ETSIES 204 915-3 vi.1.1 (2008-05)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 3: Framework

(Parlay 6)

D

2 ETSI ES 204 915-3 V1.1.1 (2008-05)

Reference
DES/TISPAN-01032-3-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
© The Parlay Group 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™ s a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 204 915-3 V1.1.1 (2008-05)

Contents

Intellectual Property RIGNES.... ..ot b et r b e n e 13
01 Yo (o SRS 13
1 o010 RSP 14
2 REFEIBINCES ...ttt bt bttt et s Rt e Rt s bt e b e et e s e et et e st eseebeneeebe st e s e e ens 14
3 Definitions and aDbreVIBLIONS...........eieeie ettt re e s be s e e stesneeneeseeeneeneenreas 14
31 D= T 1] (o] TSP P PP USROS 14
3.2 ADDIEVIBLIONS ...ttt et e bt h e st a et e e ee e e bt e b eheeh e e ae e b e bt eh e e Rt e b e b e bt bt eneene e e re e 14
4 OVENVIEW OF the FramEWOTK.........c.coiiiiiiresee ettt sb e e e e 15
5 The Base INterface SPECITICALION. ..o 16
51 Interface SPECITiCatiON FOIMELcc.ciiie ittt b bbbt n s 16
511 E 1S = To Y O =S PRRRRN 16
512 MELNOO AESCIILIONS. ...ttt bbbt bbbt b bt s e e b e et b b et b b 17
5.1.3 L = 1= (= 0 L= o 1 0] 0] 17
514 Sz (= 1Y T L= SO SPSR 17
52 BaSE INEEITACE. ...ttt bttt e bt bbbt a e e e Rt Rt R h e e e R e bbbt neene e re e 17
521 1S g o O F= S T o] 11 o = o= PR 17
53 SEIVICE INEEITACES ...ttt b bbb et e e s e e b e bt eh e eb e s heeh e e e e b e b e sbeebeeneenee e ennes 17
531 OVEIVIBW ..ttt sttt st s ettt s e st bese e s e et e s e e st et e s e e st ek e seeseebesees e eEese e s e e beseeneebesbene et e sbe e ebenbeneesenbesensens 17
54 GENENIC SEIVICE INEEITACE ...ttt ettt ettt et et e e et e beseesbe s et ese e e e e e seesaeseeeneeneenenneas 18
54.1 INEEITACE ClASS IPSEIVICE ...ttt ettt b e bbbt b e et b e et b e bbb 18
54.1.1 MELDOO SEECAIIDACK() .. vevveveieiieriiieiee ettt sttt st st saese st e se e e besaeseetesae e esesaeneesesseseenens 18
5412 Method setCallbackWithSESSIONID ()c.veviiiiieriiieeeresieietesieie e stee et se e e esae e stesaesestesaeseesesseseesens 18
6 Framework ACCESS SESSION APo ettt st re e e seeeneeaenneas 19
6.1 SEOUENCE DIAQIAIMS......ecuiistieieete et ee s ee s e e s e e s e e tesee st e sae e seeseaseeaseeaseesteesseestesseesaeesaeesseesseenseanseenseeneessenssenssnns 19
6.1.1 Trust and Security Management SeqUENCE DIAQIaMSccvereerierierieseeseesee e seeseesseeseesesseesseesseessens 19
6.1.1.1 INTEBI ALCCESS. ...ttt b et bttt bbb e e bt bt eh e e s e e e e bese e ke s Rt eb e e ne e e e b e sbeabeeneebe e e e e es 19
6.1.1.2 Framework TEIMINGEES ACCESScoueeierterterte st eteet et see st sttt ebe st et e seess e besaesbesseeseese st esbesresbesaeenneneens 20
6.1.1.3 APPHICATON TEMINGLES ACCESS......eeeeuerteeetesteeete sttt sttt ee e sbe e et st ee st sbese st b et eaesbeseebeebesseneebe s e ees 21
6.1.14 NON-API [evel AUNENLICALION.coiiiieieeeeee ettt s see e eneeneen 22
6.1.1.5 Y o Y= BN 11 1= (o o] o R 23
6.2 ClaSS DIAOIAMS. ...ttt ettt ettt ettt b et bt e et bt b e e bt s b e e e bt e A e s e eb e e R e st e bt e e e e eb e b e ne e b e s e e neebene e st eb e s b et ebenbe e e 24
6.3 INEEITACE ClBSSES. ... vttt ettt ettt s et e e s ee e beeteeaeeseeneenseseesseebeeaeebeeaeeneeneeeeseeseesseeneeneeneaneeses 25
6.3.1 Trust and Security Management INterface ClasSeS........c.vuvieerieeie et 25
6.3.1.1 Interface Class |pClientAPILevel AUthENLICALION..........ccveii i 25
6.3.1.1.1 Method abortAUNENEICALION()eoveiee ettt e re e e enes 25
6.3.1.1.2 Method authentiCatiONSUCCEEAEU()eeieerreeeeeieeiesee e eee st sae e e e e re e e enaeeaesnneenes 26
6.3.1.1.3 VK= 10 To o 7= = o T 26
6.3.1.2 INtErface Class P I ENTACCESS.......ccveieeiesee e st eseesee st e st e s este e e eteestesseesseesseesseessesnsesseesseesseenseensenns 27
6.3.1.2.1 MEthOd tEFMINBLEACCESS() ... eueeverrereetertereerertest ettt ettt sttt sb e st b e eb b e st b e s sb s s bt ene b s e enis 27
6.3.1.3 INtErface ClasS IPINITTALcoeiiie bbb et sb e e 28
6.3.1.3.1 Method initiateAuthenticatioNWithVerSion()c.eeeeereririeneneesereee s 28
6.3.14 Interface Class IPAUNENTICAIION...........coi i bbb 29
6.3.14.1 MELNOO FEQUESIACCESS()veueeuetereeiertereeiest sttt sttt ettt ettt eb bbb e b s b s bbb se b e ens 30
6.3.1.5 Interface Class IPAPILEVE AULNENLICALTIONccoiriiiiicee e 30
6.3.15.1 Method abOrtAUNENEICALTION()eeveree ettt e reeaeenneenes 31
6.3.1.5.2 Method authentiCatiONSUCCEEAEU()eeveerreeieeiieeestee et rae e e e enaeeeesneeenes 31
6.3.1.5.3 Method selectAuthenti catioNM EChaNISIM()c.eecveeierie e e 31
6.3.1.5.4 VK= 10 To o 7= = o T 32
6.3.1.6 INEErTACE ClaSS IPACCESScveeveeteeeie ettt ee st e st e te s te st e se e saeesteesteeaeeesaeesaesseese e teensesseesneesneesseenseensennseans 33
6.3.1.6.1 Method OBtaINTNEEITACE()e.veueerereeeeeer et 33
6.3.1.6.2 Method obtainlnterfaceWithCallDaCK()erveeeriirieiriereere s 34
6.3.1.6.3 MEthO [ISHINEEITACES()veverveeetirieeet ittt bbb ens 34
6.3.1.6.4 Method sel ectSigniNGATGOITTAM()evviiiiiieere s 34

ETSI

4 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.3.1.6.5 Method tErMINALEACCESS() ... veerreetereeieesee st et et et e st e s e e teetesseeseesseesseeteesteeseessaesseenteenseensesneennns 35
6.3.1.6.6 [V T= ag ol M= T aTo BTES 1N a1 = ==) 35
6.4 State TranSitioN DIBGIAIMS.......ccveieeieiieieesee st e seerte et e see st e te e e esteestesseesseesseesseasesseesseesseeseanseensenssesseessenssens 36
6.4.1 Trust and Security Management State Transition Diagramsccceevveeeeieeieeneese e esee e saesseeneens 36
6.4.1.1 State Transition Diagrams fOr IPINITIalcc.veeveiirieeee e 36
6.4.1.2 State Transition Diagrams for IpAPILevel AuthentiCation...........ccccvveeieeve e 37
6.4.1.2.1 Lo [= (= TSP 37
6.4.1.2.2 Authenticating Framework SEALE...........cooiiiiieireeeet e 38
6.4.1.2.3 Framework AUtNENtICAIEA SEALEcoeeeeeee ettt st 38
64124 AULhentiCating ClIENT SLALE.........coeeiieietereeee e b e b e s besre e eneas 38
6.4.1.2.5 Client AUhENtiCAEEA SEALE........cce ettt se e e s eeseesbesnesreeneeneeneens 38
6.4.1.2.6 [AIE SEBEE.....ceeeeeeteeieet ettt sttt b ettt e et st ettt s b et et e s b et b e b et ebe st et ebenee e ebenteneenens 39
6.4.1.2.7 Authenticating FrameWOrK SEALE..........c.vecuveiiiiesee et ee e e 39
6.4.1.2.8 Framework AUtNENICAIEA SEALEcoeeieierete e b 39
6.4.1.2.9 AuthentiCating CHENt SEALE..........ccuieieeiecee et et e e e e e e e reeneeneeanes 40
6.4.1.2.10 Client AUthENTICAEEH SEALE.......c.ceiieeiiieree ettt e b b 40
6.4.1.3 State Transition Diagrams fOr IPACCESS......c.uiiieiieee ettt e et e e re e snaesnaesraeseeas 40
6.4.1.3.1 ot L= = R 41
7 Framework-to-ApPPliCaLION AP ... 41
7.1 SEOUENCE DIBOIAITIS . ..eueteeett sttt st sttt sttt bt ebe s e et b e se et e b e s e e st eb e s e e bt eb e s e e bt e b e s e e Rt e b e e ebe e b e s e e neebese e st eb e st et ebenbeneees 41
711 Event Notification SeqUENCE DIAQramS.couiirieirierieeniereeie ettt sttt b e et b 41
7111 ENable EVENt NOLTICATON ..ottt be e b e neen 41
7.1.2 Integrity Management SeqUENCE DIagramS.........cuciueeiereiieeieeseeseeeseeseeseeseesseeseeseesseessaesseesseensesnsssneesnns 42
7121 Load Management: Suspend/resume notification from application...........cccecvevvveenienieececce e 42
7.1.2.2 Load Management: Framework queries |0ad StatiStiCS........ccucviieieeiieeie e eee e 43
7.1.2.3 Load Management: Framework callback registration and Application load controlcccccevveneen. 44
7124 Load Management: Application reports current 10ad CONAItioN...........ccovvreirencienenecce e 45
7125 Load Management: Application queries 10ad StatiStiCS.cooviiireirererereereeee e 45
7126 Load Management: Application callback registration and load CoNtrol.............cocoveeerereeeniencencnienens 46
7127 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationc.cccveveenene 47
7128 Fault Management: Framework detects a Service faillure..........coviiiriincreeneec e 48
7.129 Fault Management: Application requests a Framework activity testcccvevrireinencnenee e 49
7.1.3 Service Agreement Management SeqUENCE DIagramMS.........ccceieiieeieereenieeieeseesreese e e see e e e sseeneesneesnes 49
7131 SEIVICE SEIECTION ...ttt bbbttt s e e b e s b s bt s bt et eh e e e e e e beseesbesbeebe e e enneneen 49
714 Service Discovery SEqQUENCE DIBOIAIMScccieiieiieeeseeseeeseeseeseestesaeseesseesseesesseessaesseeseesesnsesneesnes 51
7141 SEIVICE DISCOVEIY ..ueiieeiieeiteete ettt et te e e e et e st e s e sae e ae et e esteeaeesse e teenteensesneesaeesneenseenseenseensenneesseesrens 51
7.2 L= LSS D= =0 1 SRS 53
7.3 INEEITACE CIBSSES. ... ettt a et et e h bbbt ae e e e e e e b e e b sh e e b e e aeea e ene e e e b sheebeeneene e e enrenes 55
731 Service DiSCOVErY INErfaCe ClasSeS.... ..ottt b e e b b nnenea 55
7311 Interface Class |PSErVICEDISCOVEIY ..ottt sttt sttt et be et et sbe e 55
73111 MELhO [ISESEIVICETYPES() ...veueeeertieeieriereetert ettt ettt b et e et eb e bbb b e enis 56
73112 Method desCriDESEIVICETYPE() .. cveeeuerreeeieriiiet sttt sr bbb e 56
73113 MELhOO di SCOVEISEIVICE() ...ttt ettt b s b e ens 57
73114 Method i StSUDSCIIDEASEIVICES()vevervieeiiriiieteree et enas 58
7.3.2 Service Agreement Management INterface ClassesS.......ouveiieie et 58
7321 Interface Class |pAppServiceAgreementManagemMentccccverueeieeieseeseesee e e e seesee e e sreenseeeeens 58
73211 Method SIgNSErVIiCEAGrEEMENL() ... cc.veieeieeseeiteeteeeeseeseesteesteeteseeseesre e te e teesteesaesraesreesaeensesnnesnns 58
73212 Method terminateServiCEAGrEEMENL()cccvereereeieriesee st e e see s e e e sae e re e saeesra e te e e eaessaesneesnes 59
7322 Interface Class |pServiceAgreementManagemMeENtcccuvveereereeieeie e see e e e seeseeseesreenseeneens 60
73221 Method SIgNSErVICEAGIEEMENT() everveeererrereetert et st ettt b et n e bbb e e enes 60
73222 Method terminateServiCEAGrEEMENT() ... cvierreerrireeierierie sttt 61
7.3.2.2.3 MELhOO SEIECESEIVICE() .. .vevertereeiertereeieet ettt bbbt a e bbb bt ens 62
73224 Method initiateSigNSErviCEAGrEEMENT() ... cerveeererreeeieri ettt 62
733 Integrity Management INEErface CIaSSES..........coi ittt 62
7331 Interface Class |PAPPFAUITIMANAGETcoouieiririeiete ettt 62
73311 MELhOO ACHIVITY TESERES() ...eveueeverieeeririireetisteeet sttt ettt et b s sbe e esesaeneesesbenbenessesseneenas 63
73312 Method aPPACEIVILY TESIREG() ...veeveerreereeerieeiieeiee e et e st e e eseesee e sreesreete e e sreesraeste e seeneeeneesneennes 63
7.3.3.1.3 Method <<deprecated>> fWFaUItREPOrtINA()ccoverveeiieie e e 63
73314 Method <<deprecated>> fWFaUItRECOVENYINA()ccveieriiree e 64
7.3.3.15 Method <<deprecated>> fwUnavailablelNd()ccceeerieeiiiieie e 64
7.3.3.1.6 VK= 1o = Tox RN VA == = 64

ETSI

5 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.17 Method appUnavailablelNA()........cceiieiieiiece et 64
7.3.3.1.8 Method SVCAVAI SLEEUSINA() ...evveeeeeiee et ee e 65
7.3.3.1.9 Method generateFaultStati StiCSRECOIARES().......ccvveierierie e sieerie e e 65
7.3.3.1.10 Method generateFaultStati StiCSRECOIAETT() ..vovvveveeierierieseeriesee e se e see e et et e e seeenes 65
733111 Method generateFaultStati StiCSRECOIAREY()vverveeverrereesierie e see st e ste e e e e re e sraesreeseesnes 66
7.3.3.1.12 Method FWAVEI SEBEUSINA()vevereeneeieiieeeeree et enes 66
7332 Interface Class IPFAUITIMANAGESoiiiiiiee ettt ettt st sb e 66
73321 MethOd @CHIVITY TESEREG() ... e veueerereeeeterteeetert ettt sttt eb bbbt et sbenn s 67
73322 Method aPPACHVITY TESIRES()eveuereereeeeterieiet ettt sb bbb 67
7.3.32.3 Method sveUnavai lahl €INA()coveeeeeriieeireeet et 68
73324 Method aPPACHVITYTESIEIT() ...veveeeeiereeeetere ettt 68
7.3.3.25 Method apPAVEIT SEEEUSINA() «...veeeeeiieciese et e b e e e e teeeeenneenes 68
7.3.3.2.6 Method generateFaultStati StiCSRECOIAREM() ...vverveerrerrereesieriereesee s steesee e sre et re et sraesraeseesnes 68
7.3.3.2.7 Method generateFaultStati StiCSRECOIARES().......ccvveiirieiie ittt e e e 69
7.3.3.2.8 Method generateFaultStati StiCSRECOIAETT() ..vovvvevieieriesiereesiesee e seeesee et e e et ree e e 69
7.3.33 Interface Class IPAPPHEABEAIM QMLccveiiie e se e e sreeseenne e 70
73331 Method enabl €APPHEAMTBEAL().......ccveieeiie ettt 70
7.3.33.2 Method diSablEAPPHEBITBEAL()coverveuereireeieteriee ettt 70
7.3.3.3.3 Method ChanGEINEEIVEI()veueerereeirierieeei ettt bbbt e ens 70
7334 Interface Class IPAPPHEBIMBEAL...........cc.ciiiieiee ettt bbb e 70
7.334.1 IMEENO PUISE() +.vneeeeteeeieetere ettt b bbbt bbb st b et s b e enas 71
7.3.35 Interface Class IPHEABEAM GIML. ..ottt 71
73351 Method enablEHEAMBEAL()c.eiveeeueriiietiriiet sttt b e 71
7.3.35.2 Method diSablEHEAMBEEE().. ... cerveereerieieirieetereet ettt enas 72
7.3.35.3 VK= g Te o ol gtz 1= Fa U= AV 72
7.3.36 Interface Class IPHEAMBEALccveiieiece et et te e sreesneesreenseenneens 72
7.3.36.1 = (T To I o0 TSRS 72
7.3.37 Interface Class IPAPPLOBAMENEOEScccuveiieeierieseeseesteesteeseeseeseesreestee e etesseesseesseesaeesseesseenseensenns 73
7.33.7.1 Method 10adL evElNOLITICATON()eieeieeieecie et eee s 73
7.3.37.2 Method reSUMENOLIFICALION()eoveeerereieerire ettt 73
7.3.3.7.3 Method SuSPENANOLIfICATON() -...eveueeeerreeetirieeet st 74
73374 Method createl 0adL eVelNOLIfiCaION()coverreeereirieiirieeeere e 74
73375 Method destroyL 0adL eVelNOtifiCaiON()vevererreeeririeieirieeei et 74
7.3.3.7.6 Method qUEryAPPLOAOSIEESREG() ... c.vcuerverreerrerteietertere sttt et sb e 74
7.3.3.7.7 Method qUErYLOBASIAISRES()ecuveiveeiiesie ettt sttt et be e e e teeaeeneeenes 74
7.3.3.7.8 Method qQUErYLOBASLAESEIT()veieeeieeieeee et et et 75
7.3.38 Interface Class IPLOAOME@NAQEYcceeieiieieeeeie e see st e sreesteeteeeesseess e steesteesseesseeseesnnesseesseenseenseans 75
7.3.38.1 VK= a oo = oo {0 7= [76
7.3.38.2 Method createl 0adL eVelNOti fiCaION()ccverreeieee e e 76
7.3.3.8.3 Method destroyL oadL evelNOtifiCaHON()vvevveeeeeeeeeee et 76
73384 Method reSUMENOLIFICALION()eoveueererrieeriri ettt 77
7.3.3.85 Method SUSPENANOLIfICATON() -...eveueeeerreeeierteet et 77
7.3.3.8.6 Method QUErYL OBASIAISREG(). ...+ eveverrereeuerrereeertestee et estee ettt se e eb bbb b b e e 77
7.3.3.8.7 Method qUErYAPPLOAOSIEESRES() ...c.veuveverreeeiiriirieiirteseeesi sttt bbb 78
7.3.3.8.8 Method qUErYAPPLOAOSIEESEIT()eveveeerririeierterieiest sttt 78
7.3.39 INLEIFACE ClAsS IPOAM ..ottt et b e et b et b bbbt b e e et b e s 78
7.3.39.1 Method systemDateTimEQUENY() ..evveiueereereeieeeieeeeseeseeseesteseeseesreesreesseesseessessaessaesseesseeseesnessnns 79
7.3.3.10 Interface ClasS IPAPPOAM ..ottt e et e e s e e s te e te e tesatesstessaesseesseesseenseeneesneesseenseenseans 79
7.3.3.10.1 Method systemDateTimMEQUEIY() ..eveeiveereerieeieeeieeesteesteesesteseeseesreesseesseessesseessaesseesseessesnsesneesnes 79
734 Event Notification INtEerface ClIASsSES.........cooiiiiiriiieee ettt s nee 80
7.34.1 Interface Class IPAPPEVENINOLIFICALIONcceieeieeiecie e 80
73411 \V/T= 1 gTeTo = ool d\\ Lo (] o= o] ol I 80
73412 Method notificationTerMINAIEA()vreerireeree e 80
7342 Interface Class IPEVENINOLIFICATON ..o 81
73421 Method CreateNOLIfiCaEION()everereeeerere et 81
73422 Method destroyNOLIfiCaLTON()eoveeererrereeririire ettt 81
7.4 State TranSitionN DIBGIAIMSottt sttt b et b e bt b e s bt e b e s b et e b e s e st b e sb et ebe st et nbenbenees 82
74.1 Service Discovery State Transition DIagramSccueieeiiereeie s siee e ese e see e e sreesaeseeseesseenseenseens 82
74.1.1 State Transition Diagrams for [PServiCEDISCOVENYccviierierrieeie e see e erte e see e sre e sae e e reeneens 82
74111 ACHVE SEALE ...ttt ettt sttt st et et e st et et e s ee et e st e st et e st et et e nae e renteneereas 82
7.4.2 Service Agreement Management State Transition DIiagramsScc.eeevcee e veeseesie e ee e see e s 82
74.3 Integrity Management State Transition DIagramsS..........ceceeieererieiieeseeseeseesee e see e e e e e e ses e snes 83

ETSI

6 ETSI ES 204 915-3 V1.1.1 (2008-05)

7431 State Transition Diagrams for IPLOadManagerccuveuerierieieeie e se et esee e ae e eneees 83
74311 [AIE SEAEE.....ue ettt sttt e ettt e bt st e b e s b e et e b e e b e b et benee e benee e erenteneenens 83
74312 Notification SUSPENAEA SLALE..........cccoiveiiieieiesies et e st e e teeaesneeenes 83
7.43.1.3 ACHVE SEAEE ...ttt ettt sttt etk e s e et et e se et et e st et et esee e et e nae e renbeneenens 83
7432 State Transition Diagrams for LoadManagerinternal.............coceeveeveie e seese e 84
74321 NOIMEl OB SEALE.......eeeeeeeieeeee bbb et b et he ettt sb e b et ene e e e 84
74322 APPlICAioN OVENTOBH SEALEc.eivieeiiiteeeierteeeer ettt b et besn e ene s 84
74323 INtErNal OVENTOAH SEALE.eiveeeeiereeie ettt ettt se e e e saeseesbesaeene e e eneees 84
74324 Internal and Application OVErload SEALEcoveiriieiiieere e 84
7433 State Transition Diagrams fOr IPOAMc.ciiiiiiieree e 85
74331 ot L= = 85
7434 State Transition Diagrams for [PFaUtManagerc.ocverieeeiece e 85
74341 FrameWOrK ACHIVE SEBLE..........cooueeiierieeterie ettt sb et e et e b saeene e e e s 85
74.34.2 Framework FaUILY SEALE...........ccieierie e seese et e ettt sre e et esae e beente e teeneeenneeneeenes 86
7.4.34.3 Framework ACHIVITY TESE SEALE.......ciee ettt e sttt e te e aeenneenes 86
74344 SEPVICE ACHIVITY TESE SEALEviueetiiviieeirieie sttt ettt st ne et st e e ene 86
744 Event Notification State Transition DIAgramS...........ccceeieereiieeieeseeseeseeeeeseeseesteee e sseessee e esesnessneesnes 86
7441 State Transition Diagrams for IPEVENtNOLIfiCaLIONcccoiriiriiiirieee s 86
8 Framework-to-Enterprise OPerator APl 86
8.1 SEOUENCE DIBOIAITIS . ..eueteeett sttt st sttt sttt bt ebe s e et b e se et e b e s e e st eb e s e e bt eb e s e e bt e b e s e e Rt e b e e ebe e b e s e e neebese e st eb e st et ebenbeneees 91
811 Event Notification SeqUENCE DIAQramS.couiirieirierieeniereeie ettt sttt b e et b 91
8.1.2 Service SubsCription SEqUENCE DIAQIAIMIS.......ccvciuieieeierieeeee e see e ste s e e e steesesseesreesse e seeteeneesneesnes 91
8121 Service Discovery and SUDSCIiPtion SCENAMO.........ccuveuieiesieeee et se e sre e esraesreesnees 91
8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram................. 93
8.2 L= LSS D= =0 1 SRS 95
8.3 INEEITACE CIBSSES. ... vttt bbbt et e b bbbt e b e e e e b e e b she e b e e aeeh e ene e e e besheebeeneenee e enrees 96
831 Event Notification INterface ClassesS.......oouii ittt st e e e e 96
8311 Interface Class |pClIeNtEVENENOLIfiCaLIONccoiiieiieeesee e 96
83111 Method repOrtNOLIfiCaEION() ...vcverveeeeerrire ettt 97
83112 Method notificationTerMINAIEA()ereerireeree e 97
8312 Interface Class IPEVENINOLIFICATON ..ot 97
83121 Method CreateNOLIfiCaEION()everereeeerere et 98
8.3.1.2.2 VY= 1gTeTo o e o)V o 1N o= i o] ol S 98
8.3.2 Service SUDSCription INErfaCe ClasSES.......ccceiiii et teeee e 98
8321 Interface Class |pClientAPPM @NAJEMENLcccueiieiieieeseeseesteeteeee e e see e e e e sseseessnesseesseenseeseans 98
83211 YNz g e le Mo g (= @ 1T =T AN o] o (S 99
8.3.21.2 VK= oo g oo 1 YL@ I 012 o] o] 99
8.3.2.1.3 Method del €teCTTENEADPP() .+ vereerereeerterieiererieee ettt sttt st see et see e besee st ebeseeseebeseeneesesbeneenens 100
83214 MELNOO CrEAIESAG() ...veneevereeeetertereete ettt sttt ettt b et b e bbbt b et ebesb e e b e sb et eb e s be e ebesee e ebesbenneneas 100
83215 MELOA MOGITYSAG() ..eveveeetereereeieriereet sttt st b e e b e et b e et eb e e e e b e b neeneas 100
8.3.2.1.6 VL= dgToTo o L= = (=T AN] SRS 100
83217 Method a0dSAGMEMDENS()eoveeeieriiriet ittt b e et b e e eb e e besre e eneas 101
83218 Method remoVESA GMEMDEIS()c.eivirieeiriirieesie ettt bbb e sbe e ene s 101
8.3.2.1.9 Method requESICONTIICHINFO()vveveeieiie e et nneas 101
8.3.2.2 Interface Class |pClientAPPINFOQUETYeeiiee ettt ena e snees 102
83221 Method desCriDECIIENLAPD() -vverveerrreeereerieeieereereeeeeeeeseeste e e e e stessaesseesreesseesseenseensesseesseesseesses 103
8.3.22.2 IV T= oo RS (@ T o] o) USRS 103
8.3.2.2.3 MELNOO AESCIIDESAG()vveeetertereeierie ettt sttt sttt st se et st e e besbe e ebesbeste e ebesbeneeneas 103
83224 IMELNOO [ISESAGS() .. eveveneetereeneete sttt sttt st sttt sttt st besbeseebe st e seebesbe st ebesae e ebeebesaeneesesteneenens 104
83225 MEthOd [ISESAGMEIMDEIS()eevereeeeterieiete ettt st b e e b et b e e se b e e e ebesrenneneas 104
8.3.2.2.6 Method listClientAPPMEMBErSNIP() ...veverrereeiirieeeieree et ene s 104
8323 Interface Class |pServiceProfileManagemMeNtc.eoeerireiriieree e 104
83231 Method createServiCePIOfiIE() ... oo e 105
8.3.23.2 Method ModifyServiCePrOfilE()oui e 105
8.3.23.3 Method del eteServiCePrOfilE()o 106
8.3.234 IMEENOO @SSIGN() 1+ vveveeererie st sttt sttt st se st se e st st e s eese et e st eseebeseeseebesaeneebeseeneebenbeneenens 106
8.3.2.35 V= 10 o o (=T o | USSR 106
8.3.2.3.6 Method requESICONTIICHINTO()vveveeieiee ettt sreas 107
8.3.24 Interface Class |pServiceProfil el NFOQUETYoouvv i 107
8.3.24.1 Method [IStSErVICEPIOfIIES()eueeeerieieie ettt sttt st seeneas 108
8.3.24.2 Method describDESErVICEPIOIIE()coveieeiee ettt esneas 108

ETSI

7 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.24.3 Method lIStASSINEAM EMDEIS()ecveeieee e sr e et eenaeeraesreenneas 108
8.3.25 Interface Class |pServiceContraCtManagemENtccvereerieeriesieeseesee e ssie e see e esreeeesseesreesseeseens 109
8.3.25.1 Method Create€ServiCECONLIACE()eieerreereeeeeeesteeste e e ee e e e te e rae et e e e sreesre e teenbeentesraesreenneas 109
8.3.25.2 Method modifyServiCECONIACE()veirveieeieereese et se e e e e s sr et e eenaesraesreenneas 110
8.3.25.3 Method del eteServiCECONLIACI()eivereeieeeeeee st es e ee et e e st e re e et esraesreenneas 110
8.3.2.6 Interface Class |pServiceContraCtiNfOQUENYocviiiiiiericece et 110
8.326.1 Method describDESErViCECONLIACI() ... e e rvererrereererterieierte sttt sb e sreneene s 110
8.3.26.2 Method liStServiCECONLIACIS()veverveuerreriereriereei ettt ettt b et se et b e st sb e e ebesneneeneas 111
8.3.2.6.3 Method [iStServiCePrOfilES()coeieirereee bbb 111
8.3.27 Interface Class | pPENtOPACCOUNIMANAGJEIMENEccveueriirieeriiieisiesie et sb e 111
83271 Method MOdifYENTOPACCOUNT()....c.eivieerirterieieriereeteste sttt b e b e e r e e ebe b b e neenens 112
8.3.2.7.2 Method del eteENTOPACCOUNT()....e.veeieieeieecee st este et ee s e te e s sre e sreesreeee e e eneesraesreenneas 112
8.3.2.8 Interface Class |pENtOPACCOUNtINFOQUENYc.veeieeiieie ettt sttt 112
8.3.28.1 Method descriDEENTOPACCOUNT() ...ecvveiveeieeieerie e eee et ee s e te e s sre et e ee e snaesnaesreenneas 113
84 State TranSitioN DIBGIAIMIS.cceiieiieieesee st esteete et e st et e e stesseesreesreesseeaesseesseesseenseanseassenseessenssensseeseenenanes 113
84.1 Event Notification State Transition DIgramS.........ccccvecueieereereeieeeeseeseestese e sreeseeseesseeseesseenseensenns 113
8.4.2 Service Subscription State Transition DiagramiS.........cc.veueeeereerieesieeiesieeseeseesee e eeesseesree e eseeraesseesses 113
9 Framework-10-SErVICE APo e st s ae et sne e e sneeeeneeenes 114
9.1 SEOUENCE DIBOIAITISc.ecueetiteieiterteie ettt sttt ettt et h e st b e s e st b e b b e R ae s bt b et e bt b et e bt e b e b e st e b et et ebenbe e 114
911 Service DiSCOVErY SEQUENCE DIBgIaIMScc.coiiiriiieie ettt sttt sttt sttt st sb e et sbe e 114
912 Service Registration SeqUENCE DIBOIaAIMSccuiiererieeeiesiee ettt sttt be e eb e e b 114
9121 New SCF SUD TYPE REQISITALIONceeieeiei e ceeeesee et a e e s e sre e te e snaesn e snneeneennes 114
9.1.2.2 LY S O (<o =i = 1 o) o P 114
9.1.3 Service Instance Lifecycle Manager Sequence DiagramsScceeeie e ieerieeiessseeseeseeesseeee e sseesseesens 116
9131 SIgN SEIVICE AQIEEIMIENLceiuietieieeieeie et e s e e s e e steseeseeseeesseeteenseessessaesseesseenseensesneesneesneesseenseensenns 116
914 Integrity Management SequENCE DIiagramS........cvuueiueieereeieereesieeseeseeseeeesseessaesreesseeseesessseesseensesnsenns 117
9141 Load Management: Service callback registration and [0ad control............c.ccoeerireiiennienenncnee 117
9142 Load Management: Framework callback registration and service load controlccccceveveenienne 118
9143 Load Management: Client and Service Load BalanCingccoereeneririineninenenesieseesie e 120
9144 Heartbeat Management: Start/perform/end heartbeat supervision of the service.........ccccooeeeveieeee 121
9.145 Fault Management: Service requests Framework activity teSt.........occovirerreneineeeeee e 121
9.146 Fault Management: Service requests Application actiVity testcccvireirineineneieees e 122
9.1.4.7 Fault Management: Application requests Service activity teStccoccvveeveevicce e 123
9.1.4.8 Fault Management: Application detects service isunavailable............ccoeovecieceienieccecce e 124
9.15 Event Notification SeqUENCE DIaQraMS.........ccuveiieiieieerieseeieeseesee e ete e esea e et eeteesaesaesseesteesaeenseensenns 124
9.2 (O =SS D= =0 1 125
9.3 INEEITACE CIBSSES. ... ettt ettt bbbt h et b et e e Rt e bt e bt eb e e st eme e e e b e beshe e b e e neenne e entes 127
931 Service Registration INtErface ClaSSES........civi i eies ettt et esnaeenaesraesneas 127
9311 Interface Class |pFWSErViCEREGISIIAIONc.coviiiiriiiecree e 127
93111 MELhO FEQISIErSEIVICE() ...veiveueetereeeet ettt ettt b e et b e et b e st eb e e e e b b neeneas 127
93112 Method announceServiCeAVa labDiliTy ()cooeirereirieeeee e 128
93113 Method UNFegiStErSEIVICE()eeverreeerereeiete sttt ettt se e b et b e e eb e e e b b neeneas 129
93114 MethOd dESCrIDESEIVICE() ... veueerereeeeterieiet sttt ettt st st se e b b seeneas 129
9.3.1.15 Method UNANNOUNCESENVICE()eeuvereiesieeieesiee st esteeteetesseesteesee e e steesaeeaesseesseasseenseenseensensansseessens 130
9.3.1.16 Method regiSterSErViCESUDTYPE() . .. veieeieereerieriieeeetesees e e e e e etessae e e sreesseenseeneesseesseensaesseennens 130
9.3.2 Service Instance Lifecycle Manager Interface Classes........cevveieieeiieiiee ettt 131
9321 Interface Class |pServicelnstanceLifeCyCleManagerccveveveeiieseese et 131
93211 Method Create€ServiCEMANAGEN()coeerueieeieeiiereerteeteeee s e s e e e stesaeseesreesreesseeseenseeneessaesseesnens 131
93212 Method destroyServiCEMaNagEr()ccvereereereeiee e st eseese e e e e e te e seesreesreesseeteeneeeneessaesseennens 132
9.33 Service DIiSCOVErY INErfaCe ClasSES.......ccoi ittt ettt 132
9331 Interface Class |PFWSEIVICEDISCOVETYc.ciirieiriirieiriirie sttt b e e 132
93311 MELhO [ISESEIVICETYPES() ...veueeverteeeterieriet sttt sttt b ettt st b e e b et b e st eb e e e b b neeneas 133
93312 Method desCriDESEIVICETYPE() . ..eveeerereeirieriee ettt ettt sttt et st be et besreneeneas 133
9.3.3.13 MELhOO di SCOVEISEIVICE() ... veueererteeetereee ettt ettt bt bbb e b e b b neeneas 134
93314 Method i StREQISLEr@ASEIVICES(). .. c.vevereeeererieieterieeet sttt st st ebesreneene s 134
9.34 Integrity Management INtErface ClaSSES........cciviiiiiriieiic ettt ae e sreesneenreenneens 135
9.34.1 Interface Class IPFWFaUITIMBNAGESccveiiiieiee e ese et teete e s esreesneeteeneesneeenaessaesreas 135
9.34.1.1 MELhOd ACHIVITY TESEREG() .. ervereerereererrerieietesieeereseeeete st steseeresbesee e sbeseesesbeseesesbeseesesbeseeneesesbeneenens 135
9.34.1.2 Method SVCACHVITY TESIRES() ..veveeerieieeieie sttt st st st sbeseeneas 136
9.34.1.3 Method appUnavailablelN()ceeieiieiie et 136
9.34.1.4 Method SVCACHVITY TESIEIT()..ecuveeeeeeeseeseesee st esee e et e st e e e e e te e e e sreesneenseeneeensesnaensaesseenneas 136

