ETSIES 204 915-13 vi.1.1 oos-0s)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 13: Policy Management SCF

(Parlay 6)

D

2 ETSI ES 204 915-13 V1.1.1 (2008-05)

Reference
DES/TISPAN-01032-13-0OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
© The Parlay Group 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™ s a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 204 915-13 V1.1.1 (2008-05)

Contents

INtellectual Property RIGNES.... ..ottt b e b b nenn e 9
0 Yo (o OSSR 9
1 o010 RSP 10
2 REFEIBINCES ...ttt bt bttt et s Rt e Rt s bt e b e et e s e et et e st eseebeneeebe st e s e e ens 10
3 Definitions and aDbreVIBLIONS...........eieeie ettt re e s be s e e stesneeneeseeeneeneenreas 10
31 D= T 1] (o] TSP P PP USROS 10
3.2 ADDIEVIBLIONS ...ttt et e bt h e st a et e e ee e e bt e b eheeh e e ae e b e bt eh e e Rt e b e b e bt bt eneene e e re e 10
4 POlICY ManagemENL SCI........c.ooiiece ettt et e st e re e besbeeaaesbeese e tesaeessesreeneesenreas 11
5 SEOUENCE DIAOIAITIS ...ttt sttt e et eh e bt ss bt st e s e s e e e e e a e e b e eheeb e nE e s e e e s e e ese e st nbeanenbeanennennan 11
51 USE Of POIICY REPOSITOIYceeueitiieiietiieestesee ettt bbbt b et b et nb e bt 11
52 Introduce condition and aCtioN INEO FUIE.........co.eiieieee ettt ne e e 13
5.3 (OIS (Y=Y o | OSSR 15
54 Create and MOiTY QOMIBINcceiiieiee et e st et e e e teetesaesaeesaeesaeenseenseenseeseesneessensens 17
55 ASP offering services to prepaid SUDSCIIDEIS.........ooio i 19
5.6 Create Signature for an evalualion CONLEXL...........cccveruieieriesiee e se s e seeste e e e sreesreeseeseeenseesaeenaesseesrens 21
5.7 Request EValuation Of POLICIES.........ccci ittt st e et e s e s e sre e teesaeeseensenneennes 23
5.8 Register for and Receive Natification Of aPOliCy EVENL........ccccoveeieiiiese e 23
6 (O = Sy B o = o SRS 24
6.1 PM ProviSioning SCF Class DIBgraImIS.ccuieeririeiriirieesiesieiesieseeiesseseesessesse s ss e sse s ssessesessessessssessenseses 25
6.2 PM Policy Evaluation SCF Class DIaQramS.........c.coueiriiieireeneseesiesie st sse s s ees 27
7 The Service Interface SPECITICALIONS........cccoouiiiiriiierer e 27
7.1 Interface SPECITiCatiON FOIMELccciiie ettt ae e reesre e te e teeneeeneeeneennes 27
711 INEEITACE ClBSS ...ttt et e e ekt bt b et e e e e e s e e b e sh e eb e e heeae e e e e e nbesbeebe e e ennennea 27
7.1.2 K= 10 To 0 == ol o (o] 27
713 PaArAMELES GESCITPIIONS. ...ttt ettt ettt b e et b et b et et b e et b e se et b e bt nbe b 27
714 IS (=1 o L= PR 28
7.2 RS S 1L = o RS 28
721 INtErface Class IPINTEITACE.......c i bbb et b e et sb e 28
7.3 S Vel g 1= = o= OSSP 28
731 OVEBIVIBWW ..ttt ettt e ettt sttt e st et e e s e et e saeeaeeaeemeemeeae e EeeReeeeeseemeemeese e besaeeneeneanseaseseesaesneeneensenses 28
74 GENENIC SEIVICE INLEITACE ...ttt bbbttt e s bese e eb e s bt eb e e e e s e besbeebesaeenee e ennas 28
74.1 INEEITACE ClaSS IPSEIVICEciieieeie ettt e e s e s esae e s te e teenteenaessaeste e te e teenseeneesneennes 28
74.11 MELNOO SEECAIIDACK() ...vvevereeieetesieieie ettt sttt se et see e ebesae e ebesbeneenens 29
7.4.1.2 Method setCallbaCkWithSESSIONID()....eveverieieririereeiesieieie ettt sttt st see et s sesbesbeseenens 29
8 Policy Management (PM) INtErface ClaSSeS......cciiiieiiiiece ettt sttt ere s 29
8.1 PM Provisioning SCF INLErfate CIASSES.......c.ciiiiiriiiirie ettt sttt sne s 29
811 Interface Class [PPOHICYMBNAGESooriiieei ettt st b et b e bbb 30
8111 Method CreateDOMEIN()eiveuerrereeerie ettt b bbb e bt bt et sa e b b neenea 30
8112 MELhOA GEIDOMEIN()veueeveteeeterteeet ettt sttt sttt bbb eb e et eb e s b et b e e e e ebese et ebesbe e ebesbennenen 31
8.1.1.3 Method remMOVED OMAIN()c.veeureeieiieseesee st e st erte e st e s e e s e e e e teeseessaesseesseesseesseenseeneesneesssesseensensseessnns 31
8.1.14 [\V/N= 1 aTe o lo (B To] = 0[O0 1U g1) IS 31
8.1.15 VK= 1o lo ol { B o] nqt= TN U= =[] (SR 31
8.1.1.6 Method findMatChiNgDOMAINS().......veiveieeieeieese et ee e e te e sre e e e s e e s reesre e e esbeesaesseesreesnens 32
8.1.17 Method CreatE€REPOSITONY (). . vvereereeierieiiesee st e st et e e teetesrae s esteesteesteeeeaseeeseesseesseenseenseeneenseesseesenns 32
8.1.1.8 MethOd GEIREPOSITONY()veeuveeeieeiieeeeseesee st e et e et e e e tessaesseesaeesreesaeesseeseenseensesnaenseessennsens 32
8119 Method remMOVEREPOSITONY() «..eveueererrereererterieiesie sttt ettt b e b b se bt be e besbeseesesae e ebesbeneenens 33
8.1.1.10 Method getREPOSITOIYCOUNL(). ... ceverreueererreeetestese ettt see sttt st et e e b e se b sbe e ebesae e ebesbennenens 33
81111 Method getREPOSITOrYITErGEON().....c.erveeererrereeiiete sttt sttt ettt e b b e b sa e b b seenea 33
81112 Method SEArtTrANSACHION()veueevereeeeteriee ettt sttt ettt et b e et b e et eb e se et ebesre e ebesrennenea 34
81113 Method COMMITTFANSACHION()eveeererteeetirtere ettt sttt b bbbt sb e b sb e b e see e b e srennenea 34
8.1.1.14 VT oo =T T g i = 1= ox A e TS 34

ETSI

8.12
8121
8.1.2.2
8.1.23
8124
8.1.25
8.1.3
8.131
8.1.3.2
8.1.33
8.1.34
8.1.35
8.1.3.6
8.1.3.7
8.1.38
8.1.39
8.1.3.10
8.1.311
8.1.3.12
8.1.3.13
8.1.3.14
8.1.3.15
8.1.3.16
8.1.3.17
8.1.3.18
8.1.3.19
8.1.3.20
81321
8.1.3.22
8.1.3.23
8.1.3.24
8.1.3.25
8.1.3.26
8.1.3.27
8.1.3.28
8.1.3.29
8.1.3.30
8.1.331
8.1.3.32
8.1.3.33
8.1.3.34
8.1.3.35
8.1.3.36
8.1.3.37
8.1.3.38
814
8.14.1
8.14.2
8.14.3
8.144
8.1.45
8.1.4.6
8.14.7
8.1.4.8
8.1.4.9
8.1.4.10
81411
8.1.4.12
8.1.4.13
8.1.5
8.151
8.1.5.2

4 ETSI ES 204 915-13 V1.1.1 (2008-05)

INLEITACE ClaSS IPPOIICYveeieeiece ettt ste et e e e e saeesae e taesteesse e seenseeneenneesnns 35
ATETTDULES. ...t e bbbt he et e e e b e s et e b s bt e R e et e e e neesbenbesaeer e e e enne e 35
V= oo o VAN 1] T 1= SR 36
MELhOO SELATIIIULE() ...vveeveseeeete ettt sttt et e se et et esbe e ebesbeneenens 36
Y= oo e TN 1] 10 1= SR 36
MELhOO SELATIIIULES() ...veveeeeieie ittt st sttt et e se et et esae e b e sbeneenens 37

Interface Class IPPOIICYDOMEINcoueiiirieieie ettt sttt bbbt b e bbb 37
N T o0 =R 39
Method getParenNtDOMAIN()c.eoveeererreeerertereete sttt e b b et e e b b e e b e see e ebesee e ebesae e ebesbennenens 40
Method CreateDOMEIN()eiveuerrereeierie ettt b bbbt b e e bt bt eb e e ne b e sreneeneas 40
MELhOA GEIDOMEIN()veueeveteeeterteeet ettt sttt ettt b e e eb e a e eb e s b et b sa e e et e se et ebesbe e ebesbennenens 40
Method remMOVED OMAIN()c.veereeieeieseesee st e st este e e st e s e e s e e e e e estessaesseesseesseesseensesneesneesssesseessenssenssnns 41
[\V/N= 1 aTe o lo (B To] = [0 1U 11) IS 41
Method getDOMAINITEIALON() ...eveeiveeieeieeie ettt e et e e ste e e sreesreesreesteenteeseessaesnaesseeseens 41
Y K= oo o= 1] 01U o) S 41
V= 1 oo o (] oo () SR 42
MethOd rEMOVEGIOUD() ...uveeeeeereeeteesieesieesteeieesteseeseesseesseesseesse e e estesseesseesseesseesseesseeseenseassessenssenssenssnes 42
MeEthOd GELGIOUPCOUNT()vveveeeeeetereeieete sttt sttt ettt st e b e et et se e e b sb e e ebesae e ebesbennenens 42
Method GELGIOUPITEIGION()eeveeeeertereeieete sttt sttt st b et se e b e e b se e ebesn e b e srenene 43
MELhOd CrEALERUIE()......c.eeee ettt bbbt et eb e e e b sre e ene 43
MELNOO GEIRUIE() ...ttt ettt bbbt b e b e bt s b et et e sbe e b e b e e ene 43
MELhOd FEMOVERUIE()cveeetiiteieeieet ettt b e et b e et b e et eb e et et sa e b e sbe e ene 44
MEthOd GEIRUIECOUNL()vveeveeeeeterteeetest ettt ettt b e bbb eb e sa e b e sbe e ene s 44
VK= oo e LU =N (= o] () R 44
Method createEVentDEfiNItION()eeieeiie e et sreennees 44
Method getEVENtDEfiNITION()ecveeieiee et e e re et e esaesnaesnaesreesaees 45
Method remoVEEVENtDEFTNITION()veieeieeieeie et et naesnaesreennees 45
Method getEventDefinitioNCOUNL()cieeieeieerie it ee st e st e e enaesnaesreennees 45
Method getEventDefiNitioNITEraLOr()veieereeee et ees et snaesnaesreennees 46
Method CreateV ariallESEL()cviereeirere ettt b e eb e 46
Method getV ariabIESEL()erveeererieerie ettt e b e ettt b et b e s a e b sr e ene 46
Method remoVEV @TADIESEL()verveeerreeeeirte ettt b bbb ene 47
Method getVariablESEICOUNL()cveverrereeririereeeste ettt b bbb e neenen 47
Method etV ariablESEHITEIEION()cverveeererieeerertee ettt eb et b e b e b e e b e e b b neenea 47
Method Create€V ariablE()ocee ettt e s e s e s aeesneenteeneeeneeenaesneesreesneas 47
Method SEtVariablEV A UE()ceieeieiieeesie ettt ettt sae e ebesbeseenens 48
Method getV ariall €TYPE() ...veeieeeee ettt e ee e s esaeesaeeneenseenneenaennaesraesaens 48
Method getVariall @V aUE()........eoiuieieee ettt ee e s sae e teenteeneeenaesnaesraenneas 48
K= oo la T VA= T T o] =) SR 49
Method remMOVEV @TEIIE()eeieeieee ettt esre e te e e enteenaeenaesreesneas 49
MEthOd CreatESIGNAEUNE() ... eeevereeeetertereet sttt sttt sttt ettt b e et et bese et e be et esa e e ebesbeneren 50
MELNOO GEESIGNALUIE()eveeeieeteieeeet ettt b bbbt b e e bt sb e e et sa e e b e sre e ene 50
Method remMOVESIGNEEUIE()eiveeeeerrerietertere et st sttt sttt s sb e et b e e et bese e e b se et ebesae e ebesbennenens 50
Method getSigNALUIECOUNL()veveeerrereeieetereeieete sttt et se et e e b e e e b e e e b e sb e e ebesae e ebesrennenens 50
Method getSigNALUFEITEIBEON()eveueerereeeerertere ettt ettt b e e b e et eb e et b e st sn e b sbennenen 51

INtErface Class IPPOICYGIOUPc.citiieieierieeete sttt sttt sttt et b e et b et b e et b e et be et sbe s 51
ATETTDULES. ...t e bbbt he et e e e b e s et e b s bt e R e et e e e neesbenbesaeer e e e enne e 52
Method getParentDOMEIN()coieeieeieiie ettt te et e s e s esreesaeeteenreennessaesseesseesrens 53
VK= oo le T L= (] {011 o S 53
Y K= oo o= 1] 01U o) S 53
Y= 1 oo o (] (oo) SR 54
MethOd rEMOVEGIOUD() ...uveeuveeeeeeriesieesieeseesieesteesteesesseesseesteaseeseeteaseesneessessseesseesseenseensenssessenssenssenssees 54
MEthOd GELGIOUPCOUNT()vveeveeeieeterieieete sttt sttt st et b et b e b b e bt b e se bt sbeseebesae e ebesbennenens 54
MeEthOd GELGIOUPITEIGION() ... eeveeeeeeterieieete sttt ettt bbb e b b et b e bt s b e se b e sae e b e srennenea 54
MELhOA CrEALERUIE()......c.eeve ettt b e ettt b e et a e b b neenen 55
MELNOA GEIRUIE() ...ttt bbbt b e b e b e sb et b e s b e ebesbe e ene 55
MEthOd FEMOVERUIE() ...ttt et b et b et b e et b e se et et sa e ebesbe e ene 55
VK= 1o o la T {1 = o S 56
VK= oo e LU =N (= o] () S 56

Interface Class | PPOII CYREPOSITONYciiiiieiiei e ee et e ee e e e e s e aeeteesaesraesteesre e seeseensesneesnes 56
ATETTDULES. ...t e bbbt he et e e e b e s et e b s bt e R e et e e e neesbenbesaeer e e e enne e 57
Method getParentREPOSITONY() ...veveeeereeiee e st ere et see st te e s sre e s e saeere e e snaesnaesnaesreesaees 58

ETSI

8.153
8.154
8.1.55
8.1.5.6
8.15.7
8.1.58
8.1.5.9
8.1.5.10
8.1.5.11
8.1.5.12
8.1.5.13
8.1.5.14
8.1.5.15
8.1.5.16
8.1.5.17
8.1.6
8.16.1
8.1.6.2
8.1.6.3
8.1.64
8.1.6.5
8.1.6.6
8.1.6.7
8.1.6.8
8.1.6.9
8.1.6.10
8.1.6.11
8.1.6.12
8.1.6.13
8.1.6.14
8.1.6.15
8.1.6.16
8.1.6.17
8.1.6.18
8.1.6.19
8.1.6.20
8.1.6.21
8.1.7
8171
8.1.7.2
8.1.7.3
8.1.8
8.181
8.1.9
8.191
8.1.9.2
8.1.9.3
8.1.10
8.1.10.1
8.1.10.2
8.1.10.3
8.1.10.4
8.1.10.5
8.1.10.6
8111
81111
8.1.12
8.1121
8.1.13
8.1.13.1
8.1.14
8.1.14.1

5 ETSI ES 204 915-13 V1.1.1 (2008-05)

Method CreatE€REPOSITONY (). . vvereererieriteiie it e st e st et eteeteeaesrae s e s e e steesseeeeaseesseesseesseenteesseeneesneessanssnns 58
MethOd GEIREPOSITONY()veeuveeeieeiieseeseestee st se et e st e et e e tessaesseesaeesseesaeesseenseenseensessaenseessensenn 58
Method reMOVEREPOSITONY()vveeueeieeeseeiieiee st et erteete et e st e st e e e teesteetesaesseesseesseesseenseesesseesseessenssnns 59
Method getREPOSITONYCOUNT().......veeeerieeseesieeseesteete et e et e s et e e e e e teeeesaesseesneesseenseenseensessaesseesseesaens 59
Method gEtREPOSITONYITEIrGLON(). ... eiverreesreesieesieeiteeeeeee st e e e e e e e e eaesaesreesreesaeesseeseenseesseesaesseesseessnns 59
(VK= 1o e o= 1= @] o 1o o) R 60
MEthOd GELCONAITION() .+..eveveueerereeeet ettt ettt et b e et b e et et se e e ebesae e b e sbennenea 60
Method remoVECONDITION()......cerveeererieiete ettt b bbbt b e e bt bese b sa e b e b nnenea 60
Method getCoNditiONCOUNL()cveuerrereeeertereeieeie sttt ettt et b e et et e et sn e e b srennenens 61
Method getConditiONITErGEON()eveverreeererteiere sttt eb et b et b e et b e e ebesa e b sbeneenea 61
MELhOO CrEALEACTION() ...vveveeeteiteeet ettt b et b e b bt b e b e bt se et et sa e ebesbenneneas 61
V=1 g0 o o o 1 o) SR 62
Method rEMOVEACTION()veeieeieeie ettt ettt e st e e e e te et e s aesseesneesaeenseenseensesnaenseessennsens 62
[\V/T= 1o e lo < ¥ A ox o (O U | { () RS 62
(VK= 1o e o Voo o g1 == o) ISR 62
Interface Class IPPOIICYRUIE...........cui ittt et et e e be e teeteennesneennes 63
ATETTDULES. ...t e bbbt he et e e e b e s et e b s bt e R e et e e e neesbenbesaeer e e e enne e 65
MEthOd GEIPar€NEGIOUD()vveevereeeerterieieete sttt st se ettt sttt ettt st b e et b e se bt b e seeseebesae e ebesbennenea 67
Method getParenNtDOMAIN()c.eovereererteeerertereere sttt se bttt e e b e et ebe e e e ebesee e ebesee e ebesbennenens 67
Method Create@CONAITION() ... cveverreeererieiet ettt eb et sr et se et se e ebesa e b e sbeneenen 67
MEthOd GELCONAITION() ...ttt sttt sttt et b e et b e et se e ebesae e b e sbennenea 68
Method remoVECONDITION()......ceiveerrerieiete ettt b e et b e et eb e e ne b e b nnenea 68
Method getCONAItIONCOUNL()eveuerrereeierrereeeete sttt sttt sr e eb b e b b e b sb e e ebesee e b e srennenen 68
[\V/N= 1o o o (@Xe] o [N u Ko a1 L= o) ISR 69
(VK= 1o e o == (=YY ot i o o) SR 69
V=1 g0 o o o 1 o) SR 70
Method rEMOVEACTION()veeieeieeie e see ettt ettt e s et e e e st e e teetesseesseesneesae e seenseensesnaenseensensenn 70
(VK= 1o e lo < VA ox o (@ U | { () SRS 70
(VK= 1o e oV oo o g1 = o) ISR 70
Method setValidityPeriodConditionBYNaME()ccvrerieiririeire et 71
Method setValidityPeriodCoNditioN()oereererieererieere e e eb e 71
Method getValidityPeriodCondition()ccoeerereerereere et eb e 71
Method unsetValidityPeriodConditioN()eoeeerereeereiee ettt eb e seenen 71
Method SEECONITIONLISI() +..veueereeeeeterteiet sttt sttt sttt e b e b ebesa e ebesreeenen 72
(VK= 1o e o (@] 0o [N Koo I) TS 72
VK= oo IS = 7 ok o | N) SR 72
VK= 1o o lo Ao o g) S 72
Interface Class |PPOIICYCONITIONoceiiiecieece ettt e s e te e e e teeteeneeneeenes 73
ATETTDULES. ...ttt b et b bt ae e e e b e b s et e bt s ae e b e et et e e e e sbeebesaeere e e e e 74
Method getParentREPOSITONY() ...vcveeeeieeiee e sttt ee et sre e e e saeeee e e snaessaesraesreesnens 75
Method QEtPar€NERUIE()cueiuieeeiitiee ettt b e e b e sa e b b nnenea 75
Interface Class |pPolicy TimePeriodCONitiON ..ot 75
N T o0 =R 76
Interface Class IPPOHICYACIIONc.tiiieiieee ettt st b e et st n e 78
N T o0 =SS 79
Method getParentREPOSITONY()cceerieerrerieeete sttt sttt st sb e e e b e et eb e e e b e b neenen 80
Method gEIPareNtRUIE()ccveeieeie ettt et reeae e e enteesaesnaennaesreesnnns 80
Interface Class |pPOliCYEVENtDEfINITIONccooiiieice et 80
ATITTDULES. ...ttt e bbb e bt he e h et e e s et e bt e se e s e e e e b e besheebeeneenne e entes 81
Method SetReqUITEdALLIIDULES()cveeieiee et ennaesreennees 8l
Method SetOPtiONAIATIITDULES()ecieeeiee ettt s sae e e e e ssaesnaesreennees 82
Method getReqUIFEAATIIDULES()cveeireiee ettt et esna e sraesnaesreennees 82
Method getOptioNal ATEIIDULES()c.eiviieeirieeee ettt b e 82
Method getParentDOMAIN()c.civereererreiererteiete sttt eb et b e et seese b e e st b e e e bt sbeseebeebesae e ebesbennenens 82
Interface Class [|PPOlICYEVENTCONITIONcoiiirieiiie et 83
N T o0 =TSR 83
Interface Class |pPoliCyEXPressionCONitiONciiereirieienireesie e 84
ATITTDULES. ...ttt e bbb e bt he e h et e e s et e bt e se e s e e e e b e besheebeeneenne e entes 84
Interface Class |PPOIICYEVENTACON...........cvecieiecie et e see e s sae et e e e e e teenteesse e teeteeneeeneesnes 85
ATIITDULES. ...ttt st b e bbbt e he e h e e e e s et e bt e ae e s e e e e b e besbenb e e e enne e entes 85
Interface Class | PPOli CYEXPIrESSIONA CHON.........ccuieiriieeeeseesieeeseeseeseesaeesreeaessee s e e se e teestees e eseeneesneesnes 86
ATITTDULES. ...ttt e bbb e bt he e h et e e s et e bt e se e s e e e e b e besheebeeneenne e entes 86

