ETS| ES 203 915-3 V1.3.1 (2008-04)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 3: Framework

(Parlay 5)

D

2 ETSI ES 203 915-3 V1.3.1 (2008-04)

Reference
RES/TISPAN-01055-03-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.
© The Parlay Group 2008.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered

for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 203 915-3 V1.3.1 (2008-04)

Contents

Intellectual Property RIGNES.... ..ottt b e n b sr e n e 14
0] Yo (o SRS 14
1 o010 RSP 15
2 S L= (= 000 P 15
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 15
31 (D= T o T] (0] PP P PP USTORPP 15
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 15
4 OVENVIEW OF the FramEWOTK.........c.coiiiiiiirieee ettt sb e e e e 16
5 The Base INterface SPECITICALION.c..coiieieeeere e 17
51 Interface SPECITiCaLiON FOIMELcc.ciiie ettt bt s bbbt 17
511 E 1S = To Y O =SSP 17
512 MELNOO AESCITLIONS. ...ttt bbbt bt bt b bt et b e st et b e bbb 18
5.1.3 L = 1= (= 0 L= o 1 0] 0] 18
514 Sz (= 1Y T L= SO PSPS 18
52 BaSE INEEITACE.ot bttt b bbbt a et E e Rt R e Rt h e e R bbbt ne e re e 18
521 1S g o O F= S T o] 11 o = o= P 18
53 SEIVICE INEEITACES ...ttt b b bkt e e e e e e b e bt ea e eb e s he e b e e e e b e b e sb e e b e e neenee e ennes 18
531 OVEIVIBW ..ottt sttt sttt sttt st s e st e be s e e st e ke s e e st e b e s e e st ebeseese e b e sees e eEeneeseebeseene e b e sbeneebenbe e ebenbeneesenbenennens 18
54 GENENIC SEIVICE INEEITACE ...ttt ettt et et e e et e b e seesbe s et ese e e e seseeseeseeeneeneeneeneas 19
54.1 INEEITACE ClASS IPSEIVICE ...ttt bbb et b e bbbt b et b e bbb 19
54.1.1 MELDOO SEECAIIDACK() ...vevveveieeeeteiieiete ettt st sa et e e e e besaeseetesae e esesaeneesesseneesens 19
5412 Method setCallbackWithSESSIONID () .. .cveviiverieriiieieresieeeiesiee e steee et e e s sesbesaesesbesaesaesesseseesens 19
6 Framework ACCESS SESSION APo ettt s e e re e e steeneenrenneas 20
6.1 S 010 c T D TT=o =0 1 SRS 20
6.1.1 Trust and Security Management SeqUENCE DIAQIaMSccverieerierieiiesee e ste e seeseesseeseesessaesseenseesses 20
6.1.1.1 INTEBI ALCCESS. ...ttt b et bttt e b h e bt bt eh e e s e e e e b e se e ke s Rt eb e e aeen e et e neeebeeneebe e e ennees 20
6.1.1.2 Framework TEIMINGEES ACCESScoueeieriertirte st etest et see st sttt sbe st et e e e s s e besaeebesseeseenee st e besreebesaeenneneens 22
6.1.1.3 APPHICALTON TEMINGLES ACCESS......eeeeuerteeetesteeete sttt st ettt et st s e e st sbese e st b e st esesbese e bt ebeseenesbennenees 23
6.1.14 NON-API [evel AUNENLICALION.coiiiieieeeeee ettt s see e eneeneen 23
6.1.1.5 Y o Y= BN 11 1= (o o] o R 24
6.2 ClaSS DIAOIAMS. ...ttt ettt ettt eb ettt b et bt e et bt b et bt s e e e eh e s Eeseeb e e E e st e bt e e e e eb e b e neeb e e e eneebese et eb e s b et ebenre e 26
6.3 INEEITACE ClBSSES. ... vttt ettt ettt s et e e s ee e beeteeaeeseeneenseseesseebeeaeebeeaeeneeneeeeseeseesseeneeneeneaneeses 27
6.3.1 Trust and Security Management INterface ClasSeS........c.vuvieerieeie et 27
6.3.1.1 Interface Class IpClientAPILevel AUtENLICALION..........ccveiv i 27
6.3.1.1.1 Method <<deprecated>> authentiCate()..........ccrverrererierieeseere e 27
6.3.1.1.2 Method abortAUNENEICALTION()eoveeee ettt et ae e e 28
6.3.1.1.3 Method authentiCatiONSUCCEEAEU()veveerereeeeiieiese et e et re e eaesneesnes 28
6.3.1.1.4 VK= 10 To o 7= = o T 28
6.3.1.2 INterface Class IPCIIENTACCESS........couciiieee ettt sttt b e bbb bbb et sb e n e 29
6.3.1.2.1 MELhOd LEFMINBLEACCESS() .. eueevertereeeertereetertert ettt sttt sb e st b e bt bbbt b e s s b s bbb ese b e nn e e enis 30
6.3.1.3 INterface ClasS IPINITTALcooiieee bbb et b e 30
6.3.1.3.1 Method <<deprecated>> initiateAUthENti CLION()veververeririiieereeee s 31
6.3.1.3.2 Method initiateAuthenticatioNWithVerSion()coeeeereirerieneseeseseere s 32
6.3.14 Interface Class IPAUNENTTICAIION...........coi it 33
6.3.14.1 MEthOO FEQUESIACCESS()veeuvereierteesieesieesteeiteeeeseesteeste e e e tesstesseesseesaeesseenseesseeseassaeseensennseensesneesans 33
6.3.1.5 Interface Class IPAPILeVEl AUtNENEICALIONccciveiieee e 34
6.3.15.1 Method <<deprecated>> selectEncryptionMethod()cccvereerieriniece e 34
6.3.1.5.2 Method <<deprecated>> authentiCate()..........ccvvereererierieseere e 35
6.3.1.5.3 Method abortAUNENEICALION()eoveiee ettt e re e e enes 36
6.3.1.54 Method authentiCatioNSUCCEEAEH()vevererrieeririei ettt 36
6.3.1.5.5 Method selectAuthenticationMeChaNi SIM()c.ceereeririeirre s 36
6.3.1.5.6 MELNOA CHATENGE() ... e vttt b bbbttt ens 37
6.3.1.6 INEEITACE ClASS IPACCESSveeeueete ittt sttt b et b et b e et b e seeae b s e ae b e e ae b e sb et ebe b et sbenn e ees 38

ETSI

4 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.3.1.6.1 Method OBtai NENEEMTACE() ..o vee et e et e e teeaeeneeenes 38
6.3.1.6.2 Method obtaininterfaceWithCallDack()cevvveeiieieriesie e 39
6.3.1.6.3 Method <<deprecatet™>> ENUACCESS() .. .ccverrrerrrerririesreereeseestesee s e seesreesteeteeseessaesreesreesseenaesneesnes 39
6.3.1.6.4 [T= a0 To RS g == 40
6.3.1.6.5 Method <<deprecated>> releasel MErfaCe().........ccvvierieriieiie e 40
6.3.1.6.6 Method selectSigniNGAIGOrTtRM()oiveeieee e 40
6.3.1.6.7 MEthOd LENMINBLEACCESS() .. euvevertereeuertereetertest et st ettt sttt b e bbb bbbt b e s sb s bbb es b et e e e 41
6.3.1.6.8 Method relinquiSENEEITACE()eivieeireie et 41
6.4 State TranSitionN DIBGIAIMS.......cctieiierieeete ettt sttt ettt b et b e bt b e s bt b e s b et b s e ne et e se et eb e st et ebenneneees 42
6.4.1 Trust and Security Management State Transition Diagramsccceeeeeeererrenenenese e 42
6.4.1.1 State Transition Diagrams fOr IPINItIalcoooeiiiine s 42
6.4.1.2 State Transition Diagrams for IpAPILevel AuthentiCation............ccceveeiee e 43
6.4.1.2.1 [AIE SEBEE.....ue ettt ettt sttt st e et s b et e s b et et e b e et e R et be s ee e benee e ebenaeneenens 43
6.4.1.2.2 Authenticating FrameWOrK SEALE..........cvecuieiiiesiesies et ae e 44
6.4.1.2.3 Framework AUtNENTICAIEA SEALEc..eeeeieie e e 44
6.4.1.2.4 AuthentiCating CHENt SEALE..........ccuveieeiecee ettt e e e e e e reeaesneeenes 44
6.4.1.2.5 Client AUThENtICAEEA SEALE...........ciieeeeeieeeee et b bbb e e e 44
6.4.1.2.6 Lo [= (= TSP 45
6.4.1.2.7 Authenticating Framework SEALE...........cooiiiiiiireeeet e 46
6.4.1.2.8 Framework AUtNENtICAIEA SEALEcceeeeee ettt st 46
6.4.1.2.9 AUhentiCating ClIENT SLALE.........coveiieeetere e eb e b e seene s 46
6.4.1.2.10 Client AUhENtiCAEEO SEALE.........c.eie ettt se e e s eesresbesaesreeneeneeneens 46
6.4.1.2.11 La [= (= TP 47
6.4.1.2.12 Authenticating FrameWOrK SEALE..........c.vecuieiiiece et ee e e 47
6.4.1.2.13 Framework AUtNENICAIEA SEALEeeeeieie et e 48
6.4.1.2.14 AuthentiCating CHENt SEALE..........ccviieeiecie ettt et e e teereeeeennennes 48
6.4.1.2.15 Client AUthENTICEEEH SEALE.......c.ceiiieiriirieiree ettt bbb b e 48
6.4.1.2.16 [AIE SEBEE.....e ettt ettt sttt sttt st et bttt b e s b et et e R et ke b et ebenbe e benee e erenteneenens 49
6.4.1.2.17 Authenticating FrameWOrK SEALE..........c.vecuieiiiieciesi et 49
6.4.1.2.18 Framework AUtNENtICAIEA SEALEcoeeeeeee ettt 50
6.4.1.2.19 AUhentiCating ClIENT SLALE.........ooviiiiietereeeee et b e besreneeneas 50
6.4.1.2.20 Client AUhENtiCAEEA SEALE.........ce ittt se e e s tesresbesaeese e e eneeneens 50
6.4.1.3 State Transition Diagrams fOr IPACCESS......c..eeiiriiirireeeie et 51
6.4.1.3.1 o L= = 51
7 Framework-to-APPHCAHON APlooeee ettt s e b s be e e s reenaenbenreas 52
7.1 S o 1= Torc T D TT=o = 1 S 52
711 Event Notification SeqUENCE DIiagramMS.........ccveiieiiiiieeie e s e sesie e s ee e ste e ea e e s e be e e sseeeaeeeesneesnes 52
7111 Enable EVENt NOLTICATON ..ottt et s sb e neen 52
712 Integrity Management SEqQUENCE DIBGIaIMScooueiiirieireriet ettt 53
7121 Load Management: Suspend/resume notification from application...........c.ccoeeverecenencieneneeneneeeens 53
7122 Load Management: Framework queries|0ad StatiStiCS........ooourireirerieene s 54
7123 Load Management: Framework callback registration and Application load controlcccveneenene 55
7124 Load Management: Application reports current 10ad CONAItioN............ccvvrerereneienenecse e 56
7.1.25 Load Management: Application queries |0ad StatiStiCS........cceoviieeieeieere e 56
7.1.2.6 Load Management: Application callback registration and load controlccceceevvevieeieccievceseennen, 57
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationccccceeueeeen. 58
7.1.2.8 Fault Management: Framework detects a Service faillure ... v ieeie e 59
7.1.2.9 Fault Management: Application requests a Framework activity teStccecvvcevieneese e, 60
7.1.3 Service Agreement Management SeqUENCE DIagramMS.........cccevieieeieereeseeree s e sreese e see e e e seeeeesneesnes 60
7131 SEIVICE SEIBCHION. ...ttt ettt sttt et et e e se e st e s besee s et e neesee e e seneeseesbesneeneeneensensans 60
714 Service DiSCOVErY SEQUENCE DIBgIaIMSc..eiveuerieieierieeete sttt sttt sttt sb e b b se b e e b e e ebesneneenens 62
7141 SEIVICE DISCOVETY ...etiaietiitiieteste ettt ettt h et h bt a ekt b e b b e b e bbb et bt b e st eb e s e st b e b e e ebenn e e enis 62
7.2 ClaSS DIAOIAMS. ...ttt ettt ettt ettt be bt bt e et bt b e e bt s e e e eh e e A e st eh e e E et e b e e b e e e b e b ene e b e s e e neeb e s e et eb e s b et eb e s b e e 65
7.3 INEEITACE ClBSSES. ... ettt ettt ettt s et e e ee e beebeeaeeseemeeneese e seebesaeebeeaeeneeneeeeseeseesseeneeneeeeneeses 67
731 Service DiSCOVErY INErfaCE ClasSeS. ..ottt b e e b b snenea 67
7311 Interface Class |PSErVICEDISCOVETYoccuiiieiieiieieeieseeseesteesteeteeaesseesteesteeteessesseesseesseesseesseensenseans 67
73111 MethOd [HSESEIVICETYPES() «veveeveeierieeiieseesteeste et eeestee e e e stesaeesaeesreesaeanseeseesseasseenseenseeseensesneesnns 68
7.3.1.1.3 MethOd diSCOVErSEIVICE()...eeuveerieriereeiee st e st esteeteeee st e s e e s e e teeeeseesseesse e teenteenteesaessaenseenteenseaneennns 69
73114 Method i StSUDSCIIDEASEIVICES()vevervieeiiriiieieriee et enas 70
7.3.2 Service Agreement Management INterface ClassesS.......ouiveiieieiee st 70
7321 Interface Class IpAppServiceAgreementManagemMeNtccecverueeceeieseeseesee e s e sreeseeseesreenseeeeans 70

ETSI

73211
73212
7.3.2.2
73221
73222
7.3.2.2.3
73224
7.3.3
7331
73311
7.3.31.2
7.3.3.1.3
73314
7.33.15
7.3.3.1.6
7.33.1.7
7.3.3.1.8
7.3.31.9
7.3.3.1.10
733111
7.3.3.1.12
7.3.3.1.13
733114
7.3.3.1.15
7.3.3.1.16
7.3.3.2
73321
73322
7.3.3.2.3
73324
7.3.325
7.3.3.2.6
7.3.3.2.7
7.3.3.2.8
7.3.3.29
7.3.3.2.10
733211
7.3.3.2.12
7.3.3.3
7.333.1
7.3.33.2
7.3.33.3
7334
7.3.34.1
7.3.35
7.3.351
7.3.35.2
7.3.35.3
7.3.3.6
7.3.36.1
7.3.3.7
73371
7.3.3.7.2
7.3.3.7.3
73374
7.3.3.75
7.3.3.7.6
7.3.3.7.7
7.3.3.7.8
73379
7.3.3.7.10
7.3.3.7.11

5 ETSI ES 203 915-3 V1.3.1 (2008-04)

Method SIgNSErVIiCEAGrEEMENL() ... cc.veieeieeseerieeteeeesee e seesteseeseeseesreeste e teesteesaesraesreesaeeneesneesans 71
Method terminateServiCEAGrEEMENL()ccvverieieeiesiesee st e reree s e e sreesre e saeesre e te e e enaessaesneesnes 71
Interface Class |pServiceAgreementManagemMeENtccceeveereereeie e e see e e e seeseeseesreenseeneens 72
Method SIgNSErVIiCEAGrEEMENL() ... cc.ueieeieeseerieeieeeeseeseesteesteseeseeseesre e te e teeatessaessaesseesaeeneesneesnes 72
Method terminateServiCERAGrEEMENL()c.cciverrieieeiesie e st e resee s e seeseeeste e saeesra e re e e eaessaesneesnes 73
MEtNOO SEIECESEIVICE() .. veivverreerieeiieeie et st s ettt e st et e et e st e s e sreesaeeneeeneeeseasseente e teenseeneeeneennns 74
Method initiateSigNSErviCEAGrEEMENT()cervereeere ettt 74
Integrity Management INEErface CIASSES..........cou ittt 75
Interface Class |PAPPFAUITIMANAGETccoii ittt et 75
MEthOd @CHIVITYTESERES() ...cveueeverreeeiertere ettt ettt eb bbbt et b s nn e ens 76
Method aPPACHVITY TESEREG() ... veveverrereeierrerieieterieeet sttt sb et b e enas 76
Method <<deprecated>> fWFaUItREPOrtINA()ccoverveeieeere e 76
Method <<deprecated>> fWFaUItRECOVEIYINA()ccvveirreeee e 76
Method <<deprecated>> svcUnavailablelNd()cccueviriiiinie e 76
Method <<deprecated>> genFaultStatSRECOIARES()veeverreereerieereerie e 77
Method <<deprecated>> fwUnavailablelNd()ccceoeeriiiiiieie e 77
Method aCHIVITYTESIEIT() .o.vvereeieeese ettt e s e ae et e ente e e e teenneeneeenes 77
Method <<deprecated>> genFaultStatSRECOIAEIT()......cveeruirereirieieereeeeieriees e 77
Method appUnavai labl €INA().........eeereriiieireet e 78
Method <<deprecated>> genFaultStatSRECOIAREG() «....veverveuerreriririerieerie et 78
Method SVCAVEISEALUSINA()cveeeeeeeereeeetere ettt 78
Method <<new>> generateFaultStatistiCSRECOrARES()erveviririririiieree s 78
Method <<new>> generateFaultStatistiCSRECOrAEIT()coeovrireirirerre e 79
Method <<new>> generateFaultStatistiCSRECOrAREG()......cvervrerrreiirrirrie e 79
Method <<new>> fWAVEH I SEEEUSINA()c.eeeeerieeiecie e et 79
Interface Class IPFaUIIMANAQETccvvieiieseese e st ste et et e e et e e e e esaessaesreesreesneesseeseensenns 80
Method aCtIVITYTESIREG() ...veveererieiieiee st st erte e e st see e s st e e e e s reesre e seenee e reeneeeeeeneennes 8l
Method aPPACEIVIEYTESIRES()eiveieee ettt sre et et esaeesraesraesreenteeneeeneennes 8l
Method svcUnavai labDl€INa()ocvereeieeiieie e s e bt ae e ae e 8l
Method <<deprecated>> genFaultStatSRECOIAREG() «....veververerrerieeriereeere et 82
Method aPPACHVITYTESIEIT() ...veiveeeeiereeietere ettt sb et 82
Method <<deprecated>> appUnavailablelNd().........cccoereirireirieeee s 82
Method <<deprecated>> genFaultStatSRECOIARES()ceververirreriiieeierieieie e 83
Method <<deprecated>> genFaultStAESRECOIAEIT()......cveirrirereerieieerieeeerie e 83
Method apPAVEIT SEEEUSINA() «...vveeeeeiieiiese e e b teeaeeeesnneenes 83
Method <<new>> generateFaultStatistiCSRECOrAREG().....ccverveerreeiirrirrie e 84
Method <<new>> generateFaultStatistiCSRECOTARES()evevereereeieerr e e e 84
Method <<new>> generateFaultStatistiCSRECOTAEIT()c.evvuereereerieir e e 85
Interface Class IPAPPHEABEAIM QMLccieiiie e se e e e s reenaeenee e 85
Method enabl €APPHEAMBEAL().......ccveieeeeie ettt 85
Method diSablEAPPHEBITBEAL()coverveuereireeieteriee ettt 86
Method ChanGEINEEIVEI()veueerereeirierieiet ettt b s bbb 86
Interface Class IPAPPHEBIMBEAL...........cc.ciiiieeee ettt 86
IMEENOO PUISE() +.vneeeteeeieetese ettt b bbb bbb et b et b et s bt nns 86
Interface Class IPHEABEAM GIML..........oi it 86
Method enablEHEAMBEAL()c.erveeeieriiiet ettt b e 87
Method diSablEHEAMBEBE().......cevveereerieieeriiiete ettt se e enas 87

VT= ag oo otz 1= Fa U= AV 87
Interface Class IPHEAMBEALccveiieiece et ee e e sreesneesreenseenneens 88
=1 0o 0T 88
Interface Class IPAPPLOBAMENEOESccuveieeieiieiieseesteesteeseeseeseesreestee e etesstesseessaesaeesseesseensennsenns 88
Method <<deprecated>> qQUErYAPPLOAAREG() ...vverveerreeierieriesieseesteeseeeeeeeesseesreessee e eeesaesaeesnes 89
Method <<deprecated>> qUENYLOBORES().......courueuerririeiririeeriesieesie e 89
Method <<deprecated>> qUENYLOBOEIT()ccoirieiriirieiririeiriesieesie et 20
Method [0adL eVelNOLIfiCaLTON()veverreeerereeeet sttt 20
Method reSUMENOLIFiCALION()erveueerereiietire ettt 20
Method SUSPENANOLIfICATON() -...eveueeeerreeeeirtieet st 20
Method createl 0adL eVelNOti fiCaION()ecverreeieeiesiesee e 90
Method destroyL oadL evelNOtifiCaHON()cvveveereeieseeeee et e e 91
Method <<new>> queryAppPLOadSIAESREG() .. .voveeeerreeieeie e s e 91
Method <<new>> qQUErYLOAOSIAISRES()ccvecvieeieeerieeieee sttt e enae e s 91
Method <<new>> QUErYLOAOSIALSEIT() ...veevveeveeeeeeesieeieeiestesee e seeesee et et e e e s et e e aeeaesneesnes 91

ETSI

6 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.38 Interface Class IPLOAOME@NAQEYcceiierieieeeeie e seeseesteesteeteeee e sseesteesteesseesseessesnnesseesseenseenseans 92
7.3.38.1 VK= 1 oo = oo {0 7= [93
7.3.38.2 Method <<deprecated>> qQUErYLOAORE() .. .eiveieerreeriieieeiesie et ste et e ettt ae e 93
7.3.3.8.3 Method <<deprecated>> qQUErYAPPLOBARES)ccvervieirrierie e seesteeseeeee e et e e ae e e 93
7.3.384 Method <<deprecated>> qQUErYAPPLOAEIT().....cccverieeieeiesie e see e eseeeee e e e eae e s sns 94
7.3.3.85 Method createl 0adL eVelNOti fiCaION()ccverreeieeie e e 94
7.3.3.8.6 Method destroyL 0adL eVelNOtifiCaiON()eveverreeeririiieeriee ettt 94
7.3.3.8.7 Method reSUMENOLIFICAEION()eoveeererrieetire ettt 95
7.3.3.8.8 Method SuSPENANOLIfICATON() -...e.veueeeerreeetiit ettt 95
7.3.3.8.9 Method <<new>> qUEryLOBdSLAESREG() ... e veeererreerririeeeieriee et 95
7.3.3.8.10 Method <<new>> queryAppLOadStAISRES()......c..eoeeririieirieeeerieeeere s 96
7.3.38.11 Method <<new>> queryApPPLOAASIALSEIT().......ccviierieice e 96
7.3.39 INLErfaCE ClASS IPOAM ..ottt st e e te e et e e rae et eesteesteeseensesneesaeesneenseenseenseans 97
7.3.39.1 Method systemDateTimEQUENY() .vevveiueereereeieeieeeesteesteeseesteseeseesreesreesse e teessessaesseesseesseeneesnnesans 97
7.3.3.10 Interface ClasS IPAPPOAM ..ottt e e s e e s e e s te et e eteestessaessaesseesseesseenseeneesseesseenseenseans 97
7.3.3.10.1 Method systemDateTimMEQUENY() ...eveeiveereerieeieeeeeeeesteeseestesteseeseesreesseesseesseessessaesseesseessesnsesneesnes 98
734 Event Notification INtEerface ClIAsSES.........cooiiiiiriiieie ettt s 98
7341 Interface Class |PAPPEVENINOLIFICATONooveiiereeiieees e 98
73411 Method repOrtNOLIfi CaEION() ...veverveeeeertireeiert et 98
73412 Method notificationTerMINAIEA()cvreerireere e 98
7.34.2 Interface Class IPEVENINOLIFICATON ..ot 99
73421 Method CreateNOLIfiCaEION() . ..everereeerrere e 99
73422 Method destroyNOLIfiCaLON()e.veeererrireerirtiret st enes 99
74 State TranSitioN DIBGIAIMIS........ccviieiie e seese e et e st este et e e seesseesreesteesseeeesseesseesseenseenseassenseessenssensseensesnsennns 100
74.1 Service Discovery State Transition DIiagramS.........ccevueiiereeieese e see e ee e sae e seesaeseeseesnes 100
74.1.1 State Transition Diagrams for [pServiCEDISCOVENYcccviuirieriereeie e see e ste e sae e e sreenae e e 100
74111 ACHVE SEALE ..ttt sttt sttt st s ettt ne b e st ettt et be st 100
74.2 Service Agreement Management State Transition DIiagramsS........c.eecveceecerceseesee e esee e e 100
74.3 Integrity Management State Transition DiagramsS..........cceveeeueeeeeieenieseeeseeseesieeseesesaeseesreeseeenseenseens 101
7431 State Transition Diagrams for IPLOBAM@NAGEYc.ciiireriiiierieeee ettt eenea 101
74311 Lo 1= (SRS 101
74312 Notification SUSPENTEA SEALE............coviiriiiieieeere et b e e 101
74313 F o L= (= RS 102
7432 State Transition Diagrams for LoadManagerInternal.............coceveeereine s 102
74321 NOIMEl OB SEALE.......eeeeeeeieeeee e et b sttt se e bbb ae e nr e e 102
74322 ApPPlication OVENTOAd SLALEcccveeieeieeie ettt e e te e e s ae e e sreesaeenseenreens 102
74323 INtErNal OVENTOBO SEALE.........ccueeieieieie ettt b e b b ne e e e 102
74324 Internal and Application OVErload SLALEccciceeieeiie e 103
7.4.3.3 State Transition Diagrams for IDOAM ..o st eae e e e e sneenaeereens 103
74331 ACHVE SEAEE ...ttt sttt st sttt st e ettt ne b e Rt e be ettt a et et 103
7434 State Transition Diagrams for IpFaultManager...........cocoeiereiiinieeieeee e 103
74341 FrameWOrK ACHIVE SELE..........ceeieerie ettt ettt e e e e e stesbesaesbesneeneeneeneas 104
74342 Framework FaUITY SEBEE.........cccciiiieierieietesieee ettt st s sb e e b e neene s 104
74343 Framework ACHIVILY TESE SEALE.cci ittt et e sb e s b e neene s 104
74344 SENVICE ACHIVITY TESE SEALEeuectitiietereeeet sttt se e 104
744 Event Notification State Transition DiagramS.........co.coeeereirerieinirieesiesie st s 104
7441 State Transition Diagrams for IpEVENtNOLIfiCatioNccoccuvviiiieiecce e 104
8 Framework-to-Enterprise Operator APl ...t 104
8.1 S 010 c T D TT= o = 1 108
811 Event Notification SeqUENCE DIAgramS.eoueeririeirieieesieie sttt 108
812 Service SUbSCription SEQUENCE DIBgIaIMS........ccoiveiiiirieieie ettt 108
8121 Service Discovery and SUDSCIPtioN SCENAMTO........ccviiiiiiiiier e 108
8122 Enterprise Operator and Client Application Subscription Management Sequence Diagram.............. 110
8.2 ClaSS DIAOIAMS. ...ttt ettt bbbt bbbt h b et e b e b e e e bR e e e bt e b e e e bt e b e e e heeb e b e st eb et e st et e b et ees 112
8.3 INEEITACE CIBSSES. ... eeueeeete sttt sttt e et et e st et e et sbe e st e st e e e eeseeseesbeeaeeseeneeneensenseseeseeeseeneenseneeneas 113
831 Event Notification INterface ClIasseS..........ooiiiiiiiiieie et 113
8311 Interface Class |pClientEVENtNOLIfICaHIONccvecviieiceec e 113
83111 (\V/T= 1 gleTo = ool A\ o (Koo ol 1TSS 114
83112 Method notificatioNTerMINALEO()cveevereeieeee e eite e e e et sa e e saeesreennaesreenneas 114
8.3.1.2 Interface Class IPEVENINOLIfICALIONciiiieee e snees 114
83121 VK= 1glee Rerg== it N\ Lo (] o= i o] o) IS 115

ETSI

7 ETSI ES 203 915-3 V1.3.1 (2008-04)

8.3.1.2.2 (VY= 1gTeTo o e a) Y\ o 0N o= i o] ol USSR 115
8.3.2 Service SUBSCription INErfaCE ClaSSES.........ciiieii ettt et raesraesneas 115
8321 Interface Class |pClientAPPM @NAJEMENLccveieeieere e e eeesee s steeste e seeseesreesseeseensesseessaessens 115
83211 Y N= el Mo s (= @ T AN o] o (SR 116
83212 Method MOdifYCIIENEADP() ..-veereeereerreerteeieeieresreeseeseesreeste e e e e sseesseesreesreesseesseeseessesseessenssensses 116
8.3.2.1.3 Method del €teCTIENEADPP() .+ vereerereeerterieieterieee ettt sttt st se et besee e s besee st sbeseeseebeseeeesesteseenens 117
83214 MELNOO CrEAIESAG() ...veueevereeeetertereeterie sttt st ettt ettt bt eb e bt eb e sb e e b e sb et eb e s e e e ebese e e ebesbeneeneas 117
83215 MELhOA MOGITYSAG() ..eveveeeterreneeieriere ettt ettt et b e et b e et b e et eb e e e e b sneneeneas 117
8.3.2.1.6 MELNOO AEIEEESAG() ...vvevereeieetere ettt ettt et b e et b e et b e et ebe e e e e b b neeneas 118
83217 Method a0dSAGMEMDENS()eoveiererieieiirtereee ettt et b e s eb e e besneneene s 118
83218 Method remoVESA GMEMDEIS()civirieiiriirieerte ettt bbb ene s 118
8.3.2.1.9 Method requESICONTIICHINFO()vveveeieiee e et et esreas 119
8.3.2.2 Interface Class |pClientAPPINFOQUETYeeivee ettt sneas 119
83221 Method desCriDECIIENLAPD() -vvevvrerrrereereereereerteseeeteeeeseeste e e e e stesseesseesreesseesseenseensesseensenssensses 120
8.3.2.2.2 V1= 10 To RS (@ T2 o] o SR 120
8.3.2.2.3 T (gl To Mo L= o] o T= S A) SRS 121
83224 IMELNOO [ISESAGS() .. everveneetirieneete sttt sttt sttt sttt st b st e e ebe st e seebesbeseebesae e ebeebeseeneesesteneenens 121
83225 MEthOd [ISESAGMEIMDEIS()eevereieeterieeete sttt sttt b e et b e e ebe e e e ebesreneeneas 121
8.3.2.2.6 Method listClientAPPMEMBEISNIP() ...vevervieeierieeeeriee ettt b e ene s 122
8323 Interface Class |pServiceProfileManagemMentc.uoeriieiriere e 122
83231 Method createServiCePrOfiIE() ... oo e 123
8.3.23.2 Method ModifyServiCePrOfilE()couieiriieeeree e 123
8.3.23.3 Method del eteServiCePrOfilE() ... oot 123
8.3.234 IMEENOO @SSIGN() 1+ vveveneererie st sttt st sttt e st be e e sesbeseese et e st eseebesee st ebeseeneebeseeneesenbeneeneas 124
8.3.235 V= 10 o o (== T o | USSR 124
8.3.2.3.6 Method requESICONTIICHINTO()vveveeieiee ettt sreas 124
8.3.24 Interface Class |pServiceProfil el NfOQUETYooev i 125
8.3.24.1 Method [IStSErVICEPIOfIIES()eueeeerieieie ettt sttt st seeneas 125
8.3.24.2 Method describDESErVICEPIOIIE()coveieeiee et sneas 126
8.3.24.3 Method [iStASSIGNEAMEMDEIS()c.eivieeiiitiieeeete ettt s b e e b e neene s 126
8.3.25 Interface Class |pServiceContraCtManagemENtcc.eererieerierirereieese e 126
83251 Method CreateServiCECONIACE() uvrrereereriereeierte sttt sttt ettt eb b ebesreneeneas 127
8.3.25.2 Method ModifyServiCECONMIACT()civereerereeereriere ettt b e s eb e e b e neene s 127
8.3.253 Method del eteServiCERCONIACE() veuerrereererte ettt sttt et b e e neeneas 128
8.3.2.6 Interface Class |pServiceContraCtiNfOQUENYocviiiieierieece et 128
8.3.26.1 Method desCribDESENVICECONIACI() ..ovvervrereieeeiesteeste e e ee s ee e ee e ste et e e sre et e e teenteeneesraesreenneas 128
8.3.26.2 Method [1SESErVIiCECONIACIS() ...uveiveeieeiietieee et e st et e e e s eeste e e esreesreenreeeesseesseeeraessaenneas 129
8.3.2.6.3 Method [IStSErVICEPIOfIIES()eueeverieieie ettt sbeseeneas 129
8.3.2.7 Interface Class |pENtOPACCOUNTMANAJEMENLcoiveieerieereeeeseeseestee e seeseesseesseesseeseensesnesssaesens 130
8.3.27.1 Method MOdifyENTOPACCOUNT().....eeveerreeieerieesieeieeeieeseesiees e e e e e e e saesaesreesseesseeseenseeneessaesseessens 130
83272 Method del eteENTOPACCOUNL().....veueererieiererieieterie ettt b bbb eb e besreneene s 130
8328 Interface Class | pENtOPACCOUNtINFOQUENYeviiiieiiriiieicrieie sttt 131
83281 Method descriDEENtOPACCOUNL()ververerrereeiertereeeste sttt b e et b e e eb e b e neeneas 131
8.4 State TranSitionN DIGOIAMS.........c.uiiieeriii ettt b ettt b bbb e st b e b st et e s e st b e bt e be b 131
84.1 Event Notification State Transition DiagramS.........coeoeeereiririeienirieesesie s 131
842 Service Subscription State TranSition DIiagramS.........c.coeeiiieiieeriee et 131
9 FramewOorK-10-SEIVICE AP ..ottt be st st b e e nes 132
9.1 S 010 c T D TT= o = 1 132
9.1.1 Service Discovery SEqQUENCE DIBGIAIMSc.oiieiierieeieeeestees e eteee s e seesteeseeseeseesreesseeseensesseessensseesnes 132
912 Service Registration SeqUENCE DIBOIaAIMSccuiieririeeeierie ettt be et se e b 132
9121 New SCF SUD TYPE REGISITAIIONcc.eveiiiieieeeeie ettt sttt b e 132
9122 NEW SCF REJISITALION. ...ccveveaeeteieeeete ettt sttt bbb et b e et b e e b st eb et et b b 133
9.13 Service Instance Lifecycle Manager Sequence Diagramsc.ooeeeereeniereeesiesesesie s 134
9131 SigN SEIVICE AQIEEITIENT ... ettt ettt ettt ettt ettt et b e et eb e b e e ebesb et eb e sb e e ebesb e e ebesbe e ebesbeneeneas 134
9.14 Integrity Management SeqQUENCE DIagIaIMS........c.ciirueiriieeriiieesieie sttt 135
9141 Load Management: Service callback registration and load control..............ccoevveiieecevcn e 135
9.1.4.2 Load Management: Framework callback registration and service load controlccccceveevvennenne 136
9.1.4.3 Load Management: Client and Service Load BalanCing.........cccccvevveeieeeneeneesece e 137
9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service........ccccecvvcvvvenenne 138
9.1.45 Fault Management: Service requests Framework activity teSt..........cccvvveveeveeiesiese e 138
9.1.4.6 Fault Management: Service requests Application activity teStcccveveveecieece v, 139