ETSI

9.34.15
9.34.16
9.34.17
9.34.18
9.34.2
93421
9.34.22
9.34.23
93424
9.34.25
9.34.2.6
9.34.2.7
9.34.2.8
9.34.29
9.3.4.2.10
934211
9.34.2.12
9343
93431
9.34.3.2
9.34.33
9344
93441
9.345
9.345.1
9.345.2
9.345.3
9.34.6
9.346.1
9.34.7
934.7.1
9.34.7.2
9.34.7.3
93474
9.34.7.5
9.34.7.6
9.34.7.7
9.34.7.8
9.3438
9.348.1
0.3.4.8.2
9.3.4.8.3
93484
9.3.4.85
9.3.4.8.6
9.34.8.7
9.3.4.8.8
9.349
9.349.1
9.3.4.10
9.34.10.1
9.35
9351
93511
9.35.1.2
9.35.2
9.35.21
9.3.5.2.2
9.4
94.1
9411
94111

8 ETSI ES 204 915-3 V1.1.1 (2008-05)

Method SVCAVEI SEAEUSINA() ...eevveeeieeie e ettt sne e snaesraenneas 136
Method generateFaultStati StiCSRECOIAREG() -...vverveereerrriesieseesee e see e e sreesre e e e sreeeeeneees 137
Method generateFaultStati StiCSRECOIARES().......ccverieeriirierie e e e e e sre e re e reeneeas 137
Method generateFaultStati StiCSRECOIAEIT() ...ocvveireerieeiieiesies e re e e st e e ee e 137
Interface Class IPSVCFAUITM@ANAGETcieeiieiieeeiceesees e e ete st te e ae e e e saeesaeeaesneesnaessaesneas 138
MELhOO CHIVITY TESERES() ..veveueererteeererieieie st sttt sttt sttt st se et seeseebeseesesbeseeneesesbeseenens 138
Method SVCACEVITY TESIREG() «vveeeverrereeieite sttt st b e 139
Method <<deprecated>> fWFaUItREPOITINA()evervireeiriereeere e 139
Method <<deprecated>> fWFaUItRECOVEIYINA()coververerireeriereese e 139
Method <<deprecated>> fwUnavai lablelNA()c.cooererererinireeeeee e 139
Method sveUnavailabl €INA()coveeevereeieiieeerer e s b e 140
MethOd GCHIVITYTESIEIT() ...vveeveeieeeeie ettt et eete s e e sneesneeenaeenaesnaenneas 140
Method aPPAVEITSEELUSINA() ..evveeereeeieieesie st sae e e sseeeneesnaesraenneas 140
Method generateFaultStati StiCSRECOIARES().......ecverieeriirierie e steeree e sre e e e e neees 140
Method generateFaultStati StiCSRECOIAEIT() ...ocvvevveerieeieeiesies e e see e et re e e neeas 141
Method generateFaultStati StiCSRECOIAREG() - vverveereerrrierieseeseestesee e e e sreesre e e e sreeneeeeeeneees 141
Method FWAVEI SEBEUSINA()eevereeieeterieieieree ettt sttt besreseeneas 142
Interface Class |PFWHEATBEAIMOIML. ..ot 142
Method enablEHEAMBEAL()everveeererieiete sttt ettt st b e e ebesreneene s 142
Method diSablEHEAMBEAE().......cverveuerrereeiete et st 142
Method ChaNGEINEEIVEI()eveverrereeierie ettt st b e s b e b b neeneas 143
Interface Class IPFWHERIMTBEAL ..o bbb 143
IMEENOO PUISE() .ttt b e et b e et b e et b e sa et ebesb e e ebesbenneneas 143
Interface Class IpSVCHEABEAIM QMLcoiieie ettt 143
Method enabl€SVCHEABEAL()eecveveeiie et ese et sr e et naeeraesreenneas 144
Method diSablESVCHEAMBEAL().......cveververeeririerieiirie ettt sttt sttt be st seeneas 144
Method ChanQEINLEIVEI()ccveeieeie et et sre e sreesreeteeneeenaesnaesraesneas 144
Interface Class IPSVCHEAMBEALcceeiiee ettt sneas 145
=1 0o 0T USSR 145
Interface Class |PFWLOAOMBNAGEScoviiriiirierieeeereee et b e b n e 145
TS (aleTo = oo {0 T="o [ST U O SP TP PTURTPUSURPRRUN 146
Method createl 0adL eVelNOtIfiCaION()coereererrerieiirieeeter e 146
Method destroyL 0adL eVel NOtifiCatiON()veeerereeerririeieie et 147
Method SUSPENANOLIFICATON()e.veueerereeieterieeet ettt b e s seene s 147
Method reSUMENOLITICALTON() ..o.vveveeieiee et re e sraesraenneas 147
Method quEryLoadStatSREG() ... veveeeereerieieerit et ete ettt e enraesraenneas 147
Method qUErYSVCLOBOSIAISRES()uveiueeieeieerieestiete e eee st e e e e sae s ae e e s e se e teenreeneesnaesreenneas 148
Method qUErYSVCLOAOSIAISEIT() .. .eeveieeieeieeseesieeieeteeee st e e e e e sae e ae e e sreesre e teenseentesnaesreenneas 148
Interface Class IPSVCLOAOM@NAGETcccveiieiee ettt ete e e st te e e e e saeesteeteeneesnaessaesneas 148
Method 10adL evElNOLITICAION() ... cccveieeiee et rae e esneas 149
Method SuSPENANOLIFICATON()veueerereeiererieete et b e b i 149
Method resumMENOLIFiCELION()veiveueerereeeereriee et eb e e ene s 149
Method createl 0adL eVelNOtIfiCaION()coereererriieririee e 150
Method destroyL 0adL eVel NOtifiCatiON()vevererreerririeeee et 150
Method qUErYSVCL 0A0SEEESREG() ... cveveueerereeneererieietestese et sttt sb e be bt sb e e b e sneneeneas 150
Method QUENYL OBOSIAISRES()eveuerrereeierrerieiesie sttt sttt ettt sb e e ebesnesneneas 150
Method qQUErYLOBASIAESEIT()veeveeieiee ettt esraesraenneas 151
INterface ClasS IPFWOAMoociiieeeee ettt e st e st e b e e testesneesaeesseenseenseeneeeneesseesrens 151
Method systemMDateTimEQUENY() ..eeuvereeieeieereeerireteeteseeseeseeseesteeseeseesseesseesseesseesseessesssessessses 151
INterface ClasS IPSVCOAM ...ttt e st e b e e s ste s e e saeesaeeseeneeensesneessaesneas 152
Method systemMDateTimMEQUENY() ..eevveireeieeieereerireteeeeseeseesee e estesaeseesreesseesseensesssesssessasssesssees 152
Event Notification INterface ClIasseS..........ooi i e 152
Interface Class |PFWEVENINOLIiCALION..........cciirieiriieree e 152
Method CreateNOLIfiCaEION()o.virereeere e et b e 153
Method destroyNOLIfiCaLTON() ... veeerereeieririeietesie ettt et b e seeneas 153
Interface Class |PSVCEVENENOLIfICALIONccouiieiiieee e 153
Method repOrtNOLIfi CaEION() ...eeverreeeeereeieteriereet ettt b et b e b e 154
Method notificatioNTerMINALEO()cvvevereeieereereerte e et sre et sreesreensaesreenneas 154
State TranSitioN DIBGIAIMS........ccvicieie e see st esteete st este et e stesseesteesteesseeeesseesseesseenseanseanseaseessensseesseeseansennes 154
Service Registration State Transition DIagramsS.........ccecueveerieenieesiesiesieeseeseesee s seesseesseesesseessessseessees 155
State Transition Diagrams for |pFwWServiCeRegiISIration.ccveveeieecese e 155
S O (= o 1S == 0 [(= T 155

ETSI

9 ETSI ES 204 915-3 V1.1.1 (2008-05)

94112 SCF ANNOUNCED SEBEE. ... eeueeueeeeie sttt ettt sttt b et se et be bt sbe st e se e e et e saeene e e e e nes 155
94.2 Service Instance Lifecycle Manager State Transition Diagrams........cccvecvveeeeeeneeseciese e s 155
94.3 Service Discovery State Transition DIiagramS.........ccveueieeieeieeie e ses e s e se e ete e see e sreesreseeseesnes 155
944 Integrity Management State Transition DIiagramsS........c.cceceeeieieeeiieeneeseeeseeseeseeseesesesseesreesaeenseeseens 156
9441 State Transition Diagrams for IpFWLOaOdMaNagerccvevieienieneesiecie e se e ene e 156
9.4.41.1 [AIE SEBEE.....cee ettt st sttt sttt sttt st et be st b et ne e be ettt e bt ne et e 156
94412 Notification SUSPENTEA SEALE............coviiriiiierieee et eb e e b e ene s 156
94413 F o L= (= RS 156
9442 State Transition Diagrams for IpFWFaUItManagercccoveiiireineceeereee e 157
94421 FrameWOrK ACHIVE SELE..........ceeereieie ettt et e e e e e e stesbesaesresneeneeneeneas 157
94422 Framework ACHVILY TESE SEALE........cciieireirieeete ettt et s sre i 157
9.4.4.2.3 ApPPlication ACHIVILY TESE SEALEeecieeiee et re e saeenreenreens 157
9.4.4.2.4 Framework FaUILY SEBLE.........c.cceeiieieiieieesee st et ete et e e e et eesreesaeeae e e e sneeeneesnaesraennens 157
945 Event Notification State Transition DIagramS.........cccccevceeieereereeieeieseeseesesee e sreesreessessessessseessesnsenns 157
10 SEIVICE PIOPEITIES.ottt sttt e e st s ae et e s teeaa e besae et e sreeneeseesaeeneesreanes 158
10.1 SErVICE SUPEN AN SUD TYPES ... ettt ettt b et b bbbtk e st b bt b e bt 158
10.2 SEIVICE PIOPEITY TYIIES ...etiueetiitieeterte ettt ettt e et bbbt b bbb et e bt b e e Rt b et e bt e b e b e st e b et et eb e b 158
10.3 GENEral SEIVICE PrOPEITIESttt bbbt b bbbt b b s e bt et b e b 160
10.31 S YKo N\ =T T PR 161
10.3.2 S Yo Y= £ T o] o PPN 161
10.3.3 S Yo I ST RRSN 161
10.34 TS VLo 1= o] o1 o 161
10.35 PIOGUCE INBITIE ...ttt bbbttt bt a e e h e b et e e e sE e b e se e e bt e aeene e e e abeebeeaeene e e et e 161
10.3.6 [0 To (BTo Y= = Yo o TP TP USSP 161
10.3.7 Yoo TR 162
10.3.8 (001 10 1S 162
10.3.9 COMPELIDIE SENVICE. ...ttt bbbt b e bbbt bt et b e bbb 162
10.3.10 Backward Compatibility LEVEL ..o e 162
10.3.11 MiIQration REQUITEA.cuiitiieiiriiriei ettt bbbttt b bbb ettt b b 163
10.3.12 DAAMIGIALEAeeeeeiteeeet bbb bbb h bbb bbbt b b e b 163
10.3.13 Migration Date AN TIIME.....cueiiirieieierieiet ettt e et b et b bbb bt b ne e 164
10.3.14 Support for Regular EXpressionsin AddresS RANGE........cccce it 164
3 D 7= = o (= Lo SRS 164
111 Common Framework Data DefiNitiONScooiiiiiiieeee ettt s sb e nen 165
1111 QLI 1O 172 o] o 5 TSRS 165
11.1.2 TP I ENEAPPIDLISE ...ttt e bbbt b e et b e bbb e e e st bt e e bt e e ens 165
11.1.3 TPDOMAINID ...ttt b bbbt b bbb bt h et bR e s e bbbt s ne bbbt e e enn 165
1114 TPDOMAI NI D TYPE. ...ttt ettt ettt e et b e et b e s et b e s e st b seehe bt se e st b e se e st ebesb e e eb e sbe e enenbennene s 165
1115 QLI o= 21 o 1 5 SRS 165
1116 TPPIOPEITYNGIME. ... e s e s s n e 165
11.1.7 TPPTOPEITYV BIUB.......cviiicteeeet ettt h et b et b bbbt b bt e e bt bt et b b ne bt ne e s ens 165
11.1.8 I 0] (0] 0= 1 Y PRSP 166
11.1.9 QI o 0 0 T= 1 Y = S 166
11.1.10 LI 0= 1100 o1 B T TSRS 166
11.1.11 LI o1 1 SRR 166
11.1.12 LI 015 = Yot TSRO 166
11.1.13 QLI 015 = Yot R TSR 166
11.1.14 TPSENVICEDESCITION ...ttt ettt ettt b et b et b e bbbt b e e e e bt e e b e e e st bt e e bt ne e ens 166
11.1.15 TPSEIVICEID ...ttt bbbt et b e et h A e bt A e e Rt e e bt bt s n b e b e nn 166
11.1.16 TPSENVICEIDLISE ...ttt b bt b bbb h bt e s bt b e bbb et bt st e e bt nn e e ens 166
11.1.17 TPSENVICEINSLANCEIDoeiiiitieeiieteree et bbb bbbt e e bbbt s e st bt e e b b e e ens 167
11.1.18 TPSENVICETYPEPIOPEITY ...ttt ettt e bbbt b bt b e s st b et ne bt nn s 167
11.1.19 T PSErViCETYPEPIOPEITY LIS ...ttt st se et e et et e st et e e be e e estessaesreesneesneenseenseensenns 167
11.1.20 TPSErViCETYPEPIOPEITYMOUE.oceeeeeectees ettt sttt e e s e saeesreesreesseenseeseesneenneenseensenns 167
11.1.21 TPSErViCePrOPErtY TYPENGITIE.ecvieeieeeie e stee sttt e st ee et e et e s e et e e e estesstesseesseesaeesseenseeseesseenseenseensenns 167
11.1.22 T PSErViCEPTOPEITYINGIME. ... eeeee ettt ete st e st e et e s e s e s e e s te e te e tees e estessaesseesreesseenseeseesseesneenseenseensenns 167
11.1.23 TPSErViCeProPErtYNAMELISL......ccviciieeiieecees et et e st et e e et e e tesneesaeesreesneenaeeseensenns 167
11.1.24 TPSEIVICEPIOPEITYV AIUE. ... oottt te et s e ettt e et eesaestaesbe e teensesneesneesneesneanseenseensenns 167
11.1.25 TPSENVICEPTOPEIYV AIUELISE. ...ttt ettt b e b 167
11.1.26 TPSEIVICEPTOPEITYccveveueeterteeetest ettt ettt et st b e st b e st bt seeae bt e e s e e bt s e e s e e bt sbeh e eb e e e st e bt b e e ebenn e s ens 168

ETSI

11.1.27
11.1.28
11.1.29
11.1.30
11131
11.1.32
11.1.33
11.1.34
11.2
1121
11.2.2
11.2.3
11.24
11.25
11.2.6
11.2.7
11.2.8
11.3
1131
11.32
11.33
11.34
11.35
11.36
11.3.7
11.38
11.39
11.3.10
11.311
11.3.12
11.3.13
11.3.14
114
1141
1142
1143
1144
1145
1146
1147
1148
1149
11.4.10
11411
11.4.12
11.4.13
11.4.14
11.4.15
11.4.16
11.4.17
11.4.18
11.4.19
11.4.20
11421
11.4.22
11.4.23
11.4.24
11.4.25
11.4.26
11.4.27
115
1151

10 ETSI ES 204 915-3 V1.1.1 (2008-05)

I 0SS Vo= 0] 0= 1 I S 168
TPSEIVICESUPPIIENTD ... ettt e s et e e te et e s e estessaesteesbeeteeneesneesneesneenseansennsenns 168
TPSErViCETYPED ESCIIPLIONc.vieveeieete ettt ste et e et e e s e e st e e ste et e es e e ssaessaesse e teensesneesneesneesneenseanseensenns 168
TPSEIVICETYPENGIME ... ceeeieete et e e see st e st e s e e steeeeaeeaseeeseesseesseesseenseessesseesseesaeessesneesneesneanseansennsenns 169
TPSErVICETYPENGIMELISE ...c.eeiiieeeie ettt et e e eestesraesseesteesseesesneesreesneenseenseensenns 169
QI 0So=ox 1Y] TSSS 169
TPSErVICETYPEPIOPEITYV BIUE......ceieietiiietet ettt bbb 169
TPServiceTYPEPrOPErtyV alUELISEc.covieiiieiceee b 170
Event Notification Data DefiNitiONS..........cccoiieiiieieeiee et e e e 170
TPFWEVENINGIME. ...t n e 170
TPFWEVENTCTITETA ...ttt e bbbt et b bbb e bt b e bt bt s e s e bt st e e e bt ne e ens 170
QI o T Y= 14) TS 170
TpFwWMigrationServiceAVa laDI@INTO.......ccciie e ae e 171
I3\ ¥e = Kol g VAN (o iT0] 7=) o 1SS 172
RN\ NTe gz Ko gVaNo [o o gr= L Hi) o) 1Y/ o= TS 172
TPMigratioNAAAitioNal INFOSELc.ecvieiece et ree e e sneesneenaeenreens 172
I o TN o == 0.1 o€] TS 172
Trust and Security Management Data DefiNitioNnsccoeirireinineiiee e 172
TIDACCESSTYPIE ...t st st a e e b et e sa e e s h e s h e b e e e s e e e e e r e ne e 172
T A UL Y. ettt bt b et b bbbt h e E e s b b e e bRt e e bRt e b e bt e st e bt e e e a e e e enn 173
Yoo OSSP 173
Yoo OSSP 173
Yoo OSSP 173
BN 07N U 1010 T 0 o S 173
QI == AV T S 174
I 10 = V= 1= S 174
QI 05 V10T 0 o TS 174
I oS T 7= (U =T oY 10 1= AV otV o S 174
BN 055 T T 0o 7N Ko o] 11 oo S 175
TpSigningAIgorithmCapabhi lIEYLISEcouirieireiieieree e 175
TPAUINMECNANISITI ...ttt bbb et b e bbbt b e et b b e s e st bt e bt b ens 175
TPAUNMECNANISITILISE ...ttt bbb bbbt et b et b e nr e ens 175
Integrity Management Data DefiNitioNS...........coeiiiiiiiiieeree ettt 176
TPACHVITY TESIRES ...ttt b bbbt b e et b et b e e e bt e et bt bt b e s bbb e e ebenn e e ens 176
QI L =5 (= oo o S 176
QLI SS 176
QI = S o =t o S 176
TPRAUITSEAESSEL ...ttt ettt et bbbt h e a e st e e e e se e e b e s bt e a e e e e b e b eb e e b e e e e e e nneres 176
TPACHVITYTESIID ...ttt b et e et e s et b e bt e bt e e et e besbeeb e et enee e enres 176
QI 10 = o = = T S 177
Yoo SR 177
TPPWUNAVAITREBSON ..ottt ettt ettt b bbbt b bbb e bt e b e s e bt b e s e st b et e e ebenr e e enis 177
TPLOAOLEVEL ...ttt et b e et b e e st b e s e e h e bt s e e st eb e sh e e b e e b e e eb e b e neene b e ene s 177
TPLOAATRIESNOIA ...ttt bbb bbb bbb e et b et benn e ens 177
TPLOAOINITV @I ..ottt bbbt b et b bbbt e e bt e e bt e e ens 177
TPLOAUPOIICY ...ttt bbbt b bt h e bt e e bt e b e bt e et bt e bt e e s ens 178
I oI 0 7= 0 S = oS 178
QI o070 1S = o T S 178
QI I 0r= 0 = S o I - - S 178
QI oI07= 0 S = S o = 1Y 0 S 178
QI 0720 = s o =1 Y/ L= S 178
QI o 0720 1S = o 1 | oSS 179
TPL OA0SEAL St CINTOT YO ...ttt bbbttt e b e st b et se e ens 179
Bl o1 er= o S = (o = o PP 179
TPSVCAVEI SEBLUSREASON. ...ttt ettt ettt et b et b e b et b e s e b e s e se bt e e b sr e e enis 179
TPAPPAVE I SLEEUSREBSON. ...ttt bbbt e ens 180
QLI] = I 1= {1 SR P 180
QI L = = e I S 180
TPRAUITREGID ...t bbbt bt a e st et e e e b e s Rt b e s bt e he e e et e nbesr e e bt et enne e eras 180
TPFWAVA T STAIUSREBSONoeiveeiieieeie e seesteesee e e steetese e s e s teesteeteestessaessaesseesseesseesesneesseesseenseanseensenns 181
Service Subscription Data DEfINITIONScccoviciiiiiriesiese et e e e reenreeneeneeenes 181
QLI o 0] 0= Y]\ V=0 T PSPPSR 181

ETSI

11 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.5.2 QI oL 0 o T= 1 YA = = S 181
11.53 I 0] (0] 0= 1 Y TSR PRTPRTR 181
11.54 QI o 0 0 T= 1 Y = S 181
11.55 BN]1(o) 0] 7 1= S 181
1156 LI 0101 TSSOSO P TSRS PPPTSPPRO 182
11.5.7 RIS V0T 11 o 0 S 182
1158 TPSEVICECONIITBCHIDLISE. .. .ccveieeeeet ettt bbbt bbbt bbb ens 182
1159 TPPEISONNGITIE ... e s e e b e s s e e e e e e ae e sneene e 182
11.5.10 TPPOSIAIAGUIESS. ...ttt ettt e et ebe s eesbe s et eaeenee s e teseeebesaeeaeeneensenseseeseesneeneeneenseseens 182
11511 TPTEEPNONENUMDE ...ttt b et b et e s 182
11.5.12 LI o= 2 SR 182
11.5.13 TPHOMEPAGE ...t be e s b e be e st e e e s bt e e be e e s be e e nbbe e s are e nabe e nareenares 182
11.5.14 I L= £ o 1] 1= = 182
11.5.15 LI 0L = £ o] o OSSPSR 182
11.5.16 TPSEIVICESIAIDEALE. ... e evecieee ettt s te et e sttt e et e e e s teesbe e tees e esteeseesaeesreesseansesneesneesneenseansensenns 183
11.5.17 I 0SS Vo= =g o - (S 183
11.5.18 T PSEIVIiCEREQUESLOL ... eeveeieeeteeteeee et e eteesteeste e te e e sseesseesaeesaeesseenseenseessesseessaesseesseesseansesnnesneesnennseansennsenns 183
11.5.19 TPBITINGCONLACT ...ttt b bt bbbt bbb bbb et e bt e e bt e e ens 183
11.5.20 TPSErViCESUDSCIi Pt ONPIOPENTIES.ttt e e bbb n e ens 183
11521 TPSEIVICECONIIBEL ...ttt ettt bttt b et b e et b b e s e bt bt e bt beb e bt b ene bt e e ebene e s ens 183
11.5.22 TPSErViCECONIIACIDESCITPIION. ...ttt ettt bttt b e bbbt sn e ens 183
11.5.23 TPCHENTAPPPIOPEITIES.cvieieeetere ettt ettt b et b bbb ekt b bbbt b e s eb e s e st e bt e e e b se e e ens 183
11.5.24 TPCH ENTAPPDESCITPIION. ...ttt ettt e et b e s bt e s e bt e st b e s ese b b e e e b e ne e e ens 184
11.5.25 TPSAGID ...tttk E R R R R R R R R R R e R Rt bR Rt 184
11.5.26 TPSAGIDLISE ottt R R bRt R e r e 184
11.5.27 QIS 0 | L=< ot] (o] o S 184
11.5.28 LI 05 o OSSOSO PSP P PRSPPI 184
11.5.29 I 0SS Vo= (0 = 5 S 184
11.5.30 IO S Vo= (0] = = S 184
11531 TPSEIVICEPTOFTIE ...ttt bbbt b bbbt e et b bbb e 184
11.5.32 TPSErVICEPTOfIIEDESCIIPLION. ...ttt e et b et nn e ens 185
11.5.33 TPSAGPIOTTTEPAIT........ecueeteeeeete ettt b e bbbt bt b e bbb et bbbt e e enn 185
11.5.34 TPAAASAGM EMDEFSCONTIICE......cvitieeiirteet bbb e 185
11.5.35 TPAAASagM EMBDErSCONTIICILISE ... c.eeeitiectert et 186
11.5.36 TpPAsSIgNSagT 0ServiceProfil @CONTIICE.........oieeeeece e e 186
11.5.37 TpAsSignSagT 0ServiceProfil @CONTIICILISEvveieeece e 186
12 EXCEPLON ClASSES.....uiiuiitiiieieieieieeies sttt st st ettt b e bbb esa et et et e st e st s beebesbe s b et et et e st ebenbeebenee e ennns 186
Annex A (nor mative): OMG IDL Description of Frameworkccoeeereneieinienineseseeseeeeees 188
Annex B (informative): W3C WSDL Description of FrameworkK..........cccceeeiveneneneneieiesenennens 189
Annex C (informative): Java™ API Description of the Frameworkccccocevrininenencneneene 190
Annex D (informative): Contents of 3GPP OSA R7 FrameworK........ccccoceeveeiesieeie e 191
Annex E (informative): Description of the Framework for 3GPP2 cdma2000 networks.............. 192
o €= g 1= o= o1 o 192
E.2 SPECITIC EXCEPLIONS.ccueiiiieeeiesiee ettt et e s tesse e e sneeneesteeneestesseensesnesreeeesneeneeseennen 192
E2.1 (O = TH ST S oo o TS 192
E.2.2 ClalSE 2: REFEIEINCES ...ttt et b bttt e e b s et b s st e se e e e b e s besbeebe e e enteneen 192
E.2.3 Clause 3: Definitions and aDbreVialiONS...........cooiiiiiiiieeeie et s se e sae b e e e 192
E24 Clause 4: OVerview of the FramEBWOIKc.oo et s 192
E.25 Clause 5: The Base Interface SPeCifiCalioN.........ccccuiieiiieiece ettt 192
E.2.6 Clause 6: Framework ACCESS SESSION APcouiiiiiiieieeeie ettt sr e b b sae b e e e 192
E.2.7 Clause 7: Framework-to-Application Sequence Diagramsccoeeiireeririeenere s 192
E.2.8 Clause 9: FramewOrkK-t0-SErVICE APloo i ettt st re e e e aesaesse e e eneeseens 193
E.29 Clause 10: SErVICE PIOPEIMIES.cucueiuirieeertirieestest ettt b et b et b bbbt e e b s e st b et be b 193
E.210 Clause 11: Data DEfiNITIONS........ciiieiieieeriese ettt sttt e e et e sesbeseesbesaeeneeneeseeseesaeeseeneenseseens 193
E.2.11 Clause 12: EXCEPLION ClLASSES.......ccuruiieuirtiieiertisieiesiesseesie st be s b e sse bt be s st sb e s aesbe b e st sbebe e e b beneens 193

ETSI

12 ETSI ES 204 915-3 V1.1.1 (2008-05)

E.212 Annex A (normative): OMG IDL Description of the Framework.............cccceveereereececie e 193
E.2.13 Annex B (informative): W3C WSDL Description of the Framework...........ccccvevvevvececeveseesee e 193
E.214 Annex C (informative): Java™ API Description of the Frameworkcccccvevveveece e 193
Annex F (informative): RECOrd Of CHANGES........oiiieeeeee s 194
N R [01 = = o= S 194
F.1.1 NIV ettt sttt sttt b et b et ekt ek e e Rt e R e e ekt R e e e R e e Re e e R e AR e e e Rt eE e e R e eAe e e b e e Ee e eReebeneebeebeneeneebeneeneas 194
F.1.2 = 1= o =0 S 194
F.1.3 REMOVEX. ...ttt et s e s te e s be e be et e eaeeebeeebe e be e beeatesasesaeesaeesaeesbeenbeenteenseeasesneesraesanes 194
e 1 1 oo LTSS 194
F.21 LSRR 194
F.2.2 = 1= o =0 SR 194
F.2.3 1Y e T3 1= o PSPPSR 195
F.24 REMOVE. ...ttt bt h et b e se bbbt h e e s e e st e e e e b e sh e eh e e aeem e e e e b e beeheebeeneenneneentes 195
(T B T - W B = 11 a1 (0] < R 195
F3.1 L SR 195
F.3.2 LY oo 1= SRRSO 196
F.3.3 REMOVEX. ...ttt et ee s e s te e s be e be et e eaeeebeeebe e be e beeatesasesaeesaeesaeesbeenseenteentesasesseesraesanes 196
VLo = . 0] 0= =SSR 196
F.4.1 NIV ettt sttt sttt b et b et ekt ek e e Rt e R e e ekt R e e e R e e Re e e R e AR e e e Rt eE e e R e eAe e e b e e Ee e eReebeneebeebeneeneebeneeneas 196
F.4.2 = 1= o =0 S 196
F.4.3 1Y e[1= o PSPPSR 196
F.4.4 REMOVE. ...ttt bt h et b e se bbbt h e e s e e st e e e e b e sh e eh e e aeem e e e e b e beeheebeeneenneneentes 196
T o= o1 oSSR 197
F.5.1 L SR 197
F.5.2 LY oo 1= SRRSO 197
F.5.3 REMOVEX. ...ttt e s e s te e sae e be e abeeaeeebeeebe e be e besatesssesaeesaeesaeesbeenbeenteentesanesneesreesanes 197
e T @ 1 1= S 197
[1S 0] YOS 198

ETSI

13 ETSI ES 204 915-3 V1.1.1 (2008-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 3 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 204 915) is structured in the following
parts:

Part1: "Overview";

Part 2: "Common Data Definitions";
Part 3: " Framework";

Part4: "Cdl Control";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi-Media Messaging SCF"
Part 16: "Service Broker SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 6.0 set of specifications.

A subset of the present document isin 3GPP TS 29.198-3 V7.1.0 (Release 7).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

14 ETSI ES 204 915-3 V1.1.1 (2008-05)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

e Sequence Diagrams.

. Class Diagrams.

o Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

o IDL Description of the interfaces.

. WSDL Description of the interfaces.

0 Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 204 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 204 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 6)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 204 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 204 915-1 apply.