ETSI

6 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.15 Interface Class |PPOIICYITEIGLONcccueeeeeeeeeete e ee sttt ee e te e et eereesse e te e se e teeseennesneennes 87
8.1.15.1 AEITDULES. ...ttt bbbt bbbt e bbbt et 87
8.1.15.2 MEENOO GEELISI() -uvvveereieestet sttt b e n et b s 88
8.1.16 Interface Class |PPOIICYSIGNELUIE...........ccueiieiece e ee sttt e e e e e s te e teesteesaessaeste e te e teeseeneesneesnes 88
8.1.16.1 AEITDULES. ... bbbt b bbbt bR e Rt e Rt et 89
8.1.16.2 Method SetlNPUEV @Al ES().....ccveeeeeeie et s neete et e eneesnaesneesneennees 90
8.1.16.3 Method SetOULPULY @A ES()veueeririeietereeeete et b e et b e e eb e 20
8.1.16.4 Method getlNPUEV AIHTBDIES()c.eivieierieiet et b e ebesr e 90
8.1.16.5 Method getOULPULY ArTADIES()e.veueeierieieterieet sttt b e s b e eb e nnene 91
8.1.16.6 MEthOd SEEGIOUPNEAITIES()vveeveeeierterteieet sttt sttt et b e et b e et b e et b e e se et e sae e ebesbennenen 91
8.1.16.7 MEthOd SEtPOITCYROIES() ...ttt ettt b et b b et et sae e b e sbennenea 91
8.1.16.8 Method gELGIOUPNEAIMES()eeveeieeie e sie st e st e rte et e et et e e e e e eseesseesseesreesseeaseenseenseansesnaesseesseessnns 91
8.1.16.9 VK= 1o o le T (o] T] = S 92
8.1.16.10 Method getParentDOMEIN()eeivererie e see s ee et e s te e e st esre e tesaesseesaeeenseenaesneesseesenas 92
8.2 PM Policy Evaluation SCF INErfate ClaSSesS.......cuuiiieiieriiie e seeseesteete e sseeste e e estessaessaesseessessseesseenseensenns 92
821 Interface Class |PPOIICYEVAIMENAGESccciieiieiecie et e e ee e se e ste e e e st e te e te e teeteenesneesnes 93
8211 MEthOT EVAIPOIICY () ...v.vveueeereeisestee sttt 93
8212 MEthOd EVAIPOIICYREG() -..veveueerereeeeterieiet sttt sttt ettt b e s b e et b e e e et se et sae e b e sbennenea 94
8213 Method aDOMEVAIPOIICYREG(). ..+ .veverrereererrereeiertere et sttt sttt sttt sr ettt sb e e ebesb e e eb b neenea 94
8214 MELhOO GENEFAEEEVENT()veveeeetereeieete ettt ettt et b e et b e et b e e et s ae e b b neenea 95
8215 Method CreateNOLIfi CaETON()evevereeeeterieeete ettt e b e e b e e ne b e seenea 95
8216 Method destroyNOLfiCaLTON() ... veeererreerrereeiete ettt e b e et b e e e b e seenen 96
822 Interface Class IPAPPPOIICYDOMEINciveiririiieie ettt bbb et sb e 96
8221 [\V/N= 1ol = oTo g\ o (Ko o] o) SR 96
8.2.22 MEthOd EVAIPOIICYRES()c.vveuireireireeieie sttt bbbt 96
8.2.2.3 VK= e To =Y = 1 o] T enY =l) S 97
9 State TranSitionN DIBOIAMS........coiieeiece ettt s e et e et e s be e e e s besae e tesreeneesbesasesesreennesreenes 97
9.1 PM Provisioning SCF State Transition DiagramS........c.uoueerierieerenieeriesieesiesee s sre s s 97
9.2 PM Policy Evaluation SCF State Transition DiagraimS........c.coveereieerierineseesesie st 97
10 PM SEIVICE PrOPEITIES. ..ottt ettt st st e e bt bbb e e e e e e e bena e b b e nnennennas 97
11 Da@DEfINITIONS ...ttt bt s et r et s et b e e b et n e 98
111 Policy Management Data DEfiNITIONS..........c.ciueiiiieie et ese et e e e s e e tesaesneesreesreesneeseenneens 98
1111 QLI oL 0] FTon V(@] o] i T i 1Y o L= USSR 98
11.1.2 TpPolicyConditioNLISEEIEMENT ..o e 99
1113 TPPOl CYCONAITIONLISE. ...ttt b et b bbb et s b e e e 99
1114 TPPOl CYCONAITIONT YR ...ttt ettt b bbbt b bbb e st bbb st 99
11.15 TPPOICYACHONLISIEIEIMENLcuecvieieeieteet et bbbttt bbb e 99
1116 TPPOI CYACH ONLISE ...ttt bbbt b et b bbb et b b 99
11.1.7 TPPOI CY A CH ONT Y.tttk ettt h bbbkt b h e sb s s e b e b e st e b et s b e e e bt eb e e st ebe e e 99
11.1.8 QLI 0] T s Y < o | USSR 99
11.1.9 QI oL 0] FTon =Y Ao o S 100
11.1.10 TPPOHCYKEYWOITUSEL........cocueeieeie ettt te e e s e st este e e e e e e ssaesseesseesaeesaesneesaeesnnenseansennsenns 101
11.1.11 QI 010 T onY =l o SR 101
11.1.12 0] 0] FT0nY 5 To 0 ¢ o 1RSSR 101
11.1.13 IPPOlTCYDOMAINRESeceiitiet bbbt b bbb bbb 101
11.1.14 I PPOlTICYREDOSITONY ...ttt ettt bbbt b et b et b bt b e bbb e e et b et sb b 101
11.1.15 I PPOlTICYREPOSITONYRES ...ttt bbbt bbbt b 101
11.1.16 [PPOITICYGIOUD. ...ttt bbbt b bbbt b e et e bbb et b b 101
11.1.17 I PPOlTICYGIOUDPRES ...ttt b et b et b bbb 101
11.1.18 IPPOIICYRUIE ...ttt bbbt h bbb bt b e bbb et eb e e 101
11.1.19 IPPOIICYRUIERES ...ttt r et b et een e 102
11.1.20 PPl CYEVENIDEF I NITION ...ttt et e e s e e sseeste e tesneesneesneesaeenseensenns 102
11.1.21 I PPOlICYEVENDEfI NITIONRES ...t et ae e s neesneenreeneens 102
11.1.22 F AN o] o 1T oxY/ L] 1 4 o S 102
11.1.23 IPAPPPOIICYDOMAINRESooeiiieece ettt eesaessaesreesaeeseesanesneesneenseensenns 102
11.1.24 0] 0] FTonY /@] o 1 e o SR PR 102
11.1.25 IPPOlICYCONTITIONRES ...t bbb 102
11.1.26 IPPOliCY TiMEPETOACONMITION ...ttt bbb e 102
11.1.27 IpPolicy TimePeriodConditiONRES ..o 102
11.2 Data TypesfOr PM VariabIES.......c..coiiiiiie et 102

ETSI

7 ETSI ES 204 915-13 V1.1.1 (2008-05)

11.2.1 BN 010 T on YA S 102
1122 TPPOICYV BISEL. ...ttt b e bbbt b bbbt b e p et e 103
11.2.3 QI o0 TTonY = oo o LY o= 2SS 103
11.2.4 QI oLo] FTon = o I/ = S 103
11.25 BN o0 MoV A I8/ = | o S 103
11.2.6 BN oL 0) T on YA I8 = S 103
11.2.7 TPPOHCYNBMEV BIUE.......c.eiuiitieeiieteriee ettt b bbbt e s bbbt s e s e bt e e bt e e ens 104
11.2.8 TPPOHCYNBMEV BIUELISE ...ttt b bt bbb ne e 104
11.3 eBNF for Condition and ACHION EXPrESSIONS.........c ueertirieeriiieeriesiesese et b e be et be e b e e 104
11.31 2 F ST ol I L g« o SR 104
11.32 Definitions Of CONSLANT (LITEralS)oveveeriieeiriieerieeeste e 104
11.3.3 (D T T Yo Ko o= = (o] =SSOSR 105
11.34 Allowable arithmetic expressions & PrediCates.ceciecrieeriereere e ee e see e e esreesaeenseeeeens 105
11.35 ACCESSING VaTBIIES. ...ttt st ettt e e b e et e e be e e entesntesneesnnesneenseanseensenns 105
11.3.6 Allowable Condition and ACLiON EXPrESSIONS.........cccivieiieiieieeeeseeseeeeesae e seesseesaesneeseesseesseenseenseens 106
114 EXAMPIE SCENAITOScvieieiie e see sttt ettt e te e e e s te e s aeesae e teenteeaeessaesse e seenteansesaeesaeesaeenseenteenseansesnansnnns 106
115 EXAMPIE XML SCENAITOSeeieeeieieiteeie et eestee st e e e e ee st steeste e ae e e s se et e enteentessaesseesseesseenseenseenseensesnsennaesnens 108
12 Policy Management EXCEPLION ClIESSES.........ccuiiiiriiirieriesesieiee et 109
Annex A (normative): OMG IDL Description of Policy Management SCF...........c.ccceevevvvevennene. 111
Annex B (informative): W3C WSDL Description of the Policy Management SCF 112
Annex C (informative): Java API Description of the Policy Management SCF ... 113
Annex D (informative): Contents of 3GPP OSA R7 Policy Managementccccocevvnerenicncnnenn 114
Annex E (informative): Description of Policy Management for 3GPP2 cdma2000 networks......115
E.1l GENEral EXCEPLIONS.......ccuiiteeitet ettt sttt b et e e et b bbb e b e e e e st bbb e e s 115
E.2 SPECITIC EXCEPLIONS.eeitiieicie ittt ettt s s b st e s ae e e e s teeaeestesbeentesaesreensesneeneesrennes 115
E2.1 (O = TH ST S oo o TS 115
E.2.2 ClalSE 2: REFEIEINCES ...ttt et b bttt e e b s et b s st e se e e e b e s besbeebe e e enteneen 115
E.2.3 Clause 3: Definitions and abreViationS............ccoiiriiieeeee et e e s se e saesse e eneeseens 115
E24 Clause 4: Policy Management SCFcoiiiiiiieieeies et 115
E.25 Clause 5: SEUENCE DIAOIEIMSceiuirteietirieieie sttt sttt b e bbb st b b se b e s e st b e b e st sbe s eseebe e e st sbenbe e ees 115
E.2.6 ClauSE B ClaSS DIBGIAIMS.c.ciuirieuertirieieriisteerttst ettt se et sie et s b s e s bt b e bt st et eb e b e e e bt b e s e st abe s e st ebe st e st ebenbe e e 115
E.2.7 Clause 7: The Service Interface SPECIfiCaliONScoireiririeirier e 115
E.2.8 Clause 8: Policy Management INterface ClaSSES........cuuiierieiierie e sttt see s ettt 116
E.2.9 Clause 9: State TransSitioN DIagraMS........ccicverieiiieeiseeseeeseseeseeseeseesaeseesreesseeseassesseasseesseesseessesssesnsssnes 116
E.210 Clause 10: Data DEfiNITIONS........cciieieeieieriesie sttt sttt st be sttt se e s et sae et e sbeese e s e nbesbesbesseennenneneen 116
E.211 Clause 11: Policy Management EXCEPLiON ClIASSES........cccccviieieerierieeiie e sesseesteeteete e srae e teenseseesneesnes 116
E.212 Annex A (normative): OMG IDL Description of Policy Management SCF...........ccccoooevieeievinvcee e 116
Annex F (informative): ReCOrd Of ChaNQES........coceiieeee e 117
Nt 101 = 1 = 0TSSR 117
F.1.1 L SR 117
F.1.2 DL o< or= 1= o IO PSSP PSP U PSTURTPRSRURPRTN 117
F.1.3 11101/ PSS 117
e |V = 1 0o SR 117
F.2.1 INBW .t h bR R b e R R R R AR AR R R R R R R R e R R R Rt e bR e Rt nn b nna 117
F.2.2 = 1= o =0 S 117
F.2.3 1Y oo [L= o TSSOSO VTSP RPN 118
F.24 REMOVEX. ...ttt bbbttt b e e bt s bt bt he e st e st e ee e b e sh e eb e e aeeae e e et e b e sheebeeneenneneearas 118
G R B = = W B L= 1L Lo = SR 118
F3.1 L SR 118
F.3.2 1Yo T TSRS 118
F.3.3 11101/ PR S 118
S VLo oY oo 4 L= ST 118

ETSI

8 ETSI ES 204 915-13 V1.1.1 (2008-05)

F.4.1 L PSR POPR 118
F.4.2 = 1= o =0 S 119
F.4.3 1Yo 1 1= S 119
F.4.4 REMOVE. ...ttt b bbb b e bbb e h e e a e e a e e ne e b e sh e eb e e et eae e e e b e besheebeeneenneneentas 119
T e = o (o S 119
F.5.1 LSRR 119
F.5.2 IMLOTITIEA ...ttt ettt b ettt e e bt e et ese et ebe s st ese s et esesaebensssebenessebenssnebennnas 119
F.5.3 11101/ PSS 119
S O 1= RS UR 119
[TS (S 120

ETSI

9 ETSI ES 204 915-13 V1.1.1 (2008-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 13 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 204 915) is structured in the following
parts:

Part1: "Overview";

Part 2: "Common Data Definitions";
Part 3: "Framework";

Part4: "Cdl Control";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: " Policy Management SCF";
Part 14: "Presence and Availability Management SCF".
Part 15: "Multi-Media Messaging SCF";
Part 16: "Service Broker SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 6.0 set of specifications.

The present document isequivalent to 3GPP TS 29.198-13 V7.0.0 (Release 7).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

10 ETSI ES 204 915-13 V1.1.1 (2008-05)

1 Scope

The present document is part 13 of the Stage 3 specification for an Application Programming I nterface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Policy Management Service Capability Feature (SCF) aspects of the interface. All
aspects of the Policy Management SCF are defined here, these being:

. Sequence Diagrams.

. Class Diagrams.

o Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

o IDL Description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The references listed in clause 2 of ES 204 915-1 contain provisions which, through reference in this text, congtitute
provisions of the present document.

ETSI ES 204 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 6)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 204 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 204 915-1 apply.

ETSI

11 ETSI ES 204 915-13 V1.1.1 (2008-05)

4 Policy Management SCF

It is expected that more and more OSA services will use policies to express operational criteria. It is also expected that
network providers will host policy-enabled services that have been written by 3 party application service providers. In
order to manage policy information, control accessto it and to request evaluation of policies a policy management
service is needed. Consistent with this, a policy management provisioning manager, |pPolicyManager, and a policy
evaluation manager, |pPolicyEvaManager have been defined.

APIs have been defined to offer provisioning services. These include APIsto create, update or view policy information
for any policy enabled service. Similarly APIs have been defined to facilitate interactions between clients (e.g. a 3"
party application) and the policies of any policy enabled service. These include APIs to subscribe to policy events, to
request evaluation of policies and to request the generation of policy events . All APIs conform to an underlying policy
information model that is a derived from the policy core information model defined by the IETF in RFC 3460.

Clientsthat perform administrative tasks of behalf of a policy enabled service, e.g. create, update or delete policy
information must obtain access to |pPolicyManager viathe Framework. Administrative tasks may then be performed
through methods supported by IpPolicyManager. Similarly, clients that need to invoke evaluation of policies of a
specific policy enabled service may do so by obtaining access to |pPolicyEvalManager via the Framework.

Consistent with the above the Policy Management Service supports two classes of service interfaces for policy
provisioning and policy evaluation. These are the PM Provisioning SCF and the PM Policy Eva uation SCF
respectively.

Examples of policy enabled servicesinclude: A load balancing service that uses policies to manage application loads on
the network, a charging service that determines charging criteria based on policies, a call management service that uses
policies to direct end-user callsto appropriate call agents, etc.

Information in the present document is organized as follows:

. The Sequence diagrams give the reader a practical idea of how PM provisioning and PM evaluation SCFs are
used by clients.

. The Class relationships clause shows relationships between the various interfaces supported by the PM
provisioning and PM evaluation SCFs respectively.

e The Interface specification clauses describe in detail each of the interfaces shown within the Class diagram
clause.

. The Data Definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part ES 204 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

5 Sequence Diagrams

5.1 Use of Policy Repository

The example shown here shows the use of a Policy Repository. The repository is meant to hold unattached conditions
and actions. The Network Operator can populate the repository with the conditions and actions that it can support.
These may indeed be based on 'off-line' negotiations with the application developer. The application developer uses the
conditions and actions in the Policy Repository to create rules for his own application. In the example application logic
represented by AppLogicl belongs to the Network Operator, whereas the application logic represented by AppLogic2
belongs to the ASP. This example uses the same conditions, actions, and rules as the ASP example.

ETSI

12 ETSI ES 204 915-13 V1.1.1 (2008-05)

—— -

‘ AppLogicl ‘ ‘ AppLogic2 ‘ : lpPolicy Manager ‘ : IpPolicy Repository ‘ IpPolicy ondition ‘ : IpPolicy ExpressionAction ‘ - IpPolicy Domain ‘ IpPolicy R e
T T T T
| | | | [l (] [l [l
| | L startTransaction() | | | | | |
! /u ! I I I I
! ! I I I I
: 2: createRepository () : 3 new() : | | | |
I I I I
! I I I I
! I I I I
: ‘ : I I I I
| 4: createGondition() | ! ! ! !
5: new() I I I I
! ! ﬂ I I I
! ! I I I
: : ‘ I I I I
. | I I I
| 6: crealerAcuon() “ 7} newo ‘ ‘ ‘
! ! T I I
! ! I I I
! ! I I I I
| 8: commitTransaction() | | | | | |
! ! I I I I
! ! I I I I
! e ! ! I I I I
I I I I | | | |
I I I I | | | |
: 9: s!arlTrd‘nsacllon() : : | | | |
I I I I
! gl ! I I I I
! ! ! I I I I
- ! ! | | | |
10: getRelpository () I I | | | |
1 I
I I I I
! w ! I I I I
! ! ! I I I I
: 11 gaReposr{uryCuunt(): : | | | |
I I I I
! ! U | | | |
! ! : I I I I
[T getConditionCount() ! ! ! ! !
! ! ! I I I I
! ! i I I I I
! ! ! I I I I
: 13: gelCondltlonllera{ur(): : | | | |
I I I I
! ! U | | | |
! ! ! I I I I
! 14: getCondtion() ! ! | | | |
Il Il L
I I I I
! ! U I I I I
! ! ! I I I I
| 15: getActionCount() | | | | | |
T T
I I I I
: : L‘J I I I I
| 16: getActionlterator() | | : : : :
1 1 u | | | |
!) ! | | | |
| 17: getAction() | | | | | |
T T u | | | |
! ! I I I I
" ‘D _ ! ! | | | |
: creatéeDomain() | : 19t new() | | |
t 1 \ , | |
! ! I I “U I
: : I I I I
20: createRul ! ! ! !
‘ ‘ 0: createRule() ! ! L rew !
[[[| |
I I I | |
I I I | | |
! ! ! 22: setConditionList() | | | |
Il Il Il
T T T
! ! ! I I I /U
! ! ! I I I I
I I I 23: setActionlist() | | | |
* * * T T T /u
I I I | | |
24: com m.tf‘ransacnm() : : I I I I
I I I I
! 1 ! I I I I
! ! ! I I I I
! ! ! I I I I
! ! ! I I I I
! ! ! I I I I
! ! ! I I I I

1. Thecreation of the repository by the Network Operator takes place within one transaction.
2: The method createRepository isinvoked on the |pPolicyManager interface to create a new repository.

3. Asaresult of the createRepository method a new instance of the I pPolicyRepository interface is created. Its
interface reference is returned as return parameter of the createRepository method.

4: The Network Operator creates an unattached condition in the new repository by invoking the createCondition
method. For simplicity reasons, thisis the same condition as in sequence 8 of the ASP example. The same
condition attributes apply.

5. A new instance of the |pPolicyExpressionCondition interface is created.

ETSI

10:

11:

12:

13:

14:

15:
16:
17:
18:

19:
20:
21:
22:

23.
24.

5.2

13 ETSI ES 204 915-13 V1.1.1 (2008-05)
The Network Operator creates an unattached action in the repository. Again, thisis the same action asin
sequence 10 of the ASP example. The same action attributes apply.
A new instance of the IpPolicyExpressionAction interface is created.
The Network Operator is finished with creating and populating the repository and closes the transaction.

Now that arepository exists, the ASP application can open a transaction to start creating arule based on the
conditions and actions stored in the repository.

The application invokes the getRepository to obtain areference to the top-level repository. The returned
reference in this case is the reference to the new repository just created by the Network Operator.

The application can invoke the getRepositoryCount method on the IpPolicyRepository interface to check
whether there are any sub-repositories available. Thisis not the case for this example.

Before trying to obtain all available conditionsin this repository the application retrieves the number of
conditions by invoking the method getConditionCount.

The application can now invoke the getConditioniterator method to obtain the reference to an iterator that
contains the names of each of the conditions contained by this repository that the application is authorized to
see. Asthe previous method only return one available condition, this would be only one name, i.e.
"SufficientCredit".

A reference to the condition can be obtained by invoking getCondition, with the condition name from the
iterator as input parameter.

Similar to 12.
Similar to 13.
Similar to 14.

At this point in time the application has the names and references to the unattached condition and action from
the repository it wantsto use to create the rule. First adomain is created by invoking the createDomain method
on the I pPolicyManager interface.

A new instance of the IpPolicyDomain interface is created.
The application invokes createRule to create a rule within the domain that was just created in flow 18 and 19.
A new instance of the IpPolicyRule interface is created.

By invoking the method setConditionList, the application can now apply the condition from the repository to
thisrule, by passing the condition reference, obtained by getCondition in flow 14, as an input parameter.

Similarly the application can apply the action to the rule by invoking setActionList.

Finally, once the ruleis created using the condition and action from the policy repository, the transaction can
be closed.

Introduce condition and action into rule

This sequence diagram describes how a specific policy rule is managed. A rule consists generally of conditions and of
actions, the latter being evaluated if al conditions eval uate to true.

This sequence includes:

- creation of a condition and introduction of it into the rule;

- retrieval of an already defined action object from arepository and introduction into the rule;

- establishing a transaction bracket.

Presumption: the Application got areference to the group, e.g. by having performed the sequence " create and modify
domain" asin clause 5.4.

ETSI

14 ETSI ES 204 915-13 V1.1.1 (2008-05)

: (Logical o . IpPolicyRule o o
View:: Application) IpPolicyGroup IpPolicyManager IpPolicyRepository
T

‘ 11: startTransaction()

2: createRule()

4: startTransaction()

|
|
|
|
|
|
:
|
3: commitTransaction()

1 1

| |

|

|

i

5: createoé)ndition()

w)

|
6: commitTransaction()
|
|
|
|
|
|
|

7: getRepository()

8: get:Action()

9: startTransaction()

g

| |
= 11: setConlitionList() |

12: commitTransaction()
| |

|
1
s 10: setActionList()
|
|
|
|

|
U
:
u
u
u
u

1. Opensthe transaction bracket.

2. createsarule object in the group by passing the name as parameter. The method returns the reference to the
new rule object.

3: Closes the transaction bracket.
4: Opens the transaction bracket.

5. After having created the rule object one can "fill" it with actions and conditions. Here a condition is created on
the rule object, thus becoming a part of the rule. Conditions defined in such away cannot be reused in other
rules. For thisthe repository approach should be used.

Parameters passed are the condition name and the condition type.
Returns areference to this condition object.

Note that: the type of condition object that isto be created must be one of those specified in
TpPolicyConditionType, clause 11.1.4.

ETSI

15 ETSI ES 204 915-13 V1.1.1 (2008-05)

The method createCondition() is used to create a new instance of a condition typein the repository or rule. This
method passes the name of the condition, the type of the condition and an appropriate set of attribute-value pairs.
Note that it is necessary to include, within the conditionAttributes argument of createCondition(), all those attribute-
value pairs that are not inherited from IpPolicyCondition - if the inherited attribute-value pairs are included in this
argument then their assigned values will override the values assigned prior to this assignment. Thus, for example, if
the new condition type to be created is TpPolicyExpressionCondition, then the attribute named "Expression” and its
value must be included in conditionAttributes (also see clause 8.1.12). Note that this call may throw an exception if
the value of "Expression” is not parsable.