ETSI

8 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.7 Fault Management: Application requests Service activity teStccocvvceeveeve e 140
9.1.4.8 Fault Management: Application detects service isunavailable..........cccccoeovecvevevesiencecce e, 141
9.15 Event Notification SeqUENCE DIaQraMS.........ccveiieiieiee e sieeiteseesee s e ete e eeassee e e tessaessaesreesaeesaeenseensenns 141
9.2 (O =SS D= =0 1 142
9.3 INEEITACE CIBSSES. ... ettt bbb bbbt bt et e b e e e e Rt e bt e bt e b e e st e ae e e e b e besheeb e e neenneneenres 144
931 Service Registration INtErface CIaSSES........ciiiiiiii ittt e et te e snaesnaesraesneas 144
9311 Interface Class |pFWSErViCEREGISIIAIONcouieiirieieriee e e 144
93111 MELhO FEQISIErSEIVICE() ..veiveueeterteeete ettt ettt b e ettt b e st eb e e e b sneneeneas 145
93112 Method announceServiCeAVa labDility ()oooe v 146
93113 Method UNFegiStErSEIVICE()veveireeererieiete sttt sttt et se et b e et b e e eb e e e e b sreneeneas 147
93114 MethOd dESCrIDESEIVICE() ... v eueerereeeeterieiet ettt sttt b e et b e seeneas 147
9.3.1.15 Method UNANNOUNCESENVICE()ecuvereieieeseesiee st esteeteetesseesteeseeseesteeseeaesneesseasseenseenseensensanssenssens 147
9.3.1.16 Method <<new>> regiSter SErviCESUDTYPE() ...vveiuieieerieieseesee e esesee s e seeesteeae e e s e neeenees 148
9.3.2 Service Instance Lifecycle Manager Interface Classes.........uvveieieiieiiee sttt 149
9321 Interface Class |pServicel nstanceLifeCyClEManagerccveveveeiiesiene et 149
93211 Method Create€ServiCEMANAOEN()coeerueiieeieeieesteerte e e eee s e s e e e stesaeseesreesreesseeseenseeneensaesreennens 149
93212 Method destroyServiCEMaNAgEr()cceeeererreeieeseeseesee e e e e e te e seesreesreesreereeneeeneesraesreennens 150
9.33 Service DIiSCOVErY INErfaCe ClasSeS........ccoiiiiriiee sttt ettt 150
9331 Interface Class |PFWSEIVICEDISCOVETYc.ciiriiiriiieiriirie sttt 150
93311 MELhO [ISESEIVICETYPES() .. .veueererteeeterieriete sttt sttt sttt st b e et b e et b e s ebe b e e b e b neeneas 151
93312 Method desCriDESEIVICETYPE() veeerereeirierieeete ettt sttt st b e st besrennene s 151
9.3.3.13 MELhOO di SCOVEISEIVICE() ... vueetereeeete ittt ettt b bbbt b e besa e ebesreneeneas 152
93314 Method i StREQI SLEr@USEIVICES(). .. c.veverveeererieiete ettt st s ebe bbb sreseene s 152
9.34 Integrity Management INtErface ClaSSES........ccviiuiiieiieiiese ettt saeesneenreeneens 153
9.34.1 Interface Class |PFWFaUITIMBNAGESccveiiieiee e este et e s e e te e e sreesaeeseeneesneesnaessaessens 153
9.34.1.1 MELhOd @CHIVITY TESEREG() .. ervereerereeerierieietesieeeresee et st et ste et sbe et sbeseesesbeseesesbeseesesbeseeeesesbeseenens 154
9.34.1.2 Method SVCACHVITY TESIRES() ...veveeerieieeieie sttt st st s b et neeneas 154
9.34.1.3 Method appUnavailabl€lNd()ceeieiieiie et nneas 154
9.34.1.4 Method <<deprecated>> genFaultStatSRECOIAREG() ... ecveereerreerreerieeiir e see s e steeste e eree e 154
9.34.15 Method <<deprecated>> sveUnavailablelNd()ccooreerireiiiirencs e 155
9.34.16 Method SVCACHVITY TESIEIT() ...coveieeeeiteieeeete ettt 155
9.34.17 Method <<deprecated>> genFaultStatSRECOIARES()coverieeriirieire et 156
9.34.18 Method <<deprecated>> genFaultStatSRECOIAEIT()......c.coereeirereeirereee et 156
9.3.4.1.9 Method <<deprecated>> generateFault StatSRECOTARES()ccververeereriirieerereeese e 156
9.34.1.10 Method <<deprecated>> generateFault StatSRECOTAEIT()eeveereeieeii e 157
9.34.1.11 Method SVCAVEIISEAIUSINA() ...veververeeierieieie sttt st et s b et seeneas 157
9.34.1.12 Method <<new>> generateFaultStati sticCSRECOrAREG() ... eivverreererrriirieereere e e e e eee e 157
9.34.1.13 Method <<new>> generateFaultStatiStiCSRECOrARES()cceereereerriie e eee s 158
9.34.1.14 Method <<new>> generateFaultStati StiCSRECOTAEIT()ccvveierierieeiie e 158
9.34.2 Interface Class IPSVCFAUITM@ANAGETciveieeieeeieciesees e eesae et ste e ae e e e saeenaeeeesneesneessaesneas 158
93421 MEthOd CHIVITYTESERES() ...eveueererreeeterteiet sttt ettt b et b et b e st b e e bbb e b e b neeneas 159
93422 Method SVCACHVITY TESIREG() «vveeeeerrereeierterieese ettt et s 160
9.34.23 Method <<deprecated>> fWFaUItREPOITINA()evervireeeirereeere e 160
93424 Method <<deprecated>> fWFaUItRECOVEIYINA()coverveeerireiiereeese e 160
9.34.25 Method <<deprecated>> fwUnavai lablelNd()c.ooerereeeriniereee s 160
9.34.2.6 Method sveUnavailabl €INA()c.veeeverieieieieeeree et 161
9.34.2.7 Method <<deprecated>> appUnavailablelNd()........cccccvrierieiieeriece e 161
9.34.2.8 Method <<deprecated>> genFaultStatSRECOIARES()cceererrerir e ere e 161
9.3.4.2.9 MELNOO CHIVITYTESEEIT() ..veveueetereeeetesieiete st sttt sttt sttt st s besbeseebesbe e ebeseesee e ebesbeneenens 162
9.34.2.10 Method <<deprecated>> genFaultStatSRECOIAEIT()......ccverreerererie e e erie e eee e 162
9.34.2.11 Method <<deprecated>> genFaultStatSRECOrAREG() ... ecveereerreerieerieriir e e s e seerre e erae e e 162
9.34.2.12 Method <<deprecated>> generateFault StatSRECOrdREG().....ecvverveereereere e seese e 163
9.34.2.13 Method aPPAVEIT SEALUSINA() -..eveeeeerreieiiitereeese e e s sb e s b e 163
934214 Method <<new>> generateFaultStatisticSRECOrARES()ccevveereririreree e 163
9.34.2.15 Method <<new>> generateFaultStatisticSRECOIAEIT()ooveerereirereereree e 164
9.34.2.16 Method <<new>> generateFaultStati sticSRECOrAREG()......eovererverrererierieere et 164
9.34.2.17 Method <<new>> fWAVA T SEAEUSING()veverrereeririeeiireee et eene 165
9.34.3 Interface Class IPFWHEArBEAIIMOIML.........c.ooiiiee et te e sraesraennees 165
9.34.3.1 Method enablEHEAMBEAL()eeverveeererieieiesiee sttt sttt sttt e e e besbeneeneas 165
9.3.4.3.2 Method diSablEHEAMBEBE().......cveiveerrerieieie sttt st st s b et seeneas 166
9.34.33 Method ChanQEINLEIVEI()ccveeieeiere et e e sre e sreesreeteeneeenaesnaesreesneas 166
9.34.4 Interface Class IPFWHEAIBERLcccieeiieie ettt sae et e e e e e sneesnaesneas 166

ETSI

9 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.34.4.1 IMELNOO PUISE() vttt sttt sttt s e et se e e bese et ebe st e e ebeseeneesenbeneenens 166
9.345 Interface Class |pSVCHEABEAIM QMLcoii ittt sneas 167
9.345.1 Method enabl€SVCHEABEAL()eecveeeeiee et ere et sr e et enaeeraesreenneas 167
9.3.45.2 Method diSahlESVCHEAMBEAL()......eveververeeririerieiisie ettt sttt st sttt st st seeneas 167
9.345.3 Method ChanQEINLEIVEI()ccveeieeerie ettt esreesseeteenseenaeenaesreesneas 168
9.34.6 Interface Class IPSVCHEAMBEALcceeiieie ettt sneas 168
9.346.1 IMEENOO PUISE() .ttt e b et b e et b e et b e et b e se e e b e sb e e e b e sneneeneas 168
9.34.7 Interface Class |PFWL OAOMBNAGES ..ottt b e b e 169
9.34.7.1 TS (aleTo = oo { o ="o [ST U ST S PP PTPRTPUSURPRRN 169
9.34.7.2 Method <<deprecated>> qUErYLOBOREG() ... cverveerrerieieierienieiere ettt ene 170
9.34.7.3 Method <<deprecated>> qUErySVCLOBORES().......cciririeeriirieirie et 170
9.34.74 Method <<deprecated>> qUErYSVCLOBAEIT()......cceieereerierieeeeestesee e steesreesreesee e e sreesreeneens 170
9.34.75 Method createl. 0adL eVelNOtIfiCaLION()vevvereereeie e neees 171
9.34.7.6 Method destroyLoadL evelNOtifiCatiON()eeieereeieeiieeesees e neeas 171
9.34.7.7 Method SUSPENANOLIFICALON() ...veeuveeeereeiee sttt et e sae et eseeeneesraesraenneas 171
9.34.7.8 Method reSUMENOLITICALTON()vveveeieiee et sre e sraesraenneas 172
9.34.7.9 Method <<new>> qUEryLOa0SIAISREI() .. .eieerveerereereeeeiesieeee e sie e seesreesreesaeeee e e e sraesreeneens 172
9.3.4.7.10 Method <<new>> qUErySVCLOBASIAISRES().......crveerrerieerierieerie sttt nre s 172
9.34.7.11 Method <<new>> qUErySVCLOBASIAISENT()ovrveerrerieirierieeete ettt eb e 173
9.34.8 Interface Class IPSVCLOBAMBNAGEYc.curirieiriiieirie st 173
9.348.1 Method <<deprecated>> qUErySVCLOBOREG()veververeererienieierie ettt 174
9.348.2 Method <<deprecated>> qUENYLOBORES().....c.ciereereriirieiirierieesie ettt eene s 174
9.34.8.3 Method <<deprecated>> qUENYLOBOEIT()ccoiiieiriiieeerieniete ettt eene 175
9.34.84 Method 10adL eVElNOLITICAION() ... cccveiee ettt e e e sneas 175
9.34.85 Method SUSPENANOLIFICALON() ...vveveeeeieeiee s et erte et e ee e s sre e sre e a e eneenreesraesreennees 175
9.3.4.8.6 Method reSUMENOLITICALTON()vveveeieiee et re e sraesreenneas 175
9.3.4.8.7 Method createl 0adL eVelNOtifiCaION()veivereeeeeie e 176
9.3.4.8.8 Method destroyL oadL evelNOtifiCatON()eereereeireeeeesee e re e 176
9.3.4.89 Method <<new>> qUErySVCL 0a0StAESREM() «..veervrerrrerrreerreeseeseesteseeseeseesreesseesseeseeseessaesseessens 176
9.3.4.8.10 Method <<new>> qUEryLOoadStaSRES()cccoirieiririeire st 177
934811 Method <<new>> qUeryLOoadStAESEIT()cceiireirireese e 177
9.349 INtErface Class IPFWOAIMooiiieiiee ettt b et b bt b st b e 177
9.349.1 Method systemDaETIMEQUENY() ...veverveuerrerieeeterieeete sttt sttt eb bbb e b b e ebe b seesesreneenens 178
9.3.4.10 INtErface Class IPSVCOAM ..ottt bbbt b et bt b et be e 178
9.34.10.1 Method systemMDateTimMEQUENY() ..eevveireereeieerreesireteeeeseesteesees e eseesaeseesseesseesseesesnsesssessaessesssees 178
9.35 Event Notification INterface ClIAsseS.........ooi it 179
9.35.1 Interface Class |pPFWEVENINOLIfICALION...........cceiiee e 179
93511 (VK= 1glele Rerg== it N\ Lo (] o= i o] o) ISR 179
9.35.1.2 [\V/T= 1 gTee o ooV \\ o1 N o= i o] ol S 179
9.35.2 Interface Class |pSVCEVENINOLITICALIONcoveiicc et 180
93521 Method repOrtNOLIfi CaEION() ...veverveeererieiet ettt b e neene s 180
9.3522 Method notificatioNTerMINAIEA()coereerereeeireiet e 180
9.4 State TranSitionN DIGOIAMS.c.uitiieiertii ettt b bbbt be b e st b e b e st et e e e st e b e b et ebenbe s 181
94.1 Service Registration State Transition DiagramsS.........coeoeeerieireriee st 181
9411 State Transition Diagrams for |pFWServiCeREgISITaliON.ccvveererieine e 181
94.111 S O ol B o 1S (S (=0 S = 1= T 181
94112 SCF ANNOUNCED SEBEE........eeueeueeeeie sttt ettt sttt et i et e e se e b e b e bt sbe e st ese e e et e saeene e e ennenes 182
94.2 Service Instance Lifecycle Manager State Transition Diagrams........cccvecveeeeeeneeseeiese e see e 182
94.3 Service Discovery State Transition DIiagramS.........ccecueieereeseere e seesee s e teete e sreeseeseeseesaeseesnes 182
944 Integrity Management State Transition DiagramsS..........cccveeeueieeeiieeseeseeeseeseesteesessesaeseesreeseeenseeseens 182
9441 State Transition Diagrams for IpFWLOaOdMaNagerccveuirieeienecieee e s ene e 182
9.4.41.1 [AIE SEBEE......eeee ettt ettt sttt sttt sttt st et et e e ket ne et et be st e ne e 182
94412 NOtification SUSPENTEA SEALE.........cc.coviiriiiierieee et b e e b e 183
94413 F o L= (= RS 183
9442 State Transition Diagrams for IpFWFaUItManNagercocoveeiirieiiieeseeeereee e 183
94421 FrameWOrK ACHIVE SELE..........ceeereeieie ettt st st e e e e e e e stesbesaesresneeneeneeneas 183
94422 Framework ACHVILY TSt SEALE........cciieirierieeete ettt s eb e s seene s 183
9.4.4.2.3 ApPPlication ACHIVILY TESE SEALEeeciieiee ettt sre e saeenreenreens 183
9.4.4.2.4 Framework FaUILY SEALE.........c.ccveiieieiie e see sttt e e e e te e e sreesaeeae e e e sneeenaesnaesraenneas 184
945 Event Notification State Transition DIagramS.........ccccvecueieereereeieeeeseeseesesee e seeseeesaesseeseesseessesnsenns 184
OIS s Yo £0] 0= 4 11 184

ETSI

10 ETSI ES 203 915-3 V1.3.1 (2008-04)

10.1 SErVICE SUPES QN0 SUD TYPES....eeiveeieeieeieiieseesaeesteesteeteeseesseesseesteetesssesseesseesseaseanseassesseanseessenssenssesnsesnsssnes 184
10.2 SEIVICE PIOPEITY TYPES .. cuveeuiieueesteesteesteesesteseesteesteesteasteaseesseesteeteesteansesseesseesaeeseanseanseaneensaesseesseesseeseanseanes 184
10.3 GENEral SEIVICE PrOPEITIES ... e iieeie ettt ettt e st e e e s e ree s reesteeatesaeesseesseesseessaesseenseenseeneeanes 186
1031 SEIVICE NBITIE. .. .ttt a et e bbbt b e ae e s e e e e b e bt sh e eb e eheehe et ens e e e nbenbesneene e e enbennen 187
10.3.2 = Ve A= £ o] o TP U PR PRURORTPRN 187
10.3.3 SEIVICE ID it e h ettt e b b bRt h e e e R R e R e SRR e e e e e R e bt bt eaeene e e enrennen 187
10.34 SEIVICE DESCIIPILION. ...ttt b et b e bbb et bbb e e e st eb e e et b e bt b e b 187
10.35 0o [0 Tot B V=T PSR 187
10.3.6 0o (B Tot MY = = T o SR 187
10.3.7 <<deprecated>> SUPPOItEd INTEITACES.ciiiiiriiee bbb 188
10.3.8 OPEIBLION SEL ...ttt ettt ettt b bt b et b e s b et eb e se e e eb e s h e e eb e e R e e eb e e R e e eb e eR e e bt e R e e bt ebeneeneebe e ene s 188
10.3.9 (@0 pg] o7z 1] o LTS LY o TS 188
10.3.10 Backward CompatiDility LEVELcooi ittt esaeenreeneens 189
10.3.11 [TTo = o T L= U] = o S PR 189
10.3.12 (D= E= Y I = (= o (TSP UR PRSPPI 190
10.3.13 Migration Dale AN TiME......eeie e ceeeieee et e e s ee e s st e e e s e s e e s se e te e teentessaessaesseesseeseesneesaeesaeenseensenns 191
10.3.14 Support for Regular EXpressions in AdAreSS RANGE.........cicvviierierieeeee e see s e sreesae e e sseesseesreesneas 191
R B = = U = T o S 191
111 Common Framework Data DEfiNitiONSccoiiiiriieceee et s se e neens 192
1111 LI LGS 1= 0172 o] o] 5 ST OERTUPTRSUROR 192
11.1.2 TP I ENEAPPIDLISE ...ttt bbbt bbb bbbt b s e st bt e e bt b neens 192
1113 TPDOMAINID ...ttt b bttt b e bt eb e heeae e e e e e b e see ekt s bt e s e e e e e e nbesreebe et enre e enres 192
11.1.4 LI 1B To g T o1 I Y o= 192
1115 TPENLOPID ...t bbbttt e bbb e e st e e e e e R bt e Rt b e Rt e R e et et e Rt eh e a e e e nrenreras 192
11.16 QLI o 0] 0= Y]\ V=T 1T PSPPSR 192
11.1.7 QI oL 0o T= 1 YA = = S 193
11.1.8 TPPTOPEITY ... e e s e e e e 193
11.1.9 LI 01 001 11 I OO PERRUTOTRSURRR 193
11.1.10 QLI =01 o1 5 = OSSP 193
11111 LI o USSR 193
11.1.12 LI 015 = LYot TSSO 193
11.1.13 TPSEIVICELISE .ttt b bbbt h bt bk bt e h Rt h bt beae bbbt e ens 193
11.1.14 TPSEIVICEDESCIIPLIONc.eeceeeeieeeteeie et et s e e et e e s teeste e te e s e estessaesaeesseesseensesnnesneesneenseansennsenns 193
11.1.15 TPSEIVICEID ...ttt h et b e bbbt he e a e e e e e se e e b e s bt e heea e et ehe e e e b et se e ebeeneene e e ennan 193
11.1.16 TPSENVICEIDLISE ...ttt b bbbt e e b bt s he e b e e st e e e e e s e besreeb e e e enneneeres 194
11.1.17 TPSEIVICEINSIANCEID ...t e e e te et e s e eseessaesbe e seeseenaesneesneesneenseanseansenns 194
11.1.18 T PSEIViCETYPEPIOPEITY ..o iteeie ettt e e s e s e e te et e e s e estessaesseesseesseesesneesneesneanseensennsenns 194
11.1.19 T PSErViCETYPEPIOPEITY LISte ettt sttt e st et e e be e e estesaeesneesaeesneesseeseensenns 194
11.1.20 TPSErVIiCETYPEPIOPEITYIMOUE. ... ettt bbbt b et 194
11121 TPSErVICEPTOPEIY TYPENGBIME.ctiieiitieeiert ettt b bbb bbbt b et b bbb e ens 194
11.1.22 TPSENVICEPTOPEITYINGITIE. ...ttt b et b e bt bbb et b e s e st bt e e bt nr e ens 194
11.1.23 TPSErVICEPTOPEIYNGIMELISE.cvetieetiteeiert ettt et b et b e n e sn s 194
11.1.24 TPSENVICEPTOPEIYV AIUE. ...ttt b bbbt e bbbt b et s e bt bbb e ens 194
11.1.25 TPSErViCEPrOPErtYV AlUELISL......ceeeiecece et e e st e e e reenteeeesreesneenneaseensenns 195
11.1.26 IS V0= (0] 0T S 195
11.1.27 I 0SS Vo= 0] 0= 1 I S 195
11.1.28 TPSEIVICESUPPIIENTD ... ettt e e e te et e e s e eseessaesse e seeseeneesneesneesneanseanseensenns 195
11.1.29 TPSErViCETYPED ESCIIPLIONovieteeieee e ettt e e e e e s teeste et e es e ssaessaesbe e teessesneesneesseesneenseanseensenns 195
11.1.30 TPSEIVICETYPENGIME ... eeeieeeeteete ettt e e s ee st e st e s e e steeeeeseeaseeeseesse e seesseenseessesseesseesaeessesneesneesseanseansennsenns 196
11131 TPSEVICETYPENBMELISE ...ttt b et b et bese e ens 196
11.1.32 I IS L= v Y o= OO UPERPUTPTRSOURRR 196
11.1.33 TPSErVICETYPEPIOPEITYV BIUE.... .ottt sn s 197
11.1.34 TPServiceTYPEPrOPErtyV Al UELISEc.civieiiieice b 197
11.2 Event Notification Data DefiNitiONS..........cccoiiriiieieeiee sttt st e e e 197
1121 TPFWEVENINGIME......coe et s e e s e sne e 197
11.2.2 I o T Y= o (O (- S 198
11.2.3 TPRWEVENTINTO. ..ttt b e bbb et e e e e b e b s bt bt et nne e e nras 198
11.2.4 TpFwWMigrationServiCeAVa labI€INTO........cciie e ae e 199
11.25 I\ ¥e = Kol g VAN (o fiT0] 7=) o 1SS 199
11.2.6 RN\ NTe gz Kol gVaNo (o f o r= L Fa) o) 1Y/ o= S 200
11.2.7 TPMigratioNAAAitioNal INFOSELeciieece e see e e sreesaeenaeenreens 200

ETSI

11.2.8
11.3
1131
11.32
11.33
11.34
11.35
11.3.6
11.3.7
11.38
11.3.9
11.3.10
11.311
11.3.12
11.3.13
11.3.14
114
1141
1142
1143
1144
1145
1146
1147
1148
1149
11.4.10
11411
11.4.12
11.4.13
11.4.14
11.4.15
11.4.16
11.4.17
11.4.18
11.4.19
11.4.20
11421
11.4.22
11.4.23
11.4.24
11.4.25
11.4.26
11.4.27
115
1151
1152
1153
1154
1155
1156
11.5.7
11.5.8
11.5.9
11.5.10
11511
11.5.12
11513
11514
11.5.15
11.5.16
11.5.17

11 ETSI ES 203 915-3 V1.3.1 (2008-04)

I o TN o == 0.1 o] TS 200
Trust and Security Management Data DEfiNItIONSccviviiierieiceces e aeens 200
QLI 0T e el =S S] Y/ oL TP 200
LI TN U 1118/ =TS 200
BN]=oi Y o 0] g @ o = o 1 1 2SS 201
IS oi Y o 0 g @r" o= o1 11§ N S 201
TPENCGA CCESSPIOPEITIES......veveeeetereeieete sttt sttt ettt ettt se e ebe b e b e b e e bt sb e s eb e bt e e st e bt ne e s e eb e s e st b et eneebesrennens 201
TPAUINDOMEIN ...ttt bbb b et b st b e b e s e e eh e s b e s eb e bt s e st b et e e ebenn e s ens 201
TPINEEITACENGITIE ... ettt bbbt bbbt b e e st bbbt nn e ens 202
TPINEETACENGIMELISE ...ttt b bbbt b bbb ens 202
TPSEIVICET OKEN. ...ttt b et b et bt et b e bt bt e bt b eh bt b e st b et e e bt e e s ens 202
I oS T 7= (U= AN 10 1= AV otV o S 202
QI 055 T T 0o 7N Ko o] 11 oo S 203
TpSigningAlgorithmCapahi litY LIStceeceieeiee e sre e e ae e e sneeseenreens 203
QLI 0T AN U 1Y = P T o S 203
TPAUINMECHANISINILISEeeiveeie e st e et e st e be e e e e sseesaaesneesneesnnesseenseensenns 203
Integrity Management Data DefiNitiONS...........cocvoiiiii et e e e snees 204
TPACHVITY TESIRES ...ttt b bbbt b et e bbbt et e bt s e et e bt bt b e st b et e e ebenn e s ens 204
TPFAUIESIBESRECOIT ...ttt sttt bbbt b et b b et et et b et e e bt b ens 204
TOFAUIESEAES. ...ttt b et b et b ettt b et b e e e bt e bRt b R e R bt beae bbbt r e ens 204
TPFAUIESEALI SHICSENTON ...ttt ettt ettt b e bt et b st b e st bbbt b e et eb et ne bt nr e ens 204
TPFBLITSEBISSEL ...ttt bbb bbb et b e et bt b et b e bt e bt bt e e st b b e e n e e ens 204
TPACHVITYTESID ...ttt et e e bbbt et b s b s b et b bt b et b et e e ebene e s ens 204
QI o0 =0 = T S 205
TPSVCUNGVAI TREBSON........ceieeeitieie et eteete st e st e te e e ste s e saeesaeeseeeeesaeeeaeesse e teenseessesseessaesneesaeesneanseansennsenns 205
TPFWUNQVAITREBSONooiveeiecie ettt e st s e e s te e te et e eseesse e st e e te e teessesneesneesneesneenseenseensenns 205
QLI 10 7= o | =Y 205
BN oo 7= I I 0= o] o S 205
BN o I0 7o | a2 S 206
TPLOAUPOIICY ...ttt b bt e et b e et b e bt e s bt e e bt bt b e e bt st e e bt e e ens 206
QLI o107z o S L oSO SUROR 206
Bl o1 Moz o S e (o L TSSOSO 206
TPL OAOSEALI SHICD@IA ...ttt ettt b et b e bbbt b e bbbt b e s e e bt e e ebenn e ens 206
TPLOAOSEALI StICENLITYID ...ttt bbbt b 206
QI I 07= 0 S o =1 Y/ L= S 207
QI o 0720 S = S o 1 | oSS 207
I I0r= 0 = S o L g (01N o S 207
QI o 0720 S = S o = o S 207
TPSVCAVAI SLALUSREASON.ceeiveesieetie et s e ae e e st et e e e e estessaesteesseesseentesneesneesneenseenseensenns 208
TPAPPAVA I SEBLUSREBSON......c.veeeeeiieeiieteeseesteee e e ssteseeseesaeesteesteeteesteessessaesseesseesseenseeeesseesseesseansennsenns 208
TPLOAATESIID...c.eeeeeieeee ettt bbbt bbbt bbbt bbb e bt bt e e e bt e e bt ne e ens 208
TPFAUIESEBESEITOILISE ...ttt bbbt e et b et benn s 209
TPFAUIEREGID ...ttt b bbbt b et b et h et b e Rt e bbb et bbbt e e ens 209
TPFWAVEIH SEBEUSREASON ...ttt ettt sttt re et b et b s s bt e st bt b e eb e ese bt e e b e e e ens 209
Service SUbsCription Data DEfiNItIONSccciiiieiriicir e bbb 209
TPPIOPEITYNGIME. ...t s e e s s 209
QI oL 0o T= 1 YA = = S 209
I 0] (0] 0= 1 Y SRR TPR TR 209
QI 0 0 T= 1 Y = S 209
QI]1(o) 0] 7 = SR 210
I 0] = 1 o TSRS 210
QI 0SS V0T 11 o 0 S 210
TPSEVICECONIITBCIIDLISE. . .ccveeeeeetereeet ettt bbb bbb bt b et b 210
TPPEISONNGITIE ... e r e s e e e sae e a e e sneene e 210
TPPOSLAI AGAIESS........eeeteieeeete ettt ettt et b e et b e e s e b se e st b e s e et et e se e e ebesb e e eb e sbeneebenbeneeneas 210
TPTEEPNONENUMDE ...t b bbb e 210
LI 01017 OO OSSOSO 210
TPHOMEPAGE ...ttt b e bt e e b e be e st e e e sb e e e b e e e s bee e nbbe e s are e sabeesareenares 210
I L= £ 1 1] 1= =S 210
QI8 = £ o] o O PSSR PR 211
TPSEIVICESIADE@LE. ... e ete et eie ettt e e e s e ettt e e e s teeste e tees e estessaesseesseessesntesneesneesneenseenseensenns 211
I 0SS Vo= g To I - (S 211

ETSI

12 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.5.18 T PSEIViCEREQUESLOL ... ceveeieeeteeteeeeeeteeteestee s e e te e e seesseesseesseesseenseenseesseaseassaesseesseesseansesnnesneessennseansennsenns 211
11.5.19 BN o1= TgTe 0] | o S 211
11.5.20 TPServiCeSUDSCIi Pt ONPrOPEITIES.c..ecieeie e stee et eesee st et e st et eerte e sree s e e sreenseeeesreesneesaeenseensenns 211
11.5.21 QI 0SS V0T O 11 ot S 211
11.5.22 TPSErViCeCONtraCtDESCIIPLION.eiieieeee et e st e e e e tesee s e e saeesaeenaesreesneenseeseensenns 212
11.5.23 I o O T 01N o] o] o o= =SS 212
11.5.24 TPClH ENTAPPDESCIIPIION. ...ttt b et b e b e s e bt s s e b s e se bt e e e bt ne e e ens 212
11.5.25 TPSAGIDoecveeeeee ettt es ettt 212
11.5.26 TPSAGIDLISE «.eoveoevecvee ettt e s et en s n st ss st en s s 212
11.5.27 TPSAODESCIIPLION ...ttt e b bbb e b bt e bt bt sk bt e bt s b et e bt b s e ne e b b e e bt e e enn 212
11.5.28 LI 05 o TSRS 213
11.5.29 I 0SS Vo= (0 = 5 S 213
11.5.30 I 0SS Vo= o) = = S 213
11.5.31 QI 0SS V0= (o = S 213
11.5.32 TPSErViCePrOfilEDESCITPLION.ecvieiteeteee et e s et e e e sreesbe e teetestesneesseesnnenseenseensenns 213
11.5.33 TPSAGPIOfIEPAIT.......ceeeieet ettt b et n et 214
11.5.34 QI 070 (0 K= o 1Y/ g o= @] o S 214
11.5.35 TPAAASagM EMBDErSCONTIICILISEttt 214
11.5.36 TPASSIgNSagT 0SerViCePrOfi lECONTIICE.c.eivieceeitiee s 215
11.5.37 TPAsSIgNSagT 0SerVicePrOfil@CONTIHICELISE ..ot 215
12 EXCEPLION ClASSES.......oiuiitiiiieeeieieeit ettt sttt s bbb e et h e bbb e b et e e e e e st e bt nb e b e e e nn e e 215
Annex A (nor mative): OMG IDL Description of Frameworkcccoeverereieinieneneseseseeeenes 217
Annex B (informative): W3C WSDL Description of Framework..........ccccecvveeeeveieene e 218
Annex C (informative): Java™ API Description of the Frameworkccccevvvveeceiicceeie e, 219
Annex D (informative): Contents of 3GPP OSA R6 FrameworK..........ccoocerereieiinenineneseseeeenes 220
Annex E (informative): Description of the Framework for 3GPP2 cdma2000 networks.............. 221
o €= g 1= o= o1 o RS 221
E.2 SPECITIC EXCEPLIONS.ueiitiieecie ettt ettt st e s b s et e s b e e e e s teeae e besteentesresreesesneennesreanes 221
E21 ClAUSE L1 SCOPE ...ttt ettt ettt ettt s b b s bt e e st b b et e bt b e e e b b e e e bt s E e b e he b e b e st b e e e h e e b e e e bt e b et e st et et e st e 221
E.2.2 ClalSE 2: REFEIBICESottt ettt st e et ae et et e se e e seeebesneeneessensesaesaeeneeneenseneens 221
E.2.3 Clause 3: Definitions and abreVialionS............ocoiiiiiieeeee ettt saesaesreeeeneeseens 221
E24 Clause 4: OVerview Of the FramBWOIK...........coiriiii et sre e enee e 221
E.25 Clause 5: The Base Interface SPeCifiCalioN.........c.cccuvieeiieiieie ettt eee s 221
E.2.6 Clause 6: Framework ACCESS SESSION APcouiiiiiiiiieeeie ittt sttt sr e b b sae b e e e 221
E.2.7 Clause 7 Framework-to-Application Sequence DiagramsS........c.ccieeieeieeieseeseeseesieeie e seesaeseesseeseeseesnes 221
E.2.8 Clause 9: Framework-t0-SErVICE APl ..ottt st e bbb e e e 222
E.2.9 Clause 10: SErVICE PrOPEITIES.........iiiesieeecieseesee st e ste ettt et e s e e teseesseesreesaeeseeneesseasseeeseesseesseesseeseaneeanes 222
E.210 Clause 11: Data DEfiNITIONS........cciieieeieieriese ettt st sttt e e s et et b sseese e e e sbesbesbesseeneenneneen 222
E.2.11 Clause 12: EXCEPLION ClASSES........curuiieuirtiieiirtisieiestesse ittt sttt e sttt b e esesbe s st sb et e st ebe b e e sbe b ens 222
E.212 Annex A (normative): OMG IDL Description of the Framework.............cceeiiineneineeeseeeeeeee 222
E.2.13 Annex B (informative): W3C WSDL Description of the Framework...........cccverinennineneeseneeseseee 222
E.214 Annex C (informative): Java™ API Description of the Framework ... 222
Annex F (informative): ReCord of ChanQES........ccceiiieeii e 223
Nt O [01 =g o= S 223
F11 BV ettt ettt ettt e h e e bt ea et e b et e he e e ke e e Re e e b et e Re e e b et e Re e e ket eRe e oA R et eRe e e beeene e ebeeeneeeaneeenee s 223
F.1.2 = 1= o | =0 S 223
F.1.3 REMOVEX. ...ttt b e h et s e bbb e he e st e s e e eE e b e sh e eb e e et eae e e e b e besheebeeneenneneenras 223
e V= 0o ST 224
F.2.1 BV ettt ettt e h et e bt e e h e oo b e e e he e e b et e Re e e ket e Re e e b e e e R e e e ket e Re e oA R et eRe e e beeene e ebeeeneeeaneeenee s 224
F.2.2 DL o< or= 1= o [O T OE ST P PSR UPUPSTURPRSURPRRN 224
F.2.3 1Yo o TSRS 224
F.24 11101/ RS 224
G T I T = W D= 1 010 SR 225

ETSI

13 ETSI ES 203 915-3 V1.3.1 (2008-04)

F.3.1 T VRSP UR PR 225
F.3.2 1Yo o L= F PP PR RRTRPTPO 225
F.3.3 LS 1110177 o IO PSP P PSPPSRSO 226
R VLo = 0] 0= = 226
F.4.1 LSRR 226
F.4.2 DL o< or= 1= o IO PSPPSR UP PP STURORSURPRRN 226
F.4.3 Y7o 1 =" TR ST 226
F.4.4 11101/ PR ST 227
I (e = o [0 0 = TSSO 227
F.5.1 NPTV UR PR 227
F.5.2 1Yo o L= F TP P PSP TSRS 227
F.5.3 REMOVE. ...ttt b bbb b e bbb e h e e a e e a e e ne e b e sh e eb e e et eae e e e b e besheebeeneenneneentas 227
T 1 1 S 227
(o T (O P PP TRTR 228

ETSI

14 ETSI ES 203 915-3 V1.3.1 (2008-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 3 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 203 915) is structured in the following
parts:

Part1: "Overview";

Part 2: "Common Data Definitions";
Part 3: " Framework";

Part4: "Cdl Control";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi Media Messaging SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 5.2 set of specifications.