ETSI

15 ETSI ES 204 915-3 V1.1.1 (2008-05)

4

Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circles in the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

Enterprise Operator

[

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. Itisa
policy decision for the application whether it must authenticate the framework or not. It is a policy decision for
the framework whether it allows an application to authenticate it before it has completed its authentication of
the application.

Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after

successful authentication.

Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the
service agreement before it is allowed to access any network service capability feature.

ETSI

16 ETSI ES 204 915-3 V1.1.1 (2008-05)

. Accessto network service capability features. The framework must provide access control functions to
authorise the access to service capability features or service data for any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

. Registering of network service capability features: SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

Basic mechanism between Framework and Enterprise Operator:

e Service Subscription function: This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself actsin the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:
. The sequence diagrams give the reader a practical idea of how the Framework isimplemented.
e Theclassdiagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

. The interface specification clause describes in detail each of the interfaces shown within the class diagram
part.

. The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

e The data definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part ES 204 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not
supported by an implementation of an Application interface, acall to that method shall be possible, and no exception
shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<name>.
The callback interfaces to the applications are denoted by classes with name |pApp<name>. For the interfaces between
a Service and the Framework, the Service interfaces are typically denoted by classes with name I pSvc<name>, while
the Framework interfaces are denoted by classes with name | pFw<name>.

ETSI

17 ETSI ES 204 915-3 V1.1.1 (2008-05)

5.1.2 Method descriptions

Each method (APl method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Err’ suffix for method results and errors, respectively. To handle
responses and reports, the application or service devel oper must implement the relevant | pApp<name> or | pSvc<name>
interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

Theinterfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

ETSI

18 ETSI ES 204 915-3 V1.1.1 (2008-05)

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Iplnterface.

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applnterface: in IpinterfaceRef): void

setCallbackWithSessionID (applinterface: in IpinterfaceRef, sessionID: in TpSessionID): void

54.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or isno
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface! in IpInterfaceRef

Specifies areference to the application interface, which is used for callbacks.
Raises

TpCommonExceptions, P_INVALID INTERFACE TYPE

5.4.1.2 Method setCallbackWithSessionlID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface. in IpInterfaceRef

Specifies areference to the application interface, which is used for callbacks.
sessionID. in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID INTERFACE TYPE

ETSI

19 ETSI ES 204 915-3 V1.1.1 (2008-05)

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, aNaming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it isto initiate the authentication process
with the Framework. The Initial Contact interface supports the initiateA uthenticationWithV ersion method to allow the
authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
Thisis done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces
provided by the Framework.

Client . Ipinitial : IpAPILevelAuthentication : IpAccess Framework

IpClientAP ILevelAuthentication
T T T
| |

1: initiateAuthenticat:ionWithVersion(clientDomain, authTypé‘e, frameworkVersion)

B

2: selectAuthenticationMechanism()
1

|
3: challenge())

| 4: authenticationSucg‘:eeded()

E
D
u =
L

|
|
5: ‘phallenge()

|
6: authenticationSucceeded()
Il

|
7: requestAccess()
|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
8: selectSigningAlgorithm(') |
L L

)

9:'obtaininterface()

0
iy

1. Initiate Authentication

The client invokes initiateAuthenticationWithV ersion on the Framework's "public" (initial contact) interface to
initiate the authentication process. It providesin turn areference to its own authentication interface. The
Framework returns areference to its authentication interface.

ETSI

20 ETSI ES 204 915-3 V1.1.1 (2008-05)

2. Select Authentication Mechanism

The client invokes sel ectAuthenticationM echanism on the Framework's API Level Authentication interface,
identifying the authentication algorithm it supports for use with CHAP authentication. The Framework
prescribes the method to be used. OSA authentication is based on CHAP, which prescribes the MD5 hashing
algorithm as the minimum to be supported. Note however that the framework need not accept this algorithm.

3: Theclient authenticates the Framework, issuing a challenge in the challenge() method.
4. Theclient provides anindication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more
invocations of the challenge method on the client's API Level Authentication interface. In each invocation, the
Framework supplies a challenge and the client returns the correct response. The Framework could authenticate
the client before the client authenticates the Framework, or afterwards, or the two authentication processes
could be interleaved. However, the client shall respond immediately to any challenge issued by the
Framework, as the Framework might not respond to any challenge issued by the client until the Framework
has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.
7. Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess
on the Framework's API Level Authentication interface, providing in turn areference to its own access
interface. The Framework returns a reference to a framework Access interface that is unique for this client.
The success or failure of the client's authentication of the Framework does not affect the client's right to invoke
requestAccess.

8: Theclient and framework negotiate the signing algorithm to be used for any signed exchanges.

9: Theclient invokes obtainlnterface or obtainlnterfaceWithCallback on the framework's Access interface. This
is used to obtain areference to a framework interface that supports the required framework functionality, such
as service discovery, integrity management, service subscription, etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of al service
instances. This type of termination is unusual, but possible with the terminateA ccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication
failing, the framework should terminate al outstanding service agreements for that client, and should take steps to
terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact withit.

ETSI

21 ETSI ES 204 915-3 V1.1.1 (2008-05)

IpMultiPartyCallControlManaa{ IpUserLocationCamel

Applogic

o J ‘ :\gAcce§‘ ‘

IpClientAccess IpServiceAgreementManagemen

IpAppService

|
1;signServiceAgreement()

| i

|
21signServiceAgreement()
|

|
|
|
|
3: createNotification()
I
|
|

|
4: (rlggeredLocat\0+Repon\ngstanReq()

“
|
U

7 i
g i
i ¥

T

|

|

|

|

|

|

|

|

| |

| |

| |

| |

| |

] |

| |

| |

| |

| |

| |
| 1

|]

| |

5: términateAccess() !

| |

| |

| |

| |

| |

| |

| |

)

1. Following successful authentication and service discovery, the client initiates the service agreement signing
process (not shown). Thisis completed when the client invokes signServiceAgreement on the Framework's
I pServiceAgreementM anagement interface, and a reference to an instance of a service manager interfaceis
returned.

2. Theclient (application) had initiated service agreement signing process for a second service agreement (not
shown), and when the client signs this second service agreement, a reference to an instance of another service
manager, for another service type, is returned.

3: Theapplication starts to use the new service manager interface.
4: Theapplication starts to use the other new service manager interface.

5. Theframework decidesto terminate the application's access session, and to terminate all its service
agreements. Thisisan unusual and drastic step, but could be e.g. due to violation or expiry of the application's
service agreements, or some problem within the framework itself. The framework will also destroy each of the
service managers the application was using (not shown). The application is now no longer authenticated with
the framework, and all Framework and service interfaces it was using are destroyed.

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This
type of termination is unusual, but possible with the terminateAccess method.

App Logic i : IpAccess
IpClientAccess

IpMulti PanyCanntrolManager IQUserLoc;tionCameI

1: destroyNotification()

I
|
|
|
|
|
:
|
2: triggeredLoqationReportingStop()

S

3: terminateAccess()

—

:

1: The application terminates its use of the multi-party call control service manager in a controlled manner.

2. Theapplication ceasesto use the user location camel SCF.

ETSI

22 ETSI ES 204 915-3 V1.1.1 (2008-05)

3: Theapplication decides to terminate its access session and all its service agreements in one go. The framework
will aso destroy each of the service managers the application was using (not shown). The application is now
no longer authenticated with the framework, and all Framework and service interfaces it wasusing are
destroyed. The application could have terminated its service agreements one by one, by invoking
terminateServiceAgreement on the Framework's | pServiceAgreementM anager interface, and then invoked
terminateAccess on the Framework's I pAccess interface, which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have
mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as atrusted party, not requiring authentication.

Client . Ipinitial Framework . IpAuthentication : IpAccess

1: initiateAuthenticdtionWithVersion(cIientDomain, authTypé, frameworkVersion):
| | |

T

|

|

|

U] | |
Underlying Distribution Technology Mechanism is used for application N
identification and authentication, or both the client and the Framework |
recognise each other as trusted parties not requiring API level |
authentication. There is no requirement as to when authentication should !
take place using the Underlying Distribution Technology Mechanism: |
before initiateAuthenticationWithVersion is invoked, after requestAccess is |
invoked, or between the two. !
|

|

|

|

|

|
2: reques“tAccess()

| J

| |
3, selectSigningAlgorithm()

!
!

|
:
4: obtaininterface()
|
|
|
|
|
|
|
|
|
|

1: Theclient calsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allowsthe
client to specify the type of authentication process. In this case, the client selectsto use the underlying
distribution technology mechanism for identification and authentication. What that mechanismis, if it even
exists, is outside the scope of the API.

2. Theclient invokes the requestAccess method on the Framework's Authentication interface. This returns a
reference to the framework Access interface that is unique for the client.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

4: Theclient can now invoke obtaininterface or obtainlnterfaceWithCallback on the framework's Access
interface. Thisis used to obtain areference to a framework interface such as service discovery, integrity
management, service subscription, etc.

ETSI

23 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) Theclient calsinitiateAuthenticationWithVersion on the OSA Framework Initia interface. This allows the
client to specify the type of authentication process. This authentication process may be specific to the provider,
or the implementation technology used. The initiateA uthenticationWithVersion method can be used to specify
the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (APl Level
Authentication), which can be used to perform the authentication process. The
initiateA uthenticationWithV ersion method allows the client to pass a reference to its own authentication
interface to the Framework, and receive areference to the authentication interface preferred by the client, in
return. In this case the API Level Authentication interface.

2) Theclient invokes the selectAuthenticationM echanism on the Framework's API Level Authentication
interface. This includes the authentication a gorithms supported by the client. The framework then chooses a
mechanism based on the capabilities of the client and the Framework. If the client is capable of handling more
than one mechanism, then the Framework chooses one option, defined in the prescribedM ethod parameter. In
some instances, the authentication mechanism of the client may not fulfil the demands of the Framework, in
which case, the authentication will fail, for example CHAP prescribes the MD5 hashing algorithm as the
minimum to be supported, however the framework need not accept this agorithm.

3) Theapplication and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/
response exchanges. This authentication protocol is performed using the challenge method on the API Level
Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way
protocol. There arein fact two authentication processes. authentication of the client performed by the
Framework , and authentication of the Framework performed by the client. Mutual authentication is achieved
by both these processes terminating successfully. Mutual authentication may not necessarily be required, i.e. it
could be that a client may not need to authenticate the Framework. There is also no required order for the
execution of these two authentication processes, however, the client shall respond immediately to any
challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client
until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

ETSI

24 ETSI ES 204 915-3 V1.1.1 (2008-05)

: IpClientAPILevelAuthentication Client . IpInitial Framework : IpAPILevelAuthentication

[
|
] | |
1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)
1 |
|
|

IpClientAPlLevel Authentication
reference is pased to framework
and IpAP ILewel Auth entication
reference isreturned.

| |
| |

2: selectAuthenticationMechanism()
| |

|

| i

U Thisisan example of the AN

3: challenge()

sequence of
authentication

; operations. Different

| authentication protocols
! may have different
requirements on the
order of operations.

5: challenge()

6: authenticationSucceeded()

|
|
1
4: thallenge()
|
|
|
|
|
|
|
1
i

7: thallenge()

|
[
|
8: authenti‘k:ationSucceeded()
[l
|

|
9: requestAccess()
|

§]

|
IpClientAccess reference is
pased to Framework, and
IpAccessreference is

!
!
:

|
: returned.
| T
| | |
| | |
6.2 Class Diagrams
<<Interface>> <<Interface>>
IpClientAccess IpClientAPILevelAuthentication
(from Client interfaces) (from Client interfaces)
BterminateAccess() ®abortAuthentication()
4\ PauthenticationSucceeded()
®challenge()
<<uses>>
‘ <<uses>> ‘
<<Interface>> <<Interface>>
<<Interface>> IpAccess IpAPILevelAuthentication
Iplnitial (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces)
obtaininterface() SabortAuthentication()
WinitiateAuthenticationW ithVersion() BobtaininterfaceW ithCallback() SauthenticationSucceeded()
Slistinterfaces() $selectAuthenticationMechanism ()
BselectSigningAlgorithm() Bchallenge()
SterminateAccess()
Wrelinquishinterface()

<<lInterface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 1: Trust and Security Management Package Overview

ETSI

25 ETSI ES 204 915-3 V1.1.1 (2008-05)
6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:
e thefirst point of contact for a client to access a Framework provider;
. the authentication methods for the client and Framework provider to perform an authentication protocol;
. the client with the ability to select a service capability feature to make use of;
e theclient with aporta to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication;

3) Accessto Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: Ipinterface.

If the IpClientAPILevel Authentication interface isimplemented by a client, challenge(), abortAuthentication() and
authenticationSucceeded() methods shall be implemented.

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication (): void
authenticationSucceeded (): void

challenge (challenge: in TpOctetSet): TpOctetSet

6.3.1.1.1 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method isinvoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Callsto this method after the Framework has been authenticated by the client shall not result in an
immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

Parameters

No Parameters were identified for this method.

ETSI

26 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.3.1.1.2 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's APILevel Authentication interface following invocation of this method.

Parameters

No Parameters were identified for this method.

6.3.1.1.3 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
authentication of the client is deemed successful when the authenti cationSucceeded method is invoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevel Authentication
interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the
Framework has responded to any challenge the client may issue.

Returns <response>: Thisisthe response of the client application to the challenge of the framework in the current
sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete
CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the
designated hashing algorithm, which isindicated viathe client's invocation of selectAuthenticationMechanism(), to an
octet set consisting of the concatenation of the CHAP Identifier, the shared " secret”, and the supplied challenge value.
The Name field of the CHAP Response packet must be present and contain avalid value in order for the CHAP
Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter.

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret”, and the Vaue from the
CHAP Challenge.

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm.

4. Construct acomplete CHAP Response packet with the resulting octet set from previous step as the CHAP
Value.

Steps for validating the response octet set:

1. Veify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original
challenge value.

3. Compute the hash of the resulting octet set from the previous step using the designated hashing a gorithm.

4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the
CHAP Response. A match indicates successful authentication.

Parameters
challenge:. in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

ETSI

27 ETSI ES 204 915-3 V1.1.1 (2008-05)

Steps for constructing the challenge octet set:
1. Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step
passed in the Value field within the CHAP Challenge.

Returns

TpOctetSet

6.3.1.2 Interface Class IpClientAccess
Inherits from: Iplinterface.

IpClientAccessinterfaceis offered by the client to the framework to allow it to initiate interactions during the access
session. Thisinterface and the terminateAccess() method shall be implemented by aclient.

<<lInterface>>

IpClientAccess

terminateAccess (terminationText: in TpString, signingAlgorithm: in TpSigningAlgorithm, digitalSignature: in
TpOctetSet): void

6.3.1.2.1 Method terminateAccess()
The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as a result
of the client access termination. If at any point the framework's level of confidence in the identity of the client becomes
too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for
that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

terminationText. in TpString

Thisisthe termination text describes the reason for the termination of the access session.
signingAlgorithm! in TpSigningAlgorithm

Thisisthe agorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to | pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

digitalSignature. in TpOctetSet

ETSI

28 ETSI ES 204 915-3 V1.1.1 (2008-05)

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature” construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses this to confirm itsidentity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access sessionis
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID SIGNING ALGORITHM, P INVALID SIGNATURE
6.3.1.3 Interface Class Iplinitial

Inherits from: Iplnterface.

The Initial Framework interface is used by the client to initiate the authentication with the Framework. Thisinterface
and the initiateA uthenticationWithVersion() method shall be implemented by a Framework.

<<Interface>>

IpInitial

initiateAuthenticationWithVersion (clientDomain: in TpAuthDomain, authType: in TpAuthType,
frameworkVersion: in TpVersion): TpAuthDomain

6.3.1.3.1 Method initiateAuthenticationWithVersion()

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authl nterface will be selected to match the proposed version from the Client in the Framework
response. If the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain>: This provides the client with a framework identifier, and areference to call the authentication
interface of the framework.

structure TpAuthDomain {

domainID: TpDomainID;
authInterface: IpInterfaceRef;

}i

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authlnterface parameter is a reference to the authentication interface of the framework that is unique for each
requesting client. The type of thisinterface is defined by the authType parameter. The client uses this interface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain. in TpAuthDomain

ETSI

29 ETSI ES 204 915-3 V1.1.1 (2008-05)

Thisidentifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {
domainID: TpDomainID;
authInterface: IpInterfaceRef;

}i

The domainlD parameter is an identifier either for a client application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TpENtOpID), or for an instance of a service for which a client application has signed a service agreement

(i.e. TpServicelnstancel D), or for a service supplier (i.e. TpServiceSupplierlD). It is used to identify the client domain
to the framework, (see challenge() on IpAPILevel Authentication). If the framework does not recognise the domainiD,
the framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppl D) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together asindependent sessions under the same TpClientApplD.

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TY PE).

authType. in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the |pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication isthe default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion. in TpVersion

Thisidentifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns

TpAuthDomain
Raises

TpCommonExceptions, P_INVALID DOMAIN ID, P_INVALID INTERFACE TYPE, P _INVALID AUTH TYPE,
P_INVALID VERSION

6.3.1.4 Interface Class IpAuthentication
Inherits from: Iplnterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology
authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevel Authentication interfaces shall be implemented by a Framework as a
minimum requirement. The requestAccess() method shall be implemented in each.

ETSI

30 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpAuthentication

requestAccess (accessType: in TpAccessType, clientAccessinterface: in IpinterfaceRef): IpinterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevel Authentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then areference to the IpAccessinterface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) isreturned.

This method may be invoked by the client immediately on |pAuthentication, when APl Level authentication is not
being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwA ccessl nterface>: This provides the reference for the client to call the access interface of the framework.
The access reference provided is unique to the requesting client.

Parameters
accessType. in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS TY PE) isreturned.

clientAccessInterface. in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID ACCESS TYPE, P INVALID INTERFACE TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: | pAuthentication.

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used
to initiate the authentication process.

If the IpAPILevel Authentication interface isimplemented by a Framework, then selectA uthenticationM echanism(),
challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. | pAPILevel Authentication
inherits the requirements of |pAuthentication, therefore requestAccess() shall be implemented.

ETSI

31 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpAPILevelAuthentication

abortAuthentication (): void
authenticationSucceeded (): void
selectAuthenticationMechanism (authMechanismList: in TpAuthMechanismList): TpAuthMechanism

challenge (challenge: in TpOctetSet): TpOctetSet

6.3.1.5.1 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method isinvoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on |pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been
properly authenticated. If this method isinvoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.2 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful
authentication of the client.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.3 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a
result of the response to this method remains valid for an instance of IpAPILevel Authentication and until this method is
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be
found, the framework throwsthe P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

Returns: selectedMechanism. Thisis the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

ETSI

32 ETSI ES 204 915-3 V1.1.1 (2008-05)

Parameters

authMechanismList. in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS DENIED, P_NO ACCEPTABLE AUTHENTICATION MECHANISM

6.3.1.5.4 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainl D received in the initiateA uthenticationWithVersion()
can be used by the framework to reference the correct public key for the client (the key management system is currently
outside of the scope of the OSA APIs). The number of exchangesis dependent on the policies of each side. The
authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the
client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevel Authentication interface.

Returns <response>: Thisis the response of the framework to the challenge of the client in the current sequence. The
formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP
Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated
hashing a gorithm, which isindicated viathe client's invocation of selectAuthenticationMechanism(), to an octet set
consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name
field of the CHAP Response packet must be present and contain avalid value in order for the CHAP Response to be
valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter.

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the VValue from the
CHAP Challenge.

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm.

4. Construct acomplete CHAP Response packet with the resulting octet set from previous step asthe CHAP
Value.

Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original
challenge value.

3. Compute the hash of the resulting octet set from the previous step using the designated hashing a gorithm.

4. Verify the octet set resulting from the previous step matches the octet set contained in the Vaue field of the
CHAP Response. A match indicates successful authentication.

Parameters
challenge:. in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

ETSI

33 ETSI ES 204 915-3 V1.1.1 (2008-05)

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authenti cation process.

Steps for constructing the challenge octet set:
1. Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on section 4.1 of RFC 1994 with the octet set from the previous
step passed in the Value field within the CHAP Challenge.

Returns

TpOctetSet
Raises

TpCommonExceptions, P_ACCESS DENIED
6.3.1.6 Interface Class IpAccess

Inherits from: Ipinterface.

Thisinterface shall be implemented by a Framework. As a minimum reguirement the obtainl nterface() and
obtainlnterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtaininterface (interfaceName: in TpinterfaceName): IpinterfaceRef

obtaininterfaceWithCallback (interfaceName: in TpinterfaceName, clientinterface: in IpinterfaceRef):
IpinterfaceRef

listinterfaces (): TpinterfaceNameList
selectSigningAlgorithm (signingAlgorithmCaps: in TpSigningAlgorithmCapabilityList): TpSigningAlgorithm
terminateAccess (terminationText: in TpString, digitalSignature: in TpOctetSet): void

relinquishinterface (interfaceName: in TpinterfaceName, terminationText: in TpString, digitalSignature: in
TpOctetSet): void

6.3.1.6.1 Method obtaininterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainl nterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlnterface>: Thisisthe reference to the interface requested.
Parameters
interfaceName. in TpInterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

ETSI

34 ETSI ES 204 915-3 V1.1.1 (2008-05)

Returns

IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID INTERFACE NAME

6.3.1.6.2 Method obtaininterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlnterface>: Thisisthe reference to the interface requested.
Parameters
interfaceName: in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface. in IpInterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainlnterface method should be used when no callback interface needsto be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID INTERFACE NAME, P_INVALID INTERFACE TYPE

6.3.1.6.3 Method listinterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainlnterface() or obtainl nterfaceWithCallback().

Returns <frameworklnterfaces>: The frameworklnterfaces parameter contains alist of interfaces that the framework
makes available.

Parameters

No Parameters were identified for this method.
Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS DENIED

6.3.1.6.4 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for usein all cases
where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be
the first method invoked by the client on IpAccess. The algorithm chosen as aresult of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client.

ETSI

35 ETSI ES 204 915-3 V1.1.1 (2008-05)

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session.
However, once signServiceAgreement() has been called on the client by the framework, the signing a gorithm currently
selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent
calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm
specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework
throwsthe P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. Thisis the signing algorithm chosen by the Framework. The chosen algorithm shall be
taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps. in TpSigningAlgorithmCapabilityList
Thelist of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO ACCEPTABLE_SIGNING ALGORITHM

6.3.1.6.5 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it
isinvoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any callsto these interfaces will fail.
Also, al remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters
terminationText. in TpString
Thisisthe termination text describes the reason for the termination of the access session.

digitalSignature. in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing a gorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID SIGNATURE

6.3.1.6.6 Method relinquishinterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.
Parameters

interfaceName. in TpInterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

ETSI

36 ETSI ES 204 915-3 V1.1.1 (2008-05)

terminationText. in TpString

Thisisthe termination text describes the reason for the release of the interface. Thistext is required simply because the
digital Signature parameter requires aterminationText to sign.

digitalSignature. in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the interface is rel eased, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID SIGNATURE, P_INVALID INTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

initiateAuthenticationWithVersion/ return new
IpAuthentication

Active }

Figure 2: State Transition Diagram for IpInitial

ETSI

37 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

Ipinitial.initiateAuthenticationWithVersion

o

select AuthenticationMec hanism

selectAuthenticationMechanism challenge / Client
challenges FW

‘ Authenticating
‘ Framework

hall / Client authenticationSucceeded / Client
challenge 1€ satisfied with FW|response FW Aborts

re-challenges Framework ApClientAP ILeel Authentic ation.
abortAuthentication

selectAuthenticationMechanism

‘ Framework
‘ Authenticated

Figure 3. STD for IpAPILevelAuthentication: Client authenticates Framework using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.1 Idle State

When the client has invoked the Iplnitial initiateA uthenticationWithV ersion method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to select the authentication mechanism to be used
using sel ectAuthenticationM echanism.

ETSI

38 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge
method on the Framework. The Framework may either buffer the requests and respond when the client has been
authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's | pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework by calling the challenge method, resulting in atransition back to Authenticating
Framework state. The client may also call selectAuthenticationM echanism to choose another hash agorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge
method on the client. When the Framework has processed the response from the authenticate request or challenge on the
client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another
authenticate request or challenge is sent to the client. If the responseis valid and the authentication process has been
completed, then atransition to the state Client Authenticated is made, the client isinformed of its success by invoking
authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. Thisimplies that the
client has to re-initiate the authentication by calling once more the initiateA uthenticationWithV ersion method on the
Ipinitia interface. At any time the client may abort the authentication process by calling abortAuthentication on the
Framework's | pAPILevel Authentication interface. The client may also call selectAuthenticationMechanism to choose
another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the challenge is sent to the client and atransition back to the
AuthenticatingClient state occurs. The client may also call selectAuthenticationM echanism to choose another hash
algorithm.

ETSI

39 ETSI ES 204 915-3 V1.1.1 (2008-05)

IpInitial.initiateA uthenticationWithVersion

requestAccess
"P_ACCESS_DENIED

Idle ‘/.\‘
N 4
Invalid Client Response

selectAuthenticationMechanism

requestAccess
"P_ACCESS_DENIED

selectAuthenticationMechanism

FW challenges Client
ANpClientAPILewvelAuthentication.challenge

Authenticating

ﬂ Client

abort Authentication
FW satisfied with Client response / Client Aborts

ApClientAPILewelAuthentication.authenticationSucceede

requestAccess / new IpAccess
selectAuthenticationMechanism

FW rechallenges Client [
ANpClientAPILe\elAuthentication.challenge Client
Authenticated

Figure 4. STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the Iplnitial initiateA uthenticationWithV ersion method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to select the authentication mechanism to be used
using selectA uthenticationM echanism.

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge
method on the Framework. The Framework may either buffer the requests and respond when the client has been
authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
isnot yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
aso call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling

authenti cationSucceeded on the Framework's IpAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework by calling the challenge method, resulting in atransition back to Authenticating
Framework state. The client may also call selectAuthenticationMechanism to choose another hash a gorithm.

ETSI

40 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge
method on the client. When the Framework has processed the response from the authenticate request or challenge on the
client, the response is analysed. If the responseis valid but the authentication process is not yet complete, then another
authenticate request or challengeis sent to the client. If the response is valid and the authentication process has been
completed, then atransition to the state Client Authenticated is made, the client isinformed of its success by invoking
authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. Thisimplies that the
client has to re-initiate the authentication by calling once more the initiateA uthenticationWithV ersion method on the
Iplnitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the
Framework's | pAPI Level Authentication interface. The client may also call selectAuthenticationMechanism to choose
another hash a gorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the
AuthenticatingClient state occurs. The client may also call selectAuthenticationM echanism to choose another hash
algorithm.

6.4.1.3 State Transition Diagrams for IpAccess

IpAuthentication.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceWithCallback / return requested FW interface

listinterfaces
selectSigningAlgorithm
relinquishinterface

Active

network operator initiated access temination
/ destroy all interface objects used by the client
ANpClientAccess.terminateAccess

application initiated access termination
terminateAccess / destroy all interface objects used by the client

Figure 5: State Transition Diagram for IpAccess

ETSI

41 ETSI ES 204 915-3 V1.1.1 (2008-05)

6.4.1.3.1 Active State

When the client requests access to the Framework on the |pAuthentication (IpAPILevel Authentication) interface, an
object implementing the IpAccess interface is created. The client can now request other Framework interfaces,
including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework
interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be
used during the access session in cases where adigital signature isrequired. When the client is no longer interested in
using the interfaces it calls the terminateAccess method. This resultsin the destruction of all interface objects used by
the client. In case the network operator decides that the client has no longer access to the interfaces the same will

happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

Applogic . IpAppEventNotification : IpAccess . IpEventNotification

T
1
|
1: new() |
|

g | |

L 2: obtaininterfaceWithCallback()
|

3: new()

4: createNotification()

5: reportNotification()

i

1. Thismessageisused to create an object implementing the IpAppEventNotification interface.

2: Thismessage is used to receive areference to the object implementing the | pEventNotification interface and
set the callback interface for the framework.

3. If thereiscurrently no object implementing the |pEventNotification interface, then oneis created using this
message.

ETSI

42 ETSI ES 204 915-3 V1.1.1 (2008-05)

4. createNotification(eventCriteria: in TpFwEventCriteria): TpAssignmentID.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to
the application. The framework event the application requests to be informed of is the avail ability of new
SCFs.

Newly installed SCFs become available after the invocation of registerService and
announceServiceAvailability on the Framework. The application uses the input parameter eventCriteriato
specify the SCFs of whose availability it wants to be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases
the application isinformed of the availability of alist of SCFs. The differences are:

- in the case of invoking listServiceTypes, the application hasto take the initiative, but it isinformed of
ALL SCFsavailable;

- in the case of using the event notification mechanism, the application needs not take the initiative to ask
about the availability of SCFs, but it is only informed of the onesthat are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: Theapplication is notified of the availability of new SCFs of the requested type(s).
7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as aresult of the detection of a change in load level of the framework.

: IpAppLoadManager : IpLoadManager

1: load change detection and policy evaluation

| o

N

N

N
N

)
wn
C
wn

°
@
>
2
Z
e}
S
E.i
o
5
o
>

~

N—r

This is
M P implementation
- detail

-

|
|
|
| -

3: load change det:ection/an/d policy evaluation

<

makes a decision based

Load balancing senice i
on pre-defined policy i

-~ 4: resumeNotification() ‘

5: reportLoad()

Application provides ™ - /u o

initial load report on
notification
resumption

1

ETSI

43

ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

: IpLoadManager

. IpAppLoadManager

1: queryAppLoadStatsReq()

3: queryAppLoadStatsRes() -

il

2: get load infomation

ETSI

This is the
implementation
detail

44 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registersitself and the application invokes load management function
to inform the framework of application load.

IpADDLoaGManaqer IgLoadManager

! 1: createLoadLewelNotification()

! 2: reportLoad()

This is implementation
detail. The Application H
|
|
|

may take appro_pnate 3: load change detection
load control action. i |

| initial load condition on
notification creation

4: reportLoad()

Application detects a load AN

detail. The Application -
may take appropriate

T w Application reports its

This is implementation Tl -

condition change and
- - | reports to Framework.
The Framework may take

5: load change detection

<]

load control action. ~-- appropriate load control
action - implementation

- detail.
| 6: reportLoad()-~ |

7: destroyLoadLevel Notification()

ETSI

45 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reportsits load condition to the framework load manager.

. IpAppLoadManager . IpLoadManager

1: reportLoad()

U 2: ewaluate policy

<
~

~
~
~
~
~
~

This is the implementation
detail

e
|
|
|
|
|
|
|
|

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

. IpAppLoadManager . IpLoadManager

1: queryLoadStatsReq()

U "L

2: getiload information

3: queryLoadStatsRes()
u\ This is the
implementation

detail

-

ETSI

46 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function
based on policy.

: IpAppLoadManager : IpLoadManager

: 1: createLoadLevelN otification()

initial load condition on
- -~ 7| notification creation

T
1
u Framework reports its
|
|
==
|

! 2:loadLevelNotification() - - -

3:load change d?etection & policy evaluation

|
|
|
|
| ~] This is Framework
|
|
|
|
|
|

implementation detail.
The Framework may take
Framework detects a load ™, appropriate load control
condition change U\ - action.

and notifies the
application. The
application may take

5:load change detection & policyevaluation
| N

appropriate load control _
action - implementation T L AN
detail P "6: loadLevelNotification() \

-4

This is Framework
T implementation detail. The
7: destroyLoadLevelNotification() | Framework may take
U ‘u appropriate load control
|
|
|
|
|
|
|
|
|

action.

ETSI

a7

ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

Fram ework

: I[pHeartBeat

: IpAppHeartBeatMagmt

1: enableAppHeartBeat()

2: pulse()

J

3: pulse()

U
U

4: disableAppHeartBeat()

At a certain point of
time the framework
decides to stop
heartbeat supenision

ETSI

48 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a senice instance
fails, for example via an unreturned heartbeat. The
framework should inform the application that is
using that senice instance, with the reason:
SVC_UNAVAILABLE_NO_RESPONSE.

1: swcAwailStatusind()

| |

The application may wait until i
it receives SVC_AVAILABLE ;
|
|
|

1. Theframework informsthe client application that is using the service instance that the service is unavailable.
The client application may wait to receive a new call to the svcAvailStatusind with the reason
SVC_AVAILABLE when the Service has become available again. The different Unavailability reasons used
by the Framework (TpSvcAvail StatusReason) guides the client application devel opers to make the decision.

ETSI

49 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.1.2.9 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to i
carry out an activity test. The l
framework is denoted as the target by l
an empty string value for svcld i
parameter value. ;
1: activity TestReq() i

U]

Framework carries out test and
returns result to client application.

2. activityTestRes()

1. Theclient application asks the framework to do an activity test. The client identifiesthat it would like the
activity test done for the framework, rather then a service, by supplying an empty string value for the svcld
parameter.

2: Theframework does the requested activity test and sends the result to the client application.

7.1.3 Service Agreement Management Sequence Diagrams

7.1.3.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needsto actually get away to useit.

