ETSI ES 204 915-4-3 v1.1.1 200s-05)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 4: Call Control;

Sub-part 3: Multi-Party Call Control SCF
(Parlay 6)

D

2 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Reference
DES/TISPAN-01032-4-03-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
© The Parlay Group 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™ s a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Contents

INtellectual Property RIGNES.... ..ottt b e b b nenn e 7
0 Yo (o OSSR 7
1 o010 SRS 9
2 REFEIBINCEScceeeete ettt b ettt st et et et et e Rt e bt e b e e b e se e be st e st e st e benbenbeneeneete e 9
3 Definitions and @DBreVIBLIONS...........ccueieiiiie e 9
31 DEFINITIONS.eeeee ettt e R R R Rttt R et e r e r e 9
3.2 ABDIEVIBLIONS ..ottt e e Rt Rt n e R n s n s 9
4 MultiParty Call Control Service Sequence Diagrams.........cccoeveereieeiieseecee e esse e ssee e sresreas 10
4.1 Application INITTAEEH CAll SEIUPciiieeiieieer bbbt sn s 10
4.2 Cll BAITING 2.ttt sttt b ekt b e e h e b et b e e h e e bt s b et e bt e R et e bt s e e ae e he e b e s e e neeb e s e et b e e b et eb e b e 11
4.3 Call fTorwarding 0N BUSY SEIVICEceiuiiieiiieriet ettt sttt sttt b et et b e bbbt b e et b et sb e e 13
4.4 Call INfOrmMation COlECE SEIVICE.eeieiereerieee ettt ettt e e e te s tesaesbesneese e e e sestesaeseeeneeneeneeneas 14
4.5 COMPIEX CANT SEIVICE. ...ttt ettt ettt b e et b e st b e e bt b e h e b e s e e bt e b et e bt e b e e e aeebene et ebe s b et ebenre e e 17
4.6 HOUINE SEIVICE.. ..ttt ettt ettt e e tesbe s be e st eae e e e eeeeseeebeseeeaeemeanseneeasesaesneeneeneanseseens 20
4.7 Network Controlled NOEIICEIONSc.vreeirieeireeee e sr s 23
4.8 Use Of the REAITECIE BVENT........c.ieciieee e et 24
5 (O = Sy B o = o SRS 24
6 MultiParty Call Control Service INterface Classes.........ovoieiiieeiicice et 26
6.1 Interface Class |pM ultiPartyCall CONrOIM@NAJETcoueeruirieirerieesee st 26
6.1.1 MELNOA CrEAIECAII() ...eveeererteeete ettt et b e et b et b e bbb se et b e bt eb e r e 27
6.1.2 Method CreateNOLITiCaIION().. .. .ceve ettt bbb e 27
6.1.3 VK= g oo o o= o) Y7\ o) o1 o] o () PR 29
6.1.4 Method changeNOLIfICALION()cveieeieereesi et e st e b e e te e be e teeteeneeeneennes 29
6.1.5 Y T= 1 g oo S = (@=L o= o [@0 a1 o]) P 29
6.1.6 Method enabl ENOLITICALTONS()civveeeieeeieeeese et e e b et e e be e teeteeneesnnennes 30
6.1.7 (VK= 1g oo Re 1 o1 = N Lo u N or= (o] i P 31
6.1.8 VK= 1 g oo Re T (ANt ed N o) 1T 0r= 1 o () S 31
6.2 Interface Class |pAppM ultiPartyCall CONtrOIM@NAJETcoeueriirieiriieeeerieeee e 32
6.2.1 Method rePOrtNOLITICAETON() ... cverveueerereeeeie sttt sttt b bbb 32
6.2.2 MELhOd CBITADOIEA()eveeeeeiteeet ettt bbb bbb et b e bbb 33
6.2.3 Method Manager NEITUPLEO()ceververeeeerieeeie ettt sttt b e et e et sb e 33
6.24 Method MaNagErRESUMEA()eveuerteeeterieeeie ettt sttt b e et bt b e et b b 34
6.2.5 Method call Overl0a0ENCOUNTENEU()cieereeie e eeeestie s ee ettt et e s et e re e e e teennesneeenes 34
6.2.6 Method CallOVErlOB0CEASEU() .. .oveieeieeseesie et et etese s et e et e et esae e te e aeesteesaeeseesteesbe e teeseeneesneennes 34
6.2.7 Method aDOrMUITIPIECAIIS()veeieeeeeeie ettt st et et eete e be e teeeeeneeeneennes 34
6.3 Interface Class IPMUILIPArtYCallcceoiiiii ettt este e be e reeeesneeenes 34
6.3.1 MELNOO GELCAITLEGS) ..v-vrveevrenereeieiisie ettt b et b ettt et b e 35
6.3.2 Y E= g oo e i1 O | L=) P 35
6.3.3 Method createANdROULECEIILEGREG() «...verveueererieirie ittt sttt sttt 36
6.34 MELNOO FEIEBSE() ... eve ettt ettt b e et b et b e b e b se et b e se et bt b et b b 37
6.3.5 MEthOd dEASSIGNCEAII() ...eovereeeeete ettt b ettt b e et bbb s 37
6.3.6 MEthOd GELINFOREG() +..vvevereeeeete ettt ettt b e et b et b e et b et b e 37
6.3.7 MEthOd SEECEIGEPIBN() -..veveveree ettt sttt b et b e e bt b se et b b et b n e 38
6.3.8 Method SEAAVICEOFCNAITGE()eueevereeeeteriee ettt ettt b e et b e et b et nb e b 38
6.3.9 MEthOd SUPEIVISEREM() - +rvveerreererrreerreesieerieesteeteeeesseesseesseeteessesssessessseesaeesseeseanseassessesssenssesssenssesnsesnsssnessnes 38
6.4 Interface Class IPAPPMUILIPAITYCElloooviiiiiieeee et et te e e e snes 39
6.4.1 VTS g oo e {0 o R 39
6.4.2 VK= 1o To e T o] S 39
6.4.3 MEthOO SUPEIVISERES()veeuveeeiesiieieesee st et ete et e st e st e e e e e e estesseesseesaeesaeeseenseasseeseesseesteesseensennsesneesneesnes 40
6.4.4 MELNOA SUPEIVISEEIT() ..ttt sttt sttt bttt b et b et b e b et e b e et e b e e et b s st e 40
6.4.5 Y dpTeTo o= g [TSRS 40
6.4.6 Method createANdROULECEIILEGEIT()......cuviveieiirieieee ettt sttt 40
6.5 INEEITACE ClaSS IPCAIILEG ... cvieetirtieeiert et b bbb bbbt b et b et e eb e e ens 41

ETSI

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12

7
7.1
711
712
7.13
7.2
721
722
7.2.3
724
7.3
731
7311
7312
7.3.13
7314
7.3.15
732
7321
7322
7323
7324

8
8.1
8.2

9
9.1
9.2
921
9.2.2
9.2.3
9.24

4 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

V= g 0o B0 TU (o) R 42
Method eVENTREPOIREG() +..vveeveerreereereerieeieste st e steeste e e e te et esree s e e st e e teestesseesseesreesseenseenseeseeseenseensesneesnes 42
MELNOO FEIEASE() ...vveveeeteeeese ettt ettt et e et e e e et e saeesaeesaeesaeeseeneeeneeeseeasaesteesseeseenseeneenneennes 43

VK= oo la T {1 a o) 43
Y=o o 7= (@ SO STS T S 43
Method attaChMEIAREM() .. vveveerreeerieeeiesee et ee s e e et e e s e saeeste e teesteeseessaesteesseeseenseeneenneennns 44
Method detaChMEdIAREG()vveverveeererieiee ettt st st st saesesbeseesesbesaesesbesaeneesessenens 44
Method getCurrentDestinati ONAGAIESS()coverveririereeirere ettt st 44
Method CONLINUEPTOCESSING() -.veveverrereeuertereeientere ettt re ettt st ie bbb e b b e bt b e b b et bese et sb e r s 45
MEthOd SEECEIGEPIBN() -..veveueete ettt ettt b e et b et b et b e bt et sbe bbb 45
Method SEEAAVICEOFCNAITGE() ... eerereereetertei ettt bbbt bbb et b et b e e 45
MEthOd SUPEIVISEREM() - +rvveerreererrreesreerieesieesieeteeeesseesseesseeteessesssessessseesseesaeesseanseasssssesssenssesssenssesnsesssssnsesses 46
V= g oTo o o= T S 46

[V T= g oo e o o= (- 46
MEthOO SEEPIOPEITIES() .. .euveereeieiieiiecee st e st este ettt e st e e e e e e tesaaesaeesaeesaeesseenaeeseeeseessaesteesseeseenseennenneennes 47
Interface ClassS IPAPPCAILEGottt s e s re e beeteestesseesteesseesseenseensenneennns 48
Method eVENTREPOIRES()veiuveieeieeieese ettt et e e e s et e s e e steeeeeneesseesse e seente e seeseenseeneesneesnns 48
Method EVENTREPOIETT()......eveieeeeee ettt ettt se et b e et et n e 49
Method attaChMEJIARES().....c.veveiiereeiiiieriee ettt st se e s be st se s be e esesbe e esesbesaeseabesaeseesensenens 49
Method attaCNMETIAETT()veeeverreeeierieieie ettt b et st b et b e bt bene et b e bt eb e n e 49
Method detaChM EdIARES()cueiveeeieiieiee ettt st st be st besaesesbesae e besaeneesenseneans 49
Method detaChM EAIAETT() ... c.coveieeeeete ettt b e et b e et sb e 49
MELNOA GELINFORES() ...ttt b et b et bbb s e 50

VK= 1o Te o T o] =t S 50
=1 0o B0 TU (o) 50
MEthOO SUPEIVISERES()veeuveruieiiieieeiee st et et et e steeste et e e e e e estesseesaeesaeesaeesseenseesseeseessensteeseensennsesneesneesnes 50
MEthOO SUPEIVISEEIT() c.veeuveeureeeiesieestee e este e se st e st ste e st et es e e stesseesaeesaeesaeesaeeseeneeeneeeseansaesteeseenseensesneesneesnes 51

V= g Te o I o | =T (= [P 51
MultiParty Call Control Service State Transition Diagraims..........coeeeerererereseseseseeeeesesese e es 51
State Transition Diagrams for IpMultiPartyCall ControlManagercoeeeeereninenieienenee et 51
AACTIVE SEBLE. ...ttt ettt et e et e e st e beseeeb e e st eseea e e e eneeseeebeeReene et eneenEeeReeaeeneeneeeeneenes 52
INEEITUPLEA SEBLE. ...ttt b et b e bbbt b e b et b e s e et b e s e et b e s b et eb e b 52
Overview Of alloWed MELNOUSooiiiee e e e 52
State Transition Diagrams for IPMUItiPartyCallcoooeeiier e 52
1T S = (= OSSP 53
ACTIVE SEBE......cotiieeneetiiieeeieseeee ettt ettt et b et et se b e st e be s £e st e se s b e neese s be s e e sesbe e e sesbensenesbenbeneseesseneens 53
RELEASED SEAE......ccutitiieteiieietesie et see ettt st st s beseesesbesessesbe st e be s be e ebesbe st e besbe st sbeseenesbeseenesbesseneans 53
Overview Of alloWed MELNOUSooiiiee e e e sb e 54
State Transition Diagrams fOr IPCAIILEGcoeiiirieiii bbb 54
OFgINALING CAll LBueitiieeiiiteieeiietere ettt b et s b e bt bbbt e bt b s st b s s e eb b e e e b et e e ens 55
INITTAETNG SEAEE. ...ttt ettt et b e bbbt b e s bt b e bt b e e et e b e s b et b e b et sb et 55
ANBIYSING SEALEcveeeteeteete ettt bbbt b et b e e a e b et bt b et b e et b e n e 57

ot L= (= S 58

LR e Lo o [= SR 60
Overview of allowed methods, Originating Call Leg STDcccoevievieieeie e 62

L= 0T T o L = o TS U 63
[dle (1ErMINGLING) SEALEeceeeeieieeie e eee st ee e e e s se e steeste e e e e e e e re e te e beentessaesseesseesnnesneesseensennseans 63
ACtiVE (TErMINGLING) SEALE......ccveeeeieee e e e e e te et e e st e e e e e tesseesreesaeesneesseenseensenns 64
Releasing (terminating) SEALE.........ccicieiieie ettt e e saeeteeneeeneeenaeeneesreesanes 67
Overview of allowed methods and trigger events, Terminating Call Leg STDccccvvveirinecnienene, 69
Multi-Party Call CoNntrol ServiCe PrOPEITIEScoii e ettt snee e e 69
LiSt Of SEIVICE PrOPEITIEScvieeeietereeest ettt bbbt bbbt b s bbbt e ens 69
Service Property values for the CAMEL Service ENVIFONMENL.ccovcueieeiieiecse e 71
Multi-Party Call Control Data DEfiNitiONS.ccoiiiiririeieieeeirese st 72
Event Notification Data DEfiNiTiONS..........cccoiiieriiiiieiee sttt s sbe e e e 72
Multi-Party Call Control Data DEfiNItiONS..........ccccviceiee it ae e e e e e sae e seeseens 73
IPCBIILEG ...ttt et b e h b e h bbb e R b e R bRt bRt b b et b 73
IPCAIILEGRES ... ettt b e et b e e b bt b e b et b e et b bbb 73
(LAY o) o [0z = o TSSOSO USSP UT SR PSR 73
IPAPPCEIILEGRES ...ttt b e b e bt b et bt nb s 73