A subset of the present document isin 3GPP TS 29.198-3 V6.7.0 (Release 6).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

15 ETSI ES 203 915-3 V1.3.1 (2008-04)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

e Sequence Diagrams.

. Class Diagrams.

o Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

o IDL Description of the interfaces.

. WSDL Description of the interfaces.

. Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 203 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 203 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 5)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 203 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 203 915-1 apply.

ETSI

16 ETSI ES 203 915-3 V1.3.1 (2008-04)

4

Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circles in the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

Enterprise Operator

[

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. Itisa
policy decision for the application whether it must authenticate the framework or not. It is a policy decision for
the framework whether it allows an application to authenticate it before it has completed its authentication of
the application.

Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after

successful authentication.

Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the
service agreement beforeit is allowed to access any network service capability feature.

ETSI

17 ETSI ES 203 915-3 V1.3.1 (2008-04)

- Accessto network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service data for any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features: SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

Basic mechanism between Framework and Enterprise Operator:

- Service Subscription function: This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself actsin the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:
. The sequence diagrams give the reader a practical idea of how the Framework isimplemented.
e Theclassdiagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

. The interface specification clause describesin detail each of the interfaces shown within the class diagram
part.

. The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

e The data definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part ES 203 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not
supported by an implementation of an Application interface, acall to that method shall be possible, and no exception
shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

511 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<name>.
The callback interfaces to the applications are denoted by classes with name |pApp<name>. For the interfaces between
a Service and the Framework, the Service interfaces are typically denoted by classes with name I pSvc<name>, while
the Framework interfaces are denoted by classes with name | pFw<name>.

ETSI

18 ETSI ES 203 915-3 V1.3.1 (2008-04)

5.1.2 Method descriptions

Each method (APl method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Err’ suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant | pApp<name> or | pSvc<name>
interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

Theinterfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

ETSI

19 ETSI ES 203 915-3 V1.3.1 (2008-04)

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Iplnterface;

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applnterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

54.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or isno
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface:in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use Sessionl Ds. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface:in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionID: in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

ETSI

20 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises
TpCommonExceptions, P_INVALID SESSION ID, P INVALID INTERFACE TYPE

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, aNaming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it isto initiate the authentication process
with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion and the deprecated
initiateA uthentication methods to allow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
Thisis done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces
provided by the Framework.

ETSI

21 ETSI ES 203 915-3 V1.3.1 (2008-04)

Client - Iplnitial : IpAPILevelAuthentication : IpAccess Eramework

IgCIientAPILevaAuthemication

1: initiateAuthenticat:ionWithVersion(clientDomain, authTypc?, frameworkVersion)

T

|

T |
! 2: selectAuthenticationMechanism()
1 1

I
3: challenge())

| 4: authenticationSucc‘;eeded()

T
|
|
5: Challenge()
T
|
|

6: authenticationSucceeded()
\

|
7: requestAccess()
Il

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
I
|
|
|
|
|
|
|
|
|
8: selectSigningAlgorithm() |
1 1

9:'obtaininterface()

i
g
g
iy i
iy i
i i

1: Initiate Authentication

The client invokes initiateA uthenticationWithVersion on the Framework's "public” (initial contact) interface to initiate
the authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2. Select Authentication Mechanism

The client invokes sel ectAuthenti cationM echanism on the Framework's APl Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be
supported. Note however that the framework need not accept this agorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.
4. Theclient provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations
of the challenge method on the client's APl Level Authentication interface. In each invocation, the Framework supplies
achallenge and the client returns the correct response. The Framework could authenticate the client before the client
authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the
client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.
7. Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the
Framework's APl Level Authentication interface, providing in turn areference to its own access interface. The

ETSI

22 ETSI ES 203 915-3 V1.3.1 (2008-04)

Framework returns areference to a framework Accessinterface that is unique for this client. The success or failure of
the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8: The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9: The client invokes obtainlnterface or obtainlnterfaceWithCallback on the framework's Access interface. Thisis used
to obtain areference to a framework interface that supports the required framework functionality, such as service
discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of al service
instances. This type of termination is unusual, but possible with the terminateA ccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication
failing, the framework should terminate al outstanding service agreements for that client, and should take steps to
terminate the client's access session WITHOUT invoking terminateAccess() on the client. Thisfollows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact withit.

‘ Applogic ‘ : IpAccess ‘ : IpMultiPartyCallControlMana : IpUserLocationCamel

LDADDSSNIC IpServiceAgreem emManagemenJ

‘ IpClientAccess

T
|
1:‘ signServiceAgreement()
[
|
|

|
2:‘ signServiceAgreement()
|

3: geateNotification()

|
|
[
|
|
|
|
|
|
|
|
|
I
|
|
|
AR

4

U

U
|
H
|

: 1
¢ 1
i "

: T
i |
i |
: |
i |
i |
i |
i |
| |
T T	
	1
: 5: |q‘rmmaleAcce§() :

0 ‘ |
\ \ ‘
| \ ‘
| \ ‘
| \ ‘
| \ :

1: Following successful authentication and service discovery, the client initiates the service agreement signing process
(not shown). Thisis completed when the client invokes signServiceAgreement on the Framework's
| pServiceAgreementManagement interface, and a reference to an instance of a service manager interface is returned.

2. Theclient (application) had initiated service agreement signing process for a second service agreement (not shown),
and when the client signs this second service agreement, a reference to an instance of another service manager, for
another servicetype, isreturned.

3: The application starts to use the new service manager interface.
4: The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate al its service agreements. This
isan unusual and drastic step, but could be e.g. due to violation or expiry of the application’s service agreements, or
some problem within the framework itself. The framework will also destroy each of the service managers the
application was using (not shown). The application is now no longer authenticated with the framework, and all
Framework and service interfaces it was using are destroyed.

ETSI

23 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This
type of termination is unusual, but possible with the terminateAccess method.

App Logic - : IpAccess
IpClientAccess

IpMulti PartyCaE:ontroIManagn;r IQUserLoc;tionCameI
|

1: destroyNotification()

|
|
|
|
|
|
|
|
|
2: triggeredLoqationReportingStop()

S

3: terminateAccess()

=

:

1: The application terminates its use of the multi-party call control service manager in a controlled manner.
2. The application ceases to use the user location camel SCF.

3: The application decides to terminate its access session and all its service agreementsin one go. The framework will
also destroy each of the service managers the application was using (not shown). The application is now no longer
authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The application
could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the Framework's
I pServiceAgreementManager interface, and then invoked terminateAccess on the Framework's | pAccess interface,
which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication
The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have

mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as atrusted party, not requiring authentication.

ETSI

24 ETSI ES 203 915-3 V1.3.1 (2008-04)

Client . Iphnitial Framework : IpAuthentication : IpAccess

T T T
1: initiateAuthenticeﬁionWithVersion(clientDomain, authType:, frameworkVersion):

U] |

Underlying Distribution Technology Mechanism is used for application

: identification and authentication, or both the client and the Framework

| | recognise each other as trusted parties not requiring API lewvel

I |authentication. There is no requirement as to when authentication should
: take place using the Underlying Distribution Technology Mechanism:

I | before initiateAuthenticationWithVersion is invoked, after requestAccess is
: invoked, or between the two.

|

|

|

|

|
2: requestAccess()

| 3;‘ selectSigningAIgori:thm()

’
ju

4: obtaininterface()

1. Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication. What that mechanism s, if it even exists, is outside the scope of the
API.

2: Theclient invokes the requestAccess method on the Framework's Authentication interface. This returns areference
to the framework Access interface that is unique for the client.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

4: The client can now invoke obtaininterface or obtainlnterfaceWithCallback on the framework's Access interface.
Thisis used to obtain areference to aframework interface such as service discovery, integrity management, service
subscription etc.

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully compl eted.

1) Theclient calsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This alowsthe
client to specify the type of authentication process. This authentication process may be specific to the provider,
or the implementation technology used. The initiateAuthenticationWithV ersion method can be used to specify
the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (APl Level
Authentication), which can be used to perform the authentication process. The
initiateAuthenticationWithVersion method allows the client to pass a reference to its own authentication
interface to the Framework, and receive a reference to the authentication interface preferred by the client, in
return. In this case the API Level Authentication interface.

ETSI

25 ETSI ES 203 915-3 V1.3.1 (2008-04)

2) Theclient invokes the selectAuthenticationM echanism on the Framework's API Level Authentication interface.
Thisincludes the authentication algorithms supported by the client. The framework then chooses a mechanism
based on the capabilities of the client and the Framework. If the client is capable of handling more than one
mechanism, then the Framework chooses one option, defined in the prescribedMethod parameter. In some
instances, the authentication mechanism of the client may not fulfil the demands of the Framework, in which
case, the authentication will fail, for example CHAP prescribes the MD5 hashing algorithm as the minimum to
be supported, however the framework need not accept this algorithm.

3) Theapplication and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/
response exchanges. This authentication protocol is performed using the challenge method on the API Level
Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way
protocol. There are in fact two authentication processes: authentication of the client performed by the
Framework, and authentication of the Framework performed by the client. Mutual authentication is achieved by
both these processes terminating successfully. Mutual authentication may not necessarily be required, i.e. it
could be that a client may not need to authenticate the Framework. There is aso no required order for the
execution of these two authentication processes, however, the client shall respond immediately to any challenge
issued by the Framework, as the Framework might not respond to any challenge issued by the client until the
Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

ETSI

26 ETSI ES 203 915-3 V1.3.1 (2008-04)

: IpClientAPILevelAuthentication Client . Ipinitial Framework : IpAPILevelAuthentication

[
|
| | I
1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)
L L |
|
|

T
|
|
|
|
|
|
IpClientAPILevel Authentication |
reference is pased to framework :
and IpAP ILevel Auth entication |
referenceisreturned. :
|
|
|
|
|
|

| |
| |
2: selectAuthenticationMechanism()
| |
|
| i

U Thisisan example of the AN

3: challenge()

sequence of
authentication

| operations. Different

| authentication protocols
! may have different
requirements on the
order of operations.

5: challenge()

6: authenticationSucceeded()

7

hallenge()

|
|
l
4. <:ha|lenge()
|
|
|
|
|
|
|
l
it
|
|
|

8: authenti:cationSucceeded()

: |]

|
9: redﬂuestAcces()
|
IpClientAccess reference is
L pased to Framework, and
: IpAccessreference is
| returned.
|
|
|

!
:
u

Class Diagrams

<<Interface>>
IpClientAPILevelAuthentication
(from Client interfaces)

<<Interface>>
IpClientAccess
from Clientintefaces

[®<<deprecated>> authenticate()
[®abortAuthentication()
[®authenticationSucceeded()
[®challenge()

I
|
|
<<uses>> | A
|
|

[®terminateAccess()

<<uses>> :
1 I
<<Interface>> <<Interface>>
<<Interface>> IpAccess IPAP ILevelAuthentication
oa (from Framework interfaces) (from Framework interfaces)
Ipinitial
from [Mobtaininterface() [®<<deprecated>> selectEncryptionMethod()
.<<deprecated>> initiateAuthenti cation() [®obtaininterfaceWithCallback() .<<deprecateq>>_ authenticate()
.initi ateAuthenticationWithVersion([®<<deprecated>> endAccess() .abortAu_theptlcatlonO
[®iistinterfaces() [®authenticationSucceeded()
[®i<<deprecated>> releaselnterface() [®selectAuthenticationMechanism()
[®selectSigningAlgorithm() [Michallenge()
[MterminateAccess()
[B®relinquishinterface()
<<Interface>>

IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 1: Trust and Security Management Package Overview

ETSI

27 ETSI ES 203 915-3 V1.3.1 (2008-04)
6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

- the first point of contact for a client to access a Framework provider;

the authentication methods for the client and Framework provider to perform an authentication protocol;
- the client with the ability to select a service capability feature to make use of;
- the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication;

3) Accessto Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication
Inherits from: Ipinterface;

If the IpClientAPILevel Authentication interface isimplemented by a client, authenticate(), challenge(),
abortAuthentication() and authenticationSucceeded() methods shall be implemented.

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void
authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method
initiateAuthentication() is used on the Iplnitial interface instead of initiateAuthenticationWithVersion(). This method
will be removed in alater release of the specification.

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client
is deemed successful when the authenticationSucceeded method is invoked by the Framework.

Theinvocation of this method may be interleaved with authenticate() calls by the client on the
IpAPILevel Authentication interface. The client shall respond immediately to authentication challenges from the
Framework, and not wait until the Framework has responded to any challenge the client may issue.

ETSI

28 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns <response> : Thisis the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionMethod().

Parameters

challenge: in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol in RFC 1994.
The challenge will be encrypted with the mechanism prescribed by sel ectEncryptionM ethod().

Returns
TpOctetSet

6.3.1.1.2 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method isinvoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Callsto this method after the Framework has been authenticated by the client shall not result in an
immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

Parameters
No Parameters were identified for this method.

6.3.1.1.3 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's APILevel Authentication interface following invocation of this method.

Parameters
No Parameters were identified for this method.

6.3.1.1.4 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevel Authentication
interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the
Framework has responded to any challenge the client may issue.

This method shall only be used when the method initiateA uthenticationWithVersion() is used on the Iplnitia interface.

Returns <response> : Thisisthe response of the client application to the challenge of the framework in the current
sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete
CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the
designated hashing a gorithm, which isindicated viathe client's invocation of selectAuthenticationMechanism(), to an
octet set consisting of the concatenation of the CHAP Identifier, the shared "secret”, and the supplied challenge value.
The Name field of the CHAP Response packet must be present and contain avalid value in order for the CHAP
Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1) Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

ETSI

29 ETSI ES 203 915-3 V1.3.1 (2008-04)
2) Build an octet set consisting of the concatenation of the Identifier, the "shared secret”, and the Vaue from the
CHAP Challenge
3) Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4) Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP
Value

Steps for validating the response octet set:

1) Veify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2) Build an octet set consisting of the concatenation of the original Identifier, the " shared secret”, and the original
challenge value

3) Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm
4) Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the
CHAP Response. A match indicates successful authentication.

Parameters

challenge: in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:
1) Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2) Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed
in the Value field within the CHAP Challenge.

Returns

TpOctetSet

6.3.1.2 Interface Class IpClientAccess
Inherits from: Ipinterface;

IpClientAccessinterfaceis offered by the client to the framework to allow it to initiate interactions during the access
session. Thisinterface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in
TpOctetSet) : void

ETSI

30 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.3.1.2.1 Method terminateAccess()
The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as aresult
of the client access termination. If at any point the framework's level of confidence in the identity of the client becomes
too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for
that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

terminationText: in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe agorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to | pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature” construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses thisto confirm itsidentity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P INVALID SIGNING ALGORITHM, P INVALID SIGNATURE
6.3.1.3 Interface Class Iplinitial

Inherits from: Iplnterface;

The Initial Framework interface is used by the client to initiate the authentication with the Framework. Thisinterface
shall be implemented by a Framework. The initiateAuthentication() and the initiateA uthenticationWithVersion()
methods shall be implemented.

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication (clientDbomain : in TpAuthDomain, authType : in TpAuthType) :
TpAuthDomain

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

ETSI

31 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present
document.

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method.

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IpInterfaceRef;
b

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authinterface parameter is a reference to the authentication interface of the framework. The type of thisinterfaceis
defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain: in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
¥

The domainlD parameter is an identifier either for a client application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TPENtOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServicelnstancel D), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see authenticate() on IpAPILevel Authentication). If the framework does not recognise the domaini D, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppl D) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together as independent sessions under the same TpClientApplD.

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

authType: in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an aternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the I pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authl nterface parameters are references to interfaces of type Ip(Client)APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication which is used when an underlying distribution technology authentication mechanism is used.

ETSI

32 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID DOMAIN ID, P INVALID INTERFACE TYPE,
P _INVALID AUTH TYPE

6.3.1.3.2 Method initiateAuthenticationWithVersion()

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authl nterface will be selected to match the proposed version from the Client in the Framework
response. If the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
1

The domainiD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authinterface parameter is a reference to the authentication interface of the framework that is unique for each
requesting client. The type of thisinterface is defined by the authType parameter. The client uses this interface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain: in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {
domainlD: TpDomainiD;
authinterface: IplnterfaceRef;
¥

The domainlD parameter is an identifier either for a client application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TpENtOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServicelnstancel D), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see challenge() on IpAPILevel Authentication). If the framework does not recognise the domainiD, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppl D) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together asindependent sessions under the same TpClientApplD.

The authlnterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface referenceis not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

ETSI

33 ETSI ES 203 915-3 V1.3.1 (2008-04)

authType: in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the I pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion: in TpVersion

Thisidentifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns
TpAuthDomain
Raises

TpCommonExceptions, P_INVALID DOMAIN ID, P INVALID INTERFACE TYPE,
P_INVALID AUTH TYPE, P_INVALID VERSION

6.3.1.4 Interface Class IpAuthentication
Inherits from: Ipinterface;

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology
authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevel Authentication interfaces shall be implemented by a Framework as a
minimum requirement. The requestAccess() method shall be implemented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpinterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevel Authentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then areference to the IpAccessinterface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) isreturned.

This method may be invoked by the client immediately on IpAuthentication, when APl Level authentication is not
being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwA ccessinterface> : This provides the reference for the client to call the access interface of the framework.
The access reference provided is unique to the requesting client.

ETSI

34 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

accessType: in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS _TYPE) isreturned.

clientAccessInterface: in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns
IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID ACCESS TYPE,
P INVALID INTERFACE TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: IpAuthentication;

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It isaso used
to initiate the authentication process.

If the IpAPILevel Authentication interface isimplemented by a Framework, then selectEncryptionMethod(),
sel ectA uthenti cationM echanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded ()
shall be implemented. | pAPILevel Authentication inherits the requirements of 1pAuthentication, therefore
requestAccess() shall be implemented.

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) :
TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationM echanism(). It shall only be used when the
IpAPILevel Authentication interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateA uthenticationWithVersion() on the Iplnitial interface. This method will be removed in alater release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.

ETSI

35 ETSI ES 203 915-3 V1.3.1 (2008-04)

Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait isto ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : Thisis returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps: in TpEncryptionCapabilityList
Thisis the means by which the encryption mechanisms supported by the client are conveyed to the framework.

Returns
TpEncryptionCapability
Raises

TpCommonExceptions, P_ACCESS DENIED,
P NO ACCEPTABLE ENCRYPTION CAPABILITY

6.3.1.5.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevel Authentication
interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateA uthenticationWithVersion() on the Iplnitial interface. This method will be removed in alater release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainiD received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchangesis dependent on the policies of each side. The authentication of the framework is
deemed successful when the authenticationSucceeded method isinvoked by the client.

Theinvocation of this method may be interleaved with authenticate() calls by the framework on the client's
APILevel Authentication interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Parameters

challenge: in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS DENIED

ETSI

36 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.3.1.5.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method isinvoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on I pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been
properly authenticated. If this method isinvoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.4 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful
authentication of the client.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.5 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a
result of the response to this method remains valid for an instance of 1pAPILevel Authentication and until this method is
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be
found, the framework throwsthe P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevel Authentication interface is obtained by using
initiateA uthenticationWithVersion() on the Iplnitial interface.

Returns: selectedM echanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList:@in TpAuthMechanismList
The list of authentication mechanisms supported by the client.

ETSI

37 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns
TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS DENIED,
P NO ACCEPTABLE AUTHENTICATION MECHANISM

6.3.1.5.6 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainl D received in the initiateA uthenticationWithVersion()
can be used by the framework to reference the correct public key for the client (the key management system is currently
outside of the scope of the OSA APIs). The number of exchangesis dependent on the policies of each side. The
authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the
client.

Theinvocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevel Authentication interface.

This method shall only be used when the IpAPILevel Authentication interface is obtained by using
initiateA uthenticationWithVersion() on the Iplnitial interface.

Returns <response> : Thisisthe response of the framework to the challenge of the client in the current sequence. The
formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP
Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated
hashing a gorithm, which isindicated viathe client's invocation of selectAuthenticationMechanism(), to an octet set
consisting of the concatenation of the CHAP Identifier, the shared "secret”, and the supplied challenge value. The Name
field of the CHAP Response packet must be present and contain avalid value in order for the CHAP Response to be
valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1) Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

2) Build an octet set consisting of the concatenation of the Identifier, the "shared secret”, and the Vaue from the
CHAP Challenge

3) Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4) Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP
Value

Steps for validating the response octet set:

1) Veify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2) Build an octet set consisting of the concatenation of the original Identifier, the "shared secret”, and the original
challenge value

3) Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm
4) Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the
CHAP Response. A match indicates successful authentication.

Parameters

challenge: in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

ETSI

38 ETSI ES 203 915-3 V1.3.1 (2008-04)

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authenti cation process.

Steps for constructing the challenge octet set:
1) Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2) Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed
in the Value field within the CHAP Challenge.

Returns

TpOctetSet

Raises

TpCommonExceptions, P _ACCESS DENIED

6.3.1.6 Interface Class IpAccess
Inherits from: Ipinterface;

Thisinterface shall be implemented by a Framework. As a minimum reguirement the obtainl nterface() and
obtainlnterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpInterfaceRef) :
IpinterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void

listinterfaces () : TpinterfaceNameList

<<deprecated>> releaselnterface (interfaceName : in TpinterfaceName) : void

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm
terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishinterface (interfaceName : in TpinterfaceName, terminationText : in TpString, digitalSignature : in
TpOctetSet) : void

6.3.1.6.1 Method obtaininterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainl nterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

ETSI

39 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

interfaceName: in TpInterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME

6.3.1.6.2 Method obtaininterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it isrequired to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

Parameters

interfaceName: in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface: in IpInterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainlnterface method should be used when no callback interface needsto be
supplied.) If the interface referenceis not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns
IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME,
P INVALID INTERFACE TYPE

6.3.1.6.3 Method <<deprecated>> endAccess()

This method is deprecated and will be removed in alater release. It is replaced with terminateAccess. The endAccess
operation is used by the client to request that its access session with the framework is ended. After it isinvoked, the
client will no longer be authenticated with the framework. The client will not be able to use the referencesto any of the
framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties: in TpEndAccessProperties

Thisisalist of propertiesthat can be used to tell the framework the actions to perform when ending the access session
(e.0. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

ETSI

40 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID PROPERTY

6.3.1.6.4 Method listinterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainlnterface() or obtainlnterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains alist of interfaces that the framework
akes available.

Parameters
No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS DENIED

6.3.1.6.5 Method <<deprecated>> releaselnterface()

This method is deprecated and will be removed in alater release. It is replaced with relinquishinterface. The client uses
this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName: in TpInterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME

6.3.1.6.6 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithmsiit supportsfor usein all cases
where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be
the first method invoked by the client on IpAccess. The algorithm chosen as aresult of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing a gorithm used during the access session.
However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently
selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent
calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm
specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework
throwsthe P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. Thisisthe signing algorithm chosen by the Framework. The chosen algorithm shall be
taken from the list proposed by the Client.

ETSI

41 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters
signingAlgorithmCaps: in TpSigningAlgorithmCapabilityList
Thelist of signing algorithms supported by the client.

Returns
TpSigningAlgorithm

Raises
TpCommonExceptions, P_ACCESS DENIED, P NO ACCEPTABLE SIGNING ALGORITHM

6.3.1.6.7 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it
isinvoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any callsto these interfaces will fail.
Also, all remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters

terminationText: in TpString
Thisisthe termination text describes the reason for the termination of the access session.

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNATURE

6.3.1.6.8 Method relinquishinterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName: in TpInterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

terminationText: in TpString

Thisisthe termination text describes the reason for the release of the interface. Thistext is required simply because the
digital Signature parameter requires a terminationText to sign.

ETSI

42 ETSI ES 203 915-3 V1.3.1 (2008-04)

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing a gorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm itsidentity to the framework. The framework can check that the
terminationText has been signed by the client. If amatch is made, the interface is released, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNATURE, P INVALID INTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

initiateAuthentication / return new IpAuthentication
initiateAuthentic ationWithVersion / return new
IpAuthentication

Active 1

AN /

Figure 2: State Transition Diagram for IpInitial

ETSI

43 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

IpInitial.initiate Authentication
Idle
~
selectEncryptionMethod

authenticate / Client

electE ncryptionM ethod
challenges FW N ryption

| Authenticating
‘ Framework

authenticate / Client

re-authenticates FW FW Aborts

NpClientAPILevelA uthentication.

L . L abortAuthentication
authenticationSucceeded / Client satisfied

with FW response

selectEncryptionMethod

‘ Framework
‘ Authenticated

Figure 3: STD for IpAPILevelAuthentication: Client authenticates Framework using deprecated
initiateAuthentication() and authenticate() method combination

6.4.1.2.1 Idle State

When the client has invoked the Iplnitial initiateAuthentication or the initiateAuthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used

initiateA uthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenti cationM echanism.

ETSI

44 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionM ethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationM echanism to
choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's | pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call

sel ectAuthenti cationM echanism to choose another hash algorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateA uthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectA uthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the A uthenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challenge is sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithV ersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash a gorithm.

ETSI

45 ETSI ES 203 915-3 V1.3.1 (2008-04)

Ipinitial.initiateAut

o

selectAuthenticationMec hanism

FW
NpClientAP ILevel Authen

selectAuthenticationMechanism

henticationWithVersion

Aborts
tication. abort Authentication

challenge / Client
challenges FW

‘ Authenticating
‘ Framework
hall / Cliert authenticationSucceeded / Client
challenge 1€ satisfied with FW|response i FW Aborts L
re-challenges Framework ANpClientAP ILeel Authentic ation.

abortAuthentication

selectAuthenticationMechanism

Frame

work

Authenticated

Figure 4: STD for IpAPILevelAuthentic

ation: Client authenticates Framework using

initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the Iplnitia initiateAuthent

ication or the initiateAuthenticationWithVersion method, an

object implementing the IpAPILevel Authentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenticationM echanism.

ETSI

46 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionM ethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationM echanism to
choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's | pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the
initiateAuthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionMethod to choose other encryption capabilities, or call

sel ectAuthenti cationM echanism to choose another hash algorithm.

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateA uthentication followed by selectEncryptionMethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectA uthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the A uthenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challenge is sent to the client. If the
response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithV ersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash a gorithm.

ETSI

47 ETSI ES 203 915-3 V1.3.1 (2008-04)

Ipinitial.initiateAuthentication

requestAccess
"P_ACCESS_DENIED @
ldle
Invalid Client Response

selectEncryptionMethod

requestAccess
p AgCESS DENIED FW challenges Client
- T ANpClientAPILevelAuthentication.authenticate
selectEncryptionMethod

Authenticating

Client

abortAuthentication /
Client Aborts

FW satisfied with|Client response
ANpClientAPILeelAuthenticatipn.authenticationSucceeded

requestAccess / new IpAccess
selectEncryptionMethod

Client

Authenticated

FW re-authenticates Client
ApClientAPILevelAuthentication.authenticate

Figure 5. STD for IpAPILevelAuthentication: Framework authenticates Client using deprecated
initiateAuthentication() and authenticate() method combination

6.4.1.2.11 Idle State

When the client has invoked the Iplnitial initiateAuthentication or the initiateAuthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used

initiateA uthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenti cationM echanism.

6.4.1.2.12 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used sel ectAuthenti cationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationM echanism to
choose another hash algorithm.

ETSI

48 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.4.1.2.13 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's |pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the

initiateA uthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionM ethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash a gorithm.

6.4.1.2.14 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionM ethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectAuthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challenge is sent to the client. If the
responseis valid and the authentication process has been completed, then atransition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithV ersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.15 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateA uthenticationWithV ersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

49 ETSI ES 203 915-3 V1.3.1 (2008-04)

IpInitial.initiateA uthenticationWithVersion

requestAccess
P_ACCESS_DENIED

Idle .
L)

Invalid Client Response

selectAuthenticationMechanism

requestAccess
"P_ACCESS_DENIED

selectAuthenticationMechanism

FW challenges Client
ANpClientAPILewvelAuthentication.challenge

Authenticating

ﬂ Client

abort Authentic ation
FW satisfied with Client response / Client Aborts

ANpClientAPILevelAuthentication.authenticationSucceede

requestAccess / new IpAccess
selectAuthenticationMechanism

FW rerchallenges Client
ANpClientAPILeyelAuthentication.challenge Client

Authenticated

Figure 6: STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.16 Idle State

When the client has invoked the Iplnitial initiateAuthentication or the initiateAuthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used

initiateA uthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectA uthenti cationM echanism.