The steps to create an action object instance are similar to those taken to create a condition object instance. We use
the method createAction() to create a new action instance. Note that an action object must be one of those specified
in TpPolicyActionType, clause 11.1.7. It is necessary to include all the attribute-val ue pairs that are not inherited
from IpPolicyAction, in the actionAttributes argument of createAction() .

6. Closesthe transaction bracket.

7: Now we're using the repository approach, i.e. reusable condition or action objects. In this example we reuse an
action.

For that purpose we ask at the IpPolicyManager interface for areference to a named repository.
The repository name is passed.
Returns the reference to the repository.

8: If weknow already the name of the action object one retrieves the action directly by passing the name as
parameter. Otherwise one has to retrieve the name first by using an action iterator.

Returns areference to the action object.
9: Opensthe transaction bracket.

10: Now, the action(s) must be assigned to the rule. Furthermore and different to the conditions, one has to assign
an ordering number to the action.

Passed parameter is the action list, which is alist of action reference/ sequence pairs.

11: After having created or retrieved al needed conditions they must be assigned to the rule. Thisis done by
passing the list of condition to that method.

Thisis explicitly done by passing TpPolicyConditionList again consisting of TpPolicyConditionListElements which
contains the reference the | pPolicyRule object created with message 2.

If the rule is active, thiswill then cause the expression defined in the condition to be evaluated (as often as
necessary). Note that the binding between the variables referenced in the expression and the instances of the
variable available is done each time the expression is evaluated. That is, when evaluating a variable reference, each
enclosing domain is searched in order (from closest to farthest) for a matching variable. If oneisfound, it isused. If
no matching variable is set, the expression condition fails (evaluatesto FALSE).

Activation of actionsis done similarly.

12: Closesthe transaction bracket.

5.3 Create event

This sequence shows how policy events are used.

For clarification we list the different policy related objects used:

- IpPolicyEventDefinition: The "template” used to define allowable events. The template is used to define formally a
distinct type of rule condition and rule action, namely, IpPolicyEventCondition and I pPolicyEventAction.

- IpPolicyEventCondition: A special instance of a policy condition used in arule. The condition evaluatesto "True" on
the occurrence of the event instance that is formally associated with it.

ETSI

16 ETSI ES 204 915-13 V1.1.1 (2008-05)
- IpPolicyEventAction: A special instance of apolicy action used in arule. The action results in the generation of an
instance of the formal event associated with it.

- TpPolicyEvent: This datatype is passed as a parameter in the formal notification (to a client) of the occurrence of an
instance of an event.

Presumption: the reference to arule has been somehow retrieved.

: (Logical = - . IpPolicyRule - o : (Logical
View::Application IpAppPolicyDomain IpPolicyManager IpPolicyDomain || IpPolicyEventDefinition | | View::PolicyEng...

T T . |
| 1: startTransaction() |

| 1
2: createEventDefiq‘ition()

|
3: setRequiredAttributes()
|

5:createCondition()

|
|
|
4: setOﬁtionaIAttributes()
T
|
|
|
|
|
|
|
|
|
|

6:setvalidityPeriodConhdition()

7:createAction()

= 9:commitTransaction()

g

L
g

|
|
T
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
| | 8: setActionList()
|
|
|
T
|
|
|
|
|
|
|
|

N

1. All changes of policy objects must be performed in atransaction bracket. This method opens the bracket.

2: Thismethod creates a new event type. Event definitions describe the attributes of a specific event class, which
can than be instantiated as policy condition or policy event. Returns the reference to the newly created
EventDefinition instance which then can be modified according to ones needs.

3: Now, after having created a new instance of a policy event definition, one can set the required attributes by
passing the respective attribute set ...

4. ... andthe optional attributes. Such attributes may be(...).

5: ThiscreateCondition() method creates locally an instance of PolicyTimePeriodCondition defining the validity
period of thisrule.

Returns areference to the new instance of |pPolicy TimePeriodCondition object.

Using createCondition() assign the appropriate values to relevant attributes of this new instance of
I pPolicy TimePeriodCondition. For example,

TpAttribute AttributeName = "TimePeriod"

ETSI

17 ETSI ES 204 915-13 V1.1.1 (2008-05)

TpAttribute AttributeV alue.SimpleV al ue.StringV al ue = " 20000101 T080000/20000131T120000"
the latter indicating the time period "January 1, 2000, 0800 through January 31, 2000, noon".

6: Using the reference got with createCondition() the validity period is set to rule. Before this created condition
will not become valid.

7: Theassignment of apolicy event is made as for other actions. The difference is the action type passed as
parameter: it MUST be of type |pPolicyEventAction.

Passed parameters are the name of the created action, the action type and the attributes of the action; one of these
attributes refers by name to the event definition as created before in this sequence.

Returns the reference to the newly created action object.
8: Thismethod activates the action (here the action event) for thisrule. After creation this action is not yet active.
The name of the action object is passed.

9: Thisclosesthe transaction bracket.

54 Create and modify domain

This sequence describes how:

- atop-level policy domain is created which is then maintained by the policy manager object;

- alist of domains managed by the policy manager isretrieved and a specific domain is accessed;

- how manipulations on this domain (in this example creation of group and removal of arule) are performed;
- how the transaction control is initiated.

Presumption: the Application has received areference to the IpPolicyManager interface.

ETSI

18 ETSI ES 204 915-13 V1.1.1 (2008-05)

: (Logical o N -
View::Application) IpPolicyManager IpPolicylterator IpPolicyDomain

| 1: startTransaction() |
| |

2:createDomain() u

i

|

|

|

|

|

|

|

|

|

|

: l
.l 3:commitTransaction() | |
| |
|

|

|

|

|

|

|

|

|

|

|

|

i

Ll 4:getDomainlterator() !

5: getLisL(J)

1]

L] 6: getDomain()

| 7: startTransaction()

U

L4: createGroup()

L] 10: commitTransaction()

9:removeRule() i

L
T

!

Opens the transaction bracket.

Creates adomain by providing the name of the domain object to be created as parameter. The method returns
the reference to the domain object.

Closes the transaction bracket.

The user wants to get all domains handled by the policy manager. This method returns a policy iterator object
which can be used to go through the available domains.

This method returnsthe list of domains starting with "index". For efficiency reasons the number of returned
entries can be set with the parameter "numberRequested”.

After having extracted one of the domain name as returned with getList(), the reference to this specific domain
get be retrieved by passing the domain name with getDomain(). Returns the domain reference.

Opens the transaction bracket.

ETSI

19 ETSI ES 204 915-13 V1.1.1 (2008-05)
8: Now, one can act upon the domain, i.e. one can create, modify or delete objectsin that domain. Valid objects
are domains, groups, and rules.
In this example one creates a group by passing the name of the group to be created with createGroup().
Returns the reference to the new group.

9: Another action isto remove a rule. We assume here that the name of the rule (which is passed as parameter) is
already known. Otherwise one has to retrieve the name by using the IpRulelterator interface (the referenceis
got with getRulelterator()).

Returns void.

10: Closesthe transaction bracket.

5.5 ASP offering services to prepaid subscribers

The example shown here is based on an Application Service Provider (ASP) offering servicesto the prepaid subscribers
of a certain Network Operator. The ASP discovers that, as part of the business logic of the applicationsit offers, the
prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to
determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic
of each and every application that the ASP hasin its service portfolio, the ASP may decide to enable a Policy Rule to be
hosted in the Policy Engine of the Network Operator.

Applogic : IpPolicyManager || _: IpPolicyDomain | | _: IpPolicyGroup | | _: IpPolicyRule || _: IpPolicyExpressionCondition || _: IpPolicyExpressionAction

T T
: 1: startTransaction():

b

|
2: createDomain()

3: new()
|
4: createGroup() :
; L 5: new()

6: createRule()

8: createCondition()

; 9: new()
|
|
|

|
10: createAgtion()
t

|
12: setConditionList()
I

|
13: setActignList()

=
i

|
: commitTransaction()

o S o S

|
l

11’L: new()
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
T | |

1. For the sake of this example, all activitiesto create a Domain, a Group, and the Rule are contained within a
single transaction. The method startTransaction is used by the application to open the transaction.

ETSI

20 ETSI ES 204 915-13 V1.1.1 (2008-05)

2: Therulein this simplistic example is part of asingle group, which in turn is contained within a single domain.
The application creates that domain by invoking the method createDomain. The value of the parameter
domainName is"eCommerceDomain”.

3: Asaresult of the createDomain method a new instance of the IpPolicyDomain interface is created. Its
interface reference is returned as return parameter of the createDomain method.

4. Oncethedomainiscreated a group is created within that domain. The application invokes the createGroup
method, where the parameter groupName has value " PrePaidGroup".

5. Asaresult of the createGroup method a new instance of the I pPolicyGroup interface is created. Its interface
reference isreturned as return parameter of the createGroup method.

6: Atthispoint intime there exists the "PrePaidGroup" group within the "eCommerceDomain" domain. The
actual rule can be created, using the method createRule. The parameter ruleName has value
"SufficientCreditRule". The new rule SufficientCreditRule has the following attributes:

- Enabled == TRUE; the policy rule is currently enabled.

- RuleUsage == NULL; no free-format usage recommendation is provided.

- Priority == O; default value, asthereisonly onerule.

- Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted.
- PolicyRoles == PrePaidBalanceCheck. Each rule must be assigned a policy role(s).

- ConditionListType == P_PM_DNF; digjunctive normal form (DNF).

- SeguencedActions == 3; do not care, asthereisonly onerule.

7: A new instance of the IpPolicyRule interface is created. createRule returns the reference to this newly created
interface.

8: Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and
actions. Invoking the method createCondition creates the condition. The parameter conditionName has value
"SufficientCredit". The parameter conditionType hasvalue "P_PM_EXPRESSION_CONDITION", to
indicate that the condition must satisfy certain expressional syntax. The parameter conditionAttributesis a set
of structures. For this example the set contains of only one attribute structure.

- ConditionAttribute. AttributeName = " SufficientCreditExpression”.
- ConditionAttribute. AttributeV alue.SimpleValue.StringV alue = "PrePaidCredit > CurrentCharge".

Note that the variables " PrePaidCredit" and "CurrentCharge" in the expression of AttributeValue are assumed to be
defined a priori. The value of the expression is derived from the core grammar expressed in the PM information
model.

9: A new instance of the I pPolicyExpressionCondition interface is created.

10: The construction of the ruleis completed by creating the action that is to be performed when the condition
expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter
actionType hasvalue"P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain
expressional syntax. The actionAttributes are again a set containing of only one structure.

- ActionAttribute. AttributeName = "PurchaseAllowedExpression”.
- ActionAttribute. AttributeV alue.SimpleVaue.StringVaue = " AllowedPurchase == TRUE".
11: A new instance of the IpPolicyExpressionAction interfaceis created.

12: The attributes for the condition are set by invoking the method setConditionList. The conditionList isalist
consisting of one structure:

- conditionList.Condition == <reference to the IpPolicyCondition interface returned by 9>.

ETSI

21 ETSI ES 204 915-13 V1.1.1 (2008-05)
- conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case
more groups of rules exist.
- conditionList.Negated == FALSE.

13: The attributes for the action are set by invoking the method setActionList. The actionList isalist consisting of
only one structure:

- actionList.Action == <reference to the IpPolicyAction interface returned by step 10>.
- actionList.SequenceNumber == 1.

14: The"SufficientCreditRule" now existsin the "PrePaidGroup” of the "eCommerceDomain” and is assigned the
policy role of PrePaidBalanceCheck. Therulesis asfollows:

IF" PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy rule is enabled upon crestion
and it is mandatory for the policy engine to load this rule (and any other within the PrePaidGroup with policy role of
PrePai dBalanceCheck) upon an eval uation request and then evaluate it.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups,
and PolicyRules to be aggregated in a single container. The following figure shows how this container looks for the
example.

| e i + |

e Pl

| | |PolicyRule "SufficientCreditRule" || |

T e ——e e e S
| | | |PolicyCondition | |PolicyAction | | | |
| | | | "SufficientCredit"| | "PurchaseAllowed" | | | |
I N R b pmemmmmmmmoonneen Sl
Tkt co
| o m oo e e + |
e e +

5.6 Create Signature for an evaluation context

The following sequence diagram shows how a policy signature interface is created within a given (service) domain. A
signature is used to establish the context of a policy evaluation request made by aclient. A signature definition includes
the names of input variables that may be used in the evaluation request. It also includes the name of al output, relevant
policy roles and group names. The latter are used to select exactly those groups and rules that are relevant for the
evaluation request.

ETSI

O N o A~ DN

22 ETSI ES 204 915-13 V1.1.1 (2008-05)

: (Logical o o
View::Application) IpPolicyManager IpPolicyDomain

|
|
1: startTransaction() !

IpPoIicvaqnature

| 2: getDomain() | 3: new() | :
} 4: createSighature() 1 5: new() |
| 6: setinputVariables() |
H 7: setOutputVariables() | |
} '8: setGroupNames() l 1
| | 9: setPolicyRoles() | |
| 10: commitTransaction() | | |

All changes are performed in a transaction bracket.

This method is used by the client to navigate to the relevant domain.

A new Signatureis created within the chosen domain.

Names of al input variables associated with this signature are specified.

Names of all output variables associated with the signature are specified.

Name of the rule Group(s) relevant to the request is specified. This could be aNULL collection but it is

advisable to specify a name(s) for performance reasons.

ETSI

23 ETSI ES 204 915-13 V1.1.1 (2008-05)
9: Name of policy rolesthat are used to select rules relevant to the request. This could beaNULL collection but
it is advisable to specify policy role name(s).

10: Transaction is committed. At this stage a new signature has been created under the selected domain.

5.7 Request Evaluation of Policies

The following sequence diagram shows how a client may request the evaluation of policies associated with a pre-paid
service. Assume that rules have been defined asin example 5.5 and a signature has been defined for the
"eCommerceDomain" (see example 5.6). Note that a client needs to access |pPolicyEval Manager in-order to request
rule evaluation.

: (Logical o (Logical View::Policy (Logical
View::Application IpPolicyEvalManager Engine) View::Rule DB

| . H |
‘ 1 ewalPolicy(") I 2: forward request

|
|
3: search |
|

t !

|
Select Rules based on:
GroupName=PrePaidGroup
PolicyRole=PrePaidBalanceCheck

5: return

1. Makeapolicy evaluation request viaevaPolicy(). Note that parameters for the method include domain name
(following 5.5 thisis "eCommerceDomain"), signature name and a (sub) set of input variables. Note that, asin
example 5.6, the signature determines the context of the request. In thisinstance, the request is made to
evaluate rulesin the PrePaid group using the rule(s) whose policy role has been specified as PrePaidBalance
Check.

The request is forwarded to the Rules Engine.
The Rules Engine uploads relevant rules from the rules database.

Rules Engine evaluates uploaded rules.

Results, i.e, output variable name-val ue pair(s) are returned to the client in TpNameVaueL.ist. Following
example 5.5 the output variable name is AllowedPurchase and its value is TRUE.

5.8 Register for and Receive Notification of a Policy Event

The following sequence diagram show how a client subscribes to a policy event and receives notification when the
event istriggered. We assume that the policy event has been defined (for a specific domain) asin example 5.3. Assume,
in this case, that the event istriggered when the action part of arule fires. This may happen when, e.g. a pre-defined
threshold (say, a credit limit) is reached causing the conditions of a policy rule to be satisfied thus resulting in the action
part to be executed.

ETSI

24 ETSI ES 204 915-13 V1.1.1 (2008-05)

: (Logilcal) I:_ | ;I (Logical View::Policy
View::Application IpAppPolicyDomain IpPolicyEvalManager f
: : —| : Engine)
[1: createNotification() [u
‘ ! ‘ 2: forward

g’

- - -

4: reportNotification()

4\
"
o
3
444444444444{:]

!

1. Subscribeto apolicy event in adomain of choice. Note that the parameters of createNotification are: domain
name, the call back address of the client application. Immediately after createNotification isinvoked a
TpAssignmentI D isreturned to the client (flow not show in the diagram). The client uses this ID to identify its
subscription to the policy event of choice.

4. When the policy event istriggered, a notification of the event is sent to every client that subscribed to the
event.

6 Class Diagrams

Policy Management (PM) comprises of the following SCFs.

. Policy Management Provisioning Service whose Interfaces are used to define policy information, e.g. policy
rules, policy events, etc., and to update and view thisinformation.

o Policy Management Policy Evaluation Service whose Interfaces are used to request eval uation of policies and
for subscription to policy events & to receive to notification of these.

ETSI

25 ETSI ES 204 915-13 V1.1.1 (2008-05)

6.1 PM Provisioning SCF Class Diagrams

<<Interfac... <<Interfac...
Ipinterface IpService

<<Interface>>
ol <<Interface>>
<cInterfac... yManag 1pPolicy EvaMan ager
IpPolicy
<<Interface>> <<Interf ace>> <<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interf ace>>
IpPolicy Domain I pPolicy Action IpPolicy Group IpPolicy Iterator IpPolicy Repository IpPolicy Condition IpPolicy Rule IpPolicy Signature IpPolicy EventDef inition
<<Interf ace>> <<Interface>> <<Interface>> <<Interface>> <<Interface>>
IpPolicy EventAction IpPolicy ExpressionAction IpPolicy EventCondition IpPolicy ExpressionCondition 1pPolicy TimePeiodC ondition

Figure 1: Policy Provisioning Classes

ETSI

26 ETSI ES 204 915-13 V1.1.1 (2008-05)

IpService [Ipinterface

J

IpPolicyManager

IpPolicy

CommonNarne : TpString
PolicyDomaininPolicyManager PolicyKeywords : TpString Set
\ Capion: TpSring

\ Desaripion : TpSring

IpPolicyDomain

ositorylnPolicyManager Note: IpPolicyDomain, IpPolicyGroup,
IpPalicyRule, IpPolicyCondition,
IpPalicyAction, IpPolicyEventDefinition

and IpPolicySignature are all derived
\ from IpPolicy

IpPolicyGroup IpPolicyEventDefinition
RequiredAttributes : TpAttributeSet IpPolicyRepository

PolicyRulelnPolicyDonmein OptionalAttributes : TpAttributeSet

PolicyEventDefinitioninPolicyRepository

IpPolicySignature
inputvariables :in TpStrirg Set
outputVariables : in TpString Set
groupNames : in TpString Set
roleNanes : in TpString Set

\ PolicyRulelnPolicyGroup
Pu\icyGroupinP icyGroup
|
|

IpPolicyRule PolicyRepositorylnPolicyRepository

Enabled : TpBoolean
RuleUsage : TpString
Priority : Tpint32
Mandatory : TpBoolean
PolicyRoles : TpString Set
ConditionListType : TpPolicyConditionListType PolicyConditioninPoli¢yRepository
SequencedActions : Tpint32

PolicyActioninPolicyRepository

PolicyRuleValidityPerioolicyConditioninPolicyRule

PolicyActioninPolicyRule

IpPolicyTimePeriodCondition IpPolicyCondition

TimePeriod : TpString

MonthOfYearMask : TpString
DayOfMonthMask : TpString
DayOfWeekMask: TpString
TimeOfDayMask: TpString
LocalOrUtcTime : Tpint32

IpPolicyAction

IpPolicyEventCondition IpPolicyExpressionCondition IpPolicyEventAction IpPolicyExpressionAction
EventDefinitonName : TpString Bxpression : TpString EventDefinitionName : TpString Expression : TpString
MatchingAttributes : TpAttributeSet Attributes : TpAttributeSet

Figure 2: Policy Management Information Model

ETSI

27 ETSI ES 204 915-13 V1.1.1 (2008-05)

6.2 PM Policy Evaluation SCF Class Diagrams

<<Interface>> <<Interface>>
Ipinterface | IpSenice
N\ A
/\ [\
<<Interface>> <<Interface>>
IpAppPolicyDomain IpPolicyEvalManager

Figure 3: Policy Evaluation Classes

7 The Service Interface Specifications

7.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
I pSve<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

7.1.2 Method descriptions

Each method (APl method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req" suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Exrr’' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<names> or
IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions
Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have

avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

ETSI

28 ETSI ES 204 915-13 V1.1.1 (2008-05)

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface’. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: I plnterface.

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void
setCallbackWithSessionID (applnterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

ETSI

29 ETSI ES 204 915-13 V1.1.1 (2008-05)

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or isno
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpCommonExceptions, P _INVALID INTERFACE TYPE

7.4.1.2 Method setCallbackWithSessionlID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionID : in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpCommonExceptions, P INVALID SESSION ID, P INVALID INTERFACE TYPE

8 Policy Management (PM) Interface Classes

8.1 PM Provisioning SCF Interface Classes
The Policy Management provisioning APIs address the following :
The creation, modification and viewing of policy information.

Generally, policy enabled services will be created by a network service provider. A policy service may also be created
by an application service provider (ASP) and hosted in the network. Such services need not be based on published OSA
specifications. However, they will be created using OSA policy management APIs, will conform to the OSA policy
information model and will be accessible via OSA defined interfaces.

ETSI

30 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.1 Interface Class IpPolicyManager
Inherits from: IpService.

Clients that wish to participate in Policy Management obtain a reference to an instance of the I pPolicyManager interface
from the Framework. Using this reference, clients can obtain a reference to a policy domain of interest, iterate through
the names of all policy domains, create a new policy domain, or remove an existing one. Clients can also obtain a
reference to a policy repository, iterate through the names of all policy repositories, create a new policy repository or
remove an existing one.

Note that al operations through Policy Management interfaces are subject to authorization checks - clients will only
have permission to invoke methods as are allowed by the client's privileges as established by a prior agreement between
the owner of the client and the owner of the policy management complex. Similarly, methods will only return data that
the client is authorized to see. For example, if the client is authorized to see some of the top-level domains and not
others, the IpPolicylterator returned by getDomainlterator() will only return those domains that the client is authorized
for.

<<Interface>>

IpPolicyManager

createDomain (domainName : in TpString) : IpPolicyDomainRef

getDomain (domainName : in org::csapi::Common Data:: TpString) : IpPolicyDomainRef
removeDomain (domainName : in org::csapi::Common Data::TpString) : void

getDomainCount () : TpInt32

getDomainlterator () : IpPolicylteratorRef

findMatchingDomains (matchingAttributes : in TpAttributeSet) : TpStringSet

createRepository (repositoryName : in org::csapi::Common Data::TpString) : IpPolicyRepositoryRef
getRepository (repositoryName : in org::csapi::Common Data::TpString) : IpPolicyRepositoryRef
removeRepository (repositoryName : in org::csapi::Common Data:: TpString) : void
getRepositoryCount () : TpInt32

getRepositorylterator () : IpPolicylteratorRef

startTransaction () : void

commitTransaction () : TpBoolean

abortTransaction () : void

8.1.1.1 Method createDomain()
Create the specified top-level Policy Domain and get a reference to the new instance.

Returns areference to the domain just created.

Parameters

domainName : in TpString
The name of the domain to create.

Returns
IpPolicyDomainRef

ETSI

31 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.1.2 Method getDomain()
Get areference to the specified top-level Domain.

Returns the reference to the domain.

Parameters
domainName : in org::csapi::Common Data::TpString
The name of the domain.

Returns
IpPolicyDomainRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.1.3 Method removeDomain()

Remove the specified top-level domain.

