
1 TTCN_Specification ::= TTCN_Module | Suite

A.3.2 TTCN Module

2 TTCN_Module ::=$TTCN_Module TTCN_Moduleld TTCN_ModuleOverviewPart [TTCN_ModulelmportPart] [DeclarationsPart]
[ConstraintsPart] [DynamicPa$End_TTCN_Module

3 TTCN_Moduleld ::$TTCN_Moduleld TTCN_Moduleldentifier
4 TTCN_Moduleldentifier ::= Identifier

A.3.2.1 TTCN Module Overview Part

5 TTCN_ModuleOverviewPart ::$TTCN_ModuleOverviewPart TTCN_ModuleExports [TTCN_ModuleStructure]
[TestCaselndex] [TestStepindex] [Defaultind&&nd_TTCN_ModuleOverviewPart

A.3.2.1.1 TTCN Module Exports

6 TTCN_ModuleExports ::$Begin_TTCN_ModuleExportsTTCN_Moduleld [TTCN_ModuleRef] [TTCN_ModuleObjective]
[StandardsRef] [PICSref] [PIXITref] [TestMethods] [Comment] ExportedObjects [Comi$Ent]_TTCN_ModuleExports

TTCN_ModuleRef ::=TTCN_ModuleRef BoundedFreeText

TTCN_ModuleObijective ::$TTCN_ModuleObjective BoundedFreeText

ExportedObijects ::8ExportedObjects{ExportedObject}$End_ExportedObjects
10 ExportedObject ::$ExportedObject Objectld ObjectType [Sourcelnfo] [Commefs&nd_ExportedObject
11 Objectld ::=$Objectld Objectldentifier
12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[* Identifier "]"

/* STATIC SEMANTICS - The first Identifier is a NamedNumber or an Enumeration and the Identifier contained in bracke@netbh&the
corresponding type. */

14 ObjectType ::$0bjectType TTCN_ObjectType

15 TTCN_ObjectType ::=8impleType_Object| StructType_Object| ASN1_Type_Object] TS_Op_Object| TS_Proc_Object|
TS_Par_Object| SelectExpr_Object| TS_Const_Objec] TS_Var_Object| TC_Var_Object |PCO_Type_Object| PCO_Object
| CP_Object| Timer_Object | TComp_Object| TCompConfig_Object| TTCN_ASP_Type_Object| ASN1_ASP_Type_Object
| TTCN_PDU_Type_Object| ASN1_PDU_Type_Objec{ TTCN_CM_Type_Object | ASN1_CM_Type_Obiject|
EncodingRule_Object| EncodingVariation_Object | InvalidFieldEncoding_Obiject | Alias_Obiject |
StructTypeConstraint_Object | ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object]|
ASN1_ASP_Constraint_Objec) TTCN_PDU_constraint_Object| ASN1_PDU_Constraint_Object|

TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object| TestCase_Object TestStep Object | Default_Object |
NamedNumber_Object| Enumeration_Object

16 Sourcelnfo ::3$Sourcelnfo(Sourceldentifier | ObjectDirective)
[* STATIC SEMANTICS - The Sourceldentifier is the name of the original source object . */

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

18 ObjectDirective ::= OmitEXTERNAL
A.3.2.1.2 TTCN Module Structure

19 TTCN_ModuleStructure ::$Begin_TTCN_ModuleStructure Structure&Objectives [CommerSEnd_TTCN_ModuleStructure
A.3.2.2 TTCN Module Import Part

20 TTCN_ModulelmportPart ::8TTCN_ModulelmportPart [ExternalObjects] [ImportDeclarations]
$End_TTCN_ModulelmportPart

A.3.2.2.1 External Objects
21 ExternalObjects ::$Begin_ExternalObjects[ExternalGroupld] {ExternalObject}+ [CommerEnd_ExternalObjects

138 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

22 ExternalGroupld ::$ExternalGroupld ExternalGroupldentifier

23 ExternalGroupldentifier ::= Identifier

24 ExternalObject ::$ExternalObject ExternalObjectld ObjectType [CommefEnd_ExternalObject

25 ExternalObjectld ::$ExternalObjectld ExternalObjectldentifier

26 ExternalObjectldentifier ::= Objectldentifier | TS_Opld&ParList | Consld&ParList | TestStepld&ParList

A.3.2.2.2 Import Declarations
27 ImportDeclarations ::$lmportDeclarations {ImportsOrGroup}+$End_ImportDeclarations
28 ImportsOrGroup ::= Imports | ImportsGroup
29 ImportsGroup ::$ImportsGroup ImportsGroupld {ImportsOrGroup}$End_ImportsGroup
30 ImportsGroupld ::$lmportsGroupld ImportsGroupldentifier

31 Imports ::=$Begin_Imports Sourceld [ImportsGroupRef] [SourceRef] [StandardsRef] [Comment] ImportedObjects [Comment]
$End_Imports

32 Sourceld ::%$Sourceld Sourceldentifier

33 ImportsGroupRef ::$ImportsGroupRef ImportsGroupReference

34 ImportsGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {ImportsGroupldentifier “/"}
35 ImportsGroupldentifier ::= Identifier

36 SourceRef ::$SourceRefBoundedFreeText

37 ImportedObjects ::$ImportedObjects {ImportedObject}+$End_ImportedObjects

38 ImportedObject ::$ImportedObject Objectld ObjectType [Sourcelnfo] [Commefnd_ImportedObject

A.3.3 Test suite

39 Suite ::=$Suite Suiteld SuiteOverviewPart [ImportPart] DeclarationsPart ConstraintsPart DynanfERdrtSuite
[* STATIC SEMANTICS - Suiteld shall be the same as the Suiteld declared in TestSuiteStructure table (Suite Structure). */

40 Suiteld ::=$Suiteld Suiteldentifier
41 Suiteldentifier ::= Identifier

A.3.3.1 The Test Suite Overview
42 SuiteOverviewPart::$SuiteOverviewPart[TestSuitelndex] SuiteStructure TestCaselndex [TestSteplndex] [Defaultindex]
[TestSuiteExportspEnd_SuiteOverviewPart
A.3.3.2 Test Suite Index
43 TestSuitelndex ::$Begin_TestSuiteIndeXObjectinfo} [Comment]$End_TestSuitelndex

A.3.3.2.1 The Imported Object Info
44 Objectinfo ::=$0bjectinfo Objectld ObjectType Sourceld OrigObjectld [PageNum] [Comntkiatld_Objectinfo
45 PageNum ::$PageNumPageNumber
46 PageNumber ::= Number
47 OrigObjectld ::=$0rigObjectld Objectldentifier

A.3.3.3 Test Suite Structure

48 SuiteStructure ::$Begin_SuiteStructureSuiteld StandardsRef PICSref PIXITref TestMethods [Comment] Structure&Objectives
[Comment]$End_SuiteStructure

49 StandardsRef ::$StandardsRefBoundedFreeText
50 PICSref ::=$PICSref BoundedFreeText

51 PIXITref ::=$PIXITref BoundedFreeText

52 TestMethods ::$TestMethodsBoundedFreeText
53 Comment ::$Comment[BoundedFreeText]

Delivery 9.6, 21 April 1997 139

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

54 Structure&Objectives ::$Structure&Objectives {Structure&Objective}$End_Structure&Objectives
55 Structure&Obijective ::$Structure&Objective TestGroupRef SelExprld Objecti$&nd_Structure&Objective
56 SelExprld ::$SelectExprld [SelectExprldentifier]

A.3.3.4 Test Case Index

57 TestCaselndex :$Begin_TestCaselndexX[CollComment] Caselndex}+ [Commen$End_TestCaselndex
/* NOTE - Collective comments may be used in this table accordiRigiore 2 */

58 CollComment ::=CollComment[BoundedFreeText]

59 Caselndex ::$CaselndexTestGroupRef TestCaseld SelExprld Descripiind_Caselndex
/* STATIC SEMANTICS - Test Cases shall be listed in the order that they exist in the dynamic part. */
/* STATIC SEMANTICS - An explicit TestGroupReference shall be provided for the first TestCase of each TestGroup. */
/* STATIC SEMANTICS - An explicit TestGroupReference shall be provided for each TestCase that immediately follows a TeétGroup.

60 Description ::=$Description BoundedFreeText

A.3.3.5 Test Step Index

61 TestStepindex ::$Begin_TestSteplndeX[CollComment] Stepindex} [CommenflEnd_TestStepindex
[* NOTE - Collective comments may be used in this table accordiRggiore 2 */

62 Steplndex ::$StepIindexTestStepRef TestStepld Descriptigfind_Steplndex
/* STATIC SEMANTICS - TestStepld shall not include a formal parameter list. */
/* STATIC SEMANTICS - Test Steps shall be listed in the order that they exist in the dynamic part. */
/* STATIC SEMANTICS - An explicit TestStepGroupReference shall be provided for the first TestStep of each TestStepGroup. */
/* STATIC SEMANTICS - An explicit TestStepGroupReference shall be provided for each TestStep that immediately followspGres{Sty
A.3.3.6 Default Index

63 Defaultindex ::=$Begin_Defaultindex{[CollComment] Deflndex} [CommentpEnd_Defaultindex
/* NOTE - Collective comments may be used in this table accordiRigiore 2 */

64 Deflndex ::=$DefIndex DefaultRef Defaultld DescriptioBEnd_Deflndex
/* STATIC SEMANTICS - Defaultld shall not include a formal parameter list. */
/* STATIC SEMANTICS - Defaults shall be listed in the order that they exist in the dynamic part. */
/* STATIC SEMANTICS - An explicit DefaultGroupReference shall be provided for the first Default of each DefaultGroup. */
/* STATIC SEMANTICS - An explicit DefaultGroupReference shall be provided for eachDefault that immediately follows a DefgultGro

A.3.3.7 Test Suite Exports
65 TestSuiteExports::$Begin_TestSuiteExportsExportedObjects [CommerfEnd_TestSuiteExports

A.3.3.8 The Import Part
66 ImportPart ::=$ImportPart ImportDeclaration$End_ImportPart

A.3.3.9 The Declarations Part

67 DeclarationsPart ::$DeclarationsPart Definitions Parameterization&Selection Declarations ComplexDefinitions
$ENnd_DeclarationsPart

A.3.3.10 Definitions

A.3.3.10.1 General
68 Definitions ::= [TS_TypeDefs] [EncodingDefs] [TS_OpDefs] [TS_ProcDefs]

A.3.3.10.2 Test Suite Type Definitions

69 TS_TypeDefs ::$TS_TypeDefdSimpleTypeDefsOrGroup] [StructTypeDefs] [ASN1_TypeDefs] [ASN1_TypeRefsOrGroup]
$End_TS_TypeDefs

A.3.3.10.3 Simple Type Definitions
70 SimpleTypeDefsOrGroup ::= SimpleTypeDefs | SimpleTypeGroup

140 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

71
72
73

74
75
76
77

78
79
80

81

82

83

84
85

86

87
88
89
90

SimpleTypeGroup ::$SimpleTypeGroup SimpleTypeGroupld {SimpleTypeDefsOrGroup$End_SimpleTypeGroup
SimpleTypeGroupld ::$SimpleTypeGroupld SimpleTypeGroupldentifier

SimpleTypeDefs ::$Begin_SimpleTypeDef$SimpleTypeGroupRef] {{CollComment] SimpleTypeDef}+ [Comment]
$ENd_SimpleTypeDefs
/* NOTE - Collective comments may be used in this table accordikigtore 2 */

SimpleTypeGroupRef ::$SimpleTypeGroupRefSimpleTypeGroupReference
SimpleTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {SimpleTypeGroupldentifier “/"}
SimpleTypeGroupldentifier ::= Identifier

SimpleTypeDef ::$SimpleTypeDefSimpleTypeld SimpleTypeDefinition [PDU_FieldEncoding] [Comment]
$ENnd_SimpleTypeDef

SimpleTypeld ::=$SimpleTypeld SimpleTypeldentifier

SimpleTypeldentifier ::= Identifier

SimpleTypeDefinition ::$SimpleTypeDefinition Type&Restriction

[* STATIC SEMANTICS - There shall be no recursive references (neither directly nor indirectly) in Type&Restriction. */
Type&Restriction ::= Type [Restriction]

/* STATIC SEMANTICS - Type shall be either PredefinedType or SimpleType. */

Restriction ::= LengthRestriction | IntegerRange | SimpleValueList
/* STATIC SEMANTICS - The set of values defined by Restriction shall be a true subset of the values of the base type. */

LengthRestriction ::= SingleTypeLength | RangeTypelLength

/* STATIC SEMANTICS - LengthRestriction shall be provided only when the base type is a string type (i.e., BITSTRING, HEXSTRING
OCTETSTRING or CharacterString) or derived from a string type. */

SingleTypeLength ::= "[* Number "]"
RangeTypelLength ::="[" LowerTypeBound To UpperTypeBound "]"

/* STATIC SEMANTICS - LowerTypeBound shall be a non-negative number. */
/* STATIC SEMANTICS - LowerTypeBound shall be less than UpperTypeBound. */

IntegerRange ::="(" LowerTypeBound To UpperTypeBound)"
/* STATIC SEMANTICS - LowerTypeBound shall be less than UpperTypeBound. */

LowerTypeBound ::= [Minus] Number | MinUSFINITY

UpperTypeBound ::= [Minus] NumbelNFINITY

To:=TO|"."

SimpleValueList ::="(" [Minus] LiteralValue {Comma [Minus] LiteralValue} ")"

/* STATIC SEMANTICS - If Minus is used in SimpleValueList then LiteralValue shall be a number. */
/* STATIC SEMANTICS - The LiteralValues shall be of the base type and shall be a true subset of the values defined hyplee Hase

A.3.3.10.4 Structured Type Definitions

91
92
93
94
95

96
97
98

99

StructTypeDefs ::$StructTypeDefs{StructTypeDefOrGroup$End_StructTypeDefs
StructTypeDefOrGroup ::= StructTypeDef | StructTypeGroup

StructTypeGroup ::$StructTypeGroup StructTypeGroupld {StructTypeDefOrGroup$End_StructTypeGroup
StructTypeGroupld ::8StructTypeGroupld StructTypeGroupldentifier

StructTypeDef ::$Begin_StructTypeDefStructld [StructTypeGroupRef] [EncVariationld] [Comment] ElemDcls [Comment]
$ENnd_StructTypeDef

Structld ::=$Structld Structld&Fullld
Structld&Fullld ::= Structldentifier [Fullldentifier]

Fullldentifier ::= "(" BoundedFreeText ")"
/* STATIC SEMANTICS - Some TTCN objects allow names, as given in the appropriate protocol standard to be abbreviatedeti@ioalib
used then Fullldentifier shall be given in the declaration of the object. */

Structldentifier ::= Identifier

Delivery 9.6, 21 April 1997 141

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

100 StructTypeGroupRef :$StructTypeGroupRef StructTypeGroupReference

101 StructTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {StructTypeGroupldentifier “/"}
102 StructTypeGroupldentifier ::= Identifier

103 ElemDcls ::=$ElemDcls{ElemDcl}+ $End_ElemDcls

104 ElemDcl ::=$ElemDclElemld ElemType [PDU_FieldEncoding] [Commefignd_ElemDcl

105 Elemid ::=$Elemld ElemId&Fullid

106 Elemld&Fullld ::= Elemldentifier [Fullldentifier]

107 Elemldentifier ::= Identifier

108 ElemType ::=$ElemType Type&Attributes
/* STATIC SEMANTICS - There shall be no recursive references (neither directly nor indirectly) in Type&Attributes. */
/* STATIC SEMANTICS - A structure element Type shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier, or PDU. */

A.3.3.10.5 ASN.1 Type Definitions

109 ASN1_TypeDefs ::$ASN1_TypeDefdASN1_TypeDefOrGroup}+$End_ASN1_TypeDefs

110 ASN1_TypeDefOrGroup ::= ASN1_TypeDef | ASN1_TypeGroup

111 ASN1_TypeGroup ::$ASN1_TypeGroupASN1_TypeGroupld {ASN1_TypeDefOrGroupBEnd_ASN1_TypeGroup

112 ASN1_TypeGroupld ::$ASN1_TypeGroupld ASN1_TypeGroupldentifier

113 ASN1_TypeDef ::$Begin_ASN1_TypeDeASN1_Typeld [ASN1_TypeGroupRef] [EncVariationld] [Comment]
ASN1_TypeDefinition [Comment$End_ASN1_TypeDef

114 ASN1_Typeld ::53ASN1_Typeld ASN1_Typeld&Fullid

115 ASN21_Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

116 ASN1_Typeldentifier ::= Identifier

117 ASN1_TypeGroupRef :$ASN1_TypeGroupRefASN1_TypeGroupReference

118 ASN1_TypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_TypeGroupldentifier “/"}

119 ASN1_TypeGroupldentifier ::= Identifier

120 ASN1_TypeDefinition ::: $ASN1_TypeDefinition ASN1_Type&LocalType$SEnd_ASN1_TypeDefinition

121 ASN1_Type&lLocalTypes ::= ASN1_Type {ASN1_LocalType}
[* STATIC SEMANTICS - Types referred to from the ASN1_Type definition shall be defined in other ASN.1 type definition &bletnéd by
reference in the ASN.1 type reference table or be defined locallyASN1_LocalTypes) in the same table, following the first type definition. */
/* STATIC SEMANTICS - ASN1_LocalTypes shall not be used in other parts of the test suite. */
122 ASN1_Type ::Type

/* REFERENCE - Where Type is a non-terminal defined in ISO/IEC 8824-1: 1994:

Type ::= BuiltinType | ReferencedType | ConstrainedType
For the purposes of TTCN, the production in ISO/IEC 8824-1: 1994 which states:

SubtypeElements ::= SingleValue | ConstrainedSubtype | ValueRange | PermittedAlphabet | SizeConstraint | TypeConstraint |

InnerTypeConstraint

is redefined to be

SubtypeElements ::= SingleValue | ConstrainedSubtype | ValueRange | PermittedAlphabet | SizeConstraint | TypeConstraint |

InnerTypeConstraint | ASN1_Encoding

This means that ASN1_Encoding can be applied anywhere that a TypeConstraint can be applied: to the whole of an ASN1_A@d biTgpg
within the ASN1_Type or to a SET OF or SEQUENCE OF type (by placing the ASN1_Encoding in parentheses immediately aftarth8Kke&yw
or SEQUENCE - unlike for a SizeConstraint in such a position, the parentheses are required since there is no backwakilétyangpasént for
allowing their omission), */
/* STATIC SEMANTICS - Each terminal type reference used within the Type production shall be one of the following: ASN1_leocalTyp
typereference, TS_Typeldentifier or PDU_ldentifier. */
[* STATIC SEMANTICS - ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/HEC19824*/

123 ASN1_LocalType ::Fypeassignment

/* REFERENCE - Where Typeassignment is a non-terminal defined in ISO/IEC 8824-1: 1994. */
/* STATIC SEMANTICS - ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/HEC19824 */

142 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

A.3.3.10.6 ASN.1 Type Definitions by Reference
124 ASN1_TypeRefsOrGroup ::= ASN1_TypeRefs | ASN1_TypeRefsGroup

125 ASN1_TypeRefsGroup :$ASN1_TypeRefsGroupASN1_TypeRefsGroupld {ASN1_TypeRefsOrGroup}+
$ENd_ASN1_TypeRefsGroup

126 ASN1_TypeRefsGroupld :$ASN1_TypeRefsGroupldASN1_TypeGroupldentifier

127 ASN1_TypeRefs ::$Begin_ASN1_TypeRef$ASN1_ TypeRefsGroupRef] {{CollComment] ASN1_TypeRef}+ [Comment]
$End_ASN1_TypeRefs

/* NOTE - Collective comments may be used in this table accordikigtore 2 */
128 ASN1_TypeRefsGroupRef :$ASN1_TypeRefsGroupRefASN1_TypeGroupReference

129 ASN1_TypeRef ::$ASN1_TypeRefASN1 Typeld ASN1_TypeReference ASN1_Moduleld [EncVariationld] [Comment]
$End_ASN1_TypeRef
/* STATIC SEMANTICS - ASN1_Typeld shall not be specified with a Fullldentifier. */

130 ASN1_TypeReference :3ASN1_TypeReferencdypeReference
131 TypeReference=typereference

/* REFERENCE - Where typereference is a non-terminal defined in ISO/IEC 8824-1: 1994. */

/* STATIC SEMANTICS - If the ASN.1 type definition has a reference to another type in the same ASN.1 Module, the referensaupyipitly
imported (in the same way as for a TTCN module). */

132 ASN1_Moduleld ::=3ASN1_Moduleld ASN1_Moduleldentifier
133 ASN1_Moduleldentifier = Moduleldentifier
/* REFERENCE - Where Moduleldentifier is a non-terminal defined in ISO/IEC 8824-1: 1994. */
/* STATIC SEMANTICS - Moduleldentifier shall be unique within the domain of interest. */
A.3.3.10.7 Test Suite Operation Definitions
134 TS_OpDefs ::$TS_OpDefs{TS_OpDefOrGroup+$End_TS_OpDefs
135 TS_OpDefOrGroup ::= TS_OpDef | TS_OpDefGroup
136 TS_OpDefGroup ::8TS_OpDefGroup TS_OpDefGroupld {TS_OpDefOrGroup$End_TS_OpDefGroup
137 TS_OpDefGroupld ::8TS_OpDefGroupld TS_OpDefGroupldentifier
138 TS_OpDefGroupldentifier ::= Identifier

139 TS_OpDef ::$Begin_TS_OpDefTS_Opld [TS_OpGroupRef] TS_OpResult [Comment] TS_OpDescription [Comment]
$ENnd_TS_OpDef

140 TS_Opld ::=$TS_Opld TS_Opld&ParList

141 TS_Opld&ParlList ::= TS_Opldentifier [FormalParList]

/* STATIC SEMANTICS - A Test Suite Operation formal parameter Type shall be a PredefinedType, TS_Typeldentifier, PDU_tfentifier
ASP_Ildentifier, or the meta-tyg@DU*/

142 TS_Opldentifier ::= Identifier

143 TS_OpGroupRef ::$TS_OpGroupRefTS_OpGroupReference

144 TS_OpGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_OpGroupldentifier “/"}
145 TS_OpGroupldentifier ::= Identifier

146 TS_OpResult ::$TS_OpResultTypeOrPDU
/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the mE@yfy

147 TS_OpDescription ::$TS_OpDescriptionBoundedFreeText

A.3.3.10.8 Test Suite Operation Procedural Definitions
148 TS_ProcDefs ::$TS_ProcDefqTS_ProcDefOrGroupH$End_TS_ProcDefs
149 TS_ProcDefOrGroup ::= TS_ProcDef | TS_ProcDefGroup
150 TS_ProcDefGroup ::$TS_ProcDefGroupTS_ProcDefGroupld {TS_ProcDefOrGroup$End_TS_ProcDefGroup
151 TS_ProcDefGroupld ::$TS_ProcDefGroupld TS_ProcDefGroupldentifier

Delivery 9.6, 21 April 1997 143

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

152
153

154
155

156
157
158
159
160

161
162

163
164
165
166
167
168
169
170
171
172
173
174
175

TS_ProcDefGroupldentifier ::= Identifier

TS_ProcDef ::$Begin_TS_ProcDeflS_Procld [TS_ProcGroupRef] TS_ProcResult [Comment] TS_ProcDescription [Comment]
$End_TS_ProcDef

/* LEXICAL REQUIREMENT - Comments may be embedded within TS_ProcDescription by enclosing them within "/*" and "*/" but rhay not
nested. They may be carried within TTCN.MP but shall be removed before parsing the TTCN.MP. */

TS_Procld ::$TS_Procld TS_Procld&ParList

TS_Procld&ParlList ::= TS_Procldentifier [FormalParList]

/* STATIC SEMANTICS - A procedural Test Suite Operation formal parameter Type shall be a PredefinedType, TS_Typeldentifiderfifis
or ASP_Identifier, or the meta-tyRDU*/

TS_Procldentifier ::= Identifier

TS_ProcGroupRef :$TS_ProcGroupRefTS_ProcGroupReference

TS_ProcGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_ProcGroupldentifier “/"}
TS_ProcGroupldentifier ::= Identifier

TS_ProcResult ::$TS_ProcResultTypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or ASP_ldentifier, or the mB@atyfy

TS_ProcDescription :$TS_ProcDescriptionTS_OpProcDe$End_TS_ProcDescription

TS_OpProcDef ::= [VarBlock] ProcStatement

/* NOTE - Comments are allowed within TS_OpProcDef, starting with “/*" and ending with “*/”, but it is assumed that thesntoammremoved
before the syntax is parsed. Hence the BNF does not include the syntax of such embedded comments. */

VarBlock ::=VAR VarDcIsENDVAR

VarDcls ::= {VarDcl SemiColon}

VarDcl ::= BTATIC] Varldentifiers Colon TypeOrPDU [Colon Value]

Varldentifiers ::= Varldentifier {Comma Varldentifier}

Varldentifier ::= Identifier

ProcStatement ::= ReturnValueStatement | Assignment | IfStatement | WhileLoop | CaseStatement | ProcBlock
ReturnValueStatement RETURNVALUE Expression

IfStatement ::34F ExpressiorTHEN {ProcStatement SemiColon}ELSE {ProcStatement SemiColon}§NDIF
WhileLoop ::2WHILE ExpressiorDO {ProcStatement SemiColon}ENDWHILE

CaseStatement :GASE ExpressiorOF {CaseClause SemiColon}£[SE {ProcStatement SemiColon}-§NDCASE
CaseClause ::= IntegerLabel Colon ProcStatement

IntegerLabel ::= Number | TS_Parldentifier | TS_Constldentifier

ProcBlock ::=BEGIN {ProcStatement SemiColon}END

A.3.3.11 Parameterization and Selection

A.3.3.11.1 General

176

Parameterization&Selection ::= [TS_ParDclsOrGroup] [SelectExprDefsOrGroup]

A.3.3.11.2 Test Suite Parameter Declarations

177
178
179
180
181

182
183

144

TS_ParDclsOrGroup ::= TS_ParDcls | TS_ParDclsGroup

TS_ParDclsGroup :$TS_ParDclsGroupTS_ParDclsGroupld {TS_ParDclsOrGroup$End_TS_ParDclsGroup
TS_ParDclsGroupld :$TS_ParDclsGroupld TS_ParDclsGroupldentifier

TS_ParDclsGroupldentifier ::= Identifier

TS_ParDcls ::$Begin_TS_ParDcldTS_ParGroupRef] {[CollComment] TS_ParDcl}+ [CommeBEnd_TS_ParDcls
[* NOTE - Collective comments may be used in this table accordiRggiore 2 */

TS_ParGroupRef :$TS_ParGroupRefTS_ParGroupReference
TS_ParGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_ParGroupldentifier “/"}

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

184
185
186
187
188

TS_ParGroupldentifier ::= Identifier
TS_ParDcl ::3TS_ParDcITS_Parld TS_ParType [TS_ParDefault] PICS_PIXITref [Comntiatid_TS_ ParDcl

TS_Parld ::$TS_Parld TS_Parldentifier
TS_Parldentifier ::= Identifier
TS_ParType ::8TS_ParTypeTypeOrPDU

Second Edition Mock-Up for SC21 Review

/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the mE@tdyfy

189
190

191

TS_ParDefault ::8TS_ParDefault[DefaultValue]

DefaultValue ::= Expression

[* STATIC SEMANTICS - DefaultValue shall not contain TS_Variables or TC_Variables and shall resolve to a constant value. */
/* OPERATIONAL SEMANTICS - DefaultValue shall evaluate to an element of its declared type. */

PICS_PIXITref ::=$PICS_PIXITref BoundedFreeText

A.3.3.11.3 Test Case Selection Expression Definitions

192
193

194
195
196

197
198
199
200
201
202
203
204

SelectExprDefsOrGroup ::= SelectExprDefs | SelectExprDefsGroup

SelectExprDefsGroup :$SelectExprDefsGroupSelectExprDefsGroupld {SelectExprDefsOrGroup}+
$End_SelectExprDefsGroup

SelectExprDefsGroupld :$SelectExprDefsGroupldSelectExprDefsGroupldentifier
SelectExprDefsGroupldentifier ::= Identifier

SelectExprDefs ::$Begin_SelectExprDef§SelectExprGroupRef] {{CollComment] SelectExprDef}+ [Comment]
$ENd_SelectExprDefs
/* NOTE - Collective comments may be used in this table accordikigtore 2 */

SelectExprGroupRef :$SelectExprGroupRefSelectExprGroupReference

SelectExprGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) /"] {SelectExprGroupldentifier “/"}
SelectExprGroupldentifier ::= Identifier

SelectExprDef ::$SelectExprDefSelectExprld SelectExpr [CommeftEnd_SelectExprDef

SelectExprld ::$SelectExprld SelectExpridentifier

SelectExprldentifier ::= Identifier

SelectExpr ::$SelectExprSelectionExpression

SelectionExpression ::= Expression

/* STATIC SEMANTICS - SelectionExpression shall only contain LiteralValues, TS_Parldentifiers, TS_Constldentifiers and [S&dectifiers*/

/* OPERATIONAL SEMANTICS - SelectionExpression shall evaluate to a specific BOOLEAN value. */

/* STATIC SEMANTICS - Expression shall not recursively refer (neither directly nor indirectly) to the SelExprldentifier &gl dy that

Expression. */

A.3.3.12 Declarations

A.3.3.12.1 General

205 Declarations ::= [TS_ConstDclsOrGroup] [TS_ConstRefsOrGroup] [TS_VarDclsOrGroup] [TC_VarDclsOrGroup]
[PCO_TypeDclsOrGroup] [PCO_DclsOrGroup] [CP_DclsOrGroup] [TimerDclsOrGroup] [TCompDclsOrGroup

TCompConfigDcls]
/* STATIC SEMANTICS - PCOs shall be optional */

A.3.3.12.2 Test Suite Constant Declarations

206
207
208
209
210

TS_ConstDclsOrGroup ::= TS_ConstDcls | TS_ConstDclsGroup

TS_ConstDclsGroup :$TS_ConstDclsGroupTS_ConstDclsGroupld {TS_ConstDclsOrGrouEnd_TS_ConstDclsGroup

TS_ConstDclsGroupld :$TS_ConstDclsGroupldTS_ConstDclsGroupldentifier

TS_ConstDclsGroupldentifier ::= Identifier

TS_ConstDcls ::$Begin_TS_ConstDcl§TS_ConstGroupRef] {{CollComment] TS_ConstDcl}+ [Comment]
$End_TS_ConstDcls

Delivery 9.6, 21 April 1997

145

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

/* NOTE - Collective comments may be used in this table accordiRigiore 2 */
211 TS_ConstGroupRef :$TS_ConstGroupRefTS_ConstGroupReference
212 TS_ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_ConstGroupldentifier “/"}
213 TS_ConstGroupldentifier ::= Identifier
214 TS_ConstDcl ::$TS_ConstDcITS_Constld TS_ConstType TS_ConstValue [ComntkEnd_TS_ConstDcl
215 TS_Constld ::$TS_Constld TS_Constldentifier
216 TS_Constldentifier ::= Identifier

217 TS_ConstType ::8$TS_ConstTypeType
/* STATIC SEMANTICS - Type shall not be a structured type, PDU type, ASP type or CM type expressed in tabular form. */

218 TS_ConstValue ::8TS_ConstValueDeclarationValue

219 DeclarationValue ::= Expression
/* STATIC SEMANTICS - DeclarationValue shall not contain TS_Variables or TC_Variables and shall resolve to a constant value. */

/* OPERATIONAL SEMANTICS - DeclarationValue shall evaluate to an element of its declared type. */

