ETSI ES 204 915-4-2 v1.1.1 2o0s-05)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 4. Call Control;

Sub-part 2: Generic Call Control SCF
(Parlay 6)

D

2 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Reference
DES/TISPAN-01032-4-02-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
© The Parlay Group 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Contents

INtellectual Property RIGNES.... ..ot b e et nb e b b nenn e 6
0 Yo (o SRS 6
1 o010 SRS 8
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 8
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 8
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 8
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 8
4 Generic Cal Control Service SeqUENCE DIiagramsS..........cceeieveeieiie et et see e te e snesre e s sne s 9
41 YN (o N 1To g IO L 7= o3 USSR 9
4.2 T 0 K PR 10
4.3 APPLICAioN TNITTAEEA Callcoveeieieeieee bbbt bbb nn s 12
4.4 Cll BAITING L ...ttt ettt bbbt h e b et bt s b e bt s b e eb e e R et e b s e e st e he e b e s e e ne e b e e e et b et e b b 14
45 AN U gl I =g S o o RS 16
4.6 Number Trandation 1 (With CAlIDACKS)coiiiiiiie s 17
4.7 NUMDBEN TEANSIBLION 2.ttt ettt bt b e h e bt e e e e e b e b sheeb e s et eaeene e e e b e sheebesneene e e enrenes 19
4.8 NUMDBEN TFANSIBLION 3.ttt ettt et bbb e e st e e e e e b e e beshe e bt s et ea e ene e e e besheebesneene e e enrenes 21
4.9 NUMDBEN TEANSIBLION 4.ttt ettt ettt e bt h e b e et e s e e e e e s e ke sh e e b e s et e s e e ne e e e beseeebesaeene e e enrees 23
4.10 NUMDEN TIANSIBHION 5.ttt e b et b e e b s bt e b et e e e e e b e s besbeebe e e ennennens 25
411 = o o ST PS 26
412 Pre-Paid with AdVice Of Charge (AOC).......uiiiicieieeteeee et s e ste st teetestesraesaaesreesseesseesesreesseesneenseensenns 28
5 ClaSS DIBOIAIMS. ...ttt h bbb b e e e e s e e a e e Rt e b e eb e b e s e e s e e e e e e e aeesenb e abenb e e e nrennan 31
6 Generic Call Control Service INTErfate ClassESuiiiirerereieeeese e 32
6.1 Interface Class |PCall CONTOIM@NAQEYcccue ettt eee sttt et e s e re e te e e e nteenreeneenneeenes 33
6.1.1 [V E= g oo e 1= O | S 33
6.1.2 Method enabl€Cal INOLITICAION() ...veiveerieeiieieeies e e b et ereeteeneeneeenes 34
6.1.3 Method disabl@CallNOLITICAEION()eveverieieirieeee ettt st a e 35
6.1.4 YTz 1 elo S = (@=L o= o [@0 a1 o]) P 35
6.1.5 Method changeCallNOLITICAITON()coverveerrereeerie e 36
6.1.6 T (oo Mo = (@2] (= = ISP SO P TSR U SR URT 36
6.2 Interface Class IPAPPCAl CONTOIMENEGEcoireeiririeiirierieeri ettt 37
6.2.1 L= (o To = N oo g (= o [SO P TSP UT SR P TR 37
6.2.2 Method CIIEVENINOLIFY()veeeeeieeeete sttt 37
6.2.3 Method callNotificationI NEETUPLEA()cveeeeerieeieie ettt reeaeeeeenneenes 38
6.24 \VT= 1gleloRer= | NN LoluNiler= o] g [@Xe] 1 (] o 1N 1= o (S 38
6.2.5 Method call Overl0a0ENCOUNTENEU()civereeeee e eieestie st e e te e sttt e s et e s re e e e teennesnneenes 39
6.2.6 Method CallOVErlOB0CEASEU() .. eoveieeieereese et et eteee s e ste e te e te e s esae e s te e aeenteesaeesaesteesseeseenseennesneennes 39
6.2.7 VK= g loTo =T oo T 1Y U] o] = = P 39
6.3 LS = e T O =SS 1 o[39
6.3.1 MELNOO FOULEREG() ..+ eve ettt sttt sttt ettt h et b et b s bbb bt b e e bt b e et s b e e et b et et sbe s 40
6.3.2 MELNOO FEIEBSE() ... eeve ettt b et b e et b et b e bt b e se et b et et b b et b b 41
6.3.3 MEthOd dEASSIGNCEAII() ...eovereeeeete ettt b ettt b e et bbb s 41
6.34 Method GetCall INFOREG() ...+ eveevereeueete ettt ettt b et b et b et sb e et b e 42
6.3.5 Method SetCall ChargePIaN()veeererieeeie ettt b e e 42
6.3.6 Method SEAAVICEOFCNAITGE()eueevereeeeteriee ettt ettt b e et b e et b et nb e b 42
6.3.7 Method getMoreDiall €dDIGITSREG() ..v.uveeverreerrieriieieeiesee st seese e sae e e ae e re et e teesse s e eseeneesneennes 43
6.3.8 Method SUPEIVISECAITREG() «.vververeereeieeieesti et et ste e st e e e e e sstesaeesaeesreesaeeseeneeeseesseasseente e seeseensennsenneesnns 43
6.3.9 Method CONLINUEPTOCESSING() «.vvevvverreeieerierieiereite st e st e e e e e stesreesreesreesaeeseeneeeseesseesseenteeseeseenseeneesneesnes 43
6.4 Interface ClasS IPAPPCEILoo ettt et e e s e s re et e e ateesteeseesaeesteesteenseeneenneennes 44
6.4.1 MELNOT FOULERES()veeuveeeieeie ettt ettt s et e e et esaee s aeesaeesaeesseeneeenseeseessaesteesseenseentenneesneesnes 44
6.4.2 MELNOO FOULEETT() .. vttt bbb bbb bt bt b e b et b e e et e b e e et b et 45
6.4.3 Method GEtCallINFORES() ... veueeeeieeeete ettt bbbt b e et sb e et b e 45
6.4.4 VL= (g leTo o 7= (@2 1 N g o] =) TSP PSPPSR PSR 45
6.4.5 Method SUPEIVISECAITRES(). ... ccve ettt sttt b et b et b e et bbb et 46

ETSI

4 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

6.4.6 Method SUPEIVISECAITEIT() ...veieeieeiee e sttt ettt e sttt e st e st e s reeste et e e e e sseesre e beente e seeseenseeneesneennes 46
6.4.7 Method Call FAUITDELECIEA()veeeeeeeeieeie e ste sttt e e st e e sae e s te e te et e e raessaeste e seenseenseeneenneennes 46
6.4.8 Method getMoreDiall €dDIGITSRES()vvevieirerieriieieee et e et e b e be e been e eteeneesneeenes 47
6.4.9 Method getMoreDiall €@dDIGITSEIT() ...vcvveeeeieereesieeie e ettt et esraeste e te e seeeeeneesneeenes 47
6.4.10 MENOO CAIIENTEA() +..v.vveeerereereeiee sttt 47
7 Generic Cal Control Service State Transition Diagrams.........ccccceeeeveieeieseeiee s e sre e s e 48
7.1 State Transition Diagrams for IpCall CONtrolMaNAgEScceiererererirereeee e 48
711 AACTIVE SEBLE. ...ttt et sttt sttt et et et e st e beseeeb e s et eseeae e e eneeeeebeeReen e e e e eeaEeeReeaeeneeneeeeneeee 48
712 NOtificatioN tErMINAIEA SEALEeeeeeee ettt e e e besnesre e e eneeneens 48
7.2 State Transition Diagrams fOr IPCall..........ooeee it e e sreenneas 49
721 NEIWOrK REIEASEA SEALE.........ceceiirereeierereee et 49
722 FINISNEA SEALE. ... vtttk b et e et b b e bt b et e bt e b 49
723 APPlICaioN REIEASEU SLALE.......eeciieiiee et st e ee s e e sreesreenseeneeenaeeneesreesnens 49
7.2.4 INO PartiES SEALE.......ecueerereceere sttt sttt sttt r et r e et r e et r e et r e nn et re s r et r e re s 50
7.2.5 ACTIVE SEBLE. ...ttt ettt e R e e R Rt R et R n e r s 50
7.2.6 L PAITY IN CaAll SEAIE ..ottt b et b e et b e b e bbb et et b e b et eb e b 50
7.2.7 2 Parti@SiN Call SEALE......ecueieeieeeeeeeee ettt ettt sttt et e s e e s aeseeseestesaeese et e teeteseeeaeeneeneeeennas 50
7.2.8 Routing t0 DESHINALTON(S) SEALE.......ccueiteeeterieiete ettt sttt bttt b e et b sn et sb e 51
8 Generic Call Control ServiCe PrOPEIMTIESccuciiiieeiiierese st 51
8.1 LiSt Of SEIVICE PrOPEITIESeciicie ettt sttt ettt ettt e et e s e saeesae et e enteaneeeseessaesseesseenseensenneennes 51
8.2 Service Property values for the CAMEL Service ENVIrONMENtccoccvieeieeieese e 52
9 Generic Call Control Data DEfiNITiONS.........coveieiririiesese e sre e e 53
9.1 Generic Call Control Event Notification Data DefinitioNns..........ccooveieieieneiene e 53
911 TPCAITEVENINGIME ...ttt b ettt b bbbt bbb e e st b e e e st b e et b e n e 53
912 TPCAINOLTICALIONTYPE. ...ttt bbb bt bbbt b e b et b et sb e et e 54
9.1.3 TP A EVENECTITEITA. ...ttt bbb st b bt a e b e st b e bt sb e st 54
9.14 TPCAITEVENTINTO ...ttt bbbt bt b et eb bbb 54
9.2 Generic Call Control Data DEfINITIONS..........cccoiireiiireire e e 54
9.21 L] o1 | RSSO TS S USRS OTURPTPTRRPIRON 54
9.2.2 IPCAIIRES ... bbb Rt bR e e n et 54
9.2.3 IPAPPCEIL ... R e b e Rt e et e et r e 55
9.24 IPAPPCEITRES ...ttt bbbttt 55
9.25 TPCAITAENTITIEN ...ttt bbbttt b b e r et 55
9.2.6 IPAPPCEI CONLFOIMANAGETccveieeeiete ettt ettt bt b e et s b et b e b e bt s be e et sbe e et nb e s 55
9.27 IPAPPCEAl CONLrOIMANAJEIRES ..o bbb bbb et b e 55
9.28 I PCAlICONLIOIMANAGESee ettt ettt b e et s b et ae b e it b ne e bt b et b e e b e ne et ebe st et ebe s e 55
9.29 IPCallCONLrOIMANAGEIRESovieeee bbb se et b e bt sb e 55
9.2.10 QLI o102 Y o] o] [| o TSSOSO TP PE SO RPT SRS 55
9211 TP A LA PP NTOT Y. .ttt bbb bt b et bt bbb e et b b st b et e 56
9.2.12 LI 0L 1A o7 o] g0 = USSR 56
9.2.13 LI 00 10T [=o [oo o SRR 56
9.2.14 TPCAIFAUIT ...ttt e et E bt e bbbt e Rt R bt R st e b b e r et n s 56
9.2.15 LI 0 1T 10 = oo o USSR 57
9.2.16 TPCAIREIEASECALISEceeeeeeeteete ettt s et e e e s e s te e bt et e esaesseeste e teentesstessaesaeesaeeseenseenseansennenssensnens 57
9.2.17 TPCAITREDOITveeeeeetereeet ettt b b s bt e st b e e bt b s b b e st e b e et e ae e b e b et b e bbb 57
9.2.18 TPCall AdditioNal REPOITINTO.....c.eitiietiieiies bbb bbb 58
9.2.19 TPCAIREPOIREGUESL. ...ttt ettt ettt bbbt b bbb et b e et b e 58
9.2.20 TPCall AdditioNal REPOITCIITEITAc. v ettt b b 58
9221 TPCAlREPOIREGUESESELeueceitiietirteteiest ettt b et b bbbt b e e e st b et sb e et e 58
9.2.22 I o102 1 = oTo i Y L= TSSOSO TSP PSPPSR 59
9.2.23 LI L = = USSR 59
9.2.24 TPCAIEVENTCHTErTARESUITSEL........cctieieeie e sttt ettt e e s seesraesreesseeseenseenseenaesseesseessens 59
9.2.25 TPCAIEVENTCHTEITARESUIL........ecieeiece ettt et e st et e st e e e etessaesaeesaeenseenseenseenaessenssaesnens 59
Annex A (nor mative): OMG IDL Description of Generic Call Control SCF.........cccoovvinirenienne. 60
Annex B (informative): W3C WSDL Description of Generic Call Control SCFccccoevienenne. 61
Annex C (informative): Java™ API Description of the Call Control SCFs..........cccccovvveveiieiecinne 62