Parameters

domainName : in org::csapi::Common Data::TpString
The name of the top-level domain to delete.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.1.4 Method getDomainCount()

Returns the number of top-level Policy Domains contained by the PolicyManager that the client is authorized to see.

Returns the number of domains.

Parameters
No Parameters were identified for this method.

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS VIOLATION
8.1.1.5 Method getDomainlterator()

Obtain areference to an iterator that will return the names of each of the top-level Policy Domains known to the
PolicyManager that the client is authorized to see.

Returns the reference to the iterator.

ETSI

32 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters
No Parameters were identified for this method..

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION
8.1.1.6 Method findMatchingDomains()

Ask for the set of domains that contain attributes that match the specified set of attributes that the client is authorized to
see. This could be used, for example, to get alist of al of the domains whose 'Rol€’ is 'QOS.

Returns the names of the matching top-level domains.

Parameters
matchingAttributes : in TpAttributeSet

Returns

TpStringSet

Raises

TpCommonExceptions, P _ACCESS VIOLATION

8.1.1.7 Method createRepository()

Create the specified top-level Policy Repository and get a reference to the new instance.

Returns areference to the repository just created.

Parameters
repositoryName : in org::csapi::Common Data::TpString
The name of the Repository to create.

Returns
IpPolicyRepositoryRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.1.8 Method getRepository()
Get areference to the specified top-level repository.

Returns areference to the repository.

Parameters
repositoryName : in org::csapi::Common Data::TpString
The name of the repository.

ETSI

33 ETSI ES 204 915-13 V1.1.1 (2008-05)

Returns
IpPolicyRepositoryRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.1.9 Method removeRepository()
Remove the specified top-level Policy Repository.

Parameters

repositoryName : in org::csapi::Common Data::TpString
The name of the top-level Repository to delete.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.1.10 Method getRepositoryCount()
Returns the number of top-level Policy Repositories contained by the PolicyManager that the client is authorized to see.

Returns: The number of repositories.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P_ACCESS VIOLATION
8.1.1.11 Method getRepositorylterator()

Obtain areference to an iterator that will return the names of each of the top-level Policy Repositories known to the
PolicyManager that the client is authorized to see.

Returns: The reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyIteratorRef

Raises
TpCommonExceptions, P _ACCESS VIOLATION

ETSI

34 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.1.12 Method startTransaction()

Open atransaction. All modifications to the policy information base up to the call to either commitTransaction() or
abortTransaction() will be treated as part of thistransaction.

Note that transaction brackets consisting of startTransaction() and commitTransaction() are generally used to perform
changesin an atomic way, i.e. to ensure that either all changes are made persistent or all changes are undone in case of
failure of even asingle action. Any other clients reading data modified by this transaction will see the existing data until
commitTransaction() is called. Any timeouts of this transaction are implementation specific. If atransaction istimed
out, any subsequent attempt to make requests that require a transaction will throw the exception
P_NO_TRANSACTION_IN_PROCESS.

Note, however, that the scope of transaction brackets is extended here: Large transaction brackets can be also useful for
efficiency reasons even if the different actions are not atomic. Creation of atransaction introduces a significant
overhead, reduction of the number of separate transactions reduces this. It is up to the application implementation to
reflect this fact.

Note that transactions can not be nested, that is, a second call to startTransaction() without calling commitT ransaction()
or abortTransaction() in between will result in the exception P_TRANSACTION_IN_PROCESS being thrown during
the second call.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS VIOLATION, P TRANSACTION IN PROCESS
8.1.1.13 Method commitTransaction()

Commit atransaction. All modifications to the policy information base made since the last call to startTransaction() will
be committed.

Returns: TRUE is returned if the commit succeeded and the policy information base has been updated, FALSE
otherwise.

Parameters
No Parameters were identified for this method.

Returns
TpBoolean

Raises
TpCommonExceptions, P_NO TRANSACTION IN PROCESS
8.1.1.14 Method abortTransaction()

Abort atransaction. All modifications to the policy information base made since the last call to startTransaction() will
be discarded.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P _NO TRANSACTION IN PROCESS

ETSI

35 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.2 Interface Class IpPolicy
Inherits from: Iplnterface.

The base interface from which are derived al of the Policy interfaces (except | pPolicyManager). Thisinterface
documents four attributes for describing a policy-related instance. In the same way that the generic attribute accessor
methods are defined in this base interface, these common attributes are documented here as well and each interface that
is derived from IpPolicy will provide support for them.

Note that we could have defined dedicated get/set methods for each attribute, which would have the benefits of
being potentially faster and safer, but this design approach was not taken, primarily to make it simpler to add additional
attributes in the future without having to change the associated Interface.

<<Interface>>

IpPolicy

getAttribute (attributeName : in TpString) : TpAttribute
setAttribute (targetAttribute : in TpAttribute) : void

getAttributes (attributeNames : in TpStringList) : TpAttributeSet
setAttributes (targetAttributes : in TpAttributeSet) : void

8121 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

ETSI

36 ETSI ES 204 915-13 V1.1.1 (2008-05)

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.
8.1.2.2 Method getAttribute()

Get a copy of the specified attribute from the policy object. Note that modifying the returned attribute will not update
the actual attribute of the object. See setAttribute() for that functionality.

Returns: A copy of the attribute.

Parameters

attributeName : in TpString
The name of the attribute to retrieve.

Returns

TpAttribute

Raises

TpCommonExceptions, P_SYNTAX ERROR, P NAME SPACE ERROR
8.1.2.3 Method setAttribute()

Set an attribute of a policy object.

Parameters
targetAttribute : in TpAttribute

The attribute to be set in this object.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P NO TRANSACTION IN PROCESS
8.1.2.4 Method getAttributes()

Get a copy of the set of attributes for the policy object. Note that modifying the returned set will not update the actual
attributes of the object. See setAttributes() for that functionality.

Returns: A copy of the attributes.

Parameters

attributeNames : in TpStringList

Thelist of names of the attributes to retrieve. In case the list of namesis null or empty, al of the attributes will be
returned.

Returns
TpAttributeSet
Raises

TpCommonExceptions

ETSI

37 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.2.5 Method setAttributes()

Set one or more attributes of a policy object.

Parameters

targetAttributes : in TpAttributesSet
The attributes to be set in this object.

Raises
TpCommonExceptions, P_ACCESS VIOLATION, P NO TRANSACTION IN PROCESS

8.1.3 Interface Class IpPolicyDomain
Inherits from: IpPolicy.

This classis a generalized aggregation container. It enables PolicyDomains, PolicyGroups, PolicyRules, or
PolicyEventDefinitions to be aggregated in a single container. Loops, including the degenerate case of a PolicyDomain
that contains itself, are not allowed when PolicyDomains contain other PolicyDomains.

PolicyDomains and their nesting capabilities are shown in the figure below. Note that a PolicyDomain can nest other
PolicyDomains, and there is no restriction on the depth of the nesting in sibling PolicyDomains.

oo oo +
| PolicyDomain |
| |
| #---mmmmm e + ommmm e + |
| | PolicyDomain A | | PolicyDomain X | |
| | | .
|| e] oo | |
| | | PolicyDomain Al| | | ||
([St - | |
| #---mmmmm e + ommmm e + |
+ +

Asasimple example, think of the highest level PolicyDomain shown in the figure above as a PolicyDomain for the
Call Control Service. This PolicyDomain may be called CallControl Policy, and may aggregate several PolicyDomains
that provide specialized rules per client application.

Hence, PolicyDomain A in the figure above may define call control rules for athird party application from company
A, while another PolicyDomain might define rules for third party application B (e.g. PolicyDomain X), and so forth.

Note al so that the depth of each PolicyDomain does not need to be the same. Thus, the ApplicationAPolicyDomain
might have several additional layers of PolicyDomains defined for any of several reasons (different locales, number of
customers, etc.). The PolicyRules are therefore contained at n levels from the ApplicationAPolicyDomain. Compare
thisto the Application B PolicyDomain (PolicyDomain X), which might directly contain PolicyRules.

ETSI

38 ETSI ES 204 915-13 V1.1.1 (2008-05)

<<Interface>>

IpPolicyDomain

getParentDomain () : IpPolicyDomainRef

createDomain (domainName : in TpString) : IpPolicyDomainRef
getDomain (domainName : in TpString) : IpPolicyDomainRef
removeDomain (domainName : in TpString) : void
getDomainCount () : TpInt32

getDomainlterator () : IpPolicylteratorRef

createGroup (groupName : in TpString) : IpPolicyGroupRef
getGroup (groupName : in TpString) : IpPolicyGroupRef
removeGroup (groupName : in TpString) : void
getGroupCount () : TpInt32

getGrouplterator () : IpPolicylteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef
getRule (ruleName : in TpString) : IpPolicyRuleRef
removeRule (ruleName : in TpString) : void

getRuleCount () : TpInt32

getRulelterator () : IpPolicylteratorRef

createEventDefinition (eventDefinitionName : in TpString, requiredAttributes : in TpStringSet,
optionalAttributes : in TpStringSet) : IpPolicyEventDefinitionRef

getEventDefinition (eventDefinitionName : in TpString) : IpPolicyEventDefinitionRef
removeEventDefinition (eventDefinitionName : in TpString) : void
getEventDefinitionCount () : TpInt32

getEventDefinitionlterator () : IpPolicylteratorRef

createVariableSet (variableSetName : in TpString) : void

getVariableSet (variableSetName : in TpString) : TpPolicyVarSet
removeVariableSet (variableSetName : in TpString) : void

getVariableSetCount () : TpInt32

getVariableSetlterator () : IpPolicylteratorRef

createVariable (variableSetName : in TpString, variableName : in TpString, variableType : in TpPolicyType) :
void

setVariableValue (variableSetName : in TpString, variableName : in TpString, variableValue : in TpAny) :
void

getVariableType (variableSetName : in TpString, variableName : in TpString) : TpPolicyType
getVariableValue (variableSetName : in TpString, variableName : in TpString) : TpAny
getVariable (variableSetName : in TpString, variableName : in TpString) : TpPolicyVar
removeVariable (variablSetName : in TpString, variableName : in TpString) : void
createSignature (signatureName : in TpString) : IpPolicySignatureRef

getSignature (signatureName : in TpString) : IpPolicySignatureRef

ETSI

39 ETSI ES 204 915-13 V1.1.1 (2008-05)

removeSignature (signatureName : in TpString) : void
getSignatureCount () : TpInt32
getSignaturelterator () : IpPolicylteratorRef

8.1.3.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Role : TpString

This attribute provides a way to specify higher-level context associated with atop-level domain, e.g. Role = Charging,
Role = QOS, or Role = User Interaction, etc. This attribute can be used to search for domains that specify a particular
Role by using the findMatchingDomains() method of the IpPolicyManager interface. This attribute must be explicitly
set for each instance of an IpPolicyDomain. Thereis no default and values are not copied from the parent domain (if
any).

Owner : TpString

This attribute provides a way to specify an owner of atop-level domain. This attribute can be used to search for
domains that specify a particular Owner by using the findMatchingDomains() method of the |pPolicyManager interface.
This attribute must be explicitly set for each instance of an IpPolicyDomain. There is no default and values are not
copied from the parent domain (if any).

ETSI

40 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.3.2 Method getParentDomain()
Return areference to the domain that contains this one (if any). If thisis atop-level domain, return aNULL reference.

Returns: A reference to the parent domain.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.1.3.3 Method createDomain()

Create the specified domain and get a reference to the new instance.

Returns: A reference to the domain just created.

Parameters

domainName : in TpString
The name of the domain to create.

Returns
IpPolicyDomainRef
Raises

TpCommonExceptions, P ACCESS VIOLATION, P SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.4 Method getDomain()
Get areference to the specified subdomain.

Returns: A reference to the domain.

Parameters

domainName : in TpString
The name of the subdomain to get.

Returns
IpPolicyDomainRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

ETSI

41 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.3.5 Method removeDomain()

Remove the specified subdomain.

Parameters

domainName : in TpString
The name of the subdomain to delete.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.6 Method getDomainCount()
Returns the number of subdomains contained by this one that the client is authorized to see.

Returns: The number of subdomains.

Parameters
No Parameters were identified for this method.

Returns

TpInt32

Raises

TpCommonExceptions, P _ACCESS VIOLATION
8.1.3.7 Method getDomainlterator()

Obtain areference to an iterator that will return the names of each of the subdomains contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION

The following methods are for Rule Group Management in Domain :

8.1.3.8 Method createGroup()
Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters
groupName : in TpString
The name of the group to create.

ETSI

42 ETSI ES 204 915-13 V1.1.1 (2008-05)

Returns
IpPolicyGroupRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.3.9 Method getGroup()
Get areference to the specified group.

Returns: A reference to the group.

Parameters

groupName : in TpString
The name of the group to get.
Returns

IpPolicyGroupRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.3.10 Method removeGroup()

Remove the specified group.

Parameters

groupName : in TpString
The name of the group to delete.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.3.11 Method getGroupCount()
Returns the number of groups contained by this domain that the client is authorized to see.

Returns: The number of groups.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P_ACCESS VIOLATION

ETSI

43 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.3.12 Method getGrouplterator()

Obtain areference to an iterator that will return the names of each of the groups contained by this domain that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION

Thefollowing methods are for rule Management within a Domain:

8.1.3.13 Method createRule()
Create arule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleName : in TpString
The name of the rule to create.

Returns
IpPolicyRuleRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.14 Method getRule()
Get areference to the specified rule.

Returns: A referenceto therule.

Parameters

ruleName : in TpString
The name of the rule to get.

Returns
IpPolicyRuleRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

ETSI

44 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.3.15 Method removeRule()

Remove the specified rule.

Parameters

ruleName : in TpString
The name of the rule to delete.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.16 Method getRuleCount()
Returns the number of rules contained by this domain that the client is authorized to see.

Returns. The number of rules.

Parameters
No Parameters were identified for this method.

Returns

TpInt32

Raises

TpCommonExceptions, P _ACCESS VIOLATION
8.1.3.17 Method getRulelterator()

Obtain areference to an iterator that will return the names of each of the rules contained by this domain that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION

The following methods are for event management within a Domain:

8.1.3.18 Method createEventDefinition()

Define anew event type, specifying the definition's name and the required and optional attributes that must/may appear
in an instance of that event.

Returns: A reference to the newly created definition.

Parameters

eventDefinitionName : in TpString
The name of the definition of the new event.

ETSI

45 ETSI ES 204 915-13 V1.1.1 (2008-05)

requiredAttributes : in TpStringSet
The set of attributesthat MUST be included in any event of this type.

optionalAttributes : in TpStringSet
A set of attributesthat MAY be included in any event of this type.

Returns
IpPolicyEventDefinitionRef
Raises

TpCommonExceptions, P ACCESS VIOLATION, P SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.19 Method getEventDefinition()
Get areference to the definition of an event type.

Returns: A reference to the definition.

Parameters

eventDefinitionName : in TpString
The name of the event definition to get.

Returns
IpPolicyEventDefinitionRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

8.1.3.20 Method removeEventDefinition()

Remove the definition for an event from the domain.

Parameters

eventDefinitionName : in TpString
The name of the definition to remove.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.21 Method getEventDefinitionCount()
Returns the number of event definitions contained by this domain that the client is authorized to see.

Returns: The number of event definitions.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

ETSI

46 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises
TpCommonExceptions, P_ACCESS VIOLATION
8.1.3.22 Method getEventDefinitionlterator()

Obtain areference to an iterator that will return the names of each of the definitions contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P _ACCESS VIOLATION

The following methods are for variable management within a Domain:

8.1.3.23 Method createVariableSet()

Used by clients to define a named collection of variables. Variables are attributes that can be updated by the client to
reflect the current 'state’ of the client. Since variables can be referenced by name from expression conditions and
actions, the act of updating a variable may have a side effect of satisfying conditionsin rules that are currently active.
Variables that are defined by the network operator may be dynamically updated by the policy engine to reflect the
current 'state’ of the modelled networks and services.

Parameters

variableSetName : in TpString
The name of the new variable set.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.24 Method getVariableSet()
Get avariable set.

Returns: A variable set.

Parameters

variableSetName : in TpString
The name of the variable set to get.

Returns
TpPolicyVarSet
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P _NAME SPACE_ERROR

ETSI

a7 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.3.25 Method removeVariableSet()

Remove the variable set from the domain.

Parameters

variableSetName : in TpString
The name of the variable set to remove.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.26 Method getVariableSetCount()

Returns the number of variable sets contained by this domain that the client is authorized to see.

Returns: The number of variable sets.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P _ACCESS VIOLATION
8.1.3.27 Method getVariableSetlterator()

Obtain areference to an iterator that will return the names of each of the variable sets contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyIteratorRef

Raises
TpCommonExceptions, P_ACCESS VIOLATION
8.1.3.28 Method createVariable()

Create avariable within a variable set.

Parameters

variableSetName : in TpString
The name of the variable set within which to set the specified variable.

variableName : in TpString
The name of the variable to being created.

ETSI

48 ETSI ES 204 915-13 V1.1.1 (2008-05)

variableType : in TpPolicyType
The type of the variable being created.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.3.29 Method setVariableValue()

Set avariable value within avariable set.

Parameters

variableSetName : in TpString
The name of the variable set within which to set the specified variable value.

variableName : in TpString
The name of the variable being set.

variableValue : in TpAny
The value of the variable being created.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.30 Method getVariableType()
Get a copy of the type of avariable from avariable set.

Returns: A copy of the variable type.

Parameters

variableSetName : in TpString
The name of the variable set in which to find the variable.

variableName : in TpString
The name of the variable whose type isto be retrieved.

Returns
TpPolicyType
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.3.31 Method getVariableValue()
Get acopy of avariable value from avariable set.

Returns: A copy of the variable value.

ETSI

49 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters

variableSetName : in TpString
The name of the variable set to find the variablein.

variableName : in TpString
The name of the variable whose value is to be retrieved.

Returns
TpAny
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.3.32 Method getVariable()
Get acopy of avariable from avariable set.

Returns: A copy of the variable (i.e. acopy of itstype and value).

Parameters

variableSetName : in TpString
The name of the variable set to find the variablein.

variableName : in TpString
The name of the variable to get a copy of.

Returns
TpPolicyVar
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.3.33 Method removeVariable()

Remove avariable from a variable set.

Parameters

variablSetName : in TpString
The name of the variable set from where to remove the variable.

variableName : in TpString
The name of the variable to be removed.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

The following methods are for signature management within a Domain:

ETSI

50 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.3.34 Method createSignature()
Define a new policy-evaluation method signature, specifying the signature's name.

Returns: A reference to the newly created definition.

Parameters

signatureName : in TpString
The name of the new policy-evaluation method signature.

Returns
IpPolicySignatureRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.35 Method getSignature()
Get areference to the signature for a policy-evaluation method signature.

Returns: A reference to the definition.

Parameters

signatureName : in TpString
The name of the policy-evaluation method signature to get.

Returns
IpPolicySignatureRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.3.36 Method removeSignature()

Remove the policy-eval uation method signature from the domain.

Parameters

signatureName : in TpString
The name of the signature to remove.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.3.37 Method getSignatureCount()
Returns the number of policy-evaluation signatures contained in this domain that the client is authorized to see.

Returns: The number of signatures.

Parameters
No Parameters were identified for this method.

ETSI

51 ETSI ES 204 915-13 V1.1.1 (2008-05)

Returns

TpInt32

Raises

TpCommonExceptions

8.1.3.38 Method getSignaturelterator()

Obtain areference to an iterator that will return the names of each of the policy-eval uation signatures contained in this
domain that the client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P _ACCESS VIOLATION

8.1.4 Interface Class IpPolicyGroup
Inherits from: IpPolicy.

This class is a generalized aggregation container. It enables either PolicyRules or PolicyGroups to be aggregated in a
single container. Loops, including the degenerate case of a PolicyGroup that containsitself, are not allowed when
PolicyGroups contain other PolicyGroups.

PolicyGroups and their nesting capabilities are shown in the figure below. Note that a PolicyGroup can nest other
PolicyGroups, and there is no restriction on the depth of the nesting in sibling PolicyGroups.

Asasimple example, think of the highest level PolicyGroup shown in the figure above as alogon policy or US
employees of acompany. This PolicyGroup may be called USEmployeel ogonPolicy, and may aggregate several
PolicyGroups that provide specialized rules per location.

Hence, PolicyGroup A in the figure above may define logon rules for employees on the West Coast, while another
PolicyGroup might define logon rules for the Midwest (e.g. PolicyGroup X), and so forth.

Note also that the depth of each PolicyGroup does not need to be the same. Thus, the WestCoast PolicyGroup might
have several additional layers of PolicyGroups defined for any of severa reasons (different locales, number of subnets,
etc.). The PolicyRules are therefore contained at n levels from the USEmployeel ogonPolicyGroup. Compare this to the
Midwest PolicyGroup (PolicyGroup X), which might directly contain PolicyRules. No
attributes are defined for this class since it inherits al its attributes from IpPolicy. The class exists to aggregate
PolicyRules or other PolicyGroups.

ETSI

52 ETSI ES 204 915-13 V1.1.1 (2008-05)

<<Interface>>

IpPolicyGroup

getParentDomain () : IpPolicyDomainRef
getParentGroup () : IpPolicyGroupRef

createGroup (groupName : in TpString) : IpPolicyGroupRef
getGroup (groupName : in TpString) : IpPolicyGroupRef
removeGroup (groupName : in TpString) : void
getGroupCount () : TpInt32

getGrouplterator () : IpPolicylteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef
getRule (ruleName : in TpString) : IpPolicyRuleRef
removeRule (ruleName : in TpString) : void
getRuleCount () : TpInt32

getRulelterator () : IpPolicylteratorRef

8.1.4.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

ETSI

53 ETSI ES 204 915-13 V1.1.1 (2008-05)

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.
8.1.4.2 Method getParentDomain()

Get areference to the domain that directly contains this group (if any). If thisis a subgroup (whose immediate container
is another group instead of adomain), return aNULL reference.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.1.4.3 Method getParentGroup()

Return areference to the group that contains this one (if any). If thisis atop-level group, return aNULL reference.

Returns: A reference to the containing group.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions

8.1.4.4 Method createGroup()

Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters
groupName : in TpString
The name of the group to create.

Returns
IpPolicyGroupRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

ETSI

54 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.45 Method getGroup()
Get areference to the specified group.

Returns: A reference to the group.

Parameters

groupName : in TpString
The name of the group to get.
Returns

IpPolicyGroupRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P _NAME SPACE_ERROR

8.1.4.6 Method removeGroup()

Remove the specified group.

Parameters

groupName : in TpString
The name of the group to delete.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.4.7 Method getGroupCount()

Returns the number of groups contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P_ACCESS VIOLATION
8.1.4.8 Method getGrouplterator()

Obtain areference to an iterator that will return the names of each of the groups contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

55 ETSI ES 204 915-13 V1.1.1 (2008-05)

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION

8.1.4.9 Method createRule()

Create arule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleName : in TpString
The name of therule to create.

Returns
IpPolicyRuleRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.4.10 Method getRule()
Get areference to the specified rule.

Returns: A reference to therule.

Parameters

ruleName : in TpString
The name of the rule to get.

Returns
IpPolicyRuleRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.4.11 Method removeRule()

Remove the specified rule.

Parameters

ruleName : in TpString
The name of therule to delete.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

ETSI

56 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.4.12 Method getRuleCount()

Returns the number of rules contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns

TpInt32

Raises

TpCommonExceptions, P _ACCESS VIOLATION
8.1.4.13 Method getRulelterator()

Obtain areference to an iterator that will return the names of each of the rules contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION
8.1.5 Interface Class IpPolicyRepository
Inherits from: IpPolicy.