A.3.3.12.3 Test Suite Constant Declarations by Reference
220 TS_ConstRefsOrGroup ::= TS_ConstRefs | TS_ConstRefsGroup
221 TS_ConstRefsGroup :$T7S_ConstRefsGroupTS_ConstRefsGroupld {TS_ConstRefsOrGrou@End_TS_ConstRefsGroup
222 TS_ConstRefsGroupld :$7S_ConstRefsGroupldTS_ConstRefsGroupldentifier
223 TS_ConstRefsGroupldentifier ::= Identifier

224 TS_ConstRefs ::$Begin_TS_ConstRef$§TS_ConstRefsGroupRef] {{CollComment] TS_ConstRef}+ [Comment]
$End_TS_ConstRefs
/* NOTE - Collective comments may be used in this table accordiRggiore 2 */

225 TS_ConstRefsGroupRef $TS_ConstRefsGroupReflTS_ConstGroupReference

226 TS_ConstRef ::8TS_ConstRefTS_Constld TS_ConstType ASN1_ValueReference ASN1_Moduleld [Comment]
$End_TS_ConstRef
[* STATIC SEMANTICS - Type in TS_ConstType shall be either a PredefinedType or an ASN1_Type imported by an ASN.1 TypenBsfinitio
Reference from the module referenced by ASN1_Moduleld. */

227 ASN1_ValueReference :$ASN1_ValueReferencd/alueReference
228 ValueReference :¥yaluereference

/* REFERENCE valuereference is a non-terminal defined in ISO/IEC 8824-1: 1994. */
/* STATIC SEMANTICS - The value shall correspond to an element of the type in TS_ConstType. */

A.3.3.12.4 Test Suite Variable Declarations
229 TS_VarDclsOrGroup ::= TS_VarDcls | TS_VarDclsGroup
230 TS_VarDclsGroup ::8TS_VarDclsGroup TS_VarDclsGroupld {TS_VarDclsOrGroup$End_TS_VarDclsGroup
231 TS_VarDclsGroupld ::$TS_VarDclsGroupld TS_VarDclsGroupldentifier
232 TS_VarDclsGroupldentifier ::= Identifier
233 TS_VarDcls ::%$Begin_TS_VarDclIs[TS_VarGroupRef] {{CollComment] TS_VarDcl}+ [Commer8End_TS_VarDcls
I* NOTE - Collective comments may be used in this table accordiRégtare 2 */
234 TS_VarGroupRef ::8$TS_VarGroupRef TS_VarGroupReference
235 TS_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_VarGroupldentifier “/"}
236 TS_VarGroupldentifier ::= Identifier
237 TS_VarDcl ::=TS_VarDcl TS_Varld TS_VarType TS_VarValue [Comme$Bnd_TS_VarDcl
238 TS_Varld ::=$TS_Varld TS_Varldentifier
239 TS_Varldentifier ::= Identifier

240 TS_VarType ::$TS_VarType TypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or ASP_ldentifier, or the mB@atyfy

146 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

241

TS_VarValue ::$TS_VarValue [DeclarationValue]

A.3.3.12.5 Test Case Variable Declarations

242
243
244
245
246

247
248
249
250
251
252
253

254

TC_VarDclsOrGroup ::= TC_VarDcls | TC_VarDclsGroup

TC_VarDclsGroup ::8TC_VarDclsGroup TC_VarDclsGroupld {TC_VarDclsOrGroup}$End_TC_VarDclsGroup
TC_VarDclsGroupld ::$TC_VarDclsGroupld TC_VarDclsGroupldentifier

TC_VarDclsGroupldentifier ::= Identifier

TC_VarDcls ::%Begin_TC_VarDcls[TC_VarGroupRef] {{CollComment] TC_VarDcl}+ [CommerEnd_TC_VarDcls
/* NOTE - Collective comments may be used in this table accordikigtore 2 */

TC_VarGroupRef ::$TC_VarGroupRef TC_VarGroupReference

TC_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TC_VarGroupldentifier “/"}
TC_VarGroupldentifier ::= Identifier

TC_VarDcl ::=$TC_VarDcl TC_Varld TC_VarType TC_VarValue [CommefEnd_TC_VarDcl
TC_Varld ::=$TC_Varld TC_Varldentifier

TC_Varldentifier ::= Identifier

TC_VarType ::$TC_VarType TypeOrPDU
/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the mE@yfy

TC_VarValue ::$TC_VarValue [DeclarationValue]

A.3.3.12.6 PCO Type Declaration

255
256

257
258
259

260
261
262
263
264

PCO_TypeDclsOrGroup ::= PCO_TypeDcls | PCO_TypeDclsGroup

PCO_TypeDclsGroup :$PCO_TypeDclsGroupPCO_TypeDclsGroupld {PCO_TypeDclsOrGroup}+
$End_PCO_TypeDclsGroup

PCO_TypeDclsGroupld :$PCO_TypeDclsGroupld PCO_TypeDclsGroupldentifier
PCO_TypeDclsGroupldentifier ::= Identifier

PCO_TypeDcls ::$Begin_PCO_TypeDcl§PCO_TypeGroupRef] {{CollComment] PCO_TypeDcl}+ [Comment]
$End_PCO_TypeDcls
I* NOTE - Collective comments may be used in this table accordiRtgiore 2 */

PCO_TypeGroupRef :$3PCO_TypeGroupRefPCO_GroupReference
PCO_TypeDcl ::$PCO_TypeDclPCO_Typeld RoleOrComme$iEnd_PCO_TypeDcl
PCO_Typeld ::$PCO_Typeld PCO_Typeldentifier

PCO_Typeldentifier ::= Identifier

RoleOrComment ::= P_Role [Comment] | Comment
/* NOTE - Since each PCO_Type in a PCO Type Declaration Table has to have a role specified in either the Role or Commenieattiome of
P_Role or Comment is required to be present. */

A.3.3.12.7 PCO Declarations

265
266
267
268
269

270
271
272

PCO_DclsOrGroup ::= PCO_Dcls | PCO_DclsGroup

PCO_DclsGroup ::$PCO_DclsGroupPCO_DclsGroupld {PCO_DclsOrGroupBEnd_PCO_DclsGroup
PCO_DclsGroupld ::$PCO_DclsGroupld PCO_DclsGroupldentifier

PCO_DclsGroupldentifier ::= Identifier

PCO_Dcls ::%Begin_PCO_DcldPCO_GroupRef] {{CollComment] PCO_Dcl}+ [CommeEnd_PCO_Dcls
/* NOTE - Collective comments may be used in this table accordikigtore 2 */
/* STATIC SEMANTICS - To be in accordance with ISO/IEC 9646-1 the number of PCOs shall relate to the test method used. */

PCO_GroupRef ::3PCO_GroupRefPCO_GroupReference
PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {PCO_Groupldentifier “/"}
PCO_Groupldentifier ::= Identifier

Delivery 9.6, 21 April 1997 147

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

273 PCO_Dcl ::=$PCO_DcIPCO_ld PCO_Typeld&MuxValue [P_Role] [Comme$End_PCO_Dcl
274 PCO_ld ::=$PCO_ld PCO_ldentifier

275 PCO_ldentifier ::= Identifier

276 PCO_Typeld&MuxValue ::$PCO_Typeld PCO_Typeldentifier ['(" MuxValue ")"]

277 MuxValue ::= TS_Parldentifier

278 P_Role ::®%PCO_Role[PCO_Role]

279 PCO_Role:=UT |LT

A.3.3.12.8 CP Declarations
280 CP_DclsOrGroup ::= CP_Dcls | CP_DclsGroup
281 CP_DclsGroup ::8CP_DclsGroupCP_DclsGroupld {CP_DclsOrGroup$End_CP_DclsGroup
282 CP_DclsGroupld ::$CP_DclsGroupld CP_DclsGroupldentifier
283 CP_DclsGroupldentifier ::= Identifier

284 CP_Dcls ::$Begin_CP_DclJCP_GroupRef] {{CollComment] CP_Dcl}+ [Commer8End_CP_Dcls
/* NOTE - Collective comments may be used in this table accordiRigiore 2 */

285 CP_GroupRef ::8CP_GroupRefCP_GroupReference

286 CP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {CP_Groupldentifier “/"}
287 CP_Groupldentifier ::= Identifier

288 CP_Dcl ::=$CP_DcICP_ld [Comment}End_CP_Dcl

289 CP_Id ::=$CP_ld CP_lIdentifier

290 CP_ldentifier ::= Identifier

A.3.3.12.9 Timer Declarations
291 TimerDclsOrGroup ::= TimerDcls | TimerDclsGroup
292 TimerDclsGroup ::$TimerDclsGroup TimerDclsGroupld {TimerDclsOrGroup}$End_TimerDclsGroup
293 TimerDclsGroupld ::$TimerDclsGroupld TimerDclsGroupldentifier
294 TimerDclsGroupldentifier ::= Identifier

295 TimerDcls ::=$Begin_TimerDcls[TimerGroupRef] {{CollComment] TimerDcl}+ [Commen§iEnd_TimerDcls
/* NOTE - Collective comments may be used in this table accordiRigiore 2 */

296 TimerGroupRef ::$TimerGroupRef TimerGroupReference

297 TimerGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TimerGroupldentifier “/"}
298 TimerGroupldentifier ::= Identifier

299 TimerDcl ::=$TimerDcl Timerld Duration Unit [Commen§End_TimerDcl

300 Timerld ::=$Timerld Timerldentifier

301 Timerldentifier ::= Identifier

302 Duration ::=$Duration [DeclarationValue]
/* OPERATIONAL SEMANTICS - DeclarationValue shall evaluate to a non-zero positive INTEGER. */

303 Unit ::=$Unit TimeUnit
304 TimeUnit ::=ps|ns|us|ms|s|min
/* STATIC SEMANTICS - If a timer is derived from the PICS/PIXIT then the timer declaration shall specify the same uniEd@SHEXIT entry. */

A.3.3.12.10 Test Component Declarations

305 TCompDclsOrGroup ::= TCompDcls | TCompDclsGroup

306 TCompDclsGroup ::$TCompDclsGroup TCompDclsGroupld {TCompDclsOrGroup$End_TCompDclsGroup

307 TCompDclsGroupld ::$3TCompDclsGroupld TCompDclsGroupldentifier

308 TCompDclsGroupldentifier ::= Identifier

148 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

309

310
311
312
313
314
315
316
317
318
319
320
321

TCompDcls ::%$Begin_TCompDcls[TCompGroupRef] {{CollComment] TCompDcl}+ [Commer&End_TCompDcls
/* NOTE - Collective comments may be used in this table accordikigtore 2 */

TCompGroupRef ::$TCompGroupRef TCompGroupReference

TCompGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TCompGroupldentifier “/"}
TCompGroupldentifier ::= Identifier

TCompDcl ::=$TCompDcl TCompld C_Role NumOf_PCOs NumOf_CPs [Comm&giid_TCompDcl
TCompld ::=$TCompld TCompldentifier

TCompldentifier::= Identifier

C_Role ::=$TCompRoleTCompRole

TCompRole:= MTC |PTC

NumOf_PCOs ::$NumOf_PCOsNum_PCOs

Num_PCOs ::= Number

NumOf_CPs ::3NumOf_CPsNum_CPs

Num_CPs ::= Number

A.3.3.12.11 Test Component Configuration Declarations

322
323
324

325
326
327

328
329
330
331
332
333

334
335
336
337

338
339

TCompConfigDcls ::$TCompConfigDcls{TCompConfigDclOrGroup}+$End_TCompConfigDcls
TCompConfigDclOrGroup ::= TCompConfigDcl | TCompConfigDclGroup

TCompConfigDclGroup ::$TCompConfigDclGroup TCompConfigDclGroupld {TCompConfigDclOrGroup}+
$End_TCompConfigDclGroup

TCompConfigDclGroupld ::$TCompConfigDclGroupld TCompConfigDclGroupldentifier
TCompConfigDclGroupldentifier ::= Identifier

TCompConfigDcl ::#$Begin_TCompConfigDclTCompConfigld [TCompConfigGroupRef] [Comment] TCompConfiginfos
[Comment] $End_TCompConfigDcl

TCompConfigld ::$TCompConfigld TCompConfigldentifier

TCompConfigldentifier ::= Identifier

TCompConfigGroupRef ::$TCompConfigGroupRef TCompConfigGroupReference
TCompConfigGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TCompConfigGroupldentifier “/"}
TCompConfigGroupldentifier ::= Identifier

TCompConfigInfos ::$TCompConfiginfos {TCompConfiginfo}+ $End_TCompConfiginfos

/* STATIC SEMANTICS - Exactly one of the TCompConfiginfos shall be for a Test Components which has a TCompRoleMh&his
TCompConfigInfo ::$TCompConfiginfo TCompUsed PCOs_Used CPs_Used [Comn$EnH_TCompConfiginfo
TCompUsed ::$TCompUsedTCompldentifier

PCOs_Used ::$PCOs_UsedPCO_List]

PCO_List ::= PCO_ldentifier {Comma PCO_ldentifier}

/* STATIC SEMANTICS - The number of PCOs in the PCO_List shall be the same as in the Test Component declaration. */

/* STATIC SEMANTICS - A given PCO_Identifier shall not be used more than once in the same Test Component Configuration. */
CPs_Used ::$CPs_UsedCP_List]

CP_List ::= CP_ldentifier {Comma CP_ldentifier}

/* STATIC SEMANTICS - For a PTC, the number of CPs in the CP_List shall be the same as in the Test Component declaration. */
/* STATIC SEMANTICS - For an MTC, the number of CPs in the CP_List shall be no more than the number in the Test Compaaénhdécla

/* STATIC SEMANTICS - A given CP_ldentifier shall not appear more than once in a given CP_List. */

/* STATIC SEMANTICS - Each CP_ldentifier which is used in a Test Component Configuration shall appear in the CP_List byf fovecigst
Components in that Configuration. */

Delivery 9.6, 21 April 1997 149

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.3.3.13 ASP, PDU and CM Type Definitions

A.3.3.13.1 General

340 ComplexDefinitions ::= [ASP_TypeDefs] [PDU_TypeDefs] [CM_TypeDefs] [AliasDefsOrGroup]
/* STATIC SEMANTICS - PDUs shall be optional */

A.3.3.13.2 ASP Type Definitions

341 ASP_TypeDefs ::$ASP_TypeDefTTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs] [ASN1_ASP_TypeDefsByRefOrGroup]
$End_ASP_TypeDefs

A.3.3.13.3 Tabular ASP Type Definitions
342 TTCN_ASP_TypeDefs :$TTCN_ASP_TypeDef{TTCN_ASP_TypeDefOrGroup}$End_TTCN_ASP_TypeDefs
343 TTCN_ASP_TypeDefOrGroup ::= TTCN_ASP_TypeDef | TTCN_ASP_TypeDefGroup

344 TTCN_ASP_TypeDefGroup :$TTCN_ASP_TypeDefGroupTTCN_ASP_TypeDefGroupld {TTCN_ASP_TypeDefOrGroup}+
$End_TTCN_ASP_TypeDefGroup

345 TTCN_ASP_TypeDefGroupld :$TTCN_ASP_TypeDefGroupld ASP_Groupldentifier

346 TTCN_ASP_TypeDef ::8Begin_TTCN_ASP_TypeDefASP_Id [ASP_GroupRef] PCO_Type [Comment] [ASP_ParDcls]
[Comment]$End_TTCN_ASP_TypeDef

347 ASP_Id ::=3ASP_Id ASP_Id&Fullld
348 ASP_Id&Fullld ::= ASP_Identifier [Fullldentifier]

349 ASP_|dentifier ::= Identifier
[* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a befzl®(ird. in a
Behaviour Description). */

350 ASP_GroupRef ::$ASP_GroupRefASP_GroupReference
351 ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASP_Groupldentifier “/"}
352 ASP_Groupldentifier ::= Identifier

353 PCO_Type ::3PCO_Type[PCO_Typeldentifier]
/* STATIC SEMANTICS - If there is no PCO_Type declaration table then, PCO_Typeldentifier shall be one of the PCO typdbheiSion
declaration table. */
/* STATIC SEMANTICS - If only a single PCO is defined within a test suite then PCO_Typeldentifier is optional. */

354 ASP_ParDcls ::$ASP_ParDcls{ASP_ParDcl}$End_ASP_ParDcls
355 ASP_ParDcl ::$ASP_ParDcl ASP_Parld ASP_ParType [CommebEnd_ASP_ParDcl
356 ASP_Parld ::$ASP_Parld ASP_ParldOrMacro

357 ASP_ParldOrMacro ::= ASP_Parld&Fullld | MacroSymbol
/* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

358 ASP_Parld&Fullld ::= ASP_Parldentifier [Fullldentifier]
359 ASP_Parldentifier ::= Identifier

360 ASP_ParType ::$ASP_ParTypeType&Attributes
/* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_ldentifieDOr */

A.3.3.13.4 ASN.1 ASP Type Definitions
361 ASN1_ASP_TypeDefs :$ASN1_ASP_TypeDef§ASN1_ASP_TypeDefOrGroup$End_ASN1_ASP_TypeDefs
362 ASN1_ASP_TypeDefOrGroup ::= ASN1_ASP_TypeDef | ASN1_ASP_TypeDefGroup

363 ASN1_ASP_TypeDefGroup :3ASN1_ASP_TypeDefGroupASN1_ASP_TypeDefGroupld {ASN1_ASP_TypeDefOrGroup}+
$End_ASN1_ASP_TypeDefGroup

364 ASN1_ASP_TypeDefGroupld :3ASN1_ASP_TypeDefGroupldASN1_ASP_Groupldentifier

365 ASN1_ASP_TypeDef ::$3Begin_ASN1_ASP_TypeDeASP_Id [ASN1_ASP_GroupDef] PCO_Type [Comment]
[ASN1_TypeDefinition] [CommentpEnd_ASN1_ASP_TypeDef

366 ASN1_ASP_GroupRef :$ASN1_ASP_GroupRefASN1_ASP_GroupReference

150 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

367 ASN1_ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_ASP_Groupldentifier “/"}
368 ASN1_ASP_Groupldentifier ::= Identifier

A.3.3.13.5 ASN.1 ASP Type Definitions by Reference
369 ASN1_ASP_TypeDefsByRefOrGroup ::= ASN1_ASP_TypeDefsByRef | ASN1_ASP_TypeDefsByRefGroup

370 ASN1_ASP_TypeDefsByRefGroup $ASN1_ASP_TypeDefsByRefGroufASN1_ASP_TypeDefsByRefGroupld
{ASN1_ASP_TypeDefsByRefOrGroup}$End_ASN1_ASP_TypeDefsByRefGroup

371 ASN1_ASP_TypeDefsByRefGroupld $ASN1_ASP_TypeDefsByRefGroupldASN1_ASP_Groupldentifier

372 ASN1_ASP_TypeDefsByRef :$Begin_ASN1_ASP_TypeDefsByR4ASN1_ASP_DefsByRefGroupRef] {[CollComment]
ASN1_ASP_TypeDefByRef}+ [CommenfIEnd_ASN1_ASP_TypeDefsByRef

/* NOTE - Collective comments may be used in this table accordiRtgiore 2 */
373 ASN_ASP_DefsByRefGroupRef $ASN1_ASP_DefsByRefGroupReASN1_ASP_GroupReference

374 ASN1_ASP_TypeDefByRef :$ASN1_ASP_TypeDefByReASP_Id PCO_Type ASN1_TypeReference ASN1_Moduleld
[Comment]$End_ASN1_ASP_TypeDefByRef
/* STATIC SEMANTICS - ASP_lId shall not be specified with a Fullldentifier. */

A.3.3.13.6 PDU Type Definitions
375 PDU_TypeDefs ::$PDU_TypeDefdTTCN_PDU_TypeDefs] [ASN1_PDU_TypeDefs] [ASN1_PDU_TypeDefsByRefOrGroup]
$End_PDU_TypeDefs
A.3.3.13.7 Tabular PDU Type Definitions
376 TTCN_PDU_TypeDefs :$TTCN_PDU_TypeDefs{TTCN_PDU_TypeDefOrGroup}$End_TTCN_PDU_TypeDefs
377 TTCN_PDU_TypeDefOrGroup ::= TTCN_PDU_TypeDef | TTCN_PDU_TypeDefGroup

378 TTCN_PDU_TypeDefGroup :$TTCN_PDU_TypeDefGroupTTCN_PDU_TypeDefGroupld
{TTCN_PDU_TypeDefOrGroup}#End_TTCN_PDU_TypeDefGroup

379 TTCN_PDU_TypeDefGroupld :$TTCN_PDU_TypeDefGroupld PDU_Groupldentifier

380 TTCN_PDU_TypeDef ::$Begin_TTCN_PDU_TypeDefPDU_Id [PDU_GroupRef] PCO_Type [PDU_Encodingld]
[EncVariationld] [Comment] [PDU_FieldDcls] [CommeiiEnd_TTCN_PDU_TypeDef
/* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then PCO_TypeloteRGf@r Type)
is optional. */

381 PDU_lId ::=$PDU_Id PDU_Id&Fulild
382 PDU_Id&Fullld ::= PDU_lIdentifier [Fullldentifier]

383 PDU_Identifier ::= Identifier

/* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a belabl®(rd. in a
Behaviour Description). */

384 PDU_GroupRef ::$PDU_GroupRefPDU_GroupReference

385 PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {PDU_Groupldentifier “/"}

386 PDU_Groupldentifier ::= Identifier

387 PDU_Encodingld ::$PDU_Encodingld [EncodingRuleldentifier]

388 PDU_FieldDcls ::$PDU_FieldDcls{PDU_FieldDcl} $End_PDU_FieldDcls

389 PDU_FieldDcl ::=PDU_FieldDcl PDU_Fieldld PDU_FieldType [PDU_FieldEncoding] [CommekiEhd_PDU_FieldDcl
390 PDU_Fieldld ::=$PDU_Fieldld PDU_FieldldOrMacro

391 PDU_FieldldOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol
/* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

392 MacroSymbol ::="<-"
393 PDU_Fieldld&Fullld ::= PDU_Fieldldentifier [Fullldentifier]
394 PDU_Fieldldentifier ::= Identifier

395 PDU_FieldType ::$PDU_FieldTypeType&Attributes
/* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_IdentifieDOr */

Delivery 9.6, 21 April 1997 151

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

396 Type&Attributes ::= (Type [LengthAttribute])RDU
/* OPERATIONAL SEMANTICS - The set of values defined by LengthAttribute shall be a true subset of the values of the bdse type.

/* STATIC SEMANTICS - LengthAttribute shall be provided only when the base type is a string type (i.e., BITSTRING, HEXSTRING,
OCTETSTRING or CharacterString) or derived from a string type. */

397 LengthAttribute ::= SingleLength | RangeLength
398 SingleLength ::="[" Bound "]"

399 Bound ::= Number | TS_Parldentifier | TS_Constldentifier
/* OPERATIONAL SEMANTICS - Bound shall evaluate to a non-negative INTEGER value or INFINITY. */

400 Rangelength ::="[" LowerBound To UpperBound "]"
/* OPERATIONAL SEMANTICS - LowerBound shall be less than UpperBound. */

401 LowerBound ::= Bound
402 UpperBound ::= BoundNFINITY

A.3.3.13.8 ASN.1 PDU Type Definitions
403 ASN1_PDU_TypeDefs :$ASN1_PDU_TypeDef§ASN1_PDU_TypeDefOrGroup$End_ASN1_PDU_TypeDefs
404 ASN1_PDU_TypeDefOrGroup ::= ASN1_PDU_TypeDef | ASN1_PDU_TypeDefGroup

405 ASN1_PDU_TypeDefGroup :$ASN1_PDU_TypeDefGroupASN1_PDU_TypeDefGroupld {ASN1_PDU_TypeDefOrGroup}+
$End_ASN1_PDU_TypeDefGroup

406 ASN1_PDU_TypeDefGroupld :$ASN1_PDU_TypeDefGroupldASN1_PDU_Groupldentifier

407 ASN1_PDU_TypeDef ::$Begin_ASN1_PDU_TypeDePDU_Id [ASN1_PDU_GroupRef] PCO_Type [PDU_Encodingld]
[EncVariationld] [Comment] [ASN1_TypeDefinition] [CommeiEnd_ASN1_PDU_TypeDef

[* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then PCO_TypelufeRti@r Type)
is optional. */

408 ASN1_PDU_GroupRef :$ASN1_PDU_GroupRefASN1_PDU_GroupReference
409 ASN1_PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_PDU_Groupldentifier “/"}
410 ASN1_PDU_Groupldentifier ::= Identifier

A.3.3.13.9 ASN.1 PDU Type Definitions by Reference
411 ASN1_PDU_TypeDefsByRefOrGroup ::= ASN1_PDU_TypeDefsByRef | ASN1_PDU_TypeDefsByRefGroup

412 ASN1_PDU_TypeDefsByRefGroup $ASN1_PDU_TypeDefsByRefGroupASN1_PDU_TypeDefsByRefGroupld
{ASN1_PDU_TypeDefsByRefOrGroup}$End_ASN1_PDU_TypeDefsByRefGroup

413 ASN1_PDU_TypeDefsByRefGroupld $ASN1_PDU_TypeDefsByRefGroupldASN1_PDU_Groupldentifier

414 ASN1_PDU_TypeDefsByRef :$Begin_ ASN1_PDU_TypeDefsByR4ASN1_PDU_DefsByRefGroupRef] {{CollComment]
ASN1_PDU_TypeDefByRef}+ [Commen$End_ASN1_PDU_TypeDefsByRef

[* NOTE - Collective comments may be used in this table accordiRtgiore 2 */
415 ASN1_PDU_DefsByRefGroupRef :$3ASN1_PDU_DefsByRefGroupReASN1_PDU_GroupReference

416 ASN1_PDU_TypeDefByRef :$ASN1_PDU_TypeDefByRePDU_Id PCO_Type ASN1_TypeReference ASN1_Moduleld
[PDU_Encodingld] [EncVariationld] [CommerffEnd_ASN1_PDU_TypeDefByRef
[* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then PCO_TypelateRtf@r Type)

is optional. */
/* STATIC SEMANTICS - PDU_Id shall not be specified with a Fullldentifier. */
A.3.3.13.10 CM Type Definitions

417 CM_TypeDefs ::$CM_TypeDefs[TTCN_CM_TypeDefs] [ASN1_CM_TypeDef§End_CM_TypeDefs

A.3.3.13.11 Tabular CM Type Definition
418 TTCN_CM_TypeDefs ::$TTCN_CM_TypeDefs{TTCN_CM_TypeDefOrGroup}+$End_TTCN_CM_TypeDefs
419 TTCN_CM_TypeDefOrGroup ::= TTCN_CM_TypeDef | TTCN_CM_TypeDefGroup

420 TTCN_CM_TypeDefGroup ::$TTCN_CM_TypeDefGroup TTCN_CM_TypeDefGroupld {TTCN_CM_TypeDefOrGroup}+
$End_TTCN_CM_TypeDefGroup

152 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

421 TTCN_CM_TypeDefGroupld ::$3TTCN_CM_TypeDefGroupld CM_Groupldentifier

422 TTCN_CM_TypeDef ::$Begin_TTCN_CM_TypeDefCM_Id [CM_GroupRef] [Comment] [CM_ParDcls] [Comment]
$End_TTCN_CM_TypeDef

423 CM_Id ::=$CM_Id CM_lIdentifier

424 CM_ldentifier ::= Identifier

425 CM_GroupRef ::$CM_GroupRef CM_GroupReference

426 CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {CM_Groupldentifier “/}
427 CM_Groupldentifier ::= Identifier

428 CM_ParDcls ::$CM_ParDcls{CM_ParDcl} $End_CM_ParDcls

429 CM_ParDcl ::=$CM_ParDcl CM_Parld CM_ParType [CommeEnd_CM_ParDcl

430 CM_Parld ::=$CM_Parld CM_ParldOrMacro

431 CM_ParldOrMacro ::= CM_Parldentifier | MacroSymbol
/* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

432 CM_Parldentifier ::= Identifier
433 CM_ParType ::$CM_ParType Type&Attributes

A.3.3.13.12 ASN.1 CM Type Definitions
434 ASN1_CM_TypeDefs ::3ASN1_CM_TypeDefs{ASN1_CM_TypeDefOrGroupH$End_ASN1_CM_TypeDefs
435 ASN1_CM_TypeDefOrGroup ::= ASN1_CM_TypeDef | ASN1_CM_TypeDefGroup

436 ASN1_CM_TypeDefGroup ::$3ASN1_CM_TypeDefGroupASN1_CM_TypeDefGroupld {ASN1_CM_TypeDefOrGroup}+
$End_ASN1_CM_TypeDefGroup

437 ASN1_CM_TypeDefGroupld ::3ASN1_CM_TypeDefGroupld ASN1_CM_Groupldentifier

438 ASN1_CM_TypeDef ::$Begin_ASN1_CM_TypeDefCM_Ild [ASN1_CM_GroupRef] [Comment] [ASN1_TypeDefinition]
[Comment]$End_ASN1_CM_TypeDef

439 ASN1_CM_GroupRef ::3ASN1_CM_GroupRefASN1_CM_GroupReference
440 ASN1_CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_CM_Groupldentifier “/"}
441 ASN1_CM_Groupldentifier ::= Identifier

A.3.3.13.13 Varieties of Encoding Definition
442 EncodingDefs ::$EncodingDefs[EncodingDefinitionsOrGroup] [EncodingVariations] [InvalidFieldEncodingDefs]
$End_EncodingDefs
A.3.3.13.13.1 Encoding Definitions
443 EncodingDefinitionsOrGroup ::= EncodingDefinitions | EncodingDefinitionsGroup

444 EncodingDefinitionsGroup :$EncodingDefinitionsGroup EncodingDefinitionsGroupld {EncodingDefinitionsOrGroup}+
$End_EncodingDefinitionsGroup

445 EncodingDefinitionsGroupld :$EncodingDefinitionsGroupld EncodingGroupldentifier

446 EncodingDefinitions ::$Begin_EncodingDefinitions[EncodingGroupRef] {{CollComment] EncodingDefinition}+ [Comment]
$End_EncodingDefinitions

I* NOTE - Collective comments may be used in this table accordiRtgiore 2 */
447 EncodingGroupRef ::$EncodingGroupRefEncodingGroupReference
448 EncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {EncodingGroupldentifier “/"}
449 EncodingGroupldentifier ::= Identifier

450 EncodingDefinition ::$EncodingDefinition EncodingRuleld EncodingRef EncodingDefault [Comment]
$End_EncodingDefinition
/* OPERATIONAL SEMANTICS - No more than one EncodingRuleldentifier shall have an EncodingDefault containing a DefaultExphaéskion
evaluates to TRUE*/

451 EncodingRuleld ::$EncodingRuleld EncodingRuleldentifier

Delivery 9.6, 21 April 1997 153

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

452
453
454
455
456

EncodingRuleldentifier ::= |dentifier

EncodingRef ::$EncodingRefEncodingReference
EncodingReference ::= BoundedFreeText
EncodingDefault ::$EncodingDefault[DefaultExpression]

DefaultExpression ::= Expression
/* STATIC SEMANTICS - DefaultExpression shall only contain LiteralValues, TS_Parldentifiers and TS_Constldentifiers. */

A.3.3.13.13.2 Encoding Variations

457
458
459

460
461

462
463
464
465
466
467

468

469
470
471
472
473
474

EncodingVariations ::$EncodingVariations{EncodingVariationSetOrGroup}$End_EncodingVariations
EncodingVariationSetOrGroup ::= EncodingVariationSet | EncodingVariationSetGroup

EncodingVariationSetGroup :$&ncodingVariationSetGroup EncodingVariationSetGroupld {EncodingVariationSetOrGroup}+
$End_EncodingVariationSetGroup

EncodingVariationSetGroupld :$£ncodingVariationSetGroupld EncVariationGroupldentifier