ETSI

50 ETSI ES 204 915-3 V1.1.1 (2008-05)

Thisis achieved by the following two steps:

Application : Framework

IpSeniceAgreementManagement
T

IpAppSeniceAgreementManagement

g

1: selectService()

[

1
|
2 initiateSignSeniceAg reement(b

] i

3: signSeniceAgreement(|)

|
: U
|

4: signServiceAgreement() |

J G

!

1. Service Selection: first step - selectService

Inthisfirst step the Application identifies the SCF version it has finally decided to use. This is done by means
of the servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection
by returning to the Application an identifier for the service chosen: a service token, that is a private identifier
for this service between this Application and this network, and is used for the process of signing the service
agreement.

Input is:

- in servicel D.
Thisidentifies the SCF required.
And output:

- out serviceToken.

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement.
It contains operator specific information relating to the service level agreement. An application (identifiable by
agiven TpClientAppl D) may select the same service on more than one occasion in which case the same
serviceT oken, that identifies the relationship between the Application and the network, and the service
agreement that applies, shall be returned.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And
once these contractual details have been agreed, then the Application can be given the meansto actually use it.
The means are areference to the manager interface of the SCF version (remember that a manager is an entry
point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework
retrieves thisinterface and returns it to the Application. The service properties suitable for this application are
aso fed to the SCF (viathe lifecycle manager interface) in order for the SCS to instantiate an SCF version that
is suitable for this application.

ETSI

51 ETSI ES 204 915-3 V1.1.1 (2008-05)

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's
I pAppServiceAgreementM anagement interface before the application calls signServiceAgreement on the
frameworks's | pServiceAgreementM anagement, is the only sequence permitted.

Input:
- in serviceToken.

Thisistheidentifier that the network and Application have agreed to privately use for a certain version of
SCF.

- in agreementText.

Thisisthe agreement text that is to be signed by the Framework using the private key of the Framework.
- in signingAlgorithm.

Thisisthe agorithm used to compute the digital signature.

Output:

- out signatureAndServiceMar.

Thisis areference to a structure containing the digital signature of the Framework for the service agreement,
and a reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable
by a given TpClientAppl D) attempts to select a service for which it has already signed a service agreement and
this service agreement has not been terminated, the Framework may return a reference to the already existing
service, or may raise an exception to the client indicating that this request is denied.

7.1.4 Service Discovery Sequence Diagrams

7.1.4.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtainlnterface on the Framework's Access interface.

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods).

ETSI

52

ETSI ES 204 915-3 V1.1.1 (2008-05)

Application

. IpAccess

. IpSeniceDiscowvery

! 1: obtaininterface()

! 2: listSeniceTypes()

U

3: describeSeniceType()

|
: 4: discowerSernice()

e
|
|
|
|
|
|
|

Discovery: first step - list service types.

:
u
:

In thisfirst step the application asks the Framework what service types that are available from this network.
Service types are standardized or non-standardised SCF names, and thus this first step allows the Application
to know what SCFs are supported by the network.

The following output is the result of thisfirst discovery step:

out listTypes.

Thisisalist of service type names, i.e. alist of strings, each of them the name of a SCF or a SCF
specidization (e.g. "P_MPCC").

Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain servicetypethat itis
interested in, among those listed in the first step.

The following input is necessary:

in name.

Thisisaservice type name: a string that contains the name of the SCF whose description the Applicationis
interested in (e.g. "P_MPCC") .

And the output is:

out serviceTypeDescription.

The description of the specified SCF type. The description provides information about:

the property names associated with the SCF;

the corresponding property value types,

the corresponding property mode (mandatory or read only) associated with each SCF property;

the names of the super types of thistype; and

whether the typeis currently enabled or disabled.

ETSI

7.2

53 ETSI ES 204 915-3 V1.1.1 (2008-05)

Discovery: third step - discover service

In thisthird step the application requests for a service that matches its needs by tuning the service properties
(i.e. assigning values for certain properties).

The Framework then checks whether thereis a match, in which case it sends the Application the servicel D that
isthe identifier this network operator has assigned to the SCF version described in terms of those service
properties. Thisisthe moment where the servicel D identifier is shared with the application that isinterested on
the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responsesit
wishes to accept).

Input parameters are:
- in serviceTypeName.

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g.
"P_MPCC").

- in desiredPropertyList.

Thisisagain alist like the one used for service registration, but where the value of the service properties have

been fine tuned by the Application to (they will be logically interpreted as " minimum", "maximum”, etc. by
the Framework).

The following parameter is necessary as input:

- in max.

This parameter states the maximum number of SCFsthat are to be returned in the " ServiceList” result.
And the output is:

- out servicelList.

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements
from the Application, and about each: the identifier that has been assigned to it in this network (servicel D),
and once again the service property list.

Class Diagrams

<<lInterface>>
IpAppEventNotification
(from App Interfaces)

FreportNotification()
¥notificationTerminated()

i

<<uses>> ‘

<<Interface>>
IpEventNotification
(from Framework Interfaces)

WcreateNotification()
WdestroyNotification()

Figure 6: Event Notification Class Diagram

ETSI

54

ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>
IpAppFaultManager

<<Interface>>
IpAppLoadManager

loadLevelNotification()
resumeNotification()
suspendNotification()

activity TestRes()

appActivity TestReq()
<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> fwUnavailablelnd()
activity TestErr()

<<Interface>> createLoadLevelNotification() 355 :\;ﬁg;zlsel:gg
IpAppHeartBeatMgmt <<Interface>> destroyLoadLevelNotification() generateFaultStatisticsRecordRes()

PpAppHeartBeat queryfxpp(lj_g?dtStRatsReqo generateFaultStatisticsRecordErr() <<Interface>>
enableAppHeartBeat() h o queryLoadStatsRes() generateFaultStatisticsRecordReq() IpAppOAM
disableAppHeartBeat() -Thulse() queryLoadStatsErr() fwAvailStatusind()

h Int |
changeln e;\\/a 0 N i systemDateTimeQuery()
I I
}
| 1 ‘
<<uses>> : <<uses>> : <<uses>> :
I I
| I
| I

|
|
|
<<uses>> |
|
|
|

I
|
|
|
|
<<uses>> |
|
|
|
|

<<Interface>>

| ! IpPOAM
<<Interface>> 1 <<Interface>> <<Interface>>
IpHeartBeatMgmt <;)'S:;TBC:;> IpLoadManager IpFaultManager systemDateTimeQuery()
e_nabIeHean Beat() 0..n reportLoad() activity TestReq()
disableHeartBeat() pulse createLoadLevelNotification() appActivity TestRes()
changelntenal() destroyLoadLevelNotification() svcUnavailablelnd()
resumeNotification() appActivity TestErr()
suspendNotification() appAwailStatusind()
queryLoadStatsReq() generateFaultStatisticsRecordReq()
queryAppLoadStatsRes() generateFaultStatisticsRecordRes()
queryAppLoadStatsErr() generateFaultStatisticsRecordErr()

Figure 7: Integrity Management Package Overview

<<lInterface>>
IpAppSeniceAgreementManagement
(from App Interfaces)

PsignSeniceAgreement()
$terminateSeniceAgreement()

<<uses>>

<<Interface>>
IpSeniceAgreementManagement
(from Framework Interfaces)

¥signSeniceAgreement()
¥terminateSeniceAgreement()
WselectSenice()
FinitiateSignSeniceAgreement()

Figure 8: Service Agreement Management Package Overview

ETSI

55

<<Interface>>
IpSeniceDiscovery
(from Framework interfaces)

FistSeniceTypes()
®describeSeniceType()
BdiscoverSenice()
WlistSubscribedSenices()

<<Interface>>
IpClientAccess

(from Client interfaces)

®terminateAccess()
"

|

|

|
<<uses>> |
|
|
|
I

ETSI ES 204 915-3 V1.1.1 (2008-05)

Figure 9: Service Discovery Package Overview

<<Interface>>
IpClientAPILevelAuthentication

(from Client interfaces)

FabortAuthentication()
FauthenticationSucceeded()
challenge()

|
|
<<uses>>
|
|

<<Interface>>

<<Interface>>
IpAccess

(from Framework interfaces)

<<Interface>>
IpAPILevelAuthentication

(from Framework interfaces)

IpInitial

(from Framework interfaces)

WabortAuthentication ()
SauthenticatonSucceeded()

Wobtaininterface()
@obtaininterfaceWithCallback()

Sinitiate AuthenticationWithVersion() Blistinterfaces() %selectAuthenticationMechanism ()
@selectSigningAlgorithm () ®challenge()
®terminateAccess()
Wrelinquishinterface() \i/

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 10: Trust and Security Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery
Inherits from: Ipinterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types' of services are supported by the Framework and
what service "properties' are applicable to each service type. The listServiceTypes() method returns alist of al "service
types' that are currently supported by the framework and the " describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties’ that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values’, by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applicationsin its domain) can find out
the set of servicesavailableto it (i.e. the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs areinvoked by the enterprise operators or client applications. They are described below.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

56 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpServiceDiscovery

listServiceTypes (): TpServiceTypeNameList
describeServiceType (name: in TpServiceTypeName): TpServiceTypeDescription

discoverService (serviceTypeName: in TpServiceTypeName, desiredPropertyList: in TpServicePropertyList,
max: in TpInt32): TpServiceList

listSubscribedServices (): TpServiceList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service
types can then be obtained using the describeServiceType() method. If a sub type of a serviceis registered, this method
returns, besides the sub type, also the super type.

Returns <listTypes>: The names of the requested service types.
Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P_ACCESS_ DENIED

7.3.1.1.2 Method describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription>: The description of the specified service type. The description provides information
abouit:

. the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples;

e the names of the super types of this service type; and
. whether the servicetypeis currently available or unavailable.
Parameters
name! in TpServiceTypeName
The name of the service type to be described.
. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

ETSI

57 ETSI ES 204 915-3 V1.1.1 (2008-05)

Returns

TpServiceTypeDescription
Raises

TpCommonExceptions, P_ACCESS DENIED, P_ILLEGAL SERVICE TYPE, P_UNKNOWN_ SERVICE TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceit is
looking for, in the form of attribute/value pairs for the service properties. The client application aso specifies the
maximum number of matched responsesit iswilling to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned form a complete
view of what the client application can do with the service, as per the service level agreement. If the framework
supports service subscription, the service level agreement will be encapsulated in the subscription properties contained
in the contract/profile for the client application, which will be arestriction of the registered properties.

Returns <servicelList>: This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters
serviceTypeName. in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading”. It isthe basis for type safe interactions between the service exporters (viaregisterService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

- 1f the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception is raised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service
of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

desiredPropertyList. in TpServicePropertyList

The "desiredPropertyList” parameter isalist of service property { name, mode and value list} tuples that the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property valuesin the desired property list must be logically interpreted as "minimum®,
"maximum”, etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of values to help in the
selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyL.ist.

P_INVALID_PROPERTY israised when an application includes an unknown service property name or invalid service
property value.

max. in TpInt32

The"max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

ETSI

58 ETSI ES 204 915-3 V1.1.1 (2008-05)

Returns

TpServiceList
Raises

TpCommonExceptions, P_ACCESS DENIED, P_ILLEGAL SERVICE TYPE, P_UNKNOWN SERVICE TYPE,
P_INVALID PROPERTY

7.3.1.1.4 Method listSubscribedServices()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList>: The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServiceList
Raises

TpCommonExceptions, P_ACCESS DENIED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement
Inherits from: Iplnterface.

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in
TpSigningAlgorithm): TpOctetSet

terminateServiceAgreement (serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpOctetSet): void

7.3.2.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

ETSI

59 ETSI ES 204 915-3 V1.1.1 (2008-05)

Returns <digital Signature>: This containsa CM S (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature” construct shall not be used (i.e. the eContent field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters
serviceToken. in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceToken isinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText. in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText isinvalid, thenthe P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm! in TpSigningAlgorithm

Thisisthe agorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to | pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client application, the P_INVALID_SIGNING_ALGORITHM exception isthrown. The list of possible algorithms
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fieldsin the Signerinfo field in the digital Signature (see below).

Returns
TpOctetSet
Raises

TpCommonExceptions, P_INVALID AGREEMENT TEXT, P_INVALID SERVICE TOKEN, P INVALID SIGNING ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()
This method is used by the framework to terminate an agreement for the service.

Parameters
serviceToken. in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

terminationText. in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digitalSignature. in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing a gorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to confirm itsidentity to the client application. The
client application can check that the terminationText has been signed by the framework. If a match is made, the service
agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

ETSI

60 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID SERVICE TOKEN, P_INVALID SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement
Inherits from: Iplnterface.

Thisinterface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken: in TpServiceToken, agreementText: in TpString, signingAlgorithm: in
TpSigningAlgorithm): TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken: in TpServiceToken, terminationText: in TpString,
digitalSignature: in TpOctetSet): void

selectService (servicelD: in TpServicelD): TpServiceToken

initiateSignServiceAgreement (serviceToken: in TpServiceToken): void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's | pAppServiceAgreementM anagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
allows the client application to use the service. A reference to the service manager interface of the service isreturned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be arestriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the
response of signServiceAgreement() on the application's | pAppServiceAgreementM anagement interface has compl eted,
a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service
for which it has already signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned.

Returns <signatureAndServiceMgr>: This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {
digitalSignature: TpOctetSet;
serviceMgrInterface: IpServiceRef;

}i

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signatureis calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall aso be used to provide replay prevention.

ETSI

61 ETSI ES 204 915-3 V1.1.1 (2008-05)

The serviceMgrinterface is areference to the service manager interface for the selected service.

Parameters
serviceToken. in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText. in TpString

Thisisthe agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one used by the framework when
invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, isinvalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns
TpSignatureAndServiceMgr
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID AGREEMENT TEXT, P INVALID SERVICE TOKEN,
P_INVALID SIGNING ALGORITHM, P_SERVICE_ ACCESS_DENIED

7.3.2.2.2 Method terminateServiceAgreement()
This method is used by the client application to terminate an agreement for the service.

Parameters
serviceToken. in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

terminationText. in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.
digitalSignature. in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing a gorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by
the client application. If amatch is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) isreturned.

Raises

TpCommonExceptions, P _ACCESS DENIED, P_INVALID SERVICE TOKEN, P INVALID SIGNATURE

ETSI

62 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.2.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishesto use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS DENIED exception is thrown.

Returns <serviceToken>: Thisisafree format text token returned by the framework, which can be signed as part of a
service agreement. Thiswill contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expireif the client
application or framework invokes the terminateAccess method on the other's corresponding accessinterface.

Parameters
serviceID. in TpServicelID

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

Returns

TpServiceToken
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE ID, P_SERVICE ACCESS_DENIED

7.3.2.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not alowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS DENIED) isthrown.

Parameters
serviceToken. in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpCommonExceptions, P_INVALID SERVICE TOKEN, P _SERVICE ACCESS DENIED
7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Ipinterface.

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccessinterface.

ETSI

63 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): void
appActivityTestReq (activityTestID: in TpActivityTestID): void

<<deprecated>> fwFaultReportind (fault: in TpinterfaceFault): void

<<deprecated>> fwFaultRecoverylnd (fault: in TpInterfaceFault): void

<<deprecated>> fwUnavailableInd (reason: in TpFwUnavailReason): void

activityTestErr (activityTestID: in TpActivityTestID): void

appUnavailablelnd (servicelD: in TpServicelD): void

svcAvailStatusind (servicelD: in TpServicelD, reason: in TpSvcAvailStatusReason): void

generateFaultStatisticsRecordRes (faultStatsReqID: in TpFaultReqID, faultStatistics: in TpFaultStatsRecord,
servicelDs: in TpServicelDList): void

generateFaultStatisticsRecordErr (faultStatsReqID: in TpFaultReqID, faultStatistics: in TpFaultStatsErrorList,
servicelDs: in TpServicelDList): void

generateFaultStatisticsRecordReq (faultStatsReqID: in TpFaultReqID, timePeriod: in TpTimelnterval): void

fwAvailStatusind (reason: in TpFwAvailStatusReason): void

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult. in TpActivityTestRes

The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivityTestRes method on the |pFaultM anager interface.

Parameters
activityTestID. in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable.

ETSI

64 ETSI ES 204 915-3 V1.1.1 (2008-05)
The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).
Parameters

fault! in TpInterfaceFault

Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoverylnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters
fault! in TpInterfaceFault

Specifies the fault from which the framework has recovered.

7.3.3.1.5 Method <<deprecated>> fwUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and a so when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.
Parameters
reason. in TpFwUnavailReason

I dentifies the reason why the framework is no longer available.

7.3.3.1.6 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.7 Method appUnavailablelnd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters
serviceID. in TpServicelID

Specifies the service for which the indication of unavailability was received.

ETSI

65 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.1.8 Method svcAvailStatusind()

The framework invokes this method to inform the client application about the Service instance availability status,

i.e. that it can no longer use its instance of the indicated service according to the reason parameter but as well
information when the Service I nstance becomes available again. On receipt of this request, the client application either
actsto reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication
interfaces, to stop use of this service instance and begin use of a different service instance). The client application can
also wait for the problem to be solved and just stop the usage of the service instance until the svcAvailStatusind() is
called again with the reason SVC_AVAILABLE.

Parameters

serviceID. in TpServicelID
Identifies the affected service.
reason. in TpSvcAvailStatusReason

Identifies the reason why the service is ho longer available or that it has become available again.

7.3.3.1.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in responseto a
generateFaul tStati sticsRecordReq method invocation on the | pFaultManager interface.

Parameters

faultStatsReqID. in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.
faultStatistics. in TpFaultStatsRecord

The fault statistics record.

serviceIDs. in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

In the case where alist of servicesis present, thisis an ordered list in which the location of the servicein thislist
corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStati sticsRecordReg method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID. in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.
faultStatistics: in TpFaultStatsErrorList

Thelist of fault statistics errors returned.

serviceIDs. in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the servicelDs
parameter is an empty list, then the fault statistics error relates to the framework.

In the case where a list of servicesis present, thisis an ordered list in which the location of the servicein thislist
corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

ETSI

66 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.1.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the generateFaultStati sticsRecordReq operation
on the I pFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics
record, for the application during the specified timeinterval, which is returned to the framework using the

generateFaul tStati sticsRecordRes operation on the | pFaultM anager interface.

Parameters

faultStatsReqID. in TpFaultRegID

Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.12 Method fwAvailStatusind()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The client application may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters
reason. in TpFwAvailStatusReason

I dentifies the reason why the framework is no longer available or that it has become available again.

7.3.3.2 Interface Class IpFaultManager
Inherits from: Iplnterface.

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application suppliesits Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback
operation on the IpAccess interface.

If the IpFaultManager interface isimplemented by a Framework, at least one of these methods shall be implemented. If
the Framework is capabl e of invoking the | pAppFaultManager.appActivity TestReq() method, it shall implement
appActivityTestRes() and appActivityTestErr() in thisinterface. If the Framework is capable of invoking

| pAppFaultM anager.generateFault Stati sticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

ETSI

67 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpFaultManager

activityTestReq (activityTestID: in TpActivityTestID, svcID: in TpServicelD): void

appActivityTestRes (activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): void
svcUnavailablelnd (servicelD: in TpServicelD): void

appActivityTestErr (activityTestID: in TpActivityTestID): void

appAvailStatusind (reason: in TpAppAvailStatusReason): void

generateFaultStatisticsRecordReq (faultStatsReqID: in TpFaultReqID, timePeriod: in TpTimelnterval,
servicelDs: in TpServicelDList): void

generateFaultStatisticsRecordRes (faultStatsReqID: in TpFaultReqID, faultStatistics: in TpFaultStatsRecord):
void

generateFaultStatisticsRecordErr (faultStatsReqID: in TpFaultReqID, faultStatisticsError: in
TpFaultStatisticsError): void

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out atest on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the

I pAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance 1D
from the service ID.

Parameters

activityTestID. in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID. in TpServicelID

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

7.3.3.2.2 Method appActivityTestRes()
The client application uses this method to return the result of a framework-requested activity test.

Parameters
activityTestID. in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

ETSI

68 ETSI ES 204 915-3 V1.1.1 (2008-05)

activityTestResult. in TpActivityTestRes
The result of the activity test.
Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.3 Method svcUnavailablelnd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailurein the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters

serviceID. in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

7.3.3.2.4 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-regquested activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.5 Method appAvailStatusind()

This method is used by the application to inform the framework of its availability status. If the Application has detected
afailureit uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of
all of its subscribed service instances. When the Application is working again it shall call this method again with the
APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters
reason. in TpAppAvailStatusReason

I dentifies the reason why the application is no longer available. APP_AVAILABLE isused to inform the Framework
and the Service that the Application is available again.
Raises

TpCommonExceptions

7.3.3.2.6 Method generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce afault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the
generateFaul tStati sticsRecordRes operation on the | pAppFaultManager interface. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

ETSI

69 ETSI ES 204 915-3 V1.1.1 (2008-05)

Parameters

faultStatsReqgID. in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.
timePeriod. in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

serviceIDs. in TpServiceIDList

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

7.3.3.2.7 Method generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqgID. in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics. in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.8 Method generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a generateFaultStati sticsRecordReq method invocation on the | pAppFaultM anager interface.

Parameters

faultStatsReqID. in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError. in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

ETSI

70 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval: in TpInt32, fwinterface: in IpHeartBeatRef): void
disableAppHeartBeat (): void

changelnterval (interval: in TpInt32): void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval. in TpInt32

Thetime interval in milliseconds between the heartbeats.
fwInterface. in IpHeartBeatRef

This parameter refersto the callback interface the heartbeat is caling.

7.3.3.3.2 Method disableAppHeartBeat()
Instructs the client application to cease the sending of its heartbeat.
Parameters

No Parameters were identified for this method.

7.3.3.3.3 Method changelnterval()
Allows the administrative change of the heartbeat interval.

Parameters
interval. in TpInt32

Thetime interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat
Inherits from: Ipinterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

ETSI

71 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpAppHeartBeat

pulse (): void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. If the pul se()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application. If the
IpHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBest()
shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval: in TpInt32, applnterface: in IpAppHeartBeatRef): void
disableHeartBeat (): void

changelnterval (interval: in TpInt32): void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval: in TpInt32

Thetime interval in milliseconds between the heartbeats.
appInterface. in IpAppHeartBeatRef

This parameter refersto the callback interface the heartbeat is calling.

ETSI

72

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.
Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changelnterval()

Allows the administrative change of the heartbest interval.
Parameters

interval. in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat

Inherits from: Iplinterface;

ETSI ES 204 915-3 V1.1.1 (2008-05)

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking |pAppHeartBeatM gmt.enableHeartBeat(), it shall implement |pHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse (): void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pAppHeartBeatM gmt.enableA ppHeartbeat() method. If the
pulse() is not received within the specified interval, then the client application can be deemed to have failed the

heartbest.

Parameters

No Parameters were identified for this method.
Raises

TpCommonExceptions

ETSI

73 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Iplnterface.

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework 1oad manager function. The application supplies the identity of this callback interface at
thetime it obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

loadLevelNotification (loadStatistics: in TpLoadStatisticList): void

resumeNotification (): void

suspendNotification (): void

createLoadLevelNotification (): void

destroyLoadLevelNotification (): void

queryAppLoadStatsReq (loadStatsReqID: in TpLoadTestID, timelnterval: in TpTimelnterval): void
queryLoadStatsRes (loadStatsReqID: in TpLoadTestID, loadStatistics: in TpLoadStatisticList): void
queryLoadStatsErr (loadStatsReqID: in TpLoadTestID, loadStatisticsError: in TpLoadStatisticError): void

7.3.3.7.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters
loadStatistics! in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.2 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.qg. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client
application shall inform the framework of the current load using the reportLoad method on the corresponding
IpLoadManager.

Parameters

No Parameters were identified for this method.

ETSI

74 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.7.3 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method.

7.3.3.7.4 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the
application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding | pLoadM anager.

Parameters

No Parameters were identified for this method.

7.3.3.7.5 Method destroyLoadLevelNotification()
The framework uses this method to unregister for notifications of load level changes associated with the application.
Parameters

No Parameters were identified for this method.

7.3.3.7.6 Method queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.
Parameters

loadStatsReqID. in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval. in TpTimeInterval

Specifies the timeinterval for which load statistic records should be reported.

7.3.3.7.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information;
i.e. in response to an invocation of the queryL oadStatsReqg method on the | pLoadManager interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.
loadStatistics! in TpLoadStatisticList

Specifies the framework-supplied load statistics.

ETSI

75 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.7.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadStatsReq method on the I pLoadManager interface.

Parameters
loadStatsReqID. in TpLoadTestID
Used by the client application to correlate this error (when it arrives) with the original request.

loadStatisticsError. in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.8 Interface Class IpLoadManager
Inherits from: Ipinterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at al costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework 1oad management function is
represented by the |pLoadM anager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's load manager interface, by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

If the IpLoadManager interface isimplemented by a Framework, at least one of the methods shall be implemented asa
minimum requirement. If load level notifications are supported, the createl oadl evelNotification() and
destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() isimplemented, then
resumeNotification() shall be implemented aso. If a Framework is capable of invoking the

| pAppL oadM anager.queryAppL oadStatsReq() method, then it shall implement queryAppLoadStatsRes() and
queryAppLoadStatsErr() methods in this interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel: in TpLoadLevel): void
createLoadLevelNotification (servicelDs: in TpServicelDList): void
destroyLoadLevelNotification (servicelDs: in TpServicelDList): void
resumeNotification (servicelDs: in TpServicelDList): void
suspendNotification (servicelDs: in TpServicelDList): void

queryLoadStatsReq (loadStatsReqID: in TpLoadTestID, servicelDs: in TpServicelDList, timelnterval: in
TpTimelnterval): void

queryAppLoadStatsRes (loadStatsReqID: in TpLoadTestID, loadStatistics: in TpLoadStatisticList): void
queryAppLoadStatsErr (loadStatsReqID: in TpLoadTestID, loadStatisticsError: in TpLoadStatisticError): void

ETSI

76 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0, 1 or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is hot congested or overloaded). At
level 1 1oad, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this
method shall be called by the application in order to report current load status, when load notifications are first
requested, or resumed after suspension.

Parameters

loadLevel. in TpLoadLevel
Specifies the application's load level.
Raises

TpCommonExceptions

7.3.3.8.2 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_ UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon receipt of
this method the framework shall inform the client application of the current framework or service instance load using
the loadL evel Natification method on the corresponding 1pAppL oadM anager.

Parameters
serviceIDs. in TpServiceIDList

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

7.3.3.8.3 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

serviceIDs. in TpServiceIDList
Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

ETSI

77 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.8.4 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon
receipt of this method the framework shall inform the client application of the current framework or service instance
load using the loadL evel Notification method on the corresponding IpAppLoadManager.

Parameters
serviceIDs. in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.5 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters
serviceIDs. in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P_SERVICE NOT ENABLED, P_UNAUTHORISED PARAMETER VALUE

7.3.3.8.6 Method queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the specified
servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of
the exception shall contain the corresponding servicel D.

Parameters

loadStatsReqID. in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.
serviceIDs. in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval. in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

ETSI

78 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P_SERVICE NOT ENABLED, P_UNAUTHORISED PARAMETER VALUE

7.3.3.8.7 Method queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadStatsReq method on the |pAppL oadM anager
interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics! in TpLoadStatisticList

Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.8 Method queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadStatsReq method on the | pA ppLoadManager interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticsError: in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions

7.3.3.9 Interface Class IpOAM
Inherits from: Iplnterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. Thisinterface
and the systemDateTimeQuery() method are optional.

<<Interface>>
IpPOAM

systemDateTimeQuery (clientDateAndTime: in TpDateAndTime): TpDateAndTime

ETSI

79 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime>: This is the system date and time of the framework.
Parameters

clientDateAndTime. in TpDateAndTime

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDateAndTime
Raises

TpCommonExceptions, P _INVALID TIME AND DATE FORMAT

7.3.3.10 Interface Class IpAppOAM
Inherits from: Ipinterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method isinvoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>

IpPAppOAM

systemDateTimeQuery (systemDateAndTime: in TpDateAndTime): TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passesin its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime>: Thisis the date and time of the client (application).
Parameters

systemDateAndTime. in TpDateAndTime

Thisisthe system date and time of the framework.

Returns

TpDateAndTime

ETSI

80 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification
Inherits from: Iplnterface.

Thisinterface is used by the framework to inform the application of a generic service-related event. The Event

Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the

Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo: in TpFwEventinfo, assignmentID: in TpAssignmentID): void

notificationTerminated (): void

7.3.4.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.
Parameters

eventInfo. in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID. in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteriaand to act accordingly.

7.3.4.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to

faults detected).
Parameters

No Parameters were identified for this method.

ETSI

81 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.3.4.2 Interface Class IpEventNotification
Inherits from: Iplnterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNotification() methods shall be supported.

<<Interface>>

IpEventNotification

createNatification (eventCriteria: in TpFwEventCriteria): TpAssignmentID

destroyNotification (assignmentID: in TpAssignmentID): void

7.3.4.2.1 Method createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D>: Specifies the ID assigned by the framework for this newly installed notification.
Parameters

eventCriteria! in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns

TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CRITERIA, P_INVALID EVENT TYPE

7.3.4.2.2 Method destroyNoaotification()
This method is used by the application to delete generic notifications from the framework.
Parameters

assignmentID. in TpAssignmentID
Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the

assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID ASSIGNMENT ID

ETSI

82 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

obtai nFrameworkInterfac e(discoweryService)
obtaininterface WithCallback(dis coverySenvice)

listSeniceTypes
describeSeniceType
[listSubscribedServices
discowverSenice
Activej
-

IpAccess.endAccess

\
®
L)
Figure 11: State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application reguests Service Discovery by invoking the obtainl nterface or the obtainl nterfaceWithCallback
methods on the IpAccess interface, an instance of the |pServiceDiscovery will be created. Next the applicationis
allowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management.

ETSI

83 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

reportLoad
“load change" NloadLevelNotification queryAppLoadStatsR es| load statistics requested byLoadManager |
queryAppLoadStatsErr| load statistics requested by LoadManager]
createLoadLevelNotification NoadLevelNotification \(Active } queryLoadStatsReq

destroyLoadLewelN otification

IpAccesshobtainl

IpAccess gbtaipinterfaceWithCallback

resumeNotification
"NoadLevelNotification

reportLoad
queryAppLoadStatsRes|[load statistics requested byLoadManager]
ueryApplLoadStatsErr[load statistics requested by LoadManager]
Notification queryLoadStatsReq
Suspended

destroyLoadLevelNotification

All States

IpAccess.terminateAccess

suspendNotification[all notifications
suspended]

Figure 12: State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now reguest the application to supply load statistics
information (by invoking queryAppL oadStatsReq|()). Furthermore the LoadManager can request the application to
control itsload (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the application
side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

ETSI

84 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.4.3.2 State Transition Diagrams for LoadManagerinternal

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senvices.

registerLoadController

I

I
I
I

Application Overload

reportLoad| loadlevel =0]

[Normal load

reportLoad[loadlevel = 0]
“internal load change detection”

"internal load change tb non ovenoaded" interrjal load change detection”

"internal load change/to non gqverload”

reportLoad[loadlewel != 0]

Internal overload
Internal and Application Oerload

\\ reportLoad| loadlevel = 0]
\
\

A necessary action can be AN
suspending the load

notifictions from the

application by invoking

sus pendNotification or

enabling load control
mechanisms onthe

application by invoking
enableLoadControl.

Figure 13: State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs
is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

85 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess. obtaininterfaceWithCallback

systemDateTimeQuery

IpAccess.terminateAccess

Figure 14: State Transition Diagram for IDOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management
‘change in framework availabililty (non fault) ~fwAvailStatusind to all applicationswith callback
‘change in service availability' ~svcAvailStatusind to all applications using the service

svcUnavailablelnd / test the service, inform service that application is not using it
generateFaultStatisticsRecordReq "app.generateFaultStatisticsRecordRes / Emr

service fault ~svcAvailStatusind to all applications using the service (" Framework ‘

Active ‘ no fault detected

activityTestReq[
empty string]

activityTestReq[scflD

no fault detected

Framework Activity T est

Service Activity Test

IpAccess.téxqinateAccess | €Ntry/ test activity of framework
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

entry/ test activity of service
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErm

IpAccess.terminateAccess /

fault detected in fw Abort pending/test requiest

IpAccess.terminateAccess/ remove
application from load management

O fault detected in fw

Framework Faulty ‘

entry/ MfwAvailStatusind to all applications with callback
exit/ ~MwAuvailStatusind to all applications with callback
N J

Figure 15: State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

ETSI

86 ETSI ES 204 915-3 V1.1.1 (2008-05)

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified viaa fwAvail Statusl nd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problemis diagnosed, all applications with fault
management callbacks are notified through a fwAvail Statuslnd message.

7.4.3.4.4 Service Activity Test State
In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcAvail Statusind message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

. createNotification

IpAccess,obtaininterface destroyNoatification
IpAccess.obtainlnterfaceWithCallback

createNotification
Notification
Active

destroyNotification[no more notificationg installed]

IpAccess terminateAccess
IpAccess.terminateAccess

Figure 16: State Transition Diagram for IpEventNotification

8 Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

ETSI

87 ETSI ES 204 915-3 V1.1.1 (2008-05)

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
the role of users or consumers of services. The framework itself actsin therole of retailer of services. The following
examplesillustrate these roles:

. Service (to be subscribed): Call Centre Service, Mobility Service, etc.
. Framework Operator: AT&T, BT, etc.