6.4.1.2.17 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used sel ectAuthenti cationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
aso call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to
choose another hash algorithm.

ETSI

50 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.4.1.2.18 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's |pAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the

initiateA uthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionM ethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash a gorithm.

6.4.1.2.19 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionM ethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectA uthenti cationM echanism followed by sel ectAuthenticationMechanism. When the Framework has processed the
response from the Authenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challenge is sent to the client. If the
responseis valid and the authentication process has been completed, then atransition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithV ersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.20 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateA uthenticationWithV ersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

51 ETSI ES 203 915-3 V1.3.1 (2008-04)

6.4.1.3 State Transition Diagrams for IpAccess

IpAuthentication.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceWithCallback / return requested FW interface

listinterfaces
1 selectSigningAlgorithm

AEDYS relinquishinterface

AN /

network operator initiated access temmination
/ destroy all interface objects used by the client
ANpClientAccess.terminateAccess

application initiated access termination
terminateAccess / destroy all interface objects used by the client

Figure 7: State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the I pAuthentication (IpAPILevel Authentication) interface, an
object implementing the IpAccess interface is created. The client can now request other Framework interfaces,
including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework
interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be
used during the access session in cases where adigital signature isrequired. When the client is no longer interested in
using the interfaces it calls the terminateAccess method. This resultsin the destruction of all interface objects used by
the client. In case the network operator decides that the client has no longer access to the interfaces the same will

happen.

ETSI

52 ETSI ES 203 915-3 V1.3.1 (2008-04)

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

Applogic : IpAppEventNotification . IpAccess : IpEventNotification
T T T T
| | | |
i 1: new() i i i
| |
gl : :
L 2: obtaininterfaceWithCallback() | |
| | | |
3: new() i

4: createNotification()

|
|
|
|
|
|
|
|
|
|
|
|
:
|
5: reportNotification()

1. This message is used to create an object implementing the I pAppEventNotification interface.

2: Thismessage is used to receive areference to the object implementing the IpEventNotification interface and set the
callback interface for the framework.

3. If thereis currently no object implementing the |pEventNotification interface, then oneis created using this
message.

4. createNotification(eventCriteria: in TpFwEventCriteria) : TpAssignmentID.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wantsto
be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both casesthe
application isinformed of the availability of alist of SCFs. The differences are:

- in the case of invoking listServiceTypes, the application hasto take theinitiative, but it isinformed of ALL
SCFs available;

ETSI

53 ETSI ES 203 915-3 V1.3.1 (2008-04)

- in the case of using the event notification mechanism, the application needs not take the initiative to ask about
the availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).
7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evauation of the load balancing policy as aresult of the detection of achangein load level of the framework.

. IpAppLoadManager . IpLoadManager

1: load change detection and policy evaluation

| o

2: suspendNotification N —
P () | This is
u 7 implementation
T detail
o 0
-7 |
i | 5
Load balancing senvice
makes a decision based %‘

on pre-defined policy

- - 4: resumeNotification()

|

|

|

|

e .

| | . 4 . .
; 3: load change det‘ectlon/and policy evaluation
|

|

|

|

o

|

|

|

|

|

|

|

|

|

5: reportLoad()

Application provides - /U/ o
initial load report on !
notification ;
resumption ;

|

1

ETSI

54

ETSI ES 203 915-3 V1.3.1 (2008-04)

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

. IpLoadManager

. IpAppLoadManager

1: queryAppLoadStatsReq()

3: queryAppLoadStatsRes() -

i

2: geti load information

L
N
N
N
N
N

u
;

ETSI

This is the
implementation
detail

7.1.2.3
control

55

ETSI ES 203 915-3 V1.3.1 (2008-04)

Load Management: Framework callback registration and Application load

This sequence diagram shows how the framework registersitself and the application invokes load management function

to inform the framework of application load.

IpAppLoadManager

! 1: createLoadLewelNotification() !

IQLoadManager

2: reportLoad()

This is implementation U
detail. The Application
may take appropriate

load control action. o=k

i 3: load change detection

4: reportLoad()

. Application reports its
! “|initial load condition on
: notification creation

|

|

|

|

|

|

|

|

This is implementation
detail. The Application -
may take appropriate
load control action. -~

a—

5: load change detection

6: reportLoad()-~

w Application detects a load AN
condition change and

- - | reports to Framework.

The Framework may take
appropriate load control
action - implementation
-7 |detail.

7: destroyLoadLevelNotification()

ETSI

56 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reportsits load condition to the framework load manager.

. IpAppLoadManager . IpLoadM anager

1: reportLoad()

I

U 2: evaluate policy

T
|
|
|
|
|
|
i

This is the implementation
detail

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

: IpAppLoadManager . IpLoadManager

1: queryLoadStatsReq()

LF This is the
implementation

L] detail

ETSI

57 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function
based on policy.

: IpApplLoadManager : IpLoadManager

[1: createLoadLevelN otification()
|

initial load condition on

T
1
u Framework reports its
|
I__ -~~~ Inotification creation
|

! 2:loadLevelNotification() - - -

3:load change detection & policy evaluation
|

|
|
:
|
| ~J This is Framework
|
|
|
|
|
|

implementation detail.

! The Framework may take
Framework detects a load 4: loadLevelNotification() } appropriate load control
condition change U\ - action.
and notifies the —e
application. The
application may take

5:load change detection & policyevaluation
| N

appropriate load control o
action - implementation T~ P i
detail. 6: load I:g\{elNonﬂcanon() L N

This is Framework
T implementation detail. The
7: destroyLoadLevelNotification() | Framework may take

U U appropriate load control
|
|
|
|
|
|
|
|
|

action.

ETSI

58

ETSI ES 203 915-3 V1.3.1 (2008-04)

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

Fram ework

: IpHeartBeat

: IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

U
U

4: disableAppHeartBeat()

T | At a certain point of
. |time the framework

.| decides to stop

i heartbeat supenision
|

|

|

|

ETSI

59 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a senice instance
fails, for example via an unreturned heartbeat. The
framework should inform the application that is
using that senice instance, with the reason:
SVC_UNAVAILABLE_NO_RESPONSE.

1: svcAwailStatusind()

” U

The application may wait until i
it receives SVC_AVAILABLE ;

1. The framework informs the client application that is using the service instance that the service is unavailable. The
client application may wait to receive a new call to the svcAvailStatusind with the reason SVC_AVAILABLE when the
Service has become available again. The different Unavailability reasons used by the Framework

(TpSvcAvail StatusReason) guides the client application devel opers to make the decision.

ETSI

60 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.1.2.9 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an activty test. The
framework is denoted as the target by
an empty string value for svcld
parameter value.

1: activity TestReq()

Framework carries out test and
returns result to client application.

2: activityTestRes()

1: The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcld parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Agreement Management Sequence Diagrams

7.1.3.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needsto actually get away to useit.

ETSI

61 ETSI ES 203 915-3 V1.3.1 (2008-04)

Thisis achieved by the following two steps:

Application o Framework
IpSeniceAgreementManagement

IpAppServiceAqregmentManaqement

1: selectService()

J U

|

|
1 1
| |
2 initiateSignSeniceAg reement(b
| |

! k

3: signSeniceAgreement(|)

u

4: signSeniceAgreement()

!

1: Service Selection: first step - selectService

Inthisfirst step the Application identifies the SCF version it has finally decided to use. This is done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application an identifier for the service chosen: a service token, that is a private identifier for this service between
this Application and this network, and is used for the process of signing the service agreement.

Inputis:

in servicel D.
Thisidentifies the SCF required.
And output:

out serviceToken.

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement. An application (identifiable by agiven
TpClientAppl D) may select the same service on more than one occasion in which case the same serviceT oken, that
identifies the relationship between the Application and the network, and the service agreement that applies, shall be
returned.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these
contractual details have been agreed, then the Application can be given the meansto actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (viathe lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's

| pAppServiceAgreementM anagement interface before the application calls signServiceAgreement on the frameworks's
| pServiceAgreementManagement, is the only sequence permitted.

ETSI

62 ETSI ES 203 915-3 V1.3.1 (2008-04)

Input:
in serviceT oken.
Thisisthe identifier that the network and Application have agreed to privately use for a certain version of SCF.
in agreementText.
Thisisthe agreement text that isto be signed by the Framework using the private key of the Framework.
in signingAlgorithm.
Thisisthe algorithm used to compute the digital signature.
Output:
out signatureAndServiceMar.

Thisis areference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given
TpClientApplD) attempts to select a service for which it has already signed a service agreement and this service
agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise
an exception to the client indicating that this request is denied.

7.1.4 Service Discovery Sequence Diagrams

7.1.4.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtainlnterface on the Framework's Access interface.

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods).

ETSI

63 ETSI ES 203 915-3 V1.3.1 (2008-04)

Application : IpAccess : IpSeniceDiscovery

T
! 1: obtaininterface() |

gl

| 2: listSenviceTypes()

S

3: describeSeniceType()

|
: 4; discowerSenice()

)
u
:

S ——

2: Discovery: first step - list service types.

Inthisfirst step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of thisfirst discovery step:
out listTypes.

Thisisalist of service type names, i.e., alist of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it is interested
in, among those listed in the first step.

The following input is necessary:
in name.

Thisisaservice type name: a string that contains the name of the SCF whose description the Application is interested in
(eg."P_MPCC").

And the output is:
out serviceTypeDescription.
The description of the specified SCF type. The description provides information about:
the property names associated with the SCF;
the corresponding property value types,
the corresponding property mode (mandatory or read only) associated with each SCF property;
the names of the super types of thistype; and

whether the typeis currently enabled or disabled.

ETSI

64 ETSI ES 203 915-3 V1.3.1 (2008-04)

4. Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicel D that isthe
identifier this network operator has assigned to the SCF version described in terms of those service properties. Thisis
the moment where the servicel D identifier is shared with the application that is interested on the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responses it wishesto
accept).

Input parameters are:
in serviceTypeName.

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g. "P_MPCC").
in desiredPropertyList.

Thisisagain alist like the one used for service registration, but where the value of the service properties have been fine

tuned by the Application to (they will be logically interpreted as " minimum’, "maximum”, etc. by the Framework).
The following parameter is necessary as input:
in max.
This parameter states the maximum number of SCFsthat are to be returned in the " ServiceList" result.
And the output is:
out serviceList.

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (servicel D), and once again the
service property list.

ETSI

7.2

65

Class Diagrams

ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
IpAppEventNotification
(from App Interfaces)

@reportNotification ()
@notificationTerminated()

<<uses>> |

<<Interface>>

IpEventNotification
(from Framework Interfaces)

WcreateNotification()
®destroyNotification()

<<Interface>>
IpAppLoadManager

<<Interface>>
IpAppHeartBeatMgmt <<Interface>>
IpAppHeartBeat
enableAppHeartBeat() 0
disableAppHeartBeat() T bulseo
changelnterval() B
A |
! |
|
w 1
<<uses>> | <<uses>> |
! |
! |
|
w 1
<<Interface>> —_
IpHeartBeatMgmt <<Interface>>
IpHeartBeat
enableHeartBeat() 0 e
disableHeartBeat() N pulse()

changelnterval()

<<deprecated>> queryAppLoadReq|()
<<deprecated>> queryLoadRes()
<<deprecated>> queryLoadErr()
loadLevelNotification()
resumeNotification()
suspendNotification()
createLoadLevelNotification()
destroyLoadLevelNotification()
<<new>> queryAppLoadStatsReq|()
<<new>> querylLoadStatsRes()
<<new>> queryLoadStatsErr()

AN

|
|
<<uses>> |
|
|
|

<<Interface>>

Figure 8: Event Notification Class Diagram

<<Interface>>
IpAppFaultManager

activity TestRes()

appActivity TestReq()

<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> svcUnavailablelnd()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> fwUnavailablelnd()

activity TestErr()

<<deprecated>> genFaultStatsRecordErr()
appUnavailablelnd()

<<deprecated>> genFaultStatsRecordReq()
swcAvailStatusind()

<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()
<<new>> generateFaultStatisticsRecordReq()
<<new>> fwAvailStatusind()

<<Interface>>
IpPAppOAM

systemDateTimeQuery()

|
<<uses>> |
|
|

<<uses>>
|

<<Interface>>

<<Interface>>

IpLoadManager IpFaultManager IpPOAM
activity TestReq|() systemDateTimeQuery()
reportLoad() appActivity TestRes()

<<deprecated>> queryLoadReq()
<<deprecated>> queryAppLoadRes()
<<deprecated>> queryAppLoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
resumeNotification()
suspendNotification()

<<new>> queryLoadStatsReq()
<<new>> queryAppLoadStatsRes()
<<new>> queryAppLoadStatsErr()

swcUnavailablelnd()

<<deprecated>> genFaultStatsRecordReq()
appActivity TestErr()

<<deprecated>> appUnavailablelnd()
<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordErr()
appAvwailStatusind()

<<new>> generateFaultStatisticsRecordReq()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()

Figure 9: Integrity Management Package Overview

ETSI

66 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
IpAppSeniceAgreementManagement
(from App Interfaces)

¥signSeniceAgreement()
PterminateSeniceAgreement()

(i
\

1\
<<uses>>

<<Interface>>
IpSeniceAgreementM anagement
(from Framework Interfaces)

¥signSeniceAgreement()
$terminateSeniceAgreement()
$selectSenice()
PinitiateSignSeniceAgreement()

Figure 10: Service Agreement Management Package Overview

<<Interface>>
IpS erviceDiscowvery
(from Frameworkinterfaces)

WlistService Ty pes()
¥describeSeniceType()
WdiscoverService()
WlistSubscribedSenices()

Figure 11: Service Discovery Package Overview

ETSI

67 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
IpClientAPILevelAuthentication
<<Interface>> (from Client interfaces)

IpClientAccess

(from Client interfaces)

@<<deprecated>> authenticate()
SabortAuthentication ()

SterminateAccess() SauthenticaionSucceeded()
AN Schallenge()
1)
<<uses>> | |
‘ <<uses>> |
1 1
<<Interface>> <<Interface>>
IpAccess IpAPILevelAuthentication
<<Interface>> (from Framework interfaces) (from Framework interfaces)
IpInitial
(from Framework interfaces) Sobtaininterface () S<<deprecated>> selectEncryptionMethod()
Sobtaininterface With Callback() #<<deprecated>> authenticate()
S<<deprecated>> initiateAuthentication() $<<deprecated>> endAccess () SabortAuthentication()
SinitiateAuthenticationWithVersion() Blistinterfaces() SauthenticationSucceeded()
®<<deprecated>> releaselnterface() ¥selectAuthenticationMechanism ()
®selectSigningAlgorithm () %challenge()
PterminateAccess() -
®relinquishinterface() \/

<<Interface>>
IpAuthentication

(from Framework interfaces)

WrequestAccess()

Figure 12: Trust and Security Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery
Inherits from: Ipinterface;

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties are applicable to each service type. The listServiceTypes() method returnsalist of al "service
types' that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties” that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values', by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs areinvoked by the enterprise operators or client applications. They are described below.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

68 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList,
max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service
types can then be obtained using the describeServiceType() method. If a sub type of a serviceis registered, this method
returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P _ACCESS DENIED

7.3.1.1.2 Method describeServiceType ()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:

- the service properties associated with this service type: i.e. alist of service property { name, mode and type} tuples,
- the names of the super types of this service type; and
- whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName
The name of the service type to be described.

- If the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

- 1f the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

ETSI

69 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns

TpServiceTypeDescription

Raises
TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P_UNKNOWN SERVICE TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceit is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifiesthe
maximum number of matched responsesit is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned form a complete
view of what the client application can do with the service, as per the service level agreement. If the framework
supports service subscription, the service level agreement will be encapsulated in the subscription properties contained
in the contract/profile for the client application, which will be arestriction of the registered properties.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading”. It isthe basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception israised.

- If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception is raised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service
of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

desiredPropertyList: in TpServicePropertyList

The "desiredPropertyList" parameter isalist of service property { name, mode and value list} tuplesthat the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property valuesin the desired property list must be logically interpreted as " minimum",
"maximum”, etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of valuesto help in the
selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyL.ist.

P_INVALID_PROPERTY israised when an application includes an unknown service property name or invalid service
property value.

max: in TpInt32
The"max" parameter states the maximum number of servicesthat are to be returned in the "serviceList" result.

ETSI

70 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns
TpServicelList
Raises

TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P UNKNOWN SERVICE TYPE, P INVALID PROPERTY

7.3.1.1.4 Method listSubscribedServices()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList>: The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by its service ID and alist of service properties{name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServicelList

Raises

TpCommonExceptions, P_ACCESS DENIED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement
Inherits from: Iplnterface;

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

ETSI

71 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.2.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digital Signature> : This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature” construct shall not be used (i.e. the eContent field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters

serviceToken: in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceToken isinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exceptionis
thrown.

agreementText: in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText isinvalid, thenthe P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client application, the P_INVALID_SIGNING_ALGORITHM exception isthrown. Thelist of possible algorithms
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fieldsin the Signerinfo field in the digital Signature (see below).

Returns
TpOctetSet
Raises

TpCommonExceptions, P_INVALID AGREEMENT TEXT, P INVALID SERVICE TOKEN,
P INVALID SIGNING ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken: in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

ETSI

72 ETSI ES 203 915-3 V1.3.1 (2008-04)

terminationText: in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing a gorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The
client application can check that the terminationText has been signed by the framework. If a match is made, the service
agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SERVICE TOKEN, P INVALID SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement
Inherits from: Iplnterface;

Thisinterface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's | pAppServiceAgreementM anagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
alows the client application to use the service. A reference to the service manager interface of the service is returned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be arestriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the
response of signServiceAgreement() on the application's | pAppServiceAgreementM anagement interface has compl eted,
a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to arace condition. In this case, the TpCommonExceptions with

ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

ETSI

73 ETSI ES 203 915-3 V1.3.1 (2008-04)

There must be only one service instance per client application. Therefore, in case the client attempts to select a service
for which it has aready signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMar {
digitalSignature: TpOctetSet;
serviceMgrinterface: |pServiceRef;
1

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signatureis calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall aso be used to provide replay prevention.

The serviceMgrinterface is areference to the service manager interface for the selected service.

Parameters

serviceToken: in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText: in TpString

Thisisthe agreement text that isto be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one used by the framework when
invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, isinvalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns

TpSignatureAndServiceMgr
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID AGREEMENT TEXT,
P INVALID SERVICE TOKEN, P INVALID SIGNING ALGORITHM,
P SERVICE ACCESS DENIED

7.3.2.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken: in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

ETSI

74 ETSI ES 203 915-3 V1.3.1 (2008-04)

terminationText: in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing a gorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by
the client application. If amatch is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) isreturned.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE TOKEN,
P INVALID SIGNATURE

7.3.2.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not alowed to access the service, then the P_SERVICE_ACCESS DENIED exception is thrown.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. Thiswill contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokenswill automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID: in TpServicelD

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

Returns

TpServiceToken
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID,
P SERVICE ACCESS DENIED

7.3.2.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not allowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS DENIED) isthrown.

ETSI

75 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

serviceToken: in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) isthrown.

Raises
TpCommonExceptions, P_INVALID SERVICE TOKEN, P SERVICE ACCESS DENIED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Iplnterface;

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> svcUnavailablelnd (servicelD : in TpServicelD, reason : in TpSvcUnavailReason) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in
TpServicelDList) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void
activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in
TpServicelDList) : void

appUnavailablelnd (servicelD : in TpServicelD) : void
<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void
svcAvailStatusind (servicelD : in TpServicelD, reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, servicelDs : in TpServicelDList) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsErrorList, servicelDs : in TpServicelDList) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval) : void

<<new>> fwAvailStatusind (reason : in TpFwAvailStatusReason) : void

ETSI

76 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult: in TpActivityTestRes
The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivityTestRes method on the | pFaultM anager interface.

Parameters

activityTestID: in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault:in TpInterfaceFault
Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoverylnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters
fault:in TpInterfaceFault

Specifies the fault from which the framework has recovered.
7.3.3.1.5 Method <<deprecated>> svcUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method svcAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Service is unavailable and also when the Service becomes available again.

ETSI

77 ETSI ES 203 915-3 V1.3.1 (2008-04)

The framework invokes this method to inform the client application that it may experience difficulties using its instance
of the indicated service.

Parameters

serviceID: in TpServicelD
Identifies the affected service.

reason: in TpSvcUnavailReason
I dentifies the reason why the service is no longer available.

7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to provide fault statistics to a client application in responseto a
genFaultStatsRecordReg method invocation on the IpFaultM anager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

serviceIDs: in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and a so when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason: in TpFwUnavailReason
I dentifies the reason why the framework is no longer available.
7.3.3.1.8 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the application to correlate this response (when it arrives) with the original regquest.

7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFaultM anager interface.

ETSI

78 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.

servicelIDs: in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the servicel Ds
parameter isan empty list, then the fault statistics were requested for the framework.

7.3.3.1.10 Method appUnavailablelnd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters

serviceID: in TpServicelD
Specifies the service for which the indication of unavailability was received.

7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the

| pFwFaultM anager interface. On receipt of thisrequest, the client application must produce afault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the | pFaultManager interface.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.12 Method svcAvailStatusind()

The framework invokes this method to inform the client application about the Service instance availability status, i.e.
that it can no longer use itsinstance of the indicated service according to the reason parameter but as well information
when the Service Instance becomes available again. On receipt of this request, the client application either actsto reset
its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to
stop use of this service instance and begin use of adifferent service instance). The client application can also wait for
the problem to be solved and just stop the usage of the service instance until the svcAvail Statusind() is called again with
the reason SVC_AVAILABLE.

Parameters

servicelID: in TpServiceID
I dentifies the affected service.

reason: in TpSvcAvailStatusReason
I dentifies the reason why the service is no longer available or that it has become available again.

7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in responseto a
generateFaultStati sticsRecordReq method invocation on the | pFaultM anager interface.

ETSI

79 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

faultStatsReqID: in TpFaultReqID
Used by the client application to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

serviceIDs: in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

In the case where a list of servicesis present, thisis an ordered list in which the location of the servicein thislist
corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStati sticsRecordReq method invocation on the | pFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the client application to correlate this error (when it arrives) with the original request.

faultStatistics:in TpFaultStatsErrorList
Thelist of fault statistics errors returned.

serviceIDs: in TpServiceIDList
Specifies the framework or services that are included in the list of fault statistics errors returned. If the servicelDs
parameter isan empty list, then the fault statistics error relates to the framework.

In the case where alist of servicesis present, thisis an ordered list in which the location of the service in thislist
corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation
on the IpFwFaultM anager interface. On receipt of this request, the client application must produce a fault statistics
record, for the application during the specified time interval, which is returned to the framework using the
generateFaultStati sticsRecordRes operation on the I pFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.16 Method <<new>> fwAvailStatusind()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.

ETSI

80 ETSI ES 203 915-3 V1.3.1 (2008-04)

The client application may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason: in TpFwAvailStatusReason
I dentifies the reason why the framework is no longer available or that it has become available again.

7.3.3.2 Interface Class IpFaultManager
Inherits from: Ipinterface;

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application suppliesits Fault Management callback
interface at the time it obtains the Framework'’s Fault Management interface, by use of the obtainl nterfaceWithCallback
operation on the IpAccess interface.

If the |pFaultManager interface isimplemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the | pAppFaultM anager.appActivity TestReq() method, it shall
implement appActivityTestRes() and appActivityTestErr() in thisinterface. If the Framework is capable of invoking
| pAppFaultM anager.generateFault Stati sticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaul tStati sticsRecordErr() in this interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void
appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) :
void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> appUnavailablelnd (servicelD : in TpServicelD) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void
<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void
appAvailStatusind (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval, servicelDs : in TpServicelDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

ETSI

81 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out atest on itself or on the client'sinstance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the

I pAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance 1D
from the service ID.

Parameters

activityTestID: in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svecID: in TpServiceID
Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.2 Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult: in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.3 Method svcUnavailablelnd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters

serviceID: in TpServicelD
Identifies the service that the application can no longer use.

ETSI

82 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce afault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the | pAppFaultM anager interface. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

serviceIDs: in TpServiceIDList

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises
TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.5 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID: in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.6 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. Applications can indicate they no longer use a particular service instance using

| pServiceAgreementManagement.terminateServiceAgreement(). Applications can indicate a fault with a particular
service instance using | pFaultM anager.svcUnavailablel nd().

This method is used by the application to inform the framework that it is ceasing its use of the serviceinstance. This
may aresult of the application detecting afailure. The framework assumes that the session between this client
application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

ETSI

83 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

servicelID: in TpServiceID
Identifies the affected application.

Raises

TpCommonExceptions

7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the client application to provide fault statistics to the framework in response to a
genFaultStatsRecordReq method invocation on the | pAppFaultManager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the |pA ppFaultManager interface.

Parameters

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

7.3.3.2.9 Method appAvailStatusind()

This method is used by the application to inform the framework of its availability status. If the Application has detected
afailureit uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of
all of its subscribed service instances. When the Application is working again it shall call this method again with the
APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

ETSI

84 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

reason: in TpAppAvailStatusReason

I dentifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework
and the Service that the Application is available again.

Raises

TpCommonExceptions

7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the
generateFaul tStati sticsRecordRes operation on the | pAppFaultManager interface. If the application does not have
access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the application to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

servicelIDs: in TpServiceIDList
Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an

empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

ETSI

85 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a generateFaultStati sticsRecordReq method invocation on the | pAppFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.
Raises

TpCommonExceptions

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Iplnterface;

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

fwInterface: in IpHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

ETSI

86 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat
Inherits from: Ipinterface;

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. If the pul se()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt
Inherits from: Ipinterface;

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application. If the
IpHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBest()
shall be implemented.

ETSI

87 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applnterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

appInterface: in IpAppHeartBeatRef
This parameter refersto the callback interface the heartbeat is calling.

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

ETSI

88 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat
Inherits from: Ipinterface;

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking |pAppHeartBeatM gmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pAppHeartBeatM gmt.enableA ppHeartbeat() method. If the
pulse() is not received within the specified interval, then the client application can be deemed to have failed the
heartbeat.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Ipinterface;

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework |oad manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainl nterfaceWithCallback() method on the
IpAccess interface.

ETSI

89 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpAppLoadManager

<<deprecated>> queryAppLoadReq (timeinterval : in TpTimelnterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNaotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) :
void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticSError : in
TpLoadStatisticError) : void

7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsReq shall be used instead, using the new identifier to correlate requests
and responses.

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.
7.3.3.7.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL oadStatsRes shall be used instead, using the new identifier to correlate requests and
responses.

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryL oadReq method on the I pLoadManager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

ETSI

90 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.7.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querylL oadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the | pLoadManager interface.

Parameters

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.7.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.5 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client
application shall inform the framework of the current load using the reportL oad method on the corresponding
IpLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.6 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications. e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method.

7.3.3.7.7 Method createLoadLevelNotification()
The framework uses this method to register to receive notifications of load level changes associated with the

application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportL oad method on the corresponding | pLoadManager.

Parameters
No Parameters were identified for this method.

ETSI

91 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.7.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID: in TpLoadTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.

7.3.3.7.10 Method <<new>> queryLoadStatsRes()
The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryL oadReq method on the I pLoadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the client application to correlate this response (when it arrives) with the original request.

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

7.3.3.7.11 Method <<new>> queryLoadStatsErr()
The framework uses this method to return an error response to the application that requested the framework's load

statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pLoadM anager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the client application to correlate this error (when it arrives) with the original request.

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

ETSI

92 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.8 Interface Class IpLoadManager
Inherits from: Iplnterface;

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework load management function is
represented by the |pLoadM anager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst atransaction performs. To handle responses and reports, the client application developer must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's |oad manager interface, by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

If the IpLoadManager interface isimplemented by a Framework, at least one of the methods shall be implemented
as a minimum requirement. If load level notifications are supported, the createl oadlL evel Notification() and
destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() isimplemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
I pAppLoadM anager.queryAppL oadStatsReq() method, then it shall implement queryAppL oadStatsRes() and
gueryAppLoadStatskrr() methods in this interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : void
<<deprecated>> queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void

destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void

resumeNotification (servicelDs : in TpServicelDList) : void

suspendNotification (servicelDs : in TpServicelDList) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, servicelDs : in TpServicelDList,
timelnterval : in TpTimelnterval) : void

<<new>> queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList)
: void

<<new>> queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in
TpLoadStatisticError) : void

ETSI

93 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 1oad, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this
method shall be called by the application in order to report current load status, when load notifications are first
requested, or resumed after suspension.

Parameters

loadLevel: in TpLoadLevel
Specifies the application's load level.

Raises

TpCommonExceptions

7.3.3.8.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL cadStatsReq shall be used instead, using the new identifier to correlate requests and
responses.

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelIDs: in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval: in TpTimeInterval
Specifies the timeinterval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryAppL oadStatsRes shall be used instead, using the new identifier to correlate requests
and responses.

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadReg method on the |pAppLoadManager interface.

ETSI

94 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryAppLoadStatsErr shall be used instead, using the new identifier to correlate requests
and errors.

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadReg method on the IpAppL cadManager interface.

Parameters

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application’'s load statistics.

Raises

TpCommonExceptions

7.3.3.8.5 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon receipt of
this method the framework shall inform the client application of the current framework or service instance load using
the loadL evel Notification method on the corresponding | pAppLoadManager.

Parameters

servicelIDs: in TpServiceIDList

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.6 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

ETSI

95 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

servicelIDs: in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.7 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon
receipt of this method the framework shall inform the client application of the current framework or service instance
load using the loadL evel Notification method on the corresponding 1pAppLoadManager.

Parameters

serviceIDs: in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.8 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles atemporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelIDs: in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P _INVALID SERVICE ID, P_SERVICE NOT ENABLED,
P _UNAUTHORISED PARAMETER VALUE

7.3.3.8.9 Method <<new>> queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

ETSI

96 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

loadStatsReqID: in TpLoadTestID
The identifier provided by the application to correlate the response (when it arrives) with this request.

servicelIDs: in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval: in TpTimeInterval
Specifies the timeinterval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadStatsReq method on the |pAppL oadM anager
interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics:in TpLoadStatisticList
Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadStatsReq method on the | pA ppLoadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

ETSI

97 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.9 Interface Class IpOAM
Inherits from: Iplnterface;

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. Thisinterface
and the systemDateTimeQuery() method are optional.

<<Interface>>
IPOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime: in TpDateAndTime

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P _INVALID TIME AND DATE FORMAT

7.3.3.10 Interface Class IpAppOAM
Inherits from: Iplnterface;

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method isinvoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>

IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

98 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

systemDateAndTime: in TpDateAndTime
Thisisthe system date and time of the framework.

Returns
TpDateAndTime

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification
Inherits from: Iplnterface;

Thisinterface is used by the framework to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

7.3.4.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo: in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteriaand to act accordingly.

7.3.4.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

ETSI

99 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

No Parameters were identified for this method.

7.3.4.2 Interface Class IpEventNotification
Inherits from: Iplnterface;

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNotification() methods shall be supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

7.3.4.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria: in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CRITERIA,
P INVALID EVENT TYPE

7.3.4.2.2 Method destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENTID.

ETSI

100 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID ASSIGNMENT ID

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

obtainFrameworkInterfac e(disc oweryService)
obtaininterface WithCallback(dis coverySenvice)

listServceTypes
describeSeniceType

istSubscribedS ervices
N discoverSenice

Active

IpAccess.endAccess

\
N/
Figure 13: State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application reguests Service Discovery by invoking the obtainl nterface or the obtainl nterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
alowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management.

ETSI

101 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

reportLoad

"load change" “loadLevelNotification querySvcLoadRes[load statistics requested by LoadManager |
querySvcLoadErr[load statistics requested by LoadManager]

createLoadLevelNotification NoadLevelNotification ‘ Active ‘ queryLoadReq

destroyLoadLewelIN otification

IpAccess\obtainl

IpAccess gbtaininterfaceWithCallback

resumeNotification
NoadLevelNotification

reportLoad
querySvcLoadRes[load statistics requested by LoadManager |
querySvcLoadE [load statistics requested by LoadManager]

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

suspendNotification[all notifications
All States suspended]

IpAccesss.endAccess

Figure 14: State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

ETSI

102 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now reguest the application to supply load statistics
information (by invoking queryAppL oadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNatification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerinternal

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

registerLoadController

1
1

reportLoad][loadlevel 1= 0] !

!

[Normal load @ Application Overload

reportLoad[loadlevel = 0]

“internal logd change detection"

"internal load change b non owerloaded" intemal load change detection

"internal load change/to non gverload"

reportLoad[loadlewvel = 0]

Internal overload

Internal and Application Owerload

\\ reportLoad[loadlevel = 0]
\\

A necessary action can be AN
suspending the load
notifictions from the
application by invoking
sus pendNotification or
enabling load control
mechanisms on the
application by invoking
enableLoadControl.