EncodingVariationSet : $Begin_EncodingVariationSeEncodingRuleld [EncVariationGroupRef] Encoding_TypeList [Comment]
EncodingVariationList [Commen§End_EncodingVariationSet

EncVariationGroupRef ::3EncVariationGroupRef EncVariationGroupReference

EncVariationGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {EncVariationGroupldentifier “/"}
EncVariationGroupldentifier ::= Identifier

EncodingVariationList ::$EncodingVariationList {EncodingVariation}+$End_EncodingVariationList
Encoding_TypelList ::3Encoding_TypeList[TypeList]

Typelist ::=Type {Comma Type}

/* STATIC SEMANTICS - Type shall not be an ASP_Identifier, PDU_ldentifier or Structldentifier, since such types may be lepeodeding rules
but not by field encodings. */

EncodingVariation ::$EncodingVariation EncodingVariationld VariationRef VariationDefault [Comment]
$End_EncodingVariation

/* OPERATIONAL SEMANTICS - No more than one Encodingldentifier shall have a VariationDefault containing a DefaultExpression whi
evaluates to TRUE. */

EncodingVariationld ::$EncodingVariationld EncVariationld&ParList
EncVariationld&ParList ::= EncVariationldentifier [FormalParList]
EncVariationldentifier ::= Identifier

VariationRef ::=$VariationRef VariationReference
VariationReference ::= BoundedFreeText

VariationDefault ::$VariationDefault [DefaultExpression]

A.3.3.13.13.3 Invalid Encoding Definitions

475

476
477

478
479

480
481
482
483

154

InvalidFieldEncodingDefs ::$InvalidFieldEncodingDefs{InvalidFieldEncodingDefOrGroup}+
$End_lInvalidFieldEncodingDefs

InvalidFieldEncodingDefOrGroup ::= InvalidFieldEncodingDef | InvalidFieldEncodingGroup

InvalidFieldEncodingGroup :$invalidFieldEncodingGroup InvalidFieldEncodingGroupld {InvalidFieldEncodingOrGroup}+
$ENnd_InvalidFieldEncodingGroup

InvalidFieldEncodingGroupld :$invalidFieldEncodingGroupld InvalidFieldEncodingGroupldentifier

InvalidFieldEncodingDef ::$Begin_InvalidFieldEncodingDeflnvalidFieldEncodingld [InvalidFieldEncodingGroupRef]
Encoding_TypeList [Comment] InvalidFieldEncodingDefinition [Comm&fhd_InvalidFieldEncodingDef

InvalidFieldEncodingld ::$InvalidFieldEncodingld InvalidFieldEncodingld&ParList
InvalidFieldEncodingld&ParList ::= InvalidFieldEncodingldentifier [FormalParList]
InvalidFieldEncodingldentifier ::= Identifier

InvalidFieldEncodingGroupRef :$invalidFieldEncodingGroupRef InvalidFieldEncodingGroupReference

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

484

485
486

InvalidFieldEncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {InvalidFieldEncodingGroupldetfitifier
"}

InvalidFieldEncodingGroupldentifier ::= Identifier

InvalidFieldEncodingDefinition ::$InvalidFieldEncodingDefinition TS_OpProcDe$End_InvalidFieldEncodingDefinition

/* OPERATIONAL SEMANTICS - TS_OpProcDef shall produce a BitString result, to be interpreted as the encoding to be traigimittéelrtbit
first. */

A.3.3.13.14 Alias Definitions

487
488
489
490
491

492
493
494
495
496
497

498
499

AliasDefsOrGroup ::= AliasDefs | AliasDefsGroup

AliasDefsGroup ::$AliasDefsGroup AliasDefsGroupld {AliasDefsOrGroup}$End_AliasDefsGroup
AliasDefsGroupld ::$AliasDefsGroupld AliasDefsGroupldentifier

AliasDefsGroupldentifier ::= Identifier

AliasDefs ::=$Begin_AliasDefgAliasGroupRef] {{CollComment] AliasDef}+ [CommenflEnd_AliasDefs
/* NOTE - Collective comments may be used in this table accordiRigtore 2 */

AliasGroupRef ::$AliasGroupRef AliasGroupReference

AliasGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {AliasGroupldentifier “/"}
AliasGroupldentifier ::= Identifier

AliasDef ::=$AliasDef Aliasld Expandedld [CommenBEnd_AliasDef

Aliasld ::=$Aliasld Aliasldentifier

Aliasldentifier ::= Identifier
/* STATIC SEMANTICS - An Aliasldentifier shall be used only in a statement line of a behaviour description. */
[* STATIC SEMANTICS - An Aliasldentifier shall be used only where an ASP_Identifier or PDU_ldentifier is valid. */

Expandedld ::$ExpandedId Expansion
Expansion ::= ASP_ldentifier | PDU_Ildentifier

A.3.3.14 The Constraints Part

500

ConstraintsPart ::$ConstraintsPart [TS_TypeConstraints] [ASP_Constraints] [PDU_Constraints] [CM_Constraints]
$End_ConstraintsPart

A.3.3.15 Test Suite Type Constraint Declarations

501

TS_TypeConstraints :$TS_TypeConstraints[StructTypeConstraints] [ASN1_TypeConstrairignd_TS_TypeConstraints

A.3.3.16 Structured Type Constraint Declarations

502
503
504

505
506

507
508

509
510
511

StructTypeConstraints :$StructTypeConstraints {StructTypeConstraintOrGroup}$End_StructTypeConstraints
StructTypeConstraintOrGroup ::= StructTypeConstraint | StructTypeConstraintGroup

StructTypeConstraintGroup $StructTypeConstraintGroup StructTypeConstraintGroupld {StructTypeConstraintOrGroup}+
$End_StructTypeConstraintGroup

StructTypeConstraintGroupld $StructTypeConstraintGroupld StructTypeConstraintGroupldentifier

StructTypeConstraint :$Begin_StructTypeConstraintConsld [StructTypeConstraintGroupRef] Structld DerivPath
[EncVariationld] [Comment] ElemValues [Commeffnd_StructTypeConstraint

/* STATIC SEMANTICS - The Fullldentifier that is part of Struct_Id shall not be used. */

/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|l theneosparameters
omitted from or added to this list. */

StructTypeConstraintGroupRef $StructTypeConstraintGroupRef StructTypeConstraintGroupReference
StructTypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/*] {StructTypeConstraintGroupldé&ntifier
"}

StructTypeConstraintGroupldentifier ::= Identifier

EncVariationld ::5%EncVariationld [EncVariationCall]

EncVariationCall ::= EncVariationldentifier [ActualParList]

Delivery 9.6, 21 April 1997 155

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

512 ElemValues ::$ElemValues{ElemValue}+ $End_ElemValues

513 ElemValue ::#$ElemValueElemld ConsValue [PDU_FieldEncoding] [CommeBEnd_ElemValue
/* STATIC SEMANTICS - The Fullldentifier that is part of Elemld shall not be used. */
/* STATIC SEMANTICS - Parameterized Element values in a base constraint shall not be modified or explicitly omitted ired owdifraint. */

514 PDU_FieldEncoding ::$PDU_FieldEncoding[PDU_FieldEncodingCall]
515 PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall
516 InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | (" ")")

A.3.3.17 ASN.1 Type Constraint Declarations
517 ASN1_TypeConstraints :3ASN1_TypeConstraints{ASN1_TypeConstraintOrGroup}$End_ASN1_TypeConstraints
518 ASN1_TypeConstraintOrGroup ::= ASN1_TypeConstraint | ASN1_TypeConstraintGroup

519 ASN1_TypeConstraintGroup :$3ASN1_TypeConstraintGroupASN1_TypeConstraintGroupld
{ASN1_TypeConstraintOrGroup}$End_ASN1_TypeConstraintGroup

520 ASN1_TypeConstraintGroupld :3ASN1_TypeConstraintGroupld ASN1_TypeConstraintGroupldentifier

521 ASN1_TypeConstraint :$Begin_ASN1_TypeConstraintConsld [ASN1_TypeConstraintGroupRef] ASN1_Typeld DerivPath
[EncVariationld] [Comment] ASN1_ConsValue [CommeBiEnd_ASN1_TypeConstraint
/* STATIC SEMANTICS - The Fullldentifier that is part of ASN1_Typeld shall not be used. */
/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|lthbeneosparameters
omitted from or added to this list. */

522 ASN1_TypeConstraintGroupRef $ASN1_TypeConstraintGroupRefASN1_TypeConstraintGroupReference
523 ASN1_TypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_TypeConstraintGroupldentifier
H/H}
524 ASN1_TypeConstraintGroupldentifier ::= Identifier
A.3.3.18 ASP Constraint Declarations
525 ASP_Constraints ::$ASP_Constraints[TTCN_ASP_Constraints] [ASN1_ASP_Constrairf8&hd_ASP_Constraints

A.3.3.19 Tabular ASP Constraint Declarations
526 TTCN_ASP_Constraints :3TTCN_ASP_Constraints{TTCN_ASP_ConstraintOrGroup}$End_TTCN_ASP_Constraints
527 TTCN_ASP_ConstraintOrGroup ::= TTCN_ASP_Constraint | TTCN_ASP_ConstraintGroup

528 TTCN_ASP_ConstraintGroup :$33TCN_ASP_ConstraintGroup TTCN_ASP_ConstraintGroupld
{TTCN_ASP_ConstraintOrGroup}$End_TTCN_ASP_ConstraintGroup

529 TTCN_ASP_ConstraintGroupld : 33 TCN_ASP_ConstraintGroupld ASP_ConstraintGroupldentifier
530 TTCN_ASP_Constraint ::$Begin_TTCN_ASP_ConstraintConsld [ASP_ConstraintGroupRef] ASP_ld DerivPath [Comment]
[ASP_ParValues] [Commen$End_TTCN_ASP_Constraint
[* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Id shall not be used. */
/* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have the same structure*/
[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters
omitted from or added to this list. */
531 ASP_ConstraintGroupRef :$ASP_ConstraintGroupRefASP_ConstraintGroupReference
532 ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASP_ConstraintGroupldentifier “/"}
533 ASP_ConstraintGroupldentifier ::= Identifier
534 ASP_ParValues :$ASP_ParValues{ASP_ParValuel$End_ASP_ParValues

535 ASP_ParValue ::$ASP_ParValueASP_Parld ConsValue [CommeS&nd_ASP_ParValue
/* STATIC SEMANTICS - The Fullidentifier that is part of ASP_Parld shall not be used. */
/* STATIC SEMANTICS - If an ASP definition refers to a Structured Type as a substructure of a parametdth(a parameter name) then the
corresponding constraint shall have the same parameter name in the corresponding position in the parameter name naithe annstraoft and
the value shall be a reference to a constraint for that parametdo(that substructure in accordance with the definition of the Structured Type). */
[* STATIC SEMANTICS - If an ASP definition refers to a parameter specified as being of metatype PDU then in a correspastciing,dbe value
for that parameter shall be specified as the name of a PDU constraint, or formal parameter. */

156 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

/* STATIC SEMANTICS - Use of structured constraints by macro expansion in a constraint shall not be used unless the ca&Spoaeiinition
also references the same Structured Type by macro expansion. */
/* STATIC SEMANTICS - Parameterized ASP parameter values in a base constraint shall not be modified or explicitly onmittetifieca
constraint. */
A.3.3.20 ASN.1 ASP Constraint Declarations
536 ASN1_ASP_Constraints :3ASN1_ASP_Constraint§ASN1_ASP_ConstraintOrGroup}$End_ASN1_ASP_Constraints
537 ASN1_ASP_ConstraintOrGroup ::= ASN1_ASP_Constraint | ASN1_ASP_ConstraintGroup

538 ASN1_ASP_ConstraintGroup $ASN1_ASP_ConstraintGroupASN1_ASP_ConstraintGroupld
{ASN1_ASP_ConstraintOrGroup}$End_ASN1_ASP_ConstraintGroup

539 ASN1_ASP_ConstraintGroupld $ASN1_ASP_ConstraintGroupldASN1_ASP_ConstraintGroupldentifier

540 ASN1_ASP_Constraint :$Begin_ASN1_ASP_ConstrainConsld [ASN1_ASP_ConstraintGroupRef] ASP_Id DerivPath
[Comment] [ASN1_ConsValue] [CommerEnd_ASN1_ASP_Constraint
/* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Id shall not be used. */
/* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have a compatible ABMel{strpossibly
with some groupings). */
[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|l theneosparameters
omitted from or added to this list. */

541 ASN1_ASP_ConstraintGroupRef $ASN1_ASP_ConstraintGroupRefASN1_ASP_ConstraintGroupReference

542 ASN1_ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”]
{ASN1_ASP_ConstraintGroupldentifier “/"}

543 ASN1_ASP_ConstraintGroupldentifier ::= Identifier

A.3.3.21 PDU Constraint Declarations
544 PDU_Constraints ::$PDU_Constraints[TTCN_PDU_Constraints] [ASN1_PDU_Constrairs§nd_PDU_Constraints

A.3.3.22 Tabular PDU Constraint Declarations
545 TTCN_PDU_Constraints :$TTCN_PDU_Constraints{TTCN_PDU_ConstraintOrGroup}$End_TTCN_PDU_Constraints
546 TTCN_PDU_ConstraintOrGroup ::= TTCN_PDU_Constraint | TTCN_PDU_ConstraintGroup

547 TTCN_PDU_ConstraintGroup :$7TCN_PDU_ConstraintGroup TTCN_PDU_ConstraintGroupld
{TTCN_PDU_ConstraintOrGroup}$End_TTCN_PDU_ConstraintGroup

548 TTCN_PDU_ConstraintGroupld :3TTCN_PDU_ConstraintGroupld PDU_ConstraintGroupldentifier

549 TTCN_PDU_Constraint ::3Begin_TTCN_PDU_ConstraintConsld [PDU_ConstraintGroupRef] PDU_Id DerivPath [EncRuleld]
[EncVariationld] [Comment] [PDU_FieldValues] [Comme#ignd_TTCN_PDU_Constraint
/* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */
/* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have the same structure*/
/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters
omitted from or added to this list. */

550 PDU_ConstraintGroupRef :$PDU_ConstraintGroupRef PDU_ConstraintGroupReference

551 PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {PDU_ConstraintGroupldentifier “/"}
552 PDU_ConstraintGroupldentifier ::= Identifier

553 EncRuleld ::$EncRuleld [EncodingRuleldentifier]

554 Consld ::=$Consld Consld&ParList

555 Consld&ParList ::= Constraintldentifier [FormalParList]

556 Constraintldentifier ::= Identifier

557 DerivPath ::=$DerivPath [DerivationPath]

558 DerivationPath ::= {Constraintldentifier Dot}+
/* STATIC SEMANTICS - If a constraint definition is a modification of an existing constraint, the name of the constrasntatken ias the basis of
this modification shall be referenced in the table in the derivation path entry. */
/* STATIC SEMANTICS - The first Constraintldentifier in DerivationPath shall be a base constraint identifier. */
/* STATIC SEMANTICS - The DerivationPath shall be the complete list of constraints in the order in which their modificatierisate constraint

Delivery 9.6, 21 April 1997 157

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

559
560

561

562

563

564

565

566
567

568
569
570

571

572

573

574

575

158

are to be applied. */
/* STATIC SEMANTICS - There shall be no white space between Constraintldentifier and Dot. */

PDU_FieldValues ::8PDU_FieldValues{PDU_FieldValue}$End_PDU_FieldValues

PDU_FieldValue ::%$PDU_FieldValuePDU_Fieldld ConsValue [PDU_FieldEncoding] [Comme$Ehd_PDU_FieldValue
[* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Fieldld shall not be used. */

/* STATIC SEMANTICS - If a PDU definition refers to a Structured Type as a substructure of a.éeldith a field name) then the corresponding
constraint shall have the same field name in the corresponding position in the field name name column of the constreattiasti#tidoe a reference
to a constraint for that field.€., for that substructure in accordance with the definition of the Structured Type). */

/* STATIC SEMANTICS - If a PDU definition refers to a field specified as being of metatype PDU then in a correspondingitahstralue for
that field shall be specified as the name of a PDU constraint, or formal parameter. */

[* STATIC SEMANTICS - Use of structured constraints by macro expansion in a constraint shall not be used unless the cayeBbddfinition
also references the same Structured Type by macro expansion. */

/* STATIC SEMANTICS - Parameterized PDU field values in a base constraint shall not be modified or explicitly omitted fifred cwttraint. */

ConsValue ::$ConsValueConstraintValue&Attributes

/* OPERATIONAL SEMANTICS - ConsValue shall evaluate to an element of the type specified for the ASP parameter, PDU (ietdrereigment.
This may include matching symbols compatible with the specified type. */

ConstraintValue&Attributes ::= ConstraintValue ValueAttributes

/* NOTE - ConstraintValue&Attributes can be reached via DefinedValue in the ASN.1 syntax. See the reference on the pRftltmtigalde. */

[* STATIC SEMANTICS - ConstraintValue shall fulfil all restrictions defined for the ASP parameter, PDU field or structureteigraeincluding
value ranges, value lists, alphabet restrictions and/or length restrictions and shall fulfil the restrictions defined tiyiMaies A/

/* OPERATIONAL SEMANTICS - Any length specifications defined for the ASP parameter or PDU field type in the Test Suite Tapdiates
shall not conflict with the length specifications in the ASP or PDU type definition. */

/* STATIC SEMANTICS - Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless pas$pad@saters. In the
latter case they shall be bound to a value and shall not be changed. */

ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef

[* STATIC SEMANTICS - When a ConstraintExpression is used in a Constraint, its terms shall not contain TS_Varldentifieraoldeatifier. */
ConstraintExpression ::= Expression

/* OPERATIONAL SEMANTICS - ConstraintExpression shall evaluate to an element of the specified type. */

MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange | SuperSet | SubSet | Permutation
/* NOTE - No matching symbol is considered to be a specific value. */

Complement ::€OMPLEMENT ValueList

Omit ::= DashQMIT

/* STATIC SEMANTICS - In ASN.1 constraints Omit shall be used only for ASP parameters or PDU fields that are declared ORFIONAL
DEFAULT. */

AnyValue ::="?"
AnyOrOmit ::= "*"

ValuelList ::= "(" ConstraintValue&Attributes {Comma ConstraintValue&Attributes} *)"

[* STATIC SEMANTICS - Each ConstraintValue&Attributes shall be of the type declared for the ASP parameter, PDU field uoe stieroent in
which the ValuelList is used. */

ValueRange ::= "(" ValRange ")"

/* STATIC SEMANTICS - ValueRange shall be used only on ASP parameter, PDU field, or structure element of type INTEGER. */

/* STATIC SEMANTICS - The set of values defined by ValueRange shall be a true subset of the values allowed by the ASPy&Btidieid’s
or structure element’s declared type. */

ValRange:= (LowerRangeBound To UpperRangeBound)

/* OPERATIONAL SEMANTICS - LowerRangeBound shall be less than UpperRangeBound. */

LowerRangeBound ::= ConstraintExpression | MINFENITY

/* OPERATIONAL SEMANTICS - ConstraintExpression shall evaluate to a specific INTEGER value. */

UpperRangeBound ::= ConstraintExpressidiF|NITY
/* OPERATIONAL SEMANTICS - ConstraintExpression shall evaluate to a specific INTEGER value. */

SuperSet ::SUPERSET"(" ConstraintValue&Attributes ")"
[* STATIC SEMANTICS - The argument to SuperSet,, ConstraintValue&Attributes, shall be of type SET OF. */

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

576

577

578

579
580

581
582

583

584
585

SubSet :: SUBSET "(" ConstraintValue&Attributes ")"
/* STATIC SEMANTICS - The argument to SubSie¢,, ConstraintValue&Attributes, shall be of type SET OF. */

Permutation ::PERMUTATION ValueList
[* STATIC SEMANTICS - The Permutation shall be used only inside a value of type SEQUENCE OF. */
[* STATIC SEMANTICS - The ValueList shall be of the type specified in the SEQUENCE OF. */

ValueAttributes ::= [ValueLengthlf_PRESENT] [ASN1_Encoding]

/* STATIC SEMANTICS - In ASN.1 constraints IF_PRESENT shall be used only for ASP parameters or PDU fields that are declafs&lOPT
or DEFAULT. */

/* STATIC SEMANTICS - ASN1_Encoding shall only be used for ValueAttributes in ASN.1 Type Constraints and ASN.1 PDU Corfétraints.
ASN1_Encoding ::ENC PDU_FieldEncodingCall

ValueLength ::= SingleValueLength | RangeValueLength

/* STATIC SEMANTICS - ValueLength shall be used only for ASP parameters, PDU fields or structure element that are dedESdRAIB,
HEXSTRING, OCTETSTRING, CharacterString, SEQUENCE OF or SET OF. */

/* STATIC SEMANTICS - ValueLength shall be used only in combination with the following mechanisms: Specificvalue, Complemtent, O
AnyValue, AnyOrOmit, AnyOrNone and Permutation. */

/* STATIC SEMANTICS - The set of values defined by ValueLength shall be a true subset of the values allowed by the ASPqdrarodield’s
or structure element’s declared type. */

SingleValueLength ::="[" ValueBound "]"

ValueBound ::= Number | TS_Parldentifier | TS_Constldentifier | FormalParldentifier
/* OPERATIONAL SEMANTICS - ValueBound shall evaluate to a specific non-negative INTEGER value. */

RangeValueLength ::="[" LowerValueBound To UpperValueBound "T"
/* OPERATIONAL SEMANTICS - LowerValueBound shall be less than UpperValueBound. */

LowerValueBound ::= ValueBound
UpperValueBound ::= ValueBountNFINITY

A.3.3.23 ASN.1 PDU Constraint Declarations

586
587
588

589
590

591
592

593
594
595
596

597

ASN1_PDU_Constraints :3ASN1_PDU_ConstraintsfASN1_PDU_ConstraintOrGroup}$End_ASN1_PDU_Constraints
ASN1_PDU_ConstraintOrGroup ::= ASN1_PDU_Constraint | ASN1_PDU_ConstraintGroup

ASN1_PDU_ConstraintGroup :$ASN1_PDU_ConstraintGroupASN1_PDU_ConstraintGroupld
{ASN1_PDU_ConstraintOrGroup}$End_ASN1_PDU_ConstraintGroup

ASN1_PDU_ConstraintGroupld :$3ASN1_PDU_ConstraintGroupld ASN1_PDU_ConstraintGroupldentifier

ASN1_PDU_Constraint :$Begin_ASN1_PDU_ConstrainiConsld [ASN1_PDU_ConstraintGroupRef] PDU_Id DerivPath
[EncRuleld] [EncVariationld] [Comment] [ASN1_ConsValue] [CommeliEhd_ASN1_PDU_Constraint

/* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */

/* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have a compatible ASINe (sérppossibly
with some groupings). */

[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|l theneosparameters
omitted from or added to this list. */

ASN1_PDU_ConstraintGroupRef $ASN1_PDU_ConstraintGroupRefASN1_PDU_ConstraintGroupReference

ASN1_PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"]
{ASN1_PDU_ConstraintGroupldentifier “/"}

ASN1_PDU_ConstraintGroupldentifier ::= Identifier
ASN1_ConsValue ::3ASN1_ConsValueConstraintValue&AttributesOrReplad&End_ASN1_ConsValue
ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement {Comma Replacement}

Replacement ::REPLACE ReferenceLisBY ConstraintValue&AttributesQMIT ReferenceList
/* STATIC SEMANTICS - Replacement shall be used only when DerivPath is specified. */
/* STATIC SEMANTICS - Parameterized replaced values in a base constraint shall not be modified or explicitly omitted iie@ coodifaint. */

ReferencelList ::= (ArrayRef | Componentldentifier | ComponentPosition) {ComponentReference}

Delivery 9.6, 21 April 1997 159

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.3.3.24 CM Constraint Declarations
598 CM_Constraints ::$CM_Constraints [TTCN_CM_Constraird [ASN1_CM_Constraird $End_CM_Constraints

A.3.3.25 Tabular CM Constraint Declaration
599 TTCN_CM_Constraints ::3TTCN_CM_Constraints {TTCN_CM_ConstraintOrGroup}$End_TTCN_CM_Constraints
600 TTCN_CM_ConstraintOrGroup ::= TTCN_CM_Constraint | TTCN_CM_ConstraintGroup

601 TTCN_CM_ConstraintGroup :$TTCN_CM_ConstraintGroup TTCN_CM_ConstraintGroupld
{TTCN_CM_ConstraintOrGroup}$End_TTCN_CM_ConstraintGroup

602 TTCN_CM_ConstraintGroupld :$TTCN_CM_ConstraintGroupld CM_ConstraintGroupldentifier

603 TTCN_CM_Constraint ::$Begin_TTCN_CM_Constraint Consld [CM_ConstraintGroupRef] CM_Id DerivPath [Comment]
[CM_ParValues] [Commen}]End_TTCN_CM_Constraint

604 CM_ConstraintGroupRef :$3CM_ConstraintGroupRef CM_ConstraintGroupReference

605 CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {CM_ConstraintGroupldentifier “/"}
606 CM_ConstraintGroupldentifier ::= Identifier

607 CM_ParValues ::3CM_ParValues{CM_ParValue}$End_CM_ParValues

608 CM_ParValue ::$CM_ParValue CM_Parld ConsValue [Commer$End_CM_ParValue

A.3.3.26 ASN.1 CM Constraint Declaration
609 ASN1_CM_Constraints :$3ASN1_CM_Constraints{ASN1_CM_ConstraintOrGroup}$End_ASN1_CM_Constraints
610 ASN1_CM_ConstraintOrGroup ::= ASN1_CM_Constraint | ASN1_CM_ConstraintGroup

611 ASN1_CM_ConstraintGroup :$ASN1_CM_ConstraintGroup ASN1_CM_ConstraintGroupld
{ASN1_CM_ConstraintOrGroup}$End_ASN1_CM_ConstraintGroup

612 ASN1_CM_ConstraintGroupld :$3ASN1_CM_ConstraintGroupld ASN1_CM_ConstraintGroupldentifier

613 ASN1_CM_Constraint ::$Begin_ASN1_CM_ConstraintConsld [ASN1_CM_ConstraintGroupRef] CM_ld DerivPath [Comment]
[ASN1_ConsValue] [Commen§iEnd_ASN1_CM_Constraint

614 ASN1_CM_ConstraintGroupRef $ASN1_CM_ConstraintGroupRef ASN1_CM_ConstraintGroupReference
615 ASN1_CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_CM_ConstraintGroupldentifier
)
616 ASN1_CM_ConstraintGroupldentifier ::= Identifier
A.3.3.27 The Dynamic Part
617 DynamicPart ::$DynamicPart [TestCases] [TestStepLibrary] [DefaultsLibrai$fEnd_DynamicPart

A.3.3.28 Test Cases
618 TestCases :$TestCases{TestGroup | TestCase}$End_TestCases
619 TestGroup ::$TestGroup TestGroupld {TestGroup | TestCase}End_TestGroup
620 TestGroupld ::$TestGroupld TestGroupldentifier
621 TestGroupldentifier ::= Identifier

622 TestCase ::$Begin_TestCasdestCaseld TestGroupRef TestPurpose [Configuration] DefaultsRef [Comment]
BehaviourDescription [CommerfEnd_TestCase

623 TestCaseld ::$TestCaseldTestCaseldentifier
624 TestCaseldentifier ::= Identifier
625 TestGroupRef ::$TestGroupRefTestGroupReference

626 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
/* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

627 TestPurpose :$TestPurposeBoundedFreeText
628 Configuration ::=$Configuration TCompConfigldentifier
629 DefaultsRef::®$DefaultsRef[DefaultRefList]

160 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

630 DefaultRefList ::= DefaultReference {Comma DefaultReference}
631 DefaultReference ::= Defaultldentifier [ActualParList]

A.3.3.29 Test Step Library
632 TestStepLibrary ::$TestStepLibrary {TestStepGroup | TestStepBEnd_TestStepLibrary
633 TestStepGroup :$TestStepGroupTestStepGroupld {TestStepGroup | TestStepEnd_TestStepGroup
634 TestStepGroupld :$TestStepGroupld TestStepGroupldentifier
635 TestStepGroupldentifier ::= Identifier

636 TestStep ::$Begin_TestSteprestStepld TestStepRef Objective DefaultsRef [Comment] BehaviourDescription [Comment]
$End_TestStep

637 TestStepld ::$TestStepldTestStepld&ParList

638 TestStepld&ParlList ::= TestStepldentifier [FormalParList]
639 TestStepldentifier ::= Identifier

640 TestStepRef ::$TestStepRefTestStepGroupReference

641 TestStepGroupReference ::= [Suiteldentifier /"] {TestStepGroupldentifier "/"}
/* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

642 Obijective ::=$Objective BoundedFreeText

A.3.3.30 Default Library
643 DefaultsLibrary ::%DefaultsLibrary {DefaultGroup | Default}+$End_DefaultsLibrary
644 DefaultGroup ::$DefaultGroup DefaultGroupld {DefaultGroup | Default}-$End_DefaultGroup
645 DefaultGroupld ::%$DefaultGroupld DefaultGroupldentifier

646 Default ::=$Begin_DefaultDefaultld DefaultRef Objective [Comment] BehaviourDescription [Comm#&thid_Default

/* STATIC SEMANTICS - BehaviourDescription shall not use tree attachment except for attaching locaktrd@sfdult behaviour trees shall not
attach Test Steps). */

647 DefaultRef ::=$DefaultRef DefaultGroupReference
648 Defaultld ::=$Defaultld Defaultid&ParList

649 Defaultld&ParList ::= Defaultldentifier [FormalParList]
650 Defaultldentifier ::= Identifier

651 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
/* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

652 DefaultGroupldentifier ::= Identifier

A.3.3.31 Behaviour descriptions
653 BehaviourDescription ::$BehaviourDescription RootTree {LocalTreesEnd_BehaviourDescription
654 RootTree ::= {BehaviourLine}+
655 LocalTree ::= Header {BehaviourLine}+
656 Header ::$HeaderTreeHeader
657 TreeHeader ::= Treeldentifier [FormalParList]
658 Treeldentifier ::= Identifier
659 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"
660 FormalPar&Type ::= FormalParldentifier {Comma FormalParldentifier} Colon FormalParType
661 FormalParldentifier ::= Identifier

662 FormalParType ::= Type | PCO_TypeldentifieDJ | CP | TIMER
/* STATIC SEMANTICS - In a test suite operation or an encoding operation FormalParType shall not be a PCO type or the R&yword C

[* STATIC SEMANTICS - If a formal parameter is of tyP®U then that formal parameter shall not be used with a component reference (i.e. specific
fields of the PDU cannot be referenced). */

Delivery 9.6, 21 April 1997 161

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.3.3.32 Behaviour lines
663 BehaviourLine ::$BehaviourLine Labelld Line Cref Verdictld [Commen$End_BehaviourLine
664 Line ::=$Line Indentation StatementLine
665 Indentation ::="[" Number "]"
/* STATIC SEMANTICS - Statements in the first level of alternatives in a behaviour description shall have the indentatzervatie
/* STATIC SEMANTICS - Statements having a predecessor shall have the indentation value of the predecessor plus onecatati@irvatiie. */
666 Labelld ::=$Labelld [Label]
667 Label ::= Identifier
668 Cref ::=$Cref [ConstraintReference]

669 ConstraintReference ::= ConsRef | FormalParldentifier | AnyValue

[* STATIC SEMANTICS - ConsRef shall be present in conjunction with SEND, IMPLICIT SEND and RECEIVE and shall have a type which
consistent with (i.e. the same as or a subset of) the type of ASP, PDU or CM specified in the SEND, IMPLICIT_SEND or REEE&H SA
ConstraintReference is not needed for ASPs and CMs that have no parameters or PDUs that have no fields. It shall netitteqreseher kind
of TTCN statement. */