A class representing a container for reusable policy-related information. Instances of PolicyConditions and
PolicyActions can be defined here and then referenced from one or more PolicyRules. Note that some instantiations of
the Policy Management service will have Repositories that have been pre-defined by the Service Provider, with pre-
defined PolicyConditions and PolicyActions. It may also be possible that clients with the appropriate authorizations will
be able to define new Repositories and/or add new PolicyConditions and PolicyActions to existing Repositories.

ETSI

57 ETSI ES 204 915-13 V1.1.1 (2008-05)

<<Interface>>

IpPolicyRepository

getParentRepository () : IpPolicyRepositoryRef

createRepository (repositoryName : in TpString) : IpPolicyRepositoryRef
getRepository (repositoryName : in TpString) : IpPolicyRepositoryRef
removeRepository (repositoryName : in TpString) : void
getRepositoryCount () : TpInt32

getRepositorylterator () : IpPolicylteratorRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
. in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef
removeCondition (conditionName : in TpString) : void
getConditionCount () : TpInt32

getConditionlterator () : IpPolicylteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef
removeAction (actionName : in TpString) : void
getActionCount () : TpInt32

getActionlterator () : IpPolicylteratorRef

8.151 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

ETSI

58 ETSI ES 204 915-13 V1.1.1 (2008-05)

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.1.5.2 Method getParentRepository()

Return areference to the repository that contains this one (if any). If thisis atop-level repository, return aNULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions

8.1.5.3 Method createRepository()

Create the specified repository and get a reference to the new instance.

Returns: A reference to the repository just created.

Parameters
repositoryName : in TpString
The name of the repository to create.

Returns
IpPolicyRepositoryRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.5.4 Method getRepository()
Get areference to the specified subrepository.

Returns: A reference to the repository.

Parameters

repositoryName : in TpString

ETSI

59 ETSI ES 204 915-13 V1.1.1 (2008-05)

The name of the subrepository to get.

Returns
IpPolicyRepositoryRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

8.1.5.5 Method removeRepository()

Remove the specified subrepository.

Parameters

repositoryName : in TpString
The name of the subrepository to delete.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.5.6 Method getRepositoryCount()

Returns the number of subrepositories contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P_ACCESS VIOLATION
8.1.5.7 Method getRepositorylterator()

Obtain areference to an iterator that will return the names of each of the subrepositories contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P _ACCESS VIOLATION

ETSI

60 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.5.8 Method createCondition()
Create a reusable condition. References to the newly created condition can be used in one or more PolicyRules.

Returns: The reference to the newly created condition.

Parameters

conditionName : in TpString
The name uniquely identifying this condition within this repository.

conditionType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management AP,
it must be one of P_ PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet
The attributes specifying the condition.

Returns
IpPolicyConditionRef
Raises

TpCommonExceptions, P ACCESS VIOLATION, P SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.5.9 Method getCondition()
Get areference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionName : in TpString
The name of the condition to get.

Returns
IpPolicyConditionRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

8.1.5.10 Method removeCondition()

Remove the specified condition.

Parameters

conditionName : in TpString
The name of the condition to delete.

ETSI

61 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.5.11 Method getConditionCount()
Returns the number of conditions contained by this repository that the client is authorized to see.
Returns: The number of conditions.

Parameters
No Parameters were identified for this method.

Returns

TpInt32

Raises

TpCommonExceptions, P _ACCESS VIOLATION
8.1.5.12 Method getConditionlterator()

Obtain areference to an iterator that will return the names of each of the conditions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION

8.1.5.13 Method createAction()

Create a reusable action. References to the newly created action can be used in one or more PolicyRules.

Returns: The reference to the newly created action.

Parameters

actionName : in TpString

The name uniquely identifying this action within this repository.

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet
The attributes specifying the action.

Returns
IpPolicyActionRef

ETSI

62 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.5.14 Method getAction()
Get areference to the specified action.

Returns: A reference to the specified action.

Parameters

actionName : in TpString
The name of the action to get.

Returns
IpPolicyActionRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE_ERROR

8.1.5.15 Method removeAction()

Remove the specified action.

Parameters

actionName : in TpString
The name of the action to delete.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.5.16 Method getActionCount()

Returns the number of actions contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P _ACCESS VIOLATION
8.1.5.17 Method getActionliterator()

Obtain areference to an iterator that will return the names of each of the actions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

ETSI

63 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters
No Parameters were identified for this method.

Returns
IpPolicyIteratorRef

Raises
TpCommonExceptions, P_ACCESS VIOLATION

8.1.6 Interface Class IpPolicyRule
Inherits from: IpPolicy.

This class represents the "If Condition then Action™ semantics associated with a policy. A PolicyRule condition, in the
most general sense, is represented as either an ORed set of ANDed conditions (Digunctive Normal Form, or DNF) or
an ANDed set of ORed conditions (Conjunctive Normal Form, or CNF). Individual conditions may either be negated
(NQT C) or unnegated (C). The actions specified by a PolicyRule are to be performed if and only if the PolicyRule
condition (whether it is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a policy rule are modelled, respectively, with subclasses of the classes
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the
setConditionList() and setActionList() methods.

A policy rule may also be associated with one or more policy time periods, indicating the schedule according to
which the policy rule is active and inactive. In this case it is the setValidityPeriodCondition() method that provides the
linkage.

A policy ruleisillustrated conceptually in the figure below.

e e e T +
i PolicyRule i
R e + Fmmmmmm e + |
| | PolicyCondition(s) | | PolicyAction(s) | |
| #---mmmm e + Fommmm e m e + |
| |
| o m e + |
| | PolicyTimePeriodCondition (s) | |
| e + |
e e e T +

ETSI

64 ETSI ES 204 915-13 V1.1.1 (2008-05)

The PolicyRule class uses the structure TpConditionList to specify the list of conditions for the rule and uses the
attribute ConditionListType, to indicate whether the conditions for the rule are in DNF or CNF. The TpConditionList is
alist of structures, each element of which contains a reference to a condition and two additional attributes to complete
the representation of the rule's conditional expression. Thefirst of these attributes is an integer to partition the
referenced conditions into one or more groups, and the second is a Boolean to indicate whether the referenced condition
is negated. An example shows how TpConditionList and these two additional attributes provide a unique representation
of aset of conditionsin either DNF or CNF.

Suppose we have a TpConditionList that aggregates five PolicyConditions C1 through C5, with the following values
in the attributes of the five elements of thelist:

C1: GroupNumber = 1, ConditionNegated = FALSE
C2: GroupNumber = 1, ConditionNegated = TRUE
C3: GroupNumber = 1, ConditionNegated = FALSE
C4: GroupNumber = 2, ConditionNegated = FALSE
C5: GroupNumber = 2, ConditionNegated = FALSE
If ConditionListType=P_PM_DNF, then the overall condition for the PolicyRuleis:
(C1 AND (NOT C2) AND C3) OR (C4 AND C5)
On the other hand, if ConditionListType = P_PM_CNF, then the overall condition for the PolicyRuleis:
(C1 OR (NOT C2) OR C3) AND (C4 OR C5)

In both cases, there is an unambiguous specification of the overall condition that istested to determine whether to
perform the actions associated with the PolicyRule.

Similarly, The PolicyRule class uses the structure TpPolicyActionList to specify the list of actions for the rule and
uses the attribute SequencedA ctions to indicate whether the actions for the rule MUST be executed in the order
specified in the TpActionList, SHOULD be executed in the order specified, or it does not matter. The TpActionListisa
list of structures, each element of which contains a reference to an action and an attribute sequenceNumber. This
attribute provides an unsigned integer 'n' that indicates the relative position of an action in the sequence of actions
associated with apolicy rule. When 'n’ is a positive integer, it indicates a place in the sequence of actionsto be
performed, with smaller integersindicating earlier positions in the sequence. The special value '0" indicates "do not
care". If two or more actions have the same non-zero sequence number, they may be performed in any order, but they
must all be performed at the appropriate place in the overall action sequence.

A series of examples will make ordering of actions clearer:

- If all actions have the same sequence number, regardless of whether it is'0" or non-zero, any order is acceptable.
- Thevalues

1. ACTION A

2: ACTION B

1: ACTION C

3: ACTION D

indicate two acceptable orders. A, C, B, D or C, A, B, D, since A and C can be performed in either order, but

only at the "1’ position.

- The values

0: ACTION A

2. ACTION B

3: ACTION C

3: ACTION D

require that B,C, and D occur either asB, C, D or asB, D, C. Action A may appear at any point relativeto B, C, and
D. Thusthe complete set of acceptable ordersis: A, B, C,D; B,A,C,D; B,C,A,D;B,C,D,A; A, B,D,C;B, A, D,
C B,D,ACB,D,CA.

Note that the non-zero sequence numbers need not start with '1', and they need not be consecutive.
All that mattersistheir relative magnitude.

ETSI

65 ETSI ES 204 915-13 V1.1.1 (2008-05)

<<Interface>>

IpPolicyRule

getParentGroup () : IpPolicyGroupRef
getParentDomain () : IpPolicyDomainRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
: in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef
removeCondition (conditionName : in TpString) : void
getConditionCount () : TpInt32

getConditionlterator () : IpPolicylteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef

removeAction (actionName : in TpString) : void

getActionCount () : TpInt32

getActionlterator () : IpPolicylteratorRef
setValidityPeriodConditionByName (conditionName : in TpString) : void
setValidityPeriodCondition (conditionReference : in IpPolicyTimePeriodConditionRef) : void
getValidityPeriodCondition () : IpPolicyTimePeriodConditionRef
unsetValidityPeriodCondition () : void

setConditionList (conditionList : in TpPolicyConditionList) : void
getConditionList () : TpPolicyConditionList

setActionList (actionList : in TpPolicyActionList) : void

getActionList () : TpPolicyActionList

8.16.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering", "Billing", and
"Review in December 2000".

ETSI

66 ETSI ES 204 915-13 V1.1.1 (2008-05)

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Enabled : TpBoolean

This attribute indicates whether a policy ruleis currently enabled, from an administrative point of view. Its purposeisto
allow a policy administrator to enable or disable a policy rule without having to add it to, or remove it from, the policy
repository.

Note that unlike RFC 3460, this attribute does not support the val ue ‘enabledForDebug'. It was considered confusing
that Enabled was not a boolean attribute. Support for debugging, including the ability to specify that the entity
evauating the policy condition(s) is being told to evaluate the conditions for the policy rule, but not to perform the
actionsif the conditions evaluate to TRUE, will be considered for alater release.

RuleUsage : TpString
This attribute is a free-form string that recommends how this policy should be used.

Priority : TpInt32

This attribute provides a non-negative integer for prioritising policy rulesrelative to each other. Larger integer values
indicate higher priority. Since one purpose of this attribute is to allow specific, ad hoc policy rules to temporarily
override established policy rules, an instance that has this attribute set has a higher priority than all instances that use or
set the default value of zero.

Prioritisation among policy rules provides a basic mechanism for resolving policy conflicts.

Mandatory : TpBoolean

This attribute indicates whether evaluation (and possibly action execution) of a PolicyRule is mandatory or not. Its
concept is similar to the ability to mark packets for delivery or possible discard, based on network traffic and device
load.

The evaluation of a PolicyRule MUST be attempted if the Mandatory attribute value is TRUE. If the Mandatory
attribute value of a PolicyRule is FALSE, then the evaluation of the ruleis "best effort" and MAY be ignored.

PolicyRoles : TpStringSet

This attribute represents the roles and role combinations associated with a policy rule. Each value represents one role
combination. Since thisis a multi-valued attribute, more than one role combination can be associated with asingle
policy rule. Each value is a string of the form:

<RoleName>[& & <RoleName>]*

where the individual role names appear in aphabetical order.

ETSI

67 ETSI ES 204 915-13 V1.1.1 (2008-05)

ConditionListType : TpPolicyConditionListType

This attribute is used to specify whether the list of policy conditions associated with this policy ruleisin Digjunctive
Normal Form (DNF) or Conjunctive Normal Form (CNF). If this attribute is not present, the list type defaultsto DNF.

SequencedActions : TpInt32

This attribute gives a policy administrator a way of specifying how the ordering of the policy actions associated with
this PolicyRule isto be interpreted. Three values are supported:

- mandatory(1): Do the actions in the indicated order, or do not do them at all.

- recommended(2): Do the actions in the indicated order if you can, but if you cannot do them in this order, do themin
another order if you can.

- dontCare(3): Do them -- | do not care about the order.

When error / event reporting is addressed for the Policy Framework, suitable codes will be defined for reporting that a

set of actions could not be performed in an order specified as mandatory (and thus were not performed at al), that a set
of actions could not be performed in arecommended order (and moreover could not be performed in any order), or that
a set of actions could not be performed in arecommended order (but were performed in a different order).

8.1.6.2 Method getParentGroup()

Return a reference to the PolicyGroup that directly contains this Rule (if any). If this Rule is contained by a
PolicyDomain, return aNULL reference.

Returns: The reference to the PolicyGroup.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions

8.1.6.3 Method getParentDomain()

Return areference to the PolicyDomain that directly contains this Rule (if any). If this Rule is contained by a
PolicyGroup, return aNULL reference.

Returns: The reference to the PolicyDomain to get.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.1.6.4 Method createCondition()

Create a new condition local to this Rule. Conditions created local to a Rule can only be referenced from that Rule. For
reusable conditions, see IpPolicyRepository.

Returns: The reference to the newly created condition.

ETSI

68 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters

conditionName : in TpString
The name uniquely identifying this condition within thisrule.

conditionType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management AP,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet
The initia attributes for this condition.

Returns
IpPolicyConditionRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.6.5 Method getCondition()
Get areference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionName : in TpString
The name of the condition to get.

Returns
IpPolicyConditionRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P _NAME SPACE_ERROR

8.1.6.6 Method removeCondition()

Remove the specified condition.

Parameters

conditionName : in TpString
The name of the condition to delete.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.6.7 Method getConditionCount()

Returns the number of conditions contained by this rule that the client is authorized to see.

ETSI

69 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters
No Parameters were identified for this method.

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS VIOLATION
8.1.6.8 Method getConditionlterator()

Obtain areference to an iterator that will return the names of each of the conditions contained by this rule that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P _ACCESS VIOLATION
8.1.6.9 Method createAction()

Create anew action local to this Rule. Actions created local to a Rule can only be referenced from that Rule. For
reusable actions, see | pPolicyRepository.

Returns: The reference to the newly created action.

Parameters

actionName : in TpString
The name uniquely identifying this action within thisrule.

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet
The attributes specifying the action.

Returns
IpPolicyActionRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

ETSI

70 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.6.10 Method getAction()
Get areference to the specified action.

Returns: A reference to the specified action.

Parameters

actionName : in TpString
The name of the action to get.

Returns
IpPolicyActionRef
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P _NAME SPACE_ERROR

8.1.6.11 Method removeAction()

Remove the specified action.

Parameters

actionName : in TpString
The name of the action to delete.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P_NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.6.12 Method getActionCount()

Returns the number of actions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
TpInt32

Raises
TpCommonExceptions, P_ACCESS VIOLATION
8.1.6.13 Method getActionlterator()

Obtain areference to an iterator that will return the names of each of the actions contained by thisrule that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

71 ETSI ES 204 915-13 V1.1.1 (2008-05)

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS VIOLATION
8.1.6.14 Method setValidityPeriodConditionByName()

Set the validity period for the rule, specifying the name of a condition of type IpVaidityPeriodCondition. Since the
condition is specified by name, the condition must be defined local to thisrule.

Parameters

conditionName : in TpString
Name identifying a condition local to thisrule.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.6.15 Method setValidityPeriodCondition()

Set the validity period for the rule, providing areference to a condition of type | pVaidityPeriodCondition. Since the
condition is specified by reference, the condition may be defined local to rule or may be a condition defined in a
PolicyRepository.

Parameters

conditionReference : in IpPolicyTimePeriodConditionRef

Reference to the condition to be used to set the validity period condition.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P NO TRANSACTION IN PROCESS
8.1.6.16 Method getValidityPeriodCondition()

Get areference to the condition used to set the validity period condition for thisrule.

Returns: The reference to the condition. Thiswill beaNULL reference if the validity period condition is not set.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyTimePeriodConditionRef
Raises

TpCommonExceptions

8.1.6.17 Method unsetValidityPeriodCondition()

Unset the validity period condition for this rule. When the validity period condition is not set, the rule is always active.

Parameters
No Parameters were identified for this method.

ETSI

72 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises
TpCommonExceptions, P_ACCESS VIOLATION, P NO TRANSACTION IN PROCESS
8.1.6.18 Method setConditionList()

Set the condition list of this rule, specifying each triple of condition, Group Number and Negated attributes. See the text
under IpPolicyRule above for a description of the use of these two attributes. Note that although a condition may be
contained by arule (by creating the condition within the rule using createCondition(), it is not evaluated as part of the
rule's condition list until it isincluded in the list specified by this method.

Parameters

conditionList : in TpPolicyConditionList

List of (Condition reference, Group Number, Negated) triples and the value ConditionListType indicating whether the
conditions arein DNF or CNF.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NO TRANSACTION IN PROCESS

8.1.6.19 Method getConditionList()
Get the condition list set for the rule.

Returns: The condition list currently set for thisrule.

Parameters
No Parameters were identified for this method.

Returns

TpPolicyConditionList

Raises

TpCommonExceptions, P_ACCESS VIOLATION
8.1.6.20 Method setActionList()

Set the list of actions for this rule, specifying each pair of Action and SequenceNumber. See the text under IpPolicyRule
above for a description of the use of this attribute. Note that although an action may be contained by arule (by creating
the action within the rule using createAction()), it is not evaluated as part of the rule's actions until it isincluded in the
list specified by this method.

Parameters

actionList : in TpPolicyActionList
List of (Action Reference, Sequence Number) pairs.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NO TRANSACTION IN PROCESS

8.1.6.21 Method getActionList()
Get the action list set for therule.

Returns: The action list currently set for thisrule.

ETSI

73 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters
No Parameters were identified for this method.

Returns
TpPolicyActionList

Raises
TpCommonExceptions, P_ACCESS VIOLATION

8.1.7 Interface Class IpPolicyCondition
Inherits from: IpPolicy.

The purpose of a policy condition is to determine whether or not the set of actions (aggregated in the PolicyRule that the
condition applies to) should be executed or not. For the purposes of the Policy Core Information Model, all that matters
about an individual PolicyConditionisthat it evaluatesto TRUE or FALSE. (Theindividua PolicyConditions
associated with a PolicyRule are combined to form a compound expression in either DNF or CNF, but thisis
accomplished via the ConditionList, discussed above. A logical structure within an individual PolicyCondition may also
be introduced, but this would have to be done in a subclass of PolicyCondition.

Because it is general, the PolicyCondition class does not itself contain any "real" conditions. These will be
represented by attributes of the domain-specific subclasses of PolicyCondition.

e e e +
| Policy Conditions in DNF |
R e + Fmmmmm e + |
| | AND list | | AND list | |
R - | -
| | | PolicyCondition | | | | PolicyCondition | | |
(R[S —— - [S — fol
R — - R _s
		PolicyCondition		e		PolicyCondition		
	+-----mmmmm e e +	ORed	+----------------- +					
ANDed		ANDed						
[b - . -								
		PolicyCondition				PolicyCondition		
[St - [S _n								
#--mmmm e + Fmmmm e +								
e e R +

The figure above illustrates that when policy conditions arein DNF, there are one or more sets of conditions that are
ANDed together to form AND lists. An AND list evaluates to TRUE if and only if al of its constituent conditions
evaluate to TRUE. The overall condition then evaluates to TRUE if and only if at least one of its constituent AND lists
evaluates to TRUE.

e e e +
| Policy Conditions in CNF |
R e + Fmmmmm e + |
| | OR list | | OR list | |
I I - | -
| | | PolicyCondition | | | | PolicyCondition | | |
(R[S —— - [S — col
R - R _
		PolicyCondition		e		PolicyCondition		
	+-----mmmmm e e e e e +	ANDed	4----------------- +					
	ORed		ORed					
[b - N, -								
		PolicyCondition				PolicyCondition		
[S - [S _n
R e + Fmmm e + |
et +

ETSI

74 ETSI ES 204 915-13 V1.1.1 (2008-05)

In the figure above, the policy conditions are in CNF. Consequently, there are one or more OR lists, each of which
evauatesto TRUE if and only if at least one of its constituent conditions evaluates to TRUE. The overall condition then
evauatesto TRUE if and only if ALL of its constituent OR lists evaluate to TRUE.

When identifying and using the PolicyCondition class, it is necessary to remember that a condition can be rule-
specific or reusable. This was discussed above. The distinction between the two types of policy conditionsliesin the
associations in which an instance can participate, and in how the different instances are named. Conceptually, areusable
policy condition residesin a policy repository, and is named within the scope of that repository. On the other hand, a
rule-specific policy condition is, as the name suggests, named within the scope of the single policy ruleto whichitis
related.

<<Interface>>

IpPolicyCondition

getParentRepository () : IpPolicyRepositoryRef
getParentRule () : IpPolicyRuleRef

8171 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

75 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.7.2 Method getParentRepository()

Return a reference to the repository that contains this condition (if any). If this condition is contained by arule, return a
NULL reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyRepositoryRef

Raises

TpCommonExceptions

8.1.7.3 Method getParentRule()

Return areference to the rule that contains this condition (if any). If this condition is contained by a PolicyRepository,
return aNULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyRuleRef

Raises

TpCommonExceptions

8.1.8 Interface Class IpPolicyTimePeriodCondition
Inherits from: I pPolicyCondition.

This class provides a means of representing the time periods during which a policy ruleisvalid, i.e., active. At al times
that fall outside these time periods, the policy rule has no effect. A policy ruleistreated asvalid at al timesif it does
not specify a PolicyTimePeriodCondition.

In some cases a PDP may need to perform certain setup / cleanup actions when a policy rule becomes active /
inactive. For example, sessions that were established while a policy rule was active might need to be taken down when
the rule becomesinactive. In other cases, however, such sessions might be left up: in this case, the effect of deactivating
the policy rule would just be to prevent the establishment of new sessions. Setup / cleanup behaviours on validity period
transitions are not currently addressed by the RFC 3460, and must be specified in 'guideline’ documents, or via
subclasses of PolicyRule, PolicyTimePeriodCondition or other concrete subclasses of Policy. If such behaviours need to
be under the control of the policy administrator, then a mechanism to alow this control must also be specified in the
subclass.

PolicyTimePeriodCondition is defined as a subclass of PolicyCondition. Thisisto allow the inclusion of time-based
criteriain the AND/OR condition definitions for a PolicyRule.

I nstances of this class may have up to five attributes identifying time periods at different levels. The values of al the
attributes present in an instance are ANDed together to determine the validity period(s) for the instance. For example,
an instance with an overall validity range of January 1, 2000 through December 31, 2000; a month mask that selects
March and April; a day-of-the-week mask that selects Fridays; and atime of day range of 0800 through 1600 would
represent the following time periods:

Friday, March 5, 2000, from 0800 through 1600;
Friday, March 12, 2000, from 0800 through 1600;
Friday, March 19, 2000, from 0800 through 1600;
Friday, March 26, 2000, from 0800 through 1600;

ETSI

76 ETSI ES 204 915-13 V1.1.1 (2008-05)

Friday, April 2, 2000, from 0800 through 1600;
Friday, April 9, 2000, from 0800 through 1600;
Friday, April 16, 2000, from 0800 through 1600;
Friday, April 23, 2000, from 0800 through 1600;
Friday, April 30, 2000, from 0800 through 1600.