ETSI

5 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex D (informative): Contents of 3GPP OSA Rel-7 Call Controlccccvceviieeveieniese e 63
Annex E (informative): Description of Call Control Sub-part 2: Generic call control SCF for
3GPP2 cdmMa2000 NEEWOIKSccuvrieriirieieieeeesiesie e 64
o =g 1= o= o1 o] OSSR 64
E.2 SPECITIC EXCEPIIONS.ueititiieiteieeeee ettt bbbttt b e bbb e e e et eb b b nn s 64
E21 (O = TH ST S 0o o TSRS 64
E.2.2 ClalISE 2: REFEIEINCES ...ttt s h bt b e a sttt se ek e s bt e h e et e b e besbe b e s neenee e eneas 64
E.2.3 Clause 3: Definitions and aDbreVialiONS...........cc.oiiriiiiireeee ettt ss e e bt eeneas 64
E.24 Clause 4: Generic Call Control Service SequeNCe DIagramsS.ccueveereeieeiieieeseeste e see e e eteeaeseesreeseees 64
E.25 Clause 5: ClassS DIiagQramS........ccveuiiieieereeieesesieseeseesaeesseesteessesseesseesteesseesseesessassseesaeesseenseanseensessssssenssenssens 64
E.2.6 Clause 6: Generic Call Control Service INterface ClassesS.........covviririeieiererer e 64
E.2.7 Clause 7: Generic Call Control Service State Transition DiagramsS.c.cceeereererieieseneee e 65
E.2.8 Clause 8: Generic Call Control ServiCe PrOPErtiES........cccoireiiirieeieere et 65
E.29 Clause 9: Generic Call Control Data DEfiNitiONS..........ccooiiieiiieieeeee e s 65
E.210 Annex A (normative): OMG IDL Description of Generic Call Control SCFccooviieinienenneneeseeeee 65
E.211 Annex B (informative): W3C WSDL Description of Generic Call Control SCF..........ccccveieininnicneneee, 65
E.212 Annex C (informative): Java™ API Description of the Call Control SCFS.........ccoveirireieneneienereeseneeee 65
Annex F (informative): RECOrd Of ChANQES......ceeieeiee et 66
Nt O [01 =g o= SRS 66
F.l11 INBW .tttk b bt E bR h e E R R R R R R R R AR R AR R AR Rt e R Rt e Rt r e 66
F.1.2 == o <o 66
F.1.3 [11101770 IO PSP PR PRT TSRO 66
e V= 0o PSP 66
F.2.1 BV .tttk et b bt ee £ e b e e AR e e £ e b e A £ A SR e e A SR eR e A e R e e A eEeRe AR eReeEeEeReee R e neeeebeneeeebeneeeeteneaeas 66
F.2.2 (DL o < or= 1= o IO TSSOSO 66
F.2.3 1Y T = o TSRS 67
F.2.4 1110V PR 67
G B = = W B L 1L Lo =SSP 67
F.3.1 INBW .tttk E bR bR h R R SRR R R R R AR R R R AR Rt e e R R e Rt r e nnas 67
F.3.2 1Y Lol [L= o ST ST PRSPV PRUPTRTPITTSTPURPON 67
F.3.3 1010V RS 67
Vo= . 0] 0= =SSP 67
F.4.1 LSRR 67
F.4.2 = = o =0 P 67
F.4.3 1Y Lol [L= o ST ST PRSPV PRUPTRTPITTSTPURPON 68
F.4.4 [11101770 IO PSP PR PRT USROS 68
ST (e = o o TSRO 68
F.51 L S PP PP P UPRPOPPPTRTN 68
F.5.2 1Yo = VTSRS 68
F.5.3 1110V PR 68
T 1 1 SRS 68
[TS 0] YRS 69

ETSI

6 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETS| Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 4, sub-part 2 of a multi-part deliverable covering Open Service Access (OSA);
Application Programming Interface (API), asidentified below. The API specification (ES 204 915) is structured in the
following parts:

Part1: "Overview";

Part 2. "Common Data Definitions";

Part 3: "Framework";

Part 4: " Call Control";
Sub-part 1: "Call Control Common Definitions’;
Sub-part 2: " Generic Call Control SCF";
Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7. "Termina Capabilities SCF";

Part 8: "Data Session Control SCF";

Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi-Media Messaging SCF"

Part 16: "Service Broker SCF".

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 6.0 set of specifications.

The present document isequivalent to 3GPP TS 29.198-4-2 V7.0.0 (Release 7).

ETSI

http://www.parlay.org/
http://www.java.sun.com/products/jain

8 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

1 Scope

The present document is part 4, sub-part 2 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Generic Call Control Service Capability Feature (SCF) aspects of the interface. All
aspects of the Generic Call Control SCF are defined here, these being:

e Sequence Diagrams.

. Class Diagrams.

o Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

o IDL Description of the interfaces.

. WSDL Description of the interfaces.

. Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 204 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 204 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 6)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 204 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 204 915-1 apply.

ETSI

9 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4 Generic Call Control Service Sequence Diagrams

4.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interface is used
instead.

first instance : (Logical : IpAppCallControlManager second instance : : IpAppCallControlMan ager : IpCallControlManag er
View::IpAppLogic) (Logic...
T T
| |
: 1: new() !

T
|
|
l
|
! 2: enableCaIINotificatiqm()
| |
| |
| |
| |
| |
| |

3: new()

4: enableCaIINotiﬁc?tion()

i

5: callEventNotify()

6: ‘forward event' ‘

7: "call Notify resul‘i: failure"

8: callEventNotify()

9: "forward event"

e [

1. Thefirst instance of the application is started on node 1. The application creates a new
I pAppCallControlManager to handle callbacks for this first instance of the logic.

2: TheenableCallNotification is associated with an applicationID. The call control manager uses the
applicationI D to decide whether thisis the same application.

3: The second instance of the application is started on node 2. The application creates a new
I pAppCall ControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is
stored as an additional callback.

5. When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g. always first try the first registered or use some kind of
round robin scheme.

6: Theeventisforwarded to the first instance of the logic.

ETSI

10 ETSI ES 204 915-4-2 V1.1.1 (2008-05)
7: When thefirst instance of the application is overloaded or unavailable thisis communicated with an exception
to the call control manager.
8: Based on this exception the call control manager will notify another instance of the application (if available).

9: Theeventisforwarded to the second instance of the logic.

4.2 Alarm Call

The following sequence diagram shows a 'reminder message, in the form of an alarm, being delivered to a customer as
aresult of atrigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

: (Logical : IpAppCall = = IpCall = : IpUICall
View::IpAppLogic) IpAppUICall | |IpCallControlManager IpAppUIManager
| | |
| |
| 1: new() |

2: createCall()

U
T
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
:
|
4:

routeReq()

5: routeRes()

-

Il

|

|

|

|

|

6: ‘forward event' }
- |
|

|

|

|

|

|

7: createUlICall()

|
| :
| |
| |
| |
| |
| |
| |
| 9: sendInfoReq()
| |
| |
| |
| |
| |
| I

11: 'forvvarj‘d ev ent' J

|
T
|

13: :release()

|
|
|
1
12: r{elease() :
T
|
|
|

1. Thismessageis used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall Control M anager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) ismet it is created.

4. This message instructs the object implementing the IpCall interface to route the call to the customer destined
to receive the "reminder message”.

ETSI

© o N o2 O

11:
12:

13:

11 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

The application requests a new Ul Call object that is associated with the call object.

Assuming all criteriaare met, a new Ul Call object is created by the service.

This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.
When the announcement ends this is reported to the call back interface.

The event is forwarded to the application logic.