/* STATIC SEMANTICS - FormalParldentifier shall resolve to a ConsRef. */

[* STATIC SEMANTICS - ConstraintReferences on SEND events shall not include any MatchingSymbol except Omit unless the jabeiiisgS
explicitly assigned specific values on the SEND event line. */

670 ConsRef ::= Constraintldentifier [ActualCrefParList]
671 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
/* STATIC SEMANTICS - See static semantics on production 699. */

672 ActualCrefPar ::= Value

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier,|dé€htNier,
FormalParldentifier or ConsRef. */

673 Verdictld ::=$Verdictld [Verdict]

674 Verdict ::= Pass | Fail | Inconclusive | Result

/* STATIC SEMANTICS - Verdict shall not occur corresponding to entries in the behaviour tree which are any of the follopingaeiTTACH
construct, a REPEAT construct, a GOTO construct, an IMPLICIT SEND or a RETURN. */

675 Pass :PASS|P|"(" PASS")"|"(" P")"
676 Fail :=FAIL |F|"(" FAIL ")"|"(" F")"
677 Inconclusive ::#NCONC |1 | "(" INCONC ")" | "(" I ")"

678 Result ::=R
[* STATIC SEMANTICS - R shall not be used on the LHS of an assignment. */

A.3.3.33 TTCN statements

679 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps]) |
(AssignmentList [TimerOps]) | TimerOps | Construct | ImplicitSend
680 Event ::= Send | Receive | Otherwise | Timeout | Done

/* STATIC SEMANTICS - A Receive, Otherwise or Timeout event shall only be followed by other Receive, Otherwise and Timéttirevei
the remainder of the set of alternatives in a fully expanded tree. As a consequence, Default trees will contain only tRengise, add Timeout
events on the first level of alternatives. */

681 Qualifier ::= "[" Expression "]"
/* OPERATIONAL SEMANTICS - Qualifier shall evaluate to a specific BOOLEAN value. */
682 Send ::= [PCO_lIdentifier | CP_ldentifier | FormalParldentifier] "!" (ASP_Identifier | PDU_Identifier | CM_Identifier)
[* STATIC SEMANTICS - PCO_Identifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite useSREy aneé no CP. */
/* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/
/* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs. */
683 ImplicitSend ::="<'IUT "I" (ASP_ldentifier | PDU_Identifier) ">"
[* STATIC SEMANTICS - ImplicitSend shall not be used unless the test method being used is one of the Remote Test Methods. */
684 Receive ::= [PCO_lIdentifier | CP_ldentifier | FormalParldentifier] "?" (ASP_Identifier | PDU_ldentifier | CM_Identifier)
[* STATIC SEMANTICS - PCO_I|dentifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite useSREy ane no CP. */

162 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

/* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs. */

685 Otherwise ::= [PCO_ldentifier | CP_ldentifier | FormalParldentifierfDPHERWISE
[* STATIC SEMANTICS - PCO_Identifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite usesREy ane no CP. */
[* STATIC SEMANTICS - FormalParldentifier shall only be of PCO type or CP type. */

686 Timeout ::="?'TIMEOUT [Timerldentifier | FormalParldentifier]
/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

687 Done ::= "?’DONE "(" [TCompldList] *)"
688 TCompldList ::= TCompldentifier {Comma TCompldentifier}
689 Construct ::= GoTo | Attach | Repeat | Return | Activate | Create

690 Activate ::=ACTIVATE "(" [DefaultRefList] ")"
[* STATIC SEMANTICS - The ACTIVATE construct shall not be used in Default behaviour tables. */

691 Return ::=RETURN
[* STATIC SEMANTICS - The RETURN construct shall not be used except in Default behaviour trees (including any local treEefaititi
behaviour tables). */

692 Create ::.REATE "(" CreateList ")"

693 Createlist ::= CreateTComp {Comma CreateTComp}

694 CreateTComp ::= TCompldentifier Colon TreeReference [ActualParList]
/* STATIC SEMANTICS - TCompldentifier shall not be of Role MTC */

695 GoTo := ("->" |GOTO) Label
/* STATIC SEMANTICS - The label column shall contain labels referenced from the GoTo. */

/* STATIC SEMANTICS - Label shall be associated with the first of a set of alternatives, one of which is an ancestor pqat@Erdfftom which
the GoTo is to be made. */

/* STATIC SEMANTICS - GoTo shall be used only for jumps within one tree,within a Test Case root tree, a Test Step tree a Default tree and a
local tree; and thus, each label used in a GoTo construct shall be found within the tree in which the GoTo is used. */

/* STATIC SEMANTICS - There shall be no ACTIVATE operation as an ancestor node of the GoTo construct on the branch bethetedehe
Label and the GoTo. */

/* STATIC SEMANTICS - No GoTo shall be made to the first level of alternatives of local trees, Test Steps or Defaults. */

696 Attach ::="+" TreeReference [ActualParList]
/* STATIC SEMANTICS - TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation. */
/* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal parameters. */

/* STATIC SEMANTICS - Formal and actual parameters of test steps shall be used in such a way that only valid TTCN is ¢ezaiatl by
substitution. */

/* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier, ConsRef, M&ghibgl,
FormalParldentifier, PCO_Identifier and CP_Identifier may be passed as actual parameters to an attached tree. */
697 Repeat :::REPEAT TreeReference [ActualParLidNTIL Qualifier
/* STATIC SEMANTICS - TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation. */
[* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal parameters. */
/* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier, ConsRef, M&ghibgl,
FormalParldentifier, PCO_Identifier and CP_Identifier may be passed as actual parameters to the tree in a REPEAT statement. */
698 TreeReference ::= TestStepldentifier | Treeldentifier
[* STATIC SEMANTICS - Treeldentifier shall be the name of one of the trees in the current behaviour desceptmal trees are not accessible
outside the behaviour description in which they are specified. */
699 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"
/* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal parameters. */

/* OPERATIONAL SEMANTICS - Each actual parameter shall resolve to a specific value compatible with the type of its corig fponalin
parameter, or in the case of predefined operations compatible with the types for which the operation is defined. */

[* STATIC SEMANTICS - If a parameter is a parameterized constraint then the constraint shall be passed together witlpésaauted list. */
[* STATIC SEMANTICS - The actual parameters shall be bound. */
[* STATIC SEMANTICS - If the type of the formal parameter is PDU, then the actual parameter’s type shall be declaredrasRDgexific
PDU type. */

700 ActualPar ::= Value | PCO_ldentifier | CP_ldentifier | Timerldentifier
/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier,|d€htiiar,

Delivery 9.6, 21 April 1997 163

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

FormalParldentifier or ConsRef. */

A.3.3.34 Expressions

701
702

703

704

705

706

707

708

709

710

711

164

AssignmentList ::= "(" Assignment {Comma Assignment} ")"

Assignment ::= DataObjectReference ":=" Expression

[* STATIC SEMANTICS - Except within a Procedural Definition or an Encoding Definition, the LHS of Assignment shall only tesolve
TS_Varldentifier, TC_Varldentifier, reference to the field of a variable or reference to an ASP parameter or PDU fiell hbagest. */

/* STATIC SEMANTICS - Within a procedure definition of a TSOp or EncodingOp, the DataObject Identifier on the left-handeidegnment
shall be a Varldentifier. */

/* STATIC SEMANTICS - The expression shall contain no unbound variables. */

/* OPERATIONAL SEMANTICS - The Expression on the RHS of Assignment shall evaluate to an explicit value of the type of tie LHS.
Expression ::= SimpleExpression [RelOp SimpleExpression]

/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the RelOp exist then the SimpleExpressions shall evaluate teapesitt
compatible types. */

/* OPERATIONAL SEMANTICS - If RelOpis "<"|">"|">="| "<=" then each SimpleExpression shall evaluate to a specific INTERER*/
/* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of operations. */

SimpleExpression ::= Term {AddOp Term}

/* OPERATIONAL SEMANTICS - Each Term shall resolve to a specific value. If more than one Term exists and if AddOp is "G’ Teems
shall resolve to type BOOLEAN; if AddOp is "+" or "-" then the Terms shall resolve to type INTEGER. */

Term ::= Factor {MultiplyOp Factor}

/* OPERATIONAL SEMANTICS - Each Factor shall resolve to a specific value. If more than one Factor exists and if MultipA®p"ishen the
Factors shall resolve to type BOOLEAN; if MultiplyOp is "*" or "/" then the Factors shall resolve to type INTEGER. */

Factor ::= [UnaryOp] Primary

/* OPERATIONAL SEMANTICS - The Primary shall resolve to a specific value. If UnaryOp exists and is "NOT" then Primary shvalltoetype
BOOLEAN; if the UnaryOp is "+" or "-" then Primary shall resolve to type INTEGER. */

Primary ::= Value | DataObjectReference | OpCall | SelectExprldentifier | "(" Expression)"

[* STATIC SEMANTICS - SelectExpridentifier shall only be used within selection expressions. */

I* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier,|d€ht\ar,
FormalParldentifier or ConsRef. */

DataObjectReference ::= DataObjectldentifier {ComponentReference}

[* STATIC SEMANTICS - Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used oréyte &
parameter and PDU field values on the statement line itself. */

/* STATIC SEMANTICS - Each ComponentReference shall only reference an ASP parameter, PDU field, structure element or A®Mplicitiu
declared in the object that immediately precedes in the DataObjectReference. */

[* STATIC SEMANTICS - DataObjectldentifier shall not be a Varldentifier except within a procedure definition of a TestSaitie®per
EncodingOperation. */

DataObijectldentifier ::=TS_Parldentifier |TS_Constldentifier |TS_Varldentifier [TC_Varldentifier |[FormalParldentifier |
ASP_Identifier | PDU_Identifier | CM_Identifier | Varldentifier

ComponentReference ::= RecordRef | ArrayRef | BitRef

[* STATIC SEMANTICS - RecordRef shall be used to reference ASN.1 SEQUENCE, SET and CHOICE components. It shall not tedarsedé¢o r
components of any other ASN.1 type. */

/* STATIC SEMANTICS - RecordRef shall be used to reference ASP parameters, PDU fields and structure elements in theriabular for

/* STATIC SEMANTICS - ArrayRef shall be used to reference ASN.1 SEQUENCE OF and SET OF components. It shall not be usstt¢o refe
components of any other ASN.1 type. */

RecordRef ::= Dot (Componentldentifier | ComponentPosition)

/* STATIC SEMANTICS - The Componentldentifier form of RecordRef shall always be used to reference ASN.1 SEQUENCE, SET aid CHOIC
components when an identifier is declared for the component. */

[* STATIC SEMANTICS - The Componentldentifier form of RecordRef shall always be used to reference ASP parameters, PDU Sieldsuan
elements declared in the tabular form. */

/* STATIC SEMANTICS - The ComponentPosition form of RecordRef shall always be used to reference ASN.1 SEQUENCE, SET and CHOICE
components when an identifier is not declared for the component. */

/* STATIC SEMANTICS - Structldentifier shall not be used if the relevant structure is used as a macro. Structldentifiet$ adelrfilers shall not

be included in a RecordRef when a parameter, field or element is chained to a PDU or structure and the RecordRef is toongratifgnt of that

PDU or structure. */

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

712
713

714
715
716

717
718

719

720

721
722

723

724

725

726

/* STATIC SEMANTICS - Where a structure is used as a macro expansion, the elements in the structure shall be refeiredtoegdnded into
the ASP or PDU referring to it. */

/* STATIC SEMANTICS - If a parameter, field or element is defined to be of metatype PDU no reference shall be made tthéeklshstructure. */
Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier | ASN1_Identifier
ASN1_Identifier ::= Identifier

/* NOTE - ASN1_lIdentifier identifies a field within ASN.1 SEQUENCE, SET or CHOICE type. */

/* STATIC SEMANTICS - An ASN1_Identifier associated with a NamedValue shall not be used unless the value is within a SECREHNEE,
CHOICE type. */

/* STATIC SEMANTICS - An ASN1_lIdentifier shall be provided to identify the variant in a CHOICE type. */

/* STATIC SEMANTICS - An ASN1_Identifier shall be provided whenever the value definition becomes ambiguous because of BiriB&RAO
values in a SEQUENCE type. */

ComponentPosition ::= "(" Number ")"

ArrayRef ::= Dot "[" ComponentNumber "]"

ComponentNumber ::= Expression

/* OPERATIONAL SEMANTICS - ComponentNumber shall evaluate to a non-negative specific INTEGER value. */
BitRef ::= Dot (Bitldentifier | "[* BitNumber "1*)

Bitldentifier ::= Identifier

/* NOTE - Bitldentifier identifies a particular bit within an ASN.1 BIT STRING. */

BitNumber ::= Expression

/* OPERATIONAL SEMANTICS - BitNumber shall evaluate to a non-negative specific INTEGER value. */
OpcCall ::= Opldentifier (ActualParList | "(" ")")

/* STATIC SEMANTICS - See static semantics on production 699. */

Opldentifier ::= TS_Opldentifier | TS_Procldentifier | PredefinedOpldentifier

PredefinedOpldentifier :BIT_TO_INT |HEX_TO_INT |INT_TO_BIT |INT_TO_HEX |IS_CHOSEN|IS_PRESENT|
LENGTH_OF |NUMBER_OF_ELEMENTS

Addop ::: II+II ll_ll pR

/* OPERATIONAL SEMANTICS - Operands of the “+”, “-” operators shall be of type INTEGER TTCN or ASN.1 predefined) or derivations

of INTEGER {.e.,subrange). Operands of the OR operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN.
MultiplyOp ::= ™" | "/" IMOD | AND

/* OPERATIONAL SEMANTICS - Operands of the “*”, “/” and MOD operators shall be of type INTEGERTTCN or ASN.1 predefined) or
derivations of INTEGERI ., subrange). Operands of the AND operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of
BOOLEAN. */

UnaryOp ::= "+"|"-" [NOT

/* OPERATIONAL SEMANTICS - Operands of the “+”, “-” operators shall be of type INTEGER TTCN or ASN.1 predefined) or derivations

of INTEGER {.e.,subrange). Operands of the NOT operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN.

RelOp = "=" | "< | ">" | <>t | ">] <=

A.3.3.35 Timer operations

727
728
729

730

731

732

TimerOps ::= TimerOp {Comma TimerOp}

TimerOp ::= StartTimer | CancelTimer | ReadTimer

StartTimer ::=START (Timerldentifier | FormalParldentifier) ['(" TimerValue ")"]

/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

CancelTimer ::®£ANCEL [Timerldentifier | FormalParldentifier]

/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

TimerValue ::= Expression

/* OPERATIONAL SEMANTICS - Timervalue shall evaluate to a non-zero positive INTEGER. */
ReadTimer ::READTIMER (Timerldentifier | FormalParldentifier) "(" DataObjectReference)"

/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

/* STATIC SEMANTICS - The DataObjectReference shall only resolve to TS_Varldentifier, TC_Varldentifier, or reference I tfie fimriable.
*

Delivery 9.6, 21 April 1997 165

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

/* OPERATIONAL SEMANTICS - The DataObjectReference shall resolve to type INTEGER. */

A.3.3.36 Types
733 TypeOrPDU ::= TypeRDU
734 Type ::= PredefinedType | ReferenceType

A.3.3.36.1 Predefined types

735 PredefinedType ::#NTEGER |[BOOLEAN |BITSTRING |HEXSTRING |OCTETSTRING | OBJECTIDENTIFIER | R_Type|
CharacterString

736 CharacterString ::NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String | GraphicString |
GeneralString | T61String | ISO646String

A.3.3.36.2 Referenced types

737 ReferenceType ::= TS_Typeldentifier | ASP_ldentifier | PDU_Identifier | CM_Identifier

/* STATIC SEMANTICS - All types, other than the predefined types, used in a test suite shall be declared in the Test Slgfmitipps, ASP type
definitions, PDU type definitions or CM type definitions, and referenced by name. */

738 TS_Typeldentifier ::= SimpleTypeldentifier | Structldentifier | ASN1_Typeldentifier

A.3.3.37 Values
739 Value ::= LiteralValue | ASN1_Value [ASN1_Encoding]

/* REFERENCE - Where ASN1_Value is the non-terminal Value as defined in ISO/IEC 8824-1: 1994. For the purposes of TTGMWjitigepialduction
defined in ISO/IEC 8824-1: 1994:

DefinedValue ::= Externalvaluereference | valuereference
is redefined to be:

DefinedValue ::= ConstraintValue&Attributes | valuereference
This means that ASN.1 external references are not allowed in TTCN, but the full possibilities of ConstraintValue&Attritafteschs production 562 are
allowed within ASN.1 values in TTCN. This means that expressions, matching symbols, constraint references, value len@i8&NF, BRJ ASN.1 field
encoding operations are all included . */

/* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of operations. */
740 LiteralValue ::= Number | BooleanValue | Bstring | Hstring | Ostring | Cstring | R_Value
741 Number ::= (NonZeroNum {Num})(
742 NonZeroNum ::21|2|3|4|5|6|7|8]9
743 Num ::=0| NonZeroNum
744 BooleanValue ::=TRUE |FALSE

745 Bstring ::="" {Bin | Wildcard} " B
746 Bin:=0|1

747 Hstring ::="" {Hex | Wildcard} ""H
748 Hex:=NumA|B|C|D|E|F

749 Ostring ::="" {Oct | Wildcard} ""O
750 Oct ;= Hex Hex

751 Cstring ::= """ {Char | Wildcard | "\"} """

752 Char ::5* REFERENCE - A character defined by the relevant CharacterString type. */

/* LEXICAL REQUIREMENT - If the CharacterString type includes the character " (double quote), this character shall be eddrgseptir of " (double
quote) in the denotation of any value. */

753 Wildcard ::= AnyOne | AnyOrNone
754 AnyOne ::="?"
[* STATIC SEMANTICS - AnyOne shall be used only within values of string types, SEQUENCE OF and SET OF. */

755 AnyOrNone ::="*"
/* STATIC SEMANTICS - AnyOrNone shall be used only within values of string types, SEQUENCE OF and SET OF. */

756 R_Value ::7pass|fail |inconc|none
757 Identifier ::= Alpha{AlphaNum | Underscore | DoubleColon}

166 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

758
759
760
761
762
763
764

/* STATIC SEMANTICS - All Identifiers referenced in a TTCN test suite shall be explicitly declared in the test suite, gxjgatdated in an ASN.1
type definition referenced by the test suite or be a TTCN predefined identifier. */

/* STATIC SEMANTICS - DoubleColon shall only be used in identifiers which are declared in an Import table. IdentifiersrapBtairbleColon

shall not appear in an Export table. The DoubleColon is used to separate the name of a TTCN Module from an identifiespeigifieedl in that
TTCN Module. */

Alpha ::= UpperAlpha | LowerAlpha

AlphaNum ::= Alpha | Num

UpperAlpha ::;A |B|C D |E|F|G[H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|IW|X]|Y|Z
LowerAlpha ::=a|b|c|d]|e|f|g|h|i|j|k[lI|m|n]o|p|q|r|s|tju]v|w]|x]|y]|z
ExtendedAlphaNum ::# REFERENCE - A character from any character set defined in ISO/IEC 10646. */
BoundedFreeText :'#" FreeText*/"

FreeText ::= {ExtendedAlphaNum}
/* LEXICAL REQUIREMENT - Free Text shall not contain the string "*/" unless preceded by backslash ("\"). */

A.3.3.38 Miscellaneous productions

765
766
767
768
769
770
771
772

Comma ::=""
Dot ::=""

Dash ::="-"

Minus ::="-"

SemiColon ::=";"
DoubleColon ::= Colon Colon
Colon ::=""

Underscore ::= " "

Delivery 9.6, 21 April 1997 167

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.4 General static semantics requirements

A.4.1 Introduction

Static semantics requirements that are related to specific BNF productions are specified as comments on the relevars, moduct
the following format:

[* STATIC SEMANTICS - ... */

All other static semantic requirements that are common to both TTCN.GR and TTCN.MP are specified in the remainder of
Additional static semantics in the TTCN.MP are specified in A.5.2.

A.4.2 Uniqueness of identifiers

A.4.2.1 In some cases test suites may make references to items defined in other OSI standards. In particular, references to ASN
definition modules according to ISO/IEC 8824-1: 1994 may be made in the type definitions. Names from those modules (such as
tifiers of subfields within structured ASN.1 type definitions) may be used throughout the test suite.

Since the rules for identifiers in ASN.1 and TTCN conflict, the following conventions apply:

a) type references, module identifiers and value references made within the various ASN.1 type definitions tables shall com,
the requirements for identifiers defined in ISO/IEC 8824-1: 1994;

b) for identifiers used within the other parts of a test suite dash (-) characters shall be replaced with underscores (_).

Within some TTCN tables part of the ASN.1syntax can be used to define types.In that case, ASN.1 rules shall be followtiié sy ide
with the exception that dash (-) characters shall not be used. Underscores (_) may be used instead. All other relgfimechbgts
ISO/IEC 8824-1: 1994¢e(g., Type identifiers shall start with an upper case letter, and field identifiers within structured ASN.
definitions shall start with a lower case letter) apply to TTCN test suites wherever ASN.1 is used.

A.4.2.2 All identifiers of the following TTCN objects shall be unique throughout the test suite:
a) Test Suite Types;
b) Test Suite Operations;
c) Test Suite Parameters;
d) Test Case Selection Expressions;
e) Test Suite Constants;
f) Test Suite Variables;
g) Test Case Variables;
h) PCO types;

NOTE - Ifthere is no PCO type declaration table, then PCO types are implicitly declared in the PCO declaration tabledsenhiekiniqgueness
refers to the meaning of the PCO type - the same PCO type may occur several times in the PCO declaration table with #mingame me

i) PCOs;

) CPs;

k) Timers;

[) Test Components;

m) Test Component Configurations;
n) ASP types;

0) PDU types;

p) CM types;

q) Structured Types;

r) Encoding Rules;

s) Encoding Variations;

t) Invalid Field Encodings;

168 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

u) Aliases;

v) ASP constraints;

w) PDU constraints;

x) CM constraints;

y) Structure constraints;

z) Test Cases;

aa)Test Steps;

ab)Defaults;

ac)Encoding Rule Names;

ad)Encoding Variation Names;

ae)Invalid Field Encoding Names.
A.4.2.3 All the following TTCN object references shall be unique throughout the test suite:

a) Test Group References;

b) Test Step Group References;

c) Default Group References.

Delivery 9.6, 21 April 1997 169

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.4.2.4 TTCN reserved words are listed in table A.2 These reserved words shall not be used as identifiers in a TTCN test suit
TTCN reserved words and TTCN identifiers are case sensitive.

Table A.2 - TTCN Reserved Words

A.4.2.5 The ASN.1 reserved words are listed in table A.3. These reserved words shall not be used as identifiers in a TTCN test

170

ACTIVATE IA5String pass

AND IF PDU

BEGIN IF_PRESENT PERMUTATION
BITSTRING INCONC PrintableString
BIT_TO_INT inconc ps

BOOLEAN INFINITY PTC

BY INTEGER R

CANCEL INT_TO_BIT READTIMER
CASE INT_TO_HEX REPEAT
COMPLEMENT IS_CHOSEN REPLACE

CP IS_PRESENT RETURN
CREATE IuT RETURNVALUE
DO LT R_Type
DONE min S

ELSE MOD START

ENC ms STATIC

END MTC SUPERSET
ENDCASE NOT SUBSET
ENDIF ns TeletexString
ENDVAR OF THEN
ENDWHILE OMIT TIMEOUT

F OR TIMER

FAIL OTHERWISE TO

fall P TRUE

FALSE LENGTH_OF UNTIL
GeneralString none us

GOTO NUMBER_OF_ELEMENTS uT
GraphicString NumericString VAR
HEXSTRING OCTETSTRING VideotexString
HEX_TO_INT OBJECTIDENTIFIER VisibleString

I PASS WHILE

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Table A.3 - - ASN.1 Reserved Words

ABSENT FROM OPTIONAL
ANY GeneralString PRESENT
APPLICATION GeneralizedTime PRIVATE
BEGIN GraphicString PrintableString
BIT IA5String REAL
BOOLEAN IDENTIFIER SEQUENCE
CHOICE IMPLICIT SET
COMPONENT IMPORT SIZE
COMPONENTS INCLUDES STRING
DEFAULT INTEGER T61String
DEFINED ISO646String TRUE
DEFINITIONS MAX TeletexString
END MIN UNIVERSAL
ENUMERATED NULL UTCTime
EXPLICIT NumericString VideotexString
EXPORT OBJECT VisibleString
EXTERNAL OCTET WITH

FALSE OF

A.4.2.6 When ASN.1 is used in a TTCN test suite, ASN.1 identifiers from the following list shall be unique throughout the t
suite, regardless of whether the ASN.1 definition is explicit or implicit by reference:

a) Typeldentifiersof an ASN.1 Type Definition;
b) identifiers occurring in an ASN.1 ENUMERATED type as distinguished values;
c) identifiers occurring in &lamedNumberLisif an ASN.1 INTEGER type.

A.4.2.7 The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU f
shall be unique within the PDU in which they are declared. The names of CM parameters shall be unique within the CM in w
they are declared.

A.4.2.8 If a Structured Type is used as a macro expansion, then the names of the elements within the Structured Type st
unigue within each ASP, PDU or CM where it will be expanded.

A.4.2.9 Labels used within a tree shall be unique within a iteg Test Case root tree, Test Step tree, Default tree, local tree).

A.4.2.10 The tree header identifier used for local trees shall be unique within the dynamic behaviour description in which t
appear, and shall not be the same as any identifier having a uniqgue meaning throughout the test suite.

NOTE - This means that a local tree identifier may have the same name as a local tree identifier in another behaviarr, desaorgitihe
same as another Test Step in the Test Step Library.

A.4.2.11 The formal parameter names which may optionally appear as part of the following shall be unique within that forr
parameter list, and shall not be the same as any identifier having a uniqgue meaning throughout the test suite

a) Test suite operations definition;

b) Tree header of a local tree;

c) Test Step Identifier;

d) Default Identifier;

e) Parameterized constraint declaration.

Delivery 9.6, 21 April 1997 171

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

A.4.2.12 A formal parameter name contained in the formal parameter list of a local tree header shall take precedence over a f
parameter name contained in the formal parameter list of the Test Step in which it is defined, within the scope ofdhatlqualdm-
eter list.

A.4.2.13In concurrent TTCN, PCOs and CPs used in a Test Case shall only be those determined by the Test Component configt
for that Test Case.

A.4.2.14 Each identifier used in the procedural definition of a test suite operation shall be on of the following:
a) locally declared variable name;
b) a type name, used in a variable declaration;
c) aformal parameter name declared in a formal parameter list of the operation;
d) a test suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suiteldpesatio
the values of all other types of identifier are not directly accessible within the procedural definition of a test suite.opematcess
such values they shall be passed as actual parameters to the test suite operation.

A.4.2.15 The constraints for TTCN Structured Types, TTCN ASPs, TTCN PDUs and TTCN CMs shall not be specified using AS|
tables (i.e., ASN.1 Type Constraints, ASN.1 ASP Constraints, ASN.1 PDU Constraints or ASN.1 CM Constraints). Conversely
constraints for ASN.1 Types, ASN.1 ASPs, ASN.1 PDUs and ASN.1 CMs shall not be specified using TTCN tables (i.e., Struct
Type Constraints, TTCN ASP Constraints, TTCN PDU Constraints or TTCN CM Constraints).

NOTE - However, when ASPs or PDUs are chained to other PDUs, the enclosing ASP or PDU may, for example, be specifiied rCldbula
whereas the enclosed PDU may be specified in ASN.1.

A.5 Differences between TTCN.GR and TTCN.MP

A.5.1 Differences in syntax
The following is a list of syntax differences between TTCN.MP and TTCN.GR:
a) TTCN.MP uses keywords as delimiters between entries, while TTCN.GR uses boxes;
b) TTCN.MP uses an explicit denotation of indentation levels for test events, while indentation is indicated visually in TTCN.G

c) TTCN.MP contains an extra occurrence of the suite identifier, which is used to facilitate identification of the AT Somatedut
method;

d) in TTCN.MP the Test Case behaviour descriptions are explicitly grouped by the inclusion of appropriate Test Group Identi
in sequence before the Test Case behaviour descriptions belonging to each group; this information duplicates informagidn con
in the Test Case Index and in the Test Group References of the Test Case behaviour descriptions;

e) the Test Suite Structure, Test Case Index, Test Step Index and Default Index tables require a page number for eaeh entn
page numbers are not relevant in the machine processable form they are not reflected in the TTCN.MP;

f) TTCN.GR supports both single and compact proformas for ASP and PDU constraints and Test Cases; the TTCN only suy
BNF for the single table format and the presentation of a number of single tables in TTCN.GR compact format is a display i
when mapping a compact constraints table to TTCN.MRE gingle format), blank fields due to modification shall be omitted,;

g) the symbols “/*” and “*/” which open and close BoundedFreeText strings in the TTCN.MP shall not appear in the TTCN.GR

h) there are two alternative positions for the labels column in behaviour description tables in TTCN.GR, whereas thete is a
position for the labels in TTCN.MP;

i) page and line continuation are TTCN.GR features which are not represented in the TTCN.MP;
i) page and line numbering are TTCN.GR features which are not represented in the TTCN.MP.

k) if in TTCN.GR group references are used with definitions, declarations or constraints to indicate an hierarchical groupin
objects, then in TTCN.MP each relevant group identifier is inserted before the syntax for the group of tables which gtwane that
identifier and the syntax for the group identifier and following group of tables are enclosed in the appropriate TTCN.Miskeywc
relevant to the type of object.

172 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

A.5.2 Additional static semantics in the TTCN.MP
The following is a list of the additional static semantics in the TTCN.MP:

a) in the TTCN.MP, statements in the first level of alternatives having no predecessor in the root or local tree they belor
have the indentation value of zero; statements having a predecessor shall have the indentation value of the predecess
one as their indentation value;

b) in the TTCN.MP, the Test Suite Structure information is in the form of Test Group Identifiers preceding Test C
behaviour descriptions shall be the same structure as defined by the part of the Test Suite Structure relevant to Test C
and that defined by the Test Case Index.

Delivery 9.6, 21 April 1997 173

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

List of BNF production numbers

A.6 Introduction

This section presents an alphabetical index of the BNF productions that appear in annex A. For each production the index gives
a reference in terms of the production number (not page number).

EDITOR’S NOTE 2 - The BNF production index needs adding in the published second edition.

174 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Annex B
(normative)

Operational Semantics of TTCN

B.1 Introduction

Annex A describes the syntax of TTCN by means of BNF production rules and restrictions on these productions the obsen
of which may be verified either statically or dynamically.

This annex defines the semantics of TTCN by describing an abstract procedure that executes syntactically valid TTCN test <
This procedure starts, for each Test Case, an abstract “TTCN machine” that evaluates this Test Cases by means of the ci
expansion and interpretation of an “EvaluationTree”, dealing with one level (ordered set of alternatives in a certaimpositic
the tree) at a time. In the execution of concurrent TTCN, additional TTCN machines are started, one for each created PTC.
machines work in the same way as the principal TTCN machine, which is then executing the main test component.The nece
PCOs and CPs, connecting TTCN machines with their environment and with each other, are assumed to exist already an
initially empty.

The abstract procedure (EVALUATE TEST SUITE) and the TTCN machines (EVALUATE TEST_CASE
EVALUATE_TEST_COMPONENT) are described in clause B.5. EvaluationTree has the form of a TTCN behaviour tree,
enriched by additional components. In a TTCN machine it is initially set to be the indicated Test Case or Test Steproot tre
local tree. In the course of test case execution, EvaluationTree is expanded, and “control” generally moves down
EvaluationTree, except in the execution of GOTOs and RETURNS, where control moves up.