Attributes not present in an instance of PolicyTimePeriodCondition are implicitly treated as having their value
"aways enabled". Thus, in the example above, the day-of-the-month mask is not present, and so the validity period for
the instance implicitly includes a day-of-the-month mask that selects all days of the month. If we apply this"missing
attribute” rule to its fullest, we see that there is a second way to indicate that apolicy ruleis always enabled: haveit
point to an instance of Policy TimePeriodCondition whose only attributes are its naming attributes.

The attribute Local OrUtcTime indicates whether the times represented in the other five time-related attributes of an
instance of PolicyTimePeriodCondition are to be interpreted aslocal times for the location where apolicy ruleis being
applied, or as UTC times.

<<Interface>>

IpPolicyTimePeriodCondition

8.18.1 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

77 ETSI ES 204 915-13 V1.1.1 (2008-05)

TimePeriod : TpString

This attribute identifies an overall range of calendar dates and times over which a policy ruleisvalid. It reuses the
format for an explicit time period defined in RFC 2445: a string representing a starting date and time, in which the
character 'T' indicates the beginning of the time portion, followed by the solidus character '/, followed by a similar
string representing an end date and time. The first date indicates the beginning of the range, while the second date
indicates the end. Thus, the second date and time must be later than the first. Date/times are expressed as substrings of
the form "yyyymmddThhmmss'. For example:

20000101T080000/20000131T 120000
January 1, 2000, 0800 through January 31, 2000, noon

There are also two special cases in which one of the date/time strings is replaced with a special string defined in
RFC 2445.

- If thefirst date/time is replaced with the string "THISANDPRIOR", then the attribute indicates that a policy ruleis
valid [from now] until the date/time that appears after the /'.

- If the second date/time is replaced with the string " THISANDFUTURE", then the attribute indicates that a policy rule
becomes valid on the date/time that appears before the /', and remains valid from that point on.

Note that RFC 2445 does not use these two strings in connection with explicit time periods. Thusthe RFC 3460 is
combining two elements from RFC 2445 that are not combined in the RFC itself.

MonthOfYearMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the months when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period during which the policy might be valid, and the MonthOfY earM ask
used to pick out the specific months within that time period when the policy isvalid.

This attribute is formatted as an octet string of size 2, consisting of 12 bits identifying the 12 months of the year,
beginning with January and ending with December, followed by 4 bits that are always set to ‘0. For each month, the
value '1' indicates that the policy is valid for that month, and the value '0" indicates that it is not valid. The value X'08
30, for example, indicates that apolicy ruleisvalid only in the months May, November, and December.

See clause 5.4 of RFC 3060 for details of how CIM represents a single-valued octet string attribute such as this one.
(Basically, CIM prepends a 4-octet length to the octet string.)

If this attribute is omitted, then the policy ruleistreated as valid for al twelve months.

DayOfMonthMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the days of the month when the policy isvalid. These attributes work together, with
the TimePeriod used to specify the overall time period during which the policy might be valid, and the
DayOfMonthMask used to pick out the specific days of the month within that time period when the policy isvalid.

This attribute is formatted as an octet string of size 8, consisting of 31 bits identifying the days of the month counting
from the beginning, followed by 31 more bits identifying the days of the month counting from the end, followed by

2 bitsthat are always set to '0'. For each day, the value '1' indicates that the policy isvalid for that day, and the value '0'
indicates that it is not valid.

The value X'80 00 00 01 00 00 00 00, for example, indicates that a policy ruleisvalid on the first and last days of the
month.

For months with fewer than 31 days, the digits corresponding to days that the months do not have (counting in both
directions) are ignored.

The encoding of the 62 significant bits in the octet string matches that used for the schedDay object in the DISMAN-
SCHEDULE-MIB. See RFC 2591 for more details on this object.

See clause 5.4 of RFC 3060 for details of how CIM represents a single-valued octet string attribute such as this one.
(Basically, CIM prepends a 4-octet length to the octet string.)

ETSI

78 ETSI ES 204 915-13 V1.1.1 (2008-05)

DayOfWeekMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying the days of the week when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period when the policy might be valid, and the DayOfWeekMask used to
pick out the specific days of the week in that time period when the policy isvalid.

This attribute is formatted as an octet string of size 1, consisting of 7 bitsidentifying the 7 days of the week, beginning
with Sunday and ending with Saturday, followed by 1 bit that is always set to '0'. For each day of the week, the value '1'
indicates that the policy is valid for that day, and the value '0' indicates that it is not valid.

Thevalue X'7C', for example, indicates that a policy ruleisvalid Monday through Friday.

See clause 5.4 of RFC 3060 for details of how CIM represents a single-valued octet string attribute such as this one.
(Basically, CIM prepends a 4-octet length to the octet string.)

TimeOfDayMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying arange of timesin a day the policy isvalid for. These attributes work together, with
the TimePeriod used to specify the overall time period that the policy is valid for, and the TimeOfDayMask used to pick
out which range of time periods in a given day of that time period the policy isvalid for.

This attribute is formatted in the style of RFC 2445: atime string beginning with the character 'T', followed by the
solidus character /', followed by a second time string. The first time indicates the beginning of the range, while the
second time indicates the end. Times are expressed as substrings of the form " Thhmmss®.

The second substring always identifies a later time than the first substring. To alow for ranges that span midnight,
however, the value of the second string may be smaller than the value of the first substring. Thus, "T080000/T210000"
identifies the range from 0800 until 2100, while "T210000/T080000" identifies the range from 2100 until 0800 of the
following day.

When arange spans midnight, it by definition includes parts of two successive days. When one of these daysis also
selected by either the MonthOfY earM ask, DayOfMonthM ask, and/or DayOfWeekMask, but the other day is not, then
the policy is active only during the portion of the range that falls on the selected day. For example, if the range extends
from 2100 until 0800, and the day of week mask selects Monday and Tuesday, then the policy is active during the
following three intervals:

From midnight Sunday until 0800 Monday;
From 2100 Monday until 0800 Tuesday;
From 2100 Tuesday until 23:59:59 Tuesday.

LocalOrUtcTime : TpInt32

This attribute indicates whether the times represented in the TimePeriod attribute and in the various Mask attributes
represent local times or UTC times. Thereis no provision for mixing of local timesand UTC times: the value of this
attribute applies to all of the other time-related attributes. Note that Local Time is designated by the integer 1 and
UtcTime by theinteger 2. If no value is specified the default value is 2, i.e. UtcTimeis used.

8.1.9 Interface Class IpPolicyAction
Inherits from: IpPolicy.

The purpose of a policy action is to execute one or more operations that will affect network traffic and/or systems,
devices, etc., in order to achieve adesired state. This (new) state provides one or more (new) behaviours. A policy
action ordinarily changes the configuration of one or more elements.

ETSI

79 ETSI ES 204 915-13 V1.1.1 (2008-05)

A PolicyRule contains one or more policy actions. A policy administrator can assign an order to the actions
associated with a PolicyRule, complete with an indication of whether the indicated order is mandatory, recommended,
or of no significance. Ordering of the actions associated with a PolicyRule is accomplished via the setActionList()
method.

The actions associated with a PolicyRule are executed if and only if the overall condition(s) of the PolicyRule
evaluates to TRUE.

When identifying and using the PolicyAction class, it is necessary to remember that an action can be rule-specific or
reusable. This was discussed above. The distinction between the two types of policy actionsliesin the associationsin
which an instance can participate, and in how the different instances are named. Conceptually, a reusable policy action
residesin a policy repository, and is named within the scope of that repository. On the other hand, a rule-specific policy
action is named within the scope of the single policy rule to which it is related.

<<Interface>>

IpPolicyAction

getParentRepository () : IpPolicyRepositoryRef
getParentRule () : IpPolicyRuleRef

8191 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

ETSI

80 ETSI ES 204 915-13 V1.1.1 (2008-05)

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.1.9.2 Method getParentRepository()

Return a reference to the repository that contains this action (if any). If this action is contained by arule, returnaNULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions

8.1.9.3 Method getParentRule()

Return areference to the rule that contains this action (if any). If this action is contained by a PolicyRepository, return a
NULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method.

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions

8.1.10 Interface Class IpPolicyEventDefinition
Inherits from: IpPolicy.

Instances of |pPolicyEventDefinition specify the required and optional attributes of events that can be subscribed to,
specified as conditions, and generated by clients or actions.

<<Interface>>

IpPolicyEventDefinition

setRequiredAttributes (requiredAttributes : in TpAttributeSet) : void
setOptionalAttributes (optionalAttributes : in TpAttributeSet) : void
getRequiredAttributes () : TpAttributeSet

getOptionalAttributes () : TpAttributeSet

getParentDomain () : IpPolicyDomainRef

ETSI

81 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.10.1 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

RequiredAttributes : TpAttributeSet
The names and types of the attributes that generated events must include.

OptionalAttributes : TpAttributeSet
The names and types of the attributes that generated events may include.

8.1.10.2 Method setRequiredAttributes()

Specify the names and types of the attributes that generated events must include.

Parameters

requiredAttributes : in TpAttributeSet
The names and types of the attributes.

Raises
TpCommonExceptions, P_ACCESS VIOLATION, P NO TRANSACTION IN PROCESS

ETSI

82 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.10.3 Method setOptionalAttributes()

Specify the names and types of the attributes that may be included in a generated event.

Parameters

optionalAttributes : in TpAttributeSet
The names and types of the attributes.

Raises
TpCommonExceptions, P_ACCESS VIOLATION, P NO TRANSACTION IN PROCESS
8.1.10.4 Method getRequiredAttributes()

Get the names and types of the attributes that a generated event is required to include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method.

Returns

TpAttributeSet

Raises

TpCommonExceptions

8.1.10.5 Method getOptionalAttributes()

Get the names and types of the attributes that a generated event may optionally include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method.

Returns
TpAttributeSet
Raises
TpCommonExceptions

8.1.10.6 Method getParentDomain()
Return areference to the domain that contains this event definition.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyDomainRef

ETSI

83 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises

TpCommonExceptions

8.1.11 Interface Class IpPolicyEventCondition
Inherits from: I pPolicyCondition.

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyEventCondition

8.1.11.1 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

EventDefinitonName : TpString
The EventDefinition that defines the event this condition is waiting on.

ETSI

84 ETSI ES 204 915-13 V1.1.1 (2008-05)

MatchingAttributes : TpAttributesSet

The set of attributes that must match (name and value) for the condition to be satisfied. If this set is empty, then the
generation of the event is enough to satisfy the condition.

8.1.12 Interface Class IpPolicyExpressionCondition
Inherits from: | pPolicyCondition.

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyExpressionCondition

8.1.12.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

85 ETSI ES 204 915-13 V1.1.1 (2008-05)

Expression : TpString

The expression to be evaluated as the condition. In case this SCF supports both eBNF and XML, then the
TpAttributeTaglnfo of the TpAttribute that populated this expression is used to distinguish between XML and eBNF
string contents. A TpAttributeTaglnfo value of P_XML_TYPE indicates XML as contents of the Expression attribute
and a TpAttributeTaglnfo value of P_SIMPLE_TY PE indicates eBNF as contents of Expression attribute. The eBNF
definition can be found in clause 11.3.

8.1.13 Interface Class IpPolicyEventAction
Inherits from: I pPolicyAction.

Generate an instance of a specified event.

<<Interface>>

IpPolicyEventAction

8.1.13.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

86 ETSI ES 204 915-13 V1.1.1 (2008-05)

EventDefinitionName : TpString
The name of the EventDefinition that should be used to define the desired event.

Attributes : TpAttributeSet
The set of attributes that should be included with the generated event. Note that this set must contain all of the attributes

in the RequiredAttributes attribute of the specified EventDefinition and any remaining attributes must be included in the
Optional Attributes attribute.

8.1.14 Interface Class IpPolicyExpressionAction

Inherits from: I pPolicyAction.

Evaluate an expression.

<<Interface>>

IpPolicyExpressionAction

8.1.14.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

ETSI

87 ETSI ES 204 915-13 V1.1.1 (2008-05)

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Expression : TpString

The expression that should evaluated. In case this SCF supports both eBNF and XML, then the TpAttributeTaglnfo of
the TpAttribute that populated this expression is used to distinguish between XML and eBNF string contents. A
TpAttributeTaglnfo value of P_XML_TY PE indicates XML as contents of the Expression attribute and a
TpAttributeTaglnfo value of P_SIMPLE_TY PE indicates eBNF as contents of Expression attribute. The eBNF
definition can be found in clause 11.3.

8.1.15 Interface Class IpPolicylterator
Inherits from: IpPolicy.

This interface supports paging through the names of the appropriate objects within a container. Rather than retrieving
one name at atime, thisinterface specifically allows the caller to specify how many names to retrieve on each call.

<<Interface>>

IpPolicylterator

getList (startindex : in TpInt32, numberRequested : in Tpint32) : TpStringSet

8.1.15.1 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examplesinclude "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

ETSI

88 ETSI ES 204 915-13 V1.1.1 (2008-05)

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides alonger description than that provided by the caption attribute.
8.1.15.2 Method getList()

Return at most numberRequested names starting at location startL ocation.

Returns: Thelist of names returned. The list can be examined to determine how many entries were actually returned.

Parameters

startIndex : in TpInt32
The index (starting at 0) of the first name to be returned.

numberRequested : in TpInt32
The maximum number of names expected to be returned by this call.

Returns
TpStringSet
Raises

TpCommonExceptions

8.1.16 Interface Class IpPolicySignature
Inherits from: IpPolicy.

I pPolicySignature specifies the attributes needed to completely specify the ‘context' of an evaluation request - also see
definitions of createSignature(), evalPolicy(). The input and output variable names referenced below must correspond to
variables whose names, types and initial values have been set via the setVariable() method which have been created via
the createVariable() method.

<<Interface>>

IpPolicySignature

setlnputVariables (inputVariables : in TpStringSet) : void
setOutputVariables (outputVariables : in TpStringSet) : void
getinputVariables () : TpStringSet

getOutputVariables () : TpStringSet

setGroupNames (groupNames : in TpStringSet) : void
setPolicyRoles (roleNames : in TpStringSet) : void
getGroupNames () : TpStringSet

getPolicyRoles () : TpStringSet

getParentDomain () : IpPolicyDomainRef

ETSI

89 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.1.16.1 Attributes

CommonName : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

inputVariables : in TpStringSet

The names of input variables whose values are required to be available for decision request. This must not be an empty
Set.

outputVariables : in TpStringSet

The names of output variables whose values are to be sent back to a client after a decision has been rendered. This must
not be an empty set.

groupNames : in TpStringSet

The set of names of the rule groups that must be included for policy evaluation. A group nameisidentical to the value
of the CommonName attribute of arule group (see clause 8.1.4.1). The set groupNames may be empty or may contain
one or more group names. If the set is empty then all groups under the relevant policy domain (see clause 8.1.3) are to
be considered in the evaluation. Also see roleNames below.

In general, arule belongs to agroup (of rules) with which it shares common characteristics. See clauses 8.1.4 and 8.1.6
for detailed definitions of arule group and rule respectively.

ETSI

90 ETSI ES 204 915-13 V1.1.1 (2008-05)

roleNames : in TpStringSet

A roleName corresponds to apolicy role (see clause 8.1.6.1 for the defining syntax for the attribute 'PolicyRoles' and
the use of roleName therein). A roleName names the special role (or roles) of arule within agroup. Thus, e.g.
roleName = content_streaming_charge & & IP in arule may be used to signify a combination of 2 roles. In this example
the rule is used to compute charges for a content streaming service that is 1P based . A roleName may transcend groups.
Thus, e.g. 2 distinct rulesin 2 distinct groups may have identical values for their policyRoles attribute. The set of
roleNames may be empty or may have one or more elements. Also see the following:

a. groupNames = Null & roleNames = Null. In this case al rules under the relevant policy domain must be
considered for the eval uation request.

b. groupNames !'= Null & roleNames = Null. In this case al rules within the named groups must be considered for
the evaluation request.

c. groupNames !'= Null & roleNames != Null. In this case all rules from the named groups with the designated
roleNames must be considered for the eval uation request.

d. groupNames = Null & policyRoles!= Null. In this case all rules with the designated roleNames under the relevant
policy domain must be considered.

8.1.16.2 Method setinputVariables()

Specify the names of the input variables that a policy-eval uation must include - also see the definition of the
inputAttributes parameter for the method evalPolicy(). The types and names and initial values of these variables must
be defined apriori via the setVariableType() and (if necessary) setVariableValue() methods.

Parameters

inputVariables : in TpStringSet
The names of the variables. This must not be an empty set.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.16.3 Method setOutputVariables()

Specify the names of the output variables that must be included in the output resulting from a policy-eval uation method
call. These are names of variables whose values are to be returned back to the client by the evalPolicy() method. Also
see the definition of the method eval Policy(). The types and names and initial values of these variables must be set
apriori viathe setVariableType() and (if necessary) setVariableValue() methods.

Parameters

outputVariables : in TpStringSet
The names of the variables. This must not be an empty set.

Raises

TpCommonExceptions, P ACCESS VIOLATION, P SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.16.4 Method getinputVariables()
Get the names of the input variables associated with this signature.

Returns: A copy of the set of input variable names.

Parameters
No Parameters were identified for this method.

ETSI

91 ETSI ES 204 915-13 V1.1.1 (2008-05)

Returns

TpStringSet

Raises

TpCommonExceptions

8.1.16.5 Method getOutputVariables()

Get the names of the output variables associated with this signature.

Returns: A copy of the set of output variable names.

Parameters
No Parameters were identified for this method.

Returns

TpStringSet

Raises

TpCommonExceptions

8.1.16.6 Method setGroupNames()

Specify the names of the groups that a policy-eval uation must include. A group name coincides with the value of the
CommonName attribute of arelevant group (see clause 8.1.4.1).

Parameters

groupNames : in TpStringSet

The names of the groups. Elements of groupNames take values from of the CommonName attribute relevant groups.
This may be NULL.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P _NO TRANSACTION IN PROCESS

8.1.16.7 Method setPolicyRoles()

Specify the names of the roles that a policy-evaluation must include.

Parameters

roleNames : in TpStringSet
The names of theroles. This may be NULL.
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR, P_NO TRANSACTION IN PROCESS

8.1.16.8 Method getGroupNames()
Get the names of the groups associated with this signature.

Returns: A copy of the set of group names (this may be NULL).

ETSI

92 ETSI ES 204 915-13 V1.1.1 (2008-05)

Parameters
No Parameters were identified for this method.

Returns

TpStringSet

Raises

TpCommonExceptions

8.1.16.9 Method getPolicyRoles()

Get the names of the roles associated with this signature.
Returns: A copy of the set of role names (this may be NULL).

Parameters
No Parameters were identified for this method.

Returns

TpStringSet

Raises

TpCommonExceptions

8.1.16.10 Method getParentDomain()

Return areference to the domain that contains this policy-evaluation signature.
Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns
IpPolicyDomainRef
Raises

TpCommonExceptions

8.2 PM Policy Evaluation SCF Interface Classes

The Policy Management policy evaluation APIs address the following:
- Bvaluation of policy rules on request of a client application.

- Subscription to and receiving notification of policy events.

- Theability for authorized clients to generate events.

A client using the PM policy evaluation APIs should be aware that the underlying policy information, e.g. signatures,
rules, policy events, variables, etc, is defined (and viewable) using the PM provisioning interface. It is therefore
assumed that when a client obtains access to the |pPolicyEvalManager (for policy evaluation) it is aware of the
parameters used in the methods that are supported by thisinterface. Note that it is possible for a client to obtain access
to both the I pPolicyEvalManager and | pPolicyManager interfaces through the Parlay Framework.

ETSI

93 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.2.1 Interface Class IpPolicyEvalManager
Inherits from: IpService.

An authorized client may access this interface to request evaluation of policy rules, subscribe to and receive notification
of events and to generate policy events.

<<Interface>>

IpPolicyEvalManager

evalPolicy (domainName : in TpString, signatureName : in TpString, inputVariables : in
TpPolicyNameValueList) : TpPolicyNameValueList

evalPolicyReq (domainName : in TpString, signatureName : in TpString, inputVariables : in
TpPolicyNameValuelList, appPolicyDomain : in IpAppPolicyDomainRef) : TpAssignmentID

abortEvalPolicyReq (domainName : in TpString, assignmentID : in TpAssignmentID) : void

generateEvent (domainName : in TpString, eventDefinitionName : in TpString, attributes : in TpAttributeSet) :
void

createNotification (domainName : in TpString, appPolicyDomain : in IpAppPolicyDomainRef, events : in
TpStringSet) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentlID, events : in TpStringSet) : void

8211 Method evalPolicy()

Invoke an evaluation of policy rules. Note that an evalPolicy() request is associated with a signature name that is
specified through the attribute signatureName. Thisisto ensure that a ‘context’ is established for the evaluation request.
Thisalso alows for cross validation of the names of the input variables that are specified below via the attribute
inputAttributes.

Returns: The output values included in the associated output structure, TpNameValueL ist.

Parameters

domainName : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

signatureName : in TpString

The name of the signature that is to be used for this request. Must be avalid signature name in the relevant domain, i.e.
the value of signatureName must correspond to the CommonName attribute of an |pPolicySignature created under the
relevant [pPolicyDomain.

inputVariables : in TpPolicyNameValueList

The input variable name-value pairs that will be included in this request. Note that the collection of variable name
specified in inputVariables must correspond to (a subset of) variables names set in the inputV ariables attribute of the
signature 'signatureName' in the policy management SCF.

Returns
TpPolicyNameValuelList

ETSI

94 ETSI ES 204 915-13 V1.1.1 (2008-05)

Raises
TpCommonExceptions, P _ACCESS VIOLATION, P SYNTAX ERROR,
P _NAME SPACE ERROR

8.2.1.2 Method evalPolicyReq()
The synchronous version of evalPolicy().
Returns: TpAssignmentID contains the ID that is assigned to the asynchronous request.

Note that if any exception occurs the client will be notified synchronously and no assignment ID will be issued.

Parameters

domainName : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

signatureName : in TpString

The name of the signature that is to be used for this request. Must be a valid signature name in the relevant domain, i.e.
the value of signatureName must correspond to the CommonName attribute of an I1pPolicySignature created under the
relevant [pPolicyDomain.

inputVariables : in TpPolicyNameValueList

The input variable name-value pairs that will be included in this request. Note that the collection of variable name
specified in inputV ariables must correspond to (a subset of) variables names set in the inputV ariables attribute of the
signature 'signatureName’ in the policy management SCF.

appPolicyDomain : in IpAppPolicyDomainRef
Call back reference to the client's address.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

8.2.1.3 Method abortEvalPolicyReq()

This method is invoked to abort a specific asynchronous request made via an eval PolicyReq|() invocation and identified
by its assignment ID.

Parameters

domainName : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

assignmentID : in TpAssignmentID
assignmentID: in TpAssignmentlD.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

ETSI

95 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.2.1.4 Method generateEvent()

Generate an event using the attributes specified. Validate the attributes against the instance of | pPolicyEventDefinition
specified by the eventDefinitionName parameter. Validation includes verifying that all of the attributes specified as
required by the IpPolicyEventDefinition are included in the supplied attributes and that the supplied attributes do not
include any attributes that are not specified as either required or optional by the IpPolicyEventDefinition.