ETSI

5 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.25 IPMUITIPAITYCEIL ...ttt bbb e n et se et ne bt neen e 73
9.2.6 IPMUILIPAITYCEITRES ...ttt b ettt en e 73
9.2.7 L0 AN o] AV T LT = Y P 73
9.2.8 IPAPPMUILIPAIYCAITRES ..ot st n e 73
9.2.9 IPMUIti PartyCall CONtrOIMBNAJEScoieeieesieete e eees e e e steete e see e e saeesaeeeeeseesreesseenteenseenseeteensesneesnes 73
9.2.10 IpMulti PartyCall ControlManagerREScooioiiiiiciesies ettt a e e 73
9211 IPAPPM UltiPartyCall CONtrOIMBNAGESc.veiriieeiiitereeit ettt st sb e 73
9.2.12 IpAppMultiPartyCall ControlManagerRES ... 73
9.2.13 TPAPPCAILEGREFSELceeceiieieciert ettt bbbt b bbbt a e b e st bbb b e 73
9214 TPMUITPArtyCal lIABNETIEN ..ot bbb bbb 74
9.2.15 TPAPPMUILIPArYCallBACK ..ot 74
9.2.16 TPAPPMUItI PartyCal | BACKREI TYPE.....cceeiieecieecie ettt ettt nae s ee e e sneesnaeeraessaennens 74
9.2.17 TPAPPCAILEGCAIBACKcveeiieteciectie sttt st s et te s e st et esteete et e ssaesaeesaeenseenseenseensessensseessens 74
9.2.18 TPMUIIPartyCalllAentifiErSaLcviieeirrteerree e 74
9.2.19 QLN 0 17N oo I o SR 75
9.2.20 QLI 0O 1A o7 o g o I8/ = SRS 75
9.2.21 LI 0O 1A o7 o] g0 = USSR 75
9.2.22 TPCAIEVENTREGUESE ..ottt bbbt bbbt b e et b e n e 75
9.2.23 TPCAIEVENREQUESISELcveeeeitieei ittt bbbt bt b et b e 76
9.2.24 TP A EVENETYP. .ttt ettt b bbbt bbbt bbb et b e et b et eb e n e 76
9.2.25 TPAAItiONAI Call EVENTCIITEITAL ...ttt b et 78
9.2.26 TPCAITEVENTINTO ...ttt bbb bbbt b et b bbb 78
9.2.27 TPCallAdditiONA EVENEINTO ...ttt bbbt 79
9.2.28 TPCaINOLIfiCATONREGUESLeeveeieeieeiesee e st ste e rte et e e st et es e sseesraesreesseesteaneesseesneesseenseenseensessansseessens 79
9.2.29 TPCAINOLfICAIONSCOPEveveeteeteeieete et ste et e e s e st e e e te e tessaesseesseesseeneesseesneesseenseenseensessenssanssens 79
9.2.30 TPCAINOLTICATONINTOveceieeeecee e e e et esraesreesreesseenteeneeenaeerensrnesneas 79
9.2.31 TPCallINOLIfiCati ONREPOITSCOPEveeererieiieesie st esteerte et e st este e e e te e sraesreesseesseseesreesseesseenseenseessessenssenssees 80
9.2.32 TPNOLIfiCalIONREQUESLEM ...ttt ee st et s e te et e s e st e te e beetesstesseesreesaeeseenseenseensessenssanssens 80
9.2.33 TPNOLIfi Catl ONREQUESIEUSELc.veeeieeeiece ettt e st e e et e e tesraesreesreenseenseenseenaesseesseessens 80
9.2.34 TPREIEASECALSE. ...ttt etttk ettt h et h bt h b st b h e b e e e h b e b e bt b e e e e e Rt b e e ne b et b b 80
9.2.35 TPREIEASECAUSESEL. ...ttt ettt b bbb bbbt b b e b e bt b e e e bt b e e bt b e b ne b n e 80
9.2.36 TP A LEGIAENTITIEN ...ttt bbbt bbbt b e 80
9.2.37 TPC A LEGIENTITIErSEL ...ttt bbb e 81
9.2.38 TPCallLEgALtAChIMECIENISIM.......couiiiiitie bbb st 81
9.2.39 TPCallLegCoNNECtiONPIOPEITIES.cc.eeiieieeseeeeeesee st e st e ste et erte et e s e e steetesseesaeesseesseenseenseensessenssaesaens 8l
9.2.40 LI O L I=o g e oo o USSR 8l
9.241 QLI 0O L I=o g o Y/ o= USSR 82
9.2.42 TPCallL egSUPErVISETFEAIMENLc.veeeieiteesteesieesieeiteseeseeste e teeteestessaesteesteesseensesneesseesseesseenseenseensessenssensses 82
9.2.43 TpCallHighProbahilityComPIELION.........c.cieeiie ettt sneeeraesreesneas 82
9.2.44 TPNOLifiCati ONREQUESLEASELENTIY ..ottt s e sre et e ese e enneenaeenaesnaesneas 82
9.2.45 TPCAITIEISAL ...ttt b bbbttt bt b s b £ b b e b £ b e e bt b e e e Rt b bbbt b n e 82
9.2.46 LI €12 g 11 SO O SO OOSTSTPSOURT ST UT SRR 82
9.2.47 TPCAITIENID ..ttt bbb h b h bbb h bt b e s bt b et e Rt e b et ae b e bt b b 83
9.2.48 TPCATierSAlECHONFIEIM. ... bbbt 83
9.2.49 TPCAllLEGPrOPEITYNGIME.ceciieieet sttt b et b et b et b e et be et e 83
9.2.50 TPCallLegPropertyNAMELISE.......co. ittt 83
9.251 O LT I=o o o= o YA L= USSR 83
9.2.52 QLI O Lo o o= o USSR 83
9.2.53 IO LT I=o o o= o Y S S 83
Annex A (nor mative): OMG IDL Description of Multi-Party Call Control SCF..........cccccccevvnnene 84
Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF 85
Annex C (informative): Java API Description of the Call Control SCFs........cccoccevvieeveveeciececen, 86
Annex D (informative): Contents of 3GPP OSA Rel-7 Call Controlcccceeveieeveieeiese e 87
Annex E (informative): Description of Call Control Sub-part 3: Multi-party call control SCF

for 3GPP2 cdma2000 NELWOI KS........covreririeriesienieniesee e 88
R = g Tc o= o1 o] SRS 88

ETSI

6 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

E.2 SPECITIC EXCEPLIONS.uecieiieceecte ettt sttt e te st e et e s b e s ae e besae et e seeeaeestesteensenbesreennenneens 88
E2.1 (O = U S 0o o= TSRS 88
E.2.2 ClalSE 2: REFEIEINCES ...ttt e b bt e h e a et se ek e bt e he et e s e b sb e e b e s ne e e e e ennas 88
E.2.3 Clause 3: Definitions and abreViations............oooiiiiieeeere e se e e ee e re e enee e eneas 88
E24 Clause 4: MultiParty Call Control Service Sequence DiagramsSc.cceeereierereeenieneee e 88
E.25 ClauSe 5: ClaSS DIBGIAIMIS.ccutiveieterieiete ettt sttt et se et b s st b s e et be s e et b e sb e st e b e s e e st ebene e st ebesbe e ebenreneees 88
E.2.6 Clause 6: MultiParty Call Control Service INterface ClaSSES.coiirrirereeise st 88
E.2.7 Clause 7: MultiParty Call Control Service State Transition Diagramscccoeveeereneienenesenieese e 89
E.2.8 Clause 8: Multi-Party Call Control ServiCe PrOpEItiES.........cceieirerieire ettt 89
E.2.9 Clause 9: Multi-Party Call Control Data DefiNitiONSc.ccveiieiieieiie et ae e neees 89
E.210 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF...........cccceeveieviesieneeiennns 89
E.211 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF..........cccccovvevvievvieneeienns 89
E.212 Annex C (informative): Java™ API Description of the Multi-Party Call Control SCF..........ccccccvvevveenvennns 89
Annex F (informative): RECOrd Of ChANQES......ceeieee et 90
Nt 1= 1 = 0TSSP 90
F.1.1 AN TR 90
F.1.2 (DL o < or= 1= o IO TSSOSO 90
F.1.3 1010V P 90
e |V = 1 oo SRS 90
F.2.1 AN TR 90
F.2.2 == o =0 S 90
F.2.3 1Y T T3 1= TR 91
F.24 L 11101770 IO PSP PR PR TSRO 91
G B = = W B L 1L Lo ST 91
F3.1 LSRR 91
F.3.2 LY 0T T3 1= TR 91
F.3.3 101070 RS 91
S Vo= . 0] 0= =SS 91
F.4.1 AN TR 91
F.4.2 = = o =0 S 91
F.4.3 1Y T T3 1= TR 92
F.4.4 101070 RS 92
I (o= o 0] 0 = TSSOSO UR U PR PP 92
F.5.1 LSRR 92
F.5.2 LY oo T3 1= TR 92
F.5.3 REMOVE. ...ttt b it e e e bt sb e eh e e h e e h e e s e e s e b e se e eb e e Rt ea e ene e e et e seeebesaeene e e ennees 92
T O 1 1 £ PSR 92
[TS 0] Y USSR 93

ETSI

7 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 4, sub-part 3 of a multi-part deliverable covering Open Service Access (OSA);
Application Programming Interface (API), asidentified below. The API specification (ES 204 915) is structured in the
following parts:

Part1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: " Call Control";
Sub-part 1: "Call Control Common Definitions";
Sub-part 2: "Generic Call Control SCF";
Sub-part 3: " Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7 "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi-Media Messaging SCF"

Part 16: "Service Broker SCF".

ETSI

http://webapp.etsi.org/IPR/home.asp

8 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 6.0 set of specifications.

The present document isequivalent to 3GPP TS 29.198-4-3V7.0.0 (Release 7).

ETSI

http://www.parlay.org/
http://www.java.sun.com/products/jain

9 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

1 Scope

The present document is part 4, sub-part 3 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Multi-Party Call Control Service Capability Feature (SCF) aspects of the interface.
All aspects of the Multi-Party Call Control SCF are defined here, these being:

e Seguence Diagrams.

. Class Diagrams.

o Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

o IDL Description of the interfaces.

. WSDL Description of the interfaces.

0 Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 204 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 204 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 6)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 204 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 204 915-1 apply.

ETSI

10 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

4 MultiParty Call Control Service Sequence Diagrams

4.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, acall is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as avariation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

: (Logical AppPartyA : AppPartyB : PartyA: PartyB : _ZlIpUlicall
View::IpAppLogic) MulllPa all| | (InAppMultiPartyCallLeq) | | (IpAppMultiPartyCallLeg) gﬁggulca IgMu\thamaHControlManage IpMultiPartyCall MumPa all|| IpCallLeg || IpCallLeg CaI\Le U\Mana er
| |
|
f

2: createCall()

! | | |
‘ ‘ I | | | |
! ! ! | | | |
I I I I
! | | \ 3 new(| | | |
I I I I 71 I I I I
I I I I T I I I I
il I I | I T I I I I I
| | | 4: selCallyack() | \ ‘ ‘ ‘ | |
H | | | |] T | | | |
I I & crntocabton) I | | | | | ‘
createCafLe
| | | i} | | L ey ! | | |
| | | | | I I I
I I I I I I I I
I I I I I I I I I
N ! ‘ 7 évenmepo tReq() ‘ ! [| | | |
‘ i I ! I I I
u I I I I I I 1) I I I
! \ b outeReq() \ | | | | | |
‘ ! ! I I |
u I I I I I I) I I I
| | | | 9: eventReportRes () | | | | | |
| | 0 | | | | | | |
I I i I | I I I I I
I I I I catepicall I I i I | I
U | | | | | | | | i |
| | | | 11 dinfoReq() | | | | |
T T T T T T T T T 1
! ! ! ! | 12: sendinfores() | | |]
| | | | u I I I I I
! ! ! 13: oreateCdiLeg() | | | | | u
: . n I I
I I I | I %bm I I
I I I I I I I I
| . |15 eventReportReq() . ‘ D ! !
! | | | | | | | |
‘ ‘ L s rouereal)| I I I | | |
| I I
H I I I I I I I t] I I
! ! ! ! 17 dventReportRes | | | | |
I I I m\ I I I
I I I | I I I u I I
I I I I N I I I I I
| | | | | 0 | | | | | >ﬂ
H | | | | | | | | |
I I I I I I I I I I
I I I | I I I I I I I
| | | 10: deassigpCall() | | ‘ ‘ ‘ | |
H | | | | | 0 | | | |
I I | | | ‘ ‘ ‘ |
| I I I I I I I I I
I I I I I I I I I I
I I I I I I I I I I

1: Thismessageisused to create an object implementing the IpAppMultiPartyCall interface.

2: Thismessage requests the object implementing the IpMulti PartyCall Control M anager interface to create an
object implementing the IpMultiPartyCall interface.

3: Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

ETSI

10:
11:
12:

13:

14:

15:

16:

17:

18:

19:

4.2

11 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the
object implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing
the IpMultiPartyCall interface. Note that the reference to the callback interface could aready have been passed
in the createCall.

This message instructs the object implementing the I|pMultiPartyCall interface to create acall leg for
customer A.

Assuming that the criteriafor creating an object implementing the IpCallLeg interface is met, message 6 is
used to createit.

This message requests the call leg for customer A to inform the application when the call leg answers the call.
The call isthen routed to the originating call leg.

Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the
call being answered back to its callback object. This message is then forwarded via another message (not
shown) to the object implementing the |pAppLogic interface.

A UICall object is created and associated with the just created call leg.
This message is used to inform party A that the call is being routed to party B.

Anindication that the dialogue with party A has commenced is returned via message 13 and eventually
forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

This message instructs the object implementing the IpMulti PartyCall interface to create acall leg for
customer B.

Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is
created.

This message requests the call leg for customer B to inform the application when the call leg answersthe call.
The call isthen routed to the call leg.

Assuming the call is answered, the object implementing party B's |pCallLeg interface passes the result of the
call being answered back to its callback object. This message is then forwarded via another message (not
shown) to the object implementing the |pAppLogic interface.

This message then instructs the object implementing the IpUICall interface to stop sending announcements to
party A.

The application deassigns the call. Thiswill also deassign the associated user interaction.

Call Barring 2

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is regjected and the call is cleared.

ETSI

12 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

(5: release()

_ (Logical = = = : IpMultiPartyCallControlManager o = : IpUiCall
View:IpApplL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall IpAppUICall IpMultiP artyCall IpUIManager
T T T T T T T T
1: new() | | | | | | |
| | | | | |
U | | | | | |
| | | | | | |
! 2: createNotification() ! ! ! ! !
L L L | | |
| | | /D | | |
| L . | | | | |
3: ‘reponNoufcauon() | | | | |
| | | | |
4: 'forward event' | | | | |
| | | | |
| | | | |
5 new) | | | | |
D | | | |
T				
	6 getCallLegs()			
t t t t				
H				/I-J
		7 createUIC§ll()		
				/Q
‘ : : 8: sendlnf%}AndCoHectReq() : : : !				
! ! ! ! ! 9 sendlnfoAndCo\lectRes*) ! !				
! : 10: forward event' : ! :	: !			
H<				
: : : 11: sendinfoR : : :				
		- sgadinfoReq()		
			12: sendinfoRes()	
: : 13: ‘forward event' : : :				
T				
: : : 1-‘5: release() : :				
k				
T T T				

© © N 9

11:

12:

-1

?

S o

This message is used by the application to create an object implementing the
I pAppM ultiPartyCall Control M anager interface.

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address
range prompted for a password before the call is alowed to progress. When a new call, that matches the event
criteria, arrives a message (not shown) is directed to the object implementing the

I pMulti PartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used
to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the
I pAppM ultiPartyCall Control M anager interface.

This message is used to forward message 3 to the IpAppLogic.

This message is used by the application to create an object implementing the |pAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pMultiPartyCall Control M anager
using the return parameter of the callEventNotify.

The application requests alist of al the legs currently in the call.

This message is used to create a UICall object that is associated with the incoming leg of the call.
The call barring service dialogue isinvoked.

The result of the dialogue, which in this case isthe PIN code, is returned to its callback object.
This message is used to forward the previous message to the IpAppLogic.

Assuming an incorrect PIN is entered, the calling party isinformed using additional dialogue of the reason
why the call cannot be completed.

This message passes the indication that the additional dialogue has been sent.

ETSI

13 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

13: Thismessage is used to forward the previous message to the IpAppLogic.
14: No more Ul isrequired, so the UICall object is released.

15; Thismessageis used by the application to clear the call.

4.3 Call forwarding on Busy Service
The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application isinformed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

16: createCallLeg() 17: "new’

Applayic Appleg C: Appleg A: App Call : AppCCM : CCM: Call: legC: scs
MggCaIILQ IpAppCaliLeg IpAppMultiPartyCall IpAppMulti ParM‘ allC IpMultiPartyCallControlManager | | pM uliPartyCd | [gallLeg pCaJILeg bCcd L@
T T T T T
\ \ 1 "new | \ | | \ \ | |
T T | | | | | |
| 2 crv;aleNonﬁcanon() /u | | | | | |
3 “Frmmgger”
| | | ! ! ! 1
| | | | | | U
| | | | | | |
| | | | 4:"trigger event: Busy' | | |
! ! ! 5:'check 4ppication nteresed” | ! ! T
		< 6 "new"			
		L 7 new!			
		8: "state-fansition to Activeg			
		9: V’E\g			
		[N} u 10-"statt 1sition to "			
! ! 2: "forward event" ! 11: reportNotification() !					
1 1 r					
U\					
	13 "new’				
T					
u 14	ew T				
h I I					

18: "state transition to Idle't
|

20: routeReq() | |

|
|
|
| |
| |
| |
| |
| |
| |
| |
T !
| |
| |
| 19: eventReportReq() |
f
| |
| |
| | |
| 22; "inform Call objegt"
| I
n
|

i

e e S i B

I
|
|
|
|
1 ‘
[l [l
| |
| |
| |
f
| |
; | 21SEE fransition to Acnv&%“
U | | < |
		L			
		[l			
	23 uo‘inud?rocesslng()				
			1 T		
T			;	.	
			24: "inform Gall object”		
				I	
				25:"continue gall processing”	
			[l [l [U		
					26: "C-party answert”
					ﬁ
		27 eventReportBes()			D
28: "forwgrd event”					
U\ I					
[l					

|
| T
| |
| |
| |

1: Thismessageisused by the application to create an object implementing the
I pAppM ultiPartyCall Control M anager interface.