. Enterprise Operator: A Financia institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application inits domain which "talks' to
its peer in the Framework).

. User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call
Centre Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which actsin the role of service
subscriber) and the Framework (which actsin the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

ETSI

88 ETSI ES 204 915-3 V1.1.1 (2008-05)

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage

Framework (In the role
of Service Retailer)

Authorises

Client Application (In the role of
User or Consumer of Services)

Figure 17: Subscription Business Model

The interfaces between an enterprise operator and the client applicationsin its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin its domain in order to assign the same set of service features to the group. Such agroup iscalled a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsin itsdomain. A SAG relatesa
client application to the features of aservice. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
SAG's needs. A service profile istherefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by a unique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

ETSI

89 ETSI ES 204 915-3 V1.1.1 (2008-05)

Client Applicationsand SAGsin the Enterprise Domain

Service Contractsfor Individual Services
ibed Dby Enterprise Operate

Service Profilesin a Service Contract

Figure 18: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application isrelated to the enterprise operator for the usage of a service. The client application is
represented in the Framework domain as a clientApp object. The clientApp object is identified by aunique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service
contracts and service profiles.

An enterprise operator may not want to grant all client applicationsin its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control accessto service 1. If the dates in the two service profiles overlap, asis the case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8", then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with
it.

ETSI

90 ETSI ES 204 915-3 V1.1.1 (2008-05)

SAG

Client Client
App.1 App.3

SAG

Client Client
App.1 App.2

viceProfil
Start; 08, Feb
End: 30, Feb
ServicelD: 1

erviceProfile
Start; 02, Feb
End: 10, Feb

ServicelD: 2

Start; 02, Feb
End: 10, Feb
ServicelD: 1

Figure 19: Overlapping date fields in service profiles

Enterprise Enterprise

Operator 1 / Operator 2

Enterprise
Operator 3

Cie

Figure 20: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in adifferent network. The client application |Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

. Enterprise Operator Account Management.
. Enterprise Operator Account Query.

. Service Contract Management.

ETSI

91 ETSI ES 204 915-3 V1.1.1 (2008-05)

. Service Contract Query.

. Service Profile Management.

. Service Profile Query.

. Client Application Management.
. Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

8.1.2 Service Subscription Sequence Diagrams

8.1.2.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behal f
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the IpServiceDiscovery interface. Initially, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on I pServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicableto a
particular service type. Subsequently it invokes discoverService() to discover the services of a given type which
supports the desired set of property values. The discoverService() method returns alist of "servicel Ds' and their
associated property values. The service discovery phaseis followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

The enterprise operator invokes the createServiceContract() on | pServiceContractM anagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, al registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are arestriction of the service contract) by invoking
createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the IpServiceDiscovery interface. This method returns alist of servicel Ds of the set of subscribed services.
The service contract ceases to exist after the specified end date. The deleteServiceContract del etes the service contract
object held in the framework. It is up to the discretion of the Framework operator to alow the enterprise operator to
delete a service contract before its specified end date.

ETSI

92 ETSI ES 204 915-3 V1.1.1 (2008-05)

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, via the selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the service that it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a"serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the serviceis not subscribed
by the enterprise operator, then a " service not subscribed" exception israised. The signServiceAgreement() isinvoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as away of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use this interface
reference to start the service.

|
14: listSubscribedServices()

T

|
istSubs cribedSer vﬂ‘es()

| 1

|
|
: 16: descnbes‘bmceComract()
|
|

|

|

|

|

!

| |

| |

| | |

17 ¢ vealeSevviceComr‘Ecl(\ n TpServi ceComvac‘lD escription)
|
|
|
|
|
|

L ; : IpAccess : IpServiceDiscovery : IpServiceContr it : | pSer vic eContr actinfaQ uer : IpServicePr it : |pSevic eProfil d no Query
EnterpriseOperator | | ClientA
T T T T T T T
Auth. phase I\					
followed by					
[
1 obaininterface()					
1					
[l					
2: listServiceTypes()					
t t					
U		/U			
[3: describeServiceTypé()					
t t					
U		/U			
	Find desired [
		Services			
1 4: dis cover Service()					
t t					
U		/u			
5: obtain! \[f					
I ottaininierface()	I I I I I				
1 I I I I I					
0	[Subscribe . D\				
I	! I	the Services ! ! ! !			
6: createServiceContract(in TpServiceContractD pro					
t t t					
U ! ! ! /U create more ! ! !					
! ! ! ! SPsinSC ! ! !					
: : : : 7 cvealeSevviceProhleq : : :					
				gl	
[l					
			8:assign()		
t t t t t					
U					
: : : : 9: modifySevviceProhleq : :					
[l					
			10:asign() !		
} } } }					
	11: descyibeServiceProfile()				
1 1 1 /u					
	12: eleteServicePrdile()				
. et i &					
13: modifyServic: ; ontract(in TpServiceC ‘nlracl)					

e A e

e Y e Y ey s SO s P s P s

Y Y

ETSI

93 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

Thefirst step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator via interfaces outside of the present document.
When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
inits domain. The enterprise operator obtains the reference to the |pEntOpManagement interface by invoking
obtainlnterface() on the IpAccessinterface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the I pEntOpA ccountlnfoQuery interface and modify the subscriber-rel ated
information contained in its subscription account by invoking modifyEntOpAccount() on | pEntOpAccountM anagement
interface.

An enterprise operator usually has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (arestriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on

I pClientAppManagement interface. The enterprise operator groups a related set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also
performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), lissSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

ETSI

ETSI ES 204 915-3 V1.1.1 (2008-05)

94

InfoQue

IpClientA

IpClientAppManagem ent

IpEntOpAccountinfoQuery

v
— [
g
- é 5
5 —) z
: = ~ ~ =l T Z <
) f=4 ~ ~ () ..
g g8 ~ z g = g = = S z
= _ Nt < £ Q o
= e [4 13 = < c s P -
k=l o |5 [}) %) 2
= e T e — L) (e
3 o E o o = [¥] < 5
8 z e |e © Q = K 2 @ 8
o H T |59q |2 5 5 2 kS [£
< 5 s|88 © g S E 5| s s
le) 8 S |Ow o k] € [e m N
> 8 e = S
= < o . & S e
o A 3 ~ 4
= @) —
<
: 9
9 5 2 =1 g
: g g 2 2
o S) I o
L J— D - _—ad_____ N) N S I [e
B4 pe m S 8 w_ w_y 2
= = 0 X N < S
i S o @8 g Q
R Q g
= [=4
g8 @ ~ a
o%o Z > Z = L
£ | % 5 g g ©
N Bz S 5 Bl 5} 7}
= = = °
ol ol ag 8 c £ t f} e
R gcs | £ @ g E =
g Hr--€c8f rE|-----4---2- e N e N
£l 0 c c =
ISl = 2 ‘S T 5}
£ © w8E | £ £ 2
F&3 S ° 2
— < <
85
ERS
e - - - - -- F - F-- - - F - F---- H - -- -- F- A -- F-----
|
gl ©

ETSI

95 ETSI ES 204 915-3 V1.1.1 (2008-05)

Class Diagrams

<<Interface>>
IpClientE entNotification
(from Client Interfacey

@reportNotification()
@notificationTerminated()

<<yuses>> |

<<Interface>>
IpEventNotification
(from Framework Interfaces)

®createNotification()
®destroyNotification()

Figure 21: Event Notification Package Overview

<<Interface>>

<<Interface>> IpClientAPILevelAuthentication
IpClientAccess (from Client interfaces)
(from Client interfaces)
WabortAuthentication()
SterminateAccess() SauthenticationSucceeded()
‘ Schallenge()
I
! l}
<<uses>> ! |
I
| <<uses>> |
I
<<Interface>> :
IpAccess <<Interface>>
<<Interface>> (from Framework interfaces) IpAPILevelAuthentication
Ipnitial (from Framework interfaces)
(from Framework interfaces) Fobtainl nterface()
Sobtai ninterfaceWith Callback() MabortAuthentication()
WinitiateAuthenticationwWithVersion() Siistinterfaces() SauthenticationSucceeded()
MselectSigningAlgorithm () WselectAuthenticationMechanism()
SterminateAccess() Schallenge()
Srelinquishinterface()

v

<<Interface>>
IpAuthentication
(from Framework interfaces)

¥requestAccess()

Figure 22: Trust and Security Management Package Overview

ETSI

96 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>
IpClientAppManagement
(from Fram ewo ki nterfaces)
<<Interface>>
IpClientAppinfoQuery Wcreate ClientApp()
(from Fram ework inte faces) ““modiﬁ/CIientApp()
FdeleteClientApp()
SdescribeClientApp() Wcreate SAG()
WlistClientApps() ¥modifySAG()
WdescribeSAG() WdeleteSAG()
BlistSAGs() SaddSAGMembers()
WlistSAGMembers() WremoveSA GMembers()
WlistClientAppMembership() WrequestConflictinfo ()

<<Interface>>
IpEntOpAccountManagement
(from Framework interfaces)

<<Interface>>
IpSeniceContractinfoQuery

(from Framework interfaces)

<<Interface>>
IpEntOpAccountinfoQuery

(from Frameworkinterfaces)

SmodifyEntOpAccount () WdescribeSeniceContract ()
WdeleteE ntOpAccount() i stSeniceContracts()

FlistSeniceProfiles()

SdescribeEntOpAccount()

<<Interface>>
<<Interface>> | q <<Interface>>
) pSeniceProfileManagement ISeni
eniceContractManagement
IpSer\nceProﬁIeInfoQuery (from Framework interfaces) P . 9
(fom Fram ework i nterfaces) (from Framework interfaces)
FcreateSeniceProfile()
- SroatSeniceproi B eteSenecomet)
describeService Profile() WdeleteSeniceProfile() — ;
$listAssignedMembers() Vassign() deleteSernviceContract()
Wdeassign()

WrequestConflictinfo()

Figure 23: Service Subscription Package Overview

8.3 Interface Classes

8.3.1 Event Notification Interface Classes

8.3.1.1 Interface Class IpClientEventNotification
Inherits from: Ipinterface.

Thisinterface is used by the framework to inform the client of a generic event. The Event Notification Framework will
invoke methods on the Event Notification Client Interface that is specified when the Event Notification interfaceis
obtained.

ETSI

97 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpClientEventNotification

reportNotification (eventinfo: in TpFwEventinfo, assignmentID: in TpAssignmentID): void
notificationTerminated (): void

8.3.1.1.1 Method reportNotification()

This method notifies the client of the arrival of a generic event.
Parameters

eventInfo. in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID. in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The client
can use assignment id to associate events with event specific criteria and to act accordingly.

8.3.1.1.2 Method notificationTerminated()

This method indicates to the client that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters

No Parameters were identified for this method.

8.3.1.2 Interface Class IpEventNotification
Inherits from: Ipinterface.

The event notification mechanism is used to notify the client of generic events that have occurred. If Event Notifications
are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be
supported.

<<Interface>>

IpEventNotification

createNatification (eventCriteria: in TpFwEventCriteria): TpAssignmentID

destroyNotification (assignmentID: in TpAssignmentID): void

ETSI

98 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.1.2.1 Method createNotification()

This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentl D>: Specifies the ID assigned by the framework for this newly installed notification.
Parameters

eventCriteria! in TpFwEventCriteria

Specifies the event specific criteria used by the client to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CRITERIA, P INVALID EVENT TYPE

8.3.1.2.2 Method destroyNoatification()
This method is used by the client to delete generic notifications from the framework.

Parameters
assignmentID. in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was caled. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions, P _ACCESS DENIED, P_INVALID ASSIGNMENT ID

8.3.2 Service Subscription Interface Classes

8.3.2.1 Interface Class IpClientAppManagement
Inherits from: Iplnterface.

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface isintended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed servicesin the enterprise operator's name. The main task of client
application management is to register, modify and delete client applications (Client Application Management), and
manage groups of client applications, called Subscription Assignment Groups (SAG Management).

ETSI

99 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription: in TpClientAppDescription): void
modifyClientApp (clientAppDescription: in TpClientAppDescription): void
deleteClientApp (clientAppID: in TpClientAppID): void

createSAG (sag: in TpSag, clientApplIDs: in TpClientAppIDList): void

modifySAG (sag: in TpSag): void

deleteSAG (saglD: in TpSagID): void

addSAGMembers (saglID: in TpSagID, clientAppIDs: in TpClientApplIDList): void
removeSAGMembers (saglID: in TpSagID, clientApplDList: in TpClientApplIDList): void
requestConflictinfo (): TpAddSagMembersConflictList

8.3.2.1.1 Method createClientApp()

A client application is represented in the Framework domain as a " clientApp object". This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored in it.

Parameters
clientAppDescription. in TpClientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that isto be associated with the newly created
clientApp object and the subscription-related "client application properties'. The clientApp ID must be aunique ID
across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are alist of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID

8.3.2.1.2 Method modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
clientAppDescription. in TpClientAppDescription

The "clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

ETSI

100 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.1.3 Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client application currently has an
access session with the framework then this will be terminated, along with any service instances it may have created.
An exception of "P_TASK_REFUSED" will be raised if a non-associated enterprise operator invokes this method.

Parameters
clientAppID. in TpClientAppID

The"clientApplD" parameter identifies the client application that isto be deleted. If the clientAppl D does not exist, a
"P_INVALID_CLIENT_APP_ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID

8.3.2.1.4 Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters
sag. in TpSag

The"sag" parameter contains the SAG-ID and SAG-specific description. This saglD is particular to the SAG, and must
be unique across framework. If the saglD supplied already exists, an exception of type"P_INVALID_SAG_ID" would
be raised.

clientAppIDs. in TpClientAppIDList

The "clientAppl Ds" parameter containsthe list of client application IDsthat are to be associated with the newly created
SAG.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID, P_INVALID_ SAG_ID

8.3.2.1.5 Method modifySAG()

Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
sag. in TpSag

The"sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG ID

8.3.2.1.6 Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
sagID. in TpSagID

The "sagID" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" israised.

ETSI

101 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG ID

8.3.2.1.7 Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method. Each client application may be assigned to a service
only through a single service profile at a particular moment in time. If this condition is violated, a
"P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed.
The enterprise operator can query further information about this invalid addition using the method
requestConflictinfo().

Parameters
sagID. in TpSagID

The "saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs. in TpClientAppIDList

The "clientApplDs" parameter containsthe list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or all of the client application IDsin the
list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID, P_INVALID SAG_ID,
P_INVALID ADDITION TO SAG

8.3.2.1.8 Method removeSAGMembers()

Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters
sagID. in TpSagID

The"saglD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList. in TpClientAppIDList

The"clientAppIDList" parameter contains the list of the clientApp IDsthat are to be removed from the specified SAG.
If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP ID, P_INVALID SAG ID

8.3.2.1.9 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method addSagM embers() on this
interface (i.e. Information about the invocation of addSagM embers() that raised a
P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through asingle
service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG,
where both, the client application and the SAG are already assigned to the same service through different service
profiles. Asthis may happen in one method call for multiple client applications, a conflict list is generated.

ETSI

102 ETSI ES 204 915-3 V1.1.1 (2008-05)
It isonly possible to retrieve information about the last conflicting addSagMembers() method call; information about
previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList>: Thelist of conflicts of the last invocation of addSagMembers() that raised
aP_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a. Theconflict generating client application.

b. The SAG and the service profile through which the conflict generating client application is already assigned to
the conflict generating service. It includes the current service profile.

c. The SAG, to which the conflict generating client application should be added. However, this SAG is already
assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as
each client application may be assigned to a service only through a single service profile at a particular
moment in time.

d. Theconflict generating service.
Parameters
No Parameters were identified for this method.

Returns

TpAddSagMembersConflictList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8.3.2.2 Interface Class IpClientAppinfoQuery

Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to list the client applications and the SAGsin its domain and to obtain
information about them.

<<Interface>>

IpClientAppinfoQuery

describeClientApp (clientAppID: in TpClientAppID): TpClientAppDescription
listClientApps (): TpClientApplDList

describeSAG (sagID: in TpSagID): TpSagDescription

listSAGs (): TpSagIDList

listSAGMembers (sagID: in TpSagID): TpClientApplDList
listClientAppMembership (clientApplID: in TpClientAppID): TpSagIDList

ETSI

103 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.2.1 Method describeClientApp()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription>: The "clientAppDescription” parameter contains the clientApp description.
Parameters

clientAppID. in TpClientAppID

The"clientApplD" parameter identifies the clientApp object whose description is requested.

Returns

TpClientAppDescription
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.2.2 Method listClientApps()
Get alist of al client applications belonging to an enterprise operator.

Returns <clientAppl Ds>: The "clientApplDs" parameter identifies the list of client applicationsin the enterprise
operator domain.

Parameters
No Parameters were identified for this method.

Returns

TpClientAppIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED

8.3.2.2.3 Method describeSAG()

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription>: The "sagDescription” parameter returns the SAG-specific description.
Parameters

sagID. in TpSagID

The "sagID" parameter identifies the SAG whose description is required.

Returns

TpSagDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG ID

ETSI

104 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.2.4 Method listSAGs()
Get alist of all SAGs associated with an enterprise operator.

Returns <SaglDList>: The"sagIDList" parameter returnsthe list of the identifiers of the SAGs associated with the
enterprise operator.

Parameters

No Parameters were identified for this method.
Returns

TpSagIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8.3.2.2.5 Method listSAGMembers()
Get alist of al client applications associated with the specified SAG.

Returns <clientApplDList>: The "clientApplDList" parameter returns the list of the client applications associated with
the SAG.

Parameters
sagID. in TpSagID
The"saglD" parameter identifies the SAG whose clientApplD list is required.

Returns

TpClientAppIDList
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG ID

8.3.2.2.6 Method listClientAppMembership()

Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags>: The SAGs of which the client application is a member.

Parameters

clientAppID. in TpClientAppID

The"clientApplD" parameter identifies the clientApp object whose membership details are requested.
Returns

TpSagIDList

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.3 Interface Class IpServiceProfileManagement
Inherits from: Ipinterface.

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

ETSI

105 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription: in TpServiceProfileDescription): TpServiceProfile|D
modifyServiceProfile (serviceProfile: in TpServiceProfile): void

deleteServiceProfile (serviceProfilelD: in TpServiceProfilelD): void

assign (saglID: in TpSagID, serviceProfilelD: in TpServiceProfilelD): void

deassign (saglD: in TpSagID, serviceProfilelD: in TpServiceProfileID): void

requestConflictinfo (): TpAssignSagToServiceProfileConflictList

8.3.2.3.1 Method createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profile isarestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD>: The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters
serviceProfileDescription. in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns

TpServiceProfileID
Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.3.2 Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters
serviceProfile. in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID SERVICE PROFILE ID

ETSI

106 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.3.3 Method deleteServiceProfile()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then
they will be terminated. Only the enterprise operator associated with the particular service profile is allowed to delete it,
a"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters
serviceProfileID:. in TpServiceProfileID

The "serviceProfilel D" parameter identifies the Service Profile that isto be deleted. If the serviceProfilel D does not
exist, a"P_INVALID_SERVICE _PROFILE_ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE PROFILE ID

8.3.2.3.4 Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method. Each client application may be assigned to a service only through a single service profile
at aparticular moment in time. If this condition is violated, a
"P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of
this method is performed. The enterprise operator can query further information about this invalid assignment using the
method requestConflictinfo().

Parameters
sagID. in TpSagID

The"saglD" parameter identifies the SAG to which Service Profileisto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID. in TpServiceProfileID

The"serviceProfilelD" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG_ID, P_INVALID SERVICE_ PROFILE_ID,
P_INVALID SAG_TO SERVICE PROFILE_ ASSIGNMENT

8.3.2.3.5 Method deassign()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the
serviceProfilelD is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters
sagID. in TpSagID

The "sagID" parameter identifies the SAG whose Service Profileis to be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID:. in TpServiceProfileID

The "serviceProfilel D" parameter identifies the Service Profile that isto be de-assigned. If the serviceProfilelD does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG ID, P INVALID SERVICE PROFILE ID

ETSI

107 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.3.6 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method assign() on thisinterface (i.e.
Information about the invocation of assign () that threw a
P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service
only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG
to aservice profile of agiven service. If one or more client applicationsin this SAG are already assigned to service
profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular
moment in time. Asthisis prohibited, aconflict list is generated.

It isonly possible to retrieve information about the last conflicting assign() method call; information about previous
conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList>: The description of the conflicts occurring at the latest invocation
of assign() that raised aP_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the
following elements:

a. Theconflict generating client application.

b. The SAG and the service profile through which the conflict generating client application is already assigned to
the conflict generating service. It includes the current service profile.

c. Theconflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of
the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters

No Parameters were identified for this method.
Returns
TpAssignSagToServiceProfileConflictList
Raises

TpCommonExceptions, P_ACCESS_DENIED

8.3.2.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles (): TpServiceProfile|DList
describeServiceProfile (serviceProfilelD: in TpServiceProfileID): TpServiceProfileDescription

listAssignedMembers (serviceProfilelD: in TpServiceProfileID): TpSagIDList

ETSI

108 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.4.1 Method listServiceProfiles()
Get alist of al service profiles created by the enterprise operator.

Returns <serviceProfilelDList>: The "serviceProfilelDList" isalist of the service profiles associated with the enterprise
operator.

Parameters
No Parameters were identified for this method.

Returns

TpServiceProfileIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED

8.3.2.4.2 Method describeServiceProfile()
Query information about a single service profile.

Returns <serviceProfileDescription>: The "serviceProfileDescription” parameter is a structured data type which
contains a description for the specified service profile.

Parameters
serviceProfileID. in TpServiceProfileID
The"serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

Returns

TpServiceProfileDescription
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE PROFILE ID

8.3.2.4.3 Method listAssignedMembers()
Get alist of SAGs assigned to the specified service profile.

Returns <sagIDList>: The "saglDs" parameter isthe list of the SAG IDs that are assigned to the specified service
profile.

Parameters
serviceProfileID. in TpServiceProfileID

The"serviceProfilelD" parameter identifies the Service Profile. If the serviceProfilel D is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns
TpSagIDList
Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID SERVICE PROFILE ID

ETSI

109 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.5 Interface Class IpServiceContractManagement
Inherits from: Iplnterface.

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription: in TpServiceContractDescription): TpServiceContractlD
modifyServiceContract (serviceContract: in TpServiceContract): void

deleteServiceContract (serviceContractID: in TpServiceContractID): void

8.3.2.5.1 Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract 1D will be
generated.

Returns <serviceContractl D>: The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters
serviceContractDescription. in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:

a. Information about the service requestor, i.e. the enterprise operator.
b. Information about the billing contact (person).

C. Service start date.

d. Serviceend date.

e. Servicetype (e.g. obtained from listServiceType() method).

f. Service D (e.g. obtained from discoverService() method). For certain services, service type information is
sufficient and service ID may not be required. Thisimpliesthat any service of the type specified aboveis
subscribed and hence accessible to the enterprise operator or to its client applications.

g. List of service subscription properties and their value ranges (service profiles further restrict these value
ranges).

Returns
TpServiceContractID
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE_ID

ETSI

110 ETSI ES 204 915-3 V1.1.1 (2008-05)

8.3.2.5.2 Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-
line negotiated high-level agreement between the enterprise operator and the framework operator. Only the enterprise
operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

Parameters
serviceContract. in TpServiceContract

The "serviceContract” parameter provides the modified service contract. If the serviceContractID does not exist, an
exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE_ID, P_INVALID SERVICE CONTRACT ID

8.3.2.5.3 Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there
are any service instances running that are governed by this contract, or any of the profiles associated with it, then they
will be terminated. Only the enterprise operator associated with the serviceContract is allowed to delete it, a
"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters
serviceContractID. in TpServiceContractID

The "serviceContractI D" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContract!D does not exist, a"P_INVALID_SERVICE_CONTRACT _ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE CONTRACT ID

8.3.2.6 Interface Class IpServiceContractinfoQuery
Inherits from: Iplinterface.

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID: in TpServiceContractID): TpServiceContractDescription
listServiceContracts (): TpServiceContractIDList

listServiceProfiles (serviceContractID: in TpServiceContractID): TpServiceProfilelDList

8.3.2.6.1 Method describeServiceContract()
Query information about the specified service contract. The enterprise operator invokes this operation to obtain

information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

ETSI

111 ETSI ES 204 915-3 V1.1.1 (2008-05)
Returns <serviceContractDescription>: The "serviceContract” parameter contains the description for the specified
service contract.
Parameters
serviceContractID. in TpServiceContractID
The "serviceContractI D" parameter identifies the service whose description is being requested.

Returns

TpServiceContractDescription
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE_ CONTRACT ID

8.3.2.6.2 Method listServiceContracts()
Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs>: The "serviceContractl DS parameter will contain alist of IDs for service contracts that
the enterprise operator has created.

Parameters

No Parameters were identified for this method.
Returns

TpServiceContractIDList

Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.6.3 Method listServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profiles that are associated with a particular
service contract.

Returns <serviceProfilelDs>: This contains the service profiles associated with a particular service contract.

Parameters

serviceContractID. in TpServiceContractID
The "serviceContractID" parameter identifies the service contract. If the serviceContractI D is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Returns
TpServiceProfileIDList
Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE_ CONTRACT ID

8.3.2.7 Interface Class IpEntOpAccountManagement
Inherits from: Iplnterface.

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with the list of valid
properties and their modes and prescribed ranges, will be entered via a FW operator interface that is currently outside
the scope of the API.

ETSI

112 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties: in TpEntOpProperties): void
deleteEntOpAccount (): void

8.3.2.7.1 Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.
Parameters

enterpriseOperatorProperties. in TpEntOpProperties

The "enterprise operator properties' parameter conveys the modified/popul ated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception israised.

Raises

TpCommonExceptions, P _ACCESS DENIED, P_INVALID PROPERTY

8.3.2.7.2 Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions, P_ACCESS_DENIED

8.3.2.8 Interface Class IpEntOpAccountinfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

ETSI

113 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpEntOpAccountinfoQuery

describeEntOpAccount (): TpEntOp

8.3.2.8.1 Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator>: The "enterpriseOperator” parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator ID" followed by alist of "enterprise operator
properties'. The enterprise operator propertiesis alist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method.

Returns

TpEntOp
Raises

TpCommonExceptions, P_ACCESS DENIED

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

8.4.2 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

ETSI

114 ETSI ES 204 915-3 V1.1.1 (2008-05)

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery.

9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework.
This SCF is a sub type of the standard SCF.

IpFwS erviceRegistration

1: registerServiceSubType()

U g

2: announceSeniceAvailability()

U g

1. Registration: first step - register service sub type. For sub type registration, besides the values for the standard
service properties, the modes, types, and values for the additional service properties must be provided by the
SCF.

2: Registration: second step - announce service availability. Thisisidentical to announcing availability of super
types.

9.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

ETSI

115 ETSI ES 204 915-3 V1.1.1 (2008-05)

IpFwService;Qeqistration

1: registerSenice()

2: announceSeniceAvailability()

Registration: first step - register service.

The purpose of thisfirst step in the process of registration is to agree, within the network, on anameto call,
internally, a newly installed SCF version. It is necessary because the OSA Framework and SCF in the same
network may come from different vendors. The goal isto make an association between the new SCF version,
as characterized by alist of properties, and an identifier called servicelD.

This service ID will be the name used in that network (that is, between that network's Framework and its
SCSs), whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its
availahility, or for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:
- in serviceTypeName.

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").

- in servicePropertyList.

Thisisalist of types TpServiceProperty; each TpServiceProperty isapair of (ServicePropertyName,
ServicePropertyValuelist).

- ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are
listed in the SCF data definition).

- ServicePropertyValuelList isanumbered set of types TpServicePropertyValue; TpServicePropertyValue
isastring that describes avalid value of a SCF property (valid SCF property values are listed in the SCF
data definition).

The following output parameter results from service registration:
- out servicelD.
Thisisastring, automatically generated by the Framework and unique within the Framework.

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is
going to be identified internally in this network.

ETSI

116 ETSI ES 204 915-3 V1.1.1 (2008-05)

2: Regidtration: second step - announce service availability.

At this point the network's Framework is aware of the existence of anew SCF, and could let applications know
- but they would have no way to useit. Installing the SCS logic and assigning a name to it does not make this
SCF available. In order to make the SCF available an "entry point”, called lifecycle manager, isused. Therole
of the lifecycle manager isto control the life cycle of an interface, or set of interfaces, and provide clients with
the references that are necessary to invoke the methods offered by these interfaces. The starting point for a
client to use an SCF isto obtain an interface reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new
SCF version, will instantiate a lifecycle manager for it that will allow client to useit. Then it will inform the
Framework of the value of the interface associated to the new SCF. After the receipt of thisinformation, the
Framework makes the new SCF (identified by the pair [servicel D, servicel nstancel ifecycleManagerRef])
discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:
- in servicelD.

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF
needs to include the servicel D, to know which SCF it is.

- in servicel nstancelL.ifecycleM anager Ref.

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the
Framework will have to invoke the method createServiceManager() in this interface when a client application
signs an agreement to use the SCF so that it can get the service manager interface necessary for applications as
an entry point to any SCF.

9.1.3 Service Instance Lifecycle Manager Sequence Diagrams

9.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

AppLogic o :_IpAppCalControlManager : IpInitial o GenericCallControlService : : IpCallControlManager
IpAppServ iceAgreem ent Managem ent IpServiceAgreementManagement IpServicelnstanceLifecy cl
T T T T T T T
! I | I I I |
We assume that the application is already authenticated and discoveredthe service it wants touse ﬁ |
|
T T T T T T |
| | | | | | |
| | | | | | |
: : 1 se\ectServwce‘K) : : : :
H | | | 1 | |
| 2: signServiceAgreement() | | | |
[l T T | |
D\		H		
	3: signServiceAgreement()			
b b b 1 4: createServiceManager()	5: new()			
		/u		

| | | |
| | | | |
6l new() | | [| |
L | | | |
| D | | | |
| | | 7: setCallback() | | |

f f f f f
| | | | | /u

1. Theapplication selects the service, using a servicel D for the generic call control service. The servicel D could
have been obtained via the discovery interface. A ServiceToken is returned to the application.

2: Theclient application signs the service agreement.

3: Theframework signs the service agreement. As aresult a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

ETSI

6:
7.

117 ETSI ES 204 915-3 V1.1.1 (2008-05)

Provided the signature information is correct and all conditions have been fulfilled, the framework will request
the service identified by the servicel D to return a service manager interface reference. The service manager is
theinitial point of contact to the service.

The lifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that thisis an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a servicel nstancel D by the Framework, whichis
provided to the Service Instance Lifecycle manager during the createServiceManager operation. If itis
necessary that Framework Integrity Management functionality and operations are to be supported between the
Framework and the service instance identified by the defined servicelnstancel D, it is then necessary for the
new service instance to establish an access session with the Framework. This provides the Framework with the
ability to manage and monitor the operation of the service instance that relates to a particular application
client. The steps required to establish a Framework access session are outlined in clause 6 of the present
document.

The application creates a new IpAppCall ControlManager interface to be used for callbacks.

The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientApplD may carry out the sequence, as exemplified above, multiple

times.

9.1.4

Integrity Management Sequence Diagrams

9.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy.

ETSI

. IpSwcLoadManager

i 1: createLoadLevelNotification()

118

ETSI ES 204 915-3 V1.1.1 (2008-05)

. IpFwLoadManager

U

2: IoadLeveINotificationg) B

1

3: load change dete

4: loadLewelNotification()

e

Framework reports its
initial load condition on
| notification creation

tion & policy evaluation

J

Framework detects aload -7
condition change and notifies

the senice. The service may

take appropriate load control

action - implementation

detail. S~

This is Framework
implementation detail. The
Framework may take
appropriate load control action.

|
|
|
5: load change det‘ection & policy evaluation

6: loadLevelNotification()

i

7: destroyLoadL eel Notification()

:

9.1.4.2

g

~
<
~

~
~

This is Framework
implementation detail. The
Framework may take
appropriate load control action.

Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registersitself and the service invokes load management function to

inform the framework of service load.

ETSI

IQSchanManager

119

1: createLoadLeeINotification()

ETSI ES 204 915-3 V1.1.1 (2008-05)

|QFWLOaEM anager

initial load condition on

|
Seniice reports its u
|
|
notification creation ——-— l‘

o g: reportLoad()

|
3: load :change detection

|
u
u

_—
This is Senice implementation 4: reportLoad()
detail. The Service may take —— Senice detects a load condition
appropriate load control action. N - change and reports to
L "I |Framework. The Framework
! | |may take appropriate load
5: load change detection i | control action - implementation
N o || detail.
This is Senice implementation T 6: reportLoad() ~ B
detail. The Senice may take ! -
appropriate load control action.
N 7: destroyLoadLevelNotification()

ETSI

120 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.1.4.3 Load Management: Client and Service Load Balancing

Application : Framework : = Service :
IpApplLoadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

|

|

1

| |
Framework checks |
application load. !
|

|

1 queryAppLoadStatsReq() |

|
i 2: queryApplLoadStatsRes() :

|
U /U Depending onthe load, the
framework may choose to stop
sending notifications to the
applicaton, to allowits load to
reduce.