The additional tree components, introduced for technical reasons, are the following: each node (alternative) has, besids
denoted StatementLine, a Boolean value IsDefault, telling whether the node stems from a Default Behaviour Table; each
has, besides the denoted list of StatementLines, a Boolean value IsExpanded, telling whether the level has already
expanded.

Itis not required that a real TTCN machine be built in a way that it works internally exactly as the abstract one. TTiohabperat
semantics define only how a real TTCN machine should behave externally, i.e. with respect to PCO and CP queues, time!
the timer list, and test component termination information. Implementation details are irrelevant.

B.2 Precedence

Operational semantics for TTCN are supplied in the following clauses in a mixture of pseudo-code and natural language. W
these two notations overlap they are meant to have identical meanings. If the pseudo-code and natural language conflict,
an error, and should be reported back to the standards organization via a defect report. In such a case, pending tierectior
defect by the standards organization, the pseudo-code will take precedence over the natural language text.

B.3 Processing of test case errors

Within the main body of this part of ISO/IEC 9646, as well as within Annex A and this annex, conditions are describell that re
in the detection of test case errors. The observation of a test case error shall be recorded in the conformance logland lea
abortion of the Test Case.

Without being explicitly mentioned in the following, a test case error is always detected dynamically if any part of aomxpres:
does not evaluate to a defined value. Expressions are evaluated, among other occasions, in the application of assign
qualifiers, and constraints.

B.4 Converting a modularized test suite to an equivalent expanded test suite
This algorithm does not handle error cases. It requires that the objects are unique in the scope where they are defined an

Delivery 9.6, 21 April 1997 175

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

In the conversion from modularized test suite to a expanded test suite, there is a need for the renaming of some imported TTCN
objects (in order to avoid name clashes). In this rename process two options are allowed:

a) the original name is retained as defined in the declaration/definition of the object;

b) the new name is constructed by concatenation of the module identifier and the original name of the object. They shall be
separated by two underscores, e.g. ModuleA__ConnectionRequest.

The principle of this algorithm is, for each source object, make a temporary copy of it, expand the copy, then mark each object
to be imported and finally merge each marked object into the importing suite.

In expanding imported sources all explicitly and implicitly imported objects are renamed to Module::ldentifier, if theytwere no
already renamed at import. Every module shall have a unique identifier. In the expanded test suite all explicitly and implicitl
imported objects are clearly recognisable and because every module has to have a unique name, name clashes are not possibl

procedure expand()

. Make a temporary copy of the whole source
begin

for (every source Sin ImportPart}do)
begin Expand the copy of the source (Recursion)
copy(Si);

expand(Si);
rename_explicitly_imported(Si); Wnces of explicitly imported
rename_implicitly_imported(Si);

objects
for (every marked_imported Ok Si) do

begin
merge(Ok); Rename all occurrences of implicitly
end imported objects
end
end Merge all objects from Si with unique name

Lookup in the "import table" for S

procedure rename_explicitly_imported(S)
begin /

for (every object Qiin “import table” for S)do

begin
gmark_imported(Oi); iny rename if not already renamed at
end import
if not already_renamed(Qitipen
begin
rename_source_and_references(Oi, S);
end \
if omitted (Oi) or is_external(Othen
begin Rename all occurrences
remove_imported_mark(Oi);
end

end

176 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

procedure rename_implicitly_imported (S)

begin
Lor (_every object Oj referenced by @i S)do Only rename if not already renamed
egin
mark_imported (Oj); 4 /
if not already_renamed (Ofhen
begin
rename_source_and_references (Oj, S);
end
end
end

B.5 TTCN operational semantics

B.5.1 Introduction

TTCN behaviour trees are evaluated one level of alternatives at a time. At each level, defaults are appended, attacl
constructs are expanded, and REPEAT constructs are replaced. This produces a set of alternatives that can be evalu
discover which one successfully matches and thereby determines which set of alternatives to proceed to next. The require
for what constitutes a match for a TTCN statement depend on what is coded on that behaviour line, and are described |
semantics text.

B.5.2 The pseudo-code notation

B.5.2.1 Introduction

TTCN semantics are defined using a simple functional approach that explains the execution of a TTCN Test Case behe
description, involving the step-wise expansion of an evaluation tree, and the execution of nodes of this tree. Thesar&nctiol
intended as an aid to understanding TTCN semantics and are not intended to be associated with any particular execution
or high level programming language. They are not meant to be direct methods for executing TTCN.

Keywords of pseudo-code are printed in bold font, grgcedure, function, begin, end, if, then, else In the header of their
definition, procedure, process, and function names are highlighted by bold font to facilitate lookup. For the same m@&son, the
type of a function is highlighted. Apart from this, data types are not dealt with explicitly.

B.5.2.2 Procedures and functions

Many statements afgrocedure calls. Function expressions may be used wherever a value of the associated type is need
They obtain their value (and are immediately terminatedgtuyn, followed by a value expression.

Procedure and function parameters are generally “throughput parameters”, i.e. formal parameters that may be both “reac
“written to”. In particular, functions may have “side effects” and are essentially “procedures with a value”. Variables in
procedure or function body that are neither formal parameters nor any of the global ones mentioned above are local variak
this body, without explicit declaration.

Care is taken that
- parameters are read only when they have a defined value;
- terms are used as actual parameters only where the procedure or function does not assign
- a value to the respective formal parameter, i.e. the parameter is purely an input parameter.

B.5.2.3 Processes

Processedehave like procedures, except that they are each run on a separate TTCN machine. They are not executed in a
fashion. In a process, global data objects may be declared, such that they are available in all procedures and fundtions ce
the process without being explicitly passed along as parameters. Avoiding long parameter lists makes the pseudocode e

Delivery 9.6, 21 April 1997 177

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

read. Of course, instances of global objects exist independently in each process (TTCN machine). There is no relationship
between global objects in different processes.

In this annex, the following objects are treated as global objects in each process:
- EvaluationTree, of the Test Case (or Main Test Component) or Parallel Test Component;
- CurrentLevel, to be expanded or matched;
- Defaults, the current default context, used in default expansion;
- Snapshot, the temporarily fixed view of the environment;
- ReturnLevel, to be considered after the execution of a RETURN statement;
- ReturnDefaults, the default context of the ReturnLevel;
- SendObject, the ASP, PDU, or CM to be sent next;
- ReceiveObject, the ASP, PDU, or CM received last.
Thus, each TTCN machine will have its own EvaluationTree etc.

Other objects, however, are accessible from all processes. The relevant state of the “environment of
EVALUATE_TEST_SUITE”, i.e. the contents of the relevant PCOs and CPs, as well as the lists of expired timers, the values of
timers, and the list of terminated parallel test components, are assumed to be globally accessible from all test components anc
need not be passed explicitly as parameters. Similarly, Test Suite Parameters, Test Suite Constants, and Test Suite Variables a
assumed to be accessible from all test case or test component processes.

B.5.2.4 Natural language within pseudo-code

Some parts of pseudo-code are written in natural language, in order to limit the complexity of this annex. These partedre encl
by /# and #/. Such parts represent statements, for-loop details, or expressions of pseudo-code and are assumed torbe executed
evaluated, when they are encountered.

Pure comments, intended for the human reader, not to be executed or evaluated by a TTCN machine, are enclosed by (* and *)

B.5.2.5 Levels and alternatives
A level visited in a tree denotes both a position in the tree and the ordered set of alternatives at this level.

An alternative visited in a tree determines a level position in the tree, cf. LEVEL_OF in B.5.25. The alternative denotes
simultaneously a position in that level, a BehaviourLine, a StatementLine, etc.

Thus, levels and alternatives in a tree are pointers, but the unpacking of the data objects they point at is done implicitly.
B.5.3 Execution of a Test Suite

B.5.3.1 Introduction

The Test Suite is executed in the main procedure, EVALUATE_TEST_SUITE. Every Main Test Component (Test Case in the
non-concurrent case) is executed on an abstract TTCN machine executing EVALUATE_TEST_CASE. Each Parallel Test
Component is executed on an independent TTCN machine, performing EVALUATE_TEST_COMPONENT.

e procedure EVALUATE_TEST_SUITE (TestSuiteld)

(* This procedure introduces unique names for all TTCN trees, including local subtrees. It sets Test Suite specific datedabjetistes
each Test Case whose selection expressions become TRUE. *)
begin
for /# every Test Case, Test Step or Default behaviour Tatlkein TestSuiteld #flo
begin
/# Rename all local trees of Table such that they become unique throughout the test suite and different from any Test Case,
Test Step or Default behaviour table name in the Test Suite. #/;
/# Rename accordingly in Table all references to local trees in attachments. #/;
/# Every node in every behaviour tree gets a new Boolean component “IsDefault”.
This component is set to TRUE for all nodes in Default Dynamic Behaviour Tables
and FALSE for all nodes in all other tables. #/;
end;

178 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

for /# every Default behaviour tabl@blein TestSuiteld #o
begin
/# For each leaf of the behaviour tree which does not have an entry in the verdict column assign tiie #érdict
/# or each leaf of the behaviour table which has a preliminary result assigned, change the preliminary result to a verdict by
removing the parentheses around it. #/
end;
Evaluated := /# empty list of Test Case Identifiers #/;
/# Set values of Test Suite Parameters, Test Suite Constants, and, where to be initialized, of Test Suite Variables #/;
for /# every Test Case Identifi€Cld of TestSuiteld that is not yet in Evaluatedi&/ (* in any order *)
begin
SelEx := /# conjunction of the selection expressions of all test groups containing Test Case TCld (directly or via lovyé¥;,groups
if EVALUATE_BOOLEAN(SelEx)then
start processEVALUATE_TEST_CASE (TClId);
/# add TCId to the list Evaluated #/;
end
end

B.5.4 Execution of a Test Case
B.5.4.1 Execution of a Test Case - pseudo-code

e process EVALUATE_TEST_CASHTestCaseljl

(* This process initializes the EvaluationTree by the Test Case root tree and the default context by the Defaults refedemitkesHistEest
Case Behaviour Description. It moves control to the top level of alternatives and calls their evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin
/# Initialize Test Case Variables, global R and MTC_R, PCOs, CPs, Timers, and the Timeout List of TestCaseld. #/;
EvaluationTree := ROOT_TREE{stCasel}{
(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test case behavio
description and from the test step and default libraries. A component IsExpanded is added to each level. *)
CurrentLevel := FIRST_LEVEL(EvaluationTree) ;
(* Alevel denotes both a position in a tree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel;
Defaults := DEF_REF_LISTestCasel}
ReturnDefaults := Defaults;
EVALUATE_LEVELS ();

(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

Delivery 9.6, 21 April 1997 179

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

e procedure EVALUATE_LEVELS ()

(* This procedure first expands and evaluates CurrentLevel, which is the currently active level of alternatives of Evatidiiefalits
gives the currently active default context. The alternatives contained in CurrentLevel are processed in their order otafipeaessary
in repeated round€urrentAlternatives the loop variable of the for-loop, denoting the currently considered alternative in CurrentLevel.
By the snapshot mechanism, in each round of matching attempts through CurrentLevel, the status of the environment cessid¢red do
change, giving each such round an instantaneous character.
Save for dynamically detected test case errors, the evaluation of CurrentLevel includes the successful evaluation ¢ifzanEtterisa
followed by the assignment of a verdict and the evaluation of the next level, and hence, by induction, of all levelstrathseguently
moves to. *)
begin
if NOT IS_EXPANDED()then
(* By this condition we avoid expanding levels repeatedly which are targets of GOTOs. *)
EXPAND_CURRENT_LEVEL ();
(* Now the current level is free of REPEATSs and attachments, and includes the necessary defaults. *)
repeat
(* ... performing rounds through current level, trying to match an alternative.*)
TAKE_SNAPSHOT();
(* ... of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other
test components. *)
for /# everyCurrentAlternativen CurrentLevel, in the given order did
(* try to match the current alternative. Note that an alternative visited in a tree determines a level position in the tree and
denotes, depending on the context it is used in, a position in that level, a BehaviourLine, a StatementLine, etc. *)
begin
if EVALUATE_EVENT_LINE (CurrentAlternativejhen
(* Inthe absence of Test Case errors the Test Component or Test Case will terminate inside the
EVAL_VERDICT_ENTRY or GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT call
of the innermost recursive instance of EVALUATE_LEVELS, e.g.
if there is a final verdict or no next level. Then, the for-loop will be aborted, too. *)
begin
if /# Alternative has a verdict column entry VerdictEntryhgn
EVAL_VERDICT_ENTRY (VerdictEntry);
GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT(CurrentAlternative);
EVALUATE_LEVELS();
end
end
until SNAPSHOT_FIXED();
(* SNAPSHOT_FIXED returns TRUE if Snapshot cannot change any more. *)
LOG(TEST_CASE_ERRORY);
STOP_TEST_CASE();
end

B.5.4.2 Execution of a Test Case or Test Component - natural language description

Step 1. Evaluation begins at the numerically lowest (in TTCN.MP), i.e. the leftmost (in TTCN.GR), level of indentation of
the root tree.

Step 2. Expand current level to include all defaults explicitly, and to replace all tree attachments, as long as necessary, as well
as all REPEATS, by their expansions.

Step 3. Take a snapshot of the incoming PCO and CP queue(s) and the timeout list.
NOTE 1 - The act of taking a snapshot does not remove an event from any PCO or CP.

Consider the first behaviour line at the current level of alternatives.
Step 4. Evaluate the TTCN statement on the current behaviour line

The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN statement
type.
Step 5. If the TTCN statement evaluates to a successful match, then go to Step 6.

180 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Otherwise, if there are more alternatives in the current set of alternatives, consider the next behaviour line in th
of alternatives and go to Step 4.

If there are no more alternatives, and yet all PCO and CP queues relevant to this set of alternatives contain at
one event, and all timers relevant to Timeout statements in the set of alternatives are in the timeout list, then sto
Test Case and indicatest case errar

NOTE 2 - Under these conditions none of the set of alternatives can ever match.
In all other cases — i.e. there are no more alternatives and the next snapshot might show a different picture —
Step 3.
Step 6 If a preliminary verdict is coded, process it as in B.5.23.2.
Step 7. If aleaf node in the tree or a node with a final verdict has been reached, then go to Step 8.
Otherwise, determine and consider the next level to be evaluated and go to Step 2.

Step 8. Use final verdict, or, if not specified, the current value of the preliminary result variable R, as the final verdict of t
Test Case as in B.5.23.2 and B.5.25.

B.5.5 Expanding a set of alternatives

B.5.5.1 Introduction
This subclause defines how to expand a set of alternatives in preparation for evaluating which alternative matches.
This is done in four steps:

c) saving the Default context, if labelled level;

d) attachment of the current set of Default behaviour trees;

e) expansion of attached trees, if necessary, recursively, until there are no more attachment alternatives in the set;

f) expansion of REPEAT constructs, replacing them by a subtree in which tree attachments and GOTO constructs occ
lower levels only.

» procedure EXPAND_CURRENT_LEVEL ()

begin

if /# CurrentLevel has a label tien
SAVE_DEFAULTS ();

APPEND_DEFAULTS ();
EXPAND_ATTACHMENTS (EvaluationTree, CurrentLevel, Defaults);
(* CurrentLevel is now free of tree attachments. *)
EXPAND_REPEATS ();
/# Component IsExpanded of CurrentLevel #/ := TRUE;

end

B.5.5.2 Saving Defaults

e procedure SAVE_DEFAULTS ()
begin
/# Replace CurrentLevel and its subsequent behaviour in the EvaluationTree by ACTIVATE (Defaults), followed by CurrentLevel
and its subsequent behaviour, with the label of the former CurrentLevel moved to the ACTIVATE line. #/;
/# Consider new ACTIVATE line as the CurrentLevel #/;
end

Delivery 9.6, 21 April 1997 181

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

B.5.5.3 Expansion of REPEAT constructs

If RepeatedTredenotes a particular TreeReference together with its ActualParList,anttitiondenotes a particular Boolean
expression, anidbel denotes a label not used anywhere else, then “RERefA€atedTreNTIL [Conditior]” can be replaced
by:

[TRUE]
label + RepeatedTree
[NOT (Condition]
-> label
[Condition

Lines describing subsequent behaviour of the REPEAT construct follow@éedifior] in this expansion, with an additional
indentation of one level.

e procedure EXPAND_REPEATS()
begin
for /# every alternativé in CurrentLevel, in the given order dié
begin
if /# A is of the form REPEAT RepeatedTree UNTIL [Conditionihéh
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (EvaluationTree,A);
Label := NEW_LABEL ();
(* Create a label which has been used neither in the (relabelled) Test Suite nor in the EvaluationTree. *)
Expansion := MAKE_TREE (“[TRUEY]",
MAKE_TREE (Label: “+” RepeatedTree,
MAKE_TREE (“[NOT(* Condition “)]",
“->" Label,
MAKE_TREE (“[* Condition “7",
Subsequent,

)
):
).

REPLACE_ALT_TREE (EvaluationTree, CurrentLevel, A, Expansion);
end
end
end

B.5.5.4 Appending default behaviour

During evaluation of a test case, at each level of alternatives there is a current list of Default Tree Referencesoffieis list ¢
either from the list in the appropriate Dynamic Behaviour Table, or from the most recently evaluated ACTIVATE construct. The
appending of the Defaults is done by adding, for each entry in the current list of Defaults, the construct “+ DefaultReference”
the end of the set of alternatives.

e procedure APPEND_DEFAULTS()
begin
for /# everyD in Defaults, in the given order &b
begin
APPEND_TO_LEVEL (EvaluationTree, CurrentLevel, “+" D);
(* EvaluationTree and CurrentLevel are updated by appending the attachment of D to CurrentLevel. *)
end
end

182 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

B.5.5.5 Expanding attached trees

Attached trees are expanded by replacing the attach constilegtStepwith the tree or, where applicable, the root tree of
TestStepand subsequently, if there is behaviour specified following and indented from the Attach construct, to insert 1
behaviour after and indented from each leaf in the attached tree. Since attached trees may have their own list of defau
references in the header of the test step dynamic behaviour table, the expansion of tree attachment has to ensureethiat if ar
on the first level of alternatives of the attached tree matches then the defaults context is changed, and if a leaf attdeluddha
tree is reached without a verdict being assigned then the defaults context of the calling tree is restored before thé subs
behaviour is evaluated. These changes in defaults context are most easily described in terms of the insertion of apprc
ACTIVATE constructs in the relevant places. If the attached tree is in fact a default tree, then there will be no defaaégefer
in its header, so the ACTIVATE constructs that are inserted on entering that tree will have no parameters and thereby
deactivate all defaults within the scope of the default tree.

The attached trees on Level are expanded using the following procedure:

» procedure EXPAND_ATTACHMENTS (Tree, Level, OuterDefaults)

begin
for /# every alternativé in Level in Tree, in the given order ¢
begin
if /# Ais an ATTACH construct, i.e. of the form “+” AttachedTreeld ActualParLigtéh
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (Tree,A);
AttachedTree := ROOT_TREE (AttachedTreeld);
REPLACE_PARAMETERS (AttachedTreeld, AttachedTree, ActualParList);
(* This replaces the formal parameters in AttachedTree by the actual parameters specified in ActualParList,
doing so by textual substitution *)
RELABEL(AttachedTree);
NewDefaults := DEF_REF_LIST(AttachedTreeld);
NewLevel := FIRST_LEVEL (AttachedTree);
EXPAND_ATTACHMENTS (AttachedTree, NewLevel, NewDefaults);
EXPAND_SUBTREE (AttachedTree, Subsequent, NewDefaults, OuterDefaults);
(* L.e.: Insert ACTIVATE(NewDefaults) below first level of AttachedTree &
Attach ACTIVATE(OuterDefaults) and Subsequent to each leaf node of AttachedTree *)
REPLACE_ALT_TREE(Tree, Level, A, AttachedTree);
end
end
end

e procedure EXPAND_SUBTREE(SubTree, Subsequent, InnerDefaults, OuterDefaults)
* This procedure first inserts ACTIVATE(InnerDefaults) below the first level of SubTree
and then attaches ACTIVATE(OuterDefaults) and Subsequent to each leaf node of SubTree. *)
begin

Level := FIRST_LEVEL(SubTree);
for /# every alternativa of Level in SubTree #lo
begin

SubOfA := SUBSEQUENT_BEHAVIOUR_TO (SubTree, A);

ActTree := MAKE_TREE(A,

MAKE_TREE(“ACTIVATE(” InnerDefaults “)”,
SubOfA,),);

REPLACE_ALT_TREE(SubTree, Level, A, ActTree);
end
for /# every leafA in SubTree #tlo
begin

LeafTree := MAKE_TREE (A,

MAKE_TREE (“ACTIVATE(” OuterDefaults “)”,
Subsequent,),);

REPLACE_ALT_TREE(SubTree, LEVEL_OF(SubTree, A), A, LeafTree);

end
end

Delivery 9.6, 21 April 1997 183

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

The expansion of attached trees is also explained in 15.13.
B.5.6 Evaluation of an Event Line
B.5.6.1 Pseudo-code

« function EVALUATE_EVENT_LINE (Alternative) :BOOLEAN

(* This function calls EVALUATE_EVENT, EVALUATE_PSEUDO_EVENT or EVALUATE_CONSTRUCT, depending on what type of
StatementLine the current alternative is *)

begin
case STATEMENT_LINE_TYPE_OF(Alternative)f
begin
EVENT: if EVALUATE_EVENT (Alternative) then return TRUE; else return FALSE;
PSEUDO_EVENT: if EVALUATE_PSEUDO_EVENT(Alternative) then return TRUE; else returnFALSE;
CONSTRUCT: (* Construct can now only be GoTo, Return, Activate, Create. *)
if EVALUATE_CONSTRUCT (Alternative) then return TRUE; else returnFALSE;
end
end

B.5.6.2 Natural language description

Evaluate the TTCN statement on the current behaviour line, based on the statement type, i.e. whether it is an event, a pseudc
event, or a construct. The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN
statement type in the following subsections.

B.5.7 Functions for TTCN events
B.5.7.1 Functions for TTCN events - pseudo-code

e function EVALUATE_EVENT (Alternative) :BOOLEAN

(* This function calls SEND, RECEIVE, OTHERWISE, TIMEOUT , DONE, or IMPLICIT SEND, depending on what type of event the current
alternative is *)

begin
caseEVENT_TYPE_OF(Alternativedf
begin
SEND : if SEND (Alternative) then return TRUE; else return FALSE;
RECEIVE: if RECEIVE (Alternative) then return TRUE; else return FALSE;
OTHERWISE: if OTHERWISE (Alternative) then return TRUE,; else return FALSE;
TIMEOUT: if TIMEOUT (Alternative) then return TRUE; else returnFALSE;
DONE: if DONE (Alternative) then return TRUE; else return FALSE;
IMPLICIT_SEND: if IMPLICIT_SEND (Alternative) then return TRUE; else returnFALSE;
end
end

B.5.7.2 Functions for TTCN events - natural language description

If the TTCN statement is an event, then it will be evaluated as specified in B.5.8 for a SEND event, B.5.9 for a RECEIVE event,
B.5.10 for an OTHERWISE event, B.5.11 for a TIMEOUT event, B.5.12 for a DONE event, or B.5.13 for an IMPLICIT SEND
event.

B.5.8 Execution of the SEND event
B.5.8.1 Execution of the SEND event - pseudo-code

» function SEND (SendLine) BOOLEAN
begin
/# Read PCOorCPidentifier,
ASPorPDUorCMidentifier,
Qualifier,

184 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Assignments,
TimerOperations,
ConstraintsReference from SendLine #/;

if EVALUATE_BOOLEAN (Qualifier)then
begin

BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference);
EXECUTE_ASSIGNMENTS (Assignment);

SEND_EVENT (PCOorCPidentifier, ConstraintReference);

TIMER_OPS (TimerOperations);

LOG(PCOorCPidentifier, SendObject);

return TRUE;

end
else return FALSE;

end

e procedure BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference)

begin

SendObject :=/# an instance of ASPorPDUorCMidentifier

end

whose parameters/fields have the values specified by ConstraintsReference #/

« procedure SEND_EVENT (PCOorCPidentifier, ConstraintsReference)

begin

/# Encode SendObject according to applicable encoding rules and variations,

see ConstraintsReference and associated type definitions #/;

/# Put encoded SendObject at the end of OUTPUT_Q(PCOorCPidentifier) #/;

end

B.5.8.2 Execution of the SEND event - natural language description

The contents of the ASP or PDU or CM, as specified in the named Constraints Reference entry, are to be sent. Note that i
is a qualifier, the SEND can be executed only if that qualifier evaluates to TRUE.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6

If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
« If the qualifier evaluates to FALSE, the SEND cannot succeed.
« If the qualifier evaluates to TRUE, then continue with Step 2.

Create an ASP or PDU or CM as specified in the named Constraints Reference.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry wi
assigned to the appropriate parameter or field of the ASP or PDU or CM to be sent.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the named parar
or field of the ASP or PDU or CM being built for comparison. The structure defined for the associated Constrai
Reference is used for this named parameter or field.

If there is an Assignment statement, then that assignment will be performed as in B.5.16, in particular poss
changing the ASP or PDU or CM to be sent.

The ASP or PDU or CM is now fully filled in according to the specifications given. The LT or UT will encode the
PDUs (but not ASPs or CMs, apart from PDUs embedded in such) according to the applicable encoding rules.
LT or UT will send the ASP with its embedded encoded PDUs, or the encoded PDU. If a PCO or CP was stated
ASP or PDU or CM is to be sent at that PCO or CP. If the PCO was not statétk test uses a single PCO - then
the ASP or PDU is sent from the lower PCO, because a CP cannot be implied.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2;

Delivery 9.6, 21 April 1997 185

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

» the PCO or CP at which the SEND occurred;
» the fully defined ASP, PDU or CM that was sent.

B.5.9 Execution of the RECEIVE event
B.5.9.1 Execution of the RECEIVE event - pseudo-code

« function RECEIVE (ReceiveLine Y BOOLEAN
begin
l#Read PCOorCPidentifier,
ASPorPDUorCMidentifier,

Qualifier,

Assignments,

TimerOperations,

ConstraintsReference from ReceivelLine #/;
if # INPUT_Q (PCOorCPidentifier) is not emptytién

begin
if (OBJECT_MATCHES(PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference)
AND EVALUATE_BOOLEAN (Qualifier))then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOorCPidentifier, ReceiveObject);
return TRUE;
end
else return FALSE;
end
else return FALSE;
end

« function OBJECT_MATCHES (PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReferer@&OLEAN
begin
ReceiveObiject := /# copy of encoded object at head of INPUT_Q(PCOorCPidentifier) #/;
if /# ReceiveObject can be decoded according to applicable encoding rules and variations,
as given by ConstraintsReference and associated type definitiies#/
begin
/# decode it, to yield new version of ReceiveObject #/;
if (/# ReceiveObjectis of type ASPorPDUorCMidentifier #/
AND
1# parameters/fields of ReceiveObject have values matching the ConstraintsReferémee #/)
return TRUE;
else return FALSE;
end
else return FALSE;
end

e procedure REMOVE_OBJECT (PCOorCPidentifier),
begin
[# remove object at head of INPUT_Q(PCOorCPidentifier) #/;
end

B.5.9.2 Execution of the RECEIVE event - natural language description

Step 1. If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for matching
shows that there 1soincoming ASP or PDU or CM, then this RECEIVE cannot match.

186 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.
Step 8.

Step 9

Otherwise, continue to Step 2.

If a PCO or CP was stated, the ASP or PDU or CM shall have been received at that PCO or CP. If the PCO wa
statedj.e.,the test suite uses a single PCO, - then the ASP or PDU shall have been received at the lower PCO.
that a CP cannot be implied.

The incoming PDUs are decoded according to the applicable encoding rules. A copy is made of the decc
incoming PDU or of the incoming ASP or CM with decoded nested PDUs.

If the qualifier, possibly using values from the incoming data object, evaluates to FALSE, the RECEIVE canr
match. Otherwise, continue to step 5.

A copy of the expected ASP or PDU or CM pattern is assembled, using the structure defined in the ASP or PDI
CM declaration plus the values, matching mechanisms and chained Constraints References specified in the n
Constraints Reference.

This copy is comparied against the incoming ASP or PDU or CM, and its decoded PDUs or the decoded PDL
determine if the RECEIVE can match as specified. Only if the RECEIVE did match successfully, continue to Stey

The incoming ASP or PDU or CM which has just matched will be removed from the incoming PCO or CP queue ¢
discarded.

If there are Assignment statements, then they will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
» the PCO or CP at which the RECEIVE occurred;
 the fully defined ASP, PDU or CM that was received.

B.5.10 Execution of the OTHERWISE event

B.5.10.1 Execution of the OTHERWISE event - pseudo-code

 function OTHERWISE (OtherwiseLing : BOOLEAN

begin

/# Read PCOorCPidentifier,

if

Qualifier,
Assignments,
TimerOperations from OtherwiseLine #/;
(H#INPUT_Q (PCOorCPidentifier) is not empty #/
AND EVALUATE_BOOLEAN (Qualifier))then

begin

EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOidentifier, ReceivedObiject);
return TRUE;

end
else return FALSE;

end

B.5.10.2 Execution of the OTHERWISE event - natural language description

The tester shall accept any incoming data that it has not been possible to decode or that has not matched a previeus alte
to this OTHERWISE event. Note that if there is a qualifier, the OTHERWISE can only match if that qualifier evaluates to TRL

Step 1.
Step 2.

If the qualifier evaluates to FALSE, the OTHERWISE cannot match. Otherwise, continue to step 2.

If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for matct

Delivery 9.6, 21 April 1997 187

Second Edition Mock-Lp for SC21 Review

ISO/IEC 9646-3: 1997

shows that there is no incoming ASP, PDU or CM, then this OTHERWISE cannot match.

Otherwise, continue to Step 3.

Step 3. If a PCO was stated, the ASP or PDU shall have been received at that PCO. If a CP was stated, the CM shall have
been received at that CP. If the PCO was not ste¢edhe test uses a single PCO, then the ASP or PDU shall have

been received at the lower PCO, because a CP cannot be implied.

Step 4. The incoming ASP, PDU or CM will be removed from the incoming PCO or CP queue and discarded.

Step 5. If there are Assignment statements, then they will be performed as in B.5.16.2.

Step 6. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performed

asin B.5.17.

Step 7 Record in the conformance log the following information, as well as the information specified in B.5.24.2:

* the PCO or CP at which the OTHERWISE occurred;
» the ASP, PDU or CM that was received.

B.5.11 Execution of the TIMEOUT event
B.5.11.1 Execution of the TIMEOUT event - pseudo-code

« function TIMEOUT (TimeoutLine) BOOLEAN
begin
/# Read Timerldentifier,
Qualifier,
Assignments,
TimerOperations from TimeoutLine #/;
if EVALUATE_BOOLEAN (Qualifier)then
begin
if TIMER_EXPIRED (Timerldentifierjhen
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(Timerldentifier);
return TRUE;
end
else return FALSE;
end
else return FALSE;
end

« function TIMER_EXPIRED (Timerldentifier): BOOLEAN
begin
if /# Timerldentifier is not empty #hen
begin
if /# timeout notification from Timerldentifier is in copy of timeout list in Snapshtiet
begin
/# delete timeout notification from Timerldentifier in actual timeout list #/;
/# stop and reset the timer Timerldentifier #/;
return TRUE;
end
else return FALSE;
end
else(* Timerldentifier not specified *)
begin
if /# any timeout natification is in copy of timeout list in Snapshahénh
begin

188

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

[# stop and reset all timers mentioned in actual timeout list#/;
delete all timeout notifications in actual timeout list #/;
return TRUE;
end
else return FALSE;
end
end

B.5.11.2 Execution of the TIMEOUT event - natural language description

The tester will check to see if the named timer has expired. (If no timer name is given, the tester will checlatty seeif
has expired.) Note that if there is a qualifier, the TIMEOUT is only considered as matching if that qualifier evaluates to TR

Step 1. If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
« If the qualifier evaluates to FALSE, the TIMEOUT cannot match.
« If the qualifier evaluates to TRUE, then continue with Step 2.
Step 2. See if any of the timers explicitly or implicitly named on the TIMEOUT event have been running, but have expire

< If no timer identifier is specified, then the tester shall check to smyifimer that had been running has now
expired. If so, all timers which have timed out are reset (and left stopped). The timeout entry (entries) is (
removed from the timeout list.