Figure 15: State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs
is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

103 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess. obtaininterfaceWithCallback

systemDateTimeQuery

Active

IpAccess.endAccess

Figure 16: State Transition Diagram for IDOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management
‘change in framework availabililty (non fault)' ~fwAvailStatusind to all applications with callback
‘change in service availability' *svcAvailStatusind to all applications using the service

svcUnavailablelnd / test the service, inform service that application is not using it
genFaultStatsRecordReq "app.genFaultStatsRecordRes/Err

Framework

service fault ~svcAvailStatusind to all applications using the service ‘
Active ‘

no fault detected

activityTestReq[
empty string]

activityTestReq][scflD

no fault detected

Framework Activity T est

Service Activity Test

IpActess.endAccess entry/ test activity of framework
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

entry/ test activity of service
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

IpAccess.endAcgess/ Abort

fault detected in fw pending tegt request

IpAccess.endAccess/ remove
application from load management

~

O fault detected in fw

Framework Faulty

entry/ MwAvailStatusind to all applications with callback
exit/ MfwAvailStatusind to all applications with callback

Figure 17: State Transition Diagram for IpFaultManager

ETSI

104 ETSI ES 203 915-3 V1.3.1 (2008-04)

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified viaa fwAvail Statusl nd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problemis diagnosed, all applications with fault
management callbacks are notified through a fwAvail Statuslnd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcAvail Statusind message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

IpAccess.obtaininterface
IpAccess.obtaininterfaceWithCallback

createNotification

destroyNotification

createNotification

[Notification
Active

IpAccess.endAccess

IpAccegs.endAccess

&
u \‘/)

Figure 18: State Transition Diagram for IpEventNotification

8 Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

ETSI

105 ETSI ES 203 915-3 V1.3.1 (2008-04)

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
the role of users or consumers of services. The framework itself actsin therole of retailer of services. The following
examplesillustrate these roles:

e Service (to be subscribed): Call Centre Service, Mobility Service, etc.
o Framework Operator: AT&T, BT, etc.

e Enterprise Operator: A Financial institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks' to its
peer in the Framework).

e User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre
Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which actsin therole of service
subscriber) and the Framework (which actsin the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage
Framework (In the role
of Service Retailer)

o>

Authorises

&
)

L

o~ Uses service

Client Application (In the role of
User or Consumer of Services)

Figure 19: Subscription Business Model

ETSI

106 ETSI ES 203 915-3 V1.3.1 (2008-04)

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin its domain in order to assign the same set of service features to the group. Such agroup iscalled a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsin itsdomain. A SAG relatesa
client application to the features of a service. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
SAG's needs. A service profileistherefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by aunique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

Client Applicationsand SAGsin the Enterprise Domain

Service Contractsfor Individual Services

Subscribed by EnterlliseOp atQ

SAGsto Service Profiles

\,
\,

Assignment of ClientApps/

Service Profilesin a Service Contract

Figure 20: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client applicationis
represented in the Framework domain as a clientApp object. The clientApp object isidentified by aunique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGS, service
contracts and service profiles.

ETSI

107 ETSI ES 203 915-3 V1.3.1 (2008-04)

An enterprise operator may not want to grant all client applicationsin its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control accessto service 1. If the datesin the two service profiles overlap, asis the case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8", then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with

it.
SAG
Client Client
App.1 App.2

SAG

Client Client
App.1 App.3

erviceProfile
Start: 02, Feb
End: 10, Feb

ServicelD: 2

viceProfil
Start: 08, Feb
End: 30, Feb
ServicelD: 1

Start: 02, Feb
End: 10, Feb
ServicelD: 1

Figure 21: Overlapping date fields in service profiles

Enterprise Enterprise

Operator 1 / Operator 2

Enterprise
Operator 3

Ce

Figure 22: Multiple Enterprise Operators

ETSI

108 ETSI ES 203 915-3 V1.3.1 (2008-04)

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in adifferent network. The client application I Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

. Enterprise Operator Account Management.
. Enterprise Operator Account Query.

. Service Contract Management.

e Service Contract Query.

. Service Profile Management.

. Service Profile Query.

. Client Application Management.

. Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.
8.1.2 Service Subscription Sequence Diagrams

8.1.2.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the |pServiceDiscovery interface. Initially, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a
particular service type. Subsequently it invokes discoverService() to discover the services of a given type which
supports the desired set of property values. The discoverService() method returnsalist of "servicelDs' and their
associated property values. The service discovery phaseis followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

ETSI

109 ETSI ES 203 915-3 V1.3.1 (2008-04)

The enterprise operator invokes the createServiceContract() on I pServiceContractManagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, al registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are arestriction of the service contract) by invoking
createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfilg()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the I pServiceDiscovery interface. This method returns alist of servicel Ds of the set of subscribed services.
The service contract ceases to exist after the specified end date. The deleteServiceContract del etes the service contract
object held in the framework. It is up to the discretion of the Framework operator to alow the enterprise operator to
delete a service contract before its specified end date.

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, viathe selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the service that it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a " serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the serviceis not subscribed
by the enterprise operator, then a " service not subscribed" exception israised. The signServiceAgreement() isinvoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as a way of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use this interface
reference to start the service.

ETSI

110 ETSI ES 203 915-3 V1.3.1 (2008-04)

13: modifyServiceContract(in TpServiceCdntract)
f f

I
14: IislSubsc‘»medServices()

I |
<

15 listSubs cribedSer viﬁ‘es()

I

- ----

16: describeSeniceContract()

L L : IpAccess - IpServiceDiscovery : IpSenviceContractManagement - IpServiceCont adt nfaQ wery - IpSer : I pServic eProfi dnb Query
EnterpriseOperator | | ClientApplication
T T T T T T T
| Auth. phase | | | | | |
| followed by | | | | | |
! 1 ouwnlﬁtmace() ! ! ! ! ! !
L + L | | | | |
U | U | | | | |
	2: listServiceTypes(
	gl				
! 3: describeServiceTypé() ! ! ! ! !					
t + + t					
U		/U			
	Find desired D				
		Senvices			
	4 discoer Service()			
I I /ITI					
5: obtaininterface()					
T u					
! ! [Subscribe 1 ! ! ! !					
! ! !	the Senvices ! ! ! !				
[@: createSenviceContract(in TpSeniceContractD —					
t t t					
H ! ! ! /u create more 1 ! ! !					
! ! ! ! SPsinSC ! ! !					
! ! ! ! 7: createServiceProfile() ! ! !					
I I I I f I					
U				/U	
		e			
H				/U	
			9: mud\fySErv\cePruﬁleq		
			gl		
			10: assign()		
T T T T /u					
			11 describeServiceProfile()		
f f f f f					
u					/u
			12: celeteSenvicePrdie()		
		T			
[
t					
L					

v N

-———— - -

|
| |
| |
| |
t t t
| | |
| | |
I » | |)
17: CreateServlcECDnlr?c((ln TpSer\AcECDntrac}DEScnptlon)
i i i

8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

Thefirst step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator viainterfaces outside of the present document.
When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
inits domain. The enterprise operator obtains the reference to the | pEntOpManagement interface by invoking

obtainl nterface() on the IpAccess interface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the I pEntOpA ccountlnfoQuery interface and modify the subscriber-rel ated
information contained in its subscription account by invoking modifyEntOpAccount() on I pEntOpAccountM anagement
interface.

ETSI

111 ETSI ES 203 915-3 V1.3.1 (2008-04)

An enterprise operator usually has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (arestriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on

I pClientAppManagement interface. The enterprise operator groups a related set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also
performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), lissSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finaly, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on |pEntOpAccountManagement interface.

Enterprise Framework : IpAccess o o o o
Operator Operator IpEntOpAccountManagement IpEntOpAccountinfoQuery | | IpClientAppManagem ent IpClientAppinfoQuery
T T

I
The Enterprise Operator
account has already been created.
Auth. Phase followed by:

1: ohtainlbterface()

gl

|
|
|
|
|
|
|
|
|
|
|
| |
| |
2: describeEntOpAccount()

T

|

|

3: modifyE ntOpActount()
1

4: obtainlhterface()

!

5: creaIeCIi‘enIApp()

|
|
|
|
I
|
|
: Create more client
| apps
|
|
I
|
|
|
|
T
|
|
|
T
|
|
|
t
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[l
|
|
|
|
|
|

s S R o S " Y m— Y m—" R

6: createSAG()

|
|
|
7: addSAGMembers()

|
8: modifyCljentApp()
T

|
9: modifySAG()
t

B s B o S m—

|
10: deleteClientApp()
,

|
11: removeSA#SMembers()

g S— —

|
12: modifySAG()

13: obtain|nterface()

14: listSAGs()

15: lissSAGMembers()

T

I

I

I

|

T

I

I

I

I

|

I

I I
‘EI.G: deleteEntOpAd‘coum()
|
I
I
I
I
I
I
I

T

T
T

e A Y Y Y]

B e S e S s S e —

‘ 1

ETSI

8.2

Class Diagrams

112

<<Interface>>
IpClientE ventNotification
(from ClientInterfaces

®reportNotification()
®notificationTerminated()

<<uses>> |

<<Interface>>

IpEventNotification
(from Framework Interfaces)

WcreateNotification()
SdestroyNotification()

ETSI ES 203 915-3 V1.3.1 (2008-04)

Figure 23: Event Notification Package Overview

<<Interface>>
Iplnitial

(from Framework interfaces)

®<<deprecated>> initiateAuthentication()
@initiateAuthenticationWithVersion()

<<Interface>>
IpClientAccess
(from Client interfaces)

FterminateAccess()

|
|
|
<<uses>> !
|
|
|

<<Interface>>
IpAccess
(from Framework interfaces)

obtaininterface()
FobtaininterfaceWith Callback()
®<<deprecated>> endAccess()
istinterfaces()

¥<<deprecated>> releas ehterface()
@selectSigningAlgorithm ()
FterminateAccess()
@relinquishinterface()

<<Interface>>
IpClientAPILewvelAuthentication
(from Client interfaces)

$<<deprecated>> authenticate()
@abortAuthentication()
®authenticationSucceeded()
@challenge()

l
|
|

<<uses>> |
|

<<Interface>>
IpAPILevelAuthentication
(from Framework interfaces)

®<<deprecated>> selectEncryptionMethod()
®<<deprecated>> authenticate()
FabortAuthentication()
FauthenticationSucceeded()
¥selectAuthenticationMechanism ()

Fchallenge()

<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure 24: Trust and Security Management Package Overview

ETSI

113 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
IpClientAppManagement
(from Fram ewo Kk i nterfaces)
<<Interface>>
IpClientApplinfoQuery Wcreate Cli entApp()
(from Fram ework i nte faces) ““modifyCIientApp()
WdeleteClientApp()
®describeClientApp() Screate SAG()
BlistClientApps() ¥modifySAG()
FdescribeSAG() FdeleteSAG()
BlistSAGs() MaddSAGMembers()
WlistSAGMembers() ®removeSA GMembers()
BlistClientAppMembership() ®requestConflictinfo()

<<Interface>>
IpEntOpAccountManagement

(from Framework interfaces)

<<Interface>>

IpSeniceContractinfoQuery
(from Frameworkinterfaces)

<<Interface>>
IpEntOpAccountinfoQuery

(from Frameworkinterfaces)

Fmodify EntOpAccount () BdescribeSeniceContract ()

& :)
SdescribeEntOpAccount() EESIEETHO 2 GERIIY ::!Stger\{cegor;itlracz)s()
istSeniceProfiles

<<Interface>>

<<Interface>> : <<Interface>>
) IpSeniceProfileManagement :
IpServiceProfileinfoQuery (from Framework interfaces) IpSerVIceContractManagement
(fom Fram ework i nterfaces) (from Framework interfaces)
ScreateSeniceProfile() .
. . . : , FcreateSeniceContract
:IlstSe_r\/lcePrc_)flles() i Bmodify SeniceProfile(1“‘modifyServiceContraCt(())
Qescnb_eSer\nceProﬂIe() WdeleteSeniceProfile() Solote S Contrac
®listAssignedMembers () Vassign() eleteSeniceContract()
Wdeassign()

FrequestConflictinfo()

Figure 25: Service Subscription Package Overview

8.3 Interface Classes

8.3.1 Event Notification Interface Classes

8.3.1.1 Interface Class IpClientEventNotification
Inherits from: Iplnterface;
Thisinterface is used by the framework to inform the client of a generic event. The Event Notification Framework will

invoke methods on the Event Notification Client Interface that is specified when the Event Notification interfaceis
obtained.

ETSI

114 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpClientEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void
notificationTerminated () : void

8.3.1.1.1 Method reportNotification()

This method notifies the client of the arrival of a generic event.

Parameters

eventInfo: in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The client
can use assignment id to associate events with event specific criteria and to act accordingly.

8.3.1.1.2 Method notificationTerminated()

This method indicates to the client that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters

No Parameters were identified for this method.

8.3.1.2 Interface Class IpEventNotification
Inherits from: Ipinterface;

The event notification mechanism is used to notify the client of generic events that have occurred. If Event Notifications
are supported by a Framework, thisinterface and the createNotification() and destroyNotification() methods shall be
supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

ETSI

115 ETSI ES 203 915-3 V1.3.1 (2008-04)

8.3.1.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria:in TpFwEventCriteria
Specifies the event specific criteria used by the client to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CRITERIA,
P _INVALID EVENT TYPE

8.3.1.2.2 Method destroyNoatification()

This method is used by the client to delete generic notifications from the framework.

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was caled. If the
assignment ID does not correspond to one of the valid assignment I Ds, the framework will return the error code
P_INVALID_ASSIGNMENT _ID.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID ASSIGNMENT ID

8.3.2 Service Subscription Interface Classes

8.3.2.1 Interface Class IpClientAppManagement
Inherits from: Iplnterface;

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface isintended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed servicesin the enterprise operator's name. The main task of client
application management isto register, modify and delete client applications (Client Application Management), and
manage groups of client applications, called Subscription Assignment Groups (SAG Management).

ETSI

116 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (saglID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void
removeSAGMembers (saglD : in TpSaglID, clientAppIDList : in TpClientApplIDList) : void
requestConflictinfo () : TpAddSagMembersConflictList

8.3.2.1.1 Method createClientApp()

A client application is represented in the Framework domain as a " clientApp object". This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored in it.

Parameters

clientAppDescription: in TpClientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that isto be associated with the newly created
clientApp object and the subscription-related "client application properties'. The clientApp ID must be aunique ID
across framework, if the ID aready exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are alist of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.1.2 Method modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppDescription: in TpClientAppDescription

The "clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

ETSI

117 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.1.3 Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client application currently has an
access session with the framework then this will be terminated, along with any service instances it may have created.
An exception of "P_TASK_REFUSED" will beraised if a non-associated enterprise operator invokes this method.

Parameters

clientAppID: in TpClientAppID

The"clientApplD" parameter identifies the client application that isto be deleted. If the clientAppl D does not exist, a
"P_INVALID_CLIENT_APP_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.1.4 Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters

sag: in TpSag

The"sag" parameter contains the SAG-ID and SAG-specific description. This saglD is particular to the SAG, and must
be unique across framework. If the saglD supplied already exists, an exception of type"P_INVALID_SAG_ID" would
be raised.

clientAppIDs: in TpClientAppIDList
The"clientApplDs" parameter contains the list of client application IDs that are to be associated with the newly created

SAG.
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP_ID,
P_INVALID SAG ID

8.3.2.1.5 Method modifySAG()

Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.
Parameters

sag: in TpSag

The"sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

ETSI

118 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises
TpCommonExceptions, P _ACCESS DENIED, P _INVALID SAG ID

8.3.2.1.6 Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
sagID: in TpSagID

The "sagID" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID _SAG_ID" israised.

Raises
TpCommonExceptions, P _ACCESS DENIED, P INVALID SAG ID

8.3.2.1.7 Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service
only through a single service profile at a particular moment in time. If this condition is violated, a
"P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed.
The enterprise operator can query further information about this invalid addition using the method
requestConflictinfo().

Parameters

sagID: in TpSagID

The"saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs:in TpClientAppIDList

The "clientApplDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or al of the client application IDsin the
list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP_ID,
P _INVALID SAG ID, P _INVALID ADDITION TO SAG

8.3.2.1.8 Method removeSAGMembers()
Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

ETSI

119 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters
sagID: in TpSagID

The"saglD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList: in TpClientAppIDList

The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.
If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID CLIENT APP ID,
P _INVALID SAG ID

8.3.2.1.9 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method addSagM embers() on this
interface (i.e. Information about the invocation of addSagM embers() that raised a
P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through asingle
service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG,
where both, the client application and the SAG are already assigned to the same service through different service
profiles. Asthis may happen in one method call for multiple client applications, a conflict list is generated.

It isonly possible to retrieve information about the last conflicting addSagMembers() method call; information about
previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList> : Thelist of conflicts of the last invocation of addSagMembers() that raised
aP_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is aready assigned to the
conflict generating service. It includes the current service profile.

c. the SAG, to which the conflict generating client application should be added. However, this SAG is already
assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client
application may be assigned to a service only through a single service profile at a particular moment in time.

d. the conflict generating service.

Parameters
No Parameters were identified for this method.

Returns
TpAddSagMembersConflictList

Raises
TpCommonExceptions, P_ACCESS DENIED

8.3.2.2 Interface Class IpClientAppinfoQuery
Inherits from: Ipinterface;

Thisinterface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain
information about them.

ETSI

120 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpClientAppIinfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSaglIDList

listSAGMembers (sagID : in TpSagID) : TpClientApplDList
listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

8.3.2.2.1 Method describeClientApp()
Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription> : The "clientAppDescription” parameter contains the clientApp description.

Parameters

clientAppID: in TpClientAppID
The"clientApplD" parameter identifies the clientApp object whose description is requested.

Returns

TpClientAppDescription

Raises

TpCommonExceptions, P ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.2.2 Method listClientApps()
Get alist of al client applications belonging to an enterprise operator.

Returns <clientApplDs> : The "clientApplDs" parameter identifies the list of client applicationsin the enterprise
operator domain.

Parameters
No Parameters were identified for this method.

ETSI

121 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns

TpClientAppIDList

Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.2.3 Method describeSAG()
Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription> : The "sagDescription” parameter returns the SAG-specific description.

Parameters

sagID: in TpSagID
The"saglD" parameter identifies the SAG whose description is required.

Returns

TpSagDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID

8.3.2.2.4 Method listSAGs()
Get alist of al SAGs associated with an enterprise operator.

Returns <SagIDList>: The "sagIDList" parameter returnsthelist of the identifiers of the SAGs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

Returns

TpSagIDList

Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.2.5 Method listSAGMembers()
Get alist of al client applications associated with the specified SAG.

Returns <clientApplDList> : The"clientAppIDList" parameter returns the list of the client applications associated with
the SAG.

Parameters
sagID: in TpSagID
The "sagID" parameter identifies the SAG whose clientApplD list isrequired.

ETSI

122 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns

TpClientAppIDList

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID SAG ID

8.3.2.2.6 Method listClientAppMembership()
Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags> : The SAGs of which the client application is a member.

Parameters

clientAppID: in TpClientAppID
The"clientAppl D" parameter identifies the clientApp object whose membership details are requested.

Returns

TpSagIDList

Raises

TpCommonExceptions, P ACCESS DENIED, P INVALID CLIENT APP ID

8.3.2.3 Interface Class IpServiceProfileManagement
Inherits from: Iplnterface;

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfile|D
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfilelD : in TpServiceProfilelD) : void

assign (saglD : in TpSagID, serviceProfilelD : in TpServiceProfilelD) : void

deassign (saglID : in TpSaglID, serviceProfilelD : in TpServiceProfilelD) : void

requestConflictinfo () : TpAssignSagToServiceProfileConflictList

ETSI

123 ETSI ES 203 915-3 V1.3.1 (2008-04)

8.3.2.3.1 Method createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profile isarestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD> : The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters

serviceProfileDescription: in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns

TpServiceProfileID
Raises
TpCommonExceptions, P_ACCESS DENIED

8.3.2.3.2 Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters

serviceProfile: in TpServiceProfile
The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an

exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.
Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE PROFILE ID

8.3.2.3.3 Method deleteServiceProfile()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then
they will be terminated. Only the enterprise operator associated with the particular service profileis alowed to deleteiit,
a"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceProfileID: in TpServiceProfileID

The "serviceProfilelD" parameter identifies the Service Profile that is to be deleted. If the serviceProfilel D does not
exist, a"P_INVALID_SERVICE_PROFILE_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE PROFILE ID

ETSI

124 ETSI ES 203 915-3 V1.3.1 (2008-04)

8.3.2.3.4 Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method. Each client application may be assigned to a service only through a single service profile
at a particular moment in time. If this condition is violated, a
"P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of
this method is performed. The enterprise operator can query further information about this invalid assignment using the
method requestConflictinfo().

Parameters

sagID: in TpSagID

The"saglD" parameter identifies the SAG to which Service Profileisto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID: in TpServiceProfileID

The "serviceProfilel D" parameter identifies the Service Profile that isto be assigned to the SAG. If the serviceProfilel D
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG ID,
P _INVALID SERVICE PROFILE ID, P_INVALID SAG TO SERVICE PROFILE ASSIGNMENT

8.3.2.3.5 Method deassign()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the
serviceProfilel D is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if anon-
associated enterprise operator invokes this method.

Parameters

sagID: in TpSagID

The"saglD" parameter identifies the SAG whose Service Profile is to be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID: in TpServiceProfilelID

The "serviceProfilel D" parameter identifies the Service Profile that isto be de-assigned. If the serviceProfilelD does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID,
P _INVALID SERVICE PROFILE ID

8.3.2.3.6 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method assign() on thisinterface (i.e.
Information about the invocation of assign () that threw a
P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service
only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG
to aservice profile of agiven service. If one or more client applicationsin this SAG are already assigned to service
profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular
moment in time. Asthisis prohibited, aconflict list is generated.

ETSI

125 ETSI ES 203 915-3 V1.3.1 (2008-04)

It isonly possible to retrieve information about the last conflicting assign() method call; information about previous
conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList> : The description of the conflicts occurring at the latest invocation
of assign() that raised aP_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the
following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is aready assigned to the
conflict generating service. It includes the current service profile.

c. the conflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of
the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters
No Parameters were identified for this method.

Returns
TpAssignSagToServiceProfileConflictList
Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Ipinterface;

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<Interface>>

IpServiceProfileiInfoQuery

listServiceProfiles () : TpServiceProfileIDList
describeServiceProfile (serviceProfilelD : in TpServiceProfilelD) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpServiceProfilelD) : TpSagIDList

8.3.2.4.1 Method listServiceProfiles()
Get alist of al service profiles created by the enterprise operator.

Returns <serviceProfilel DList> : The "serviceProfilel DList" isalist of the service profiles associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

ETSI

126 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns

TpServiceProfileIDList

Raises

TpCommonExceptions, P_ACCESS DENIED

8.3.2.4.2 Method describeServiceProfile()
Query information about a single service profile.

Returns <serviceProfileDescription> : The "serviceProfileDescription” parameter is a structured data type which
contains a description for the specified service profile.

Parameters

serviceProfileID: in TpServiceProfileID
The"serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

Returns

TpServiceProfileDescription

Raises

TpCommonExceptions, P _ACCESS DENIED, P INVALID SERVICE PROFILE ID

8.3.2.4.3 Method listAssignedMembers()
Get alist of SAGs assigned to the specified service profile.

Returns <saglDList> : The "saglDs' parameter isthe list of the SAG IDsthat are assigned to the specified service
profile.

Parameters

serviceProfileID: in TpServiceProfileID

The "serviceProfilelD" parameter identifies the Service Profile. If the serviceProfilel D is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagIDList

Raises

TpCommonExceptions, P ACCESS DENIED, P INVALID SERVICE PROFILE ID

8.3.2.5 Interface Class IpServiceContractManagement
Inherits from: Iplnterface;

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

ETSI

127 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) : TpServiceContract|D
modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

8.3.2.5.1 Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract ID will be
generated.

Returns <serviceContractl D> : The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters

serviceContractDescription: in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:
a. information about the service regquestor, i.e., the enterprise operator;
b. information about the billing contact (person);
C. service start date;

d. service end date;

e. service type (e.g. obtained from listServiceType() method);

f. service ID (e.g. obtained from discoverService() method). For certain services, service type informationis
sufficient and service ID may not be required. Thisimplies that any service of the type specified above is subscribed
and hence accessible to the enterprise operator or to its client applications;

g. list of service subscription properties and their value ranges (service profiles further restrict these value ranges).

Returns

TpServiceContractID

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID

8.3.2.5.2 Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-
line negotiated high-level agreement between the enterprise operator and the framework operator. Only the enterprise
operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

ETSI

128 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

serviceContract: in TpServiceContract
The "serviceContract” parameter provides the modified service contract. If the serviceContractlD does not exist, an

exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID,
P _INVALID SERVICE CONTRACT ID

8.3.2.5.3 Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there
are any service instances running that are governed by this contract, or any of the profiles associated with it, then they
will be terminated. Only the enterprise operator associated with the serviceContract is allowed to deleteit, a
"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.
Parameters

serviceContractID: in TpServiceContractID

The "serviceContractI D" parameter identifies the service contract that the enterprise operator wishesto delete. If the
serviceContract!D does not exist, a"P_INVALID_SERVICE_CONTRACT _ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

8.3.2.6 Interface Class IpServiceContractinfoQuery
Inherits from: Iplnterface;

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription
listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

8.3.2.6.1 Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

Returns <serviceContractDescription> : The "serviceContract" parameter contains the description for the specified
service contract.

ETSI

129 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

serviceContractID: in TpServiceContractID
The "serviceContractlD" parameter identifies the service whose description is being requested.

Returns

TpServiceContractDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

8.3.2.6.2 Method listServiceContracts()
Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs> : The "serviceContractlDs" parameter will contain alist of IDs for service contracts that
the enterprise operator has created.

Parameters
No Parameters were identified for this method.

Returns

TpServiceContractIDList

Raises

TpCommonExceptions, P _ACCESS DENIED

8.3.2.6.3 Method listServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profilesthat are associated with a particular
service contract.

Returns <serviceProfilelDs> : This contains the service profiles associated with a particular service contract.

Parameters

serviceContractID: in TpServiceContractID

The "serviceContractID" parameter identifies the service contract. If the serviceContractI D is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Returns
TpServiceProfileIDList

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

ETSI

130 ETSI ES 203 915-3 V1.3.1 (2008-04)

8.3.2.7 Interface Class IpEntOpAccountManagement

Inherits from: Iplnterface;

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with the list of valid

properties and their modes and prescribed ranges, will be entered viaa FW operator interface that is currently outside
the scope of the API.

<<Interface>>

IPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void
deleteEntOpAccount () : void

8.3.2.7.1 Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperatorProperties: in TpEntOpProperties

The "enterprise operator properties' parameter conveys the modified/popul ated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception israised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID PROPERTY

8.3.2.7.2 Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

ETSI

131 ETSI ES 203 915-3 V1.3.1 (2008-04)

8.3.2.8 Interface Class IpEntOpAccountinfoQuery
Inherits from: Iplnterface;

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<Interface>>

IpEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

8.3.2.8.1 Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator> : The "enterpriseOperator" parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator I1D" followed by alist of "enterprise operator
properties’. The enterprise operator propertiesis alist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method.

Returns

TpEntOp

Raises

TpCommonExceptions, P_ACCESS DENIED

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to

network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

8.4.2 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

ETSI

132 ETSI ES 203 915-3 V1.3.1 (2008-04)

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery.
9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework.
This SCF is a sub type of the standard SCF.

IpFwS ervic;{eqistrati on

1: registerServiceSubType()

U 1

2: announceSenviceAvailability()

1. Registration: first step - register service sub type. For sub type registration, besides the values for the standard
service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2: Registration: second step - announce service availability. Thisisidentical to announcing availability of super types.

ETSI

133 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

IpFwService_Reqistration

1: registerSenvice()

2: announceSeniceAvailability()

1. Registration: first step - register service.

The purpose of thisfirst step in the process of registration is to agree, within the network, on anameto call, internaly, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicelD.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in thisfirst registration step:
in serviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
in servicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isapair of (ServicePropertyName,
ServicePropertyValueList).

ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in the
SCF data definition).

ServicePropertyValuelList is anumbered set of types TpServicePropertyValue; TpServicePropertyVaueisastring
that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:
out servicelD
Thisisastring, automatically generated by the Framework and unique within the Framework.

Thisis the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

ETSI

134 ETSI ES 203 915-3 V1.3.1 (2008-04)

2: Registration: second step - announce service availability.

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager
isto control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface
reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to useit. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the
new SCF (identified by the pair [servicel D, servicel nstancelL ifecycleManagerRef]) discoverable.

The following input parameters are given from the SCSto the Framework in this second registration step:
inservicelD.

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needsto
include the servicel D, to know which SCF it is.

in servicel nstancelL.ifecycleM anager Ref.

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in thisinterface when a client application signs an agreement to use
the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

9.1.3 Service Instance Lifecycle Manager Sequence Diagrams

9.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

: IpAppCalCont mlManager - Iplnitial

AppLogic ‘ ‘

o GenericCallControlService : : IpCallControlManager
IpSer IpSer ifec

IpAp pServiceAgreem ent Managem ent

. . | . . .
We assume that the application s already authenticated and discovered the service it warts touse ﬁ

U 2: sighServiceAgreement()

‘ (T l

!
1: selectService()

-

|
3: signServiceAgreement()

5: new()

7: setCallback()

g
g

| :

1. The application selects the service, using a servicel D for the generic call control service. The servicel D could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: Theclient application signs the service agreement.

3: The framework signs the service agreement. As aresult a service manager interface reference (in this case of type
IpCallControlManager) is returned to the application.

ETSI

135 ETSI ES 203 915-3 V1.3.1 (2008-04)

4. Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the servicel D to return a service manager interface reference. The service manager istheinitial
point of contact to the service.

5: Thelifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that thisis an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a servicelnstancel D by the Framework, which is provided to
the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework
Integrity Management functionality and operations are to be supported between the Framework and the service instance
identified by the defined servicelnstancel D, it is then necessary for the new service instance to establish an access
session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the
service instance that relates to a particular application client. The steps required to establish a Framework access session
are outlined in clause 6 of the present document.

6: The application creates a new |pAppCall ControlManager interface to be used for callbacks.
7: The Application sets the callback interface to the interface created with the previous message.
An application (identifiable by a given TpClientApplD may carry out the sequence, as exemplified above, multiple

times.

9.1.4 Integrity Management Sequence Diagrams

9.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy.

: IpSwcLoadManager . IpFwlL oadManager

: 1: createLoadLewelNotification() I
|

U /U Framework reports its

initial load condition on

‘ 2 loadLewlINotification() _ “| notification creation

1

3: load change detection & policy evaluation

s =

~
~
~

4: loadLewelNotification() o This is Framework
u - ‘ implementation detail. The

PP Framework may take

Framework detects aload - Ll |appropriate load control action.
condition change and notifies

the senice. The service may
take appropriate load control

|
|
5: load change detection & policy evaluation

action - implementation =
detail. S~ .
| 6: loadLevelNotification() T This is Framework

! implementation detail. The
Framework may take
appropriate load control action.

7: destroyLoadL ewelNotification()

:
U

L

ETSI

136 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registersitself and the service invokes load management function to
inform the framework of service load.

IQSchan Manager IQFWLanM anager

1: createLoadLeeINotification()

initial load condition on

|
Seniice reports its U
|
|
notification creation e

ST ----_____2reportLoad()

|
3: load :change detection
= >
This is Senice implementation - 4: reportLoad()

detail. The Senice may take =< __
appropriate load control action. R

Senvce detects a load condition
change and reports to

~ |Framework. The Framework
may take appropriate load
control action - implementation
detail.

T
|

|
5: load :change detection

/<’—l e

6: reportLoad() ~ o

This is Senice implementation
detail. The Senice may take
appropriate load control action.

.

N 7: destroyLoadLevelNotification()

ETSI

137 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.3 Load Management: Client and Service Load Balancing

Application : Framework : o Sernvice :
IpApplLoadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

|
|
l
| |
Framework checks |
application load. :

|

|

1. queryAppLoadStatsReq() |
|

| 2: queryApplLoadStatsRes() |
| |

L
U /U Depending on the load, the
framework may choose to stop
sending notifications to the
application, to allowits load to
reduce.

3: querySvcLoadStatsReq()

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

l

| L

! The framework may then check
| the load on the service, and take
| action if (according to the load
! balancing policy) if required.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

)

]
! 4: querySvcLoadStatsRes()

ETSI

138 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

Framework

IQFWH;utBeat IpSwve HeaﬁBeatM amt

T T
| |
! 1: enableSvcHeartBeat() |
| | |

2: pulse()

3: pulse() At a certain point of

L‘F time the framework
decides to stop

heartbeat supenision

S

4: disableSvcHeartBeat()

(!

9.1.4.5 Fault Management: Service requests Framework activity test

Framework : Senice :
IpFwFaultManager IpSvcFault Manager

1: activityTestReq() The Senice requests that the

D< U Framework does an activity test.
|
|
|
|
|
T
|
|
|
|
|
|
|
|

2: activityTestRes()

1: The service asksthe framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

ETSI

139 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.6 Fault Management: Service requests Application activity test

Senvce : o Framework : Application :
IpSve Fault Manager IpFwFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the service
instance to conclude which
U m Application the test is directed at, and

1: activityTestReq()

comunicates internally to Framework
interface to the Application.

2: appActivity TestReq()

U /U The application

I carries out the
| activity test and

: returns the result to
3: appActivity TestRes() | the Framework.

Communications.

Internal Framework ﬁ

4: activity TestRes()

-

1: The service instance asks the framework to invoke an activity test on the client application.