3: querySvcLoadStatsReq()

=

1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1

1 The framework may then check
} the load on the service, and take
! action if (according to the load
| balancing policy) if required.
1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|4 querySvcLoadStatsRes()
|

ETSI

121 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

Fram ework e
IpFwHeartBeat

|
| 1: enabléSvcHeartBeat()
| |

H

[~

IpSwe HeaﬁBeatM gmt

u

2: pulse()

3: pulse() At a certain point of
time the framework

u\ decides to stop

heartbeat supenision

4: disableSvcHeartBeat()
|

9.1.45 Fault Management: Service requests Framework activity test

Framework : Senice :
IpFwFaultManager IpSwvcFaultManager

1: activity TestReq() The Senvice requests that the

D< U Framework does an activity test.
|
|
|
|
|
T
|
|
|
|
|
|
|
|

2: activityTestRes()

1. Theservice asksthe framework to carry out its activity test. The service denotes that it requires the activity test
done for the framework, rather than an application, by supplying an appropriate parameter.

2. Theframework carries out the test and returns the result to the service.

ETSI

122 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.1.4.6 Fault Management: Service requests Application activity test

Senice : o Framework : Application :
IpSvec FaultManager IpFwFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice
instance to conclude which
U m Application the test is directed at, and

1: activityTestReq()

comunicates internally to Framework
interface to the Application.

2: appActivityTestReq()

H "1

The application
I carries out the
| activity test and
! returns the result to
|
|

1
|
I the Framework.
|

3: appActivityTestRes()

4 U

Communications.

Internal Framework ﬁ

4: activity TestRes()

—

1. Theserviceinstance asks the framework to invoke an activity test on the client application.

2. Theframework asks the application to do the activity test. It is assumed that thereis internal communication
between the service facing part of the framework (i.e. |pFwFaultManager interface) and the part that faces the
client application.

3: Theapplication does the activity test and returns the result to the framework.

4. Theframework internally passes the result from its application facing interface (IpFaultM anager) to its service
facing side, and sends the result to the service.

ETSI

123 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.1.4.7 Fault Management: Application requests Service activity test

Client Application : Framework : o Senice :
IpAppFaultManager IpFaultManager IpFwFaultManager IpSvcFaultManager

:
L |
The client application asks the !
framework to carry out the [
activity test on a senvice. |
|
|
|
|
|
|

|

|

| 1: activityTestReq()

| \
|

|

The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate framework interface.
W hich inwkes the call on the
senice.

| 2: sweActivity TestReq()

—

returns the result.

Senice does test and ﬁ

Framework passes result | o

internally from senice facing 13: sweActivty TestRes().
part to application facing part, LF U
and sends the result to the

application.

|
4: activityTestRes() |
|

=

1. Theclient application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2: Theframework asksthe service to do the activity test. It is assumed that thereis internal communication
between the application facing part of the framework (i.e. |pFaultManager interface) and the part that faces the
service.

3: The service does the activity test and returns the result to the framework.

4. Theframework internally passes the result from its service facing interface (IpFwFaultManager) to its
application facing side, and sends the result to the client application.

ETSI

124 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.1.4.8 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager | | IpFwFaultManager IpSwvcFaultManager
T

|

|

|

L |
The application detects that !
the seniceis not responding, :
so it informs the framework via |
the swcUnavailablelnd method. |
|

|

|

|

|

|

|

|

|

|

|

1: swcUnavailablelnd()

the senice.

J |
U The framework informs ﬁ

2: svcUnavailablelnd()

—

1. Theclient application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2. Theframework informs the service instance that the client application was unable to get a response from it and
can no longer use the service instance. The service or framework may then decide to carry out an activity test
to see whether thereis a general problem with the service instance that requires further action.

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

ETSI

125 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.2 Class Diagrams

<<lInterface>>
IpSvcEventNotification
(from Service Interfaces)

SreportNotification()
®notificationTeminated()

<<Interface>>
IpFwEventNotification
(from Framework Interfaces)

<<uses>>

createNotification()
PdestroyNotification()

Figure 24: Event Notification Package Overview

<<Interface>>
IpSvcFaultManager

activityTestRes()
<<Interface>> svcActivity TestReq()
IpSvcLoadM anager <<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
loadLevelNotification() <<deprec.aled>> fwUnavailablelnd()
suspendNotification() svcUnavailableind()
= resumeNotification() acll\nly'!'leslerrO .
<<Interface>> createLoadLevelNotification() appAwailStatusind()
IpSvcHeartBeatMgmt <<Interface>> destroyLoadLevelNotification() generaleFauItStal!sl!csRecordRes()
IpSvcHeartBeat querySvcLoadStatsReq() generateFaultStatisticsRecordErr()
enableSvcHeartBeat() |1 on queryLoadStatsRes() generateFaultStatisticsRecordReq() <T|"S“5C'fé\i‘:ﬂ>>
disableSvcHeartBeat() pulse() queryLoadStatsErr() fwAvailStatusind() P
changelnterval()
/F A 1\ systemDateTimeQuery()
<<uses>> <<uses>> <<uses>> <<uses>> <<uses>>
‘ <<Interface>>
<<Interface>> <<nterface>> IPFWOAM
IpFwHeartBeatMgmt <<Interface>> IpFwLoadManager
pEwhieanbeat IpI:v;llin;SIrtf;Caen;Zer systemDateTimeQuery()
eﬁabIeHeanBeal() 1 0..n reportLoad()
disableHeartBeat() pulse() createLoadLevelNotification() e
changelnteval() destroyLoadLevelNotification() ac 2“3; iST e?g
suspendNotification() ZVC U‘:n;;/\;);aﬁehzzo
resumeNotification() SCSACtiVinTESIEITO
e LCRE R svcAvail Statusind()
querySvcLoadStatsRes() v
querySveLoadStatsErm() generateFaultStatisticsRecordReq()

generateFault StatisticsRecordRes()
generateFaultStatisticsRecordErr()

Figure 25: Integrity Management Package Overview

<<Interface>>
IpFwSenviceDiscovery
(from Framework interfaces)

VlistSeniceTypes()
®describeSeniceType ()
dis coverService()
FiistRegisteredSenvices()

Figure 26: Service Discovery Package Overview

ETSI

126 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<lInterface>>
IpSenicelnstancelLifecycleManager
(from Service Interfaces)

¥createSeniceManager()
®destroySeniceManager()

Figure 27: Service Instance Lifecycle Manager Package Overview

<<Interface>>
IpFwSeniceRegistration
(from Framework interfaces)

¥registerSenice()
WannounceSeniceAvailabili...
®unregisterSenice()
®describeSenice()
®unannounceSenice()
®registerSeniceSubType()

Figure 28: Service Registration Package Overview

<<Interface>>
IpClientAPILevelAuthentication
<<Interface>> (from Client interfaces)
IpClientAccess
from Clientinterfaces) BabortAuthentication()
®authenticationSucceeded()
FterminateAccess() ®challenge()
A AN
<<uses>> <<uses>>
<<Interface>> <<Interface>>
<<|Ttﬁ::;:a>> IpAccess IpAPILevelAuthentication
p K (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces)
- I . . ®obtaininterface() ®abortAuthentication()
FinitiateAuthenticationWithVersion
0 ®obtaininterfaceWithCallback() ®authenticationSucceeded()
Wlistinterfaces () VselectAuthenticationMechanism()
WselectSigningAlgorithm () ®challenge()
BterminateAccess()
Brelinquishinterface ()

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess ()

Figure 29: Trust and Security Management Package Overview

ETSI

127 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.3 Interface Classes

9.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

9.3.1.1 Interface Class IpFwServiceRegistration
Inherits from: Ipinterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
Thisinterface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName: in TpServiceTypeName, servicePropertyList: in TpServicePropertyList):
TpServicelD

announceServiceAvailability (servicelD: in TpServicelD, servicelnstanceLifecycleManagerRef: in
service_lifecycle::IpServicelnstanceLifecycleManagerRef): void

unregisterService (servicelD: in TpServicelD): void
describeService (servicelD: in TpServicelD): TpServiceDescription
unannouncesService (servicelD: in TpServicelD): void

registerServiceSubType (serviceTypeName: in TpServiceTypeName, servicePropertyList: in
TpServicePropertyList, extendedServicePropertyList: in TpServiceTypePropertyValueList): TpServicelD

9.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to
the Framework (ServiceType is 'available’). A service-ID isreturned to the service supplier when a service isregistered
in the Framework. When the service is not registered because the ServiceType is 'unavailable, a
P_SERVICE_TYPE_UNAVAILABLE israised. The service-ID is the handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

This method should be used for registration of service super types only. For registering service sub types, the
registerServiceSubType() method should be used.

ETSI

128 ETSI ES 204 915-3 V1.1.1 (2008-05)

Returns <servicel D>: Thisis the unique handle that is returned as aresult of the successful completion of this operation.
The Service Supplier can identify the registered service when attempting to accessit via other operations such as
unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a
service of thistype.

If aserviceisregistered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the
Framework shall notify all applications using instances of servicesidentified by this property, using the
P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an
incorrect combination of propertiesisincluded in conjunction with P_COMPATIBLE _WITH_SERVICE, a
P_MISSING_MANDATORY _PROPERTY exception is raised.

Parameters
serviceTypeName. in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rules for identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception is raised.

servicePropertyList. in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory” or "readonly”. These property mode attributes have the following semantics:

a Mandatory - a service associated with this service type must provide an appropriate value for this property
when registering.

b. Readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it
may not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in the
service type), then aP_PROPERTY_TYPE _MISMATCH exception israised. If the "servicePropertyList" parameter
omits any property declared in the service type with a mode of mandatory, then a

P_MISSING_MANDATORY _PROPERTY exception israised. If two or more properties with the same property name
areincluded in this parameter, the P_DUPLICATE_PROPERTY _NAME exception is raised.

Returns

TpServiceID
Raises

TpCommonExceptions, P _PROPERTY TYPE MISMATCH, P DUPLICATE PROPERTY NAME, P_ILLEGAL SERVICE TYPE,
P_UNKNOWN_ SERVICE_ TYPE, P_MISSING MANDATORY PROPERTY, P_SERVICE TYPE UNAVAILABLE

9.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a " service manager" instance per service instance. Each service implements the

I pServicel nstancelifecycleManager interface. The IpServicel nstancelLifecycleManager interface supports a method
called the createServiceM anager(application: in TpClientAppl D, serviceProperties. in TpServicePropertyList,
servicel nstancel D: in TpServicelnstancel D): |pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

ETSI

129 ETSI ES 204 915-3 V1.1.1 (2008-05)

Parameters
serviceID. in TpServicelID

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for serviceidentifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

servicelnstancelLifecycleManagerRef. in service lifecycle::IpServiceInstanceLifecycleManagerRef
The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P_ILLEGAL SERVICE ID, P UNKNOWN SERVICE ID, P INVALID INTERFACE TYPE

9.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework.
The service isidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters
serviceID. in TpServicelID

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenaP_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islega but there is no service offer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exceptionisraised.

Raises

TpCommonExceptions, P_ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

9.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service, and the "properties’ that describe this service. The serviceisidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or lessrestrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription>: This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service, and the properties that describe this service.

Parameters
serviceID. in TpServicelID

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there is no service offer within
the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServiceDescription
Raises

TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

ETSI

130 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters
serviceID. in TpServicelID

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, then aP_UNKNOWN_SERVICE_ID exception israised.

Raises

TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

9.3.1.1.6 Method registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for
subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the
Framework (ServiceTypeis 'available). A service-1D is returned to the service supplier when a serviceisregistered in
the Framework. When the service is not registered because the ServiceTypeis 'unavailable', a
P_SERVICE_TYPE_UNAVAILABLE exception israised. The service-ID is the handle with which the service supplier
can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the
context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the
registerService () method should be used.

Returns <servicel D>: Thisisthe unique handle that is returned as aresult of the successful completion of this operation.
The Service Supplier can identify the registered service when attempting to accessit via other operations such as
unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a
service of thistype.

Parameters
serviceTypeName. in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception israised.

servicePropertyList. in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs corresponding to the service
properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in the
service type), thenaP_PROPERTY_TYPE _MISMATCH exception is raised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

ETSI

131 ETSI ES 204 915-3 V1.1.1 (2008-05)

extendedServicePropertyList. in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter isalist of property name, mode, type, and property value tuples
corresponding to the service properties applicable to the extended standard service. They describe the service being
registered.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns
TpServiceID
Raises

TpCommonExceptions, P _PROPERTY TYPE MISMATCH, P DUPLICATE PROPERTY NAME, P_ILLEGAL SERVICE TYPE,
P_UNKNOWN_ SERVICE_ TYPE, P_MISSING MANDATORY PROPERTY, P_SERVICE TYPE UNAVAILABLE

9.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It isused during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is theinitial point of contact for the service. E.g. the
generic call control service uses the |pCall ControlManager interface.

9.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface.

The IpServicel nstanceL ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances. Thisinterface and the createServiceManager() and destroyServiceManager() methods shall be implemented
by a Service.

<<Interface>>

IpServicelnstancelifecycleManager

createServiceManager (application: in TpClientAppID, serviceProperties: in TpServicePropertyL ist,
servicelnstancelD: in TpServicelnstancelD): IpServiceRef

destroyServiceManager (servicelnstance: in TpServicelnstancelD): void

9.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and servicelnstancel D this referenceis
returned and no new service manager is created.

Returns <serviceManager>: Specifies the service manager interface reference for the specified application ID.
Parameters
application. in TpClientAppID

Specifies the application for which the service manager interface is requested.

ETSI

132 ETSI ES 204 915-3 V1.1.1 (2008-05)

serviceProperties. in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form apart of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

serviceInstancelID. in TpServiceInstanceID
Specifies the Service Instance 1D that the new Service Manager isto be identified by.

Returns

IpServiceRef
Raises

TpCommonExceptions, P_INVALID PROPERTY

9.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being
unable to use the service manager any more.

Parameters

serviceInstance. in TpServiceInstanceID
I dentifies the Service Instance to be destroyed.
Raises

TpCommonExceptions

9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types* of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the " describeServiceType()”
method returns a description of each service type. The description of service type includes the " service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplnterface.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

133 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpFwServiceDiscovery

listServiceTypes (): TpServiceTypeNameList
describeServiceType (name: in TpServiceTypeName): TpServiceTypeDescription

discoverService (serviceTypeName: in TpServiceTypeName, desiredPropertyList: in TpServicePropertyList,
max: in TpInt32): TpServiceList

listRegisteredServices (): TpServiceList

9.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes>: The names of the requested service types.
Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList
Raises

TpCommonExceptions

9.3.3.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription>: The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

name. in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P_ UNKNOWN_SERVICE_TY PE exception
israised.

Returns
TpServiceTypeDescription
Raises

TpCommonExceptions, P_ILLEGAL SERVICE TYPE, P_UNKNOWN SERVICE TYPE

ETSI

134 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesit is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <servicelList>: This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters
serviceTypeName. in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P_ILLEGAL_SERVICE_TYPE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList. in TpServicePropertyList

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property valuesin the desired property list must be logically interpreted as " minimum’, "maximum”, etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max. in TpInt32
The"max" parameter states the maximum number of servicesthat are to be returned in the "serviceList" result.

Returns

TpServiceList
Raises

TpCommonExceptions, P_ILLEGAL SERVICE TYPE, P_UNKNOWN_ SERVICE_TYPE, P_INVALID PROPERTY

9.3.3.1.4 Method listRegisteredServices()
Returns alist of services so far registered in the framework.

Returns <servicelList>: The "serviceList" parameter returns alist of registered services. Each service is characterised by
itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServiceList
Raises

TpCommonExceptions

ETSI

135 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.34 Integrity Management Interface Classes

9.3.4.1 Interface Class IpFwFaultManager
Inherits from: Iplnterface.

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

If the |pFwFaultManager interface isimplemented by a Framework, at least one of these methods shall be implemented.
If the Framework is capable of invoking the |pSvcFaultManager.svcActivity TestReq() method, it shall implement
svcActivityTestRes() and svcActivityTestErr() in thisinterface. If the Framework is capable of invoking

I pSvcFaultM anager.generateFaul tStati sticsRecordReq|(), it shall implement generateFaul tStatisticsRecordRes() and
generateFaul tStatisticsRecordErr() in thisinterface. If the Framework is capable of invoking

I pSvcFaultM anager.generateFaul tStati sticsRecordReq|(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID: in TpActivityTestID, testSubject: in TpSubjectType): void
svcActivityTestRes (activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): void
appUnavailablelnd (): void

svcActivityTestErr (activityTestID: in TpActivityTestID): void

svcAvailStatusind (reason: in TpSvcAvailStatusReason): void

generateFaultStatisticsRecordReq (faultStatsReqID: in TpFaultReqID, timePeriod: in TpTimelnterval,
recordSubject: in TpSubjectType): void

generateFaultStatisticsRecordRes (faultStatsReqID: in TpFaultReqlD, faultStatistics: in TpFaultStatsRecord):
void

generateFaultStatisticsRecordErr (faultStatsReqID: in TpFaultReqID, faultStatisticsError: in
TpFaultStatisticsError): void

9.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID. in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject. in TpSubjectType

Identifies the subject for testing (framework or client application).

ETSI

136 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions

9.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult. in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.1.3 Method appUnavailablelnd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.1.4 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.1.5 Method svcAvailStatusind()

This method is used by the service instance to inform the framework that it is about to become unavailable for use
according to the provided reason and as well to inform the Framework when the Service instance becomes available
again. The framework should inform the client applications that are currently using this service instance that it is
unavailable and as well when it becomes available again for use (viathe svcAvail Statuslnd method on the

| pAppFaultManager interface).

Parameters

reason. in TpSvcAvailStatusReason

I dentifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to
inform the Framework when the Service instance becomes available again.

ETSI

137 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions

9.3.4.1.6 Method generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

faultStatsReqID. in TpFaultReqID

Theidentifier provided by the service instance to correlate the response (when it arrives) with this request.
timePeriod. in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject:. in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions

9.3.4.1.7 Method generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID. in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics. in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

9.3.4.1.8 Method generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
generateFaul tStati sticsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters
faultStatsReqID. in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError. in TpFaultStatisticsError

The fault statistics error.

ETSI

138 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions

9.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Iplnterface.

Thisinterface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccessinterface.

If the IpSvcFaultManager interface isimplemented by a Service, at least one of these methods shall be implemented. If
the Serviceis capable of invoking the |pFwFaultM anager.activity TestReq() method, it shall implement
activityTestRes() and activityTestErr() in thisinterface. If the Service is capable of invoking

| pFwFaultM anager.generateFaul tStatisticsRecordReq(), it shall implement generateFaultStati sticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID: in TpActivityTestID, activityTestResult: in TpActivityTestRes): void
svcActivityTestReq (activityTestID: in TpActivityTestID): void

<<deprecated>> fwFaultReportind (fault: in TpinterfaceFault): void

<<deprecated>> fwFaultRecoverylnd (fault: in TpInterfaceFault): void

<<deprecated>> fwUnavailableInd (reason: in TpFwUnavailReason): void

svcUnavailablelnd (): void

activityTestErr (activityTestID: in TpActivityTestID): void

appAvailStatusind (reason: in TpAppAvailStatusReason): void

generateFaultStatisticsRecordRes (faultStatsReqID: in TpFaultReqID, faultStatistics: in TpFaultStatsRecord,
recordSubject: in TpSubjectType): void

generateFaultStatisticsRecordErr (faultStatsReqID: in TpFaultReqID, faultStatisticsError: in
TpFaultStatisticsError, recordSubject: in TpSubjectType): void

generateFaultStatisticsRecordReq (faultStatsReqID: in TpFaultReqID, timePeriod: in TpTimelnterval): void

fwAvailStatusind (reason: in TpFwAvailStatusReason): void

9.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the serviceto correlate this response (when it arrives) with the original request.

activityTestResult! in TpActivityTestRes

The result of the activity test.

ETSI

139 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest onitself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivity TestRes method on the | pFwFaultM anager interface.

Parameters

activityTestID. in TpActivityTestID

Theidentifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions

9.3.4.2.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of afailure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryind).

Parameters

fault. in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

9.3.4.2.4 Method <<deprecated>> fwFaultRecoverylnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The
service instance may then resume using the framework.

Parameters

fault! in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions

9.3.4.2.5 Method <<deprecated>> fwUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and a so when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

ETSI

140 ETSI ES 204 915-3 V1.1.1 (2008-05)

Parameters

reason. in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
Raises

TpCommonExceptions

9.3.4.2.6 Method svcUnavailablelnd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.2.7 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.
Parameters

activityTestID. in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.2.8 Method appAvailStatusind()

The framework invokes this method to inform the service instance that the client application is no longer available
using different reasons for the unavailability. This may be aresult of the application reporting afailure. Alternatively,
the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return
heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again
the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters
reason. in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE isused to inform the Service that
the Application is available again.

Raises
TpCommonExceptions

9.3.4.2.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
generateFaultStati sticsRecordReq method invocation on the I pFwFaultManager interface.

Parameters
faultStatsReqID. in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.

ETSI

141 ETSI ES 204 915-3 V1.1.1 (2008-05)

faultStatistics: in TpFaultStatsRecord

The fault statistics record.

recordSubject. in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions

9.3.4.2.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaul tStati sticsRecordReg method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID. in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.
faultStatisticsError. in TpFaultStatisticsError

The fault statistics error.

recordSubject. in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions

9.3.4.2.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the generateFaul tStati sticsRecordReq operation
on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record
during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes
operation on the | pFwFaultM anager interface.

Parameters

faultStatsReqID. in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

Raises

TpCommonExceptions

ETSI

142 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.3.4.2.12 Method fwAvailStatusind()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The service instance may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters
reason. in TpFwAvailStatusReason

I dentifies the reason why the framework is no longer available or that it has become available again.

9.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
IpFwHeartBeatM gmt interface isimplemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval: in TpInt32, svcinterface: in IpSvcHeartBeatRef): void
disableHeartBeat (): void

changelnterval (interval: in TpInt32): void

9.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval: in TpInt32

Thetime interval in milliseconds between the heartbeats.
svcInterface! in IpSvcHeartBeatRef

This parameter refersto the callback interface the heartbeat is calling.
Raises

TpCommonExceptions, P_INVALID INTERFACE TYPE

9.3.4.3.2 Method disableHeartBeat()
Instructs the framework to cease the sending of its heartbeat.
Parameters

No Parameters were identified for this method.

ETSI

143 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions

9.3.4.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.
Parameters

interval! in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions

9.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking |pSvcHeartBeatM gmt.enableHeartBeat(), it shall implement |pFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse (): void

9.3.4.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions
9.3.4.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatM gmt interface isimplemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

ETSI

144 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval: in TpInt32, fwinterface: in IpFwHeartBeatRef): void
disableSvcHeartBeat (): void

changelnterval (interval: in TpInt32): void

9.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval: in TpInt32

Thetime interval in milliseconds between the heartbeats.
fwinterface. in IpFwHeartBeatRef

This parameter refersto the callback interface the heartbeat is caling.
Raises

TpCommonExceptions, P_INVALID INTERFACE_TYPE

9.3.4.5.2 Method disableSvcHeartBeat()
Instructs the service instance to cease the sending of its heartbeat.
Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.
Parameters

interval. in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions

ETSI

145 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Iplnterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Serviceis
capable of invoking |pFwHeartBeatM gmt.enableHeartBest(), it shall implement IpSvcHeartBeat and the pulse()
method.

<<Interface>>

IpSvcHeartBeat

pulse (): void

9.3.4.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the |pFwHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.7 Interface Class IpFwLoadManager
Inherits from: Iplnterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at al costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the I pFwL oadManager interface. To handle responses and reports, the service devel oper must implement the

IpSvclL oadManager interface to provide the callback mechanism.

If the IpFwL oadManager interface isimplemented by a Framework, at |east one of the methods shall be implemented as
aminimum requirement. If load level notifications are supported, the createl oadlL evel Natification() and
destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() isimplemented, then
resumeNotification() shall be implemented aso. If a Framework is capable of invoking the

| pSvcl oadM anager.querySvcl oadStatsReq() method, then it shall implement querySvcl cadStatsRes() and

querySvcL oadStatsErr() methodsin thisinterface.

ETSI

146 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel: in TpLoadLevel): void

createLoadLevelNotification (notificationSubject: in TpSubjectType): void
destroyLoadLevelNotification (notificationSubject: in TpSubjectType): void
suspendNotification (notificationSubject: in TpSubjectType): void
resumeNotification (notificationSubject: in TpSubjectType): void

queryLoadStatsReq (loadStatsReqID: in TpLoadTestID, querySubject: in TpSubjectType, timelnterval: in
TpTimelnterval): void

querySvclLoadStatsRes (loadStatsReqID: in TpLoadTestID, loadStatistics: in TpLoadStatisticList): void
querySvclLoadStatsErr (loadStatsReqID: in TpLoadTestID, loadStatisticError: in TpLoadStatisticError): void

9.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1 or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
Atlevel 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In
addition this method shall be called by the service instance in order to report current load status, when load notifications
arefirst requested, or resumed after suspension.

Parameters

loadLevel. in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions

9.3.4.7.2 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall
inform the service instance of the current framework or application load using the |oadL evelNotification method on the
corresponding | pSvclL oadM anager.

Parameters

notificationSubject! in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions

ETSI

147 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.3.4.7.3 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject: in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions

9.3.4.7.4 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters
notificationSubject. in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises

TpCommonExceptions

9.3.4.7.5 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled atemporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadL evel Notification method on the
corresponding 1pSvcl oadM anager.

Parameters
notificationSubject. in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises
TpCommonExceptions

9.3.4.7.6 Method queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

loadStatsReqID. in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
querySubject. in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.

ETSI

148 ETSI ES 204 915-3 V1.1.1 (2008-05)

timeInterval. in TpTimeInterval
Specifies the timeinterval for which load statistics records should be reported.
Raises

TpCommonExceptions

9.3.4.7.7 Method querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadStatsReq method on the | pSvcl oadM anager
interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics! in TpLoadStatisticList

Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

9.3.4.7.8 Method querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcL oadStatsReq method on the I pSvcl oadManager interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticError: in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions

9.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Iplnterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess
interface.

If the IpSvcLoadManager interface isimplemented by a Service, at least one of the methods shall be implemented as a
minimum requirement. If load level notifications are supported, then loadL evelNatification() shall be implemented. If a
Serviceis capable of invoking the | pFwL oadM anager.querylL oadStatsReq() method, then it shall implement

querylL oadStatsRes() and queryL oadStatsErr() methods in thisinterface.

ETSI

149 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpSvcLoadManager

loadLevelNotification (loadStatistics: in TpLoadStatisticList): void

suspendNotification (): void

resumeNotification (): void

createLoadLevelNatification (): void

destroyLoadLevelNotification (): void

querySvclLoadStatsReq (loadStatsReqID: in TpLoadTestID, timelnterval: in TpTimelnterval): void
queryLoadStatsRes (loadStatsReqID: in TpLoadTestID, loadStatistics: in TpLoadStatisticList): void
queryLoadStatsErr (loadStatsReqID: in TpLoadTestID, loadStatisticsError: in TpLoadStatisticError): void

9.3.4.8.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method isinvoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters

loadStatistics! in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions

9.3.4.8.2 Method suspendNotification()

The framework uses this method to reguest the service instance to suspend sending it any notifications: e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.8.3 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
service instance shall inform the framework of the current load using the reportL oad method on the corresponding
|pFwLoadManager.

Parameters

No Parameters were identified for this method.

ETSI

150 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions

9.3.4.8.4 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service
instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportL oad method on the corresponding | pFwL oadManager.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.8.5 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.6 Method querySvcLoadStatsReq()

The framework uses this method to request the service instance to provideits load statistic records.
Parameters

loadStatsReqID. in TpLoadTestID

Theidentifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval. in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

9.3.4.8.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadStatsReq method on the | pFwL oadManager interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
loadStatistics! in TpLoadStatisticList

Specifies the framework-supplied load statistics.

ETSI

151 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions

9.3.4.8.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadStatsReq method on the | pFwL oadManager interface.

Parameters

loadStatsReqID. in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.
loadStatisticsError: in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions

9.3.4.9 Interface Class IpFwOAM
Inherits from: Iplnterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. Thisinterface and the
systemDateTimeQuery() method are optional .

<<Interface>>
IpFWOAM

systemDateTimeQuery (clientDateAndTime: in TpDateAndTime): TpDateAndTime

9.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime>: Thisis the system date and time of the framework.
Parameters

clientDateAndTime. in TpDateAndTime

Thisisthe date and time of the client (service). The error code P_INVALID _DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDateAndTime

ETSI

152 ETSI ES 204 915-3 V1.1.1 (2008-05)

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

9.3.4.10 Interface Class IpSvcOAM
Inherits from: Iplnterface.

This interface and the systemDateTimeQuery() method are optional .

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime: in TpDateAndTime): TpDateAndTime

9.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime>: Thisis the date and time of the client (service).
Parameters

systemDateAndTime. in TpDateAndTime

Thisisthe system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDateAndTime
Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

9.3.5 Event Notification Interface Classes

9.3.5.1 Interface Class IpFwEventNotification
Inherits from: Ipinterface.

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be supported.

ETSI

153 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria: in TpFwEventCriteria): TpAssignmentlD

destroyNotification (assignmentID: in TpAssignmentID): void

9.3.5.1.1 Method createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignment| D>: Specifiesthe ID assigned by the framework for this newly installed event notification.
Parameters

eventCriteria! in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID EVENT TYPE, P_INVALID CRITERIA

9.3.5.1.2 Method destroyNoatification()

This method is used by the service to delete generic notifications from the framework.
Parameters

assignmentID. in TpAssignmentID

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT_ID

9.3.5.2 Interface Class IpSvcEventNotification
Inherits from: Iplnterface.

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be supported.

ETSI

154 ETSI ES 204 915-3 V1.1.1 (2008-05)

<<Interface>>

IpSvcEventNotification

reportNotification (eventinfo: in TpFwEventinfo, assignmentID: in TpAssignmentID): void
notificationTerminated (): void

9.3.5.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.
Parameters

eventInfo. in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID. in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteriaand to act accordingly.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT_ID

9.3.5.2.2 Method notificationTerminated()

This method indicates to the service that al generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

155 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.4.1 Service Registration State Transition Diagrams

9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

registerService

SCF
Registered

_ A -
uhannounceSenice announceServiceAvailability

describeService

SCF
Announced

unregisterService

‘a

Figure 30: State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

9.4.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer available for discovery.

9.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager.

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery.

ETSI

156 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.4.4 Integrity Management State Transition Diagrams

9.4.4.1 State Transition Diagrams for IpFwLoadManager

reportLoad

"load change” NoadLevelNotification gyerySwcLoadStatsRes| load statistics requested by LoadManager |
uerySvc LoadStatsErr load statistics requested by LoadManager]

createLoadLewelNotification NoadLevelNotification \(Active } queryLoadStatsReq

destroyLoadLevelNotification

IpAccess,obtainl

IpAccess\gbtaininterfaceWithCallback

resumeNotification
NoadLevelNatification

reportLoad
querySvcLoadStatsRes| load statistics requested by LoadManager |
uerySwvclLoadStatsEn| load statistics requested by LoadManager]

Notification querylLoadStatsReq
Suspended

destroyLoadLevelNotification

All States

IpAccess.terminateAccess

suspendNotification
[all notifications suspended]

Figure 31: State Transition Diagram for IpFwLoadManager

9.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

9.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the L oadM anager to suspend sending the load level
notification information.

9.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl.oadL evel Notification()
invocation on the IpFwL oadM anager. The load manager can now request the service to supply load statistics
information (by invoking querySvcL oadStatsReq|()). Furthermore the LoadManager can request the service to control
itsload (by invoking loadLevel Notification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

ETSI

157 ETSI ES 204 915-3 V1.1.1 (2008-05)

9.4.4.2 State Transition Diagrams for IpFwFaultManager

IpAccess.obtaininterfaceWithCallback "FaultManagement")
/ add service to fault management

‘change in framework availability (non fault) “fwAvailStatusind to all services with callback
‘change in application availability' "appAvail Statusind to all servicesused by application

appUnavailablelnd / test the application, inform application that service isnot using it

. N -
application fault AappAvailStatusind to all generateFaultStatisticsRecordReq “svc.generateFaultStatisticsRecordRes/ Err

servicesused by the application

Framework
Active J

no fault detected

o . ctivityTestReq[framework]
activityTestRegfclient |

fault{resolved

no fault detected

Application Activity Test

entry/ test activity of application
exit/ MpSvcFaultManager.activityTestRes

IpAccessterminateAccess

Framework Activity Test

entry/ test activity of framework
exit/ MlpSvcFaultManager.activityTestRes
exit/ MpSvcFaultManager.activityTestEm

exit/ “lpSvcFaultManager.activityTestEmr

IpAccess.terminateAccess /
Abort pendifig test requiest

fault detected in fi

®

IpAccess.terminateAccess/ remove
service from load management
fault detected in fw

Framework Faulty ‘

entry/ “fwAvailStatusind to all services with callback
exit/ MwAvailStatusind to all serviceswith callback

Figure 32: State Transition Diagram for IpFwFaultManager

9.4.4.2.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and service capability features.
9.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fault
management callbacks are notified through an fwAvail Statuslnd message.