- If a timer identifier is specified, then the tester shall check to see if this timer had been running, but has r
expired. If so, the expired timer is reset (and left stopped). The timeout entry is removed from the timeout list.

« If no timers have expired the TIMEOUT event can not matehthe next alternative will be attempted.
Step 3. If there is an Assignment statement, then that assignment will be performed as in B.5.16.2.

Step 4. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will
performed as in B.5.17.

Step 5. Record in the conformance log the information specified in B.5.24, as well as the name of the timer that expirec

B.5.12 Execution of the DONE event
B.5.12.1 Execution of the DONE event - pseudo-code

« function DONE (DoneLine) :BOOLEAN
begin
/# Read TComplList,

Qualifier,

Assignments,

TimerOperations from DoneLine #/;
if EVALUATE_BOOLEAN (Qualifier) AND ALL_TERMINATED(TComplList)then
begin

EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(TComplist);
return TRUE;
end
else return FALSE;
end

» function ALL_TERMINATED (TCompList) :BOOLEAN
begin
if TCompList =/# EmptyList #then
TComplList := /# list of all created Parallel Test Components #/;
for /# everyTCompin TComplList #/do

Delivery 9.6, 21 April 1997 189

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

begin
if /# TComp has not terminated in the Snapshtiefi
return FALSE;
end
return TRUE;
end

B.5.12.2 Execution of the DONE event - natural language description

The termination status of the given list of Test Components is to be checked. If all given components have terminated (at the t
of the last SNAPSHOT) then the event matches, provided that the qualifier also evaluates to TRUE.

Step 1. If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
 If the qualifier evaluates to FALSE, the DONE cannot succeed.
 If the qualifier evaluates to TRUE, the continue to Step 2.

Step 2. If all test components listed in TCompList had terminated at the time of the last SNAPSHOT, then continue to Step
3, otherwise this DONE cannot match.

Step 3 If there is an Assignment statement, then that assignment will be performed as in B.5.16.

Step 4. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performed
asin B.5.17.

Step 5. Record in the conformance log the information specified in B.5.24, as well as the TCompList.

B.5.13 Execution of the IMPLICIT SEND event
B.5.13.1 Execution of the IMPLICIT SEND event - pseudo-code

e function IMPLICIT_SEND (Alternative) :BOOLEAN
begin
Execute IMPLICIT_SEND according to natural language descrigfjon
return TRUE;
end

B.5.13.2 Execution of IMPLICIT SEND - natural language description

The IUT is induced to do whatever is necessary to send the contents of the ASP or PDU, as specified in the constraits referenc
entry of the alternative.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be thesigned to
appropriate parameter or field of the ASP or PDU to be sent.

IMPLICIT SENDing always succeeds.

B.5.14 Execution of a pseudo-event
B.5.14.1 Execution of a pseudo-event — pseudo-code

» function EVALUATE_PSEUDO_EVENT (PseudoEventLine:)BOOLEAN
begin
/# Read Qualifier,
Assignments,
TimerOperations from PseudoEventLine #/;
if EVALUATE_BOOLEAN (Qualifier)then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG();
return TRUE;

190 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

end
else return FALSE;
end

B.5.14.2 Execution of PSEUDO-EVENTS - natural language description

If the TTCN statement is a pseudo-event, then it will be evaluated as specified in B.5.15 for a Boolean Expression, B.5.1
an Assignment Statement, B.5.17 for a timer operation (START, CANCEL, or READTIMER).

After completion of the pseudo-event, record in the conformance log the information specified in B.5.24.

B.5.15 Execution of BOOLEAN expressions
B.5.15.1 Execution of BOOLEAN expressions - pseudo-code

e function EVALUATE_BOOLEAN (Qualifier) :BOOLEAN
begin
if /# Qualifier is empty #then
return TRUE;
else
begin
if /# Qualifier evaluates to TRUE #ien
return TRUE;
else return FALSE;
end
end

B.5.15.2 Execution of BOOLEAN expressions - natural language description

A Boolean expression.¢., qualifier) specifies a condition that is to be tested. This condition will either be TRUE or FALSE. A
Boolean expression may be stated as part of a statemeritdinen(the same line with a SEND, RECEIVE, TIMEOUT, or
OTHERWISE), or as a statement line on its oimn ,@s a pseudo-event).

Step 1. The Boolean expression shall be evaluated to determine if the condition specified is TRUE or FALSE. The nort
rules of Boolean Logic apply, with the precedence rules specified in 11.4.2.1.

B.5.16 Execution of assignments
B.5.16.1 Execution ofissignments pseudo-code

* procedure EXECUTE_ASSIGNMENTS (AssignmentList)
begin
for /# every assignme@urrentAssignmerih AssignmentList, in the given orderdt
begin
[# Execute CurrentAssignment #/;
end
end

B.5.16.2 Execution of ASSIGNMENTS - natural language description

The assignment list is evaluated in left to right order. In each assignment, the variable on the left-hand side of thaistatem
to take on the value of the expression on the right-hand side of the statement. This expression is evaluated observir
precedence indicated in Table 3.

If the assignment is performed in a Send line, the left-hand side may denote an ASP-, PDU- or CM-component, referring t
object to be sent. If the assignment is performed in a Receive line, the expression may refer to components of the ASP-,
or CM to be received.

B.5.17 Execution of TIMER operations
B.5.17.1 Execution of TIMER operations - pseudo-code

e procedure TIMER_OPS (TimerOperations)

Delivery 9.6, 21 April 1997 191

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

begin
for /# everyTimerOperatiorin TimerOperations #lo
caseTIMER_OP_TYPE_OF(TimerOperatiomf

begin
START_TIMER: START_TIMER(TimerOperation);
CANCEL_TIMER: CANCEL_TIMER(TimerOperation);
READ_TIMER: READ_TIMER(TimerOperation);
end
end

e procedure START_TIMER (TimerOperation)
begin
[# perform as in B.5.17.2 #/;
end

e procedure CANCEL_TIMER (TimerOperation)
begin
[# perform as in B.5.17.3 #/;
end

e procedure READ_TIMER (TimerOperation)
begin
perform as in B.5.17.4 #/,
end

B.5.17.2 Execution of START timer - natural language description
Step 1. If the timer is already running, cancel it and continue to Step 2. Otherwise continue directly to Step 2.

Step 2. The timer is to be started with an initial value indicating no time has passed. Any entry for this timer in the timeout
list is removed from the list.

B.5.17.3 Execution of CANCEL timer - natural language description
The CANCEL timer operation specifies that a timer (or timers) is to stop ticking.
Step 1. Determine the name of the timer(s) to be cancelled:
 if no timer identifier is specified, then canedll timers;
« if a timer identifier is specified, then cancel the timer with this timer identifier.

Step 2. The status of the named or implied timer(s) is to be set to "not running". The amount of time elapsed for the timer(s)
is to be set to zero. If the timeout list contains an entry for the timer(s), the entry (entries) is (are) removed ftom the lis
B.5.17.4 Execution of READTIMER - natural language description

The READTIMER operation specifies that the amount of time that has passed for a currently running timer is to be stored into a
variable. The timer continues to run without interruption.

Step 1. Interrogate the value of the timer having the specified name. If the amount of time passéthés units declared
for this timer type, stora into the named variable.

If the timer is not currently running, the named variable shall be set to zero.
B.5.18 Functions for TTCN constructs
B.5.18.1 Functions for TTCN constructs - pseudo-code

¢ function EVALUATE_CONSTRUCT (Construct) BOOLEAN
(* As the EvaluationTree is expanded at the CurrentLevel, the REPEAT and ATTACH constructs are not encountered here. *)

begin
caseCONSTRUCT_TYPE_OF(Construabf

192 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

begin
ACTIVATE: ACTIVATE(Construct);
CREATE: CREATE (Construct);

GOTO: (* no action here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);
RETURN: (* no action here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);
end
return TRUE;

end

B.5.18.2 Functions for TTCN constructs - natural language description

If the TTCN statement is a TTCN construct, then it will be evaluated as specified in B.5.19 for an ACTIVATE construct,
specified in B.5.20 for a CREATE construct, as specified in B.5.21 for a GOTO construct, or as specified in B.5.22 fc
RETURN construct. There is no need to deal with REPEATS, as they all have been replaced in the CurrentLevel.

TTCN constructs will always succeed.

B.5.19 Execution of the ACTIVATE construct
B.5.19.1 Execution of the ACTIVATE construct - pseudo-code

« procedure ACTIVATE (ActivateLine)
begin
/# Read DefRefList from ActivateLine #/;
Defaults:=DefRefList;
LOG(DefRefList);
end

B.5.19.2 Execution of the ACTIVATE construct - natural language description
Change the current defaults context to the DefaultRefList that appears as parameter to the ACTIVATE construct.
Stepl Change default context to DefaultRefList.

Step 2. Record in the conformance log the following information as well as the information specified in B.5.24:

* the DefaultRefList.

B.5.20 Execution of the CREATE construct
B.5.20.1 Execution of the CREATE event - pseudo-code

» procedure CREATE (CreateLine) BOOLEAN
begin
/# Read CreateList from CreateLine #/;
for /# every(TCompldentifier, TreeReference, ActualParLdigwn from CreateList #o
begin
start processEVALUATE_TEST_COMPONENT(TCompldentifier, TreeReference, ActualParList);
(* This starts the concurrent evaluation of TreeReference. *)
LOG(TCompldentifier,TreeReference, ActualParList);
end
end

» process EVALUATE_TEST_COMPONENT(TCompld, TreeReference, ActualParList)
(* This process initializes the EvaluationTree by the appropriate Test Step root tree or local tree and the default contBrfduyltthe
references listed with the corresponding behaviour table. It moves control to the top level of alternatives and callgatieir.e¢ya
global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin
/# Initialize the local instances of Test Case Variables, local R, Timers, and the Timeout List of TCompld. #/;
EvaluationTree := ROOT_TREE(TreeReference);

Delivery 9.6, 21 April 1997 193

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test casedeehaviour
scription and from the test step and default libraries. A component IsExpanded is added to each level. *)

REPLACE_PARAMETERS (TreeReference, EvaluationTree, ActualParList);

CurrentLevel := FIRST_LEVEL(EvaluationTree) ;

(* Alevel denotes both a position in a tree and the ordered set of alternatives at this position. *)

ReturnLevel := CurrentLevel;

Defaults := DEF_REF_LIST(TreeReference);

ReturnDefaults := Defaults;

EVALUATE_LEVELS ();

(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

B.5.20.2 Execution of the CREATE event - natural language description
The evaluation of the given Test Component is to be started.

Step 1. Evaluation of TCompldentifier, bound to TreeReference, is started, with the ActualParList parameters replacing the
Formal Parameters by textual substitution in TreeReference. All Test Case Variables, the local result variable R,
timers and the local timeout list are provided afresh for the sole use by this test component.

Step 2. Record in the conformance log the following information as well as the information specified in B.5.24:
» the TCompldentifier
» the TreeReference

» the ActualParList.

B.5.21 Execution of the GOTO construct

Control is transferred to the set of alternatives having the specified target label in the labels column. Execution new/atontinu
this new level.

In pseudo-code, the GOTO construct is performed as a part of GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT.

B.5.22 Execution of the RETURN construct

Control is transferred to the set of alternatives from which the defaults were entered the last time. Execution now tontinues a
this new level.

In pseudo-code, the RETURN construct is performed as a part of GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT.
B.5.23 The verdict

B.5.23.1 Theverdict - pseudo-code

e procedure EVAL_VERDICT_ENTRY (VerdictEntry)
begin
[# Expand VerdictEntry to full word, e.g. (P) becomes (PASS) #/;
if /# VerdictEntry is a preliminary verdict “("PrelimVerdict*)” #en
begin
UPDATE_PRELIM (PrelimVerdict, /# local R, or MTC_R in case of Main Test Component #/);
UPDATE_PRELIM (PrelimVerdict, /# global R #/);
end
else(* VerdictEntry is a final verdict. *)
begin
if /# Current process is EVALUATE_TEST_CASE##n
begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# global R #/);
LOG(VerdictEntry);
/# assign final verdict in main test component or test case #/;
TERMINATE_TEST_CASE();
end

194 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

else(* Process is EVALUATE_TEST_COMPONENT *)

begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# local R #/);
UPDATE_PRELIM (VerdictEntry, /# global R #/);
stop process;

end

end
end

* process EXCLUDE_INCOMPATIBLE_ENTRY (Entry, RVal)
begin
if ((Entry ="“R” AND /# RVal = none #/) OR
(Entry = “PASS” AND /# Rval = inconc #/) OR
(Entry = “PASS” AND /# Rval = fail #/) OR
(Entry = “INCONC” AND /# Rval = fail #/ ') Yhen
begin
LOG(TestCaseError);
STOP_TEST_CASE();
return FALSE;
end
else return TRUE;
end

e procedure UPDATE_PRELIM (PrelimVerdict, ResultVar)
begin
if (ResultVar = none OR
(ResultvVar = pass AND PrelimVerdist- PASS) OR
(ResultVar = inconc AND PrelimVerdict = FAIL)then
begin
[# replace value of ResultVar by PrelimVerdict in lower case letters #/;
LOG(“("PrelimVerdict*)");
end
end

B.5.23.2 The VERDICT - natural language description
If a verdict is coded, process the verdict.

« Ifthe verdict is preliminary, i.e. enclosed in parentheses, then the local and global result variables will be upds
according to the verdict algorithm in 15.17.2. Note that in the Main Test Component the local R is denoted
MTC_R. The stated verdict is recorded in the conformance log.

e Ifthe verdict is R, then, in non-concurrent TTCN or in the Main Test Component, the current value of R (the ol
or the global R) will be used as the verdict of the Test Case. If R is set to none, raise a test case error.

e If the verdict is PASS, INCONC or FAIL, then, in non-concurrent TTCN or in the Main Test Component, th
stated verdict will be used as the final verdict for the Test Case. If the final verdict is inconsistent with local
global R, raise a TestCaseError.

e In Parallel Test Components, a final verdict R, PASS, INCONC or FAIL, is used to update the global R like
preliminary verdict. The stated verdict is recorded in the conformance log. A final verdict terminates the evaluat
of the Test Component.

B.5.24 The Conformance Log
B.5.24.1 The LOG - pseudo-code

» procedure LOG(/# any number of arguments #/)
begin
[# log the line number of the event line (if any) #/;

Delivery 9.6, 21 April 1997 195

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

[# log the label associated with the event line (if any) #/;
log the arguments passed to LOG #/;

[# log the assignment(s) made (if any) #/;

[# log the timer operation(s) performed (if any) #/;

[# log current time #/; (* current time may be actual or relative *)
end

B.5.24.2 The conformance log - natural language description
Record the following information in the conformance log:

 the line number of the event line (if any);
» the label associated with the event line (if any);

« other arguments defined elsewhere in this annex associated with the event line (if any), e.g. the final or preliminary
verdict, or the data object sent or received;

» the assignment(s) made (if any);
 the timer operation(s) performed (if any);

e time stamp;

B.5.25 Tree handling functions and procedures
To facilitate lookup, the procedures and functions are defined in alphabetical order.

e procedure APPEND_TO_LEVEL (Tree,Level,Alternative)
begin
/# Update Level and Tree by appending Alternative as new last alternative in Level in Tree #/;
end

e function FIRST_LEVEL (Tree) :.LEVEL
begin
return /# the set of alternatives at the first level of indentation of Tree, i.e. the numerically lowest (in TTCN.MP),
i.e. the leftmost (in TTCN.GR), level of indentation of the root tree #/;
end

e procedure GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT (Alternative)
begin

(* search the next level to evaluate, if any *)

if /# Alternative is of the type “GOTO Label” or “-> Label" tifen
CurrentLevel := /# the unique level labelled with Label #/;

else if/# Alternative is of the type “RETURN" #hen

begin
CurrentLevel := ReturnLevel;
Defaults := ReturnDefaults;

end

else if/# Alternative is a leaf of EvaluationTree #/; (* but not a RETURN or GOT(eN
EVAL_VERDICT_ENTRY(“R"); (* This will stop the execution of the process. *)

else
CurrentLevel := /# set of alternatives at next level of indentation below Alternative #/;

(* save information for coming RETURN statements *)
if /# Component IsDefault of CurrentLevel #/ = FALBEN
begin

ReturnLevel := CurrentLevel;

ReturnDefault := Default;

196 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

end
end

» function IS_EXPANDED () : BOOLEAN
begin
return /# Component IsExpanded of CurrentLevel #/;
end

e function LEVEL_OF (Tree, Alternative) LEVEL
begin
return /# the level in Tree of which this Alternative is a member #/;
end

» function MAKE_TREE (Statement, Treel, TreeZ)REE

begin
return /# the following tree:
Statement
Treel
Tree2 #

(* Treel and/or Tree2 may be empty, denoted by an empty parameter position in the call of MAKE_TREE. *)
end

» function NEW_LABEL () :LABEL
begin
return /# a label which has not yet been used in the execution of this Test Component, nor in the (relabelled) Test Suite #/ ;
(* This may be achieved by means of counters and test component names. *)
end

e procedure RELABEL (Tree)
begin
for /# each label originally occurring in Tree #lo
begin
NewLabel := NEW_LABEL();
for /# each occurrence bfin Tree, in the label column or as the target of a GOTd» #/
begin
l#replace L by NewLabel #/;
end
end
end

e procedure REPLACE_ALT_TREE (Tree, Level, A, ReplacementTree)
begin
(* Ais an alternative in Level, which is a level in Tree *)
/# In Tree, replace the subtree of Tree consisting of
A and SUBSEQUENT_BEHAVIOUR_TO (Tree, A) by ReplacementTree,
with all values of IsDefault in ReplacementTree set to the IsDefault-value of A,
and all values of IsExpanded of levels in ReplacementTree set to FALSE. #/;
end

» procedure REPLACE_PARAMETERS (Treeld, Tree, ActualParList)
begin
/# Replace the formal parameters in Tree by the actual parameters specified in ActualParList,
doing so by textual substitution in Tree, using the formal parameter list accessible via Treeld. #/;
end

» function ROOT_TREE (Treeld) TREE
begin

Delivery 9.6, 21 April 1997 197

Second Edition Mock-Lp for SC21 Review

return /# its root tree if Treeld denotes a Test Case or Test Step or Default Behaviour Table —
otherwise the local tree with this name. Each level gets a new Boolean component

ISO/IEC 9646-3: 1997

“IsExpanded”, initialized with value FALSE, indicating that this level has not yet been expanded. #/;

end

e function SUBSEQUENT_BEHAVIOUR_TO (Tree, Alternative)fREE
begin
return /# the subtree below Alternative in Tree #/;
(* This would be Tree3 if Tree has the form:
Treel
Tree2
Alternative
Tree3
Treed
Treeb5 *)
end

B.5.26 Miscellaneous functions used by the pseudo-code

¢ function CONSTRUCT_TYPE_OF(Construct) CONSTRUCT_TYPE
begin
return /# ACTIVATE, CREATE, GOTO, or RETURN, as appropriate #/;
end

e function DEF_REF_LIST (TreeReference)DEFAULT_REF_LIST
begin

return /# the default reference list in the header of the corresponding table in the case of a test step in the test stefhéteargtyor
list in the case of default behaviour, or in the case of a local tree attachment the current value of Defaults (i.etljhactiveretlefaults

in the calling tree)#/;
end

e function EVENT_TYPE_OF(Alternative) :EVENT_TYPE
begin

return /# SEND, RECEIVE, OTHERWISE, TIMEOUT, DONE, or IMPLICIT_SEND, as appropriate #/;

end

« function INPUT_Q(PCOorCPidentifier) QUEUE
begin
if /# PCOorCPidentifier is empty #ien
return /# default PCO input queue #/;
else return/# input queue identified by PCOorCPidentifier #/;
end

¢ function OUTPUT_Q(PCOorCPidentifier) QUEUE
begin
if /# PCOorCPidentifier is empty #en
return /# default PCO output queue #/;
else return/# output queue identified by PCOorCPidentifier #/;
end

¢ function SNAPSHOT_FIXED () : BOOLEAN
begin
if /# all relevant PCO and CP queue(s) have some event(s) on them and all relevant timers hav/dkgired
return TRUE;
else return FALSE;

198 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

end

« function STATEMENT_LINE_TYPE_OF (Alternative) :STATEMENT_LINE_TYPE
begin
return /# EVENT, PSEUDO_EVENT, or CONSTRUCT, as appropriate #/;
end

e procedure STOP_TEST_CASKE)
begin
stop all runningroces®s #/,
end

e procedure procedure TAKE_SNAPSHOT)

(* A snapshot of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any othemntstcisrtgicen.
The act of taking a snapshot does not remove an event from any PCO, CP or timeout list.*)
begin
/# save current PCO and CP input queues in Snapshot #/;
[# save current timeout list in Snapshot #/;
/# save current list of terminated Test Components in Snapshot #/;
end

» procedure TERMINATE_TEST_CASE()
begin
if /# any Parallel Test Component processes are still runnthg/
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end

» function TIMER_OP_TYPE_OF (Alternative) :TIMER_OP_TYPE
begin
return /# START_TIMER, CANCEL_TIMER, or READ_TIMER, as appropriate #/,
end

Delivery 9.6, 21 April 1997 199

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Annex C
(normative)

TTCN Modules

C.1 Introduction
A TTCN Module shall contain the following sections in the order indicated:
a) TTCN Module Overview Part
b) Import Part
c) Declarations Part
d) Constraints Part
e) Dynamic Part

C.2 TTCN Module Overview Part

C.2.1 Introduction

The purpose of the TTCN Module Overview Part of a module is to provide information needed for the use of the module by other
modules or test suites. This includes:

a) TTCN Module Exports
b) TTCN Module Structure
c) Test Case Index

d) Test Step Index

e) Default Index

C.2.2 TTCN Module Exports

The TTCN Module Exports proforma identifies the module and provides information on the overall objective of the TTCN
Module (e.g. constraints library for a particular protocol).

If a PCO type is given as an exported object in the Export table, it must be defined in the optional PCO Type table.
The name of the original source object shall be given if the object is imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported smtirce obj
(implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other objects
which are defined in the corresponding type are not exported as well. They are however implicitly exported and can be referred
in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the TTCN Module Exports:
a) the name of the TTCN Module
b) a description of the objective of the module
c¢) a full reference of the TTCN module
d) references to the relevant base standards if any
e) areference to the PICS proforma if any
f) areference to the PIXIT proforma if any

200 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

g) an indication of the test method(s) if any

h) other information which may aid understanding of the TTCN Module, this should be included as a comment

i) a list of exported objects

where the following information shall be supplied for each exported object:

1) the name of the object
If the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to the object n

embedded in brackets.
2) the object type

3) the name of the original source object if the object is imported, or the object directive EXTERNAL

4) apage number

providing the location of the object in the module (ho page number shall be given for imported objects)

This information shall be provided in the format shown in the following proforma:

TTCN Module Exports

TTCN Module Name

TTCN_Moduleldentifier

Objective [FreeText]
TTCN Module Ref [FreeText]
Standards Ref [FreeText]
PICS Ref [FreeText]
PIXIT Ref [FreeText]
Test Method(s) [FreeText]
Comment [FreeText]
Object Name Object Type Source Name Page Nr Comments
[FreeText]
Objectlaentifier TTCN_dbjectType [Sourcelldentifier | Nur.nber
ObjectDirective]

Detailed Comments: [FreeText]

Delivery 9.6, 21 April 1997

Proforma C.1 - TTCN Module Exports

201

Second Edition Mock-Lp for SC21 Review

EXAMPLE C.1 - TTCN Module Exports

ISO/IEC 9646-3: 1997

TTCN Module Exports

TTCN Module Name: TTCN_Module_A
To illustrate the use of the TTCN Module Exports table.

Objective
TTCN ModuleRef
Standards Ref

PICS Ref
PIXIT Ref
Test Method(s)
Comments

Object Name Object Type Source Name | Page Nr Comments
String5 SimpleTypeDef 3
wait TimerDcl Module_B
INTC TTCN_PDU_Type 13
DEF1 Default TestSuite_1
TC 2 TestCase TestSuite_2
TC 3 TestCase 33
Preamble TestStep EXTERNAL

C.2.3 TTCN Module Structure

The TTCN Module Structure contains a list of Test Groups in the module (if any). The following information shall be supplied

for each group:
a) the Test Group Reference

where the first identifier may be the module name, and each successive identifier represents further conceptual ordering of the

module.

b) an optional selection expression identifier

c) the Test Group Objective
d) a page number (page number shall not be supplied for imported groups)
This information shall be provided in the format shown in the following proforma:

202

TTCN Module Structure

Test Group Reference Selection Ref Test Group Objective Page Nr
TestGroupReference [SelectExpr- FreeText Number
Identifier]

Detailed Comments:

[FreeText]

Proforma C.2 - TTCN Module Structure

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

The static semantics described in the "10.2 Test Suite Structure™ are applicable for TTCN Module Structure.

C.2.4 Test Case Index
The definition of the Test Case Index for modules is the same as the definition of Test Case Index for Test Suites.

C.2.5 Test Step Index
The definition of the Test Step Index for modules is the same as the definition of Test Step Index for Test Suites.

C.2.6 Default Index
The definition of the Default Index for modules is the same as the definition of Default Index for Test Suites.

C.3 Import Part

C.3.1 Introduction

The purpose of the Import Part of a module is to declare the objects which are not explicitly defined but have been used. "
objects are either declared as external objects or are imported from other source objects. This part includes:

a) External
b) Import

C.3.2 External

The External Objects proforma lists the objects being referred to by their identifier in the TTCN module, but neither impor
nor explicitly defined. An external object lets the importer know what he has to define, when importing the TTCN module.

The following information shall be supplied for each external object:
a) the Object identifier and parameters
parameters are included when the object is a Test Suite Operation, a Constraint or a Test Step
b) the object type
c) an optional comment
This information shall be provided in the format shown in the following proforma:

External Objects

Object Name Object Type Comments

Identifier | TS_Opld&ParList | ObjectType [FreeText]
Consld&ParList | TestStepld&ParList

Detailed Comments: [FreeText]

Proforma C.3 - External Objects

Delivery 9.6, 21 April 1997 203

Second Edition Mock-Lp for SC21 Review

Object Name Object Type Comments
CRC(P:A_PDU) TS_OpDef
CONSTRAINT_A(acstr:T_CONNECT) TTCN_PDU_Constraint
TESTSTEP_A(:INTEGER) TestStep
DEF3 Default
C.3.3 Import

EXAMPLE C.2 - External Objects:

ISO/IEC 9646-3: 1997

External Objects

The definition of the Import for modules is the same as the definition of Import for Test Suites (see 10.7).

204

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Annex D
(normative)

Test Suite Index

D.1 Introduction

The Test Suite Index is a complete list of all objects in a expanded test suite and is a result of converting a modiuaiiized tes
to a expanded test suite. This list contains information about each object (e.g. the source object/test suite namé nammerigina
and the page number in the very original source object).

D.2 The Test Suite Index

D.2.1 Introduction

The purpose of the Test Suite Index is to provide information needed for all imported objects in a expanded test suite.
information is used to easily find the definition of an object.

D.2.2 The Test Suite Index

The Test Suite Index proforma identifies all objects used in a test suite. The following information shall be supplied for €
object:

a) the name of the object
the name with which the object is referred to (e.g. a generated name)
b) the object type
which shall be the same as the type given when the object is defined
c) the name of the source object or the test suite
where the object is defined
d) the original name of the object
the given name when the object is explicitly defined
e) an optional page number
providing the location of the object in the original source object
This information shall be provided in the format shown in the following proforma:

Test Suite Index

Object Name Object Type Source Name Original Object Ref Page Nr Comments

Objectldentifier ObjectType Sourceldentifier| [ObjectReference] | [Number] [FreeText]

Detailed Comments: [FreeText]

Proforma D.1 - Test Suite Index
The page number is given when the original source object is standard and the location of the object is unambiguous.

Delivery 9.6, 21 April 1997 205

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Annex E
(normative)

Compact proformas

E.1 Introduction

As an option, many Constraints and/or many Test Cases can be printed in a single table. This may be useful to highigyht relatio
between the single constraints and/or single Test Cases. This annex states the requirements for using compact Constraint
proformas and/or compact Test Cases proformas and gives some examples. These proformas are specific and differ from the
generalized layouts given in 7.3. Since the new proformas are only another way to present the same information, there is no
TTCN.MP associated with it. The information contained in a compact Constraints and/or compact Test Cases table can be
translated in the TTCN.MP associated with the many single constraint tables and/or many Test Case tables that have the sam
information contents.

E.2 Compact proformas for constraints

E.2.1 Requirements
It shall only be allowed to print many single constraint tables as a single compact constraint table if
a) the constraints have the same ASP type, PDU type, Structured Type or ASN.1 Type;

b) there is no encoding information specified in any of the single constraint table headers nor in the encoding column of any
of those tables (ASN.1 encodings spefified in ASN.1 Value may, however, be specified in compact proformas); and

c) there are no entries in the comments column of any single constraint table.

NOTE - If the single constraints tables only have comments in the detailed comments.&potiee comments column is empty), then it is
possible to print these constraints in the compact format. In such cases the individual detailed comments from the singteshaditd be
collected and printed as a single comment in the detailed comments footer of the compact proforma.

206 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

E.2.2 Compact proformas for ASP constraints

In cases where a constraint contains only a few parameters, or when there are only a small number of constraints, the con:

Second Edition Mock-Up for SC21 Review

may be presented in the compact version of the ASP constraints proforma:

ASP Constraints Declarations
ASP Type : ASP_ldentifier

Constraint Derivation Parameter Name Comments
Name Path ASP_ParIdentifieI ASP_ParIdentifierq
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParList, Path &Attributes, | &Attributes; [FreeTexth
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParList, Path, &Attributesz, 1 &Attributeszln [FreeText],
Congld- Derivation- Const.raintVaIue- Const_raintVaIue- [FreeText],,

&ParList, Path, &Attrlbuteq,n’ 1 &Attrlbutesm'n

This proforma is used for ASPs and their parameters in the same way that PDU Constraints Declarations proforma is us

Proforma E.1 - (Compact) ASP Constraints Declarations

PDUs and their fields (see E.2.3).

E.2.3 Compact proformas for PDU constraints

E.2.3.1 Introduction

In cases where a constraint contains only a few fields, or when there are only a small number of constraints, the cagstraint

be presented in the compact version of the PDU constraints proforma:

PDU Constraints Declarations
PDU Type PDU_Identifier
Constraint Derivation Field Name Comments
Name Path . .
ASP_ParIdentlfleI ASP_ParIdentlfleﬁ
Consld- Derivation- ConstraintValue- ConstraintValue-
&ParList1 Path1 &Attributesl, 1 &Attributesl’n [FreeText]l
Consld- Derivation- ConstraintValue- ConstraintValue-
&ParList, Path, &Attributeszy 1 &Attributes_zln [FreeText],
|
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]m
&Parlist, Path, &Attributesm, 1 &Attributesm’n

Proforma E.2 - (Compact) PDU Constraints Declarations

Delivery 9.6, 21 April 1997

207

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

The compact constraints proforma has field names across the top of the proforma, and different instances of the PDU constraints
in rows within the proforma. If there andfields in the PDU type definition then there shallnbi@eld columns in the compact
constraint proforma.