2. Thismessageis sent by the application to enable notifications on new call events.

4: When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object
implementing the I pMultiPartyCall Control M anager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated
call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.

8: Thenew Cal Leginstancetransits to state Active.

ETSI

14 ETSI ES 204 915-4-3 V1.1.1 (2008-05)
11: Thismessage is used to pass the new call event to the object implementing the
I pAppMultiPartyCall Control Manager interface. Applied monitor mode is "interrupt”.
12: Thismessageis used to forward the message to the IpAppLogic.

13: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ultiPartyCall Control M anager
using the return parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCallLeg Cis created to receive callbacks for another leg.

16: Thismessage isused to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

19: The application regquests to be notified (monitor mode "INTERRUPT") when party C answersthe call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo in the request to route the call
leg to the remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it isnot interested in
possible requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified (callLegEnded) and the event is
forwarded to the application logic (not shown).

25 Asaresult call processing is resumed in the network that will try to reach the associated party C.
26: When the party C answers the call, the termination call leg is notified.

27. Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the
call being answered back to its callback object.

28 Thisanswer message is then forwarded to the object implementing the IpAppL ogic interface.

4.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect cal information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number tranglation of the dialled number and
specia charging (e.g. a premium rate service).

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getinfoReq and superviseReg methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore the diagram shows the order in which information is sent to the application: network release event
followed by possible requested call leg information, then the destruction of the call leg object (callLegEnded) and
finally the destruction of the call object (callEnded).

ETSI

15 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

17 é‘vemReporlReq()

18: puperviseReq()

1é‘ gethfoReq ()
20 §eu,nargel-'lan()

N S| T

21‘; raseReq()

22" staUtransm on to Active”

[P

AmLagic Appleg B: Appleg A: AppCall : ccM: ceM: call: LegA: LegB: @
Llﬂ art artyCal ultiPartyCal ultiPar

IpApCallL 1 allL IpAppMultiPartyCall MultiPartyCallC IpMultiPartyCallC IpMul P all IpCaliLeg CaIILe IpCall
T T T T T
| | I mew \ \ \ \ \ | |
L ! ! ! L | | | | |
| | 2: createNotification() i | | o | |
N N N N | 3:"armtrigger’ | |
| | | T T T /u

| | | | | |
: : : | 4: “}rlgger ewent: Analyﬁ‘ed Information” : :
| | | | 5:"check f §pplication interested" | | | H

| | | | = | | |
| | | | 6:"new’ | | | T
			new		
			8: "statertransition to Active”		
			Pz—		
			9: reportN dification()		
‘ ‘ 10:"forvard event ‘ ‘ ‘					
N ! 11: "new’ ! ! ! !					
I I					
12: "new					
T					
e					
mew I I \ I I					
U 14 createCalleg()	! ! !				
; L 15 ‘:nev\l' : :					
\; 16: "slgLL!ranslllonloldle					
I					
T					
I					
i					
I					
1					

|
|

| 23: “inform Call object”

|
24: eventReporfReq()

25: getinoReq ()

T
26: continueProcessing ()

m

S

o i

27: "inform Call ubjem

28 4omnuecal Ipr u:esqmg

|
|
[
|
|
|
|
|
|
|
[
|
t
|
|
t
4‘\9

|
|
|
|
|
|
|
|
:
|
| E
|
|

|
129: "B party answer'|

Il
|
|
|
I
|
T
I
|
i
|
|
|
|
|
|
|
T
|
1
|
|
|
|
|
|
|
| 30 eventReportRes()

\
|
|
|
|
:31 forwadeva’!l’jJ

32 "Di om A-party’

]
|
|
|
|
[
|
|
|
!
33: "state lHLn ition to Releasing”

:I

%

34: eventReportRes()

|
35: "forwgrd event"
[l

36: getinfoRes()

37 “forw%rd event"

|
|
39: "forwdrd event"

T

38: callLegEnded()

“inform Call objef

41" blscmnecl from B-| Rarty

42: "state Eﬁsmm to ReleaslB
I

I S Wi S

43: eventReportRes()

144: forward event'

45: getinfoRes()
|
146: forward event'l |

(r

-
|
.

47: supeniseRes()

: 48: Yorward event

(I

150: "forward event|

[l
%

49: callLegEnded)

Y
|
|
|
|
+
|
|
'
|
|
|
'
|
|
T

|
51: "informiCall object”

|
|
|
|
|
|
|
|
|
|
|
|
i
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;
[
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
[
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

52 callEnded()

53: "forward evenf*

|
|
|
o)
|
|
|
|
|

1. Thismessageis used by the application to create an object implementing the
I pAppM ultiPartyCall Control M anager interface.

2. Thismessageis sent by the application to enable notifications on new call events.

When anew call, that matches the event criteria, arrives a message ("analysed information") is directed to the
object implementing the IpMultiPartyCall ControlManager. Assuming that the criteriafor creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated
call leg object.

ETSI

11:

12:
13:
14:

15:
16:
17:

18:
19:
20:
21:
22:
24:
25:
26:

29:
30:

31:
32.

34:
35:
36:
37:
38:
39:

16 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

A new MultiPartyCall object is created to handle this particular call.
A new CallLeg object corresponding to Party A is created.
The new Call Leg instance transitsto state Active.

This message is used to pass the new call event to the object implementing the
I pAppMuultiPartyCall Control Manager interface. Applied monitor mode is "interrupt”.

This message is used to forward message 9 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ulti PartyCall Control M anager
using the return parameter of the reportNotification.

A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
A new AppCallLeg is created to receive callbacks for another leg.

This message is used to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

A new CallLeg corresponding to party B is created.
A transition to state Idle is made after the Call leg has been created.

The application reguests to be notified (monitor mode "NOTIFY") when party B answers the call and when the
leg to B-party is released.

The application requests to supervise the call leg to party B.

The application requests information associated with the call leg to party B for example to calculate charging.
The application requests a specific charge plan to be set for the call leg to party B.

The application requests to route the terminating leg to reach the associated party B.

The Call Leg instance transits to state Active.

The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

The application requests information associated with the call leg to party A for example to calculate charging.

The application reguests to resume call processing for the originating call leg. Asaresult call processing is
resumed in the network that will try to reach the associated party B.

When the B-party answers the call, the termination call leg is notified.

Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the
call being answered back to its callback object (monitor mode "NOTIFY").

This answer message is then forwarded.

When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.
The event is forwarded to the application logic.

The call leg information is reported.

The event is forwarded to the application logic.

Theorigination call leg is destroyed, the AppLeg A is notified.

The event is forwarded to the application logic.

ETSI

41.

17 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

When the B-party releases the call or the call isreleased as aresult of the release request from party A, i.e. an
"originating release” indication, the terminating call leg is notified and makes a transition to "releasing state".

If anetwork release event isreceived being a"terminating release" indication from called party B, the
application IpAppLeg B is notified, as the release event from party B has been requested to be reported in
NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being an "originating

44:
45:
46:
47:
48:
49:
50:
52:

53:

4.5

release” indication coming from calling party A.

The event is forwarded to the application logic.

The call leg information is reported.

The event is forwarded to the application logic.

The supervised call leg information is reported.

The event is forwarded to the application logic.

The terminating call leg is destroyed, the AppLeg B is notified.
The event is forwarded to the application logic.

Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call is ended.

The event is forwarded to the application logic.

Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5'is
then set on the controlling leg (the calling party's leg) such that if the calling party enters a'#5' an event will be sent to
the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

ETSI

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

18

IpUIVanager
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IpMuliPartyCall
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
;

IpMultiPartyCallControlManager

1pAopUICall
i)
a

artyA: | [AppPartyB .
IpAppCalleg

IpAppMuliPartyCall
T
|
|
|
| e
|
,
|
|
|
|
i
|
i
|
t
|
;

MuliParyCallControlManager

5: e

(Logical
View::IpAppLogic)
[l
|
I
|
|
|

- - —

g
i e e e e e -1
g &
H
RS 25 O S
\\\\\ B e I
5 HI
g o) & 4
2 5 H §
3§ < H g
£ H H 5
H gl - _s
\\\\\\ 8 S S P E S
3 i
\\\\\\\\\\ ot - |- -4 --t=
% H
— — - -

This message is used by the application to create an object implementing the

I pAppM ultiPartyCall Control M anager interface.

1

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram

2

depictsacall barring service, it islikely that all new call events destined for a particular address or address

range result in the caller being prompted for a password before the call is alowed to progress. When a new
call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object

implementing the I pMultiPartyCall Control M anager. Assuming that the criteria for creating an object

implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages

(not shown) are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the

I pAppM ultiPartyCall Control M anager interface.

3

This message is used to forward message 3 to the IpAppLogic.

4.

ETSI

10:
11:

12:
13:
14:

15:

16:
17:
18:
19:
20:

21.

22:
23
24:
25:

26:
27:
28:
29

30:

19 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

This message is used by the application to create an object implementing the IpAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ulti PartyCall Control M anager
using the return parameter of message 3.

This message returns the call legs currently in the call. In principle a reference to the call leg of the calling
party is already obtained by the application when it was notified of the new call event.

This message is used to associate a user interaction object with the calling party.
Theinitial card service dialogue isinvoked using this message.

The result of the dialogue, which in this caseisthe ID and PIN code, isreturned to its callback object using
this message and eventually forwarded via another message (not shown) to the IpAppLogic.

Assuming the correct ID and PIN are entered, the final dialogue isinvoked.

The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded
via another message (not shown) to the IpAppLogic.

This message is used to forward the address of the callback object.
The trigger for follow-on callsis set (on service code).

A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing
AppCallLeg object could be passed in the subsequent createCallLeg(). In that case the application hasto use
the sessionl Ds of the legs to distinguish between callbacks destined for the A-leg and callbacks destined for
the B-leg.

This message is used to create anew call leg object. The object is created in the idle state and not yet routed in
the network.

The application requests to be notified when the leg is answered.

The application routes the leg. As aresult the network will try to reach the associated party.
When the B-party answers the call, the application is notified.

The event is forwarded to the application logic.

Legsthat are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other parties in the call. In order to allow inband communication between the new party and
the other parties in the call the media have to be explicitly attached.

At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the |pAppCallLeg interface, which forwards this event as a message (not shown) to the
IpAppLogic.

The event is forwarded to the application.
This message releases the called party.
Another user interaction dialogue isinvoked.

The result of the dialogue, which in this case is the new destination addressis returned and eventually
forwarded via another message (not shown) to the IpAppLogic.

A new AppCallLegis created to receive callbacks for another leg.
The call isthen forward routed to the new destination party.
Asaresult anew Callleg object is created.

This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

When the A-party terminates the application isinformed.

ETSI

20 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

31: Theeventisforwarded to the application logic.

32: Sincetherelease of the A-party will in this case terminate the entire call, the application is also notified with
this message.

33: Theeventisforwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application
receives this message to indicate that the Ul resources are released in the gateway and no further
communication is possible.

35: Theevent isforwarded to the application logic.

36: The application deassigns the call object.

4.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to congtitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a
pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined
destination party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

Note that this service could be extended as follows.

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

ETSI

21 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

AppLogic ApplegB: Appleg A AppCall : ApCCM : CCM: call: Leg A: LegB: scs
IpAppCallLeg IpAppCaliLeg iPartyCall allC: allC 1ag: dl IpCallLeg IpCdlleg
T T T T T T T T T T
| | I Lnew | | | | | | |
i i i . | | | | |
| | 2: createNotification() /U | | | | |
T T T T | S:rarmtigger” | |
| | | | | | | /u
| | | | | | |
! ! ! ! o 4 "wigge} event: Originating Call At Authorised! !
i i i i | 3 mgge‘ ewvent: Originating | tempt Authorise | |
| | | | | 5: "checkft hpplication interested” | | |
| | | | | [gr— | | |
| | | | | 6:"new’ | | | T
				7 "new		
				8: "state'{ransition to Initi mll"g‘i		
: : : : : o reportNotifcation() ‘ <— : :						
‘ ‘	10 ovardeent I ‘ ‘ ‘					
i ! 1:new	! ‘J					
L	I L					
12 "ew	U					
T /u						
vew !						
:						
U 14: createCalileg() ! ! ! ! !						
L I 15: "nbw						
	16: ZHE transition to Idle”					
17: ‘E/emRepurlReq() : : :						
1p:routeReq()						
T T T						
		19: "statg transition to Active”				
T			Z			
: : : 20:“inform d‘all object”						
! 21 cwnseplint)) !						
U 0						
22: continueProressing () | |
T T
23 "inform Call nbjectu
2:

i
I
I
I
ninue cal prucessw‘hg”
|
I
|

===

25: event "address_analysed"

o

T
26: “S'Alvg transition to Amive“‘
< |
| |
27: {Disconnect from B-pgrty”

28: "stateltransition to Releasin

I

29: eventReportR es()
30: "forvard event"

31: cal lLeg Enced()

32: "forward event’
(

I
I
I
|
T
I
|
T
33: “inform Call object”
|
I
I
I I

| 34: "Disconnett from A-party"

|
|
l
: |
|

36: callLeg Ended()

|

|

|

| t

| 35: "state uansmun to Releasing”
|

|

I

I

38: "inform Call object|

]

|
|
Il
|
|
|
Il
|
|
T
|
|
|
|
|
I
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
T
|
|
|
|
|
|
|
|
|
|
1
37:"forwgr d event' 1

39: callEnded()

s S

g
U 1

|
|
|
h
1 I
|
|
|
|
|
|

r
i

u

—— - - - —

This message is used by the application to create an object implementing the
I pAppM ultiPartyCall Control M anager interface.

This message is sent by the application to enable notifications on new call events.

When anew call, that matches the event criteria, arrives a message ("originating call attempt authorised") is
directed to the object implementing the I pMultiPartyCall ControlManager. Assuming that the criteriafor
creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the
call and associated call leg object.

A new MultiPartyCall object is created to handle this particular call.
A new CallLeg object corresponding to Party A is created.

The new Call Leg instance transits to state I nitiating.

ETSI

10:
11:

12:
13:
14:

15:
16:
17:
18:

19:
21:
22:

25:

27

29:
30:
31
32:
34:

36:
37:
39:
40:

22 ETSI ES 204 915-4-3 V1.1.1 (2008-05)
This message is used to pass the new call event to the object implementing the
I pAppMultiPartyCall Control Manager interface. Applied monitor mode is "interrupt”.
This message is used to forward message 9 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppMultiPartyCall interface.
The reference to this object is passed back to the object implementing the I pM ultiPartyCall Control M anager
using the return parameter of the reportNotification.

A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
A new AppCallLegis created to receive callbacks for another leg.

This message is used to create a new call leg object. The object is created in the idle state and not yet routed in
the network.

A new CallLeg corresponding to party B is created.
A transition to state Idle is made after the Call leg has been created.
The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

The application requests to route the terminating leg to reach the associated party as specified by the
application ("' hot-line number").

The Call Leg instance transits to state Active.
The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

The application reguests to resume call processing for the originating call leg. Asaresult call processing is
resumed in the network that will try to reach the associated party as specified by the application (E.164
number provided by application).

The originating call leg is notified that the number (provided by application) has been analysed by the network
and the originating call leg STD makes atransition to "active" state. The application is not notified asit has not
requested this event to be reported.

When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state”.

The application is notified, as the release event has been requested to be reported in Notify mode.
The event is forwarded to the application logic.

The terminating call leg is destroyed, the AppLeg B is notified.

This answer message is then forwarded.

When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This rel ease event (being propagated
from party B) is not reported to the application.

When the originating call leg is destroyed, the AppLeg A is notified.
The event is forwarded to the application logic.
When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

The event is forwarded to the application logic.

ETSI

23 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

4.7 Network Controlled Notifications

The following sequence diagram shows how an application can receive notifications that have not been created by the
application, but are provisioned from within the network.