The application releases the Ul Call object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendinfoReq in which case the UICall object
would have been implicitly released after the announcement was played.

The application releases the call and all associated parties.

ETSI

12 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

: (Logical . IpAppCall o : IpCall
View.:IpAppLo... IpCallControlManager
| 1: new() |

2:createCall()

H 3:new()

4:routeReq()

5: routéRes()

6: forward event' (

7:routeReq()

U | 8: routeRes()

9: forward event'

!
g

|
|
|
|
|
|
|
|
|
:
|
10: deassignCall() !
[
|
|
|
|
|
|
|
|
|
|
|

|

1: Thismessageisused to create an object implementing the IpAppCall interface.

2. This message requests the object implementing the IpCall ControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

ETSI

10:

13 ETSI ES 204 915-4-2 V1.1.1 (2008-05)
This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.
This message indicates that the A party answered the call.
This message forwards the previous message to the application logic.

This message is used to route the call to the B-party. Also in this case aresponse is requested for call answer
or failure.

This message indicates that the B-party answered the call. The call now has two parties and a speech
connection is automatically established between them.

This message is used to forward the previous message to the IpAppLogic.

Since the application is no longer interested in controlling the call, the application deassigns the call. The call
will continue in the network, but there will be no further communication between the call object and the
application.

ETSI

14 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is accepted and the call is routed to the original called party.

: (Logical : IpAppCallControlManager : IpAppCall = = : IpCall = cpUiCall
View::| Logic! IpAppUICall IpCallControlManage IpUIManager
T T

T
|
|
|
|
,D 2: enableCallNotification()

!

3: callEventNotify()

4: 'forward event'

|
|
|
|
|
|
|
|
|
|
5: new() ‘D
|
T |
| T |
| | |
| | | . |
| | | 6.createU|CaIId) | 7: new()
| | | | >
| | | |
| | | | |
7 : : 8: sendlnfoAnddoIIectReq() : : :
| | | | |
H | | | | | | /u
| ! ! 9: sendInfoAndCollectRes() ! !
| 10: forward event' | L + + + L
t t | | |
D< | | | | |
| | | | | |
| | | 11:release() | | |
]]]]]]
| | | | | | e
U | | 12:routeReq() | | | |
T T T T | |
			>m	
		13:routeRes()		
14: 'forward event' I 7 7				
u\	u			
" 15: callEnded()				
16: "forwand e vent				
D\ T <				
1 ! 17:dea§signCaII() 1 ! : :				

1: Thismessageisused by the application to create an object implementing the IpAppCall Control M anager
interface.

2. Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram
depictsacall barring service, it islikely that all new call events destined for a particular address or address
range prompted for a password before the call is allowed to progress. When anew call, that matches the event
criteria set, arrives a message (not shown) is directed to the object implementing the IpCall Control M anager.
Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3: Thismessageis used to pass the new call event to the object implementing the IpAppCall Control M anager
interface.

4. Thismessageis used to forward the previous message to the IpAppLogic.

5: Thismessageis used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the IpCall ControlManager using the return
parameter of the callEventNotify.

ETSI

10:
11
12:
13:
14:
15:

16:
17:

15 ETSI ES 204 915-4-2 V1.1.1 (2008-05)
This message is used to create a new Ul Call object. The reference to the call object is given when creating the
UlCall.
Provided all the criteria are fulfilled, anew UICall object is created.
The call barring service dialogue isinvoked.
The result of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
This message is used to forward the previous message to the IpAppLogic.
This message releases the UICall object.
Assuming the correct PIN is entered, the call is forward routed to the destination party.
This message passes the result of the call being answered to its callback object.
This message is used to forward the previous message to the IpAppLogic.

When the call is terminated in the network, the application will receive a notification. This notification will
always be received when the call isterminated by the network in anormal way, the application does not have
to reguest this event explicitly.

The event is forwarded to the application.

The application must free the call related resources in the gateway by calling deassignCall.

ETSI

16 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as aresult of a prearranged event
being received by the call control service.

: (Logical : IpAppCallControlManager : IpAppCall o : IpCall
View: :lpApplo... IpCallControlManager
T T T
| |
! 1: new() !

) i

2: enableCallNatification()

3: callEventNotify()

4: ‘forward event’

5: new()

)

6: 'translate number'

[@

7: routeReq()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
8 routhes()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

9: forward event' !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
|
10: deassignQ:‘,aII()
|
|
|
|
|
|
|
|
|
|

1: Thismessageisused by the application to create an object implementing the IpAppCall Control M anager
interface.

2. Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram
depicts a number translation service, it is likely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is
directed to the object implementing the I pCall ControlManager. Assuming that the criteriafor creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

ETSI

4.6

17 ETSI ES 204 915-4-2 V1.1.1 (2008-05)
This message is used to pass the new call event to the object implementing the | pAppCall Control M anager
interface.
This message is used to forward message 3 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of message 3.

This message invokes the number trand ation function.

The returned translated number is used in message 7 to route the call towards the destination.
This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

The application is no longer interested in controlling the call and therefore deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the
application.

Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as aresult of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. Thisisoptional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is aso the preferred method. The rest of the
sequences use that mechanism.

ETSI

18 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

: (Logical : IpAppCallControlManager . IpAppCall o . IpCall
View::IpAppLogic) IpCallControlManager
T T T
| |
| 1: new() |

2: setCallback()

3: enableCallNotification()

4: callEventNotify()

5: ‘forward event’

§ g

6: new()

1

7: setCallbackWithSessionID()
‘

8: 'translate number'

PE—

-1

9: routeReq()

|
12: deassignCall()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
1
10: routéRes()
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
11: 'fomaﬁd event'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

This message is used by the application to create an object implementing the I|pAppCall Control M anager
interface.

This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do
not have an explicit |pAppCallControlManager reference specified in the enableCallNotification.

ETSI

© © N o U

11:
12:

4.7

19 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts anumber translation service, it is likely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria set in message 3, arrives a message (not shown) is
directed to the object implementing the IpCall ControlManager. Assuming that the criteriafor creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall Control M anager
interface.

This message is used to forward message 4 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface.
This message is used to set the reference to the IpAppCall for this call.

This message invokes the number trandation function.

The returned translated number is used in message 7 to route the call towards the destination.
This message passes the result of the call being answered to its callback object.

This message is used to forward the previous message to the IpAppLogic.

The application is no longer interested in controlling the call and therefore deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the
application.

Number Translation 2

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is
automatically released.

ETSI

20 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall
View::IpApplLogic)
T T
1 1: new() 1
|
1
|
2: enableCall Notification()

ﬁ i
i :

3: callEventNotify()

4: 'forward event'

e

5: new()

U

6: 'translate number'

[Z

7: routeReq()

U \

: 9: 'fonNan‘d event' J

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
: 8: routeRes()

10: release(:)

This message is used by the application to create an object implementing the I|pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts anumber translation service, it islikely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the
object implementing the I pCallControlManager. Assuming that the criteria for creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall Control M anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message invokes the number trandation function.
The returned translated number is used to route the call towards the destination.

Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a
callback in this message, indicating the unavailability of the called party.

ETSI

21 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

9: Thismessageis used to forward the previous message to the IpAppL ogic.

10: The application takes the decision to release the call.

4.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. If the trandated number being routed to does not answer or isbusy then the cal is
automatically routed to a voice mailbox.

: (Logical : IpAppCaliControlManager il Call : IpCallControlManager :IpCall
View::l Logic

T T T

: 1:new() : :

| |

| |

|

|

2: enableCaJIINotification()

| 11

3: callEverjtNotify()

UI

4: ‘forward event'

gl

5:hew()

‘translate number'

PEN—

L
|
| I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
|

|
|
|
|
|
|
|
|
|
l
|
7 royteReq()

|
|
|
|
|
|
:
| 8: routeRes()
|

9: forward event

g

J

10:1'trans|ate number'

|
|
|
l ‘
| | T
|
< l ‘ 1
| | |
[|
! : 11: routeReq(:) |
l l U
Ll ! ! |
: : : 12: routeRes() :
| 13 'forwarp ewent' ! : |
iy ‘ ‘
| |
	J		
} 14: deassignCall() } ;			
U			/U

1: Thismessageisused by the application to create an object implementing the IpAppCall Control M anager
interface.

ETSI

N

10:

11
12:
13:
14:

22 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts anumber translation service, it is likely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the
object implementing the I pCallControlManager. Assuming that the criteriafor creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall Control M anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message invokes the number trandation function.
The returned translated number is used to route the call towards the destination.

Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a
callback, indicating the unavailability of the called party.

This message is used to forward the previous message to the IpAppLogic.

The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

This message routes the call towards the voice mailbox.
This message passes the result of the call being answered to its callback object.
This message is used to forward the previous message to the IpAppLogic.

The application is no longer interested in controlling the call and therefore deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the
application.

ETSI

23 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the call control service. Before the call isrouted to the translated number, the application requests for all
call related information to be delivered back to the application on completion of the call.

: (Logical : IpAppCall ControlIManager : IpAppCall : IpCallControlManager : IpCall
View::IpAppLogic)
T
|
I 1:new()
|

| 2:enableCallNotification()

ﬁ i

T

|

|

|

|

|

|

|

1

| ‘ J

L | 3: callEventNoify() |
l 4: ‘forward event' |
i |

5:new() %

J ‘
L |
1 1
l 6: 'translate number' :
| |
< |
|

|
8: roqteReq()

]

|

|

|

|

|

1

| |
: 7: getCaIIInqueq()
|

|

|

T

|

|

|

|

|

10: ‘forward event'

é: routeRes()

—— e

11: callEnded()
12: "fonNart‘i event”

13: getCallinfoRes()

14:forwatd event'

S S SRR m— 4

15:deas signGall()

S e S o

1: Thismessageisused by the application to create an object implementing the IpAppCall Control M anager
interface.

ETSI

10:
11:

12:

13:

14:
15:

24 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts anumber translation service, it is likely that only new call events within a certain address range will be
enabled. When anew call, that matches the event criteria, arrives a message (not shown) is directed to the
object implementing the I pCallControlManager. Assuming that the criteriafor creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

This message is used to pass the new call event to the object implementing the | pAppCall Control M anager
interface.

This message is used to forward the previous message to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of the callEventNotify.