The derivation path column is optional; however, it shall be used to specify the derivation path of modified constradn®3.(see 1

A compact table can collect several base constraints (as illustrated in Example C.1) or can collect a base constraint and its
modified constraints as in Example C.2. When modified constraints are declared in a compact table, the fields not modified in
the modified constraints appear as boxes left blank as the intersection of the modified constraint row and of the field column.
When mapping a compact table to TTCN.MPR.(single format), blank fields due to inheritance shall be omitted. Fields not
specified in modified constraints are left blank in modified constraints.

EXAMPLE E.1 - Constraints using the compact constraints proforma
E.1.1Given the declaration of PDU_B to be

PDU Type Definition

PDU Name : PDU_B

PCO Type : XSAP

Comment

Field Name Field Type Comments

FIELD1 INTEGER

FIELD2 BOOLEAN

FIELD3 IA5String

E.1.2the constraints on PDU_B using the compact constraints proforma could be
PDU Constraints Declarations
PDU Type: PDU_B
Constraint Name Field Name Comments
FIELD1 FIELD2 FIELD3

CN1 3 TRUE "A string”
CN2 (4,5,6) FALSE "A string"
CN3 0 ? -

The constraints reference in the dynamic part might then contain entries such as PDU_B[CN1] and PDU_B[CNZ2]

208

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

E.1.3The inheritance mechanism using the compact constraint proforma:

PDU Constraints Declarations

PDU Type: PDU_A

Constraint Derivation Field Name Comments
Name Path

FIELD1 FIELD2 FIELD3 FIELD4

CNO 0 FFH 008 TRUE
CN1 CNO. 1
CN2 CNO.CN.] 5

E.2.3.2 Parameterized compact constraints
Compact constraints may also be parameterized. In such cases the parameter lists shall be appended to the constraint n:
occur in the constraint name column of compact constraint proformas.

EXAMPLE E.2 - A parameterized compact constraint

The invocation of the constraints on PDU_X in a Test Step may be made as follows: S1, S2, S3, S4, S5(0), S5(1) or S5(Var)
where Var is a Test Case or Test Suite Variable.

PDU Constraints Declarations
PDU Type: PDU_X
Constraint Field Name Comments
Name 51 5s

S1 0 0
S2 0 1
S3 1 0
S4 1 1
S5(AINTEGER) | 1 A

Delivery 9.6, 21 April 1997 209

Second Edition Mock-Lp for SC21 Review

E.2.4 Compact proformas for Structured Type constraints
Compact Structured Type constraints shall be provided in the following proforma:

210

ISO/IEC 9646-3: 1997

Structured Type Constraints Declarations
Structure Type : Structldentifier
Constraint Derivation Field Name Comments
Name Path ASP_ParIdentifieI ASP_ParIdentiﬁeﬁ
Consld- Derivation- ConstraintValue- ConstraintValue-
&ParListq Pathy &Attributesl’ 1 &Attributesl,n [FreeTexth
Consld- Derivation- ConstraintValue- ConstraintValue-
&ParList, Path, &Attributesz’l &Attributesz‘n [FreeText},
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText},,
&ParlList,, Path, &Attributes, 1 &Attributes,

Proforma E.3 - (Compact) Structured Type Constraints Declarations

EXAMPLE E.3 - Use of structured compact constraints

The PDU_Y consists of five fields named Y1 through Y5. The fields Y1, Y2 and Y3 have been combined into the Structured

Type called A. In the following, the first table shows the constraints defined on PDU_Y. The second and third tables convey
the same information as the last table;

The second and third tables show the Structured Type A’s constraint specification using the single constraint proformas, while
the last table shows A’s constraint using the compact constraint proforma. Both figures also use the modification mechanism.
For the following tables, it can be seen that if the constraint YY1 was used, the values for field Y1 through Y5 would be
0,0,0,0,1 respectively, where the values for fields Y1 through Y3 are derived from the Structured Type A using constraint Al.
If the constraint YY2 was used, the values for Y1 through Y5 would be 0,3,0,1,0 respectively, where the values for fields Y1

through Y3 are derived from the Structured Type A using constraint A2.

E.3.1A PDU constraints table that uses a Structured Type (called A)

PDU Constraints Declarations

PDU Type: PDU_Y

Constraint Name

Field Name Comments
A Y4 Y5
YY1 Al 0 1
YY2 A2 1 0
YY3 A2 0 1

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

E.3.2Al is a base constraint of Structured Type A:

Structured Type Constraint Declaration

Constraint Name : Al
Structured Type : A
Derivation Path
Comment

Element Name Element Value Comments
Y1 0
Y2
Y3 0

o

E.3.3The Structured Type constraint, A2, is a modified constraint derived from Al:

Structured Type Constraint Declaration

Constraint Name : A2
Structured Type : A
Derivation Path . Al
Comment
Element Name Element Value Comments
Y2 3

E.3.4Structured Type A’s constraints A1 and A2 in the compact form

Structured Type Constraints Declarations

Structured Type Name:A

Constraint Derivation Element Name Comments
Name Path
Y1 Y2 Y3
Al 0 0 0
A2 Al. 3

When using Structured Types within PDU Constraint Declarations, each field name used within the Structured Type defin
shall exactly match the name (or short name, if both the short name and full name were defined) of the PDU field whi
represents from the original PDU type definition.

Delivery 9.6, 21 April 1997 211

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

E.2.5 Compact proformas for ASN.1 constraints

The following proformas shall be used for compact ASN.1 ASP, ASN.1 PDU and ASN.1 Type constraints definitions
respectively:

ASN.1 ASP Constraints Declarations
ASP Type: ASP_ldentifier
Constraint name ASN.1 Value
Consld&ParLisg ConstraintValue&Attribute
Consld&ParList, ConstraintValue&Attributg,

Proforma E.4 - (Compact) ASN.1 ASP Constraints Declarations

ASN.1 PDU Constraints Declarations
PDU Type: PDU_ldentifier
Constraint name ASN.1 Value
Consld&ParLisg ConstraintValue&Attributes
Consld&ParList, ConstraintValue&Attributeg

Proforma E.5 - (Compact) ASN.1 PDU Constraints Declarations

212 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

ASN.1 Type Constraints Declarations
Type Name:ASN1_Typeldentifier
Constraint name ASN.1 Value
Consld&ParLisg ConstraintValue&Attributes
Consldé&ParLisg, ConstraintValue&Attributeg

Proforma E.6 - (Compact) ASN.1 Type Constraints Declarations

E.3 Compact proforma for Test Cases

E.3.1 Requirements

It is only permitted to print many single Test Case dynamic behaviour tables as a single compact Test Case dynamic beh:
table when the following rules apply:

a) all single Test Case dynamic behaviour tables shall belong to the same Test Group;

b) all single Test Case dynamic behaviour tables shall have either the same Default tree or no Default tree; it is recomme
that there be no Default tree;

c) the behaviour description of each single Test Case dynamic behaviour table shall consist of a single ATTACH constr

E.3.2 Compact proforma for Test Case dynamic behaviours

Where a series of Test Cases have essentially the same dynamic behaviour and differences occur only in the refer
constraints€.g.,tests for parameter variations of ASPs and/or PDUs), the Test Cases may be presented in the compact ve
of the Test Case dynamic behaviour proforma:

Test Case Dynamic Behaviours

Group . TestGroupReference

Default . DefaultReference
Test Case Name Purpose Test Step Attachment Comments
TestCaseldentifier FreeText Attach [FreeText]

Proforma E.7 - (Compact) Test Case Dynamic Behaviours

Delivery 9.6, 21 April 1997 213

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Each row in the body of this proforma describes a single Test Case. If the compact Test Case proforma is used the single table
replaces a series of Test Case dynamic behaviour tables in the behaviour part of the test suite.

The comments column contains comments pertaining to individual Test Cases against each attachment.

Test Cases within compact Test Case proforma may form a subset of their group and shall appear in the order indicated in the
Test Case Index.

EXAMPLE E.4 - A compact Test Case table that defines a series of tests for FTAM:

Test Case Dynamic Behaviours

Group : R/BV/PV/LM/CR/OV
Default

Test Case Name Purpose Test Step Attachment
OVERIDE1 Omit the overide parameter, + OVERRIDE (FCRERQ_001, FCRERP_001)

when file exists.

OVERIDE2 Omit the overide parameter, | + OVERRIDE (FCRERQ_002, FCRERP_002)
when file does not exist.

214 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Annex F
(informative)

Examples

F.1 Examples of tabular constraints

F.1.1 ASP and PDU definitions

F.1.1.1 Flat type definition:

Second Edition Mock-Up for SC21 Review

PDU Type Definition

PDU Name : T_CONNECT1
PCO Type
Comment : lllustration of TTCN mechanisms

Field Name Field Type Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits
T_Class INTEGEROto4 Defined as a simple type
UserData IA5String

F.1.1.2 Structured Type definition:

PDU Type Definition

PDU Name : T_CONNECT2

PCO Type
Comment : lllustration of TTCN mechanisms

Field Name Field Type Comments
T_Addresses T_Addressinfo
T_Class INTEGEROto4 Defined as a simple type
UserData IA5String

Structured Type Definition

Type Name : T_Addressinfo
Comments

: Can be used in all Transport PDU examples.

Element Name

Type Definition

Comments

Source
Destination

BITSTRING [4]
BITSTRING [4]

Length is 4 bits
Length is 4 bits

Delivery 9.6, 21 April 1997

215

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

F.1.1.3 Special type PDU, in order to allow use of (static) chaining of constraints:

ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP

Comment : For illustration only
Parameter Name Parameter Type Comments
CallingNetworkAddress HEXSTRING
CalledNetworkAddress HEXSTRING
Connectionldentifier HEXSTRING
Data PDU To enable chaining of constraints

F.1.2 ASP/PDU constraints

F.1.2.1 Flat:
PDU Constraint Declaration

Constraint Name : TCON_Class4_1

PDU Type : T_CONNECT1

Derivation Path

Comment

Field Name Field Value Comments

Source TS Parl

Destination TS _Par2

T _Class 4

UserData "testing, testing"

F.1.2.2 Structured, referring to field groups:
PDU Constraint Declaration

Constraint Name : TCON_Class4 2

PDU Type . T_CONNECT2

Derivation Path
Comment

Field Name Field Value Comments
T_Addresses WrongAddress WrongAddress is a reference to a
structured type constraint.

T Class 4

UserData "one, two, three"

216 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Structured Type Constraint Declaration

Constraint Name : WrongAddress
Structured Type : T_Addressinfo
Derivation Path
Comment
Element Name Element Value Comments
Source TS Parl
Destination '0000’B

F.1.2.3 Chaining, useful for (nested) PDUs in ASPs:

ASP Constraint Declaration

Constraint Name : N_DATAreq_With_T_CON_Class4_1

ASP Type . N_DATArequest
Derivation Path
Comments : TCON_Class4_1 is a PDU constraiing (chaining)
Parameter Name Parameter Value Comments
CallingNetworkAddress TS_Par3
CalledNetworkAddress TS_Pard
Connectionldentifier 'ABCDEF'H
Data TCON_Class4_1

F.1.2.4 Parameterized constraints; it is possible to parameterize flat, structured and chained constraints. The following exa
shows parameterization to pass a value:

PDU Constraint Declaration

Constraint Name : TCON_1(class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path
Comment

Field Name Field Value Comments
Source '1000'B
Destination ?
T_Class class class is a formal parameter
UserData ?

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:
TCON_1(4) or TCON_1(TCvariable)

Delivery 9.6, 21 April 1997 217

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Field values may be whole (chained) PDUs:

ASP Constraint Declaration

Constraint Name : N_DATAreq_With_T_CON(A_Constraint:T_CONNECT?2)
ASP Type . N_DATArequest
Derivation Path
Comments : TCON_Class4_1 is a PDU constraing(, chaining)

Parameter Name Parameter Value Comments
CallingNetworkAddress TS_Par3
CalledNetworkAddress TS_Pard
Connectionldentifier '1234567'H
Data A Constraint A_Constraint is a formal parametegr

This constraint can be called as, for example:
N_DATAreq_With_TCON(TCON_Class4_2)

Since the actual parameter is a constraint name, which can itself be parameterized, it is possible to express an drhufrary dept
nesting of PDUs.

F.1.2.5 Modified constraints; it is possible to use existing constraints and modify them to define new constraints. This can be
done with flat, structured and parameterized constraints.

PDU Constraint Declaration

Constraint Name : TCON_Class0_1

PDU Type : T_CONNECT1
Derivation Path . TCON_Class4_1.
Comment . Class 0 is acceptable
Field Name Field Value Comments
T _Class 0

Wildcards can be used for values:

PDU Constraint Declaration

Constraint Name : TCON_AnyClass

PDU Type : T_CONNECT1
Derivation Path . TCON_Class4_1.
Comment : Any class (0 .. 4) is acceptable
Field Name Field Value Comments
T Class ?

This is considered to be bad style, however. It is better to use the more general constraint as a base.

218 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

It is also possible to delete whole fields:

PDU Constraint Declaration
Constraint Name : TCON_Erroneous_NoClass
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1.
Comment . No class present
Field Name Field Value Comments
T_Class - T_Class omitted

F.2 Examples of ASN1 constraints

F.2.1 ASP and PDU definitions
F.2.1.1 Flat:

ASN.1 PDU Type Definition

PDU Name : T_CONNECT1
PCO Type
Comment

Type Definition

-- only to illustrate use of ASN.1in TTCN

SEQUENCE { source BITSTRING (SIZE (4..4)),
destination BITSTRING (SIZE (4..4)),
t_Class INTEGER (0..4),
userData IA5String OPTIONAL
}

F.2.1.2 Structured:

ASN.1 PDU Type Definition

PDU Name : T_CONNECT2
PCO Type
Comment

Type Definition

-- only to illustrate use of ASN.1in TTCN

SEQUENCE { t_Addresses T_Addressinfo,
t Class INTEGER (0..4),
userData IA5String

}

-- expansion of T_AddressInfo can be found in a table of its own

Delivery 9.6, 21 April 1997 219

Second Edition Mock-Lp for SC21 Review

ISO/IEC 9646-3: 1997

Related ASN.1 productions that are normally in one ASN.1 module may be distributed over more tables in TTCN:

ASN.1 Type Definition

Type Name :T_Addressinfo
Comments

Type Definition

SEQUENCE { source BITSTRING (SIZE (4..4)),
destination BITSTRING (SIZE (4..4)),
}

F.2.1.3 An ASP definition:

ASN.1 ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP

Comment
Type Definition
SEQUENCE { callingNetworkAddress OCTETSTRING, -- even number of octets
calledNetworkAddress OCTETSTRING, -- even number of octets
connectionldentifier OCTETSTRING, -- even number of octets
data T _PDUS

ASN.1 Type Definition

Type Name :T_PDUS
Comments

Type Definition

CHOICE { t1 T_CONNECTL,
2 T_CONNECT2
}

F.2.2 ASN.1 ASP/PDU constraints
F.2.2.1 Flat:

220

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Class4_1

PDU Type : T_CONNECT1
Derivation Path
Comments
Constraint Value
{ source TS_PAR1,
TS_PAR2, --field identifier can be omitted if desired

t_Class 4,

userData "testing, testing”
}

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

F.2.2.2 Structured:

ASN.1 PDU Constraint Declaration

Constraint Name

. TCON_Class4 2

PDU Type : T_CONNECT2
Derivation Path
Comments
Constraint Value
{ t_Addresses WrongAddress, -- a reference to a PDU field constraint
t Class 4,
userData "one, two, three"

ASN.1 Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path
Comments

. WrongAddress

T_Addressinfo

Constraint Value

}

{ source TS_PAR1,
destination '0000'B

F.223C

haining a PDU constraint:

ASN.1 ASP Constraint Declaration

Constraint Name
ASP Type
Derivation Path
Comments

: N_DATAreq_With_TCON_Class4_1
: N_DATArequest

Constraint Value

data

}

{ callingNetworkAddress TS_PAR_3,
callednetworkAddress TS_PAR_4,
connectionldentifier "ABCDEF'H,

t1 TCON_Class 4 1 -- chaining to a PDU constraint

Delivery 9.6, 21 April 1997

221

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

F.2.2.4 Parameterized constraints; ASN.1 constraints may be parameterized like TTCN tabular constraints, for example:

ASN.1 PDU Constraint Declaration
Constraint Name : TCON_1(class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path
Comments
Constraint Value

{ source '0000'B,

destination ?, -- wildcard

t_Class class, -- formal parameter

userData ?
}

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:
TCON_1(4) or TCON_1(TCvariable)
A parameter may also represent a whole chained PDU:

ASN.1 ASP Constraint Declaration

Constraint Name : N_DATAreq_With_TCON(a_constraint:T_CONNECT?2)

ASP Type . N_DATArequest
Derivation Path
Comments
Constraint Value
{ callingNetworkAddress TS_PAR_3,
callednetworkAddress TS_PAR_4,
connectionldentifier '1234567'H,
data t2 a_constraint

-- a_constraint is a formal parameter containing a whole PDU

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:
N_DATAreq_With_ TCON(TCON_Class4_2)

Since the actual parameter is a constraint name, which itself can be parameterized, it is possible to express an drhifrary dept
nesting.

F.2.2.5 Modified constraints; new constraints may be constructed by modifying already defined constraints using the REPLACE
mechanism:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Class0_1

PDU Type : T_CONNECT1
Derivation Path . TCON_Class4_1.
Comments

Constraint Value

REPLACE t_Class BY 0

222 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Wildcards can be used as replacements as well:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_AnyClass

PDU Type : T_CONNECT1
Derivation Path . TCON_Class4_1.
Comments

Constraint Value

REPLACE t_Class BY ?

To specify fields that shall be omitted, the OMIT mechanism is used:. This is only allowed if the field is declared as OPTION.

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_NoUserData

PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1.TCON_AnyClass.
Comments

Constraint Value

OMIT UserData

It is possible to modify ASN.1 parameterized constraints, but note that the parameterized fields themselves can not:be rep

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_2(class:INTEGER)

PDU Type : T_CONNECT1
Derivation Path : TCON_1.
Comments

Constraint Value

REPLACE userData BY "CPS"

Delivery 9.6, 21 April 1997 223

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

F.2.3 Further examples of ASN.1 constraints
F.2.3.1 Definition of an FTAM F_INITIALIZEresponse PDU, made in an ASN.1 PDU type definition table:

ASN.1 PDU Type Definition

PDU Name : F_INITIALIZEresponse

PCO Type

Comment

Type Definition

SEQUENCE {
state_result State_Result DEFAULT success,
action_result Action_Result DEFAULT success,
protocol_version Protocol_Version DEFAULT { version_1},
implementation_information Implementation_Information OPTIONAL,
presentation_context_management [2] IMPLICIT BOOLEAN DEFAULT FALSE,
service_class Service_Class DEFAULT { transfer_class },
functional_units Functional_Units,
attribute_groups Attribute_Groups DEFAULT { },
shared_ASE_information Shared_ASE_Information OPTIONAL,
ftam_quality_of_service FTAM_Quality_Of_Service,
contents_type_list Contents_Type_List OPTIONAL,
diagnostic Diagnostic OPTIONAL,
checkpoint_window [8] IMPLICIT INTEGER DEFAULT 1

}

The fields of the PDU (State_Result, Action_Result etc.) are declared in ASN.1 Type Definitions.
For example, Functional_Units:

ASN.1 Type Definition

Type Name : Functional_Units
Comments

Type Definition

[4] IMPLICIT BITSTRING
{ read(2),

write (3),
file_access (4)
limited_file_management (5),
enhanced_file_management (6),
grouping (7),
fadu_locking (8),
recovery (9),
restart_data_transfer (10)

224 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

A base constraint, F_INITrsp_001, on the F-INITIALIZEresponse is declared In the constraints part:

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_001

PDU Type . F_INITIALIZEresponse
Derivation Path

Comments

Constraint Value

{
state_result State_Result_001,
action_result Action_Result_001,
protocol_version Protocol_Version_001,
implementation_information Implementation_Information_001,
presentation_context_management FALSE,
service_class Service_Class_001
functional_units Functional_Units_001,
attribute_groups Attribute_Groups_001,
shared_ASE_information Shared_ASE_Information_001,
ftam_quality _of_service FTAM_Quality_Of_Service_001,
contents_type_list Contents_Type_List 001,
diagnostic Diagnostic_001,
checkpoint_window 1

}

A constraint on Functional_Units, Functional Units_001, is declared in an ASN.1 PDU field constraint declaration:

ASN.1 Type Constraint Declaration

Constraint Name : Functional_Units_001
Structured Type : Functional_Units
Derivation Path

Comments

Constraint Value

'001'B -- Write only

A second constraint, F_INITrsp_002 can be built by modifying the base constraint, F_INIT_rsp001:

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_002

PDU Type . F_INITIALIZEresponse
Derivation Path : F_INITrsp_001.
Comments

Constraint Value

OMIT implementation_information,

REPLACE presentation_context_management BY TRUE,

REPLACE functional_units BY Functional_Units_002,
REPLACE checkpoint_window BY ?

where Functional_Units_002 is an ASN.1 PDU Constraint Declaration.

Delivery 9.6, 21 April 1997

225

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

F.3 Base and modified constraints
Suppose that we have the following PDU type definition:

PDU Type Definition

PDU Name : PDU_B
PCO Type

Comments : This is the declaration of the protocol data unit PDU_B

Field Name Field Type Comments
FIELD1 INTEGER
FIELD2 HEXSTRING
FIELD3 BITSTRING
FIELD4 BOOLEAN
A base constraint for PDU_B could be
PDU Constraint Declaration
Constraint Name : CO
PDU Type : PDU_B
Derivation Path
Comments
Field Name Field Value Comments
FIELD1 0
FIELD2 ‘FF'H
FIELD3 ‘00'B
FIELD4 TRUE
A modified constraint C1 to the base constraint CO could be
PDU Constraint Declaration
Constraint Name : C1
PDU Type : PDU_B
Derivation Path . CoO.
Comments
Field Name Field Value Comments
FIELD1 1 In the base CO this field value is 0

226 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

We can further build on C1:

PDU Constraint Declaration
Constraint Name : C2
PDU Type : PDU_B
Derivation Path . CO0.C1.
Comments

Field Name Field Value Comments
FIELD2 - This field is omitted
FIELD3 ? Any legal value accepted

Reference to a modified constraint in a behaviour tree is made using its name.

F.4 Type definition using macros
PDU type definition with macro symbol:

PDU Type Definition

PDU Name : T_CONNECT3
PCO Type
Comment : lllustration of TTCN macro mechanism

Field Name Field Type Comments
<- T_AddressGroup
T_Class INTEGEROto4 Defined as a simple type
UserData IA5String

Structured Type Definition

Type Name : T_AddressGroup
Comments

Element Name Type Definition

Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits

Delivery 9.6, 21 April 1997

Second Edition Mock-Up for SC21 Review

227

Second Edition Mock-Lp for SC21 Review

ISO/IEC 9646-3: 1997

PDU Constraint Declaration
Constraint Name : TCON_Class4_3
PDU Type : T_CONNECT3
Derivation Path
Comment
Field Name Field Value Comments
<- GoodAddress Reference to the structured type cqn-
straint declaration.
T _Class 4
UserData "one, two, three"

Structured Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path
Comment

. GoodAddress
: T_AddressGroup

Element Name

Element Value

Comments

Source
Destination

‘0101'B
'1111'B

228

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

F.5 Use of REPEAT

Second Edition Mock-Up for SC21 Review

Test Case Dynamic Behaviour

Test Case Name RPT_EX2
Group TTCN_EXAMPLES/REPEAT_EXAMPLE2/
Purpose . Toillustrate use of REPEAT and parameter passing by textual substitution.
Default
Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments

1 (FLAG:=FALSE, COUNTER:=0)

2 1A Al

3 REPEAT STEP2 (FLAG, COUNTER)

UNTIL [FLAG OR COUNTER=3]

4 [FLAG]

5 ID D1 PASS

6 [COUNTER=3]

7 IE El FAIL

STEP2 (F:BOOLEAN; NUMBER:INTEGER)

8 ?B (F:=TRUE) Bl

9 ?C (F:=FALSE, NUMBER:=NUMBER+1) C1l
Detailed Comments:
This example shows how repeated execution of STEP2 can be ended either by reception of message B, or reception of tessgethdnrthe
lines following the REPEAT construct, Boolean expressions are used to describe that in the case where B is receivedjsiessagerd, and ih
the case where three other messages are received E is to be sent.
This example also illustrates the effect of parameter passing by textual substitution. This means that F is replaced iy RUMBER is replace:
by COUNTER, thus making it possible for FLAG and COUNTER to obtain the results of the assignments in STEP2.

Delivery 9.6, 21 April 1997

229

Second Edition Mock-Lp for SC21 Review

F.6 Test suite operations

Using a Test Suite Operation to set a checksum:

ISO/IEC 9646-3: 1997

Test Suite Operation Definition

Result Type : INTEGER
Comment :

Operation Name : CRC(P:A_PDU)

Description

Calculate and return the checksum of the PDU P according to the CRC algorithm.
NOTE - In a real ATS this operation would be described in greater detail.

PDU Constraint Declaration

Constraint Name : CONS1

PDU Type : A_PDU
Derivation Path
Comment
Field Name Field Value Comments
Checksum ?

in the constraint CONS1.

A_PDU.Checksum := CRC(CONS1) in the approprait SEND event in a behaviour description will set the CH

ecksum

F.7 Example of a Test Suite Overview

In the Test Suite Structure table shown below, a hierarchy of the groups and Test Cases in the suite is defined. Within this
structure, test selection expressions are identified which govern the selection of Test Groups and the Test Cases for execution
For example, SELEXP_100 is referenced as the controlling expression for Feature X of the protocol. If Feature X is not

supported, none of the Test Cases in the suite which are within the Feature X group will be selected.

Test Suite Structure

Suite Name : TEST_SUITE_A
Standards Ref . ISO/IEC xxxx

PICS Ref . ISO/IEC aaaa

PIXIT Ref : ISO/IEC bbbb

test notation(s) . DS test method
Comments . This is an example only.

Test Group Reference

Selection Ref

Test Group Objective

Page Nr

FEATURE_X
FEATURE_X/ATTR_A

FEATURE_X/ATTR_A/USAGE
FEATURE_X/ATTR_B

FEATURE_X/ATTR_A/NEGOTIATION

SELEXP_100

SELEXP_101

Test optional Feature X

Test mandatory Attribute A

Test optional Attribute A negotiation
Test Attribute A usage

Test mandatory Feature Y

50
50
50
60
80

230

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

To determine whether or not Feature X is supported, SELEXP_100 must be evaluated. This is done by determining whett
not the Test Suite Parameter in SELEXP_1@0,TST_FX, is TRUE. If it is, the processing within the group continues. Note
that tests for attribute A will be selected (no expression), but that tests for the optional negotiation feature of Atwilbbute A

only be selected if SELEXP_101 is TRUE.

Second Edition Mock-Up for SC21 Review

Test Case Index

Test Group Reference Test Case Id | Selection Ref Description Page Nr
FEATURE_X/ATTR_A/NEGOTIATION FX_ANEG_1 |SELEXP_102 | Req. Attr. A, valid neg. 50
FX_ANEG_2 | SELEXP_102 | Req. Attr. A, invalid neg. 52
FX_ANEG_3 Rcv. Attr. A, invalid neg. 54
FX_ANEG_4 Rcv. Attr. A, invalid neg. 56
FEATURE_X/ATTR_A/USAGE FX_AUSE_1 |SELEXP_103 | Use Attr. A (VAL=0). 60
FX_AUSE_2 Rcv. Attr. A 62
FX_AUSE_3 Rcv. Attr. A 64

If Attribute A negotiation is supported, Test Case FX_ANEG_01 through FX_ANEG_04 are candidates for selection. Howe
Test Cases ‘01’ and ‘02’ will only be chosen if the additional selection expression SELEXP_102 is TRUE. Test Ci

FX_ANEG_01 will only be selected if the PICS indicates that a value of zero for Attribute A is supported.

The PICS and PIXIT questions used in the test selection expressions are declared as Test Suite Parameters.

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
TSP_FX BOOLEAN PICS question FX1 Q: Feature X supported?
TSP_FXA_N BOOLEAN PICS question FX2 Q: Feat. X neg supported?
TSP_FXA_NINIT BOOLEAN PICS question FX3 Q: Does IUT req. neg?
TSP_FXA_MINVAL INTEGER PIXIT question FXVAL Q: WIll IUT use VAL=0

The test selection expressions are declared as Boolean expressions, as defined in 11.5.

Test Case Selection Expression Definitions

Expression Name

Selection Expression

Comments

SELEXP_100
SELEXP_101
SELEXP_102
SELEXP_103

TSP_FX
TSP_FXA N
TSP_FXA NINIT
TSP_FXA_VAL=0

Feature X supported.
Feature X negotiation.
Req. Feature X negotiation
Accept Feature X val=0.

Delivery 9.6, 21 April 1997

231

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

F.8 Example of a Test Case in TTCN.MP Form
For the sample Test Case given below:

Test Case Dynamic Behaviour

Test Case Name : PACKET/P4/PROPER/T_02

Reference T 7 02

Purpose . Verify the IUT acknowledges a Clear cause code 05 while in state p4

Default

Comment

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
0 +R1_PREAMBLE(SVC)
1 +P4D1_PREAMBLE
2 ICLEAR START TD CLR_0(LC) clear cause=5
3| U ?2CLEARC CANCEL TD CLRC_O(LC) (PASS)
4 +R1_POSTAMBLE
5 ?CLEAR CANCEL TD CLR_LO(LC) (PASS)
6 +R1_POSTAMBLE
7 ?RESTART [RST_ON_ERR] CANCEL TD STRT_DTEA (PASS)
8 IRESTARTC STRTC
9 +R1_POSTAMBLE

10 +D1C_UNEXPECTED

11 >11

12 +RSRT_UNEXPECTED

13 ?TIMEOUT TD FAIL
14 ?0THERWISE CANCEL TD FAIL

The TTCN.MP that corresponds to this table is:

$BeginTestCase
$TestCaseldT_7 02
$TestGroupRefPACKET/P4/PROPER/T_02
$TestPurpose* Verify the IUT acknowledges a Clear cause code 05 while in state p4 */
$DefaultsRef
$BehaviourDescription
$BehaviourLine
$Label
$Line [0] +R1_PREAMBLE(SVC)
$Cref
$Verdict
$End_BehaviourLine
$BehaviourLine
$Label
$Line [1] +P4D1_PREAMBLE
$Cref
$Verdict
$End_BehaviourLine
$BehaviourLine
$Label
$Line [2] ICLEAR START TD

232 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

$Cref CLR_O(LC)

$Verdict

$Comment/* clear cause = 5 */
$End_BehaviourLine
$BehaviourLine

$Label L1

$Line [3] ?CLEARC CANCEL TD

$Cref CLRC_0O(LC)

$Verdict (PASS)

$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?CLEAR CANCEL TD

$Cref CLR_LO(LC)

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] 2RESTART [RST_ON_ERR] CANCEL TD

$Cref STRT_DTEA

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] IRESTARTC

$Cref STRTC

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [5] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +D1C_UNEXPECTED

$Cref

Delivery 9.6, 21 April 1997 233

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] > L1

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +RSRT_UNEXPECTED

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?TIMEOUT TD

$Cref

$Verdict FAIL
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?70THERWISE CANCEL TD

$Cref

$Verdict FAIL
$End_BehaviourLine

$End_BehaviourDescription
$ENnd_TestCase

The layout shown here is only intended to aid readability.

F.9 Use of Component Reference for Field Value Assignment in Constraints

When a number of field values in a received PDU must be assigned to the fields in several subsequent send PDUs, the Dynami
Behaviour table can become cluttered with lengthy assignment statements using the dot notation.