AppLogic - A,
IpAppMultiPartyCallControlManager IpMultiPartyCallControlManager
I]]
| 1: new() |

|
2: enapleNotifications()

| U

u

-1

|
3: reportNotification() :

4: ‘forward ewent'

5: reportNotification(...

6: forward event'

7: disgbleNotifications()

o

|
|
|

1. Theapplication is started. The application creates a new |pAppMultiPartyCall Control Manager to handle
callbacks.

2: The enableNoatifications method is invoked on the |pMultiPartyCall Control M anager interface to indicate that
the application is ready to receive notifications that are created in the network. For illustrative purposes we
assume notifications of type "B" are created in the network.

When a network created trigger occurs the application is notified on the callback interface.
The event is forwarded to the application.
When a network created trigger occurs the application is notified on the callback interface.

The event is forwarded to the application.

N o2 g &~ w

When the application does not want to receive notifications created in the network anymore, it invokes
disableNotifications on the |pMultiPartyCall Conrol M anager interface. From now on the gateway will not send
any notifications to the application that are created in the network.

ETSI

24 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

4.8 Use of the Redirected event

AppLogic : IpAppCallLeg : IpCallLeg

/ T
/ |

y 1: eventReportReq()

2: routeReq()

|
|
|
|
|
|
[
I
/ |
|
|
|
|
|
|
|
|

3: eventReportRes()

hawe already been

The Call and the Leg
created.

4: eventReportRes()

1. Theapplication has aready created the call and acall leg. It places an event report request for the ANSWER
and REDIRECTED eventsin NOTIFY mode.

2. Theapplication routes the call leg.

3: Thecdl isredirected within the network and the application isinformed. The new destination addressis
passed within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the
same call leg is used so the application does not have to create a new one.

4. Thecall isanswered at its new destination.

5 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

25

<<Interface>>
Ipinterface
(from csapi)

7

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

<<Interface>>

IpAppMultiPartyCallControlManager

(from mpc cs)

[®reportNotification()
[®callAborted()
.managerlnterrupted()
[®managerResumed()
["®callOverloadEncountered()
[®calloverloadCeased()
[®abortMultipleCalls()

<<uses>

<<Interface>>
IpMultiPartyCallControlManager
(from mpecs)

[Screatecall()
[createNotification()
[®destroyNotification()
[SchangeNotification()
[®setCallLoadControl()
[®enableNotifications()
[disableNotifications()
[®getNextNotification()

<<Interface>>
IpAppMultiPartyCall
(from mpccs)

--M¥getinfoRes()

[getinfoErm()
[SsupenviseRes()
[SsuperviseEm()
[®callEnded()
[SicreateAndRouteCallLegErm()

<<Interface>>
IpMultiP artyCall
(from mpccs)

[®getCallLegs)

createCallLeg()
createAndRouteCallLegReq()

[®release()
[®deassigncall()

[®getinfoReq()
[®setChargePlan()
[SisetAdviceOfCharge()
[®superviseReq()

Figure 1: Application Interfaces

ETSI

<<Interface>>
IpAppCallLeg
(from mpccs)

[®eventReportRes()
[®eventReportErm()
[®attachMediaRes()
[®attachMediaErr()
[®detachMediaRes()
[®detachMediaErr()
[SgetinfoRes()
[getinfoErm()
[SrouteEm()
[®superviseRes()
[SsuperviseErm()
[callLegEnded()

<<Interface>>
IpCallLeg
(from mpccs)

[®routeReq()
[®eventReportReq()
[®release()
[®getinfoReq()

nE8getcall(_
[®attachMediaReq()

[®detachMediaReq()

0_.m.getCurrentDesti nationAddress()

[®continueProcessing()
[[setChargePlan()
[@isetAdviceOfCharge()
®supenviseReq()

[®deassign()
[[SgetProperties()
[SsetProperties()

26 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

This class diagram shows the interfaces of the multi-party call control service package.

<<Interface>>
IpSenice
(from csapi)

SsetCallback()
$setCallbackWith SessionID()

I\
[\

<<Interface>>
IpCallLeg
(fom mpcc9
P — <<Interface>>
IpMultiPartyCallControlManager ST SrouteReq()
(from mpccs) ®eventReportReq()
(from mpccs)
Frelease()
®getCallLegs() FgetinfoReq()
, gel g g q
‘gggiﬁsltli(f?cation() 1 0..nE¥createCallLeg() 1 0./ E¥getcall()
P s AU “{®createAndRouteCallLegReq()- — — — — — - - = [®attachMediaReq()
destroyNotification() @ <)
< R release() detachMediaReq()
changeNotification() g . ™ o
eassignCall() getCurrentDestinationAddress()
SsetCallLoadControl() — — ;
BcnableNotifications() getinfoReq() continueProcessing()
® oAt ®setChargePlan() SsetChargePlan()
disableNotifications()) &)
WoetNextNotification setAdviceOfCharge() setAdviceOfCharge()
getNextNotification(®supeniseReq() ®supeniseReq()
Sdeassign()
WgetProperties()
FsetProperties()
Figure 2: Service Interfaces

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the | pMultiPartyCall ControlManager, |pMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do
not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls,
than one that uses synchronous message calls. To handle responses and reports, the developer must implement

I pAppMultiPartyCall Control Manager, | pAppM ultiPartyCall and IpAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService;

Thisinterface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the

[pMultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the

I pMultiPartyCall ControlManager is in another state the method will throw an exception immediately.

Thisinterface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.

ETSI

27 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall: in IpAppMultiPartyCallRef): TpMultiPartyCallldentifier

createNotification (appCallControlManager: in IpAppMultiPartyCallControlManagerRef, notificationRequest:
in TpCallNotificationRequest): TpAssignmentID

destroyNotification (assignmentID: in TpAssignmentID): void

changeNotification (assignmentlD: in TpAssignmentID, notificationRequest: in TpCallNotificationRequest):
void

setCallLoadControl (duration: in TpDuration, mechanism: in TpCallLoadControlMechanism, treatment: in
TpCallTreatment, addressRange: in TpAddressRange): TpAssignment|D

enableNotifications (appCallControlManager: in IpAppMultiPartyCallControlManagerRef): TpAssignmentID
disableNotifications (): void

getNextNotification (reset: in TpBoolean): TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppM ultiPartyCall ControlManager should already have been
passed to the | pMultiPartyCall Control M anager, otherwise the call control will not be able to report a call Aborted() to
the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns call Reference: Specifies the interface reference and sessionl D of the call created.
Parameters

appCall. in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID INTERFACE TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthe first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application isinterested in other events during the
context of aparticular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receivesthe
reportNotification(). (Note that createNotification() is not applicableif the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

ETSI

28 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If anotification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteriafor overlapping with any existing request as the notify mode does not allow control on acall to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If anatification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteriafor overlap. An example could be
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests
should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problemsin
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applicationsto be invoked in the case single point of application control appliesin the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification for further details on application control over acall or session.

Setting the callback reference:

The callback reference can be registered either in 8) createNotication() or b) explicitly with a setCallBack() method
e.g. depending on how the application provides its callback reference.

Casea:
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Caseb:

The createNatification() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback referenceis provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_ NO_CALLBACK_ADDRESS_SET shall be raised.

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Setting additional callback:

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used.

Returns assignmentID: Specifiesthe ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters
appCallControlManager. in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified previously via the setCallback() method.

notificationRequest. in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",

"busy". Individual addresses or address ranges may be specified for destination and/or origination.

ETSI

29 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Returns

TpAssignmentID
Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE, P_INVALID EVENT TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

Parameters
assignmentID. in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT_ID

6.1.4 Method changeNotification()

This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters
assignmentID. in TpAssignmentID

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest. in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P INVALID CRITERIA, P INVALID EVENT TYPE

6.1.5 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanismis similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

Parameters

duration: in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e. until disabled by the application).

A duration of -2 indicates the network default duration.

ETSI

30 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

mechanism: in TpCalllLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment. in TpCallTreatment

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange. in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.1.6 Method enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

Setting the callback reference:

The callback reference can be registered either in a) enableNotications() or b) explicitly with a setCallback() method
e.g. depending on how the application providesits callback reference.

Casea:
For an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Caseh:

The enableNotifications() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback referenceis provided previoudly in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_NO_CALLBACK_ADDRESS SET shall be raised.

In case the enableNoatification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Setting additional Call back:

If the same application invokes this method multiple times with different |pAppM ultiPartyCall Control M anager
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignment!I D. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteriain the network and provided by createNotification() do not overlap. However, it
isNOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNextNotification(), and destroyNotification() do not apply to notifications
provisioned in the network and enabled using enableNatifications(). These only apply to notifications created using
createNatification().

Returns assignmentI D: Specifies the ID assigned by the manager interface for this operation. This|ID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated callsto
enableNotifications() return the same assignment ID.

ETSI

31 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Parameters
appCallControlManager. in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified previously viathe setCallback() method.

Returns
TpAssignmentID
Raises

TpCommonExceptions

6.1.7 Method disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

6.1.8 Method getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since alot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notifications if the set istoo large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether al off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.
Parameters

reset. in TpBoolean

TRUE: indicates that the application isintended to obtain the set of notifications starting at the beginning.

FAL SE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of afinal indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns

TpNotificationRequestedSetEntry
Raises

TpCommonExceptions

ETSI

32 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: Ipinterface.

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference: in TpMultiPartyCallldentifier, callLegReferenceSet: in
TpCallLegldentifierSet, notificationinfo: in TpCallNotificationinfo, assignmentID: in TpAssignmentID):
TpAppMultiPartyCallBack

callAborted (callReference: in TpSessionID): void
managerinterrupted (): void

managerResumed (): void

callOverloadEncountered (assignmentID: in TpAssignmentID): void
callOverloadCeased (assignmentID: in TpAssignmentID): void

abortMultipleCalls (callReferenceSet: in TpSessionIDSet): void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P_TIMER_EXPIRY.

Setting the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicable if the notificationisin INTERRUPT mode.

When reportNotification() isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the
callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit
setCallbackWithSessionl D() invocation, or viathe return of the reportNotification() method.

The call back reference can be registered either in a) reportNotification() or b) explicitly with a
setCallbackWithSessionl D() method depending on how the application provides its callback reference.

Casea:
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.
Caseb:

The reportNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback referenceis provided previoudly in a setCallbackWithSessionl D(). If no callback reference has been
provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS SET shall be raised, and no further
application invocations related to the call shall be permitted.

ETSI

33 ETSI ES 204 915-4-3 V1.1.1 (2008-05)
In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered previously by setCallbackWithSessionl D().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed areference to the callback interface
using a setCallbackWithSessionl D() invocation, this parameter may be set to P APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionl D().

This parameter will be set to P_ APP_CALLBACK_UNDEFINED if the notification isin NOTIFY mode and in
case b).

Parameters
callReference. in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being givenin
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter asit chooses.

calllLegReferenceSet. in TpCallLegIdentifierSet

Specifiesthe set of all call leg references. First in the set isthe reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter asit chooses.

notificationInfo. in TpCallNotificationInfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).
assignmentID. in TpAssignmentID

Specifies the assignment id which was returned by the createNaotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference. in TpSessionID

Specifies the sessionl D of call that has aborted or terminated abnormally.

6.2.3 Method managerinterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).
Parameters

No Parameters were identified for this method.

ETSI

34 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.2.4 Method managerResumed()
This method indicates to the application that event notifications are possible and method invocations are enabled.
Parameters

No Parameters were identified for this method.

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters
assignmentID. in TpAssignmentID

Specifies the assignmentl D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters
assignmentID. in TpAssignmentID

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased.

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the |pAppCall Control M anager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. Thismay be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionlDsindicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionlDs, this shall be used to indicate that all call sessions previoudly active on the
IpCallControlManager interface have been aborted.

Parameters

callReferenceSet. in TpSessionIDSet

Specifies the set of sessionlDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

6.3 Interface Class IpMultiPartyCall

Inherits from: IpService.

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods, and
either the createCallLeg() or the createAndRouteCallLegReq|(), shall be implemented as a minimum requirement.

ETSI

35 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID: in TpSessionID): TpCallLegldentifierSet
createCallLeg (callSessionID: in TpSessionID, appCallLeg: in IpAppCallLegRef): TpCallLegldentifier

createAndRouteCallLegReq (callSessionID: in TpSessionID, eventsRequested: in TpCallEventRequestSet,
targetAddress: in TpAddress, originatingAddress: in TpAddress, applnfo: in TpCallAppinfoSet,
appLeginterface: in IpAppCallLegRef): TpCallLegldentifier

release (callSessionID: in TpSessionID, cause: in TpReleaseCause): void

deassignCall (callSessionID: in TpSessionID): void

getinfoReq (callSessionID: in TpSessionlID, callinfoRequested: in TpCallinfoType): void

setChargePlan (callSessionID: in TpSessionID, callChargePlan: in TpCallChargePlan): void
setAdviceOfCharge (callSessionID: in TpSessionID, aOClInfo: in TpAoClinfo, tariffSwitch: in TpDuration): void

superviseReq (callSessionID: in TpSessionID, time: in TpDuration, treatment: in TpCallSuperviseTreatment):
void

6.3.1 Method getCallLegs()

This method requests the identification of the call 1eg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionlDs and the
interface references.

Parameters

callSessionID: in TpSessionID
Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.2 Method createCallLeg()

This method requests the creation of anew call leg object.
Returns callLeg: Specifies the interface and sessionl D of the call leg created.

Parameters

callSessionID: in TpSessionID

Specifiesthe call session ID of the call.

appCallleg: in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

ETSI

36 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Returns
TpCallLegIdentifier
Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID INTERFACE TYPE

6.3.3 Method createAndRouteCallLegReq()

This asynchronous operation reguests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachM ediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appL eglnterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter isNULL, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() has to be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause 8.1 of the present document) indicates how a specific
implementation handles the initial createAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED if an
application is not allowed to use parallel routing requests.

Returns call LegReference: Specifies the reference to the CallLeg interface that was created.
Parameters

callSessionID: in TpSessionID

Specifies the call session ID of the call.

eventsRequested: in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed", "answer" and "release’”.
targetAddress: in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress: in TpAddress

Specifies the address of the originating (calling) party.

appInfo: in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface: in IpAppCallLegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on thisinterface.

Returns

TpCallLegIdentifier

ETSI

37 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID INTERFACE TYPE, P_INVALID ADDRESS,
P_UNSUPPORTED ADDRESS PLAN, P_INVALID NETWORK STATE, P_INVALID EVENT_ TYPE, P_INVALID CRITERIA

6.3.4 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reportsto be sent at the end of the call (e.g. by means of getinfoReq) these reports
will still be sent to the application.

Parameters

callSessionID: in TpSessionID

Specifiesthe call session ID of the call.

cause: in TpReleaseCause
Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

6.3.5 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

callSessionID: in TpSessionID
Specifiesthe call session ID of the call.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.6 Method getinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID: in TpSessionID

Specifiesthe call session ID of the call.

callInfoRequested: in TpCallInfoType
Specifies the call information that is requested.
Raises

TpCommonExceptions, P_INVALID SESSION ID

ETSI

38 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.3.7 Method setChargePlan()

Set an operator specific charge plan for the call.
Parameters

callSessionID: in TpSessionID
Specifies the call session ID of the call.
callChargePlan: in TpCallChargePlan
Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.8 Method setAdviceOfCharge()

This method alows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID: in TpSessionID

Specifiesthe call session ID of the call.

aoCInfo: in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch: in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpCommonExceptions, P _INVALID SESSION ID, P INVALID CURRENCY, P_INVALID AMOUNT

6.3.9 Method superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon asthe call is answered by the B-party or the user interaction system.

Parameters

callSessionID: in TpSessionID
Specifies the call session ID of the call.
time: in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatment: in TpCallSuperviseTreatment
Specifies how the network should react after the granted connection time expired.
Raises

TpCommonExceptions, P_INVALID SESSION ID

ETSI

39 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.4 Interface Class IpAppMultiPartyCall

Inherits from: Ipinterface.