2. Theframework asks the application to do the activity test. It is assumed that there isinternal communication
between the service facing part of the framework (i.e. |pFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4: The framework internally passes the result from its application facing interface (I pFaultM anager) to its service
facing side, and sends the result to the service.

ETSI

140 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.7 Fault Management: Application requests Service activity test

Client Application : Framework : o Senice :
IpAppFaultManager IpFaultManager IpFwFaultManager IlpSvcFaultManager

:
L |
The client application asks the !
framework to carry out the :
activity test on a senice. |
|
|
|
|
|
|

1: activity TestReq()

U "

The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate framework interface.
W hich inwokes the call on the
senice.

1 2. sweActivity TestReq()

—

returns the result.

Senice does test and ﬁ

Framework passes result | o

internally from senice facing 3 sweActivity TestRes()
part to application facing part, LF U
and sends the result to the

application.

|
4: activityTestRes() |
|

=

1. Theclient application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2. Theframework asks the service to do the activity test. It is assumed that there isinternal communication between
the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4. The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

ETSI

141 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.1.4.8 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senvice :
IpAppFault Manager IpFaultManager | | IpFwFaultManager IpSvcFaultManager

|

|

:

L |

The application detects that !
the senice is not responding, ;
soit informs the framework via |
the s\wcUnavailablelnd method. |
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
1
| 1: swcUnavailablelnd()
|

I ‘
U The framework informs ﬁ

the senice.

|
1
|
s svcUnavailablelnd()

1. The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2: The framework informs the service instance that the client application was unable to get a response from it and can
no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether
thereis a general problem with the service instance that requires further action.

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

ETSI

9.2

142

Class Diagrams

<<Interface>>
IpSwcHeartBeatMgmt

ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
lpSvc EventNotification
(from Service Interfaces)

®reportNotification()
®notificationTerminated()

<<uses>>

<<Interface>>

IpFWE vent Notification
(from Framework Interfaces)

ScreateNotification()
WdestroyNotification()

Figure 26: Event Notification Package Overview

<<Interface>>
IpSwcFaultManager

<<Interface>>
IpSwvcLoadManager

<<Interface>>
IpSwcHeartBeat

enableSvcHeartBeat() |1
disableSvcHeartBeat()
changelntenal()

<<uses>> !
|
|
|
<<Interface>>
IpFwHeartBeatMgmt

.n|
pulse()

|
|
|
<<uses>> |
|
|
|

<<deprecated>> querySw LoadReq()
<<deprecated>> queryLoadRes()
<<deprecated>> queryLoadErr()
loadLe\elNotification()
suspendNotification()
resumeNatification()
createLoadLeeINotification()
destroyL oadLevelNotification()
<<new>> querySwlLoadStatsReq()
<<new>> queryLoadStatsRes()
<<new>> queryLoadStatsErr()

|
<<uses>> !
|

activity TestRes()

swcActivity TestReq()

<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> fwUnavailablelnd()
swvcUnavailableind()

<<deprecated>> appUnavailablelnd()
<<deprecated>> genFaultStatsRecordRes()
activity TestErr()

<<deprecated>> genFaultStatsRecordErr()
<<deprecated>> genFaultStatsRecordReq|()
<<deprecated>> generateFaultStatsRecordReq()
appAvailStatusind()

<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()
<<new>> generateFaultStatisticsRecordReq()
<<new>> fwAvwailStatusInd()

<<Interface>>
IpS\cOAM

systemDateTimeQuery()

|
<<uses>> |

<<Interface>>
IpFwHeartBeat

<<Interface>>

<<Interface>>

|
<<uses>> !
|

<<Interface>>
IpPFWOAM

enableHeartBeat()
disableHeartBeat()
changelnterval()

pulse()

IpFwLoadManager IpFwFaultManager
reportLoad() activity TestReq()
<<deprecated>> queryLoadReq() sweActivity TestRes ()

<<deprecated>> querySw LoadRes()
<<deprecated>> querySw LoadErr()
createLoadLeeINotification()
destroyL oadLevelNotification()
suspendNotification()
resumeNoatification()

<<new>> queryLoadStatsReq|()
<<new>> querySwvcLoadStatsRes()
<<new>> querySwcLoadStatsErr()

appUnavailablelnd()

<<deprecated>> genFaultStatsRecordReq|()
<<deprecated>> swcUnavailablelnd()

swcActivity TestErr()

<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordErr()
<<deprecated>> generateFaultStatsRecordRes()
<<deprecated>> generateFaultStatsRecordErr()
swcAvailStatusind()

<<new>> generateFaultStatisticsRecordReq()
<<new>> generateFaultStatisticsRecordRes()
<<new>> generateFaultStatisticsRecordErr()

systemDateTimeQuery()

Figure 27: Integrity Management Package Overview

ETSI

143 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
IpFwSeniceDiscovery
(from Framework interfaces)

®listSeniceTypes()
¥describeServiceType()
®discoverSenice()
%listRegisteredServices|()

Figure 28: Service Discovery Package Overview

<<|nterface>>

IpSenicelnstancelLifecycleManager
(from Service Interfaces)

WcreateSeniceManager()
¥destroySeniceManager()

Figure 29: Service Instance Lifecycle Manager Package Overview

<<lInterface>>
IpFwSeniceRegistration
(from Framework interfaces)

WregisterService()

SannounceS erviceAvailability ()
SunregisterSenice()
describeSenice()

$unannounce Senvice()

$<<new>> registerSeniceSubType()

Figure 30: Service Registration Package Overview

ETSI

144 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>
IpClientAPILevelAuthentication
(fom Clientinte faces

<<Interface>>
IpClientAccess
(from Client interfaces)

S<<deprecated>> authenticate()

SabortAuthentication()
BterminateAccess) :authenticationsucceeded()
challenge()
N\ ‘
| |
<<uses>> | <<uses>> |
| |
1 1
<<Interface>> <<Interface>>
<<Interface>> IpAccess IPAP ILevel Authentication
IpInitial (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces)

Bobtaininterface() ®<<deprecated>> selectEncryptionMethod()
®<<deprecated>> initiateAuthentication() WobtaininterfaceWithCallback() ®<<deprecated>> authenticate()
SinitiateAuthenticationWithVersion() S<<deprecated>> endAccess() SabortAuthentication()

Wlistinterfaces() SauthenticationSucceeded()

$<<deprecated>> releaselnterface() SselectAuthenticationMechanism()

@selectSigningAlgorithm() Schallenge()

®terminateAccess()

®relinquishinterface() %

<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure 31: Trust and Security Management Package Overview

9.3 Interface Classes

9.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register anew service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

9.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: Iplnterface;

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
Thisinterface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

ETSI

145 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription
unannounceService (servicelD : in TpServicelD) : void

<<new>> registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in
TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServicelD

9.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to
the Framework (ServiceType is 'available’). A service-ID isreturned to the service supplier when a service isregistered
in the Framework. When the service is not registered because the ServiceType is 'unavailable, a
P_SERVICE_TYPE_UNAVAILABLE israised. The service-ID is the handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

This method should be used for registration of service super types only. For registering service sub types, the
registerServiceSubType() method should be used.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessiit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

If aserviceisregistered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the
Framework shall notify all applications using instances of servicesidentified by this property, using the
P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an
incorrect combination of propertiesisincluded in conjunction with P_COMPATIBLE_WITH_SERVICE, a
P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList:in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

ETSI

146 ETSI ES 203 915-3 V1.3.1 (2008-04)

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in
the service type), then aP_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_ MANDATORY_PROPERTY exceptionisraised. If two or more properties with the same property name
areincluded in this parameter, the P DUPLICATE_PROPERTY _NAME exception is raised.

Returns
TpServiceID

Raises
TpCommonExceptions, P PROPERTY TYPE MISMATCH, P DUPLICATE PROPERTY NAME,

P_ILLEGAL SERVICE TYPE, P_UNKNOWN SERVICE_TYPE,
P MISSING MANDATORY PROPERTY, P SERVICE TYPE UNAVAILABLE

9.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a " service manager" instance per service instance. Each service implements the

I pServicel nstancelifecycleManager interface. The IpServicel nstancelLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppl D, serviceProperties : in TpServicePropertyList,
servicelnstancel D : in TpServicelnstancel D) : 1pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

Parameters

servicelID: in TpServiceID

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" is legal but there
is no service offer within the Framework with that ID, then aP_UNKNOWN_SERVICE_ID exception israised.

serviceInstancelLifecycleManagerRef: in
service lifecycle::IpServicelInstancelLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P _ILLEGAL SERVICE ID, P _UNKNOWN SERVICE ID,
P INVALID INTERFACE TYPE

ETSI

147 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework.
The service isidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID: in TpServicelD

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenaP_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islega but there is no service offer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exceptionisraised.

Raises
TpCommonExceptions, P ILLEGAL SERVICE ID, P UNKNOWN SERVICE ID

9.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service, and the "properties’ that describe this service. The service isidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprisesthe "type" of the service, and the properties that describe this service.

Parameters

servicelID: in TpServiceID

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
thenan P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there is no service offer within
the Framework with that 1D, then aP_UNKNOWN_SERVICE_|ID exception is raised.

Returns

TpServiceDescription

Raises

TpCommonExceptions, P ILLEGAL SERVICE ID, P UNKNOWN SERVICE ID

9.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, till registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

ETSI

148 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

servicelID: in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for serviceidentifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, then aP_UNKNOWN_SERVICE _ID exception israised.

Raises
TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

9.3.1.1.6 Method <<new>> registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for
subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the
Framework (ServiceTypeis 'available’). A service-ID isreturned to the service supplier when a service isregistered in
the Framework. When the service is not registered because the ServiceTypeis 'unavailable', a
P_SERVICE_TYPE_UNAVAILABLE exception israised. The service-ID is the handle with which the service supplier
can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the
context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the
registerService () method should be used.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception is raised.

servicePropertyList:in TpServicePropertylList

The "servicePropertyList" parameter isalist of property name and property value pairs corresponding to the service
properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in the
servicetype), thenaP_PROPERTY_TYPE _MISMATCH exception israised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

extendedServicePropertyList: in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter isalist of property name, mode, type, and property val ue tuples
corresponding to the service properties applicable to the extended standard service. They describe the service being
registered.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

ETSI

149 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns
TpServiceID
Raises

TpCommonExceptions, P_PROPERTY TYPE MISMATCH, P _DUPLICATE PROPERTY NAME,
P _ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE,
P MISSING MANDATORY PROPERTY, P SERVICE TYPE UNAVAILABLE

9.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is theinitial point of contact for the service. E.g. the
generic call control service uses the |pCall ControlManager interface.

9.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface;

The I pServicel nstancelL ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances. This interface and the createServiceManager() and destroyServiceManager() methods shall be implemented
by a Service.

<<Interface>>

IpServicelnstancelifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

9.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and servicelnstancel D this referenceis
returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application:in TpClientAppID
Specifies the application for which the service manager interface is requested.

serviceProperties: in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

ETSI

150 ETSI ES 203 915-3 V1.3.1 (2008-04)

serviceInstanceID: in TpServiceInstancelID
Specifies the Service Instance ID that the new Service Manager isto be identified by.

Returns

IpServiceRef

Raises

TpCommonExceptions, P _INVALID PROPERTY

9.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. Thiswill result in the client application being
unable to use the service manager any more.

Parameters

serviceInstance: in TpServicelnstanceID
I dentifies the Service Instance to be destroyed.

Raises

TpCommonExceptions

9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the " describeServiceType()”
method returns a description of each service type. The description of service type includes the "service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplnterface;

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

151 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList,
max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

9.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns
TpServiceTypeNameList
Raises

TpCommonExceptions

9.3.3.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P_ UNKNOWN_SERVICE_TY PE exception
israised.

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE

ETSI

152 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesit is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList: in TpServicePropertyList

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property valuesin the desired property list must be logically interpreted as " minimum’, "maximum”, etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max:in TpInt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns
TpServicelList
Raises

TpCommonExceptions, P _ILLEGAL SERVICE TYPE, P _UNKNOWN SERVICE TYPE,
P _INVALID PROPERTY

9.3.3.1.4 Method listRegisteredServices()
Returns alist of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns alist of registered services. Each service is characterised by
itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

ETSI

153 ETSI ES 203 915-3 V1.3.1 (2008-04)

Returns

TpServicelList

Raises

TpCommonExceptions

9.34 Integrity Management Interface Classes

9.3.4.1 Interface Class IpFwFaultManager
Inherits from: Iplnterface;

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces asit is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

If the |pFwFaultM anager interface isimplemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the | pSvcFaultM anager.svcActivity TestReq() method, it shall
implement svcActivityTestRes() and svcActivityTestErr() in thisinterface. If the Framework is capable of invoking
I pSvcFaultM anager.generateFaul tStati sticsRecordReq|(), it shall implement generateFaul tStatisticsRecordRes() and
generateFaul tStatisticsRecordErr() in this interface. If the Framework is capable of invoking
I pSvcFaultM anager.generateFaul tStati sticsRecordReq|(), it shall implement generateFaul tStatisticsRecordRes() and
generateFaul tStati sticsRecordErr() in this interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appUnavailablelnd () : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubject : in
TpSubjectType) : void

<<deprecated>> svcUnavailableInd (reason : in TpSvcUnavailReason) : void
svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in
TpServicelDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in
TpServicelDList) : void

<<deprecated>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void
<<deprecated>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void
svcAvailStatusind (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

ETSI

154 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID: in TpActivityTestID
Theidentifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject: in TpSubjectType
I dentifies the subject for testing (framework or client application).
Raises

TpCommonExceptions

9.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult:in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.1.3 Method appUnavailablelnd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

ETSI

155 ETSI ES 203 915-3 V1.3.1 (2008-04)

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce afault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject: in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

Raises

TpCommonExceptions

9.3.4.1.5 Method <<deprecated>> svcUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method svcAvail Statusind() shall be used instead, using the new and updated reason parameter to
inform the Framework the reason why the Service has become unavailable and also when the Service instance becomes
available again.

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablelnd method on the IpAppFaultM anager interface).

Parameters

reason: in TpSvcUnavailReason
Identifies the reason for the service instance's unavailability.

Raises

TpCommonExceptions

9.3.4.1.6 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-regquested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

ETSI

156 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordRes().

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the I pSvcFaultManager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

serviceIDs: in TpServiceIDList
Specifies the services that are included in the general fault statistics record. The servicel Ds parameter is not allowed to

be an empty list.
Raises

TpCommonExceptions

9.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordErr().

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
genFaultStatsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.

serviceIDs: in TpServiceIDList
Specifies the services that were included in the general fault statistics record request. The servicel Ds parameter is not

alowed to be an empty list.
Raises

TpCommonExceptions

9.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the |pSvcFaultManager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

ETSI

157 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

9.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
genFaultStatsRecordReq method invocation on the |pSvcFaultM anager interface.

Parameters

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

9.3.4.1.11 Method svcAvailStatusind()

This method is used by the service instance to inform the framework that it is about to become unavailable for use
according to the provided reason and as well to inform the Framework when the Service instance becomes available
again. The framework should inform the client applications that are currently using this service instance that it is
unavailable and as well when it becomes available again for use (viathe svcAvail Statuslnd method on the

| pAppFaultManager interface).

Parameters

reason: in TpSvcAvailStatusReason
Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to

inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions

9.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

ETSI

158 ETSI ES 203 915-3 V1.3.1 (2008-04)

recordSubject: in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

Raises

TpCommonExceptions

9.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()
This method is used by the service to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

9.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
generateFaultStati sticsRecordReq method invocation on the | pSvcFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError:in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

9.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Iplnterface;

Thisinterface is used to inform the service instance of eventsthat affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccessinterface.

If the IpSvcFaultManager interface isimplemented by a Service, at least one of these methods shall be implemented.
If the Service is capable of invoking the | pFwFaultM anager.activity TestReq() method, it shall implement
activityTestRes() and activityTestErr() in thisinterface. If the Service is capable of invoking
| pFwFaultM anager.generateFaul tStatisticsRecordReq(), it shall implement generateFaultStati sticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

ETSI

159 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<lInterface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

<<deprecated>> appUnavailablelnd () : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in
TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in
TpSubjectType) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) :
void

<<deprecated>> generateFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void
appAvailStatusind (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in
TpTimelnterval) : void

<<new>> fwAvailStatusind (reason : in TpFwAvailStatusReason) : void

9.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID: in TpActivityTestID
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult: in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

ETSI

160 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest onitself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivity TestRes method on the | pFwFaultM anager interface.

Parameters

activityTestID: in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

9.3.4.2.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of afailure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryind).

Parameters

fault:in TpInterfaceFault
Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

9.3.4.2.4 Method <<deprecated>> fwFaultRecoverylnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The
service instance may then resume using the framework.

Parameters
fault:in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions

9.3.4.2.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and a so when the Framework becomes available again.

ETSI

161 ETSI ES 203 915-3 V1.3.1 (2008-04)

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason: in TpFwUnavailReason
Identifies the reason why the framework is no longer available.

Raises

TpCommonExceptions

9.3.4.2.6 Method svcUnavailablelnd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.2.7 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method appAvail Statusind shall be used instead, using the new reason parameter to inform the
Service the reason why the Application is unavailable and a so when the application becomes available again.

The framework invokes this method to inform the service instance that the framework may have detected that the
application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

9.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordRes shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReq method invocation on the |pFwFaultM anager interface.

Parameters

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

ETSI

162 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

9.3.4.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID:in TpActivityTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

9.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordErr shall be used instead, using the new identifier to correlate
requests and errors.

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

9.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordReq().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the | pFaultManager
interface. On receipt of this request the service must produce afault statistics record, for either the framework or for the
client'sinstances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the | pFwFaultManager interface. If the framework does not have accessto a
service instance with the specified servicel D, the P UNAUTHORISED _PARAMETER_VALUE exception shall be
thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

ETSI

163 ETSI ES 203 915-3 V1.3.1 (2008-04)

serviceIDs: in TpServiceIDList
Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty

list.
Raises
TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

9.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method generateFaultStatisticsRecordReq shall be used instead, using the new identifier to correlate
requests and responses.

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the
IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the
specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the

I pFwFaultManager interface.

Parameters

timePeriod: in TpTimeInterval
The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings

leaves the time period to the discretion of the service.
Raises

TpCommonExceptions

9.3.4.2.13 Method appAvailStatusind()

The framework invokes this method to inform the service instance that the client application is no longer available
using different reasons for the unavailability. This may be aresult of the application reporting afailure. Alternatively,
the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return
heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again
the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason: in TpAppAvailStatusReason

I dentifies the reason why the application is no longer available. APP_AVAILABLE isused to inform the Service that
the Application is available again.

Raises

TpCommonExceptions

9.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in responseto a
generateFaultStati sticsRecordReq method invocation on the I pFwFaultM anager interface.

ETSI

164 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

faultStatsReqID: in TpFaultReqID
Used by the service instance to correlate this response (when it arrives) with the original request.

faultStatistics:in TpFaultStatsRecord
The fault statistics record.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

9.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaul tStati sticsRecordReq method invocation on the | pFwFaultManager interface.

Parameters

faultStatsReqID: in TpFaultReqID
Used by the service instance to correlate this error (when it arrives) with the original request.

faultStatisticsError: in TpFaultStatisticsError
The fault statistics error.

recordSubject: in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

9.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the generateFaultStati sticsRecordReq operation
on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record
during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes
operation on the | pFwFaultM anager interface.

Parameters

faultStatsReqID: in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod: in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

ETSI

165 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

9.3.4.2.17 Method <<new>> fwAvailStatusind()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The service instance may wait for the problem to be solved and just stop the usage of the Framework until the

fwAvail Statusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason: in TpFwAvailStatusReason
I dentifies the reason why the framework is no longer available or that it has become available again.

9.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Iplnterface;

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
IpFwHeartBeatM gmt interface isimplemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

9.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

svcInterface: in IpSvcHeartBeatRef
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpCommonExceptions, P _INVALID INTERFACE TYPE

ETSI

166 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

9.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface;

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking |pSvcHeartBeatM gmt.enableHeartBeat(), it shall implement |pFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

9.3.4.4.1 Method pulse()
The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse

at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

ETSI

167 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

9.3.4.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Ipinterface;

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatM gmt interface isimplemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwinterface : in IpFwHeartBeatRef) : void
disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

9.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

fwInterface: in IpFwHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

Raises

TpCommonExceptions, P_INVALID INTERFACE TYPE

9.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

168 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval:in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

9.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Iplnterface;

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Serviceis
capable of invoking |pFwHeartBeatM gmt.enableHeartBest(), it shall implement IpSvcHeartBeat and the pulse()
method.

<<Interface>>

IpSvcHeartBeat

pulse () : void

9.3.4.6.1 Method pulse()
The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at

the end of every interval specified in the parameter to the |pFwHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

169 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.7 Interface Class IpFwLoadManager
Inherits from: Iplnterface;

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at al costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the

I pSvcL oadManager interface to provide the callback mechanism.

If the |pFwL oadManager interface isimplemented by a Framework, at least one of the methods shall be
implemented as a minimum requirement. If load level notifications are supported, the createl oadlL evel Notification()
and destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() isimplemented, then
resumeNotification() shall be implemented aso. If a Framework is capable of invoking the
| pSvcl oadM anager.querySvcl oadStatsReq() method, then it shall implement querySvcl cadStatsRes() and
querySvcL oadStatsErr() methodsin thisinterface.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

<<deprecated>> queryLoadReq (querySubject : in TpSubjectType, timelnterval : in TpTimelnterval) : void
<<deprecated>> querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void
createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType,
timelnterval : in TpTimelnterval) : void

<<new>> querySvclLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList)
: void

<<new>> querySvclLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in
TpLoadStatisticError) : void

9.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In
addition this method shall be called by the service instance in order to report current load status, when load notifications
arefirst requested, or resumed after suspension.

ETSI

170 ETSI ES 203 915-3 V1.3.1 (2008-04)

Parameters

loadLevel: in TpLoadLevel
Specifies the service instance's load level.

Raises

TpCommonExceptions

9.3.4.7.2 Method <<deprecated>> queryLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL cadStatsReq shall be used instead, using the new identifier to correlate requests and
responses.

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

querySubject: in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

9.3.4.7.3 Method <<deprecated>> querySvcLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querySvcl oadStatsRes shall be used instead, using the new identifier to correlate requests
and responses.

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadReq method on the IpSvcl oadManager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

9.3.4.7.4 Method <<deprecated>> querySvcLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querySvcL oadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

ETSI

171 ETSI ES 203 915-3 V1.3.1 (2008-04)

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvclL oadReq method on the I pSvcl oadManager interface.

Parameters

loadStatisticError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

9.3.4.7.5 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall
inform the service instance of the current framework or application load using the loadL evel Notification method on the
corresponding 1pSvcl oadM anager.

Parameters

notificationSubject: in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

9.3.4.7.6 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject:in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

9.3.4.7.7 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject: in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

ETSI

172 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

9.3.4.7.8 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadL evelNotification method on the
corresponding | pSvcL oadM anager.

Parameters

notificationSubject: in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications of load level changes by the

framework should be resumed.
Raises

TpCommonExceptions

9.3.4.7.9 Method <<new>> queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

loadStatsReqID: in TpLoadTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

querySubject: in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

9.3.4.7.10 Method <<new>> querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadStatsReq method on the 1pSvcl oadM anager
interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

ETSI

173 ETSI ES 203 915-3 V1.3.1 (2008-04)

loadStatistics:in TpLoadStatisticList
Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

9.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcL oadStatsReq method on the I pSvcl oadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

9.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Ipinterface;

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess
interface.

If the IpSvcLoadManager interface isimplemented by a Service, at least one of the methods shall be implemented as
aminimum requirement. If load level notifications are supported, then loadLevel Notification() shall be implemented. If
a Service is capable of invoking the I pFwL oadM anager.queryL oadStatsReq() method, then it shall implement
querylL oadStatsRes() and queryL oadStatsErr() methods in thisinterface.

ETSI

174 ETSI ES 203 915-3 V1.3.1 (2008-04)

<<lInterface>>

IpSvcLoadManager

<<deprecated>> querySvclLoadReq (timelnterval : in TpTimelnterval) : void

<<deprecated>> queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

<<deprecated>> queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> querySvclLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) :
void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticSError : in
TpLoadStatisticError) : void

9.3.4.8.1 Method <<deprecated>> querySvcLoadReq()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querySvcL oadStatsReq shall be used instead, using the new identifier to correlate requests
and responses.

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval: in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

9.3.4.8.2 Method <<deprecated>> queryLoadRes()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method queryL cadStatsRes shall be used instead, using the new identifier to correlate requests and
responses.

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the | pFwL oadManager interface.

Parameters

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

ETSI

175 ETSI ES 203 915-3 V1.3.1 (2008-04)

Raises

TpCommonExceptions

9.3.4.8.3 Method <<deprecated>> queryLoadErr()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method querylL oadStatsErr shall be used instead, using the new identifier to correlate requests and
errors.

The framework uses this method to return an error response to the service that requested the framework's |oad statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pFwL oadManager interface.

Parameters

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

9.3.4.8.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters
loadStatistics:in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions

9.3.4.8.5 Method suspendNotification()

The framework uses this method to reguest the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.6 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the

ETSI

176 ETSI ES 203 915-3 V1.3.1 (2008-04)

service instance shall inform the framework of the current load using the reportL oad method on the corresponding
I pFwL oadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.7 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service
instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportL oad method on the corresponding | pFwL oadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.8 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

9.3.4.8.9 Method <<new>> querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID: in TpLoadTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval: in TpTimeInterval
Specifies the timeinterval for which load statistic records should be reported.

Raises

TpCommonExceptions

ETSI

177 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.8.10 Method <<new>> queryLoadStatsRes()
The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the | pFwL oadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the service instance to correlate this response (when it arrives) with the original regquest.

loadStatistics:in TpLoadStatisticList
Specifies the framework-supplied load statistics.

Raises

TpCommonExceptions

9.3.4.8.11 Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the I pFwL oadManager interface.

Parameters

loadStatsReqID: in TpLoadTestID
Used by the service instance to correlate this error (when it arrives) with the original request.

loadStatisticsError: in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

9.3.4.9 Interface Class IpFwOAM
Inherits from: Iplnterface;

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. Thisinterface and the
systemDateTimeQuery() method are optional .

<<Interface>>
IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

178 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime: in TpDateAndTime

Thisisthe date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

9.3.4.10 Interface Class IpSvcOAM
Inherits from: Ipinterface;

Thisinterface and the systemDateTimeQuery() method are optional.

<<Interface>>

IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

9.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisisthe date and time of the client (service).

Parameters

systemDateAndTime: in TpDateAndTime

Thisisthe system date and time of the framework. The error code P_INVALID_DATE TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

ETSI

179 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.5 Event Notification Interface Classes

9.3.5.1 Interface Class IpFwEventNotification
Inherits from: Iplnterface;

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be supported.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

9.3.5.1.1 Method createNotification()
This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria:in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_INVALID EVENT TYPE, P INVALID CRITERIA

9.3.5.1.2 Method destroyNoatification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID: in TpAssignmentID

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT _ID.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID

ETSI

180 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.3.5.2 Interface Class IpSvcEventNotification
Inherits from: Iplnterface;

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be supported.

<<Interface>>

IpSvcEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void
notificationTerminated () : void

9.3.5.2.1 Method reportNatification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo: in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID: in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

9.3.5.2.2 Method notificationTerminated()

This method indicates to the service that al generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

181 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

9.4.1 Service Registration State Transition Diagrams

9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

registerService

SCF
Registered

. Q i I ili
unannounceSeniice announceServiceAvailability

describeService

' R

‘ SCF
‘ Announced
~

unregisterService

)
°

Figure 32: State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

ETSI

182 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.4.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer available for discovery.

9.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager.

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery.

9.4.4 Integrity Management State Transition Diagrams
9.4.4.1 State Transition Diagrams for IpFwLoadManager

reportLoad

"load change” NoadLevelNotification queryAppLoadRes|[load statistics requested by LoadManag
queryAppLoadErr load statistics requested by LoadMan:

createLoadLevelNotification NoadLevelNotification ‘ Active ‘ queryLoadReq

destroyLoadLevelNotification

I[pAccess\obtain|

IpAccess \gbtaininterfaceWithCallback

resumeNotification
~NoadLevelNatification

reportLoad
queryAppLoadRes|[load statistics requested by LoadM
queryAppLoadErr| load statistics requested by Loac

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

All States

IpAccess.endAccess

suspendNotification
[all notifications suspended]

Figure 33: State Transition Diagram for IpFwLoadManager

9.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

ETSI

183 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the L oadM anager to suspend sending the load level
notification information.

9.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl.oadL evel Notification()
invocation on the IpFwL oadM anager. The load manager can now request the service to supply load statistics
information (by invoking querySvcL oadReq()). Furthermore the LoadManager can request the service to control its
load (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

9.4.4.2 State Transition Diagrams for IpFwFaultManager

IpAccess.obtaininterfaceWithCallback "FaultManagement")
/ add service to fault management

‘change in framework availability (non fault)' ~fwAvailStatusind to all services with callback
‘change in application availability' ~appAvail Statusind to all servicesused by application

appUnavailablelnd / test the application, inform application that service is not using it

A
application fault AappAvailStatusind to all genFaultStatsRecordReq "svc.genFaultStatsRecordRes/Err
servicesused by the application Framework

Active

no fault detected

ctivityTestReq[framework]
activityTestRegfclient]

no fault detected

Framework Activity Test
Application Activity Test
pplicatl Y IpAccess.endAccess

entry/ test activity of framework
exit/ "lpSvcFaultManager.activityTestRes
exit/ MlpSvcFaultManager.activityTestEm

entry/ test activity of application
exit/ NlpSvcFaultManager.activityTestRes
exit/ NlpSvcFaultManager.activityTestErm

IpAccesSrendAc

cess/ Abort

quest IpAccess.endAccess / Abort

pending test request

fault detected in fi

IpAccess.endAccess/ remove service .
from load management
fault detected in fw

Framework Faulty ‘

entry/ MwAvailStatusind to all services with callback
exit/ MwAvailStatusind to all services with callback

Figure 34: State Transition Diagram for IpFwFaultManager

9.4.4.2.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and service capability features.

9.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If aproblem is diagnosed, all services with fault
management callbacks are notified through an fwAvail Statusl nd message.

9.4.4.2.3 Application Activity Test State
In this state, the framework is performing atest on one client application. If the application is faulty, services that are

used by the application and that have provided fault management callbacks are notified accordingly through an
appAvail Statusl nd message.

ETSI

184 ETSI ES 203 915-3 V1.3.1 (2008-04)

9.4.4.2.4 Framework Faulty State

In this state, the framework has detected an interna problem with itself such that application and service capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, services with fault management callbacks will be notified
viaafwAvail Statusind message.

9.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

10 Service Properties

10.1 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an
indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from
limitations in the network. The service type of an SCF defines which properties the supplier shall provide at registration
of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The
Framework validates the requested properties with the registered properties and provides the application with alist of
SCFsthat comply to the application's request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this
standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully
compatible with the standard SCF, that is, an application shall be able to use the sub type asiif it was the standard type.
Thisimplies that the interface to the SCF remains unchanged. Also SCF sub types can be further extended. Thisway a
hierarchy of service types can be built with the standard type being the root.

An example of asub typeisaMulty Party Call Control service that allows the application to request a certain quality-
of-service level. An additional service property is added for this.

10.2 Service Property Types

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property
value of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or
allowed and instances where this property is not used or alowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF isinstantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: Thisisachieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

ETSI

185 ETSI ES 203 915-3 V1.3.1 (2008-04)
Service Property type name Description Example value Interpretation of example
(array of strings) value
BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans

consisting of the Boolean
"false".

INTEGER_SET set of integers {"1", 2", "5", "7"} The set of integers
consisting of the integers 1,
2,5and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting

of the string "Sophia" and
the string "Rijen".

INTEGER_INTERVAL

interval of integers

{"5", "100"}

The integers that are
between or equal to 5 and
100.

STRING_INTERVAL

interval of strings

{"Rijen", "Sophia"}

The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP

map from integers to

{"1", "10”, ||2n, n20n, ||3u, 113011}

The map that maps 1 to 10,

integers 2 to 20 and 3 to 30.
XML_ADDRESS RANGE_SET |set of values of {"<AddressRangeSet> In case

TpAddressRange. <AddressRange> P_REGEX_SUPPORT_FOR

Values of <Plan>P_ADDRESS PLA | ADDRESS_RANGE is

TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

N_E164</Plan>
<AddrString>123*</AddrS

tring>

</AddressRange>

<AddressRange>
<Plan>P_ADDRESS PLA

N_E164</Plan>
<AddrString>456*</AddrS

tring>

</AddressRange>

</AddressRangeSet>"}

TRUE: Any addresses
containing 123 or containing
456 in the E.164 Address
Plan.

In case
P_REGEX_SUPPORT_FOR
_ADDRESS_RANGE is
FALSE:

Any addresses starting with
123 or starting with 456 in
the E.164 Address Plan.

FLOAT_SET

set of values of
TpFloat

{'0.1", “.2", "0.1e+3}

The set of floats containing
floating point numbers 0.1,
0.2 and 100.