This message invokes the number trandation function.

The application instructs the object implementing the IpCall interface to return al call related information
once the call has been released.

The returned translated number isused to route the call towards the destination.
This message passes the result of the call being answered to its callback object.
This message is used to forward the previous message to the IpAppLogic.

Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the
object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall
object.

This message is used to forward the previous message to the IpAppLogic.

The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

This message is used to forward the previous message to the IpAppLogic.

After the last information is received, the application deassigns the call. This will free the resources related to
this call in the gateway.

ETSI

25 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.10 Number Translation 5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as aresult of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

IpAppLogic . lpAppCallControlManager : IpAppCall : IpCallControlManager . IpCall
1: 'new() T ;
L |
u |
|
|
2: enableCallNotification():

)

|
|
3
f
T
|
|
|
|
I

4: forward eent'

|
U
:

1
:
3: callEvedtNotify()
|
|
|
|
|
|
|
|
|

5: new()

1

6: theck status'

P

|

|

|

| |
| |
| |
| |
| |
| |
| |
| |
| |

I } 7: appropriate re!ease cause

T |
| |
| |
| |
| |
| |
| |
| |
| |
| |

1: Thismessageisused by the application to create an object implementing the IpAppCall Control M anager
interface.

2. Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram
depicts anumber translation service, it islikely that only new call events within a certain address range will be
enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to
the object implementing the I pCall ControlManager. Assuming that the criteria for creating an object
implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown)
are used to create the call and associated call leg object.

3: Thismessageis used to pass the new call event to the object implementing the IpAppCall ControlManager
interface.

4: Thismessageis used to forward message 3 to the IpAppLogic.

5. Thismessageis used by the application to create an object implementing the IpAppCall interface. The
reference to this object is passed back to the object implementing the |pCall ControlManager using the return
parameter of message 3.

6: Thismessage invokes the status checking function.

7: Theapplication decides to release the call, and sends a rel ease cause to the calling party indicating that the user
isbusy.

ETSI

26 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timedlice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

|
24:release()

Prepaid : (Logical ‘ ‘ : IpAppCall ‘ ‘ : IpAppCallControlManager ‘ ‘ : IpAppUICall ‘ : IpCall H : IpCallControlManager . IpUIManager . IpUICall ‘
View::IpAppLogic)
| | | | | | | |
| 1ynew() | | | | | |
] | | | | |
| /U 2: enableCallNotification() | | |
]]]] | |
| | | | D | |
| | | | | | |
T | | | | | | |
| on " | 3: callEventNoti | | | |
i 4: for\}‘vard event .) . . i i
| | | | |
5: new() | | | | |
e			
	. P		
i i 6A5uper\n5e¢aIIReq() i i i i i			
		u	
. l			
i 7:routeReq() i i i i i			
		u	
! ! 8:duperviseCallRes() ! ! ! ! !			
: 9: "forward event'* ; ; : : : :			
]
: : 10:5upeM5eFaIIReq() : : : : :			
11) callR	u	
'S niseCallRes

112: "forward event'| u‘lpe 0 1 1 : : :
< | | | | |
J | | | | |
]						
	. .					
	13A5uper\/	5etaIIReq()				
T T T u						
U ! 14: superviseCallRes() !						
7		I I				
115: "forward event]						
:	: 16: creaieUICa.I() : : :					
T T T T T						
U : : 17: sendinfoReq(:) : : /U‘ :						
			18: sendlipfoRes()	/U\		

| 19: "forward event", 1 1 1

T T | | |

| | | | |

| | | | |

| | | | |

: : 20: release() : : :

| | | | |

| | | | |

| 21:superviseCallReq() | | |

t t | |

| | U | |

| | | | |

| R3: "forward event| 22:5‘;uper\n5eCaIIRes() ‘ : :

| H | |

| | |

| | |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

I A
B e

ETSI

10:
11:
12:
13:

14.
15:
16:

17
18:
19:
20:
21:
22:
23
24:

27 ETSI ES 204 915-4-2 V1.1.1 (2008-05)
This message is used by the application to create an object implementing the I|pAppCall Control M anager
interface.

This message is sent by the application to enable notifications on new call events. As this sequence diagram
depicts apre-paid service, it islikely that only new call events within a certain address range will be enabled.
When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the I pCall ControlManager. Assuming that the criteria for creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create
the call and associated call leg object.

The incoming call triggers the Pre-Paid Application (PPA).
The message is forwarded to the application.
A new object on the application side for the Generic Call object is created.

The Pre-Paid Application (PPA) reguests to supervise the call. The application will be informed after the
period indicated in the message. This period is related to the credits left on the account of the pre-paid
subscriber.

Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

At the end of each supervision period the application isinformed and a new period is started.
The message is forwarded to the application.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

At the end of each supervision period the application is informed and a new period is started.
The message is forwarded to the application.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer
expiresit will indicate that the user is almost out of credit.

When the user isalmost out of credit the application isinformed.
The message is forwarded to the application.

The application decides to play an announcement to the partiesin thiscall. A new UICall object is created and
associated with the call.

An announcement is played informing the user about the near-expiration of his credit limit.

When the announcement is completed the application is informed.

The message is forwarded to the application.

The application releases the UICall object.

The user does not terminate so the application terminates the call after the next supervision period.
The supervision period ends.

The event is forwarded to the logic.

The application terminates the call. Since the user interaction is already explicitly terminated no
userlnteractionFaultDetected is sent to the application.

ETSI

28 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

4.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

29 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Prepaid : (Logical : IpAppCallControlManager : IpAppCall : IpAppUICall :IgCaIIControIManaqerH : IpCall : IpUIManager : IpuICall
View::IpAppLogic) |

T T

| 1: new() |

2: enableCallNotification()

[

I 5: new()

1

T

|

|

|

|

|

| |

1 l

3: ca\‘IIEvenﬂ\lotify(D

] 1

| |

| |

L |
|
|

|

I 4: "forward event"
|

|

| |
6: setAdviceOfCharge(1)

U |
|
l

{ : 7:supeNseCaIIReq(:)
|
|

i
|

8:: routeReq(:)

|
[
| 1 9:supenviseCallRes()

|

|

|

| 10: "forward event" J

)
|
|
|
|
|
|
|
|
|
|

|
11: supeniseCallReq()

]
|
|
|
| .
‘ :

12: superviseCa'IRes()

J

Y Y]

13: "forwarﬂ event"
|

14: setAdviceOfCharge()
|

|

|

|

|

T I

| |

| |

1 1}5: superviseCaIIRefq() !

| |

| |

| |

| |
;
|
|
|
L

|
16: superviseCallRes()
:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17: "forward event"

18:new()

gl

|
19; createUICall() 20: new()

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L |
1 1
1 1 g
:21: sendinfoReq(1) : :
|

e

|
|
I 22:sendinfoRes() I I

23: "forward e#ent"

|
| |
24:supeniseCallRpq()
: g
| |
25: supervisecé‘allRes() 1

|
|
|
26: "forward event:

27:release()

-
u
r
!

e e S B

|

|

|

|

|

T T

| |
: Zd: userlnteractionFa‘luItDetected()

T T

[~ |

| |

| |

| |

| |

| |

| |

1: Thismessageisused by the application to create an object implementing the IpAppCall Control M anager
interface.

ETSI

10:
11:
12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

30 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

This message is sent by the application to enable notifications on new call events. Asthis sequence diagram
depicts apre-paid service, it islikely that only new call events within a certain address range will be enabled.
When anew call, that matches the event criteria, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteriafor creating an object implementing the
IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create
the call and associated call leg object.

Theincoming call triggers the Pre-Paid Application (PPA).
The message is forwarded to the application.
A new aobject on the application side for the Call object is created.

The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the
PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time
(e.g. 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!).

The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the
period indicated in the message. This period is related to the credits left on the account of the pre-paid
subscriber.

The application requests to route the call to the destination address.

At the end of each supervision period the application isinformed and a new period is started.
The message is forwarded to the application.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

At the end of each supervision period the application isinformed and a new period is started.
The message is forwarded to the application.

Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tariff switch time.
Again, at the tariff switch time, the network will send AoC information to the end-user.

The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer
expires it will indicate that the user is aimost out of credit.

When the user isalmost out of credit the application isinformed.

The message is forwarded to the application.

The application creates a new call back interface for the User interaction messages.

A new Ul Call object that will handle playing of the announcement needs to be created.
The Gateway creates anew Ul call object that will handle playing of the announcement.
With this message the announcement is played to the partiesin the call.

The user indicates that the call should continue.

The message is forwarded to the application.

The user does not terminate so the application terminates the call after the next supervision period.
The user isout of credit and the application isinformed.

The message is forwarded to the application.

With this message the application requests to release the call.

ETSI

28: Terminating the call which has still a UICall object associated will result in a userlnteractionFaultDetected.
The UICall object isterminated in the gateway and no further communication is possible between the UICall

and the application.

31

ETSI ES 204 915-4-2 V1.1.1 (2008-05)

5

interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCallControlManager interface uses the IpAppCall Control M anager, by means of

calling callback methods.

Class Diagrams

The generic call control service consists of two packages, one for the interfaces on the application side and one for

This class diagram shows the interfaces of the generic call control service package.

<<lInterface>>
IpSenice

setCallback()
setCallbackWithSessionID()

.

<<Interface>>
IpCallControlManager

createCall()
enableCallNotification()

setCallLoadControl()

getCriteria()

disableCallNotification()

changeCallNotification()

<<lInterface>>
IpCall

routeReq()
release()
deassignCall()

" |getCallinfoReq()

setCallChargePlan()
setAdviceOfCharge()
getMoreDialledDigitsReq()
supeniseCallReq()
continueProcessing()

Figure 1: Service Interfaces

ETSI

32 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

<<Interface>>
Ipinterface
N
/\
I_F
<<Interface>>
<<Interface>> Igﬁg%fi;'
IpAppCallControlManager
(from gcc9) S@routeRes()
SrouteEm()
:caIIAborted()_ 1 0..n|&getCallinfoRes()
Ca”EVentNOtlfyo ”””””””” = “‘getCalllnfOErr()
%callNotificationinterrupted() $supeniseCallRes()
%callNotificationContinued() *superviseCaIIErr()
%callOverloadEncountered() "caﬁFauItDetected()
L
#;ﬁggm:ma?fceﬁfse(;jo $getMoreDialledDigitsRes()
P SgetMoreDialledDigitsErr()
\ ScallEnded()
<<uses>> /
‘ <<uses>>
<<Interface>> <<Interface>>
IpCallControlManager . 1 0.. n | IpCall

(from gccs) (from gccs)

Figure 2: Application Interfaces

6 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) servicesin the case of a switched telephony network, or equivalent for packet based networks.