9.4.4.2.3 Application Activity Test State

In this state, the framework is performing atest on one client application. If the application is faulty, servicesthat are
used by the application and that have provided fault management callbacks are notified accordingly through an
appAvail Statusl nd message.

9.4.4.2.4 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, services with fault management callbacks will be notified
viaafwAvail Statusind message.

9.4.5

There are no State Transition Diagrams defined for Event Notification.

Event Notification State Transition Diagrams

ETSI

158 ETSI ES 204 915-3 V1.1.1 (2008-05)

10 Service Properties

10.1 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an
indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from
limitations in the network. The service type of an SCF defines which properties the supplier shall provide at registration
of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The
Framework validates the requested properties with the registered properties and provides the application with alist of
SCFsthat comply to the application's request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this
standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully
compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type.
Thisimpliesthat the interface to the SCF remains unchanged. Also SCF sub types can be further extended. Thisway a
hierarchy of service types can be built with the standard type being the root.

An example of asub typeisaMulty Party Call Control service that allows the application to request a certain quality-
of-service level. An additional service property is added for this.

10.2 Service Property Types

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property
value of {"true", "false"}. This means that the SCSis able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF isinstantiated during the discovery and selection
procedure (see note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: Thisisachieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

ETSI

159

ETSI ES 204 915-3 V1.1.1 (2008-05)

Service Property type name

Description

Example value
(array of strings)

Interpretation of example
value

BOOLEAN_SET

set of Booleans

{"FALSE"}

The set of Booleans
consisting of the Boolean
"false".

INTEGER_SET set of integers {"1","2","5", "7"} The set of integers
consisting of the integers 1,
2,5and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting

of the string "Sophia" and
the string "Rijen"

INTEGER_INTERVAL

interval of integers

{"5", "100"}

The integers that are
between or equal to 5 and
100.

STRING_INTERVAL

interval of strings

{"Rijen", "Sophia"}

The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP

map from integers to

{"1", "10", "2", "20", "3", "30"}

The map that maps 1 to 10,

integers 2 to 20 and 3 to 30.
XML_ADDRESS RANGE_SET |set of values of {"<AddressRangeSet> In case

TpAddressRange. <AddressRange> P_REGEX_SUPPORT_FOR

Values of <Plan>P_ADDRESS PLA | ADDRESS RANGE is

TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

N_E164</Plan>
<AddrString>123*</AddrSt
ring>

</AddressRange>

<AddressRange>
<Plan>P_ADDRESS_PLA
N_E164</Plan>
<AddrString>456*</AddrSt
ring>

</AddressRange>

</AddressRangeSet>"}

TRUE: Any addresses
containing 123 or containing
456 in the E.164 Address
Plan.

In case
P_REGEX_SUPPORT_FOR
_ADDRESS_RANGE is
FALSE:

Any addresses starting with
123 or starting with 456 in
the E.164 Address Plan.

FLOAT_SET

set of values of
TpFloat

{"0.1", ".2", "0.1e+3}

The set of floats containing
floating point numbers 0.1,
0.2 and 100

FLOAT_INTERVAL

interval of TpFloat
values

{-1.1","5.0'}

The floating point numbers
that are between or equal to
-1.1and 5.0

The bounds of the string interval, integer interval and float interval types may hold the reserved value

"UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is
the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper
bound of the interval isthe largest value supported by the type.

The lexical representation of float values shall be compliant with the IEEE 754 standard.

When an SCF is registered by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an
empty set. When a service is discovered by an application, this application shall specify either {TRUE} or { FALSE} as
value for service properties of type BOOLEAN_SET.

ETSI

160 ETSI ES 204 915-3 V1.1.1 (2008-05)

Thevaue of XML_ADDRESS RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="AddressRangeSet">
<xs:complexType>
<XS:sequence>
<xs:element name="AddressRange" maxOccurs="unbounded">
<xs:complexType>
<XS:sequence>
<xs:element name="Plan" type="xs:string" default="P_ADDRESS_ PLAN_ ANY"/>
<xs:element name="AddrString" type="xs:string"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

An example usage could be:

{"<?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xml_address_range_set.xsd">
<AddressRange>
<Plan>P_ADDRESS_ PLAN El64</Plan>
<AddrString>789*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS PLAN ANY</Plans
<AddrString>123*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS PLAN SIP</Plans
<AddrString><sip:*@parlay.org> </AddrString>
<Name/ >
</AddressRange>
</BddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:* @parlay.org>.

10.3 General Service Properties
Each service instance has the following genera properties:

e Service Name.

e Service Version.

e SewvicelD.

. Service Description.

. Product Name.
. Product Version.

. Operation Set.

. Compatible Service.

° Backward Compatibility Level.

. Migration Required.

) Data Migrated.

ETSI

161 ETSI ES 204 915-3 V1.1.1 (2008-05)

) Migration Date and Time.

° Support for Regular Expressions in Address Range.

The following clauses describe these general service propertiesin more detail. The values for the mode are defined in
the type TpServiceTypePropertyMaode.

10.3.1 Service Name

Property Type Mode Description

P_SERVICE_NAME |STRING_SET |MANDATORY_READONLY |This property contains the name of the service,
e.g. "UserLocation", "UserLocationCamel",
"UserLocationEmergency" or "UserStatus".

10.3.2 Service Version

Property Type Mode Description

P_SERVICE_VERSION |STRING_SET |MANDATORY This property contains the version of the APIs, to which
the service is compliant. It is a set of strings as specified
in the TpVersion type.

10.3.3 Service ID

Property Type Mode Description

P_SERVICE_ID STRING_INTERVAL |READONLY This property uniquely identifies a specific service. Note that
the Framework generates this property value when the
Service Supplier registers the service. This property should
not be confused with the servicelnstancelD generated by
the Framework when a Client Application signs a Service
Agreement to obtain the Service Manager

10.3.4 Service Description

Property Type Mode Description

P_SERVICE_DESCRIPTION |STRING_SET |[MANDATORY_READONLY [This property contains a textual
description of the service. It should not be
interpreted as a description of a Service
Instance (as identified by a
servicelnstancelD generated by the
Framework when a Client Application
signs a Service Agreement to obtain the
Service Manager).

10.3.5 Product Name

Property Type Mode Description

P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the product that
provides the service, e.g. "Find It", "Locate.com".

10.3.6 Product Version

Property Type Mode Description

P_PRODUCT_VERSION |STRING_SET READONLY This property contains the version of the product that
provides the service, e.g. "3.1.11".

ETSI

162 ETSI ES 204 915-3 V1.1.1 (2008-05)
10.3.7 Void
10.3.8 Operation Set
Property Type Mode Description
P_OPERATION_SET STRING_SET MANDATORY |Specifies set of the operations the SCS supports.
The notation to be used is:
{"Interfacel.operationl","Interfacel.operation2",
"Interface2.operationl1"}, e.g.:
{"IpCall.createCall","IpCall.routeReq"}.
10.3.9 Compatible Service
Property Type Mode Description
P_COMPATIBLE_WITH_SERVICE [STRING_SET |READONLY |Specifies the Set of Services, identified by their

ServicelDs, with which this new service is
compatible.

This property should at least be accompanied with
the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible with
more than one Service that is currently registered
to the Framework. Therefore this Property is a
SET, as well as all related properties like Migration
Required, Data Migrated, etc.

For all these properties the order of the Services
shall be identical.

10.3.10 Backward Compatibility Level

Property Type

Mode

Description

P_BACKWARD_COMPATIBILITY
_LEVEL

BOOLEAN_SET

READONLY

Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: Service is completely backwards
compatible

Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one value of
this property shall be present in the value set of
this property at service registration.

For all these properties the order of the Services
shall be identical.

ETSI

10.3.11 Migration Required

163 ETSI ES 204 915-3 V1.1.1 (2008-05)

Property

Type

Mode Description

P_MIGRATION_REQUIRED

BOOLEAN_SET

READONLY |Specifies if the new service is replacing the service

identified in the P_COMPATIBLE_WITH_SERVICE
property:

Value = TRUE: new service is replacing the existing
one — migration is required before the date/time
indicated in P_MIGRATION_DATE_AND_TIME
property.

Value = FALSE: new service is not replacing the
existing one — migration not required, the existing
service is retained.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property. If the
value set of P_MIGRATION_REQUIRED contains
TRUE, P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME properties shall
also to be present.

Note that the new Service can be compatible with
more than one Service that is currently registered to
the Framework. Therefore this Property is a SET, as
well as all related properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one value of
this property shall be present in the value set of this
property at service registration.

For all these properties the order of the Services
shall be identical.

10.3.12 Data Migrated

Property

Type

Mode

Description

P_DATA_MIGRATED

BOOLEAN_SET

READONLY

Indicates if the data (e.g. notifications) from the existing
service identified in the P_COMPATIBLE_WITH_SERVICE
property is also available in this Service.

Value = TRUE: all data is migrated.

Value = FALSE: no data is migrated.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible with more than
one Service that is currently registered to the Framework.
Therefore this Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one value of this
property shall be present in the value set of this property at
service registration.

For all these properties the order of the Services shall be
identical.

ETSI

164 ETSI ES 204 915-3 V1.1.1 (2008-05)

10.3.13 Migration Date And Time

Property Type Mode Description

P_MIGRATION_DATE_AND_TIME |STRING_SET |READONLY |This property contains the date and time, in the
format described in TpDateAndTime, by which point
applications shall have migrated from existing
services to this new service.

Migration to the new service requires the application
to terminate the existing service agreement, and sign
a new one.

Failure to do this by the migration date and time
indicated in this property may result in the service
agreement being terminated by the Framework,
since the service supplier may choose to unregister
the service following this date and time.

Only one value of TpDateAndTime is permitted to be
present in this property at service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA_MIGRATED properties.

Note that the new Service can be compatible with
more than one Service that is currently registered to
the Framework. Therefore this Property is a SET, as
well as all related properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one value of
this property shall be present in the value set of this
property at service registration.

For all these properties the order of the Services
shall be identical. For those services for which
migration is not required
(P_MIGRATION_REQUIRED set to FALSE), the
corresponding value of this property shall be
ignored.

10.3.14 Support for Regular Expressions in Address Range

Property Type Mode Description
P_REGEX_SUPPORT_FOR_ADDR |[BOOLEAN_SET |READONLY |Indicates if the AddrString and SubAddressString
ESS_RANGE fields of TpAddressRange are expressed as

regular expressions (TRUE) or not (FALSE)

11 Data definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:

. Datatype, that shows the name of the data type.

. Description, that describes the data type.

e Tabular specification, that specifies the data types and values of the data type.

EXAMPLE: If relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
ES 204 915-2.

ETSI

165 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator's domain). This unique
identifier shall be negotiated with the OSA operator and the application shall useit to identify itself.

11.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientApplD.

11.1.3 TpDomainlD

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity attempting to
access the Framework.

Tag Element Type
TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID
P_CLIENT_APPLICATION TpClientAppID ClientAppID
P_ENT_OP TpENtOpID EntOpID
P_SERVICE_INSTANCE TpServicelnstancelD ServicelD (See note)
P_SERVICE_SUPPLIER TpServiceSupplierlD ServiceSupplierlD

NOTE: The Choice Element Name ServicelD of TpDomainID refers to a service instance.

11.1.4 TpDomainiDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P FW 0 The Framework
P_CLIENT_APPLICATION 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVICE_INSTANCE 3 A service instance
P_SERVICE_SUPPLIER 4 A service supplier

11.1.5 TpEntOpID

Thisdatatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpString. It isthe name of a generic "property".

11.1.7 TpPropertyValue

Thisdatatypeisidentical to TpString. It isthe value (or the list of values) associated with a generic "property”.

ETSI

166 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.1.8 TpProperty

This datatypeis a Sequence of Data Elements which describes a generic "property”. It is a structured data type
consisting of the following { name, value} pair.

Sequence Element Name Sequence Element Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.1.9 TpPropertyList

This datatype defines a Numbered List of Data Elements of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

11.1.11 TpFwiID

This datatypeisidentical to TpString and identifies the Framework.

11.1.12 TpService

This datatypeis a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Name Sequence Element Type Documentation
ServicelD TpServicelD
ServiceDescription TpServiceDescription This field contains the description of the service.

11.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This datatypeis a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type Documentation
ServiceTypeName TpServiceTypeName
ServicePropertyList TpServicePropertyList

11.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicel D.

ETSI

167 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.1.17 TpServicelnstancelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

11.1.18 TpServiceTypeProperty

This datatype is a Sequence of Data Elements which describes a service property associated with a service type. It
defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.

Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property's name and mode, but also defines the list of values assigned to it.

Sequence Element Name Sequence Element Type Documentation
ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

11.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided.
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service
registration time.
READONLY 2 The value of the corresponding SCF property type is optional, but once given a

value it can not be modified/restricted by a service level agreement.

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not
subsequently be modified/restricted by a service level agreement.

11.1.21 TpServicePropertyTypeName

This datatypeisidentical to TpString and describes avalid SCF property type name. Valid service property type names
aredetailed in clause 10.1.

11.1.22 TpServicePropertyName

This datatypeisidentical to TpString. It defines avalid SCF property name. The valid service property names are
detailed in clause 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service
properties (used for service sub types) are possible.

11.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type T pServicePropertyName.

11.1.24 TpServicePropertyValue

This datatypeisidentical to TpString and describes a valid value of a SCF property.

11.1.25 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

ETSI

168

11.1.26 TpServiceProperty

This datatypeis a Sequence of Data Elements which describes an " SCF property". It is a structured data type which

ETSI ES 204 915-3 V1.1.1 (2008-05)

consists of:
Sequence Element Name Sequence Element Type Documentation
ServicePropertyName TpServicePropertyName
ServicePropertyValueList TpServicePropertyValueList

11.1.27 TpServicePropertyList

This data type defines aNumbered Set of Data Elements of type TpServiceProperty.

11.1.28 TpServiceSupplierlD

Thisisan identifier for aservice supplier. It is used to identify the supplier to the Framework. This datatype isidentical

to TpString.

11.1.29 TpServiceTypeDescription

This datatypeis a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServiceTypePropertyList

TpServiceTypePropertyList [A sequence of property name and property mode tuples
associated with the SCF type.

ServiceTypeNameList

TpServiceTypeNamelList |The names of the super types of the associated SCF

type.

AvailableOrUnavailable

TpBoolean An indication whether the SCF type is available (true) or

unavailable (false).

ETSI

169 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.1.30 TpServiceTypeName

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may aso be used, but should be preceded by the string
"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name.

P _GENERIC CALL CONTROL

The name of the Generic Call Control SCF.

P _MULTI_PARTY CALL CONTROL

The name of the MultiParty Call Control SCF.

P_MULTI_MEDIA_CALL_CONTROL

The name of the MultiMedia Call Control SCF.

P_CONFERENCE_CALL_CONTROL

The name of the Conference Call Control SCF.

P_USER_INTERACTION

The name of the User Interaction SCFs.

P _USER INTERACTION ADMIN

The name of the User Interaction Administration SCF.

P_TERMINAL_CAPABILITIES

The name of the Terminal Capabilities SCF.

P _USER BINDING

The name of the User Binding SCF.

P _USER LOCATION

The name of the User Location SCF.

P USER LOCATION CAMEL

The name of the Network User Location SCF.

P_USER_LOCATION_EMERGENCY

The name of the User Location Emergency SCF.

P _USER STATUS

The name of the User Status SCF.

P _EXTENDED USER STATUS

The name of Extended User Status SCF.

P DATA SESSION CONTROL

The name of the Data Session Control SCF.

P_GENERIC_MESSAGING

The name of the Generic Messaging SCF.

P_CONNECTIVITY_MANAGER

The name of the Connectivity Manager SCF.

P _CHARGING

The name of the Charging SCF.

P_ACCOUNT_MANAGEMENT

The name of the Account Management SCF.

P_POLICY_PROVISIONING

The name of the Policy Management provisioning SCF.

P_POLICY_EVALUATION

The name of the Policy Management policy evaluation SCF.

P _PAM ACCESS

The name of PAM presentity SCF.

P _PAM EVENT MANAGEMENT

The name of PAM watcher SCF.

P_PAM_PROVISIONING

The name of PAM provisioning SCF.

P_MULTI_MEDIA_MESSAGING

The name of the Multimedia Messaging SCF.

P_SERVICE_BROKER

The name of the Service Broker SCF

11.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT _UNDEFINED 0 The subject is neither the framework nor the client application.
P_SUBJECT _CLIENT_APP 1 The subject is the client application.
P_SUBJECT_FW 2 The subject is the framework.

11.1.33 TpServiceTypePropertyValue

This datatypeis a Sequence of Data Elements which describes a service property associated with a service. It defines
the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It issimilar
to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to register values
for known service properties only.

Sequence ElementName Sequence ElementType Documentation
ServicePropertyName TpServicePropertyName The name of the service property.
ServiceTypePropertyMode | TpServiceTypePropertyMode |The mode of the service property.
ServicePropertyTypeName | TpServicePropertyTypeName |The type of the service property.
ServicePropertyValueList TpServicePropertyValueList |The Value-list of the service property.

ETSI

170

11.1.34 TpServiceTypePropertyValueList

ETSI ES 204 915-3 V1.1.1 (2008-05)

This data type defines aNumbered Set of Data Elements of type TpServiceTypePropertyValue.

11.2 Event Notification Data Definitions

11.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description

P_EVENT FW_NAME_UNDEFINED 0 Undefined

P EVENT FW SERVICE AVAILABLE 1 Notification of SCS(s) available

P EVENT FW SERVICE UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE 3 Notification of a backwards compatible SCS
becoming available, to which the application
can migrate

P_EVENT_FW_APP_SESSION_CREATED 4 Notification of an application<->FW access
session created (see note)

P_EVENT_FW_APP_SESSION_TERMINATED 5 Notification of an application<->FW access
session terminated (see note)

P_EVENT_FW_APP_AGREEMENT_SIGNED 6 Notification that a service agreement has been
signed (see note)

P_EVENT_FW_APP_AGREEMENT_ENDED 7 Notification that a service agreement has been
ended/terminated (see note)

NOTE: These events can only be requested by enterprise operators. If requested by any other entity then the

method will throw the P_INVALID_CRITERIA exception.

11.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specifies the criteriafor an event notification to be generated.

Tag Element Type

TpFwEventName

Tag Element Value

Choice Element Type

Choice Element Name

P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined
P_EVENT_FW_ SERVICE_AVAILABLE TpServiceTypeNamelList ServiceTypeNameList
P_EVENT FW_SERVICE_UNAVAILABLE TpServiceTypeNamelList |UnavailableServiceTypeNameList
P_EVENT FW_MIGRATION_SERVICE AVAILABLE | TpServiceTypeNamelList | CompatibleServiceTypeNameList

P EVENT FW APP SESSION CREATED

TpClientAppIDList

SessionCreatedList

P_EVENT_FW_APP_SESSION_TERMINATED

TpClientApplIDList

SessionTerminatedList

P_EVENT_FW_APP_AGREEMENT_SIGNED

TpClientAppIDList

AgreementSignedList

P_EVENT FW_APP_AGREEMENT ENDED

TpClientApplDList

AgreementEndedList

11.2.3 TpFwEventinfo

Defines the Tagged Choice of Data Elements that specifies the information returned to the client in an event

notification.

Tag Element Type

TpFwEventName

ETSI

171

ETSI ES 204 915-3 V1.1.1 (2008-05)

Tag Element Value

Choice Element Type

Choice Element Name

P _EVENT FW NAME_UNDEFINED

TpString

EventNameUndefined

P EVENT FW_SERVICE AVAILABLE

TpServicelDList

ServicelDList

P_EVENT_FW_SERVICE_UNAVAILABLE

TpServicelDList

UnavailableServicelDList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE

TpFWMigrationServiceAvailablelnfo

MigrationServiceAvailable

P_EVENT FW_APP_SESSION_CREATED TpClientAppID AppSessionCreated

P_EVENT FW_APP_SESSION_TERMINATED TpClientAppID AppSessionTerminated
P _EVENT FW_APP_AGREEMENT SIGNED TpFwAgreementinfo AppAgreementSigned
P_EVENT_FW_APP_AGREEMENT_ENDED TpFwAgreementinfo AppAgreementEnded

11.2.4 TpFwMigrationServiceAvailablelnfo

Defines the information to be supplied when an SCS becomes available.

Sequence ElementName

Sequence ElementType

Documentation

ServiceType

TpServiceTypeName

Type of SCS that has become available.

ServicelD

TpServicelD

ID of the SCS that has become available.

CompatibleServicelD

TpServicelD

ID of the SCS with which this new SCS is
compatible with.

BackwardCompatibilityLevel

TpBoolean

Specifies if the new SCS is completely backwards
compatible with the currently used SCS.

Value = TRUE: SCS is completely backwards
compatible.

Value = FALSE: SCS is not completely backwards
compatible. Contact the Framework operator for
more information.on how to migrate.

MigrationRequired

TpBoolean

Specifies if the new SCS is replacing the existing
SCS.

Value = TRUE: new SCS is replacing the existing
one - migration is required before the date/time
indicated in MigrationDateAndTime field.

Value = FALSE: new SCS is not replacing the
existing one, but is provided in addition.

All migration to the new SCS, whether required or
not, shall involve the application terminating the
existing service agreement and signing a new one.

DataMigrated

TpBoolean

Indicates whether all the data the application set in
the previous SCS (e.g. notifications) is also
available in the new SCS.

Value = FALSE: the new SCS has not obtained all
data (e.g. notifications) related to the old SCS and
the application needs to reset all the previous data.
Value = TRUE: the new SCS has obtained data
(e.g. notifications) related to the old SCS, the
application can use the new SCS without resetting
data.

MigrationDataAndTime

TpDateAndTime

Indicates the date and time before which
applications shall have migrated from existing the
existing SCS to this new SCS.

Migration to the new SCS requires the application to
terminate the existing service agreement, and sign a
new one.

Failure to do this by the migration date and time
indicated in this field may result in the service
agreement being terminated by the Framework,
since the service supplier may choose to unregister
the service following this date and time.

The value of this parameter, if present, shall be
ignored if MigrationRequired is set to FALSE.

MigrationAdditionallnfo

TpMigrationAdditionallnfoSet

Contains additional migration information. This is
initially provided to permit addition of information in
later releases without impacting backwards
compatibility.

ETSI

172 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.2.5 TpMigrationAdditionallnfo

Definesthe Tagged Choice of Data Elements that specify additional migration-related information.

Tag Element Type
TpMigrationAdditionallnfoType

Tag Element Value Choice Element Type Choice Element Name
P_MIGRATION_INFO_UNDEFINED NULL Undefined

11.2.6 TpMigrationAdditionallnfoType

Defines the type of migration-related additional information.

Name Value Description
P_MIGRATION_INFO_UNDEFINED 0 Undefined

11.2.7 TpMigrationAdditionallnfoSet

DefinesaNumbered Set of Data Elements of TpMigrationAdditionallnfo.

11.2.8 TpFwAgreementinfo

Definesthe Sequence of Data Elements that specifiesthe information returned to the enterprise operator
application in an event notification.

Sequence Element Name | Sequence Element Type Description
ClientApplicationID TpClientAppID The ID of the client application.
ServicelD TpServicelD The ID of the service for whom the agreement was

signed/terminated.

ServiceContractID TpServiceContract|D The ID of the service contract related to the agreement if
available, an empty string otherwise.

ServiceProfilelD TpServiceProfileID The ID of the service profile related to the agreement if

available, an empty string otherwise.

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. Thisidentifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "sp_". The following value is defined.

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess.

ETSI

173 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.3.2 TpAuthType

This datatypeisidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string "sP_". The following values are defined.

String Value Description

P_OSA_AUTHENTICATION |Authenticate using the OSA API Level Authentication Interfaces:
IpAPILevelAuthentication and IpClientAPILevelAuthentication.

P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA
Security.

11.3.3 Void

11.3.4 Void

11.3.5 Void

11.3.6 TpAuthDomain

Thisis Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a
reference to the authentication interface of the domain.

Sequence Element Name | Sequence Element Type Description

DomainlD TpDomainlD Identifies the domain for authentication. This identifier is
assigned to the domain during the initial contractual
agreements, and is valid during the lifetime of the contract.

Authinterface IpinterfaceRef Identifies the authentication interface of the specific entity. This
data element has the same lifetime as the domain
authentication process, i.e. in principle a new interface
reference can be provided each time a domain intends to
access another.

ETSI

174 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.3.7 TplinterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string “sP_". The following values are defined.

Character String Value Description

P_DISCOVERY The name for the Discovery interface.

P EVENT NOTIFICATION The name for the Event Noatification interface.

P OAM The name for the OA&M interface.

P _LOAD MANAGER The name for the Load Manager interface.

P_FAULT_MANAGER The name for the Fault Manager interface.

P HEARTBEAT MANAGEMENT The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_MANAGEMENT |The name of the Service Agreement Management interface.

P _REGISTRATION The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator
Account Management interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator
Account Information Query interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract
Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract
Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application
Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application
Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile
Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile
Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

This datatypeisidentical to a TpString, and identifies a selected SCF. Thisis a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has alimited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P INVALID SERVICE_ TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the terminateAccess method on the other's corresponding
access interface.

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Name Sequence Element Type
DigitalSignature TpOctetSet
ServiceMgrinterface IpServiceRef

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall aso be used to provide replay prevention.

ETSI

175 ETSI ES 204 915-3 V1.1.1 (2008-05)

The ServiceMgrinterface is a reference to the SCF manager interface for the selected SCF.

11.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may a so be used, but should be preceded by the string
"SP_". Thefollowing values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required.
P_MD5_RSA 512 MD5 takes an input message of arbitrary length and produces as

output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.

P_MD5_RSA_1024 MDS5 takes an input message of arbitrary length and produces as
output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public- key cryptography system
using a 1024-bit modulus. .The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.
P_RSASSA_PKCS1 vl 5 SHA1 1024 |SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. RSA is then used to generate the
signature value, following the process defined in section 8 of RFC
2437 and format defined in section 9.2.1 of RFC 2437. The RSA
private/public key pair is using a 1024-bit modulus.

P_SHA1_DSA SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. DSA is then used to generate the
signature value. The signature generation follows the process and
format defined in section 7.2.2 of RFC 2459.

11.3.12 TpSigningAlgorithmCapabilityList

This datatypeisidentical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)
as the separation character.

11.3.13 TpAuthMechanism

This datatypeisidentical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined.

String Value Description
P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to
generate a response based on a shared secret and a challenge received via
challenge() method. The capability to use this algorithm is required to be supported
when using CHAP (RFC 1994) but its use is not recommended.
P_OSA_HMAC_SHA1_96 |Authentication is based on the use of HMAC-SHAL (RFC 2404) hashing algorithm to
generate a response based on a shared secret and a challenge received via
challenge() method.
P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MDS5 (RFC 2403) hashing algorithm to
generate a response based on a shared secret and a challenge received via
challenge() method.

11.3.14 TpAuthMechanismList

This datatypeisidentical to a TpString. It is a string of multiple TpAuthM echanism concatenated using acomma (,) as
the separation character.

ETSI

176 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are "Available"
or "Unavailable".

11.4.2 TpFaultStatsRecord

This defines the set of recordsto be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type
Period TpTimelnterval
FaultStatsSet TpFaultStatsSet

11.4.3 TpFaultStats

This defines the sequence of data el ements which provide the statistics on a per fault type basis.

Sequence Element Name Sequence Element Type Description
Fault TplnterfaceFault
Occurrences TpInt32 The number of separate instances of this fault
MaxDuration TpInt32 The number of seconds duration of the longest fault
TotalDuration TpInt32 The cumulative duration (all occurrences)
NumberOfClientsAffected TpInt32 The number of clients informed of the fault by the Fw

Occurrencesis the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

11.4.4 TpFaultStatisticsError

Defines the error code associated with afailed attempt to retrieve any fault statistics information.

Name Value Description
P_FAULT INFO_ERROR_UNDEFINED 0 Undefined error
P_FAULT _INFO_UNAVAILABLE 1 Fault statistics unavailable

11.45 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats.

11.4.6 TpActivityTestID

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match activity test requests with their results.

ETSI

177 ETSI ES 204 915-3 V1.1.1 (2008-05)
11.4.7 TplinterfaceFault
Defines the cause of the interface fault detected.
Name Value Description

INTERFACE FAULT UNDEFINED 0 Undefined.

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has been
detected.

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has been
detected.

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway link has
been detected.

11.4.8 Void

11.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description
FW_UNAVAILABLE_UNDEFINED 0 Undefined.
FW_ UNAVAILABLE LOCAL FAILURE 1 The Local API software or hardware has failed.
FW_ UNAVAILABLE GATEWAY FAILURE 2 The gateway API software or hardware has failed.
FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded.
FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect

from fraud or malicious attack).

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has

failed.

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL NORMAL 0 Normal load
LOAD LEVEL OVERLOAD 1 Overload
LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

11.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold valueis
application and SCF dependent, so is their relationship with load level.

Sequence Element Name

Sequence Element Type

LoadThreshold

TpFloat

11.4.12 TpLoadinitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated |oad threshold value.

Sequence Element Name

Sequence Element Type

LoadLevel

TpLoadLevel

LoadThreshold

TpLoadThreshold

ETSI

11.4.13 TpLoadPolicy
Defines the load balancing policy.

178

ETSI ES 204 915-3 V1.1.1 (2008-05)

Sequence Element Name

Sequence Element Type

LoadPolicy

TpString

11.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. Framework,
service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntitylD

TpLoadStatisticEntitylD

TimeStamp

TpDateAndTime

LoadStatisticInfo

TpLoadStatisticlnfo

11.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpL oadStatistic.

11.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadValue (see note)

TpFloat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

11.4.17 TpLoadStatisticEntitylD

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or Framework)

providing load statistics.

Tag Element Type

TpLoadStatisticEntityType

Tag Element Value

Choice Element Type

Choice Element Name

P _LOAD STATISTICS FW _TYPE TpFwID FrameworklD

P_LOAD_STATISTICS SVC TYPE TpServicelD ServicelD

P_LOAD STATISTICS APP TYPE TpClientApplD ClientAppID
11.4.18 TpLoadStatisticEntityType
Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description

P LOAD STATISTICS FW TYPE 0 Framework-type load statistics

P LOAD STATISTICS SVC TYPE 1 Service-type load statistics

P_LOAD_ STATISTICS_APP_TYPE 2 Application-type load statistics

ETSI

179 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

Tag Element Type
TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P LOAD STATISTICS VALID TpLoadStatisticData LoadStatisticData
P LOAD STATISTICS INVALID TpLoadStatisticError LoadStatisticError

11.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P LOAD STATISTICS VALID 0 Valid load statistics
P_LOAD_STATISTICS INVALID 1 Invalid load statistics

11.4.21 TplLoadStatisticError

Defines the error code associated with afailed attempt to retrieve any load statistics information.

Name Value Description
P LOAD INFO ERROR UNDEFINED 0 Undefined error
P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

11.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service I nstance availability.

Name Value Description
SVC_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See note 1.
SVC_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed. A

permanent failure. See note 1.

SVC_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed. A
permanent failure. See note 1.

SVC_UNAVAILABLE_OVERLOADED 3 The Service Instance is fully overloaded. A temporary
problem. See note 2.

SVC_UNAVAILABLE_CLOSED 4 The Service Instance has closed itself (e.g. to protect
from fraud or malicious attack). A permanent failure.
See note 1.

SVC_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that a Service Instance
has failed: e.g. non-response from an activity test,
failure to return heartbeats. A permanent failure.

See note 1.

SVC_UNAVAILABLE_SW_UPGRADE 6 The Service Instance is unavailable due to software
upgrade or other similar maintenance. A permanent
failure. See note 1.

SVC_AVAILABLE 7 The Service has become available again.

NOTE 1: The client application must act to reset its use of the specified service instance (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance
and begin use of a different service instance).

NOTE 2: The "expected" recovery time could be defined within the SLA.

ETSI

180 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

Name Value Description
APP_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.
APP_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Application has been detected. A
permanent failure. See note 1.

APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been detected,
e.g. a database is not working. A permanent failure.
See note 1.

APP_UNAVAILABLE_OVERLOADED 3 The Application is fully overloaded. A temporary
problem. See note 2.

APP_UNAVAILABLE_CLOSED 4 The Application has closed itself (e.g. to protect from
fraud or malicious attack). A permanent failure. See
note 1.

APP_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the application has
failed: e.g. non-response from an activity test, failure to
return heartbeats. A permanent failure. See note 1.

APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW upgrade or
other similar maintenance. A permanent failure. See
note 1.

APP_AVAILABLE 7 The Application has become available.

NOTE 1: The client application is unable (or does not wish) to continue using the service instance.

NOTE 2: The "expected" recovery time could be defined within the SLA.

11.4.24 TplLoadTestID

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match load statistics requests with their results.

11.4.25 TpFaultStatsErrorList

DefinesaNumbered List of Data Elements of type TpFaultStatisticsError.

11.4.26 TpFaultReqlD

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match fault statistics requests with their results.