FLOAT_INTERVAL

interval of TpFloat
values

{*-1.17,“5.0"}

The floating point numbers
that are between or equal to
—1.1 and 5.0.

The bounds of the string interval, integer interval and float interval types may hold the reserved value

"UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is
the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper
bound of the interval isthe largest value supported by the type.

Thelexical representation of float values shall be compliant with the IEEE 754 standard.

When an SCF is registered by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an
empty set. When a serviceis discovered by an application, this application shall specify either { TRUE} or { FALSE} as
value for service properties of type BOOLEAN_SET.

Thevalue of XML_ADDRESS RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlins:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="AddressRangeSet">

<xs:complexType>
<xs:sequence>

<xs:element name="AddressRange" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>
<xs:element name="AddrString" type="xs:string"/>

ETSI

186 ETSI ES 203 915-3 V1.3.1 (2008-04)

<xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

An example usage could be:

{ n<?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="xml_address_range_set.xsd">
<AddressRange>
<Plan>P_ADDRESS_PLAN_E164</Plan>
<AddrString>789*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_ANY</Plan>
<AddrString>123*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_SIP</Plan>
<AddrString><sip:*@parlay.org></AddrString>
<Name/>
</AddressRange>
</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:* @parlay.org>.

10.3 General Service Properties
Each service instance has the following genera properties:

e Service Name

e ServiceVersion

e ServicelD

e Service Description

e Product Name
e Product Version

e Supported Interfaces

e Operation Set
e Compatible Service

e Backward Compatibility Level

e Migration Required

o DataMigrated

e Migration Date and Time

e Support for Regular Expressionsin Address Range

The following clauses describe these general service propertiesin more detail. The values for the mode are defined in
the type TpServiceTypePropertyMode.

ETSI

10.3.1 Service Name

187

ETSI ES 203 915-3 V1.3.1 (2008-04)

Property

Type

Mode

Description

P_SERVICE_NAME

STRING_SET

MANDATORY_READONLY

This property contains the name of the
service, e.g. "UserLocation”,
"UserLocationCamel",
"UserLocationEmergency" or

"UserStatus".
10.3.2 Service Version
Property Type Mode Description
P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the
APIs, to which the service is compliant. It is a
set of strings as specified in the TpVersion
type.
10.3.3 Service ID
Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL |READONLY This property uniquely identifies a specific
service. Note that the Framework generates
this property value when the Service Supplier
registers the service. This property should not
be confused with the servicelnstancelD
generated by the Framework when a Client
Application signs a Service Agreement to
obtain the Service Manager
10.3.4 Service Description
Property Type Mode Description
P_SERVICE_DESCRIPTION |STRING_SET MANDATORY_READONLY |This property contains a textual
description of the service. It should not
be interpreted as a description of a
Service Instance (as identified by a
servicelnstancelD generated by the
Framework when a Client Application
signs a Service Agreement to obtain
the Service Manager).
10.3.5 Product Name
Property Type Mode Description
P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the
product that provides the service, e.g. "Find
It", "Locate.com".
10.3.6 Product Version
Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
"3.1.11".

ETSI

188 ETSI ES 203 915-3 V1.3.1 (2008-04)

10.3.7 <<deprecated>> Supported Interfaces

This property contains alist of strings with interface names that the service supports, e.g. "lpUserLocation”,
"IpUserStatus'. This property is deprecated and will be removed in a future version of the present document.

10.3.8 Operation Set

Property Type Mode Description

P_OPERATION_SET STRING_SET MANDATORY Specifies set of the operations the SCS
supports.

The notation to be used is :
{"Interfacel.operationl","Interfacel.operation
2", "Interface2.operation1"}, e.g.:
{"IpCall.createCall","IpCall.routeReq"}.

10.3.9 Compatible Service

Property Type Mode Description
P_COMPATIBLE_WITH_SERVICE [STRING_SET |READONLY Specifies the Set of Services, identified by
their ServicelDs, with which this new service
is compatible.

This property should at least be accompanied
with the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties like Migration Required, Data
Migrated, etc.

For all these properties the order of the
Services shall be identical.

ETSI

189

10.3.10 Backward Compatibility Level

ETSI ES 203 915-3 V1.3.1 (2008-04)

Property

Type

Mode

Description

P_BACKWARD_COMPATIBILITY_L |BOOLEAN_SET

EVEL

READONLY

Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: Service is completely
backwards compatible

Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

10.3.11 Migration Required

Property

Type

Mode

Description

P_MIGRATION_REQUIRED

BOOLEAN_SET

READONLY

Specifies if the new service is replacing the
service identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: new service is replacing the
existing one — migration is required before the
date/time indicated in
P_MIGRATION_DATE_AND_TIME property.
Value = FALSE: new service is not replacing
the existing one — migration not required, the
existing service is retained.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.
If the value set of
P_MIGRATION_REQUIRED contains TRUE,
P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME
properties shall also to be present.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

ETSI

10.3.12 Data Migrated

190

ETSI ES 203 915-3 V1.3.1 (2008-04)

Property

Type

Mode

Description

P_DATA_MIGRATED

BOOLEAN_SET

READONLY

Indicates if the data (e.g. notifications) from
the existing service identified in the
P_COMPATIBLE_WITH_SERVICE property
is also available in this Service.

Value = TRUE: all data is migrated.

Value = FALSE: no data is migrated.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

ETSI

191 ETSI ES 203 915-3 V1.3.1 (2008-04)

10.3.13 Migration Date And Time

Property Type Mode Description

P_MIGRATION_DATE_AND_TIME |STRING_SET READONLY [This property contains the date and time, in
the format described in TpDateAndTime, by
which point applications shall have migrated
from existing services to this new service.
Migration to the new service requires the
application to terminate the existing service
agreement, and sign a new one.

Failure to do this by the migration date and
time indicated in this property may result in
the service agreement being terminated by
the Framework, since the service supplier
may choose to unregister the service
following this date and time.

Only one value of TpDateAndTime is
permitted to be present in this property at
service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA_MIGRATED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical. For those services
for which migration is not required
(P_MIGRATION_REQUIRED set to FALSE),
the corresponding value of this property shall
be ignored.

10.3.14 Support for Regular Expressions in Address Range

Property Type Mode Description
P_REGEX_SUPPORT _FOR_ADDRES [BOOLEAN _SET |READONLY [Indicates if the AddrString and
S RANGE SubAddressString fields of

TpAddressRange are expressed as regular
expressions (TRUE) or not (FALSE)

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:

- Datatype, that shows the name of the data type.

Description, that describes the data type.

- Tabular specification, that specifies the data types and values of the data type.

ETSI

192 ETSI ES 203 915-3 V1.3.1 (2008-04)

- Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
ES 203 915-2 [57].

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator's domain). This unique
identifier shall be negotiated with the OSA operator and the application shall useit to identify itself.

11.1.2 TpClientApplIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

11.1.3 TpDomainlD

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity attempting to
access the Framework.

Tag Element Type
TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID
P_CLIENT_APPLICATION TpClientAppID ClientAppID
P_ENT_OP TpEntOpID EntOpID
P SERVICE INSTANCE TpServicelnstancelD ServicelD (See note)
P_SERVICE_SUPPLIER TpServiceSupplierlD ServiceSupplierID

NOTE: The Choice Element Name ServicelD of TpDomainID refers to a service instance.

11.1.4 TpDomainiDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P FW 0 The Framework
P_CLIENT_APPLICATION 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVICE_INSTANCE 3 A service instance
P_SERVICE SUPPLIER 4 A service supplier

11.1.5 TpEntOpID

This datatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpString. It isthe name of a generic "property".

ETSI

193 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.1.7 TpPropertyValue

This datatypeisidentical to TpString. It isthe value (or the list of values) associated with a generic "property”.

11.1.8 TpProperty

This datatypeis a Sequence of Data Elements which describes a generic "property”. It is a structured data type
consisting of the following { name, value} pair.

Sequence Element Name Sequence Element Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.1.9 TpPropertyList

This datatype defines a Numbered List of Data Elements of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

11.1.11 TpFwiID

This datatypeisidentical to TpString and identifies the Framework.

11.1.12 TpService

This datatypeis a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Name Sequence Element Type Documentation
ServicelD TpServicelD
ServiceDescription TpServiceDescription This field contains the description of the
service.

11.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type Documentation
ServiceTypeName TpServiceTypeName
ServicePropertyList TpServicePropertyList

11.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

ETSI

194 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicelD.

11.1.17 TpServicelnstancelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

11.1.18 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service type. It
defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.

Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property's name and mode, but also defines the list of values assigned to it.

Sequence Element Name Sequence Element Type Documentation
ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

11.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided.
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service
registration time.
READONLY 2 The value of the corresponding SCF property type is optional, but once given a

value it can not be modified/restricted by a service level agreement.

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not
subsequently be modified/restricted by a service level agreement.

11.1.21 TpServicePropertyTypeName

Thisdatatypeisidentical to TpString and describes a valid SCF property type name. Valid service property type hames
are detailed in clause 10.1.

11.1.22 TpServicePropertyName

Thisdatatypeisidentical to TpString. It defines avalid SCF property name. The valid service property names are
detailed in clause 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service
properties (used for service sub types) are possible.

11.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type T pServicePropertyName.

11.1.24 TpServicePropertyValue

This datatypeisidentical to TpString and describes a valid value of a SCF property.

ETSI

195

11.1.25 TpServicePropertyValueList

ETSI ES 203 915-3 V1.3.1 (2008-04)

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

11.1.26 TpServiceProperty

This datatypeis a Sequence of Data Elements which describes an " SCF property". It is a structured data type which

consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServicePropertyName

TpServicePropertyName

ServicePropertyValueList

TpServicePropertyValueList

11.1.27 TpServicePropertyList

This data type defines aNumbered Set of Data Elements of type TpServiceProperty.

11.1.28 TpServiceSupplierlD

Thisisan identifier for aservice supplier. It is used to identify the supplier to the Framework. This datatype isidentical

to TpString.

11.1.29 TpServiceTypeDescription

This datatypeis a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServiceTypePropertyList

TpServiceTypePropertyList

A sequence of property name and
property mode tuples associated
with the SCF type.

ServiceTypeNameList TpServiceTypeNameList The names of the super types of
the associated SCF type.
AvailableOrUnavailable TpBoolean An indication whether the SCF

type is available (true) or
unavailable (false).

ETSI

196 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.1.30 TpServiceTypeName

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may aso be used, but should be preceded by the string
"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name.

P _GENERIC CALL CONTROL

The name of the Generic Call Control SCF.

P_MULTI_PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF.

P_MULTI MEDIA CALL CONTROL

The name of the MultiMedia Call Control SCF.

P_CONFERENCE_CALL CONTROL

The name of the Conference Call Control SCF.

P_USER_INTERACTION

The name of the User Interaction SCFs.

P_USER_INTERACTION_ADMIN

The name of the User Interaction Administration SCF.

P_TERMINAL_CAPABILITIES

The name of the Terminal Capabilities SCF.

P_USER _BINDING

The name of the User Binding SCF.

P _USER LOCATION

The name of the User Location SCF.

P_USER_LOCATION_CAMEL

The name of the Network User Location SCF.

P_USER_LOCATION_EMERGENCY

The name of the User Location Emergency SCF.

P _USER STATUS

The name of the User Status SCF.

P _EXTENDED USER STATUS

The name of Extended User Status SCF.

P_DATA_SESSION_CONTROL

The name of the Data Session Control SCF.

P_GENERIC_MESSAGING

The name of the Generic Messaging SCF.

P_CONNECTIVITY_MANAGER

The name of the Connectivity Manager SCF.

P _CHARGING

The name of the Charging SCF.

P_ACCOUNT_MANAGEMENT

The name of the Account Management SCF.

P_POLICY_PROVISIONING

The name of the Policy Management provisioning SCF.

P_POLICY_EVALUATION

The name of the Policy Management policy evaluation SCF.

P _PAM ACCESS

The name of PAM presentity SCF.

P_PAM_EVENT_MANAGEMENT

The name of PAM watcher SCF.

P_PAM_PROVISIONING

The name of PAM provisioning SCF.

P _MULTI_MEDIA MESSAGING

The name of the Multimedia Messaging SCF.

11.1.31 TpServiceTypeNameList

This datatype defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT_UNDEFINED 0 The subject is neither the framework
nor the client application.
P_SUBJECT_CLIENT_APP The subject is the client application.
P _SUBJECT FW 2 The subject is the framework.

=

ETSI

197

11.1.33 TpServiceTypePropertyValue

ThisdatatypeisaSequence of Data Elements which describes a service property associated with aservice. It
defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It is

ETSI ES 203 915-3 V1.3.1 (2008-04)

similar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to register

values for known service properties only.

Sequence ElementName Sequence ElementType Documentation
ServicePropertyName TpServicePropertyName The name of the service property.
ServiceTypePropertyMode TpServiceTypePropertyMode The mode of the service property.
ServicePropertyTypeName TpServicePropertyTypeName The type of the service property.
ServicePropertyValuelList TpServicePropertyValueList The Value-list of the service
property.

11.1.34 TpServiceTypePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServiceTypePropertyValue.

11.2 Event Notification Data Definitions

11.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description

P_EVENT FW_NAME_UNDEFINED 0 Undefined.

P EVENT FW SERVICE AVAILABLE 1 Notification of SCS(s) available.

P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming
unavailable.

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE 3 Notification of a backwards compatible
SCS becoming available, to which the
application can migrate.

P_EVENT_FW_APP_SESSION_CREATED 4 Notification of an application<->FW
access session created. (See note)

P_EVENT_FW_APP_SESSION_TERMINATED 5 Notification of an application<->FW
access session terminated. (See note)

P_EVENT_FW_APP_AGREEMENT_SIGNED 6 Notification that a service agreement
has been signed. (See note)

P_EVENT_FW_APP_AGREEMENT_ENDED 7 Notification that a service agreement
has been ended/terminated. (See
note)

NOTE : These events can only be requested by enterprise operators. If requested by any other entity then the

method will throw the P_INVALID CRITERIA exception.

ETSI

11.2.2 TpFwEventCriteria

198

ETSI ES 203 915-3 V1.3.1 (2008-04)

Defines the Tagged Choice of Data Elements that specifies the criteriafor an event notification to be generated.

Tag Element Type

TpFwEventName

Tag Element Value

Choice Element Type

Choice Element Name

ABLE

P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined
P_EVENT_FW_ SERVICE_AVAILABLE TpServiceTypeNamelList ServiceTypeNameList
P_EVENT FW_SERVICE_UNAVAILABLE TpServiceTypeNamelList [UnavailableServiceTypeNamelList
P_EVENT_FW_MIGRATION_SERVICE_AVAIL | TpServiceTypeNameList | CompatibleServiceTypeNameList

P_EVENT_FW_APP_SESSION_CREATED

TpClientApplIDList

SessionCreatedList

P EVENT FW APP SESSION TERMINATED

TpClientApplIDList

SessionTerminatedList

P_EVENT FW APP AGREEMENT SIGNED

TpClientAppIDList

AgreementSignedList

P EVENT FW APP AGREEMENT ENDED

TpClientAppIDList

AgreementEndedList

11.2.3 TpFwEventinfo

Defines the Tagged Choice of Data Elements that specifies the information returned to the client in an event

notification.

Tag Element Type

TpFwEventName

Tag Element Value

Choice Element Type

Choice Element Name

P_EVENT FW_NAME_UNDEFINED

TpString

EventNameUndefined

P _EVENT FW_SERVICE AVAILABLE

TpServicelDList

ServicelDList

P _EVENT FW SERVICE_UNAVAILABLE

TpServicelDList

UnavailableServicelDList

P_EVENT FW_MIGRATION_SERVICE_A
VAILABLE

TpFWMigrationServiceAvailabl
elnfo

MigrationServiceAvailable

P_EVENT_FW_APP_SESSION_CREATE
D

TpClientApplID

AppSessionCreated

P_EVENT_FW_APP_SESSION_TERMIN
ATED

TpClientApplID

AppSessionTerminated

ED

P_EVENT_FW_APP_AGREEMENT_SIGN TpFwAgreementinfo AppAgreementSigned
ED
P_EVENT_FW_APP_AGREEMENT_END TpFwAgreementinfo AppAgreementEnded

ETSI

199

ETSI ES 203 915-3 V1.3.1 (2008-04)

11.2.4 TpFwMigrationServiceAvailablelnfo

Defines the information to be supplied when an SCS becomes available.

Sequence ElementName

Sequence ElementType

Documentation

ServiceType

TpServiceTypeName

Type of SCS that has become available.

ServicelD

TpServicelD

ID of the SCS that has become available.

CompatibleServicelD

TpServicelD

ID of the SCS with which this new SCS is
compatible with.

BackwardCompatibilityLevel

TpBoolean

Specifies if the new SCS is completely backwards
compatible with the currently used SCS.

Value = TRUE: SCS is completely backwards
compatible.

Value = FALSE: SCS is not completely backwards
compatible. Contact the Framework operator for
more information.on how to migrate.

MigrationRequired

TpBoolean

Specifies if the new SCS is replacing the existing
SCS.

Value = TRUE: new SCS is replacing the existing
one - migration is required before the date/time
indicated in MigrationDateAndTime field.

Value = FALSE: new SCS is not replacing the
existing one, but is provided in addition.

All migration to the new SCS, whether required or
not, shall involve the application terminating the
existing service agreement and signing a new one.

DataMigrated

TpBoolean

Indicates whether all the data the application set in
the previous SCS (e.qg. notifications) is also
available in the new SCS.

Value = FALSE : the new SCS has not obtained all
data (e.g. notifications) related to the old SCS and
the application needs to reset all the previous data.
Value = TRUE: the new SCS has obtained data
(e.g. notifications) related to the old SCS, the
application can use the new SCS without resetting
data.

MigrationDataAndTime

TpDateAndTime

Indicates the date and time before which
applications shall have migrated from existing the
existing SCS to this new SCS.

Migration to the new SCS requires the application to
terminate the existing service agreement, and sign a
new one.

Failure to do this by the migration date and time
indicated in this field may result in the service
agreement being terminated by the Framework,
since the service supplier may choose to unregister
the service following this date and time.

The value of this parameter, if present, shall be
ignored if MigrationRequired is set to FALSE.

MigrationAdditionallnfo

TpMigrationAdditionallnfoSet

Contains additional migration information. This is
initially provided to permit addition of information in
later releases without impacting backwards
compatibility.

11.2.5 TpMigrationAdditionallnfo

Definesthe Tagged Choice of Data Elements that specify additional migration-related information.

Tag Element Type

TpMigrationAdditionallnfoType

Tag Element Value

Choice Element Type

Choice Element Name

P_MIGRATION INFO UNDEFINED

NULL

Undefined

ETSI

200 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.2.6 TpMigrationAdditionallnfoType

Defines the type of migration-related additional information.

Name Value Description
P_MIGRATION_INFO_ UNDEFINED 0 Undefined

11.2.7 TpMigrationAdditionallnfoSet

DefinesaNumbered Set of Data Elements of TpMigrationAdditionalInfo.

11.2.8 TpFwAgreementinfo

Definesthe Sequence of Data Elements that specifiesthe information returned to the enterprise operator
application in an event notification.

Sequence Element Name Sequence Element Type Description
ClientApplicationID TpClientAppID The ID of the client application.
ServicelD TpServicelD The ID of the service for whom the
agreement was signed/terminated.
ServiceContractID TpServiceContract|D The ID of the service contract related to

the agreement if available, an empty
string otherwise.

ServiceProfilelD TpServiceProfilelD The ID of the service profile related to
the agreement if available, an empty
string otherwise.

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. Thisidentifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "sp_". The following value is defined.

String Value Description
P OSA ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess.

11.3.2 TpAuthType

This datatype isidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string "SP_". The following values are defined.

String Value Description

P_OSA_AUTHENTICATION |Authenticate using the OSA API Level Authentication Interfaces:
IpAPILevelAuthentication and IpClientAPILevelAuthentication.

P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA
Security.

ETSI

201 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.3.3 TpEncryptionCapability

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES_56 A simple transfer of secret information that is shared between the client application and

the Framework with protection against interception on the link provided by the DES
algorithm with a 56-bit shared secret key. The ECB mode of DES is to be used.

P_DES_128 A simple transfer of secret information that is shared between the client entity and the
Framework with protection against interception on the link provided by the DES algorithm
with a 128-bit shared secret key. Use of the P_DES_128 value of TpEncryptionCapability
is deprecated, as DES cannot be used with a 128-bit key.

P_RSA 512 A public-key cryptography system providing authentication without prior exchange of
secrets using 512-bit keys.

P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of
secrets using 1 024-bit keys.

P_TDEA The Triple-DES or TDEA algorithm with three 56-bit secret keys. The key exchange is

handled separately, and may permit use of three, two or only one unique key. The TECB
mode of Triple-DES is to be used.

11.3.4 TpEncryptionCapabilityList

This datatypeisidentical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma
(,) asthe separation character.

11.3.5 TpEndAccessProperties
This datatypeis of type TpPropertyList. It identifies the actions that the Framework should perform when an

application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

11.3.6 TpAuthDomain

Thisis Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a
reference to the authentication interface of the domain.

Sequence Element Name Sequence Element Type Description

DomainlID TpDomainID Identifies the domain for authentication. This
identifier is assigned to the domain during the
initial contractual agreements, and is valid during
the lifetime of the contract.

Authinterface IpInterfaceRef Identifies the authentication interface of the
specific entity. This data element has the same
lifetime as the domain authentication process,
i.e. in principle a new interface reference can be
provided each time a domain intends to access
another.

ETSI

202 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.3.7 TplinterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "sP_". The following values are defined.

Character String Value Description

P_DISCOVERY The name for the Discovery interface.

P _EVENT NOTIFICATION The name for the Event Natification interface.

P_OAM The name for the OA&M interface.

P_LOAD_MANAGER The name for the Load Manager interface.

P FAULT MANAGER The name for the Fault Manager interface.

P HEARTBEAT MANAGEMENT The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_ MANAGEMENT |The name of the Service Agreement Management interface.

P_REGISTRATION The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator
Account Management interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator
Account Information Query interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract
Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract
Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application
Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application
Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile
Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile
Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

This datatype isidentical to a TpString, and identifies a selected SCF. Thisis a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceT oken has alimited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceT oken expires, and any
method accepting the serviceToken will return an error code (P INVALID SERVICE_ TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the endAccess method on the other's corresponding access
interface.

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Name Sequence Element Type
DigitalSignature TpOctetSet
ServiceMgrinterface IpServiceRef

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signatureis calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

ETSI

203 ETSI ES 203 915-3 V1.3.1 (2008-04)

The ServiceMgrinterface is a reference to the SCF manager interface for the selected SCF.

11.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may a so be used, but should be preceded by the string
"SP_". Thefollowing values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required.
P_MD5_RSA 512 MDS5 takes an input message of arbitrary length and produces as

output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.

P_MD5_RSA_1024 MDS5 takes an input message of arbitrary length and produces as
output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public- key cryptography system
using a 1024-bit modulus.The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.
P_RSASSA_PKCS1_vl1_5 SHA1_ 1024 |SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. RSA is then used to generate the
signature value, following the process defined in section 8 of RFC
2437 and format defined in section 9.2.1 of RFC 2437. The RSA
private/public key pair is using a 1024-bit modulus.

P_SHA1 DSA SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. DSA is then used to generate the
signature value. The signature generation follows the process and
format defined in section 7.2.2 of RFC 2459.

11.3.12 TpSigningAlgorithmCapabilityList

This datatype isidentical to a TpString. It isastring of multiple TpSigningAlgorithm concatenated using a comma ()
as the separation character.

11.3.13 TpAuthMechanism

This datatypeisidentical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined.

String Value Description
P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to
generate a response based on a shared secret and a challenge received via
challenge() method. The capability to use this algorithm is required to be
supported when using CHAP (RFC 1994) but its use is not recommended.
P_OSA_HMAC_SHA1l 96 Authentication is based on the use of HMAC-SHAL (RFC 2404) hashing
algorithm to generate a response based on a shared secret and a challenge
received via challenge() method.
P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm
to generate a response based on a shared secret and a challenge received via
challenge() method.

11.3.14 TpAuthMechanismList

This datatypeisidentical to a TpString. It is a string of multiple TpAuthM echanism concatenated using acomma (,) as
the separation character.

ETSI

204 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are "Available"
or "Unavailable".

11.4.2 TpFaultStatsRecord

This defines the set of recordsto be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type
Period TpTimelnterval
FaultStatsSet TpFaultStatsSet

11.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Name Sequence Element Type Description
Fault TplinterfaceFault
Occurrences TpInt32 The number of separate instances of this fault
MaxDuration TpInt32 The number of seconds duration of the longest fault
TotalDuration Tpint32 The cumulative duration (all occurrences)
NumberOfClientsAffected Tpint32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

11.4.4 TpFaultStatisticsError

Defines the error code associated with afailed attempt to retrieve any fault statistics information.

Name Value Description
P_FAULT INFO ERROR_UNDEFINED 0 Undefined error
P FAULT INFO UNAVAILABLE 1 Fault statistics unavailable

11.45 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats.

11.4.6 TpActivityTestID

This datatypeisidentical to a TpInt32, and is used as atoken to match activity test requests with their results.

ETSI

205 ETSI ES 203 915-3 V1.3.1 (2008-04)
11.4.7 TplinterfaceFault
Defines the cause of the interface fault detected.

Name Value Description
INTERFACE_FAULT_UNDEFINED 0 Undefined.
INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has

been detected.
INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has
been detected.
INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway
link has been detected.
11.4.8 TpSvcUnavailReason
Defines the reason why a SCF is unavailable.

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined.
SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed.
SERVICE _UNAVAILABLE GATEWAY FAILURE 2 The gateway API software or hardware has failed.
SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded.
SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud

or malicious attack).
11.4.9 TpFwUnavailReason
Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAILABLE_UNDEFINED 0 Undefined.
FW UNAVAILABLE LOCAL FAILURE 1 The Local API software or hardware has failed.
FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed.
FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded.
FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect
from fraud or malicious attack).
FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has

failed.

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL NORMAL 0 Normal load
LOAD LEVEL OVERLOAD 1 Overload
LOAD LEVEL SEVERE OVERLOAD 2 Severe Overload

11.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold valueis
application and SCF dependent, so is their relationship with load level.

Sequence Element Name

Sequence Element Type

LoadThreshold

TpFloat

ETSI

11.4.12 TpLoadinitVal

206

ETSI ES 203 915-3 V1.3.1 (2008-04)

Defines the Sequence of Data Elements that specify the pair of load level and associated |oad threshold value.

Sequence Element Name

Sequence Element Type

LoadLevel

TpLoadLevel

LoadThreshold

TpLoadThreshold

11.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPolicy

TpString

11.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. Framework,
service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntitylD

TpLoadStatisticEntitylID

TimeStamp

TpDateAndTime

LoadStatisticlnfo

TpLoadStatisticlnfo

11.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpL oadStatistic.

11.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadValue (see note)

TpFloat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

11.4.17 TpLoadStatisticEntitylD

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or Framework)
providing load statistics.

Tag Element Type

TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD STATISTICS FW_TYPE TpFwID FrameworkID
P LOAD STATISTICS SVC TYPE TpServicelD ServicelD
P LOAD STATISTICS APP TYPE TpClientApplD ClientAppID

ETSI

207 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P LOAD STATISTICS FW TYPE 0 Framework-type load statistics
P _LOAD _ STATISTICS SVC TYPE 1 Service-type load statistics
P LOAD STATISTICS APP TYPE 2 Application-type load statistics

11.4.19 TpLoadStatisticinfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

Tag Element Type
TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P LOAD STATISTICS VALID TpLoadStatisticData LoadStatisticData
P_LOAD STATISTICS INVALID TpLoadStatisticError LoadStatisticError

11.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P _LOAD STATISTICS VALID 0 Valid load statistics
P_LOAD STATISTICS INVALID 1 Invalid load statistics

11.4.21 TpLoadStatisticError

Defines the error code associated with afailed attempt to retrieve any load statistics information.

Name Value Description
P LOAD INFO ERROR UNDEFINED 0 Undefined error
P LOAD INFO UNAVAILABLE 1 Load statistics unavailable

ETSI

208 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service Instance availability.

Name Value Description

SVC_ UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.

SVC_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed.
A permanent failure. See note 1.

SVC_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has
failed. A permanent failure. See note 1.

SVC_UNAVAILABLE_OVERLOADED 3 The Service Instance is fully overloaded. A
temporary problem. See note 2.

SVC_UNAVAILABLE_CLOSED 4 The Service Instance has closed itself (e.g. to

protect from fraud or malicious attack). A
permanent failure. See note 1.
SVC_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that a Service
Instance has failed: e.g. non-response from an
activity test, failure to return heartbeats. A
permanent failure. See note 1.
SVC_UNAVAILABLE_SW_UPGRADE 6 The Service Instance is unavailable due to
software upgrade or other similar maintenance.
A permanent failure. See note 1.
SVC_AVAILABLE 7 The Service has become available again.
NOTE 1: The client application must act to reset its use of the specified service instance (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance
and begin use of a different service instance).
NOTE 2: The "expected" recovery time could be defined within the SLA.

11.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

Name Value Description
APP_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.
APP_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Application has been

detected. A permanent failure. See note 1.
APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been

detected, e.g. a database is not working. A
permanent failure. See note 1.

APP_UNAVAILABLE_OVERLOADED 3 The Application is fully overloaded. A temporary
problem. See note 2.
APP_UNAVAILABLE_CLOSED 4 The Application has closed itself (e.g. to protect

from fraud or malicious attack). A permanent
failure. See note 1.
APP_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the application
has failed: e.g. non-response from an activity
test, failure to return heartbeats. A permanent
failure. See note 1.
APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW
upgrade or other similar maintenance. A
permanent failure. See note 1.
APP_AVAILABLE 7 The Application has become available.

NOTE 1: The client application is unable (or does not wish) to continue using the service instance.

NOTE 2: The "expected" recovery time could be defined within the SLA.

11.4.24 TplLoadTestID

This datatypeisidentical to a TpInt32, and is used as atoken to match load statistics requests with their results.

ETSI

11.4.25 TpFaultStatsErrorList

209

ETSI ES 203 915-3 V1.3.1 (2008-04)

DefinesaNumbered List of Data Elements of type TpFaultStatisticsError.

11.4.26 TpFaultReqlD

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match fault statistics requests with their results.

11.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description

FRAMEWORK UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_LOCAL_FAILU 1 A local failure in the Framework has been

RE detected. A permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_REMOTE_FAIL 2 A remote failure to the Framework has been

URE detected, e.g. a database is not working. A
permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded. A temporary
problem. See note 2.

FRAMEWORK_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect
from fraud or malicious attack). A permanent
failure. See note 1.

FRAMEWORK_UNAVAILABLE_PROTOCOL_F 5 The Framework has detected that the protocol

AILURE used between client and framework has failed. A
permanent failure. See note 1.

FRAMEWORK_UNAVAILABLE_SW_UPGRADE 6 The Framework is unavailable due to SW
upgrade or other similar maintenance. A
permanent failure. See note 1.

FRAMEWORK AVAILABLE 7 The Framework has become available.

NOTE 1: The Framework is unable (or does not wish) to continue using the client or service instance.
NOTE 2: The 'expected' recovery time could be part of the Framework's local policies.

11.5

11.5.1 TpPropertyName

Service Subscription Data Definitions

This datatypeisidentica to TpString. It is the name of a generic "property”.

11.5.2 TpPropertyValue

This datatypeisidentical to TpString. It isthe value (or the list of values) associated with a generic "property”.

11.5.3 TpProperty

This datatypeis a Sequence of Data Elements which describes a generic "property”. It is a structured data type

consisting of the following { name, value} pair.

Sequence Element Name

Sequence Element Type

PropertyName

TpPropertyName

PropertyValue

TpPropertyValue

11.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

ETSI

210 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

11.5.6 TpENtOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data type,
consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties', as follows.

Sequence Element Name Sequence Element Type
EntOpID TpENtOpID
EntOpProperties TpEntOpProperties

11.5.7 TpServiceContractiD

This datatypeisidentical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSA service by the enterprise.

11.5.8 TpServiceContractIDList

This datatype defines a Numbered List of Data Elements of type TpServiceContractiD.

11.5.9 TpPersonName

This datatypeisidentical to TpString. It is the name of a generic "person”.

11.5.10 TpPostalAddress

This datatypeisidentical to TpString. It isthe mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

This datatypeisidentica to TpString. It is the telephone number of a generic "person”.

11.5.12 TpEmail

This datatypeisidentical to TpString. It is the email address of a generic "person”.

11.5.13 TpHomePage

This datatypeisidentica to TpString. It is the web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

ETSI

211 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.5.15 TpPerson

This datatypeis a Sequence of Data Elements which describes a generic "person™: e.g. a billing contact, a service
requestor. It isastructured data type which consists of:

Sequence Element Name Sequence Element Type
PersonName TpPersonName
PostalAddress TpPostalAddress
TelephoneNumber TpTelephoneNumber
Email TpEmail
HomePage TpHomePage
PersonProperties TpPersonProperties

11.5.16 TpServiceStartDate

Thisis of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisis of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise's
use of an OSA service.

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise's use of an OSA service.