TTCN allows PDU field value assignments in the constraint tables using component reference associated with a formal
parameter. Received ASPs or PDUs in the Behaviour table may be assigned to a variable and subsequently passed as an actt
parameter in the constraints reference to a formal parameter in the constraint table. The constraint table then specified the r

field assignments using the formal parameter and its components. The following tables illustrate these principles:

Figure F.1 illustrates possible field assignments in the behaviour specification without the use of component reference.

234 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

Test Case Dynamic Behaviour
Test Case Name :TTCN_EXAMPLES/STYLE1

Group : ST_EX1

Purpose . To illustrate the use of component references in the behaviour description.

Default :

Nr Label Behaviour Description Constraints Ref | Verdict = Comments
1 ?InASP(v:=InASP.userdata) Cinl

2 IOutASP Coutl

(OutASP.userdata.OutPDU.FieldA:=v.Field2;
OutASP.userdata.OutPDU.FieldC:=v.Field3)

Figure F.1 - Lengthy assignment statements clutter the behaviour description.

Figure F.2 illustrates the simplification of the behaviour specification resulting from the use of component reference
constraints.

Test Case Dynamic Behaviour

Test Case Name : TTCN_EXAMPLES/STYLE1

Reference . ST_EX1

Purpose . To illustrate the use of component references in the behaviour description.

Default

Nr Label Behaviour Description Constraints Ref Verdict Comments
1 ?InASP(v:=InASP.userdata) Cin1

2 IOUtASP Cout2(v)

Figure F.2 - Lengthy assignment statements are removed form the behaviour description.

For simplicity, the definitions of all required ASP and PDU types have been omitted.

The ASP types INASP and OutASP consist of the single parameter field userdata, which is of the type InPDU and Out
respectively. INnPDU contains the three fields Fieldl, Field2 and Field3, which all are of the type IA5String.

OutPDU contains the three fields FieldA, FieldB and FieldC, which also are of the type IA5String.
v has to be declared as a Test Case Variable of a PDU type.

Delivery 9.6, 21 April 1997 235

Second Edition Mock-Lp for SC21 Review

The following tables give the required ASP and PDU constraint declarations:

236

ISO/IEC 9646-3: 1997

ASP Constraint Declaration

Constraint Name : Coutl
ASP Type . OutASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
userdata CoutPDU1
ASP Constraint Declaration
Constraint Name : Cout2(p:PDU)
ASP Type . OuUtASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
userdata CoutPDU2(p)
ASP Constraint Declaration
Constraint Name : Cinl
ASP Type : INASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
userdata CinPDU
PDU Constraint Declaration
Constraint Name : CoutPDU1
PDU Type : OutPDU
Derivation Path
Comments
Field Name Field Value Comments
FieldA ‘A
FieldB B’
FieldC 'C

Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997

Second Edition Mock-Up for SC21 Review

PDU Constraint Declaration

Derivation Path
Comments

Constraint Name : CoutPDU2(p : InPDU)
PDU Type . OutPDU

Field Name

Field Value

Comments

FieldA
FieldB
FieldC

p.Field2
B’
p.Field3

PDU Constraint Declaration

Derivation Path
Comments

Constraint Name : CinPDU
PDU Type : InPDU

Field Name

Field Value

Comments

Fieldl
Field2
Field3

F.10 Multi-Party Testing

Figure F.3 illustrates a test component configuration for a typical multi-party testing context.

local test method.

In the example shown in Figure F.3, for simplicity, each lower tester is specified by a single PTC and the LTCF is specifie
the MTC. Another PTC is used to specify the upper tester. Coordoination points are used between the lower tester PTC

the MTC.

This is a straightforward use of concurrency to meet multi-party requirements, but it should not be taken to imply that there
to be a one to one relationship between lower testers and PTCs, or between the LTCF and the MTC, or between the uppe

and a PTC.

Delivery 9.6, 21 April 1997

Only a single upper teste
shown, since communication among multiple upper testers and/or UTCF is only applicable to contexts that exclusively us

237

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

MTC_LTCF
A
PTC_
uT
y
Y PTC
PTC LT3 PCO_UT
pPTC_ | LT2°
LT1
A
T IUT
T PCO_LT3
PCO_LT2
PCO LT1
' !
X - Service Provider(s)

Figure F.3 - Example Test Component Configuration for Multi-Party Testing with a Single Upper Tester.

F.11 Multiplexing/Demultiplexing

There are two ways of using concurrent TTCN in test cases using multiplexing/demultiplexing. These are illustrated in Figure
F.4. The first, shown in Figure F.4 a), specifies the multiplexing and demuliplexing explicitly within test component MAC1, wit
PTC1 and PTC2 each handling the behaviour on one of the two multiplexed connections. This provides for maximum flexibility
in the way that the multiplexing and demultiplexing behaviour is specified, including possibilities of invalid behavioueiowev

the disadvantage of this approach is the relatively complex multiplexer/demultiplexer has to be specified even if thesgest purp
concerns only the behaviour on each of the two connections. The alternative approach is to use a separate PCO for each separe
stream of events and a test suite parameter (MuxValue) associated with each of these PCOs that are to be multiplexed an
demultiplexed within the underlying service provider, rather than within the Lower Tester. This allows the configuration shown

in Figure F.4 b) to be used. Since the multiplexing/demultiplexing is performed within the service provider, there are two PCOs
in this configuration, corresponding to the two CPs in the other configuration, but they are given a common MuxValue, MuxA,
to indicate that within the service provider they are to be multiplexed. To keep things simple, one of the two test cdmponents
made the MTC, although a separate MTC not connected to a PCO could be used instead if preferred.

238 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

PTC1

CPa

MTC 1

PCO1(MuxA) PCO2(MuxA)

CPl CP2

Figure G.4 b)

Figure G.4 a)

Figure F.4 - Possible Configurations for Multiplexing/Demultiplexing Test Cases

F.12 Splitting and Recombining

In order to specify test cases involving splitting and recombining, there is no alternative to specifying explicitlyitigeasplitt
recombining behaviour in the test case. Concurrency can be used to separate the splitting and recmbining behaviout into o
component, MTC1 in Figure F.5, from the protocol behaviour that lies above this function by using a second test compo

PTC1 in Figure F.5.

Figure F.5 - Possible Configuration for Splitting/Recombining Test Cases.

Delivery 9.6, 21 April 1997 239

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

F.13 Multi-Protocol Test Cases

Multi-protocol test cases, including those using the embedded variants of the test methods, can use concurrent TTCN in order tc
separate the behaviour associated with each protocol into a different test component, as illustrated in Figure F.6, wdrich shows
example configuration for testing Session embedded under FTAM

FTAM

CP_ACSE

ACSE

CP_Presentation

Presentation

CP_Session

Session

PCO_Transport

Figure F.6 - Possible Configuration for Multi-Protocol Testing - Session embedded under FTAM.

240 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

F.14 Example of Modular TTCN

M1
TS M2
Import Import Module Exports Module Exports
Name: M1 Name: M2 Name: M1 Name: M1
Sourceld Sourceld
TC PRE TC PRE
Test Step Test Case Test Step
Name: PRE Name: TC Name: PRE
+ PRE

TS (expanded)

Test Step Test Case Test Step
Name: PRE Name: TC Name:M2__PRE
+M2__PRE|

The test step PRE (which is defined in the module M2) is implicitly imported from M1 in TS.

F.15 Example of CREATE and DONE

EDITOR’S NOTE 3 - An extra example will be added in the published second edition to clarify the use of CREATE and DON
especially with regard to the implicit passing of preliminary results and verdicts, giving an explanation of the semawotics by s
ing the same test case specified using explicit passing of variables using CMs and CPs.

Delivery 9.6, 21 April 1997 241

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Annex G
(informative)

Style guide

G.1 Introduction

This informative annex presents some recommended style rules that can be employed when using TTCN. The aim is to peovide .
consistency between the TTCN styles used by different test suite specifiers.

G.2 Test case structure

In order to have a better analysis of test results and to identify easily whether or not the test purpose is achievatkrtdteonafs
the following points on structuring Test Cases is suggested:

a) the test suite specifier should clearly identify the preamble and postamble sub-trees;

b) the postamble and the preamble should be specified through a single test tree attachment (local to the Test Cas& estfrom t
Step Library) in the Test Case main behaviour tree. Such test trees may attach subsequent sub-trees;

c) once the preamble and postamble(s) sub-trees are identified within a Test Case main behaviour tree, the remainirigeevent
Test Case main behaviour tree may be considered to be related to the tesehedgifts related to the test purpose).

Using this mechanism the boundaries between preamble, test body and postamble within a Test Case can be easily idésntified.
may be used to indicate the start and end of the test body in the conformance log.

Test Case Dynamic Behaviour

Test Case Name : TTCN_EXAMPLES/STYLE1

Reference . ST_EX1

Purpose . To illustrate identification of pre- and post ambles.

Default

Comment

Nr Label Behaviour Description Constraints Ref Verdict Comments
1 +Preamble
2 1A Al related to purposé
3 Body 7B B1 related to purposg¢
4 CinBody 2C c1 (PASS) | related to purposg
5 + postamble_1 lated t

6 DinBody 2D D1 (PASS) | "'ated to purpose
! 5 + postamble_2 related to purposé
8 ’E El INCONC related to purpose

9 ?0THERWISE FAIL

Figure G.1 - Identification of pre- and post ambles.

Since final verdicts cause termination of Test Case execution, a test suite specifier can not assign a final verdicyiif this bod
necessary to enter the postamble. Still, it is desirable to give a verdict at the point in the Test Case where the testphigoesd
and not hide verdicts in postambles. It is therefore recommended to state preliminary results in the verdict columnripestess p
achieved but a postamble should still be executed. In the definition of the postamble, a test suite specifier may useatieie Rl
as a verdict assigned at the leaves of the behaviour tree, to indicate that if no errors were encountered in the postatitilésthe
determined in the test body.

242 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

G.3 Use of TTCN with different abstract test methods

G.3.1 Introduction

This subclause ties the TTCN with the abstract test methods defined in ISO/IEC 9646-2. It gives the TTCN syntax used to express
the occurrence of events at PCOs, and constraint references for the various abstract test methods.

It is assumed that the ASP type definitions define the type of the UserData parameter as PDU. It is therefore possible to use
chaining of constraints.¢., to refer to a constraint for an ASP that contains a PDU in the UserData parameter), as a reference to
an ASP constraint that has a PDU constraint as an actual parameter.

G.3.2 TTCN and the LS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (N_PDUconstraint)
LT? N_ASP N_ASPconstraint (N_PDUconstraint)
UT! T_ASP T_ASPconstraint

UT? T_ASP T_ASPconstraint

G.3.3 TTCN and the DS test method
Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)
UT! T_ASP T_ASPconstraint

UT? T_ASP T_ASPconstraint

G.3.4 TTCN and the CS test method
Possible TTCN events:

Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)

Exchanging TM_PDUs between the LT and TM protocol implementation in the IUT, via the connection that is used for testing.
Note that in this case the PDU definition shall have declared its UserData field as of type PDU.

LT! N_ASP N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))
LT? N_ASP N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))

Delivery 9.6, 21 April 1997 243

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

G.3.5 TTCN and the RS test method
Possible TTCN events:

Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT? N_ASP N_ASPconstraint (T_PDUconstraint)
Since there is no UT or TMP the IMPLICIT SEND is used to describe send events at the side of the IUT connection.
<IUT! N_ASP> N_ASPconstraint (T_PDUconstraint)
<IUT!T_PDU> T_PDUconstraint

G.4 Use of Defaults

As a matter of style, a test suite specifier should avoid situations where the attempt of an alternative of a Defaultibéhavioumal
specification of th@xpectedehaviour of the IUT. It would be the case for instance if a Test Step represents the behaviour of the
or UT and the IUT, when valid test events are sent, and if the responses of the IUT to invalid or inopportune test dwetfts k&nt

or UT were specified in Defaults implicitly attached to that Test Step when called by other Test Cases. Such Defaultsentould he
bear Pass verdicts.

This is not a recommended practice, when the attachment of a Default tree is left unspecified and carries a degree tgf unce!
Explicitly attached trees or the main tree should be used instead.

G.5 Limiting the execution time of a Test Case

In previous versions of TTCN, an ELAPSE statement was defined, allowing the test case specifier to limit the abnormalf duratior
Test Case, if for instance a snapshot processing never ends, or if an uncontrolled recursion of tree attachment occurs.

The ELAPSE statement is no longer part of TTCN, as the problem it was intended to solve is considered to be outsidef tiestscope
suite specification.

To limit the execution time of a Test Case, it is now recommended that the test realizers implement local mechanisma&inahe me
testing. Explicit timers can be used together with the TIMEOUT event whenever a limit needs to be placed on waiting fotoan eve
occur.

G.6 Structured Types

a) In pre-DIS versions of TTCN, generic fields and generic values were defined as features allowing either to group deaeral fie
values in a constraint table, and/or to reuse such a group in several constraint tables of similar contents;

b) In this version, the grouping of ASP parameters and PDU (ex-data types) fields is introduced first in the declarafiorikeart,
sake of completeness of that part, and consistency with the use of ASN.1 in TTCN. Refer to 11.2.3.3 for a definitioncifiieel Str
Type definition tables. Once a Structured Type is declared, it can be used by one or more ASP type or PDU type defiigis. Th
and PDU definition table can therefore be “flat” (no group, or a group introduced by a macro call), or structured (bystmaansef
specifications for named ASP parameters or PDU fields);

¢) In the constraint part, structure elements must be assigned values in Structured Type constraint tables. The names o
constraints can be used in the base ASP or PDU constraint tables as values.

The ASP and PDU constraint tables can therefore also be
- flat,i.e.,assigning values to all parameters or fields individually, and only referring to the structure constraint tables by nwacro ca
- structuredi.e., replacing values of declared groups of parameters or fields by names of group constraints.

d) If the declared ASP or PDU is structured by use of some ASP parameters or PDU fields being specified by referenced to str
elements, then the constraints have to have the same structure.

Whichever form is used, ASP/PDU constraints can also be
- modified; and

244 Delivery 9.6, 21 April 1997

ISO/IEC 9646-3: 1997 Second Edition Mock-Up for SC21 Review

- parameterized, by means of a parameter to be bound to a field/parameter value or to a Structured Type constraint.
e) The Structured Type constraint tables replace the generic field tables of previous versions of TTCN;

f) The concept of generic values is deleted;

g) Examples are given in Annex F.

G.7 Abbreviations

In previous versions of TTCN, it was allowed to declare, in a specific table, abbreviations to be used in the behaviour columns
of the Test Cases and Test Steps. This facility proved to be confusing and has been restricted so that only the namas$ of ASPs a
PDUs, when used in event lines, can be abbreviated. This facility is now called Alias.

G.8 Test descriptions

Informal behaviour descriptions, giving more detail than the test purposes, but less detail than the TTCN specificaliest of the
Cases may, if desired, be included in a standardized ATS.

Such test descriptions may use text, time sequence diagrams or any other notation and be located in the commentssfield of table
an informative annex or both.

The TTCN specifications of the Test Cases always take precedence over such informal test descriptions.

G.9 Assignments on SEND events

TTCN allows for overwriting constraint values prior to a SEND event in an assignment statement on the event line. This means
that first the data to be sent is constructed from the constraint definition and then the assignments are executed.

This feature should be used with care since it may lead to confusion for the test suite reader what the actual valtehe that is
sent. In particular, it is considered to be bad style to use the same constraint for both sending and receiving.

G.10 Multi-service PCOs

Where a PCO covers more than one SAP the precise specification of such a PCO is given by the set of ASPs and PDUs that ca
occur.

EXAMPLE G.1 - An FTAM PCO:

PCO Declarations

PCO Name PCO Type Role Comments

L A_P_SAPs LT PCO through which we can observe all ACSE
ASPs and all Presentation ASPs except P-CON-
NECT, P-RELEASE and P-ABORT.

The PCO “L" is of type A_P_SAPs which is able to observe all ACSE and Presentation ASPs, excluding P-CONNECT, P-
RELEASE and P-ABORT. The type column shows which SAPs belong to the set to be observed by the PCO, “A” and “P”,
each SAP separated by underscore (“_"). The comments column describes exactly what can be seen by the PCO.

This method is extensible to many SAPs, each of which would be separated by an underscore.

Delivery 9.6, 21 April 1997 245

Second Edition Mock-Lp for SC21 Review ISO/IEC 9646-3: 1997

Annex H
(informative)

Index of part 3

H.1 Introduction

H.1.1 The Index
EDITOR’S NOTE 4 - The index is to be provided in the published edition 2.

246 Delivery 9.6, 21 April 1997

254 TR 101 101 V1.1.1 (1997-08)

Appendix 2:
Defect reports

Since the final draft of this TR was approved by ETSI TC MTS a number of technical defects have been discovered. All
these defects are concerned with the integration of ASN.1 1994, see ITU-T Recommendation X.680 [2] with TTCN.

This appendix 2 contains the six defect reports that ETSI has submitted to the ISO together with the corresponding
proposed technical corrigenda.

ETSI TC MTS urges all users of the present document to treat them as necessary corrections to TTCN version 2.

The submitter of a defect report shall complete items 2 to 4 and 7 to 10 and, optionally, item 11 and shall send the form
to the convenor or secretariat of the WG with which the relevant editor's group is associated. The WG convenor or
secretariat shall complete items 1, 5 and 6.

255 TR 101 101 V1.1.1 (1997-08)

1. Defect Report Number: 9646-3/

2. Submitter: ETSI TC MTS

3. Addressed to: JTC1/SC21/WGL1 editors' group on ISO/IEC 9646-3

4. WG Secretariat: AFNOR

5. Date circulated by WG secretariat:

6. Deadline on response from editor:

7. Defect Report concerningnumber and title of International Standard or DIS final text):
ISO/IEC 9646-3 Version 2 Delivery 9.6

8. Qualifier (e.g. error, omission, clarification required):
Error - inconsistency

9. References in documernk.g. page, clause, figure and/or table numbers):
BNF productions 122 and 739

10. Nature of defectcomplete, concise explanation of the perceived problem):
The current TTCN BNF is not consistent with respect to the ASN.1 94
definitions because they include many features which have no support within the
TTCN environment. The TTCN BNF references Value and Type definition$
from X.680. Within the definitions of these terms X.680 uses productions f
X.681 (Information Object Specification) and X.683 (Parameterization of
ASN.1 Specifications). The current TTCN environment provides no suppart for
the former and only partial support for the latter.

11. Solution proposed by the submittetoptional):
Redefine in the TTCN specification a set of ASN.1 productions from X.68(
removing all references to the new features introduced by ASN.1 94.

12. Editor's responsgany material proposed for processing as a technical corrigendum toj,

amendment to, or a commentary on the International Standard or DIS final text is attachefd

separately to this completed report):

fom

256 TR 101 101 V1.1.1 (1997-08)

Information Technology - Open Systems Interconnection -

Conformance testing methodology and framework -

Part 3: TTCN

Draft Technical Corrigendum for defect report 9646-3/

In A.3.3.10.5, rule 122, immediately preceding the static semantics add the following text:

For the purposes of TTCN, the following productions in ISO/IEC 8824-1 (1994):

BuiltinType::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDVType |
EnumeratedType |
ExternalType |
InstanceOfType |
IntegerType |
NullType |
ObjectClassFieldType |
ObjectldentifierType |
OctetStringType |
RealType |
SequenceType |
SequenceOfType |
SetType |
SetOfType |
TaggedType

ReferencedType ::=
DefinedType |
UsefulType |
SelectionType |
TypeFromObiject |
ValueSetFromObjects

DefinedType ::=
Externaltypereference |
typereference |
ParameterizedType |
ParameterizedValueSetType

Elements ::=
SubtypeElements |
ObjectSetElements |
“(* ElementSetSpec “)"

are redefined to be

BuiltinType::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDVType |
EnumeratedType |
ExternalType |
IntegerType |
NullType |
ObjectldentifierType |
OctetStringType |
RealType |
SequenceType |
SequenceOfType |
SetType |
SetOfType |
TaggedType

ReferencedType ::=

257 TR 101 101 V1.1.1 (1997-08)

DefinedType |
UsefulType |
SelectionType

DefinedType ::=
Externaltypereference |
typereference

Elements ::=
SubtypeElements |
“(* ElementSetSpec “)”

In A.3.3.37 Values, rule 739, immediately preceding the static semantics add the following text:

For the purposes of TTCN, the following productions in ISO/IEC 8824-1 (1994):

BuiltinValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDVValue |
EnumeratedValue |
ExternalValue |
InstanceOfValue |
IntegerValue |
NullvValue |
ObjectClassFieldValue |
ObjectldentifierValue |
OctetStringValue |
RealValue |
SequenceValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedValue

ReferencedValue ::=
DefinedValue |
ValueFromObject

are redefined to be

BuiltinValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDVValue |
EnumeratedValue |
ExternalValue |
IntegerValue |
NullvValue |
ObjectldentifierValue |
OctetStringValue |
RealValue |
SequenceValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedValue

ReferencedValue ::=
DefinedValue

258 TR 101 101 V1.1.1 (1997-08)

The submitter of a defect report shall complete items 2 to 4 and 7 to 10 and, optionally, item 11 and shall send the form
to the convenor or secretariat of the WG with which the relevant editor's group is associated. The WG convenor or
secretariat shall complete items 1, 5 and 6.

1. Defect Report Number: 9646-3/

2. Submitter: ETSI TC MTS
3. Addressed to: JTC1/SC21/WGL1 editors' group on ISO/IEC 9646-3

4. WG Secretariat: AFNOR

5. Date circulated by WG secretariat:

6. Deadline on response from editor:

7. Defect Report concerningnumber and title of International Standard or DIS final text):
ISO/IEC 9646-3 Version 2 Delivery 9.6

8. Qualifier (e.g. error, omission, clarification required):
Error - inconsistency

9. References in documernte.g. page, clause, figure and/or table numbers):
Table A.3 -- ASN.1 Reserved Words P171

10. Nature of defectcomplete, concise explanation of the perceived problem):

The ASN.1 reserved words defined in the TTCN specification table A.3 spgcify
reserved words from ASN.1 90 not ASN.1 94.

11. Solution proposed by the submitte(optional):

Specify ASN.1 94 reserved words in TTCN table A.3.

12. Editor's responsgany material proposed for processing as a technical corrigendum toj
amendment to, or a commentary on the International Standard or DIS final text is attache
separately to this completed report):

O

259 TR 101 101 V1.1.1 (1997-08)

Information Technology - Open Systems Interconnection -

Conformance testing methodology and framework -

Part 3: TTCN

Draft Technical Corrigendum for defect report 9646-3/

Change Table A.31t0:
Table A.3:--ASN.1 Reserved Words

ABSENT EXTERNAL OPTIONAL
ABSTRACT-SYNTAX FALSE PDV
ALL FROM PRESENT
APPLICATION GeneralString PRIVATE
AUTOMATIC GeneralizedTime PrintableString
BEGIN GraphicString REAL
BIT IA5String SEQUENCE
BMPString IDENTIFIER SET
BOOLEAN IMPLICIT SIZE
CHARACTER IMPORT STRING
CHOICE INCLUDES SYNTAX
CLASS INSTANCE T61String
COMPONENT INTEGER TRUE
COMPONENTS INTERSECTION TeletexString
CONSTRAINED ISO646String TYPE-IDENTIFIER
DEFAULT MAX UNION
DEFINITIONS MIN UNIQUE
EMBEDDED NULL UNIVERSAL
END NumericString UniversalString
ENUMERATED OBJECT UTCTime
EXCEPT ObjectDescriptor VideotexString
EXPLICIT OCTET VisibleString
EXPORT OF WITH

Add the following note at an appropriate place :

/* NOTE - Table A.3 contains a humber of keywords which at present have no support within this standard.
These keywords have been reserved to facilitate future integration of ASN.1 1994 features into TTCN */

260 TR 101 101 V1.1.1 (1997-08)

The submitter of a defect report shall complete items 2 to 4 and 7 to 10 and, optionally, item 11 and shall send the form
to the convenor or secretariat of the WG with which the relevant editor's group is associated. The WG convenor or
secretariat shall complete items 1, 5 and 6.

1. Defect Report Number: 9646-3/

2. Submitter: ETSI TC MTS
3. Addressed to: JTC1/SC21/WGL1 editors' group on ISO/IEC 9646-3

4. WG Secretariat: AFNOR

5. Date circulated by WG secretariat:

6. Deadline on response from editor:

7. Defect Report concerningnumber and title of International Standard or DIS final text):
ISO/IEC 9646-3 Version 2 Delivery 9.6

8. Qualifier (e.g. error, omission, clarification required):
error - inconsistency

9. References in documernte.g. page, clause, figure and/or table numbers):
BNF productions 739

10. Nature of defectcomplete, concise explanation of the perceived problem):

The current TTCN specification incorrectly references an ASN.1 94 produgtion
from X.680 for DefinedValue

11. Solution proposed by the submitte(optional):

Include the correct reference from ASN.1 94 .

12. Editor's responsgany material proposed for processing as a technical corrigendum toj
amendment to, or a commentary on the International Standard or DIS final text is attache
separately to this completed report):

O

261 TR 101 101 V1.1.1 (1997-08)

Information Technology - Open Systems Interconnection -

Conformance testing methodology and framework -

Part 3: TTCN

Draft Technical Corrigendum for defect report 9646-3/

In A.3.3.37 Values, rule 739, change the text to read:

739 Value ::= LiteralValue | ASN1_Value [ASN1_Encoding]

/* REFERENCE - Where ASN1_Value is the non-terminal Value as defined in ISO/IEC 8824-1: 1994. For the purposes of TTCN,
the following production defined in ISO/IEC 8824-1: 1994:

DefinedValue ::= Externalvaluereference | valuereference | ParameterizedValue
is redefined to be:
DefinedValue ::= ConstraintValue&Attributes | valuereference

This means that ASN.1 external references are not allowed in TTCN, but the full possibilities of ConstraintValue&Attributes as
defined in production 562 are allowed within ASN.1 values in TTCN. This means that expressions, matching symbols, constraint
references, value lengths, IF_PRESENT, and ASN.1field encoding operations are all included . */

/* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of operations. */

262 TR 101 101 V1.1.1 (1997-08)

The submitter of a defect report shall complete items 2 to 4 and 7 to 10 and, optionally, item 11 and shall send the form
to the convenor or secretariat of the WG with which the relevant editor's group is associated. The WG convenor or
secretariat shall complete items 1, 5 and 6.

1. Defect Report Number: 9646-3/

2. Submitter: ETSI TC MTS
3. Addressed to: JTC1/SC21/WGL1 editors' group on ISO/IEC 9646-3

4, WG Secretariat: AFNOR

5. Date circulated by WG secretariat:

6. Deadline on response from editor:

7. Defect Report concerningnumber and title of International Standard or DIS final text):
ISO/IEC 9646-3 Version 2 Delivery 9.6

8. Qualifier (e.g. error, omission, clarification required):
Semantic Error

9. References in document.g. page, clause, figure and/or table numbers):
BNF productions 739

10. Nature of defectcomplete, concise explanation of the perceived problem):

The redefinition of the ASN.1 94 identifier DefinedValue in rule 739 of the
TTCN specification allows the production of syntactically valid constructs
which have no sense or undefined behaviour. The problems are associated with
the use of the ASN.1 productions NumberForm, CharsDefn,
Exceptionldentification, NamedNumber, NamedBit and ClassNumber all of
which include DefinedValue in there definition. The TTCN redefinition of
DefinedValue allows access to TTCN constraints in these ASN.1 productigns
which often leads to syntactically valid but semantically undefined construgts.

11. Solution proposed by the submitte(optional):

Due to the technical complexity of this problem no full solution is available|at
this time. A solution for this defect is the subject of further investigation within
ETSI TC MTS.

12. Editor's responsgany material proposed for processing as a technical corrigendum toj,
amendment to, or a commentary on the International Standard or DIS final text is attachef
separately to this completed report):

263 TR 101 101 V1.1.1 (1997-08)

The submitter of a defect report shall complete items 2 to 4 and 7 to 10 and, optionally, item 11 and shall send the form
to the convenor or secretariat of the WG with which the relevant editor's group is associated. The WG convenor or
secretariat shall complete items 1, 5 and 6.

1. Defect Report Number: 9646-3/

2. Submitter: ETSI TC MTS
3. Addressed to: JTC1/SC21/WGL1 editors' group on ISO/IEC 9646-3

4, WG Secretariat: AFNOR

5. Date circulated by WG secretariat:

6. Deadline on response from editor:

7. Defect Report concerningnumber and title of International Standard or DIS final text):
ISO/IEC 9646-3 Version 2 Delivery 9.6

8. Qualifier (e.g. error, omission, clarification required):
Error - omission

9. References in document.g. page, clause, figure and/or table numbers):
BNF productions 736

10. Nature of defectcomplete, concise explanation of the perceived problem):

The current TTCN specification omits two ASN.1 94 string types in BNF
production 736.

11. Solution proposed by the submitte(optional):

Include all string types from ASN.1 94 .

12. Editor's responsgany material proposed for processing as a technical corrigendum toj,
amendment to, or a commentary on the International Standard or DIS final text is attachef
separately to this completed report):

264 TR 101 101 V1.1.1 (1997-08)

Information Technology - Open Systems Interconnection -

Conformance testing methodology and framework -

Part 3: TTCN

Draft Technical Corrigendum for defect report 9646-3/

In A.3.3.36.1 Predefined types, rule 736, change the text to read:

736 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString |
IA5String | GraphicString | GeneralString | T61String | ISO646String |
BMPString | UniversalString

265 TR 101 101 V1.1.1 (1997-08)

The submitter of a defect report shall complete items 2 to 4 and 7 to 10 and, optionally, item 11 and shall send the form
to the convenor or secretariat of the WG with which the relevant editor's group is associated. The WG convenor or
secretariat shall complete items 1, 5 and 6.

1. Defect Report Number: 9646-3/

2. Submitter: ETSI TC MTS
3. Addressed to: JTC1/SC21/WGL1 editors' group on ISO/IEC 9646-3

4. WG Secretariat: AFNOR

5. Date circulated by WG secretariat:

6. Deadline on response from editor:

7. Defect Report concerningnumber and title of International Standard or DIS final text):
ISO/IEC 9646-3 Version 2 Delivery 9.6

8. Qualifier (e.g. error, omission, clarification required):
Error - omission

9. References in documernte.g. page, clause, figure and/or table numbers):
Page 27, Table 2 - Predefined CharacterString Types

10. Nature of defectcomplete, concise explanation of the perceived problem):

The current TTCN specification omits two ASN.1 94 string types in Table 2.

11. Solution proposed by the submitte(optional):

Include all string types from ASN.1 94 in table 2.

12. Editor's responsgany material proposed for processing as a technical corrigendum toj,
amendment to, or a commentary on the International Standard or DIS final text is attache
separately to this completed report):

o8

266 TR 101 101 V1.1.1 (1997-08)

Information Technology - Open Systems Interconnection -

Conformance testing methodology and framework -

Part 3: TTCN

Draft Technical Corrigendum for defect report 9646-3/
In Table 2 Predefined CharacterString Types, change the text to read:

Table 2: Predefined CharacterString Types

NumericString
PrintableString
TeletexString
VideotexString
VisibleString
IA5String
GraphicString
GeneralString
T61String
1SO646String
BMPString

UniversalString

267

TR 101 101 V1.1.1 (1997-08)

History

Document history

V.1.1.1

August 1997

Publication

ISBN 2-7437-1693-2
Dépot légal : Aot 1997

	Intellectual Property Rights
	Foreword
	Introduction
	1	Scope
	2	References
	Appendix 1: The Tree and Tabular Combined Notation (TTCN)
	Appendix 2: Defect reports
	History