Parameters

domainName : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

eventDefinitionName : in TpString
The name of the definition of the event that will be used to validate attributes.

attributes : in TpAttributeSet
The attributes that will be included in the event instance that is generated.

Raises

TpCommonExceptions, P_ACCESS VIOLATION, P _SYNTAX ERROR,
P_NAME SPACE_ERROR

8.2.1.5 Method createNotification()

Allows aclient to specify a set of eventsthat they are interested in receiving. Once successfully subscribed, the client
will receive copies of all generated events on the callback provided by the appPolicyDomain parameter.

Returns: An identifier for this subscription. When the client is no longer interested in receiving these events, it should
call destroyNotification() with thisidentifier.
Parameters

domainName : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

appPolicyDomain : in IpAppPolicyDomainRef
The callback to be used to send generated events to the client.

events : in TpStringSet
The set of names of event definitions specifying the events the client wishes to subscribe to.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS VIOLATION, P_SYNTAX ERROR,
P NAME SPACE ERROR

ETSI

96 ETSI ES 204 915-13 V1.1.1 (2008-05)

8.2.1.6 Method destroyNoatification()

Allows aclient to indicate that it is no longer interested in receiving events that it previously subscribed to.

Parameters

assignmentID : in TpAssignmentID
The identifier the client received when it subscribed for the events.

events : in TpStringSet

If non-NULL and non-empty, thisindicates the particular eventsthat the client no longer wishes to receive. If NULL or
empty, then the client is unsubscribing from all events associated with the specified identifier.

Raises

TpCommonExceptions, P_SYNTAX ERROR

8.2.2 Interface Class IpAppPolicyDomain
Inherits from: Iplnterface.

Thisinterface is supported by the client. Return values or error messages resulting from asynchronous method calls are
sent to thisinterface.

<<lInterface>>

IpAppPolicyDomain

reportNotification (assignmentID : in TpAssignmentID, event : in TpPolicyEvent) : void
evalPolicyRes (assignmentID : in TpAssignmentID, outputVariables : in TpPolicyNameValuelList) : void

evalPolicyErr (assignmentID : in TpAssignmentlD, error : in TpPolicyError) : void

8.2.2.1 Method reportNotification()

Notify the client about the specified event.

Parameters

assignmentID : in TpAssignmentID
The assignmentI D returned by the call to createNotification that enabled notification for the specified event.

event : in TpPolicyEvent
The event whose occurrence is being reported.

8.2.2.2 Method evalPolicyRes()

This method is invoked to pass back the results of an evalPolicyReq() invocation. The results are directed to the
assignment ID that is obtained by the client upon invoking eval PolicyReq().

Parameters

assignmentID : in TpAssignmentID
AssignmentlI D is the unique ID that was assigned when a client invoked eval PolicyReq().

ETSI

97 ETSI ES 204 915-13 V1.1.1 (2008-05)

outputVariables : in TpPolicyNameValueList
TpNameValuelList contains name-value pairs that are returned to the client.

8.2.2.3 Method evalPolicyErr()

This method is invoked to pass back any error resulting from the invocation of eval PolicyReq().

Parameters

assignmentID : in TpAssignmentID
Assignmentl D is the unique ID that was assigned when a client invoked eval PolicyReq().

error : in TpPolicyError
Specifies the error, which led to the original request to fail.

9 State Transition Diagrams

9.1 PM Provisioning SCF State Transition Diagrams

There are no State Transition Diagrams for the PM Provisioning SCF.

9.2 PM Policy Evaluation SCF State Transition Diagrams

There are no State Transition Diagrams for the PM Policy Evaluation SCF.

10 PM Service Properties

The following table lists properties relevant to all the PM SCFs.

Property Type Description
P_SUPPORTED_ATTRIBUTE_TAGS STRING_SET |[Lists the supported attribute tags defined by
TpAttributeTaglnfo
P_SUPPORTED_VARIABLE_TAGS STRING_SET |[Lists the supported variable tags defined by

TpPolicyTypelnfo
P_SUPPORTED_SIMPLE_ATTRIBUTE_ | STRING_SET |Lists the supported attribute types defined by

TYPES TpSimpleAttribute Typelnfo
P_SUPPORTED_SIMPLE_VARIABLE_T | STRING_SET |Lists the supported variable types defined by
YPES TpSimpleAttributeTypelnfo
P_SUPPORTED_STRUCTURED_ATTRI | STRING_SET |Lists the supported attribute types defined by
BUTE_TYPES TpStructuredAttributeType, e.g.

P_org/csapi/TpAddress.
P_SUPPORTED_STRUCTURED_VARIA | STRING_SET |Lists the supported variable types defined by

BLE_TYPES TpStructuredAttribute Type, e.qg.
P_org/csapi/TpAddress.
P_SUPPORTED_XML STRING_SET |[Lists the supported versions of XML

specifications such as XML schema
specifications (e.g. through URLSs), XML versions
(e.g. version 1.0) or XPath (e.g. version 1.0)

ETSI

98 ETSI ES 204 915-13 V1.1.1 (2008-05)

Implementations of the PM APIs shall have the Service Properties set to the indicated values at a minimum:

P_SUPPORTED ATTRIBUTE_TAGS = {
P_SIMPLE_TYPE

}

P_SUPPORTED SIMPLE_ATTRIBUTE TYPES = {
P_STRING,

P_FLOAT,

P_INT32,

P_BOOLEAN

}

P_SUPPORTED_VARIABLE_TAGS = {
P_SIMPLE_TYPE
P_PM_TYPE_RECORD,

P_PM TYPE LIST

}

P_SUPPORTED SIMPLE_VARIABLE TYPES = {
P_STRING,

P_FLOAT,

P_INT32,

P_BOOLEAN

}

11 Data Definitions

All datatypes referenced in the present document but not defined in this clause are common data definitions which may
be found in ES 204 915-2.

11.1 Policy Management Data Definitions

This clause provides the Policy Management specific data definitions necessary to support the OSA interface
specification.

The general format of a data definition specification is the following:
. Datatype, that shows the name of the data type.
. Description, that describes the data type.
. Tabular specification, that specifies the data types and values of the data type.

. Example, if relevant, shown to illustrate the data type.

11.1.1 TpPolicyConditionListType

This data type defines the type condition list in apolicy rule.

Name Value Description
P_PM_DNF 0 Disjunctive normal form
P PM CNF 1 Conjunctive normal form

ETSI

99 ETSI ES 204 915-13 V1.1.1 (2008-05)

11.1.2 TpPolicyConditionListElement

ThisdatatypeisaSequence of Data Elements which describes one element of aconditionlist. Itisa
structured data type consisting of the following { condition, groupNumber, negated} tuple:

Sequence Element Name Sequence Element Type
Condition IpPolicyCondition
GroupNumber TpInt32
Negated TpBoolean

11.1.3 TpPolicyConditionList

ThisdatatypeisaNumbered Set of Data Elements of type TpPolicyConditionListElement.

11.1.4 TpPolicyConditionType

This data type defines the condition type in apolicy rule.

Name Value Description
P_PM_TIME_PERIOD_CONDITION 0 IpPolicyTimePeriodCondition
P PM EVENT CONDITION 1 IpPolicyEventCondition
P _PM EXPRESSION CONDITION 2 IpPolicyExpressionCondition

11.1.5 TpPolicyActionListElement

ThisdatatypeisaSequence of Data Elements which describes one element of aaction list. It is astructured
data type consisting of the following { action, sequenceNumber) pair:

Sequence Element Name Sequence Element Type
Action IpPolicyAction
SequenceNumber TpInt32

11.1.6 TpPolicyActionList

ThisdatatypeisaNumbered Set of Data Elements of type TpPolicyActionListElement.

11.1.7 TpPolicyActionType

This data type defines the action type in a policy rule.

Name Value Description
P PM EVENT ACTION 0 IpPolicyEventAction
P _PM EXPRESSION ACTION 1 IpPolicyExpressionAction

11.1.8 TpPolicyEvent

ThisdatatypeisaSequence of Data Elements which describesageneric "event”. Events can be generated in
response to network activity, as aresult of clients calling the generateEvent() method of 1pPolicyDomain, or as aresult
of the evaluation of an IpPolicyEventAction action. Each instance of a generated event isidentified by a unique
EventlD, a 32-bit integer. The time the event was generated is captured in the attribute TimeGenerated. All of the
attributes in the RequiredAttributes list of the EventDefinition associated with the given EventDefinitionName must be
present in Attributes. Any other attributes must be in the Optional Attributes list of the same EventDefinition.

ETSI

100 ETSI ES 204 915-13 V1.1.1 (2008-05)

It isastructured data type consisting of the following fields:

Sequence Element Name Sequence Element Type
EventID TpInt32
TimeGenerated TpDateAndTime

Attributes TpAttributeSet
EventDefinitionName TpString
EventDomainName TpString

11.1.9 TpPolicyKeyword

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that identify the Policy Keywords that
are to be supported by the Policy Management API. Other Network operator specific keywords may also be used, but
should be preceded by the string "sp_". The following values are defined.

Name Description
P_PM_KEYWORD_UNKNOWN To be used when none of the defined values
apply.
P_PM_KEYWORD_CONFIGURATION Configuration Policies define the default (or
generic) setup of a managed entity (for
example, a network service). Examples of
Configuration Policies are the setup of a
network forwarding service or a
network-hosted print queue.
P_PM_KEYWORD_USAGE Usage Policies control the selection and
configuration of entities based on specific
"usage" data. Configuration Policies can be
modified or simply re-applied by Usage
Policies. Examples of Usage Policies include
upgrading network forwarding services after a
user is verified to be a member of a "gold"
service group, or reconfiguring a printer to be
able to handle the next job in its queue.
P_PM_KEYWORD_SECURITY Security Policies deal with verifying that the
client is actually who the client purports to be,
permitting or denying access to resources,
selecting and applying appropriate
authentication mechanisms, and performing
accounting and auditing of resources.
P_PM_KEYWORD_SERVICE Service Policies characterize network and
other services (not use them). For example,
all wide-area backbone interfaces shall use a
specific type of queuing.

Service policies describe services available in
the network. Usage policies describe the
particular binding of a client of the network to
services available in the network.
P_PM_KEYWORD_MOTIVATIONAL Motivational Policies are solely targeted at
whether or how a policy's goal is
accomplished. Configuration and Usage
Policies are specific kinds of Motivational
Policies. Another example is the scheduling of
file backup based on disk write activity from
8am to 3pm, M-F.
P_PM_KEYWORD_INSTALLATION Installation Policies define what can and
cannot be put on a system or component, as
well as the configuration of the mechanisms
that perform the install. Installation policies
typically represent specific administrative
permissions, and can also represent
dependencies between different components
(e.g. to complete the installation of component
A, components B and C must be previously
successfully installed or uninstalled).

ETSI

101 ETSI ES 204 915-13 V1.1.1 (2008-05)

Name Description
P_PM_KEYWORD_EVENT Error and Event Policies. For example, if a
device fails between 8am and 9pm, call the
system administrator, otherwise call the Help
Desk.

P_PM_KEYWORD_POLICY The role of this keyword is to identify
policy-related instances that would not
otherwise be identifiable as being related to
policy. It may be needed in some repository
implementations.

11.1.10 TpPolicyKeywordSet

This datatype definesaNumbered Set of Data Elements of type TpPolicyKeyword.

11.1.11 TpPolicyError

Name Value Description
M_ERROR_UNDEFINED Undefined Error
M_ERROR_INSUFFICIENT_INPUTS Required input variable values not available
M_ERROR_INVALID INPUT NAME Invalid input variable name
M_ERROR_INVALID INPUT VALUE Invalid input variable value
M_ERROR_DB_ERROR Error reading required rules from DB
_PM_ERROR_EVALUATION_ERROR Run-time error in evaluation of rule conditions/actions
NOTE: TpPolicyError is of type TpInt32. The table is an enumeration of all error codes.

P_P
P_P
P_P
P_P
P_P
P_P

g W|N|F O

11.1.12 IpPolicyDomain

Defines the address of an IpPolicyDomain Interface.

11.1.13 IpPolicyDomainRef

DefinesaReference to an | pPolicyDomain.

11.1.14 IpPolicyRepository

Defines the address of an IpPolicyRepository Interface.

11.1.15 IpPolicyRepositoryRef

DefinesaReference to an | pPolicyRepository .

11.1.16 IpPolicyGroup

Defines the address of an IpPolicyGroup Interface.

11.1.17 IpPolicyGroupRef

DefinesaReference to an [pPolicyGroup.

11.1.18 IpPolicyRule

Defines the address of an IpPolicyRule Interface.

ETSI

102 ETSI ES 204 915-13 V1.1.1 (2008-05)

11.1.19 IpPolicyRuleRef

DefinesaReference to an IpPolicyRule.

11.1.20 IpPolicyEventDefinition

Definesthe address of an IpPolicyEventDefinition Interface.

11.1.21 IpPolicyEventDefinitionRef

DefinesaReference to an | pPolicyEventDefinition.

11.1.22 IpAppPolicyDomain

Defines the address of an IpAppPolicyDomain Interface.

11.1.23 IpAppPolicyDomainRef

DefinesaReference to an | pAppPolicyDomain.

11.1.24 IpPolicyCondition

Defines the address of an IpPolicyCondition Interface.

11.1.25 IpPolicyConditionRef

DefinesaReference to an | pPolicyCondition.

11.1.26 IpPolicyTimePeriodCondition

Definesthe address of an IpPolicyTimePeriodCondition Interface.

11.1.27 IpPolicyTimePeriodConditionRef

DefinesaReference to an | pPolicyTimePeriodCondition.

11.2 Data Types for PM Variables

11.2.1 TpPolicyVvar

This defines the TpPolicyVar type. It is analogous to the TpAttribute type.

TpPolicyVar isaSequence of Data Elements of variable name, type and value.

Sequence Element Name Sequence Element Type Notes
VarName TpString Name of variable.
VarType TpPolicyType Type of variable. Could be atomic or complex
type.
VarValue TpAny ValPue of variable. Note that depending on
context, the AttributeValue may be NULL.

The following types of variables are defined: Atomic types, Record types (having named fields), and List types (where
list elements could be complex types as well).

ETSI

11.2.2 TpPolicyVarSet

103

ETSI ES 204 915-13 V1.1.1 (2008-05)

TpPolicyVarSetisaNumbered Set of Data Elements of type TpPolicyVar.

11.2.3 TpPolicyRecordType

Records have named fields, each field being a TpPolicyType itself. This allows nested structures to be defined. This

contains the following data members:

Sequence Element Name

Sequence Element Type

Notes

Names

Sequence of TpString

Name of record fields.

Types

Sequence of TpPolicyType

Type of record fields.

11.2.4 TpPolicyListType

This defines a homogeneous list type. This contains the following data member:

Sequence Element Name

Sequence Element Type

Notes

ElementType

TpPolicyType

Type of the elements of the list.

11.2.5 TpPolicyTypelnfo

TpPolicyTypelnfo is an enumerated type used as a discriminator for the TpPolicyType structure, and can contain the

following values:

Name Value Description
P_PM_SIMPLE_TYPE 0 Simple type
P PM TYPE RECORD 1 Record type
P PM TYPE_LIST 2 List type
P PM STRUCTURED TYPE 3 Structured type
P PM XML TYPE 4 XML type

11.2.6 TpPolicyType

ThisisaTagged Choice of Data Elements with a TpPolicyTypelnfo discriminator, and can be one of the

following:

Tag Element Type

TpPolicyTypelnfo

Tag Element Value Choice Element Type Choice Element Name
P_PM_SIMPLE_TYPE TpSimpleAttributeTypelnfo SimpleType
P PM _TYPE_RECORD TpPolicyRecordType RecordType
P_PM_TYPE_LIST TpPolicyListType ListType
P_PM STRUCTURED TYPE TpStructuredAttribute Type StructuredType
P PM XML TYPE TpXMLString XMLString

TpPolicyType alows us to define arbitrarily nested complex types as shown below.

actually supported is implementation specific.

The choice elements represent the following:

SimpleType:

RecordType:

Defines an atomic type.

Defines arecord type with named fields.

ETSI

Thelevel of nested data types

104 ETSI ES 204 915-13 V1.1.1 (2008-05)

ListType: Defines a homogeneous list type. Heterogeneous lists are not supported.
StructuredType Defines an object of the specified, fully qualified class.
XMLString Defines a data type that contains well-formed XML.

11.2.7 TpPolicyNameValue

This data structure is used to passin a variable name-value pair in an evalPolicy() request. ItisaSequence of
Data Elements of avariable name and value.

Sequence Element Name Sequence Element Type Notes
Name TpString Name of Variable.
Value TpAny Value of variable.

11.2.8 TpPolicyNameValueList

Thistype definesaNumbered Set of Data Elements of type TpPolicyNameValue.

11.3 eBNF for Condition and Action expressions

The eBNF for the action/condition expressions follows — note that these express constraints on the Expression attribute
of IpPolicyCondition and IpPolicyExpression. The eBNF specifies rules for conditions/action expressions only (i.e.
condition groups, negation of conditions are assumed to be handled at a higher level). Moreover, rules are given only
for asingle action expression, whereas a rule can contain multiple action expressions.

11.3.1 Basic Definition

We define some basic tokens that are used in the rest of the eBNF. The “...” used below indicate a range of

corresponding characters. For example, the”...” in letter correspondsto all letters between b and z, both lower and
uppercase). Similarly, the“...” in char corresponds to printable characters.

dlglt = ngn | nyqn | | ngn,

letter = ngn | npn | . | LAl | L | ngn | . | AL

alphanumeric = digit | letter;

char = alphanumeric | "\"" | "\ | ovowo | owen |

identifier = letter {[alphanumeric | " "]}*;

NOTE 1: For acomplete definition of the char type, see clauses 3.10.1.3 and 3.10.1.4 of the CORBA 2.4.2
Architecture and Specification document dated Feb 2001.

NOTE 2: The variable name syntax must conform to the eBNF specified by the identifier non-terminal above.

11.3.2 Definitions of Constant (Literals)

The following define the basic literals allowed. Examples include boolean literals (t rue and false), character
literals (e.g., ‘X', ‘@), string literals (e.g. “Parlay”, “CORBA"), integer constants (e.g. -4, +23, 45, 05), float constants
(e.g. -2.3, 4.0, 5.6e-23). We aso define anumber to be either an integer or afloat, and aconst to be any of the
these constant types.

bool_const = "true" | "false";
string const = '"" {char}* '"';
int const = {digit}+;
float_const = (({digit}* m.» {digit}+)
| ({digit}+ "." {digit}*)) ([eE] [-+]?{digit}+)>?

NOTE: For acomplete definition of the char type, see clauses 3.10.1.3 and 3.10.1.4 of the CORBA 2.4.2
Architecture and Specification document dated Feb 2001.

ETSI

105 ETSI ES 204 915-13 V1.1.1 (2008-05)

number: : =
int_const
| float const

7

const::=
bool_const
| string const
| number

7

11.3.3 Definition of Operators

These define the unary arithmetic operators, binary arithmetic operators, as well as the boolean operators. " %" isthe
modulo operator, "in" isalist containment operator (e.g. can be used to check if aelement iswithin alist, or if alistis
contained within another). Note that the standard operator precedence will be enforced on top of this grammar.

unary arith op L
binary arith op
boolean_op

°
nyn | n_n | Nk n | n/n | nﬁn;

Ne=n | nen | n__mn | LSl | L. | L] | ninn;

11.3.4 Allowable arithmetic expressions & predicates

These following define complex arithmetic expressions and predicates.

arith expr::=
number
| unary arith _op arith_expr
| arith expr binary arith_op arith_expr
| n(n arith_expr n)n
| var_access

predicate::=
bool_const
| arith_expr boolean_op arith_expr
| (arith_expr | const) ("==" | "!=") (arith_expr | const)
| n(n predicate n)n
| var_access

Examples of arithmetic expressions include:

interval) % 100 - 42)
.c / d + list[i+]j].f

Y~ N

+
(4
.

o+ N

Examples of predicatesinclude:

true

(interval > 100)

((4 + interval) % 100 - 42) > list[j].c * 2
(caller in buddy list)

11.3.5 Accessing Variables

These following definitions specify how variables (simple or complex typed — see clause 10.1) can be accessed in rules.
List (array) elements are accessed via a standard index (“[]") operator, and record fields are accessed viathe dot (“.”)
operator. Examplesinclude x, rec.b, 1ist [42] . a, €tC.

var_access::=

identifier
| var_access "." identifier
| var_access "[" arith_expr "]"

7

ETSI

106 ETSI ES 204 915-13 V1.1.1 (2008-05)

11.3.6 Allowable Condition and Action Expressions

The following complete the definition of condition and action expressions. The condition expression corresponds
exactly tothepredicate mentioned above, while an action expression can be one of a simple assignment operation
(=), or list append/delete operations (+= and -=). These specify the syntax of the Expression attribute in

I pPolicyExpressionCondition and | pPolicyExpressionAction objects. Additional methods such as setConditionList()
and setActionList() in IpPolicyRule interface need to be invoked in order to create a complete rule definition.

expr::=
const
| arith_expr
| predicate
| "I predicate
| predicate "&&" predicate
| predicate "||" predicate’
| n(n expr o
condition::= predicate;
action::= simple var_access “=" expr
| identifier “+=" expr

| identifier “-=" expr

7

Examples of action expressions include:

i = j+k
can_insert = (! is_empty)

// the following appends element 5 to the end of a list of integers
Ll += 5

// the following deletes all occurrences of element rec from the list
L2 -= rec

11.4 Example Scenarios

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup
that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a: TpInt32;
b: TpFloat;
}
y: TpInt32;

Moreover, let us assume that there is only one rulegroup (“testgroup”) associated with the domain we are considering,
and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):

if (x.b < 3)
then

y = X.a;
end

Finally, assume that the value of x isto be supplied for rule evaluation, and the value of y isto be returned back to the
client. The steps that need to be performed are as follows given below (we will give pseudo-code for &l the steps):).
Note that the actual implementations (e.g. CORBA, Java etc.) corresponding to these may differ slightly from that
presented below.

ETSI

107 ETSI ES 204 915-13 V1.1.1 (2008-05)

1) Provisionvariables:

// get the manager
IpPolicyManagerRef manager = ..;

// start transaction
manager.startTransaction() ;

// get the domain
IpPolicyDomainRef domain = manager.getDomain (“testdomain”) ;

// create a variable set
domain.createVariableSet (“vset”) ;

// define the type of x

// note that we can use the int type defined as part of this

// process, for the type of y as well

TpPolicyType int_ type = TpPolicyType (TpSimpleAttributeTypelInfo (P_INT32)) ;
TpPolicyType float_ type = TpPolicyType (TpSimpleAttributeTypeInfo (P_FLOAT)) ;
Vector<TpString> field names = [“a”, “b"];

Vector<TpPolicyType> field types = [int_type, float_ typel;

TpPolicyType X type = TpPolicyType (TpRecordType (field names, field types));

// define the type of y
TpPolicyType y type = TpPolicyType (TpSimpleAttributeTypeInfo (P_INT32)) ;

// create the variables in the variable set
domain.createVariable (“vset”, “x”, x_type);
domain.createVariable (“vset”, “y”, y_type);

// set the values of x and y

TpAny x value = {1, 2.5};

TpAny y value = 3;
domain.setVariablevValue (“vset”, “x”, x value);
domain.setVariableValue (“vset”, “y”, y value);

2) Create signature:
IpPolicySignatureRef sig = domain.createSignature(“test_sig”);

// set input and output variables
TpStringSet input vars = [“x”];
TpStringSet output vars = [“y”];
sig.setInputVariables (input_vars) ;
sig.setOutputVariables (output_vars) ;

// set groups and roles

TpStringSet groups = [“testgroup”];
TpStringSet roles = []; // no roles specified
sig.setGroupNames (groups) ;
sig.setRoleNames (roles) ;

3) Provisiontherules:

The given ruleis provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of
the rulegroup need to be utilized to verify that the rule being provisioned is valid. For example, the condition (x.b < 3)
can be verified as being valid, since “x” has arecord type, and has“b” asafield, and “x.b” isa TpFloat. As an example,
if the type of “x.b” had been TpString, then during provisioning, the rule condition would have been determined to be as
invalid, and an exception thrown. The steps for creating the group are not shown in this example.