11.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type
ServiceContractlD TpServiceContractlD
ServiceContractDescription TpServiceContractDescription

ETSI

212 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.5.22 TpServiceContractDescription

This datatypeis a Sequence of Data Elements which describes a service contract. This contract should conformto a
previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if any, between the
enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ServiceRequestor TpServiceRequestor
BillingContact TpBillingContact
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName
ServicelD TpServicelD
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (See note)
NOTE: The InUse flag indicates if the contract, or one of its associated profiles, is currently in
use by a service instance and will be returned in describeServiceContract(). This flag
will be ignored if it is passed in to createServiceContract().

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesisalist of { name, value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

11.5.24 TpClientAppDescription

This datatypeis a Sequence of Data Elements which describes an enterprise client application. It is a structured data
type, consisting of a unique "client application ID", password and alist of client application properties.

Sequence Element Name Sequence Element Type
ClientAppID TpClientAppID
ClientAppProperties TpClientAppProperties
HasAccessSession TpBoolean (See note 1)
HasServicelnstances TpBoolean(See note 2)

NOTE 1: The HasAccessSession flag indicates if the client application currently has an access
session active with the framework and will be returned in describeClientApp(). This flag
will be ignored if it is passed in to createClientApp().

NOTE 2: The HasServicelnstances flag indicates if the client application currently has service
instances active and will be returned in describeClientApp(). This flag will be ignored if
it is passed in to createClientApp(). This flag must be false if hasAccessSession is
false.

11.5.25 TpSagID

This datatypeisidentical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

11.5.26 TpSagIDList

This datatype defines a Numbered List of Data Elements of type TpSagID.

11.5.27 TpSagDescription

This datatypeisidentical to TpString. It describes a SAG: e.g. alist of identifiers of the constituent client applications,
the purpose of the "grouping".

ETSI

213 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.5.28 TpSag

This datatypeis a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of client
applications within an enterprise. It is a structured data type consisting of a unique SAG 1D and a description.

Sequence Element Name Sequence Element Type
SagIlD TpSagID
SagDescription TpSagDescription

11.5.29 TpServiceProfilelD

This datatypeisidentica to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

11.5.30 TpServiceProfileIDList

This datatype defines a Numbered List of Data Elements of type TpServiceProfilel D.

11.5.31 TpServiceProfile

This datatypeis a Sequence of Data Elements which represents a Service Profile. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type
ServiceProfilelD TpServiceProfileID
ServiceProfileDescription TpServiceProfileDescription

11.5.32 TpServiceProfileDescription
This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains one or

more Service Profiles, one for each SAG in the enterprise operator domain. A service profile isarestriction of the
service contract in order to provide restricted service featuresto a SAG. It is a structured data type which consists of:

ETSI

214 ETSI ES 203 915-3 V1.3.1 (2008-04)

Sequence Element Type
TpServiceContractlD

Sequence Element Name
ServiceContractID

ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName (See note 1)
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (See note 2)
ServicelD TpServicelD (See note 3)

NOTE 1: When the Framework returns a TpServiceProfileDescription to the enterprise operator, it
should set the ServiceTypeName field to the same value as the corresponding field of the
service contract; When the enterprise operator passes a TpServiceProfileDescription to
the Framework, the Framework should ignore the value sent in the ServiceTypeName
field to ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription
to the Framework.

NOTE 2: The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored if it is passed in to
createServiceProfile().

NOTE 3: The ServicelD field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an
enterprise operator, the Framework should ensure that the ServicelD field, if not empty,
contains a service which is of the service type specified in the service contract. If the
corresponding contract is for a service ID then the Framework should ignore this field.
When a TpServiceProfileDescription is returned to the enterprise operator, the contents of
this field will depend on the associated service contract. If the contract is for a service ID,
then this field should be populated with the correct value. If the contract is for a service
type, and the profile is restricted to a specific service ID then this field should be
populated with the correct value. Otherwise, it should contain an empty string.

11.5.33 TpSagProfilePair

This datatypeis a Sequence of Data Elements which describes a pair of a SAG and a Service Profile. It isa structured
data type which consists of:

Sequence Element Name

Sequence Element Type

Sag

TpSagID

ServiceProfile

TpServiceProfilelD

11.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagM embers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile
for each service.

The TpAddSagM embersConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type

ClientApplication

TpClientAppID

ConflictGeneratingSagProfilePair

TpSagProfilePair

AlreadyAssignedSagProfilePair

TpSagProfilePair

Service

TpServicelD

11.5.35 TpAddSagMembersConflictList

This data type defines aNumbered List of Data Elements of type TpAddSagM embersConflict.

ETSI

215 ETSI ES 203 915-3 V1.3.1 (2008-04)

11.5.36 TpAssignSagToServiceProfileConflict

This datatypeis a Sequence of Data Elements which describes a conflict that may occur when a SAG isassigned to a
Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service.

The TpAssignSagT oServiceProfileConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

11.5.37 TpAssignSagToServiceProfileConflictList

This datatype defines aNumbered List of Data Elements of type TpAssignSagT oServiceProfileConflict.

12 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_DENIED The client is not currently authenticated
with the framework.

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been
received.

P ILLEGAL SERVICE ID lllegal Service ID.

P ILLEGAL_SERVICE_TYPE lllegal Service Type.

P_INVALID_ACCESS_TYPE The framework does not support the type
of access interface requested by the
client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity
test request.

P_INVALID_ADDITION_TO_SAG A client application cannot be added to

the SAG because this would imply that the
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P INVALID AGREEMENT TEXT Invalid agreement text.

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability.

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism.

P INVALID CLIENT APP ID Invalid Client Application ID.

P_INVALID_DOMAIN_ID Invalid client ID.

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID.

P_INVALID_PROPERTY The framework does not recognise the
property supplied by the client.

P _INVALID SAG ID Invalid Subscription Assignment Group ID.

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT |A SAG cannot be assigned to the service
profile because this would imply that a
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P INVALID SERVICE CONTRACT ID Invalid Service Contract ID.

P_INVALID_SERVICE_ID Invalid service ID.

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID.

P_INVALID_SERVICE_TOKEN The service token has not been issued, or
it has expired.

P INVALID SERVICE TYPE Invalid Service Type.

P_INVALID_SIGNATURE Invalid digital signature.

ETSI

216 ETSI ES 203 915-3 V1.3.1 (2008-04)

Name Description

P INVALID SIGNING ALGORITHM Invalid signing algorithm.

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing.

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY No encryption mechanism, which is
acceptable to the framework, is supported
by the client.

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM |No authentication mechanism, which is
acceptable to the framework, is supported
by the client.

P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable
to the framework, is supported by the
client.

P PROPERTY TYPE MISMATCH Property Type Mismatch.

P_SERVICE_ACCESS_DENIED The client application is not allowed to
access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a
service that has been enabled.

P_SERVICE_TYPE_UNAVAILABLE The service type is not available
according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID.

P UNKNOWN SERVICE TYPE Unknown Service Type.

Each exception class contains the following structure:
Structure Element Name Structure Element Type Structure Element Description
Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name.

ETSI

217 ETSI ES 203 915-3 V1.3.1 (2008-04)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if_service.idl contained in archive es 20391503IDL.ZIP) which accompany the
present document.

This archive can be found in es_20391503v010301p0.zip which accompany the present document.

ETSI

218 ETSI ES 203 915-3 V1.3.1 (2008-04)

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of thisinterface specification is contained in zip file es 20391503WSDL.ZIP, which
accompanies the present document.

This archive can be found in es_20391503v010301p0.zip which accompany the present document.

ETSI

219 ETSI ES 203 915-3 V1.3.1 (2008-04)

Annex C (informative):
Java™ API Description of the Framework

The Java™ API realisation of thisinterface specification is produced in accordance with the Java™ Realisation rules
defined in ES 203 915-1. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a
Java™ API that represents the UML specifications. The rules support the production of both 2SE™ and J2EE™
versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™, contained in archive 20391503J2SE.zip.
The J2EE™ representation of this interface specification is provided as Java™, contained in archive 20391503J2EE.zip.

Both these archives can be found in es_20391503v010301p0.zip which accompanies the present document.

ETSI

220 ETSI ES 203 915-3 V1.3.1 (2008-04)

Annex D (informative):
Contents of 3GPP OSA R6 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
TS 129 198-3 V6 (Release 6).

ETSI

221 ETSI ES 203 915-3 V1.3.1 (2008-04)

Annex E (informative):
Description of the Framework for 3GPP2 cdma2000
networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable
operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2
architecture defined in [52], [53] and [54] of ES 203 915-1, clause 2. These requirements are expressed as additions to
and/or exclusions from the 3GPP Release 6 specification. The information given hereisto be used by developersin
3GPP2 cdma2000 network architecture to interpret the 3GPP OSA specifications.

E.1 General Exceptions

Theterm UMTS is not applicable for the cdma2000 family of standards. Neverthelessthe term UMTSisused in
TR 121 905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated
otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope

There are no additions or exclusions.

E.2.2 Clause 2: References

Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

E.2.4 Clause 4: Overview of the Framework

There are no additions or exclusions.

E.2.5 Clause 5: The Base Interface Specification

There are no additions or exclusions.

E.2.6 Clause 6: Framework Access Session API

There are no additions or exclusions.

E.2.7 Clause 7 Framework-to-Application Sequence Diagrams

There are no additions or exclusions.

ETSI

222 ETSI ES 203 915-3 V1.3.1 (2008-04)

E.2.8 Clause 9: Framework-to-Service API

There are no additions or exclusions.

E.2.9 Clause 10: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature
through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be
turned aways off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

E.2.10 Clause 11: Data Definitions

There are no additions. P_USER_LOCATION_CAMEL value of TpServiceTypeName s not required to be supported
in the 3GPP2 networks.

E.2.11 Clause 12: Exception Classes

There are no additions or exclusions.

E.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

E.2.13 Annex B (informative): W3C WSDL Description of the
Framework

There are no additions or exclusions.

E.2.14 Annex C (informative): Java™ API Description of the
Framework

There are no additions or exclusions.

ETSI

223 ETSI ES 203 915-3 V1.3.1 (2008-04)

Annex F (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New
Identifier | Comments
Interfaces added in ES 203 915-3 version 1.1.1 (Parlay 5.0)
IpClientEventNotification Event Notification added to Framework to Enterprise Operator
interfaces
IpEventNotification Event Notification added to Framework to Enterprise Operator
interfaces

Interfaces added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Interfaces added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Interfaces deprecated in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Interfaces deprecated in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Interfaces removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Interfaces removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

224 ETSI ES 203 915-3 V1.3.1 (2008-04)

F.2 Methods

F.2.1 New

Identifier | Comments

Methods added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

IpFwServiceRegistration.registerServiceSubType()

IpAppFaultManager.fwAvailStatusind()

IpSvcFaultManager.fwAvailStatusind()

IpClientEventNotification.reportNotification()

IpEventNotification.createNotification()

IpEventNotification.destroyNotification()

Methods added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 203 915-3 version 1.1.1 (Parlay 5.0)

IpAppFaultManager.fwFaultReportind()

IpAppFaultManager.fwFaultRecoverylnd()

IpAppFaultManager.fwUnavailableInd()

IpSvcFaultManager.fwFaultReportind()

IpSvcFaultManager.fwFaultRecoverylnd()

IpSvcFaultManager.fwUnavailablelnd()

Methods deprecated in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods deprecated in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.2.3 Modified

Identifier | Comments

Methods modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Methods modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.2.4 Removed

Identifier | Comments

Methods removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Methods removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Methods removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

225 ETSI ES 203 915-3 V1.3.1 (2008-04)

F.3 Data Definitions

F.3.1 New

Identifier | Comments

Data Definitions added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

TpServiceTypePropertyValue

TpServiceTypePropertyValueList

TpFwMigrationServiceAvailableInfo

TpMigrationAdditionallnfo

TpMigrationAdditionallnfoType

TpMigrationAdditionallnfoSet

TpFwAvailStatusReason

TpFwAgreementinfo

Data Definitions added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Data Definitions added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.3.2 Modified

Identifier | Comments

Data Definitions modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)

TpServiceTypeName Value P USER INTERACTION_ADMIN added
TpServiceTypeName Value P_POLICY_MANAGEMENT renamed to

P POLICY PROVISIONING
TpServiceTypeName Value P POLICY EVALUATION added
TpServiceTypeName Value P EXTENDED USER STATUS added
TpServiceTypeName Value P USER BINDING added
TpFwEventName P EVENT FW MIGRATION SERVICE AVAILABLE added
TpFwEventCriteria CompatibleServiceTypeNameList added
TpFwEventinfo MigrationServiceAvailableList added
TpServiceContractDescription InUse field added
TpClientAppDescription HasAccessSession, HasServicelnstances fields added
TpServiceProfileDescription InUse, ServicelD fields added
TpFwEventName Events P_EVENT_FW_APP_SESSION_CREATED,

P_EVENT_FW_APP_SESSION_TERMINATED,
P_EVENT_FW_APP_AGREEMENT_SIGNED and
P _EVENT FW APP AGREEMENT ENDED added.

TpFwEventCriteria

Fields SessionCreatedList, SessionTerminatedList,
AgreementSignedList and AgreementEndedList added.

TpFwEventinfo

Fields AppSessionCreated, AppSessionTerminated,
AppAgreementSigned and AppAgreementEnded added.

Data Definitions modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)

TpServiceTypeName

IP_MULTI MEDIA MESSAGING added

Data Definitions modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

ETSI

226 ETSI ES 203 915-3 V1.3.1 (2008-04)

F.3.3 Removed

Identifier | Comments

Data Definitions removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Data Definitions removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Data Definitions removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.4 Service Properties

F.4.1 New

Identifier | Comments

Service Properties added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

P_COMPATIBLE WITH SERVICE

P BACKWARD COMPATIBILITY LEVEL

P MIGRATION REQUIRED

P_DATA MIGRATED

P MIGRATION DATE AND TIME

XML ADDRESS RANGE SET New Service Property Type. Replaces ADDRESSRANGE SET

Service Properties added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Property Type FLOAT SET added

Service Property Type FLOAT INTERVAL added

Service Properties added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

P REGEX SUPPORT FOR ADDRESS RANGE |

F.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Service Properties deprecated in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Properties deprecated in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.4.3 Modified

Identifier | Comments

Service Properties modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Service Properties modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Properties modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

Service Property Type Service Property Type modified to permit use of Regular Expressions.
XML _ADDRESS RANGE_SET

ETSI

227 ETSI ES 203 915-3 V1.3.1 (2008-04)

F.4.4 Removed

Identifier | Comments
Service Properties removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)
ADDRESSRANGE_SET Deleted Service Property Type, replaced with

XML _ADDRESS RANGE SET

Service Properties removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Service Properties removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.5 Exceptions

F.5.1 New

Identifier | Comments

Exceptions added in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Exceptions added in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Exceptions added in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.5.2 Modified

Identifier | Comments

Exceptions modified in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Exceptions modified in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Exceptions modified in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.5.3 Removed

Identifier | Comments

Exceptions removed in ES 203 915-3 version 1.1.1 (Parlay 5.0)

Exceptions removed in ES 203 915-3 version 1.2.1 (Parlay 5.1)

Exceptions removed in ES 203 915-3 version 1.3.1 (Parlay 5.2)

F.6 Others

ES203915V1.2.1:
WSDL code reworked and replaced in annex B.

ETSI

228 ETSI ES 203 915-3 V1.3.1 (2008-04)

History
Document history
V111 April 2005 Publication
V121 January 2007 Publication
V131 February 2008 Membership Approval Procedure MV 20080411: 2008-02-12 to 2008-04-11
V131 April 2008 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method <<deprecated>> authenticate()
	6.3.1.1.2 Method abortAuthentication()
	6.3.1.1.3 Method authenticationSucceeded()
	6.3.1.1.4 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method <<deprecated>> initiateAuthentication()
	6.3.1.3.2 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()
	6.3.1.5.2 Method <<deprecated>> authenticate()
	6.3.1.5.3 Method abortAuthentication()
	6.3.1.5.4 Method authenticationSucceeded()
	6.3.1.5.5 Method selectAuthenticationMechanism()
	6.3.1.5.6 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method <<deprecated>> endAccess()
	6.3.1.6.4 Method listInterfaces()
	6.3.1.6.5 Method <<deprecated>> releaseInterface()
	6.3.1.6.6 Method selectSigningAlgorithm()
	6.3.1.6.7 Method terminateAccess()
	6.3.1.6.8 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State
	6.4.1.2.11 Idle State
	6.4.1.2.12 Authenticating Framework State
	6.4.1.2.13 Framework Authenticated State
	6.4.1.2.14 Authenticating Client State
	6.4.1.2.15 Client Authenticated State
	6.4.1.2.16 Idle State
	6.4.1.2.17 Authenticating Framework State
	6.4.1.2.18 Framework Authenticated State
	6.4.1.2.19 Authenticating Client State
	6.4.1.2.20 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Agreement Management Sequence Diagrams
	7.1.3.1 Service Selection

	7.1.4 Service Discovery Sequence Diagrams
	7.1.4.1 Service Discovery

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> svcUnavailableInd()
	7.3.3.1.6 Method <<deprecated>> genFaultStatsRecordRes()
	7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.8 Method activityTestErr()
	7.3.3.1.9 Method <<deprecated>> genFaultStatsRecordErr()
	7.3.3.1.10 Method appUnavailableInd()
	7.3.3.1.11 Method <<deprecated>> genFaultStatsRecordReq()
	7.3.3.1.12 Method svcAvailStatusInd()
	7.3.3.1.13 Method <<new>> generateFaultStatisticsRecordRes()
	7.3.3.1.14 Method <<new>> generateFaultStatisticsRecordErr()
	7.3.3.1.15 Method <<new>> generateFaultStatisticsRecordReq()
	7.3.3.1.16 Method <<new>> fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method <<deprecated>> genFaultStatsRecordReq()
	7.3.3.2.5 Method appActivityTestErr()
	7.3.3.2.6 Method <<deprecated>> appUnavailableInd()
	7.3.3.2.7 Method <<deprecated>> genFaultStatsRecordRes()
	7.3.3.2.8 Method <<deprecated>> genFaultStatsRecordErr()
	7.3.3.2.9 Method appAvailStatusInd()
	7.3.3.2.10 Method <<new>> generateFaultStatisticsRecordReq()
	7.3.3.2.11 Method <<new>> generateFaultStatisticsRecordRes()
	7.3.3.2.12 Method <<new>> generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method <<deprecated>> queryAppLoadReq()
	7.3.3.7.2 Method <<deprecated>> queryLoadRes()
	7.3.3.7.3 Method <<deprecated>> queryLoadErr()
	7.3.3.7.4 Method loadLevelNotification()
	7.3.3.7.5 Method resumeNotification()
	7.3.3.7.6 Method suspendNotification()
	7.3.3.7.7 Method createLoadLevelNotification()
	7.3.3.7.8 Method destroyLoadLevelNotification()
	7.3.3.7.9 Method <<new>> queryAppLoadStatsReq()
	7.3.3.7.10 Method <<new>> queryLoadStatsRes()
	7.3.3.7.11 Method <<new>> queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method <<deprecated>> queryLoadReq()
	7.3.3.8.3 Method <<deprecated>> queryAppLoadRes()
	7.3.3.8.4 Method <<deprecated>> queryAppLoadErr()
	7.3.3.8.5 Method createLoadLevelNotification()
	7.3.3.8.6 Method destroyLoadLevelNotification()
	7.3.3.8.7 Method resumeNotification()
	7.3.3.8.8 Method suspendNotification()
	7.3.3.8.9 Method <<new>> queryLoadStatsReq()
	7.3.3.8.10 Method <<new>> queryAppLoadStatsRes()
	7.3.3.8.11 Method <<new>> queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Event Notification Sequence Diagrams
	8.1.2 Service Subscription Sequence Diagrams
	8.1.2.1 Service Discovery and Subscription Scenario
	8.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Event Notification Interface Classes
	8.3.1.1 Interface Class IpClientEventNotification
	8.3.1.1.1 Method reportNotification()
	8.3.1.1.2 Method notificationTerminated()

	8.3.1.2 Interface Class IpEventNotification
	8.3.1.2.1 Method createNotification()
	8.3.1.2.2 Method destroyNotification()

	8.3.2 Service Subscription Interface Classes
	8.3.2.1 Interface Class IpClientAppManagement
	8.3.2.1.1 Method createClientApp()
	8.3.2.1.2 Method modifyClientApp()
	8.3.2.1.3 Method deleteClientApp()
	8.3.2.1.4 Method createSAG()
	8.3.2.1.5 Method modifySAG()
	8.3.2.1.6 Method deleteSAG()
	8.3.2.1.7 Method addSAGMembers()
	8.3.2.1.8 Method removeSAGMembers()
	8.3.2.1.9 Method requestConflictInfo()

	8.3.2.2 Interface Class IpClientAppInfoQuery
	8.3.2.2.1 Method describeClientApp()
	8.3.2.2.2 Method listClientApps()
	8.3.2.2.3 Method describeSAG()
	8.3.2.2.4 Method listSAGs()
	8.3.2.2.5 Method listSAGMembers()
	8.3.2.2.6 Method listClientAppMembership()

	8.3.2.3 Interface Class IpServiceProfileManagement
	8.3.2.3.1 Method createServiceProfile()
	8.3.2.3.2 Method modifyServiceProfile()
	8.3.2.3.3 Method deleteServiceProfile()
	8.3.2.3.4 Method assign()
	8.3.2.3.5 Method deassign()
	8.3.2.3.6 Method requestConflictInfo()

	8.3.2.4 Interface Class IpServiceProfileInfoQuery
	8.3.2.4.1 Method listServiceProfiles()
	8.3.2.4.2 Method describeServiceProfile()
	8.3.2.4.3 Method listAssignedMembers()

	8.3.2.5 Interface Class IpServiceContractManagement
	8.3.2.5.1 Method createServiceContract()
	8.3.2.5.2 Method modifyServiceContract()
	8.3.2.5.3 Method deleteServiceContract()

	8.3.2.6 Interface Class IpServiceContractInfoQuery
	8.3.2.6.1 Method describeServiceContract()
	8.3.2.6.2 Method listServiceContracts()
	8.3.2.6.3 Method listServiceProfiles()

	8.3.2.7 Interface Class IpEntOpAccountManagement
	8.3.2.7.1 Method modifyEntOpAccount()
	8.3.2.7.2 Method deleteEntOpAccount()

	8.3.2.8 Interface Class IpEntOpAccountInfoQuery
	8.3.2.8.1 Method describeEntOpAccount()

	8.4 State Transition Diagrams
	8.4.1 Event Notification State Transition Diagrams
	8.4.2 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Service Discovery Sequence Diagrams
	9.1.2 Service Registration Sequence Diagrams
	9.1.2.1 New SCF Sub Type Registration
	9.1.2.2 New SCF Registration

	9.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.3.1 Sign Service Agreement

	9.1.4 Integrity Management Sequence Diagrams
	9.1.4.1 Load Management: Service callback registration and load control
	9.1.4.2 Load Management: Framework callback registration and service load control
	9.1.4.3 Load Management: Client and Service Load Balancing
	9.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.4.5 Fault Management: Service requests Framework activity test
	9.1.4.6 Fault Management: Service requests Application activity test
	9.1.4.7 Fault Management: Application requests Service activity test
	9.1.4.8 Fault Management: Application detects service is unavailable

	9.1.5 Event Notification Sequence Diagrams

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Service Registration Interface Classes
	9.3.1.1 Interface Class IpFwServiceRegistration
	9.3.1.1.1 Method registerService()
	9.3.1.1.2 Method announceServiceAvailability()
	9.3.1.1.3 Method unregisterService()
	9.3.1.1.4 Method describeService()
	9.3.1.1.5 Method unannounceService()
	9.3.1.1.6 Method <<new>> registerServiceSubType()

	9.3.2 Service Instance Lifecycle Manager Interface Classes
	9.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	9.3.2.1.1 Method createServiceManager()
	9.3.2.1.2 Method destroyServiceManager()

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery
	9.3.3.1.1 Method listServiceTypes()
	9.3.3.1.2 Method describeServiceType()
	9.3.3.1.3 Method discoverService()
	9.3.3.1.4 Method listRegisteredServices()

	9.3.4 Integrity Management Interface Classes
	9.3.4.1 Interface Class IpFwFaultManager
	9.3.4.1.1 Method activityTestReq()
	9.3.4.1.2 Method svcActivityTestRes()
	9.3.4.1.3 Method appUnavailableInd()
	9.3.4.1.4 Method <<deprecated>> genFaultStatsRecordReq()
	9.3.4.1.5 Method <<deprecated>> svcUnavailableInd()
	9.3.4.1.6 Method svcActivityTestErr()
	9.3.4.1.7 Method <<deprecated>> genFaultStatsRecordRes()
	9.3.4.1.8 Method <<deprecated>> genFaultStatsRecordErr()
	9.3.4.1.9 Method <<deprecated>> generateFaultStatsRecordRes()
	9.3.4.1.10 Method <<deprecated>> generateFaultStatsRecordErr()
	9.3.4.1.11 Method svcAvailStatusInd()
	9.3.4.1.12 Method <<new>> generateFaultStatisticsRecordReq()
	9.3.4.1.13 Method <<new>> generateFaultStatisticsRecordRes()
	9.3.4.1.14 Method <<new>> generateFaultStatisticsRecordErr()

	9.3.4.2 Interface Class IpSvcFaultManager
	9.3.4.2.1 Method activityTestRes()
	9.3.4.2.2 Method svcActivityTestReq()
	9.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	9.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	9.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	9.3.4.2.6 Method svcUnavailableInd()
	9.3.4.2.7 Method <<deprecated>> appUnavailableInd()
	9.3.4.2.8 Method <<deprecated>> genFaultStatsRecordRes()
	9.3.4.2.9 Method activityTestErr()
	9.3.4.2.10 Method <<deprecated>> genFaultStatsRecordErr()
	9.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()
	9.3.4.2.12 Method <<deprecated>> generateFaultStatsRecordReq()
	9.3.4.2.13 Method appAvailStatusInd()
	9.3.4.2.14 Method <<new>> generateFaultStatisticsRecordRes()
	9.3.4.2.15 Method <<new>> generateFaultStatisticsRecordErr()
	9.3.4.2.16 Method <<new>> generateFaultStatisticsRecordReq()
	9.3.4.2.17 Method <<new>> fwAvailStatusInd()

	9.3.4.3 Interface Class IpFwHeartBeatMgmt
	9.3.4.3.1 Method enableHeartBeat()
	9.3.4.3.2 Method disableHeartBeat()
	9.3.4.3.3 Method changeInterval()

	9.3.4.4 Interface Class IpFwHeartBeat
	9.3.4.4.1 Method pulse()

	9.3.4.5 Interface Class IpSvcHeartBeatMgmt
	9.3.4.5.1 Method enableSvcHeartBeat()
	9.3.4.5.2 Method disableSvcHeartBeat()
	9.3.4.5.3 Method changeInterval()

	9.3.4.6 Interface Class IpSvcHeartBeat
	9.3.4.6.1 Method pulse()

	9.3.4.7 Interface Class IpFwLoadManager
	9.3.4.7.1 Method reportLoad()
	9.3.4.7.2 Method <<deprecated>> queryLoadReq()
	9.3.4.7.3 Method <<deprecated>> querySvcLoadRes()
	9.3.4.7.4 Method <<deprecated>> querySvcLoadErr()
	9.3.4.7.5 Method createLoadLevelNotification()
	9.3.4.7.6 Method destroyLoadLevelNotification()
	9.3.4.7.7 Method suspendNotification()
	9.3.4.7.8 Method resumeNotification()
	9.3.4.7.9 Method <<new>> queryLoadStatsReq()
	9.3.4.7.10 Method <<new>> querySvcLoadStatsRes()
	9.3.4.7.11 Method <<new>> querySvcLoadStatsErr()

	9.3.4.8 Interface Class IpSvcLoadManager
	9.3.4.8.1 Method <<deprecated>> querySvcLoadReq()
	9.3.4.8.2 Method <<deprecated>> queryLoadRes()
	9.3.4.8.3 Method <<deprecated>> queryLoadErr()
	9.3.4.8.4 Method loadLevelNotification()
	9.3.4.8.5 Method suspendNotification()
	9.3.4.8.6 Method resumeNotification()
	9.3.4.8.7 Method createLoadLevelNotification()
	9.3.4.8.8 Method destroyLoadLevelNotification()
	9.3.4.8.9 Method <<new>> querySvcLoadStatsReq()
	9.3.4.8.10 Method <<new>> queryLoadStatsRes()
	9.3.4.8.11 Method <<new>> queryLoadStatsErr()

	9.3.4.9 Interface Class IpFwOAM
	9.3.4.9.1 Method systemDateTimeQuery()

	9.3.4.10 Interface Class IpSvcOAM
	9.3.4.10.1 Method systemDateTimeQuery()

	9.3.5 Event Notification Interface Classes
	9.3.5.1 Interface Class IpFwEventNotification
	9.3.5.1.1 Method createNotification()
	9.3.5.1.2 Method destroyNotification()

	9.3.5.2 Interface Class IpSvcEventNotification
	9.3.5.2.1 Method reportNotification()
	9.3.5.2.2 Method notificationTerminated()

	9.4 State Transition Diagrams
	9.4.1 Service Registration State Transition Diagrams
	9.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.1.1.1 SCF Registered State
	9.4.1.1.2 SCF Announced State

	9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Integrity Management State Transition Diagrams
	9.4.4.1 State Transition Diagrams for IpFwLoadManager
	9.4.4.1.1 Idle State
	9.4.4.1.2 Notification Suspended State
	9.4.4.1.3 Active State

	9.4.4.2 State Transition Diagrams for IpFwFaultManager
	9.4.4.2.1 Framework Active State
	9.4.4.2.2 Framework Activity Test State
	9.4.4.2.3 Application Activity Test State
	9.4.4.2.4 Framework Faulty State

	9.4.5 Event Notification State Transition Diagrams

	10 Service Properties
	10.1 Service Super and Sub Types
	10.2 Service Property Types
	10.3 General Service Properties
	10.3.1 Service Name
	10.3.2 Service Version
	10.3.3 Service ID
	10.3.4 Service Description
	10.3.5 Product Name
	10.3.6 Product Version
	10.3.7 <<deprecated>> Supported Interfaces
	10.3.8 Operation Set
	10.3.9 Compatible Service
	10.3.10 Backward Compatibility Level
	10.3.11 Migration Required
	10.3.12 Data Migrated
	10.3.13 Migration Date And Time
	10.3.14 Support for Regular Expressions in Address Range

	11 Data Definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceInstanceID
	11.1.18 TpServiceTypeProperty
	11.1.19 TpServiceTypePropertyList
	11.1.20 TpServiceTypePropertyMode
	11.1.21 TpServicePropertyTypeName
	11.1.22 TpServicePropertyName
	11.1.23 TpServicePropertyNameList
	11.1.24 TpServicePropertyValue
	11.1.25 TpServicePropertyValueList
	11.1.26 TpServiceProperty
	11.1.27 TpServicePropertyList
	11.1.28 TpServiceSupplierID
	11.1.29 TpServiceTypeDescription
	11.1.30 TpServiceTypeName
	11.1.31 TpServiceTypeNameList
	11.1.32 TpSubjectType
	11.1.33 TpServiceTypePropertyValue
	11.1.34 TpServiceTypePropertyValueList

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo
	11.2.4 TpFwMigrationServiceAvailableInfo
	11.2.5 TpMigrationAdditionalInfo
	11.2.6 TpMigrationAdditionalInfoType
	11.2.7 TpMigrationAdditionalInfoSet
	11.2.8 TpFwAgreementInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 TpEncryptionCapability
	11.3.4 TpEncryptionCapabilityList
	11.3.5 TpEndAccessProperties
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm
	11.3.12 TpSigningAlgorithmCapabilityList
	11.3.13 TpAuthMechanism
	11.3.14 TpAuthMechanismList

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats

	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 TpSvcUnavailReason
	11.4.9 TpFwUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError
	11.4.22 TpSvcAvailStatusReason
	11.4.23 TpAppAvailStatusReason
	11.4.24 TpLoadTestID
	11.4.25 TpFaultStatsErrorList
	11.4.26 TpFaultReqID
	11.4.27 TpFwAvailStatusReason

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription
	11.5.33 TpSagProfilePair
	11.5.34 TpAddSagMembersConflict
	11.5.35 TpAddSagMembersConflictList
	11.5.36 TpAssignSagToServiceProfileConflict
	11.5.37 TpAssignSagToServiceProfileConflictList

	12 Exception Classes

	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): JavaŽ API Description of the Framework
	Annex D (informative): Contents of 3GPP OSA R6 Framework
	Annex E (informative): Description of the Framework for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: Overview of the Framework
	E.2.5 Clause 5: The Base Interface Specification
	E.2.6 Clause 6: Framework Access Session API
	E.2.7 Clause 7 Framework-to-Application Sequence Diagrams
	E.2.8 Clause 9: Framework-to-Service API
	E.2.9 Clause 10: Service Properties
	E.2.10 Clause 11: Data Definitions
	E.2.11 Clause 12: Exception Classes
	E.2.12 Annex A (normative): OMG IDL Description of the Framework
	E.2.13 Annex B (informative): W3C WSDL Description of the Framework
	E.2.14 Annex C (informative): JavaŽ API Description of the Framework

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