ETSI

181 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description
FRAMEWORK UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.
FRAMEWORK_UNAVAILABLE_LOCAL_FAILU 1 A local failure in the Framework has been detected. A
RE permanent failure. See note 1.
FRAMEWORK_UNAVAILABLE_REMOTE_FAIL 2 A remote failure to the Framework has been detected,
URE e.g. a database is not working. A permanent failure.
See note 1.

FRAMEWORK_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded. A temporary
problem. See note 2.

FRAMEWORK_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from
fraud or malicious attack). A permanent failure. See
note 1.
FRAMEWORK_UNAVAILABLE_PROTOCOL_F 5 The Framework has detected that the protocol used
AILURE between client and framework has failed. A

permanent failure. See note 1.
FRAMEWORK_UNAVAILABLE_SW_UPGRADE 6 The Framework is unavailable due to SW upgrade or
other similar maintenance. A permanent failure. See
note 1.

FRAMEWORK AVAILABLE 7 The Framework has become available.

NOTE 1: The Framework is unable (or does not wish) to continue using the client or service instance.

NOTE 2: The 'expected' recovery time could be part of the Framework's local policies.

11.5 Service Subscription Data Definitions

11.5.1 TpPropertyName

Thisdatatypeisidentical to TpString. It isthe name of a generic "property".

11.5.2 TpPropertyValue

Thisdatatypeisidentical to TpString. It isthe value (or the list of values) associated with a generic "property".

11.5.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic "property". It is astructured data type
consisting of the following { name, value} pair.

Sequence Element Name Sequence Element Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

ETSI

182 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.5.6 TpENtOp

This datatypeis a Sequence of Data Elements which describes an enterprise operator. It is a structured data type,
consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties', as follows.

Sequence Element Name Sequence Element Type
EntOpID TpEntOpID
EntOpProperties TpEntOpProperties

11.5.7 TpServiceContractiD

This datatypeisidentical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSA service by the enterprise.

11.5.8 TpServiceContractIDList

This datatype defines a Numbered List of Data Elements of type TpServiceContractlD.

11.5.9 TpPersonName

This datatypeisidentical to TpString. It is the name of a generic "person”.

11.5.10 TpPostalAddress

This datatypeisidentical to TpString. It isthe mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

This datatypeisidentica to TpString. It is the telephone number of a generic "person”.

11.5.12 TpEmail

This datatypeisidentical to TpString. It isthe email address of a generic "person".

11.5.13 TpHomePage

This datatypeisidentical to TpString. It isthe web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

11.5.15 TpPerson

This data type is a Sequence of Data Elements which describes a generic "person”: e.g. abilling contact, a service
requestor. It isastructured data type which consists of:

Sequence Element Name Sequence Element Type
PersonName TpPersonName
PostalAddress TpPostalAddress
TelephoneNumber TpTelephoneNumber
Email TpEmail
HomePage TpHomePage
PersonProperties TpPersonProperties

ETSI

183 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.5.16 TpServiceStartDate

Thisis of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisisof type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise's
use of an OSA service.

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise's use of an OSA service.

11.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type which
consists of:

Sequence Element Name
ServiceContractID
ServiceContractDescription

Sequence Element Type
TpServiceContractID
TpServiceContractDescription

11.5.22 TpServiceContractDescription

This data type is a Sequence of Data Elements which describes a service contract. This contract should conform to a
previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if any, between the
enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Name Sequence Element Type

ServiceRequestor TpServiceRequestor

BillingContact TpBillingContact

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServicelD TpServicelD

ServiceSubscriptionProperties TpServiceSubscriptionProperties

InUse TpBoolean (See note)

NOTE: The InUse flag indicates if the contract, or one of its associated profiles, is currently in
use by a service instance and will be returned in describeServiceContract(). This flag
will be ignored if it is passed in to createServiceContract().

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesis alist of { name, value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

ETSI

184 ETSI ES 204 915-3 V1.1.1 (2008-05)

11.5.24 TpClientAppDescription

This datatypeis a Sequence of Data Elements which describes an enterprise client application. It is a structured data
type, consisting of a unique "client application ID", password and alist of client application properties.

Sequence Element Name Sequence Element Type
ClientAppID TpClientAppID
ClientAppProperties TpClientAppProperties
HasAccessSession TpBoolean (See note 1)
HasServicelnstances TpBoolean(See note 2)

NOTE 1: The HasAccessSession flag indicates if the client application currently has an access
session active with the framework and will be returned in describeClientApp(). This flag will
be ignored if it is passed in to createClientApp().

NOTE 2: The HasServicelnstances flag indicates if the client application currently has service
instances active and will be returned in describeClientApp(). This flag will be ignored if it is
passed in to createClientApp(). This flag must be false if hasAccessSession is false.

11.5.25 TpSagID

This datatypeisidentical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

11.5.26 TpSagIDList

This datatype defines a Numbered List of Data Elements of type TpSagID.

11.5.27 TpSagDescription

This datatypeisidentical to TpString. It describes a SAG: e.g. alist of identifiers of the constituent client applications,
the purpose of the "grouping”.

11.5.28 TpSag

This datatypeis a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of client
applications within an enterprise. It is a structured data type consisting of a unique SAG 1D and a description.

Sequence Element Name Sequence Element Type
SagIlD TpSagID
SagDescription TpSagDescription

11.5.29 TpServiceProfilelD

This datatypeisidentica to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

11.5.30 TpServiceProfileIDList

This datatype defines a Numbered List of Data Elements of type TpServiceProfilelD.

11.5.31 TpServiceProfile

This datatypeis a Sequence of Data Elements which represents a Service Profile. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type
ServiceProfilelD TpServiceProfilelD
ServiceProfileDescription TpServiceProfileDescription

ETSI

11.5.32 TpServiceProfileDescription

185

ETSI ES 204 915-3 V1.1.1 (2008-05)

This datatypeis a Sequence of Data Elements which describes a Service Profile. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A service profile isarestriction of the
service contract in order to provide restricted service featuresto a SAG. It is a structured data type which consists of:

Sequence Element Name

Sequence Element Type

ServiceContractlD

TpServiceContractID

ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName (see note 1)
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (see note 2)
ServicelD TpServicelD (see note 3)

to the Framework.
NOTE 2:

createServiceProfile().
NOTE 3:

NOTE 1: When the Framework returns a TpServiceProfileDescription to the enterprise operator, it
should set the ServiceTypeName field to the same value as the corresponding field of the
service contract; When the enterprise operator passes a TpServiceProfileDescription to
the Framework, the Framework should ignore the value sent in the ServiceTypeName
field to ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription

The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored if it is passed in to

The ServicelD field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an
enterprise operator, the Framework should ensure that the ServicelD field, if not empty,
contains a service which is of the service type specified in the service contract. If the
corresponding contract is for a service ID then the Framework should ignore this field.
When a TpServiceProfileDescription is returned to the enterprise operator, the contents of
this field will depend on the associated service contract. If the contract is for a service ID,
then this field should be populated with the correct value. If the contract is for a service
type, and the profile is restricted to a specific service ID then this field should be
populated with the correct value. Otherwise, it should contain an empty string.

11.5.33 TpSagProfilePair

This data type is a Sequence of Data Elements which describes apair of a SAG and a Service Profile. It isa structured

data type which consists of:

Sequence Element Name

Sequence Element Type

Sag

TpSagID

ServiceProfile

TpServiceProfileID

11.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagM embers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile

for each service.

ETSI

186 ETSI ES 204 915-3 V1.1.1 (2008-05)

The TpAddSagM embersConflict is a structured data type which consists of:

Sequence Element Name
ClientApplication
ConflictGeneratingSagProfilePair TpSagProfilePair
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

Sequence Element Type
TpClientApplD

11.5.35 TpAddSagMembersConflictList

This data type defines aNumbered List of Data Elements of type TpAddSagM embersConflict.

11.5.36 TpAssignSagToServiceProfileConflict

This datatypeis a Sequence of Data Elements which describes a conflict that may occur when a SAG isassigned to a
Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service.

The TpAssignSagT oServiceProfileConflict is a structured data type which consists of:

Sequence Element Name
ClientApplication TpClientAppID
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

Sequence Element Type

11.5.37 TpAssignSagToServiceProfileConflictList

This datatype defines a Numbered List of Data Elements of type TpAssignSagT oServiceProfileConflict.

12 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_DENIED

The client is not currently authenticated
with the framework.

P_DUPLICATE_PROPERTY_NAME

A duplicate property name has been
received.

P_ILLEGAL SERVICE ID

lllegal Service ID.

P ILLEGAL SERVICE TYPE

lllegal Service Type.

P_INVALID_ACCESS_TYPE

The framework does not support the type
of access interface requested by the
client.

P_INVALID_ACTIVITY_TEST_ID

ID does not correspond to a valid activity
test request.

P_INVALID_ADDITION_TO_SAG

A client application cannot be added to
the SAG because this would imply that the
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P_INVALID_AGREEMENT_TEXT

Invalid agreement text.

P_INVALID_ENCRYPTION_CAPABILITY

Invalid encryption capability.

P_INVALID_AUTH_TYPE

Invalid type of authentication mechanism.

P _INVALID CLIENT APP ID

Invalid Client Application ID.

P _INVALID DOMAIN ID

Invalid client ID.

P_INVALID ENT OP_ID

Invalid Enterprise Operator ID.

ETSI

187 ETSI ES 204 915-3 V1.1.1 (2008-05)

Name Description
P_INVALID_PROPERTY The framework does not recognise the
property supplied by the client.
P_INVALID_SAG_ID Invalid Subscription Assignment Group ID.

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT |A SAG cannot be assigned to the service
profile because this would imply that a
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P_INVALID _SERVICE_CONTRACT ID Invalid Service Contract ID.

P_INVALID_SERVICE_ID Invalid service ID.

P INVALID SERVICE PROFILE ID Invalid service profile ID.

P_INVALID_SERVICE_TOKEN The service token has not been issued, or
it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type.

P_INVALID_SIGNATURE Invalid digital signature.

P_INVALID SIGNING_ALGORITHM Invalid signing algorithm.

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing.

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY No encryption mechanism, which is
acceptable to the framework, is supported
by the client.

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM |No authentication mechanism, which is
acceptable to the framework, is supported

by the client.
P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable
to the framework, is supported by the
client.
P_PROPERTY_TYPE_MISMATCH Property Type Mismatch.
P_SERVICE_ACCESS DENIED The client application is not allowed to
access this service.
P_SERVICE_NOT_ENABLED The service ID does not correspond to a
service that has been enabled.
P_SERVICE_TYPE_UNAVAILABLE The service type is not available
according to the Framework.
P_UNKNOWN SERVICE ID Unknown Service ID.
P_UNKNOWN_SERVICE_TYPE Unknown Service Type.
Each exception class contains the following structure:
Structure Element Name Structure Element Type Structure Element Description
Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name.

ETSI

188 ETSI ES 204 915-3 V1.1.1 (2008-05)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if _service.idl contained in archive es 204915031 DL.zip) which accompany the
present document.

This archive can be found in es_20491503v010101p0.zip which accompanies the present document.

ETSI

189 ETSI ES 204 915-3 V1.1.1 (2008-05)

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of thisinterface specification is contained in zip file es_ 20491503WSDL.zip which
accompanies the present document.

This archive can be found in es_20491503v010101p0.zip which accompanies the present document.

ETSI

190 ETSI ES 204 915-3 V1.1.1 (2008-05)

Annex C (informative):
Java™ API Description of the Framework

The Java™ API realisation of thisinterface specification is produced in accordance with the Java™ Realisation rules
defined in ES 204 915-1. These rules aim to deliver for Java™, a developer API, provided as arealisation, supporting a
Java™ API that represents the UML specifications. The rules support the production of both 2SE™ and J2EE™
versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™, contained in archive 20491503J2SE.zip.
The J2EE™ representation of this interface specification is provided as Java™, contained in archive 20491503J2EE.zip.

Both these archives can be found in es_20491503v010101p0.zip which accompanies the present document.

ETSI

191 ETSI ES 204 915-3 V1.1.1 (2008-05)

Annex D (informative):
Contents of 3GPP OSA R7 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
TS129198-3.

ETSI

192 ETSI ES 204 915-3 V1.1.1 (2008-05)

Annex E (informative):
Description of the Framework for 3GPP2 cdma2000
networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable
operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2
architecture defined in [52], [53] and [54] of ES 204 915-1, clause 2. These requirements are expressed as additions to
and/or exclusions from the 3GPP Release 7 specification. The information given hereisto be used by developersin
3GPP2 cdma2000 network architecture to interpret the 3GPP OSA specifications.

E.1 General Exceptions

Theterm UMTS is not applicable for the cdma2000 family of standards. Neverthelessthe term UMTSisused in
TR 121 905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated
otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope

There are no additions or exclusions.

E.2.2 Clause 2: References

Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

E.2.4 Clause 4: Overview of the Framework

There are no additions or exclusions.

E.2.5 Clause 5: The Base Interface Specification

There are no additions or exclusions.

E.2.6 Clause 6: Framework Access Session API

There are no additions or exclusions.

E.2.7 Clause 7: Framework-to-Application Sequence Diagrams

There are no additions or exclusions.

ETSI

193 ETSI ES 204 915-3 V1.1.1 (2008-05)

E.2.8 Clause 9: Framework-to-Service API

There are no additions or exclusions.

E.2.9 Clause 10: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature
through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be
turned aways off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

E.2.10 Clause 11: Data Definitions

There are no additions. P_USER_LOCATION_CAMEL value of TpServiceTypeNameis not required to be supported
in the 3GPP2 networks.

E.2.11 Clause 12: Exception Classes

There are no additions or exclusions.

E.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

E.2.13 Annex B (informative): W3C WSDL Description of the
Framework

There are no additions or exclusions.

E.2.14 Annex C (informative): Java™ API Description of the
Framework

There are no additions or exclusions.

ETSI

194 ETSI ES 204 915-3 V1.1.1 (2008-05)

Annex F (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New

Identifier | Comments

Interfaces added in ES 204 915-3 version 1.1.1 (Parlay 6.0)

F.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 204 915-3 version 1.1.1 (Parlay 6.0)

F.1.3 Removed

Identifier | Comments

Interfaces removed in ES 204 915-3 version 1.1.1 (Parlay 6.0)

F.2 Methods

F.2.1 New

Identifier | Comments

Methods added in ES 204 915-3 version 1.1.1 (Parlay 6.0)

F.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 204 915-3 version 1.1.1 (Parlay 6.0)

ETSI

F.2.3 Maodified

195

Identifier

Comments

Methods modified in ES 204 915-3 version 1.1.1 (Parlay 6.0)

F.2.4 Removed

Identifier

| Comments

Methods removed in ES 204 915-3 version 1.1.1 (Parlay 6.0)

IpClientAPILevelAuthentication.authenticate()

Already deprecated, removed in Parlay 6.0 cleanup

IpInitial.initiateAuthentication()

Already deprecated, removed in Parlay 6.0 cleanup

IpAPILevelAuthentication.authenticate()

Already deprecated, removed in Parlay 6.0 cleanup

IpAPILevelAuthentication.selectEncryptionMethod()

Already deprecated, removed in Parlay 6.0 cleanup

IpAccess.endAccess()

Already deprecated, removed in Parlay 6.0 cleanup

IpAccess.releaselnterface()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppFaultManager.svcUnavailablelnd()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppFaultManager.genFaultStatsRecordReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppFaultManager.genFaultStatsRecordRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppFaultManager.genFaultStatsRecordErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpFaultManager.appUnavailableInd()

Already deprecated, removed in Parlay 6.0 cleanup

IpFaultManager.genFaultStatsRecordReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpFaultManager.genFaultStatsRecordRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpFaultManager.genFaultStatsRecordErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppLoadManager.queryAppLoadReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppLoadManager.queryLoadRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpAppLoadManager.queryLoadErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpLoadManager.queryLoadReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpLoadManager.queryAppLoadRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpLoadManager.queryAppLoadErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwFaultManager.svcUnavailablelnd()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwFaultManager.genFaultStatsRecordReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwFaultManager.genFaultStatsRecordRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwFaultManager.genFaultStatsRecordErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwFaultManager.generateFaultStatsRecordRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwFaultManager.generateFaultStatsRecordErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcFaultManager.appUnavailableind()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcFaultManager.genFaultStatsRecordReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcFaultManager.genFaultStatsRecordRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcFaultManager.genFaultStatsRecordErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcFaultManager.generateFaultStatsRecordReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwLoadManager.queryLoadReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwLoadManager.querySvcLoadRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpFwLoadManager.querySvcLoadErr()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcLoadManager.querySvcLoadReq()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcLoadManager.queryLoadRes()

Already deprecated, removed in Parlay 6.0 cleanup

IpSvcLoadManager.queryLoadErr()

Already deprecated, removed in Parlay 6.0 cleanup

F.3 Data Definitions

F.3.1 New

Identifier |

Comments

Data Definitions added in ES 204 915-3 version 1.1.1 (Parlay 6.0)

ETSI

ETSI ES 204 915-3 V1.1.1 (2008-05)

196 ETSI ES 204 915-3 V1.1.1 (2008-05)

F.3.2 Modified

Identifier | Comments
Data Definitions modified in ES 204 915-3 version 1.1.1 (Parlay 6.0)
TpServiceTypeName |Va|ue P_SERVICE_BROKER added

F.3.3 Removed

Identifier | Comments
Data Definitions removed in ES 204 915-3 version 1.1.1 (Parlay 6.0)
TpEncryptionCapabilities Deleted following deletion of deprecated methods which used this.
TpEncryptionCapabilitiesList Deleted following deletion of deprecated methods which used this.
TpEndAccessProperties Deleted following deletion of deprecated methods which used this.
TpSvcUnavailReason Deleted following deletion of deprecated methods which used this.

F.4 Service Properties

F.4.1 New

Identifier | Comments

Service Properties added in ES 204 915-3 version 1.1.1 (Parlay 6.0)

Support for Regular Expressions in Address Range |

F.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 204 915-3 version 1.1.1 (Parlay 6.0)

F.4.3 Modified

Identifier | Comments
Service Properties modified in ES 204 915-3 version 1.1.1 (Parlay 6.0)
Service Property Type Modified to permit use of Regular Expressions

XML_ADDRESS_RANGE_SET

F.4.4 Removed

Identifier | Comments
Service Properties removed in ES 204 915-3 version 1.1.1 (Parlay 6.0)
Supported Interfaces |Already deprecated, removed in Parlay 6.0 cleanup

ETSI

197 ETSI ES 204 915-3 V1.1.1 (2008-05)

F.5 Exceptions
F.5.1 New
Identifier | Comments
Exceptions added in ES 204 915-3 version 1.1.1 (Parlay 6.0)
|
F.5.2 Modified
Identifier | Comments
Exceptions modified in ES 204 915-3 version 1.1.1 (Parlay 6.0)
|
F.5.3 Removed
Identifier | Comments
Exceptions removed in ES 204 915-3 version 1.1.1 (Parlay 6.0)
I
F.6 Others
None.

ETSI

198

ETSI ES 204 915-3 V1.1.1 (2008-05)

History

Document history
V111 February 2008 Membership Approval Procedure MV 20080425: 2008-02-26 to 2008-04-25
V111 May 2008 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method abortAuthentication()
	6.3.1.1.2 Method authenticationSucceeded()
	6.3.1.1.3 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method abortAuthentication()
	6.3.1.5.2 Method authenticationSucceeded()
	6.3.1.5.3 Method selectAuthenticationMechanism()
	6.3.1.5.4 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method listInterfaces()
	6.3.1.6.4 Method selectSigningAlgorithm()
	6.3.1.6.5 Method terminateAccess()
	6.3.1.6.6 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Agreement Management Sequence Diagrams
	7.1.3.1 Service Selection

	7.1.4 Service Discovery Sequence Diagrams
	7.1.4.1 Service Discovery

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.2 Method describeServiceType()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.6 Method activityTestErr()
	7.3.3.1.7 Method appUnavailableInd()
	7.3.3.1.8 Method svcAvailStatusInd()
	7.3.3.1.9 Method generateFaultStatisticsRecordRes()
	7.3.3.1.10 Method generateFaultStatisticsRecordErr()
	7.3.3.1.11 Method generateFaultStatisticsRecordReq()
	7.3.3.1.12 Method fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method appActivityTestErr()
	7.3.3.2.5 Method appAvailStatusInd()
	7.3.3.2.6 Method generateFaultStatisticsRecordReq()
	7.3.3.2.7 Method generateFaultStatisticsRecordRes()
	7.3.3.2.8 Method generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method loadLevelNotification()
	7.3.3.7.2 Method resumeNotification()
	7.3.3.7.3 Method suspendNotification()
	7.3.3.7.4 Method createLoadLevelNotification()
	7.3.3.7.5 Method destroyLoadLevelNotification()
	7.3.3.7.6 Method queryAppLoadStatsReq()
	7.3.3.7.7 Method queryLoadStatsRes()
	7.3.3.7.8 Method queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method createLoadLevelNotification()
	7.3.3.8.3 Method destroyLoadLevelNotification()
	7.3.3.8.4 Method resumeNotification()
	7.3.3.8.5 Method suspendNotification()
	7.3.3.8.6 Method queryLoadStatsReq()
	7.3.3.8.7 Method queryAppLoadStatsRes()
	7.3.3.8.8 Method queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Event Notification Sequence Diagrams
	8.1.2 Service Subscription Sequence Diagrams
	8.1.2.1 Service Discovery and Subscription Scenario
	8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Event Notification Interface Classes
	8.3.1.1 Interface Class IpClientEventNotification
	8.3.1.1.1 Method reportNotification()
	8.3.1.1.2 Method notificationTerminated()

	8.3.1.2 Interface Class IpEventNotification
	8.3.1.2.1 Method createNotification()
	8.3.1.2.2 Method destroyNotification()

	8.3.2 Service Subscription Interface Classes
	8.3.2.1 Interface Class IpClientAppManagement
	8.3.2.1.1 Method createClientApp()
	8.3.2.1.2 Method modifyClientApp()
	8.3.2.1.3 Method deleteClientApp()
	8.3.2.1.4 Method createSAG()
	8.3.2.1.5 Method modifySAG()
	8.3.2.1.6 Method deleteSAG()
	8.3.2.1.7 Method addSAGMembers()
	8.3.2.1.8 Method removeSAGMembers()
	8.3.2.1.9 Method requestConflictInfo()

	8.3.2.2 Interface Class IpClientAppInfoQuery
	8.3.2.2.1 Method describeClientApp()
	8.3.2.2.2 Method listClientApps()
	8.3.2.2.3 Method describeSAG()
	8.3.2.2.4 Method listSAGs()
	8.3.2.2.5 Method listSAGMembers()
	8.3.2.2.6 Method listClientAppMembership()

	8.3.2.3 Interface Class IpServiceProfileManagement
	8.3.2.3.1 Method createServiceProfile()
	8.3.2.3.2 Method modifyServiceProfile()
	8.3.2.3.3 Method deleteServiceProfile()
	8.3.2.3.4 Method assign()
	8.3.2.3.5 Method deassign()
	8.3.2.3.6 Method requestConflictInfo()

	8.3.2.4 Interface Class IpServiceProfileInfoQuery
	8.3.2.4.1 Method listServiceProfiles()
	8.3.2.4.2 Method describeServiceProfile()
	8.3.2.4.3 Method listAssignedMembers()

	8.3.2.5 Interface Class IpServiceContractManagement
	8.3.2.5.1 Method createServiceContract()
	8.3.2.5.2 Method modifyServiceContract()
	8.3.2.5.3 Method deleteServiceContract()

	8.3.2.6 Interface Class IpServiceContractInfoQuery
	8.3.2.6.1 Method describeServiceContract()
	8.3.2.6.2 Method listServiceContracts()
	8.3.2.6.3 Method listServiceProfiles()

	8.3.2.7 Interface Class IpEntOpAccountManagement
	8.3.2.7.1 Method modifyEntOpAccount()
	8.3.2.7.2 Method deleteEntOpAccount()

	8.3.2.8 Interface Class IpEntOpAccountInfoQuery
	8.3.2.8.1 Method describeEntOpAccount()

	8.4 State Transition Diagrams
	8.4.1 Event Notification State Transition Diagrams
	8.4.2 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Service Discovery Sequence Diagrams
	9.1.2 Service Registration Sequence Diagrams
	9.1.2.1 New SCF Sub Type Registration
	9.1.2.2 New SCF Registration

	9.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.3.1 Sign Service Agreement

	9.1.4 Integrity Management Sequence Diagrams
	9.1.4.1 Load Management: Service callback registration and load control
	9.1.4.2 Load Management: Framework callback registration and service load control
	9.1.4.3 Load Management: Client and Service Load Balancing
	9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.4.5 Fault Management: Service requests Framework activity test
	9.1.4.6 Fault Management: Service requests Application activity test
	9.1.4.7 Fault Management: Application requests Service activity test
	9.1.4.8 Fault Management: Application detects service is unavailable

	9.1.5 Event Notification Sequence Diagrams

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Service Registration Interface Classes
	9.3.1.1 Interface Class IpFwServiceRegistration
	9.3.1.1.1 Method registerService()
	9.3.1.1.2 Method announceServiceAvailability()
	9.3.1.1.3 Method unregisterService()
	9.3.1.1.4 Method describeService()
	9.3.1.1.5 Method unannounceService()
	9.3.1.1.6 Method registerServiceSubType()

	9.3.2 Service Instance Lifecycle Manager Interface Classes
	9.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	9.3.2.1.1 Method createServiceManager()
	9.3.2.1.2 Method destroyServiceManager()

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery
	9.3.3.1.1 Method listServiceTypes()
	9.3.3.1.2 Method describeServiceType()
	9.3.3.1.3 Method discoverService()
	9.3.3.1.4 Method listRegisteredServices()

	9.3.4 Integrity Management Interface Classes
	9.3.4.1 Interface Class IpFwFaultManager
	9.3.4.1.1 Method activityTestReq()
	9.3.4.1.2 Method svcActivityTestRes()
	9.3.4.1.3 Method appUnavailableInd()
	9.3.4.1.4 Method svcActivityTestErr()
	9.3.4.1.5 Method svcAvailStatusInd()
	9.3.4.1.6 Method generateFaultStatisticsRecordReq()
	9.3.4.1.7 Method generateFaultStatisticsRecordRes()
	9.3.4.1.8 Method generateFaultStatisticsRecordErr()

	9.3.4.2 Interface Class IpSvcFaultManager
	9.3.4.2.1 Method activityTestRes()
	9.3.4.2.2 Method svcActivityTestReq()
	9.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	9.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	9.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	9.3.4.2.6 Method svcUnavailableInd()
	9.3.4.2.7 Method activityTestErr()
	9.3.4.2.8 Method appAvailStatusInd()
	9.3.4.2.9 Method generateFaultStatisticsRecordRes()
	9.3.4.2.10 Method generateFaultStatisticsRecordErr()
	9.3.4.2.11 Method generateFaultStatisticsRecordReq()
	9.3.4.2.12 Method fwAvailStatusInd()

	9.3.4.3 Interface Class IpFwHeartBeatMgmt
	9.3.4.3.1 Method enableHeartBeat()
	9.3.4.3.2 Method disableHeartBeat()
	9.3.4.3.3 Method changeInterval()

	9.3.4.4 Interface Class IpFwHeartBeat
	9.3.4.4.1 Method pulse()

	9.3.4.5 Interface Class IpSvcHeartBeatMgmt
	9.3.4.5.1 Method enableSvcHeartBeat()
	9.3.4.5.2 Method disableSvcHeartBeat()
	9.3.4.5.3 Method changeInterval()

	9.3.4.6 Interface Class IpSvcHeartBeat
	9.3.4.6.1 Method pulse()

	9.3.4.7 Interface Class IpFwLoadManager
	9.3.4.7.1 Method reportLoad()
	9.3.4.7.2 Method createLoadLevelNotification()
	9.3.4.7.3 Method destroyLoadLevelNotification()
	9.3.4.7.4 Method suspendNotification()
	9.3.4.7.5 Method resumeNotification()
	9.3.4.7.6 Method queryLoadStatsReq()
	9.3.4.7.7 Method querySvcLoadStatsRes()
	9.3.4.7.8 Method querySvcLoadStatsErr()

	9.3.4.8 Interface Class IpSvcLoadManager
	9.3.4.8.1 Method loadLevelNotification()
	9.3.4.8.2 Method suspendNotification()
	9.3.4.8.3 Method resumeNotification()
	9.3.4.8.4 Method createLoadLevelNotification()
	9.3.4.8.5 Method destroyLoadLevelNotification()
	9.3.4.8.6 Method querySvcLoadStatsReq()
	9.3.4.8.7 Method queryLoadStatsRes()
	9.3.4.8.8 Method queryLoadStatsErr()

	9.3.4.9 Interface Class IpFwOAM
	9.3.4.9.1 Method systemDateTimeQuery()

	9.3.4.10 Interface Class IpSvcOAM
	9.3.4.10.1 Method systemDateTimeQuery()

	9.3.5 Event Notification Interface Classes
	9.3.5.1 Interface Class IpFwEventNotification
	9.3.5.1.1 Method createNotification()
	9.3.5.1.2 Method destroyNotification()

	9.3.5.2 Interface Class IpSvcEventNotification
	9.3.5.2.1 Method reportNotification()
	9.3.5.2.2 Method notificationTerminated()

	9.4 State Transition Diagrams
	9.4.1 Service Registration State Transition Diagrams
	9.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.1.1.1 SCF Registered State
	9.4.1.1.2 SCF Announced State

	9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Integrity Management State Transition Diagrams
	9.4.4.1 State Transition Diagrams for IpFwLoadManager
	9.4.4.1.1 Idle State
	9.4.4.1.2 Notification Suspended State
	9.4.4.1.3 Active State

	9.4.4.2 State Transition Diagrams for IpFwFaultManager
	9.4.4.2.1 Framework Active State
	9.4.4.2.2 Framework Activity Test State
	9.4.4.2.3 Application Activity Test State
	9.4.4.2.4 Framework Faulty State

	9.4.5 Event Notification State Transition Diagrams

	10 Service Properties
	10.1 Service Super and Sub Types
	10.2 Service Property Types
	10.3 General Service Properties
	10.3.1 Service Name
	10.3.2 Service Version
	10.3.3 Service ID
	10.3.4 Service Description
	10.3.5 Product Name
	10.3.6 Product Version
	10.3.7 Void
	10.3.8 Operation Set
	10.3.9 Compatible Service
	10.3.10 Backward Compatibility Level
	10.3.11 Migration Required
	10.3.12 Data Migrated
	10.3.13 Migration Date And Time
	10.3.14 Support for Regular Expressions in Address Range

	11 Data definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceInstanceID
	11.1.18 TpServiceTypeProperty
	11.1.19 TpServiceTypePropertyList
	11.1.20 TpServiceTypePropertyMode
	11.1.21 TpServicePropertyTypeName
	11.1.22 TpServicePropertyName
	11.1.23 TpServicePropertyNameList
	11.1.24 TpServicePropertyValue
	11.1.25 TpServicePropertyValueList
	11.1.26 TpServiceProperty
	11.1.27 TpServicePropertyList
	11.1.28 TpServiceSupplierID
	11.1.29 TpServiceTypeDescription
	11.1.30 TpServiceTypeName
	11.1.31 TpServiceTypeNameList
	11.1.32 TpSubjectType
	11.1.33 TpServiceTypePropertyValue
	11.1.34 TpServiceTypePropertyValueList

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo
	11.2.4 TpFwMigrationServiceAvailableInfo
	11.2.5 TpMigrationAdditionalInfo
	11.2.6 TpMigrationAdditionalInfoType
	11.2.7 TpMigrationAdditionalInfoSet
	11.2.8 TpFwAgreementInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 Void
	11.3.4 Void
	11.3.5 Void
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm
	11.3.12 TpSigningAlgorithmCapabilityList
	11.3.13 TpAuthMechanism
	11.3.14 TpAuthMechanismList

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats
	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 Void
	11.4.9 TpFwUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError
	11.4.22 TpSvcAvailStatusReason
	11.4.23 TpAppAvailStatusReason
	11.4.24 TpLoadTestID
	11.4.25 TpFaultStatsErrorList
	11.4.26 TpFaultReqID
	11.4.27 TpFwAvailStatusReason

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription
	11.5.33 TpSagProfilePair
	11.5.34 TpAddSagMembersConflict
	11.5.35 TpAddSagMembersConflictList
	11.5.36 TpAssignSagToServiceProfileConflict
	11.5.37 TpAssignSagToServiceProfileConflictList

	12 Exception Classes

	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): JavaŽ API Description of the Framework
	Annex D (informative): Contents of 3GPP OSA R7 Framework
	Annex E (informative): Description of the Framework for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: Overview of the Framework
	E.2.5 Clause 5: The Base Interface Specification
	E.2.6 Clause 6: Framework Access Session API
	E.2.7 Clause 7: Framework-to-Application Sequence Diagrams
	E.2.8 Clause 9: Framework-to-Service API
	E.2.9 Clause 10: Service Properties
	E.2.10 Clause 11: Data Definitions
	E.2.11 Clause 12: Exception Classes
	E.2.12 Annex A (normative): OMG IDL Description of the Framework
	E.2.13 Annex B (informative): W3C WSDL Description of the Framework
	E.2.14 Annex C (informative): JavaŽ API Description of the Framework

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