It isthe intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
Recommendations H.323, Q.763 ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and RFC 3261 Session
Initiation Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. Thisis provided by the Multi-Party Call
Control Service. Furthermore, the generic call isrestricted to two party calls, i.e. only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

ETSI

33 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

The GCCSisrepresented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement |pAppCallControlManager and |pAppCall to provide the callback
mechanism.

6.1 Interface Class IpCallControlManager
Inherits from: IpService.

Thisinterface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
thisinterface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

Thisinterface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall()
method shall be implemented, or the enableCallNatification() and disableCallNotification() methods shall be
implemented.

<<Interface>>

IpCallControlManager

createCall (appCall: in IpAppCallRef): TpCallldentifier

enableCallNotification (appCallControlManager: in IpAppCallControlManagerRef, eventCriteria: in
TpCallEventCriteria): TpAssignmentID

disableCallNotification (assignmentID: in TpAssignmentlID): void

setCallLoadControl (duration: in TpDuration, mechanism: in TpCallLoadControlMechanism, treatment: in
TpCallTreatment, addressRange: in TpAddressRange): TpAssignment|D

changeCallNotification (assignmentID: in TpAssignmentID, eventCriteria: in TpCallEventCriteria): void
getCriteria (): TpCallEventCriteriaResultSet

6.1.1 Method createCall()
This method is used to create anew call object.
Callback reference:

An IpAppCallControlManager should already have been passed to the IpCall Control M anager, otherwise the call control
will not be able to report a call Aborted() to the application. The application shall invoke setCallback() prior to
createCall() if it wishesto ensurethis.

Returns cal|Reference: Specifies the interface reference and sessionl D of the call created.
Parameters

appCall. in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

ETSI

34 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID INTERFACE_TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthe first step an
application hasto do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of aparticular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicableif the call is
setup by the application).

The enableCalINotification method is purely intended for applications to indicate their interest to be notified when
certain call eventstake place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishesto be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If anotification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteriafor overlapping with any existing request as the notify mode does not alow control on acall to be
passed over. Only one application can place an interrupt request if the criteria overlap.

If anatification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteriafor overlap. An example could be
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests
should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problemsin
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks alowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification (TS 129 198-4-1) for further details on application control over a call
or session.

Setting the callback reference:

The callback reference can be registered either in a) enableCallNotification() or b) explicitly with a separate
setCallback() method depending on how the application providesits callback reference.

Casea:

From an efficiency point of view the enableCallNotification() with explicit immediate registration (no "Null" value) of
callback reference may be the preferred method.

Caseb:

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided previoudly in a setCallback(). If no callback reference has been provided
previously to the service, the exception P_NO_CALLBACK_ADDRESS _SET shall be raised.

In case the enableCallNatification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See examplein clause 4.6.

ETSI

35 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Set additional callback:

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignment! D. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used. See examplein clause 4.1.

Returns assignment| D: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters
appCallControlManager. in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified previously viathe setCallback() method.

eventCriteria. in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network”, "answer", "no answer",

"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID
Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE, P_INVALID EVENT TYPE

6.1.3 Method disableCallNotification()
This method is used by the application to disable call notifications.
Parameters

assignmentID! in TpAssignmentID

Specifies the assignment 1D given by the generic call control manager interface when the enableCallNotification() was
called. If the assignment 1D does not correspond to one of the valid assignment 1Ds, the exception
P_INVALID_ASSIGNMENT_ID will be raised.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

Parameters

duration! in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e. until disabled by the application).

ETSI

36 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

A duration of -2 indicates the network default duration.
mechanism. in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment. in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange. in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID
Raises

TpCommonExceptions, P_INVALID ADDRESS, P UNSUPPORTED ADDRESS PLAN

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteriaintroduced with enableCallNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters
assignmentID. in TpAssignmentID

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria! in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P_INVALID CRITERIA, P_INVALID EVENT TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCalINoatification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns

TpCallEventCriteriaResultSet
Raises

TpCommonExceptions

ETSI

37 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

6.2 Interface Class IpAppCallControlManager

Inherits from: Ipinterface.

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference: in TpSessionID): void

callEventNotify (callReference: in TpCallldentifier, eventinfo: in TpCallEventinfo, assignmentID: in
TpAssignmentlD): IpAppCallRef

callNotificationInterrupted (): void

callNotificationContinued (): void

callOverloadEncountered (assignmentID: in TpAssignmentID): void
callOverloadCeased (assignmentID: in TpAssignmentID): void

abortMultipleCalls (callReferenceSet: in TpSessionIDSet): void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters
callReference. in TpSessionID

Specifies the sessionl D of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

Setting the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notificationisin INTERRUPT mode. When the
callEventNotify() method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackWithSessionl D() invocation on the supplied IpCall, or via
the return of the callEventNotify() method.

The callback reference can be registered either in a) callEventNotify() or b) explicitly with a
setCallbackWithSessionl D() method e.g. depending on how the application providesits call reference.

ETSI

38 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Casea:
From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.
Casehb:

The callEventNotify() with no callback reference ("Null" value) is used where (e.g. due to distributed application logic)
the callback referenceis provided previously in a setCallbackWithSessionl D(). If no callback reference has been
provided previoudly to the service, the exception P NO_CALLBACK_ADDRESS _SET shall be raised, and no further
application invocations related to the call shall be permitted.

In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered previously by setCallbackWithSessionID(). See examplein
clause 4.6.

Returns appCall: Specifies areference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed areference to the IpAppCall interface using a
setCallbackWithSessionl D() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionl D().

This parameter will be null if the notificationisin NOTIFY mode and in case b).
Parameters
callReference. in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification isin NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo. in TpCallEventInfo
Specifies data associated with this event.
assignmentID. in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteriaand to act accordingly.

Returns

IpAppCallRef

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).
Parameters

No Parameters were identified for this method.

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.
Parameters

No Parameters were identified for this method.

ETSI

39 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters
assignmentID. in TpAssignmentID

Specifies the assignmentI D corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters
assignmentID. in TpAssignmentID

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the address range for
within which the overload has been ceased.

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the |pAppCall ControlM anager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionlDsindicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionlDs, this shall be used to indicate that all call sessions previously active on the

I pCallControlManager interface have been aborted.

Parameters
callReferenceSet. in TpSessionIDSet

Specifies the set of sessionlDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

6.3 Interface Class IpCall

Inherits from: IpService.

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call islimited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

Thisinterface shall be implemented by a Generic Call Control SCF. Asaminimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

ETSI

40 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

<<Interface>>
IpCall

routeReq (callSessionID: in TpSessionID, responseRequested: in TpCallReportRequestSet, targetAddress:
in TpAddress, originatingAddress: in TpAddress, originalDestinationAddress: in TpAddress,
redirectingAddress: in TpAddress, applinfo: in TpCallAppiInfoSet): TpSessionID

release (callSessionID: in TpSessionID, cause: in TpCallReleaseCause): void

deassignCall (callSessionID: in TpSessionID): void

getCallinfoReq (callSessionID: in TpSessionID, callinfoRequested: in TpCallinfoType): void
setCallChargePlan (callSessionID: in TpSessionID, callChargePlan: in TpCallChargePlan): void
setAdviceOfCharge (callSessionID: in TpSessionID, aOClinfo: in TpAoClinfo, tariffSwitch: in TpDuration): void
getMoreDialledDigitsReq (callSessionID: in TpSessionID, length: in TpInt32): void

superviseCallReq (callSessionID: in TpSessionID, time: in TpDuration, treatment: in
TpCallSuperviseTreatment): void

continueProcessing (callSessionID: in TpSessionID): void

6.3.1 Method routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. ‘answer' event) and ‘failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionID: Specifies the sessionl D assigned by the gateway. Thisisthe sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in paralel, e.g. in the multi-party call
control service.

Parameters

callSessionID: in TpSessionID

Specifiesthe call session ID of the call.

responseRequested. in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

ETSI

41 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

targetAddress. in TpAddress

Specifies the destination party to which the call leg should be routed.
originatingAddress. in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress: in TpAddress

Specifiesthe original destination address of the call.
redirectingAddress: in TpAddress

Specifies the address from which the call was last redirected.
appInfo. in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID
Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN,
P_INVALID NETWORK_STATE, P_INVALID CRITERIA, P_INVALID EVENT TYPE

6.3.2 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unlessa
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

cause. in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

6.3.3 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

ETSI

42 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Parameters

callSessionID. in TpSessionID
Specifiesthe call session ID of the call.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.4 Method getCallinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters
callSessionID. in TpSessionID
Specifiesthe call session ID of the call.

callInfoRequested. in TpCallInfoType
Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.5 Method setCallChargePlan()
Set an operator specific charge plan for the call.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

callChargePlan. in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.6 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID. in TpSessionID
Specifies the call session ID of the call.
aOCInfo. in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

ETSI

43 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

tariffSwitch! in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.7 Method getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialed only afew digits. The application then gets a new call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialed digits, e.g. to perform screening.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

length! in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.8 Method superviseCallReq()

The application calls this method to supervise acall. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID. in TpSessionID

Specifies the call session ID of the call.

time: in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment. in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed itsinterest in.

In case the operation isinvoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

ETSI

44 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Parameters

callSessionID. in TpSessionID
Specifiesthe call session ID of the call.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE

6.4 Interface Class IpAppCall

Inherits from: Iplinterface.