The Multi-Party call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID: in TpSessionID, callinfoReport: in TpCallinfoReport): void
getinfoErr (callSessionID: in TpSessionID, errorindication: in TpCallError): void

superviseRes (callSessionID: in TpSessionID, report: in TpCallSuperviseReport, usedTime: in TpDuration):
void

superviseErr (callSessionID: in TpSessionID, errorindication: in TpCallError): void
callEnded (callSessionID: in TpSessionID, report: in TpCallEndedReport): void

createAndRouteCallLegErr (callSessionID: in TpSessionID, callLegReference: in TpCallLegldentifier,
errorindication: in TpCallError): void

6.4.1 Method getinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID. in TpSessionID
Specifiesthe call session ID of the call.
callInfoReport. in TpCallInfoReport

Specifies the call information requested.

6.4.2 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

errorIndication! in TpCallError

Specifies the error which led to the original request failing.

ETSI

40 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.4.3 Method superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

report. in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime! in TpDuration

Specifies the used time for the call supervision (in milliseconds).

6.4.4 Method superviseErr()

This asynchronous method reports a call supervision error to the application.
Parameters

callSessionID: in TpSessionID

Specifies the call session ID of the call.

errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.4.5 Method callEnded()
This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID. in TpSessionID
Specifiesthe call sessioniD.
report. in TpCallEndedReport

Specifies the reason the call is terminated.

6.4.6 Method createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters
callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

ETSI

41 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

callLegReference. in TpCallLegIdentifier
Specifies the reference to the CallLeg interface that was created.
errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.5 Interface Class IpCallLeg

Inherits from: IpService.

The call leg interface representsthe logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(), release(),
continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID: in TpSessionID, targetAddress: in TpAddress, originatingAddress: in
TpAddress, applinfo: in TpCallApplnfoSet, connectionProperties: in TpCallLegConnectionProperties): void

eventReportReq (callLegSessionID: in TpSessionID, eventsRequested: in TpCallEventRequestSet): void
release (callLegSessionID: in TpSessionID, cause: in TpReleaseCause): void

getinfoReq (callLegSessionID: in TpSessionID, callLegIinfoRequested: in TpCallLegInfoType): void
getCall (callLegSessionID: in TpSessionID): TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID: in TpSessionID): void

detachMediaReq (callLegSessionID: in TpSessionID): void

getCurrentDestinationAddress (callLegSessionID: in TpSessionID): TpAddress

continueProcessing (callLegSessionID: in TpSessionID): void

setChargePlan (callLegSessionID: in TpSessionID, callChargePlan: in TpCallChargePlan): void

setAdviceOfCharge (callLegSessionID: in TpSessionID, aOClinfo: in TpAoClInfo, tariffSwitch: in TpDuration):
void

superviseReq (callLegSessionID: in TpSessionID, time: in TpDuration, treatment: in
TpCallLegSuperviseTreatment): void

deassign (callLegSessionID: in TpSessionID): void

getProperties (callLegSessionID: in TpSessionlID, propertyNames: in TpCallLegPropertyNamelList):
TpCallLegPropertyList

setProperties (callLegSessionID: in TpSessionID, properties: in TpCallLegPropertyList): void

ETSI

42 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.5.1 Method routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism val ues specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Note that for application initiated callsin some networks the result of the first routeReq() has to be received before the
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause
8.1 of the present document) indicates how a specific implementation handles the initial routeReq().This method shall
throw P_TASK_REFUSED if an application is not allowed to use parallel routing requests.

Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

targetAddress. in TpAddress

Specifies the destination party to which the call leg should be routed.
originatingAddress:. in TpAddress

Specifies the address of the originating (calling) party.

appInfo. in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties. in TpCallLegConnectionProperties
Specifies the properties of the connection.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE, P INVALID ADDRESS,
P_UNSUPPORTED ADDRESS PLAN

6.5.2 Method eventReportReq()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
eventsRequested. in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed", "answer" and "release”.

ETSI

43 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID EVENT TYPE, P_INVALID CRITERIA

6.5.3 Method release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases rel easing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.
Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
cause. in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

6.5.4 Method getinfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
callLegInfoRequested. in TpCallLegInfoType
Specifiesthe call leg information that is requested.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.5 Method getCall()

This method requests the call associated with this call leg.

Returns call Reference: Specifies the interface and sessionlD of the call associated with this call leg.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID SESSION ID

ETSI

44 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.5.6 Method attachMediaReq()

This method requests that the call leg be attached to its call object. Thiswill alow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method isinvoked while there is still arequest to detach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

callLegSessionID. in TpSessionID
Specifies the sessionl D of the call leg to attach to the call.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

6.5.7 Method detachMediaReq()

This method will detach the call leg from its call, i.e. thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

In case this method is invoked while thereis still arequest to attach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

callLegSessionID. in TpSessionID

Specifies the sessionl D of the call leg to detach from the call.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

6.5.8 Method getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed.

If this method isinvoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call session ID of the call leg.

Returns

TpAddress
Raises

TpCommonExceptions, P_INVALID SESSION ID

ETSI

45 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.5.9 Method continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation isinvoked and call leg processing is not interrupted the exception
P_INVALID_NETWORK_STATE will be raised.

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

6.5.10 Method setChargePlan()
Set an operator specific charge plan for the call leg.
Parameters

calllegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call party.
callChargePlan. in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.11 Method setAdviceOfCharge()

This method alows for Advice of Charge (AoC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call party.

aOCInfo. in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch! in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID CURRENCY, P_INVALID AMOUNT

ETSI

46 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.5.12 Method superviseReq()

The application calls this method to supervise acal leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call party.
time. in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon asthecallLegis
connected in the network.

treatment. in TpCallLegSuperviseTreatment
Specifies how the network should react after the granted connection time expired.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.13 Method deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision requests will be cancelled.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.14 Method getProperties()

This synchronous method requests to receive the values of indicated property namesif they are available. Examples are
aP_CALL_LEG PROPERTY _ICON (references an image suitable as an iconic representation of the caller or calleg),
P_CALL_LEG PROPERTY_INFO (e.g. aweb page), or P_CALL_LEG_PROPERTY_CARD (abusiness card). The
caller's properties are available on the call leg object representing the originating address and the callee's properties are
available on the call leg object representing callee. If some property value is not available, the property name and value
will not be part of the returned list with properties. Note that parts of the caller and callee's public identity are aso made
available through TpAddress.

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.
Parameters
callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

ETSI

a7 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

propertyNames. in TpCallLegPropertyNameList

Specifies the property names of the call leg to be made available.
Returns

TpCallLegPropertyList

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE, P_INFORMATION NOT AVAILABLE,
P_UNAUTHORISED PARAMETER VALUE

6.5.15 Method setProperties()

This synchronous method requests to set the values of indicated property names and their values if they are supported.
ExamplesareaP_CALL_LEG PROPERTY _ICON (references an image suitable as an iconic representation of the
caler or calee), P_ CALL_LEG_PROPERTY_INFO (e.g. aweb page), or P_ CALL_LEG_PROPERTY_CARD (a
business card). The caller's properties are available on the call leg object representing the originating address and the
callee's properties are available on the call leg object representing callee. If some property name is not applicable, it and
its value will beignored. Note that parts of the caller and callee's public identity are also made available through
TpAddress.

The Service Property P_CALL_LEG PROPERTIES (see clause 8.1) indicates the properties that are supported.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

properties. in TpCallLegPropertyList

Specifies the properties of the call leg to be set.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE, P_INFORMATION NOT AVAILABLE,
P_UNAUTHORISED PARAMETER VALUE

ETSI

48 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.6 Interface Class IpAppCallLeg
Inherits from: Ipinterface.

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID: in TpSessionlD, eventinfo: in TpCallEventinfo): void
eventReportErr (callLegSessionID: in TpSessionlD, errorindication: in TpCallError): void
attachMediaRes (callLegSessionID: in TpSessionID): void

attachMediaErr (callLegSessionID: in TpSessionlD, errorindication: in TpCallError): void
detachMediaRes (callLegSessionID: in TpSessionID): void

detachMediaErr (callLegSessionID: in TpSessionID, errorindication: in TpCallError): void
getinfoRes (callLegSessionID: in TpSessionID, callLeginfoReport: in TpCallLeginfoReport): void
getinfoErr (callLegSessionID: in TpSessionlID, errorindication: in TpCallError): void

routeErr (callLegSessionID: in TpSessionID, errorindication: in TpCallError): void

superviseRes (callLegSessionID: in TpSessionID, report: in TpCallSuperviseReport, usedTime: in
TpDuration): void

superviseErr (callLegSessionID: in TpSessionID, errorindication: in TpCallError): void

callLegEnded (callLegSessionID: in TpSessionID, cause: in TpReleaseCause): void

6.6.1 Method eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method isinvoked for areport with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P_ TIMER_EXPIRY.

Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg on which the event was detected.
eventInfo. in TpCallEventInfo

Specifies data associated with this event.

ETSI

49 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.6.2 Method eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.6.3 Method attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connectionsto thisleg is now available.

Parameters
callLegSessionID. in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

6.6.4 Method attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.6.5 Method detachMediaRes()

This asynchronous method reports the detachment of acall leg from a call has succeeded. The media channels or bearer
connectionsto thisleg is no longer available.

Parameters
callLegSessionID. in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

6.6.6 Method detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

errorIndication. in TpCallError

Specifies the error which led to the original request failing.

ETSI

50 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.6.7 Method getinfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg to which the information relates.
callLegInfoReport. in TpCallLegInfoReport

Specifiesthe call leg information requested.

6.6.8 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

errorIndication! in TpCallError

Specifies the error which led to the original request failing.

6.6.9 Method routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.6.10 Method superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in this
kind of event.

It is also called when the connection to a party is terminated before the supervision event occurs.
Parameters

callLegSessionID. in TpSessionID

Specifiesthe call leg session ID of the call leg.

report: in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.
usedTime! in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

ETSI

51 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

6.6.11 Method superviseErr()
Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.6.12 Method callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g. getlnfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

callLegSessionID. in TpSessionID
Specifiesthe call leg session ID of the call leg.
cause. in TpReleaseCause

Specifies the reason the connection is terminated.

7 MultiParty Call Control Service State Transition
Diagrams
7.1 State Transition Diagrams for

IpMultiPartyCallControlManager

"managerinterrupted

Interrupted

IpAccess.terminateSeniceAgreement
'new'

IpAccess.terminateSeniceAgreement

/
() ®

Figure 3: Application view and the Multi-Party Call Control Manager

ETSI

52 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

7.1.1 Active State

In this state arelation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can aso indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events regquested cannot be forwarded
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for
instance the application receives more notifications from the network than defined in the Service Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network dueto e.g. alink failure.

7.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNextNotification,
setCallLoadControl,
enableNoaotifications,
disableNotifications
Interrupted getNextNotification,
enableNoaotifications,
disableNotifications

7.2 State Transition Diagrams for I[pMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P_ TIMER_EXPIRY. In the
case when no IpAppMultiPartyCall is available on which to invoke call Ended(), callAborted() shall be invoked on the

I pAppMultiPartyCall ControlManager asthisis an abnormal termination.

ETSI

53 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

. IpMultiPartyCallManager.createCall { IDLE J

trcoming call]
ApAppMultiPartyCallCo IManager.reportNotification

creatéCallLeg

ACTIVE

deassign
'last leg released’
deassignCall
A /
RELEASED callEnded \@
&
A timer mechanisem preventsthatthe object AN

keepsoccupying resources. In case the timer
expires, callEnded()isinwlkedon the

IpAppM ultiPartyCal | with a release cause of
P_TIMER_EXPIRY. Inthe case when no

IpAppM ultiPartyCal l isavailable on which to invoke
callEnded (), callAborted () shall be invoked on the
IpAppM ultiPartyCal IControIManagerasthisis an
abnormal termination.

Figure 4: Application view on the MultiParty Call object

7.2.1 IDLE State
In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
State.

7.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is alowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getlnfoRes() and / or superviseRes(). As soon as al
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

ETSI

54 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

7.2.4 Overview of allowed methods
Methods applicable Call Control Call Call Control Manager
State State
getCallLegs, Idle, Active, Released |-
createCallLeg, Idle, Active Active
createAndRouteCallLegReq, setAdviceOfCharge, superviseReq,
release Active Active
deassignCall Idle, Active -
setChargePlan, getinfoReq Idle, Active Active
7.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Cadl Leg State Model General Objectives:

1)

2)

3)

4)

5)

Eventsin backwards direction (upstream), coming from terminating leg, are not directly visible in originating
leg model. See note 1.

Eventsin forwards direction (downstream), coming from originating leg, are not directly visible in terminating
leg model. See note 1.

States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting events on
terminating leg do not change state. See note 2.

Call processing is suspended if for aleg a network event is met, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. The application shall send a request to continue processing
(using an appropriate method like continueProcessing, deassign, release or routeReq) for each leg and event
reported in monitor mode ‘interrupt’.

If the event leads to a state transition, the call processing is suspended when entering the state.

In case on aleg more than one network event (for example a mid-call event 'service _code' and a disconnection
event) isto be reported to the application at quasi the same time, then the events are to be reported one by one
to the application in the order received from the network. When for aleg an event is reported in interrupt
mode, a next pending event is not to be reported to the application until a request to resume call processing for
the current reported event has been received on the leg.

NOTE 1: Although events coming from a specific party will always be tied to the callLeg related to that party, these

events might lead to state transitions of other callLegs. Examples of such events are terminating release,
where also the originating leg might transit to the releasing state and originating_release where the
terminating leg might transit to the releasing state.

NOTE 2: Even though in the Originating Call Leg STD thereis no change in the methods the application is

permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore, from an application viewpoint, appear as just one state that may
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore is described here as
being a state on its own.

ETSI

55 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

7.3.1 Originating Call Leg

Originating Call Leg. ﬁ
‘originating call attempt authorizedm
IpAppMultiPartyCallControlManager.
Initiatin reportN otification(originating CallAttem
attachM eda g ‘ po ((originating)
detachMedia
‘ IpAppMultiPartyCallControlManag er
reportNotification(originating CallAttemptAuthorized)
'Address Collected'
'networkRelease’

‘Address_Collected'

attachMedia
detachMeda

IpAppM ultiPartyCallControlManager.
reportNotification(address_collected)

‘networkreleas e

'Address Analysed'

‘originating service_code'

Active IpAppMultiPartyCallControlManager.
attachMedia Cj ‘ reportNofification(address_analysed)
detachMedia
‘ IpAppMultiPartyCallControlManager.

reportNotification(originating service code)

‘'network release’

\

‘ Releasing

All States release do/ send reports if requested, or error reports if required ‘ IpAppMultiPartyCallControlManager.
"timer expiry ‘ ‘ reportNotification(originating

release)

deasign

o

NpAppCallLeg.callLeg Ended

Transitions/events na shown:

All states:

continueProcessing , g etlastRedirectedAddress , getCall: no state change
All states except Releasing :

ewentR epatReq, setAdvice OfChar ge, getlnfoReq , superviseReq,
setChar gePlan

Figure 5: Originating Leg

7.3.1.1 Initiating State
Entry events:

. Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
‘Originating_Call_Attempt' initial notification criterion.

. Sending of areportNotification() method by the IpMultiPartyCallControlManager for an
'‘Originating_Call_Attempt_Authorised' initial notification criterion.

ETSI

56 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party's identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See OREL
State note 2 g

| oCA | 0CAA 4 AC
Seenote 1

NOTE 1: Event oCA only applicable as an initial notification.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

oCA: originating Call Attempt;
0CAA: originating Call Attempt Authorized;
AC: Address Collected;

OREL: originating RELease.
Figure 6: Application view on event reporting order in Initiating State

In this state the following functions are applicable;
. The detection of a'Originating_Call_Attempt' initial notification criterion.

e Thedetection of an 'Originating_Call_Attempt_Authorised' initial notification criterion as aresult that the call
attempt authorisation is successful.