// commit transaction
manager .commitTransaction() ;

4) Sending a decision request:

The first three steps happen during provisioning time. In this step, we describe how the client may use the
I pPolicyDomain.eval Policy() method, as well as the notion of signatures, to request a decision to be rendered. We
consider two scenarios. 1) where the value of x isexplicitly specified by the client, and 2) whereit is not.

ETSI

108 ETSI ES 204 915-13 V1.1.1 (2008-05)

. Case 1:

TpAny x value = {4, 2.7};
TpPolicyNameValue x_name_val
TpPolicyNameValueList inputs

{“x", x value};
[x_name valuel; // input values

TpPolicyNameValueList outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x overrides the value of x set via setVariableValue(). Hence, before rules are eval uated for
this decision, the value of x is set to {4, 2.7}. The rule condition will then be true, and the value of z will be set to 4.
Hence the outputs list will contain the value of y as being 4.

Note that if the value of x was specified as.
TpAny x value = {4, 9.0};

The rule condition would not be true, which implies that the rule action would not be executed. However, the signature
“sig_test” specified that y was an output variable and hence its val ue was to be sent back to the client. However (as
mentioned earlier in our assumptions about variable semantics), y started out as being uninitialized, and hence an
exception would be returned back to the client.

. Case 2:
TpPolicyNameValueList inputs = []; // input values
TpPolicyNameValue outputs = domain.evalPolicy(“test sig”, inputs);

Here, the explicit value of X is not set. Hence the value of x set via setVariableValue() is used during rule evaluation,
which impliesthat y will be set to the value 1. Asin the first case, the outputs list will contain one element, which
would be the value of variabley.

11.5 Example XML Scenarios

We now present a high-level scenario that illustrates how the XML extensions are tied together. The rulegroup that we
will use contains only one rule and is part of a domain named "testdomain”. The rule is given below in a pseudo-
language:

if (SIPAddress inDomain "parlay.org")

then
setCallLegProperty (P_CALL LEG_PROPERTY INFO, "http://www.parlay.org")

end

The example rule above invokes the operator "inDomain". We assume that this operation compares the domain part of
an URI. It evaluatesto "true" if the URI operand is part of a given domain. If the condition holds, the call leg property
named P_CALL_LEG_PROPERTY_INFO will be set to "http://www.parlay.org ".

The action and condition part of this rule are expressed in pseudo XML below (i.e. namespaces are omitted, etc.). XML
schema reference is not shown which would define XML structure, types and operations.

Action (to be passed in a ConditionAttribute.AttributeValue)

<condition operator="inDomain">
<operands>
<variable name="SIPAddress" type="anyURI"/>
</operand>
<operands>
<constant value="www.parlay.org" type="string"/>
</operand>
</condition>

Condition (to be passed in an ActionAttribute.AttributeValue)

<action>
<setCallLegProperty>
<callLegProperty value="P_CALL_LEG_PROPERTY_INFO" type="CallLegProperties"/>
<constant value="http://www.parlay.org" type=""string"/>
</setCallLegPropertys>
</action>

ETSI

109 ETSI ES 204 915-13 V1.1.1 (2008-05)

Now, assume that the value of the variable with the name " SIPAddress” isto be supplied for rule evaluation, and the
value of XML element isto be returned back to the client. The steps that need to be performed are as follows given
below (we will give pseudo-code for al the steps):).

5) Provision variables:

// get the manager
IpPolicyManagerRef manager = ..;

// start transaction
manager.startTransaction() ;

// get the domain
IpPolicyDomainRef domain = manager.getDomain (“testdomain”) ;

// create a variable set
domain.createVariableSet (“vset”) ;

// define the type of the variable named "SIPAddress"
TpPolicyType URI_type = TpPolicyType (TpStructuredAttributeTypeInfo ("P_com/vendor/TpURI")) ;

// define the type of the action
TpPolicyType action_type = TpPolicyType (TpXMLString) ;

// create the variables in the variable set
domain.createVariable (“vset”, “SIPAddress”, URI_type);

domain.createVariable (“vset”, “setCallLegProperty”, action_type);

// set the values of x and y

TpAny URI_value = "sip:jdoe@parlay.org";

TpAny action value = "<setCallLegProperty/>";
domain.setVariableValue (“vset”, “SIPAddress”, URI_value) ;
domain.setVariableValue (“vset”, “setCallLegProperty”, action value);

6) Create signature:
IpPolicySignatureRef sig = domain.createSignature(“test_sig”);

// set input and output variables

TpStringSet input vars = [“SIPAddress”];
TpStringSet output_vars = [“setCallLegProperty”];
sig.setInputVariables (input_vars) ;
sig.setOutputVariables (output_vars) ;

// set groups and roles

TpStringSet groups = [“testgroup”];
TpStringSet roles = []; // no roles specified
sig.setGroupNames (groups) ;

sig.setRoleNames (roles) ;

Provisioning and decision requests go much the same way as in steps 7 and further in clause 11.4.

12 Policy Management Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_VIOLATION Thrown if the client does not have authorization to invoke this
method on this object with these parameters.

P_SYNTAX _ERROR Thrown if the specified hame is formatted improperly.

P_NAME_SPACE_ERROR Thrown if the specified name matches or does not match the
name of an existing object of the appropriate type within this
container.

P_NO TRANSACTION_ IN_PROCESS Thrown if there is currently no transaction in process.

P_TRANSACTION_IN_PROCESS Thrown if there is currently a transaction in process. Note that
transactions can not be nested, that is, a second call to
startTransaction() without calling commitTransaction() or
abortTransaction() in between will result in this exception being
thrown during the second call.

ETSI

110 ETSI ES 204 915-13 V1.1.1 (2008-05)

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description

Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name.

ETSI

111 ETSI ES 204 915-13 V1.1.1 (2008-05)

Annex A (normative):
OMG IDL Description of Policy Management SCF

The OMG IDL representation of this interface specification is contained in text files (policy_data.idl,
policy_interfaces.idl contained in archive es_20491513IDL.zip) which accompany the present document.

This archive can be found in es_20491513v010101p0.zip which accompanies the present document.

ETSI

112 ETSI ES 204 915-13 V1.1.1 (2008-05)

Annex B (informative):
W3C WSDL Description of the Policy Management SCF

The W3C WSDL representation of thisinterface specification is contained in zip file es 20491513WSDL.zip which
accompanies the present document.

This archive can be found in es_20491513v010101p0.zip which accompanies the present document.

ETSI

113 ETSI ES 204 915-13 V1.1.1 (2008-05)

Annex C (informative):
Java API Description of the Policy Management SCF

The Java API redlisation of thisinterface specification is produced in accordance with the Java Realisation rules defined
in Part 1 of this specification. These rules aim to deliver for Java, a developer API, provided as arealisation, supporting
aJava API that represents the UML specifications. The rules support the production of both J2SE and J2EE versions of
the API from the common UML specifications.

The J2SE representation of thisinterface specification is provided as Java Code, contained in archive
20491513J2SE.zip that accompanies the present document.

The J2EE representation of this interface specification is provided as Java Code, contained in archive
20491513J2EE.zip that accompanies the present document.

Both these archives can be found in es 20491513v010101p0.zip which accompanies the present document.

ETSI

114 ETSI ES 204 915-13 V1.1.1 (2008-05)

Annex D (informative):
Contents of 3GPP OSA R7 Policy Management

All of the present document is relevant for 3GPP TS 29 198-13 V7 (Release 7).

ETSI

115 ETSI ES 204 915-13 V1.1.1 (2008-05)

Annex E (informative):
Description of Policy Management for 3GPP2 cdma2000
networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53]
and [54] of ES 204 915-1. These requirements are expressed as additions to and/or exclusions from the 3GPP Release 7
specification. The information given here is to be used by developersin 3GPP2 cdma2000 network architecture to
interpret the 3GPP OSA specifications.

E.1 General Exceptions

Theterm UMTS is not applicable for the cdma2000 family of standards. Neverthel ess these terms are used
(ETSI TR 121 905) mostly in the broader sense of 3G Wireless System". If not stated otherwise there are no additions
or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope

There are no additions or exclusions.

E.2.2 Clause 2: References

Normative references on ETSI TS 123 078 and on ETSI TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

E.2.4 Clause 4: Policy Management SCF

There are no additions or exclusions.

E.2.5 Clause 5: Sequence Diagrams

There are no additions or exclusions.

E.2.6 Clause 6: Class Diagrams

There are no additions or exclusions.

E.2.7 Clause 7: The Service Interface Specifications

There are no additions or exclusions.

ETSI

116 ETSI ES 204 915-13 V1.1.1 (2008-05)

E.2.8 Clause 8: Policy Management Interface Classes

There are no additions or exclusions.

E.2.9 Clause 9: State Transition Diagrams

There are no additions or exclusions.

E.2.10 Clause 10: Data Definitions

There are no additions or exclusions.

E.2.11 Clause 11: Policy Management Exception Classes

There are no additions or exclusions.

E.2.12 Annex A (normative): OMG IDL Description of Policy
Management SCF

There are no additions or exclusions.

ETSI

117 ETSI ES 204 915-13 V1.1.1 (2008-05)

Annex F (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New

Identifier | Comments

Interfaces added in ES 204 915-13 version 1.1.1 (Parlay 6.0)

F.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 204 915-13 version 1.1.1 (Parlay 6.0)

F.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 204 915-13 version 1.1.1 (Parlay 6.0)

F.2 Methods

F.2.1 New

Identifier | Comments

Methods added in ES 204 915-13 version 1.1.1 (Parlay 6.0)

F.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 204 915-13 version 1.1.1 (Parlay 6.0)

ETSI

118 ETSI ES 204 915-13 V1.1.1 (2008-05)

F.2.3 Modified
Identifier | Comments
Methods modified in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.2.4 Removed
Identifier | Comments

Methods removed in ES 204 915-13 version 1.1.1 (Parlay 6.0)

F.3

Data Definitions

F.3.1 New
Identifier | Comments
Data Definitions added in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.3.2 Modified
Identifier | Comments
Data Definitions modified in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.3.3 Removed
Identifier | Comments
Data Definitions removed in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.4 Service Properties
F.4.1 New
Identifier | Comments

Service Properties added in ES 204 915-13 version 1.1.1 (Parlay 6.0)

ETSI

119 ETSI ES 204 915-13 V1.1.1 (2008-05)

F.4.2 Deprecated
Identifier | Comments
Service Properties deprecated in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.4.3 Modified
Identifier | Comments
Service Properties modified in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.4.4 Removed
Identifier | Comments
Service Properties removed in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.5 Exceptions
F.5.1 New
Identifier | Comments
Exceptions added in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.5.2 Modified
Identifier | Comments
Exceptions modified in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.5.3 Removed
Identifier | Comments
Exceptions removed in ES 204 915-13 version 1.1.1 (Parlay 6.0)
|
F.6 Others
None.

ETSI

120

ETSI ES 204 915-13 V1.1.1 (2008-05)

History

Document history
V111 February 2008 Membership Approval Procedure MV 20080425: 2008-02-26 to 2008-04-25
V111 May 2008 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Policy Management SCF
	5 Sequence Diagrams
	5.1 Use of Policy Repository
	5.2 Introduce condition and action into rule
	5.3 Create event
	5.4 Create and modify domain
	5.5 ASP offering services to prepaid subscribers
	5.6 Create Signature for an evaluation context
	5.7 Request Evaluation of Policies
	5.8 Register for and Receive Notification of a Policy Event

	6 Class Diagrams
	6.1 PM Provisioning SCF Class Diagrams
	6.2 PM Policy Evaluation SCF Class Diagrams

	7 The Service Interface Specifications
	7.1 Interface Specification Format
	7.1.1 Interface Class
	7.1.2 Method descriptions
	7.1.3 Parameter descriptions
	7.1.4 State Model

	7.2 Base Interface
	7.2.1 Interface Class IpInterface

	7.3 Service Interfaces
	7.3.1 Overview

	7.4 Generic Service Interface
	7.4.1 Interface Class IpService
	7.4.1.1 Method setCallback()
	7.4.1.2 Method setCallbackWithSessionID()

	8 Policy Management (PM) Interface Classes
	8.1 PM Provisioning SCF Interface Classes
	8.1.1 Interface Class IpPolicyManager
	8.1.1.1 Method createDomain()
	8.1.1.2 Method getDomain()
	8.1.1.3 Method removeDomain()
	8.1.1.4 Method getDomainCount()
	8.1.1.5 Method getDomainIterator()
	8.1.1.6 Method findMatchingDomains()
	8.1.1.7 Method createRepository()
	8.1.1.8 Method getRepository()
	8.1.1.9 Method removeRepository()
	8.1.1.10 Method getRepositoryCount()
	8.1.1.11 Method getRepositoryIterator()
	8.1.1.12 Method startTransaction()
	8.1.1.13 Method commitTransaction()
	8.1.1.14 Method abortTransaction()

	8.1.2 Interface Class IpPolicy
	8.1.2.1 Attributes
	8.1.2.2 Method getAttribute()
	8.1.2.3 Method setAttribute()
	8.1.2.4 Method getAttributes()
	8.1.2.5 Method setAttributes()

	8.1.3 Interface Class IpPolicyDomain
	8.1.3.1 Attributes
	8.1.3.2 Method getParentDomain()
	8.1.3.3 Method createDomain()
	8.1.3.4 Method getDomain()
	8.1.3.5 Method removeDomain()
	8.1.3.6 Method getDomainCount()
	8.1.3.7 Method getDomainIterator()
	8.1.3.8 Method createGroup()
	8.1.3.9 Method getGroup()
	8.1.3.10 Method removeGroup()
	8.1.3.11 Method getGroupCount()
	8.1.3.12 Method getGroupIterator()
	8.1.3.13 Method createRule()
	8.1.3.14 Method getRule()
	8.1.3.15 Method removeRule()
	8.1.3.16 Method getRuleCount()
	8.1.3.17 Method getRuleIterator()
	8.1.3.18 Method createEventDefinition()
	8.1.3.19 Method getEventDefinition()
	8.1.3.20 Method removeEventDefinition()
	8.1.3.21 Method getEventDefinitionCount()
	8.1.3.22 Method getEventDefinitionIterator()
	8.1.3.23 Method createVariableSet()
	8.1.3.24 Method getVariableSet()
	8.1.3.25 Method removeVariableSet()
	8.1.3.26 Method getVariableSetCount()
	8.1.3.27 Method getVariableSetIterator()
	8.1.3.28 Method createVariable()
	8.1.3.29 Method setVariableValue()
	8.1.3.30 Method getVariableType()
	8.1.3.31 Method getVariableValue()
	8.1.3.32 Method getVariable()
	8.1.3.33 Method removeVariable()
	8.1.3.34 Method createSignature()
	8.1.3.35 Method getSignature()
	8.1.3.36 Method removeSignature()
	8.1.3.37 Method getSignatureCount()
	8.1.3.38 Method getSignatureIterator()

	8.1.4 Interface Class IpPolicyGroup
	8.1.4.1 Attributes
	8.1.4.2 Method getParentDomain()
	8.1.4.3 Method getParentGroup()
	8.1.4.4 Method createGroup()
	8.1.4.5 Method getGroup()
	8.1.4.6 Method removeGroup()
	8.1.4.7 Method getGroupCount()
	8.1.4.8 Method getGroupIterator()
	8.1.4.9 Method createRule()
	8.1.4.10 Method getRule()
	8.1.4.11 Method removeRule()
	8.1.4.12 Method getRuleCount()
	8.1.4.13 Method getRuleIterator()

	8.1.5 Interface Class IpPolicyRepository
	8.1.5.1 Attributes
	8.1.5.2 Method getParentRepository()
	8.1.5.3 Method createRepository()
	8.1.5.4 Method getRepository()
	8.1.5.5 Method removeRepository()
	8.1.5.6 Method getRepositoryCount()
	8.1.5.7 Method getRepositoryIterator()
	8.1.5.8 Method createCondition()
	8.1.5.9 Method getCondition()
	8.1.5.10 Method removeCondition()
	8.1.5.11 Method getConditionCount()
	8.1.5.12 Method getConditionIterator()
	8.1.5.13 Method createAction()
	8.1.5.14 Method getAction()
	8.1.5.15 Method removeAction()
	8.1.5.16 Method getActionCount()
	8.1.5.17 Method getActionIterator()

	8.1.6 Interface Class IpPolicyRule
	8.1.6.1 Attributes
	8.1.6.2 Method getParentGroup()
	8.1.6.3 Method getParentDomain()
	8.1.6.4 Method createCondition()
	8.1.6.5 Method getCondition()
	8.1.6.6 Method removeCondition()
	8.1.6.7 Method getConditionCount()
	8.1.6.8 Method getConditionIterator()
	8.1.6.9 Method createAction()
	8.1.6.10 Method getAction()
	8.1.6.11 Method removeAction()
	8.1.6.12 Method getActionCount()
	8.1.6.13 Method getActionIterator()
	8.1.6.14 Method setValidityPeriodConditionByName()
	8.1.6.15 Method setValidityPeriodCondition()
	8.1.6.16 Method getValidityPeriodCondition()
	8.1.6.17 Method unsetValidityPeriodCondition()
	8.1.6.18 Method setConditionList()
	8.1.6.19 Method getConditionList()
	8.1.6.20 Method setActionList()
	8.1.6.21 Method getActionList()

	8.1.7 Interface Class IpPolicyCondition
	8.1.7.1 Attributes
	8.1.7.2 Method getParentRepository()
	8.1.7.3 Method getParentRule()

	8.1.8 Interface Class IpPolicyTimePeriodCondition
	8.1.8.1 Attributes

	8.1.9 Interface Class IpPolicyAction
	8.1.9.1 Attributes
	8.1.9.2 Method getParentRepository()
	8.1.9.3 Method getParentRule()

	8.1.10 Interface Class IpPolicyEventDefinition
	8.1.10.1 Attributes
	8.1.10.2 Method setRequiredAttributes()
	8.1.10.3 Method setOptionalAttributes()
	8.1.10.4 Method getRequiredAttributes()
	8.1.10.5 Method getOptionalAttributes()
	8.1.10.6 Method getParentDomain()

	8.1.11 Interface Class IpPolicyEventCondition
	8.1.11.1 Attributes

	8.1.12 Interface Class IpPolicyExpressionCondition
	8.1.12.1 Attributes

	8.1.13 Interface Class IpPolicyEventAction
	8.1.13.1 Attributes

	8.1.14 Interface Class IpPolicyExpressionAction
	8.1.14.1 Attributes

	8.1.15 Interface Class IpPolicyIterator
	8.1.15.1 Attributes
	8.1.15.2 Method getList()

	8.1.16 Interface Class IpPolicySignature
	8.1.16.1 Attributes
	8.1.16.2 Method setInputVariables()
	8.1.16.3 Method setOutputVariables()
	8.1.16.4 Method getInputVariables()
	8.1.16.5 Method getOutputVariables()
	8.1.16.6 Method setGroupNames()
	8.1.16.7 Method setPolicyRoles()
	8.1.16.8 Method getGroupNames()
	8.1.16.9 Method getPolicyRoles()
	8.1.16.10 Method getParentDomain()

	8.2 PM Policy Evaluation SCF Interface Classes
	8.2.1 Interface Class IpPolicyEvalManager
	8.2.1.1 Method evalPolicy()
	8.2.1.2 Method evalPolicyReq()
	8.2.1.3 Method abortEvalPolicyReq()
	8.2.1.4 Method generateEvent()
	8.2.1.5 Method createNotification()
	8.2.1.6 Method destroyNotification()

	8.2.2 Interface Class IpAppPolicyDomain
	8.2.2.1 Method reportNotification()
	8.2.2.2 Method evalPolicyRes()
	8.2.2.3 Method evalPolicyErr()

	9 State Transition Diagrams
	9.1 PM Provisioning SCF State Transition Diagrams
	9.2 PM Policy Evaluation SCF State Transition Diagrams

	10 PM Service Properties
	11 Data Definitions
	11.1 Policy Management Data Definitions
	11.1.1 TpPolicyConditionListType
	11.1.2 TpPolicyConditionListElement
	11.1.3 TpPolicyConditionList
	11.1.4 TpPolicyConditionType
	11.1.5 TpPolicyActionListElement
	11.1.6 TpPolicyActionList
	11.1.7 TpPolicyActionType
	11.1.8 TpPolicyEvent
	11.1.9 TpPolicyKeyword
	11.1.10 TpPolicyKeywordSet
	11.1.11 TpPolicyError
	11.1.12 IpPolicyDomain
	11.1.13 IpPolicyDomainRef
	11.1.14 IpPolicyRepository
	11.1.15 IpPolicyRepositoryRef
	11.1.16 IpPolicyGroup
	11.1.17 IpPolicyGroupRef
	11.1.18 IpPolicyRule
	11.1.19 IpPolicyRuleRef
	11.1.20 IpPolicyEventDefinition
	11.1.21 IpPolicyEventDefinitionRef
	11.1.22 IpAppPolicyDomain
	11.1.23 IpAppPolicyDomainRef
	11.1.24 IpPolicyCondition
	11.1.25 IpPolicyConditionRef
	11.1.26 IpPolicyTimePeriodCondition
	11.1.27 IpPolicyTimePeriodConditionRef

	11.2 Data Types for PM Variables
	11.2.1 TpPolicyVar
	11.2.2 TpPolicyVarSet
	11.2.3 TpPolicyRecordType
	11.2.4 TpPolicyListType
	11.2.5 TpPolicyTypeInfo
	11.2.6 TpPolicyType
	11.2.7 TpPolicyNameValue
	11.2.8 TpPolicyNameValueList

	11.3 eBNF for Condition and Action expressions
	11.3.1 Basic Definition
	11.3.2 Definitions of Constant (Literals)
	11.3.3 Definition of Operators
	11.3.4 Allowable arithmetic expressions & predicates
	11.3.5 Accessing Variables
	11.3.6 Allowable Condition and Action Expressions

	11.4 Example Scenarios
	11.5 Example XML Scenarios

	12 Policy Management Exception Classes
	Annex A (normative): OMG IDL Description of Policy Management SCF
	Annex B (informative): W3C WSDL Description of the Policy Management SCF
	Annex C (informative): Java API Description of the Policy Management SCF
	Annex D (informative): Contents of 3GPP OSA R7 Policy Management
	Annex E (informative): Description of Policy Management for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: Policy Management SCF
	E.2.5 Clause 5: Sequence Diagrams
	E.2.6 Clause 6: Class Diagrams
	E.2.7 Clause 7: The Service Interface Specifications
	E.2.8 Clause 8: Policy Management Interface Classes
	E.2.9 Clause 9: State Transition Diagrams
	E.2.10 Clause 10: Data Definitions
	E.2.11 Clause 11: Policy Management Exception Classes
	E.2.12 Annex A (normative): OMG IDL Description of Policy Management SCF

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