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID: in TpSessionID, eventReport: in TpCallReport, callLegSessionID: in TpSessionID):
void

routeErr (callSessionID: in TpSessionID, errorindication: in TpCallError, callLegSessionID: in TpSessionID):
void

getCallinfoRes (callSessionID: in TpSessionID, callinfoReport: in TpCallinfoReport): void
getCallinfoErr (callSessionID: in TpSessionlD, errorindication: in TpCallError): void

superviseCallRes (callSessionID: in TpSessionID, report: in TpCallSuperviseReport, usedTime: in
TpDuration): void

superviseCallErr (callSessionID: in TpSessionlD, errorindication: in TpCallError): void
callFaultDetected (callSessionID: in TpSessionID, fault: in TpCallFault): void
getMoreDialledDigitsRes (callSessionID: in TpSessionID, digits: in TpString): void
getMoreDialledDigitsErr (callSessionID: in TpSessionID, errorindication: in TpCallError): void

callEnded (callSessionID: in TpSessionlID, report: in TpCallEndedReport): void

6.4.1 Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

Parameters
callSessionID. in TpSessionID

Specifies the call session ID of the call.

ETSI

45 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

eventReport. in TpCallReport

Specifies the result of the request to route the call to the destination party. It aso includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID. in TpSessionID

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the response with the request.

6.4.2 Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.
errorIndication. in TpCallError

Specifies the error which led to the original request failing.
callLegSessionID. in TpSessionID

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the error with the request.

6.4.3 Method getCallinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCalllnfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or aleg of the call has
been disconnected or arouting failure has been encountered.

Parameters
callSessionID. in TpSessionID
Specifiesthe call session ID of the call.

callInfoReport. in TpCallInfoReport

Specifies the call information requested.

6.4.4 Method getCalllnfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.
Parameters

callSessionID: in TpSessionID

Specifiesthe call session ID of the call.

errorIndication. in TpCallError

Specifies the error which led to the original request failing.

ETSI

46 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

6.4.5 Method superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

report. in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime! in TpDuration

Specifies the used time for the call supervision (in milliseconds).

6.4.6 Method superviseCallErr()

This asynchronous method reports a call supervision error to the application.
Parameters

callSessionID. in TpSessionID

Specifies the call session ID of the call.

errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.4.7 Method callFaultDetected()

This method indicates to the application that afault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call in which the fault has been detected.
fault. in TpCallFault

Specifies the fault that has been detected.

ETSI

a7 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

6.4.8 Method getMoreDialledDigitsRes()
This asynchronous method returns the collected digits to the application.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

digits. in TpString

Specifies the additional dialled digitsif the string length is greater than zero.

6.4.9 Method getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.
Parameters

callSessionID. in TpSessionID

Specifiesthe call session ID of the call.

errorIndication. in TpCallError

Specifies the error which led to the original request failing.

6.4.10 Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCallinfoRes) related to the call. The application is expected to deassign the call object after
having received the call Ended.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.
Parameters

callSessionID. in TpSessionID

Specifies the call sessionID.

report. in TpCallEndedReport

Specifies the reason the call is terminated.

ETSI

48 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

7 Generic Call Control Service State Transition
Diagrams
7.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

"a call object hasterminated abnomal ly" NipAppCallControlM anager.call Aborted

disableCal INotification "arrival of call related event"[notification active for thiscall event]/
.) create a Call object “lpAppCallControlManager.callEventNotif
enableCall Notification ! PAPP 9 4

createCall / create a Call object
"new’ Active W

Creation of
IpCallControlManager
by Service Instance
Lifecycle Manager

IpAccess.terminateServiceAgreement

"notifications not possible"
IpAppCall Control Manager.cal INotifi cationInterrupted y

b
L)

"notifications possible al
ApAppCallControlManager.callNotificationContinued

IpAccesstemjnateSewiceAgreement

disableCallNotification

"a call object hasterminated abnormally"
Ap App Call Control Man ager .cal IAborte d

Notification terminated ‘

A J

Figure 3: Application view on the Call Control Manager

7.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain cal related
events by calling disableCallNotification().

7.1.2 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure. Inthis
state no requests for new notifications will be accepted.

ETSI

49 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object.

In state Finshed and No Parties, a timer callR
superviseCallReq
i getCallinioreq
callFaultDetected() shall be invoked as thisisan setAdvi e Of Charge
abnormal termination. setCallChargePlan

deassi

from called party"[monitormga[&caII

mode = interrupt] “routeRes,
getCallinfoRes, superviseCallRes

release

IpAppCallControlManager.call E\TemNolwfy

continueProcessing

"connection to called party unsucce sful"[setAdviceOfCharge
4 d allRe

t hee o = |nterrupt] “routeR
routeReq[number of routing requests < 2 | routeReq[only 1 outstanding roi " to called jparty [no mgre
etCalllnfoReq outstanding outeReq operations] ~routeRes|
getMoreDialledDigitsReq[no routeReq outstandirfg /\
“routing aborted or invalid(address" ['rc " Active "requests failed"[no more outstanding
“Error in collecting digits” ~getMoreDialledDidi &y in "answer from called party” (Routing to) routeReq operations] “route Err
C:

De i natio n(s)

al S 5 pesimiony |
"party released"
"Digits collected” “getMoreDialledDigitsRes \

"“party rel eased"[no more|outstanding
" requests]
answe

2 Pariiesin

TIpAppCallControlManager.callEvent Call
Notify(Answer from call party)

lease

“call ends: calling party abafidoned" ~callEnded deassignCall

“fault detected"[Rl &t YU B MAHALRRANGER netHORKRsht | AcallFaultDetectdd

“call ends :called party disconneds"[nitorfor thisevent] *callEnded, outeRes(paty disconnect)
“call ends: calling party disggnnects’[no monitor for this event] ~callEnded

release Application
Released

"fault detected"[fault cannot be communjicated with network event] “callFaultDetected

Ne twork Rel eased

"requested inforpration ready”
~getCallinfoReg/ superviseCallRgs
"requested information ready”
~getCallinfoRes, supewiseCallRes

[no reports with g q

[no reports requested wit tCallinfoReq AND superviseCallReq |

“faultinretrieval of information" ~getCalllnfofrr, supeniseGallEm

Finished release
“fault in retrieval l Y ®
A perviéa@aut ficallFaultDetected("timeout on release”)

Figure 4: Application view on the IpCall object

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). Theinformation will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only

release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State
In this state the application has requested to release the Call object and the Gateway collects the possible call

information requested with getCalllnfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

ETSI

50 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

7.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCall ChargePlan(). The application can request for charging related information by calling
getCalllnfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). Itis
also alowed to request Advice of Charge information to be sent by calling setAdviceOf Charge().

7.2.5 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), routeReq(), release() or deassignCall() method.

7.2.6 1 Party in Call State

In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallinfoReq(). The
setCallChargePlan() and getCalllnfoReq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application isinformed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq() the application
can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to acalled party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
isended or atransition is made back to the Routing to Destinations substate. When the second party answersthe cal, a
transition will be made to the 2 Partiesin Call state.

In this state user interaction is possible.

7.2.7 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:

1. Theapplication is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state,
the application isinformed with routeRes with indication that the called party has disconnected and all
requested reports are sent to the application. The application now again has control of the call.

2. Theapplication is monitoring for this event but not in interrupt mode. In this case atransition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and
callEnded().

3. Theapplication is not monitoring for this event. In this case the application isinformed by the gateway
invoking the callEnded() operation and atransition is made to the Network Released state.

ETSI

51 ETSI ES 204 915-4-2 V1.1.1 (2008-05)
In this state user interaction is possible, depending on the underlying network.

7.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

8 Generic Call Control Service Properties

8.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES |INTEGER_SET |Indicates the static event types supported by the SCS. Static
events are the events by which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET |[Indicates the dynamic event types supported by the SCS.
Dynamic events are the events the application can request for
during the context of a call.

P_ADDRESSPLAN INTEGER_SET |Indicates the supported address plans (defined in
TpAddressPlan.) e.g. {P_ADDRESS_PLAN_E164,
P_ADDRESS_PLAN_IP}). Note that more than one address plan
may be supported.

P_UI_CALL_BASED BOOLEAN_SET |Value = TRUE: User interaction can be performed on call level
and a reference to a Call object can be used in the
IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT ALL_STAGES BOOLEAN_SET |Value = TRUE: User Interaction can be performed at any stage
during a call.

Value = FALSE: User Interaction can be performed in case there
is only one party in the call.

P_MEDIA_TYPE INTEGER_SET |Specifies the media type used by the Service. Values are defined
by data-type TpMediaType: P_AUDIO, P_VIDEO, P_DATA.

The previoustable lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description

P_NOTIFICATION_ADDRESS_RANGES [XML_ADDRESS_RANGE_SET |Indicates for which numbers notifications
may be set. More than one range may be
present. For terminating notifications they
apply to the terminating number, for
originating notifications they apply only to
the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed
to set originating and/or terminating triggers
in the ECN. Set is:
P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed
to monitor in interrupt and/or notify mode.
Setis:

P_INTERRUPT

P_NOTIFY

P_NUMBERS _TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is
allowed to change or fill for legs in an
incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,

P_CALLING _PARTY_NUMBER].

ETSI

52

ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Property Type

Description

P_CHARGEPLAN_ALLOWED INTEGER_SET

Indicates which charging is allowed in the
setCallChargePlan indicator. Allowed
values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we
assume they can be indicated with integers)
to a logical network chargeplan indicator.
When the chargeplan supports indicates
P_CHARGE_PLAN then only chargeplans in
this mapping are allowed.