. The report of the 'Originating_Call_Attempt_Authorised' event indication whereby the following functions are
performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg
processing is suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

. The receipt of destination addressinformation, i.e. initial information package/dialling string as received from
caling party.

. Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

. Availability of destination address information, i.e. the initial information package/dialling string received
from the calling party.

e Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

ETSI

57 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

. Receipt of adeassign() method.
. Receipt of arelease() method.

. Detection of an 'originating release’ indication as aresult of a premature disconnect from the calling party.

7.3.1.2 Analysing State
Entry events:

. Availability of an 'Address_Collected' event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

. Availability of an'Address_Collected' event indication as a result of additional digits received from the calling
party as requested by the application (with eventReportReq).

. Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an 'Address_Collected'
initial notification criterion.

Functions:
In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is anal ysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is donein this state. This action
can be repeated, e.g. the application may request first for 3 digits to be collected and when reported request further
digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

OREL

Analysing note >
State

0CAA) AC) AA

NOTE : The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

0CAA: originating Call Attempt Authorized;

AC: Address Collected;

AA: Address Analysed;

OREL: originating RELease.

Figure 7: Application view on event reporting order in Analysing State

ETSI

58 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

In this state the following functions are applicable;

The detection of an 'Address_Collected' initial notification criterion.
On receipt of the 'Address_Collected' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event isreported and call leg processing is
suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

Receipt of an eventReportReq() method defining the criteria for the events the call leg object isto observe.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

7.3.1.3

Detection of an 'Address_Analysed' indication as aresult of the availability of the routing address and nature
of address.

Receipt of adeassign() method.
Receipt of arelease() method.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

Active State

Entry events:

Receipt of an 'Address Analysed' indication as a result of the availability of the routing address and nature of
address.

Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an 'Address_Analysed'
initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

59 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Seenote 1 See
ﬂ note 2
oSC AN
AC T
AR OREL
Active
State

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.

NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC: Address Collected;
AA: Address Analysed,;
0SC: originating Service Code;

OREL: originating RELease.
Figure 8: Application view on event reporting order Active State

In this state the following functions are applicable:
e Thedetection of an Address Analysed initial indication criterion.
. On receipt of the 'Address_Analysed' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event isreported and call leg processing is
suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

. Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

e When entering this state the routing information is interpreted, the authority of the calling party to establish
this connection is verified. Note that no call leg connection is set up to the remote party at this point when the
application is still in control. The application explicitly has to create and route the terminating leg, optionally
using the address information from the Address_Analysed event. Only in case the call is deassigned (the
application relinguishes control) in this state, the network will setup the connection to terminating leg
automatically based on the received information.

. In this state a connection to the calling party is established.
. On receipt of the 'originating_service code' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing
is suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE _CODED then the event is notified and call leg
processing continues.

ETSI

60 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

7.3.1.4

Detection of an 'originating release’ indication as a result of a disconnect from the calling.

Detection of a propagated disconnect from the called party.

Receipt of adeassign() method.

Receipt of arelease() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a

certain period while call processing is suspended.

Releasing State

Entry events:

Detection of an 'Originating_Release’ indication as aresult of the network release initiated by calling party.
Propagated release from called party.

Release of the entire call (e.g. after invoking IpCall.release()).

Reception of the release() method from the application.

A transition due to fault detection to this state is made when the Call leg object isin a state and no requests
from the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:

i)
i)

i)

The network release event handling is performed.

The possible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to
the application.

The callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable;

The detection of an 'originating_release' initial indication criterion.
On receipt of the 'originating_release’ indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE _DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated releases from the called party.

ETSI

61 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent
to the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after al information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed
immediately and additionally the application will also be informed that the connection has ended.

In case of abnormal termination due to afault and the application requested for call leg related information
previoudly, the application will be informed that thisinformation is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded) and the leg isreleased in the
network.

NOTE: Thecall in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is aready ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

Receipt of adeassign() method. The leg will be released and call leg object destroyed, but no reports will be
sent to the application anymore. Also no CallLegEnded will be invoked.

ETSI

62 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

7.3.1.5 Overview of allowed methods, Originating Call Leg STD

State Methods allowed
Initiating getProperties
setProperties
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq
Analysing getProperties
setProperties
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq
Active getProperties
setProperties
attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release
deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq
Releasing getCall,
continueProcessing,
release
deassign

ETSI

63 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

7.3.2 Terminating Call Leg

Terminating Call Leg. ﬁ

Idle

terminatin
(9 IpMultiPartyCall .createCallLeg .

routeReq

IpAppMultiPartyCallControl Manager.r
‘terminating call attempt authorized' eportNotification(“terminating call
‘alerting’, ‘answer’, ‘terminating senyice attempt", "terminating call attempt
code', 'redirected’, 'queued' authorised", "alerting”, "answer",
“"terminating senvice code",
Active "redirected", "queued")
(terminating)

attachMedia
detachMedia

IpMultiPartyCall.createAndRouteCallLegReq

‘network|release’

Al States release ‘ Releasing (terminating) -
(terminating) timer expiry' ‘ do/ send reports if requested, or error reports if requir.... IpAppMultiParty CallControlManager.

reportNotification(terminating
release)

NpAppCallLeg.callLegEnded

deasign /@

Transitions/events not shown: N
All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,

All states except Releasing:

eventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

Figure 9: Terminating Leg

7.3.2.1 Idle (terminating) State
Entry events:
. Receipt of a createCallLeg() method to start an application initiated call leg connection.
Functions:
In this state the call leg object is created and the interface connection isidled.
The application activity timer is being provided.
In this state the following functions are applicable:

. Invoking routeReq will result in arequest to actually route the call leg object and resumption of call
processing.

ETSI

64 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Exit events:

7.3.2.2

Receipt of arouteReq() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

Receipt of adeassign() method.
Receipt of arelease() method.
Propagation of network release event as aresult of a disconnect from the calling party.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Active (terminating) State

Entry events:

Receipt of arouteReq will result in actually routing the call leg object.
Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.
Sending of areportNotification() method by the IpMultiPartyCall ControlManager for the following trigger

criteriac 'Terminating_Call_Attempt’, Terminating_Call_Attempt_Authorised', 'Alerting’, ‘Answer’,
Terminating service code, 'Redirected’ and 'Queued'.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is aerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

ETSI

65 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Figure 10 shows the order in which network events may be detected in the Active state and depending on the monitor
mode be reported to the application.

Active
State
tCA —» tREL
note 1
note 2 p tSC

NOTE 1: Event tCA applicable as initial notification.
NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application.

NOTE 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

tCA:

tCAA:

AL:
ANS:
tREL:
Q:
RD:
tSC:

terminating Call Attempt;
terminating Call Attempt Authorized;
Alerting;

Answer;

terminating RELease;

Queued;

ReDirected;

terminating Service Code.

Figure 10: Application view on event reporting order in Active State

In this state the following functions are applicable:

The detection and report of the 'Terminating_Call_Attempt_Authorised' event indication whereby the
following functions are performed:

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and
call leg processing is suspended.

When the P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING CALL_ATTEMPT_AUTHORISED then the event is notified and
call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_TERMINATING ATTEMPT_AUTHORISED then no monitoring is
performed.

Detection of a'Queued' indication as aresult of the terminating call being queued.

On receipt of the 'Queued' indication the following functions are performed:

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

ETSI

i)

66 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

On receipt of the 'Alerting' indication the following functions are performed:

i)

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

Detection of an 'Answer' indication as aresult of the remote party being connected (answered).

On receipt of the 'Answer' indication the following functions are performed:

i)

i)

i)

When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

The detection of a'service_code' trigger criterion suspends call leg processing.

On receipt of the 'service code' indication the following functions are performed:

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg
processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then thisis not avalid event (that event is not
notified) and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

On receipt of the 'redirected' indication the following functions are performed:

i)

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_REDIRECTED thenthe event is notified and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of a network release event being a ‘terminating release’ indication as a result of the following events:

i)

Unable to select aroute or indication from the remote party of the call leg connection cannot be
presented (this is the network determined busy condition).

Occurrence of an authorisation failure when the authority to place the call leg connection was denied
(e.g. business group restriction mismatch).

Detection of aroute busy condition received from the remote call leg connection portion.

ETSI

7.3.2.3

67 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.

-Propagation of network release event as aresult of the following events:

- Detection of a premature disconnect from the calling party.

Receipt of adeassign() method.

Receipt of arelease() method from the application.

Propagation of network release event as aresult of a disconnect from the calling party .

Detection of a network release event being a 'terminating release’ indication as aresult of a disconnect from the
called party.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Releasing (terminating) State

Entry events:

Propagation of network release disconnect from the calling party.

Detection of a network release event being a ‘terminating release’ indication as a result of the network release
initiated by called party.

Release of the entire call (e.g. after invoking IpCall.release())
Sending of the release() method by the application.

A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and thisis not received within a certain time period.

Detection of a network event being a 'terminating release’ indication as a result of the following events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be
presented (thisis the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied
(e.g. business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of ano-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.

Propagation of network release event as aresult of the following events:

- Detection of a premature disconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:

i)
i)

The release event handling is performed.

The possible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to
the application.

ETSI

68 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

iii) The callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested

reports.

In this state the following functions are applicable:

The detection of a'Terminating Release' trigger criterion.

On receipt of the network release event being a 'Terminating Release’ indication the following functions are
performed:

- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing
is suspended.

i) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE _DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated rel eases from the calling party.
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent
to the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after al information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed
immediately and additionally the application will also be informed that the connection has ended.

In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded) and the leg isreleased in the
network.

NOTE: Thecall in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

Receipt of adeassign() method. The leg will be released and call leg object destroyed, but no reports will be
sent to the application anymore. Also no CallLegEnded will be invoked.

ETSI

7.3.2.4

69

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Overview of allowed methods and trigger events, Terminating Call Leg STD

State

Methods allowed

Idle

routeReq,

getCall ,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

getProperties
setProperties
attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall ,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

8 Multi-Party Call Control Service Properties

8.1 List of Service Properties

The following table lists properties relevant for the MPCC API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES INTEGER_SET |Indicates the static event types supported by the
SCS. Static events are the events by which
applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET |Indicates the dynamic event types supported by
the SCS. Dynamic events are the events the
application can request for during the context of a
call.

P_ADDRESSPLAN INTEGER_SET |Indicates the supported address plans (defined in

TpAddressPlan.) e.g. {P_ADDRESS_PLAN_E164,
P_ADDRESS_PLAN_IP}). Note that more than
one address plan may be supported.

P_UI_CALL_BASED

BOOLEAN_SET

Value = TRUE: User interaction can be performed
on call level and a reference to a Call object can be
used in the IpUIManager.createUICall() operation.
Value = FALSE: No User interaction on call level is
supported.

P_UI_AT_ALL_STAGES

BOOLEAN_SET

Value = TRUE: User Interaction can be performed
at any stage during a call.

Value = FALSE: User Interaction can be performed
in case there is only one party in the call.

P_MEDIA_TYPE

INTEGER_SET

Specifies the media type used by the Service.
Values are defined by data-type TpMediaType:
P_AUDIO, P_VIDEO, P_DATA.

ETSI

70 ETSI ES 204 915-4-3 V1.1.1 (2008-05)
Property Type Description / Interpretation
P_MAX CALLLEGS PER_CALL INTEGER_SET |Indicates the maximum number of legs in a call for

which a connection to a call party exists in the
network. The enforcement of this property is done
only when a leg is created or routed by the
application.

P_UI_CALLLEG_BASED

BOOLEAN_SET

Value = TRUE: User interaction can be performed
on leg level and a reference to a CallLeg object
can be used in the IpUIManager.createUICall()
operation.

Value = FALSE: No user interaction on leg level is
supported.

P_CALLLEG_PROPERTIES

STRING_SET

Indicates which of the user identity fields are
available, valid values are given by
TpCallLegPropertiesName.

P_PARALLEL_INITIAL_ROUTING_REQUESTS

BOOLEAN_SET

Indicates whether for application initiated calls it is
possible to issue multiple routing request methods
in parallel or that the application has to wait for the
result of the first request before another one can
be invoked.

Value = TRUE: Multiple routing requests can be
invoked in parallel.

Value = FALSE: Result of first request has to be
received before another request can be issued.

The previous table lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.

Property

Type

Description

P_NOTIFICATION_ADDRESS_RANGES

XML_ADDRESS_RANGE_SET

Indicates for which numbers natifications
may be set. More than one range may be
present. For terminating notifications they
apply to the terminating number, for
originating naotifications they apply only to
the originating humber.

P_MONITOR_MODE

INTEGER_SET

Indicates whether the application is allowed
to monitor in interrupt and/or notify mode.
Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED

INTEGER_SET

Indicates which numbers the application is
allowed to change or fill for legs in an
incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBE
R,

P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,
P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED

INTEGER_SET

Indicates which charging is allowed in the
setCallChargePlan indicator. Allowed
values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we
assume they can be indicated with integers)
to a logical network chargeplan indicator.
When the chargeplan supports indicates
P_CHARGE_PLAN then only chargeplans
in this mapping are allowed.

P_HIGH_PROBABILITY_OF_COMPLETI
ON

BOOLEAN_SET

Value = TRUE: high probability of call
completion field can be set.

Value = FALSE: high probability of call
completion field can not be set. FALSE is
the default value.

ETSI

71 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and
which of the notifications apply to terminating numbers.

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Originating
P_CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED |Originating
P_CALL_EVENT _ADDRESS COLLECTED Originating
P_CALL EVENT ADDRESS_ANALYSED Originating
P_CALL_EVENT_ORIGINATING_SERVICE_CODE Originating
P_CALL_EVENT_ORIGINATING_RELEASE Originating
P _CALL EVENT TERMINATING CALL ATTEMPT Terminating
P_CALL_EVENT _TERMINATING CALL_ATTEMPT AUTHORISED |Terminating
P_CALL_EVENT ALERTING Terminating
P_CALL_EVENT_ANSWER Terminating
P_CALL_EVENT_TERMINATING_RELEASE Terminating
P_CALL EVENT REDIRECTED Terminating
P_CALL_EVENT_TERMINATING_SERVICE_CODE Terminating
P_CALL EVENT QUEUED N/A

8.2 Service Property values for the CAMEL Service
Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values:

P_OPERATION_SET = {
"IpMultiPartyCallControlManager.createCall",
"IpMultiPartyCallControlManager.createNotification",
"IpMultiPartyCallControlManager.destroyNotification",
"IpMultiPartyCallControlManager.changeNotification",
"IpMultiPartyCallControlManager.getNextNotification",
"IpMultiPartyCallControlManager.enableNotifications",
"IpMultiPartyCallControlManager.disableNotifications",
"IpMultiPartyCallControlManager.setCallLoadControl™"
"IpMultiPartyCall.getCallLegs",
"IpMultiPartyCall.createCallLeg",
"IpMultiPartyCall.createAndRouteCallLegReq",
"IpMultiPartyCall.release",
"IpMultiPartyCall.deassignCall",
"IpMultiPartyCall.getInfoReq",
"IpMultiPartyCall.setChargePlan",
"IpMultiPartyCall.setAdviceOfCharge",
"IpMultiPartyCall.superviseReq",
"IpCallLeg.routeReq",

"IpCallLeg.eventReportReq",

"IpCallLeg.release",

"IpCallLeg.getInfoReg",

"IpCallLeg.getCall",

"IpCallLeg.continueProcessing"

}

P_TRIGGERING_EVENT TYPES = {

P_CALL_EVENT ADDRESS_COLLECTED,
P_CALL_EVENT ADDRESS ANALYSED,

P_CALL_EVENT ORIGINATING RELEASE,

P_CALL_EVENT TERMINATING CALL ATTEMPT AUTHORISED,
P_CALL_EVENT TERMINATING_RELEASE

}

NOTE: P _CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause =
P_ROUTING_FAILURE.

P_DYNAMIC EVENT TYPES = {

P_CALL_EVENT ALERTING,

P_CALL_EVENT ANSWER,

P_CALL_EVENT ORIGINATING RELEASE,
P_CALL_EVENT ORIGINATING SERVICE CODE,
P_CALL_EVENT TERMINATING RELEASE,
P_CALL_EVENT TERMINATING SERVICE_CODE

ETSI

72 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN El164

}

P UI CALL BASED = {
TRUE

}

P UI AT ALL STAGES = {
FALSE

}

P_MEDIA TYPE = {
P_AUDIO

}

 MAX CALLLEGS PER CALL = {

P
1
2,
3,
4
5
6
}

P_UI_CALLLEG_BASED = {
TRUE

}

P MEDIA ATTACH EXPLICIT = {
FALSE

}

9 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.
The general format of a data definition specification is described below:
. Data Type.
- This shows the name of the data type.
. Description.
- This describes the data type.
. Tabular Specification.
- This specifies the data types and values of the data type.
. Example.
- If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call
control data definitionsin ES 204 915-4-1 or in the common data definitions which may be found in ES 204 915-2.

9.1 Event Notification Data Definitions

No specific event notification data defined.

ETSI

73 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2 Multi-Party Call Control Data Definitions

9.2.1 IpCallLeg

Defines the address of an IpCallLeg Interface.

9.2.2 IpCallLegRef

DefinesaReference to type IpCalLeg.

9.2.3 IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

9.24 IpAppCallLegRef

DefinesaReference to type IpAppCallLeg.

9.25 IpMultiPartyCall

Definesthe address of an IpMultiPartyCall Interface.

9.2.6 IpMultiPartyCallRef

DefinesaReference to type IpMultiPartyCall.

9.2.7 IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

9.2.8 IpAppMultiPartyCallRef

DefinesaReference to type IpAppMultiPartyCall.

9.2.9 IpMultiPartyCallControlManager

Definesthe address of an IpMultiPartyCallControlManager Interface.

9.2.10 IpMultiPartyCallControlIManagerRef

DefinesaReference to type IpMultiPartyCall ControlManager.

9.2.11 IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

9.2.12 IpAppMultiPartyCallControlManagerRef

DefinesaReference to type |pAppMultiPartyCall Control Manager.

9.2.13 TpAppCallLegRefSet

Definesa Numbered Set of Data Elements of IpAppCallLegRef.

ETSI

9.2.14 TpMultiPartyCallldentifier

74

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Defines the Sequence of Data Elements that unambiguously specify the Call object.

Sequence Element Name

Sequence Element Type

Sequence Element Description

CallReference

IpMultiPartyCallRef

party call object.

This element specifies the interface reference for the Multi-

CallSessionID

TpSessionlD

This element specifies the call session ID.

9.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type

TpAppMultiPartyCallBackRefType

Tag Element Value

Choice Element Type

Choice Element Name

P_APP_CALLBACK_UNDEFINED NULL Undefined
P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMultiPartyCall
P_APP_CALL_LEG_CALLBACK IpAppCallLegRef AppCallLeg

P_APP CALL AND CALL LEG _CALLBACK

TpAppCallLegCallBack

AppMultiPartyCallAndCallLeg

9.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P APP CALLBACK UNDEFINED 0 Application Call back interface undefined
P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP_CALL LEG_CALLBACK 2 Application CallLeg interface referenced
P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

9.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and acall leg application interface.

Sequence Element Name

Sequence Element Type

Description

AppMultiPartyCall

IpAppMultiPartyCallRef

AppCallLegSet

TpAppCallLegRefSet

Specifies the set of all call leg call
back references. First in the set is
the reference to the call back of the
originating callLeg. In case there is
a call back to a destination call leg
this will be second in the set.

9.2.18 TpMultiPartyCallldentifierSet

DefinesaNumbered Set of Data Elements of TpMultiPartyCallldentifier.

ETSI

9.2.19 TpCallApplinfo

75

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Definesthe Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value

Choice Element Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP_ NETWORK_ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P CALL APP TELE SERVICE

TpCallTeleService

CallAppTeleService

P CALL APP BEARER SERVICE

TpCallBearerService

CallAppBearerService

P_CALL_APP_PARTY_CATEGORY

TpCallPartyCategory

CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress
P_CALL_APP_GENERIC_INFO TpString CallAppGenericlnfo

P CALL APP_ ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

P _CALL_APP ORIGINAL DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress
P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress
P_CALL_APP HIGH PROBABILITY COMPLETION |TpCallHighProbabilityCompletion | CallHighProbabilityCompletion
P_CALL_APP_CARRIER TpCarrierSet CallAppCarrier

9.2.20 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P CALL APP ALERTING MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s
unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P CALL APP GENERIC INFO 7 Carries unspecified service-service information

P CALL APP_ADDITIONAL ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the
originating user when launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is
diverting.

P CALL APP HIGH PROBABILITY COMPLETION 11 Indicates high probability of completion and its priority

P_CALL_APP_CARRIER 12 Indicates the set of Carrier identifications to be used
to route the call.

9.2.21 TpCallAppInfoSet

DefinesaNumbered Set of Data Elements of TpCallApplnfo.

9.2.22 TpCallEventRequest

Definesthe Sequence of Data Elements that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

CallEventType

TpCallEventType

AdditionalCallEventCriteria

TpAdditionalCallEventCriteria

CallMonitorMode

TpCallMonitorMode

ETSI

76

9.2.23 TpCallEventRequestSet

DefinesaNumbered Set of Data Elements of TpCalEventRequest.

9.2.24 TpCallEventType

Defines a specific call event report type.

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Name Value Description

P _CALL _EVENT _UNDEFINED 0 Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place
(e.g. Off-hook event).

P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED 2 An originating call attempt is authorised

P_CALL_EVENT_ADDRESS_ COLLECTED 3 The destination address has been
collected.

P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been
analysed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code
received.

P _CALL EVENT ORIGINATING RELEASE 6 A originating call/call leg is released

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place

P_CALL_EVENT TERMINATING _CALL ATTEMPT AUTHORISED 8 A terminating call is authorized

P CALL EVENT ALERTING 9 Call is alerting at the call party.

P_CALL EVENT_ANSWER 10 Call answered at address.

P_CALL_EVENT_TERMINATING_RELEASE 11 |Aterminating call leg has been
released or the call could not be routed.

P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an
indication from the network that the call
has been redirected to a new address
(no events disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 [Mid call terminating service code
received.

P_CALL_EVENT_QUEUED 14 |The Call Event has been queued. (no
events are disarmed as a result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg:

When the monitor modeissetto P CALL_MONITOR_MODE_DO_NOT_MONITOR al events armed for
that event type are disarmed. The additional EventCriteria are not taken into account.

When requesting two events for the same event type with different criteria and/or different monitor mode the

last used criteria and monitor mode apply.

Events that are not applicable to aleg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
e.g. requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE isrequested with P_BUSY in the criteriathe request is

refused with the same exception.

When receiving events:

If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

If an event is met that causes the release of the related leg, then al events related to that leg are disarmed.

When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that

call leg may become disarmed (see table below).

If acal isreleased, then all eventsrelated to that call are disarmed.

ETSI

77 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

NOTE 1. Event disarmed means monitor modeis set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY.

The table below defines the disarming rules for dynamic events. In case such an event occurs on acal leg the table
shows which events are disarmed (are hot monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred Events Disarmed
P CALL EVENT UNDEFINED Not Applicable
P_CALL EVENT ORIGINATING CALL ATTEMPT Not applicable, can only be armed as trigger
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT _ P_CALL_EVENT_ORIGINATING_CALL ATTEMPT _
AUTHORISED AUTHORISED
P CALL EVENT ADDRESS COLLECTED P CALL EVENT ADDRESS COLLECTED
P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED
P_CALL EVENT ADDRESS_ANALYSED
P_CALL_EVENT_ALERTING P_CALL _EVENT_ALERTING
P_CALL _EVENT__TERMINATING_RELEASE with
criteria:
P_USER_NOT_AVAILABLE
P_BUSY

P_NOT_REACHABLE
P_ROUTING_FAILURE
P_CALL_RESTRICTED
P_UNAVAILABLE RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING
P_CALL_EVENT_ANSWER
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED
P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P _CALL _EVENT ORIGINATING RELEASE All pending network events for the call leg are disarmed

P CALL EVENT TERMINATING RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *)
see note

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *)
see note

NOTE: Only the detected service code or the range to which the service code belongs is disarmed.

NOTE 2: ON MAPPING EVENTYPESTO IN TRIGGER DETECTION POINTS (TDPs):

When the event types as defined above are used for requesting theinitial notification (with
createNotification), not all events have a one to one correspondence with a Trigger Detection Point
(TDP). For instance, when the underlying network is ITU-T CS2 based, one cannot distinguishin
createNotification whether the P_CALL_EVENT_ORIGINATING_RELEASE isintended to be on the
Originating side (O_BCSM) or the Terminating side (T_BCSM) of the call. Likewise, the
P_CALL_EVENT_ANSWER, P_CALL_EVENT_ALERTING and the
P_CALL_EVENT_TERMINATING_RELEASE.

The basic assumption is that the operator is responsible for provisioning of triggersin the network asin
this domain full awareness exists of all other services and applications. Therefore, createNotification does
not automatically lead to immediate provisioning of these triggers. And thus in createNotification it is not
necessary to indicate whether theinitial notification should be on the originating or terminating side of
the call.

ETSI

78 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2.25 TpAdditionalCallEventCriteria

Definesthe Tagged Choice of Data Elements that specify specific criteria

Tag Element Type
TpCallEventType

Tag Element Value Choice Element Type Choice Element Name
P _CALL_EVENT UNDEFINED NULL Undefined
P _CALL_EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT _ NULL Undefined
AUTHORISED
P CALL EVENT ADDRESS COLLECTED TpInt32 MinAddressLength
P _CALL_EVENT _ADDRESS ANALYSED NULL Undefined
P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCodeSet OriginatingServiceCode
P CALL EVENT ORIGINATING RELEASE TpReleaseCauseSet OriginatingReleaseCauseSet
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_ NULL Undefined
AUTHORISED
P_CALL_EVENT_ALERTING NULL Undefined
P_CALL_EVENT_ANSWER NULL Undefined
P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet
P CALL_EVENT REDIRECTED NULL Undefined
P CALL EVENT TERMINATING SERVICE CODE TpCallServiceCodeSet TerminatingServiceCode
P _CALL EVENT QUEUED NULL Undefined

9.2.26 TpCallEventinfo

Definesthe Sequence of Data Elements that specify the event report specific information.

Sequence Element Name Sequence Element Type
CallEventType TpCallEventType
AdditionalCallEventinfo TpCallAdditionalEventinfo
CallMonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime

ETSI

79 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2.27 TpCallAdditionalEventinfo

Definesthe Tagged Choice of Data Elements that specify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType

Tag Element Value Choice Element Type Choice Element Name

P _CALL EVENT UNDEFINED NULL Undefined

P _CALL EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_ NULL Undefined
AUTHORISED

P CALL EVENT ADDRESS COLLECTED TpAddress CollectedAddress
P CALL EVENT ADDRESS ANALYSED TpAddress CalledAddress

P _CALL EVENT ORIGINATING SERVICE_CODE
P _CALL EVENT ORIGINATING RELEASE

TpCallServiceCode
TpReleaseCause

OriginatingServiceCode
OriginatingReleaseCause

P CALL EVENT TERMINATING CALL ATTEMPT NULL Undefined
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_ NULL Undefined
AUTHORISED
P _CALL_EVENT ALERTING NULL Undefined
P CALL EVENT ANSWER NULL Undefined
P CALL EVENT TERMINATING RELEASE TpReleaseCause TerminatingReleaseCause
P _CALL EVENT REDIRECTED TpAddress ForwardAddress
P_CALL_EVENT TERMINATING SERVICE_CODE TpCallServiceCode TerminatingServiceCode
P_CALL EVENT QUEUED NULL Undefined
9.2.28 TpCallNotificationRequest
Defines the Sequence of Data Elements that specify the criteriafor an event notification.
Sequence Element Name Sequence Element Type Description

CallNotificationScope

TpCallNotificationScope

request.

Defines the scope of the notification

CallEventsRequested

TpCallEventRequestSet

Defines the events which are requested

9.2.29 TpCallNotificationScope

Defines the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria

Sequence Element Name Sequence Element Type Description

DestinationAddress TpAddressRange Defines the destination address or address
range for which the notification is requested.
OriginatingAddress TpAddressRange Defines the origination address or address range

for which the notification is requested.

9.2.30 TpCallNotificationinfo

Definesthe Sequence of Data Elements that specify the information returned to the application in a Call
notification report.

Sequence Element Name Sequence Element Type Description

CallNotificationReportScope TpCallNotificationReportScope [Defines the scope of the naotification report.

CallApplInfo TpCallAppInfoSet Contains additional call info.

CallEventinfo TpCallEventinfo Contains the event which is reported.

ETSI

80 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2.31 TpCallNotificationReportScope

Definesthe sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element Name Sequence Element Type Description
DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call.

9.2.32 TpNotificationRequested

Defines the Sequence of Data El

ements that specify the criteriarelating to event requests.

Sequence Element Name Sequence Element Type
AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32

9.2.33 TpNotificationRequestedSet

Defines a numbered Set of Data

Elements of TpNotificationRequested.

9.2.34 TpReleaseCause

Defines the reason for arelease.

Name Value Description

P_UNDEFINED 0 The reason of release is not known, because no info was received
from the network.

P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the
number is not allocated or that the user is not registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received.

P NOT REACHABLE 4 The user terminal is not reachable.

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was
received.

P _PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P DISCONNECTED 7 A disconnect was received.

P CALL RESTRICTED 8 The call was subject of restrictions.

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were
available.

P_GENERAL_ FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

P_UNSUPPORTED_MEDIA 12 The call / call leg was released either because the message body
of the request is in a format not supported or because the media is
not supported.

9.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpReleaseCause.

9.2.36 TpCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Name Sequence Element Type Sequence Element Description
CallLegReference IpCallLegRef This element specifies the interface reference for the
callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

ETSI

81 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2.37 TpCallLegldentifierSet

DefinesaNumbered Set of Data Elements of TpCallLegldentifier.

9.2.38 TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the

attachMediaReq() operation. This allows e.g. the application to do first
user interaction to the party before he/she is placed in the call.

9.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object.

Sequence Element Name Sequence Element Type Sequence Element Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

9.2.40 TpCallLegIinfoReport

Definesthe Sequence of Data Elements that specify the call leg information requested.

Sequence Element Name Sequence Element Type Description
CallLegInfoType TpCallLeginfoType The type of call leg information.
CallLegStartTime TpDateAndTime The time and date when the call leg was started
(i.e. the leg was routed).
CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to

the resource. If no resource was connected the time is
set to an empty string.

Either this element is valid or the
CallLegConnectedToAddressTime is valid, depending
on whether the report is sent as a result of user
interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to
the destination (i.e. when the destination answered
the call). If the destination did not answer, the time is
set to an empty string.

Either this element is valid or the
CallConnectedToResourceTime is valid, depending
on whether the report is sent as a result of user

interaction.
CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If

during the call the connected address was received
from the party then this is returned, otherwise the
destination address (for legs connected to a
destination) or the originating address (for legs
connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with
P_CALL_LEG_INFO_RELEASE_CAUSE was
specified.

CallApplInfo TpCallAppInfoSet Additional information for the leg. May be present with

P_CALL_LEG_INFO_APPINFO was specified.

ETSI

82 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2.41 TpCallLegIinfoType

Defines the type of call leg information requested and reported. The values may be combined by alogica 'OR' function.

Name Value Description
P CALL LEG INFO UNDEFINED 00h Undefined
P CALL LEG INFO TIMES 01h Relevant call times
P CALL LEG_INFO RELEASE_CAUSE 02h Call leg release cause
P CALL LEG_INFO_ADDRESS 04h Call leg connected address
P _CALL LEG INFO_APPINFO 08h Call leg application related information

9.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by alogical 'OR' function.