8.2 Service Property values for the CAMEL Service

Environment

I mplementations of the Generic Call Control API relying on the CSE of CAMEL phase 4 shall have the Service

Properties outlined above set to the indicated values:

P_OPERATION SET = {
"IpCallControlManager.createCall",
"IpCallControlManager.enableCallNotification™",
"IpCallControlManager.disableCallNotification",
"IpCallControlManager.changeCallNotification",
"IpCallControlManager.getCriteria",
"IpCallControlManager.setCallLoadControl",
"IpCall.routeReq",

"IpCall.release",

"IpCall.deassignCall",
"IpCall.getCallInfoReq",
"IpCall.setCallChargePlan",
"IpCall.setAdviceOfCharge",
"IpCall.superviseCallReq"

}

P TRIGGERING EVENT TYPES = {

P EVENT GCCS ADDRESS COLLECTED EVENT,
P_EVENT GCCS_ADDRESS ANALYSED EVENT,
P_EVENT GCCS_CALLED PARTY BUSY,

P_EVENT GCCS_CALLED PARTY UNREACHABLE,

P EVENT GCCS NO ANSWER FROM CALLED PARTY,
P EVENT GCCS ROUTE SELECT FAILURE

}

P DYNAMIC EVENT TYPES = {

P _CALL REPORT ALERTING,
P_CALL_REPORT ANSWER,
P_CALL_REPORT BUSY,

P CALL REPORT NO ANSWER,

P CALL REPORT DISCONNECT,
P_CALL_REPORT SERVICE CODE,
P_CALL_REPORT ROUTING FAILURE,
P CALL REPORT NOT REACHABLE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164

}

P_UI_CALL_BASED = {
TRUE

}

P_UI_AT ALL STAGES = {
FALSE

}

P_MEDIA TYPE = ({
P_AUDIO

}

ETSI

53 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

9 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.
The general format of a Data Definition specification is described below:
. Data Type:
This shows the name of the data type.
. Description:
This describes the data type.
. Tabular Specification:
This specifies the data types and values of the data type.
EXAMPLE: If relevant, an example is shown to illustrate the data type.

All datatypes referenced in the present document but not defined in this clause are defined either in the common call
control data definitionsin ES 204 915-4-1 or in the common data definitions which may be found in ES 204 915-2.

9.1 Generic Call Control Event Notification Data Definitions

9.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical "'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P EVENT NAME UNDEFINED 0 Undefined.
P_EVENT_GCCS_OFFHOOK_EVENT 1 |GCCS - Offhook event

This can be used for hot-line features. In
case this event is set in the
TpCallEventCriteria, only the originating
address(es) may be specified in the criteria.
P_EVENT_GCCS_ADDRESS COLLECTED_EVENT 2 GCCS - Address information collected

The network has collected the information
from the A-party, but not yet analysed the
information. The number can still be
incomplete. Applications might set
notifications for this event when part of the
number analysis needs to be done in the
application (see also the
getMoreDialledDigitsReq method on the call
class).
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS - Address information is analysed
The dialled number is a valid and complete
number in the network.
P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS - Called party is busy.
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 |GCCS - Called party is unreachable (e.g. the
called party has a mobile telephone that is
currently switched off).
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 |GCCS - No answer from called party.
P_EVENT _GCCS_ROUTE_SELECT_ FAILURE 64 |GCCS - Failure in routing the call.
P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 |GCCS - Party answered call.

ETSI

9.1.2

TpCallNotificationType

54 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name

Value

Description

P_ORIGINATING

0 Indicates that the notification is related to the originating user in the call.

P_TERMINATING

call.

1 Indicates that the natification is related to the terminating user in the

9.1.3

TpCallEventCriteria

Definesthe Sequence of Data Elements that specify the criteriafor an event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element Name

Sequence Element Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which
the natification is requested.
OriginatingAddress TpAddressRange Defines the origination address or an address range for

which the notification is requested.

CallEventName

TpCallEventName

Name of the event(s).

CallNotificationType

TpCallNotificationType

Indicates whether it is related to the originating or the
terminating user in the call.

MonitorMode

TpCallMonitorMode

Defines the mode that the call is in following the
notification.

Monitor mode
P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a
legal value here.

9.1.4 TpCallEventinfo
Definesthe Sequence of Data Elements that specify the information returned to the application in a Call event
notification.
Sequence Element Name Sequence Element Type
DestinationAddress TpAddress
OriginatingAddress TpAddress
OriginalDestinationAddress TpAddress
RedirectingAddress TpAddress
CallAppInfo TpCallAppInfoSet
CallEventName TpCallEventName
CallNotificationType TpCallNotificationType
MonitorMode TpCallMonitorMode
9.2 Generic Call Control Data Definitions
9.2.1 IpCall

Definesthe address of an IpCall Interface.

9.2.2

IpCallRef

DefinesaReference to type IpCall.

ETSI

55 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

9.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

9.24 IpAppCallRef

DefinesaReference to type IpAppCal.

9.25 TpCallldentifier

Definesthe Sequence of Data Elements that unambiguously specify the Generic Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description
CallReference IpCallRef This element specifies the interface reference for
the call object.
CallSessionID TpSessionID This element specifies the call session 1D of the call.

9.2.6 IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

9.2.7 IpAppCallControlManagerRef

DefinesaRrReference to type IpAppCallControlManager.

9.2.8 IpCallControlManager

Definesthe address of an IpCallControlManager Interface.

9.2.9 IpCallControlManagerRef

DefinesaRrReference to type |pCallControlManager.

9.2.10 TpCallApplinfo

Definesthe Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type
TpCallAppInfoType
Tag Element Value Choice Element Type Choice Element Name

P CALL APP ALERTING MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism
P _CALL APP_NETWORK_ ACCESS TYPE TpCallNetworkAccessType CallAppNetworkAccessType
P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService
P CALL APP BEARER SERVICE TpCallBearerService CallAppBearerService
P CALL APP PARTY CATEGORY TpCallPartyCategory CallAppPartyCategory
P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress
P_CALL_APP_GENERIC_INFO TpString CallAppGenericlnfo
P _CALL APP_ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

ETSI

9.2.11 TpCallAppInfoType

56

ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined
P CALL APP ALERTING MECHANISM 1 The alerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s

unrestricted data)

P_CALL_APP PARTY_CATEGORY 5 The category of the calling party
P _CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties
P _CALL APP_GENERIC_INFO 7 Carries unspecified service-service information
P CALL APP_ADDITIONAL ADDRESS 8 Indicates an additional address

9.2.12 TpCallAppinfoSet

DefinesaNumbered Set of Data Elements of TpCallApplinfo.

9.2.13 TpCallEndedReport

Definesthe Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name

Sequence Element Type

Description

CallLegSessionID

TpSessionID

The leg that initiated the release of the call.
If the call release was not initiated by the leg, then
this value is set to -1.

Cause

TpCallReleaseCause

The cause of the call ending.

9.2.14 TpCallFault

Defines the cause of the call fault detected.

Name

Value

Description

P_CALL_FAULT_UNDEFINED

Undefined

P_CALL_TIMEOUT_ON_RELEASE

This fault occurs when the final report has
been sent to the application, but the
application did not explicitly release or
deassign the call object, within a specified
time.

The timer value is operator specific.

P_CALL_TIMEOUT ON_INTERRUPT

This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

ETSI

57 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

9.2.15 TpCallinfoReport

Definesthe Sequence of Data Elements that specify the call information requested. Information that was not
requested isinvalid.

Sequence Element Name Sequence Element Type Description
CallinfoType TpCallinfoType The type of call report.
CalllnitiationStartTime TpDateAndTime The time and date when the call, or follow-on
call, was started as a result of a routeReq.
CallConnectedToResourceTime TpDateAndTime The date and time when the call was

connected to the resource.

This data element is only valid when
information on user interaction is reported.
CallConnectedToDestinationTime TpDateAndTime The date and time when the call was
connected to the destination (i.e. when the
destination answered the call).

If the destination did not answer, the time is
set to an empty string.

This data element is invalid when information
on user interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on
call or user interaction was terminated.
Cause TpCallReleaseCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

9.2.16 TpCallReleaseCause

Definesthe Sequence of Data Elements that specify the cause of the release of acall.

Sequence Element Name Sequence Element Type
Value TpInt32
Location TpInt32
NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from I TU-T Recommendation Q.850 to aid understanding.

Equivalent Call Report Cause Value Set by Cause Value from
Application Network
P_CALL_REPORT BUSY 17 17
P_CALL_REPORT_NO_ANSWER 19 18,19, 21
P_CALL_REPORT_DISCONNECT 16 16
P_CALL_REPORT_REDIRECTED 23 23
P_CALL_REPORT_SERVICE_CODE 31 NA
P_CALL_REPORT _NOT_REACHABLE 20 20
P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

9.2.17 TpCallReport

Definesthe Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType
AdditionalReportinfo TpCallAdditionalReportinfo

ETSI

58 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

9.2.18 TpCallAdditionalReportinfo

Definesthe Tagged Choice of Data Elements that specify additional call report information for certain types
of reports.

Tag Element Type
TpCallReportType
Tag Element Value Choice Element Type Choice Element Name

P _CALL_REPORT UNDEFINED NULL Undefined
P _CALL_REPORT PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P CALL REPORT BUSY TpCallReleaseCause Busy
P _CALL_REPORT NO ANSWER NULL Undefined
P _CALL REPORT DISCONNECT TpCallReleaseCause CallDisconnect
P CALL REPORT REDIRECTED TpAddress ForwardAddress
P CALL REPORT SERVICE CODE TpCallServiceCode ServiceCode
P_CALL_REPORT ROUTING_FAILURE TpCallReleaseCause RoutingFailure
P_CALL_REPORT_QUEUED TpString QueueStatus
P CALL REPORT NOT REACHABLE TpCallReleaseCause NotReachable

9.2.19 TpCallReportRequest

Definesthe Sequence of Data Elements that specify the criteriarelating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode
CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

9.2.20 TpCallAdditionalReportCriteria

Definesthe Tagged Choice of Data Elements that specify specific criteria

Tag Element Type
TpCallReportType
Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P _CALL_ REPORT NO ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P _CALL REPORT_ SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined
P_CALL_REPORT QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

9.2.21 TpCallReportRequestSet

DefinesaNumbered Set of Data Elements of TpCallReportRequest.

ETSI

9.2.22 TpCallReportType

Defines a specific call event report type.

59 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Name Value Description

P CALL REPORT UNDEFINED 0 Undefined.

P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that
progress has been made in routing the call to the requested
call party. This message may be sent more than once, or may
not be sent at all by the gateway with respect to routing a given
call leg to a given address.

P_CALL REPORT_ ALERTING 2 Call is alerting at the call party.

P CALL REPORT ANSWER 3 Call answered at address.

P_CALL REPORT BUSY 4 Called address refused call due to busy.

P _CALL REPORT NO_ANSWER 5 No answer at called address.

P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This
does not imply that the call has ended. When the call is ended,
the callEnded method is called. This event can occur both
when the called party hangs up, or when the application
explicitly releases the leg using IpCallLeg.release() This cannot
occur when the app explicitly releases the call leg and the call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network
that the call has been redirected to a new address.

P CALL REPORT SERVICE CODE 8 Mid-call service code received.

P _CALL REPORT ROUTING FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more
than once during the routing of a call.

P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g. the phone has been

switched off or the phone is outside the coverage area of the
network.

9.2.23 TpCallTreatment

Definesthe Sequence of Data Elements that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name

Sequence Element Type

CallTreatmentType

TpCallTreatmentType

ReleaseCause

TpCallReleaseCause

AdditionalTreatmentinfo

TpCallAdditionalTreatmentinfo

9.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

9.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify arequested call event notification criteria with the associated

assignmentID.
Sequence Element Name Sequence Element Type Sequence Element Description
CallEventCriteria TpCallEventCriteria The event criteria that were specified by the

application.

AssignmentID

TpInt32

The associated assignmentID. This can be used to
disable the notification.

ETSI

60 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex A (normative):
OMG IDL Description of Generic Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (gcc_data.idl and
gcc_interfaces.idl) contained in archive es 20491504021 DL.zip which accompanies the present document.

This archive can be found in es_2049150402v010101p0.zip which accompanies the present document.

ETSI

61 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex B (informative):
W3C WSDL Description of Generic Call Control SCF

The W3C WSDL representation of thisinterface specification is contained in zip file es_2049150402WSDL..zip which
accompanies the present document.

This archive can be found in es_2049150402v010101p0.zip which accompanies the present document.

ETSI

62 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex C (informative):
Java™ API Description of the Call Control SCFs

The Java™ API realisation of thisinterface specification is produced in accordance with the Java™ Realisation rules
defined in ES 204 915-1. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a
Java™ API that represents the UML specifications. The rules support the production of both 2SE™ and J2EE™
versions of the API from the common UML specifications.

The J2SE™ representation of thisinterface specification is provided as Java™ Code, contained in archive
20491504-2J2SE .zip that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™ Code, contained in archive
20491504-2J2EE .zip that accompanies the present document.

Both these archives can be found in es_2049150402v010101p0.zip which accompanies the present document.

ETSI

63 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex D (informative):
Contents of 3GPP OSA Rel-7 Call Control

All itemsin Generic Call Control arerelevant for TS 129 198-4-2 (Release 7).

ETSI

64 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex E (informative):
Description of Call Control Sub-part 2: Generic call control
SCF for 3GPP2 cdma2000 networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53] and
[54] of ES 204 915-1, clause 2. These requirements are expressed as additions to and/or exclusions from the 3GPP
Release 7 specification. The information given hereisto be used by developersin 3GPP2 cdma2000 network
architecture to interpret the 3GPP OSA specifications.

E.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(TR 121 905) mostly in the broader sense of "3G Wireless System”. If not stated otherwise there are no additions or
exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope

There are no additions or exclusions.

E.2.2 Clause 2: References

Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

E.2.4 Clause 4: Generic Call Control Service Sequence Diagrams

There are no additions or exclusions. Nevertheless, CAMEL and CAP mappings are not applicable for cdma2000
systems.

E.2.5 Clause 5: Class Diagrams

There are no additions or exclusions.

E.2.6 Clause 6: Generic Call Control Service Interface Classes

There are no additions or exclusions.

ETSI

65 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

E.2.7 Clause 7: Generic Call Control Service State Transition
Diagrams

There are no additions or exclusions.

E.2.8 Clause 8: Generic Call Control Service Properties

There are no additions or exclusions. Nevertheless, for cdma2000 systems the CAMEL data types and service
properties are not applicable.

E.2.9 Clause 9: Generic Call Control Data Definitions

There are no additions or exclusions.

E.2.10 Annex A (normative): OMG IDL Description of Generic Call
Control SCF

There are no additions or exclusions.

E.2.11 Annex B (informative): W3C WSDL Description of Generic
Call Control SCF

There are no additions or exclusions.

E.2.12 Annex C (informative): Java™ API Description of the Call
Control SCFs

There are no additions or exclusions.

ETSI

66 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

Annex F (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New

Identifier | Comments

Interfaces added in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)

F.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)

F.1.3 Removed

Identifier | Comments

Interfaces removed in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)

F.2 Methods

F.2.1 New

Identifier | Comments

Methods added in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)

F.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)

ETSI

67 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

F.2.3 Modified
Identifier | Comments
Methods modified in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.2.4 Removed
Identifier | Comments
Methods removed in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.3 Data Definitions
F.3.1 New
Identifier | Comments
Data Definitions added in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.3.2 Modified
Identifier | Comments
Data Definitions modified in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.3.3 Removed
Identifier | Comments
Data Definitions removed in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
I
F.4 Service Properties
F.4.1 New
Identifier | Comments
Service Properties added in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.4.2 Deprecated
Identifier | Comments

Service Properties deprecated in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)

|

ETSI

68 ETSI ES 204 915-4-2 V1.1.1 (2008-05)

F.4.3 Modified
Identifier | Comments
Service Properties modified in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.4.4 Removed
Identifier | Comments
Service Properties removed in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.5 Exceptions
F.5.1 New
Identifier | Comments
Exceptions added in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.5.2 Modified
Identifier | Comments
Exceptions modified in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.5.3 Removed
Identifier | Comments
Exceptions removed in ES 204 915-4-2 version 1.1.1 (Parlay 6.0)
|
F.6 Others
None.

ETSI

69

ETSI ES 204 915-4-2 V1.1.1 (2008-05)

History

Document history
V111 February 2008 Membership Approval Procedure MV 20080425: 2008-02-26 to 2008-04-25
V111 May 2008 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Generic Call Control Service Sequence Diagrams
	4.1 Additional Callbacks
	4.2 Alarm Call
	4.3 Application Initiated Call
	4.4 Call Barring 1
	4.5 Number Translation 1
	4.6 Number Translation 1 (with callbacks)
	4.7 Number Translation 2
	4.8 Number Translation 3
	4.9 Number Translation 4
	4.10 Number Translation 5
	4.11 Prepaid
	4.12 Pre-Paid with Advice of Charge (AoC)

	5 Class Diagrams
	6 Generic Call Control Service Interface Classes
	6.1 Interface Class IpCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method enableCallNotification()
	6.1.3 Method disableCallNotification()
	6.1.4 Method setCallLoadControl()
	6.1.5 Method changeCallNotification()
	6.1.6 Method getCriteria()

	6.2 Interface Class IpAppCallControlManager
	6.2.1 Method callAborted()
	6.2.2 Method callEventNotify()
	6.2.3 Method callNotificationInterrupted()
	6.2.4 Method callNotificationContinued()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method abortMultipleCalls()

	6.3 Interface Class IpCall
	6.3.1 Method routeReq()
	6.3.2 Method release()
	6.3.3 Method deassignCall()
	6.3.4 Method getCallInfoReq()
	6.3.5 Method setCallChargePlan()
	6.3.6 Method setAdviceOfCharge()
	6.3.7 Method getMoreDialledDigitsReq()
	6.3.8 Method superviseCallReq()
	6.3.9 Method continueProcessing()

	6.4 Interface Class IpAppCall
	6.4.1 Method routeRes()
	6.4.2 Method routeErr()
	6.4.3 Method getCallInfoRes()
	6.4.4 Method getCallInfoErr()
	6.4.5 Method superviseCallRes()
	6.4.6 Method superviseCallErr()
	6.4.7 Method callFaultDetected()
	6.4.8 Method getMoreDialledDigitsRes()
	6.4.9 Method getMoreDialledDigitsErr()
	6.4.10 Method callEnded()

	7 Generic Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpCallControlManager
	7.1.1 Active State
	7.1.2 Notification terminated State

	7.2 State Transition Diagrams for IpCall
	7.2.1 Network Released State
	7.2.2 Finished State
	7.2.3 Application Released State
	7.2.4 No Parties State
	7.2.5 Active State
	7.2.6 1 Party in Call State
	7.2.7 2 Parties in Call State
	7.2.8 Routing to Destination(s) State

	8 Generic Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment

	9 Generic Call Control Data Definitions
	9.1 Generic Call Control Event Notification Data Definitions
	9.1.1 TpCallEventName
	9.1.2 TpCallNotificationType
	9.1.3 TpCallEventCriteria
	9.1.4 TpCallEventInfo

	9.2 Generic Call Control Data Definitions
	9.2.1 IpCall
	9.2.2 IpCallRef
	9.2.3 IpAppCall
	9.2.4 IpAppCallRef
	9.2.5 TpCallIdentifier
	9.2.6 IpAppCallControlManager
	9.2.7 IpAppCallControlManagerRef
	9.2.8 IpCallControlManager
	9.2.9 IpCallControlManagerRef
	9.2.10 TpCallAppInfo
	9.2.11 TpCallAppInfoType
	9.2.12 TpCallAppInfoSet
	9.2.13 TpCallEndedReport
	9.2.14 TpCallFault
	9.2.15 TpCallInfoReport
	9.2.16 TpCallReleaseCause
	9.2.17 TpCallReport
	9.2.18 TpCallAdditionalReportInfo
	9.2.19 TpCallReportRequest
	9.2.20 TpCallAdditionalReportCriteria
	9.2.21 TpCallReportRequestSet
	9.2.22 TpCallReportType
	9.2.23 TpCallTreatment
	9.2.24 TpCallEventCriteriaResultSet
	9.2.25 TpCallEventCriteriaResult

	Annex A (normative): OMG IDL Description of Generic Call Control SCF
	Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	Annex C (informative): JavaŽ API Description of the Call Control SCFs
	Annex D (informative): Contents of 3GPP OSA Rel-7 Call Control
	Annex E (informative): Description of Call Control Sub-part 2: Generic call control SCF for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: Generic Call Control Service Sequence Diagrams
	E.2.5 Clause 5: Class Diagrams
	E.2.6 Clause 6: Generic Call Control Service Interface Classes
	E.2.7 Clause 7: Generic Call Control Service State Transition Diagrams
	E.2.8 Clause 8: Generic Call Control Service Properties
	E.2.9 Clause 9: Generic Call Control Data Definitions
	E.2.10 Annex A (normative): OMG IDL Description of Generic Call Control SCF
	E.2.11 Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	E.2.12 Annex C (informative): JavaŽ API Description of the Call Control SCFs

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