Name Value Description
P_CALL_LEG_SUPERVISE_RELEASE 01lh Release the call leg when the call leg supervision timer
expires
P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision timer
expires

P_CALL_LEG_SUPERVISE_APPLY_TONE 04h Send a warning tone on the call leg when the call leg
supervision timer expires. If call leg release is requested,
then the call leg will be released following the tone after
an administered time period

9.2.43 TpCallHighProbabilityCompletion

This datatypeisidentical to a TpInt32, and defines the probability of completion under network congestion. A value of
0 indicates no special treatment (default). The other values of this data type are region specific. For example, a priority
value between 1, 2, 3, ..., nindicates specia treatment, where 1 is the highest priority and n the lowest priority other
than no specia treatment.

9.2.44 TpNaotificationRequestedSetEntry

Defines the Sequence of Data Elements that specify a set of requested notifications and an indication whether more
notifications can be requested.

Sequence Element Name Sequence Element Type Description
NotificationRequestSet TpNotificationRequestedSet Numbered set of requested notifications.
Final TpBoolean Indication whether the set of notifications is the

final set (TRUE) or if there are more
notifications available (FALSE).

9.2.45 TpCarrierSet

DefinesaNumbered Set of Data Elements of TpCarrier. In case the set is empty, the SCF will assume
default processing.

9.2.46 TpCarrier

Definesthe Sequence of Data Elements that indicates carrier information. It consists of the carrier selection
field followed by the Carrier ID information to be used for routing a call to acarrier.

Sequence Element Name Sequence Element Type
CarrierlD TpCarrierlD
CarrierSelectionField TpCarrierSelectionField

ETSI

83 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

9.2.47 TpCarrierlD

This datatypeisidentical to a TpOctetSet. For encoding of the field, depending on the network, either ITU-T
Recommendation Q.763 or ANS| ISUP T1.113 applies.

9.2.48 TpCarrierSelectionField

Defines the type of Carrier Selection Field-related specific information. This parameter indicates how the selected
carrier is provided (e.g. pre-subscribed).

Name Value Description

P_CIC_UNDEFINED 0 No indication.

P_CIC_NO_INPUT 1 The carrier identification code (CIC) is pre subscribed (not
provided by the calling party).

P_CIC_INPUT 2 The carrier identification code (CIC) is pre subscribed and
provided by the calling party.

P_CIC_UNDETERMINED 3 The selected carrier identification code (CIC) is pre
subscribed, but no indication is present of whether it is
provided by the calling party (undetermined).

P_CIC_NOT_PRESCRIBED 4 The selected carrier identification code (CIC) is provided by
calling party (not pre subscribed).

9.2.49 TpCallLegPropertyName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the call leg
properties that are to be supported by the Multi Party Call Control API. Other Network operator specific properties may
also be used, but should be preceded by the string "sP_". The following val ues are defined.

Character String Value Description
P_CALL_LEG_PROPERTY_INFO The info property name is associated with a URL value that describes the
caller or callee in general, for example, through a web page.
P_CALL_LEG_PROPERTY_ICON The icon parameter property name is associated with a URL value that points
to data suitable as an iconic representation of the caller or callee.
P_CALL_LEG_PROPERTY_CARD The card property name is associated with a business card, for example, in
vCard or LDIF formats.

9.2.50 TpCallLegPropertyNameList

This datatype definesaNumbered List of Data Elements of type TpCallLegPropertyName.

9.2.51 TpCallLegPropertyValue

Thisdatatypeisidentical to TpString. It isthe value associated with a property.

9.2.52 TpCallLegProperty

ThisdatatypeisaSequence of Data Elements which describesaproperty. It isa structured data type
consisting of the following { name,value} pair.

Sequence Element Name Sequence Element Type
CallLegPropertyName TpCallLegPropertyName
CallLegPropertyValue TpCallLegPropertyValue

9.2.53 TpCallLegPropertyList

This datatype definesaNumbered List of Data Elements of type TpCallLegProperty.

ETSI

84 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Annex A (normative):
OMG IDL Description of Multi-Party Call Control SCF

The OMG IDL representation of this interface specification is contained in the text files (mpcc_data.idl and
mpcc_interfaces.idl contained in archive es _2049150403IDL.zip) which accompany the present document.

This archive can be found in es_2049150403v010101p0.zip which accompanies the present document.

ETSI

85 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Annex B (informative):
W3C WSDL Description of Multi-Party Call Control SCF

The W3C WSDL representation of thisinterface specification is contained in zip file es_2049150403WSDL.zip which
accompanies the present document.

This archive can be found in es_2049150403v010101p0.zip which accompanies the present document.

ETSI

86 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Annex C (informative):
Java API Description of the Call Control SCFs

The Java API redlisation of thisinterface specification is produced in accordance with the Java Realisation rules defined
in Part 1 of this specification. These rules aim to deliver for Java, a developer API, provided as arealisation, supporting
aJava API that represents the UML specifications. The rules support the production of both J2SE and J2EE versions of
the API from the common UML specifications.

The J2SE representation of thisinterface specification is provided as Java Code, contained in archive
20491504-3J2SE.zip that accompanies the present document.

The J2EE representation of this interface specification is provided as Java Code, contained in archive
20491504-3J2EE.zip that accompanies the present document.

Both these archives can be found in es_2049150403v010101p0.zip which accompanies the present document.

ETSI

87 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Annex D (informative):
Contents of 3GPP OSA Rel-7 Call Control

All itemsin Multi-Party Call Control are relevant for TS 129 198-4-3 (Release 7).

ETSI

88 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Annex E (informative):
Description of Call Control Sub-part 3: Multi-party call
control SCF for 3GPP2 cdma2000 networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53] and
[54] of ES 204 915-1. These requirements are expressed as additions to and/or exclusions from the 3GPP Release 7
specification. The information given here is to be used by developersin 3GPP2 cdma2000 network architecture to
interpret the 3GPP OSA specifications.

E.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(TR 121 905) mostly in the broader sense of "3G Wireless System”. If not stated otherwise there are no additions or
exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope

There are no additions or exclusions.

E.2.2 Clause 2: References

Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

E.2.4 Clause 4: MultiParty Call Control Service Sequence
Diagrams

There are no additions or exclusions.

E.2.5 Clause 5: Class Diagrams

There are no additions or exclusions.

E.2.6 Clause 6: MultiParty Call Control Service Interface Classes

There are no additions or exclusions.

ETSI

89 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

E.2.7 Clause 7: MultiParty Call Control Service State Transition
Diagrams

There are no additions or exclusions.

E.2.8 Clause 8: Multi-Party Call Control Service Properties

There are no additions or exclusions. Nevertheless, for cdma2000 systems the CAMEL data types and service
properties are not applicable.

E.2.9 Clause 9: Multi-Party Call Control Data Definitions

There are no additions or exclusions.

E.2.10 Annex A (normative): OMG IDL Description of Multi-Party
Call Control SCF

There are no additions or exclusions.

E.2.11 Annex B (informative): W3C WSDL Description of Multi-
Party Call Control SCF

There are no additions or exclusions.

E.2.12 Annex C (informative): Java™ API Description of the Multi-
Party Call Control SCF

There are no additions or exclusions.

ETSI

90 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

Annex F (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New

Identifier | Comments

Interfaces added in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.1.3 Removed

Identifier | Comments

Interfaces removed in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.2 Methods

F.2.1 New

Identifier | Comments

Methods added in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

ETSI

91 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

F.2.3 Maodified

Identifier | Comments

Methods modified in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.2.4 Removed

Identifier | Comments

Methods removed in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

IpMultiPartyCallControlManager.getNotification() |Already deprecated, removed in cleanup for Parlay 6.0

F.3 Data Definitions

F.3.1 New

Identifier | Comments

Data Definitions added in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.3.2 Modified

Identifier | Comments

Data Definitions modified in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.3.3 Removed

Identifier | Comments

Data Definitions removed in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

|

F.4 Service Properties

F.4.1 New

Identifier | Comments

Service Properties added in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

F.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)

|

ETSI

92 ETSI ES 204 915-4-3 V1.1.1 (2008-05)

F.4.3 Modified
Identifier | Comments
Service Properties modified in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)
|
F.4.4 Removed
Identifier | Comments
Service Properties removed in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)
|
F.5 Exceptions
F.5.1 New
Identifier | Comments
Exceptions added in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)
|
F.5.2 Modified
Identifier | Comments
Exceptions modified in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)
|
F.5.3 Removed
Identifier | Comments
Exceptions removed in ES 204 915-4-3 version 1.1.1 (Parlay 6.0)
|
F.6 Others
None.

ETSI

93

ETSI ES 204 915-4-3 V1.1.1 (2008-05)

History

Document history
V111 February 2008 Membership Approval Procedure MV 20080425: 2008-02-26 to 2008-04-25
V111 May 2008 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 MultiParty Call Control Service Sequence Diagrams
	4.1 Application initiated call setup
	4.2 Call Barring 2
	4.3 Call forwarding on Busy Service
	4.4 Call Information Collect Service
	4.5 Complex Card Service
	4.6 Hotline Service
	4.7 Network Controlled Notifications
	4.8 Use of the Redirected event

	5 Class Diagrams
	6 MultiParty Call Control Service Interface Classes
	6.1 Interface Class IpMultiPartyCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method createNotification()
	6.1.3 Method destroyNotification()
	6.1.4 Method changeNotification()
	6.1.5 Method setCallLoadControl()
	6.1.6 Method enableNotifications()
	6.1.7 Method disableNotifications()
	6.1.8 Method getNextNotification()

	6.2 Interface Class IpAppMultiPartyCallControlManager
	6.2.1 Method reportNotification()
	6.2.2 Method callAborted()
	6.2.3 Method managerInterrupted()
	6.2.4 Method managerResumed()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method abortMultipleCalls()

	6.3 Interface Class IpMultiPartyCall
	6.3.1 Method getCallLegs()
	6.3.2 Method createCallLeg()
	6.3.3 Method createAndRouteCallLegReq()
	6.3.4 Method release()
	6.3.5 Method deassignCall()
	6.3.6 Method getInfoReq()
	6.3.7 Method setChargePlan()
	6.3.8 Method setAdviceOfCharge()
	6.3.9 Method superviseReq()

	6.4 Interface Class IpAppMultiPartyCall
	6.4.1 Method getInfoRes()
	6.4.2 Method getInfoErr()
	6.4.3 Method superviseRes()
	6.4.4 Method superviseErr()
	6.4.5 Method callEnded()
	6.4.6 Method createAndRouteCallLegErr()

	6.5 Interface Class IpCallLeg
	6.5.1 Method routeReq()
	6.5.2 Method eventReportReq()
	6.5.3 Method release()
	6.5.4 Method getInfoReq()
	6.5.5 Method getCall()
	6.5.6 Method attachMediaReq()
	6.5.7 Method detachMediaReq()
	6.5.8 Method getCurrentDestinationAddress()
	6.5.9 Method continueProcessing()
	6.5.10 Method setChargePlan()
	6.5.11 Method setAdviceOfCharge()
	6.5.12 Method superviseReq()
	6.5.13 Method deassign()
	6.5.14 Method getProperties()
	6.5.15 Method setProperties()

	6.6 Interface Class IpAppCallLeg
	6.6.1 Method eventReportRes()
	6.6.2 Method eventReportErr()
	6.6.3 Method attachMediaRes()
	6.6.4 Method attachMediaErr()
	6.6.5 Method detachMediaRes()
	6.6.6 Method detachMediaErr()
	6.6.7 Method getInfoRes()
	6.6.8 Method getInfoErr()
	6.6.9 Method routeErr()
	6.6.10 Method superviseRes()
	6.6.11 Method superviseErr()
	6.6.12 Method callLegEnded()

	7 MultiParty Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.1.1 Active State
	7.1.2 Interrupted State
	7.1.3 Overview of allowed methods

	7.2 State Transition Diagrams for IpMultiPartyCall
	7.2.1 IDLE State
	7.2.2 ACTIVE State
	7.2.3 RELEASED State
	7.2.4 Overview of allowed methods

	7.3 State Transition Diagrams for IpCallLeg
	7.3.1 Originating Call Leg
	7.3.1.1 Initiating State
	7.3.1.2 Analysing State
	7.3.1.3 Active State
	7.3.1.4 Releasing State
	7.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.3.2 Terminating Call Leg
	7.3.2.1 Idle (terminating) State
	7.3.2.2 Active (terminating) State
	7.3.2.3 Releasing (terminating) State
	7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	8 Multi-Party Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment.

	9 Multi-Party Call Control Data Definitions
	9.1 Event Notification Data Definitions
	9.2 Multi-Party Call Control Data Definitions
	9.2.1 IpCallLeg
	9.2.2 IpCallLegRef
	9.2.3 IpAppCallLeg
	9.2.4 IpAppCallLegRef
	9.2.5 IpMultiPartyCall
	9.2.6 IpMultiPartyCallRef
	9.2.7 IpAppMultiPartyCall
	9.2.8 IpAppMultiPartyCallRef
	9.2.9 IpMultiPartyCallControlManager
	9.2.10 IpMultiPartyCallControlManagerRef
	9.2.11 IpAppMultiPartyCallControlManager
	9.2.12 IpAppMultiPartyCallControlManagerRef
	9.2.13 TpAppCallLegRefSet
	9.2.14 TpMultiPartyCallIdentifier
	9.2.15 TpAppMultiPartyCallBack
	9.2.16 TpAppMultiPartyCallBackRefType
	9.2.17 TpAppCallLegCallBack
	9.2.18 TpMultiPartyCallIdentifierSet
	9.2.19 TpCallAppInfo
	9.2.20 TpCallAppInfoType
	9.2.21 TpCallAppInfoSet
	9.2.22 TpCallEventRequest
	9.2.23 TpCallEventRequestSet
	9.2.24 TpCallEventType
	9.2.25 TpAdditionalCallEventCriteria
	9.2.26 TpCallEventInfo
	9.2.27 TpCallAdditionalEventInfo
	9.2.28 TpCallNotificationRequest
	9.2.29 TpCallNotificationScope
	9.2.30 TpCallNotificationInfo
	9.2.31 TpCallNotificationReportScope
	9.2.32 TpNotificationRequested
	9.2.33 TpNotificationRequestedSet
	9.2.34 TpReleaseCause
	9.2.35 TpReleaseCauseSet
	9.2.36 TpCallLegIdentifier
	9.2.37 TpCallLegIdentifierSet
	9.2.38 TpCallLegAttachMechanism
	9.2.39 TpCallLegConnectionProperties
	9.2.40 TpCallLegInfoReport
	9.2.41 TpCallLegInfoType
	9.2.42 TpCallLegSuperviseTreatment
	9.2.43 TpCallHighProbabilityCompletion
	9.2.44 TpNotificationRequestedSetEntry
	9.2.45 TpCarrierSet
	9.2.46 TpCarrier
	9.2.47 TpCarrierID
	9.2.48 TpCarrierSelectionField
	9.2.49 TpCallLegPropertyName
	9.2.50 TpCallLegPropertyNameList
	9.2.51 TpCallLegPropertyValue
	9.2.52 TpCallLegProperty
	9.2.53 TpCallLegPropertyList

	Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	Annex C (informative): Java API Description of the Call Control SCFs
	Annex D (informative): Contents of 3GPP OSA Rel-7 Call Control
	Annex E (informative): Description of Call Control Sub-part 3: Multi-party call control SCF for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: MultiParty Call Control Service Sequence Diagrams
	E.2.5 Clause 5: Class Diagrams
	E.2.6 Clause 6: MultiParty Call Control Service Interface Classes
	E.2.7 Clause 7: MultiParty Call Control Service State Transition Diagrams
	E.2.8 Clause 8: Multi-Party Call Control Service Properties
	E.2.9 Clause 9: Multi-Party Call Control Data Definitions
	E.2.10 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	E.2.11 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	E.2.12 Annex C (informative): JavaŽ API Description of the Multi-Party Call Control SCF

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

